1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 54 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 55 56 /* Module parameters */ 57 #define TX_TIMEO 5000 58 static int watchdog = TX_TIMEO; 59 module_param(watchdog, int, 0644); 60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 61 62 static int debug = -1; 63 module_param(debug, int, 0644); 64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 65 66 static int phyaddr = -1; 67 module_param(phyaddr, int, 0444); 68 MODULE_PARM_DESC(phyaddr, "Physical device address"); 69 70 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 71 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 72 73 /* Limit to make sure XDP TX and slow path can coexist */ 74 #define STMMAC_XSK_TX_BUDGET_MAX 256 75 #define STMMAC_TX_XSK_AVAIL 16 76 #define STMMAC_RX_FILL_BATCH 16 77 78 #define STMMAC_XDP_PASS 0 79 #define STMMAC_XDP_CONSUMED BIT(0) 80 #define STMMAC_XDP_TX BIT(1) 81 #define STMMAC_XDP_REDIRECT BIT(2) 82 83 static int flow_ctrl = FLOW_AUTO; 84 module_param(flow_ctrl, int, 0644); 85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 86 87 static int pause = PAUSE_TIME; 88 module_param(pause, int, 0644); 89 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 90 91 #define TC_DEFAULT 64 92 static int tc = TC_DEFAULT; 93 module_param(tc, int, 0644); 94 MODULE_PARM_DESC(tc, "DMA threshold control value"); 95 96 #define DEFAULT_BUFSIZE 1536 97 static int buf_sz = DEFAULT_BUFSIZE; 98 module_param(buf_sz, int, 0644); 99 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 100 101 #define STMMAC_RX_COPYBREAK 256 102 103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 104 NETIF_MSG_LINK | NETIF_MSG_IFUP | 105 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 106 107 #define STMMAC_DEFAULT_LPI_TIMER 1000 108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 109 module_param(eee_timer, int, 0644); 110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 112 113 /* By default the driver will use the ring mode to manage tx and rx descriptors, 114 * but allow user to force to use the chain instead of the ring 115 */ 116 static unsigned int chain_mode; 117 module_param(chain_mode, int, 0444); 118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 119 120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 121 /* For MSI interrupts handling */ 122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 128 129 #ifdef CONFIG_DEBUG_FS 130 static const struct net_device_ops stmmac_netdev_ops; 131 static void stmmac_init_fs(struct net_device *dev); 132 static void stmmac_exit_fs(struct net_device *dev); 133 #endif 134 135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 136 137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 138 { 139 int ret = 0; 140 141 if (enabled) { 142 ret = clk_prepare_enable(priv->plat->stmmac_clk); 143 if (ret) 144 return ret; 145 ret = clk_prepare_enable(priv->plat->pclk); 146 if (ret) { 147 clk_disable_unprepare(priv->plat->stmmac_clk); 148 return ret; 149 } 150 if (priv->plat->clks_config) { 151 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 152 if (ret) { 153 clk_disable_unprepare(priv->plat->stmmac_clk); 154 clk_disable_unprepare(priv->plat->pclk); 155 return ret; 156 } 157 } 158 } else { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 clk_disable_unprepare(priv->plat->pclk); 161 if (priv->plat->clks_config) 162 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 163 } 164 165 return ret; 166 } 167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 168 169 /** 170 * stmmac_verify_args - verify the driver parameters. 171 * Description: it checks the driver parameters and set a default in case of 172 * errors. 173 */ 174 static void stmmac_verify_args(void) 175 { 176 if (unlikely(watchdog < 0)) 177 watchdog = TX_TIMEO; 178 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 179 buf_sz = DEFAULT_BUFSIZE; 180 if (unlikely(flow_ctrl > 1)) 181 flow_ctrl = FLOW_AUTO; 182 else if (likely(flow_ctrl < 0)) 183 flow_ctrl = FLOW_OFF; 184 if (unlikely((pause < 0) || (pause > 0xffff))) 185 pause = PAUSE_TIME; 186 if (eee_timer < 0) 187 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 188 } 189 190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 191 { 192 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 193 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 194 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 195 u32 queue; 196 197 for (queue = 0; queue < maxq; queue++) { 198 struct stmmac_channel *ch = &priv->channel[queue]; 199 200 if (stmmac_xdp_is_enabled(priv) && 201 test_bit(queue, priv->af_xdp_zc_qps)) { 202 napi_disable(&ch->rxtx_napi); 203 continue; 204 } 205 206 if (queue < rx_queues_cnt) 207 napi_disable(&ch->rx_napi); 208 if (queue < tx_queues_cnt) 209 napi_disable(&ch->tx_napi); 210 } 211 } 212 213 /** 214 * stmmac_disable_all_queues - Disable all queues 215 * @priv: driver private structure 216 */ 217 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 218 { 219 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 220 struct stmmac_rx_queue *rx_q; 221 u32 queue; 222 223 /* synchronize_rcu() needed for pending XDP buffers to drain */ 224 for (queue = 0; queue < rx_queues_cnt; queue++) { 225 rx_q = &priv->rx_queue[queue]; 226 if (rx_q->xsk_pool) { 227 synchronize_rcu(); 228 break; 229 } 230 } 231 232 __stmmac_disable_all_queues(priv); 233 } 234 235 /** 236 * stmmac_enable_all_queues - Enable all queues 237 * @priv: driver private structure 238 */ 239 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 240 { 241 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 242 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 243 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 244 u32 queue; 245 246 for (queue = 0; queue < maxq; queue++) { 247 struct stmmac_channel *ch = &priv->channel[queue]; 248 249 if (stmmac_xdp_is_enabled(priv) && 250 test_bit(queue, priv->af_xdp_zc_qps)) { 251 napi_enable(&ch->rxtx_napi); 252 continue; 253 } 254 255 if (queue < rx_queues_cnt) 256 napi_enable(&ch->rx_napi); 257 if (queue < tx_queues_cnt) 258 napi_enable(&ch->tx_napi); 259 } 260 } 261 262 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 263 { 264 if (!test_bit(STMMAC_DOWN, &priv->state) && 265 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 266 queue_work(priv->wq, &priv->service_task); 267 } 268 269 static void stmmac_global_err(struct stmmac_priv *priv) 270 { 271 netif_carrier_off(priv->dev); 272 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 273 stmmac_service_event_schedule(priv); 274 } 275 276 /** 277 * stmmac_clk_csr_set - dynamically set the MDC clock 278 * @priv: driver private structure 279 * Description: this is to dynamically set the MDC clock according to the csr 280 * clock input. 281 * Note: 282 * If a specific clk_csr value is passed from the platform 283 * this means that the CSR Clock Range selection cannot be 284 * changed at run-time and it is fixed (as reported in the driver 285 * documentation). Viceversa the driver will try to set the MDC 286 * clock dynamically according to the actual clock input. 287 */ 288 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 289 { 290 u32 clk_rate; 291 292 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 293 294 /* Platform provided default clk_csr would be assumed valid 295 * for all other cases except for the below mentioned ones. 296 * For values higher than the IEEE 802.3 specified frequency 297 * we can not estimate the proper divider as it is not known 298 * the frequency of clk_csr_i. So we do not change the default 299 * divider. 300 */ 301 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 302 if (clk_rate < CSR_F_35M) 303 priv->clk_csr = STMMAC_CSR_20_35M; 304 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 305 priv->clk_csr = STMMAC_CSR_35_60M; 306 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 307 priv->clk_csr = STMMAC_CSR_60_100M; 308 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 309 priv->clk_csr = STMMAC_CSR_100_150M; 310 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 311 priv->clk_csr = STMMAC_CSR_150_250M; 312 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 313 priv->clk_csr = STMMAC_CSR_250_300M; 314 } 315 316 if (priv->plat->has_sun8i) { 317 if (clk_rate > 160000000) 318 priv->clk_csr = 0x03; 319 else if (clk_rate > 80000000) 320 priv->clk_csr = 0x02; 321 else if (clk_rate > 40000000) 322 priv->clk_csr = 0x01; 323 else 324 priv->clk_csr = 0; 325 } 326 327 if (priv->plat->has_xgmac) { 328 if (clk_rate > 400000000) 329 priv->clk_csr = 0x5; 330 else if (clk_rate > 350000000) 331 priv->clk_csr = 0x4; 332 else if (clk_rate > 300000000) 333 priv->clk_csr = 0x3; 334 else if (clk_rate > 250000000) 335 priv->clk_csr = 0x2; 336 else if (clk_rate > 150000000) 337 priv->clk_csr = 0x1; 338 else 339 priv->clk_csr = 0x0; 340 } 341 } 342 343 static void print_pkt(unsigned char *buf, int len) 344 { 345 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 346 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 347 } 348 349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 350 { 351 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 352 u32 avail; 353 354 if (tx_q->dirty_tx > tx_q->cur_tx) 355 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 356 else 357 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 358 359 return avail; 360 } 361 362 /** 363 * stmmac_rx_dirty - Get RX queue dirty 364 * @priv: driver private structure 365 * @queue: RX queue index 366 */ 367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 368 { 369 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 370 u32 dirty; 371 372 if (rx_q->dirty_rx <= rx_q->cur_rx) 373 dirty = rx_q->cur_rx - rx_q->dirty_rx; 374 else 375 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 376 377 return dirty; 378 } 379 380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 381 { 382 int tx_lpi_timer; 383 384 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 385 priv->eee_sw_timer_en = en ? 