1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
993 
994 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
995 		switch (speed) {
996 		case SPEED_10000:
997 			ctrl |= priv->hw->link.xgmii.speed10000;
998 			break;
999 		case SPEED_5000:
1000 			ctrl |= priv->hw->link.xgmii.speed5000;
1001 			break;
1002 		case SPEED_2500:
1003 			ctrl |= priv->hw->link.xgmii.speed2500;
1004 			break;
1005 		default:
1006 			return;
1007 		}
1008 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009 		switch (speed) {
1010 		case SPEED_100000:
1011 			ctrl |= priv->hw->link.xlgmii.speed100000;
1012 			break;
1013 		case SPEED_50000:
1014 			ctrl |= priv->hw->link.xlgmii.speed50000;
1015 			break;
1016 		case SPEED_40000:
1017 			ctrl |= priv->hw->link.xlgmii.speed40000;
1018 			break;
1019 		case SPEED_25000:
1020 			ctrl |= priv->hw->link.xlgmii.speed25000;
1021 			break;
1022 		case SPEED_10000:
1023 			ctrl |= priv->hw->link.xgmii.speed10000;
1024 			break;
1025 		case SPEED_2500:
1026 			ctrl |= priv->hw->link.speed2500;
1027 			break;
1028 		case SPEED_1000:
1029 			ctrl |= priv->hw->link.speed1000;
1030 			break;
1031 		default:
1032 			return;
1033 		}
1034 	} else {
1035 		switch (speed) {
1036 		case SPEED_2500:
1037 			ctrl |= priv->hw->link.speed2500;
1038 			break;
1039 		case SPEED_1000:
1040 			ctrl |= priv->hw->link.speed1000;
1041 			break;
1042 		case SPEED_100:
1043 			ctrl |= priv->hw->link.speed100;
1044 			break;
1045 		case SPEED_10:
1046 			ctrl |= priv->hw->link.speed10;
1047 			break;
1048 		default:
1049 			return;
1050 		}
1051 	}
1052 
1053 	priv->speed = speed;
1054 
1055 	if (priv->plat->fix_mac_speed)
1056 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057 
1058 	if (!duplex)
1059 		ctrl &= ~priv->hw->link.duplex;
1060 	else
1061 		ctrl |= priv->hw->link.duplex;
1062 
1063 	/* Flow Control operation */
1064 	if (rx_pause && tx_pause)
1065 		priv->flow_ctrl = FLOW_AUTO;
1066 	else if (rx_pause && !tx_pause)
1067 		priv->flow_ctrl = FLOW_RX;
1068 	else if (!rx_pause && tx_pause)
1069 		priv->flow_ctrl = FLOW_TX;
1070 	else
1071 		priv->flow_ctrl = FLOW_OFF;
1072 
1073 	stmmac_mac_flow_ctrl(priv, duplex);
1074 
1075 	if (ctrl != old_ctrl)
1076 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1077 
1078 	stmmac_mac_set(priv, priv->ioaddr, true);
1079 	if (phy && priv->dma_cap.eee) {
1080 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1081 		priv->eee_enabled = stmmac_eee_init(priv);
1082 		priv->tx_lpi_enabled = priv->eee_enabled;
1083 		stmmac_set_eee_pls(priv, priv->hw, true);
1084 	}
1085 
1086 	if (priv->dma_cap.fpesel)
1087 		stmmac_fpe_link_state_handle(priv, true);
1088 }
1089 
1090 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1091 	.mac_select_pcs = stmmac_mac_select_pcs,
1092 	.mac_config = stmmac_mac_config,
1093 	.mac_link_down = stmmac_mac_link_down,
1094 	.mac_link_up = stmmac_mac_link_up,
1095 };
1096 
1097 /**
1098  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1099  * @priv: driver private structure
1100  * Description: this is to verify if the HW supports the PCS.
1101  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1102  * configured for the TBI, RTBI, or SGMII PHY interface.
1103  */
1104 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1105 {
1106 	int interface = priv->plat->interface;
1107 
1108 	if (priv->dma_cap.pcs) {
1109 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1110 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1111 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1112 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1113 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1114 			priv->hw->pcs = STMMAC_PCS_RGMII;
1115 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1116 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1117 			priv->hw->pcs = STMMAC_PCS_SGMII;
1118 		}
1119 	}
1120 }
1121 
1122 /**
1123  * stmmac_init_phy - PHY initialization
1124  * @dev: net device structure
1125  * Description: it initializes the driver's PHY state, and attaches the PHY
1126  * to the mac driver.
1127  *  Return value:
1128  *  0 on success
1129  */
1130 static int stmmac_init_phy(struct net_device *dev)
1131 {
1132 	struct stmmac_priv *priv = netdev_priv(dev);
1133 	struct fwnode_handle *fwnode;
1134 	int ret;
1135 
1136 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1137 	if (!fwnode)
1138 		fwnode = dev_fwnode(priv->device);
1139 
1140 	if (fwnode)
1141 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1142 
1143 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1144 	 * manually parse it
1145 	 */
1146 	if (!fwnode || ret) {
1147 		int addr = priv->plat->phy_addr;
1148 		struct phy_device *phydev;
1149 
1150 		phydev = mdiobus_get_phy(priv->mii, addr);
1151 		if (!phydev) {
1152 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1153 			return -ENODEV;
1154 		}
1155 
1156 		ret = phylink_connect_phy(priv->phylink, phydev);
1157 	}
1158 
1159 	if (!priv->plat->pmt) {
1160 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1161 
1162 		phylink_ethtool_get_wol(priv->phylink, &wol);
1163 		device_set_wakeup_capable(priv->device, !!wol.supported);
1164 	}
1165 
1166 	return ret;
1167 }
1168 
1169 static int stmmac_phy_setup(struct stmmac_priv *priv)
1170 {
1171 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1172 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1173 	int max_speed = priv->plat->max_speed;
1174 	int mode = priv->plat->phy_interface;
1175 	struct phylink *phylink;
1176 
1177 	priv->phylink_config.dev = &priv->dev->dev;
1178 	priv->phylink_config.type = PHYLINK_NETDEV;
1179 	if (priv->plat->mdio_bus_data)
1180 		priv->phylink_config.ovr_an_inband =
1181 			mdio_bus_data->xpcs_an_inband;
1182 
1183 	if (!fwnode)
1184 		fwnode = dev_fwnode(priv->device);
1185 
1186 	/* Set the platform/firmware specified interface mode */
1187 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1188 
1189 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1190 	if (priv->hw->xpcs)
1191 		xpcs_get_interfaces(priv->hw->xpcs,
1192 				    priv->phylink_config.supported_interfaces);
1193 
1194 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1195 		MAC_10 | MAC_100;
1196 
1197 	if (!max_speed || max_speed >= 1000)
1198 		priv->phylink_config.mac_capabilities |= MAC_1000;
1199 
1200 	if (priv->plat->has_gmac4) {
1201 		if (!max_speed || max_speed >= 2500)
1202 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1203 	} else if (priv->plat->has_xgmac) {
1204 		if (!max_speed || max_speed >= 2500)
1205 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1206 		if (!max_speed || max_speed >= 5000)
1207 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1208 		if (!max_speed || max_speed >= 10000)
1209 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1210 		if (!max_speed || max_speed >= 25000)
1211 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1212 		if (!max_speed || max_speed >= 40000)
1213 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1214 		if (!max_speed || max_speed >= 50000)
1215 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1216 		if (!max_speed || max_speed >= 100000)
1217 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1218 	}
1219 
1220 	/* Half-Duplex can only work with single queue */
1221 	if (priv->plat->tx_queues_to_use > 1)
1222 		priv->phylink_config.mac_capabilities &=
1223 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1224 	priv->phylink_config.mac_managed_pm = true;
1225 
1226 	phylink = phylink_create(&priv->phylink_config, fwnode,
1227 				 mode, &stmmac_phylink_mac_ops);
1228 	if (IS_ERR(phylink))
1229 		return PTR_ERR(phylink);
1230 
1231 	priv->phylink = phylink;
1232 	return 0;
1233 }
1234 
1235 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1236 				    struct stmmac_dma_conf *dma_conf)
1237 {
1238 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1239 	unsigned int desc_size;
1240 	void *head_rx;
1241 	u32 queue;
1242 
1243 	/* Display RX rings */
1244 	for (queue = 0; queue < rx_cnt; queue++) {
1245 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1246 
1247 		pr_info("\tRX Queue %u rings\n", queue);
1248 
1249 		if (priv->extend_desc) {
1250 			head_rx = (void *)rx_q->dma_erx;
1251 			desc_size = sizeof(struct dma_extended_desc);
1252 		} else {
1253 			head_rx = (void *)rx_q->dma_rx;
1254 			desc_size = sizeof(struct dma_desc);
1255 		}
1256 
1257 		/* Display RX ring */
1258 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1259 				    rx_q->dma_rx_phy, desc_size);
1260 	}
1261 }
1262 
1263 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1264 				    struct stmmac_dma_conf *dma_conf)
1265 {
1266 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1267 	unsigned int desc_size;
1268 	void *head_tx;
1269 	u32 queue;
1270 
1271 	/* Display TX rings */
1272 	for (queue = 0; queue < tx_cnt; queue++) {
1273 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1274 
1275 		pr_info("\tTX Queue %d rings\n", queue);
1276 
1277 		if (priv->extend_desc) {
1278 			head_tx = (void *)tx_q->dma_etx;
1279 			desc_size = sizeof(struct dma_extended_desc);
1280 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1281 			head_tx = (void *)tx_q->dma_entx;
1282 			desc_size = sizeof(struct dma_edesc);
1283 		} else {
1284 			head_tx = (void *)tx_q->dma_tx;
1285 			desc_size = sizeof(struct dma_desc);
1286 		}
1287 
1288 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1289 				    tx_q->dma_tx_phy, desc_size);
1290 	}
1291 }
1292 
1293 static void stmmac_display_rings(struct stmmac_priv *priv,
1294 				 struct stmmac_dma_conf *dma_conf)
1295 {
1296 	/* Display RX ring */
1297 	stmmac_display_rx_rings(priv, dma_conf);
1298 
1299 	/* Display TX ring */
1300 	stmmac_display_tx_rings(priv, dma_conf);
1301 }
1302 
1303 static int stmmac_set_bfsize(int mtu, int bufsize)
1304 {
1305 	int ret = bufsize;
1306 
1307 	if (mtu >= BUF_SIZE_8KiB)
1308 		ret = BUF_SIZE_16KiB;
1309 	else if (mtu >= BUF_SIZE_4KiB)
1310 		ret = BUF_SIZE_8KiB;
1311 	else if (mtu >= BUF_SIZE_2KiB)
1312 		ret = BUF_SIZE_4KiB;
1313 	else if (mtu > DEFAULT_BUFSIZE)
1314 		ret = BUF_SIZE_2KiB;
1315 	else
1316 		ret = DEFAULT_BUFSIZE;
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  * stmmac_clear_rx_descriptors - clear RX descriptors
1323  * @priv: driver private structure
1324  * @dma_conf: structure to take the dma data
1325  * @queue: RX queue index
1326  * Description: this function is called to clear the RX descriptors
1327  * in case of both basic and extended descriptors are used.
1328  */
1329 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1330 					struct stmmac_dma_conf *dma_conf,
1331 					u32 queue)
1332 {
1333 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1334 	int i;
1335 
1336 	/* Clear the RX descriptors */
1337 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1338 		if (priv->extend_desc)
1339 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1340 					priv->use_riwt, priv->mode,
1341 					(i == dma_conf->dma_rx_size - 1),
1342 					dma_conf->dma_buf_sz);
1343 		else
1344 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1345 					priv->use_riwt, priv->mode,
1346 					(i == dma_conf->dma_rx_size - 1),
1347 					dma_conf->dma_buf_sz);
1348 }
1349 
1350 /**
1351  * stmmac_clear_tx_descriptors - clear tx descriptors
1352  * @priv: driver private structure
1353  * @dma_conf: structure to take the dma data
1354  * @queue: TX queue index.
1355  * Description: this function is called to clear the TX descriptors
1356  * in case of both basic and extended descriptors are used.
1357  */
1358 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1359 					struct stmmac_dma_conf *dma_conf,
1360 					u32 queue)
1361 {
1362 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1363 	int i;
1364 
1365 	/* Clear the TX descriptors */
1366 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1367 		int last = (i == (dma_conf->dma_tx_size - 1));
1368 		struct dma_desc *p;
1369 
1370 		if (priv->extend_desc)
1371 			p = &tx_q->dma_etx[i].basic;
1372 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1373 			p = &tx_q->dma_entx[i].basic;
1374 		else
1375 			p = &tx_q->dma_tx[i];
1376 
1377 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1378 	}
1379 }
1380 
1381 /**
1382  * stmmac_clear_descriptors - clear descriptors
1383  * @priv: driver private structure
1384  * @dma_conf: structure to take the dma data
1385  * Description: this function is called to clear the TX and RX descriptors
1386  * in case of both basic and extended descriptors are used.
1387  */
1388 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1389 				     struct stmmac_dma_conf *dma_conf)
1390 {
1391 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1392 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1393 	u32 queue;
1394 
1395 	/* Clear the RX descriptors */
1396 	for (queue = 0; queue < rx_queue_cnt; queue++)
1397 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1398 
1399 	/* Clear the TX descriptors */
1400 	for (queue = 0; queue < tx_queue_cnt; queue++)
1401 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1402 }
1403 
1404 /**
1405  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1406  * @priv: driver private structure
1407  * @dma_conf: structure to take the dma data
1408  * @p: descriptor pointer
1409  * @i: descriptor index
1410  * @flags: gfp flag
1411  * @queue: RX queue index
1412  * Description: this function is called to allocate a receive buffer, perform
1413  * the DMA mapping and init the descriptor.
1414  */
1415 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1416 				  struct stmmac_dma_conf *dma_conf,
1417 				  struct dma_desc *p,
1418 				  int i, gfp_t flags, u32 queue)
1419 {
1420 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1421 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1422 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1423 
1424 	if (priv->dma_cap.addr64 <= 32)
1425 		gfp |= GFP_DMA32;
1426 
1427 	if (!buf->page) {
1428 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1429 		if (!buf->page)
1430 			return -ENOMEM;
1431 		buf->page_offset = stmmac_rx_offset(priv);
1432 	}
1433 
1434 	if (priv->sph && !buf->sec_page) {
1435 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1436 		if (!buf->sec_page)
1437 			return -ENOMEM;
1438 
1439 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1440 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1441 	} else {
1442 		buf->sec_page = NULL;
1443 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1444 	}
1445 
1446 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1447 
1448 	stmmac_set_desc_addr(priv, p, buf->addr);
1449 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1450 		stmmac_init_desc3(priv, p);
1451 
1452 	return 0;
1453 }
1454 
1455 /**
1456  * stmmac_free_rx_buffer - free RX dma buffers
1457  * @priv: private structure
1458  * @rx_q: RX queue
1459  * @i: buffer index.
1460  */
1461 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1462 				  struct stmmac_rx_queue *rx_q,
1463 				  int i)
1464 {
1465 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1466 
1467 	if (buf->page)
1468 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1469 	buf->page = NULL;
1470 
1471 	if (buf->sec_page)
1472 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1473 	buf->sec_page = NULL;
1474 }
1475 
1476 /**
1477  * stmmac_free_tx_buffer - free RX dma buffers
1478  * @priv: private structure
1479  * @dma_conf: structure to take the dma data
1480  * @queue: RX queue index
1481  * @i: buffer index.
1482  */
1483 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1484 				  struct stmmac_dma_conf *dma_conf,
1485 				  u32 queue, int i)
1486 {
1487 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1488 
1489 	if (tx_q->tx_skbuff_dma[i].buf &&
1490 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1491 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1492 			dma_unmap_page(priv->device,
1493 				       tx_q->tx_skbuff_dma[i].buf,
1494 				       tx_q->tx_skbuff_dma[i].len,
1495 				       DMA_TO_DEVICE);
1496 		else
1497 			dma_unmap_single(priv->device,
1498 					 tx_q->tx_skbuff_dma[i].buf,
1499 					 tx_q->tx_skbuff_dma[i].len,
1500 					 DMA_TO_DEVICE);
1501 	}
1502 
1503 	if (tx_q->xdpf[i] &&
1504 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1505 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1506 		xdp_return_frame(tx_q->xdpf[i]);
1507 		tx_q->xdpf[i] = NULL;
1508 	}
1509 
1510 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1511 		tx_q->xsk_frames_done++;
1512 
1513 	if (tx_q->tx_skbuff[i] &&
1514 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1515 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1516 		tx_q->tx_skbuff[i] = NULL;
1517 	}
1518 
1519 	tx_q->tx_skbuff_dma[i].buf = 0;
1520 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1521 }
1522 
1523 /**
1524  * dma_free_rx_skbufs - free RX dma buffers
1525  * @priv: private structure
1526  * @dma_conf: structure to take the dma data
1527  * @queue: RX queue index
1528  */
1529 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1530 			       struct stmmac_dma_conf *dma_conf,
1531 			       u32 queue)
1532 {
1533 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1534 	int i;
1535 
1536 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1537 		stmmac_free_rx_buffer(priv, rx_q, i);
1538 }
1539 
1540 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1541 				   struct stmmac_dma_conf *dma_conf,
1542 				   u32 queue, gfp_t flags)
1543 {
1544 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1545 	int i;
1546 
1547 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1548 		struct dma_desc *p;
1549 		int ret;
1550 
1551 		if (priv->extend_desc)
1552 			p = &((rx_q->dma_erx + i)->basic);
1553 		else
1554 			p = rx_q->dma_rx + i;
1555 
1556 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1557 					     queue);
1558 		if (ret)
1559 			return ret;
1560 
1561 		rx_q->buf_alloc_num++;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1569  * @priv: private structure
1570  * @dma_conf: structure to take the dma data
1571  * @queue: RX queue index
1572  */
1573 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1574 				struct stmmac_dma_conf *dma_conf,
1575 				u32 queue)
1576 {
1577 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1578 	int i;
1579 
1580 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1581 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1582 
1583 		if (!buf->xdp)
1584 			continue;
1585 
1586 		xsk_buff_free(buf->xdp);
1587 		buf->xdp = NULL;
1588 	}
1589 }
1590 
1591 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1592 				      struct stmmac_dma_conf *dma_conf,
1593 				      u32 queue)
1594 {
1595 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1596 	int i;
1597 
1598 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1599 		struct stmmac_rx_buffer *buf;
1600 		dma_addr_t dma_addr;
1601 		struct dma_desc *p;
1602 
1603 		if (priv->extend_desc)
1604 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1605 		else
1606 			p = rx_q->dma_rx + i;
1607 
1608 		buf = &rx_q->buf_pool[i];
1609 
1610 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1611 		if (!buf->xdp)
1612 			return -ENOMEM;
1613 
1614 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1615 		stmmac_set_desc_addr(priv, p, dma_addr);
1616 		rx_q->buf_alloc_num++;
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1623 {
1624 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1625 		return NULL;
1626 
1627 	return xsk_get_pool_from_qid(priv->dev, queue);
1628 }
1629 
1630 /**
1631  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1632  * @priv: driver private structure
1633  * @dma_conf: structure to take the dma data
1634  * @queue: RX queue index
1635  * @flags: gfp flag.
1636  * Description: this function initializes the DMA RX descriptors
1637  * and allocates the socket buffers. It supports the chained and ring
1638  * modes.
1639  */
1640 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1641 				    struct stmmac_dma_conf *dma_conf,
1642 				    u32 queue, gfp_t flags)
1643 {
1644 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1645 	int ret;
1646 
1647 	netif_dbg(priv, probe, priv->dev,
1648 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1649 		  (u32)rx_q->dma_rx_phy);
1650 
1651 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1652 
1653 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1654 
1655 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1656 
1657 	if (rx_q->xsk_pool) {
1658 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1659 						   MEM_TYPE_XSK_BUFF_POOL,
1660 						   NULL));
1661 		netdev_info(priv->dev,
1662 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1663 			    rx_q->queue_index);
1664 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1665 	} else {
1666 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1667 						   MEM_TYPE_PAGE_POOL,
1668 						   rx_q->page_pool));
1669 		netdev_info(priv->dev,
1670 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1671 			    rx_q->queue_index);
1672 	}
1673 
1674 	if (rx_q->xsk_pool) {
1675 		/* RX XDP ZC buffer pool may not be populated, e.g.
1676 		 * xdpsock TX-only.
1677 		 */
1678 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1679 	} else {
1680 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1681 		if (ret < 0)
1682 			return -ENOMEM;
1683 	}
1684 
1685 	/* Setup the chained descriptor addresses */
1686 	if (priv->mode == STMMAC_CHAIN_MODE) {
1687 		if (priv->extend_desc)
1688 			stmmac_mode_init(priv, rx_q->dma_erx,
1689 					 rx_q->dma_rx_phy,
1690 					 dma_conf->dma_rx_size, 1);
1691 		else
1692 			stmmac_mode_init(priv, rx_q->dma_rx,
1693 					 rx_q->dma_rx_phy,
1694 					 dma_conf->dma_rx_size, 0);
1695 	}
1696 
1697 	return 0;
1698 }
1699 
1700 static int init_dma_rx_desc_rings(struct net_device *dev,
1701 				  struct stmmac_dma_conf *dma_conf,
1702 				  gfp_t flags)
1703 {
1704 	struct stmmac_priv *priv = netdev_priv(dev);
1705 	u32 rx_count = priv->plat->rx_queues_to_use;
1706 	int queue;
1707 	int ret;
1708 
1709 	/* RX INITIALIZATION */
1710 	netif_dbg(priv, probe, priv->dev,
1711 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1712 
1713 	for (queue = 0; queue < rx_count; queue++) {
1714 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1715 		if (ret)
1716 			goto err_init_rx_buffers;
1717 	}
1718 
1719 	return 0;
1720 
1721 err_init_rx_buffers:
1722 	while (queue >= 0) {
1723 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1724 
1725 		if (rx_q->xsk_pool)
1726 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1727 		else
1728 			dma_free_rx_skbufs(priv, dma_conf, queue);
1729 
1730 		rx_q->buf_alloc_num = 0;
1731 		rx_q->xsk_pool = NULL;
1732 
1733 		queue--;
1734 	}
1735 
1736 	return ret;
1737 }
1738 
1739 /**
1740  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1741  * @priv: driver private structure
1742  * @dma_conf: structure to take the dma data
1743  * @queue: TX queue index
1744  * Description: this function initializes the DMA TX descriptors
1745  * and allocates the socket buffers. It supports the chained and ring
1746  * modes.
1747  */
1748 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1749 				    struct stmmac_dma_conf *dma_conf,
1750 				    u32 queue)
1751 {
1752 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1753 	int i;
1754 
1755 	netif_dbg(priv, probe, priv->dev,
1756 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1757 		  (u32)tx_q->dma_tx_phy);
1758 
1759 	/* Setup the chained descriptor addresses */
1760 	if (priv->mode == STMMAC_CHAIN_MODE) {
1761 		if (priv->extend_desc)
1762 			stmmac_mode_init(priv, tx_q->dma_etx,
1763 					 tx_q->dma_tx_phy,
1764 					 dma_conf->dma_tx_size, 1);
1765 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1766 			stmmac_mode_init(priv, tx_q->dma_tx,
1767 					 tx_q->dma_tx_phy,
1768 					 dma_conf->dma_tx_size, 0);
1769 	}
1770 
1771 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1772 
1773 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1774 		struct dma_desc *p;
1775 
1776 		if (priv->extend_desc)
1777 			p = &((tx_q->dma_etx + i)->basic);
1778 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1779 			p = &((tx_q->dma_entx + i)->basic);
1780 		else
1781 			p = tx_q->dma_tx + i;
1782 
1783 		stmmac_clear_desc(priv, p);
1784 
1785 		tx_q->tx_skbuff_dma[i].buf = 0;
1786 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1787 		tx_q->tx_skbuff_dma[i].len = 0;
1788 		tx_q->tx_skbuff_dma[i].last_segment = false;
1789 		tx_q->tx_skbuff[i] = NULL;
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 static int init_dma_tx_desc_rings(struct net_device *dev,
1796 				  struct stmmac_dma_conf *dma_conf)
1797 {
1798 	struct stmmac_priv *priv = netdev_priv(dev);
1799 	u32 tx_queue_cnt;
1800 	u32 queue;
1801 
1802 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1803 
1804 	for (queue = 0; queue < tx_queue_cnt; queue++)
1805 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1806 
1807 	return 0;
1808 }
1809 
1810 /**
1811  * init_dma_desc_rings - init the RX/TX descriptor rings
1812  * @dev: net device structure
1813  * @dma_conf: structure to take the dma data
1814  * @flags: gfp flag.
1815  * Description: this function initializes the DMA RX/TX descriptors
1816  * and allocates the socket buffers. It supports the chained and ring
1817  * modes.
