1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	bool found = false;
436 	u64 ns = 0;
437 
438 	if (!priv->hwts_tx_en)
439 		return;
440 
441 	/* exit if skb doesn't support hw tstamp */
442 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443 		return;
444 
445 	/* check tx tstamp status */
446 	if (stmmac_get_tx_timestamp_status(priv, p)) {
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 		found = true;
449 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450 		found = true;
451 	}
452 
453 	if (found) {
454 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
456 
457 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458 		/* pass tstamp to stack */
459 		skb_tstamp_tx(skb, &shhwtstamp);
460 	}
461 }
462 
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464  * @priv: driver private structure
465  * @p : descriptor pointer
466  * @np : next descriptor pointer
467  * @skb : the socket buffer
468  * Description :
469  * This function will read received packet's timestamp from the descriptor
470  * and pass it to stack. It also perform some sanity checks.
471  */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 				   struct dma_desc *np, struct sk_buff *skb)
474 {
475 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 	struct dma_desc *desc = p;
477 	u64 ns = 0;
478 
479 	if (!priv->hwts_rx_en)
480 		return;
481 	/* For GMAC4, the valid timestamp is from CTX next desc. */
482 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483 		desc = np;
484 
485 	/* Check if timestamp is available */
486 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 		shhwtstamp = skb_hwtstamps(skb);
490 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
492 	} else  {
493 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494 	}
495 }
496 
497 /**
498  *  stmmac_hwtstamp_set - control hardware timestamping.
499  *  @dev: device pointer.
500  *  @ifr: An IOCTL specific structure, that can contain a pointer to
501  *  a proprietary structure used to pass information to the driver.
502  *  Description:
503  *  This function configures the MAC to enable/disable both outgoing(TX)
504  *  and incoming(RX) packets time stamping based on user input.
505  *  Return Value:
506  *  0 on success and an appropriate -ve integer on failure.
507  */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510 	struct stmmac_priv *priv = netdev_priv(dev);
511 	struct hwtstamp_config config;
512 	struct timespec64 now;
513 	u64 temp = 0;
514 	u32 ptp_v2 = 0;
515 	u32 tstamp_all = 0;
516 	u32 ptp_over_ipv4_udp = 0;
517 	u32 ptp_over_ipv6_udp = 0;
518 	u32 ptp_over_ethernet = 0;
519 	u32 snap_type_sel = 0;
520 	u32 ts_master_en = 0;
521 	u32 ts_event_en = 0;
522 	u32 sec_inc = 0;
523 	u32 value = 0;
524 	bool xmac;
525 
526 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527 
528 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529 		netdev_alert(priv->dev, "No support for HW time stamping\n");
530 		priv->hwts_tx_en = 0;
531 		priv->hwts_rx_en = 0;
532 
533 		return -EOPNOTSUPP;
534 	}
535 
536 	if (copy_from_user(&config, ifr->ifr_data,
537 			   sizeof(config)))
538 		return -EFAULT;
539 
540 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541 		   __func__, config.flags, config.tx_type, config.rx_filter);
542 
543 	/* reserved for future extensions */
544 	if (config.flags)
545 		return -EINVAL;
546 
547 	if (config.tx_type != HWTSTAMP_TX_OFF &&
548 	    config.tx_type != HWTSTAMP_TX_ON)
549 		return -ERANGE;
550 
551 	if (priv->adv_ts) {
552 		switch (config.rx_filter) {
553 		case HWTSTAMP_FILTER_NONE:
554 			/* time stamp no incoming packet at all */
555 			config.rx_filter = HWTSTAMP_FILTER_NONE;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559 			/* PTP v1, UDP, any kind of event packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561 			/* 'xmac' hardware can support Sync, Pdelay_Req and
562 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
563 			 * This leaves Delay_Req timestamps out.
564 			 * Enable all events *and* general purpose message
565 			 * timestamping
566 			 */
567 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 			break;
571 
572 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573 			/* PTP v1, UDP, Sync packet */
574 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575 			/* take time stamp for SYNC messages only */
576 			ts_event_en = PTP_TCR_TSEVNTENA;
577 
578 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580 			break;
581 
582 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583 			/* PTP v1, UDP, Delay_req packet */
584 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585 			/* take time stamp for Delay_Req messages only */
586 			ts_master_en = PTP_TCR_TSMSTRENA;
587 			ts_event_en = PTP_TCR_TSEVNTENA;
588 
589 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591 			break;
592 
593 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594 			/* PTP v2, UDP, any kind of event packet */
595 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596 			ptp_v2 = PTP_TCR_TSVER2ENA;
597 			/* take time stamp for all event messages */
598 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599 
600 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602 			break;
603 
604 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605 			/* PTP v2, UDP, Sync packet */
606 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607 			ptp_v2 = PTP_TCR_TSVER2ENA;
608 			/* take time stamp for SYNC messages only */
609 			ts_event_en = PTP_TCR_TSEVNTENA;
610 
611 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 			break;
614 
615 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616 			/* PTP v2, UDP, Delay_req packet */
617 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618 			ptp_v2 = PTP_TCR_TSVER2ENA;
619 			/* take time stamp for Delay_Req messages only */
620 			ts_master_en = PTP_TCR_TSMSTRENA;
621 			ts_event_en = PTP_TCR_TSEVNTENA;
622 
623 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 			break;
626 
627 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
628 			/* PTP v2/802.AS1 any layer, any kind of event packet */
629 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630 			ptp_v2 = PTP_TCR_TSVER2ENA;
631 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
633 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
634 			ptp_over_ethernet = PTP_TCR_TSIPENA;
635 			break;
636 
637 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
638 			/* PTP v2/802.AS1, any layer, Sync packet */
639 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
640 			ptp_v2 = PTP_TCR_TSVER2ENA;
641 			/* take time stamp for SYNC messages only */
642 			ts_event_en = PTP_TCR_TSEVNTENA;
643 
644 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
645 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
646 			ptp_over_ethernet = PTP_TCR_TSIPENA;
647 			break;
648 
649 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
650 			/* PTP v2/802.AS1, any layer, Delay_req packet */
651 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
652 			ptp_v2 = PTP_TCR_TSVER2ENA;
653 			/* take time stamp for Delay_Req messages only */
654 			ts_master_en = PTP_TCR_TSMSTRENA;
655 			ts_event_en = PTP_TCR_TSEVNTENA;
656 
657 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
658 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
659 			ptp_over_ethernet = PTP_TCR_TSIPENA;
660 			break;
661 
662 		case HWTSTAMP_FILTER_NTP_ALL:
663 		case HWTSTAMP_FILTER_ALL:
664 			/* time stamp any incoming packet */
665 			config.rx_filter = HWTSTAMP_FILTER_ALL;
666 			tstamp_all = PTP_TCR_TSENALL;
667 			break;
668 
669 		default:
670 			return -ERANGE;
671 		}
672 	} else {
673 		switch (config.rx_filter) {
674 		case HWTSTAMP_FILTER_NONE:
675 			config.rx_filter = HWTSTAMP_FILTER_NONE;
676 			break;
677 		default:
678 			/* PTP v1, UDP, any kind of event packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
680 			break;
681 		}
682 	}
683 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
684 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
685 
686 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
687 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
688 	else {
689 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
690 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
691 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
692 			 ts_master_en | snap_type_sel);
693 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
694 
695 		/* program Sub Second Increment reg */
696 		stmmac_config_sub_second_increment(priv,
697 				priv->ptpaddr, priv->plat->clk_ptp_rate,
698 				xmac, &sec_inc);
699 		temp = div_u64(1000000000ULL, sec_inc);
700 
701 		/* Store sub second increment and flags for later use */
702 		priv->sub_second_inc = sec_inc;
703 		priv->systime_flags = value;
704 
705 		/* calculate default added value:
706 		 * formula is :
707 		 * addend = (2^32)/freq_div_ratio;
708 		 * where, freq_div_ratio = 1e9ns/sec_inc
709 		 */
710 		temp = (u64)(temp << 32);
711 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
712 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
713 
714 		/* initialize system time */
715 		ktime_get_real_ts64(&now);
716 
717 		/* lower 32 bits of tv_sec are safe until y2106 */
718 		stmmac_init_systime(priv, priv->ptpaddr,
719 				(u32)now.tv_sec, now.tv_nsec);
720 	}
721 
722 	memcpy(&priv->tstamp_config, &config, sizeof(config));
723 
724 	return copy_to_user(ifr->ifr_data, &config,
725 			    sizeof(config)) ? -EFAULT : 0;
726 }
727 
728 /**
729  *  stmmac_hwtstamp_get - read hardware timestamping.
730  *  @dev: device pointer.
731  *  @ifr: An IOCTL specific structure, that can contain a pointer to
732  *  a proprietary structure used to pass information to the driver.
733  *  Description:
734  *  This function obtain the current hardware timestamping settings
735     as requested.
736  */
737 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
738 {
739 	struct stmmac_priv *priv = netdev_priv(dev);
740 	struct hwtstamp_config *config = &priv->tstamp_config;
741 
742 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 		return -EOPNOTSUPP;
744 
745 	return copy_to_user(ifr->ifr_data, config,
746 			    sizeof(*config)) ? -EFAULT : 0;
747 }
748 
749 /**
750  * stmmac_init_ptp - init PTP
751  * @priv: driver private structure
752  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
753  * This is done by looking at the HW cap. register.
754  * This function also registers the ptp driver.
755  */
756 static int stmmac_init_ptp(struct stmmac_priv *priv)
757 {
758 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
759 
760 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
761 		return -EOPNOTSUPP;
762 
763 	priv->adv_ts = 0;
764 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
765 	if (xmac && priv->dma_cap.atime_stamp)
766 		priv->adv_ts = 1;
767 	/* Dwmac 3.x core with extend_desc can support adv_ts */
768 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
769 		priv->adv_ts = 1;
770 
771 	if (priv->dma_cap.time_stamp)
772 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
773 
774 	if (priv->adv_ts)
775 		netdev_info(priv->dev,
776 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
777 
778 	priv->hwts_tx_en = 0;
779 	priv->hwts_rx_en = 0;
780 
781 	stmmac_ptp_register(priv);
782 
783 	return 0;
784 }
785 
786 static void stmmac_release_ptp(struct stmmac_priv *priv)
787 {
788 	if (priv->plat->clk_ptp_ref)
789 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
790 	stmmac_ptp_unregister(priv);
791 }
792 
793 /**
794  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
795  *  @priv: driver private structure
796  *  Description: It is used for configuring the flow control in all queues
797  */
798 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
799 {
800 	u32 tx_cnt = priv->plat->tx_queues_to_use;
801 
802 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
803 			priv->pause, tx_cnt);
804 }
805 
806 static void stmmac_validate(struct phylink_config *config,
807 			    unsigned long *supported,
808 			    struct phylink_link_state *state)
809 {
810 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
811 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
812 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
813 	int tx_cnt = priv->plat->tx_queues_to_use;
814 	int max_speed = priv->plat->max_speed;
815 
816 	phylink_set(mac_supported, 10baseT_Half);
817 	phylink_set(mac_supported, 10baseT_Full);
818 	phylink_set(mac_supported, 100baseT_Half);
819 	phylink_set(mac_supported, 100baseT_Full);
820 	phylink_set(mac_supported, 1000baseT_Half);
821 	phylink_set(mac_supported, 1000baseT_Full);
822 	phylink_set(mac_supported, 1000baseKX_Full);
823 
824 	phylink_set(mac_supported, Autoneg);
825 	phylink_set(mac_supported, Pause);
826 	phylink_set(mac_supported, Asym_Pause);
827 	phylink_set_port_modes(mac_supported);
828 
829 	/* Cut down 1G if asked to */
830 	if ((max_speed > 0) && (max_speed < 1000)) {
831 		phylink_set(mask, 1000baseT_Full);
832 		phylink_set(mask, 1000baseX_Full);
833 	} else if (priv->plat->has_xgmac) {
834 		if (!max_speed || (max_speed >= 2500)) {
835 			phylink_set(mac_supported, 2500baseT_Full);
836 			phylink_set(mac_supported, 2500baseX_Full);
837 		}
838 		if (!max_speed || (max_speed >= 5000)) {
839 			phylink_set(mac_supported, 5000baseT_Full);
840 		}
841 		if (!max_speed || (max_speed >= 10000)) {
842 			phylink_set(mac_supported, 10000baseSR_Full);
843 			phylink_set(mac_supported, 10000baseLR_Full);
844 			phylink_set(mac_supported, 10000baseER_Full);
845 			phylink_set(mac_supported, 10000baseLRM_Full);
846 			phylink_set(mac_supported, 10000baseT_Full);
847 			phylink_set(mac_supported, 10000baseKX4_Full);
848 			phylink_set(mac_supported, 10000baseKR_Full);
849 		}
850 	}
851 
852 	/* Half-Duplex can only work with single queue */
853 	if (tx_cnt > 1) {
854 		phylink_set(mask, 10baseT_Half);
855 		phylink_set(mask, 100baseT_Half);
856 		phylink_set(mask, 1000baseT_Half);
857 	}
858 
859 	bitmap_and(supported, supported, mac_supported,
860 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
861 	bitmap_andnot(supported, supported, mask,
862 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
863 	bitmap_and(state->advertising, state->advertising, mac_supported,
864 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
865 	bitmap_andnot(state->advertising, state->advertising, mask,
866 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
867 }
868 
869 static int stmmac_mac_link_state(struct phylink_config *config,
870 				 struct phylink_link_state *state)
871 {
872 	return -EOPNOTSUPP;
873 }
874 
875 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
876 			      const struct phylink_link_state *state)
877 {
878 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
879 	u32 ctrl;
880 
881 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
882 	ctrl &= ~priv->hw->link.speed_mask;
883 
884 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
885 		switch (state->speed) {
886 		case SPEED_10000:
887 			ctrl |= priv->hw->link.xgmii.speed10000;
888 			break;
889 		case SPEED_5000:
890 			ctrl |= priv->hw->link.xgmii.speed5000;
891 			break;
892 		case SPEED_2500:
893 			ctrl |= priv->hw->link.xgmii.speed2500;
894 			break;
895 		default:
896 			return;
897 		}
898 	} else {
899 		switch (state->speed) {
900 		case SPEED_2500:
901 			ctrl |= priv->hw->link.speed2500;
902 			break;
903 		case SPEED_1000:
904 			ctrl |= priv->hw->link.speed1000;
905 			break;
906 		case SPEED_100:
907 			ctrl |= priv->hw->link.speed100;
908 			break;
909 		case SPEED_10:
910 			ctrl |= priv->hw->link.speed10;
911 			break;
912 		default:
913 			return;
914 		}
915 	}
916 
917 	priv->speed = state->speed;
918 
919 	if (priv->plat->fix_mac_speed)
920 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
921 
922 	if (!state->duplex)
923 		ctrl &= ~priv->hw->link.duplex;
924 	else
925 		ctrl |= priv->hw->link.duplex;
926 
927 	/* Flow Control operation */
928 	if (state->pause)
929 		stmmac_mac_flow_ctrl(priv, state->duplex);
930 
931 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
932 }
933 
934 static void stmmac_mac_an_restart(struct phylink_config *config)
935 {
936 	/* Not Supported */
937 }
938 
939 static void stmmac_mac_link_down(struct phylink_config *config,
940 				 unsigned int mode, phy_interface_t interface)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 
944 	stmmac_mac_set(priv, priv->ioaddr, false);
945 	priv->eee_active = false;
946 	stmmac_eee_init(priv);
947 	stmmac_set_eee_pls(priv, priv->hw, false);
948 }
949 
950 static void stmmac_mac_link_up(struct phylink_config *config,
951 			       unsigned int mode, phy_interface_t interface,
952 			       struct phy_device *phy)
953 {
954 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
955 
956 	stmmac_mac_set(priv, priv->ioaddr, true);
957 	if (phy && priv->dma_cap.eee) {
958 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
959 		priv->eee_enabled = stmmac_eee_init(priv);
960 		stmmac_set_eee_pls(priv, priv->hw, true);
961 	}
962 }
963 
964 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
965 	.validate = stmmac_validate,
966 	.mac_link_state = stmmac_mac_link_state,
967 	.mac_config = stmmac_mac_config,
968 	.mac_an_restart = stmmac_mac_an_restart,
969 	.mac_link_down = stmmac_mac_link_down,
970 	.mac_link_up = stmmac_mac_link_up,
971 };
972 
973 /**
974  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
975  * @priv: driver private structure
976  * Description: this is to verify if the HW supports the PCS.
977  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
978  * configured for the TBI, RTBI, or SGMII PHY interface.
979  */
980 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
981 {
982 	int interface = priv->plat->interface;
983 
984 	if (priv->dma_cap.pcs) {
985 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
986 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
987 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
988 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
989 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
990 			priv->hw->pcs = STMMAC_PCS_RGMII;
991 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
992 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
993 			priv->hw->pcs = STMMAC_PCS_SGMII;
994 		}
995 	}
996 }
997 
998 /**
999  * stmmac_init_phy - PHY initialization
1000  * @dev: net device structure
1001  * Description: it initializes the driver's PHY state, and attaches the PHY
1002  * to the mac driver.