0 : 1; 386 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 387 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 388 } 389 390 /** 391 * stmmac_enable_eee_mode - check and enter in LPI mode 392 * @priv: driver private structure 393 * Description: this function is to verify and enter in LPI mode in case of 394 * EEE. 395 */ 396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 397 { 398 u32 tx_cnt = priv->plat->tx_queues_to_use; 399 u32 queue; 400 401 /* check if all TX queues have the work finished */ 402 for (queue = 0; queue < tx_cnt; queue++) { 403 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 404 405 if (tx_q->dirty_tx != tx_q->cur_tx) 406 return; /* still unfinished work */ 407 } 408 409 /* Check and enter in LPI mode */ 410 if (!priv->tx_path_in_lpi_mode) 411 stmmac_set_eee_mode(priv, priv->hw, 412 priv->plat->en_tx_lpi_clockgating); 413 } 414 415 /** 416 * stmmac_disable_eee_mode - disable and exit from LPI mode 417 * @priv: driver private structure 418 * Description: this function is to exit and disable EEE in case of 419 * LPI state is true. This is called by the xmit. 420 */ 421 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 422 { 423 if (!priv->eee_sw_timer_en) { 424 stmmac_lpi_entry_timer_config(priv, 0); 425 return; 426 } 427 428 stmmac_reset_eee_mode(priv, priv->hw); 429 del_timer_sync(&priv->eee_ctrl_timer); 430 priv->tx_path_in_lpi_mode = false; 431 } 432 433 /** 434 * stmmac_eee_ctrl_timer - EEE TX SW timer. 435 * @t: timer_list struct containing private info 436 * Description: 437 * if there is no data transfer and if we are not in LPI state, 438 * then MAC Transmitter can be moved to LPI state. 439 */ 440 static void stmmac_eee_ctrl_timer(struct timer_list *t) 441 { 442 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 443 444 stmmac_enable_eee_mode(priv); 445 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 446 } 447 448 /** 449 * stmmac_eee_init - init EEE 450 * @priv: driver private structure 451 * Description: 452 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 453 * can also manage EEE, this function enable the LPI state and start related 454 * timer. 455 */ 456 bool stmmac_eee_init(struct stmmac_priv *priv) 457 { 458 int eee_tw_timer = priv->eee_tw_timer; 459 460 /* Using PCS we cannot dial with the phy registers at this stage 461 * so we do not support extra feature like EEE. 462 */ 463 if (priv->hw->pcs == STMMAC_PCS_TBI || 464 priv->hw->pcs == STMMAC_PCS_RTBI) 465 return false; 466 467 /* Check if MAC core supports the EEE feature. */ 468 if (!priv->dma_cap.eee) 469 return false; 470 471 mutex_lock(&priv->lock); 472 473 /* Check if it needs to be deactivated */ 474 if (!priv->eee_active) { 475 if (priv->eee_enabled) { 476 netdev_dbg(priv->dev, "disable EEE\n"); 477 stmmac_lpi_entry_timer_config(priv, 0); 478 del_timer_sync(&priv->eee_ctrl_timer); 479 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 480 } 481 mutex_unlock(&priv->lock); 482 return false; 483 } 484 485 if (priv->eee_active && !priv->eee_enabled) { 486 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 487 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 488 eee_tw_timer); 489 if (priv->hw->xpcs) 490 xpcs_config_eee(priv->hw->xpcs, 491 priv->plat->mult_fact_100ns, 492 true); 493 } 494 495 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 496 del_timer_sync(&priv->eee_ctrl_timer); 497 priv->tx_path_in_lpi_mode = false; 498 stmmac_lpi_entry_timer_config(priv, 1); 499 } else { 500 stmmac_lpi_entry_timer_config(priv, 0); 501 mod_timer(&priv->eee_ctrl_timer, 502 STMMAC_LPI_T(priv->tx_lpi_timer)); 503 } 504 505 mutex_unlock(&priv->lock); 506 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 507 return true; 508 } 509 510 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 511 * @priv: driver private structure 512 * @p : descriptor pointer 513 * @skb : the socket buffer 514 * Description : 515 * This function will read timestamp from the descriptor & pass it to stack. 516 * and also perform some sanity checks. 517 */ 518 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 519 struct dma_desc *p, struct sk_buff *skb) 520 { 521 struct skb_shared_hwtstamps shhwtstamp; 522 bool found = false; 523 s64 adjust = 0; 524 u64 ns = 0; 525 526 if (!priv->hwts_tx_en) 527 return; 528 529 /* exit if skb doesn't support hw tstamp */ 530 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 531 return; 532 533 /* check tx tstamp status */ 534 if (stmmac_get_tx_timestamp_status(priv, p)) { 535 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 536 found = true; 537 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 538 found = true; 539 } 540 541 if (found) { 542 /* Correct the clk domain crossing(CDC) error */ 543 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 544 adjust += -(2 * (NSEC_PER_SEC / 545 priv->plat->clk_ptp_rate)); 546 ns += adjust; 547 } 548 549 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 550 shhwtstamp.hwtstamp = ns_to_ktime(ns); 551 552 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 553 /* pass tstamp to stack */ 554 skb_tstamp_tx(skb, &shhwtstamp); 555 } 556 } 557 558 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 559 * @priv: driver private structure 560 * @p : descriptor pointer 561 * @np : next descriptor pointer 562 * @skb : the socket buffer 563 * Description : 564 * This function will read received packet's timestamp from the descriptor 565 * and pass it to stack. It also perform some sanity checks. 566 */ 567 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 568 struct dma_desc *np, struct sk_buff *skb) 569 { 570 struct skb_shared_hwtstamps *shhwtstamp = NULL; 571 struct dma_desc *desc = p; 572 u64 adjust = 0; 573 u64 ns = 0; 574 575 if (!priv->hwts_rx_en) 576 return; 577 /* For GMAC4, the valid timestamp is from CTX next desc. */ 578 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 579 desc = np; 580 581 /* Check if timestamp is available */ 582 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 583 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 584 585 /* Correct the clk domain crossing(CDC) error */ 586 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 587 adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate); 588 ns -= adjust; 589 } 590 591 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 592 shhwtstamp = skb_hwtstamps(skb); 593 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 594 shhwtstamp->hwtstamp = ns_to_ktime(ns); 595 } else { 596 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 597 } 598 } 599 600 /** 601 * stmmac_hwtstamp_set - control hardware timestamping. 602 * @dev: device pointer. 603 * @ifr: An IOCTL specific structure, that can contain a pointer to 604 * a proprietary structure used to pass information to the driver. 605 * Description: 606 * This function configures the MAC to enable/disable both outgoing(TX) 607 * and incoming(RX) packets time stamping based on user input. 608 * Return Value: 609 * 0 on success and an appropriate -ve integer on failure. 