1818  */
1819 static int init_dma_desc_rings(struct net_device *dev,
1820 			       struct stmmac_dma_conf *dma_conf,
1821 			       gfp_t flags)
1822 {
1823 	struct stmmac_priv *priv = netdev_priv(dev);
1824 	int ret;
1825 
1826 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1827 	if (ret)
1828 		return ret;
1829 
1830 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1831 
1832 	stmmac_clear_descriptors(priv, dma_conf);
1833 
1834 	if (netif_msg_hw(priv))
1835 		stmmac_display_rings(priv, dma_conf);
1836 
1837 	return ret;
1838 }
1839 
1840 /**
1841  * dma_free_tx_skbufs - free TX dma buffers
1842  * @priv: private structure
1843  * @dma_conf: structure to take the dma data
1844  * @queue: TX queue index
1845  */
1846 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1847 			       struct stmmac_dma_conf *dma_conf,
1848 			       u32 queue)
1849 {
1850 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1851 	int i;
1852 
1853 	tx_q->xsk_frames_done = 0;
1854 
1855 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1856 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1857 
1858 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1859 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1860 		tx_q->xsk_frames_done = 0;
1861 		tx_q->xsk_pool = NULL;
1862 	}
1863 }
1864 
1865 /**
1866  * stmmac_free_tx_skbufs - free TX skb buffers
1867  * @priv: private structure
1868  */
1869 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1870 {
1871 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1872 	u32 queue;
1873 
1874 	for (queue = 0; queue < tx_queue_cnt; queue++)
1875 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1876 }
1877 
1878 /**
1879  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1880  * @priv: private structure
1881  * @dma_conf: structure to take the dma data
1882  * @queue: RX queue index
1883  */
1884 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1885 					 struct stmmac_dma_conf *dma_conf,
1886 					 u32 queue)
1887 {
1888 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1889 
1890 	/* Release the DMA RX socket buffers */
1891 	if (rx_q->xsk_pool)
1892 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1893 	else
1894 		dma_free_rx_skbufs(priv, dma_conf, queue);
1895 
1896 	rx_q->buf_alloc_num = 0;
1897 	rx_q->xsk_pool = NULL;
1898 
1899 	/* Free DMA regions of consistent memory previously allocated */
1900 	if (!priv->extend_desc)
1901 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1902 				  sizeof(struct dma_desc),
1903 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1904 	else
1905 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1906 				  sizeof(struct dma_extended_desc),
1907 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1908 
1909 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1910 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1911 
1912 	kfree(rx_q->buf_pool);
1913 	if (rx_q->page_pool)
1914 		page_pool_destroy(rx_q->page_pool);
1915 }
1916 
1917 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1918 				       struct stmmac_dma_conf *dma_conf)
1919 {
1920 	u32 rx_count = priv->plat->rx_queues_to_use;
1921 	u32 queue;
1922 
1923 	/* Free RX queue resources */
1924 	for (queue = 0; queue < rx_count; queue++)
1925 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1926 }
1927 
1928 /**
1929  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1930  * @priv: private structure
1931  * @dma_conf: structure to take the dma data
1932  * @queue: TX queue index
1933  */
1934 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1935 					 struct stmmac_dma_conf *dma_conf,
1936 					 u32 queue)
1937 {
1938 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1939 	size_t size;
1940 	void *addr;
1941 
1942 	/* Release the DMA TX socket buffers */
1943 	dma_free_tx_skbufs(priv, dma_conf, queue);
1944 
1945 	if (priv->extend_desc) {
1946 		size = sizeof(struct dma_extended_desc);
1947 		addr = tx_q->dma_etx;
1948 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1949 		size = sizeof(struct dma_edesc);
1950 		addr = tx_q->dma_entx;
1951 	} else {
1952 		size = sizeof(struct dma_desc);
1953 		addr = tx_q->dma_tx;
1954 	}
1955 
1956 	size *= dma_conf->dma_tx_size;
1957 
1958 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1959 
1960 	kfree(tx_q->tx_skbuff_dma);
1961 	kfree(tx_q->tx_skbuff);
1962 }
1963 
1964 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1965 				       struct stmmac_dma_conf *dma_conf)
1966 {
1967 	u32 tx_count = priv->plat->tx_queues_to_use;
1968 	u32 queue;
1969 
1970 	/* Free TX queue resources */
1971 	for (queue = 0; queue < tx_count; queue++)
1972 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1973 }
1974 
1975 /**
1976  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1977  * @priv: private structure
1978  * @dma_conf: structure to take the dma data
1979  * @queue: RX queue index
1980  * Description: according to which descriptor can be used (extend or basic)
1981  * this function allocates the resources for TX and RX paths. In case of
1982  * reception, for example, it pre-allocated the RX socket buffer in order to
1983  * allow zero-copy mechanism.
1984  */
1985 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1986 					 struct stmmac_dma_conf *dma_conf,
1987 					 u32 queue)
1988 {
1989 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1990 	struct stmmac_channel *ch = &priv->channel[queue];
1991 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1992 	struct page_pool_params pp_params = { 0 };
1993 	unsigned int num_pages;
1994 	unsigned int napi_id;
1995 	int ret;
1996 
1997 	rx_q->queue_index = queue;
1998 	rx_q->priv_data = priv;
1999 
2000 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2001 	pp_params.pool_size = dma_conf->dma_rx_size;
2002 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2003 	pp_params.order = ilog2(num_pages);
2004 	pp_params.nid = dev_to_node(priv->device);
2005 	pp_params.dev = priv->device;
2006 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2007 	pp_params.offset = stmmac_rx_offset(priv);
2008 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2009 
2010 	rx_q->page_pool = page_pool_create(&pp_params);
2011 	if (IS_ERR(rx_q->page_pool)) {
2012 		ret = PTR_ERR(rx_q->page_pool);
2013 		rx_q->page_pool = NULL;
2014 		return ret;
2015 	}
2016 
2017 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2018 				 sizeof(*rx_q->buf_pool),
2019 				 GFP_KERNEL);
2020 	if (!rx_q->buf_pool)
2021 		return -ENOMEM;
2022 
2023 	if (priv->extend_desc) {
2024 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2025 						   dma_conf->dma_rx_size *
2026 						   sizeof(struct dma_extended_desc),
2027 						   &rx_q->dma_rx_phy,
2028 						   GFP_KERNEL);
2029 		if (!rx_q->dma_erx)
2030 			return -ENOMEM;
2031 
2032 	} else {
2033 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2034 						  dma_conf->dma_rx_size *
2035 						  sizeof(struct dma_desc),
2036 						  &rx_q->dma_rx_phy,
2037 						  GFP_KERNEL);
2038 		if (!rx_q->dma_rx)
2039 			return -ENOMEM;
2040 	}
2041 
2042 	if (stmmac_xdp_is_enabled(priv) &&
2043 	    test_bit(queue, priv->af_xdp_zc_qps))
2044 		napi_id = ch->rxtx_napi.napi_id;
2045 	else
2046 		napi_id = ch->rx_napi.napi_id;
2047 
2048 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2049 			       rx_q->queue_index,
2050 			       napi_id);
2051 	if (ret) {
2052 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2053 		return -EINVAL;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2060 				       struct stmmac_dma_conf *dma_conf)
2061 {
2062 	u32 rx_count = priv->plat->rx_queues_to_use;
2063 	u32 queue;
2064 	int ret;
2065 
2066 	/* RX queues buffers and DMA */
2067 	for (queue = 0; queue < rx_count; queue++) {
2068 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2069 		if (ret)
2070 			goto err_dma;
2071 	}
2072 
2073 	return 0;
2074 
2075 err_dma:
2076 	free_dma_rx_desc_resources(priv, dma_conf);
2077 
2078 	return ret;
2079 }
2080 
2081 /**
2082  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2083  * @priv: private structure
2084  * @dma_conf: structure to take the dma data
2085  * @queue: TX queue index
2086  * Description: according to which descriptor can be used (extend or basic)
2087  * this function allocates the resources for TX and RX paths. In case of
2088  * reception, for example, it pre-allocated the RX socket buffer in order to
2089  * allow zero-copy mechanism.
2090  */
2091 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2092 					 struct stmmac_dma_conf *dma_conf,
2093 					 u32 queue)
2094 {
2095 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2096 	size_t size;
2097 	void *addr;
2098 
2099 	tx_q->queue_index = queue;
2100 	tx_q->priv_data = priv;
2101 
2102 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2103 				      sizeof(*tx_q->tx_skbuff_dma),
2104 				      GFP_KERNEL);
2105 	if (!tx_q->tx_skbuff_dma)
2106 		return -ENOMEM;
2107 
2108 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2109 				  sizeof(struct sk_buff *),
2110 				  GFP_KERNEL);
2111 	if (!tx_q->tx_skbuff)
2112 		return -ENOMEM;
2113 
2114 	if (priv->extend_desc)
2115 		size = sizeof(struct dma_extended_desc);
2116 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2117 		size = sizeof(struct dma_edesc);
2118 	else
2119 		size = sizeof(struct dma_desc);
2120 
2121 	size *= dma_conf->dma_tx_size;
2122 
2123 	addr = dma_alloc_coherent(priv->device, size,
2124 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2125 	if (!addr)
2126 		return -ENOMEM;
2127 
2128 	if (priv->extend_desc)
2129 		tx_q->dma_etx = addr;
2130 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2131 		tx_q->dma_entx = addr;
2132 	else
2133 		tx_q->dma_tx = addr;
2134 
2135 	return 0;
2136 }
2137 
2138 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2139 				       struct stmmac_dma_conf *dma_conf)
2140 {
2141 	u32 tx_count = priv->plat->tx_queues_to_use;
2142 	u32 queue;
2143 	int ret;
2144 
2145 	/* TX queues buffers and DMA */
2146 	for (queue = 0; queue < tx_count; queue++) {
2147 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2148 		if (ret)
2149 			goto err_dma;
2150 	}
2151 
2152 	return 0;
2153 
2154 err_dma:
2155 	free_dma_tx_desc_resources(priv, dma_conf);
2156 	return ret;
2157 }
2158 
2159 /**
2160  * alloc_dma_desc_resources - alloc TX/RX resources.
2161  * @priv: private structure
2162  * @dma_conf: structure to take the dma data
2163  * Description: according to which descriptor can be used (extend or basic)
2164  * this function allocates the resources for TX and RX paths. In case of
2165  * reception, for example, it pre-allocated the RX socket buffer in order to
2166  * allow zero-copy mechanism.
2167  */
2168 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2169 				    struct stmmac_dma_conf *dma_conf)
2170 {
2171 	/* RX Allocation */
2172 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2173 
2174 	if (ret)
2175 		return ret;
2176 
2177 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2178 
2179 	return ret;
2180 }
2181 
2182 /**
2183  * free_dma_desc_resources - free dma desc resources
2184  * @priv: private structure
2185  * @dma_conf: structure to take the dma data
2186  */
2187 static void free_dma_desc_resources(struct stmmac_priv *priv,
2188 				    struct stmmac_dma_conf *dma_conf)
2189 {
2190 	/* Release the DMA TX socket buffers */
2191 	free_dma_tx_desc_resources(priv, dma_conf);
2192 
2193 	/* Release the DMA RX socket buffers later
2194 	 * to ensure all pending XDP_TX buffers are returned.
2195 	 */
2196 	free_dma_rx_desc_resources(priv, dma_conf);
2197 }
2198 
2199 /**
2200  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2201  *  @priv: driver private structure
2202  *  Description: It is used for enabling the rx queues in the MAC
2203  */
2204 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2205 {
2206 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2207 	int queue;
2208 	u8 mode;
2209 
2210 	for (queue = 0; queue < rx_queues_count; queue++) {
2211 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2212 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2213 	}
2214 }
2215 
2216 /**
2217  * stmmac_start_rx_dma - start RX DMA channel
2218  * @priv: driver private structure
2219  * @chan: RX channel index
2220  * Description:
2221  * This starts a RX DMA channel
2222  */
2223 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2224 {
2225 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2226 	stmmac_start_rx(priv, priv->ioaddr, chan);
2227 }
2228 
2229 /**
2230  * stmmac_start_tx_dma - start TX DMA channel
2231  * @priv: driver private structure
2232  * @chan: TX channel index
2233  * Description:
2234  * This starts a TX DMA channel
2235  */
2236 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2237 {
2238 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2239 	stmmac_start_tx(priv, priv->ioaddr, chan);
2240 }
2241 
2242 /**
2243  * stmmac_stop_rx_dma - stop RX DMA channel
2244  * @priv: driver private structure
2245  * @chan: RX channel index
2246  * Description:
2247  * This stops a RX DMA channel
2248  */
2249 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2250 {
2251 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2252 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2253 }
2254 
2255 /**
2256  * stmmac_stop_tx_dma - stop TX DMA channel
2257  * @priv: driver private structure
2258  * @chan: TX channel index
2259  * Description:
2260  * This stops a TX DMA channel
2261  */
2262 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2263 {
2264 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2265 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2266 }
2267 
2268 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2269 {
2270 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2271 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2272 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2273 	u32 chan;
2274 
2275 	for (chan = 0; chan < dma_csr_ch; chan++) {
2276 		struct stmmac_channel *ch = &priv->channel[chan];
2277 		unsigned long flags;
2278 
2279 		spin_lock_irqsave(&ch->lock, flags);
2280 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2281 		spin_unlock_irqrestore(&ch->lock, flags);
2282 	}
2283 }
2284 
2285 /**
2286  * stmmac_start_all_dma - start all RX and TX DMA channels
2287  * @priv: driver private structure
2288  * Description:
2289  * This starts all the RX and TX DMA channels
2290  */
2291 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2292 {
2293 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2294 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2295 	u32 chan = 0;
2296 
2297 	for (chan = 0; chan < rx_channels_count; chan++)
2298 		stmmac_start_rx_dma(priv, chan);
2299 
2300 	for (chan = 0; chan < tx_channels_count; chan++)
2301 		stmmac_start_tx_dma(priv, chan);
2302 }
2303 
2304 /**
2305  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2306  * @priv: driver private structure
2307  * Description:
2308  * This stops the RX and TX DMA channels
2309  */
2310 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2311 {
2312 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2313 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2314 	u32 chan = 0;
2315 
2316 	for (chan = 0; chan < rx_channels_count; chan++)
2317 		stmmac_stop_rx_dma(priv, chan);
2318 
2319 	for (chan = 0; chan < tx_channels_count; chan++)
2320 		stmmac_stop_tx_dma(priv, chan);
2321 }
2322 
2323 /**
2324  *  stmmac_dma_operation_mode - HW DMA operation mode
2325  *  @priv: driver private structure
2326  *  Description: it is used for configuring the DMA operation mode register in
2327  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2328  */
2329 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2330 {
2331 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2332 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2333 	int rxfifosz = priv->plat->rx_fifo_size;
2334 	int txfifosz = priv->plat->tx_fifo_size;
2335 	u32 txmode = 0;
2336 	u32 rxmode = 0;
2337 	u32 chan = 0;
2338 	u8 qmode = 0;
2339 
2340 	if (rxfifosz == 0)
2341 		rxfifosz = priv->dma_cap.rx_fifo_size;
2342 	if (txfifosz == 0)
2343 		txfifosz = priv->dma_cap.tx_fifo_size;
2344 
2345 	/* Adjust for real per queue fifo size */
2346 	rxfifosz /= rx_channels_count;
2347 	txfifosz /= tx_channels_count;
2348 
2349 	if (priv->plat->force_thresh_dma_mode) {
2350 		txmode = tc;
2351 		rxmode = tc;
2352 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2353 		/*
2354 		 * In case of GMAC, SF mode can be enabled
2355 		 * to perform the TX COE in HW. This depends on:
2356 		 * 1) TX COE if actually supported
2357 		 * 2) There is no bugged Jumbo frame support
2358 		 *    that needs to not insert csum in the TDES.
2359 		 */
2360 		txmode = SF_DMA_MODE;
2361 		rxmode = SF_DMA_MODE;
2362 		priv->xstats.threshold = SF_DMA_MODE;
2363 	} else {
2364 		txmode = tc;
2365 		rxmode = SF_DMA_MODE;
2366 	}
2367 
2368 	/* configure all channels */
2369 	for (chan = 0; chan < rx_channels_count; chan++) {
2370 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2371 		u32 buf_size;
2372 
2373 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2374 
2375 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2376 				rxfifosz, qmode);
2377 
2378 		if (rx_q->xsk_pool) {
2379 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2380 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2381 					      buf_size,
2382 					      chan);
2383 		} else {
2384 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2385 					      priv->dma_conf.dma_buf_sz,
2386 					      chan);
2387 		}
2388 	}
2389 
2390 	for (chan = 0; chan < tx_channels_count; chan++) {
2391 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2392 
2393 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2394 				txfifosz, qmode);
2395 	}
2396 }
2397 
2398 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2399 {
2400 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2401 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2402 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2403 	unsigned int entry = tx_q->cur_tx;
2404 	struct dma_desc *tx_desc = NULL;
2405 	struct xdp_desc xdp_desc;
2406 	bool work_done = true;
2407 
2408 	/* Avoids TX time-out as we are sharing with slow path */
2409 	txq_trans_cond_update(nq);
2410 
2411 	budget = min(budget, stmmac_tx_avail(priv, queue));
2412 
2413 	while (budget-- > 0) {
2414 		dma_addr_t dma_addr;
2415 		bool set_ic;
2416 
2417 		/* We are sharing with slow path and stop XSK TX desc submission when
2418 		 * available TX ring is less than threshold.
2419 		 */
2420 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2421 		    !netif_carrier_ok(priv->dev)) {
2422 			work_done = false;
2423 			break;
2424 		}
2425 
2426 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2427 			break;
2428 
2429 		if (likely(priv->extend_desc))
2430 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2431 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2432 			tx_desc = &tx_q->dma_entx[entry].basic;
2433 		else
2434 			tx_desc = tx_q->dma_tx + entry;
2435 
2436 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2437 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2438 
2439 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2440 
2441 		/* To return XDP buffer to XSK pool, we simple call
2442 		 * xsk_tx_completed(), so we don't need to fill up
2443 		 * 'buf' and 'xdpf'.
2444 		 */
2445 		tx_q->tx_skbuff_dma[entry].buf = 0;
2446 		tx_q->xdpf[entry] = NULL;
2447 
2448 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2449 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2450 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2451 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2452 
2453 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2454 
2455 		tx_q->tx_count_frames++;
2456 
2457 		if (!priv->tx_coal_frames[queue])
2458 			set_ic = false;
2459 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2460 			set_ic = true;
2461 		else
2462 			set_ic = false;
2463 
2464 		if (set_ic) {
2465 			tx_q->tx_count_frames = 0;
2466 			stmmac_set_tx_ic(priv, tx_desc);
2467 			priv->xstats.tx_set_ic_bit++;
2468 		}
2469 
2470 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2471 				       true, priv->mode, true, true,
2472 				       xdp_desc.len);
2473 
2474 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2475 
2476 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2477 		entry = tx_q->cur_tx;
2478 	}
2479 
2480 	if (tx_desc) {
2481 		stmmac_flush_tx_descriptors(priv, queue);
2482 		xsk_tx_release(pool);
2483 	}
2484 
2485 	/* Return true if all of the 3 conditions are met
2486 	 *  a) TX Budget is still available
2487 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2488 	 *     pending XSK TX for transmission)
2489 	 */
2490 	return !!budget && work_done;
2491 }
2492 
2493 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2494 {
2495 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2496 		tc += 64;
2497 
2498 		if (priv->plat->force_thresh_dma_mode)
2499 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2500 		else
2501 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2502 						      chan);
2503 
2504 		priv->xstats.threshold = tc;
2505 	}
2506 }
2507 
2508 /**
2509  * stmmac_tx_clean - to manage the transmission completion
2510  * @priv: driver private structure
2511  * @budget: napi budget limiting this functions packet handling
2512  * @queue: TX queue index
2513  * Description: it reclaims the transmit resources after transmission completes.
2514  */
2515 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2516 {
2517 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2518 	unsigned int bytes_compl = 0, pkts_compl = 0;
2519 	unsigned int entry, xmits = 0, count = 0;
2520 
2521 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2522 
2523 	priv->xstats.tx_clean++;
2524 
2525 	tx_q->xsk_frames_done = 0;
2526 
2527 	entry = tx_q->dirty_tx;
2528 
2529 	/* Try to clean all TX complete frame in 1 shot */
2530 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2531 		struct xdp_frame *xdpf;
2532 		struct sk_buff *skb;
2533 		struct dma_desc *p;
2534 		int status;
2535 
2536 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2537 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2538 			xdpf = tx_q->xdpf[entry];
2539 			skb = NULL;
2540 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2541 			xdpf = NULL;
2542 			skb = tx_q->tx_skbuff[entry];
2543 		} else {
2544 			xdpf = NULL;
2545 			skb = NULL;
2546 		}
2547 
2548 		if (priv->extend_desc)
2549 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2550 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2551 			p = &tx_q->dma_entx[entry].basic;
2552 		else
2553 			p = tx_q->dma_tx + entry;
2554 
2555 		status = stmmac_tx_status(priv, &priv->dev->stats,
2556 				&priv->xstats, p, priv->ioaddr);
2557 		/* Check if the descriptor is owned by the DMA */
2558 		if (unlikely(status & tx_dma_own))
2559 			break;
2560 
2561 		count++;
2562 
2563 		/* Make sure descriptor fields are read after reading
2564 		 * the own bit.
2565 		 */
2566 		dma_rmb();
2567 
2568 		/* Just consider the last segment and ...*/
2569 		if (likely(!(status & tx_not_ls))) {
2570 			/* ... verify the status error condition */
2571 			if (unlikely(status & tx_err)) {
2572 				priv->dev->stats.tx_errors++;
2573 				if (unlikely(status & tx_err_bump_tc))
2574 					stmmac_bump_dma_threshold(priv, queue);
2575 			} else {
2576 				priv->dev->stats.tx_packets++;
2577 				priv->xstats.tx_pkt_n++;
2578 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2579 			}
2580 			if (skb)
2581 				stmmac_get_tx_hwtstamp(priv, p, skb);
2582 		}
2583 
2584 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2585 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2586 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2587 				dma_unmap_page(priv->device,
2588 					       tx_q->tx_skbuff_dma[entry].buf,
2589 					       tx_q->tx_skbuff_dma[entry].len,
2590 					       DMA_TO_DEVICE);
2591 			else
2592 				dma_unmap_single(priv->device,
2593 						 tx_q->tx_skbuff_dma[entry].buf,
2594 						 tx_q->tx_skbuff_dma[entry].len,
2595 						 DMA_TO_DEVICE);
2596 			tx_q->tx_skbuff_dma[entry].buf = 0;
2597 			tx_q->tx_skbuff_dma[entry].len = 0;
2598 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2599 		}
2600 
2601 		stmmac_clean_desc3(priv, tx_q, p);
2602 
2603 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2604 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2605 
2606 		if (xdpf &&
2607 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2608 			xdp_return_frame_rx_napi(xdpf);
2609 			tx_q->xdpf[entry] = NULL;
2610 		}
2611 
2612 		if (xdpf &&
2613 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2614 			xdp_return_frame(xdpf);
2615 			tx_q->xdpf[entry] = NULL;
2616 		}
2617 
2618 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2619 			tx_q->xsk_frames_done++;
2620 
2621 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2622 			if (likely(skb)) {
2623 				pkts_compl++;
2624 				bytes_compl += skb->len;
2625 				dev_consume_skb_any(skb);
2626 				tx_q->tx_skbuff[entry] = NULL;
2627 			}
2628 		}
2629 
2630 		stmmac_release_tx_desc(priv, p, priv->mode);
2631 
2632 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2633 	}
2634 	tx_q->dirty_tx = entry;
2635 
2636 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2637 				  pkts_compl, bytes_compl);
2638 
2639 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2640 								queue))) &&
2641 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2642 
2643 		netif_dbg(priv, tx_done, priv->dev,
2644 			  "%s: restart transmit\n", __func__);
2645 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2646 	}
2647 
2648 	if (tx_q->xsk_pool) {
2649 		bool work_done;
2650 
2651 		if (tx_q->xsk_frames_done)
2652 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2653 
2654 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2655 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2656 
2657 		/* For XSK TX, we try to send as many as possible.
2658 		 * If XSK work done (XSK TX desc empty and budget still
2659 		 * available), return "budget - 1" to reenable TX IRQ.
2660 		 * Else, return "budget" to make NAPI continue polling.
