1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 24 25 Documentation available at: 26 http://www.stlinux.com 27 Support available at: 28 https://bugzilla.stlinux.com/ 29 *******************************************************************************/ 30 31 #include <linux/clk.h> 32 #include <linux/kernel.h> 33 #include <linux/interrupt.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/skbuff.h> 37 #include <linux/ethtool.h> 38 #include <linux/if_ether.h> 39 #include <linux/crc32.h> 40 #include <linux/mii.h> 41 #include <linux/if.h> 42 #include <linux/if_vlan.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/slab.h> 45 #include <linux/prefetch.h> 46 #ifdef CONFIG_STMMAC_DEBUG_FS 47 #include <linux/debugfs.h> 48 #include <linux/seq_file.h> 49 #endif /* CONFIG_STMMAC_DEBUG_FS */ 50 #include <linux/net_tstamp.h> 51 #include "stmmac_ptp.h" 52 #include "stmmac.h" 53 54 #undef STMMAC_DEBUG 55 /*#define STMMAC_DEBUG*/ 56 #ifdef STMMAC_DEBUG 57 #define DBG(nlevel, klevel, fmt, args...) \ 58 ((void)(netif_msg_##nlevel(priv) && \ 59 printk(KERN_##klevel fmt, ## args))) 60 #else 61 #define DBG(nlevel, klevel, fmt, args...) do { } while (0) 62 #endif 63 64 #undef STMMAC_RX_DEBUG 65 /*#define STMMAC_RX_DEBUG*/ 66 #ifdef STMMAC_RX_DEBUG 67 #define RX_DBG(fmt, args...) printk(fmt, ## args) 68 #else 69 #define RX_DBG(fmt, args...) do { } while (0) 70 #endif 71 72 #undef STMMAC_XMIT_DEBUG 73 /*#define STMMAC_XMIT_DEBUG*/ 74 #ifdef STMMAC_XMIT_DEBUG 75 #define TX_DBG(fmt, args...) printk(fmt, ## args) 76 #else 77 #define TX_DBG(fmt, args...) do { } while (0) 78 #endif 79 80 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x) 81 #define JUMBO_LEN 9000 82 83 /* Module parameters */ 84 #define TX_TIMEO 5000 85 static int watchdog = TX_TIMEO; 86 module_param(watchdog, int, S_IRUGO | S_IWUSR); 87 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 88 89 static int debug = -1; 90 module_param(debug, int, S_IRUGO | S_IWUSR); 91 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 92 93 int phyaddr = -1; 94 module_param(phyaddr, int, S_IRUGO); 95 MODULE_PARM_DESC(phyaddr, "Physical device address"); 96 97 #define DMA_TX_SIZE 256 98 static int dma_txsize = DMA_TX_SIZE; 99 module_param(dma_txsize, int, S_IRUGO | S_IWUSR); 100 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list"); 101 102 #define DMA_RX_SIZE 256 103 static int dma_rxsize = DMA_RX_SIZE; 104 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR); 105 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list"); 106 107 static int flow_ctrl = FLOW_OFF; 108 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR); 109 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 110 111 static int pause = PAUSE_TIME; 112 module_param(pause, int, S_IRUGO | S_IWUSR); 113 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 114 115 #define TC_DEFAULT 64 116 static int tc = TC_DEFAULT; 117 module_param(tc, int, S_IRUGO | S_IWUSR); 118 MODULE_PARM_DESC(tc, "DMA threshold control value"); 119 120 #define DMA_BUFFER_SIZE BUF_SIZE_2KiB 121 static int buf_sz = DMA_BUFFER_SIZE; 122 module_param(buf_sz, int, S_IRUGO | S_IWUSR); 123 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 124 125 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 126 NETIF_MSG_LINK | NETIF_MSG_IFUP | 127 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 128 129 #define STMMAC_DEFAULT_LPI_TIMER 1000 130 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 131 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 132 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 133 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x)) 134 135 /* By default the driver will use the ring mode to manage tx and rx descriptors 136 * but passing this value so user can force to use the chain instead of the ring 137 */ 138 static unsigned int chain_mode; 139 module_param(chain_mode, int, S_IRUGO); 140 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 141 142 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 143 144 #ifdef CONFIG_STMMAC_DEBUG_FS 145 static int stmmac_init_fs(struct net_device *dev); 146 static void stmmac_exit_fs(void); 147 #endif 148 149 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 150 151 /** 152 * stmmac_verify_args - verify the driver parameters. 153 * Description: it verifies if some wrong parameter is passed to the driver. 154 * Note that wrong parameters are replaced with the default values. 155 */ 156 static void stmmac_verify_args(void) 157 { 158 if (unlikely(watchdog < 0)) 159 watchdog = TX_TIMEO; 160 if (unlikely(dma_rxsize < 0)) 161 dma_rxsize = DMA_RX_SIZE; 162 if (unlikely(dma_txsize < 0)) 163 dma_txsize = DMA_TX_SIZE; 164 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB))) 165 buf_sz = DMA_BUFFER_SIZE; 166 if (unlikely(flow_ctrl > 1)) 167 flow_ctrl = FLOW_AUTO; 168 else if (likely(flow_ctrl < 0)) 169 flow_ctrl = FLOW_OFF; 170 if (unlikely((pause < 0) || (pause > 0xffff))) 171 pause = PAUSE_TIME; 172 if (eee_timer < 0) 173 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 174 } 175 176 /** 177 * stmmac_clk_csr_set - dynamically set the MDC clock 178 * @priv: driver private structure 179 * Description: this is to dynamically set the MDC clock according to the csr 180 * clock input. 181 * Note: 182 * If a specific clk_csr value is passed from the platform 183 * this means that the CSR Clock Range selection cannot be 184 * changed at run-time and it is fixed (as reported in the driver 185 * documentation). Viceversa the driver will try to set the MDC 186 * clock dynamically according to the actual clock input. 187 */ 188 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 189 { 190 u32 clk_rate; 191 192 clk_rate = clk_get_rate(priv->stmmac_clk); 193 194 /* Platform provided default clk_csr would be assumed valid 195 * for all other cases except for the below mentioned ones. 196 * For values higher than the IEEE 802.3 specified frequency 197 * we can not estimate the proper divider as it is not known 198 * the frequency of clk_csr_i. So we do not change the default 199 * divider. 200 */ 201 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 202 if (clk_rate < CSR_F_35M) 203 priv->clk_csr = STMMAC_CSR_20_35M; 204 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 205 priv->clk_csr = STMMAC_CSR_35_60M; 206 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 207 priv->clk_csr = STMMAC_CSR_60_100M; 208 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 209 priv->clk_csr = STMMAC_CSR_100_150M; 210 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 211 priv->clk_csr = STMMAC_CSR_150_250M; 212 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 213 priv->clk_csr = STMMAC_CSR_250_300M; 214 } 215 } 216 217 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG) 218 static void print_pkt(unsigned char *buf, int len) 219 { 220 int j; 221 pr_info("len = %d byte, buf addr: 0x%p", len, buf); 222 for (j = 0; j < len; j++) { 223 if ((j % 16) == 0) 224 pr_info("\n %03x:", j); 225 pr_info(" %02x", buf[j]); 226 } 227 pr_info("\n"); 228 } 229 #endif 230 231 /* minimum number of free TX descriptors required to wake up TX process */ 232 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4) 233 234 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) 235 { 236 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1; 237 } 238 239 /** 240 * stmmac_hw_fix_mac_speed: callback for speed selection 241 * @priv: driver private structure 242 * Description: on some platforms (e.g. ST), some HW system configuraton 243 * registers have to be set according to the link speed negotiated. 244 */ 245 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 246 { 247 struct phy_device *phydev = priv->phydev; 248 249 if (likely(priv->plat->fix_mac_speed)) 250 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 251 } 252 253 /** 254 * stmmac_enable_eee_mode: Check and enter in LPI mode 255 * @priv: driver private structure 256 * Description: this function is to verify and enter in LPI mode for EEE. 257 */ 258 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 259 { 260 /* Check and enter in LPI mode */ 261 if ((priv->dirty_tx == priv->cur_tx) && 262 (priv->tx_path_in_lpi_mode == false)) 263 priv->hw->mac->set_eee_mode(priv->ioaddr); 264 } 265 266 /** 267 * stmmac_disable_eee_mode: disable/exit from EEE 268 * @priv: driver private structure 269 * Description: this function is to exit and disable EEE in case of 270 * LPI state is true. This is called by the xmit. 271 */ 272 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 273 { 274 priv->hw->mac->reset_eee_mode(priv->ioaddr); 275 del_timer_sync(&priv->eee_ctrl_timer); 276 priv->tx_path_in_lpi_mode = false; 277 } 278 279 /** 280 * stmmac_eee_ctrl_timer: EEE TX SW timer. 281 * @arg : data hook 282 * Description: 283 * if there is no data transfer and if we are not in LPI state, 284 * then MAC Transmitter can be moved to LPI state. 285 */ 286 static void stmmac_eee_ctrl_timer(unsigned long arg) 287 { 288 struct stmmac_priv *priv = (struct stmmac_priv *)arg; 289 290 stmmac_enable_eee_mode(priv); 291 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer)); 292 } 293 294 /** 295 * stmmac_eee_init: init EEE 296 * @priv: driver private structure 297 * Description: 298 * If the EEE support has been enabled while configuring the driver, 299 * if the GMAC actually supports the EEE (from the HW cap reg) and the 300 * phy can also manage EEE, so enable the LPI state and start the timer 301 * to verify if the tx path can enter in LPI state. 302 */ 303 bool stmmac_eee_init(struct stmmac_priv *priv) 304 { 305 bool ret = false; 306 307 /* MAC core supports the EEE feature. */ 308 if (priv->dma_cap.eee) { 309 /* Check if the PHY supports EEE */ 310 if (phy_init_eee(priv->phydev, 1)) 311 goto out; 312 313 priv->eee_active = 1; 314 init_timer(&priv->eee_ctrl_timer); 315 priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer; 316 priv->eee_ctrl_timer.data = (unsigned long)priv; 317 priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer); 318 add_timer(&priv->eee_ctrl_timer); 319 320 priv->hw->mac->set_eee_timer(priv->ioaddr, 321 STMMAC_DEFAULT_LIT_LS_TIMER, 322 priv->tx_lpi_timer); 323 324 pr_info("stmmac: Energy-Efficient Ethernet initialized\n"); 325 326 ret = true; 327 } 328 out: 329 return ret; 330 } 331 332 /** 333 * stmmac_eee_adjust: adjust HW EEE according to the speed 334 * @priv: driver private structure 335 * Description: 336 * When the EEE has been already initialised we have to 337 * modify the PLS bit in the LPI ctrl & status reg according 338 * to the PHY link status. For this reason. 339 */ 340 static void stmmac_eee_adjust(struct stmmac_priv *priv) 341 { 342 if (priv->eee_enabled) 343 priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link); 344 } 345 346 /* stmmac_get_tx_hwtstamp: get HW TX timestamps 347 * @priv: driver private structure 348 * @entry : descriptor index to be used. 349 * @skb : the socket buffer 350 * Description : 351 * This function will read timestamp from the descriptor & pass it to stack. 352 * and also perform some sanity checks. 