1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53 
54 #undef STMMAC_DEBUG
55 /*#define STMMAC_DEBUG*/
56 #ifdef STMMAC_DEBUG
57 #define DBG(nlevel, klevel, fmt, args...) \
58 		((void)(netif_msg_##nlevel(priv) && \
59 		printk(KERN_##klevel fmt, ## args)))
60 #else
61 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62 #endif
63 
64 #undef STMMAC_RX_DEBUG
65 /*#define STMMAC_RX_DEBUG*/
66 #ifdef STMMAC_RX_DEBUG
67 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
68 #else
69 #define RX_DBG(fmt, args...)  do { } while (0)
70 #endif
71 
72 #undef STMMAC_XMIT_DEBUG
73 /*#define STMMAC_XMIT_DEBUG*/
74 #ifdef STMMAC_XMIT_DEBUG
75 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
76 #else
77 #define TX_DBG(fmt, args...)  do { } while (0)
78 #endif
79 
80 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
81 #define JUMBO_LEN	9000
82 
83 /* Module parameters */
84 #define TX_TIMEO	5000
85 static int watchdog = TX_TIMEO;
86 module_param(watchdog, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
88 
89 static int debug = -1;
90 module_param(debug, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
92 
93 int phyaddr = -1;
94 module_param(phyaddr, int, S_IRUGO);
95 MODULE_PARM_DESC(phyaddr, "Physical device address");
96 
97 #define DMA_TX_SIZE 256
98 static int dma_txsize = DMA_TX_SIZE;
99 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
101 
102 #define DMA_RX_SIZE 256
103 static int dma_rxsize = DMA_RX_SIZE;
104 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
106 
107 static int flow_ctrl = FLOW_OFF;
108 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
110 
111 static int pause = PAUSE_TIME;
112 module_param(pause, int, S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
114 
115 #define TC_DEFAULT 64
116 static int tc = TC_DEFAULT;
117 module_param(tc, int, S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(tc, "DMA threshold control value");
119 
120 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
121 static int buf_sz = DMA_BUFFER_SIZE;
122 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
123 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
124 
125 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
126 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
127 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
128 
129 #define STMMAC_DEFAULT_LPI_TIMER	1000
130 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
131 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
132 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
133 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
134 
135 /* By default the driver will use the ring mode to manage tx and rx descriptors
136  * but passing this value so user can force to use the chain instead of the ring
137  */
138 static unsigned int chain_mode;
139 module_param(chain_mode, int, S_IRUGO);
140 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
141 
142 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
143 
144 #ifdef CONFIG_STMMAC_DEBUG_FS
145 static int stmmac_init_fs(struct net_device *dev);
146 static void stmmac_exit_fs(void);
147 #endif
148 
149 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
150 
151 /**
152  * stmmac_verify_args - verify the driver parameters.
153  * Description: it verifies if some wrong parameter is passed to the driver.
154  * Note that wrong parameters are replaced with the default values.
155  */
156 static void stmmac_verify_args(void)
157 {
158 	if (unlikely(watchdog < 0))
159 		watchdog = TX_TIMEO;
160 	if (unlikely(dma_rxsize < 0))
161 		dma_rxsize = DMA_RX_SIZE;
162 	if (unlikely(dma_txsize < 0))
163 		dma_txsize = DMA_TX_SIZE;
164 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165 		buf_sz = DMA_BUFFER_SIZE;
166 	if (unlikely(flow_ctrl > 1))
167 		flow_ctrl = FLOW_AUTO;
168 	else if (likely(flow_ctrl < 0))
169 		flow_ctrl = FLOW_OFF;
170 	if (unlikely((pause < 0) || (pause > 0xffff)))
171 		pause = PAUSE_TIME;
172 	if (eee_timer < 0)
173 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
174 }
175 
176 /**
177  * stmmac_clk_csr_set - dynamically set the MDC clock
178  * @priv: driver private structure
179  * Description: this is to dynamically set the MDC clock according to the csr
180  * clock input.
181  * Note:
182  *	If a specific clk_csr value is passed from the platform
183  *	this means that the CSR Clock Range selection cannot be
184  *	changed at run-time and it is fixed (as reported in the driver
185  *	documentation). Viceversa the driver will try to set the MDC
186  *	clock dynamically according to the actual clock input.
187  */
188 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
189 {
190 	u32 clk_rate;
191 
192 	clk_rate = clk_get_rate(priv->stmmac_clk);
193 
194 	/* Platform provided default clk_csr would be assumed valid
195 	 * for all other cases except for the below mentioned ones.
196 	 * For values higher than the IEEE 802.3 specified frequency
197 	 * we can not estimate the proper divider as it is not known
198 	 * the frequency of clk_csr_i. So we do not change the default
199 	 * divider.
200 	 */
201 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
202 		if (clk_rate < CSR_F_35M)
203 			priv->clk_csr = STMMAC_CSR_20_35M;
204 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
205 			priv->clk_csr = STMMAC_CSR_35_60M;
206 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
207 			priv->clk_csr = STMMAC_CSR_60_100M;
208 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
209 			priv->clk_csr = STMMAC_CSR_100_150M;
210 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
211 			priv->clk_csr = STMMAC_CSR_150_250M;
212 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
213 			priv->clk_csr = STMMAC_CSR_250_300M;
214 	}
215 }
216 
217 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
218 static void print_pkt(unsigned char *buf, int len)
219 {
220 	int j;
221 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
222 	for (j = 0; j < len; j++) {
223 		if ((j % 16) == 0)
224 			pr_info("\n %03x:", j);
225 		pr_info(" %02x", buf[j]);
226 	}
227 	pr_info("\n");
228 }
229 #endif
230 
231 /* minimum number of free TX descriptors required to wake up TX process */
232 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
233 
234 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
235 {
236 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
237 }
238 
239 /**
240  * stmmac_hw_fix_mac_speed: callback for speed selection
241  * @priv: driver private structure
242  * Description: on some platforms (e.g. ST), some HW system configuraton
243  * registers have to be set according to the link speed negotiated.
244  */
245 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
246 {
247 	struct phy_device *phydev = priv->phydev;
248 
249 	if (likely(priv->plat->fix_mac_speed))
250 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
251 }
252 
253 /**
254  * stmmac_enable_eee_mode: Check and enter in LPI mode
255  * @priv: driver private structure
256  * Description: this function is to verify and enter in LPI mode for EEE.
257  */
258 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
259 {
260 	/* Check and enter in LPI mode */
261 	if ((priv->dirty_tx == priv->cur_tx) &&
262 	    (priv->tx_path_in_lpi_mode == false))
263 		priv->hw->mac->set_eee_mode(priv->ioaddr);
264 }
265 
266 /**
267  * stmmac_disable_eee_mode: disable/exit from EEE
268  * @priv: driver private structure
269  * Description: this function is to exit and disable EEE in case of
270  * LPI state is true. This is called by the xmit.
271  */
272 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
273 {
274 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
275 	del_timer_sync(&priv->eee_ctrl_timer);
276 	priv->tx_path_in_lpi_mode = false;
277 }
278 
279 /**
280  * stmmac_eee_ctrl_timer: EEE TX SW timer.
281  * @arg : data hook
282  * Description:
283  *  if there is no data transfer and if we are not in LPI state,
284  *  then MAC Transmitter can be moved to LPI state.
285  */
286 static void stmmac_eee_ctrl_timer(unsigned long arg)
287 {
288 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
289 
290 	stmmac_enable_eee_mode(priv);
291 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
292 }
293 
294 /**
295  * stmmac_eee_init: init EEE
296  * @priv: driver private structure
297  * Description:
298  *  If the EEE support has been enabled while configuring the driver,
299  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
300  *  phy can also manage EEE, so enable the LPI state and start the timer
301  *  to verify if the tx path can enter in LPI state.
302  */
303 bool stmmac_eee_init(struct stmmac_priv *priv)
304 {
305 	bool ret = false;
306 
307 	/* MAC core supports the EEE feature. */
308 	if (priv->dma_cap.eee) {
309 		/* Check if the PHY supports EEE */
310 		if (phy_init_eee(priv->phydev, 1))
311 			goto out;
312 
313 		priv->eee_active = 1;
314 		init_timer(&priv->eee_ctrl_timer);
315 		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
316 		priv->eee_ctrl_timer.data = (unsigned long)priv;
317 		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
318 		add_timer(&priv->eee_ctrl_timer);
319 
320 		priv->hw->mac->set_eee_timer(priv->ioaddr,
321 					     STMMAC_DEFAULT_LIT_LS_TIMER,
322 					     priv->tx_lpi_timer);
323 
324 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
325 
326 		ret = true;
327 	}
328 out:
329 	return ret;
330 }
331 
332 /**
333  * stmmac_eee_adjust: adjust HW EEE according to the speed
334  * @priv: driver private structure
335  * Description:
336  *	When the EEE has been already initialised we have to
337  *	modify the PLS bit in the LPI ctrl & status reg according
338  *	to the PHY link status. For this reason.
339  */
340 static void stmmac_eee_adjust(struct stmmac_priv *priv)
341 {
342 	if (priv->eee_enabled)
343 		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
344 }
345 
346 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
347  * @priv: driver private structure
348  * @entry : descriptor index to be used.
349  * @skb : the socket buffer
350  * Description :
351  * This function will read timestamp from the descriptor & pass it to stack.
352  * and also perform some sanity checks.
353  */
354 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
355 				   unsigned int entry, struct sk_buff *skb)
356 {
357 	struct skb_shared_hwtstamps shhwtstamp;
358 	u64 ns;
359 	void *desc = NULL;
360 
361 	if (!priv->hwts_tx_en)
362 		return;
363 
364 	/* exit if skb doesn't support hw tstamp */
365 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
366 		return;
367 
368 	if (priv->adv_ts)
369 		desc = (priv->dma_etx + entry);
370 	else
371 		desc = (priv->dma_tx + entry);
372 
373 	/* check tx tstamp status */
374 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
375 		return;
376 
377 	/* get the valid tstamp */
378 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
379 
380 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
381 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
382 	/* pass tstamp to stack */
383 	skb_tstamp_tx(skb, &shhwtstamp);
384 
385 	return;
386 }
387 
388 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
389  * @priv: driver private structure
390  * @entry : descriptor index to be used.
391  * @skb : the socket buffer
392  * Description :
393  * This function will read received packet's timestamp from the descriptor
394  * and pass it to stack. It also perform some sanity checks.
395  */
396 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
397 				   unsigned int entry, struct sk_buff *skb)
398 {
399 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
400 	u64 ns;
401 	void *desc = NULL;
402 
403 	if (!priv->hwts_rx_en)
404 		return;
405 
406 	if (priv->adv_ts)
407 		desc = (priv->dma_erx + entry);
408 	else
409 		desc = (priv->dma_rx + entry);
410 
411 	/* exit if rx tstamp is not valid */
412 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
413 		return;
414 
415 	/* get valid tstamp */
416 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
417 	shhwtstamp = skb_hwtstamps(skb);
418 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
419 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
420 }
421 
422 /**
423  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
424  *  @dev: device pointer.
425  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
426  *  a proprietary structure used to pass information to the driver.
427  *  Description:
428  *  This function configures the MAC to enable/disable both outgoing(TX)
429  *  and incoming(RX) packets time stamping based on user input.
430  *  Return Value:
431  *  0 on success and an appropriate -ve integer on failure.