1003  *  Return value:
1004  *  0 on success
1005  */
1006 static int stmmac_init_phy(struct net_device *dev)
1007 {
1008 	struct stmmac_priv *priv = netdev_priv(dev);
1009 	struct device_node *node;
1010 	int ret;
1011 
1012 	node = priv->plat->phylink_node;
1013 
1014 	if (node)
1015 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1016 
1017 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1018 	 * manually parse it
1019 	 */
1020 	if (!node || ret) {
1021 		int addr = priv->plat->phy_addr;
1022 		struct phy_device *phydev;
1023 
1024 		phydev = mdiobus_get_phy(priv->mii, addr);
1025 		if (!phydev) {
1026 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1027 			return -ENODEV;
1028 		}
1029 
1030 		ret = phylink_connect_phy(priv->phylink, phydev);
1031 	}
1032 
1033 	return ret;
1034 }
1035 
1036 static int stmmac_phy_setup(struct stmmac_priv *priv)
1037 {
1038 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1039 	int mode = priv->plat->phy_interface;
1040 	struct phylink *phylink;
1041 
1042 	priv->phylink_config.dev = &priv->dev->dev;
1043 	priv->phylink_config.type = PHYLINK_NETDEV;
1044 
1045 	phylink = phylink_create(&priv->phylink_config, fwnode,
1046 				 mode, &stmmac_phylink_mac_ops);
1047 	if (IS_ERR(phylink))
1048 		return PTR_ERR(phylink);
1049 
1050 	priv->phylink = phylink;
1051 	return 0;
1052 }
1053 
1054 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1055 {
1056 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1057 	void *head_rx;
1058 	u32 queue;
1059 
1060 	/* Display RX rings */
1061 	for (queue = 0; queue < rx_cnt; queue++) {
1062 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1063 
1064 		pr_info("\tRX Queue %u rings\n", queue);
1065 
1066 		if (priv->extend_desc)
1067 			head_rx = (void *)rx_q->dma_erx;
1068 		else
1069 			head_rx = (void *)rx_q->dma_rx;
1070 
1071 		/* Display RX ring */
1072 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1073 	}
1074 }
1075 
1076 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1077 {
1078 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1079 	void *head_tx;
1080 	u32 queue;
1081 
1082 	/* Display TX rings */
1083 	for (queue = 0; queue < tx_cnt; queue++) {
1084 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1085 
1086 		pr_info("\tTX Queue %d rings\n", queue);
1087 
1088 		if (priv->extend_desc)
1089 			head_tx = (void *)tx_q->dma_etx;
1090 		else
1091 			head_tx = (void *)tx_q->dma_tx;
1092 
1093 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1094 	}
1095 }
1096 
1097 static void stmmac_display_rings(struct stmmac_priv *priv)
1098 {
1099 	/* Display RX ring */
1100 	stmmac_display_rx_rings(priv);
1101 
1102 	/* Display TX ring */
1103 	stmmac_display_tx_rings(priv);
1104 }
1105 
1106 static int stmmac_set_bfsize(int mtu, int bufsize)
1107 {
1108 	int ret = bufsize;
1109 
1110 	if (mtu >= BUF_SIZE_4KiB)
1111 		ret = BUF_SIZE_8KiB;
1112 	else if (mtu >= BUF_SIZE_2KiB)
1113 		ret = BUF_SIZE_4KiB;
1114 	else if (mtu > DEFAULT_BUFSIZE)
1115 		ret = BUF_SIZE_2KiB;
1116 	else
1117 		ret = DEFAULT_BUFSIZE;
1118 
1119 	return ret;
1120 }
1121 
1122 /**
1123  * stmmac_clear_rx_descriptors - clear RX descriptors
1124  * @priv: driver private structure
1125  * @queue: RX queue index
1126  * Description: this function is called to clear the RX descriptors
1127  * in case of both basic and extended descriptors are used.
1128  */
1129 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1130 {
1131 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1132 	int i;
1133 
1134 	/* Clear the RX descriptors */
1135 	for (i = 0; i < DMA_RX_SIZE; i++)
1136 		if (priv->extend_desc)
1137 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1138 					priv->use_riwt, priv->mode,
1139 					(i == DMA_RX_SIZE - 1),
1140 					priv->dma_buf_sz);
1141 		else
1142 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1143 					priv->use_riwt, priv->mode,
1144 					(i == DMA_RX_SIZE - 1),
1145 					priv->dma_buf_sz);
1146 }
1147 
1148 /**
1149  * stmmac_clear_tx_descriptors - clear tx descriptors
1150  * @priv: driver private structure
1151  * @queue: TX queue index.
1152  * Description: this function is called to clear the TX descriptors
1153  * in case of both basic and extended descriptors are used.
1154  */
1155 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1156 {
1157 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1158 	int i;
1159 
1160 	/* Clear the TX descriptors */
1161 	for (i = 0; i < DMA_TX_SIZE; i++)
1162 		if (priv->extend_desc)
1163 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1164 					priv->mode, (i == DMA_TX_SIZE - 1));
1165 		else
1166 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1167 					priv->mode, (i == DMA_TX_SIZE - 1));
1168 }
1169 
1170 /**
1171  * stmmac_clear_descriptors - clear descriptors
1172  * @priv: driver private structure
1173  * Description: this function is called to clear the TX and RX descriptors
1174  * in case of both basic and extended descriptors are used.
1175  */
1176 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1177 {
1178 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1179 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1180 	u32 queue;
1181 
1182 	/* Clear the RX descriptors */
1183 	for (queue = 0; queue < rx_queue_cnt; queue++)
1184 		stmmac_clear_rx_descriptors(priv, queue);
1185 
1186 	/* Clear the TX descriptors */
1187 	for (queue = 0; queue < tx_queue_cnt; queue++)
1188 		stmmac_clear_tx_descriptors(priv, queue);
1189 }
1190 
1191 /**
1192  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1193  * @priv: driver private structure
1194  * @p: descriptor pointer
1195  * @i: descriptor index
1196  * @flags: gfp flag
1197  * @queue: RX queue index
1198  * Description: this function is called to allocate a receive buffer, perform
1199  * the DMA mapping and init the descriptor.
1200  */
1201 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1202 				  int i, gfp_t flags, u32 queue)
1203 {
1204 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1205 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1206 
1207 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1208 	if (!buf->page)
1209 		return -ENOMEM;
1210 
1211 	if (priv->sph) {
1212 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1213 		if (!buf->sec_page)
1214 			return -ENOMEM;
1215 
1216 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1217 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1218 	} else {
1219 		buf->sec_page = NULL;
1220 	}
1221 
1222 	buf->addr = page_pool_get_dma_addr(buf->page);
1223 	stmmac_set_desc_addr(priv, p, buf->addr);
1224 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1225 		stmmac_init_desc3(priv, p);
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * stmmac_free_rx_buffer - free RX dma buffers
1232  * @priv: private structure
1233  * @queue: RX queue index
1234  * @i: buffer index.
1235  */
1236 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1237 {
1238 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1239 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1240 
1241 	if (buf->page)
1242 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1243 	buf->page = NULL;
1244 
1245 	if (buf->sec_page)
1246 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1247 	buf->sec_page = NULL;
1248 }
1249 
1250 /**
1251  * stmmac_free_tx_buffer - free RX dma buffers
1252  * @priv: private structure
1253  * @queue: RX queue index
1254  * @i: buffer index.
1255  */
1256 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1257 {
1258 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1259 
1260 	if (tx_q->tx_skbuff_dma[i].buf) {
1261 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1262 			dma_unmap_page(priv->device,
1263 				       tx_q->tx_skbuff_dma[i].buf,
1264 				       tx_q->tx_skbuff_dma[i].len,
1265 				       DMA_TO_DEVICE);
1266 		else
1267 			dma_unmap_single(priv->device,
1268 					 tx_q->tx_skbuff_dma[i].buf,
1269 					 tx_q->tx_skbuff_dma[i].len,
1270 					 DMA_TO_DEVICE);
1271 	}
1272 
1273 	if (tx_q->tx_skbuff[i]) {
1274 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1275 		tx_q->tx_skbuff[i] = NULL;
1276 		tx_q->tx_skbuff_dma[i].buf = 0;
1277 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1278 	}
1279 }
1280 
1281 /**
1282  * init_dma_rx_desc_rings - init the RX descriptor rings
1283  * @dev: net device structure
1284  * @flags: gfp flag.
1285  * Description: this function initializes the DMA RX descriptors
1286  * and allocates the socket buffers. It supports the chained and ring
1287  * modes.
1288  */
1289 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1290 {
1291 	struct stmmac_priv *priv = netdev_priv(dev);
1292 	u32 rx_count = priv->plat->rx_queues_to_use;
1293 	int ret = -ENOMEM;
1294 	int bfsize = 0;
1295 	int queue;
1296 	int i;
1297 
1298 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1299 	if (bfsize < 0)
1300 		bfsize = 0;
1301 
1302 	if (bfsize < BUF_SIZE_16KiB)
1303 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1304 
1305 	priv->dma_buf_sz = bfsize;
1306 
1307 	/* RX INITIALIZATION */
1308 	netif_dbg(priv, probe, priv->dev,
1309 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1310 
1311 	for (queue = 0; queue < rx_count; queue++) {
1312 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1313 
1314 		netif_dbg(priv, probe, priv->dev,
1315 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1316 			  (u32)rx_q->dma_rx_phy);
1317 
1318 		stmmac_clear_rx_descriptors(priv, queue);
1319 
1320 		for (i = 0; i < DMA_RX_SIZE; i++) {
1321 			struct dma_desc *p;
1322 
1323 			if (priv->extend_desc)
1324 				p = &((rx_q->dma_erx + i)->basic);
1325 			else
1326 				p = rx_q->dma_rx + i;
1327 
1328 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1329 						     queue);
1330 			if (ret)
1331 				goto err_init_rx_buffers;
1332 		}
1333 
1334 		rx_q->cur_rx = 0;
1335 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1336 
1337 		/* Setup the chained descriptor addresses */
1338 		if (priv->mode == STMMAC_CHAIN_MODE) {
1339 			if (priv->extend_desc)
1340 				stmmac_mode_init(priv, rx_q->dma_erx,
1341 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1342 			else
1343 				stmmac_mode_init(priv, rx_q->dma_rx,
1344 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1345 		}
1346 	}
1347 
1348 	buf_sz = bfsize;
1349 
1350 	return 0;
1351 
1352 err_init_rx_buffers:
1353 	while (queue >= 0) {
1354 		while (--i >= 0)
1355 			stmmac_free_rx_buffer(priv, queue, i);
1356 
1357 		if (queue == 0)
1358 			break;
1359 
1360 		i = DMA_RX_SIZE;
1361 		queue--;
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 /**
1368  * init_dma_tx_desc_rings - init the TX descriptor rings
1369  * @dev: net device structure.
1370  * Description: this function initializes the DMA TX descriptors
1371  * and allocates the socket buffers. It supports the chained and ring
1372  * modes.
1373  */
1374 static int init_dma_tx_desc_rings(struct net_device *dev)
1375 {
1376 	struct stmmac_priv *priv = netdev_priv(dev);
1377 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1378 	u32 queue;
1379 	int i;
1380 
1381 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1382 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1383 
1384 		netif_dbg(priv, probe, priv->dev,
1385 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1386 			 (u32)tx_q->dma_tx_phy);
1387 
1388 		/* Setup the chained descriptor addresses */
1389 		if (priv->mode == STMMAC_CHAIN_MODE) {
1390 			if (priv->extend_desc)
1391 				stmmac_mode_init(priv, tx_q->dma_etx,
1392 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1393 			else
1394 				stmmac_mode_init(priv, tx_q->dma_tx,
1395 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1396 		}
1397 
1398 		for (i = 0; i < DMA_TX_SIZE; i++) {
1399 			struct dma_desc *p;
1400 			if (priv->extend_desc)
1401 				p = &((tx_q->dma_etx + i)->basic);
1402 			else
1403 				p = tx_q->dma_tx + i;
1404 
1405 			stmmac_clear_desc(priv, p);
1406 
1407 			tx_q->tx_skbuff_dma[i].buf = 0;
1408 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1409 			tx_q->tx_skbuff_dma[i].len = 0;
1410 			tx_q->tx_skbuff_dma[i].last_segment = false;
1411 			tx_q->tx_skbuff[i] = NULL;
1412 		}
1413 
1414 		tx_q->dirty_tx = 0;
1415 		tx_q->cur_tx = 0;
1416 		tx_q->mss = 0;
1417 
1418 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * init_dma_desc_rings - init the RX/TX descriptor rings
1426  * @dev: net device structure
1427  * @flags: gfp flag.
1428  * Description: this function initializes the DMA RX/TX descriptors
1429  * and allocates the socket buffers. It supports the chained and ring
1430  * modes.
1431  */
1432 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1433 {
1434 	struct stmmac_priv *priv = netdev_priv(dev);
1435 	int ret;
1436 
1437 	ret = init_dma_rx_desc_rings(dev, flags);
1438 	if (ret)
1439 		return ret;
1440 
1441 	ret = init_dma_tx_desc_rings(dev);
1442 
1443 	stmmac_clear_descriptors(priv);
1444 
1445 	if (netif_msg_hw(priv))
1446 		stmmac_display_rings(priv);
1447 
1448 	return ret;
1449 }
1450 
1451 /**
1452  * dma_free_rx_skbufs - free RX dma buffers
1453  * @priv: private structure
1454  * @queue: RX queue index
1455  */
1456 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1457 {
1458 	int i;
1459 
1460 	for (i = 0; i < DMA_RX_SIZE; i++)
1461 		stmmac_free_rx_buffer(priv, queue, i);
1462 }
1463 
1464 /**
1465  * dma_free_tx_skbufs - free TX dma buffers
1466  * @priv: private structure
1467  * @queue: TX queue index
1468  */
1469 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1470 {
1471 	int i;
1472 
1473 	for (i = 0; i < DMA_TX_SIZE; i++)
1474 		stmmac_free_tx_buffer(priv, queue, i);
1475 }
1476 
1477 /**
1478  * free_dma_rx_desc_resources - free RX dma desc resources
1479  * @priv: private structure
1480  */
1481 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1482 {
1483 	u32 rx_count = priv->plat->rx_queues_to_use;
1484 	u32 queue;
1485 
1486 	/* Free RX queue resources */
1487 	for (queue = 0; queue < rx_count; queue++) {
1488 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1489 
1490 		/* Release the DMA RX socket buffers */
1491 		dma_free_rx_skbufs(priv, queue);
1492 
1493 		/* Free DMA regions of consistent memory previously allocated */
1494 		if (!priv->extend_desc)
1495 			dma_free_coherent(priv->device,
1496 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1497 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1498 		else
1499 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1500 					  sizeof(struct dma_extended_desc),
1501 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1502 
1503 		kfree(rx_q->buf_pool);
1504 		if (rx_q->page_pool) {
1505 			page_pool_request_shutdown(rx_q->page_pool);
1506 			page_pool_destroy(rx_q->page_pool);
1507 		}
1508 	}
1509 }
1510 
1511 /**
1512  * free_dma_tx_desc_resources - free TX dma desc resources
1513  * @priv: private structure
1514  */
1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1516 {
1517 	u32 tx_count = priv->plat->tx_queues_to_use;
1518 	u32 queue;
1519 
1520 	/* Free TX queue resources */
1521 	for (queue = 0; queue < tx_count; queue++) {
1522 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1523 
1524 		/* Release the DMA TX socket buffers */
1525 		dma_free_tx_skbufs(priv, queue);
1526 
1527 		/* Free DMA regions of consistent memory previously allocated */
1528 		if (!priv->extend_desc)
1529 			dma_free_coherent(priv->device,
1530 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1531 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1532 		else
1533 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1534 					  sizeof(struct dma_extended_desc),
1535 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1536 
1537 		kfree(tx_q->tx_skbuff_dma);
1538 		kfree(tx_q->tx_skbuff);
1539 	}
1540 }
1541 
1542 /**
1543  * alloc_dma_rx_desc_resources - alloc RX resources.
1544  * @priv: private structure
1545  * Description: according to which descriptor can be used (extend or basic)
1546  * this function allocates the resources for TX and RX paths. In case of
1547  * reception, for example, it pre-allocated the RX socket buffer in order to
1548  * allow zero-copy mechanism.