610 */ 611 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 612 { 613 struct stmmac_priv *priv = netdev_priv(dev); 614 struct hwtstamp_config config; 615 struct timespec64 now; 616 u64 temp = 0; 617 u32 ptp_v2 = 0; 618 u32 tstamp_all = 0; 619 u32 ptp_over_ipv4_udp = 0; 620 u32 ptp_over_ipv6_udp = 0; 621 u32 ptp_over_ethernet = 0; 622 u32 snap_type_sel = 0; 623 u32 ts_master_en = 0; 624 u32 ts_event_en = 0; 625 u32 sec_inc = 0; 626 u32 value = 0; 627 bool xmac; 628 629 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 630 631 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 632 netdev_alert(priv->dev, "No support for HW time stamping\n"); 633 priv->hwts_tx_en = 0; 634 priv->hwts_rx_en = 0; 635 636 return -EOPNOTSUPP; 637 } 638 639 if (copy_from_user(&config, ifr->ifr_data, 640 sizeof(config))) 641 return -EFAULT; 642 643 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 644 __func__, config.flags, config.tx_type, config.rx_filter); 645 646 /* reserved for future extensions */ 647 if (config.flags) 648 return -EINVAL; 649 650 if (config.tx_type != HWTSTAMP_TX_OFF && 651 config.tx_type != HWTSTAMP_TX_ON) 652 return -ERANGE; 653 654 if (priv->adv_ts) { 655 switch (config.rx_filter) { 656 case HWTSTAMP_FILTER_NONE: 657 /* time stamp no incoming packet at all */ 658 config.rx_filter = HWTSTAMP_FILTER_NONE; 659 break; 660 661 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 662 /* PTP v1, UDP, any kind of event packet */ 663 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 664 /* 'xmac' hardware can support Sync, Pdelay_Req and 665 * Pdelay_resp by setting bit14 and bits17/16 to 01 666 * This leaves Delay_Req timestamps out. 667 * Enable all events *and* general purpose message 668 * timestamping 669 */ 670 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 671 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 672 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 673 break; 674 675 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 676 /* PTP v1, UDP, Sync packet */ 677 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 678 /* take time stamp for SYNC messages only */ 679 ts_event_en = PTP_TCR_TSEVNTENA; 680 681 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 682 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 683 break; 684 685 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 686 /* PTP v1, UDP, Delay_req packet */ 687 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 688 /* take time stamp for Delay_Req messages only */ 689 ts_master_en = PTP_TCR_TSMSTRENA; 690 ts_event_en = PTP_TCR_TSEVNTENA; 691 692 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 693 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 694 break; 695 696 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 697 /* PTP v2, UDP, any kind of event packet */ 698 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 699 ptp_v2 = PTP_TCR_TSVER2ENA; 700 /* take time stamp for all event messages */ 701 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 702 703 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 704 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 705 break; 706 707 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 708 /* PTP v2, UDP, Sync packet */ 709 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 710 ptp_v2 = PTP_TCR_TSVER2ENA; 711 /* take time stamp for SYNC messages only */ 712 ts_event_en = PTP_TCR_TSEVNTENA; 713 714 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 715 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 716 break; 717 718 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 719 /* PTP v2, UDP, Delay_req packet */ 720 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 721 ptp_v2 = PTP_TCR_TSVER2ENA; 722 /* take time stamp for Delay_Req messages only */ 723 ts_master_en = PTP_TCR_TSMSTRENA; 724 ts_event_en = PTP_TCR_TSEVNTENA; 725 726 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 727 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 728 break; 729 730 case HWTSTAMP_FILTER_PTP_V2_EVENT: 731 /* PTP v2/802.AS1 any layer, any kind of event packet */ 732 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 733 ptp_v2 = PTP_TCR_TSVER2ENA; 734 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 735 if (priv->synopsys_id != DWMAC_CORE_5_10) 736 ts_event_en = PTP_TCR_TSEVNTENA; 737 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 738 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 739 ptp_over_ethernet = PTP_TCR_TSIPENA; 740 break; 741 742 case HWTSTAMP_FILTER_PTP_V2_SYNC: 743 /* PTP v2/802.AS1, any layer, Sync packet */ 744 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 745 ptp_v2 = PTP_TCR_TSVER2ENA; 746 /* take time stamp for SYNC messages only */ 747 ts_event_en = PTP_TCR_TSEVNTENA; 748 749 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 750 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 751 ptp_over_ethernet = PTP_TCR_TSIPENA; 752 break; 753 754 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 755 /* PTP v2/802.AS1, any layer, Delay_req packet */ 756 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 757 ptp_v2 = PTP_TCR_TSVER2ENA; 758 /* take time stamp for Delay_Req messages only */ 759 ts_master_en = PTP_TCR_TSMSTRENA; 760 ts_event_en = PTP_TCR_TSEVNTENA; 761 762 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 763 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 764 ptp_over_ethernet = PTP_TCR_TSIPENA; 765 break; 766 767 case HWTSTAMP_FILTER_NTP_ALL: 768 case HWTSTAMP_FILTER_ALL: 769 /* time stamp any incoming packet */ 770 config.rx_filter = HWTSTAMP_FILTER_ALL; 771 tstamp_all = PTP_TCR_TSENALL; 772 break; 773 774 default: 775 return -ERANGE; 776 } 777 } else { 778 switch (config.rx_filter) { 779 case HWTSTAMP_FILTER_NONE: 780 config.rx_filter = HWTSTAMP_FILTER_NONE; 781 break; 782 default: 783 /* PTP v1, UDP, any kind of event packet */ 784 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 785 break; 786 } 787 } 788 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 789 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 790 791 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 792 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 793 else { 794 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 795 tstamp_all | ptp_v2 | ptp_over_ethernet | 796 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 797 ts_master_en | snap_type_sel); 798 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 799 800 /* program Sub Second Increment reg */ 801 stmmac_config_sub_second_increment(priv, 802 priv->ptpaddr, priv->plat->clk_ptp_rate, 803 xmac, &sec_inc); 804 temp = div_u64(1000000000ULL, sec_inc); 805 806 /* Store sub second increment and flags for later use */ 807 priv->sub_second_inc = sec_inc; 808 priv->systime_flags = value; 809 810 /* calculate default added value: 811 * formula is : 812 * addend = (2^32)/freq_div_ratio; 813 * where, freq_div_ratio = 1e9ns/sec_inc 814 */ 815 temp = (u64)(temp << 32); 816 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 817 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 818 819 /* initialize system time */ 820 ktime_get_real_ts64(&now); 821 822 /* lower 32 bits of tv_sec are safe until y2106 */ 823 stmmac_init_systime(priv, priv->ptpaddr, 824 (u32)now.tv_sec, now.tv_nsec); 825 } 826 827 memcpy(&priv->tstamp_config, &config, sizeof(config)); 828 829 return copy_to_user(ifr->ifr_data, &config, 830 sizeof(config)) ? -EFAULT : 0; 831 } 832 833 /** 834 * stmmac_hwtstamp_get - read hardware timestamping. 835 * @dev: device pointer. 836 * @ifr: An IOCTL specific structure, that can contain a pointer to 837 * a proprietary structure used to pass information to the driver. 838 * Description: 839 * This function obtain the current hardware timestamping settings 840 * as requested. 841 */ 842 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 843 { 844 struct stmmac_priv *priv = netdev_priv(dev); 845 struct hwtstamp_config *config = &priv->tstamp_config; 846 847 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 848 return -EOPNOTSUPP; 849 850 return copy_to_user(ifr->ifr_data, config, 851 sizeof(*config)) ? -EFAULT : 0; 852 } 853 854 /** 855 * stmmac_init_ptp - init PTP 856 * @priv: driver private structure 857 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 858 * This is done by looking at the HW cap. register. 859 * This function also registers the ptp driver. 