432  */
433 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
434 {
435 	struct stmmac_priv *priv = netdev_priv(dev);
436 	struct hwtstamp_config config;
437 	struct timespec now;
438 	u64 temp = 0;
439 	u32 ptp_v2 = 0;
440 	u32 tstamp_all = 0;
441 	u32 ptp_over_ipv4_udp = 0;
442 	u32 ptp_over_ipv6_udp = 0;
443 	u32 ptp_over_ethernet = 0;
444 	u32 snap_type_sel = 0;
445 	u32 ts_master_en = 0;
446 	u32 ts_event_en = 0;
447 	u32 value = 0;
448 
449 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
450 		netdev_alert(priv->dev, "No support for HW time stamping\n");
451 		priv->hwts_tx_en = 0;
452 		priv->hwts_rx_en = 0;
453 
454 		return -EOPNOTSUPP;
455 	}
456 
457 	if (copy_from_user(&config, ifr->ifr_data,
458 			   sizeof(struct hwtstamp_config)))
459 		return -EFAULT;
460 
461 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
462 		 __func__, config.flags, config.tx_type, config.rx_filter);
463 
464 	/* reserved for future extensions */
465 	if (config.flags)
466 		return -EINVAL;
467 
468 	switch (config.tx_type) {
469 	case HWTSTAMP_TX_OFF:
470 		priv->hwts_tx_en = 0;
471 		break;
472 	case HWTSTAMP_TX_ON:
473 		priv->hwts_tx_en = 1;
474 		break;
475 	default:
476 		return -ERANGE;
477 	}
478 
479 	if (priv->adv_ts) {
480 		switch (config.rx_filter) {
481 		case HWTSTAMP_FILTER_NONE:
482 			/* time stamp no incoming packet at all */
483 			config.rx_filter = HWTSTAMP_FILTER_NONE;
484 			break;
485 
486 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
487 			/* PTP v1, UDP, any kind of event packet */
488 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
489 			/* take time stamp for all event messages */
490 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
491 
492 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
493 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
494 			break;
495 
496 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
497 			/* PTP v1, UDP, Sync packet */
498 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
499 			/* take time stamp for SYNC messages only */
500 			ts_event_en = PTP_TCR_TSEVNTENA;
501 
502 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 			break;
505 
506 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
507 			/* PTP v1, UDP, Delay_req packet */
508 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
509 			/* take time stamp for Delay_Req messages only */
510 			ts_master_en = PTP_TCR_TSMSTRENA;
511 			ts_event_en = PTP_TCR_TSEVNTENA;
512 
513 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 			break;
516 
517 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
518 			/* PTP v2, UDP, any kind of event packet */
519 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
520 			ptp_v2 = PTP_TCR_TSVER2ENA;
521 			/* take time stamp for all event messages */
522 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
523 
524 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 			break;
527 
528 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
529 			/* PTP v2, UDP, Sync packet */
530 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
531 			ptp_v2 = PTP_TCR_TSVER2ENA;
532 			/* take time stamp for SYNC messages only */
533 			ts_event_en = PTP_TCR_TSEVNTENA;
534 
535 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
536 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
537 			break;
538 
539 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
540 			/* PTP v2, UDP, Delay_req packet */
541 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
542 			ptp_v2 = PTP_TCR_TSVER2ENA;
543 			/* take time stamp for Delay_Req messages only */
544 			ts_master_en = PTP_TCR_TSMSTRENA;
545 			ts_event_en = PTP_TCR_TSEVNTENA;
546 
547 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 			break;
550 
551 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
552 			/* PTP v2/802.AS1 any layer, any kind of event packet */
553 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
554 			ptp_v2 = PTP_TCR_TSVER2ENA;
555 			/* take time stamp for all event messages */
556 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
557 
558 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
559 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
560 			ptp_over_ethernet = PTP_TCR_TSIPENA;
561 			break;
562 
563 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
564 			/* PTP v2/802.AS1, any layer, Sync packet */
565 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
566 			ptp_v2 = PTP_TCR_TSVER2ENA;
567 			/* take time stamp for SYNC messages only */
568 			ts_event_en = PTP_TCR_TSEVNTENA;
569 
570 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
571 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
572 			ptp_over_ethernet = PTP_TCR_TSIPENA;
573 			break;
574 
575 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
576 			/* PTP v2/802.AS1, any layer, Delay_req packet */
577 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
578 			ptp_v2 = PTP_TCR_TSVER2ENA;
579 			/* take time stamp for Delay_Req messages only */
580 			ts_master_en = PTP_TCR_TSMSTRENA;
581 			ts_event_en = PTP_TCR_TSEVNTENA;
582 
583 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
584 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
585 			ptp_over_ethernet = PTP_TCR_TSIPENA;
586 			break;
587 
588 		case HWTSTAMP_FILTER_ALL:
589 			/* time stamp any incoming packet */
590 			config.rx_filter = HWTSTAMP_FILTER_ALL;
591 			tstamp_all = PTP_TCR_TSENALL;
592 			break;
593 
594 		default:
595 			return -ERANGE;
596 		}
597 	} else {
598 		switch (config.rx_filter) {
599 		case HWTSTAMP_FILTER_NONE:
600 			config.rx_filter = HWTSTAMP_FILTER_NONE;
601 			break;
602 		default:
603 			/* PTP v1, UDP, any kind of event packet */
604 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
605 			break;
606 		}
607 	}
608 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
609 
610 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
611 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
612 	else {
613 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
614 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
615 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
616 			 ts_master_en | snap_type_sel);
617 
618 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
619 
620 		/* program Sub Second Increment reg */
621 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
622 
623 		/* calculate default added value:
624 		 * formula is :
625 		 * addend = (2^32)/freq_div_ratio;
626 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
627 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
628 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
629 		 *       achive 20ns accuracy.
630 		 *
631 		 * 2^x * y == (y << x), hence
632 		 * 2^32 * 50000000 ==> (50000000 << 32)
633 		 */
634 		temp = (u64) (50000000ULL << 32);
635 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
636 		priv->hw->ptp->config_addend(priv->ioaddr,
637 					     priv->default_addend);
638 
639 		/* initialize system time */
640 		getnstimeofday(&now);
641 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
642 					    now.tv_nsec);
643 	}
644 
645 	return copy_to_user(ifr->ifr_data, &config,
646 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
647 }
648 
649 /**
650  * stmmac_init_ptp: init PTP
651  * @priv: driver private structure
652  * Description: this is to verify if the HW supports the PTPv1 or v2.
653  * This is done by looking at the HW cap. register.
654  * Also it registers the ptp driver.
655  */
656 static int stmmac_init_ptp(struct stmmac_priv *priv)
657 {
658 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
659 		return -EOPNOTSUPP;
660 
661 	if (netif_msg_hw(priv)) {
662 		if (priv->dma_cap.time_stamp) {
663 			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
664 			priv->adv_ts = 0;
665 		}
666 		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
667 			pr_debug
668 			    ("IEEE 1588-2008 Advanced Time Stamp supported\n");
669 			priv->adv_ts = 1;
670 		}
671 	}
672 
673 	priv->hw->ptp = &stmmac_ptp;
674 	priv->hwts_tx_en = 0;
675 	priv->hwts_rx_en = 0;
676 
677 	return stmmac_ptp_register(priv);
678 }
679 
680 static void stmmac_release_ptp(struct stmmac_priv *priv)
681 {
682 	stmmac_ptp_unregister(priv);
683 }
684 
685 /**
686  * stmmac_adjust_link
687  * @dev: net device structure
688  * Description: it adjusts the link parameters.
689  */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692 	struct stmmac_priv *priv = netdev_priv(dev);
693 	struct phy_device *phydev = priv->phydev;
694 	unsigned long flags;
695 	int new_state = 0;
696 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697 
698 	if (phydev == NULL)
699 		return;
700 
701 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
702 	    phydev->addr, phydev->link);
703 
704 	spin_lock_irqsave(&priv->lock, flags);
705 
706 	if (phydev->link) {
707 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
708 
709 		/* Now we make sure that we can be in full duplex mode.
710 		 * If not, we operate in half-duplex mode. */
711 		if (phydev->duplex != priv->oldduplex) {
712 			new_state = 1;
713 			if (!(phydev->duplex))
714 				ctrl &= ~priv->hw->link.duplex;
715 			else
716 				ctrl |= priv->hw->link.duplex;
717 			priv->oldduplex = phydev->duplex;
718 		}
719 		/* Flow Control operation */
720 		if (phydev->pause)
721 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
722 						 fc, pause_time);
723 
724 		if (phydev->speed != priv->speed) {
725 			new_state = 1;
726 			switch (phydev->speed) {
727 			case 1000:
728 				if (likely(priv->plat->has_gmac))
729 					ctrl &= ~priv->hw->link.port;
730 				stmmac_hw_fix_mac_speed(priv);
731 				break;
732 			case 100:
733 			case 10:
734 				if (priv->plat->has_gmac) {
735 					ctrl |= priv->hw->link.port;
736 					if (phydev->speed == SPEED_100) {
737 						ctrl |= priv->hw->link.speed;
738 					} else {
739 						ctrl &= ~(priv->hw->link.speed);
740 					}
741 				} else {
742 					ctrl &= ~priv->hw->link.port;
743 				}
744 				stmmac_hw_fix_mac_speed(priv);
745 				break;
746 			default:
747 				if (netif_msg_link(priv))
748 					pr_warn("%s: Speed (%d) not 10/100\n",
749 						dev->name, phydev->speed);
750 				break;
751 			}
752 
753 			priv->speed = phydev->speed;
754 		}
755 
756 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
757 
758 		if (!priv->oldlink) {
759 			new_state = 1;
760 			priv->oldlink = 1;
761 		}
762 	} else if (priv->oldlink) {
763 		new_state = 1;
764 		priv->oldlink = 0;
765 		priv->speed = 0;
766 		priv->oldduplex = -1;
767 	}
768 
769 	if (new_state && netif_msg_link(priv))
770 		phy_print_status(phydev);
771 
772 	stmmac_eee_adjust(priv);
773 
774 	spin_unlock_irqrestore(&priv->lock, flags);
775 
776 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
777 }
778 
779 /**
780  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
781  * @priv: driver private structure
782  * Description: this is to verify if the HW supports the PCS.
783  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
784  * configured for the TBI, RTBI, or SGMII PHY interface.
785  */
786 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
787 {
788 	int interface = priv->plat->interface;
789 
790 	if (priv->dma_cap.pcs) {
791 		if ((interface & PHY_INTERFACE_MODE_RGMII) ||
792 		    (interface & PHY_INTERFACE_MODE_RGMII_ID) ||
793 		    (interface & PHY_INTERFACE_MODE_RGMII_RXID) ||
794 		    (interface & PHY_INTERFACE_MODE_RGMII_TXID)) {
795 			pr_debug("STMMAC: PCS RGMII support enable\n");
796 			priv->pcs = STMMAC_PCS_RGMII;
797 		} else if (interface & PHY_INTERFACE_MODE_SGMII) {
798 			pr_debug("STMMAC: PCS SGMII support enable\n");
799 			priv->pcs = STMMAC_PCS_SGMII;
800 		}
801 	}
802 }
803 
804 /**
805  * stmmac_init_phy - PHY initialization
806  * @dev: net device structure
807  * Description: it initializes the driver's PHY state, and attaches the PHY
808  * to the mac driver.