1549  */
1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1551 {
1552 	u32 rx_count = priv->plat->rx_queues_to_use;
1553 	int ret = -ENOMEM;
1554 	u32 queue;
1555 
1556 	/* RX queues buffers and DMA */
1557 	for (queue = 0; queue < rx_count; queue++) {
1558 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1559 		struct page_pool_params pp_params = { 0 };
1560 		unsigned int num_pages;
1561 
1562 		rx_q->queue_index = queue;
1563 		rx_q->priv_data = priv;
1564 
1565 		pp_params.flags = PP_FLAG_DMA_MAP;
1566 		pp_params.pool_size = DMA_RX_SIZE;
1567 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1568 		pp_params.order = ilog2(num_pages);
1569 		pp_params.nid = dev_to_node(priv->device);
1570 		pp_params.dev = priv->device;
1571 		pp_params.dma_dir = DMA_FROM_DEVICE;
1572 
1573 		rx_q->page_pool = page_pool_create(&pp_params);
1574 		if (IS_ERR(rx_q->page_pool)) {
1575 			ret = PTR_ERR(rx_q->page_pool);
1576 			rx_q->page_pool = NULL;
1577 			goto err_dma;
1578 		}
1579 
1580 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1581 					 GFP_KERNEL);
1582 		if (!rx_q->buf_pool)
1583 			goto err_dma;
1584 
1585 		if (priv->extend_desc) {
1586 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1587 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1588 							   &rx_q->dma_rx_phy,
1589 							   GFP_KERNEL);
1590 			if (!rx_q->dma_erx)
1591 				goto err_dma;
1592 
1593 		} else {
1594 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1595 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1596 							  &rx_q->dma_rx_phy,
1597 							  GFP_KERNEL);
1598 			if (!rx_q->dma_rx)
1599 				goto err_dma;
1600 		}
1601 	}
1602 
1603 	return 0;
1604 
1605 err_dma:
1606 	free_dma_rx_desc_resources(priv);
1607 
1608 	return ret;
1609 }
1610 
1611 /**
1612  * alloc_dma_tx_desc_resources - alloc TX resources.
1613  * @priv: private structure
1614  * Description: according to which descriptor can be used (extend or basic)
1615  * this function allocates the resources for TX and RX paths. In case of
1616  * reception, for example, it pre-allocated the RX socket buffer in order to
1617  * allow zero-copy mechanism.
1618  */
1619 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1620 {
1621 	u32 tx_count = priv->plat->tx_queues_to_use;
1622 	int ret = -ENOMEM;
1623 	u32 queue;
1624 
1625 	/* TX queues buffers and DMA */
1626 	for (queue = 0; queue < tx_count; queue++) {
1627 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1628 
1629 		tx_q->queue_index = queue;
1630 		tx_q->priv_data = priv;
1631 
1632 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1633 					      sizeof(*tx_q->tx_skbuff_dma),
1634 					      GFP_KERNEL);
1635 		if (!tx_q->tx_skbuff_dma)
1636 			goto err_dma;
1637 
1638 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1639 					  sizeof(struct sk_buff *),
1640 					  GFP_KERNEL);
1641 		if (!tx_q->tx_skbuff)
1642 			goto err_dma;
1643 
1644 		if (priv->extend_desc) {
1645 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1646 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1647 							   &tx_q->dma_tx_phy,
1648 							   GFP_KERNEL);
1649 			if (!tx_q->dma_etx)
1650 				goto err_dma;
1651 		} else {
1652 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1653 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1654 							  &tx_q->dma_tx_phy,
1655 							  GFP_KERNEL);
1656 			if (!tx_q->dma_tx)
1657 				goto err_dma;
1658 		}
1659 	}
1660 
1661 	return 0;
1662 
1663 err_dma:
1664 	free_dma_tx_desc_resources(priv);
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * alloc_dma_desc_resources - alloc TX/RX resources.
1671  * @priv: private structure
1672  * Description: according to which descriptor can be used (extend or basic)
1673  * this function allocates the resources for TX and RX paths. In case of
1674  * reception, for example, it pre-allocated the RX socket buffer in order to
1675  * allow zero-copy mechanism.
1676  */
1677 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1678 {
1679 	/* RX Allocation */
1680 	int ret = alloc_dma_rx_desc_resources(priv);
1681 
1682 	if (ret)
1683 		return ret;
1684 
1685 	ret = alloc_dma_tx_desc_resources(priv);
1686 
1687 	return ret;
1688 }
1689 
1690 /**
1691  * free_dma_desc_resources - free dma desc resources
1692  * @priv: private structure
1693  */
1694 static void free_dma_desc_resources(struct stmmac_priv *priv)
1695 {
1696 	/* Release the DMA RX socket buffers */
1697 	free_dma_rx_desc_resources(priv);
1698 
1699 	/* Release the DMA TX socket buffers */
1700 	free_dma_tx_desc_resources(priv);
1701 }
1702 
1703 /**
1704  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1705  *  @priv: driver private structure
1706  *  Description: It is used for enabling the rx queues in the MAC
1707  */
1708 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1709 {
1710 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1711 	int queue;
1712 	u8 mode;
1713 
1714 	for (queue = 0; queue < rx_queues_count; queue++) {
1715 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1716 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1717 	}
1718 }
1719 
1720 /**
1721  * stmmac_start_rx_dma - start RX DMA channel
1722  * @priv: driver private structure
1723  * @chan: RX channel index
1724  * Description:
1725  * This starts a RX DMA channel
1726  */
1727 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1728 {
1729 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1730 	stmmac_start_rx(priv, priv->ioaddr, chan);
1731 }
1732 
1733 /**
1734  * stmmac_start_tx_dma - start TX DMA channel
1735  * @priv: driver private structure
1736  * @chan: TX channel index
1737  * Description:
1738  * This starts a TX DMA channel
1739  */
1740 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1741 {
1742 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1743 	stmmac_start_tx(priv, priv->ioaddr, chan);
1744 }
1745 
1746 /**
1747  * stmmac_stop_rx_dma - stop RX DMA channel
1748  * @priv: driver private structure
1749  * @chan: RX channel index
1750  * Description:
1751  * This stops a RX DMA channel
1752  */
1753 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1754 {
1755 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1756 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1757 }
1758 
1759 /**
1760  * stmmac_stop_tx_dma - stop TX DMA channel
1761  * @priv: driver private structure
1762  * @chan: TX channel index
1763  * Description:
1764  * This stops a TX DMA channel
1765  */
1766 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1767 {
1768 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1769 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1770 }
1771 
1772 /**
1773  * stmmac_start_all_dma - start all RX and TX DMA channels
1774  * @priv: driver private structure
1775  * Description:
1776  * This starts all the RX and TX DMA channels
1777  */
1778 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1779 {
1780 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1781 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1782 	u32 chan = 0;
1783 
1784 	for (chan = 0; chan < rx_channels_count; chan++)
1785 		stmmac_start_rx_dma(priv, chan);
1786 
1787 	for (chan = 0; chan < tx_channels_count; chan++)
1788 		stmmac_start_tx_dma(priv, chan);
1789 }
1790 
1791 /**
1792  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1793  * @priv: driver private structure
1794  * Description:
1795  * This stops the RX and TX DMA channels
1796  */
1797 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1798 {
1799 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1800 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1801 	u32 chan = 0;
1802 
1803 	for (chan = 0; chan < rx_channels_count; chan++)
1804 		stmmac_stop_rx_dma(priv, chan);
1805 
1806 	for (chan = 0; chan < tx_channels_count; chan++)
1807 		stmmac_stop_tx_dma(priv, chan);
1808 }
1809 
1810 /**
1811  *  stmmac_dma_operation_mode - HW DMA operation mode
1812  *  @priv: driver private structure
1813  *  Description: it is used for configuring the DMA operation mode register in
1814  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1815  */
1816 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1817 {
1818 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1819 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1820 	int rxfifosz = priv->plat->rx_fifo_size;
1821 	int txfifosz = priv->plat->tx_fifo_size;
1822 	u32 txmode = 0;
1823 	u32 rxmode = 0;
1824 	u32 chan = 0;
1825 	u8 qmode = 0;
1826 
1827 	if (rxfifosz == 0)
1828 		rxfifosz = priv->dma_cap.rx_fifo_size;
1829 	if (txfifosz == 0)
1830 		txfifosz = priv->dma_cap.tx_fifo_size;
1831 
1832 	/* Adjust for real per queue fifo size */
1833 	rxfifosz /= rx_channels_count;
1834 	txfifosz /= tx_channels_count;
1835 
1836 	if (priv->plat->force_thresh_dma_mode) {
1837 		txmode = tc;
1838 		rxmode = tc;
1839 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1840 		/*
1841 		 * In case of GMAC, SF mode can be enabled
1842 		 * to perform the TX COE in HW. This depends on:
1843 		 * 1) TX COE if actually supported
1844 		 * 2) There is no bugged Jumbo frame support
1845 		 *    that needs to not insert csum in the TDES.
1846 		 */
1847 		txmode = SF_DMA_MODE;
1848 		rxmode = SF_DMA_MODE;
1849 		priv->xstats.threshold = SF_DMA_MODE;
1850 	} else {
1851 		txmode = tc;
1852 		rxmode = SF_DMA_MODE;
1853 	}
1854 
1855 	/* configure all channels */
1856 	for (chan = 0; chan < rx_channels_count; chan++) {
1857 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1858 
1859 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1860 				rxfifosz, qmode);
1861 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1862 				chan);
1863 	}
1864 
1865 	for (chan = 0; chan < tx_channels_count; chan++) {
1866 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1867 
1868 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1869 				txfifosz, qmode);
1870 	}
1871 }
1872 
1873 /**
1874  * stmmac_tx_clean - to manage the transmission completion
1875  * @priv: driver private structure
1876  * @queue: TX queue index
1877  * Description: it reclaims the transmit resources after transmission completes.
1878  */
1879 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1880 {
1881 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1882 	unsigned int bytes_compl = 0, pkts_compl = 0;
1883 	unsigned int entry, count = 0;
1884 
1885 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1886 
1887 	priv->xstats.tx_clean++;
1888 
1889 	entry = tx_q->dirty_tx;
1890 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1891 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1892 		struct dma_desc *p;
1893 		int status;
1894 
1895 		if (priv->extend_desc)
1896 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1897 		else
1898 			p = tx_q->dma_tx + entry;
1899 
1900 		status = stmmac_tx_status(priv, &priv->dev->stats,
1901 				&priv->xstats, p, priv->ioaddr);
1902 		/* Check if the descriptor is owned by the DMA */
1903 		if (unlikely(status & tx_dma_own))
1904 			break;
1905 
1906 		count++;
1907 
1908 		/* Make sure descriptor fields are read after reading
1909 		 * the own bit.
1910 		 */
1911 		dma_rmb();
1912 
1913 		/* Just consider the last segment and ...*/
1914 		if (likely(!(status & tx_not_ls))) {
1915 			/* ... verify the status error condition */
1916 			if (unlikely(status & tx_err)) {
1917 				priv->dev->stats.tx_errors++;
1918 			} else {
1919 				priv->dev->stats.tx_packets++;
1920 				priv->xstats.tx_pkt_n++;
1921 			}
1922 			stmmac_get_tx_hwtstamp(priv, p, skb);
1923 		}
1924 
1925 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1926 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1927 				dma_unmap_page(priv->device,
1928 					       tx_q->tx_skbuff_dma[entry].buf,
1929 					       tx_q->tx_skbuff_dma[entry].len,
1930 					       DMA_TO_DEVICE);
1931 			else
1932 				dma_unmap_single(priv->device,
1933 						 tx_q->tx_skbuff_dma[entry].buf,
1934 						 tx_q->tx_skbuff_dma[entry].len,
1935 						 DMA_TO_DEVICE);
1936 			tx_q->tx_skbuff_dma[entry].buf = 0;
1937 			tx_q->tx_skbuff_dma[entry].len = 0;
1938 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1939 		}
1940 
1941 		stmmac_clean_desc3(priv, tx_q, p);
1942 
1943 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1944 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1945 
1946 		if (likely(skb != NULL)) {
1947 			pkts_compl++;
1948 			bytes_compl += skb->len;
1949 			dev_consume_skb_any(skb);
1950 			tx_q->tx_skbuff[entry] = NULL;
1951 		}
1952 
1953 		stmmac_release_tx_desc(priv, p, priv->mode);
1954 
1955 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1956 	}
1957 	tx_q->dirty_tx = entry;
1958 
1959 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1960 				  pkts_compl, bytes_compl);
1961 
1962 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1963 								queue))) &&
1964 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1965 
1966 		netif_dbg(priv, tx_done, priv->dev,
1967 			  "%s: restart transmit\n", __func__);
1968 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1969 	}
1970 
1971 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1972 		stmmac_enable_eee_mode(priv);
1973 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1974 	}
1975 
1976 	/* We still have pending packets, let's call for a new scheduling */
1977 	if (tx_q->dirty_tx != tx_q->cur_tx)
1978 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1979 
1980 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1981 
1982 	return count;
1983 }
1984 
1985 /**
1986  * stmmac_tx_err - to manage the tx error
1987  * @priv: driver private structure
1988  * @chan: channel index
1989  * Description: it cleans the descriptors and restarts the transmission
1990  * in case of transmission errors.
1991  */
1992 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1993 {
1994 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1995 	int i;
1996 
1997 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1998 
1999 	stmmac_stop_tx_dma(priv, chan);
2000 	dma_free_tx_skbufs(priv, chan);
2001 	for (i = 0; i < DMA_TX_SIZE; i++)
2002 		if (priv->extend_desc)
2003 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2004 					priv->mode, (i == DMA_TX_SIZE - 1));
2005 		else
2006 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2007 					priv->mode, (i == DMA_TX_SIZE - 1));
2008 	tx_q->dirty_tx = 0;
2009 	tx_q->cur_tx = 0;
2010 	tx_q->mss = 0;
2011 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2012 	stmmac_start_tx_dma(priv, chan);
2013 
2014 	priv->dev->stats.tx_errors++;
2015 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2016 }
2017 
2018 /**
2019  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2020  *  @priv: driver private structure
2021  *  @txmode: TX operating mode
2022  *  @rxmode: RX operating mode
2023  *  @chan: channel index
2024  *  Description: it is used for configuring of the DMA operation mode in
2025  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2026  *  mode.
2027  */
2028 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2029 					  u32 rxmode, u32 chan)
2030 {
2031 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2032 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2033 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2034 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2035 	int rxfifosz = priv->plat->rx_fifo_size;
2036 	int txfifosz = priv->plat->tx_fifo_size;
2037 
2038 	if (rxfifosz == 0)
2039 		rxfifosz = priv->dma_cap.rx_fifo_size;
2040 	if (txfifosz == 0)
2041 		txfifosz = priv->dma_cap.tx_fifo_size;
2042 
2043 	/* Adjust for real per queue fifo size */
2044 	rxfifosz /= rx_channels_count;
2045 	txfifosz /= tx_channels_count;
2046 
2047 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2048 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2049 }
2050 
2051 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2052 {
2053 	int ret;
2054 
2055 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2056 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2057 	if (ret && (ret != -EINVAL)) {
2058 		stmmac_global_err(priv);
2059 		return true;
2060 	}
2061 
2062 	return false;
2063 }
2064 
2065 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2066 {
2067 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2068 						 &priv->xstats, chan);
2069 	struct stmmac_channel *ch = &priv->channel[chan];
2070 
2071 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2072 		if (napi_schedule_prep(&ch->rx_napi)) {
2073 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2074 			__napi_schedule_irqoff(&ch->rx_napi);
2075 			status |= handle_tx;
2076 		}
2077 	}
2078 
2079 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2080 		napi_schedule_irqoff(&ch->tx_napi);
2081 
2082 	return status;
2083 }
2084 
2085 /**
2086  * stmmac_dma_interrupt - DMA ISR
2087  * @priv: driver private structure
2088  * Description: this is the DMA ISR. It is called by the main ISR.
2089  * It calls the dwmac dma routine and schedule poll method in case of some
2090  * work can be done.
2091  */
2092 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2093 {
2094 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2095 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2096 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2097 				tx_channel_count : rx_channel_count;
2098 	u32 chan;
2099 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2100 
2101 	/* Make sure we never check beyond our status buffer. */
2102 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2103 		channels_to_check = ARRAY_SIZE(status);
2104 
2105 	for (chan = 0; chan < channels_to_check; chan++)
2106 		status[chan] = stmmac_napi_check(priv, chan);
2107 
2108 	for (chan = 0; chan < tx_channel_count; chan++) {
2109 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2110 			/* Try to bump up the dma threshold on this failure */
2111 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2112 			    (tc <= 256)) {
2113 				tc += 64;
2114 				if (priv->plat->force_thresh_dma_mode)
2115 					stmmac_set_dma_operation_mode(priv,
2116 								      tc,
2117 								      tc,
2118 								      chan);
2119 				else
2120 					stmmac_set_dma_operation_mode(priv,
2121 								    tc,
2122 								    SF_DMA_MODE,
2123 								    chan);
2124 				priv->xstats.threshold = tc;
2125 			}
2126 		} else if (unlikely(status[chan] == tx_hard_error)) {
2127 			stmmac_tx_err(priv, chan);
2128 		}
2129 	}
2130 }
2131 
2132 /**
2133  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2134  * @priv: driver private structure
2135  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2136  */
2137 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2138 {
2139 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2140 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2141 
2142 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2143 
2144 	if (priv->dma_cap.rmon) {
2145 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2146 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2147 	} else
2148 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2149 }
2150 
2151 /**
2152  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2153  * @priv: driver private structure
2154  * Description:
2155  *  new GMAC chip generations have a new register to indicate the
2156  *  presence of the optional feature/functions.