860 */ 861 static int stmmac_init_ptp(struct stmmac_priv *priv) 862 { 863 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 864 865 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 866 return -EOPNOTSUPP; 867 868 priv->adv_ts = 0; 869 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 870 if (xmac && priv->dma_cap.atime_stamp) 871 priv->adv_ts = 1; 872 /* Dwmac 3.x core with extend_desc can support adv_ts */ 873 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 874 priv->adv_ts = 1; 875 876 if (priv->dma_cap.time_stamp) 877 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 878 879 if (priv->adv_ts) 880 netdev_info(priv->dev, 881 "IEEE 1588-2008 Advanced Timestamp supported\n"); 882 883 priv->hwts_tx_en = 0; 884 priv->hwts_rx_en = 0; 885 886 stmmac_ptp_register(priv); 887 888 return 0; 889 } 890 891 static void stmmac_release_ptp(struct stmmac_priv *priv) 892 { 893 clk_disable_unprepare(priv->plat->clk_ptp_ref); 894 stmmac_ptp_unregister(priv); 895 } 896 897 /** 898 * stmmac_mac_flow_ctrl - Configure flow control in all queues 899 * @priv: driver private structure 900 * @duplex: duplex passed to the next function 901 * Description: It is used for configuring the flow control in all queues 902 */ 903 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 904 { 905 u32 tx_cnt = priv->plat->tx_queues_to_use; 906 907 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 908 priv->pause, tx_cnt); 909 } 910 911 static void stmmac_validate(struct phylink_config *config, 912 unsigned long *supported, 913 struct phylink_link_state *state) 914 { 915 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 916 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 917 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 918 int tx_cnt = priv->plat->tx_queues_to_use; 919 int max_speed = priv->plat->max_speed; 920 921 phylink_set(mac_supported, 10baseT_Half); 922 phylink_set(mac_supported, 10baseT_Full); 923 phylink_set(mac_supported, 100baseT_Half); 924 phylink_set(mac_supported, 100baseT_Full); 925 phylink_set(mac_supported, 1000baseT_Half); 926 phylink_set(mac_supported, 1000baseT_Full); 927 phylink_set(mac_supported, 1000baseKX_Full); 928 929 phylink_set(mac_supported, Autoneg); 930 phylink_set(mac_supported, Pause); 931 phylink_set(mac_supported, Asym_Pause); 932 phylink_set_port_modes(mac_supported); 933 934 /* Cut down 1G if asked to */ 935 if ((max_speed > 0) && (max_speed < 1000)) { 936 phylink_set(mask, 1000baseT_Full); 937 phylink_set(mask, 1000baseX_Full); 938 } else if (priv->plat->has_gmac4) { 939 if (!max_speed || max_speed >= 2500) { 940 phylink_set(mac_supported, 2500baseT_Full); 941 phylink_set(mac_supported, 2500baseX_Full); 942 } 943 } else if (priv->plat->has_xgmac) { 944 if (!max_speed || (max_speed >= 2500)) { 945 phylink_set(mac_supported, 2500baseT_Full); 946 phylink_set(mac_supported, 2500baseX_Full); 947 } 948 if (!max_speed || (max_speed >= 5000)) { 949 phylink_set(mac_supported, 5000baseT_Full); 950 } 951 if (!max_speed || (max_speed >= 10000)) { 952 phylink_set(mac_supported, 10000baseSR_Full); 953 phylink_set(mac_supported, 10000baseLR_Full); 954 phylink_set(mac_supported, 10000baseER_Full); 955 phylink_set(mac_supported, 10000baseLRM_Full); 956 phylink_set(mac_supported, 10000baseT_Full); 957 phylink_set(mac_supported, 10000baseKX4_Full); 958 phylink_set(mac_supported, 10000baseKR_Full); 959 } 960 if (!max_speed || (max_speed >= 25000)) { 961 phylink_set(mac_supported, 25000baseCR_Full); 962 phylink_set(mac_supported, 25000baseKR_Full); 963 phylink_set(mac_supported, 25000baseSR_Full); 964 } 965 if (!max_speed || (max_speed >= 40000)) { 966 phylink_set(mac_supported, 40000baseKR4_Full); 967 phylink_set(mac_supported, 40000baseCR4_Full); 968 phylink_set(mac_supported, 40000baseSR4_Full); 969 phylink_set(mac_supported, 40000baseLR4_Full); 970 } 971 if (!max_speed || (max_speed >= 50000)) { 972 phylink_set(mac_supported, 50000baseCR2_Full); 973 phylink_set(mac_supported, 50000baseKR2_Full); 974 phylink_set(mac_supported, 50000baseSR2_Full); 975 phylink_set(mac_supported, 50000baseKR_Full); 976 phylink_set(mac_supported, 50000baseSR_Full); 977 phylink_set(mac_supported, 50000baseCR_Full); 978 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 979 phylink_set(mac_supported, 50000baseDR_Full); 980 } 981 if (!max_speed || (max_speed >= 100000)) { 982 phylink_set(mac_supported, 100000baseKR4_Full); 983 phylink_set(mac_supported, 100000baseSR4_Full); 984 phylink_set(mac_supported, 100000baseCR4_Full); 985 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 986 phylink_set(mac_supported, 100000baseKR2_Full); 987 phylink_set(mac_supported, 100000baseSR2_Full); 988 phylink_set(mac_supported, 100000baseCR2_Full); 989 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 990 phylink_set(mac_supported, 100000baseDR2_Full); 991 } 992 } 993 994 /* Half-Duplex can only work with single queue */ 995 if (tx_cnt > 1) { 996 phylink_set(mask, 10baseT_Half); 997 phylink_set(mask, 100baseT_Half); 998 phylink_set(mask, 1000baseT_Half); 999 } 1000 1001 linkmode_and(supported, supported, mac_supported); 1002 linkmode_andnot(supported, supported, mask); 1003 1004 linkmode_and(state->advertising, state->advertising, mac_supported); 1005 linkmode_andnot(state->advertising, state->advertising, mask); 1006 1007 /* If PCS is supported, check which modes it supports. */ 1008 if (priv->hw->xpcs) 1009 xpcs_validate(priv->hw->xpcs, supported, state); 1010 } 1011 1012 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1013 const struct phylink_link_state *state) 1014 { 1015 /* Nothing to do, xpcs_config() handles everything */ 1016 } 1017 1018 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1019 { 1020 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1021 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1022 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1023 bool *hs_enable = &fpe_cfg->hs_enable; 1024 1025 if (is_up && *hs_enable) { 1026 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1027 } else { 1028 *lo_state = FPE_STATE_OFF; 1029 *lp_state = FPE_STATE_OFF; 1030 } 1031 } 1032 1033 static void stmmac_mac_link_down(struct phylink_config *config, 1034 unsigned int mode, phy_interface_t interface) 1035 { 1036 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1037 1038 stmmac_mac_set(priv, priv->ioaddr, false); 1039 priv->eee_active = false; 1040 priv->tx_lpi_enabled = false; 1041 stmmac_eee_init(priv); 1042 stmmac_set_eee_pls(priv, priv->hw, false); 1043 1044 if (priv->dma_cap.fpesel) 1045 stmmac_fpe_link_state_handle(priv, false); 1046 } 1047 1048 static void stmmac_mac_link_up(struct phylink_config *config, 1049 struct phy_device *phy, 1050 unsigned int mode, phy_interface_t interface, 1051 int speed, int duplex, 1052 bool tx_pause, bool rx_pause) 1053 { 1054 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1055 u32 ctrl; 1056 1057 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1058 ctrl &= ~priv->hw->link.speed_mask; 1059 1060 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1061 switch (speed) { 1062 case SPEED_10000: 1063 ctrl |= priv->hw->link.xgmii.speed10000; 1064 break; 1065 case SPEED_5000: 1066 ctrl |= priv->hw->link.xgmii.speed5000; 1067 break; 1068 case SPEED_2500: 1069 ctrl |= priv->hw->link.xgmii.speed2500; 1070 break; 1071 default: 1072 return; 1073 } 1074 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1075 switch (speed) { 1076 case SPEED_100000: 1077 ctrl |= priv->hw->link.xlgmii.speed100000; 1078 break; 1079 case SPEED_50000: 1080 ctrl |= priv->hw->link.xlgmii.speed50000; 1081 break; 1082 case SPEED_40000: 1083 ctrl |= priv->hw->link.xlgmii.speed40000; 1084 break; 1085 case SPEED_25000: 1086 ctrl |= priv->hw->link.xlgmii.speed25000; 1087 break; 1088 case SPEED_10000: 1089 ctrl |= priv->hw->link.xgmii.speed10000; 1090 break; 1091 case SPEED_2500: 1092 ctrl |= priv->hw->link.speed2500; 1093 break; 1094 case SPEED_1000: 1095 ctrl |= priv->hw->link.speed1000; 1096 break; 1097 default: 1098 return; 1099 } 1100 } else { 1101 switch (speed) { 1102 case SPEED_2500: 1103 ctrl |= priv->hw->link.speed2500; 1104 break; 1105 case SPEED_1000: 1106 ctrl |= priv->hw->link.speed1000; 1107 break; 1108 case SPEED_100: 1109 ctrl |= priv->hw->link.speed100; 1110 break; 1111 case SPEED_10: 1112 ctrl |= priv->hw->link.speed10; 1113 break; 1114 default: 1115 return; 1116 } 1117 } 1118 1119 priv->speed = speed; 1120 1121 if (priv->plat->fix_mac_speed) 1122 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1123 1124 if (!duplex) 1125 ctrl &= ~priv->hw->link.duplex; 1126 else 1127 ctrl |= priv->hw->link.duplex; 1128 1129 /* Flow Control operation */ 1130 if (tx_pause && rx_pause) 1131 stmmac_mac_flow_ctrl(priv, duplex); 1132 1133 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1134 1135 stmmac_mac_set(priv, priv->ioaddr, true); 1136 if (phy && priv->dma_cap.eee) { 1137 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1138 priv->eee_enabled = stmmac_eee_init(priv); 1139 priv->tx_lpi_enabled = priv->eee_enabled; 1140 stmmac_set_eee_pls(priv, priv->hw, true); 1141 } 1142 1143 if (priv->dma_cap.fpesel) 1144 stmmac_fpe_link_state_handle(priv, true); 1145 } 1146 1147 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1148 .validate = stmmac_validate, 1149 .mac_config = stmmac_mac_config, 1150 .mac_link_down = stmmac_mac_link_down, 1151 .mac_link_up = stmmac_mac_link_up, 1152 }; 1153 1154 /** 1155 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1156 * @priv: driver private structure 1157 * Description: this is to verify if the HW supports the PCS. 1158 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1159 * configured for the TBI, RTBI, or SGMII PHY interface. 