809  *  Return value:
810  *  0 on success
811  */
812 static int stmmac_init_phy(struct net_device *dev)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct phy_device *phydev;
816 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
817 	char bus_id[MII_BUS_ID_SIZE];
818 	int interface = priv->plat->interface;
819 	priv->oldlink = 0;
820 	priv->speed = 0;
821 	priv->oldduplex = -1;
822 
823 	if (priv->plat->phy_bus_name)
824 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
825 			 priv->plat->phy_bus_name, priv->plat->bus_id);
826 	else
827 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
828 			 priv->plat->bus_id);
829 
830 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
831 		 priv->plat->phy_addr);
832 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
833 
834 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
835 
836 	if (IS_ERR(phydev)) {
837 		pr_err("%s: Could not attach to PHY\n", dev->name);
838 		return PTR_ERR(phydev);
839 	}
840 
841 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
842 	if ((interface == PHY_INTERFACE_MODE_MII) ||
843 	    (interface == PHY_INTERFACE_MODE_RMII))
844 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
845 					 SUPPORTED_1000baseT_Full);
846 
847 	/*
848 	 * Broken HW is sometimes missing the pull-up resistor on the
849 	 * MDIO line, which results in reads to non-existent devices returning
850 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
851 	 * device as well.
852 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
853 	 */
854 	if (phydev->phy_id == 0) {
855 		phy_disconnect(phydev);
856 		return -ENODEV;
857 	}
858 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
859 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
860 
861 	priv->phydev = phydev;
862 
863 	return 0;
864 }
865 
866 /**
867  * stmmac_display_ring: display ring
868  * @head: pointer to the head of the ring passed.
869  * @size: size of the ring.
870  * @extend_desc: to verify if extended descriptors are used.
871  * Description: display the control/status and buffer descriptors.
872  */
873 static void stmmac_display_ring(void *head, int size, int extend_desc)
874 {
875 	int i;
876 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
877 	struct dma_desc *p = (struct dma_desc *)head;
878 
879 	for (i = 0; i < size; i++) {
880 		u64 x;
881 		if (extend_desc) {
882 			x = *(u64 *) ep;
883 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
884 				i, (unsigned int)virt_to_phys(ep),
885 				(unsigned int)x, (unsigned int)(x >> 32),
886 				ep->basic.des2, ep->basic.des3);
887 			ep++;
888 		} else {
889 			x = *(u64 *) p;
890 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
891 				i, (unsigned int)virt_to_phys(p),
892 				(unsigned int)x, (unsigned int)(x >> 32),
893 				p->des2, p->des3);
894 			p++;
895 		}
896 		pr_info("\n");
897 	}
898 }
899 
900 static void stmmac_display_rings(struct stmmac_priv *priv)
901 {
902 	unsigned int txsize = priv->dma_tx_size;
903 	unsigned int rxsize = priv->dma_rx_size;
904 
905 	if (priv->extend_desc) {
906 		pr_info("Extended RX descriptor ring:\n");
907 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
908 		pr_info("Extended TX descriptor ring:\n");
909 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
910 	} else {
911 		pr_info("RX descriptor ring:\n");
912 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
913 		pr_info("TX descriptor ring:\n");
914 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
915 	}
916 }
917 
918 static int stmmac_set_bfsize(int mtu, int bufsize)
919 {
920 	int ret = bufsize;
921 
922 	if (mtu >= BUF_SIZE_4KiB)
923 		ret = BUF_SIZE_8KiB;
924 	else if (mtu >= BUF_SIZE_2KiB)
925 		ret = BUF_SIZE_4KiB;
926 	else if (mtu >= DMA_BUFFER_SIZE)
927 		ret = BUF_SIZE_2KiB;
928 	else
929 		ret = DMA_BUFFER_SIZE;
930 
931 	return ret;
932 }
933 
934 /**
935  * stmmac_clear_descriptors: clear descriptors
936  * @priv: driver private structure
937  * Description: this function is called to clear the tx and rx descriptors
938  * in case of both basic and extended descriptors are used.
939  */
940 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
941 {
942 	int i;
943 	unsigned int txsize = priv->dma_tx_size;
944 	unsigned int rxsize = priv->dma_rx_size;
945 
946 	/* Clear the Rx/Tx descriptors */
947 	for (i = 0; i < rxsize; i++)
948 		if (priv->extend_desc)
949 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
950 						     priv->use_riwt, priv->mode,
951 						     (i == rxsize - 1));
952 		else
953 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
954 						     priv->use_riwt, priv->mode,
955 						     (i == rxsize - 1));
956 	for (i = 0; i < txsize; i++)
957 		if (priv->extend_desc)
958 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
959 						     priv->mode,
960 						     (i == txsize - 1));
961 		else
962 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
963 						     priv->mode,
964 						     (i == txsize - 1));
965 }
966 
967 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
968 				  int i)
969 {
970 	struct sk_buff *skb;
971 
972 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
973 				 GFP_KERNEL);
974 	if (unlikely(skb == NULL)) {
975 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
976 		return 1;
977 	}
978 	skb_reserve(skb, NET_IP_ALIGN);
979 	priv->rx_skbuff[i] = skb;
980 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
981 						priv->dma_buf_sz,
982 						DMA_FROM_DEVICE);
983 
984 	p->des2 = priv->rx_skbuff_dma[i];
985 
986 	if ((priv->mode == STMMAC_RING_MODE) &&
987 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
988 		priv->hw->ring->init_desc3(p);
989 
990 	return 0;
991 }
992 
993 /**
994  * init_dma_desc_rings - init the RX/TX descriptor rings
995  * @dev: net device structure
996  * Description:  this function initializes the DMA RX/TX descriptors
997  * and allocates the socket buffers. It suppors the chained and ring
998  * modes.
999  */
1000 static void init_dma_desc_rings(struct net_device *dev)
1001 {
1002 	int i;
1003 	struct stmmac_priv *priv = netdev_priv(dev);
1004 	unsigned int txsize = priv->dma_tx_size;
1005 	unsigned int rxsize = priv->dma_rx_size;
1006 	unsigned int bfsize = 0;
1007 
1008 	/* Set the max buffer size according to the DESC mode
1009 	 * and the MTU. Note that RING mode allows 16KiB bsize.
1010 	 */
1011 	if (priv->mode == STMMAC_RING_MODE)
1012 		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
1013 
1014 	if (bfsize < BUF_SIZE_16KiB)
1015 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1016 
1017 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
1018 	    txsize, rxsize, bfsize);
1019 
1020 	if (priv->extend_desc) {
1021 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1022 						   sizeof(struct
1023 							  dma_extended_desc),
1024 						   &priv->dma_rx_phy,
1025 						   GFP_KERNEL);
1026 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1027 						   sizeof(struct
1028 							  dma_extended_desc),
1029 						   &priv->dma_tx_phy,
1030 						   GFP_KERNEL);
1031 		if ((!priv->dma_erx) || (!priv->dma_etx))
1032 			return;
1033 	} else {
1034 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1035 						  sizeof(struct dma_desc),
1036 						  &priv->dma_rx_phy,
1037 						  GFP_KERNEL);
1038 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1039 						  sizeof(struct dma_desc),
1040 						  &priv->dma_tx_phy,
1041 						  GFP_KERNEL);
1042 		if ((!priv->dma_rx) || (!priv->dma_tx))
1043 			return;
1044 	}
1045 
1046 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1047 					    GFP_KERNEL);
1048 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1049 					GFP_KERNEL);
1050 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1051 					    GFP_KERNEL);
1052 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1053 					GFP_KERNEL);
1054 	if (netif_msg_drv(priv))
1055 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1056 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1057 
1058 	/* RX INITIALIZATION */
1059 	DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
1060 	for (i = 0; i < rxsize; i++) {
1061 		struct dma_desc *p;
1062 		if (priv->extend_desc)
1063 			p = &((priv->dma_erx + i)->basic);
1064 		else
1065 			p = priv->dma_rx + i;
1066 
1067 		if (stmmac_init_rx_buffers(priv, p, i))
1068 			break;
1069 
1070 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1071 		    priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
1072 	}
1073 	priv->cur_rx = 0;
1074 	priv->dirty_rx = (unsigned int)(i - rxsize);
1075 	priv->dma_buf_sz = bfsize;
1076 	buf_sz = bfsize;
1077 
1078 	/* Setup the chained descriptor addresses */
1079 	if (priv->mode == STMMAC_CHAIN_MODE) {
1080 		if (priv->extend_desc) {
1081 			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1082 					      rxsize, 1);
1083 			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1084 					      txsize, 1);
1085 		} else {
1086 			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1087 					      rxsize, 0);
1088 			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1089 					      txsize, 0);
1090 		}
1091 	}
1092 
1093 	/* TX INITIALIZATION */
1094 	for (i = 0; i < txsize; i++) {
1095 		struct dma_desc *p;
1096 		if (priv->extend_desc)
1097 			p = &((priv->dma_etx + i)->basic);
1098 		else
1099 			p = priv->dma_tx + i;
1100 		p->des2 = 0;
1101 		priv->tx_skbuff_dma[i] = 0;
1102 		priv->tx_skbuff[i] = NULL;
1103 	}
1104 
1105 	priv->dirty_tx = 0;
1106 	priv->cur_tx = 0;
1107 
1108 	stmmac_clear_descriptors(priv);
1109 
1110 	if (netif_msg_hw(priv))
1111 		stmmac_display_rings(priv);
1112 }
1113 
1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1115 {
1116 	int i;
1117 
1118 	for (i = 0; i < priv->dma_rx_size; i++) {
1119 		if (priv->rx_skbuff[i]) {
1120 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1121 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1122 			dev_kfree_skb_any(priv->rx_skbuff[i]);
1123 		}
1124 		priv->rx_skbuff[i] = NULL;
1125 	}
1126 }
1127 
1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; i < priv->dma_tx_size; i++) {
1133 		if (priv->tx_skbuff[i] != NULL) {
1134 			struct dma_desc *p;
1135 			if (priv->extend_desc)
1136 				p = &((priv->dma_etx + i)->basic);
1137 			else
1138 				p = priv->dma_tx + i;
1139 
1140 			if (priv->tx_skbuff_dma[i])
1141 				dma_unmap_single(priv->device,
1142 						 priv->tx_skbuff_dma[i],
1143 						 priv->hw->desc->get_tx_len(p),
1144 						 DMA_TO_DEVICE);
1145 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1146 			priv->tx_skbuff[i] = NULL;
1147 			priv->tx_skbuff_dma[i] = 0;
1148 		}
1149 	}
1150 }
1151 
1152 static void free_dma_desc_resources(struct stmmac_priv *priv)
1153 {
1154 	/* Release the DMA TX/RX socket buffers */
1155 	dma_free_rx_skbufs(priv);
1156 	dma_free_tx_skbufs(priv);
1157 
1158 	/* Free DMA regions of consistent memory previously allocated */
1159 	if (!priv->extend_desc) {
1160 		dma_free_coherent(priv->device,
1161 				  priv->dma_tx_size * sizeof(struct dma_desc),
1162 				  priv->dma_tx, priv->dma_tx_phy);
1163 		dma_free_coherent(priv->device,
1164 				  priv->dma_rx_size * sizeof(struct dma_desc),
1165 				  priv->dma_rx, priv->dma_rx_phy);
1166 	} else {
1167 		dma_free_coherent(priv->device, priv->dma_tx_size *
1168 				  sizeof(struct dma_extended_desc),
1169 				  priv->dma_etx, priv->dma_tx_phy);
1170 		dma_free_coherent(priv->device, priv->dma_rx_size *
1171 				  sizeof(struct dma_extended_desc),
1172 				  priv->dma_erx, priv->dma_rx_phy);
1173 	}
1174 	kfree(priv->rx_skbuff_dma);
1175 	kfree(priv->rx_skbuff);
1176 	kfree(priv->tx_skbuff_dma);
1177 	kfree(priv->tx_skbuff);
1178 }
1179 
1180 /**
1181  *  stmmac_dma_operation_mode - HW DMA operation mode
1182  *  @priv: driver private structure
1183  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1184  *  or Store-And-Forward capability.