2157  *  This can be also used to override the value passed through the
2158  *  platform and necessary for old MAC10/100 and GMAC chips.
2159  */
2160 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2161 {
2162 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2163 }
2164 
2165 /**
2166  * stmmac_check_ether_addr - check if the MAC addr is valid
2167  * @priv: driver private structure
2168  * Description:
2169  * it is to verify if the MAC address is valid, in case of failures it
2170  * generates a random MAC address
2171  */
2172 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2173 {
2174 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2175 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2176 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2177 			eth_hw_addr_random(priv->dev);
2178 		dev_info(priv->device, "device MAC address %pM\n",
2179 			 priv->dev->dev_addr);
2180 	}
2181 }
2182 
2183 /**
2184  * stmmac_init_dma_engine - DMA init.
2185  * @priv: driver private structure
2186  * Description:
2187  * It inits the DMA invoking the specific MAC/GMAC callback.
2188  * Some DMA parameters can be passed from the platform;
2189  * in case of these are not passed a default is kept for the MAC or GMAC.
2190  */
2191 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2192 {
2193 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2194 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2195 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2196 	struct stmmac_rx_queue *rx_q;
2197 	struct stmmac_tx_queue *tx_q;
2198 	u32 chan = 0;
2199 	int atds = 0;
2200 	int ret = 0;
2201 
2202 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2203 		dev_err(priv->device, "Invalid DMA configuration\n");
2204 		return -EINVAL;
2205 	}
2206 
2207 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2208 		atds = 1;
2209 
2210 	ret = stmmac_reset(priv, priv->ioaddr);
2211 	if (ret) {
2212 		dev_err(priv->device, "Failed to reset the dma\n");
2213 		return ret;
2214 	}
2215 
2216 	/* DMA Configuration */
2217 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2218 
2219 	if (priv->plat->axi)
2220 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2221 
2222 	/* DMA CSR Channel configuration */
2223 	for (chan = 0; chan < dma_csr_ch; chan++)
2224 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2225 
2226 	/* DMA RX Channel Configuration */
2227 	for (chan = 0; chan < rx_channels_count; chan++) {
2228 		rx_q = &priv->rx_queue[chan];
2229 
2230 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2231 				    rx_q->dma_rx_phy, chan);
2232 
2233 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2234 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2235 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2236 				       rx_q->rx_tail_addr, chan);
2237 	}
2238 
2239 	/* DMA TX Channel Configuration */
2240 	for (chan = 0; chan < tx_channels_count; chan++) {
2241 		tx_q = &priv->tx_queue[chan];
2242 
2243 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2244 				    tx_q->dma_tx_phy, chan);
2245 
2246 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2247 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2248 				       tx_q->tx_tail_addr, chan);
2249 	}
2250 
2251 	return ret;
2252 }
2253 
2254 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2255 {
2256 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2257 
2258 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2259 }
2260 
2261 /**
2262  * stmmac_tx_timer - mitigation sw timer for tx.
2263  * @data: data pointer
2264  * Description:
2265  * This is the timer handler to directly invoke the stmmac_tx_clean.
2266  */
2267 static void stmmac_tx_timer(struct timer_list *t)
2268 {
2269 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2270 	struct stmmac_priv *priv = tx_q->priv_data;
2271 	struct stmmac_channel *ch;
2272 
2273 	ch = &priv->channel[tx_q->queue_index];
2274 
2275 	/*
2276 	 * If NAPI is already running we can miss some events. Let's rearm
2277 	 * the timer and try again.
2278 	 */
2279 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2280 		__napi_schedule(&ch->tx_napi);
2281 	else
2282 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2283 }
2284 
2285 /**
2286  * stmmac_init_coalesce - init mitigation options.
2287  * @priv: driver private structure
2288  * Description:
2289  * This inits the coalesce parameters: i.e. timer rate,
2290  * timer handler and default threshold used for enabling the
2291  * interrupt on completion bit.
2292  */
2293 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2294 {
2295 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2296 	u32 chan;
2297 
2298 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2299 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2300 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2301 
2302 	for (chan = 0; chan < tx_channel_count; chan++) {
2303 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2304 
2305 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2306 	}
2307 }
2308 
2309 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2310 {
2311 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2312 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2313 	u32 chan;
2314 
2315 	/* set TX ring length */
2316 	for (chan = 0; chan < tx_channels_count; chan++)
2317 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2318 				(DMA_TX_SIZE - 1), chan);
2319 
2320 	/* set RX ring length */
2321 	for (chan = 0; chan < rx_channels_count; chan++)
2322 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2323 				(DMA_RX_SIZE - 1), chan);
2324 }
2325 
2326 /**
2327  *  stmmac_set_tx_queue_weight - Set TX queue weight
2328  *  @priv: driver private structure
2329  *  Description: It is used for setting TX queues weight
2330  */
2331 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2332 {
2333 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2334 	u32 weight;
2335 	u32 queue;
2336 
2337 	for (queue = 0; queue < tx_queues_count; queue++) {
2338 		weight = priv->plat->tx_queues_cfg[queue].weight;
2339 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2340 	}
2341 }
2342 
2343 /**
2344  *  stmmac_configure_cbs - Configure CBS in TX queue
2345  *  @priv: driver private structure
2346  *  Description: It is used for configuring CBS in AVB TX queues
2347  */
2348 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2349 {
2350 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2351 	u32 mode_to_use;
2352 	u32 queue;
2353 
2354 	/* queue 0 is reserved for legacy traffic */
2355 	for (queue = 1; queue < tx_queues_count; queue++) {
2356 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2357 		if (mode_to_use == MTL_QUEUE_DCB)
2358 			continue;
2359 
2360 		stmmac_config_cbs(priv, priv->hw,
2361 				priv->plat->tx_queues_cfg[queue].send_slope,
2362 				priv->plat->tx_queues_cfg[queue].idle_slope,
2363 				priv->plat->tx_queues_cfg[queue].high_credit,
2364 				priv->plat->tx_queues_cfg[queue].low_credit,
2365 				queue);
2366 	}
2367 }
2368 
2369 /**
2370  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2371  *  @priv: driver private structure
2372  *  Description: It is used for mapping RX queues to RX dma channels
2373  */
2374 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2375 {
2376 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2377 	u32 queue;
2378 	u32 chan;
2379 
2380 	for (queue = 0; queue < rx_queues_count; queue++) {
2381 		chan = priv->plat->rx_queues_cfg[queue].chan;
2382 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2383 	}
2384 }
2385 
2386 /**
2387  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2388  *  @priv: driver private structure
2389  *  Description: It is used for configuring the RX Queue Priority
2390  */
2391 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2392 {
2393 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2394 	u32 queue;
2395 	u32 prio;
2396 
2397 	for (queue = 0; queue < rx_queues_count; queue++) {
2398 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2399 			continue;
2400 
2401 		prio = priv->plat->rx_queues_cfg[queue].prio;
2402 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2403 	}
2404 }
2405 
2406 /**
2407  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2408  *  @priv: driver private structure
2409  *  Description: It is used for configuring the TX Queue Priority
2410  */
2411 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2412 {
2413 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2414 	u32 queue;
2415 	u32 prio;
2416 
2417 	for (queue = 0; queue < tx_queues_count; queue++) {
2418 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2419 			continue;
2420 
2421 		prio = priv->plat->tx_queues_cfg[queue].prio;
2422 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2423 	}
2424 }
2425 
2426 /**
2427  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2428  *  @priv: driver private structure
2429  *  Description: It is used for configuring the RX queue routing
2430  */
2431 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2432 {
2433 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2434 	u32 queue;
2435 	u8 packet;
2436 
2437 	for (queue = 0; queue < rx_queues_count; queue++) {
2438 		/* no specific packet type routing specified for the queue */
2439 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2440 			continue;
2441 
2442 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2443 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2444 	}
2445 }
2446 
2447 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2448 {
2449 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2450 		priv->rss.enable = false;
2451 		return;
2452 	}
2453 
2454 	if (priv->dev->features & NETIF_F_RXHASH)
2455 		priv->rss.enable = true;
2456 	else
2457 		priv->rss.enable = false;
2458 
2459 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2460 			     priv->plat->rx_queues_to_use);
2461 }
2462 
2463 /**
2464  *  stmmac_mtl_configuration - Configure MTL
2465  *  @priv: driver private structure
2466  *  Description: It is used for configurring MTL
2467  */
2468 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2469 {
2470 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2471 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2472 
2473 	if (tx_queues_count > 1)
2474 		stmmac_set_tx_queue_weight(priv);
2475 
2476 	/* Configure MTL RX algorithms */
2477 	if (rx_queues_count > 1)
2478 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2479 				priv->plat->rx_sched_algorithm);
2480 
2481 	/* Configure MTL TX algorithms */
2482 	if (tx_queues_count > 1)
2483 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2484 				priv->plat->tx_sched_algorithm);
2485 
2486 	/* Configure CBS in AVB TX queues */
2487 	if (tx_queues_count > 1)
2488 		stmmac_configure_cbs(priv);
2489 
2490 	/* Map RX MTL to DMA channels */
2491 	stmmac_rx_queue_dma_chan_map(priv);
2492 
2493 	/* Enable MAC RX Queues */
2494 	stmmac_mac_enable_rx_queues(priv);
2495 
2496 	/* Set RX priorities */
2497 	if (rx_queues_count > 1)
2498 		stmmac_mac_config_rx_queues_prio(priv);
2499 
2500 	/* Set TX priorities */
2501 	if (tx_queues_count > 1)
2502 		stmmac_mac_config_tx_queues_prio(priv);
2503 
2504 	/* Set RX routing */
2505 	if (rx_queues_count > 1)
2506 		stmmac_mac_config_rx_queues_routing(priv);
2507 
2508 	/* Receive Side Scaling */
2509 	if (rx_queues_count > 1)
2510 		stmmac_mac_config_rss(priv);
2511 }
2512 
2513 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2514 {
2515 	if (priv->dma_cap.asp) {
2516 		netdev_info(priv->dev, "Enabling Safety Features\n");
2517 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2518 	} else {
2519 		netdev_info(priv->dev, "No Safety Features support found\n");
2520 	}
2521 }
2522 
2523 /**
2524  * stmmac_hw_setup - setup mac in a usable state.
2525  *  @dev : pointer to the device structure.
2526  *  Description:
2527  *  this is the main function to setup the HW in a usable state because the
2528  *  dma engine is reset, the core registers are configured (e.g. AXI,
2529  *  Checksum features, timers). The DMA is ready to start receiving and
2530  *  transmitting.
2531  *  Return value:
2532  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2533  *  file on failure.
2534  */
2535 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2536 {
2537 	struct stmmac_priv *priv = netdev_priv(dev);
2538 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2539 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2540 	u32 chan;
2541 	int ret;
2542 
2543 	/* DMA initialization and SW reset */
2544 	ret = stmmac_init_dma_engine(priv);
2545 	if (ret < 0) {
2546 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2547 			   __func__);
2548 		return ret;
2549 	}
2550 
2551 	/* Copy the MAC addr into the HW  */
2552 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2553 
2554 	/* PS and related bits will be programmed according to the speed */
2555 	if (priv->hw->pcs) {
2556 		int speed = priv->plat->mac_port_sel_speed;
2557 
2558 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2559 		    (speed == SPEED_1000)) {
2560 			priv->hw->ps = speed;
2561 		} else {
2562 			dev_warn(priv->device, "invalid port speed\n");
2563 			priv->hw->ps = 0;
2564 		}
2565 	}
2566 
2567 	/* Initialize the MAC Core */
2568 	stmmac_core_init(priv, priv->hw, dev);
2569 
2570 	/* Initialize MTL*/
2571 	stmmac_mtl_configuration(priv);
2572 
2573 	/* Initialize Safety Features */
2574 	stmmac_safety_feat_configuration(priv);
2575 
2576 	ret = stmmac_rx_ipc(priv, priv->hw);
2577 	if (!ret) {
2578 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2579 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2580 		priv->hw->rx_csum = 0;
2581 	}
2582 
2583 	/* Enable the MAC Rx/Tx */
2584 	stmmac_mac_set(priv, priv->ioaddr, true);
2585 
2586 	/* Set the HW DMA mode and the COE */
2587 	stmmac_dma_operation_mode(priv);
2588 
2589 	stmmac_mmc_setup(priv);
2590 
2591 	if (init_ptp) {
2592 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2593 		if (ret < 0)
2594 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2595 
2596 		ret = stmmac_init_ptp(priv);
2597 		if (ret == -EOPNOTSUPP)
2598 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2599 		else if (ret)
2600 			netdev_warn(priv->dev, "PTP init failed\n");
2601 	}
2602 
2603 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2604 
2605 	if (priv->use_riwt) {
2606 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2607 		if (!ret)
2608 			priv->rx_riwt = MIN_DMA_RIWT;
2609 	}
2610 
2611 	if (priv->hw->pcs)
2612 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2613 
2614 	/* set TX and RX rings length */
2615 	stmmac_set_rings_length(priv);
2616 
2617 	/* Enable TSO */
2618 	if (priv->tso) {
2619 		for (chan = 0; chan < tx_cnt; chan++)
2620 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2621 	}
2622 
2623 	/* Enable Split Header */
2624 	if (priv->sph && priv->hw->rx_csum) {
2625 		for (chan = 0; chan < rx_cnt; chan++)
2626 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2627 	}
2628 
2629 	/* VLAN Tag Insertion */
2630 	if (priv->dma_cap.vlins)
2631 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2632 
2633 	/* Start the ball rolling... */
2634 	stmmac_start_all_dma(priv);
2635 
2636 	return 0;
2637 }
2638 
2639 static void stmmac_hw_teardown(struct net_device *dev)
2640 {
2641 	struct stmmac_priv *priv = netdev_priv(dev);
2642 
2643 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2644 }
2645 
2646 /**
2647  *  stmmac_open - open entry point of the driver
2648  *  @dev : pointer to the device structure.
2649  *  Description:
2650  *  This function is the open entry point of the driver.
2651  *  Return value:
2652  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2653  *  file on failure.
2654  */
2655 static int stmmac_open(struct net_device *dev)
2656 {
2657 	struct stmmac_priv *priv = netdev_priv(dev);
2658 	u32 chan;
2659 	int ret;
2660 
2661 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2662 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2663 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2664 		ret = stmmac_init_phy(dev);
2665 		if (ret) {
2666 			netdev_err(priv->dev,
2667 				   "%s: Cannot attach to PHY (error: %d)\n",
2668 				   __func__, ret);
2669 			return ret;
2670 		}
2671 	}
2672 
2673 	/* Extra statistics */
2674 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2675 	priv->xstats.threshold = tc;
2676 
2677 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2678 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2679 
2680 	ret = alloc_dma_desc_resources(priv);
2681 	if (ret < 0) {
2682 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2683 			   __func__);
2684 		goto dma_desc_error;
2685 	}
2686 
2687 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2688 	if (ret < 0) {
2689 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2690 			   __func__);
2691 		goto init_error;
2692 	}
2693 
2694 	ret = stmmac_hw_setup(dev, true);
2695 	if (ret < 0) {
2696 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2697 		goto init_error;
2698 	}
2699 
2700 	stmmac_init_coalesce(priv);
2701 
2702 	phylink_start(priv->phylink);
2703 
2704 	/* Request the IRQ lines */
2705 	ret = request_irq(dev->irq, stmmac_interrupt,
2706 			  IRQF_SHARED, dev->name, dev);
2707 	if (unlikely(ret < 0)) {
2708 		netdev_err(priv->dev,
2709 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2710 			   __func__, dev->irq, ret);
2711 		goto irq_error;
2712 	}
2713 
2714 	/* Request the Wake IRQ in case of another line is used for WoL */
2715 	if (priv->wol_irq != dev->irq) {
2716 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2717 				  IRQF_SHARED, dev->name, dev);
2718 		if (unlikely(ret < 0)) {
2719 			netdev_err(priv->dev,
2720 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2721 				   __func__, priv->wol_irq, ret);
2722 			goto wolirq_error;
2723 		}
2724 	}
2725 
2726 	/* Request the IRQ lines */
2727 	if (priv->lpi_irq > 0) {
2728 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2729 				  dev->name, dev);
2730 		if (unlikely(ret < 0)) {
2731 			netdev_err(priv->dev,
2732 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2733 				   __func__, priv->lpi_irq, ret);
2734 			goto lpiirq_error;
2735 		}
2736 	}
2737 
2738 	stmmac_enable_all_queues(priv);
2739 	stmmac_start_all_queues(priv);
2740 
2741 	return 0;
2742 
2743 lpiirq_error:
2744 	if (priv->wol_irq != dev->irq)
2745 		free_irq(priv->wol_irq, dev);
2746 wolirq_error:
2747 	free_irq(dev->irq, dev);
2748 irq_error:
2749 	phylink_stop(priv->phylink);
2750 
2751 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2752 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2753 
2754 	stmmac_hw_teardown(dev);
2755 init_error:
2756 	free_dma_desc_resources(priv);
2757 dma_desc_error:
2758 	phylink_disconnect_phy(priv->phylink);
2759 	return ret;
2760 }
2761 
2762 /**
2763  *  stmmac_release - close entry point of the driver
2764  *  @dev : device pointer.