1160 */ 1161 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1162 { 1163 int interface = priv->plat->interface; 1164 1165 if (priv->dma_cap.pcs) { 1166 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1167 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1168 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1169 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1170 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1171 priv->hw->pcs = STMMAC_PCS_RGMII; 1172 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1173 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1174 priv->hw->pcs = STMMAC_PCS_SGMII; 1175 } 1176 } 1177 } 1178 1179 /** 1180 * stmmac_init_phy - PHY initialization 1181 * @dev: net device structure 1182 * Description: it initializes the driver's PHY state, and attaches the PHY 1183 * to the mac driver. 1184 * Return value: 1185 * 0 on success 1186 */ 1187 static int stmmac_init_phy(struct net_device *dev) 1188 { 1189 struct stmmac_priv *priv = netdev_priv(dev); 1190 struct device_node *node; 1191 int ret; 1192 1193 node = priv->plat->phylink_node; 1194 1195 if (node) 1196 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1197 1198 /* Some DT bindings do not set-up the PHY handle. Let's try to 1199 * manually parse it 1200 */ 1201 if (!node || ret) { 1202 int addr = priv->plat->phy_addr; 1203 struct phy_device *phydev; 1204 1205 phydev = mdiobus_get_phy(priv->mii, addr); 1206 if (!phydev) { 1207 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1208 return -ENODEV; 1209 } 1210 1211 ret = phylink_connect_phy(priv->phylink, phydev); 1212 } 1213 1214 if (!priv->plat->pmt) { 1215 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1216 1217 phylink_ethtool_get_wol(priv->phylink, &wol); 1218 device_set_wakeup_capable(priv->device, !!wol.supported); 1219 } 1220 1221 return ret; 1222 } 1223 1224 static int stmmac_phy_setup(struct stmmac_priv *priv) 1225 { 1226 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1227 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1228 int mode = priv->plat->phy_interface; 1229 struct phylink *phylink; 1230 1231 priv->phylink_config.dev = &priv->dev->dev; 1232 priv->phylink_config.type = PHYLINK_NETDEV; 1233 priv->phylink_config.pcs_poll = true; 1234 if (priv->plat->mdio_bus_data) 1235 priv->phylink_config.ovr_an_inband = 1236 mdio_bus_data->xpcs_an_inband; 1237 1238 if (!fwnode) 1239 fwnode = dev_fwnode(priv->device); 1240 1241 phylink = phylink_create(&priv->phylink_config, fwnode, 1242 mode, &stmmac_phylink_mac_ops); 1243 if (IS_ERR(phylink)) 1244 return PTR_ERR(phylink); 1245 1246 if (priv->hw->xpcs) 1247 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs); 1248 1249 priv->phylink = phylink; 1250 return 0; 1251 } 1252 1253 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1254 { 1255 u32 rx_cnt = priv->plat->rx_queues_to_use; 1256 unsigned int desc_size; 1257 void *head_rx; 1258 u32 queue; 1259 1260 /* Display RX rings */ 1261 for (queue = 0; queue < rx_cnt; queue++) { 1262 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1263 1264 pr_info("\tRX Queue %u rings\n", queue); 1265 1266 if (priv->extend_desc) { 1267 head_rx = (void *)rx_q->dma_erx; 1268 desc_size = sizeof(struct dma_extended_desc); 1269 } else { 1270 head_rx = (void *)rx_q->dma_rx; 1271 desc_size = sizeof(struct dma_desc); 1272 } 1273 1274 /* Display RX ring */ 1275 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1276 rx_q->dma_rx_phy, desc_size); 1277 } 1278 } 1279 1280 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1281 { 1282 u32 tx_cnt = priv->plat->tx_queues_to_use; 1283 unsigned int desc_size; 1284 void *head_tx; 1285 u32 queue; 1286 1287 /* Display TX rings */ 1288 for (queue = 0; queue < tx_cnt; queue++) { 1289 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1290 1291 pr_info("\tTX Queue %d rings\n", queue); 1292 1293 if (priv->extend_desc) { 1294 head_tx = (void *)tx_q->dma_etx; 1295 desc_size = sizeof(struct dma_extended_desc); 1296 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1297 head_tx = (void *)tx_q->dma_entx; 1298 desc_size = sizeof(struct dma_edesc); 1299 } else { 1300 head_tx = (void *)tx_q->dma_tx; 1301 desc_size = sizeof(struct dma_desc); 1302 } 1303 1304 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1305 tx_q->dma_tx_phy, desc_size); 1306 } 1307 } 1308 1309 static void stmmac_display_rings(struct stmmac_priv *priv) 1310 { 1311 /* Display RX ring */ 1312 stmmac_display_rx_rings(priv); 1313 1314 /* Display TX ring */ 1315 stmmac_display_tx_rings(priv); 1316 } 1317 1318 static int stmmac_set_bfsize(int mtu, int bufsize) 1319 { 1320 int ret = bufsize; 1321 1322 if (mtu >= BUF_SIZE_8KiB) 1323 ret = BUF_SIZE_16KiB; 1324 else if (mtu >= BUF_SIZE_4KiB) 1325 ret = BUF_SIZE_8KiB; 1326 else if (mtu >= BUF_SIZE_2KiB) 1327 ret = BUF_SIZE_4KiB; 1328 else if (mtu > DEFAULT_BUFSIZE) 1329 ret = BUF_SIZE_2KiB; 1330 else 1331 ret = DEFAULT_BUFSIZE; 1332 1333 return ret; 1334 } 1335 1336 /** 1337 * stmmac_clear_rx_descriptors - clear RX descriptors 1338 * @priv: driver private structure 1339 * @queue: RX queue index 1340 * Description: this function is called to clear the RX descriptors 1341 * in case of both basic and extended descriptors are used. 1342 */ 1343 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1344 { 1345 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1346 int i; 1347 1348 /* Clear the RX descriptors */ 1349 for (i = 0; i < priv->dma_rx_size; i++) 1350 if (priv->extend_desc) 1351 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1352 priv->use_riwt, priv->mode, 1353 (i == priv->dma_rx_size - 1), 1354 priv->dma_buf_sz); 1355 else 1356 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1357 priv->use_riwt, priv->mode, 1358 (i == priv->dma_rx_size - 1), 1359 priv->dma_buf_sz); 1360 } 1361 1362 /** 1363 * stmmac_clear_tx_descriptors - clear tx descriptors 1364 * @priv: driver private structure 1365 * @queue: TX queue index. 1366 * Description: this function is called to clear the TX descriptors 1367 * in case of both basic and extended descriptors are used. 1368 */ 1369 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1370 { 1371 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1372 int i; 1373 1374 /* Clear the TX descriptors */ 1375 for (i = 0; i < priv->dma_tx_size; i++) { 1376 int last = (i == (priv->dma_tx_size - 1)); 1377 struct dma_desc *p; 1378 1379 if (priv->extend_desc) 1380 p = &tx_q->dma_etx[i].basic; 1381 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1382 p = &tx_q->dma_entx[i].basic; 1383 else 1384 p = &tx_q->dma_tx[i]; 1385 1386 stmmac_init_tx_desc(priv, p, priv->mode, last); 1387 } 1388 } 1389 1390 /** 1391 * stmmac_clear_descriptors - clear descriptors 1392 * @priv: driver private structure 1393 * Description: this function is called to clear the TX and RX descriptors 1394 * in case of both basic and extended descriptors are used. 1395 */ 1396 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1397 { 1398 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1399 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1400 u32 queue; 1401 1402 /* Clear the RX descriptors */ 1403 for (queue = 0; queue < rx_queue_cnt; queue++) 1404 stmmac_clear_rx_descriptors(priv, queue); 1405 1406 /* Clear the TX descriptors */ 1407 for (queue = 0; queue < tx_queue_cnt; queue++) 1408 stmmac_clear_tx_descriptors(priv, queue); 1409 } 1410 1411 /** 1412 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1413 * @priv: driver private structure 1414 * @p: descriptor pointer 1415 * @i: descriptor index 1416 * @flags: gfp flag 1417 * @queue: RX queue index 1418 * Description: this function is called to allocate a receive buffer, perform 1419 * the DMA mapping and init the descriptor. 1420 */ 1421 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1422 int i, gfp_t flags, u32 queue) 1423 { 1424 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1425 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1426 1427 if (!buf->page) { 1428 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1429 if (!buf->page) 1430 return -ENOMEM; 1431 buf->page_offset = stmmac_rx_offset(priv); 1432 } 1433 1434 if (priv->sph && !buf->sec_page) { 1435 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1436 if (!buf->sec_page) 1437 return -ENOMEM; 1438 1439 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1440 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1441 } else { 1442 buf->sec_page = NULL; 1443 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1444 } 1445 1446 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1447 1448 stmmac_set_desc_addr(priv, p, buf->addr); 1449 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1450 stmmac_init_desc3(priv, p); 1451 1452 return 0; 1453 } 1454 1455 /** 1456 * stmmac_free_rx_buffer - free RX dma buffers 1457 * @priv: private structure 1458 * @queue: RX queue index 1459 * @i: buffer index. 