1185  */
1186 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1187 {
1188 	if (likely(priv->plat->force_sf_dma_mode ||
1189 		   ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1190 		/*
1191 		 * In case of GMAC, SF mode can be enabled
1192 		 * to perform the TX COE in HW. This depends on:
1193 		 * 1) TX COE if actually supported
1194 		 * 2) There is no bugged Jumbo frame support
1195 		 *    that needs to not insert csum in the TDES.
1196 		 */
1197 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1198 		tc = SF_DMA_MODE;
1199 	} else
1200 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1201 }
1202 
1203 /**
1204  * stmmac_tx_clean:
1205  * @priv: driver private structure
1206  * Description: it reclaims resources after transmission completes.
1207  */
1208 static void stmmac_tx_clean(struct stmmac_priv *priv)
1209 {
1210 	unsigned int txsize = priv->dma_tx_size;
1211 
1212 	spin_lock(&priv->tx_lock);
1213 
1214 	priv->xstats.tx_clean++;
1215 
1216 	while (priv->dirty_tx != priv->cur_tx) {
1217 		int last;
1218 		unsigned int entry = priv->dirty_tx % txsize;
1219 		struct sk_buff *skb = priv->tx_skbuff[entry];
1220 		struct dma_desc *p;
1221 
1222 		if (priv->extend_desc)
1223 			p = (struct dma_desc *)(priv->dma_etx + entry);
1224 		else
1225 			p = priv->dma_tx + entry;
1226 
1227 		/* Check if the descriptor is owned by the DMA. */
1228 		if (priv->hw->desc->get_tx_owner(p))
1229 			break;
1230 
1231 		/* Verify tx error by looking at the last segment. */
1232 		last = priv->hw->desc->get_tx_ls(p);
1233 		if (likely(last)) {
1234 			int tx_error =
1235 			    priv->hw->desc->tx_status(&priv->dev->stats,
1236 						      &priv->xstats, p,
1237 						      priv->ioaddr);
1238 			if (likely(tx_error == 0)) {
1239 				priv->dev->stats.tx_packets++;
1240 				priv->xstats.tx_pkt_n++;
1241 			} else
1242 				priv->dev->stats.tx_errors++;
1243 
1244 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1245 		}
1246 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
1247 		       priv->cur_tx, priv->dirty_tx);
1248 
1249 		if (likely(priv->tx_skbuff_dma[entry])) {
1250 			dma_unmap_single(priv->device,
1251 					 priv->tx_skbuff_dma[entry],
1252 					 priv->hw->desc->get_tx_len(p),
1253 					 DMA_TO_DEVICE);
1254 			priv->tx_skbuff_dma[entry] = 0;
1255 		}
1256 		priv->hw->ring->clean_desc3(priv, p);
1257 
1258 		if (likely(skb != NULL)) {
1259 			dev_kfree_skb(skb);
1260 			priv->tx_skbuff[entry] = NULL;
1261 		}
1262 
1263 		priv->hw->desc->release_tx_desc(p, priv->mode);
1264 
1265 		priv->dirty_tx++;
1266 	}
1267 	if (unlikely(netif_queue_stopped(priv->dev) &&
1268 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1269 		netif_tx_lock(priv->dev);
1270 		if (netif_queue_stopped(priv->dev) &&
1271 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1272 			TX_DBG("%s: restart transmit\n", __func__);
1273 			netif_wake_queue(priv->dev);
1274 		}
1275 		netif_tx_unlock(priv->dev);
1276 	}
1277 
1278 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1279 		stmmac_enable_eee_mode(priv);
1280 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
1281 	}
1282 	spin_unlock(&priv->tx_lock);
1283 }
1284 
1285 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1286 {
1287 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1288 }
1289 
1290 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1291 {
1292 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1293 }
1294 
1295 /**
1296  * stmmac_tx_err: irq tx error mng function
1297  * @priv: driver private structure
1298  * Description: it cleans the descriptors and restarts the transmission
1299  * in case of errors.
1300  */
1301 static void stmmac_tx_err(struct stmmac_priv *priv)
1302 {
1303 	int i;
1304 	int txsize = priv->dma_tx_size;
1305 	netif_stop_queue(priv->dev);
1306 
1307 	priv->hw->dma->stop_tx(priv->ioaddr);
1308 	dma_free_tx_skbufs(priv);
1309 	for (i = 0; i < txsize; i++)
1310 		if (priv->extend_desc)
1311 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1312 						     priv->mode,
1313 						     (i == txsize - 1));
1314 		else
1315 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1316 						     priv->mode,
1317 						     (i == txsize - 1));
1318 	priv->dirty_tx = 0;
1319 	priv->cur_tx = 0;
1320 	priv->hw->dma->start_tx(priv->ioaddr);
1321 
1322 	priv->dev->stats.tx_errors++;
1323 	netif_wake_queue(priv->dev);
1324 }
1325 
1326 /**
1327  * stmmac_dma_interrupt: DMA ISR
1328  * @priv: driver private structure
1329  * Description: this is the DMA ISR. It is called by the main ISR.
1330  * It calls the dwmac dma routine to understand which type of interrupt
1331  * happened. In case of there is a Normal interrupt and either TX or RX
1332  * interrupt happened so the NAPI is scheduled.
1333  */
1334 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1335 {
1336 	int status;
1337 
1338 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1339 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1340 		if (likely(napi_schedule_prep(&priv->napi))) {
1341 			stmmac_disable_dma_irq(priv);
1342 			__napi_schedule(&priv->napi);
1343 		}
1344 	}
1345 	if (unlikely(status & tx_hard_error_bump_tc)) {
1346 		/* Try to bump up the dma threshold on this failure */
1347 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1348 			tc += 64;
1349 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1350 			priv->xstats.threshold = tc;
1351 		}
1352 	} else if (unlikely(status == tx_hard_error))
1353 		stmmac_tx_err(priv);
1354 }
1355 
1356 /**
1357  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1358  * @priv: driver private structure
1359  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1360  */
1361 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1362 {
1363 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1364 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1365 
1366 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1367 
1368 	if (priv->dma_cap.rmon) {
1369 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1370 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1371 	} else
1372 		pr_info(" No MAC Management Counters available\n");
1373 }
1374 
1375 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1376 {
1377 	u32 hwid = priv->hw->synopsys_uid;
1378 
1379 	/* Check Synopsys Id (not available on old chips) */
1380 	if (likely(hwid)) {
1381 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1382 		u32 synid = (hwid & 0x000000ff);
1383 
1384 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1385 			uid, synid);
1386 
1387 		return synid;
1388 	}
1389 	return 0;
1390 }
1391 
1392 /**
1393  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1394  * @priv: driver private structure
1395  * Description: select the Enhanced/Alternate or Normal descriptors.
1396  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1397  * supported by the HW cap. register.
1398  */
1399 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1400 {
1401 	if (priv->plat->enh_desc) {
1402 		pr_info(" Enhanced/Alternate descriptors\n");
1403 
1404 		/* GMAC older than 3.50 has no extended descriptors */
1405 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1406 			pr_info("\tEnabled extended descriptors\n");
1407 			priv->extend_desc = 1;
1408 		} else
1409 			pr_warn("Extended descriptors not supported\n");
1410 
1411 		priv->hw->desc = &enh_desc_ops;
1412 	} else {
1413 		pr_info(" Normal descriptors\n");
1414 		priv->hw->desc = &ndesc_ops;
1415 	}
1416 }
1417 
1418 /**
1419  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1420  * @priv: driver private structure
1421  * Description:
1422  *  new GMAC chip generations have a new register to indicate the
1423  *  presence of the optional feature/functions.
1424  *  This can be also used to override the value passed through the
1425  *  platform and necessary for old MAC10/100 and GMAC chips.
1426  */
1427 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1428 {
1429 	u32 hw_cap = 0;
1430 
1431 	if (priv->hw->dma->get_hw_feature) {
1432 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1433 
1434 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1435 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1436 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1437 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1438 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1439 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1440 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1441 		priv->dma_cap.pmt_remote_wake_up =
1442 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1443 		priv->dma_cap.pmt_magic_frame =
1444 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1445 		/* MMC */
1446 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1447 		/* IEEE 1588-2002 */
1448 		priv->dma_cap.time_stamp =
1449 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1450 		/* IEEE 1588-2008 */
1451 		priv->dma_cap.atime_stamp =
1452 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1453 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1454 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1455 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1456 		/* TX and RX csum */
1457 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1458 		priv->dma_cap.rx_coe_type1 =
1459 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1460 		priv->dma_cap.rx_coe_type2 =
1461 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1462 		priv->dma_cap.rxfifo_over_2048 =
1463 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1464 		/* TX and RX number of channels */
1465 		priv->dma_cap.number_rx_channel =
1466 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1467 		priv->dma_cap.number_tx_channel =
1468 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1469 		/* Alternate (enhanced) DESC mode */
1470 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1471 	}
1472 
1473 	return hw_cap;
1474 }
1475 
1476 /**
1477  * stmmac_check_ether_addr: check if the MAC addr is valid
1478  * @priv: driver private structure
1479  * Description:
1480  * it is to verify if the MAC address is valid, in case of failures it
1481  * generates a random MAC address
1482  */
1483 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1484 {
1485 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1486 		priv->hw->mac->get_umac_addr((void __iomem *)
1487 					     priv->dev->base_addr,
1488 					     priv->dev->dev_addr, 0);
1489 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1490 			eth_hw_addr_random(priv->dev);
1491 	}
1492 	pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1493 		priv->dev->dev_addr);
1494 }
1495 
1496 /**
1497  * stmmac_init_dma_engine: DMA init.
1498  * @priv: driver private structure
1499  * Description:
1500  * It inits the DMA invoking the specific MAC/GMAC callback.
1501  * Some DMA parameters can be passed from the platform;
1502  * in case of these are not passed a default is kept for the MAC or GMAC.
1503  */
1504 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1505 {
1506 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1507 	int mixed_burst = 0;
1508 	int atds = 0;
1509 
1510 	if (priv->plat->dma_cfg) {
1511 		pbl = priv->plat->dma_cfg->pbl;
1512 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1513 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1514 		burst_len = priv->plat->dma_cfg->burst_len;
1515 	}
1516 
1517 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1518 		atds = 1;
1519 
1520 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1521 				   burst_len, priv->dma_tx_phy,
1522 				   priv->dma_rx_phy, atds);
1523 }
1524 
1525 /**
1526  * stmmac_tx_timer: mitigation sw timer for tx.
1527  * @data: data pointer
1528  * Description:
1529  * This is the timer handler to directly invoke the stmmac_tx_clean.
1530  */
1531 static void stmmac_tx_timer(unsigned long data)
1532 {
1533 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1534 
1535 	stmmac_tx_clean(priv);
1536 }
1537 
1538 /**
1539  * stmmac_init_tx_coalesce: init tx mitigation options.
1540  * @priv: driver private structure
1541  * Description:
1542  * This inits the transmit coalesce parameters: i.e. timer rate,
1543  * timer handler and default threshold used for enabling the
1544  * interrupt on completion bit.