353 */ 354 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 355 unsigned int entry, struct sk_buff *skb) 356 { 357 struct skb_shared_hwtstamps shhwtstamp; 358 u64 ns; 359 void *desc = NULL; 360 361 if (!priv->hwts_tx_en) 362 return; 363 364 /* exit if skb doesn't support hw tstamp */ 365 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 366 return; 367 368 if (priv->adv_ts) 369 desc = (priv->dma_etx + entry); 370 else 371 desc = (priv->dma_tx + entry); 372 373 /* check tx tstamp status */ 374 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc)) 375 return; 376 377 /* get the valid tstamp */ 378 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 379 380 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 381 shhwtstamp.hwtstamp = ns_to_ktime(ns); 382 /* pass tstamp to stack */ 383 skb_tstamp_tx(skb, &shhwtstamp); 384 385 return; 386 } 387 388 /* stmmac_get_rx_hwtstamp: get HW RX timestamps 389 * @priv: driver private structure 390 * @entry : descriptor index to be used. 391 * @skb : the socket buffer 392 * Description : 393 * This function will read received packet's timestamp from the descriptor 394 * and pass it to stack. It also perform some sanity checks. 395 */ 396 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, 397 unsigned int entry, struct sk_buff *skb) 398 { 399 struct skb_shared_hwtstamps *shhwtstamp = NULL; 400 u64 ns; 401 void *desc = NULL; 402 403 if (!priv->hwts_rx_en) 404 return; 405 406 if (priv->adv_ts) 407 desc = (priv->dma_erx + entry); 408 else 409 desc = (priv->dma_rx + entry); 410 411 /* exit if rx tstamp is not valid */ 412 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) 413 return; 414 415 /* get valid tstamp */ 416 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 417 shhwtstamp = skb_hwtstamps(skb); 418 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 419 shhwtstamp->hwtstamp = ns_to_ktime(ns); 420 } 421 422 /** 423 * stmmac_hwtstamp_ioctl - control hardware timestamping. 424 * @dev: device pointer. 425 * @ifr: An IOCTL specefic structure, that can contain a pointer to 426 * a proprietary structure used to pass information to the driver. 427 * Description: 428 * This function configures the MAC to enable/disable both outgoing(TX) 429 * and incoming(RX) packets time stamping based on user input. 430 * Return Value: 431 * 0 on success and an appropriate -ve integer on failure. 432 */ 433 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 434 { 435 struct stmmac_priv *priv = netdev_priv(dev); 436 struct hwtstamp_config config; 437 struct timespec now; 438 u64 temp = 0; 439 u32 ptp_v2 = 0; 440 u32 tstamp_all = 0; 441 u32 ptp_over_ipv4_udp = 0; 442 u32 ptp_over_ipv6_udp = 0; 443 u32 ptp_over_ethernet = 0; 444 u32 snap_type_sel = 0; 445 u32 ts_master_en = 0; 446 u32 ts_event_en = 0; 447 u32 value = 0; 448 449 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 450 netdev_alert(priv->dev, "No support for HW time stamping\n"); 451 priv->hwts_tx_en = 0; 452 priv->hwts_rx_en = 0; 453 454 return -EOPNOTSUPP; 455 } 456 457 if (copy_from_user(&config, ifr->ifr_data, 458 sizeof(struct hwtstamp_config))) 459 return -EFAULT; 460 461 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 462 __func__, config.flags, config.tx_type, config.rx_filter); 463 464 /* reserved for future extensions */ 465 if (config.flags) 466 return -EINVAL; 467 468 switch (config.tx_type) { 469 case HWTSTAMP_TX_OFF: 470 priv->hwts_tx_en = 0; 471 break; 472 case HWTSTAMP_TX_ON: 473 priv->hwts_tx_en = 1; 474 break; 475 default: 476 return -ERANGE; 477 } 478 479 if (priv->adv_ts) { 480 switch (config.rx_filter) { 481 case HWTSTAMP_FILTER_NONE: 482 /* time stamp no incoming packet at all */ 483 config.rx_filter = HWTSTAMP_FILTER_NONE; 484 break; 485 486 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 487 /* PTP v1, UDP, any kind of event packet */ 488 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 489 /* take time stamp for all event messages */ 490 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 491 492 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 493 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 494 break; 495 496 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 497 /* PTP v1, UDP, Sync packet */ 498 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 499 /* take time stamp for SYNC messages only */ 500 ts_event_en = PTP_TCR_TSEVNTENA; 501 502 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 503 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 504 break; 505 506 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 507 /* PTP v1, UDP, Delay_req packet */ 508 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 509 /* take time stamp for Delay_Req messages only */ 510 ts_master_en = PTP_TCR_TSMSTRENA; 511 ts_event_en = PTP_TCR_TSEVNTENA; 512 513 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 514 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 515 break; 516 517 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 518 /* PTP v2, UDP, any kind of event packet */ 519 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 520 ptp_v2 = PTP_TCR_TSVER2ENA; 521 /* take time stamp for all event messages */ 522 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 523 524 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 525 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 526 break; 527 528 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 529 /* PTP v2, UDP, Sync packet */ 530 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 531 ptp_v2 = PTP_TCR_TSVER2ENA; 532 /* take time stamp for SYNC messages only */ 533 ts_event_en = PTP_TCR_TSEVNTENA; 534 535 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 536 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 537 break; 538 539 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 540 /* PTP v2, UDP, Delay_req packet */ 541 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 542 ptp_v2 = PTP_TCR_TSVER2ENA; 543 /* take time stamp for Delay_Req messages only */ 544 ts_master_en = PTP_TCR_TSMSTRENA; 545 ts_event_en = PTP_TCR_TSEVNTENA; 546 547 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 548 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 549 break; 550 551 case HWTSTAMP_FILTER_PTP_V2_EVENT: 552 /* PTP v2/802.AS1 any layer, any kind of event packet */ 553 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 554 ptp_v2 = PTP_TCR_TSVER2ENA; 555 /* take time stamp for all event messages */ 556 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 557 558 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 559 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 560 ptp_over_ethernet = PTP_TCR_TSIPENA; 561 break; 562 563 case HWTSTAMP_FILTER_PTP_V2_SYNC: 564 /* PTP v2/802.AS1, any layer, Sync packet */ 565 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 566 ptp_v2 = PTP_TCR_TSVER2ENA; 567 /* take time stamp for SYNC messages only */ 568 ts_event_en = PTP_TCR_TSEVNTENA; 569 570 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 571 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 572 ptp_over_ethernet = PTP_TCR_TSIPENA; 573 break; 574 575 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 576 /* PTP v2/802.AS1, any layer, Delay_req packet */ 577 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 578 ptp_v2 = PTP_TCR_TSVER2ENA; 579 /* take time stamp for Delay_Req messages only */ 580 ts_master_en = PTP_TCR_TSMSTRENA; 581 ts_event_en = PTP_TCR_TSEVNTENA; 582 583 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 584 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 585 ptp_over_ethernet = PTP_TCR_TSIPENA; 586 break; 587 588 case HWTSTAMP_FILTER_ALL: 589 /* time stamp any incoming packet */ 590 config.rx_filter = HWTSTAMP_FILTER_ALL; 591 tstamp_all = PTP_TCR_TSENALL; 592 break; 593 594 default: 595 return -ERANGE; 596 } 597 } else { 598 switch (config.rx_filter) { 599 case HWTSTAMP_FILTER_NONE: 600 config.rx_filter = HWTSTAMP_FILTER_NONE; 601 break; 602 default: 603 /* PTP v1, UDP, any kind of event packet */ 604 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 605 break; 606 } 607 } 608 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 609 610 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 611 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0); 612 else { 613 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 614 tstamp_all | ptp_v2 | ptp_over_ethernet | 615 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 616 ts_master_en | snap_type_sel); 617 618 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value); 619 620 /* program Sub Second Increment reg */ 621 priv->hw->ptp->config_sub_second_increment(priv->ioaddr); 622 623 /* calculate default added value: 624 * formula is : 625 * addend = (2^32)/freq_div_ratio; 626 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz 627 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK; 628 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to 629 * achive 20ns accuracy. 630 * 631 * 2^x * y == (y << x), hence 632 * 2^32 * 50000000 ==> (50000000 << 32) 633 */ 634 temp = (u64) (50000000ULL << 32); 635 priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK); 636 priv->hw->ptp->config_addend(priv->ioaddr, 637 priv->default_addend); 638 639 /* initialize system time */ 640 getnstimeofday(&now); 641 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec, 642 now.tv_nsec); 643 } 644 645 return copy_to_user(ifr->ifr_data, &config, 646 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 647 } 648 649 /** 650 * stmmac_init_ptp: init PTP 651 * @priv: driver private structure 652 * Description: this is to verify if the HW supports the PTPv1 or v2. 653 * This is done by looking at the HW cap. register. 654 * Also it registers the ptp driver. 655 */ 656 static int stmmac_init_ptp(struct stmmac_priv *priv) 657 { 658 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 659 return -EOPNOTSUPP; 660 661 if (netif_msg_hw(priv)) { 662 if (priv->dma_cap.time_stamp) { 663 pr_debug("IEEE 1588-2002 Time Stamp supported\n"); 664 priv->adv_ts = 0; 665 } 666 if (priv->dma_cap.atime_stamp && priv->extend_desc) { 667 pr_debug 668 ("IEEE 1588-2008 Advanced Time Stamp supported\n"); 669 priv->adv_ts = 1; 670 } 671 } 672 673 priv->hw->ptp = &stmmac_ptp; 674 priv->hwts_tx_en = 0; 675 priv->hwts_rx_en = 0; 676 677 return stmmac_ptp_register(priv); 678 } 679 680 static void stmmac_release_ptp(struct stmmac_priv *priv) 681 { 682 stmmac_ptp_unregister(priv); 683 } 684 685 /** 686 * stmmac_adjust_link 687 * @dev: net device structure 688 * Description: it adjusts the link parameters. 689 */ 690 static void stmmac_adjust_link(struct net_device *dev) 691 { 692 struct stmmac_priv *priv = netdev_priv(dev); 693 struct phy_device *phydev = priv->phydev; 694 unsigned long flags; 695 int new_state = 0; 696 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause; 697 698 if (phydev == NULL) 699 return; 700 701 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n", 702 phydev->addr, phydev->link); 703 704 spin_lock_irqsave(&priv->lock, flags); 705 706 if (phydev->link) { 707 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 708 709 /* Now we make sure that we can be in full duplex mode. 710 * If not, we operate in half-duplex mode. */ 711 if (phydev->duplex != priv->oldduplex) { 712 new_state = 1; 713 if (!