1460 */ 1461 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1462 { 1463 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1464 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1465 1466 if (buf->page) 1467 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1468 buf->page = NULL; 1469 1470 if (buf->sec_page) 1471 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1472 buf->sec_page = NULL; 1473 } 1474 1475 /** 1476 * stmmac_free_tx_buffer - free RX dma buffers 1477 * @priv: private structure 1478 * @queue: RX queue index 1479 * @i: buffer index. 1480 */ 1481 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1482 { 1483 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1484 1485 if (tx_q->tx_skbuff_dma[i].buf && 1486 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1487 if (tx_q->tx_skbuff_dma[i].map_as_page) 1488 dma_unmap_page(priv->device, 1489 tx_q->tx_skbuff_dma[i].buf, 1490 tx_q->tx_skbuff_dma[i].len, 1491 DMA_TO_DEVICE); 1492 else 1493 dma_unmap_single(priv->device, 1494 tx_q->tx_skbuff_dma[i].buf, 1495 tx_q->tx_skbuff_dma[i].len, 1496 DMA_TO_DEVICE); 1497 } 1498 1499 if (tx_q->xdpf[i] && 1500 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1501 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1502 xdp_return_frame(tx_q->xdpf[i]); 1503 tx_q->xdpf[i] = NULL; 1504 } 1505 1506 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1507 tx_q->xsk_frames_done++; 1508 1509 if (tx_q->tx_skbuff[i] && 1510 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1511 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1512 tx_q->tx_skbuff[i] = NULL; 1513 } 1514 1515 tx_q->tx_skbuff_dma[i].buf = 0; 1516 tx_q->tx_skbuff_dma[i].map_as_page = false; 1517 } 1518 1519 /** 1520 * dma_free_rx_skbufs - free RX dma buffers 1521 * @priv: private structure 1522 * @queue: RX queue index 1523 */ 1524 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1525 { 1526 int i; 1527 1528 for (i = 0; i < priv->dma_rx_size; i++) 1529 stmmac_free_rx_buffer(priv, queue, i); 1530 } 1531 1532 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1533 gfp_t flags) 1534 { 1535 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1536 int i; 1537 1538 for (i = 0; i < priv->dma_rx_size; i++) { 1539 struct dma_desc *p; 1540 int ret; 1541 1542 if (priv->extend_desc) 1543 p = &((rx_q->dma_erx + i)->basic); 1544 else 1545 p = rx_q->dma_rx + i; 1546 1547 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1548 queue); 1549 if (ret) 1550 return ret; 1551 1552 rx_q->buf_alloc_num++; 1553 } 1554 1555 return 0; 1556 } 1557 1558 /** 1559 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1560 * @priv: private structure 1561 * @queue: RX queue index 1562 */ 1563 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1564 { 1565 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1566 int i; 1567 1568 for (i = 0; i < priv->dma_rx_size; i++) { 1569 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1570 1571 if (!buf->xdp) 1572 continue; 1573 1574 xsk_buff_free(buf->xdp); 1575 buf->xdp = NULL; 1576 } 1577 } 1578 1579 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1580 { 1581 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1582 int i; 1583 1584 for (i = 0; i < priv->dma_rx_size; i++) { 1585 struct stmmac_rx_buffer *buf; 1586 dma_addr_t dma_addr; 1587 struct dma_desc *p; 1588 1589 if (priv->extend_desc) 1590 p = (struct dma_desc *)(rx_q->dma_erx + i); 1591 else 1592 p = rx_q->dma_rx + i; 1593 1594 buf = &rx_q->buf_pool[i]; 1595 1596 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1597 if (!buf->xdp) 1598 return -ENOMEM; 1599 1600 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1601 stmmac_set_desc_addr(priv, p, dma_addr); 1602 rx_q->buf_alloc_num++; 1603 } 1604 1605 return 0; 1606 } 1607 1608 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1609 { 1610 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1611 return NULL; 1612 1613 return xsk_get_pool_from_qid(priv->dev, queue); 1614 } 1615 1616 /** 1617 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1618 * @priv: driver private structure 1619 * @queue: RX queue index 1620 * @flags: gfp flag. 1621 * Description: this function initializes the DMA RX descriptors 1622 * and allocates the socket buffers. It supports the chained and ring 1623 * modes. 1624 */ 1625 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1626 { 1627 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1628 int ret; 1629 1630 netif_dbg(priv, probe, priv->dev, 1631 "(%s) dma_rx_phy=0x%08x\n", __func__, 1632 (u32)rx_q->dma_rx_phy); 1633 1634 stmmac_clear_rx_descriptors(priv, queue); 1635 1636 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1637 1638 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1639 1640 if (rx_q->xsk_pool) { 1641 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1642 MEM_TYPE_XSK_BUFF_POOL, 1643 NULL)); 1644 netdev_info(priv->dev, 1645 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1646 rx_q->queue_index); 1647 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1648 } else { 1649 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1650 MEM_TYPE_PAGE_POOL, 1651 rx_q->page_pool)); 1652 netdev_info(priv->dev, 1653 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1654 rx_q->queue_index); 1655 } 1656 1657 if (rx_q->xsk_pool) { 1658 /* RX XDP ZC buffer pool may not be populated, e.g. 1659 * xdpsock TX-only. 1660 */ 1661 stmmac_alloc_rx_buffers_zc(priv, queue); 1662 } else { 1663 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1664 if (ret < 0) 1665 return -ENOMEM; 1666 } 1667 1668 rx_q->cur_rx = 0; 1669 rx_q->dirty_rx = 0; 1670 1671 /* Setup the chained descriptor addresses */ 1672 if (priv->mode == STMMAC_CHAIN_MODE) { 1673 if (priv->extend_desc) 1674 stmmac_mode_init(priv, rx_q->dma_erx, 1675 rx_q->dma_rx_phy, 1676 priv->dma_rx_size, 1); 1677 else 1678 stmmac_mode_init(priv, rx_q->dma_rx, 1679 rx_q->dma_rx_phy, 1680 priv->dma_rx_size, 0); 1681 } 1682 1683 return 0; 1684 } 1685 1686 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1687 { 1688 struct stmmac_priv *priv = netdev_priv(dev); 1689 u32 rx_count = priv->plat->rx_queues_to_use; 1690 u32 queue; 1691 int ret; 1692 1693 /* RX INITIALIZATION */ 1694 netif_dbg(priv, probe, priv->dev, 1695 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1696 1697 for (queue = 0; queue < rx_count; queue++) { 1698 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1699 if (ret) 1700 goto err_init_rx_buffers; 1701 } 1702 1703 return 0; 1704 1705 err_init_rx_buffers: 1706 while (queue >= 0) { 1707 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1708 1709 if (rx_q->xsk_pool) 1710 dma_free_rx_xskbufs(priv, queue); 1711 else 1712 dma_free_rx_skbufs(priv, queue); 1713 1714 rx_q->buf_alloc_num = 0; 1715 rx_q->xsk_pool = NULL; 1716 1717 if (queue == 0) 1718 break; 1719 1720 queue--; 1721 } 1722 1723 return ret; 1724 } 1725 1726 /** 1727 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1728 * @priv: driver private structure 1729 * @queue : TX queue index 1730 * Description: this function initializes the DMA TX descriptors 1731 * and allocates the socket buffers. It supports the chained and ring 1732 * modes. 1733 */ 1734 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1735 { 1736 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1737 int i; 1738 1739 netif_dbg(priv, probe, priv->dev, 1740 "(%s) dma_tx_phy=0x%08x\n", __func__, 1741 (u32)tx_q->dma_tx_phy); 1742 1743 /* Setup the chained descriptor addresses */ 1744 if (priv->mode == STMMAC_CHAIN_MODE) { 1745 if (priv->extend_desc) 1746 stmmac_mode_init(priv, tx_q->dma_etx, 1747 tx_q->dma_tx_phy, 1748 priv->dma_tx_size, 1); 1749 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1750 stmmac_mode_init(priv, tx_q->dma_tx, 1751 tx_q->dma_tx_phy, 1752 priv->dma_tx_size, 0); 1753 } 1754 1755 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1756 1757 for (i = 0; i < priv->dma_tx_size; i++) { 1758 struct dma_desc *p; 1759 1760 if (priv->extend_desc) 1761 p = &((tx_q->dma_etx + i)->basic); 1762 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1763 p = &((tx_q->dma_entx + i)->basic); 1764 else 1765 p = tx_q->dma_tx + i; 1766 1767 stmmac_clear_desc(priv, p); 1768 1769 tx_q->tx_skbuff_dma[i].buf = 0; 1770 tx_q->tx_skbuff_dma[i].map_as_page = false; 1771 tx_q->tx_skbuff_dma[i].len = 0; 1772 tx_q->tx_skbuff_dma[i].last_segment = false; 1773 tx_q->tx_skbuff[i] = NULL; 1774 } 1775 1776 tx_q->dirty_tx = 0; 1777 tx_q->cur_tx = 0; 1778 tx_q->mss = 0; 1779 1780 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1781 1782 return 0; 1783 } 1784 1785 static int init_dma_tx_desc_rings(struct net_device *dev) 1786 { 1787 struct stmmac_priv *priv = netdev_priv(dev); 1788 u32 tx_queue_cnt; 1789 u32 queue; 1790 1791 tx_queue_cnt = priv->plat->tx_queues_to_use; 1792 1793 for (queue = 0; queue < tx_queue_cnt; queue++) 1794 __init_dma_tx_desc_rings(priv, queue); 1795 1796 return 0; 1797 } 1798 1799 /** 1800 * init_dma_desc_rings - init the RX/TX descriptor rings 1801 * @dev: net device structure 1802 * @flags: gfp flag. 1803 * Description: this function initializes the DMA RX/TX descriptors 1804 * and allocates the socket buffers. It supports the chained and ring 1805 * modes. 