1545  */
1546 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1547 {
1548 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1549 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1550 	init_timer(&priv->txtimer);
1551 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1552 	priv->txtimer.data = (unsigned long)priv;
1553 	priv->txtimer.function = stmmac_tx_timer;
1554 	add_timer(&priv->txtimer);
1555 }
1556 
1557 /**
1558  *  stmmac_open - open entry point of the driver
1559  *  @dev : pointer to the device structure.
1560  *  Description:
1561  *  This function is the open entry point of the driver.
1562  *  Return value:
1563  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1564  *  file on failure.
1565  */
1566 static int stmmac_open(struct net_device *dev)
1567 {
1568 	struct stmmac_priv *priv = netdev_priv(dev);
1569 	int ret;
1570 
1571 	clk_prepare_enable(priv->stmmac_clk);
1572 
1573 	stmmac_check_ether_addr(priv);
1574 
1575 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1576 	    priv->pcs != STMMAC_PCS_RTBI) {
1577 		ret = stmmac_init_phy(dev);
1578 		if (ret) {
1579 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1580 			       __func__, ret);
1581 			goto open_error;
1582 		}
1583 	}
1584 
1585 	/* Create and initialize the TX/RX descriptors chains. */
1586 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1587 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1588 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1589 	init_dma_desc_rings(dev);
1590 
1591 	/* DMA initialization and SW reset */
1592 	ret = stmmac_init_dma_engine(priv);
1593 	if (ret < 0) {
1594 		pr_err("%s: DMA initialization failed\n", __func__);
1595 		goto open_error;
1596 	}
1597 
1598 	/* Copy the MAC addr into the HW  */
1599 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1600 
1601 	/* If required, perform hw setup of the bus. */
1602 	if (priv->plat->bus_setup)
1603 		priv->plat->bus_setup(priv->ioaddr);
1604 
1605 	/* Initialize the MAC Core */
1606 	priv->hw->mac->core_init(priv->ioaddr);
1607 
1608 	/* Request the IRQ lines */
1609 	ret = request_irq(dev->irq, stmmac_interrupt,
1610 			  IRQF_SHARED, dev->name, dev);
1611 	if (unlikely(ret < 0)) {
1612 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1613 		       __func__, dev->irq, ret);
1614 		goto open_error;
1615 	}
1616 
1617 	/* Request the Wake IRQ in case of another line is used for WoL */
1618 	if (priv->wol_irq != dev->irq) {
1619 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1620 				  IRQF_SHARED, dev->name, dev);
1621 		if (unlikely(ret < 0)) {
1622 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1623 			       __func__, priv->wol_irq, ret);
1624 			goto open_error_wolirq;
1625 		}
1626 	}
1627 
1628 	/* Request the IRQ lines */
1629 	if (priv->lpi_irq != -ENXIO) {
1630 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1631 				  dev->name, dev);
1632 		if (unlikely(ret < 0)) {
1633 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1634 			       __func__, priv->lpi_irq, ret);
1635 			goto open_error_lpiirq;
1636 		}
1637 	}
1638 
1639 	/* Enable the MAC Rx/Tx */
1640 	stmmac_set_mac(priv->ioaddr, true);
1641 
1642 	/* Set the HW DMA mode and the COE */
1643 	stmmac_dma_operation_mode(priv);
1644 
1645 	/* Extra statistics */
1646 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1647 	priv->xstats.threshold = tc;
1648 
1649 	stmmac_mmc_setup(priv);
1650 
1651 	ret = stmmac_init_ptp(priv);
1652 	if (ret)
1653 		pr_warn("%s: failed PTP initialisation\n", __func__);
1654 
1655 #ifdef CONFIG_STMMAC_DEBUG_FS
1656 	ret = stmmac_init_fs(dev);
1657 	if (ret < 0)
1658 		pr_warn("%s: failed debugFS registration\n", __func__);
1659 #endif
1660 	/* Start the ball rolling... */
1661 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1662 	priv->hw->dma->start_tx(priv->ioaddr);
1663 	priv->hw->dma->start_rx(priv->ioaddr);
1664 
1665 	/* Dump DMA/MAC registers */
1666 	if (netif_msg_hw(priv)) {
1667 		priv->hw->mac->dump_regs(priv->ioaddr);
1668 		priv->hw->dma->dump_regs(priv->ioaddr);
1669 	}
1670 
1671 	if (priv->phydev)
1672 		phy_start(priv->phydev);
1673 
1674 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1675 
1676 	/* Using PCS we cannot dial with the phy registers at this stage
1677 	 * so we do not support extra feature like EEE.
1678 	 */
1679 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1680 	    priv->pcs != STMMAC_PCS_RTBI)
1681 		priv->eee_enabled = stmmac_eee_init(priv);
1682 
1683 	stmmac_init_tx_coalesce(priv);
1684 
1685 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1686 		priv->rx_riwt = MAX_DMA_RIWT;
1687 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1688 	}
1689 
1690 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1691 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1692 
1693 	napi_enable(&priv->napi);
1694 	netif_start_queue(dev);
1695 
1696 	return 0;
1697 
1698 open_error_lpiirq:
1699 	if (priv->wol_irq != dev->irq)
1700 		free_irq(priv->wol_irq, dev);
1701 
1702 open_error_wolirq:
1703 	free_irq(dev->irq, dev);
1704 
1705 open_error:
1706 	if (priv->phydev)
1707 		phy_disconnect(priv->phydev);
1708 
1709 	clk_disable_unprepare(priv->stmmac_clk);
1710 
1711 	return ret;
1712 }
1713 
1714 /**
1715  *  stmmac_release - close entry point of the driver
1716  *  @dev : device pointer.
1717  *  Description:
1718  *  This is the stop entry point of the driver.
1719  */
1720 static int stmmac_release(struct net_device *dev)
1721 {
1722 	struct stmmac_priv *priv = netdev_priv(dev);
1723 
1724 	if (priv->eee_enabled)
1725 		del_timer_sync(&priv->eee_ctrl_timer);
1726 
1727 	/* Stop and disconnect the PHY */
1728 	if (priv->phydev) {
1729 		phy_stop(priv->phydev);
1730 		phy_disconnect(priv->phydev);
1731 		priv->phydev = NULL;
1732 	}
1733 
1734 	netif_stop_queue(dev);
1735 
1736 	napi_disable(&priv->napi);
1737 
1738 	del_timer_sync(&priv->txtimer);
1739 
1740 	/* Free the IRQ lines */
1741 	free_irq(dev->irq, dev);
1742 	if (priv->wol_irq != dev->irq)
1743 		free_irq(priv->wol_irq, dev);
1744 	if (priv->lpi_irq != -ENXIO)
1745 		free_irq(priv->lpi_irq, dev);
1746 
1747 	/* Stop TX/RX DMA and clear the descriptors */
1748 	priv->hw->dma->stop_tx(priv->ioaddr);
1749 	priv->hw->dma->stop_rx(priv->ioaddr);
1750 
1751 	/* Release and free the Rx/Tx resources */
1752 	free_dma_desc_resources(priv);
1753 
1754 	/* Disable the MAC Rx/Tx */
1755 	stmmac_set_mac(priv->ioaddr, false);
1756 
1757 	netif_carrier_off(dev);
1758 
1759 #ifdef CONFIG_STMMAC_DEBUG_FS
1760 	stmmac_exit_fs();
1761 #endif
1762 	clk_disable_unprepare(priv->stmmac_clk);
1763 
1764 	stmmac_release_ptp(priv);
1765 
1766 	return 0;
1767 }
1768 
1769 /**
1770  *  stmmac_xmit: Tx entry point of the driver
1771  *  @skb : the socket buffer
1772  *  @dev : device pointer
1773  *  Description : this is the tx entry point of the driver.
1774  *  It programs the chain or the ring and supports oversized frames
1775  *  and SG feature.
1776  */
1777 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1778 {
1779 	struct stmmac_priv *priv = netdev_priv(dev);
1780 	unsigned int txsize = priv->dma_tx_size;
1781 	unsigned int entry;
1782 	int i, csum_insertion = 0, is_jumbo = 0;
1783 	int nfrags = skb_shinfo(skb)->nr_frags;
1784 	struct dma_desc *desc, *first;
1785 	unsigned int nopaged_len = skb_headlen(skb);
1786 
1787 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1788 		if (!netif_queue_stopped(dev)) {
1789 			netif_stop_queue(dev);
1790 			/* This is a hard error, log it. */
1791 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1792 		}
1793 		return NETDEV_TX_BUSY;
1794 	}
1795 
1796 	spin_lock(&priv->tx_lock);
1797 
1798 	if (priv->tx_path_in_lpi_mode)
1799 		stmmac_disable_eee_mode(priv);
1800 
1801 	entry = priv->cur_tx % txsize;
1802 
1803 #ifdef STMMAC_XMIT_DEBUG
1804 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1805 		pr_debug("%s: [entry %d]: skb addr %p len: %d nopagedlen: %d\n"
1806 			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
1807 			 "\ttx_count_frames %d\n", __func__, entry,
1808 			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1809 			 !skb_is_gso(skb) ? "isn't" : "is",
1810 			 priv->tx_count_frames);
1811 #endif
1812 
1813 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1814 
1815 	if (priv->extend_desc)
1816 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1817 	else
1818 		desc = priv->dma_tx + entry;
1819 
1820 	first = desc;
1821 
1822 #ifdef STMMAC_XMIT_DEBUG
1823 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1824 		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1825 			 "\t\tn_frags: %d, ip_summed: %d\n",
1826 			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1827 #endif
1828 	priv->tx_skbuff[entry] = skb;
1829 
1830 	/* To program the descriptors according to the size of the frame */
1831 	if (priv->mode == STMMAC_RING_MODE) {
1832 		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1833 							priv->plat->enh_desc);
1834 		if (unlikely(is_jumbo))
1835 			entry = priv->hw->ring->jumbo_frm(priv, skb,
1836 							  csum_insertion);
1837 	} else {
1838 		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1839 							 priv->plat->enh_desc);
1840 		if (unlikely(is_jumbo))
1841 			entry = priv->hw->chain->jumbo_frm(priv, skb,
1842 							   csum_insertion);
1843 	}
1844 	if (likely(!is_jumbo)) {
1845 		desc->des2 = dma_map_single(priv->device, skb->data,
1846 					    nopaged_len, DMA_TO_DEVICE);
1847 		priv->tx_skbuff_dma[entry] = desc->des2;
1848 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1849 						csum_insertion, priv->mode);
1850 	} else
1851 		desc = first;
1852 
1853 	for (i = 0; i < nfrags; i++) {
1854 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1855 		int len = skb_frag_size(frag);
1856 
1857 		entry = (++priv->cur_tx) % txsize;
1858 		if (priv->extend_desc)
1859 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1860 		else
1861 			desc = priv->dma_tx + entry;
1862 
1863 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1864 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1865 					      DMA_TO_DEVICE);
1866 		priv->tx_skbuff_dma[entry] = desc->des2;
1867 		priv->tx_skbuff[entry] = NULL;
1868 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1869 						priv->mode);
1870 		wmb();
1871 		priv->hw->desc->set_tx_owner(desc);
1872 		wmb();
1873 	}
1874 
1875 	/* Finalize the latest segment. */
1876 	priv->hw->desc->close_tx_desc(desc);
1877 
1878 	wmb();
1879 	/* According to the coalesce parameter the IC bit for the latest
1880 	 * segment could be reset and the timer re-started to invoke the
1881 	 * stmmac_tx function. This approach takes care about the fragments.