2661 		 */
2662 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2663 					       STMMAC_XSK_TX_BUDGET_MAX);
2664 		if (work_done)
2665 			xmits = budget - 1;
2666 		else
2667 			xmits = budget;
2668 	}
2669 
2670 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2671 	    priv->eee_sw_timer_en) {
2672 		if (stmmac_enable_eee_mode(priv))
2673 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2674 	}
2675 
2676 	/* We still have pending packets, let's call for a new scheduling */
2677 	if (tx_q->dirty_tx != tx_q->cur_tx)
2678 		hrtimer_start(&tx_q->txtimer,
2679 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2680 			      HRTIMER_MODE_REL);
2681 
2682 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2683 
2684 	/* Combine decisions from TX clean and XSK TX */
2685 	return max(count, xmits);
2686 }
2687 
2688 /**
2689  * stmmac_tx_err - to manage the tx error
2690  * @priv: driver private structure
2691  * @chan: channel index
2692  * Description: it cleans the descriptors and restarts the transmission
2693  * in case of transmission errors.
2694  */
2695 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2696 {
2697 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2698 
2699 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2700 
2701 	stmmac_stop_tx_dma(priv, chan);
2702 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2703 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2704 	stmmac_reset_tx_queue(priv, chan);
2705 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2706 			    tx_q->dma_tx_phy, chan);
2707 	stmmac_start_tx_dma(priv, chan);
2708 
2709 	priv->dev->stats.tx_errors++;
2710 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2711 }
2712 
2713 /**
2714  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2715  *  @priv: driver private structure
2716  *  @txmode: TX operating mode
2717  *  @rxmode: RX operating mode
2718  *  @chan: channel index
2719  *  Description: it is used for configuring of the DMA operation mode in
2720  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2721  *  mode.
2722  */
2723 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2724 					  u32 rxmode, u32 chan)
2725 {
2726 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2727 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2728 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2729 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2730 	int rxfifosz = priv->plat->rx_fifo_size;
2731 	int txfifosz = priv->plat->tx_fifo_size;
2732 
2733 	if (rxfifosz == 0)
2734 		rxfifosz = priv->dma_cap.rx_fifo_size;
2735 	if (txfifosz == 0)
2736 		txfifosz = priv->dma_cap.tx_fifo_size;
2737 
2738 	/* Adjust for real per queue fifo size */
2739 	rxfifosz /= rx_channels_count;
2740 	txfifosz /= tx_channels_count;
2741 
2742 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2743 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2744 }
2745 
2746 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2747 {
2748 	int ret;
2749 
2750 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2751 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2752 	if (ret && (ret != -EINVAL)) {
2753 		stmmac_global_err(priv);
2754 		return true;
2755 	}
2756 
2757 	return false;
2758 }
2759 
2760 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2761 {
2762 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2763 						 &priv->xstats, chan, dir);
2764 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2765 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2766 	struct stmmac_channel *ch = &priv->channel[chan];
2767 	struct napi_struct *rx_napi;
2768 	struct napi_struct *tx_napi;
2769 	unsigned long flags;
2770 
2771 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2772 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2773 
2774 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2775 		if (napi_schedule_prep(rx_napi)) {
2776 			spin_lock_irqsave(&ch->lock, flags);
2777 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2778 			spin_unlock_irqrestore(&ch->lock, flags);
2779 			__napi_schedule(rx_napi);
2780 		}
2781 	}
2782 
2783 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2784 		if (napi_schedule_prep(tx_napi)) {
2785 			spin_lock_irqsave(&ch->lock, flags);
2786 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2787 			spin_unlock_irqrestore(&ch->lock, flags);
2788 			__napi_schedule(tx_napi);
2789 		}
2790 	}
2791 
2792 	return status;
2793 }
2794 
2795 /**
2796  * stmmac_dma_interrupt - DMA ISR
2797  * @priv: driver private structure
2798  * Description: this is the DMA ISR. It is called by the main ISR.
2799  * It calls the dwmac dma routine and schedule poll method in case of some
2800  * work can be done.
2801  */
2802 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2803 {
2804 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2805 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2806 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2807 				tx_channel_count : rx_channel_count;
2808 	u32 chan;
2809 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2810 
2811 	/* Make sure we never check beyond our status buffer. */
2812 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2813 		channels_to_check = ARRAY_SIZE(status);
2814 
2815 	for (chan = 0; chan < channels_to_check; chan++)
2816 		status[chan] = stmmac_napi_check(priv, chan,
2817 						 DMA_DIR_RXTX);
2818 
2819 	for (chan = 0; chan < tx_channel_count; chan++) {
2820 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2821 			/* Try to bump up the dma threshold on this failure */
2822 			stmmac_bump_dma_threshold(priv, chan);
2823 		} else if (unlikely(status[chan] == tx_hard_error)) {
2824 			stmmac_tx_err(priv, chan);
2825 		}
2826 	}
2827 }
2828 
2829 /**
2830  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2831  * @priv: driver private structure
2832  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2833  */
2834 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2835 {
2836 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2837 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2838 
2839 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2840 
2841 	if (priv->dma_cap.rmon) {
2842 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2843 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2844 	} else
2845 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2846 }
2847 
2848 /**
2849  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2850  * @priv: driver private structure
2851  * Description:
2852  *  new GMAC chip generations have a new register to indicate the
2853  *  presence of the optional feature/functions.
2854  *  This can be also used to override the value passed through the
2855  *  platform and necessary for old MAC10/100 and GMAC chips.
2856  */
2857 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2858 {
2859 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2860 }
2861 
2862 /**
2863  * stmmac_check_ether_addr - check if the MAC addr is valid
2864  * @priv: driver private structure
2865  * Description:
2866  * it is to verify if the MAC address is valid, in case of failures it
2867  * generates a random MAC address
2868  */
2869 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2870 {
2871 	u8 addr[ETH_ALEN];
2872 
2873 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2874 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2875 		if (is_valid_ether_addr(addr))
2876 			eth_hw_addr_set(priv->dev, addr);
2877 		else
2878 			eth_hw_addr_random(priv->dev);
2879 		dev_info(priv->device, "device MAC address %pM\n",
2880 			 priv->dev->dev_addr);
2881 	}
2882 }
2883 
2884 /**
2885  * stmmac_init_dma_engine - DMA init.
2886  * @priv: driver private structure
2887  * Description:
2888  * It inits the DMA invoking the specific MAC/GMAC callback.
2889  * Some DMA parameters can be passed from the platform;
2890  * in case of these are not passed a default is kept for the MAC or GMAC.
2891  */
2892 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2893 {
2894 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2895 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2896 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2897 	struct stmmac_rx_queue *rx_q;
2898 	struct stmmac_tx_queue *tx_q;
2899 	u32 chan = 0;
2900 	int atds = 0;
2901 	int ret = 0;
2902 
2903 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2904 		dev_err(priv->device, "Invalid DMA configuration\n");
2905 		return -EINVAL;
2906 	}
2907 
2908 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2909 		atds = 1;
2910 
2911 	ret = stmmac_reset(priv, priv->ioaddr);
2912 	if (ret) {
2913 		dev_err(priv->device, "Failed to reset the dma\n");
2914 		return ret;
2915 	}
2916 
2917 	/* DMA Configuration */
2918 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2919 
2920 	if (priv->plat->axi)
2921 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2922 
2923 	/* DMA CSR Channel configuration */
2924 	for (chan = 0; chan < dma_csr_ch; chan++) {
2925 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2926 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2927 	}
2928 
2929 	/* DMA RX Channel Configuration */
2930 	for (chan = 0; chan < rx_channels_count; chan++) {
2931 		rx_q = &priv->dma_conf.rx_queue[chan];
2932 
2933 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2934 				    rx_q->dma_rx_phy, chan);
2935 
2936 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2937 				     (rx_q->buf_alloc_num *
2938 				      sizeof(struct dma_desc));
2939 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2940 				       rx_q->rx_tail_addr, chan);
2941 	}
2942 
2943 	/* DMA TX Channel Configuration */
2944 	for (chan = 0; chan < tx_channels_count; chan++) {
2945 		tx_q = &priv->dma_conf.tx_queue[chan];
2946 
2947 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2948 				    tx_q->dma_tx_phy, chan);
2949 
2950 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2951 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2952 				       tx_q->tx_tail_addr, chan);
2953 	}
2954 
2955 	return ret;
2956 }
2957 
2958 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2959 {
2960 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2961 
2962 	hrtimer_start(&tx_q->txtimer,
2963 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2964 		      HRTIMER_MODE_REL);
2965 }
2966 
2967 /**
2968  * stmmac_tx_timer - mitigation sw timer for tx.
2969  * @t: data pointer
2970  * Description:
2971  * This is the timer handler to directly invoke the stmmac_tx_clean.
2972  */
2973 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2974 {
2975 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2976 	struct stmmac_priv *priv = tx_q->priv_data;
2977 	struct stmmac_channel *ch;
2978 	struct napi_struct *napi;
2979 
2980 	ch = &priv->channel[tx_q->queue_index];
2981 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2982 
2983 	if (likely(napi_schedule_prep(napi))) {
2984 		unsigned long flags;
2985 
2986 		spin_lock_irqsave(&ch->lock, flags);
2987 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2988 		spin_unlock_irqrestore(&ch->lock, flags);
2989 		__napi_schedule(napi);
2990 	}
2991 
2992 	return HRTIMER_NORESTART;
2993 }
2994 
2995 /**
2996  * stmmac_init_coalesce - init mitigation options.
2997  * @priv: driver private structure
2998  * Description:
2999  * This inits the coalesce parameters: i.e. timer rate,
3000  * timer handler and default threshold used for enabling the
3001  * interrupt on completion bit.
3002  */
3003 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3004 {
3005 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3006 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3007 	u32 chan;
3008 
3009 	for (chan = 0; chan < tx_channel_count; chan++) {
3010 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3011 
3012 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3013 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3014 
3015 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3016 		tx_q->txtimer.function = stmmac_tx_timer;
3017 	}
3018 
3019 	for (chan = 0; chan < rx_channel_count; chan++)
3020 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3021 }
3022 
3023 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3024 {
3025 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3026 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3027 	u32 chan;
3028 
3029 	/* set TX ring length */
3030 	for (chan = 0; chan < tx_channels_count; chan++)
3031 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3032 				       (priv->dma_conf.dma_tx_size - 1), chan);
3033 
3034 	/* set RX ring length */
3035 	for (chan = 0; chan < rx_channels_count; chan++)
3036 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3037 				       (priv->dma_conf.dma_rx_size - 1), chan);
3038 }
3039 
3040 /**
3041  *  stmmac_set_tx_queue_weight - Set TX queue weight
3042  *  @priv: driver private structure
3043  *  Description: It is used for setting TX queues weight
3044  */
3045 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3046 {
3047 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3048 	u32 weight;
3049 	u32 queue;
3050 
3051 	for (queue = 0; queue < tx_queues_count; queue++) {
3052 		weight = priv->plat->tx_queues_cfg[queue].weight;
3053 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3054 	}
3055 }
3056 
3057 /**
3058  *  stmmac_configure_cbs - Configure CBS in TX queue
3059  *  @priv: driver private structure
3060  *  Description: It is used for configuring CBS in AVB TX queues
3061  */
3062 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3063 {
3064 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3065 	u32 mode_to_use;
3066 	u32 queue;
3067 
3068 	/* queue 0 is reserved for legacy traffic */
3069 	for (queue = 1; queue < tx_queues_count; queue++) {
3070 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3071 		if (mode_to_use == MTL_QUEUE_DCB)
3072 			continue;
3073 
3074 		stmmac_config_cbs(priv, priv->hw,
3075 				priv->plat->tx_queues_cfg[queue].send_slope,
3076 				priv->plat->tx_queues_cfg[queue].idle_slope,
3077 				priv->plat->tx_queues_cfg[queue].high_credit,
3078 				priv->plat->tx_queues_cfg[queue].low_credit,
3079 				queue);
3080 	}
3081 }
3082 
3083 /**
3084  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3085  *  @priv: driver private structure
3086  *  Description: It is used for mapping RX queues to RX dma channels
3087  */
3088 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3089 {
3090 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3091 	u32 queue;
3092 	u32 chan;
3093 
3094 	for (queue = 0; queue < rx_queues_count; queue++) {
3095 		chan = priv->plat->rx_queues_cfg[queue].chan;
3096 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3097 	}
3098 }
3099 
3100 /**
3101  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3102  *  @priv: driver private structure
3103  *  Description: It is used for configuring the RX Queue Priority
3104  */
3105 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3106 {
3107 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3108 	u32 queue;
3109 	u32 prio;
3110 
3111 	for (queue = 0; queue < rx_queues_count; queue++) {
3112 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3113 			continue;
3114 
3115 		prio = priv->plat->rx_queues_cfg[queue].prio;
3116 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3117 	}
3118 }
3119 
3120 /**
3121  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3122  *  @priv: driver private structure
3123  *  Description: It is used for configuring the TX Queue Priority
3124  */
3125 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3126 {
3127 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3128 	u32 queue;
3129 	u32 prio;
3130 
3131 	for (queue = 0; queue < tx_queues_count; queue++) {
3132 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3133 			continue;
3134 
3135 		prio = priv->plat->tx_queues_cfg[queue].prio;
3136 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3137 	}
3138 }
3139 
3140 /**
3141  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3142  *  @priv: driver private structure
3143  *  Description: It is used for configuring the RX queue routing
3144  */
3145 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3146 {
3147 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3148 	u32 queue;
3149 	u8 packet;
3150 
3151 	for (queue = 0; queue < rx_queues_count; queue++) {
3152 		/* no specific packet type routing specified for the queue */
3153 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3154 			continue;
3155 
3156 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3157 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3158 	}
3159 }
3160 
3161 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3162 {
3163 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3164 		priv->rss.enable = false;
3165 		return;
3166 	}
3167 
3168 	if (priv->dev->features & NETIF_F_RXHASH)
3169 		priv->rss.enable = true;
3170 	else
3171 		priv->rss.enable = false;
3172 
3173 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3174 			     priv->plat->rx_queues_to_use);
3175 }
3176 
3177 /**
3178  *  stmmac_mtl_configuration - Configure MTL
3179  *  @priv: driver private structure
3180  *  Description: It is used for configurring MTL
3181  */
3182 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3183 {
3184 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3185 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3186 
3187 	if (tx_queues_count > 1)
3188 		stmmac_set_tx_queue_weight(priv);
3189 
3190 	/* Configure MTL RX algorithms */
3191 	if (rx_queues_count > 1)
3192 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3193 				priv->plat->rx_sched_algorithm);
3194 
3195 	/* Configure MTL TX algorithms */
3196 	if (tx_queues_count > 1)
3197 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3198 				priv->plat->tx_sched_algorithm);
3199 
3200 	/* Configure CBS in AVB TX queues */
3201 	if (tx_queues_count > 1)
3202 		stmmac_configure_cbs(priv);
3203 
3204 	/* Map RX MTL to DMA channels */
3205 	stmmac_rx_queue_dma_chan_map(priv);
3206 
3207 	/* Enable MAC RX Queues */
3208 	stmmac_mac_enable_rx_queues(priv);
3209 
3210 	/* Set RX priorities */
3211 	if (rx_queues_count > 1)
3212 		stmmac_mac_config_rx_queues_prio(priv);
3213 
3214 	/* Set TX priorities */
3215 	if (tx_queues_count > 1)
3216 		stmmac_mac_config_tx_queues_prio(priv);
3217 
3218 	/* Set RX routing */
3219 	if (rx_queues_count > 1)
3220 		stmmac_mac_config_rx_queues_routing(priv);
3221 
3222 	/* Receive Side Scaling */
3223 	if (rx_queues_count > 1)
3224 		stmmac_mac_config_rss(priv);
3225 }
3226 
3227 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3228 {
3229 	if (priv->dma_cap.asp) {
3230 		netdev_info(priv->dev, "Enabling Safety Features\n");
3231 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3232 					  priv->plat->safety_feat_cfg);
3233 	} else {
3234 		netdev_info(priv->dev, "No Safety Features support found\n");
3235 	}
3236 }
3237 
3238 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3239 {
3240 	char *name;
3241 
3242 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3243 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3244 
3245 	name = priv->wq_name;
3246 	sprintf(name, "%s-fpe", priv->dev->name);
3247 
3248 	priv->fpe_wq = create_singlethread_workqueue(name);
3249 	if (!priv->fpe_wq) {
3250 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3251 
3252 		return -ENOMEM;
3253 	}
3254 	netdev_info(priv->dev, "FPE workqueue start");
3255 
3256 	return 0;
3257 }
3258 
3259 /**
3260  * stmmac_hw_setup - setup mac in a usable state.
3261  *  @dev : pointer to the device structure.
3262  *  @ptp_register: register PTP if set
3263  *  Description:
3264  *  this is the main function to setup the HW in a usable state because the
3265  *  dma engine is reset, the core registers are configured (e.g. AXI,
3266  *  Checksum features, timers). The DMA is ready to start receiving and
3267  *  transmitting.
3268  *  Return value:
3269  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3270  *  file on failure.
3271  */
3272 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3273 {
3274 	struct stmmac_priv *priv = netdev_priv(dev);
3275 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3276 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3277 	bool sph_en;
3278 	u32 chan;
3279 	int ret;
3280 
3281 	/* DMA initialization and SW reset */
3282 	ret = stmmac_init_dma_engine(priv);
3283 	if (ret < 0) {
3284 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3285 			   __func__);
3286 		return ret;
3287 	}
3288 
3289 	/* Copy the MAC addr into the HW  */
3290 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3291 
3292 	/* PS and related bits will be programmed according to the speed */
3293 	if (priv->hw->pcs) {
3294 		int speed = priv->plat->mac_port_sel_speed;
3295 
3296 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3297 		    (speed == SPEED_1000)) {
3298 			priv->hw->ps = speed;
3299 		} else {
3300 			dev_warn(priv->device, "invalid port speed\n");
3301 			priv->hw->ps = 0;
3302 		}
3303 	}
3304 
3305 	/* Initialize the MAC Core */
3306 	stmmac_core_init(priv, priv->hw, dev);
3307 
3308 	/* Initialize MTL*/
3309 	stmmac_mtl_configuration(priv);
3310 
3311 	/* Initialize Safety Features */
3312 	stmmac_safety_feat_configuration(priv);
3313 
3314 	ret = stmmac_rx_ipc(priv, priv->hw);
3315 	if (!ret) {
3316 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3317 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3318 		priv->hw->rx_csum = 0;
3319 	}
3320 
3321 	/* Enable the MAC Rx/Tx */
3322 	stmmac_mac_set(priv, priv->ioaddr, true);
3323 
3324 	/* Set the HW DMA mode and the COE */
3325 	stmmac_dma_operation_mode(priv);
3326 
3327 	stmmac_mmc_setup(priv);
3328 
3329 	if (ptp_register) {
3330 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3331 		if (ret < 0)
3332 			netdev_warn(priv->dev,
3333 				    "failed to enable PTP reference clock: %pe\n",
3334 				    ERR_PTR(ret));
3335 	}
3336 
3337 	ret = stmmac_init_ptp(priv);
3338 	if (ret == -EOPNOTSUPP)
3339 		netdev_info(priv->dev, "PTP not supported by HW\n");
3340 	else if (ret)
3341 		netdev_warn(priv->dev, "PTP init failed\n");
3342 	else if (ptp_register)
3343 		stmmac_ptp_register(priv);
3344 
3345 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3346 
3347 	/* Convert the timer from msec to usec */
3348 	if (!priv->tx_lpi_timer)
3349 		priv->tx_lpi_timer = eee_timer * 1000;
3350 
3351 	if (priv->use_riwt) {
3352 		u32 queue;
3353 
3354 		for (queue = 0; queue < rx_cnt; queue++) {
3355 			if (!priv->rx_riwt[queue])
3356 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3357 
3358 			stmmac_rx_watchdog(priv, priv->ioaddr,
3359 					   priv->rx_riwt[queue], queue);
3360 		}
3361 	}
3362 
3363 	if (priv->hw->pcs)
3364 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3365 
3366 	/* set TX and RX rings length */
3367 	stmmac_set_rings_length(priv);
3368 
3369 	/* Enable TSO */
3370 	if (priv->tso) {
3371 		for (chan = 0; chan < tx_cnt; chan++) {
3372 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3373 
3374 			/* TSO and TBS cannot co-exist */
3375 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3376 				continue;
3377 
3378 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3379 		}
3380 	}
3381 
3382 	/* Enable Split Header */
3383 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3384 	for (chan = 0; chan < rx_cnt; chan++)
3385 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3386 
3387 
3388 	/* VLAN Tag Insertion */
3389 	if (priv->dma_cap.vlins)
3390 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3391 
3392 	/* TBS */
3393 	for (chan = 0; chan < tx_cnt; chan++) {
3394 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3395 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3396 
3397 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3398 	}
3399 
3400 	/* Configure real RX and TX queues */
3401 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3402 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3403 
3404 	/* Start the ball rolling... */
3405 	stmmac_start_all_dma(priv);
3406 
3407 	if (priv->dma_cap.fpesel) {
3408 		stmmac_fpe_start_wq(priv);
3409 
3410 		if (priv->plat->fpe_cfg->enable)
3411 			stmmac_fpe_handshake(priv, true);
3412 	}
3413 
3414 	return 0;
3415 }
3416 
3417 static void stmmac_hw_teardown(struct net_device *dev)
3418 {
3419 	struct stmmac_priv *priv = netdev_priv(dev);
3420 
3421 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3422 }
3423 
3424 static void stmmac_free_irq(struct net_device *dev,
3425 			    enum request_irq_err irq_err, int irq_idx)
3426 {
3427 	struct stmmac_priv *priv = netdev_priv(dev);
3428 	int j;
3429 
3430 	switch (irq_err) {
3431 	case REQ_IRQ_ERR_ALL:
3432 		irq_idx = priv->plat->tx_queues_to_use;
3433 		fallthrough;
3434 	case REQ_IRQ_ERR_TX:
3435 		for (j = irq_idx - 1; j >= 0; j--) {
3436 			if (priv->tx_irq[j] > 0) {
3437 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3438 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3439 			}
3440 		}
3441 		irq_idx = priv->plat->rx_queues_to_use;
3442 		fallthrough;
3443 	case REQ_IRQ_ERR_RX:
3444 		for (j = irq_idx - 1; j >= 0; j--) {
3445 			if (priv->rx_irq[j] > 0) {
3446 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3447 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3448 			}
3449 		}
3450 
3451 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3452 			free_irq(priv->sfty_ue_irq, dev);
3453 		fallthrough;
3454 	case REQ_IRQ_ERR_SFTY_UE:
3455 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3456 			free_irq(priv->sfty_ce_irq, dev);
3457 		fallthrough;
3458 	case REQ_IRQ_ERR_SFTY_CE:
3459 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3460 			free_irq(priv->lpi_irq, dev);
3461 		fallthrough;
3462 	case REQ_IRQ_ERR_LPI:
3463 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3464 			free_irq(priv->wol_irq, dev);
3465 		fallthrough;
3466 	case REQ_IRQ_ERR_WOL:
3467 		free_irq(dev->irq, dev);
3468 		fallthrough;
3469 	case REQ_IRQ_ERR_MAC:
3470 	case REQ_IRQ_ERR_NO:
3471 		/* If MAC IRQ request error, no more IRQ to free */
3472 		break;
3473 	}
3474 }
3475 
3476 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3477 {
3478 	struct stmmac_priv *priv = netdev_priv(dev);
3479 	enum request_irq_err irq_err;
3480 	cpumask_t cpu_mask;
3481 	int irq_idx = 0;
3482 	char *int_name;
3483 	int ret;
3484 	int i;
3485 
3486 	/* For common interrupt */
3487 	int_name = priv->int_name_mac;
3488 	sprintf(int_name, "%s:%s", dev->name, "mac");
3489 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3490 			  0, int_name, dev);
3491 	if (unlikely(ret < 0)) {
3492 		netdev_err(priv->dev,
3493 			   "%s: alloc mac MSI %d (error: %d)\n",
3494 			   __func__, dev->irq, ret);
3495 		irq_err = REQ_IRQ_ERR_MAC;
3496 		goto irq_error;
3497 	}
3498 
3499 	/* Request the Wake IRQ in case of another line
3500 	 * is used for WoL
3501 	 */
3502 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3503 		int_name = priv->int_name_wol;
3504 		sprintf(int_name, "%s:%s", dev->name, "wol");
3505 		ret = request_irq(priv->wol_irq,
3506 				  stmmac_mac_interrupt,
3507 				  0, int_name, dev);
3508 		if (unlikely(ret < 0)) {
3509 			netdev_err(priv->dev,
3510 				   "%s: alloc wol MSI %d (error: %d)\n",
3511 				   __func__, priv->wol_irq, ret);
3512 			irq_err = REQ_IRQ_ERR_WOL;
3513 			goto irq_error;
3514 		}
3515 	}
3516 
3517 	/* Request the LPI IRQ in case of another line
3518 	 * is used for LPI
3519 	 */
3520 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3521 		int_name = priv->int_name_lpi;
3522 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3523 		ret = request_irq(priv->lpi_irq,
3524 				  stmmac_mac_interrupt,
3525 				  0, int_name, dev);
3526 		if (unlikely(ret < 0)) {
3527 			netdev_err(priv->dev,
3528 				   "%s: alloc lpi MSI %d (error: %d)\n",
3529 				   __func__, priv->lpi_irq, ret);
3530 			irq_err = REQ_IRQ_ERR_LPI;
3531 			goto irq_error;
3532 		}
3533 	}
3534 
3535 	/* Request the Safety Feature Correctible Error line in
3536 	 * case of another line is used
3537 	 */
3538 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3539 		int_name = priv->int_name_sfty_ce;
3540 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3541 		ret = request_irq(priv->sfty_ce_irq,
3542 				  stmmac_safety_interrupt,
3543 				  0, int_name, dev);
3544 		if (unlikely(ret < 0)) {
3545 			netdev_err(priv->dev,
3546 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3547 				   __func__, priv->sfty_ce_irq, ret);
3548 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3549 			goto irq_error;
3550 		}
3551 	}
3552 
3553 	/* Request the Safety Feature Uncorrectible Error line in
3554 	 * case of another line is used
3555 	 */
3556 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3557 		int_name = priv->int_name_sfty_ue;
3558 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3559 		ret = request_irq(priv->sfty_ue_irq,
3560 				  stmmac_safety_interrupt,
3561 				  0, int_name, dev);
3562 		if (unlikely(ret < 0)) {
3563 			netdev_err(priv->dev,
3564 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3565 				   __func__, priv->sfty_ue_irq, ret);
3566 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3567 			goto irq_error;
3568 		}
3569 	}
3570 
3571 	/* Request Rx MSI irq */
3572 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3573 		if (i >= MTL_MAX_RX_QUEUES)
3574 			break;
3575 		if (priv->rx_irq[i] == 0)
3576 			continue;
3577 
3578 		int_name = priv->int_name_rx_irq[i];
3579 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3580 		ret = request_irq(priv->rx_irq[i],
3581 				  stmmac_msi_intr_rx,
3582 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3583 		if (unlikely(ret < 0)) {
3584 			netdev_err(priv->dev,
3585 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3586 				   __func__, i, priv->rx_irq[i], ret);
3587 			irq_err = REQ_IRQ_ERR_RX;
3588 			irq_idx = i;
3589 			goto irq_error;
3590 		}
3591 		cpumask_clear(&cpu_mask);
3592 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3593 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3594 	}
3595 
3596 	/* Request Tx MSI irq */
3597 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3598 		if (i >= MTL_MAX_TX_QUEUES)
3599 			break;
3600 		if (priv->tx_irq[i] == 0)
3601 			continue;
3602 
3603 		int_name = priv->int_name_tx_irq[i];
3604 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3605 		ret = request_irq(priv->tx_irq[i],
3606 				  stmmac_msi_intr_tx,
3607 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3608 		if (unlikely(ret < 0)) {
3609 			netdev_err(priv->dev,
3610 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3611 				   __func__, i, priv->tx_irq[i], ret);
3612 			irq_err = REQ_IRQ_ERR_TX;
3613 			irq_idx = i;
3614 			goto irq_error;
3615 		}
3616 		cpumask_clear(&cpu_mask);
3617 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3618 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3619 	}
3620 
3621 	return 0;
3622 
3623 irq_error:
3624 	stmmac_free_irq(dev, irq_err, irq_idx);
3625 	return ret;
3626 }
3627 
3628 static int stmmac_request_irq_single(struct net_device *dev)
3629 {
3630 	struct stmmac_priv *priv = netdev_priv(dev);
3631 	enum request_irq_err irq_err;
3632 	int ret;
3633 
3634 	ret = request_irq(dev->irq, stmmac_interrupt,
3635 			  IRQF_SHARED, dev->name, dev);
3636 	if (unlikely(ret < 0)) {
3637 		netdev_err(priv->dev,
3638 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3639 			   __func__, dev->irq, ret);
3640 		irq_err = REQ_IRQ_ERR_MAC;
3641 		goto irq_error;
3642 	}
3643 
3644 	/* Request the Wake IRQ in case of another line
3645 	 * is used for WoL
3646 	 */
3647 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3648 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3649 				  IRQF_SHARED, dev->name, dev);
3650 		if (unlikely(ret < 0)) {
3651 			netdev_err(priv->dev,
3652 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3653 				   __func__, priv->wol_irq, ret);
3654 			irq_err = REQ_IRQ_ERR_WOL;
3655 			goto irq_error;
3656 		}
3657 	}
3658 
3659 	/* Request the IRQ lines */
3660 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3661 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3662 				  IRQF_SHARED, dev->name, dev);
3663 		if (unlikely(ret < 0)) {
3664 			netdev_err(priv->dev,
3665 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3666 				   __func__, priv->lpi_irq, ret);
3667 			irq_err = REQ_IRQ_ERR_LPI;
3668 			goto irq_error;
3669 		}
3670 	}
3671 
3672 	return 0;
3673 
3674 irq_error:
3675 	stmmac_free_irq(dev, irq_err, 0);
3676 	return ret;
3677 }
3678 
3679 static int stmmac_request_irq(struct net_device *dev)
3680 {
3681 	struct stmmac_priv *priv = netdev_priv(dev);
3682 	int ret;
3683 
3684 	/* Request the IRQ lines */
3685 	if (priv->plat->multi_msi_en)
3686 		ret = stmmac_request_irq_multi_msi(dev);
3687 	else
3688 		ret = stmmac_request_irq_single(dev);
3689 
3690 	return ret;
3691 }
3692 
3693 /**
3694  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3695  *  @priv: driver private structure
3696  *  @mtu: MTU to setup the dma queue and buf with
3697  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3698  *  Allocate the Tx/Rx DMA queue and init them.