2765  *  Description:
2766  *  This is the stop entry point of the driver.
2767  */
2768 static int stmmac_release(struct net_device *dev)
2769 {
2770 	struct stmmac_priv *priv = netdev_priv(dev);
2771 	u32 chan;
2772 
2773 	if (priv->eee_enabled)
2774 		del_timer_sync(&priv->eee_ctrl_timer);
2775 
2776 	/* Stop and disconnect the PHY */
2777 	phylink_stop(priv->phylink);
2778 	phylink_disconnect_phy(priv->phylink);
2779 
2780 	stmmac_stop_all_queues(priv);
2781 
2782 	stmmac_disable_all_queues(priv);
2783 
2784 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2785 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2786 
2787 	/* Free the IRQ lines */
2788 	free_irq(dev->irq, dev);
2789 	if (priv->wol_irq != dev->irq)
2790 		free_irq(priv->wol_irq, dev);
2791 	if (priv->lpi_irq > 0)
2792 		free_irq(priv->lpi_irq, dev);
2793 
2794 	/* Stop TX/RX DMA and clear the descriptors */
2795 	stmmac_stop_all_dma(priv);
2796 
2797 	/* Release and free the Rx/Tx resources */
2798 	free_dma_desc_resources(priv);
2799 
2800 	/* Disable the MAC Rx/Tx */
2801 	stmmac_mac_set(priv, priv->ioaddr, false);
2802 
2803 	netif_carrier_off(dev);
2804 
2805 	stmmac_release_ptp(priv);
2806 
2807 	return 0;
2808 }
2809 
2810 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2811 			       struct stmmac_tx_queue *tx_q)
2812 {
2813 	u16 tag = 0x0, inner_tag = 0x0;
2814 	u32 inner_type = 0x0;
2815 	struct dma_desc *p;
2816 
2817 	if (!priv->dma_cap.vlins)
2818 		return false;
2819 	if (!skb_vlan_tag_present(skb))
2820 		return false;
2821 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2822 		inner_tag = skb_vlan_tag_get(skb);
2823 		inner_type = STMMAC_VLAN_INSERT;
2824 	}
2825 
2826 	tag = skb_vlan_tag_get(skb);
2827 
2828 	p = tx_q->dma_tx + tx_q->cur_tx;
2829 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2830 		return false;
2831 
2832 	stmmac_set_tx_owner(priv, p);
2833 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2834 	return true;
2835 }
2836 
2837 /**
2838  *  stmmac_tso_allocator - close entry point of the driver
2839  *  @priv: driver private structure
2840  *  @des: buffer start address
2841  *  @total_len: total length to fill in descriptors
2842  *  @last_segmant: condition for the last descriptor
2843  *  @queue: TX queue index
2844  *  Description:
2845  *  This function fills descriptor and request new descriptors according to
2846  *  buffer length to fill
2847  */
2848 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2849 				 int total_len, bool last_segment, u32 queue)
2850 {
2851 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2852 	struct dma_desc *desc;
2853 	u32 buff_size;
2854 	int tmp_len;
2855 
2856 	tmp_len = total_len;
2857 
2858 	while (tmp_len > 0) {
2859 		dma_addr_t curr_addr;
2860 
2861 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2862 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2863 		desc = tx_q->dma_tx + tx_q->cur_tx;
2864 
2865 		curr_addr = des + (total_len - tmp_len);
2866 		if (priv->dma_cap.addr64 <= 32)
2867 			desc->des0 = cpu_to_le32(curr_addr);
2868 		else
2869 			stmmac_set_desc_addr(priv, desc, curr_addr);
2870 
2871 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2872 			    TSO_MAX_BUFF_SIZE : tmp_len;
2873 
2874 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2875 				0, 1,
2876 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2877 				0, 0);
2878 
2879 		tmp_len -= TSO_MAX_BUFF_SIZE;
2880 	}
2881 }
2882 
2883 /**
2884  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2885  *  @skb : the socket buffer
2886  *  @dev : device pointer
2887  *  Description: this is the transmit function that is called on TSO frames
2888  *  (support available on GMAC4 and newer chips).
2889  *  Diagram below show the ring programming in case of TSO frames:
2890  *
2891  *  First Descriptor
2892  *   --------
2893  *   | DES0 |---> buffer1 = L2/L3/L4 header
2894  *   | DES1 |---> TCP Payload (can continue on next descr...)
2895  *   | DES2 |---> buffer 1 and 2 len
2896  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2897  *   --------
2898  *	|
2899  *     ...
2900  *	|
2901  *   --------
2902  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2903  *   | DES1 | --|
2904  *   | DES2 | --> buffer 1 and 2 len
2905  *   | DES3 |
2906  *   --------
2907  *
2908  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2909  */
2910 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2911 {
2912 	struct dma_desc *desc, *first, *mss_desc = NULL;
2913 	struct stmmac_priv *priv = netdev_priv(dev);
2914 	int nfrags = skb_shinfo(skb)->nr_frags;
2915 	u32 queue = skb_get_queue_mapping(skb);
2916 	struct stmmac_tx_queue *tx_q;
2917 	unsigned int first_entry;
2918 	int tmp_pay_len = 0;
2919 	u32 pay_len, mss;
2920 	u8 proto_hdr_len;
2921 	dma_addr_t des;
2922 	bool has_vlan;
2923 	int i;
2924 
2925 	tx_q = &priv->tx_queue[queue];
2926 
2927 	/* Compute header lengths */
2928 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2929 
2930 	/* Desc availability based on threshold should be enough safe */
2931 	if (unlikely(stmmac_tx_avail(priv, queue) <
2932 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2933 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2934 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2935 								queue));
2936 			/* This is a hard error, log it. */
2937 			netdev_err(priv->dev,
2938 				   "%s: Tx Ring full when queue awake\n",
2939 				   __func__);
2940 		}
2941 		return NETDEV_TX_BUSY;
2942 	}
2943 
2944 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2945 
2946 	mss = skb_shinfo(skb)->gso_size;
2947 
2948 	/* set new MSS value if needed */
2949 	if (mss != tx_q->mss) {
2950 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2951 		stmmac_set_mss(priv, mss_desc, mss);
2952 		tx_q->mss = mss;
2953 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2954 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2955 	}
2956 
2957 	if (netif_msg_tx_queued(priv)) {
2958 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2959 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2960 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2961 			skb->data_len);
2962 	}
2963 
2964 	/* Check if VLAN can be inserted by HW */
2965 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2966 
2967 	first_entry = tx_q->cur_tx;
2968 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2969 
2970 	desc = tx_q->dma_tx + first_entry;
2971 	first = desc;
2972 
2973 	if (has_vlan)
2974 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2975 
2976 	/* first descriptor: fill Headers on Buf1 */
2977 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2978 			     DMA_TO_DEVICE);
2979 	if (dma_mapping_error(priv->device, des))
2980 		goto dma_map_err;
2981 
2982 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2983 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2984 
2985 	if (priv->dma_cap.addr64 <= 32) {
2986 		first->des0 = cpu_to_le32(des);
2987 
2988 		/* Fill start of payload in buff2 of first descriptor */
2989 		if (pay_len)
2990 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2991 
2992 		/* If needed take extra descriptors to fill the remaining payload */
2993 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2994 	} else {
2995 		stmmac_set_desc_addr(priv, first, des);
2996 		tmp_pay_len = pay_len;
2997 	}
2998 
2999 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3000 
3001 	/* Prepare fragments */
3002 	for (i = 0; i < nfrags; i++) {
3003 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3004 
3005 		des = skb_frag_dma_map(priv->device, frag, 0,
3006 				       skb_frag_size(frag),
3007 				       DMA_TO_DEVICE);
3008 		if (dma_mapping_error(priv->device, des))
3009 			goto dma_map_err;
3010 
3011 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3012 				     (i == nfrags - 1), queue);
3013 
3014 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3015 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3016 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3017 	}
3018 
3019 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3020 
3021 	/* Only the last descriptor gets to point to the skb. */
3022 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3023 
3024 	/* We've used all descriptors we need for this skb, however,
3025 	 * advance cur_tx so that it references a fresh descriptor.
3026 	 * ndo_start_xmit will fill this descriptor the next time it's
3027 	 * called and stmmac_tx_clean may clean up to this descriptor.
3028 	 */
3029 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3030 
3031 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3032 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3033 			  __func__);
3034 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3035 	}
3036 
3037 	dev->stats.tx_bytes += skb->len;
3038 	priv->xstats.tx_tso_frames++;
3039 	priv->xstats.tx_tso_nfrags += nfrags;
3040 
3041 	/* Manage tx mitigation */
3042 	tx_q->tx_count_frames += nfrags + 1;
3043 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3044 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3045 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3046 	    priv->hwts_tx_en)) {
3047 		stmmac_tx_timer_arm(priv, queue);
3048 	} else {
3049 		tx_q->tx_count_frames = 0;
3050 		stmmac_set_tx_ic(priv, desc);
3051 		priv->xstats.tx_set_ic_bit++;
3052 	}
3053 
3054 	if (priv->sarc_type)
3055 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3056 
3057 	skb_tx_timestamp(skb);
3058 
3059 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3060 		     priv->hwts_tx_en)) {
3061 		/* declare that device is doing timestamping */
3062 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3063 		stmmac_enable_tx_timestamp(priv, first);
3064 	}
3065 
3066 	/* Complete the first descriptor before granting the DMA */
3067 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3068 			proto_hdr_len,
3069 			pay_len,
3070 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3071 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3072 
3073 	/* If context desc is used to change MSS */
3074 	if (mss_desc) {
3075 		/* Make sure that first descriptor has been completely
3076 		 * written, including its own bit. This is because MSS is
3077 		 * actually before first descriptor, so we need to make
3078 		 * sure that MSS's own bit is the last thing written.
3079 		 */
3080 		dma_wmb();
3081 		stmmac_set_tx_owner(priv, mss_desc);
3082 	}
3083 
3084 	/* The own bit must be the latest setting done when prepare the
3085 	 * descriptor and then barrier is needed to make sure that
3086 	 * all is coherent before granting the DMA engine.
3087 	 */
3088 	wmb();
3089 
3090 	if (netif_msg_pktdata(priv)) {
3091 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3092 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3093 			tx_q->cur_tx, first, nfrags);
3094 
3095 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3096 
3097 		pr_info(">>> frame to be transmitted: ");
3098 		print_pkt(skb->data, skb_headlen(skb));
3099 	}
3100 
3101 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3102 
3103 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3104 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3105 
3106 	return NETDEV_TX_OK;
3107 
3108 dma_map_err:
3109 	dev_err(priv->device, "Tx dma map failed\n");
3110 	dev_kfree_skb(skb);
3111 	priv->dev->stats.tx_dropped++;
3112 	return NETDEV_TX_OK;
3113 }
3114 
3115 /**
3116  *  stmmac_xmit - Tx entry point of the driver
3117  *  @skb : the socket buffer
3118  *  @dev : device pointer
3119  *  Description : this is the tx entry point of the driver.
3120  *  It programs the chain or the ring and supports oversized frames
3121  *  and SG feature.
3122  */
3123 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3124 {
3125 	struct stmmac_priv *priv = netdev_priv(dev);
3126 	unsigned int nopaged_len = skb_headlen(skb);
3127 	int i, csum_insertion = 0, is_jumbo = 0;
3128 	u32 queue = skb_get_queue_mapping(skb);
3129 	int nfrags = skb_shinfo(skb)->nr_frags;
3130 	struct dma_desc *desc, *first;
3131 	struct stmmac_tx_queue *tx_q;
3132 	unsigned int first_entry;
3133 	unsigned int enh_desc;
3134 	dma_addr_t des;
3135 	bool has_vlan;
3136 	int entry;
3137 
3138 	tx_q = &priv->tx_queue[queue];
3139 
3140 	if (priv->tx_path_in_lpi_mode)
3141 		stmmac_disable_eee_mode(priv);
3142 
3143 	/* Manage oversized TCP frames for GMAC4 device */
3144 	if (skb_is_gso(skb) && priv->tso) {
3145 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3146 			return stmmac_tso_xmit(skb, dev);
3147 	}
3148 
3149 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3150 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3151 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3152 								queue));
3153 			/* This is a hard error, log it. */
3154 			netdev_err(priv->dev,
3155 				   "%s: Tx Ring full when queue awake\n",
3156 				   __func__);
3157 		}
3158 		return NETDEV_TX_BUSY;
3159 	}
3160 
3161 	/* Check if VLAN can be inserted by HW */
3162 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3163 
3164 	entry = tx_q->cur_tx;
3165 	first_entry = entry;
3166 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3167 
3168 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3169 
3170 	if (likely(priv->extend_desc))
3171 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3172 	else
3173 		desc = tx_q->dma_tx + entry;
3174 
3175 	first = desc;
3176 
3177 	if (has_vlan)
3178 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3179 
3180 	enh_desc = priv->plat->enh_desc;
3181 	/* To program the descriptors according to the size of the frame */
3182 	if (enh_desc)
3183 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3184 
3185 	if (unlikely(is_jumbo)) {
3186 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3187 		if (unlikely(entry < 0) && (entry != -EINVAL))
3188 			goto dma_map_err;
3189 	}
3190 
3191 	for (i = 0; i < nfrags; i++) {
3192 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3193 		int len = skb_frag_size(frag);
3194 		bool last_segment = (i == (nfrags - 1));
3195 
3196 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3197 		WARN_ON(tx_q->tx_skbuff[entry]);
3198 
3199 		if (likely(priv->extend_desc))
3200 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3201 		else
3202 			desc = tx_q->dma_tx + entry;
3203 
3204 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3205 				       DMA_TO_DEVICE);
3206 		if (dma_mapping_error(priv->device, des))
3207 			goto dma_map_err; /* should reuse desc w/o issues */
3208 
3209 		tx_q->tx_skbuff_dma[entry].buf = des;
3210 
3211 		stmmac_set_desc_addr(priv, desc, des);
3212 
3213 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3214 		tx_q->tx_skbuff_dma[entry].len = len;
3215 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3216 
3217 		/* Prepare the descriptor and set the own bit too */
3218 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3219 				priv->mode, 1, last_segment, skb->len);
3220 	}
3221 
3222 	/* Only the last descriptor gets to point to the skb. */
3223 	tx_q->tx_skbuff[entry] = skb;
3224 
3225 	/* We've used all descriptors we need for this skb, however,
3226 	 * advance cur_tx so that it references a fresh descriptor.
3227 	 * ndo_start_xmit will fill this descriptor the next time it's
3228 	 * called and stmmac_tx_clean may clean up to this descriptor.
3229 	 */
3230 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3231 	tx_q->cur_tx = entry;
3232 
3233 	if (netif_msg_pktdata(priv)) {
3234 		void *tx_head;
3235 
3236 		netdev_dbg(priv->dev,
3237 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3238 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3239 			   entry, first, nfrags);
3240 
3241 		if (priv->extend_desc)
3242 			tx_head = (void *)tx_q->dma_etx;
3243 		else
3244 			tx_head = (void *)tx_q->dma_tx;
3245 
3246 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3247 
3248 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3249 		print_pkt(skb->data, skb->len);
3250 	}
3251 
3252 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3253 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3254 			  __func__);
3255 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3256 	}
3257 
3258 	dev->stats.tx_bytes += skb->len;
3259 
3260 	/* According to the coalesce parameter the IC bit for the latest
3261 	 * segment is reset and the timer re-started to clean the tx status.
3262 	 * This approach takes care about the fragments: desc is the first
3263 	 * element in case of no SG.
3264 	 */
3265 	tx_q->tx_count_frames += nfrags + 1;
3266 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3267 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3268 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3269 	    priv->hwts_tx_en)) {
3270 		stmmac_tx_timer_arm(priv, queue);
3271 	} else {
3272 		tx_q->tx_count_frames = 0;
3273 		stmmac_set_tx_ic(priv, desc);
3274 		priv->xstats.tx_set_ic_bit++;
3275 	}
3276 
3277 	if (priv->sarc_type)
3278 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3279 
3280 	skb_tx_timestamp(skb);
3281 
3282 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3283 	 * problems because all the descriptors are actually ready to be
3284 	 * passed to the DMA engine.