1882 	 */
1883 	priv->tx_count_frames += nfrags + 1;
1884 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1885 		priv->hw->desc->clear_tx_ic(desc);
1886 		priv->xstats.tx_reset_ic_bit++;
1887 		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1888 		       priv->tx_count_frames);
1889 		mod_timer(&priv->txtimer,
1890 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1891 	} else
1892 		priv->tx_count_frames = 0;
1893 
1894 	/* To avoid raise condition */
1895 	priv->hw->desc->set_tx_owner(first);
1896 	wmb();
1897 
1898 	priv->cur_tx++;
1899 
1900 #ifdef STMMAC_XMIT_DEBUG
1901 	if (netif_msg_pktdata(priv)) {
1902 		pr_info("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d"
1903 			__func__, (priv->cur_tx % txsize),
1904 			(priv->dirty_tx % txsize), entry, first, nfrags);
1905 		if (priv->extend_desc)
1906 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1907 		else
1908 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1909 
1910 		pr_info(">>> frame to be transmitted: ");
1911 		print_pkt(skb->data, skb->len);
1912 	}
1913 #endif
1914 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1915 		TX_DBG("%s: stop transmitted packets\n", __func__);
1916 		netif_stop_queue(dev);
1917 	}
1918 
1919 	dev->stats.tx_bytes += skb->len;
1920 
1921 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1922 		     priv->hwts_tx_en)) {
1923 		/* declare that device is doing timestamping */
1924 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1925 		priv->hw->desc->enable_tx_timestamp(first);
1926 	}
1927 
1928 	if (!priv->hwts_tx_en)
1929 		skb_tx_timestamp(skb);
1930 
1931 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1932 
1933 	spin_unlock(&priv->tx_lock);
1934 
1935 	return NETDEV_TX_OK;
1936 }
1937 
1938 /**
1939  * stmmac_rx_refill: refill used skb preallocated buffers
1940  * @priv: driver private structure
1941  * Description : this is to reallocate the skb for the reception process
1942  * that is based on zero-copy.
1943  */
1944 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1945 {
1946 	unsigned int rxsize = priv->dma_rx_size;
1947 	int bfsize = priv->dma_buf_sz;
1948 
1949 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1950 		unsigned int entry = priv->dirty_rx % rxsize;
1951 		struct dma_desc *p;
1952 
1953 		if (priv->extend_desc)
1954 			p = (struct dma_desc *)(priv->dma_erx + entry);
1955 		else
1956 			p = priv->dma_rx + entry;
1957 
1958 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1959 			struct sk_buff *skb;
1960 
1961 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1962 
1963 			if (unlikely(skb == NULL))
1964 				break;
1965 
1966 			priv->rx_skbuff[entry] = skb;
1967 			priv->rx_skbuff_dma[entry] =
1968 			    dma_map_single(priv->device, skb->data, bfsize,
1969 					   DMA_FROM_DEVICE);
1970 
1971 			p->des2 = priv->rx_skbuff_dma[entry];
1972 
1973 			priv->hw->ring->refill_desc3(priv, p);
1974 
1975 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1976 		}
1977 		wmb();
1978 		priv->hw->desc->set_rx_owner(p);
1979 		wmb();
1980 	}
1981 }
1982 
1983 /**
1984  * stmmac_rx_refill: refill used skb preallocated buffers
1985  * @priv: driver private structure
1986  * @limit: napi bugget.
1987  * Description :  this the function called by the napi poll method.
1988  * It gets all the frames inside the ring.
1989  */
1990 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1991 {
1992 	unsigned int rxsize = priv->dma_rx_size;
1993 	unsigned int entry = priv->cur_rx % rxsize;
1994 	unsigned int next_entry;
1995 	unsigned int count = 0;
1996 	int coe = priv->plat->rx_coe;
1997 
1998 #ifdef STMMAC_RX_DEBUG
1999 	if (netif_msg_hw(priv)) {
2000 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
2001 		if (priv->extend_desc)
2002 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2003 		else
2004 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2005 	}
2006 #endif
2007 	while (count < limit) {
2008 		int status;
2009 		struct dma_desc *p;
2010 
2011 		if (priv->extend_desc)
2012 			p = (struct dma_desc *)(priv->dma_erx + entry);
2013 		else
2014 			p = priv->dma_rx + entry;
2015 
2016 		if (priv->hw->desc->get_rx_owner(p))
2017 			break;
2018 
2019 		count++;
2020 
2021 		next_entry = (++priv->cur_rx) % rxsize;
2022 		if (priv->extend_desc)
2023 			prefetch(priv->dma_erx + next_entry);
2024 		else
2025 			prefetch(priv->dma_rx + next_entry);
2026 
2027 		/* read the status of the incoming frame */
2028 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2029 						   &priv->xstats, p);
2030 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2031 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2032 							   &priv->xstats,
2033 							   priv->dma_erx +
2034 							   entry);
2035 		if (unlikely(status == discard_frame)) {
2036 			priv->dev->stats.rx_errors++;
2037 			if (priv->hwts_rx_en && !priv->extend_desc) {
2038 				/* DESC2 & DESC3 will be overwitten by device
2039 				 * with timestamp value, hence reinitialize
2040 				 * them in stmmac_rx_refill() function so that
2041 				 * device can reuse it.
2042 				 */
2043 				priv->rx_skbuff[entry] = NULL;
2044 				dma_unmap_single(priv->device,
2045 						 priv->rx_skbuff_dma[entry],
2046 						 priv->dma_buf_sz,
2047 						 DMA_FROM_DEVICE);
2048 			}
2049 		} else {
2050 			struct sk_buff *skb;
2051 			int frame_len;
2052 
2053 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2054 
2055 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2056 			 * Type frames (LLC/LLC-SNAP)
2057 			 */
2058 			if (unlikely(status != llc_snap))
2059 				frame_len -= ETH_FCS_LEN;
2060 #ifdef STMMAC_RX_DEBUG
2061 			if (frame_len > ETH_FRAME_LEN)
2062 				pr_debug("\tRX frame size %d, COE status: %d\n",
2063 					 frame_len, status);
2064 
2065 			if (netif_msg_hw(priv))
2066 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2067 					 p, entry, p->des2);
2068 #endif
2069 			skb = priv->rx_skbuff[entry];
2070 			if (unlikely(!skb)) {
2071 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2072 				       priv->dev->name);
2073 				priv->dev->stats.rx_dropped++;
2074 				break;
2075 			}
2076 			prefetch(skb->data - NET_IP_ALIGN);
2077 			priv->rx_skbuff[entry] = NULL;
2078 
2079 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2080 
2081 			skb_put(skb, frame_len);
2082 			dma_unmap_single(priv->device,
2083 					 priv->rx_skbuff_dma[entry],
2084 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2085 #ifdef STMMAC_RX_DEBUG
2086 			if (netif_msg_pktdata(priv)) {
2087 				pr_info(" frame received (%dbytes)", frame_len);
2088 				print_pkt(skb->data, frame_len);
2089 			}
2090 #endif
2091 			skb->protocol = eth_type_trans(skb, priv->dev);
2092 
2093 			if (unlikely(!coe))
2094 				skb_checksum_none_assert(skb);
2095 			else
2096 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2097 
2098 			napi_gro_receive(&priv->napi, skb);
2099 
2100 			priv->dev->stats.rx_packets++;
2101 			priv->dev->stats.rx_bytes += frame_len;
2102 		}
2103 		entry = next_entry;
2104 	}
2105 
2106 	stmmac_rx_refill(priv);
2107 
2108 	priv->xstats.rx_pkt_n += count;
2109 
2110 	return count;
2111 }
2112 
2113 /**
2114  *  stmmac_poll - stmmac poll method (NAPI)
2115  *  @napi : pointer to the napi structure.
2116  *  @budget : maximum number of packets that the current CPU can receive from
2117  *	      all interfaces.
2118  *  Description :
2119  *  To look at the incoming frames and clear the tx resources.
2120  */
2121 static int stmmac_poll(struct napi_struct *napi, int budget)
2122 {
2123 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2124 	int work_done = 0;
2125 
2126 	priv->xstats.napi_poll++;
2127 	stmmac_tx_clean(priv);
2128 
2129 	work_done = stmmac_rx(priv, budget);
2130 	if (work_done < budget) {
2131 		napi_complete(napi);
2132 		stmmac_enable_dma_irq(priv);
2133 	}
2134 	return work_done;
2135 }
2136 
2137 /**
2138  *  stmmac_tx_timeout
2139  *  @dev : Pointer to net device structure
2140  *  Description: this function is called when a packet transmission fails to
2141  *   complete within a reasonable time. The driver will mark the error in the
2142  *   netdev structure and arrange for the device to be reset to a sane state
2143  *   in order to transmit a new packet.
2144  */
2145 static void stmmac_tx_timeout(struct net_device *dev)
2146 {
2147 	struct stmmac_priv *priv = netdev_priv(dev);
2148 
2149 	/* Clear Tx resources and restart transmitting again */
2150 	stmmac_tx_err(priv);
2151 }
2152 
2153 /* Configuration changes (passed on by ifconfig) */
2154 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2155 {
2156 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2157 		return -EBUSY;
2158 
2159 	/* Don't allow changing the I/O address */
2160 	if (map->base_addr != dev->base_addr) {
2161 		pr_warn("%s: can't change I/O address\n", dev->name);
2162 		return -EOPNOTSUPP;
2163 	}
2164 
2165 	/* Don't allow changing the IRQ */
2166 	if (map->irq != dev->irq) {
2167 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2168 		return -EOPNOTSUPP;
2169 	}
2170 
2171 	return 0;
2172 }
2173 
2174 /**
2175  *  stmmac_set_rx_mode - entry point for multicast addressing
2176  *  @dev : pointer to the device structure
2177  *  Description:
2178  *  This function is a driver entry point which gets called by the kernel
2179  *  whenever multicast addresses must be enabled/disabled.
2180  *  Return value:
2181  *  void.
2182  */
2183 static void stmmac_set_rx_mode(struct net_device *dev)
2184 {
2185 	struct stmmac_priv *priv = netdev_priv(dev);
2186 
2187 	spin_lock(&priv->lock);
2188 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2189 	spin_unlock(&priv->lock);
2190 }
2191 
2192 /**
2193  *  stmmac_change_mtu - entry point to change MTU size for the device.
2194  *  @dev : device pointer.
2195  *  @new_mtu : the new MTU size for the device.
2196  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2197  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2198  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2199  *  Return value:
2200  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2201  *  file on failure.
2202  */
2203 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2204 {
2205 	struct stmmac_priv *priv = netdev_priv(dev);
2206 	int max_mtu;
2207 
2208 	if (netif_running(dev)) {
2209 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2210 		return -EBUSY;
2211 	}
2212 
2213 	if (priv->plat->enh_desc)
2214 		max_mtu = JUMBO_LEN;
2215 	else
2216 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2217 
2218 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2219 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2220 		return -EINVAL;
2221 	}
2222 
2223 	dev->mtu = new_mtu;
2224 	netdev_update_features(dev);
2225 
2226 	return 0;
2227 }
2228 
2229 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2230 					     netdev_features_t features)
2231 {
2232 	struct stmmac_priv *priv = netdev_priv(dev);
2233 
2234 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2235 		features &= ~NETIF_F_RXCSUM;
2236 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2237 		features &= ~NETIF_F_IPV6_CSUM;
2238 	if (!priv->plat->tx_coe)
2239 		features &= ~NETIF_F_ALL_CSUM;
2240 
2241 	/* Some GMAC devices have a bugged Jumbo frame support that
2242 	 * needs to have the Tx COE disabled for oversized frames
2243 	 * (due to limited buffer sizes). In this case we disable
2244 	 * the TX csum insertionin the TDES and not use SF.