1806 */ 1807 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1808 { 1809 struct stmmac_priv *priv = netdev_priv(dev); 1810 int ret; 1811 1812 ret = init_dma_rx_desc_rings(dev, flags); 1813 if (ret) 1814 return ret; 1815 1816 ret = init_dma_tx_desc_rings(dev); 1817 1818 stmmac_clear_descriptors(priv); 1819 1820 if (netif_msg_hw(priv)) 1821 stmmac_display_rings(priv); 1822 1823 return ret; 1824 } 1825 1826 /** 1827 * dma_free_tx_skbufs - free TX dma buffers 1828 * @priv: private structure 1829 * @queue: TX queue index 1830 */ 1831 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1832 { 1833 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1834 int i; 1835 1836 tx_q->xsk_frames_done = 0; 1837 1838 for (i = 0; i < priv->dma_tx_size; i++) 1839 stmmac_free_tx_buffer(priv, queue, i); 1840 1841 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1842 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1843 tx_q->xsk_frames_done = 0; 1844 tx_q->xsk_pool = NULL; 1845 } 1846 } 1847 1848 /** 1849 * stmmac_free_tx_skbufs - free TX skb buffers 1850 * @priv: private structure 1851 */ 1852 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1853 { 1854 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1855 u32 queue; 1856 1857 for (queue = 0; queue < tx_queue_cnt; queue++) 1858 dma_free_tx_skbufs(priv, queue); 1859 } 1860 1861 /** 1862 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1863 * @priv: private structure 1864 * @queue: RX queue index 1865 */ 1866 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1867 { 1868 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1869 1870 /* Release the DMA RX socket buffers */ 1871 if (rx_q->xsk_pool) 1872 dma_free_rx_xskbufs(priv, queue); 1873 else 1874 dma_free_rx_skbufs(priv, queue); 1875 1876 rx_q->buf_alloc_num = 0; 1877 rx_q->xsk_pool = NULL; 1878 1879 /* Free DMA regions of consistent memory previously allocated */ 1880 if (!priv->extend_desc) 1881 dma_free_coherent(priv->device, priv->dma_rx_size * 1882 sizeof(struct dma_desc), 1883 rx_q->dma_rx, rx_q->dma_rx_phy); 1884 else 1885 dma_free_coherent(priv->device, priv->dma_rx_size * 1886 sizeof(struct dma_extended_desc), 1887 rx_q->dma_erx, rx_q->dma_rx_phy); 1888 1889 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1890 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1891 1892 kfree(rx_q->buf_pool); 1893 if (rx_q->page_pool) 1894 page_pool_destroy(rx_q->page_pool); 1895 } 1896 1897 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1898 { 1899 u32 rx_count = priv->plat->rx_queues_to_use; 1900 u32 queue; 1901 1902 /* Free RX queue resources */ 1903 for (queue = 0; queue < rx_count; queue++) 1904 __free_dma_rx_desc_resources(priv, queue); 1905 } 1906 1907 /** 1908 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1909 * @priv: private structure 1910 * @queue: TX queue index 1911 */ 1912 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1913 { 1914 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1915 size_t size; 1916 void *addr; 1917 1918 /* Release the DMA TX socket buffers */ 1919 dma_free_tx_skbufs(priv, queue); 1920 1921 if (priv->extend_desc) { 1922 size = sizeof(struct dma_extended_desc); 1923 addr = tx_q->dma_etx; 1924 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1925 size = sizeof(struct dma_edesc); 1926 addr = tx_q->dma_entx; 1927 } else { 1928 size = sizeof(struct dma_desc); 1929 addr = tx_q->dma_tx; 1930 } 1931 1932 size *= priv->dma_tx_size; 1933 1934 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1935 1936 kfree(tx_q->tx_skbuff_dma); 1937 kfree(tx_q->tx_skbuff); 1938 } 1939 1940 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1941 { 1942 u32 tx_count = priv->plat->tx_queues_to_use; 1943 u32 queue; 1944 1945 /* Free TX queue resources */ 1946 for (queue = 0; queue < tx_count; queue++) 1947 __free_dma_tx_desc_resources(priv, queue); 1948 } 1949 1950 /** 1951 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1952 * @priv: private structure 1953 * @queue: RX queue index 1954 * Description: according to which descriptor can be used (extend or basic) 1955 * this function allocates the resources for TX and RX paths. In case of 1956 * reception, for example, it pre-allocated the RX socket buffer in order to 1957 * allow zero-copy mechanism. 1958 */ 1959 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1960 { 1961 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1962 struct stmmac_channel *ch = &priv->channel[queue]; 1963 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1964 struct page_pool_params pp_params = { 0 }; 1965 unsigned int num_pages; 1966 unsigned int napi_id; 1967 int ret; 1968 1969 rx_q->queue_index = queue; 1970 rx_q->priv_data = priv; 1971 1972 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1973 pp_params.pool_size = priv->dma_rx_size; 1974 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1975 pp_params.order = ilog2(num_pages); 1976 pp_params.nid = dev_to_node(priv->device); 1977 pp_params.dev = priv->device; 1978 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1979 pp_params.offset = stmmac_rx_offset(priv); 1980 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 1981 1982 rx_q->page_pool = page_pool_create(&pp_params); 1983 if (IS_ERR(rx_q->page_pool)) { 1984 ret = PTR_ERR(rx_q->page_pool); 1985 rx_q->page_pool = NULL; 1986 return ret; 1987 } 1988 1989 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1990 sizeof(*rx_q->buf_pool), 1991 GFP_KERNEL); 1992 if (!rx_q->buf_pool) 1993 return -ENOMEM; 1994 1995 if (priv->extend_desc) { 1996 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1997 priv->dma_rx_size * 1998 sizeof(struct dma_extended_desc), 1999 &rx_q->dma_rx_phy, 2000 GFP_KERNEL); 2001 if (!rx_q->dma_erx) 2002 return -ENOMEM; 2003 2004 } else { 2005 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2006 priv->dma_rx_size * 2007 sizeof(struct dma_desc), 2008 &rx_q->dma_rx_phy, 2009 GFP_KERNEL); 2010 if (!rx_q->dma_rx) 2011 return -ENOMEM; 2012 } 2013 2014 if (stmmac_xdp_is_enabled(priv) && 2015 test_bit(queue, priv->af_xdp_zc_qps)) 2016 napi_id = ch->rxtx_napi.napi_id; 2017 else 2018 napi_id = ch->rx_napi.napi_id; 2019 2020 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2021 rx_q->queue_index, 2022 napi_id); 2023 if (ret) { 2024 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2025 return -EINVAL; 2026 } 2027 2028 return 0; 2029 } 2030 2031 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2032 { 2033 u32 rx_count = priv->plat->rx_queues_to_use; 2034 u32 queue; 2035 int ret; 2036 2037 /* RX queues buffers and DMA */ 2038 for (queue = 0; queue < rx_count; queue++) { 2039 ret = __alloc_dma_rx_desc_resources(priv, queue); 2040 if (ret) 2041 goto err_dma; 2042 } 2043 2044 return 0; 2045 2046 err_dma: 2047 free_dma_rx_desc_resources(priv); 2048 2049 return ret; 2050 } 2051 2052 /** 2053 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2054 * @priv: private structure 2055 * @queue: TX queue index 2056 * Description: according to which descriptor can be used (extend or basic) 2057 * this function allocates the resources for TX and RX paths. In case of 2058 * reception, for example, it pre-allocated the RX socket buffer in order to 2059 * allow zero-copy mechanism. 2060 */ 2061 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2062 { 2063 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2064 size_t size; 2065 void *addr; 2066 2067 tx_q->queue_index = queue; 2068 tx_q->priv_data = priv; 2069 2070 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2071 sizeof(*tx_q->tx_skbuff_dma), 2072 GFP_KERNEL); 2073 if (!tx_q->tx_skbuff_dma) 2074 return -ENOMEM; 2075 2076 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2077 sizeof(struct sk_buff *), 2078 GFP_KERNEL); 2079 if (!tx_q->tx_skbuff) 2080 return -ENOMEM; 2081 2082 if (priv->extend_desc) 2083 size = sizeof(struct dma_extended_desc); 2084 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2085 size = sizeof(struct dma_edesc); 2086 else 2087 size = sizeof(struct dma_desc); 2088 2089 size *= priv->dma_tx_size; 2090 2091 addr = dma_alloc_coherent(priv->device, size, 2092 &tx_q->dma_tx_phy, GFP_KERNEL); 2093 if (!addr) 2094 return -ENOMEM; 2095 2096 if (priv->extend_desc) 2097 tx_q->dma_etx = addr; 2098 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2099 tx_q->dma_entx = addr; 2100 else 2101 tx_q->dma_tx = addr; 2102 2103 return 0; 2104 } 2105 2106 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2107 { 2108 u32 tx_count = priv->plat->tx_queues_to_use; 2109 u32 queue; 2110 int ret; 2111 2112 /* TX queues buffers and DMA */ 2113 for (queue = 0; queue < tx_count; queue++) { 2114 ret = __alloc_dma_tx_desc_resources(priv, queue); 2115 if (ret) 2116 goto err_dma; 2117 } 2118 2119 return 0; 2120 2121 err_dma: 2122 free_dma_tx_desc_resources(priv); 2123 return ret; 2124 } 2125 2126 /** 2127 * alloc_dma_desc_resources - alloc TX/RX resources. 