3699  *  Return value:
3700  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3701  */
3702 static struct stmmac_dma_conf *
3703 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3704 {
3705 	struct stmmac_dma_conf *dma_conf;
3706 	int chan, bfsize, ret;
3707 
3708 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3709 	if (!dma_conf) {
3710 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3711 			   __func__);
3712 		return ERR_PTR(-ENOMEM);
3713 	}
3714 
3715 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3716 	if (bfsize < 0)
3717 		bfsize = 0;
3718 
3719 	if (bfsize < BUF_SIZE_16KiB)
3720 		bfsize = stmmac_set_bfsize(mtu, 0);
3721 
3722 	dma_conf->dma_buf_sz = bfsize;
3723 	/* Chose the tx/rx size from the already defined one in the
3724 	 * priv struct. (if defined)
3725 	 */
3726 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3727 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3728 
3729 	if (!dma_conf->dma_tx_size)
3730 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3731 	if (!dma_conf->dma_rx_size)
3732 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3733 
3734 	/* Earlier check for TBS */
3735 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3736 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3737 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3738 
3739 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3740 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3741 	}
3742 
3743 	ret = alloc_dma_desc_resources(priv, dma_conf);
3744 	if (ret < 0) {
3745 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3746 			   __func__);
3747 		goto alloc_error;
3748 	}
3749 
3750 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3751 	if (ret < 0) {
3752 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3753 			   __func__);
3754 		goto init_error;
3755 	}
3756 
3757 	return dma_conf;
3758 
3759 init_error:
3760 	free_dma_desc_resources(priv, dma_conf);
3761 alloc_error:
3762 	kfree(dma_conf);
3763 	return ERR_PTR(ret);
3764 }
3765 
3766 /**
3767  *  __stmmac_open - open entry point of the driver
3768  *  @dev : pointer to the device structure.
3769  *  @dma_conf :  structure to take the dma data
3770  *  Description:
3771  *  This function is the open entry point of the driver.
3772  *  Return value:
3773  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3774  *  file on failure.
3775  */
3776 static int __stmmac_open(struct net_device *dev,
3777 			 struct stmmac_dma_conf *dma_conf)
3778 {
3779 	struct stmmac_priv *priv = netdev_priv(dev);
3780 	int mode = priv->plat->phy_interface;
3781 	u32 chan;
3782 	int ret;
3783 
3784 	ret = pm_runtime_resume_and_get(priv->device);
3785 	if (ret < 0)
3786 		return ret;
3787 
3788 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3789 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3790 	    (!priv->hw->xpcs ||
3791 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3792 		ret = stmmac_init_phy(dev);
3793 		if (ret) {
3794 			netdev_err(priv->dev,
3795 				   "%s: Cannot attach to PHY (error: %d)\n",
3796 				   __func__, ret);
3797 			goto init_phy_error;
3798 		}
3799 	}
3800 
3801 	/* Extra statistics */
3802 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3803 	priv->xstats.threshold = tc;
3804 
3805 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3806 
3807 	buf_sz = dma_conf->dma_buf_sz;
3808 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3809 
3810 	stmmac_reset_queues_param(priv);
3811 
3812 	if (priv->plat->serdes_powerup) {
3813 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3814 		if (ret < 0) {
3815 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3816 				   __func__);
3817 			goto init_error;
3818 		}
3819 	}
3820 
3821 	ret = stmmac_hw_setup(dev, true);
3822 	if (ret < 0) {
3823 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3824 		goto init_error;
3825 	}
3826 
3827 	stmmac_init_coalesce(priv);
3828 
3829 	phylink_start(priv->phylink);
3830 	/* We may have called phylink_speed_down before */
3831 	phylink_speed_up(priv->phylink);
3832 
3833 	ret = stmmac_request_irq(dev);
3834 	if (ret)
3835 		goto irq_error;
3836 
3837 	stmmac_enable_all_queues(priv);
3838 	netif_tx_start_all_queues(priv->dev);
3839 	stmmac_enable_all_dma_irq(priv);
3840 
3841 	return 0;
3842 
3843 irq_error:
3844 	phylink_stop(priv->phylink);
3845 
3846 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3847 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3848 
3849 	stmmac_hw_teardown(dev);
3850 init_error:
3851 	free_dma_desc_resources(priv, &priv->dma_conf);
3852 	phylink_disconnect_phy(priv->phylink);
3853 init_phy_error:
3854 	pm_runtime_put(priv->device);
3855 	return ret;
3856 }
3857 
3858 static int stmmac_open(struct net_device *dev)
3859 {
3860 	struct stmmac_priv *priv = netdev_priv(dev);
3861 	struct stmmac_dma_conf *dma_conf;
3862 	int ret;
3863 
3864 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3865 	if (IS_ERR(dma_conf))
3866 		return PTR_ERR(dma_conf);
3867 
3868 	ret = __stmmac_open(dev, dma_conf);
3869 	kfree(dma_conf);
3870 	return ret;
3871 }
3872 
3873 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3874 {
3875 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3876 
3877 	if (priv->fpe_wq)
3878 		destroy_workqueue(priv->fpe_wq);
3879 
3880 	netdev_info(priv->dev, "FPE workqueue stop");
3881 }
3882 
3883 /**
3884  *  stmmac_release - close entry point of the driver
3885  *  @dev : device pointer.
3886  *  Description:
3887  *  This is the stop entry point of the driver.
3888  */
3889 static int stmmac_release(struct net_device *dev)
3890 {
3891 	struct stmmac_priv *priv = netdev_priv(dev);
3892 	u32 chan;
3893 
3894 	if (device_may_wakeup(priv->device))
3895 		phylink_speed_down(priv->phylink, false);
3896 	/* Stop and disconnect the PHY */
3897 	phylink_stop(priv->phylink);
3898 	phylink_disconnect_phy(priv->phylink);
3899 
3900 	stmmac_disable_all_queues(priv);
3901 
3902 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3903 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3904 
3905 	netif_tx_disable(dev);
3906 
3907 	/* Free the IRQ lines */
3908 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3909 
3910 	if (priv->eee_enabled) {
3911 		priv->tx_path_in_lpi_mode = false;
3912 		del_timer_sync(&priv->eee_ctrl_timer);
3913 	}
3914 
3915 	/* Stop TX/RX DMA and clear the descriptors */
3916 	stmmac_stop_all_dma(priv);
3917 
3918 	/* Release and free the Rx/Tx resources */
3919 	free_dma_desc_resources(priv, &priv->dma_conf);
3920 
3921 	/* Disable the MAC Rx/Tx */
3922 	stmmac_mac_set(priv, priv->ioaddr, false);
3923 
3924 	/* Powerdown Serdes if there is */
3925 	if (priv->plat->serdes_powerdown)
3926 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3927 
3928 	netif_carrier_off(dev);
3929 
3930 	stmmac_release_ptp(priv);
3931 
3932 	pm_runtime_put(priv->device);
3933 
3934 	if (priv->dma_cap.fpesel)
3935 		stmmac_fpe_stop_wq(priv);
3936 
3937 	return 0;
3938 }
3939 
3940 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3941 			       struct stmmac_tx_queue *tx_q)
3942 {
3943 	u16 tag = 0x0, inner_tag = 0x0;
3944 	u32 inner_type = 0x0;
3945 	struct dma_desc *p;
3946 
3947 	if (!priv->dma_cap.vlins)
3948 		return false;
3949 	if (!skb_vlan_tag_present(skb))
3950 		return false;
3951 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3952 		inner_tag = skb_vlan_tag_get(skb);
3953 		inner_type = STMMAC_VLAN_INSERT;
3954 	}
3955 
3956 	tag = skb_vlan_tag_get(skb);
3957 
3958 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3959 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3960 	else
3961 		p = &tx_q->dma_tx[tx_q->cur_tx];
3962 
3963 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3964 		return false;
3965 
3966 	stmmac_set_tx_owner(priv, p);
3967 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3968 	return true;
3969 }
3970 
3971 /**
3972  *  stmmac_tso_allocator - close entry point of the driver
3973  *  @priv: driver private structure
3974  *  @des: buffer start address
3975  *  @total_len: total length to fill in descriptors
3976  *  @last_segment: condition for the last descriptor
3977  *  @queue: TX queue index
3978  *  Description:
3979  *  This function fills descriptor and request new descriptors according to
3980  *  buffer length to fill
3981  */
3982 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3983 				 int total_len, bool last_segment, u32 queue)
3984 {
3985 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3986 	struct dma_desc *desc;
3987 	u32 buff_size;
3988 	int tmp_len;
3989 
3990 	tmp_len = total_len;
3991 
3992 	while (tmp_len > 0) {
3993 		dma_addr_t curr_addr;
3994 
3995 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3996 						priv->dma_conf.dma_tx_size);
3997 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3998 
3999 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4000 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4001 		else
4002 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4003 
4004 		curr_addr = des + (total_len - tmp_len);
4005 		if (priv->dma_cap.addr64 <= 32)
4006 			desc->des0 = cpu_to_le32(curr_addr);
4007 		else
4008 			stmmac_set_desc_addr(priv, desc, curr_addr);
4009 
4010 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4011 			    TSO_MAX_BUFF_SIZE : tmp_len;
4012 
4013 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4014 				0, 1,
4015 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4016 				0, 0);
4017 
4018 		tmp_len -= TSO_MAX_BUFF_SIZE;
4019 	}
4020 }
4021 
4022 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4023 {
4024 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4025 	int desc_size;
4026 
4027 	if (likely(priv->extend_desc))
4028 		desc_size = sizeof(struct dma_extended_desc);
4029 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4030 		desc_size = sizeof(struct dma_edesc);
4031 	else
4032 		desc_size = sizeof(struct dma_desc);
4033 
4034 	/* The own bit must be the latest setting done when prepare the
4035 	 * descriptor and then barrier is needed to make sure that
4036 	 * all is coherent before granting the DMA engine.
4037 	 */
4038 	wmb();
4039 
4040 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4041 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4042 }
4043 
4044 /**
4045  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4046  *  @skb : the socket buffer
4047  *  @dev : device pointer
4048  *  Description: this is the transmit function that is called on TSO frames
4049  *  (support available on GMAC4 and newer chips).
4050  *  Diagram below show the ring programming in case of TSO frames:
4051  *
4052  *  First Descriptor
4053  *   --------
4054  *   | DES0 |---> buffer1 = L2/L3/L4 header
4055  *   | DES1 |---> TCP Payload (can continue on next descr...)
4056  *   | DES2 |---> buffer 1 and 2 len
4057  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4058  *   --------
4059  *	|
4060  *     ...
4061  *	|
4062  *   --------
4063  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4064  *   | DES1 | --|
4065  *   | DES2 | --> buffer 1 and 2 len
4066  *   | DES3 |
4067  *   --------
4068  *
4069  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4070  */
4071 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4072 {
4073 	struct dma_desc *desc, *first, *mss_desc = NULL;
4074 	struct stmmac_priv *priv = netdev_priv(dev);
4075 	int nfrags = skb_shinfo(skb)->nr_frags;
4076 	u32 queue = skb_get_queue_mapping(skb);
4077 	unsigned int first_entry, tx_packets;
4078 	int tmp_pay_len = 0, first_tx;
4079 	struct stmmac_tx_queue *tx_q;
4080 	bool has_vlan, set_ic;
4081 	u8 proto_hdr_len, hdr;
4082 	u32 pay_len, mss;
4083 	dma_addr_t des;
4084 	int i;
4085 
4086 	tx_q = &priv->dma_conf.tx_queue[queue];
4087 	first_tx = tx_q->cur_tx;
4088 
4089 	/* Compute header lengths */
4090 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4091 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4092 		hdr = sizeof(struct udphdr);
4093 	} else {
4094 		proto_hdr_len = skb_tcp_all_headers(skb);
4095 		hdr = tcp_hdrlen(skb);
4096 	}
4097 
4098 	/* Desc availability based on threshold should be enough safe */
4099 	if (unlikely(stmmac_tx_avail(priv, queue) <
4100 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4101 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4102 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4103 								queue));
4104 			/* This is a hard error, log it. */
4105 			netdev_err(priv->dev,
4106 				   "%s: Tx Ring full when queue awake\n",
4107 				   __func__);
4108 		}
4109 		return NETDEV_TX_BUSY;
4110 	}
4111 
4112 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4113 
4114 	mss = skb_shinfo(skb)->gso_size;
4115 
4116 	/* set new MSS value if needed */
4117 	if (mss != tx_q->mss) {
4118 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4119 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4120 		else
4121 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4122 
4123 		stmmac_set_mss(priv, mss_desc, mss);
4124 		tx_q->mss = mss;
4125 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4126 						priv->dma_conf.dma_tx_size);
4127 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4128 	}
4129 
4130 	if (netif_msg_tx_queued(priv)) {
4131 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4132 			__func__, hdr, proto_hdr_len, pay_len, mss);
4133 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4134 			skb->data_len);
4135 	}
4136 
4137 	/* Check if VLAN can be inserted by HW */
4138 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4139 
4140 	first_entry = tx_q->cur_tx;
4141 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4142 
4143 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4144 		desc = &tx_q->dma_entx[first_entry].basic;
4145 	else
4146 		desc = &tx_q->dma_tx[first_entry];
4147 	first = desc;
4148 
4149 	if (has_vlan)
4150 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4151 
4152 	/* first descriptor: fill Headers on Buf1 */
4153 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4154 			     DMA_TO_DEVICE);
4155 	if (dma_mapping_error(priv->device, des))
4156 		goto dma_map_err;
4157 
4158 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4159 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4160 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4161 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4162 
4163 	if (priv->dma_cap.addr64 <= 32) {
4164 		first->des0 = cpu_to_le32(des);
4165 
4166 		/* Fill start of payload in buff2 of first descriptor */
4167 		if (pay_len)
4168 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4169 
4170 		/* If needed take extra descriptors to fill the remaining payload */
4171 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4172 	} else {
4173 		stmmac_set_desc_addr(priv, first, des);
4174 		tmp_pay_len = pay_len;
4175 		des += proto_hdr_len;
4176 		pay_len = 0;
4177 	}
4178 
4179 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4180 
4181 	/* Prepare fragments */
4182 	for (i = 0; i < nfrags; i++) {
4183 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4184 
4185 		des = skb_frag_dma_map(priv->device, frag, 0,
4186 				       skb_frag_size(frag),
4187 				       DMA_TO_DEVICE);
4188 		if (dma_mapping_error(priv->device, des))
4189 			goto dma_map_err;
4190 
4191 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4192 				     (i == nfrags - 1), queue);
4193 
4194 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4195 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4196 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4197 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4198 	}
4199 
4200 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4201 
4202 	/* Only the last descriptor gets to point to the skb. */
4203 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4204 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4205 
4206 	/* Manage tx mitigation */
4207 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4208 	tx_q->tx_count_frames += tx_packets;
4209 
4210 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4211 		set_ic = true;
4212 	else if (!priv->tx_coal_frames[queue])
4213 		set_ic = false;
4214 	else if (tx_packets > priv->tx_coal_frames[queue])
4215 		set_ic = true;
4216 	else if ((tx_q->tx_count_frames %
4217 		  priv->tx_coal_frames[queue]) < tx_packets)
4218 		set_ic = true;
4219 	else
4220 		set_ic = false;
4221 
4222 	if (set_ic) {
4223 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4224 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4225 		else
4226 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4227 
4228 		tx_q->tx_count_frames = 0;
4229 		stmmac_set_tx_ic(priv, desc);
4230 		priv->xstats.tx_set_ic_bit++;
4231 	}
4232 
4233 	/* We've used all descriptors we need for this skb, however,
4234 	 * advance cur_tx so that it references a fresh descriptor.
4235 	 * ndo_start_xmit will fill this descriptor the next time it's
4236 	 * called and stmmac_tx_clean may clean up to this descriptor.
4237 	 */
4238 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4239 
4240 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4241 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4242 			  __func__);
4243 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4244 	}
4245 
4246 	dev->stats.tx_bytes += skb->len;
4247 	priv->xstats.tx_tso_frames++;
4248 	priv->xstats.tx_tso_nfrags += nfrags;
4249 
4250 	if (priv->sarc_type)
4251 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4252 
4253 	skb_tx_timestamp(skb);
4254 
4255 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4256 		     priv->hwts_tx_en)) {
4257 		/* declare that device is doing timestamping */
4258 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4259 		stmmac_enable_tx_timestamp(priv, first);
4260 	}
4261 
4262 	/* Complete the first descriptor before granting the DMA */
4263 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4264 			proto_hdr_len,
4265 			pay_len,
4266 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4267 			hdr / 4, (skb->len - proto_hdr_len));
4268 
4269 	/* If context desc is used to change MSS */
4270 	if (mss_desc) {
4271 		/* Make sure that first descriptor has been completely
4272 		 * written, including its own bit. This is because MSS is
4273 		 * actually before first descriptor, so we need to make
4274 		 * sure that MSS's own bit is the last thing written.
4275 		 */
4276 		dma_wmb();
4277 		stmmac_set_tx_owner(priv, mss_desc);
4278 	}
4279 
4280 	if (netif_msg_pktdata(priv)) {
4281 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4282 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4283 			tx_q->cur_tx, first, nfrags);
4284 		pr_info(">>> frame to be transmitted: ");
4285 		print_pkt(skb->data, skb_headlen(skb));
4286 	}
4287 
4288 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4289 
4290 	stmmac_flush_tx_descriptors(priv, queue);
4291 	stmmac_tx_timer_arm(priv, queue);
4292 
4293 	return NETDEV_TX_OK;
4294 
4295 dma_map_err:
4296 	dev_err(priv->device, "Tx dma map failed\n");
4297 	dev_kfree_skb(skb);
4298 	priv->dev->stats.tx_dropped++;
4299 	return NETDEV_TX_OK;
4300 }
4301 
4302 /**
4303  *  stmmac_xmit - Tx entry point of the driver
4304  *  @skb : the socket buffer
4305  *  @dev : device pointer
4306  *  Description : this is the tx entry point of the driver.
4307  *  It programs the chain or the ring and supports oversized frames
4308  *  and SG feature.