2245 	 */
2246 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2247 		features &= ~NETIF_F_ALL_CSUM;
2248 
2249 	return features;
2250 }
2251 
2252 /**
2253  *  stmmac_interrupt - main ISR
2254  *  @irq: interrupt number.
2255  *  @dev_id: to pass the net device pointer.
2256  *  Description: this is the main driver interrupt service routine.
2257  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2258  *  interrupts.
2259  */
2260 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2261 {
2262 	struct net_device *dev = (struct net_device *)dev_id;
2263 	struct stmmac_priv *priv = netdev_priv(dev);
2264 
2265 	if (unlikely(!dev)) {
2266 		pr_err("%s: invalid dev pointer\n", __func__);
2267 		return IRQ_NONE;
2268 	}
2269 
2270 	/* To handle GMAC own interrupts */
2271 	if (priv->plat->has_gmac) {
2272 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2273 							    dev->base_addr,
2274 							    &priv->xstats);
2275 		if (unlikely(status)) {
2276 			/* For LPI we need to save the tx status */
2277 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2278 				priv->tx_path_in_lpi_mode = true;
2279 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2280 				priv->tx_path_in_lpi_mode = false;
2281 		}
2282 	}
2283 
2284 	/* To handle DMA interrupts */
2285 	stmmac_dma_interrupt(priv);
2286 
2287 	return IRQ_HANDLED;
2288 }
2289 
2290 #ifdef CONFIG_NET_POLL_CONTROLLER
2291 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2292  * to allow network I/O with interrupts disabled.
2293  */
2294 static void stmmac_poll_controller(struct net_device *dev)
2295 {
2296 	disable_irq(dev->irq);
2297 	stmmac_interrupt(dev->irq, dev);
2298 	enable_irq(dev->irq);
2299 }
2300 #endif
2301 
2302 /**
2303  *  stmmac_ioctl - Entry point for the Ioctl
2304  *  @dev: Device pointer.
2305  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2306  *  a proprietary structure used to pass information to the driver.
2307  *  @cmd: IOCTL command
2308  *  Description:
2309  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2310  */
2311 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2312 {
2313 	struct stmmac_priv *priv = netdev_priv(dev);
2314 	int ret = -EOPNOTSUPP;
2315 
2316 	if (!netif_running(dev))
2317 		return -EINVAL;
2318 
2319 	switch (cmd) {
2320 	case SIOCGMIIPHY:
2321 	case SIOCGMIIREG:
2322 	case SIOCSMIIREG:
2323 		if (!priv->phydev)
2324 			return -EINVAL;
2325 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2326 		break;
2327 	case SIOCSHWTSTAMP:
2328 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2329 		break;
2330 	default:
2331 		break;
2332 	}
2333 
2334 	return ret;
2335 }
2336 
2337 #ifdef CONFIG_STMMAC_DEBUG_FS
2338 static struct dentry *stmmac_fs_dir;
2339 static struct dentry *stmmac_rings_status;
2340 static struct dentry *stmmac_dma_cap;
2341 
2342 static void sysfs_display_ring(void *head, int size, int extend_desc,
2343 			       struct seq_file *seq)
2344 {
2345 	int i;
2346 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2347 	struct dma_desc *p = (struct dma_desc *)head;
2348 
2349 	for (i = 0; i < size; i++) {
2350 		u64 x;
2351 		if (extend_desc) {
2352 			x = *(u64 *) ep;
2353 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2354 				   i, (unsigned int)virt_to_phys(ep),
2355 				   (unsigned int)x, (unsigned int)(x >> 32),
2356 				   ep->basic.des2, ep->basic.des3);
2357 			ep++;
2358 		} else {
2359 			x = *(u64 *) p;
2360 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2361 				   i, (unsigned int)virt_to_phys(ep),
2362 				   (unsigned int)x, (unsigned int)(x >> 32),
2363 				   p->des2, p->des3);
2364 			p++;
2365 		}
2366 		seq_printf(seq, "\n");
2367 	}
2368 }
2369 
2370 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2371 {
2372 	struct net_device *dev = seq->private;
2373 	struct stmmac_priv *priv = netdev_priv(dev);
2374 	unsigned int txsize = priv->dma_tx_size;
2375 	unsigned int rxsize = priv->dma_rx_size;
2376 
2377 	if (priv->extend_desc) {
2378 		seq_printf(seq, "Extended RX descriptor ring:\n");
2379 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2380 		seq_printf(seq, "Extended TX descriptor ring:\n");
2381 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2382 	} else {
2383 		seq_printf(seq, "RX descriptor ring:\n");
2384 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2385 		seq_printf(seq, "TX descriptor ring:\n");
2386 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2393 {
2394 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2395 }
2396 
2397 static const struct file_operations stmmac_rings_status_fops = {
2398 	.owner = THIS_MODULE,
2399 	.open = stmmac_sysfs_ring_open,
2400 	.read = seq_read,
2401 	.llseek = seq_lseek,
2402 	.release = single_release,
2403 };
2404 
2405 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2406 {
2407 	struct net_device *dev = seq->private;
2408 	struct stmmac_priv *priv = netdev_priv(dev);
2409 
2410 	if (!priv->hw_cap_support) {
2411 		seq_printf(seq, "DMA HW features not supported\n");
2412 		return 0;
2413 	}
2414 
2415 	seq_printf(seq, "==============================\n");
2416 	seq_printf(seq, "\tDMA HW features\n");
2417 	seq_printf(seq, "==============================\n");
2418 
2419 	seq_printf(seq, "\t10/100 Mbps %s\n",
2420 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2421 	seq_printf(seq, "\t1000 Mbps %s\n",
2422 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2423 	seq_printf(seq, "\tHalf duple %s\n",
2424 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2425 	seq_printf(seq, "\tHash Filter: %s\n",
2426 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2427 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2428 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2429 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2430 		   (priv->dma_cap.pcs) ? "Y" : "N");
2431 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2432 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2433 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2434 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2435 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2436 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2437 	seq_printf(seq, "\tRMON module: %s\n",
2438 		   (priv->dma_cap.rmon) ? "Y" : "N");
2439 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2440 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2441 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2442 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2443 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2444 		   (priv->dma_cap.eee) ? "Y" : "N");
2445 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2446 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2447 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2448 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2449 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2450 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2451 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2452 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2453 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2454 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2455 		   priv->dma_cap.number_rx_channel);
2456 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2457 		   priv->dma_cap.number_tx_channel);
2458 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2459 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2460 
2461 	return 0;
2462 }
2463 
2464 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2465 {
2466 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2467 }
2468 
2469 static const struct file_operations stmmac_dma_cap_fops = {
2470 	.owner = THIS_MODULE,
2471 	.open = stmmac_sysfs_dma_cap_open,
2472 	.read = seq_read,
2473 	.llseek = seq_lseek,
2474 	.release = single_release,
2475 };
2476 
2477 static int stmmac_init_fs(struct net_device *dev)
2478 {
2479 	/* Create debugfs entries */
2480 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2481 
2482 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2483 		pr_err("ERROR %s, debugfs create directory failed\n",
2484 		       STMMAC_RESOURCE_NAME);
2485 
2486 		return -ENOMEM;
2487 	}
2488 
2489 	/* Entry to report DMA RX/TX rings */
2490 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2491 						  S_IRUGO, stmmac_fs_dir, dev,
2492 						  &stmmac_rings_status_fops);
2493 
2494 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2495 		pr_info("ERROR creating stmmac ring debugfs file\n");
2496 		debugfs_remove(stmmac_fs_dir);
2497 
2498 		return -ENOMEM;
2499 	}
2500 
2501 	/* Entry to report the DMA HW features */
2502 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2503 					     dev, &stmmac_dma_cap_fops);
2504 
2505 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2506 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2507 		debugfs_remove(stmmac_rings_status);
2508 		debugfs_remove(stmmac_fs_dir);
2509 
2510 		return -ENOMEM;
2511 	}
2512 
2513 	return 0;
2514 }
2515 
2516 static void stmmac_exit_fs(void)
2517 {
2518 	debugfs_remove(stmmac_rings_status);
2519 	debugfs_remove(stmmac_dma_cap);
2520 	debugfs_remove(stmmac_fs_dir);
2521 }
2522 #endif /* CONFIG_STMMAC_DEBUG_FS */
2523 
2524 static const struct net_device_ops stmmac_netdev_ops = {
2525 	.ndo_open = stmmac_open,
2526 	.ndo_start_xmit = stmmac_xmit,
2527 	.ndo_stop = stmmac_release,
2528 	.ndo_change_mtu = stmmac_change_mtu,
2529 	.ndo_fix_features = stmmac_fix_features,
2530 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2531 	.ndo_tx_timeout = stmmac_tx_timeout,
2532 	.ndo_do_ioctl = stmmac_ioctl,
2533 	.ndo_set_config = stmmac_config,
2534 #ifdef CONFIG_NET_POLL_CONTROLLER
2535 	.ndo_poll_controller = stmmac_poll_controller,
2536 #endif
2537 	.ndo_set_mac_address = eth_mac_addr,
2538 };
2539 
2540 /**
2541  *  stmmac_hw_init - Init the MAC device
2542  *  @priv: driver private structure
2543  *  Description: this function detects which MAC device
2544  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2545  *  (if supported) and sets the driver's features (for example
2546  *  to use the ring or chaine mode or support the normal/enh
2547  *  descriptor structure).
2548  */
2549 static int stmmac_hw_init(struct stmmac_priv *priv)
2550 {
2551 	int ret;
2552 	struct mac_device_info *mac;
2553 
2554 	/* Identify the MAC HW device */
2555 	if (priv->plat->has_gmac) {
2556 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2557 		mac = dwmac1000_setup(priv->ioaddr);
2558 	} else {
2559 		mac = dwmac100_setup(priv->ioaddr);
2560 	}
2561 	if (!mac)
2562 		return -ENOMEM;
2563 
2564 	priv->hw = mac;
2565 
2566 	/* Get and dump the chip ID */
2567 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2568 
2569 	/* To use alternate (extended) or normal descriptor structures */
2570 	stmmac_selec_desc_mode(priv);
2571 
2572 	/* To use the chained or ring mode */
2573 	if (chain_mode) {
2574 		priv->hw->chain = &chain_mode_ops;
2575 		pr_info(" Chain mode enabled\n");
2576 		priv->mode = STMMAC_CHAIN_MODE;
2577 	} else {
2578 		priv->hw->ring = &ring_mode_ops;
2579 		pr_info(" Ring mode enabled\n");
2580 		priv->mode = STMMAC_RING_MODE;
2581 	}
2582 
2583 	/* Get the HW capability (new GMAC newer than 3.50a) */
2584 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2585 	if (priv->hw_cap_support) {
2586 		pr_info(" DMA HW capability register supported");
2587 
2588 		/* We can override some gmac/dma configuration fields: e.g.
2589 		 * enh_desc, tx_coe (e.g. that are passed through the
2590 		 * platform) with the values from the HW capability
2591 		 * register (if supported).