(phydev->duplex)) 714 ctrl &= ~priv->hw->link.duplex; 715 else 716 ctrl |= priv->hw->link.duplex; 717 priv->oldduplex = phydev->duplex; 718 } 719 /* Flow Control operation */ 720 if (phydev->pause) 721 priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex, 722 fc, pause_time); 723 724 if (phydev->speed != priv->speed) { 725 new_state = 1; 726 switch (phydev->speed) { 727 case 1000: 728 if (likely(priv->plat->has_gmac)) 729 ctrl &= ~priv->hw->link.port; 730 stmmac_hw_fix_mac_speed(priv); 731 break; 732 case 100: 733 case 10: 734 if (priv->plat->has_gmac) { 735 ctrl |= priv->hw->link.port; 736 if (phydev->speed == SPEED_100) { 737 ctrl |= priv->hw->link.speed; 738 } else { 739 ctrl &= ~(priv->hw->link.speed); 740 } 741 } else { 742 ctrl &= ~priv->hw->link.port; 743 } 744 stmmac_hw_fix_mac_speed(priv); 745 break; 746 default: 747 if (netif_msg_link(priv)) 748 pr_warn("%s: Speed (%d) not 10/100\n", 749 dev->name, phydev->speed); 750 break; 751 } 752 753 priv->speed = phydev->speed; 754 } 755 756 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 757 758 if (!priv->oldlink) { 759 new_state = 1; 760 priv->oldlink = 1; 761 } 762 } else if (priv->oldlink) { 763 new_state = 1; 764 priv->oldlink = 0; 765 priv->speed = 0; 766 priv->oldduplex = -1; 767 } 768 769 if (new_state && netif_msg_link(priv)) 770 phy_print_status(phydev); 771 772 stmmac_eee_adjust(priv); 773 774 spin_unlock_irqrestore(&priv->lock, flags); 775 776 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n"); 777 } 778 779 /** 780 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported 781 * @priv: driver private structure 782 * Description: this is to verify if the HW supports the PCS. 783 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 784 * configured for the TBI, RTBI, or SGMII PHY interface. 785 */ 786 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 787 { 788 int interface = priv->plat->interface; 789 790 if (priv->dma_cap.pcs) { 791 if ((interface & PHY_INTERFACE_MODE_RGMII) || 792 (interface & PHY_INTERFACE_MODE_RGMII_ID) || 793 (interface & PHY_INTERFACE_MODE_RGMII_RXID) || 794 (interface & PHY_INTERFACE_MODE_RGMII_TXID)) { 795 pr_debug("STMMAC: PCS RGMII support enable\n"); 796 priv->pcs = STMMAC_PCS_RGMII; 797 } else if (interface & PHY_INTERFACE_MODE_SGMII) { 798 pr_debug("STMMAC: PCS SGMII support enable\n"); 799 priv->pcs = STMMAC_PCS_SGMII; 800 } 801 } 802 } 803 804 /** 805 * stmmac_init_phy - PHY initialization 806 * @dev: net device structure 807 * Description: it initializes the driver's PHY state, and attaches the PHY 808 * to the mac driver. 809 * Return value: 810 * 0 on success 811 */ 812 static int stmmac_init_phy(struct net_device *dev) 813 { 814 struct stmmac_priv *priv = netdev_priv(dev); 815 struct phy_device *phydev; 816 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 817 char bus_id[MII_BUS_ID_SIZE]; 818 int interface = priv->plat->interface; 819 priv->oldlink = 0; 820 priv->speed = 0; 821 priv->oldduplex = -1; 822 823 if (priv->plat->phy_bus_name) 824 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 825 priv->plat->phy_bus_name, priv->plat->bus_id); 826 else 827 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 828 priv->plat->bus_id); 829 830 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 831 priv->plat->phy_addr); 832 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt); 833 834 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface); 835 836 if (IS_ERR(phydev)) { 837 pr_err("%s: Could not attach to PHY\n", dev->name); 838 return PTR_ERR(phydev); 839 } 840 841 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 842 if ((interface == PHY_INTERFACE_MODE_MII) || 843 (interface == PHY_INTERFACE_MODE_RMII)) 844 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 845 SUPPORTED_1000baseT_Full); 846 847 /* 848 * Broken HW is sometimes missing the pull-up resistor on the 849 * MDIO line, which results in reads to non-existent devices returning 850 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 851 * device as well. 852 * Note: phydev->phy_id is the result of reading the UID PHY registers. 853 */ 854 if (phydev->phy_id == 0) { 855 phy_disconnect(phydev); 856 return -ENODEV; 857 } 858 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)" 859 " Link = %d\n", dev->name, phydev->phy_id, phydev->link); 860 861 priv->phydev = phydev; 862 863 return 0; 864 } 865 866 /** 867 * stmmac_display_ring: display ring 868 * @head: pointer to the head of the ring passed. 869 * @size: size of the ring. 870 * @extend_desc: to verify if extended descriptors are used. 871 * Description: display the control/status and buffer descriptors. 872 */ 873 static void stmmac_display_ring(void *head, int size, int extend_desc) 874 { 875 int i; 876 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 877 struct dma_desc *p = (struct dma_desc *)head; 878 879 for (i = 0; i < size; i++) { 880 u64 x; 881 if (extend_desc) { 882 x = *(u64 *) ep; 883 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 884 i, (unsigned int)virt_to_phys(ep), 885 (unsigned int)x, (unsigned int)(x >> 32), 886 ep->basic.des2, ep->basic.des3); 887 ep++; 888 } else { 889 x = *(u64 *) p; 890 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x", 891 i, (unsigned int)virt_to_phys(p), 892 (unsigned int)x, (unsigned int)(x >> 32), 893 p->des2, p->des3); 894 p++; 895 } 896 pr_info("\n"); 897 } 898 } 899 900 static void stmmac_display_rings(struct stmmac_priv *priv) 901 { 902 unsigned int txsize = priv->dma_tx_size; 903 unsigned int rxsize = priv->dma_rx_size; 904 905 if (priv->extend_desc) { 906 pr_info("Extended RX descriptor ring:\n"); 907 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 908 pr_info("Extended TX descriptor ring:\n"); 909 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 910 } else { 911 pr_info("RX descriptor ring:\n"); 912 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 913 pr_info("TX descriptor ring:\n"); 914 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 915 } 916 } 917 918 static int stmmac_set_bfsize(int mtu, int bufsize) 919 { 920 int ret = bufsize; 921 922 if (mtu >= BUF_SIZE_4KiB) 923 ret = BUF_SIZE_8KiB; 924 else if (mtu >= BUF_SIZE_2KiB) 925 ret = BUF_SIZE_4KiB; 926 else if (mtu >= DMA_BUFFER_SIZE) 927 ret = BUF_SIZE_2KiB; 928 else 929 ret = DMA_BUFFER_SIZE; 930 931 return ret; 932 } 933 934 /** 935 * stmmac_clear_descriptors: clear descriptors 936 * @priv: driver private structure 937 * Description: this function is called to clear the tx and rx descriptors 938 * in case of both basic and extended descriptors are used. 939 */ 940 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 941 { 942 int i; 943 unsigned int txsize = priv->dma_tx_size; 944 unsigned int rxsize = priv->dma_rx_size; 945 946 /* Clear the Rx/Tx descriptors */ 947 for (i = 0; i < rxsize; i++) 948 if (priv->extend_desc) 949 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, 950 priv->use_riwt, priv->mode, 951 (i == rxsize - 1)); 952 else 953 priv->hw->desc->init_rx_desc(&priv->dma_rx[i], 954 priv->use_riwt, priv->mode, 955 (i == rxsize - 1)); 956 for (i = 0; i < txsize; i++) 957 if (priv->extend_desc) 958 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 959 priv->mode, 960 (i == txsize - 1)); 961 else 962 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 963 priv->mode, 964 (i == txsize - 1)); 965 } 966 967 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 968 int i) 969 { 970 struct sk_buff *skb; 971 972 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN, 973 GFP_KERNEL); 974 if (unlikely(skb == NULL)) { 975 pr_err("%s: Rx init fails; skb is NULL\n", __func__); 976 return 1; 977 } 978 skb_reserve(skb, NET_IP_ALIGN); 979 priv->rx_skbuff[i] = skb; 980 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 981 priv->dma_buf_sz, 982 DMA_FROM_DEVICE); 983 984 p->des2 = priv->rx_skbuff_dma[i]; 985 986 if ((priv->mode == STMMAC_RING_MODE) && 987 (priv->dma_buf_sz == BUF_SIZE_16KiB)) 988 priv->hw->ring->init_desc3(p); 989 990 return 0; 991 } 992 993 /** 994 * init_dma_desc_rings - init the RX/TX descriptor rings 995 * @dev: net device structure 996 * Description: this function initializes the DMA RX/TX descriptors 997 * and allocates the socket buffers. It suppors the chained and ring 998 * modes. 999 */ 1000 static void init_dma_desc_rings(struct net_device *dev) 1001 { 1002 int i; 1003 struct stmmac_priv *priv = netdev_priv(dev); 1004 unsigned int txsize = priv->dma_tx_size; 1005 unsigned int rxsize = priv->dma_rx_size; 1006 unsigned int bfsize = 0; 1007 1008 /* Set the max buffer size according to the DESC mode 1009 * and the MTU. Note that RING mode allows 16KiB bsize. 1010 */ 1011 if (priv->mode == STMMAC_RING_MODE) 1012 bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu); 1013 1014 if (bfsize < BUF_SIZE_16KiB) 1015 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1016 1017 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n", 1018 txsize, rxsize, bfsize); 1019 1020 if (priv->extend_desc) { 1021 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize * 1022 sizeof(struct 1023 dma_extended_desc), 1024 &priv->dma_rx_phy, 1025 GFP_KERNEL); 1026 priv->dma_etx = dma_alloc_coherent(priv->device, txsize * 1027 sizeof(struct 1028 dma_extended_desc), 1029 &priv->dma_tx_phy, 1030 GFP_KERNEL); 1031 if ((!priv->dma_erx) || (!priv->dma_etx)) 1032 return; 1033 } else { 1034 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize * 1035 sizeof(struct dma_desc), 1036 &priv->dma_rx_phy, 1037 GFP_KERNEL); 1038 priv->dma_tx = dma_alloc_coherent(priv->device, txsize * 1039 sizeof(struct dma_desc), 1040 &priv->dma_tx_phy, 1041 GFP_KERNEL); 1042 if ((!priv->dma_rx) || (!priv->dma_tx)) 1043 return; 1044 } 1045 1046 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t), 1047 GFP_KERNEL); 1048 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *), 1049 GFP_KERNEL); 1050 priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t), 1051 GFP_KERNEL); 1052 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *), 1053 GFP_KERNEL); 1054 if (netif_msg_drv(priv)) 1055 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__, 1056 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy); 1057 1058 /* RX INITIALIZATION */ 1059 DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n"); 1060 for (i = 0; i < rxsize; i++) { 1061 struct dma_desc *p; 1062 if (priv->extend_desc) 1063 p = &((priv->dma_erx + i)->basic); 1064 else 1065 p = priv->dma_rx + i; 1066 1067 if (stmmac_init_rx_buffers(priv, p, i)) 1068 break; 1069 1070 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i], 1071 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]); 1072 } 1073 priv->cur_rx = 0; 1074 priv->dirty_rx = (unsigned int)(i - rxsize); 1075 priv->dma_buf_sz = bfsize; 1076 buf_sz = bfsize; 1077 1078 /* Setup the chained descriptor addresses */ 1079 if (priv->mode == STMMAC_CHAIN_MODE) { 1080 if (priv->extend_desc) { 1081 priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy, 1082 rxsize, 1); 1083 priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy, 1084 txsize, 1); 1085 } else { 1086 priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy, 1087 rxsize, 0); 1088 priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy, 1089 txsize, 0); 1090 } 1091 } 1092 1093 /* TX INITIALIZATION */ 1094 for (i = 0; i < txsize; i++) { 1095 struct dma_desc *p; 1096 if (priv->extend_desc) 1097 p = &((priv->dma_etx + i)->basic); 1098 else 1099 p = priv->dma_tx + i; 1100 p->des2 = 0; 1101 priv->tx_skbuff_dma[i] = 0; 1102 priv->tx_skbuff[i] = NULL; 1103 } 1104 1105 priv->dirty_tx = 0; 1106 priv->cur_tx = 0; 1107 1108 stmmac_clear_descriptors(priv); 1109 1110 if (netif_msg_hw(priv)) 1111 stmmac_display_rings(priv); 1112 } 1113 1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv) 