4309  */
4310 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4311 {
4312 	unsigned int first_entry, tx_packets, enh_desc;
4313 	struct stmmac_priv *priv = netdev_priv(dev);
4314 	unsigned int nopaged_len = skb_headlen(skb);
4315 	int i, csum_insertion = 0, is_jumbo = 0;
4316 	u32 queue = skb_get_queue_mapping(skb);
4317 	int nfrags = skb_shinfo(skb)->nr_frags;
4318 	int gso = skb_shinfo(skb)->gso_type;
4319 	struct dma_edesc *tbs_desc = NULL;
4320 	struct dma_desc *desc, *first;
4321 	struct stmmac_tx_queue *tx_q;
4322 	bool has_vlan, set_ic;
4323 	int entry, first_tx;
4324 	dma_addr_t des;
4325 
4326 	tx_q = &priv->dma_conf.tx_queue[queue];
4327 	first_tx = tx_q->cur_tx;
4328 
4329 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4330 		stmmac_disable_eee_mode(priv);
4331 
4332 	/* Manage oversized TCP frames for GMAC4 device */
4333 	if (skb_is_gso(skb) && priv->tso) {
4334 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4335 			return stmmac_tso_xmit(skb, dev);
4336 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4337 			return stmmac_tso_xmit(skb, dev);
4338 	}
4339 
4340 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4341 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4342 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4343 								queue));
4344 			/* This is a hard error, log it. */
4345 			netdev_err(priv->dev,
4346 				   "%s: Tx Ring full when queue awake\n",
4347 				   __func__);
4348 		}
4349 		return NETDEV_TX_BUSY;
4350 	}
4351 
4352 	/* Check if VLAN can be inserted by HW */
4353 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4354 
4355 	entry = tx_q->cur_tx;
4356 	first_entry = entry;
4357 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4358 
4359 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4360 
4361 	if (likely(priv->extend_desc))
4362 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4363 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4364 		desc = &tx_q->dma_entx[entry].basic;
4365 	else
4366 		desc = tx_q->dma_tx + entry;
4367 
4368 	first = desc;
4369 
4370 	if (has_vlan)
4371 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4372 
4373 	enh_desc = priv->plat->enh_desc;
4374 	/* To program the descriptors according to the size of the frame */
4375 	if (enh_desc)
4376 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4377 
4378 	if (unlikely(is_jumbo)) {
4379 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4380 		if (unlikely(entry < 0) && (entry != -EINVAL))
4381 			goto dma_map_err;
4382 	}
4383 
4384 	for (i = 0; i < nfrags; i++) {
4385 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4386 		int len = skb_frag_size(frag);
4387 		bool last_segment = (i == (nfrags - 1));
4388 
4389 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4390 		WARN_ON(tx_q->tx_skbuff[entry]);
4391 
4392 		if (likely(priv->extend_desc))
4393 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4394 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4395 			desc = &tx_q->dma_entx[entry].basic;
4396 		else
4397 			desc = tx_q->dma_tx + entry;
4398 
4399 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4400 				       DMA_TO_DEVICE);
4401 		if (dma_mapping_error(priv->device, des))
4402 			goto dma_map_err; /* should reuse desc w/o issues */
4403 
4404 		tx_q->tx_skbuff_dma[entry].buf = des;
4405 
4406 		stmmac_set_desc_addr(priv, desc, des);
4407 
4408 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4409 		tx_q->tx_skbuff_dma[entry].len = len;
4410 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4411 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4412 
4413 		/* Prepare the descriptor and set the own bit too */
4414 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4415 				priv->mode, 1, last_segment, skb->len);
4416 	}
4417 
4418 	/* Only the last descriptor gets to point to the skb. */
4419 	tx_q->tx_skbuff[entry] = skb;
4420 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4421 
4422 	/* According to the coalesce parameter the IC bit for the latest
4423 	 * segment is reset and the timer re-started to clean the tx status.
4424 	 * This approach takes care about the fragments: desc is the first
4425 	 * element in case of no SG.
4426 	 */
4427 	tx_packets = (entry + 1) - first_tx;
4428 	tx_q->tx_count_frames += tx_packets;
4429 
4430 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4431 		set_ic = true;
4432 	else if (!priv->tx_coal_frames[queue])
4433 		set_ic = false;
4434 	else if (tx_packets > priv->tx_coal_frames[queue])
4435 		set_ic = true;
4436 	else if ((tx_q->tx_count_frames %
4437 		  priv->tx_coal_frames[queue]) < tx_packets)
4438 		set_ic = true;
4439 	else
4440 		set_ic = false;
4441 
4442 	if (set_ic) {
4443 		if (likely(priv->extend_desc))
4444 			desc = &tx_q->dma_etx[entry].basic;
4445 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4446 			desc = &tx_q->dma_entx[entry].basic;
4447 		else
4448 			desc = &tx_q->dma_tx[entry];
4449 
4450 		tx_q->tx_count_frames = 0;
4451 		stmmac_set_tx_ic(priv, desc);
4452 		priv->xstats.tx_set_ic_bit++;
4453 	}
4454 
4455 	/* We've used all descriptors we need for this skb, however,
4456 	 * advance cur_tx so that it references a fresh descriptor.
4457 	 * ndo_start_xmit will fill this descriptor the next time it's
4458 	 * called and stmmac_tx_clean may clean up to this descriptor.
4459 	 */
4460 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4461 	tx_q->cur_tx = entry;
4462 
4463 	if (netif_msg_pktdata(priv)) {
4464 		netdev_dbg(priv->dev,
4465 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4466 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4467 			   entry, first, nfrags);
4468 
4469 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4470 		print_pkt(skb->data, skb->len);
4471 	}
4472 
4473 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4474 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4475 			  __func__);
4476 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4477 	}
4478 
4479 	dev->stats.tx_bytes += skb->len;
4480 
4481 	if (priv->sarc_type)
4482 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4483 
4484 	skb_tx_timestamp(skb);
4485 
4486 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4487 	 * problems because all the descriptors are actually ready to be
4488 	 * passed to the DMA engine.
4489 	 */
4490 	if (likely(!is_jumbo)) {
4491 		bool last_segment = (nfrags == 0);
4492 
4493 		des = dma_map_single(priv->device, skb->data,
4494 				     nopaged_len, DMA_TO_DEVICE);
4495 		if (dma_mapping_error(priv->device, des))
4496 			goto dma_map_err;
4497 
4498 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4499 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4500 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4501 
4502 		stmmac_set_desc_addr(priv, first, des);
4503 
4504 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4505 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4506 
4507 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4508 			     priv->hwts_tx_en)) {
4509 			/* declare that device is doing timestamping */
4510 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4511 			stmmac_enable_tx_timestamp(priv, first);
4512 		}
4513 
4514 		/* Prepare the first descriptor setting the OWN bit too */
4515 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4516 				csum_insertion, priv->mode, 0, last_segment,
4517 				skb->len);
4518 	}
4519 
4520 	if (tx_q->tbs & STMMAC_TBS_EN) {
4521 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4522 
4523 		tbs_desc = &tx_q->dma_entx[first_entry];
4524 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4525 	}
4526 
4527 	stmmac_set_tx_owner(priv, first);
4528 
4529 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4530 
4531 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4532 
4533 	stmmac_flush_tx_descriptors(priv, queue);
4534 	stmmac_tx_timer_arm(priv, queue);
4535 
4536 	return NETDEV_TX_OK;
4537 
4538 dma_map_err:
4539 	netdev_err(priv->dev, "Tx DMA map failed\n");
4540 	dev_kfree_skb(skb);
4541 	priv->dev->stats.tx_dropped++;
4542 	return NETDEV_TX_OK;
4543 }
4544 
4545 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4546 {
4547 	struct vlan_ethhdr *veth;
4548 	__be16 vlan_proto;
4549 	u16 vlanid;
4550 
4551 	veth = (struct vlan_ethhdr *)skb->data;
4552 	vlan_proto = veth->h_vlan_proto;
4553 
4554 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4555 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4556 	    (vlan_proto == htons(ETH_P_8021AD) &&
4557 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4558 		/* pop the vlan tag */
4559 		vlanid = ntohs(veth->h_vlan_TCI);
4560 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4561 		skb_pull(skb, VLAN_HLEN);
4562 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4563 	}
4564 }
4565 
4566 /**
4567  * stmmac_rx_refill - refill used skb preallocated buffers
4568  * @priv: driver private structure
4569  * @queue: RX queue index
4570  * Description : this is to reallocate the skb for the reception process
4571  * that is based on zero-copy.
4572  */
4573 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4574 {
4575 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4576 	int dirty = stmmac_rx_dirty(priv, queue);
4577 	unsigned int entry = rx_q->dirty_rx;
4578 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4579 
4580 	if (priv->dma_cap.addr64 <= 32)
4581 		gfp |= GFP_DMA32;
4582 
4583 	while (dirty-- > 0) {
4584 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4585 		struct dma_desc *p;
4586 		bool use_rx_wd;
4587 
4588 		if (priv->extend_desc)
4589 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4590 		else
4591 			p = rx_q->dma_rx + entry;
4592 
4593 		if (!buf->page) {
4594 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4595 			if (!buf->page)
4596 				break;
4597 		}
4598 
4599 		if (priv->sph && !buf->sec_page) {
4600 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4601 			if (!buf->sec_page)
4602 				break;
4603 
4604 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4605 		}
4606 
4607 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4608 
4609 		stmmac_set_desc_addr(priv, p, buf->addr);
4610 		if (priv->sph)
4611 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4612 		else
4613 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4614 		stmmac_refill_desc3(priv, rx_q, p);
4615 
4616 		rx_q->rx_count_frames++;
4617 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4618 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4619 			rx_q->rx_count_frames = 0;
4620 
4621 		use_rx_wd = !priv->rx_coal_frames[queue];
4622 		use_rx_wd |= rx_q->rx_count_frames > 0;
4623 		if (!priv->use_riwt)
4624 			use_rx_wd = false;
4625 
4626 		dma_wmb();
4627 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4628 
4629 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4630 	}
4631 	rx_q->dirty_rx = entry;
4632 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4633 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4634 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4635 }
4636 
4637 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4638 				       struct dma_desc *p,
4639 				       int status, unsigned int len)
4640 {
4641 	unsigned int plen = 0, hlen = 0;
4642 	int coe = priv->hw->rx_csum;
4643 
4644 	/* Not first descriptor, buffer is always zero */
4645 	if (priv->sph && len)
4646 		return 0;
4647 
4648 	/* First descriptor, get split header length */
4649 	stmmac_get_rx_header_len(priv, p, &hlen);
4650 	if (priv->sph && hlen) {
4651 		priv->xstats.rx_split_hdr_pkt_n++;
4652 		return hlen;
4653 	}
4654 
4655 	/* First descriptor, not last descriptor and not split header */
4656 	if (status & rx_not_ls)
4657 		return priv->dma_conf.dma_buf_sz;
4658 
4659 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4660 
4661 	/* First descriptor and last descriptor and not split header */
4662 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4663 }
4664 
4665 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4666 				       struct dma_desc *p,
4667 				       int status, unsigned int len)
4668 {
4669 	int coe = priv->hw->rx_csum;
4670 	unsigned int plen = 0;
4671 
4672 	/* Not split header, buffer is not available */
4673 	if (!priv->sph)
4674 		return 0;
4675 
4676 	/* Not last descriptor */
4677 	if (status & rx_not_ls)
4678 		return priv->dma_conf.dma_buf_sz;
4679 
4680 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4681 
4682 	/* Last descriptor */
4683 	return plen - len;
4684 }
4685 
4686 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4687 				struct xdp_frame *xdpf, bool dma_map)
4688 {
4689 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4690 	unsigned int entry = tx_q->cur_tx;
4691 	struct dma_desc *tx_desc;
4692 	dma_addr_t dma_addr;
4693 	bool set_ic;
4694 
4695 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4696 		return STMMAC_XDP_CONSUMED;
4697 
4698 	if (likely(priv->extend_desc))
4699 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4700 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4701 		tx_desc = &tx_q->dma_entx[entry].basic;
4702 	else
4703 		tx_desc = tx_q->dma_tx + entry;
4704 
4705 	if (dma_map) {
4706 		dma_addr = dma_map_single(priv->device, xdpf->data,
4707 					  xdpf->len, DMA_TO_DEVICE);
4708 		if (dma_mapping_error(priv->device, dma_addr))
4709 			return STMMAC_XDP_CONSUMED;
4710 
4711 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4712 	} else {
4713 		struct page *page = virt_to_page(xdpf->data);
4714 
4715 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4716 			   xdpf->headroom;
4717 		dma_sync_single_for_device(priv->device, dma_addr,
4718 					   xdpf->len, DMA_BIDIRECTIONAL);
4719 
4720 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4721 	}
4722 
4723 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4724 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4725 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4726 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4727 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4728 
4729 	tx_q->xdpf[entry] = xdpf;
4730 
4731 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4732 
4733 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4734 			       true, priv->mode, true, true,
4735 			       xdpf->len);
4736 
4737 	tx_q->tx_count_frames++;
4738 
4739 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4740 		set_ic = true;
4741 	else
4742 		set_ic = false;
4743 
4744 	if (set_ic) {
4745 		tx_q->tx_count_frames = 0;
4746 		stmmac_set_tx_ic(priv, tx_desc);
4747 		priv->xstats.tx_set_ic_bit++;
4748 	}
4749 
4750 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4751 
4752 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4753 	tx_q->cur_tx = entry;
4754 
4755 	return STMMAC_XDP_TX;
4756 }
4757 
4758 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4759 				   int cpu)
4760 {
4761 	int index = cpu;
4762 
4763 	if (unlikely(index < 0))
4764 		index = 0;
4765 
4766 	while (index >= priv->plat->tx_queues_to_use)
4767 		index -= priv->plat->tx_queues_to_use;
4768 
4769 	return index;
4770 }
4771 
4772 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4773 				struct xdp_buff *xdp)
4774 {
4775 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4776 	int cpu = smp_processor_id();
4777 	struct netdev_queue *nq;
4778 	int queue;
4779 	int res;
4780 
4781 	if (unlikely(!xdpf))
4782 		return STMMAC_XDP_CONSUMED;
4783 
4784 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4785 	nq = netdev_get_tx_queue(priv->dev, queue);
4786 
4787 	__netif_tx_lock(nq, cpu);
4788 	/* Avoids TX time-out as we are sharing with slow path */
4789 	txq_trans_cond_update(nq);
4790 
4791 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4792 	if (res == STMMAC_XDP_TX)
4793 		stmmac_flush_tx_descriptors(priv, queue);
4794 
4795 	__netif_tx_unlock(nq);
4796 
4797 	return res;
4798 }
4799 
4800 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4801 				 struct bpf_prog *prog,
4802 				 struct xdp_buff *xdp)
4803 {
4804 	u32 act;
4805 	int res;
4806 
4807 	act = bpf_prog_run_xdp(prog, xdp);
4808 	switch (act) {
4809 	case XDP_PASS:
4810 		res = STMMAC_XDP_PASS;
4811 		break;
4812 	case XDP_TX:
4813 		res = stmmac_xdp_xmit_back(priv, xdp);
4814 		break;
4815 	case XDP_REDIRECT:
4816 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4817 			res = STMMAC_XDP_CONSUMED;
4818 		else
4819 			res = STMMAC_XDP_REDIRECT;
4820 		break;
4821 	default:
4822 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4823 		fallthrough;
4824 	case XDP_ABORTED:
4825 		trace_xdp_exception(priv->dev, prog, act);
4826 		fallthrough;
4827 	case XDP_DROP:
4828 		res = STMMAC_XDP_CONSUMED;
4829 		break;
4830 	}
4831 
4832 	return res;
4833 }
4834 
4835 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4836 					   struct xdp_buff *xdp)
4837 {
4838 	struct bpf_prog *prog;
4839 	int res;
4840 
4841 	prog = READ_ONCE(priv->xdp_prog);
4842 	if (!prog) {
4843 		res = STMMAC_XDP_PASS;
4844 		goto out;
4845 	}
4846 
4847 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4848 out:
4849 	return ERR_PTR(-res);
4850 }
4851 
4852 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4853 				   int xdp_status)
4854 {
4855 	int cpu = smp_processor_id();
4856 	int queue;
4857 
4858 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4859 
4860 	if (xdp_status & STMMAC_XDP_TX)
4861 		stmmac_tx_timer_arm(priv, queue);
4862 
4863 	if (xdp_status & STMMAC_XDP_REDIRECT)
4864 		xdp_do_flush();
4865 }
4866 
4867 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4868 					       struct xdp_buff *xdp)
4869 {
4870 	unsigned int metasize = xdp->data - xdp->data_meta;
4871 	unsigned int datasize = xdp->data_end - xdp->data;
4872 	struct sk_buff *skb;
4873 
4874 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4875 			       xdp->data_end - xdp->data_hard_start,
4876 			       GFP_ATOMIC | __GFP_NOWARN);
4877 	if (unlikely(!skb))
4878 		return NULL;
4879 
4880 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4881 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4882 	if (metasize)
4883 		skb_metadata_set(skb, metasize);
4884 
4885 	return skb;
4886 }
4887 
4888 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4889 				   struct dma_desc *p, struct dma_desc *np,
4890 				   struct xdp_buff *xdp)
4891 {
4892 	struct stmmac_channel *ch = &priv->channel[queue];
4893 	unsigned int len = xdp->data_end - xdp->data;
4894 	enum pkt_hash_types hash_type;
4895 	int coe = priv->hw->rx_csum;
4896 	struct sk_buff *skb;
4897 	u32 hash;
4898 
4899 	skb = stmmac_construct_skb_zc(ch, xdp);
4900 	if (!skb) {
4901 		priv->dev->stats.rx_dropped++;
4902 		return;
4903 	}
4904 
4905 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4906 	stmmac_rx_vlan(priv->dev, skb);
4907 	skb->protocol = eth_type_trans(skb, priv->dev);
4908 
4909 	if (unlikely(!coe))
4910 		skb_checksum_none_assert(skb);
4911 	else
4912 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4913 
4914 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4915 		skb_set_hash(skb, hash, hash_type);
4916 
4917 	skb_record_rx_queue(skb, queue);
4918 	napi_gro_receive(&ch->rxtx_napi, skb);
4919 
4920 	priv->dev->stats.rx_packets++;
4921 	priv->dev->stats.rx_bytes += len;
4922 }
4923 
4924 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4925 {
4926 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4927 	unsigned int entry = rx_q->dirty_rx;
4928 	struct dma_desc *rx_desc = NULL;
4929 	bool ret = true;
4930 
4931 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4932 
4933 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4934 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4935 		dma_addr_t dma_addr;
4936 		bool use_rx_wd;
4937 
4938 		if (!buf->xdp) {
4939 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4940 			if (!buf->xdp) {
4941 				ret = false;
4942 				break;
4943 			}
4944 		}
4945 
4946 		if (priv->extend_desc)
4947 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4948 		else
4949 			rx_desc = rx_q->dma_rx + entry;
4950 
4951 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4952 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4953 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4954 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4955 
4956 		rx_q->rx_count_frames++;
4957 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4958 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4959 			rx_q->rx_count_frames = 0;
4960 
4961 		use_rx_wd = !priv->rx_coal_frames[queue];
4962 		use_rx_wd |= rx_q->rx_count_frames > 0;
4963 		if (!priv->use_riwt)
4964 			use_rx_wd = false;
4965 
4966 		dma_wmb();
4967 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4968 
4969 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4970 	}
4971 
4972 	if (rx_desc) {
4973 		rx_q->dirty_rx = entry;
4974 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4975 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4976 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4977 	}
4978 
4979 	return ret;
4980 }
4981 
4982 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4983 {
4984 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4985 	unsigned int count = 0, error = 0, len = 0;
4986 	int dirty = stmmac_rx_dirty(priv, queue);
4987 	unsigned int next_entry = rx_q->cur_rx;
4988 	unsigned int desc_size;
4989 	struct bpf_prog *prog;
4990 	bool failure = false;
4991 	int xdp_status = 0;
4992 	int status = 0;
4993 
4994 	if (netif_msg_rx_status(priv)) {
4995 		void *rx_head;
4996 
4997 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4998 		if (priv->extend_desc) {
4999 			rx_head = (void *)rx_q->dma_erx;
5000 			desc_size = sizeof(struct dma_extended_desc);
5001 		} else {
5002 			rx_head = (void *)rx_q->dma_rx;
5003 			desc_size = sizeof(struct dma_desc);
5004 		}
5005 
5006 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5007 				    rx_q->dma_rx_phy, desc_size);
5008 	}
5009 	while (count < limit) {
5010 		struct stmmac_rx_buffer *buf;
5011 		unsigned int buf1_len = 0;
5012 		struct dma_desc *np, *p;
5013 		int entry;
5014 		int res;
5015 
5016 		if (!count && rx_q->state_saved) {
5017 			error = rx_q->state.error;
5018 			len = rx_q->state.len;
5019 		} else {
5020 			rx_q->state_saved = false;
5021 			error = 0;
5022 			len = 0;
5023 		}
5024 
5025 		if (count >= limit)
5026 			break;
5027 
5028 read_again:
5029 		buf1_len = 0;
5030 		entry = next_entry;
5031 		buf = &rx_q->buf_pool[entry];
5032 
5033 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5034 			failure = failure ||
5035 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5036 			dirty = 0;
5037 		}
5038 
5039 		if (priv->extend_desc)
5040 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5041 		else
5042 			p = rx_q->dma_rx + entry;
5043 
5044 		/* read the status of the incoming frame */
5045 		status = stmmac_rx_status(priv, &priv->dev->stats,
5046 					  &priv->xstats, p);
5047 		/* check if managed by the DMA otherwise go ahead */
5048 		if (unlikely(status & dma_own))
5049 			break;
5050 
5051 		/* Prefetch the next RX descriptor */
5052 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5053 						priv->dma_conf.dma_rx_size);
5054 		next_entry = rx_q->cur_rx;
5055 
5056 		if (priv->extend_desc)
5057 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5058 		else
5059 			np = rx_q->dma_rx + next_entry;
5060 
5061 		prefetch(np);
5062 
5063 		/* Ensure a valid XSK buffer before proceed */
5064 		if (!buf->xdp)
5065 			break;
5066 
5067 		if (priv->extend_desc)
5068 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5069 						  &priv->xstats,
5070 						  rx_q->dma_erx + entry);
5071 		if (unlikely(status == discard_frame)) {
5072 			xsk_buff_free(buf->xdp);
5073 			buf->xdp = NULL;
5074 			dirty++;
5075 			error = 1;
5076 			if (!priv->hwts_rx_en)
5077 				priv->dev->stats.rx_errors++;
5078 		}
5079 
5080 		if (unlikely(error && (status & rx_not_ls)))
5081 			goto read_again;
5082 		if (unlikely(error)) {
5083 			count++;
5084 			continue;
5085 		}
5086 
5087 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5088 		if (likely(status & rx_not_ls)) {
5089 			xsk_buff_free(buf->xdp);
5090 			buf->xdp = NULL;
5091 			dirty++;
5092 			count++;
5093 			goto read_again;
5094 		}
5095 
5096 		/* XDP ZC Frame only support primary buffers for now */
5097 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5098 		len += buf1_len;
5099 
5100 		/* ACS is disabled; strip manually. */
5101 		if (likely(!(status & rx_not_ls))) {
5102 			buf1_len -= ETH_FCS_LEN;
5103 			len -= ETH_FCS_LEN;
5104 		}
5105 
5106 		/* RX buffer is good and fit into a XSK pool buffer */
5107 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5108 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5109 
5110 		prog = READ_ONCE(priv->xdp_prog);
5111 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5112 
5113 		switch (res) {
5114 		case STMMAC_XDP_PASS:
5115 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5116 			xsk_buff_free(buf->xdp);
5117 			break;
5118 		case STMMAC_XDP_CONSUMED:
5119 			xsk_buff_free(buf->xdp);
5120 			priv->dev->stats.rx_dropped++;
5121 			break;
5122 		case STMMAC_XDP_TX:
5123 		case STMMAC_XDP_REDIRECT:
5124 			xdp_status |= res;
5125 			break;
5126 		}
5127 
5128 		buf->xdp = NULL;
5129 		dirty++;
5130 		count++;
5131 	}
5132 
5133 	if (status & rx_not_ls) {
5134 		rx_q->state_saved = true;
5135 		rx_q->state.error = error;
5136 		rx_q->state.len = len;
5137 	}
5138 
5139 	stmmac_finalize_xdp_rx(priv, xdp_status);
5140 
5141 	priv->xstats.rx_pkt_n += count;
5142 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5143 
5144 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5145 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5146 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5147 		else
5148 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5149 
5150 		return (int)count;
5151 	}
5152 
5153 	return failure ? limit : (int)count;
5154 }
5155 
5156 /**
5157  * stmmac_rx - manage the receive process
5158  * @priv: driver private structure
5159  * @limit: napi bugget
5160  * @queue: RX queue index.
5161  * Description :  this the function called by the napi poll method.
5162  * It gets all the frames inside the ring.