2592 		 */
2593 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2594 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2595 
2596 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2597 
2598 		if (priv->dma_cap.rx_coe_type2)
2599 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2600 		else if (priv->dma_cap.rx_coe_type1)
2601 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2602 
2603 	} else
2604 		pr_info(" No HW DMA feature register supported");
2605 
2606 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2607 	if (!ret) {
2608 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2609 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2610 	}
2611 
2612 	if (priv->plat->rx_coe)
2613 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2614 			priv->plat->rx_coe);
2615 	if (priv->plat->tx_coe)
2616 		pr_info(" TX Checksum insertion supported\n");
2617 
2618 	if (priv->plat->pmt) {
2619 		pr_info(" Wake-Up On Lan supported\n");
2620 		device_set_wakeup_capable(priv->device, 1);
2621 	}
2622 
2623 	return 0;
2624 }
2625 
2626 /**
2627  * stmmac_dvr_probe
2628  * @device: device pointer
2629  * @plat_dat: platform data pointer
2630  * @addr: iobase memory address
2631  * Description: this is the main probe function used to
2632  * call the alloc_etherdev, allocate the priv structure.
2633  */
2634 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2635 				     struct plat_stmmacenet_data *plat_dat,
2636 				     void __iomem *addr)
2637 {
2638 	int ret = 0;
2639 	struct net_device *ndev = NULL;
2640 	struct stmmac_priv *priv;
2641 
2642 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2643 	if (!ndev)
2644 		return NULL;
2645 
2646 	SET_NETDEV_DEV(ndev, device);
2647 
2648 	priv = netdev_priv(ndev);
2649 	priv->device = device;
2650 	priv->dev = ndev;
2651 
2652 	ether_setup(ndev);
2653 
2654 	stmmac_set_ethtool_ops(ndev);
2655 	priv->pause = pause;
2656 	priv->plat = plat_dat;
2657 	priv->ioaddr = addr;
2658 	priv->dev->base_addr = (unsigned long)addr;
2659 
2660 	/* Verify driver arguments */
2661 	stmmac_verify_args();
2662 
2663 	/* Override with kernel parameters if supplied XXX CRS XXX
2664 	 * this needs to have multiple instances
2665 	 */
2666 	if ((phyaddr >= 0) && (phyaddr <= 31))
2667 		priv->plat->phy_addr = phyaddr;
2668 
2669 	/* Init MAC and get the capabilities */
2670 	ret = stmmac_hw_init(priv);
2671 	if (ret)
2672 		goto error_free_netdev;
2673 
2674 	ndev->netdev_ops = &stmmac_netdev_ops;
2675 
2676 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2677 			    NETIF_F_RXCSUM;
2678 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2679 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2680 #ifdef STMMAC_VLAN_TAG_USED
2681 	/* Both mac100 and gmac support receive VLAN tag detection */
2682 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2683 #endif
2684 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2685 
2686 	if (flow_ctrl)
2687 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2688 
2689 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2690 	 * In some case, for example on bugged HW this feature
2691 	 * has to be disable and this can be done by passing the
2692 	 * riwt_off field from the platform.
2693 	 */
2694 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2695 		priv->use_riwt = 1;
2696 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2697 	}
2698 
2699 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2700 
2701 	spin_lock_init(&priv->lock);
2702 	spin_lock_init(&priv->tx_lock);
2703 
2704 	ret = register_netdev(ndev);
2705 	if (ret) {
2706 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2707 		goto error_netdev_register;
2708 	}
2709 
2710 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2711 	if (IS_ERR(priv->stmmac_clk)) {
2712 		pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2713 		goto error_clk_get;
2714 	}
2715 
2716 	/* If a specific clk_csr value is passed from the platform
2717 	 * this means that the CSR Clock Range selection cannot be
2718 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2719 	 * set the MDC clock dynamically according to the csr actual
2720 	 * clock input.
2721 	 */
2722 	if (!priv->plat->clk_csr)
2723 		stmmac_clk_csr_set(priv);
2724 	else
2725 		priv->clk_csr = priv->plat->clk_csr;
2726 
2727 	stmmac_check_pcs_mode(priv);
2728 
2729 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2730 	    priv->pcs != STMMAC_PCS_RTBI) {
2731 		/* MDIO bus Registration */
2732 		ret = stmmac_mdio_register(ndev);
2733 		if (ret < 0) {
2734 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2735 				 __func__, priv->plat->bus_id);
2736 			goto error_mdio_register;
2737 		}
2738 	}
2739 
2740 	return priv;
2741 
2742 error_mdio_register:
2743 	clk_put(priv->stmmac_clk);
2744 error_clk_get:
2745 	unregister_netdev(ndev);
2746 error_netdev_register:
2747 	netif_napi_del(&priv->napi);
2748 error_free_netdev:
2749 	free_netdev(ndev);
2750 
2751 	return NULL;
2752 }
2753 
2754 /**
2755  * stmmac_dvr_remove
2756  * @ndev: net device pointer
2757  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2758  * changes the link status, releases the DMA descriptor rings.
2759  */
2760 int stmmac_dvr_remove(struct net_device *ndev)
2761 {
2762 	struct stmmac_priv *priv = netdev_priv(ndev);
2763 
2764 	pr_info("%s:\n\tremoving driver", __func__);
2765 
2766 	priv->hw->dma->stop_rx(priv->ioaddr);
2767 	priv->hw->dma->stop_tx(priv->ioaddr);
2768 
2769 	stmmac_set_mac(priv->ioaddr, false);
2770 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2771 	    priv->pcs != STMMAC_PCS_RTBI)
2772 		stmmac_mdio_unregister(ndev);
2773 	netif_carrier_off(ndev);
2774 	unregister_netdev(ndev);
2775 	free_netdev(ndev);
2776 
2777 	return 0;
2778 }
2779 
2780 #ifdef CONFIG_PM
2781 int stmmac_suspend(struct net_device *ndev)
2782 {
2783 	struct stmmac_priv *priv = netdev_priv(ndev);
2784 	unsigned long flags;
2785 
2786 	if (!ndev || !netif_running(ndev))
2787 		return 0;
2788 
2789 	if (priv->phydev)
2790 		phy_stop(priv->phydev);
2791 
2792 	spin_lock_irqsave(&priv->lock, flags);
2793 
2794 	netif_device_detach(ndev);
2795 	netif_stop_queue(ndev);
2796 
2797 	napi_disable(&priv->napi);
2798 
2799 	/* Stop TX/RX DMA */
2800 	priv->hw->dma->stop_tx(priv->ioaddr);
2801 	priv->hw->dma->stop_rx(priv->ioaddr);
2802 
2803 	stmmac_clear_descriptors(priv);
2804 
2805 	/* Enable Power down mode by programming the PMT regs */
2806 	if (device_may_wakeup(priv->device))
2807 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2808 	else {
2809 		stmmac_set_mac(priv->ioaddr, false);
2810 		/* Disable clock in case of PWM is off */
2811 		clk_disable_unprepare(priv->stmmac_clk);
2812 	}
2813 	spin_unlock_irqrestore(&priv->lock, flags);
2814 	return 0;
2815 }
2816 
2817 int stmmac_resume(struct net_device *ndev)
2818 {
2819 	struct stmmac_priv *priv = netdev_priv(ndev);
2820 	unsigned long flags;
2821 
2822 	if (!netif_running(ndev))
2823 		return 0;
2824 
2825 	spin_lock_irqsave(&priv->lock, flags);
2826 
2827 	/* Power Down bit, into the PM register, is cleared
2828 	 * automatically as soon as a magic packet or a Wake-up frame
2829 	 * is received. Anyway, it's better to manually clear
2830 	 * this bit because it can generate problems while resuming
2831 	 * from another devices (e.g. serial console).
2832 	 */
2833 	if (device_may_wakeup(priv->device))
2834 		priv->hw->mac->pmt(priv->ioaddr, 0);
2835 	else
2836 		/* enable the clk prevously disabled */
2837 		clk_prepare_enable(priv->stmmac_clk);
2838 
2839 	netif_device_attach(ndev);
2840 
2841 	/* Enable the MAC and DMA */
2842 	stmmac_set_mac(priv->ioaddr, true);
2843 	priv->hw->dma->start_tx(priv->ioaddr);
2844 	priv->hw->dma->start_rx(priv->ioaddr);
2845 
2846 	napi_enable(&priv->napi);
2847 
2848 	netif_start_queue(ndev);
2849 
2850 	spin_unlock_irqrestore(&priv->lock, flags);
2851 
2852 	if (priv->phydev)
2853 		phy_start(priv->phydev);
2854 
2855 	return 0;
2856 }
2857 
2858 int stmmac_freeze(struct net_device *ndev)
2859 {
2860 	if (!ndev || !netif_running(ndev))
2861 		return 0;
2862 
2863 	return stmmac_release(ndev);
2864 }
2865 
2866 int stmmac_restore(struct net_device *ndev)
2867 {
2868 	if (!ndev || !netif_running(ndev))
2869 		return 0;
2870 
2871 	return stmmac_open(ndev);
2872 }
2873 #endif /* CONFIG_PM */
2874 
2875 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2876  * depending on the configuration selected.
2877  */
2878 static int __init stmmac_init(void)
2879 {
2880 	int ret;
2881 
2882 	ret = stmmac_register_platform();
2883 	if (ret)
2884 		goto err;
2885 	ret = stmmac_register_pci();
2886 	if (ret)
2887 		goto err_pci;
2888 	return 0;
2889 err_pci:
2890 	stmmac_unregister_platform();
2891 err:
2892 	pr_err("stmmac: driver registration failed\n");
2893 	return ret;
2894 }
2895 
2896 static void __exit stmmac_exit(void)
2897 {
2898 	stmmac_unregister_platform();
2899 	stmmac_unregister_pci();
2900 }
2901 
2902 module_init(stmmac_init);
2903 module_exit(stmmac_exit);
2904 
2905 #ifndef MODULE
2906 static int __init stmmac_cmdline_opt(char *str)
2907 {
2908 	char *opt;
2909 
2910 	if (!str || !*str)
2911 		return -EINVAL;
2912 	while ((opt = strsep(&str, ",")) != NULL) {
2913 		if (!strncmp(opt, "debug:", 6)) {
2914 			if (kstrtoint(opt + 6, 0, &debug))
2915 				goto err;
2916 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2917 			if (kstrtoint(opt + 8, 0, &phyaddr))
2918 				goto err;
2919 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2920 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2921 				goto err;
2922 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2923 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2924 				goto err;
2925 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2926 			if (kstrtoint(opt + 7, 0, &buf_sz))
2927 				goto err;
2928 		} else if (!strncmp(opt, "tc:", 3)) {
2929 			if (kstrtoint(opt + 3, 0, &tc))
2930 				goto err;
2931 		} else if (!strncmp(opt, "watchdog:", 9)) {
2932 			if (kstrtoint(opt + 9, 0, &watchdog))
2933 				goto err;
2934 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2935 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2936 				goto err;
2937 		} else if (!strncmp(opt, "pause:", 6)) {
2938 			if (kstrtoint(opt + 6, 0, &pause))
2939 				goto err;
2940 		} else if (!strncmp(opt, "eee_timer:", 10)) {
2941 			if (kstrtoint(opt + 10, 0, &eee_timer))
2942 				goto err;
2943 		} else if (!strncmp(opt, "chain_mode:", 11)) {
2944 			if (kstrtoint(opt + 11, 0, &chain_mode))
2945 				goto err;
2946 		}
2947 	}
2948 	return 0;
2949 
2950 err:
2951 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2952 	return -EINVAL;
2953 }
2954 
2955 __setup("stmmaceth=", stmmac_cmdline_opt);
2956 #endif /* MODULE */
2957 
2958 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2959 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2960 MODULE_LICENSE("GPL");
2961