1115 { 1116 int i; 1117 1118 for (i = 0; i < priv->dma_rx_size; i++) { 1119 if (priv->rx_skbuff[i]) { 1120 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i], 1121 priv->dma_buf_sz, DMA_FROM_DEVICE); 1122 dev_kfree_skb_any(priv->rx_skbuff[i]); 1123 } 1124 priv->rx_skbuff[i] = NULL; 1125 } 1126 } 1127 1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv) 1129 { 1130 int i; 1131 1132 for (i = 0; i < priv->dma_tx_size; i++) { 1133 if (priv->tx_skbuff[i] != NULL) { 1134 struct dma_desc *p; 1135 if (priv->extend_desc) 1136 p = &((priv->dma_etx + i)->basic); 1137 else 1138 p = priv->dma_tx + i; 1139 1140 if (priv->tx_skbuff_dma[i]) 1141 dma_unmap_single(priv->device, 1142 priv->tx_skbuff_dma[i], 1143 priv->hw->desc->get_tx_len(p), 1144 DMA_TO_DEVICE); 1145 dev_kfree_skb_any(priv->tx_skbuff[i]); 1146 priv->tx_skbuff[i] = NULL; 1147 priv->tx_skbuff_dma[i] = 0; 1148 } 1149 } 1150 } 1151 1152 static void free_dma_desc_resources(struct stmmac_priv *priv) 1153 { 1154 /* Release the DMA TX/RX socket buffers */ 1155 dma_free_rx_skbufs(priv); 1156 dma_free_tx_skbufs(priv); 1157 1158 /* Free DMA regions of consistent memory previously allocated */ 1159 if (!priv->extend_desc) { 1160 dma_free_coherent(priv->device, 1161 priv->dma_tx_size * sizeof(struct dma_desc), 1162 priv->dma_tx, priv->dma_tx_phy); 1163 dma_free_coherent(priv->device, 1164 priv->dma_rx_size * sizeof(struct dma_desc), 1165 priv->dma_rx, priv->dma_rx_phy); 1166 } else { 1167 dma_free_coherent(priv->device, priv->dma_tx_size * 1168 sizeof(struct dma_extended_desc), 1169 priv->dma_etx, priv->dma_tx_phy); 1170 dma_free_coherent(priv->device, priv->dma_rx_size * 1171 sizeof(struct dma_extended_desc), 1172 priv->dma_erx, priv->dma_rx_phy); 1173 } 1174 kfree(priv->rx_skbuff_dma); 1175 kfree(priv->rx_skbuff); 1176 kfree(priv->tx_skbuff_dma); 1177 kfree(priv->tx_skbuff); 1178 } 1179 1180 /** 1181 * stmmac_dma_operation_mode - HW DMA operation mode 1182 * @priv: driver private structure 1183 * Description: it sets the DMA operation mode: tx/rx DMA thresholds 1184 * or Store-And-Forward capability. 1185 */ 1186 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1187 { 1188 if (likely(priv->plat->force_sf_dma_mode || 1189 ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) { 1190 /* 1191 * In case of GMAC, SF mode can be enabled 1192 * to perform the TX COE in HW. This depends on: 1193 * 1) TX COE if actually supported 1194 * 2) There is no bugged Jumbo frame support 1195 * that needs to not insert csum in the TDES. 1196 */ 1197 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE); 1198 tc = SF_DMA_MODE; 1199 } else 1200 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE); 1201 } 1202 1203 /** 1204 * stmmac_tx_clean: 1205 * @priv: driver private structure 1206 * Description: it reclaims resources after transmission completes. 1207 */ 1208 static void stmmac_tx_clean(struct stmmac_priv *priv) 1209 { 1210 unsigned int txsize = priv->dma_tx_size; 1211 1212 spin_lock(&priv->tx_lock); 1213 1214 priv->xstats.tx_clean++; 1215 1216 while (priv->dirty_tx != priv->cur_tx) { 1217 int last; 1218 unsigned int entry = priv->dirty_tx % txsize; 1219 struct sk_buff *skb = priv->tx_skbuff[entry]; 1220 struct dma_desc *p; 1221 1222 if (priv->extend_desc) 1223 p = (struct dma_desc *)(priv->dma_etx + entry); 1224 else 1225 p = priv->dma_tx + entry; 1226 1227 /* Check if the descriptor is owned by the DMA. */ 1228 if (priv->hw->desc->get_tx_owner(p)) 1229 break; 1230 1231 /* Verify tx error by looking at the last segment. */ 1232 last = priv->hw->desc->get_tx_ls(p); 1233 if (likely(last)) { 1234 int tx_error = 1235 priv->hw->desc->tx_status(&priv->dev->stats, 1236 &priv->xstats, p, 1237 priv->ioaddr); 1238 if (likely(tx_error == 0)) { 1239 priv->dev->stats.tx_packets++; 1240 priv->xstats.tx_pkt_n++; 1241 } else 1242 priv->dev->stats.tx_errors++; 1243 1244 stmmac_get_tx_hwtstamp(priv, entry, skb); 1245 } 1246 TX_DBG("%s: curr %d, dirty %d\n", __func__, 1247 priv->cur_tx, priv->dirty_tx); 1248 1249 if (likely(priv->tx_skbuff_dma[entry])) { 1250 dma_unmap_single(priv->device, 1251 priv->tx_skbuff_dma[entry], 1252 priv->hw->desc->get_tx_len(p), 1253 DMA_TO_DEVICE); 1254 priv->tx_skbuff_dma[entry] = 0; 1255 } 1256 priv->hw->ring->clean_desc3(priv, p); 1257 1258 if (likely(skb != NULL)) { 1259 dev_kfree_skb(skb); 1260 priv->tx_skbuff[entry] = NULL; 1261 } 1262 1263 priv->hw->desc->release_tx_desc(p, priv->mode); 1264 1265 priv->dirty_tx++; 1266 } 1267 if (unlikely(netif_queue_stopped(priv->dev) && 1268 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) { 1269 netif_tx_lock(priv->dev); 1270 if (netif_queue_stopped(priv->dev) && 1271 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) { 1272 TX_DBG("%s: restart transmit\n", __func__); 1273 netif_wake_queue(priv->dev); 1274 } 1275 netif_tx_unlock(priv->dev); 1276 } 1277 1278 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1279 stmmac_enable_eee_mode(priv); 1280 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer)); 1281 } 1282 spin_unlock(&priv->tx_lock); 1283 } 1284 1285 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv) 1286 { 1287 priv->hw->dma->enable_dma_irq(priv->ioaddr); 1288 } 1289 1290 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv) 1291 { 1292 priv->hw->dma->disable_dma_irq(priv->ioaddr); 1293 } 1294 1295 /** 1296 * stmmac_tx_err: irq tx error mng function 1297 * @priv: driver private structure 1298 * Description: it cleans the descriptors and restarts the transmission 1299 * in case of errors. 1300 */ 1301 static void stmmac_tx_err(struct stmmac_priv *priv) 1302 { 1303 int i; 1304 int txsize = priv->dma_tx_size; 1305 netif_stop_queue(priv->dev); 1306 1307 priv->hw->dma->stop_tx(priv->ioaddr); 1308 dma_free_tx_skbufs(priv); 1309 for (i = 0; i < txsize; i++) 1310 if (priv->extend_desc) 1311 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 1312 priv->mode, 1313 (i == txsize - 1)); 1314 else 1315 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 1316 priv->mode, 1317 (i == txsize - 1)); 1318 priv->dirty_tx = 0; 1319 priv->cur_tx = 0; 1320 priv->hw->dma->start_tx(priv->ioaddr); 1321 1322 priv->dev->stats.tx_errors++; 1323 netif_wake_queue(priv->dev); 1324 } 1325 1326 /** 1327 * stmmac_dma_interrupt: DMA ISR 1328 * @priv: driver private structure 1329 * Description: this is the DMA ISR. It is called by the main ISR. 1330 * It calls the dwmac dma routine to understand which type of interrupt 1331 * happened. In case of there is a Normal interrupt and either TX or RX 1332 * interrupt happened so the NAPI is scheduled. 1333 */ 1334 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 1335 { 1336 int status; 1337 1338 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats); 1339 if (likely((status & handle_rx)) || (status & handle_tx)) { 1340 if (likely(napi_schedule_prep(&priv->napi))) { 1341 stmmac_disable_dma_irq(priv); 1342 __napi_schedule(&priv->napi); 1343 } 1344 } 1345 if (unlikely(status & tx_hard_error_bump_tc)) { 1346 /* Try to bump up the dma threshold on this failure */ 1347 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) { 1348 tc += 64; 1349 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE); 1350 priv->xstats.threshold = tc; 1351 } 1352 } else if (unlikely(status == tx_hard_error)) 1353 stmmac_tx_err(priv); 1354 } 1355 1356 /** 1357 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 1358 * @priv: driver private structure 1359 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 1360 */ 1361 static void stmmac_mmc_setup(struct stmmac_priv *priv) 1362 { 1363 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 1364 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 1365 1366 dwmac_mmc_intr_all_mask(priv->ioaddr); 1367 1368 if (priv->dma_cap.rmon) { 1369 dwmac_mmc_ctrl(priv->ioaddr, mode); 1370 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 1371 } else 1372 pr_info(" No MAC Management Counters available\n"); 1373 } 1374 1375 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv) 1376 { 1377 u32 hwid = priv->hw->synopsys_uid; 1378 1379 /* Check Synopsys Id (not available on old chips) */ 1380 if (likely(hwid)) { 1381 u32 uid = ((hwid & 0x0000ff00) >> 8); 1382 u32 synid = (hwid & 0x000000ff); 1383 1384 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n", 1385 uid, synid); 1386 1387 return synid; 1388 } 1389 return 0; 1390 } 1391 1392 /** 1393 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors 1394 * @priv: driver private structure 1395 * Description: select the Enhanced/Alternate or Normal descriptors. 1396 * In case of Enhanced/Alternate, it looks at the extended descriptors are 1397 * supported by the HW cap. register. 1398 */ 1399 static void stmmac_selec_desc_mode(struct stmmac_priv *priv) 1400 { 1401 if (priv->plat->enh_desc) { 1402 pr_info(" Enhanced/Alternate descriptors\n"); 1403 1404 /* GMAC older than 3.50 has no extended descriptors */ 1405 if (priv->synopsys_id >= DWMAC_CORE_3_50) { 1406 pr_info("\tEnabled extended descriptors\n"); 1407 priv->extend_desc = 1; 1408 } else 1409 pr_warn("Extended descriptors not supported\n"); 1410 1411 priv->hw->desc = &enh_desc_ops; 1412 } else { 1413 pr_info(" Normal descriptors\n"); 1414 priv->hw->desc = &ndesc_ops; 1415 } 1416 } 1417 1418 /** 1419 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register. 1420 * @priv: driver private structure 1421 * Description: 1422 * new GMAC chip generations have a new register to indicate the 1423 * presence of the optional feature/functions. 1424 * This can be also used to override the value passed through the 1425 * platform and necessary for old MAC10/100 and GMAC chips. 1426 */ 1427 static int stmmac_get_hw_features(struct stmmac_priv *priv) 1428 { 1429 u32 hw_cap = 0; 1430 1431 if (priv->hw->dma->get_hw_feature) { 1432 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr); 1433 1434 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL); 1435 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1; 1436 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2; 1437 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4; 1438 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5; 1439 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6; 1440 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8; 1441 priv->dma_cap.pmt_remote_wake_up = 1442 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9; 1443 priv->dma_cap.pmt_magic_frame = 1444 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10; 1445 /* MMC */ 1446 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11; 1447 /* IEEE 1588-2002 */ 1448 priv->dma_cap.time_stamp = 1449 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12; 1450 /* IEEE 1588-2008 */ 1451 priv->dma_cap.atime_stamp = 1452 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13; 1453 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 1454 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14; 1455 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15; 1456 /* TX and RX csum */ 1457 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16; 1458 priv->dma_cap.rx_coe_type1 = 1459 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17; 1460 priv->dma_cap.rx_coe_type2 = 1461 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18; 1462 priv->dma_cap.rxfifo_over_2048 = 1463 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19; 1464 /* TX and RX number of channels */ 1465 priv->dma_cap.number_rx_channel = 1466 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20; 1467 priv->dma_cap.number_tx_channel = 1468 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22; 1469 /* Alternate (enhanced) DESC mode */ 1470 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24; 1471 } 1472 1473 return hw_cap; 1474 } 1475 1476 /** 1477 * stmmac_check_ether_addr: check if the MAC addr is valid 1478 * @priv: driver private structure 1479 * Description: 1480 * it is to verify if the MAC address is valid, in case of failures it 1481 * generates a random MAC address 1482 */ 1483 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 1484 { 1485 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 1486 priv->hw->mac->get_umac_addr((void __iomem *) 1487 priv->dev->base_addr, 1488 priv->dev->dev_addr, 0); 1489 if (!is_valid_ether_addr(priv->dev->dev_addr)) 1490 eth_hw_addr_random(priv->dev); 1491 } 1492 pr_warn("%s: device MAC address %pM\n", priv->dev->name, 1493 priv->dev->dev_addr); 1494 } 1495 1496 /** 1497 * stmmac_init_dma_engine: DMA init. 1498 * @priv: driver private structure 1499 * Description: 1500 * It inits the DMA invoking the specific MAC/GMAC callback. 