3285 	 */
3286 	if (likely(!is_jumbo)) {
3287 		bool last_segment = (nfrags == 0);
3288 
3289 		des = dma_map_single(priv->device, skb->data,
3290 				     nopaged_len, DMA_TO_DEVICE);
3291 		if (dma_mapping_error(priv->device, des))
3292 			goto dma_map_err;
3293 
3294 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3295 
3296 		stmmac_set_desc_addr(priv, first, des);
3297 
3298 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3299 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3300 
3301 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3302 			     priv->hwts_tx_en)) {
3303 			/* declare that device is doing timestamping */
3304 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3305 			stmmac_enable_tx_timestamp(priv, first);
3306 		}
3307 
3308 		/* Prepare the first descriptor setting the OWN bit too */
3309 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3310 				csum_insertion, priv->mode, 1, last_segment,
3311 				skb->len);
3312 	} else {
3313 		stmmac_set_tx_owner(priv, first);
3314 	}
3315 
3316 	/* The own bit must be the latest setting done when prepare the
3317 	 * descriptor and then barrier is needed to make sure that
3318 	 * all is coherent before granting the DMA engine.
3319 	 */
3320 	wmb();
3321 
3322 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3323 
3324 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3325 
3326 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3327 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3328 
3329 	return NETDEV_TX_OK;
3330 
3331 dma_map_err:
3332 	netdev_err(priv->dev, "Tx DMA map failed\n");
3333 	dev_kfree_skb(skb);
3334 	priv->dev->stats.tx_dropped++;
3335 	return NETDEV_TX_OK;
3336 }
3337 
3338 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3339 {
3340 	struct vlan_ethhdr *veth;
3341 	__be16 vlan_proto;
3342 	u16 vlanid;
3343 
3344 	veth = (struct vlan_ethhdr *)skb->data;
3345 	vlan_proto = veth->h_vlan_proto;
3346 
3347 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3348 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3349 	    (vlan_proto == htons(ETH_P_8021AD) &&
3350 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3351 		/* pop the vlan tag */
3352 		vlanid = ntohs(veth->h_vlan_TCI);
3353 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3354 		skb_pull(skb, VLAN_HLEN);
3355 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3356 	}
3357 }
3358 
3359 
3360 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3361 {
3362 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3363 		return 0;
3364 
3365 	return 1;
3366 }
3367 
3368 /**
3369  * stmmac_rx_refill - refill used skb preallocated buffers
3370  * @priv: driver private structure
3371  * @queue: RX queue index
3372  * Description : this is to reallocate the skb for the reception process
3373  * that is based on zero-copy.
3374  */
3375 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3376 {
3377 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3378 	int len, dirty = stmmac_rx_dirty(priv, queue);
3379 	unsigned int entry = rx_q->dirty_rx;
3380 
3381 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3382 
3383 	while (dirty-- > 0) {
3384 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3385 		struct dma_desc *p;
3386 		bool use_rx_wd;
3387 
3388 		if (priv->extend_desc)
3389 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3390 		else
3391 			p = rx_q->dma_rx + entry;
3392 
3393 		if (!buf->page) {
3394 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3395 			if (!buf->page)
3396 				break;
3397 		}
3398 
3399 		if (priv->sph && !buf->sec_page) {
3400 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3401 			if (!buf->sec_page)
3402 				break;
3403 
3404 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3405 
3406 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3407 						   len, DMA_FROM_DEVICE);
3408 		}
3409 
3410 		buf->addr = page_pool_get_dma_addr(buf->page);
3411 
3412 		/* Sync whole allocation to device. This will invalidate old
3413 		 * data.
3414 		 */
3415 		dma_sync_single_for_device(priv->device, buf->addr, len,
3416 					   DMA_FROM_DEVICE);
3417 
3418 		stmmac_set_desc_addr(priv, p, buf->addr);
3419 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3420 		stmmac_refill_desc3(priv, rx_q, p);
3421 
3422 		rx_q->rx_count_frames++;
3423 		rx_q->rx_count_frames += priv->rx_coal_frames;
3424 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3425 			rx_q->rx_count_frames = 0;
3426 		use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3427 
3428 		dma_wmb();
3429 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3430 
3431 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3432 	}
3433 	rx_q->dirty_rx = entry;
3434 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3435 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3436 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3437 }
3438 
3439 /**
3440  * stmmac_rx - manage the receive process
3441  * @priv: driver private structure
3442  * @limit: napi bugget
3443  * @queue: RX queue index.
3444  * Description :  this the function called by the napi poll method.
3445  * It gets all the frames inside the ring.
3446  */
3447 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3448 {
3449 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3450 	struct stmmac_channel *ch = &priv->channel[queue];
3451 	unsigned int count = 0, error = 0, len = 0;
3452 	int status = 0, coe = priv->hw->rx_csum;
3453 	unsigned int next_entry = rx_q->cur_rx;
3454 	struct sk_buff *skb = NULL;
3455 
3456 	if (netif_msg_rx_status(priv)) {
3457 		void *rx_head;
3458 
3459 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3460 		if (priv->extend_desc)
3461 			rx_head = (void *)rx_q->dma_erx;
3462 		else
3463 			rx_head = (void *)rx_q->dma_rx;
3464 
3465 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3466 	}
3467 	while (count < limit) {
3468 		unsigned int hlen = 0, prev_len = 0;
3469 		enum pkt_hash_types hash_type;
3470 		struct stmmac_rx_buffer *buf;
3471 		struct dma_desc *np, *p;
3472 		unsigned int sec_len;
3473 		int entry;
3474 		u32 hash;
3475 
3476 		if (!count && rx_q->state_saved) {
3477 			skb = rx_q->state.skb;
3478 			error = rx_q->state.error;
3479 			len = rx_q->state.len;
3480 		} else {
3481 			rx_q->state_saved = false;
3482 			skb = NULL;
3483 			error = 0;
3484 			len = 0;
3485 		}
3486 
3487 		if (count >= limit)
3488 			break;
3489 
3490 read_again:
3491 		sec_len = 0;
3492 		entry = next_entry;
3493 		buf = &rx_q->buf_pool[entry];
3494 
3495 		if (priv->extend_desc)
3496 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3497 		else
3498 			p = rx_q->dma_rx + entry;
3499 
3500 		/* read the status of the incoming frame */
3501 		status = stmmac_rx_status(priv, &priv->dev->stats,
3502 				&priv->xstats, p);
3503 		/* check if managed by the DMA otherwise go ahead */
3504 		if (unlikely(status & dma_own))
3505 			break;
3506 
3507 		count++;
3508 
3509 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3510 		next_entry = rx_q->cur_rx;
3511 
3512 		if (priv->extend_desc)
3513 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3514 		else
3515 			np = rx_q->dma_rx + next_entry;
3516 
3517 		prefetch(np);
3518 		prefetch(page_address(buf->page));
3519 
3520 		if (priv->extend_desc)
3521 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3522 					&priv->xstats, rx_q->dma_erx + entry);
3523 		if (unlikely(status == discard_frame)) {
3524 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3525 			buf->page = NULL;
3526 			error = 1;
3527 			if (!priv->hwts_rx_en)
3528 				priv->dev->stats.rx_errors++;
3529 		}
3530 
3531 		if (unlikely(error && (status & rx_not_ls)))
3532 			goto read_again;
3533 		if (unlikely(error)) {
3534 			dev_kfree_skb(skb);
3535 			continue;
3536 		}
3537 
3538 		/* Buffer is good. Go on. */
3539 
3540 		if (likely(status & rx_not_ls)) {
3541 			len += priv->dma_buf_sz;
3542 		} else {
3543 			prev_len = len;
3544 			len = stmmac_get_rx_frame_len(priv, p, coe);
3545 
3546 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3547 			 * Type frames (LLC/LLC-SNAP)
3548 			 *
3549 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3550 			 * feature is always disabled and packets need to be
3551 			 * stripped manually.
3552 			 */
3553 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3554 			    unlikely(status != llc_snap))
3555 				len -= ETH_FCS_LEN;
3556 		}
3557 
3558 		if (!skb) {
3559 			int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3560 
3561 			if (priv->sph && !ret && (hlen > 0)) {
3562 				sec_len = len;
3563 				if (!(status & rx_not_ls))
3564 					sec_len = sec_len - hlen;
3565 				len = hlen;
3566 
3567 				prefetch(page_address(buf->sec_page));
3568 				priv->xstats.rx_split_hdr_pkt_n++;
3569 			}
3570 
3571 			skb = napi_alloc_skb(&ch->rx_napi, len);
3572 			if (!skb) {
3573 				priv->dev->stats.rx_dropped++;
3574 				continue;
3575 			}
3576 
3577 			dma_sync_single_for_cpu(priv->device, buf->addr, len,
3578 						DMA_FROM_DEVICE);
3579 			skb_copy_to_linear_data(skb, page_address(buf->page),
3580 						len);
3581 			skb_put(skb, len);
3582 
3583 			/* Data payload copied into SKB, page ready for recycle */
3584 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3585 			buf->page = NULL;
3586 		} else {
3587 			unsigned int buf_len = len - prev_len;
3588 
3589 			if (likely(status & rx_not_ls))
3590 				buf_len = priv->dma_buf_sz;
3591 
3592 			dma_sync_single_for_cpu(priv->device, buf->addr,
3593 						buf_len, DMA_FROM_DEVICE);
3594 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3595 					buf->page, 0, buf_len,
3596 					priv->dma_buf_sz);
3597 
3598 			/* Data payload appended into SKB */
3599 			page_pool_release_page(rx_q->page_pool, buf->page);
3600 			buf->page = NULL;
3601 		}
3602 
3603 		if (sec_len > 0) {
3604 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3605 						sec_len, DMA_FROM_DEVICE);
3606 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3607 					buf->sec_page, 0, sec_len,
3608 					priv->dma_buf_sz);
3609 
3610 			len += sec_len;
3611 
3612 			/* Data payload appended into SKB */
3613 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3614 			buf->sec_page = NULL;
3615 		}
3616 
3617 		if (likely(status & rx_not_ls))
3618 			goto read_again;
3619 
3620 		/* Got entire packet into SKB. Finish it. */
3621 
3622 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3623 		stmmac_rx_vlan(priv->dev, skb);
3624 		skb->protocol = eth_type_trans(skb, priv->dev);
3625 
3626 		if (unlikely(!coe))
3627 			skb_checksum_none_assert(skb);
3628 		else
3629 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3630 
3631 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3632 			skb_set_hash(skb, hash, hash_type);
3633 
3634 		skb_record_rx_queue(skb, queue);
3635 		napi_gro_receive(&ch->rx_napi, skb);
3636 
3637 		priv->dev->stats.rx_packets++;
3638 		priv->dev->stats.rx_bytes += len;
3639 	}
3640 
3641 	if (status & rx_not_ls) {
3642 		rx_q->state_saved = true;
3643 		rx_q->state.skb = skb;
3644 		rx_q->state.error = error;
3645 		rx_q->state.len = len;
3646 	}
3647 
3648 	stmmac_rx_refill(priv, queue);
3649 
3650 	priv->xstats.rx_pkt_n += count;
3651 
3652 	return count;
3653 }
3654 
3655 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3656 {
3657 	struct stmmac_channel *ch =
3658 		container_of(napi, struct stmmac_channel, rx_napi);
3659 	struct stmmac_priv *priv = ch->priv_data;
3660 	u32 chan = ch->index;
3661 	int work_done;
3662 
3663 	priv->xstats.napi_poll++;
3664 
3665 	work_done = stmmac_rx(priv, budget, chan);
3666 	if (work_done < budget && napi_complete_done(napi, work_done))
3667 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3668 	return work_done;
3669 }
3670 
3671 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3672 {
3673 	struct stmmac_channel *ch =
3674 		container_of(napi, struct stmmac_channel, tx_napi);
3675 	struct stmmac_priv *priv = ch->priv_data;
3676 	struct stmmac_tx_queue *tx_q;
3677 	u32 chan = ch->index;
3678 	int work_done;
3679 
3680 	priv->xstats.napi_poll++;
3681 
3682 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3683 	work_done = min(work_done, budget);
3684 
3685 	if (work_done < budget)
3686 		napi_complete_done(napi, work_done);
3687 
3688 	/* Force transmission restart */
3689 	tx_q = &priv->tx_queue[chan];
3690 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3691 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3692 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3693 				       chan);
3694 	}
3695 
3696 	return work_done;
3697 }
3698 
3699 /**
3700  *  stmmac_tx_timeout
3701  *  @dev : Pointer to net device structure
3702  *  Description: this function is called when a packet transmission fails to
3703  *   complete within a reasonable time. The driver will mark the error in the
3704  *   netdev structure and arrange for the device to be reset to a sane state
3705  *   in order to transmit a new packet.
3706  */
3707 static void stmmac_tx_timeout(struct net_device *dev)
3708 {
3709 	struct stmmac_priv *priv = netdev_priv(dev);
3710 
3711 	stmmac_global_err(priv);
3712 }
3713 
3714 /**
3715  *  stmmac_set_rx_mode - entry point for multicast addressing
3716  *  @dev : pointer to the device structure
3717  *  Description:
3718  *  This function is a driver entry point which gets called by the kernel
3719  *  whenever multicast addresses must be enabled/disabled.
3720  *  Return value:
3721  *  void.
3722  */
3723 static void stmmac_set_rx_mode(struct net_device *dev)
3724 {
3725 	struct stmmac_priv *priv = netdev_priv(dev);
3726 
3727 	stmmac_set_filter(priv, priv->hw, dev);
3728 }
3729 
3730 /**
3731  *  stmmac_change_mtu - entry point to change MTU size for the device.
3732  *  @dev : device pointer.
3733  *  @new_mtu : the new MTU size for the device.
3734  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3735  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3736  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3737  *  Return value:
3738  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3739  *  file on failure.
3740  */
3741 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3742 {
3743 	struct stmmac_priv *priv = netdev_priv(dev);
3744 
3745 	if (netif_running(dev)) {
3746 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3747 		return -EBUSY;
3748 	}
3749 
3750 	dev->mtu = new_mtu;
3751 
3752 	netdev_update_features(dev);
3753 
3754 	return 0;
3755 }
3756 
3757 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3758 					     netdev_features_t features)
3759 {
3760 	struct stmmac_priv *priv = netdev_priv(dev);
3761 
3762 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3763 		features &= ~NETIF_F_RXCSUM;
3764 
3765 	if (!priv->plat->tx_coe)
3766 		features &= ~NETIF_F_CSUM_MASK;
3767 
3768 	/* Some GMAC devices have a bugged Jumbo frame support that
3769 	 * needs to have the Tx COE disabled for oversized frames
3770 	 * (due to limited buffer sizes). In this case we disable
3771 	 * the TX csum insertion in the TDES and not use SF.
3772 	 */
3773 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3774 		features &= ~NETIF_F_CSUM_MASK;
3775 
3776 	/* Disable tso if asked by ethtool */
3777 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3778 		if (features & NETIF_F_TSO)
3779 			priv->tso = true;
3780 		else
3781 			priv->tso = false;
3782 	}
3783 
3784 	return features;
3785 }
3786 
3787 static int stmmac_set_features(struct net_device *netdev,
3788 			       netdev_features_t features)
3789 {
3790 	struct stmmac_priv *priv = netdev_priv(netdev);
3791 	bool sph_en;
3792 	u32 chan;
3793 
3794 	/* Keep the COE Type in case of csum is supporting */
3795 	if (features & NETIF_F_RXCSUM)
3796 		priv->hw->rx_csum = priv->plat->rx_coe;
3797 	else
3798 		priv->hw->rx_csum = 0;
3799 	/* No check needed because rx_coe has been set before and it will be
3800 	 * fixed in case of issue.
3801 	 */
3802 	stmmac_rx_ipc(priv, priv->hw);
3803 
3804 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3805 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3806 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3807 
3808 	return 0;
3809 }
3810 
3811 /**
3812  *  stmmac_interrupt - main ISR
3813  *  @irq: interrupt number.
3814  *  @dev_id: to pass the net device pointer.
3815  *  Description: this is the main driver interrupt service routine.
3816  *  It can call:
3817  *  o DMA service routine (to manage incoming frame reception and transmission
3818  *    status)
3819  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3820  *    interrupts.