5163  */
5164 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5165 {
5166 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5167 	struct stmmac_channel *ch = &priv->channel[queue];
5168 	unsigned int count = 0, error = 0, len = 0;
5169 	int status = 0, coe = priv->hw->rx_csum;
5170 	unsigned int next_entry = rx_q->cur_rx;
5171 	enum dma_data_direction dma_dir;
5172 	unsigned int desc_size;
5173 	struct sk_buff *skb = NULL;
5174 	struct xdp_buff xdp;
5175 	int xdp_status = 0;
5176 	int buf_sz;
5177 
5178 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5179 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5180 
5181 	if (netif_msg_rx_status(priv)) {
5182 		void *rx_head;
5183 
5184 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5185 		if (priv->extend_desc) {
5186 			rx_head = (void *)rx_q->dma_erx;
5187 			desc_size = sizeof(struct dma_extended_desc);
5188 		} else {
5189 			rx_head = (void *)rx_q->dma_rx;
5190 			desc_size = sizeof(struct dma_desc);
5191 		}
5192 
5193 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5194 				    rx_q->dma_rx_phy, desc_size);
5195 	}
5196 	while (count < limit) {
5197 		unsigned int buf1_len = 0, buf2_len = 0;
5198 		enum pkt_hash_types hash_type;
5199 		struct stmmac_rx_buffer *buf;
5200 		struct dma_desc *np, *p;
5201 		int entry;
5202 		u32 hash;
5203 
5204 		if (!count && rx_q->state_saved) {
5205 			skb = rx_q->state.skb;
5206 			error = rx_q->state.error;
5207 			len = rx_q->state.len;
5208 		} else {
5209 			rx_q->state_saved = false;
5210 			skb = NULL;
5211 			error = 0;
5212 			len = 0;
5213 		}
5214 
5215 		if (count >= limit)
5216 			break;
5217 
5218 read_again:
5219 		buf1_len = 0;
5220 		buf2_len = 0;
5221 		entry = next_entry;
5222 		buf = &rx_q->buf_pool[entry];
5223 
5224 		if (priv->extend_desc)
5225 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5226 		else
5227 			p = rx_q->dma_rx + entry;
5228 
5229 		/* read the status of the incoming frame */
5230 		status = stmmac_rx_status(priv, &priv->dev->stats,
5231 				&priv->xstats, p);
5232 		/* check if managed by the DMA otherwise go ahead */
5233 		if (unlikely(status & dma_own))
5234 			break;
5235 
5236 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5237 						priv->dma_conf.dma_rx_size);
5238 		next_entry = rx_q->cur_rx;
5239 
5240 		if (priv->extend_desc)
5241 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5242 		else
5243 			np = rx_q->dma_rx + next_entry;
5244 
5245 		prefetch(np);
5246 
5247 		if (priv->extend_desc)
5248 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5249 					&priv->xstats, rx_q->dma_erx + entry);
5250 		if (unlikely(status == discard_frame)) {
5251 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5252 			buf->page = NULL;
5253 			error = 1;
5254 			if (!priv->hwts_rx_en)
5255 				priv->dev->stats.rx_errors++;
5256 		}
5257 
5258 		if (unlikely(error && (status & rx_not_ls)))
5259 			goto read_again;
5260 		if (unlikely(error)) {
5261 			dev_kfree_skb(skb);
5262 			skb = NULL;
5263 			count++;
5264 			continue;
5265 		}
5266 
5267 		/* Buffer is good. Go on. */
5268 
5269 		prefetch(page_address(buf->page) + buf->page_offset);
5270 		if (buf->sec_page)
5271 			prefetch(page_address(buf->sec_page));
5272 
5273 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5274 		len += buf1_len;
5275 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5276 		len += buf2_len;
5277 
5278 		/* ACS is disabled; strip manually. */
5279 		if (likely(!(status & rx_not_ls))) {
5280 			if (buf2_len) {
5281 				buf2_len -= ETH_FCS_LEN;
5282 				len -= ETH_FCS_LEN;
5283 			} else if (buf1_len) {
5284 				buf1_len -= ETH_FCS_LEN;
5285 				len -= ETH_FCS_LEN;
5286 			}
5287 		}
5288 
5289 		if (!skb) {
5290 			unsigned int pre_len, sync_len;
5291 
5292 			dma_sync_single_for_cpu(priv->device, buf->addr,
5293 						buf1_len, dma_dir);
5294 
5295 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5296 			xdp_prepare_buff(&xdp, page_address(buf->page),
5297 					 buf->page_offset, buf1_len, false);
5298 
5299 			pre_len = xdp.data_end - xdp.data_hard_start -
5300 				  buf->page_offset;
5301 			skb = stmmac_xdp_run_prog(priv, &xdp);
5302 			/* Due xdp_adjust_tail: DMA sync for_device
5303 			 * cover max len CPU touch
5304 			 */
5305 			sync_len = xdp.data_end - xdp.data_hard_start -
5306 				   buf->page_offset;
5307 			sync_len = max(sync_len, pre_len);
5308 
5309 			/* For Not XDP_PASS verdict */
5310 			if (IS_ERR(skb)) {
5311 				unsigned int xdp_res = -PTR_ERR(skb);
5312 
5313 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5314 					page_pool_put_page(rx_q->page_pool,
5315 							   virt_to_head_page(xdp.data),
5316 							   sync_len, true);
5317 					buf->page = NULL;
5318 					priv->dev->stats.rx_dropped++;
5319 
5320 					/* Clear skb as it was set as
5321 					 * status by XDP program.
5322 					 */
5323 					skb = NULL;
5324 
5325 					if (unlikely((status & rx_not_ls)))
5326 						goto read_again;
5327 
5328 					count++;
5329 					continue;
5330 				} else if (xdp_res & (STMMAC_XDP_TX |
5331 						      STMMAC_XDP_REDIRECT)) {
5332 					xdp_status |= xdp_res;
5333 					buf->page = NULL;
5334 					skb = NULL;
5335 					count++;
5336 					continue;
5337 				}
5338 			}
5339 		}
5340 
5341 		if (!skb) {
5342 			/* XDP program may expand or reduce tail */
5343 			buf1_len = xdp.data_end - xdp.data;
5344 
5345 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5346 			if (!skb) {
5347 				priv->dev->stats.rx_dropped++;
5348 				count++;
5349 				goto drain_data;
5350 			}
5351 
5352 			/* XDP program may adjust header */
5353 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5354 			skb_put(skb, buf1_len);
5355 
5356 			/* Data payload copied into SKB, page ready for recycle */
5357 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5358 			buf->page = NULL;
5359 		} else if (buf1_len) {
5360 			dma_sync_single_for_cpu(priv->device, buf->addr,
5361 						buf1_len, dma_dir);
5362 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5363 					buf->page, buf->page_offset, buf1_len,
5364 					priv->dma_conf.dma_buf_sz);
5365 
5366 			/* Data payload appended into SKB */
5367 			page_pool_release_page(rx_q->page_pool, buf->page);
5368 			buf->page = NULL;
5369 		}
5370 
5371 		if (buf2_len) {
5372 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5373 						buf2_len, dma_dir);
5374 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5375 					buf->sec_page, 0, buf2_len,
5376 					priv->dma_conf.dma_buf_sz);
5377 
5378 			/* Data payload appended into SKB */
5379 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5380 			buf->sec_page = NULL;
5381 		}
5382 
5383 drain_data:
5384 		if (likely(status & rx_not_ls))
5385 			goto read_again;
5386 		if (!skb)
5387 			continue;
5388 
5389 		/* Got entire packet into SKB. Finish it. */
5390 
5391 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5392 		stmmac_rx_vlan(priv->dev, skb);
5393 		skb->protocol = eth_type_trans(skb, priv->dev);
5394 
5395 		if (unlikely(!coe))
5396 			skb_checksum_none_assert(skb);
5397 		else
5398 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5399 
5400 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5401 			skb_set_hash(skb, hash, hash_type);
5402 
5403 		skb_record_rx_queue(skb, queue);
5404 		napi_gro_receive(&ch->rx_napi, skb);
5405 		skb = NULL;
5406 
5407 		priv->dev->stats.rx_packets++;
5408 		priv->dev->stats.rx_bytes += len;
5409 		count++;
5410 	}
5411 
5412 	if (status & rx_not_ls || skb) {
5413 		rx_q->state_saved = true;
5414 		rx_q->state.skb = skb;
5415 		rx_q->state.error = error;
5416 		rx_q->state.len = len;
5417 	}
5418 
5419 	stmmac_finalize_xdp_rx(priv, xdp_status);
5420 
5421 	stmmac_rx_refill(priv, queue);
5422 
5423 	priv->xstats.rx_pkt_n += count;
5424 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5425 
5426 	return count;
5427 }
5428 
5429 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5430 {
5431 	struct stmmac_channel *ch =
5432 		container_of(napi, struct stmmac_channel, rx_napi);
5433 	struct stmmac_priv *priv = ch->priv_data;
5434 	u32 chan = ch->index;
5435 	int work_done;
5436 
5437 	priv->xstats.napi_poll++;
5438 
5439 	work_done = stmmac_rx(priv, budget, chan);
5440 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5441 		unsigned long flags;
5442 
5443 		spin_lock_irqsave(&ch->lock, flags);
5444 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5445 		spin_unlock_irqrestore(&ch->lock, flags);
5446 	}
5447 
5448 	return work_done;
5449 }
5450 
5451 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5452 {
5453 	struct stmmac_channel *ch =
5454 		container_of(napi, struct stmmac_channel, tx_napi);
5455 	struct stmmac_priv *priv = ch->priv_data;
5456 	u32 chan = ch->index;
5457 	int work_done;
5458 
5459 	priv->xstats.napi_poll++;
5460 
5461 	work_done = stmmac_tx_clean(priv, budget, chan);
5462 	work_done = min(work_done, budget);
5463 
5464 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5465 		unsigned long flags;
5466 
5467 		spin_lock_irqsave(&ch->lock, flags);
5468 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5469 		spin_unlock_irqrestore(&ch->lock, flags);
5470 	}
5471 
5472 	return work_done;
5473 }
5474 
5475 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5476 {
5477 	struct stmmac_channel *ch =
5478 		container_of(napi, struct stmmac_channel, rxtx_napi);
5479 	struct stmmac_priv *priv = ch->priv_data;
5480 	int rx_done, tx_done, rxtx_done;
5481 	u32 chan = ch->index;
5482 
5483 	priv->xstats.napi_poll++;
5484 
5485 	tx_done = stmmac_tx_clean(priv, budget, chan);
5486 	tx_done = min(tx_done, budget);
5487 
5488 	rx_done = stmmac_rx_zc(priv, budget, chan);
5489 
5490 	rxtx_done = max(tx_done, rx_done);
5491 
5492 	/* If either TX or RX work is not complete, return budget
5493 	 * and keep pooling
5494 	 */
5495 	if (rxtx_done >= budget)
5496 		return budget;
5497 
5498 	/* all work done, exit the polling mode */
5499 	if (napi_complete_done(napi, rxtx_done)) {
5500 		unsigned long flags;
5501 
5502 		spin_lock_irqsave(&ch->lock, flags);
5503 		/* Both RX and TX work done are compelte,
5504 		 * so enable both RX & TX IRQs.
5505 		 */
5506 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5507 		spin_unlock_irqrestore(&ch->lock, flags);
5508 	}
5509 
5510 	return min(rxtx_done, budget - 1);
5511 }
5512 
5513 /**
5514  *  stmmac_tx_timeout
5515  *  @dev : Pointer to net device structure
5516  *  @txqueue: the index of the hanging transmit queue
5517  *  Description: this function is called when a packet transmission fails to
5518  *   complete within a reasonable time. The driver will mark the error in the
5519  *   netdev structure and arrange for the device to be reset to a sane state
5520  *   in order to transmit a new packet.
5521  */
5522 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5523 {
5524 	struct stmmac_priv *priv = netdev_priv(dev);
5525 
5526 	stmmac_global_err(priv);
5527 }
5528 
5529 /**
5530  *  stmmac_set_rx_mode - entry point for multicast addressing
5531  *  @dev : pointer to the device structure
5532  *  Description:
5533  *  This function is a driver entry point which gets called by the kernel
5534  *  whenever multicast addresses must be enabled/disabled.
5535  *  Return value:
5536  *  void.
5537  */
5538 static void stmmac_set_rx_mode(struct net_device *dev)
5539 {
5540 	struct stmmac_priv *priv = netdev_priv(dev);
5541 
5542 	stmmac_set_filter(priv, priv->hw, dev);
5543 }
5544 
5545 /**
5546  *  stmmac_change_mtu - entry point to change MTU size for the device.
5547  *  @dev : device pointer.
5548  *  @new_mtu : the new MTU size for the device.
5549  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5550  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5551  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5552  *  Return value:
5553  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5554  *  file on failure.
5555  */
5556 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5557 {
5558 	struct stmmac_priv *priv = netdev_priv(dev);
5559 	int txfifosz = priv->plat->tx_fifo_size;
5560 	struct stmmac_dma_conf *dma_conf;
5561 	const int mtu = new_mtu;
5562 	int ret;
5563 
5564 	if (txfifosz == 0)
5565 		txfifosz = priv->dma_cap.tx_fifo_size;
5566 
5567 	txfifosz /= priv->plat->tx_queues_to_use;
5568 
5569 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5570 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5571 		return -EINVAL;
5572 	}
5573 
5574 	new_mtu = STMMAC_ALIGN(new_mtu);
5575 
5576 	/* If condition true, FIFO is too small or MTU too large */
5577 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5578 		return -EINVAL;
5579 
5580 	if (netif_running(dev)) {
5581 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5582 		/* Try to allocate the new DMA conf with the new mtu */
5583 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5584 		if (IS_ERR(dma_conf)) {
5585 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5586 				   mtu);
5587 			return PTR_ERR(dma_conf);
5588 		}
5589 
5590 		stmmac_release(dev);
5591 
5592 		ret = __stmmac_open(dev, dma_conf);
5593 		kfree(dma_conf);
5594 		if (ret) {
5595 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5596 			return ret;
5597 		}
5598 
5599 		stmmac_set_rx_mode(dev);
5600 	}
5601 
5602 	dev->mtu = mtu;
5603 	netdev_update_features(dev);
5604 
5605 	return 0;
5606 }
5607 
5608 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5609 					     netdev_features_t features)
5610 {
5611 	struct stmmac_priv *priv = netdev_priv(dev);
5612 
5613 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5614 		features &= ~NETIF_F_RXCSUM;
5615 
5616 	if (!priv->plat->tx_coe)
5617 		features &= ~NETIF_F_CSUM_MASK;
5618 
5619 	/* Some GMAC devices have a bugged Jumbo frame support that
5620 	 * needs to have the Tx COE disabled for oversized frames
5621 	 * (due to limited buffer sizes). In this case we disable
5622 	 * the TX csum insertion in the TDES and not use SF.
5623 	 */
5624 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5625 		features &= ~NETIF_F_CSUM_MASK;
5626 
5627 	/* Disable tso if asked by ethtool */
5628 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5629 		if (features & NETIF_F_TSO)
5630 			priv->tso = true;
5631 		else
5632 			priv->tso = false;
5633 	}
5634 
5635 	return features;
5636 }
5637 
5638 static int stmmac_set_features(struct net_device *netdev,
5639 			       netdev_features_t features)
5640 {
5641 	struct stmmac_priv *priv = netdev_priv(netdev);
5642 
5643 	/* Keep the COE Type in case of csum is supporting */
5644 	if (features & NETIF_F_RXCSUM)
5645 		priv->hw->rx_csum = priv->plat->rx_coe;
5646 	else
5647 		priv->hw->rx_csum = 0;
5648 	/* No check needed because rx_coe has been set before and it will be
5649 	 * fixed in case of issue.
5650 	 */
5651 	stmmac_rx_ipc(priv, priv->hw);
5652 
5653 	if (priv->sph_cap) {
5654 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5655 		u32 chan;
5656 
5657 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5658 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5659 	}
5660 
5661 	return 0;
5662 }
5663 
5664 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5665 {
5666 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5667 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5668 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5669 	bool *hs_enable = &fpe_cfg->hs_enable;
5670 
5671 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5672 		return;
5673 
5674 	/* If LP has sent verify mPacket, LP is FPE capable */
5675 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5676 		if (*lp_state < FPE_STATE_CAPABLE)
5677 			*lp_state = FPE_STATE_CAPABLE;
5678 
5679 		/* If user has requested FPE enable, quickly response */
5680 		if (*hs_enable)
5681 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5682 						MPACKET_RESPONSE);
5683 	}
5684 
5685 	/* If Local has sent verify mPacket, Local is FPE capable */
5686 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5687 		if (*lo_state < FPE_STATE_CAPABLE)
5688 			*lo_state = FPE_STATE_CAPABLE;
5689 	}
5690 
5691 	/* If LP has sent response mPacket, LP is entering FPE ON */
5692 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5693 		*lp_state = FPE_STATE_ENTERING_ON;
5694 
5695 	/* If Local has sent response mPacket, Local is entering FPE ON */
5696 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5697 		*lo_state = FPE_STATE_ENTERING_ON;
5698 
5699 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5700 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5701 	    priv->fpe_wq) {
5702 		queue_work(priv->fpe_wq, &priv->fpe_task);
5703 	}
5704 }
5705 
5706 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5707 {
5708 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5709 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5710 	u32 queues_count;
5711 	u32 queue;
5712 	bool xmac;
5713 
5714 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5715 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5716 
5717 	if (priv->irq_wake)
5718 		pm_wakeup_event(priv->device, 0);
5719 
5720 	if (priv->dma_cap.estsel)
5721 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5722 				      &priv->xstats, tx_cnt);
5723 
5724 	if (priv->dma_cap.fpesel) {
5725 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5726 						   priv->dev);
5727 
5728 		stmmac_fpe_event_status(priv, status);
5729 	}
5730 
5731 	/* To handle GMAC own interrupts */
5732 	if ((priv->plat->has_gmac) || xmac) {
5733 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5734 
5735 		if (unlikely(status)) {
5736 			/* For LPI we need to save the tx status */
5737 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5738 				priv->tx_path_in_lpi_mode = true;
5739 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5740 				priv->tx_path_in_lpi_mode = false;
5741 		}
5742 
5743 		for (queue = 0; queue < queues_count; queue++) {
5744 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5745 							    queue);
5746 		}
5747 
5748 		/* PCS link status */
5749 		if (priv->hw->pcs) {
5750 			if (priv->xstats.pcs_link)
5751 				netif_carrier_on(priv->dev);
5752 			else
5753 				netif_carrier_off(priv->dev);
5754 		}
5755 
5756 		stmmac_timestamp_interrupt(priv, priv);
5757 	}
5758 }
5759 
5760 /**
5761  *  stmmac_interrupt - main ISR
5762  *  @irq: interrupt number.
5763  *  @dev_id: to pass the net device pointer.
5764  *  Description: this is the main driver interrupt service routine.
5765  *  It can call:
5766  *  o DMA service routine (to manage incoming frame reception and transmission
5767  *    status)
5768  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5769  *    interrupts.
5770  */
5771 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5772 {
5773 	struct net_device *dev = (struct net_device *)dev_id;
5774 	struct stmmac_priv *priv = netdev_priv(dev);
5775 
5776 	/* Check if adapter is up */
5777 	if (test_bit(STMMAC_DOWN, &priv->state))
5778 		return IRQ_HANDLED;
5779 
5780 	/* Check if a fatal error happened */
5781 	if (stmmac_safety_feat_interrupt(priv))
5782 		return IRQ_HANDLED;
5783 
5784 	/* To handle Common interrupts */
5785 	stmmac_common_interrupt(priv);
5786 
5787 	/* To handle DMA interrupts */
5788 	stmmac_dma_interrupt(priv);
5789 
5790 	return IRQ_HANDLED;
5791 }
5792 
5793 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5794 {
5795 	struct net_device *dev = (struct net_device *)dev_id;
5796 	struct stmmac_priv *priv = netdev_priv(dev);
5797 
5798 	if (unlikely(!dev)) {
5799 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5800 		return IRQ_NONE;
5801 	}
5802 
5803 	/* Check if adapter is up */
5804 	if (test_bit(STMMAC_DOWN, &priv->state))
5805 		return IRQ_HANDLED;
5806 
5807 	/* To handle Common interrupts */
5808 	stmmac_common_interrupt(priv);
5809 
5810 	return IRQ_HANDLED;
5811 }
5812 
5813 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5814 {
5815 	struct net_device *dev = (struct net_device *)dev_id;
5816 	struct stmmac_priv *priv = netdev_priv(dev);
5817 
5818 	if (unlikely(!dev)) {
5819 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5820 		return IRQ_NONE;
5821 	}
5822 
5823 	/* Check if adapter is up */
5824 	if (test_bit(STMMAC_DOWN, &priv->state))
5825 		return IRQ_HANDLED;
5826 
5827 	/* Check if a fatal error happened */
5828 	stmmac_safety_feat_interrupt(priv);
5829 
5830 	return IRQ_HANDLED;
5831 }
5832 
5833 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5834 {
5835 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5836 	struct stmmac_dma_conf *dma_conf;
5837 	int chan = tx_q->queue_index;
5838 	struct stmmac_priv *priv;
5839 	int status;
5840 
5841 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5842 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5843 
5844 	if (unlikely(!data)) {
5845 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5846 		return IRQ_NONE;
5847 	}
5848 
5849 	/* Check if adapter is up */
5850 	if (test_bit(STMMAC_DOWN, &priv->state))
5851 		return IRQ_HANDLED;
5852 
5853 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5854 
5855 	if (unlikely(status & tx_hard_error_bump_tc)) {
5856 		/* Try to bump up the dma threshold on this failure */
5857 		stmmac_bump_dma_threshold(priv, chan);
5858 	} else if (unlikely(status == tx_hard_error)) {
5859 		stmmac_tx_err(priv, chan);
5860 	}
5861 
5862 	return IRQ_HANDLED;
5863 }
5864 
5865 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5866 {
5867 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5868 	struct stmmac_dma_conf *dma_conf;
5869 	int chan = rx_q->queue_index;
5870 	struct stmmac_priv *priv;
5871 
5872 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5873 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5874 
5875 	if (unlikely(!data)) {
5876 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5877 		return IRQ_NONE;
5878 	}
5879 
5880 	/* Check if adapter is up */
5881 	if (test_bit(STMMAC_DOWN, &priv->state))
5882 		return IRQ_HANDLED;
5883 
5884 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5885 
5886 	return IRQ_HANDLED;
5887 }
5888 
5889 #ifdef CONFIG_NET_POLL_CONTROLLER
5890 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5891  * to allow network I/O with interrupts disabled.
5892  */
5893 static void stmmac_poll_controller(struct net_device *dev)
5894 {
5895 	struct stmmac_priv *priv = netdev_priv(dev);
5896 	int i;
5897 
5898 	/* If adapter is down, do nothing */
5899 	if (test_bit(STMMAC_DOWN, &priv->state))
5900 		return;
5901 
5902 	if (priv->plat->multi_msi_en) {
5903 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5904 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5905 
5906 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5907 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5908 	} else {
5909 		disable_irq(dev->irq);
5910 		stmmac_interrupt(dev->irq, dev);
5911 		enable_irq(dev->irq);
5912 	}
5913 }
5914 #endif
5915 
5916 /**
5917  *  stmmac_ioctl - Entry point for the Ioctl
5918  *  @dev: Device pointer.
5919  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5920  *  a proprietary structure used to pass information to the driver.
5921  *  @cmd: IOCTL command
5922  *  Description:
5923  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5924  */
5925 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5926 {
5927 	struct stmmac_priv *priv = netdev_priv (dev);
5928 	int ret = -EOPNOTSUPP;
5929 
5930 	if (!netif_running(dev))
5931 		return -EINVAL;
5932 
5933 	switch (cmd) {
5934 	case SIOCGMIIPHY:
5935 	case SIOCGMIIREG:
5936 	case SIOCSMIIREG:
5937 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5938 		break;
5939 	case SIOCSHWTSTAMP:
5940 		ret = stmmac_hwtstamp_set(dev, rq);
5941 		break;
5942 	case SIOCGHWTSTAMP:
5943 		ret = stmmac_hwtstamp_get(dev, rq);
5944 		break;
5945 	default:
5946 		break;
5947 	}
5948 
5949 	return ret;
5950 }
5951 
5952 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5953 				    void *cb_priv)
5954 {
5955 	struct stmmac_priv *priv = cb_priv;
5956 	int ret = -EOPNOTSUPP;
5957 
5958 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5959 		return ret;
5960 
5961 	__stmmac_disable_all_queues(priv);
5962 
5963 	switch (type) {
5964 	case TC_SETUP_CLSU32:
5965 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5966 		break;
5967 	case TC_SETUP_CLSFLOWER:
5968 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5969 		break;
5970 	default:
5971 		break;
5972 	}
5973 
5974 	stmmac_enable_all_queues(priv);
5975 	return ret;
5976 }
5977 
5978 static LIST_HEAD(stmmac_block_cb_list);
5979 
5980 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5981 			   void *type_data)
5982 {
5983 	struct stmmac_priv *priv = netdev_priv(ndev);
5984 
5985 	switch (type) {
5986 	case TC_SETUP_BLOCK:
5987 		return flow_block_cb_setup_simple(type_data,
5988 						  &stmmac_block_cb_list,
5989 						  stmmac_setup_tc_block_cb,
5990 						  priv, priv, true);
5991 	case TC_SETUP_QDISC_CBS:
5992 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5993 	case TC_SETUP_QDISC_TAPRIO:
5994 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5995 	case TC_SETUP_QDISC_ETF:
5996 		return stmmac_tc_setup_etf(priv, priv, type_data);
5997 	default:
5998 		return -EOPNOTSUPP;
5999 	}
6000 }
6001 
6002 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6003 			       struct net_device *sb_dev)
6004 {
6005 	int gso = skb_shinfo(skb)->gso_type;
6006 
6007 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6008 		/*
6009 		 * There is no way to determine the number of TSO/USO
6010 		 * capable Queues. Let's use always the Queue 0
6011 		 * because if TSO/USO is supported then at least this
6012 		 * one will be capable.