1501 * Some DMA parameters can be passed from the platform; 1502 * in case of these are not passed a default is kept for the MAC or GMAC. 1503 */ 1504 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 1505 { 1506 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0; 1507 int mixed_burst = 0; 1508 int atds = 0; 1509 1510 if (priv->plat->dma_cfg) { 1511 pbl = priv->plat->dma_cfg->pbl; 1512 fixed_burst = priv->plat->dma_cfg->fixed_burst; 1513 mixed_burst = priv->plat->dma_cfg->mixed_burst; 1514 burst_len = priv->plat->dma_cfg->burst_len; 1515 } 1516 1517 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 1518 atds = 1; 1519 1520 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst, 1521 burst_len, priv->dma_tx_phy, 1522 priv->dma_rx_phy, atds); 1523 } 1524 1525 /** 1526 * stmmac_tx_timer: mitigation sw timer for tx. 1527 * @data: data pointer 1528 * Description: 1529 * This is the timer handler to directly invoke the stmmac_tx_clean. 1530 */ 1531 static void stmmac_tx_timer(unsigned long data) 1532 { 1533 struct stmmac_priv *priv = (struct stmmac_priv *)data; 1534 1535 stmmac_tx_clean(priv); 1536 } 1537 1538 /** 1539 * stmmac_init_tx_coalesce: init tx mitigation options. 1540 * @priv: driver private structure 1541 * Description: 1542 * This inits the transmit coalesce parameters: i.e. timer rate, 1543 * timer handler and default threshold used for enabling the 1544 * interrupt on completion bit. 1545 */ 1546 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 1547 { 1548 priv->tx_coal_frames = STMMAC_TX_FRAMES; 1549 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 1550 init_timer(&priv->txtimer); 1551 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 1552 priv->txtimer.data = (unsigned long)priv; 1553 priv->txtimer.function = stmmac_tx_timer; 1554 add_timer(&priv->txtimer); 1555 } 1556 1557 /** 1558 * stmmac_open - open entry point of the driver 1559 * @dev : pointer to the device structure. 1560 * Description: 1561 * This function is the open entry point of the driver. 1562 * Return value: 1563 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1564 * file on failure. 1565 */ 1566 static int stmmac_open(struct net_device *dev) 1567 { 1568 struct stmmac_priv *priv = netdev_priv(dev); 1569 int ret; 1570 1571 clk_prepare_enable(priv->stmmac_clk); 1572 1573 stmmac_check_ether_addr(priv); 1574 1575 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 1576 priv->pcs != STMMAC_PCS_RTBI) { 1577 ret = stmmac_init_phy(dev); 1578 if (ret) { 1579 pr_err("%s: Cannot attach to PHY (error: %d)\n", 1580 __func__, ret); 1581 goto open_error; 1582 } 1583 } 1584 1585 /* Create and initialize the TX/RX descriptors chains. */ 1586 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize); 1587 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize); 1588 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 1589 init_dma_desc_rings(dev); 1590 1591 /* DMA initialization and SW reset */ 1592 ret = stmmac_init_dma_engine(priv); 1593 if (ret < 0) { 1594 pr_err("%s: DMA initialization failed\n", __func__); 1595 goto open_error; 1596 } 1597 1598 /* Copy the MAC addr into the HW */ 1599 priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0); 1600 1601 /* If required, perform hw setup of the bus. */ 1602 if (priv->plat->bus_setup) 1603 priv->plat->bus_setup(priv->ioaddr); 1604 1605 /* Initialize the MAC Core */ 1606 priv->hw->mac->core_init(priv->ioaddr); 1607 1608 /* Request the IRQ lines */ 1609 ret = request_irq(dev->irq, stmmac_interrupt, 1610 IRQF_SHARED, dev->name, dev); 1611 if (unlikely(ret < 0)) { 1612 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n", 1613 __func__, dev->irq, ret); 1614 goto open_error; 1615 } 1616 1617 /* Request the Wake IRQ in case of another line is used for WoL */ 1618 if (priv->wol_irq != dev->irq) { 1619 ret = request_irq(priv->wol_irq, stmmac_interrupt, 1620 IRQF_SHARED, dev->name, dev); 1621 if (unlikely(ret < 0)) { 1622 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n", 1623 __func__, priv->wol_irq, ret); 1624 goto open_error_wolirq; 1625 } 1626 } 1627 1628 /* Request the IRQ lines */ 1629 if (priv->lpi_irq != -ENXIO) { 1630 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 1631 dev->name, dev); 1632 if (unlikely(ret < 0)) { 1633 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1634 __func__, priv->lpi_irq, ret); 1635 goto open_error_lpiirq; 1636 } 1637 } 1638 1639 /* Enable the MAC Rx/Tx */ 1640 stmmac_set_mac(priv->ioaddr, true); 1641 1642 /* Set the HW DMA mode and the COE */ 1643 stmmac_dma_operation_mode(priv); 1644 1645 /* Extra statistics */ 1646 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 1647 priv->xstats.threshold = tc; 1648 1649 stmmac_mmc_setup(priv); 1650 1651 ret = stmmac_init_ptp(priv); 1652 if (ret) 1653 pr_warn("%s: failed PTP initialisation\n", __func__); 1654 1655 #ifdef CONFIG_STMMAC_DEBUG_FS 1656 ret = stmmac_init_fs(dev); 1657 if (ret < 0) 1658 pr_warn("%s: failed debugFS registration\n", __func__); 1659 #endif 1660 /* Start the ball rolling... */ 1661 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name); 1662 priv->hw->dma->start_tx(priv->ioaddr); 1663 priv->hw->dma->start_rx(priv->ioaddr); 1664 1665 /* Dump DMA/MAC registers */ 1666 if (netif_msg_hw(priv)) { 1667 priv->hw->mac->dump_regs(priv->ioaddr); 1668 priv->hw->dma->dump_regs(priv->ioaddr); 1669 } 1670 1671 if (priv->phydev) 1672 phy_start(priv->phydev); 1673 1674 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER; 1675 1676 /* Using PCS we cannot dial with the phy registers at this stage 1677 * so we do not support extra feature like EEE. 1678 */ 1679 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 1680 priv->pcs != STMMAC_PCS_RTBI) 1681 priv->eee_enabled = stmmac_eee_init(priv); 1682 1683 stmmac_init_tx_coalesce(priv); 1684 1685 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1686 priv->rx_riwt = MAX_DMA_RIWT; 1687 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT); 1688 } 1689 1690 if (priv->pcs && priv->hw->mac->ctrl_ane) 1691 priv->hw->mac->ctrl_ane(priv->ioaddr, 0); 1692 1693 napi_enable(&priv->napi); 1694 netif_start_queue(dev); 1695 1696 return 0; 1697 1698 open_error_lpiirq: 1699 if (priv->wol_irq != dev->irq) 1700 free_irq(priv->wol_irq, dev); 1701 1702 open_error_wolirq: 1703 free_irq(dev->irq, dev); 1704 1705 open_error: 1706 if (priv->phydev) 1707 phy_disconnect(priv->phydev); 1708 1709 clk_disable_unprepare(priv->stmmac_clk); 1710 1711 return ret; 1712 } 1713 1714 /** 1715 * stmmac_release - close entry point of the driver 1716 * @dev : device pointer. 1717 * Description: 1718 * This is the stop entry point of the driver. 1719 */ 1720 static int stmmac_release(struct net_device *dev) 1721 { 1722 struct stmmac_priv *priv = netdev_priv(dev); 1723 1724 if (priv->eee_enabled) 1725 del_timer_sync(&priv->eee_ctrl_timer); 1726 1727 /* Stop and disconnect the PHY */ 1728 if (priv->phydev) { 1729 phy_stop(priv->phydev); 1730 phy_disconnect(priv->phydev); 1731 priv->phydev = NULL; 1732 } 1733 1734 netif_stop_queue(dev); 1735 1736 napi_disable(&priv->napi); 1737 1738 del_timer_sync(&priv->txtimer); 1739 1740 /* Free the IRQ lines */ 1741 free_irq(dev->irq, dev); 1742 if (priv->wol_irq != dev->irq) 1743 free_irq(priv->wol_irq, dev); 1744 if (priv->lpi_irq != -ENXIO) 1745 free_irq(priv->lpi_irq, dev); 1746 1747 /* Stop TX/RX DMA and clear the descriptors */ 1748 priv->hw->dma->stop_tx(priv->ioaddr); 1749 priv->hw->dma->stop_rx(priv->ioaddr); 1750 1751 /* Release and free the Rx/Tx resources */ 1752 free_dma_desc_resources(priv); 1753 1754 /* Disable the MAC Rx/Tx */ 1755 stmmac_set_mac(priv->ioaddr, false); 1756 1757 netif_carrier_off(dev); 1758 1759 #ifdef CONFIG_STMMAC_DEBUG_FS 1760 stmmac_exit_fs(); 1761 #endif 1762 clk_disable_unprepare(priv->stmmac_clk); 1763 1764 stmmac_release_ptp(priv); 1765 1766 return 0; 1767 } 1768 1769 /** 1770 * stmmac_xmit: Tx entry point of the driver 1771 * @skb : the socket buffer 1772 * @dev : device pointer 1773 * Description : this is the tx entry point of the driver. 1774 * It programs the chain or the ring and supports oversized frames 1775 * and SG feature. 1776 */ 1777 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 1778 { 1779 struct stmmac_priv *priv = netdev_priv(dev); 1780 unsigned int txsize = priv->dma_tx_size; 1781 unsigned int entry; 1782 int i, csum_insertion = 0, is_jumbo = 0; 1783 int nfrags = skb_shinfo(skb)->nr_frags; 1784 struct dma_desc *desc, *first; 1785 unsigned int nopaged_len = skb_headlen(skb); 1786 1787 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { 1788 if (!netif_queue_stopped(dev)) { 1789 netif_stop_queue(dev); 1790 /* This is a hard error, log it. */ 1791 pr_err("%s: Tx Ring full when queue awake\n", __func__); 1792 } 1793 return NETDEV_TX_BUSY; 1794 } 1795 1796 spin_lock(&priv->tx_lock); 1797 1798 if (priv->tx_path_in_lpi_mode) 1799 stmmac_disable_eee_mode(priv); 1800 1801 entry = priv->cur_tx % txsize; 1802 1803 #ifdef STMMAC_XMIT_DEBUG 1804 if ((skb->len > ETH_FRAME_LEN) || nfrags) 1805 pr_debug("%s: [entry %d]: skb addr %p len: %d nopagedlen: %d\n" 1806 "\tn_frags: %d - ip_summed: %d - %s gso\n" 1807 "\ttx_count_frames %d\n", __func__, entry, 1808 skb, skb->len, nopaged_len, nfrags, skb->ip_summed, 1809 !skb_is_gso(skb) ? "isn't" : "is", 1810 priv->tx_count_frames); 1811 #endif 1812 1813 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 1814 1815 if (priv->extend_desc) 1816 desc = (struct dma_desc *)(priv->dma_etx + entry); 1817 else 1818 desc = priv->dma_tx + entry; 1819 1820 first = desc; 1821 1822 #ifdef STMMAC_XMIT_DEBUG 1823 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN)) 1824 pr_debug("\tskb len: %d, nopaged_len: %d,\n" 1825 "\t\tn_frags: %d, ip_summed: %d\n", 1826 skb->len, nopaged_len, nfrags, skb->ip_summed); 1827 #endif 1828 priv->tx_skbuff[entry] = skb; 1829 1830 /* To program the descriptors according to the size of the frame */ 1831 if (priv->mode == STMMAC_RING_MODE) { 1832 is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len, 1833 priv->plat->enh_desc); 1834 if (unlikely(is_jumbo)) 1835 entry = priv->hw->ring->jumbo_frm(priv, skb, 1836 csum_insertion); 1837 } else { 1838 is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len, 1839 priv->plat->enh_desc); 1840 if (unlikely(is_jumbo)) 1841 entry = priv->hw->chain->jumbo_frm(priv, skb, 1842 csum_insertion); 1843 } 1844 if (likely(!is_jumbo)) { 1845 desc->des2 = dma_map_single(priv->device, skb->data, 1846 nopaged_len, DMA_TO_DEVICE); 1847 priv->tx_skbuff_dma[entry] = desc->des2; 1848 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, 1849 csum_insertion, priv->mode); 1850 } else 1851 desc = first; 1852 1853 for (i = 0; i < nfrags; i++) { 1854 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1855 int len = skb_frag_size(frag); 1856 1857 entry = (++priv->cur_tx) % txsize; 1858 if (priv->extend_desc) 1859 desc = (struct dma_desc *)(priv->dma_etx + entry); 1860 else 1861 desc = priv->dma_tx + entry; 1862 1863 TX_DBG("\t[entry %d] segment len: %d\n", entry, len); 1864 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len, 1865 DMA_TO_DEVICE); 1866 priv->tx_skbuff_dma[entry] = desc->des2; 1867 priv->tx_skbuff[entry] = NULL; 1868 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, 1869 priv->mode); 1870 wmb(); 1871 priv->hw->desc->set_tx_owner(desc); 1872 wmb(); 1873 } 1874 1875 /* Finalize the latest segment. */ 1876 priv->hw->desc->close_tx_desc(desc); 1877 1878 wmb(); 1879 /* According to the coalesce parameter the IC bit for the latest 1880 * segment could be reset and the timer re-started to invoke the 1881 * stmmac_tx function. This approach takes care about the fragments. 