3821  */
3822 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3823 {
3824 	struct net_device *dev = (struct net_device *)dev_id;
3825 	struct stmmac_priv *priv = netdev_priv(dev);
3826 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3827 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3828 	u32 queues_count;
3829 	u32 queue;
3830 	bool xmac;
3831 
3832 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3833 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3834 
3835 	if (priv->irq_wake)
3836 		pm_wakeup_event(priv->device, 0);
3837 
3838 	if (unlikely(!dev)) {
3839 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3840 		return IRQ_NONE;
3841 	}
3842 
3843 	/* Check if adapter is up */
3844 	if (test_bit(STMMAC_DOWN, &priv->state))
3845 		return IRQ_HANDLED;
3846 	/* Check if a fatal error happened */
3847 	if (stmmac_safety_feat_interrupt(priv))
3848 		return IRQ_HANDLED;
3849 
3850 	/* To handle GMAC own interrupts */
3851 	if ((priv->plat->has_gmac) || xmac) {
3852 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3853 		int mtl_status;
3854 
3855 		if (unlikely(status)) {
3856 			/* For LPI we need to save the tx status */
3857 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3858 				priv->tx_path_in_lpi_mode = true;
3859 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3860 				priv->tx_path_in_lpi_mode = false;
3861 		}
3862 
3863 		for (queue = 0; queue < queues_count; queue++) {
3864 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3865 
3866 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3867 								queue);
3868 			if (mtl_status != -EINVAL)
3869 				status |= mtl_status;
3870 
3871 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3872 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3873 						       rx_q->rx_tail_addr,
3874 						       queue);
3875 		}
3876 
3877 		/* PCS link status */
3878 		if (priv->hw->pcs) {
3879 			if (priv->xstats.pcs_link)
3880 				netif_carrier_on(dev);
3881 			else
3882 				netif_carrier_off(dev);
3883 		}
3884 	}
3885 
3886 	/* To handle DMA interrupts */
3887 	stmmac_dma_interrupt(priv);
3888 
3889 	return IRQ_HANDLED;
3890 }
3891 
3892 #ifdef CONFIG_NET_POLL_CONTROLLER
3893 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3894  * to allow network I/O with interrupts disabled.
3895  */
3896 static void stmmac_poll_controller(struct net_device *dev)
3897 {
3898 	disable_irq(dev->irq);
3899 	stmmac_interrupt(dev->irq, dev);
3900 	enable_irq(dev->irq);
3901 }
3902 #endif
3903 
3904 /**
3905  *  stmmac_ioctl - Entry point for the Ioctl
3906  *  @dev: Device pointer.
3907  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3908  *  a proprietary structure used to pass information to the driver.
3909  *  @cmd: IOCTL command
3910  *  Description:
3911  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3912  */
3913 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3914 {
3915 	struct stmmac_priv *priv = netdev_priv (dev);
3916 	int ret = -EOPNOTSUPP;
3917 
3918 	if (!netif_running(dev))
3919 		return -EINVAL;
3920 
3921 	switch (cmd) {
3922 	case SIOCGMIIPHY:
3923 	case SIOCGMIIREG:
3924 	case SIOCSMIIREG:
3925 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3926 		break;
3927 	case SIOCSHWTSTAMP:
3928 		ret = stmmac_hwtstamp_set(dev, rq);
3929 		break;
3930 	case SIOCGHWTSTAMP:
3931 		ret = stmmac_hwtstamp_get(dev, rq);
3932 		break;
3933 	default:
3934 		break;
3935 	}
3936 
3937 	return ret;
3938 }
3939 
3940 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3941 				    void *cb_priv)
3942 {
3943 	struct stmmac_priv *priv = cb_priv;
3944 	int ret = -EOPNOTSUPP;
3945 
3946 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3947 		return ret;
3948 
3949 	stmmac_disable_all_queues(priv);
3950 
3951 	switch (type) {
3952 	case TC_SETUP_CLSU32:
3953 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3954 		break;
3955 	case TC_SETUP_CLSFLOWER:
3956 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
3957 		break;
3958 	default:
3959 		break;
3960 	}
3961 
3962 	stmmac_enable_all_queues(priv);
3963 	return ret;
3964 }
3965 
3966 static LIST_HEAD(stmmac_block_cb_list);
3967 
3968 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3969 			   void *type_data)
3970 {
3971 	struct stmmac_priv *priv = netdev_priv(ndev);
3972 
3973 	switch (type) {
3974 	case TC_SETUP_BLOCK:
3975 		return flow_block_cb_setup_simple(type_data,
3976 						  &stmmac_block_cb_list,
3977 						  stmmac_setup_tc_block_cb,
3978 						  priv, priv, true);
3979 	case TC_SETUP_QDISC_CBS:
3980 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3981 	default:
3982 		return -EOPNOTSUPP;
3983 	}
3984 }
3985 
3986 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3987 			       struct net_device *sb_dev)
3988 {
3989 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3990 		/*
3991 		 * There is no way to determine the number of TSO
3992 		 * capable Queues. Let's use always the Queue 0
3993 		 * because if TSO is supported then at least this
3994 		 * one will be capable.
3995 		 */
3996 		return 0;
3997 	}
3998 
3999 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4000 }
4001 
4002 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4003 {
4004 	struct stmmac_priv *priv = netdev_priv(ndev);
4005 	int ret = 0;
4006 
4007 	ret = eth_mac_addr(ndev, addr);
4008 	if (ret)
4009 		return ret;
4010 
4011 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4012 
4013 	return ret;
4014 }
4015 
4016 #ifdef CONFIG_DEBUG_FS
4017 static struct dentry *stmmac_fs_dir;
4018 
4019 static void sysfs_display_ring(void *head, int size, int extend_desc,
4020 			       struct seq_file *seq)
4021 {
4022 	int i;
4023 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4024 	struct dma_desc *p = (struct dma_desc *)head;
4025 
4026 	for (i = 0; i < size; i++) {
4027 		if (extend_desc) {
4028 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4029 				   i, (unsigned int)virt_to_phys(ep),
4030 				   le32_to_cpu(ep->basic.des0),
4031 				   le32_to_cpu(ep->basic.des1),
4032 				   le32_to_cpu(ep->basic.des2),
4033 				   le32_to_cpu(ep->basic.des3));
4034 			ep++;
4035 		} else {
4036 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4037 				   i, (unsigned int)virt_to_phys(p),
4038 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4039 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4040 			p++;
4041 		}
4042 		seq_printf(seq, "\n");
4043 	}
4044 }
4045 
4046 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4047 {
4048 	struct net_device *dev = seq->private;
4049 	struct stmmac_priv *priv = netdev_priv(dev);
4050 	u32 rx_count = priv->plat->rx_queues_to_use;
4051 	u32 tx_count = priv->plat->tx_queues_to_use;
4052 	u32 queue;
4053 
4054 	if ((dev->flags & IFF_UP) == 0)
4055 		return 0;
4056 
4057 	for (queue = 0; queue < rx_count; queue++) {
4058 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4059 
4060 		seq_printf(seq, "RX Queue %d:\n", queue);
4061 
4062 		if (priv->extend_desc) {
4063 			seq_printf(seq, "Extended descriptor ring:\n");
4064 			sysfs_display_ring((void *)rx_q->dma_erx,
4065 					   DMA_RX_SIZE, 1, seq);
4066 		} else {
4067 			seq_printf(seq, "Descriptor ring:\n");
4068 			sysfs_display_ring((void *)rx_q->dma_rx,
4069 					   DMA_RX_SIZE, 0, seq);
4070 		}
4071 	}
4072 
4073 	for (queue = 0; queue < tx_count; queue++) {
4074 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4075 
4076 		seq_printf(seq, "TX Queue %d:\n", queue);
4077 
4078 		if (priv->extend_desc) {
4079 			seq_printf(seq, "Extended descriptor ring:\n");
4080 			sysfs_display_ring((void *)tx_q->dma_etx,
4081 					   DMA_TX_SIZE, 1, seq);
4082 		} else {
4083 			seq_printf(seq, "Descriptor ring:\n");
4084 			sysfs_display_ring((void *)tx_q->dma_tx,
4085 					   DMA_TX_SIZE, 0, seq);
4086 		}
4087 	}
4088 
4089 	return 0;
4090 }
4091 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4092 
4093 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4094 {
4095 	struct net_device *dev = seq->private;
4096 	struct stmmac_priv *priv = netdev_priv(dev);
4097 
4098 	if (!priv->hw_cap_support) {
4099 		seq_printf(seq, "DMA HW features not supported\n");
4100 		return 0;
4101 	}
4102 
4103 	seq_printf(seq, "==============================\n");
4104 	seq_printf(seq, "\tDMA HW features\n");
4105 	seq_printf(seq, "==============================\n");
4106 
4107 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4108 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4109 	seq_printf(seq, "\t1000 Mbps: %s\n",
4110 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4111 	seq_printf(seq, "\tHalf duplex: %s\n",
4112 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4113 	seq_printf(seq, "\tHash Filter: %s\n",
4114 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4115 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4116 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4117 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4118 		   (priv->dma_cap.pcs) ? "Y" : "N");
4119 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4120 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4121 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4122 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4123 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4124 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4125 	seq_printf(seq, "\tRMON module: %s\n",
4126 		   (priv->dma_cap.rmon) ? "Y" : "N");
4127 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4128 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4129 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4130 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4131 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4132 		   (priv->dma_cap.eee) ? "Y" : "N");
4133 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4134 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4135 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4136 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4137 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4138 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4139 	} else {
4140 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4141 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4142 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4143 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4144 	}
4145 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4146 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4147 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4148 		   priv->dma_cap.number_rx_channel);
4149 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4150 		   priv->dma_cap.number_tx_channel);
4151 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4152 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4153 
4154 	return 0;
4155 }
4156 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4157 
4158 static void stmmac_init_fs(struct net_device *dev)
4159 {
4160 	struct stmmac_priv *priv = netdev_priv(dev);
4161 
4162 	/* Create per netdev entries */
4163 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4164 
4165 	/* Entry to report DMA RX/TX rings */
4166 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4167 			    &stmmac_rings_status_fops);
4168 
4169 	/* Entry to report the DMA HW features */
4170 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4171 			    &stmmac_dma_cap_fops);
4172 }
4173 
4174 static void stmmac_exit_fs(struct net_device *dev)
4175 {
4176 	struct stmmac_priv *priv = netdev_priv(dev);
4177 
4178 	debugfs_remove_recursive(priv->dbgfs_dir);
4179 }
4180 #endif /* CONFIG_DEBUG_FS */
4181 
4182 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4183 {
4184 	unsigned char *data = (unsigned char *)&vid_le;
4185 	unsigned char data_byte = 0;
4186 	u32 crc = ~0x0;
4187 	u32 temp = 0;
4188 	int i, bits;
4189 
4190 	bits = get_bitmask_order(VLAN_VID_MASK);
4191 	for (i = 0; i < bits; i++) {
4192 		if ((i % 8) == 0)
4193 			data_byte = data[i / 8];
4194 
4195 		temp = ((crc & 1) ^ data_byte) & 1;
4196 		crc >>= 1;
4197 		data_byte >>= 1;
4198 
4199 		if (temp)
4200 			crc ^= 0xedb88320;
4201 	}
4202 
4203 	return crc;
4204 }
4205 
4206 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4207 {
4208 	u32 crc, hash = 0;
4209 	u16 vid;
4210 
4211 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4212 		__le16 vid_le = cpu_to_le16(vid);
4213 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4214 		hash |= (1 << crc);
4215 	}
4216 
4217 	return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4218 }
4219 
4220 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4221 {
4222 	struct stmmac_priv *priv = netdev_priv(ndev);
4223 	bool is_double = false;
4224 	int ret;
4225 
4226 	if (!priv->dma_cap.vlhash)
4227 		return -EOPNOTSUPP;
4228 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4229 		is_double = true;
4230 
4231 	set_bit(vid, priv->active_vlans);
4232 	ret = stmmac_vlan_update(priv, is_double);
4233 	if (ret) {
4234 		clear_bit(vid, priv->active_vlans);
4235 		return ret;
4236 	}
4237 
4238 	return ret;
4239 }
4240 
4241 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4242 {
4243 	struct stmmac_priv *priv = netdev_priv(ndev);
4244 	bool is_double = false;
4245 
4246 	if (!priv->dma_cap.vlhash)
4247 		return -EOPNOTSUPP;
4248 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4249 		is_double = true;
4250 
4251 	clear_bit(vid, priv->active_vlans);
4252 	return stmmac_vlan_update(priv, is_double);
4253 }
4254 
4255 static const struct net_device_ops stmmac_netdev_ops = {
4256 	.ndo_open = stmmac_open,
4257 	.ndo_start_xmit = stmmac_xmit,
4258 	.ndo_stop = stmmac_release,
4259 	.ndo_change_mtu = stmmac_change_mtu,
4260 	.ndo_fix_features = stmmac_fix_features,
4261 	.ndo_set_features = stmmac_set_features,
4262 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4263 	.ndo_tx_timeout = stmmac_tx_timeout,
4264 	.ndo_do_ioctl = stmmac_ioctl,
4265 	.ndo_setup_tc = stmmac_setup_tc,
4266 	.ndo_select_queue = stmmac_select_queue,
4267 #ifdef CONFIG_NET_POLL_CONTROLLER
4268 	.ndo_poll_controller = stmmac_poll_controller,
4269 #endif
4270 	.ndo_set_mac_address = stmmac_set_mac_address,
4271 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4272 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4273 };
4274 
4275 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4276 {
4277 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4278 		return;
4279 	if (test_bit(STMMAC_DOWN, &priv->state))
4280 		return;
4281 
4282 	netdev_err(priv->dev, "Reset adapter.\n");
4283 
4284 	rtnl_lock();
4285 	netif_trans_update(priv->dev);
4286 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4287 		usleep_range(1000, 2000);
4288 
4289 	set_bit(STMMAC_DOWN, &priv->state);
4290 	dev_close(priv->dev);
4291 	dev_open(priv->dev, NULL);
4292 	clear_bit(STMMAC_DOWN, &priv->state);
4293 	clear_bit(STMMAC_RESETING, &priv->state);
4294 	rtnl_unlock();
4295 }
4296 
4297 static void stmmac_service_task(struct work_struct *work)
4298 {
4299 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4300 			service_task);
4301 
4302 	stmmac_reset_subtask(priv);
4303 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4304 }
4305 
4306 /**
4307  *  stmmac_hw_init - Init the MAC device
4308  *  @priv: driver private structure
4309  *  Description: this function is to configure the MAC device according to
4310  *  some platform parameters or the HW capability register. It prepares the
4311  *  driver to use either ring or chain modes and to setup either enhanced or
4312  *  normal descriptors.
4313  */
4314 static int stmmac_hw_init(struct stmmac_priv *priv)
4315 {
4316 	int ret;
4317 
4318 	/* dwmac-sun8i only work in chain mode */
4319 	if (priv->plat->has_sun8i)
4320 		chain_mode = 1;
4321 	priv->chain_mode = chain_mode;
4322 
4323 	/* Initialize HW Interface */
4324 	ret = stmmac_hwif_init(priv);
4325 	if (ret)
4326 		return ret;
4327 
4328 	/* Get the HW capability (new GMAC newer than 3.50a) */
4329 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4330 	if (priv->hw_cap_support) {
4331 		dev_info(priv->device, "DMA HW capability register supported\n");
4332 
4333 		/* We can override some gmac/dma configuration fields: e.g.
4334 		 * enh_desc, tx_coe (e.g. that are passed through the
4335 		 * platform) with the values from the HW capability
4336 		 * register (if supported).
4337 		 */
4338 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4339 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4340 		priv->hw->pmt = priv->plat->pmt;
4341 		if (priv->dma_cap.hash_tb_sz) {
4342 			priv->hw->multicast_filter_bins =
4343 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4344 			priv->hw->mcast_bits_log2 =
4345 					ilog2(priv->hw->multicast_filter_bins);
4346 		}
4347 
4348 		/* TXCOE doesn't work in thresh DMA mode */
4349 		if (priv->plat->force_thresh_dma_mode)
4350 			priv->plat->tx_coe = 0;
4351 		else
4352 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4353 
4354 		/* In case of GMAC4 rx_coe is from HW cap register. */
4355 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4356 
4357 		if (priv->dma_cap.rx_coe_type2)
4358 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4359 		else if (priv->dma_cap.rx_coe_type1)
4360 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4361 
4362 	} else {
4363 		dev_info(priv->device, "No HW DMA feature register supported\n");
4364 	}
4365 
4366 	if (priv->plat->rx_coe) {
4367 		priv->hw->rx_csum = priv->plat->rx_coe;
4368 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4369 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4370 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4371 	}
4372 	if (priv->plat->tx_coe)
4373 		dev_info(priv->device, "TX Checksum insertion supported\n");
4374 
4375 	if (priv->plat->pmt) {
4376 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4377 		device_set_wakeup_capable(priv->device, 1);
4378 	}
4379 
4380 	if (priv->dma_cap.tsoen)
4381 		dev_info(priv->device, "TSO supported\n");
4382 
4383 	/* Run HW quirks, if any */
4384 	if (priv->hwif_quirks) {
4385 		ret = priv->hwif_quirks(priv);
4386 		if (ret)
4387 			return ret;
4388 	}
4389 
4390 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4391 	 * In some case, for example on bugged HW this feature
4392 	 * has to be disable and this can be done by passing the
4393 	 * riwt_off field from the platform.