6013 		 */
6014 		return 0;
6015 	}
6016 
6017 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6018 }
6019 
6020 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6021 {
6022 	struct stmmac_priv *priv = netdev_priv(ndev);
6023 	int ret = 0;
6024 
6025 	ret = pm_runtime_resume_and_get(priv->device);
6026 	if (ret < 0)
6027 		return ret;
6028 
6029 	ret = eth_mac_addr(ndev, addr);
6030 	if (ret)
6031 		goto set_mac_error;
6032 
6033 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6034 
6035 set_mac_error:
6036 	pm_runtime_put(priv->device);
6037 
6038 	return ret;
6039 }
6040 
6041 #ifdef CONFIG_DEBUG_FS
6042 static struct dentry *stmmac_fs_dir;
6043 
6044 static void sysfs_display_ring(void *head, int size, int extend_desc,
6045 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6046 {
6047 	int i;
6048 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6049 	struct dma_desc *p = (struct dma_desc *)head;
6050 	dma_addr_t dma_addr;
6051 
6052 	for (i = 0; i < size; i++) {
6053 		if (extend_desc) {
6054 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6055 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6056 				   i, &dma_addr,
6057 				   le32_to_cpu(ep->basic.des0),
6058 				   le32_to_cpu(ep->basic.des1),
6059 				   le32_to_cpu(ep->basic.des2),
6060 				   le32_to_cpu(ep->basic.des3));
6061 			ep++;
6062 		} else {
6063 			dma_addr = dma_phy_addr + i * sizeof(*p);
6064 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6065 				   i, &dma_addr,
6066 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6067 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6068 			p++;
6069 		}
6070 		seq_printf(seq, "\n");
6071 	}
6072 }
6073 
6074 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6075 {
6076 	struct net_device *dev = seq->private;
6077 	struct stmmac_priv *priv = netdev_priv(dev);
6078 	u32 rx_count = priv->plat->rx_queues_to_use;
6079 	u32 tx_count = priv->plat->tx_queues_to_use;
6080 	u32 queue;
6081 
6082 	if ((dev->flags & IFF_UP) == 0)
6083 		return 0;
6084 
6085 	for (queue = 0; queue < rx_count; queue++) {
6086 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6087 
6088 		seq_printf(seq, "RX Queue %d:\n", queue);
6089 
6090 		if (priv->extend_desc) {
6091 			seq_printf(seq, "Extended descriptor ring:\n");
6092 			sysfs_display_ring((void *)rx_q->dma_erx,
6093 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6094 		} else {
6095 			seq_printf(seq, "Descriptor ring:\n");
6096 			sysfs_display_ring((void *)rx_q->dma_rx,
6097 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6098 		}
6099 	}
6100 
6101 	for (queue = 0; queue < tx_count; queue++) {
6102 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6103 
6104 		seq_printf(seq, "TX Queue %d:\n", queue);
6105 
6106 		if (priv->extend_desc) {
6107 			seq_printf(seq, "Extended descriptor ring:\n");
6108 			sysfs_display_ring((void *)tx_q->dma_etx,
6109 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6110 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6111 			seq_printf(seq, "Descriptor ring:\n");
6112 			sysfs_display_ring((void *)tx_q->dma_tx,
6113 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6114 		}
6115 	}
6116 
6117 	return 0;
6118 }
6119 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6120 
6121 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6122 {
6123 	struct net_device *dev = seq->private;
6124 	struct stmmac_priv *priv = netdev_priv(dev);
6125 
6126 	if (!priv->hw_cap_support) {
6127 		seq_printf(seq, "DMA HW features not supported\n");
6128 		return 0;
6129 	}
6130 
6131 	seq_printf(seq, "==============================\n");
6132 	seq_printf(seq, "\tDMA HW features\n");
6133 	seq_printf(seq, "==============================\n");
6134 
6135 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6136 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6137 	seq_printf(seq, "\t1000 Mbps: %s\n",
6138 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6139 	seq_printf(seq, "\tHalf duplex: %s\n",
6140 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6141 	seq_printf(seq, "\tHash Filter: %s\n",
6142 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6143 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6144 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6145 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6146 		   (priv->dma_cap.pcs) ? "Y" : "N");
6147 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6148 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6149 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6150 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6151 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6152 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6153 	seq_printf(seq, "\tRMON module: %s\n",
6154 		   (priv->dma_cap.rmon) ? "Y" : "N");
6155 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6156 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6157 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6158 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6159 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6160 		   (priv->dma_cap.eee) ? "Y" : "N");
6161 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6162 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6163 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6164 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6165 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6166 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6167 	} else {
6168 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6169 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6170 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6171 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6172 	}
6173 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6174 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6175 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6176 		   priv->dma_cap.number_rx_channel);
6177 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6178 		   priv->dma_cap.number_tx_channel);
6179 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6180 		   priv->dma_cap.number_rx_queues);
6181 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6182 		   priv->dma_cap.number_tx_queues);
6183 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6184 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6185 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6186 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6187 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6188 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6189 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6190 		   priv->dma_cap.pps_out_num);
6191 	seq_printf(seq, "\tSafety Features: %s\n",
6192 		   priv->dma_cap.asp ? "Y" : "N");
6193 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6194 		   priv->dma_cap.frpsel ? "Y" : "N");
6195 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6196 		   priv->dma_cap.addr64);
6197 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6198 		   priv->dma_cap.rssen ? "Y" : "N");
6199 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6200 		   priv->dma_cap.vlhash ? "Y" : "N");
6201 	seq_printf(seq, "\tSplit Header: %s\n",
6202 		   priv->dma_cap.sphen ? "Y" : "N");
6203 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6204 		   priv->dma_cap.vlins ? "Y" : "N");
6205 	seq_printf(seq, "\tDouble VLAN: %s\n",
6206 		   priv->dma_cap.dvlan ? "Y" : "N");
6207 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6208 		   priv->dma_cap.l3l4fnum);
6209 	seq_printf(seq, "\tARP Offloading: %s\n",
6210 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6211 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6212 		   priv->dma_cap.estsel ? "Y" : "N");
6213 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6214 		   priv->dma_cap.fpesel ? "Y" : "N");
6215 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6216 		   priv->dma_cap.tbssel ? "Y" : "N");
6217 	return 0;
6218 }
6219 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6220 
6221 /* Use network device events to rename debugfs file entries.
6222  */
6223 static int stmmac_device_event(struct notifier_block *unused,
6224 			       unsigned long event, void *ptr)
6225 {
6226 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6227 	struct stmmac_priv *priv = netdev_priv(dev);
6228 
6229 	if (dev->netdev_ops != &stmmac_netdev_ops)
6230 		goto done;
6231 
6232 	switch (event) {
6233 	case NETDEV_CHANGENAME:
6234 		if (priv->dbgfs_dir)
6235 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6236 							 priv->dbgfs_dir,
6237 							 stmmac_fs_dir,
6238 							 dev->name);
6239 		break;
6240 	}
6241 done:
6242 	return NOTIFY_DONE;
6243 }
6244 
6245 static struct notifier_block stmmac_notifier = {
6246 	.notifier_call = stmmac_device_event,
6247 };
6248 
6249 static void stmmac_init_fs(struct net_device *dev)
6250 {
6251 	struct stmmac_priv *priv = netdev_priv(dev);
6252 
6253 	rtnl_lock();
6254 
6255 	/* Create per netdev entries */
6256 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6257 
6258 	/* Entry to report DMA RX/TX rings */
6259 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6260 			    &stmmac_rings_status_fops);
6261 
6262 	/* Entry to report the DMA HW features */
6263 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6264 			    &stmmac_dma_cap_fops);
6265 
6266 	rtnl_unlock();
6267 }
6268 
6269 static void stmmac_exit_fs(struct net_device *dev)
6270 {
6271 	struct stmmac_priv *priv = netdev_priv(dev);
6272 
6273 	debugfs_remove_recursive(priv->dbgfs_dir);
6274 }
6275 #endif /* CONFIG_DEBUG_FS */
6276 
6277 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6278 {
6279 	unsigned char *data = (unsigned char *)&vid_le;
6280 	unsigned char data_byte = 0;
6281 	u32 crc = ~0x0;
6282 	u32 temp = 0;
6283 	int i, bits;
6284 
6285 	bits = get_bitmask_order(VLAN_VID_MASK);
6286 	for (i = 0; i < bits; i++) {
6287 		if ((i % 8) == 0)
6288 			data_byte = data[i / 8];
6289 
6290 		temp = ((crc & 1) ^ data_byte) & 1;
6291 		crc >>= 1;
6292 		data_byte >>= 1;
6293 
6294 		if (temp)
6295 			crc ^= 0xedb88320;
6296 	}
6297 
6298 	return crc;
6299 }
6300 
6301 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6302 {
6303 	u32 crc, hash = 0;
6304 	__le16 pmatch = 0;
6305 	int count = 0;
6306 	u16 vid = 0;
6307 
6308 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6309 		__le16 vid_le = cpu_to_le16(vid);
6310 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6311 		hash |= (1 << crc);
6312 		count++;
6313 	}
6314 
6315 	if (!priv->dma_cap.vlhash) {
6316 		if (count > 2) /* VID = 0 always passes filter */
6317 			return -EOPNOTSUPP;
6318 
6319 		pmatch = cpu_to_le16(vid);
6320 		hash = 0;
6321 	}
6322 
6323 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6324 }
6325 
6326 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6327 {
6328 	struct stmmac_priv *priv = netdev_priv(ndev);
6329 	bool is_double = false;
6330 	int ret;
6331 
6332 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6333 		is_double = true;
6334 
6335 	set_bit(vid, priv->active_vlans);
6336 	ret = stmmac_vlan_update(priv, is_double);
6337 	if (ret) {
6338 		clear_bit(vid, priv->active_vlans);
6339 		return ret;
6340 	}
6341 
6342 	if (priv->hw->num_vlan) {
6343 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6344 		if (ret)
6345 			return ret;
6346 	}
6347 
6348 	return 0;
6349 }
6350 
6351 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6352 {
6353 	struct stmmac_priv *priv = netdev_priv(ndev);
6354 	bool is_double = false;
6355 	int ret;
6356 
6357 	ret = pm_runtime_resume_and_get(priv->device);
6358 	if (ret < 0)
6359 		return ret;
6360 
6361 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6362 		is_double = true;
6363 
6364 	clear_bit(vid, priv->active_vlans);
6365 
6366 	if (priv->hw->num_vlan) {
6367 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6368 		if (ret)
6369 			goto del_vlan_error;
6370 	}
6371 
6372 	ret = stmmac_vlan_update(priv, is_double);
6373 
6374 del_vlan_error:
6375 	pm_runtime_put(priv->device);
6376 
6377 	return ret;
6378 }
6379 
6380 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6381 {
6382 	struct stmmac_priv *priv = netdev_priv(dev);
6383 
6384 	switch (bpf->command) {
6385 	case XDP_SETUP_PROG:
6386 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6387 	case XDP_SETUP_XSK_POOL:
6388 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6389 					     bpf->xsk.queue_id);
6390 	default:
6391 		return -EOPNOTSUPP;
6392 	}
6393 }
6394 
6395 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6396 			   struct xdp_frame **frames, u32 flags)
6397 {
6398 	struct stmmac_priv *priv = netdev_priv(dev);
6399 	int cpu = smp_processor_id();
6400 	struct netdev_queue *nq;
6401 	int i, nxmit = 0;
6402 	int queue;
6403 
6404 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6405 		return -ENETDOWN;
6406 
6407 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6408 		return -EINVAL;
6409 
6410 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6411 	nq = netdev_get_tx_queue(priv->dev, queue);
6412 
6413 	__netif_tx_lock(nq, cpu);
6414 	/* Avoids TX time-out as we are sharing with slow path */
6415 	txq_trans_cond_update(nq);
6416 
6417 	for (i = 0; i < num_frames; i++) {
6418 		int res;
6419 
6420 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6421 		if (res == STMMAC_XDP_CONSUMED)
6422 			break;
6423 
6424 		nxmit++;
6425 	}
6426 
6427 	if (flags & XDP_XMIT_FLUSH) {
6428 		stmmac_flush_tx_descriptors(priv, queue);
6429 		stmmac_tx_timer_arm(priv, queue);
6430 	}
6431 
6432 	__netif_tx_unlock(nq);
6433 
6434 	return nxmit;
6435 }
6436 
6437 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6438 {
6439 	struct stmmac_channel *ch = &priv->channel[queue];
6440 	unsigned long flags;
6441 
6442 	spin_lock_irqsave(&ch->lock, flags);
6443 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6444 	spin_unlock_irqrestore(&ch->lock, flags);
6445 
6446 	stmmac_stop_rx_dma(priv, queue);
6447 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6448 }
6449 
6450 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6451 {
6452 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6453 	struct stmmac_channel *ch = &priv->channel[queue];
6454 	unsigned long flags;
6455 	u32 buf_size;
6456 	int ret;
6457 
6458 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6459 	if (ret) {
6460 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6461 		return;
6462 	}
6463 
6464 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6465 	if (ret) {
6466 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6467 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6468 		return;
6469 	}
6470 
6471 	stmmac_reset_rx_queue(priv, queue);
6472 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6473 
6474 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6475 			    rx_q->dma_rx_phy, rx_q->queue_index);
6476 
6477 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6478 			     sizeof(struct dma_desc));
6479 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6480 			       rx_q->rx_tail_addr, rx_q->queue_index);
6481 
6482 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6483 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6484 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6485 				      buf_size,
6486 				      rx_q->queue_index);
6487 	} else {
6488 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6489 				      priv->dma_conf.dma_buf_sz,
6490 				      rx_q->queue_index);
6491 	}
6492 
6493 	stmmac_start_rx_dma(priv, queue);
6494 
6495 	spin_lock_irqsave(&ch->lock, flags);
6496 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6497 	spin_unlock_irqrestore(&ch->lock, flags);
6498 }
6499 
6500 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6501 {
6502 	struct stmmac_channel *ch = &priv->channel[queue];
6503 	unsigned long flags;
6504 
6505 	spin_lock_irqsave(&ch->lock, flags);
6506 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6507 	spin_unlock_irqrestore(&ch->lock, flags);
6508 
6509 	stmmac_stop_tx_dma(priv, queue);
6510 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6511 }
6512 
6513 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6514 {
6515 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6516 	struct stmmac_channel *ch = &priv->channel[queue];
6517 	unsigned long flags;
6518 	int ret;
6519 
6520 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6521 	if (ret) {
6522 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6523 		return;
6524 	}
6525 
6526 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6527 	if (ret) {
6528 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6529 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6530 		return;
6531 	}
6532 
6533 	stmmac_reset_tx_queue(priv, queue);
6534 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6535 
6536 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6537 			    tx_q->dma_tx_phy, tx_q->queue_index);
6538 
6539 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6540 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6541 
6542 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6543 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6544 			       tx_q->tx_tail_addr, tx_q->queue_index);
6545 
6546 	stmmac_start_tx_dma(priv, queue);
6547 
6548 	spin_lock_irqsave(&ch->lock, flags);
6549 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6550 	spin_unlock_irqrestore(&ch->lock, flags);
6551 }
6552 
6553 void stmmac_xdp_release(struct net_device *dev)
6554 {
6555 	struct stmmac_priv *priv = netdev_priv(dev);
6556 	u32 chan;
6557 
6558 	/* Ensure tx function is not running */
6559 	netif_tx_disable(dev);
6560 
6561 	/* Disable NAPI process */
6562 	stmmac_disable_all_queues(priv);
6563 
6564 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6565 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6566 
6567 	/* Free the IRQ lines */
6568 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6569 
6570 	/* Stop TX/RX DMA channels */
6571 	stmmac_stop_all_dma(priv);
6572 
6573 	/* Release and free the Rx/Tx resources */
6574 	free_dma_desc_resources(priv, &priv->dma_conf);
6575 
6576 	/* Disable the MAC Rx/Tx */
6577 	stmmac_mac_set(priv, priv->ioaddr, false);
6578 
6579 	/* set trans_start so we don't get spurious
6580 	 * watchdogs during reset
6581 	 */
6582 	netif_trans_update(dev);
6583 	netif_carrier_off(dev);
6584 }
6585 
6586 int stmmac_xdp_open(struct net_device *dev)
6587 {
6588 	struct stmmac_priv *priv = netdev_priv(dev);
6589 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6590 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6591 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6592 	struct stmmac_rx_queue *rx_q;
6593 	struct stmmac_tx_queue *tx_q;
6594 	u32 buf_size;
6595 	bool sph_en;
6596 	u32 chan;
6597 	int ret;
6598 
6599 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6600 	if (ret < 0) {
6601 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6602 			   __func__);
6603 		goto dma_desc_error;
6604 	}
6605 
6606 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6607 	if (ret < 0) {
6608 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6609 			   __func__);
6610 		goto init_error;
6611 	}
6612 
6613 	/* DMA CSR Channel configuration */
6614 	for (chan = 0; chan < dma_csr_ch; chan++) {
6615 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6616 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6617 	}
6618 
6619 	/* Adjust Split header */
6620 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6621 
6622 	/* DMA RX Channel Configuration */
6623 	for (chan = 0; chan < rx_cnt; chan++) {
6624 		rx_q = &priv->dma_conf.rx_queue[chan];
6625 
6626 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6627 				    rx_q->dma_rx_phy, chan);
6628 
6629 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6630 				     (rx_q->buf_alloc_num *
6631 				      sizeof(struct dma_desc));
6632 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6633 				       rx_q->rx_tail_addr, chan);
6634 
6635 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6636 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6637 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6638 					      buf_size,
6639 					      rx_q->queue_index);
6640 		} else {
6641 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6642 					      priv->dma_conf.dma_buf_sz,
6643 					      rx_q->queue_index);
6644 		}
6645 
6646 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6647 	}
6648 
6649 	/* DMA TX Channel Configuration */
6650 	for (chan = 0; chan < tx_cnt; chan++) {
6651 		tx_q = &priv->dma_conf.tx_queue[chan];
6652 
6653 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6654 				    tx_q->dma_tx_phy, chan);
6655 
6656 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6657 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6658 				       tx_q->tx_tail_addr, chan);
6659 
6660 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6661 		tx_q->txtimer.function = stmmac_tx_timer;
6662 	}
6663 
6664 	/* Enable the MAC Rx/Tx */
6665 	stmmac_mac_set(priv, priv->ioaddr, true);
6666 
6667 	/* Start Rx & Tx DMA Channels */
6668 	stmmac_start_all_dma(priv);
6669 
6670 	ret = stmmac_request_irq(dev);
6671 	if (ret)
6672 		goto irq_error;
6673 
6674 	/* Enable NAPI process*/
6675 	stmmac_enable_all_queues(priv);
6676 	netif_carrier_on(dev);
6677 	netif_tx_start_all_queues(dev);
6678 	stmmac_enable_all_dma_irq(priv);
6679 
6680 	return 0;
6681 
6682 irq_error:
6683 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6684 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6685 
6686 	stmmac_hw_teardown(dev);
6687 init_error:
6688 	free_dma_desc_resources(priv, &priv->dma_conf);
6689 dma_desc_error:
6690 	return ret;
6691 }
6692 
6693 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6694 {
6695 	struct stmmac_priv *priv = netdev_priv(dev);
6696 	struct stmmac_rx_queue *rx_q;
6697 	struct stmmac_tx_queue *tx_q;
6698 	struct stmmac_channel *ch;
6699 
6700 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6701 	    !netif_carrier_ok(priv->dev))
6702 		return -ENETDOWN;
6703 
6704 	if (!stmmac_xdp_is_enabled(priv))
6705 		return -EINVAL;
6706 
6707 	if (queue >= priv->plat->rx_queues_to_use ||
6708 	    queue >= priv->plat->tx_queues_to_use)
6709 		return -EINVAL;
6710 
6711 	rx_q = &priv->dma_conf.rx_queue[queue];
6712 	tx_q = &priv->dma_conf.tx_queue[queue];
6713 	ch = &priv->channel[queue];
6714 
6715 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6716 		return -EINVAL;
6717 
6718 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6719 		/* EQoS does not have per-DMA channel SW interrupt,
6720 		 * so we schedule RX Napi straight-away.
6721 		 */
6722 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6723 			__napi_schedule(&ch->rxtx_napi);
6724 	}
6725 
6726 	return 0;
6727 }
6728 
6729 static const struct net_device_ops stmmac_netdev_ops = {
6730 	.ndo_open = stmmac_open,
6731 	.ndo_start_xmit = stmmac_xmit,
6732 	.ndo_stop = stmmac_release,
6733 	.ndo_change_mtu = stmmac_change_mtu,
6734 	.ndo_fix_features = stmmac_fix_features,
6735 	.ndo_set_features = stmmac_set_features,
6736 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6737 	.ndo_tx_timeout = stmmac_tx_timeout,
6738 	.ndo_eth_ioctl = stmmac_ioctl,
6739 	.ndo_setup_tc = stmmac_setup_tc,
6740 	.ndo_select_queue = stmmac_select_queue,
6741 #ifdef CONFIG_NET_POLL_CONTROLLER
6742 	.ndo_poll_controller = stmmac_poll_controller,
6743 #endif
6744 	.ndo_set_mac_address = stmmac_set_mac_address,
6745 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6746 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6747 	.ndo_bpf = stmmac_bpf,
6748 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6749 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6750 };
6751 
6752 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6753 {
6754 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6755 		return;
6756 	if (test_bit(STMMAC_DOWN, &priv->state))
6757 		return;
6758 
6759 	netdev_err(priv->dev, "Reset adapter.\n");
6760 
6761 	rtnl_lock();
6762 	netif_trans_update(priv->dev);
6763 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6764 		usleep_range(1000, 2000);
6765 
6766 	set_bit(STMMAC_DOWN, &priv->state);
6767 	dev_close(priv->dev);
6768 	dev_open(priv->dev, NULL);
6769 	clear_bit(STMMAC_DOWN, &priv->state);
6770 	clear_bit(STMMAC_RESETING, &priv->state);
6771 	rtnl_unlock();
6772 }
6773 
6774 static void stmmac_service_task(struct work_struct *work)
6775 {
6776 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6777 			service_task);
6778 
6779 	stmmac_reset_subtask(priv);
6780 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6781 }
6782 
6783 /**
6784  *  stmmac_hw_init - Init the MAC device
6785  *  @priv: driver private structure
6786  *  Description: this function is to configure the MAC device according to
6787  *  some platform parameters or the HW capability register. It prepares the
6788  *  driver to use either ring or chain modes and to setup either enhanced or
6789  *  normal descriptors.
6790  */
6791 static int stmmac_hw_init(struct stmmac_priv *priv)
6792 {
6793 	int ret;
6794 
6795 	/* dwmac-sun8i only work in chain mode */
6796 	if (priv->plat->has_sun8i)
6797 		chain_mode = 1;
6798 	priv->chain_mode = chain_mode;
6799 
6800 	/* Initialize HW Interface */
6801 	ret = stmmac_hwif_init(priv);
6802 	if (ret)
6803 		return ret;
6804 
6805 	/* Get the HW capability (new GMAC newer than 3.50a) */
6806 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6807 	if (priv->hw_cap_support) {
6808 		dev_info(priv->device, "DMA HW capability register supported\n");
6809 
6810 		/* We can override some gmac/dma configuration fields: e.g.
6811 		 * enh_desc, tx_coe (e.g. that are passed through the
6812 		 * platform) with the values from the HW capability
6813 		 * register (if supported).
6814 		 */
6815 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6816 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6817 				!priv->plat->use_phy_wol;
6818 		priv->hw->pmt = priv->plat->pmt;
6819 		if (priv->dma_cap.hash_tb_sz) {
6820 			priv->hw->multicast_filter_bins =
6821 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6822 			priv->hw->mcast_bits_log2 =
6823 					ilog2(priv->hw->multicast_filter_bins);
6824 		}
6825 
6826 		/* TXCOE doesn't work in thresh DMA mode */
6827 		if (priv->plat->force_thresh_dma_mode)
6828 			priv->plat->tx_coe = 0;
6829 		else
6830 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6831 
6832 		/* In case of GMAC4 rx_coe is from HW cap register. */
6833 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6834 
6835 		if (priv->dma_cap.rx_coe_type2)
6836 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6837 		else if (priv->dma_cap.rx_coe_type1)
6838 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6839 
6840 	} else {
6841 		dev_info(priv->device, "No HW DMA feature register supported\n");
6842 	}
6843 
6844 	if (priv->plat->rx_coe) {
6845 		priv->hw->rx_csum = priv->plat->rx_coe;
6846 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6847 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6848 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6849 	}
6850 	if (priv->plat->tx_coe)
6851 		dev_info(priv->device, "TX Checksum insertion supported\n");
6852 
6853 	if (priv->plat->pmt) {
6854 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6855 		device_set_wakeup_capable(priv->device, 1);
6856 	}
6857 
6858 	if (priv->dma_cap.tsoen)
6859 		dev_info(priv->device, "TSO supported\n");
6860 
6861 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6862 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6863 
6864 	/* Run HW quirks, if any */
6865 	if (priv->hwif_quirks) {
6866 		ret = priv->hwif_quirks(priv);
6867 		if (ret)
6868 			return ret;
6869 	}
6870 
6871 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6872 	 * In some case, for example on bugged HW this feature
6873 	 * has to be disable and this can be done by passing the
6874 	 * riwt_off field from the platform.