1882 */ 1883 priv->tx_count_frames += nfrags + 1; 1884 if (priv->tx_coal_frames > priv->tx_count_frames) { 1885 priv->hw->desc->clear_tx_ic(desc); 1886 priv->xstats.tx_reset_ic_bit++; 1887 TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry, 1888 priv->tx_count_frames); 1889 mod_timer(&priv->txtimer, 1890 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 1891 } else 1892 priv->tx_count_frames = 0; 1893 1894 /* To avoid raise condition */ 1895 priv->hw->desc->set_tx_owner(first); 1896 wmb(); 1897 1898 priv->cur_tx++; 1899 1900 #ifdef STMMAC_XMIT_DEBUG 1901 if (netif_msg_pktdata(priv)) { 1902 pr_info("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d" 1903 __func__, (priv->cur_tx % txsize), 1904 (priv->dirty_tx % txsize), entry, first, nfrags); 1905 if (priv->extend_desc) 1906 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 1907 else 1908 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 1909 1910 pr_info(">>> frame to be transmitted: "); 1911 print_pkt(skb->data, skb->len); 1912 } 1913 #endif 1914 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 1915 TX_DBG("%s: stop transmitted packets\n", __func__); 1916 netif_stop_queue(dev); 1917 } 1918 1919 dev->stats.tx_bytes += skb->len; 1920 1921 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 1922 priv->hwts_tx_en)) { 1923 /* declare that device is doing timestamping */ 1924 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 1925 priv->hw->desc->enable_tx_timestamp(first); 1926 } 1927 1928 if (!priv->hwts_tx_en) 1929 skb_tx_timestamp(skb); 1930 1931 priv->hw->dma->enable_dma_transmission(priv->ioaddr); 1932 1933 spin_unlock(&priv->tx_lock); 1934 1935 return NETDEV_TX_OK; 1936 } 1937 1938 /** 1939 * stmmac_rx_refill: refill used skb preallocated buffers 1940 * @priv: driver private structure 1941 * Description : this is to reallocate the skb for the reception process 1942 * that is based on zero-copy. 1943 */ 1944 static inline void stmmac_rx_refill(struct stmmac_priv *priv) 1945 { 1946 unsigned int rxsize = priv->dma_rx_size; 1947 int bfsize = priv->dma_buf_sz; 1948 1949 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) { 1950 unsigned int entry = priv->dirty_rx % rxsize; 1951 struct dma_desc *p; 1952 1953 if (priv->extend_desc) 1954 p = (struct dma_desc *)(priv->dma_erx + entry); 1955 else 1956 p = priv->dma_rx + entry; 1957 1958 if (likely(priv->rx_skbuff[entry] == NULL)) { 1959 struct sk_buff *skb; 1960 1961 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 1962 1963 if (unlikely(skb == NULL)) 1964 break; 1965 1966 priv->rx_skbuff[entry] = skb; 1967 priv->rx_skbuff_dma[entry] = 1968 dma_map_single(priv->device, skb->data, bfsize, 1969 DMA_FROM_DEVICE); 1970 1971 p->des2 = priv->rx_skbuff_dma[entry]; 1972 1973 priv->hw->ring->refill_desc3(priv, p); 1974 1975 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry); 1976 } 1977 wmb(); 1978 priv->hw->desc->set_rx_owner(p); 1979 wmb(); 1980 } 1981 } 1982 1983 /** 1984 * stmmac_rx_refill: refill used skb preallocated buffers 1985 * @priv: driver private structure 1986 * @limit: napi bugget. 1987 * Description : this the function called by the napi poll method. 1988 * It gets all the frames inside the ring. 1989 */ 1990 static int stmmac_rx(struct stmmac_priv *priv, int limit) 1991 { 1992 unsigned int rxsize = priv->dma_rx_size; 1993 unsigned int entry = priv->cur_rx % rxsize; 1994 unsigned int next_entry; 1995 unsigned int count = 0; 1996 int coe = priv->plat->rx_coe; 1997 1998 #ifdef STMMAC_RX_DEBUG 1999 if (netif_msg_hw(priv)) { 2000 pr_debug(">>> stmmac_rx: descriptor ring:\n"); 2001 if (priv->extend_desc) 2002 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 2003 else 2004 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 2005 } 2006 #endif 2007 while (count < limit) { 2008 int status; 2009 struct dma_desc *p; 2010 2011 if (priv->extend_desc) 2012 p = (struct dma_desc *)(priv->dma_erx + entry); 2013 else 2014 p = priv->dma_rx + entry; 2015 2016 if (priv->hw->desc->get_rx_owner(p)) 2017 break; 2018 2019 count++; 2020 2021 next_entry = (++priv->cur_rx) % rxsize; 2022 if (priv->extend_desc) 2023 prefetch(priv->dma_erx + next_entry); 2024 else 2025 prefetch(priv->dma_rx + next_entry); 2026 2027 /* read the status of the incoming frame */ 2028 status = priv->hw->desc->rx_status(&priv->dev->stats, 2029 &priv->xstats, p); 2030 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) 2031 priv->hw->desc->rx_extended_status(&priv->dev->stats, 2032 &priv->xstats, 2033 priv->dma_erx + 2034 entry); 2035 if (unlikely(status == discard_frame)) { 2036 priv->dev->stats.rx_errors++; 2037 if (priv->hwts_rx_en && !priv->extend_desc) { 2038 /* DESC2 & DESC3 will be overwitten by device 2039 * with timestamp value, hence reinitialize 2040 * them in stmmac_rx_refill() function so that 2041 * device can reuse it. 2042 */ 2043 priv->rx_skbuff[entry] = NULL; 2044 dma_unmap_single(priv->device, 2045 priv->rx_skbuff_dma[entry], 2046 priv->dma_buf_sz, 2047 DMA_FROM_DEVICE); 2048 } 2049 } else { 2050 struct sk_buff *skb; 2051 int frame_len; 2052 2053 frame_len = priv->hw->desc->get_rx_frame_len(p, coe); 2054 2055 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 2056 * Type frames (LLC/LLC-SNAP) 2057 */ 2058 if (unlikely(status != llc_snap)) 2059 frame_len -= ETH_FCS_LEN; 2060 #ifdef STMMAC_RX_DEBUG 2061 if (frame_len > ETH_FRAME_LEN) 2062 pr_debug("\tRX frame size %d, COE status: %d\n", 2063 frame_len, status); 2064 2065 if (netif_msg_hw(priv)) 2066 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n", 2067 p, entry, p->des2); 2068 #endif 2069 skb = priv->rx_skbuff[entry]; 2070 if (unlikely(!skb)) { 2071 pr_err("%s: Inconsistent Rx descriptor chain\n", 2072 priv->dev->name); 2073 priv->dev->stats.rx_dropped++; 2074 break; 2075 } 2076 prefetch(skb->data - NET_IP_ALIGN); 2077 priv->rx_skbuff[entry] = NULL; 2078 2079 stmmac_get_rx_hwtstamp(priv, entry, skb); 2080 2081 skb_put(skb, frame_len); 2082 dma_unmap_single(priv->device, 2083 priv->rx_skbuff_dma[entry], 2084 priv->dma_buf_sz, DMA_FROM_DEVICE); 2085 #ifdef STMMAC_RX_DEBUG 2086 if (netif_msg_pktdata(priv)) { 2087 pr_info(" frame received (%dbytes)", frame_len); 2088 print_pkt(skb->data, frame_len); 2089 } 2090 #endif 2091 skb->protocol = eth_type_trans(skb, priv->dev); 2092 2093 if (unlikely(!coe)) 2094 skb_checksum_none_assert(skb); 2095 else 2096 skb->ip_summed = CHECKSUM_UNNECESSARY; 2097 2098 napi_gro_receive(&priv->napi, skb); 2099 2100 priv->dev->stats.rx_packets++; 2101 priv->dev->stats.rx_bytes += frame_len; 2102 } 2103 entry = next_entry; 2104 } 2105 2106 stmmac_rx_refill(priv); 2107 2108 priv->xstats.rx_pkt_n += count; 2109 2110 return count; 2111 } 2112 2113 /** 2114 * stmmac_poll - stmmac poll method (NAPI) 2115 * @napi : pointer to the napi structure. 2116 * @budget : maximum number of packets that the current CPU can receive from 2117 * all interfaces. 2118 * Description : 2119 * To look at the incoming frames and clear the tx resources. 2120 */ 2121 static int stmmac_poll(struct napi_struct *napi, int budget) 2122 { 2123 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); 2124 int work_done = 0; 2125 2126 priv->xstats.napi_poll++; 2127 stmmac_tx_clean(priv); 2128 2129 work_done = stmmac_rx(priv, budget); 2130 if (work_done < budget) { 2131 napi_complete(napi); 2132 stmmac_enable_dma_irq(priv); 2133 } 2134 return work_done; 2135 } 2136 2137 /** 2138 * stmmac_tx_timeout 2139 * @dev : Pointer to net device structure 2140 * Description: this function is called when a packet transmission fails to 2141 * complete within a reasonable time. The driver will mark the error in the 2142 * netdev structure and arrange for the device to be reset to a sane state 2143 * in order to transmit a new packet. 2144 */ 2145 static void stmmac_tx_timeout(struct net_device *dev) 2146 { 2147 struct stmmac_priv *priv = netdev_priv(dev); 2148 2149 /* Clear Tx resources and restart transmitting again */ 2150 stmmac_tx_err(priv); 2151 } 2152 2153 /* Configuration changes (passed on by ifconfig) */ 2154 static int stmmac_config(struct net_device *dev, struct ifmap *map) 2155 { 2156 if (dev->flags & IFF_UP) /* can't act on a running interface */ 2157 return -EBUSY; 2158 2159 /* Don't allow changing the I/O address */ 2160 if (map->base_addr != dev->base_addr) { 2161 pr_warn("%s: can't change I/O address\n", dev->name); 2162 return -EOPNOTSUPP; 2163 } 2164 2165 /* Don't allow changing the IRQ */ 2166 if (map->irq != dev->irq) { 2167 pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq); 2168 return -EOPNOTSUPP; 2169 } 2170 2171 return 0; 2172 } 2173 2174 /** 2175 * stmmac_set_rx_mode - entry point for multicast addressing 2176 * @dev : pointer to the device structure 2177 * Description: 2178 * This function is a driver entry point which gets called by the kernel 2179 * whenever multicast addresses must be enabled/disabled. 2180 * Return value: 2181 * void. 2182 */ 2183 static void stmmac_set_rx_mode(struct net_device *dev) 2184 { 2185 struct stmmac_priv *priv = netdev_priv(dev); 2186 2187 spin_lock(&priv->lock); 2188 priv->hw->mac->set_filter(dev, priv->synopsys_id); 2189 spin_unlock(&priv->lock); 2190 } 2191 2192 /** 2193 * stmmac_change_mtu - entry point to change MTU size for the device. 2194 * @dev : device pointer. 2195 * @new_mtu : the new MTU size for the device. 2196 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 2197 * to drive packet transmission. Ethernet has an MTU of 1500 octets 2198 * (ETH_DATA_LEN). This value can be changed with ifconfig. 2199 * Return value: 2200 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2201 * file on failure. 