4394 	 */
4395 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4396 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4397 		priv->use_riwt = 1;
4398 		dev_info(priv->device,
4399 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4400 	}
4401 
4402 	return 0;
4403 }
4404 
4405 /**
4406  * stmmac_dvr_probe
4407  * @device: device pointer
4408  * @plat_dat: platform data pointer
4409  * @res: stmmac resource pointer
4410  * Description: this is the main probe function used to
4411  * call the alloc_etherdev, allocate the priv structure.
4412  * Return:
4413  * returns 0 on success, otherwise errno.
4414  */
4415 int stmmac_dvr_probe(struct device *device,
4416 		     struct plat_stmmacenet_data *plat_dat,
4417 		     struct stmmac_resources *res)
4418 {
4419 	struct net_device *ndev = NULL;
4420 	struct stmmac_priv *priv;
4421 	u32 queue, rxq, maxq;
4422 	int i, ret = 0;
4423 
4424 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4425 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4426 	if (!ndev)
4427 		return -ENOMEM;
4428 
4429 	SET_NETDEV_DEV(ndev, device);
4430 
4431 	priv = netdev_priv(ndev);
4432 	priv->device = device;
4433 	priv->dev = ndev;
4434 
4435 	stmmac_set_ethtool_ops(ndev);
4436 	priv->pause = pause;
4437 	priv->plat = plat_dat;
4438 	priv->ioaddr = res->addr;
4439 	priv->dev->base_addr = (unsigned long)res->addr;
4440 
4441 	priv->dev->irq = res->irq;
4442 	priv->wol_irq = res->wol_irq;
4443 	priv->lpi_irq = res->lpi_irq;
4444 
4445 	if (!IS_ERR_OR_NULL(res->mac))
4446 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4447 
4448 	dev_set_drvdata(device, priv->dev);
4449 
4450 	/* Verify driver arguments */
4451 	stmmac_verify_args();
4452 
4453 	/* Allocate workqueue */
4454 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4455 	if (!priv->wq) {
4456 		dev_err(priv->device, "failed to create workqueue\n");
4457 		return -ENOMEM;
4458 	}
4459 
4460 	INIT_WORK(&priv->service_task, stmmac_service_task);
4461 
4462 	/* Override with kernel parameters if supplied XXX CRS XXX
4463 	 * this needs to have multiple instances
4464 	 */
4465 	if ((phyaddr >= 0) && (phyaddr <= 31))
4466 		priv->plat->phy_addr = phyaddr;
4467 
4468 	if (priv->plat->stmmac_rst) {
4469 		ret = reset_control_assert(priv->plat->stmmac_rst);
4470 		reset_control_deassert(priv->plat->stmmac_rst);
4471 		/* Some reset controllers have only reset callback instead of
4472 		 * assert + deassert callbacks pair.
4473 		 */
4474 		if (ret == -ENOTSUPP)
4475 			reset_control_reset(priv->plat->stmmac_rst);
4476 	}
4477 
4478 	/* Init MAC and get the capabilities */
4479 	ret = stmmac_hw_init(priv);
4480 	if (ret)
4481 		goto error_hw_init;
4482 
4483 	stmmac_check_ether_addr(priv);
4484 
4485 	/* Configure real RX and TX queues */
4486 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4487 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4488 
4489 	ndev->netdev_ops = &stmmac_netdev_ops;
4490 
4491 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4492 			    NETIF_F_RXCSUM;
4493 
4494 	ret = stmmac_tc_init(priv, priv);
4495 	if (!ret) {
4496 		ndev->hw_features |= NETIF_F_HW_TC;
4497 	}
4498 
4499 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4500 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4501 		priv->tso = true;
4502 		dev_info(priv->device, "TSO feature enabled\n");
4503 	}
4504 
4505 	if (priv->dma_cap.sphen) {
4506 		ndev->hw_features |= NETIF_F_GRO;
4507 		priv->sph = true;
4508 		dev_info(priv->device, "SPH feature enabled\n");
4509 	}
4510 
4511 	if (priv->dma_cap.addr64) {
4512 		ret = dma_set_mask_and_coherent(device,
4513 				DMA_BIT_MASK(priv->dma_cap.addr64));
4514 		if (!ret) {
4515 			dev_info(priv->device, "Using %d bits DMA width\n",
4516 				 priv->dma_cap.addr64);
4517 		} else {
4518 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4519 			if (ret) {
4520 				dev_err(priv->device, "Failed to set DMA Mask\n");
4521 				goto error_hw_init;
4522 			}
4523 
4524 			priv->dma_cap.addr64 = 32;
4525 		}
4526 	}
4527 
4528 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4529 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4530 #ifdef STMMAC_VLAN_TAG_USED
4531 	/* Both mac100 and gmac support receive VLAN tag detection */
4532 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4533 	if (priv->dma_cap.vlhash) {
4534 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4535 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4536 	}
4537 	if (priv->dma_cap.vlins) {
4538 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4539 		if (priv->dma_cap.dvlan)
4540 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4541 	}
4542 #endif
4543 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4544 
4545 	/* Initialize RSS */
4546 	rxq = priv->plat->rx_queues_to_use;
4547 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4548 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4549 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4550 
4551 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4552 		ndev->features |= NETIF_F_RXHASH;
4553 
4554 	/* MTU range: 46 - hw-specific max */
4555 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4556 	if (priv->plat->has_xgmac)
4557 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4558 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4559 		ndev->max_mtu = JUMBO_LEN;
4560 	else
4561 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4562 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4563 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4564 	 */
4565 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4566 	    (priv->plat->maxmtu >= ndev->min_mtu))
4567 		ndev->max_mtu = priv->plat->maxmtu;
4568 	else if (priv->plat->maxmtu < ndev->min_mtu)
4569 		dev_warn(priv->device,
4570 			 "%s: warning: maxmtu having invalid value (%d)\n",
4571 			 __func__, priv->plat->maxmtu);
4572 
4573 	if (flow_ctrl)
4574 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4575 
4576 	/* Setup channels NAPI */
4577 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4578 
4579 	for (queue = 0; queue < maxq; queue++) {
4580 		struct stmmac_channel *ch = &priv->channel[queue];
4581 
4582 		ch->priv_data = priv;
4583 		ch->index = queue;
4584 
4585 		if (queue < priv->plat->rx_queues_to_use) {
4586 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4587 				       NAPI_POLL_WEIGHT);
4588 		}
4589 		if (queue < priv->plat->tx_queues_to_use) {
4590 			netif_tx_napi_add(ndev, &ch->tx_napi,
4591 					  stmmac_napi_poll_tx,
4592 					  NAPI_POLL_WEIGHT);
4593 		}
4594 	}
4595 
4596 	mutex_init(&priv->lock);
4597 
4598 	/* If a specific clk_csr value is passed from the platform
4599 	 * this means that the CSR Clock Range selection cannot be
4600 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4601 	 * set the MDC clock dynamically according to the csr actual
4602 	 * clock input.
4603 	 */
4604 	if (priv->plat->clk_csr >= 0)
4605 		priv->clk_csr = priv->plat->clk_csr;
4606 	else
4607 		stmmac_clk_csr_set(priv);
4608 
4609 	stmmac_check_pcs_mode(priv);
4610 
4611 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4612 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4613 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4614 		/* MDIO bus Registration */
4615 		ret = stmmac_mdio_register(ndev);
4616 		if (ret < 0) {
4617 			dev_err(priv->device,
4618 				"%s: MDIO bus (id: %d) registration failed",
4619 				__func__, priv->plat->bus_id);
4620 			goto error_mdio_register;
4621 		}
4622 	}
4623 
4624 	ret = stmmac_phy_setup(priv);
4625 	if (ret) {
4626 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4627 		goto error_phy_setup;
4628 	}
4629 
4630 	ret = register_netdev(ndev);
4631 	if (ret) {
4632 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4633 			__func__, ret);
4634 		goto error_netdev_register;
4635 	}
4636 
4637 #ifdef CONFIG_DEBUG_FS
4638 	stmmac_init_fs(ndev);
4639 #endif
4640 
4641 	return ret;
4642 
4643 error_netdev_register:
4644 	phylink_destroy(priv->phylink);
4645 error_phy_setup:
4646 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4647 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4648 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4649 		stmmac_mdio_unregister(ndev);
4650 error_mdio_register:
4651 	for (queue = 0; queue < maxq; queue++) {
4652 		struct stmmac_channel *ch = &priv->channel[queue];
4653 
4654 		if (queue < priv->plat->rx_queues_to_use)
4655 			netif_napi_del(&ch->rx_napi);
4656 		if (queue < priv->plat->tx_queues_to_use)
4657 			netif_napi_del(&ch->tx_napi);
4658 	}
4659 error_hw_init:
4660 	destroy_workqueue(priv->wq);
4661 
4662 	return ret;
4663 }
4664 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4665 
4666 /**
4667  * stmmac_dvr_remove
4668  * @dev: device pointer
4669  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4670  * changes the link status, releases the DMA descriptor rings.
4671  */
4672 int stmmac_dvr_remove(struct device *dev)
4673 {
4674 	struct net_device *ndev = dev_get_drvdata(dev);
4675 	struct stmmac_priv *priv = netdev_priv(ndev);
4676 
4677 	netdev_info(priv->dev, "%s: removing driver", __func__);
4678 
4679 #ifdef CONFIG_DEBUG_FS
4680 	stmmac_exit_fs(ndev);
4681 #endif
4682 	stmmac_stop_all_dma(priv);
4683 
4684 	stmmac_mac_set(priv, priv->ioaddr, false);
4685 	netif_carrier_off(ndev);
4686 	unregister_netdev(ndev);
4687 	phylink_destroy(priv->phylink);
4688 	if (priv->plat->stmmac_rst)
4689 		reset_control_assert(priv->plat->stmmac_rst);
4690 	clk_disable_unprepare(priv->plat->pclk);
4691 	clk_disable_unprepare(priv->plat->stmmac_clk);
4692 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4693 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4694 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4695 		stmmac_mdio_unregister(ndev);
4696 	destroy_workqueue(priv->wq);
4697 	mutex_destroy(&priv->lock);
4698 
4699 	return 0;
4700 }
4701 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4702 
4703 /**
4704  * stmmac_suspend - suspend callback
4705  * @dev: device pointer
4706  * Description: this is the function to suspend the device and it is called
4707  * by the platform driver to stop the network queue, release the resources,
4708  * program the PMT register (for WoL), clean and release driver resources.
4709  */
4710 int stmmac_suspend(struct device *dev)
4711 {
4712 	struct net_device *ndev = dev_get_drvdata(dev);
4713 	struct stmmac_priv *priv = netdev_priv(ndev);
4714 
4715 	if (!ndev || !netif_running(ndev))
4716 		return 0;
4717 
4718 	mutex_lock(&priv->lock);
4719 
4720 	rtnl_lock();
4721 	phylink_stop(priv->phylink);
4722 	rtnl_unlock();
4723 
4724 	netif_device_detach(ndev);
4725 	stmmac_stop_all_queues(priv);
4726 
4727 	stmmac_disable_all_queues(priv);
4728 
4729 	/* Stop TX/RX DMA */
4730 	stmmac_stop_all_dma(priv);
4731 
4732 	/* Enable Power down mode by programming the PMT regs */
4733 	if (device_may_wakeup(priv->device)) {
4734 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4735 		priv->irq_wake = 1;
4736 	} else {
4737 		stmmac_mac_set(priv, priv->ioaddr, false);
4738 		pinctrl_pm_select_sleep_state(priv->device);
4739 		/* Disable clock in case of PWM is off */
4740 		clk_disable(priv->plat->pclk);
4741 		clk_disable(priv->plat->stmmac_clk);
4742 	}
4743 	mutex_unlock(&priv->lock);
4744 
4745 	priv->speed = SPEED_UNKNOWN;
4746 	return 0;
4747 }
4748 EXPORT_SYMBOL_GPL(stmmac_suspend);
4749 
4750 /**
4751  * stmmac_reset_queues_param - reset queue parameters
4752  * @dev: device pointer
4753  */
4754 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4755 {
4756 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4757 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4758 	u32 queue;
4759 
4760 	for (queue = 0; queue < rx_cnt; queue++) {
4761 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4762 
4763 		rx_q->cur_rx = 0;
4764 		rx_q->dirty_rx = 0;
4765 	}
4766 
4767 	for (queue = 0; queue < tx_cnt; queue++) {
4768 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4769 
4770 		tx_q->cur_tx = 0;
4771 		tx_q->dirty_tx = 0;
4772 		tx_q->mss = 0;
4773 	}
4774 }
4775 
4776 /**
4777  * stmmac_resume - resume callback
4778  * @dev: device pointer
4779  * Description: when resume this function is invoked to setup the DMA and CORE
4780  * in a usable state.
4781  */
4782 int stmmac_resume(struct device *dev)
4783 {
4784 	struct net_device *ndev = dev_get_drvdata(dev);
4785 	struct stmmac_priv *priv = netdev_priv(ndev);
4786 
4787 	if (!netif_running(ndev))
4788 		return 0;
4789 
4790 	/* Power Down bit, into the PM register, is cleared
4791 	 * automatically as soon as a magic packet or a Wake-up frame
4792 	 * is received. Anyway, it's better to manually clear
4793 	 * this bit because it can generate problems while resuming
4794 	 * from another devices (e.g. serial console).
4795 	 */
4796 	if (device_may_wakeup(priv->device)) {
4797 		mutex_lock(&priv->lock);
4798 		stmmac_pmt(priv, priv->hw, 0);
4799 		mutex_unlock(&priv->lock);
4800 		priv->irq_wake = 0;
4801 	} else {
4802 		pinctrl_pm_select_default_state(priv->device);
4803 		/* enable the clk previously disabled */
4804 		clk_enable(priv->plat->stmmac_clk);
4805 		clk_enable(priv->plat->pclk);
4806 		/* reset the phy so that it's ready */
4807 		if (priv->mii)
4808 			stmmac_mdio_reset(priv->mii);
4809 	}
4810 
4811 	netif_device_attach(ndev);
4812 
4813 	mutex_lock(&priv->lock);
4814 
4815 	stmmac_reset_queues_param(priv);
4816 
4817 	stmmac_clear_descriptors(priv);
4818 
4819 	stmmac_hw_setup(ndev, false);
4820 	stmmac_init_coalesce(priv);
4821 	stmmac_set_rx_mode(ndev);
4822 
4823 	stmmac_enable_all_queues(priv);
4824 
4825 	stmmac_start_all_queues(priv);
4826 
4827 	rtnl_lock();
4828 	phylink_start(priv->phylink);
4829 	rtnl_unlock();
4830 
4831 	mutex_unlock(&priv->lock);
4832 
4833 	return 0;
4834 }
4835 EXPORT_SYMBOL_GPL(stmmac_resume);
4836 
4837 #ifndef MODULE
4838 static int __init stmmac_cmdline_opt(char *str)
4839 {
4840 	char *opt;
4841 
4842 	if (!str || !*str)
4843 		return -EINVAL;
4844 	while ((opt = strsep(&str, ",")) != NULL) {
4845 		if (!strncmp(opt, "debug:", 6)) {
4846 			if (kstrtoint(opt + 6, 0, &debug))
4847 				goto err;
4848 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4849 			if (kstrtoint(opt + 8, 0, &phyaddr))
4850 				goto err;
4851 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4852 			if (kstrtoint(opt + 7, 0, &buf_sz))
4853 				goto err;
4854 		} else if (!strncmp(opt, "tc:", 3)) {
4855 			if (kstrtoint(opt + 3, 0, &tc))
4856 				goto err;
4857 		} else if (!strncmp(opt, "watchdog:", 9)) {
4858 			if (kstrtoint(opt + 9, 0, &watchdog))
4859 				goto err;
4860 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4861 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4862 				goto err;
4863 		} else if (!strncmp(opt, "pause:", 6)) {
4864 			if (kstrtoint(opt + 6, 0, &pause))
4865 				goto err;
4866 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4867 			if (kstrtoint(opt + 10, 0, &eee_timer))
4868 				goto err;
4869 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4870 			if (kstrtoint(opt + 11, 0, &chain_mode))
4871 				goto err;
4872 		}
4873 	}
4874 	return 0;
4875 
4876 err:
4877 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4878 	return -EINVAL;
4879 }
4880 
4881 __setup("stmmaceth=", stmmac_cmdline_opt);
4882 #endif /* MODULE */
4883 
4884 static int __init stmmac_init(void)
4885 {
4886 #ifdef CONFIG_DEBUG_FS
4887 	/* Create debugfs main directory if it doesn't exist yet */
4888 	if (!stmmac_fs_dir)
4889 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4890 #endif
4891 
4892 	return 0;
4893 }
4894 
4895 static void __exit stmmac_exit(void)
4896 {
4897 #ifdef CONFIG_DEBUG_FS
4898 	debugfs_remove_recursive(stmmac_fs_dir);
4899 #endif
4900 }
4901 
4902 module_init(stmmac_init)
4903 module_exit(stmmac_exit)
4904 
4905 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4906 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4907 MODULE_LICENSE("GPL");
4908