6875 	 */
6876 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6877 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6878 		priv->use_riwt = 1;
6879 		dev_info(priv->device,
6880 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6881 	}
6882 
6883 	return 0;
6884 }
6885 
6886 static void stmmac_napi_add(struct net_device *dev)
6887 {
6888 	struct stmmac_priv *priv = netdev_priv(dev);
6889 	u32 queue, maxq;
6890 
6891 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6892 
6893 	for (queue = 0; queue < maxq; queue++) {
6894 		struct stmmac_channel *ch = &priv->channel[queue];
6895 
6896 		ch->priv_data = priv;
6897 		ch->index = queue;
6898 		spin_lock_init(&ch->lock);
6899 
6900 		if (queue < priv->plat->rx_queues_to_use) {
6901 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6902 		}
6903 		if (queue < priv->plat->tx_queues_to_use) {
6904 			netif_napi_add_tx(dev, &ch->tx_napi,
6905 					  stmmac_napi_poll_tx);
6906 		}
6907 		if (queue < priv->plat->rx_queues_to_use &&
6908 		    queue < priv->plat->tx_queues_to_use) {
6909 			netif_napi_add(dev, &ch->rxtx_napi,
6910 				       stmmac_napi_poll_rxtx);
6911 		}
6912 	}
6913 }
6914 
6915 static void stmmac_napi_del(struct net_device *dev)
6916 {
6917 	struct stmmac_priv *priv = netdev_priv(dev);
6918 	u32 queue, maxq;
6919 
6920 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6921 
6922 	for (queue = 0; queue < maxq; queue++) {
6923 		struct stmmac_channel *ch = &priv->channel[queue];
6924 
6925 		if (queue < priv->plat->rx_queues_to_use)
6926 			netif_napi_del(&ch->rx_napi);
6927 		if (queue < priv->plat->tx_queues_to_use)
6928 			netif_napi_del(&ch->tx_napi);
6929 		if (queue < priv->plat->rx_queues_to_use &&
6930 		    queue < priv->plat->tx_queues_to_use) {
6931 			netif_napi_del(&ch->rxtx_napi);
6932 		}
6933 	}
6934 }
6935 
6936 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6937 {
6938 	struct stmmac_priv *priv = netdev_priv(dev);
6939 	int ret = 0;
6940 
6941 	if (netif_running(dev))
6942 		stmmac_release(dev);
6943 
6944 	stmmac_napi_del(dev);
6945 
6946 	priv->plat->rx_queues_to_use = rx_cnt;
6947 	priv->plat->tx_queues_to_use = tx_cnt;
6948 
6949 	stmmac_napi_add(dev);
6950 
6951 	if (netif_running(dev))
6952 		ret = stmmac_open(dev);
6953 
6954 	return ret;
6955 }
6956 
6957 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6958 {
6959 	struct stmmac_priv *priv = netdev_priv(dev);
6960 	int ret = 0;
6961 
6962 	if (netif_running(dev))
6963 		stmmac_release(dev);
6964 
6965 	priv->dma_conf.dma_rx_size = rx_size;
6966 	priv->dma_conf.dma_tx_size = tx_size;
6967 
6968 	if (netif_running(dev))
6969 		ret = stmmac_open(dev);
6970 
6971 	return ret;
6972 }
6973 
6974 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6975 static void stmmac_fpe_lp_task(struct work_struct *work)
6976 {
6977 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6978 						fpe_task);
6979 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6980 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6981 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6982 	bool *hs_enable = &fpe_cfg->hs_enable;
6983 	bool *enable = &fpe_cfg->enable;
6984 	int retries = 20;
6985 
6986 	while (retries-- > 0) {
6987 		/* Bail out immediately if FPE handshake is OFF */
6988 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6989 			break;
6990 
6991 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6992 		    *lp_state == FPE_STATE_ENTERING_ON) {
6993 			stmmac_fpe_configure(priv, priv->ioaddr,
6994 					     priv->plat->tx_queues_to_use,
6995 					     priv->plat->rx_queues_to_use,
6996 					     *enable);
6997 
6998 			netdev_info(priv->dev, "configured FPE\n");
6999 
7000 			*lo_state = FPE_STATE_ON;
7001 			*lp_state = FPE_STATE_ON;
7002 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7003 			break;
7004 		}
7005 
7006 		if ((*lo_state == FPE_STATE_CAPABLE ||
7007 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7008 		     *lp_state != FPE_STATE_ON) {
7009 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7010 				    *lo_state, *lp_state);
7011 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7012 						MPACKET_VERIFY);
7013 		}
7014 		/* Sleep then retry */
7015 		msleep(500);
7016 	}
7017 
7018 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7019 }
7020 
7021 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7022 {
7023 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7024 		if (enable) {
7025 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7026 						MPACKET_VERIFY);
7027 		} else {
7028 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7029 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7030 		}
7031 
7032 		priv->plat->fpe_cfg->hs_enable = enable;
7033 	}
7034 }
7035 
7036 /**
7037  * stmmac_dvr_probe
7038  * @device: device pointer
7039  * @plat_dat: platform data pointer
7040  * @res: stmmac resource pointer
7041  * Description: this is the main probe function used to
7042  * call the alloc_etherdev, allocate the priv structure.
7043  * Return:
7044  * returns 0 on success, otherwise errno.
7045  */
7046 int stmmac_dvr_probe(struct device *device,
7047 		     struct plat_stmmacenet_data *plat_dat,
7048 		     struct stmmac_resources *res)
7049 {
7050 	struct net_device *ndev = NULL;
7051 	struct stmmac_priv *priv;
7052 	u32 rxq;
7053 	int i, ret = 0;
7054 
7055 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7056 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7057 	if (!ndev)
7058 		return -ENOMEM;
7059 
7060 	SET_NETDEV_DEV(ndev, device);
7061 
7062 	priv = netdev_priv(ndev);
7063 	priv->device = device;
7064 	priv->dev = ndev;
7065 
7066 	stmmac_set_ethtool_ops(ndev);
7067 	priv->pause = pause;
7068 	priv->plat = plat_dat;
7069 	priv->ioaddr = res->addr;
7070 	priv->dev->base_addr = (unsigned long)res->addr;
7071 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7072 
7073 	priv->dev->irq = res->irq;
7074 	priv->wol_irq = res->wol_irq;
7075 	priv->lpi_irq = res->lpi_irq;
7076 	priv->sfty_ce_irq = res->sfty_ce_irq;
7077 	priv->sfty_ue_irq = res->sfty_ue_irq;
7078 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7079 		priv->rx_irq[i] = res->rx_irq[i];
7080 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7081 		priv->tx_irq[i] = res->tx_irq[i];
7082 
7083 	if (!is_zero_ether_addr(res->mac))
7084 		eth_hw_addr_set(priv->dev, res->mac);
7085 
7086 	dev_set_drvdata(device, priv->dev);
7087 
7088 	/* Verify driver arguments */
7089 	stmmac_verify_args();
7090 
7091 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7092 	if (!priv->af_xdp_zc_qps)
7093 		return -ENOMEM;
7094 
7095 	/* Allocate workqueue */
7096 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7097 	if (!priv->wq) {
7098 		dev_err(priv->device, "failed to create workqueue\n");
7099 		return -ENOMEM;
7100 	}
7101 
7102 	INIT_WORK(&priv->service_task, stmmac_service_task);
7103 
7104 	/* Initialize Link Partner FPE workqueue */
7105 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7106 
7107 	/* Override with kernel parameters if supplied XXX CRS XXX
7108 	 * this needs to have multiple instances
7109 	 */
7110 	if ((phyaddr >= 0) && (phyaddr <= 31))
7111 		priv->plat->phy_addr = phyaddr;
7112 
7113 	if (priv->plat->stmmac_rst) {
7114 		ret = reset_control_assert(priv->plat->stmmac_rst);
7115 		reset_control_deassert(priv->plat->stmmac_rst);
7116 		/* Some reset controllers have only reset callback instead of
7117 		 * assert + deassert callbacks pair.
7118 		 */
7119 		if (ret == -ENOTSUPP)
7120 			reset_control_reset(priv->plat->stmmac_rst);
7121 	}
7122 
7123 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7124 	if (ret == -ENOTSUPP)
7125 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7126 			ERR_PTR(ret));
7127 
7128 	/* Init MAC and get the capabilities */
7129 	ret = stmmac_hw_init(priv);
7130 	if (ret)
7131 		goto error_hw_init;
7132 
7133 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7134 	 */
7135 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7136 		priv->plat->dma_cfg->dche = false;
7137 
7138 	stmmac_check_ether_addr(priv);
7139 
7140 	ndev->netdev_ops = &stmmac_netdev_ops;
7141 
7142 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7143 			    NETIF_F_RXCSUM;
7144 
7145 	ret = stmmac_tc_init(priv, priv);
7146 	if (!ret) {
7147 		ndev->hw_features |= NETIF_F_HW_TC;
7148 	}
7149 
7150 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7151 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7152 		if (priv->plat->has_gmac4)
7153 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7154 		priv->tso = true;
7155 		dev_info(priv->device, "TSO feature enabled\n");
7156 	}
7157 
7158 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7159 		ndev->hw_features |= NETIF_F_GRO;
7160 		priv->sph_cap = true;
7161 		priv->sph = priv->sph_cap;
7162 		dev_info(priv->device, "SPH feature enabled\n");
7163 	}
7164 
7165 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7166 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7167 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7168 	 * So overwrite dma_cap.addr64 according to HW real design.
7169 	 */
7170 	if (priv->plat->addr64)
7171 		priv->dma_cap.addr64 = priv->plat->addr64;
7172 
7173 	if (priv->dma_cap.addr64) {
7174 		ret = dma_set_mask_and_coherent(device,
7175 				DMA_BIT_MASK(priv->dma_cap.addr64));
7176 		if (!ret) {
7177 			dev_info(priv->device, "Using %d bits DMA width\n",
7178 				 priv->dma_cap.addr64);
7179 
7180 			/*
7181 			 * If more than 32 bits can be addressed, make sure to
7182 			 * enable enhanced addressing mode.
7183 			 */
7184 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7185 				priv->plat->dma_cfg->eame = true;
7186 		} else {
7187 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7188 			if (ret) {
7189 				dev_err(priv->device, "Failed to set DMA Mask\n");
7190 				goto error_hw_init;
7191 			}
7192 
7193 			priv->dma_cap.addr64 = 32;
7194 		}
7195 	}
7196 
7197 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7198 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7199 #ifdef STMMAC_VLAN_TAG_USED
7200 	/* Both mac100 and gmac support receive VLAN tag detection */
7201 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7202 	if (priv->dma_cap.vlhash) {
7203 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7204 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7205 	}
7206 	if (priv->dma_cap.vlins) {
7207 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7208 		if (priv->dma_cap.dvlan)
7209 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7210 	}
7211 #endif
7212 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7213 
7214 	/* Initialize RSS */
7215 	rxq = priv->plat->rx_queues_to_use;
7216 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7217 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7218 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7219 
7220 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7221 		ndev->features |= NETIF_F_RXHASH;
7222 
7223 	/* MTU range: 46 - hw-specific max */
7224 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7225 	if (priv->plat->has_xgmac)
7226 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7227 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7228 		ndev->max_mtu = JUMBO_LEN;
7229 	else
7230 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7231 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7232 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7233 	 */
7234 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7235 	    (priv->plat->maxmtu >= ndev->min_mtu))
7236 		ndev->max_mtu = priv->plat->maxmtu;
7237 	else if (priv->plat->maxmtu < ndev->min_mtu)
7238 		dev_warn(priv->device,
7239 			 "%s: warning: maxmtu having invalid value (%d)\n",
7240 			 __func__, priv->plat->maxmtu);
7241 
7242 	if (flow_ctrl)
7243 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7244 
7245 	/* Setup channels NAPI */
7246 	stmmac_napi_add(ndev);
7247 
7248 	mutex_init(&priv->lock);
7249 
7250 	/* If a specific clk_csr value is passed from the platform
7251 	 * this means that the CSR Clock Range selection cannot be
7252 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7253 	 * set the MDC clock dynamically according to the csr actual
7254 	 * clock input.
7255 	 */
7256 	if (priv->plat->clk_csr >= 0)
7257 		priv->clk_csr = priv->plat->clk_csr;
7258 	else
7259 		stmmac_clk_csr_set(priv);
7260 
7261 	stmmac_check_pcs_mode(priv);
7262 
7263 	pm_runtime_get_noresume(device);
7264 	pm_runtime_set_active(device);
7265 	if (!pm_runtime_enabled(device))
7266 		pm_runtime_enable(device);
7267 
7268 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7269 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7270 		/* MDIO bus Registration */
7271 		ret = stmmac_mdio_register(ndev);
7272 		if (ret < 0) {
7273 			dev_err_probe(priv->device, ret,
7274 				      "%s: MDIO bus (id: %d) registration failed\n",
7275 				      __func__, priv->plat->bus_id);
7276 			goto error_mdio_register;
7277 		}
7278 	}
7279 
7280 	if (priv->plat->speed_mode_2500)
7281 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7282 
7283 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7284 		ret = stmmac_xpcs_setup(priv->mii);
7285 		if (ret)
7286 			goto error_xpcs_setup;
7287 	}
7288 
7289 	ret = stmmac_phy_setup(priv);
7290 	if (ret) {
7291 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7292 		goto error_phy_setup;
7293 	}
7294 
7295 	ret = register_netdev(ndev);
7296 	if (ret) {
7297 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7298 			__func__, ret);
7299 		goto error_netdev_register;
7300 	}
7301 
7302 #ifdef CONFIG_DEBUG_FS
7303 	stmmac_init_fs(ndev);
7304 #endif
7305 
7306 	if (priv->plat->dump_debug_regs)
7307 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7308 
7309 	/* Let pm_runtime_put() disable the clocks.
7310 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7311 	 */
7312 	pm_runtime_put(device);
7313 
7314 	return ret;
7315 
7316 error_netdev_register:
7317 	phylink_destroy(priv->phylink);
7318 error_xpcs_setup:
7319 error_phy_setup:
7320 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7321 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7322 		stmmac_mdio_unregister(ndev);
7323 error_mdio_register:
7324 	stmmac_napi_del(ndev);
7325 error_hw_init:
7326 	destroy_workqueue(priv->wq);
7327 	bitmap_free(priv->af_xdp_zc_qps);
7328 
7329 	return ret;
7330 }
7331 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7332 
7333 /**
7334  * stmmac_dvr_remove
7335  * @dev: device pointer
7336  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7337  * changes the link status, releases the DMA descriptor rings.
7338  */
7339 int stmmac_dvr_remove(struct device *dev)
7340 {
7341 	struct net_device *ndev = dev_get_drvdata(dev);
7342 	struct stmmac_priv *priv = netdev_priv(ndev);
7343 
7344 	netdev_info(priv->dev, "%s: removing driver", __func__);
7345 
7346 	pm_runtime_get_sync(dev);
7347 
7348 	stmmac_stop_all_dma(priv);
7349 	stmmac_mac_set(priv, priv->ioaddr, false);
7350 	netif_carrier_off(ndev);
7351 	unregister_netdev(ndev);
7352 
7353 	/* Serdes power down needs to happen after VLAN filter
7354 	 * is deleted that is triggered by unregister_netdev().
7355 	 */
7356 	if (priv->plat->serdes_powerdown)
7357 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7358 
7359 #ifdef CONFIG_DEBUG_FS
7360 	stmmac_exit_fs(ndev);
7361 #endif
7362 	phylink_destroy(priv->phylink);
7363 	if (priv->plat->stmmac_rst)
7364 		reset_control_assert(priv->plat->stmmac_rst);
7365 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7366 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7367 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7368 		stmmac_mdio_unregister(ndev);
7369 	destroy_workqueue(priv->wq);
7370 	mutex_destroy(&priv->lock);
7371 	bitmap_free(priv->af_xdp_zc_qps);
7372 
7373 	pm_runtime_disable(dev);
7374 	pm_runtime_put_noidle(dev);
7375 
7376 	return 0;
7377 }
7378 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7379 
7380 /**
7381  * stmmac_suspend - suspend callback
7382  * @dev: device pointer
7383  * Description: this is the function to suspend the device and it is called
7384  * by the platform driver to stop the network queue, release the resources,
7385  * program the PMT register (for WoL), clean and release driver resources.
7386  */
7387 int stmmac_suspend(struct device *dev)
7388 {
7389 	struct net_device *ndev = dev_get_drvdata(dev);
7390 	struct stmmac_priv *priv = netdev_priv(ndev);
7391 	u32 chan;
7392 
7393 	if (!ndev || !netif_running(ndev))
7394 		return 0;
7395 
7396 	mutex_lock(&priv->lock);
7397 
7398 	netif_device_detach(ndev);
7399 
7400 	stmmac_disable_all_queues(priv);
7401 
7402 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7403 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7404 
7405 	if (priv->eee_enabled) {
7406 		priv->tx_path_in_lpi_mode = false;
7407 		del_timer_sync(&priv->eee_ctrl_timer);
7408 	}
7409 
7410 	/* Stop TX/RX DMA */
7411 	stmmac_stop_all_dma(priv);
7412 
7413 	if (priv->plat->serdes_powerdown)
7414 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7415 
7416 	/* Enable Power down mode by programming the PMT regs */
7417 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7418 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7419 		priv->irq_wake = 1;
7420 	} else {
7421 		stmmac_mac_set(priv, priv->ioaddr, false);
7422 		pinctrl_pm_select_sleep_state(priv->device);
7423 	}
7424 
7425 	mutex_unlock(&priv->lock);
7426 
7427 	rtnl_lock();
7428 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7429 		phylink_suspend(priv->phylink, true);
7430 	} else {
7431 		if (device_may_wakeup(priv->device))
7432 			phylink_speed_down(priv->phylink, false);
7433 		phylink_suspend(priv->phylink, false);
7434 	}
7435 	rtnl_unlock();
7436 
7437 	if (priv->dma_cap.fpesel) {
7438 		/* Disable FPE */
7439 		stmmac_fpe_configure(priv, priv->ioaddr,
7440 				     priv->plat->tx_queues_to_use,
7441 				     priv->plat->rx_queues_to_use, false);
7442 
7443 		stmmac_fpe_handshake(priv, false);
7444 		stmmac_fpe_stop_wq(priv);
7445 	}
7446 
7447 	priv->speed = SPEED_UNKNOWN;
7448 	return 0;
7449 }
7450 EXPORT_SYMBOL_GPL(stmmac_suspend);
7451 
7452 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7453 {
7454 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7455 
7456 	rx_q->cur_rx = 0;
7457 	rx_q->dirty_rx = 0;
7458 }
7459 
7460 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7461 {
7462 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7463 
7464 	tx_q->cur_tx = 0;
7465 	tx_q->dirty_tx = 0;
7466 	tx_q->mss = 0;
7467 
7468 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7469 }
7470 
7471 /**
7472  * stmmac_reset_queues_param - reset queue parameters
7473  * @priv: device pointer
7474  */
7475 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7476 {
7477 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7478 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7479 	u32 queue;
7480 
7481 	for (queue = 0; queue < rx_cnt; queue++)
7482 		stmmac_reset_rx_queue(priv, queue);
7483 
7484 	for (queue = 0; queue < tx_cnt; queue++)
7485 		stmmac_reset_tx_queue(priv, queue);
7486 }
7487 
7488 /**
7489  * stmmac_resume - resume callback
7490  * @dev: device pointer
7491  * Description: when resume this function is invoked to setup the DMA and CORE
7492  * in a usable state.
7493  */
7494 int stmmac_resume(struct device *dev)
7495 {
7496 	struct net_device *ndev = dev_get_drvdata(dev);
7497 	struct stmmac_priv *priv = netdev_priv(ndev);
7498 	int ret;
7499 
7500 	if (!netif_running(ndev))
7501 		return 0;
7502 
7503 	/* Power Down bit, into the PM register, is cleared
7504 	 * automatically as soon as a magic packet or a Wake-up frame
7505 	 * is received. Anyway, it's better to manually clear
7506 	 * this bit because it can generate problems while resuming
7507 	 * from another devices (e.g. serial console).
7508 	 */
7509 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7510 		mutex_lock(&priv->lock);
7511 		stmmac_pmt(priv, priv->hw, 0);
7512 		mutex_unlock(&priv->lock);
7513 		priv->irq_wake = 0;
7514 	} else {
7515 		pinctrl_pm_select_default_state(priv->device);
7516 		/* reset the phy so that it's ready */
7517 		if (priv->mii)
7518 			stmmac_mdio_reset(priv->mii);
7519 	}
7520 
7521 	if (priv->plat->serdes_powerup) {
7522 		ret = priv->plat->serdes_powerup(ndev,
7523 						 priv->plat->bsp_priv);
7524 
7525 		if (ret < 0)
7526 			return ret;
7527 	}
7528 
7529 	rtnl_lock();
7530 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7531 		phylink_resume(priv->phylink);
7532 	} else {
7533 		phylink_resume(priv->phylink);
7534 		if (device_may_wakeup(priv->device))
7535 			phylink_speed_up(priv->phylink);
7536 	}
7537 	rtnl_unlock();
7538 
7539 	rtnl_lock();
7540 	mutex_lock(&priv->lock);
7541 
7542 	stmmac_reset_queues_param(priv);
7543 
7544 	stmmac_free_tx_skbufs(priv);
7545 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7546 
7547 	stmmac_hw_setup(ndev, false);
7548 	stmmac_init_coalesce(priv);
7549 	stmmac_set_rx_mode(ndev);
7550 
7551 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7552 
7553 	stmmac_enable_all_queues(priv);
7554 	stmmac_enable_all_dma_irq(priv);
7555 
7556 	mutex_unlock(&priv->lock);
7557 	rtnl_unlock();
7558 
7559 	netif_device_attach(ndev);
7560 
7561 	return 0;
7562 }
7563 EXPORT_SYMBOL_GPL(stmmac_resume);
7564 
7565 #ifndef MODULE
7566 static int __init stmmac_cmdline_opt(char *str)
7567 {
7568 	char *opt;
7569 
7570 	if (!str || !*str)
7571 		return 1;
7572 	while ((opt = strsep(&str, ",")) != NULL) {
7573 		if (!strncmp(opt, "debug:", 6)) {
7574 			if (kstrtoint(opt + 6, 0, &debug))
7575 				goto err;
7576 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7577 			if (kstrtoint(opt + 8, 0, &phyaddr))
7578 				goto err;
7579 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7580 			if (kstrtoint(opt + 7, 0, &buf_sz))
7581 				goto err;
7582 		} else if (!strncmp(opt, "tc:", 3)) {
7583 			if (kstrtoint(opt + 3, 0, &tc))
7584 				goto err;
7585 		} else if (!strncmp(opt, "watchdog:", 9)) {
7586 			if (kstrtoint(opt + 9, 0, &watchdog))
7587 				goto err;
7588 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7589 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7590 				goto err;
7591 		} else if (!strncmp(opt, "pause:", 6)) {
7592 			if (kstrtoint(opt + 6, 0, &pause))
7593 				goto err;
7594 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7595 			if (kstrtoint(opt + 10, 0, &eee_timer))
7596 				goto err;
7597 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7598 			if (kstrtoint(opt + 11, 0, &chain_mode))
7599 				goto err;
7600 		}
7601 	}
7602 	return 1;
7603 
7604 err:
7605 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7606 	return 1;
7607 }
7608 
7609 __setup("stmmaceth=", stmmac_cmdline_opt);
7610 #endif /* MODULE */
7611 
7612 static int __init stmmac_init(void)
7613 {
7614 #ifdef CONFIG_DEBUG_FS
7615 	/* Create debugfs main directory if it doesn't exist yet */
7616 	if (!stmmac_fs_dir)
7617 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7618 	register_netdevice_notifier(&stmmac_notifier);
7619 #endif
7620 
7621 	return 0;
7622 }
7623 
7624 static void __exit stmmac_exit(void)
7625 {
7626 #ifdef CONFIG_DEBUG_FS
7627 	unregister_netdevice_notifier(&stmmac_notifier);
7628 	debugfs_remove_recursive(stmmac_fs_dir);
7629 #endif
7630 }
7631 
7632 module_init(stmmac_init)
7633 module_exit(stmmac_exit)
7634 
7635 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7636 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7637 MODULE_LICENSE("GPL");
7638