2202 */ 2203 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 2204 { 2205 struct stmmac_priv *priv = netdev_priv(dev); 2206 int max_mtu; 2207 2208 if (netif_running(dev)) { 2209 pr_err("%s: must be stopped to change its MTU\n", dev->name); 2210 return -EBUSY; 2211 } 2212 2213 if (priv->plat->enh_desc) 2214 max_mtu = JUMBO_LEN; 2215 else 2216 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 2217 2218 if ((new_mtu < 46) || (new_mtu > max_mtu)) { 2219 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu); 2220 return -EINVAL; 2221 } 2222 2223 dev->mtu = new_mtu; 2224 netdev_update_features(dev); 2225 2226 return 0; 2227 } 2228 2229 static netdev_features_t stmmac_fix_features(struct net_device *dev, 2230 netdev_features_t features) 2231 { 2232 struct stmmac_priv *priv = netdev_priv(dev); 2233 2234 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 2235 features &= ~NETIF_F_RXCSUM; 2236 else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1) 2237 features &= ~NETIF_F_IPV6_CSUM; 2238 if (!priv->plat->tx_coe) 2239 features &= ~NETIF_F_ALL_CSUM; 2240 2241 /* Some GMAC devices have a bugged Jumbo frame support that 2242 * needs to have the Tx COE disabled for oversized frames 2243 * (due to limited buffer sizes). In this case we disable 2244 * the TX csum insertionin the TDES and not use SF. 2245 */ 2246 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 2247 features &= ~NETIF_F_ALL_CSUM; 2248 2249 return features; 2250 } 2251 2252 /** 2253 * stmmac_interrupt - main ISR 2254 * @irq: interrupt number. 2255 * @dev_id: to pass the net device pointer. 2256 * Description: this is the main driver interrupt service routine. 2257 * It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI 2258 * interrupts. 2259 */ 2260 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 2261 { 2262 struct net_device *dev = (struct net_device *)dev_id; 2263 struct stmmac_priv *priv = netdev_priv(dev); 2264 2265 if (unlikely(!dev)) { 2266 pr_err("%s: invalid dev pointer\n", __func__); 2267 return IRQ_NONE; 2268 } 2269 2270 /* To handle GMAC own interrupts */ 2271 if (priv->plat->has_gmac) { 2272 int status = priv->hw->mac->host_irq_status((void __iomem *) 2273 dev->base_addr, 2274 &priv->xstats); 2275 if (unlikely(status)) { 2276 /* For LPI we need to save the tx status */ 2277 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 2278 priv->tx_path_in_lpi_mode = true; 2279 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 2280 priv->tx_path_in_lpi_mode = false; 2281 } 2282 } 2283 2284 /* To handle DMA interrupts */ 2285 stmmac_dma_interrupt(priv); 2286 2287 return IRQ_HANDLED; 2288 } 2289 2290 #ifdef CONFIG_NET_POLL_CONTROLLER 2291 /* Polling receive - used by NETCONSOLE and other diagnostic tools 2292 * to allow network I/O with interrupts disabled. 2293 */ 2294 static void stmmac_poll_controller(struct net_device *dev) 2295 { 2296 disable_irq(dev->irq); 2297 stmmac_interrupt(dev->irq, dev); 2298 enable_irq(dev->irq); 2299 } 2300 #endif 2301 2302 /** 2303 * stmmac_ioctl - Entry point for the Ioctl 2304 * @dev: Device pointer. 2305 * @rq: An IOCTL specefic structure, that can contain a pointer to 2306 * a proprietary structure used to pass information to the driver. 2307 * @cmd: IOCTL command 2308 * Description: 2309 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 2310 */ 2311 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2312 { 2313 struct stmmac_priv *priv = netdev_priv(dev); 2314 int ret = -EOPNOTSUPP; 2315 2316 if (!netif_running(dev)) 2317 return -EINVAL; 2318 2319 switch (cmd) { 2320 case SIOCGMIIPHY: 2321 case SIOCGMIIREG: 2322 case SIOCSMIIREG: 2323 if (!priv->phydev) 2324 return -EINVAL; 2325 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 2326 break; 2327 case SIOCSHWTSTAMP: 2328 ret = stmmac_hwtstamp_ioctl(dev, rq); 2329 break; 2330 default: 2331 break; 2332 } 2333 2334 return ret; 2335 } 2336 2337 #ifdef CONFIG_STMMAC_DEBUG_FS 2338 static struct dentry *stmmac_fs_dir; 2339 static struct dentry *stmmac_rings_status; 2340 static struct dentry *stmmac_dma_cap; 2341 2342 static void sysfs_display_ring(void *head, int size, int extend_desc, 2343 struct seq_file *seq) 2344 { 2345 int i; 2346 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 2347 struct dma_desc *p = (struct dma_desc *)head; 2348 2349 for (i = 0; i < size; i++) { 2350 u64 x; 2351 if (extend_desc) { 2352 x = *(u64 *) ep; 2353 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2354 i, (unsigned int)virt_to_phys(ep), 2355 (unsigned int)x, (unsigned int)(x >> 32), 2356 ep->basic.des2, ep->basic.des3); 2357 ep++; 2358 } else { 2359 x = *(u64 *) p; 2360 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2361 i, (unsigned int)virt_to_phys(ep), 2362 (unsigned int)x, (unsigned int)(x >> 32), 2363 p->des2, p->des3); 2364 p++; 2365 } 2366 seq_printf(seq, "\n"); 2367 } 2368 } 2369 2370 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 2371 { 2372 struct net_device *dev = seq->private; 2373 struct stmmac_priv *priv = netdev_priv(dev); 2374 unsigned int txsize = priv->dma_tx_size; 2375 unsigned int rxsize = priv->dma_rx_size; 2376 2377 if (priv->extend_desc) { 2378 seq_printf(seq, "Extended RX descriptor ring:\n"); 2379 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq); 2380 seq_printf(seq, "Extended TX descriptor ring:\n"); 2381 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq); 2382 } else { 2383 seq_printf(seq, "RX descriptor ring:\n"); 2384 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq); 2385 seq_printf(seq, "TX descriptor ring:\n"); 2386 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq); 2387 } 2388 2389 return 0; 2390 } 2391 2392 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 2393 { 2394 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 2395 } 2396 2397 static const struct file_operations stmmac_rings_status_fops = { 2398 .owner = THIS_MODULE, 2399 .open = stmmac_sysfs_ring_open, 2400 .read = seq_read, 2401 .llseek = seq_lseek, 2402 .release = single_release, 2403 }; 2404 2405 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 2406 { 2407 struct net_device *dev = seq->private; 2408 struct stmmac_priv *priv = netdev_priv(dev); 2409 2410 if (!priv->hw_cap_support) { 2411 seq_printf(seq, "DMA HW features not supported\n"); 2412 return 0; 2413 } 2414 2415 seq_printf(seq, "==============================\n"); 2416 seq_printf(seq, "\tDMA HW features\n"); 2417 seq_printf(seq, "==============================\n"); 2418 2419 seq_printf(seq, "\t10/100 Mbps %s\n", 2420 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 2421 seq_printf(seq, "\t1000 Mbps %s\n", 2422 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 2423 seq_printf(seq, "\tHalf duple %s\n", 2424 (priv->dma_cap.half_duplex) ? "Y" : "N"); 2425 seq_printf(seq, "\tHash Filter: %s\n", 2426 (priv->dma_cap.hash_filter) ? "Y" : "N"); 2427 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 2428 (priv->dma_cap.multi_addr) ? "Y" : "N"); 2429 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n", 2430 (priv->dma_cap.pcs) ? "Y" : "N"); 2431 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 2432 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 2433 seq_printf(seq, "\tPMT Remote wake up: %s\n", 2434 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 2435 seq_printf(seq, "\tPMT Magic Frame: %s\n", 2436 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 2437 seq_printf(seq, "\tRMON module: %s\n", 2438 (priv->dma_cap.rmon) ? "Y" : "N"); 2439 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 2440 (priv->dma_cap.time_stamp) ? "Y" : "N"); 2441 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n", 2442 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 2443 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n", 2444 (priv->dma_cap.eee) ? "Y" : "N"); 2445 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 2446 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 2447 (priv->dma_cap.tx_coe) ? "Y" : "N"); 2448 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 2449 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 2450 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 2451 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 2452 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 2453 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 2454 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 2455 priv->dma_cap.number_rx_channel); 2456 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 2457 priv->dma_cap.number_tx_channel); 2458 seq_printf(seq, "\tEnhanced descriptors: %s\n", 2459 (priv->dma_cap.enh_desc) ? "Y" : "N"); 2460 2461 return 0; 2462 } 2463 2464 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 2465 { 2466 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 2467 } 2468 2469 static const struct file_operations stmmac_dma_cap_fops = { 2470 .owner = THIS_MODULE, 2471 .open = stmmac_sysfs_dma_cap_open, 2472 .read = seq_read, 2473 .llseek = seq_lseek, 2474 .release = single_release, 2475 }; 2476 2477 static int stmmac_init_fs(struct net_device *dev) 2478 { 2479 /* Create debugfs entries */ 2480 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 2481 2482 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 2483 pr_err("ERROR %s, debugfs create directory failed\n", 2484 STMMAC_RESOURCE_NAME); 2485 2486 return -ENOMEM; 2487 } 2488 2489 /* Entry to report DMA RX/TX rings */ 2490 stmmac_rings_status = debugfs_create_file("descriptors_status", 2491 S_IRUGO, stmmac_fs_dir, dev, 2492 &stmmac_rings_status_fops); 2493 2494 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) { 2495 pr_info("ERROR creating stmmac ring debugfs file\n"); 2496 debugfs_remove(stmmac_fs_dir); 2497 2498 return -ENOMEM; 2499 } 2500 2501 /* Entry to report the DMA HW features */ 2502 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir, 2503 dev, &stmmac_dma_cap_fops); 2504 2505 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) { 2506 pr_info("ERROR creating stmmac MMC debugfs file\n"); 2507 debugfs_remove(stmmac_rings_status); 2508 debugfs_remove(stmmac_fs_dir); 2509 2510 return -ENOMEM; 2511 } 2512 2513 return 0; 2514 } 2515 2516 static void stmmac_exit_fs(void) 2517 { 2518 debugfs_remove(stmmac_rings_status); 2519 debugfs_remove(stmmac_dma_cap); 2520 debugfs_remove(stmmac_fs_dir); 2521 } 2522 #endif /* CONFIG_STMMAC_DEBUG_FS */ 2523 2524 static const struct net_device_ops stmmac_netdev_ops = { 2525 .ndo_open = stmmac_open, 2526 .ndo_start_xmit = stmmac_xmit, 2527 .ndo_stop = stmmac_release, 2528 .ndo_change_mtu = stmmac_change_mtu, 2529 .ndo_fix_features = stmmac_fix_features, 2530 .ndo_set_rx_mode = stmmac_set_rx_mode, 2531 .ndo_tx_timeout = stmmac_tx_timeout, 2532 .ndo_do_ioctl = stmmac_ioctl, 2533 .ndo_set_config = stmmac_config, 2534 #ifdef CONFIG_NET_POLL_CONTROLLER 2535 .ndo_poll_controller = stmmac_poll_controller, 2536 #endif 2537 .ndo_set_mac_address = eth_mac_addr, 2538 }; 2539 2540 /** 2541 * stmmac_hw_init - Init the MAC device 2542 * @priv: driver private structure 2543 * Description: this function detects which MAC device 2544 * (GMAC/MAC10-100) has to attached, checks the HW capability 2545 * (if supported) and sets the driver's features (for example 2546 * to use the ring or chaine mode or support the normal/enh 2547 * descriptor structure). 2548 */ 2549 static int stmmac_hw_init(struct stmmac_priv *priv) 2550 { 2551 int ret; 2552 struct mac_device_info *mac; 2553 2554 /* Identify the MAC HW device */ 2555 if (priv->plat->has_gmac) { 2556 priv->dev->priv_flags |= IFF_UNICAST_FLT; 2557 mac = dwmac1000_setup(priv->ioaddr); 2558 } else { 2559 mac = dwmac100_setup(priv->ioaddr); 2560 } 2561 if (!mac) 2562 return -ENOMEM; 2563 2564 priv->hw = mac; 2565 2566 /* Get and dump the chip ID */ 2567 priv->synopsys_id = stmmac_get_synopsys_id(priv); 2568 2569 /* To use alternate (extended) or normal descriptor structures */ 2570 stmmac_selec_desc_mode(priv); 2571 2572 /* To use the chained or ring mode */ 2573 if (chain_mode) { 2574 priv->hw->chain = &chain_mode_ops; 2575 pr_info(" Chain mode enabled\n"); 2576 priv->mode = STMMAC_CHAIN_MODE; 2577 } else { 2578 priv->hw->ring = &ring_mode_ops; 2579 pr_info(" Ring mode enabled\n"); 2580 priv->mode = STMMAC_RING_MODE; 2581 } 2582 2583 /* Get the HW capability (new GMAC newer than 3.50a) */ 2584 priv->hw_cap_support = stmmac_get_hw_features(priv); 2585 if (priv->hw_cap_support) { 2586 pr_info(" DMA HW capability register supported"); 2587 2588 /* We can override some gmac/dma configuration fields: e.g. 2589 * enh_desc, tx_coe (e.g. that are passed through the 2590 * platform) with the values from the HW capability 2591 * register (if supported). 2592 */ 2593 priv->plat->enh_desc = priv->dma_cap.enh_desc; 2594 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 2595 2596 priv->plat->tx_coe = priv->dma_cap.tx_coe; 2597 2598 if (priv->dma_cap.rx_coe_type2) 2599 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 2600 else if (priv->dma_cap.rx_coe_type1) 2601 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 2602 2603 } else 2604 pr_info(" No HW DMA feature register supported"); 2605 2606 ret = priv->hw->mac->rx_ipc(priv->ioaddr); 2607 if (!ret) { 2608 pr_warn(" RX IPC Checksum Offload not configured.\n"); 2609 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2610 } 2611 2612 if (priv->plat->rx_coe) 2613 pr_info(" RX Checksum Offload Engine supported (type %d)\n", 2614 priv->plat->rx_coe); 2615 if (priv->plat->tx_coe) 2616 pr_info(" TX Checksum insertion supported\n"); 2617 2618 if (priv->plat->pmt) { 2619 pr_info(" Wake-Up On Lan supported\n"); 2620 device_set_wakeup_capable(priv->device, 1); 2621 } 2622 2623 return 0; 2624 } 2625 2626 /** 2627 * stmmac_dvr_probe 2628 * @device: device pointer 2629 * @plat_dat: platform data pointer 2630 * @addr: iobase memory address 2631 * Description: this is the main probe function used to 2632 * call the alloc_etherdev, allocate the priv structure. 2633 */ 2634 struct stmmac_priv *stmmac_dvr_probe(struct device *device, 2635 struct plat_stmmacenet_data *plat_dat, 2636 void __iomem *addr) 2637 { 2638 int ret = 0; 2639 struct net_device *ndev = NULL; 2640 struct stmmac_priv *priv; 2641 2642 ndev = alloc_etherdev(sizeof(struct stmmac_priv)); 2643 if (!ndev) 2644 return NULL; 2645 2646 SET_NETDEV_DEV(ndev, device); 2647 2648 priv = netdev_priv(ndev); 2649 priv->device = device; 2650 priv->dev = ndev; 2651 2652 ether_setup(ndev); 2653 2654 stmmac_set_ethtool_ops(ndev); 2655 priv->pause = pause; 2656 priv->plat = plat_dat; 2657 priv->ioaddr = addr; 2658 priv->dev->base_addr = (unsigned long)addr; 2659 2660 /* Verify driver arguments */ 2661 stmmac_verify_args(); 2662 2663 /* Override with kernel parameters if supplied XXX CRS XXX 2664 * this needs to have multiple instances 2665 */ 2666 if ((phyaddr >= 0) && (phyaddr <= 31)) 2667 priv->plat->phy_addr = phyaddr; 2668 2669 /* Init MAC and get the capabilities */ 2670 ret = stmmac_hw_init(priv); 2671 if (ret) 2672 goto error_free_netdev; 2673 2674 ndev->netdev_ops = &stmmac_netdev_ops; 2675 2676 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2677 NETIF_F_RXCSUM; 2678 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2679 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 2680 #ifdef STMMAC_VLAN_TAG_USED 2681 /* Both mac100 and gmac support receive VLAN tag detection */ 2682 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 2683 #endif 2684 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2685 2686 if (flow_ctrl) 2687 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 2688 2689 /* Rx Watchdog is available in the COREs newer than the 3.40. 2690 * In some case, for example on bugged HW this feature 2691 * has to be disable and this can be done by passing the 2692 * riwt_off field from the platform. 2693 */ 2694 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) { 2695 priv->use_riwt = 1; 2696 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n"); 2697 } 2698 2699 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); 2700 2701 spin_lock_init(&priv->lock); 2702 spin_lock_init(&priv->tx_lock); 2703 2704 ret = register_netdev(ndev); 2705 if (ret) { 2706 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2707 goto error_netdev_register; 2708 } 2709 2710 priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME); 2711 if (IS_ERR(priv->stmmac_clk)) { 2712 pr_warn("%s: warning: cannot get CSR clock\n", __func__); 2713 goto error_clk_get; 2714 } 2715 2716 /* If a specific clk_csr value is passed from the platform 2717 * this means that the CSR Clock Range selection cannot be 2718 * changed at run-time and it is fixed. Viceversa the driver'll try to 2719 * set the MDC clock dynamically according to the csr actual 2720 * clock input. 2721 */ 2722 if (!priv->plat->clk_csr) 2723 stmmac_clk_csr_set(priv); 2724 else 2725 priv->clk_csr = priv->plat->clk_csr; 2726 2727 stmmac_check_pcs_mode(priv); 2728 2729 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2730 priv->pcs != STMMAC_PCS_RTBI) { 2731 /* MDIO bus Registration */ 2732 ret = stmmac_mdio_register(ndev); 2733 if (ret < 0) { 2734 pr_debug("%s: MDIO bus (id: %d) registration failed", 2735 __func__, priv->plat->bus_id); 2736 goto error_mdio_register; 2737 } 2738 } 2739 2740 return priv; 2741 2742 error_mdio_register: 2743 clk_put(priv->stmmac_clk); 2744 error_clk_get: 2745 unregister_netdev(ndev); 2746 error_netdev_register: 2747 netif_napi_del(&priv->napi); 2748 error_free_netdev: 2749 free_netdev(ndev); 2750 2751 return NULL; 2752 } 2753 2754 /** 2755 * stmmac_dvr_remove 2756 * @ndev: net device pointer 2757 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2758 * changes the link status, releases the DMA descriptor rings. 2759 */ 2760 int stmmac_dvr_remove(struct net_device *ndev) 2761 { 2762 struct stmmac_priv *priv = netdev_priv(ndev); 2763 2764 pr_info("%s:\n\tremoving driver", __func__); 2765 2766 priv->hw->dma->stop_rx(priv->ioaddr); 2767 priv->hw->dma->stop_tx(priv->ioaddr); 2768 2769 stmmac_set_mac(priv->ioaddr, false); 2770 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2771 priv->pcs != STMMAC_PCS_RTBI) 2772 stmmac_mdio_unregister(ndev); 2773 netif_carrier_off(ndev); 2774 unregister_netdev(ndev); 2775 free_netdev(ndev); 2776 2777 return 0; 2778 } 2779 2780 #ifdef CONFIG_PM 2781 int stmmac_suspend(struct net_device *ndev) 2782 { 2783 struct stmmac_priv *priv = netdev_priv(ndev); 2784 unsigned long flags; 2785 2786 if (!ndev || !netif_running(ndev)) 2787 return 0; 2788 2789 if (priv->phydev) 2790 phy_stop(priv->phydev); 2791 2792 spin_lock_irqsave(&priv->lock, flags); 2793 2794 netif_device_detach(ndev); 2795 netif_stop_queue(ndev); 2796 2797 napi_disable(&priv->napi); 2798 2799 /* Stop TX/RX DMA */ 2800 priv->hw->dma->stop_tx(priv->ioaddr); 2801 priv->hw->dma->stop_rx(priv->ioaddr); 2802 2803 stmmac_clear_descriptors(priv); 2804 2805 /* Enable Power down mode by programming the PMT regs */ 2806 if (device_may_wakeup(priv->device)) 2807 priv->hw->mac->pmt(priv->ioaddr, priv->wolopts); 2808 else { 2809 stmmac_set_mac(priv->ioaddr, false); 2810 /* Disable clock in case of PWM is off */ 2811 clk_disable_unprepare(priv->stmmac_clk); 2812 } 2813 spin_unlock_irqrestore(&priv->lock, flags); 2814 return 0; 2815 } 2816 2817 int stmmac_resume(struct net_device *ndev) 2818 { 2819 struct stmmac_priv *priv = netdev_priv(ndev); 2820 unsigned long flags; 2821 2822 if (!netif_running(ndev)) 2823 return 0; 2824 2825 spin_lock_irqsave(&priv->lock, flags); 2826 2827 /* Power Down bit, into the PM register, is cleared 2828 * automatically as soon as a magic packet or a Wake-up frame 2829 * is received. Anyway, it's better to manually clear 2830 * this bit because it can generate problems while resuming 2831 * from another devices (e.g. serial console). 2832 */ 2833 if (device_may_wakeup(priv->device)) 2834 priv->hw->mac->pmt(priv->ioaddr, 0); 2835 else 2836 /* enable the clk prevously disabled */ 2837 clk_prepare_enable(priv->stmmac_clk); 2838 2839 netif_device_attach(ndev); 2840 2841 /* Enable the MAC and DMA */ 2842 stmmac_set_mac(priv->ioaddr, true); 2843 priv->hw->dma->start_tx(priv->ioaddr); 2844 priv->hw->dma->start_rx(priv->ioaddr); 2845 2846 napi_enable(&priv->napi); 2847 2848 netif_start_queue(ndev); 2849 2850 spin_unlock_irqrestore(&priv->lock, flags); 2851 2852 if (priv->phydev) 2853 phy_start(priv->phydev); 2854 2855 return 0; 2856 } 2857 2858 int stmmac_freeze(struct net_device *ndev) 2859 { 2860 if (!ndev || !netif_running(ndev)) 2861 return 0; 2862 2863 return stmmac_release(ndev); 2864 } 2865 2866 int stmmac_restore(struct net_device *ndev) 2867 { 2868 if (!ndev || !netif_running(ndev)) 2869 return 0; 2870 2871 return stmmac_open(ndev); 2872 } 2873 #endif /* CONFIG_PM */ 2874 2875 /* Driver can be configured w/ and w/ both PCI and Platf drivers 2876 * depending on the configuration selected. 2877 */ 2878 static int __init stmmac_init(void) 2879 { 2880 int ret; 2881 2882 ret = stmmac_register_platform(); 2883 if (ret) 2884 goto err; 2885 ret = stmmac_register_pci(); 2886 if (ret) 2887 goto err_pci; 2888 return 0; 2889 err_pci: 2890 stmmac_unregister_platform(); 2891 err: 2892 pr_err("stmmac: driver registration failed\n"); 2893 return ret; 2894 } 2895 2896 static void __exit stmmac_exit(void) 2897 { 2898 stmmac_unregister_platform(); 2899 stmmac_unregister_pci(); 2900 } 2901 2902 module_init(stmmac_init); 2903 module_exit(stmmac_exit); 2904 2905 #ifndef MODULE 2906 static int __init stmmac_cmdline_opt(char *str) 2907 { 2908 char *opt; 2909 2910 if (!str || !*str) 2911 return -EINVAL; 2912 while ((opt = strsep(&str, ",")) != NULL) { 2913 if (!strncmp(opt, "debug:", 6)) { 2914 if (kstrtoint(opt + 6, 0, &debug)) 2915 goto err; 2916 } else if (!strncmp(opt, "phyaddr:", 8)) { 2917 if (kstrtoint(opt + 8, 0, &phyaddr)) 2918 goto err; 2919 } else if (!strncmp(opt, "dma_txsize:", 11)) { 2920 if (kstrtoint(opt + 11, 0, &dma_txsize)) 2921 goto err; 2922 } else if (!strncmp(opt, "dma_rxsize:", 11)) { 2923 if (kstrtoint(opt + 11, 0, &dma_rxsize)) 2924 goto err; 2925 } else if (!strncmp(opt, "buf_sz:", 7)) { 2926 if (kstrtoint(opt + 7, 0, &buf_sz)) 2927 goto err; 2928 } else if (!strncmp(opt, "tc:", 3)) { 2929 if (kstrtoint(opt + 3, 0, &tc)) 2930 goto err; 2931 } else if (!strncmp(opt, "watchdog:", 9)) { 2932 if (kstrtoint(opt + 9, 0, &watchdog)) 2933 goto err; 2934 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 2935 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 2936 goto err; 2937 } else if (!strncmp(opt, "pause:", 6)) { 2938 if (kstrtoint(opt + 6, 0, &pause)) 2939 goto err; 2940 } else if (!strncmp(opt, "eee_timer:", 10)) { 2941 if (kstrtoint(opt + 10, 0, &eee_timer)) 2942 goto err; 2943 } else if (!strncmp(opt, "chain_mode:", 11)) { 2944 if (kstrtoint(opt + 11, 0, &chain_mode)) 2945 goto err; 2946 } 2947 } 2948 return 0; 2949 2950 err: 2951 pr_err("%s: ERROR broken module parameter conversion", __func__); 2952 return -EINVAL; 2953 } 2954 2955 __setup("stmmaceth=", stmmac_cmdline_opt); 2956 #endif /* MODULE */ 2957 2958 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 2959 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 2960 MODULE_LICENSE("GPL"); 2961