2128 * @priv: private structure 2129 * Description: according to which descriptor can be used (extend or basic) 2130 * this function allocates the resources for TX and RX paths. In case of 2131 * reception, for example, it pre-allocated the RX socket buffer in order to 2132 * allow zero-copy mechanism. 2133 */ 2134 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2135 { 2136 /* RX Allocation */ 2137 int ret = alloc_dma_rx_desc_resources(priv); 2138 2139 if (ret) 2140 return ret; 2141 2142 ret = alloc_dma_tx_desc_resources(priv); 2143 2144 return ret; 2145 } 2146 2147 /** 2148 * free_dma_desc_resources - free dma desc resources 2149 * @priv: private structure 2150 */ 2151 static void free_dma_desc_resources(struct stmmac_priv *priv) 2152 { 2153 /* Release the DMA TX socket buffers */ 2154 free_dma_tx_desc_resources(priv); 2155 2156 /* Release the DMA RX socket buffers later 2157 * to ensure all pending XDP_TX buffers are returned. 2158 */ 2159 free_dma_rx_desc_resources(priv); 2160 } 2161 2162 /** 2163 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2164 * @priv: driver private structure 2165 * Description: It is used for enabling the rx queues in the MAC 2166 */ 2167 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2168 { 2169 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2170 int queue; 2171 u8 mode; 2172 2173 for (queue = 0; queue < rx_queues_count; queue++) { 2174 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2175 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2176 } 2177 } 2178 2179 /** 2180 * stmmac_start_rx_dma - start RX DMA channel 2181 * @priv: driver private structure 2182 * @chan: RX channel index 2183 * Description: 2184 * This starts a RX DMA channel 2185 */ 2186 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2187 { 2188 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2189 stmmac_start_rx(priv, priv->ioaddr, chan); 2190 } 2191 2192 /** 2193 * stmmac_start_tx_dma - start TX DMA channel 2194 * @priv: driver private structure 2195 * @chan: TX channel index 2196 * Description: 2197 * This starts a TX DMA channel 2198 */ 2199 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2200 { 2201 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2202 stmmac_start_tx(priv, priv->ioaddr, chan); 2203 } 2204 2205 /** 2206 * stmmac_stop_rx_dma - stop RX DMA channel 2207 * @priv: driver private structure 2208 * @chan: RX channel index 2209 * Description: 2210 * This stops a RX DMA channel 2211 */ 2212 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2213 { 2214 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2215 stmmac_stop_rx(priv, priv->ioaddr, chan); 2216 } 2217 2218 /** 2219 * stmmac_stop_tx_dma - stop TX DMA channel 2220 * @priv: driver private structure 2221 * @chan: TX channel index 2222 * Description: 2223 * This stops a TX DMA channel 2224 */ 2225 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2226 { 2227 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2228 stmmac_stop_tx(priv, priv->ioaddr, chan); 2229 } 2230 2231 /** 2232 * stmmac_start_all_dma - start all RX and TX DMA channels 2233 * @priv: driver private structure 2234 * Description: 2235 * This starts all the RX and TX DMA channels 2236 */ 2237 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2238 { 2239 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2240 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2241 u32 chan = 0; 2242 2243 for (chan = 0; chan < rx_channels_count; chan++) 2244 stmmac_start_rx_dma(priv, chan); 2245 2246 for (chan = 0; chan < tx_channels_count; chan++) 2247 stmmac_start_tx_dma(priv, chan); 2248 } 2249 2250 /** 2251 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2252 * @priv: driver private structure 2253 * Description: 2254 * This stops the RX and TX DMA channels 2255 */ 2256 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2257 { 2258 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2259 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2260 u32 chan = 0; 2261 2262 for (chan = 0; chan < rx_channels_count; chan++) 2263 stmmac_stop_rx_dma(priv, chan); 2264 2265 for (chan = 0; chan < tx_channels_count; chan++) 2266 stmmac_stop_tx_dma(priv, chan); 2267 } 2268 2269 /** 2270 * stmmac_dma_operation_mode - HW DMA operation mode 2271 * @priv: driver private structure 2272 * Description: it is used for configuring the DMA operation mode register in 2273 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2274 */ 2275 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2276 { 2277 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2278 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2279 int rxfifosz = priv->plat->rx_fifo_size; 2280 int txfifosz = priv->plat->tx_fifo_size; 2281 u32 txmode = 0; 2282 u32 rxmode = 0; 2283 u32 chan = 0; 2284 u8 qmode = 0; 2285 2286 if (rxfifosz == 0) 2287 rxfifosz = priv->dma_cap.rx_fifo_size; 2288 if (txfifosz == 0) 2289 txfifosz = priv->dma_cap.tx_fifo_size; 2290 2291 /* Adjust for real per queue fifo size */ 2292 rxfifosz /= rx_channels_count; 2293 txfifosz /= tx_channels_count; 2294 2295 if (priv->plat->force_thresh_dma_mode) { 2296 txmode = tc; 2297 rxmode = tc; 2298 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2299 /* 2300 * In case of GMAC, SF mode can be enabled 2301 * to perform the TX COE in HW. This depends on: 2302 * 1) TX COE if actually supported 2303 * 2) There is no bugged Jumbo frame support 2304 * that needs to not insert csum in the TDES. 2305 */ 2306 txmode = SF_DMA_MODE; 2307 rxmode = SF_DMA_MODE; 2308 priv->xstats.threshold = SF_DMA_MODE; 2309 } else { 2310 txmode = tc; 2311 rxmode = SF_DMA_MODE; 2312 } 2313 2314 /* configure all channels */ 2315 for (chan = 0; chan < rx_channels_count; chan++) { 2316 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2317 u32 buf_size; 2318 2319 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2320 2321 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2322 rxfifosz, qmode); 2323 2324 if (rx_q->xsk_pool) { 2325 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2326 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2327 buf_size, 2328 chan); 2329 } else { 2330 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2331 priv->dma_buf_sz, 2332 chan); 2333 } 2334 } 2335 2336 for (chan = 0; chan < tx_channels_count; chan++) { 2337 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2338 2339 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2340 txfifosz, qmode); 2341 } 2342 } 2343 2344 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2345 { 2346 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2347 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2348 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2349 unsigned int entry = tx_q->cur_tx; 2350 struct dma_desc *tx_desc = NULL; 2351 struct xdp_desc xdp_desc; 2352 bool work_done = true; 2353 2354 /* Avoids TX time-out as we are sharing with slow path */ 2355 nq->trans_start = jiffies; 2356 2357 budget = min(budget, stmmac_tx_avail(priv, queue)); 2358 2359 while (budget-- > 0) { 2360 dma_addr_t dma_addr; 2361 bool set_ic; 2362 2363 /* We are sharing with slow path and stop XSK TX desc submission when 2364 * available TX ring is less than threshold. 2365 */ 2366 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2367 !netif_carrier_ok(priv->dev)) { 2368 work_done = false; 2369 break; 2370 } 2371 2372 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2373 break; 2374 2375 if (likely(priv->extend_desc)) 2376 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2377 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2378 tx_desc = &tx_q->dma_entx[entry].basic; 2379 else 2380 tx_desc = tx_q->dma_tx + entry; 2381 2382 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2383 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2384 2385 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2386 2387 /* To return XDP buffer to XSK pool, we simple call 2388 * xsk_tx_completed(), so we don't need to fill up 2389 * 'buf' and 'xdpf'. 2390 */ 2391 tx_q->tx_skbuff_dma[entry].buf = 0; 2392 tx_q->xdpf[entry] = NULL; 2393 2394 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2395 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2396 tx_q->tx_skbuff_dma[entry].last_segment = true; 2397 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2398 2399 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2400 2401 tx_q->tx_count_frames++; 2402 2403 if (!priv->tx_coal_frames[queue]) 2404 set_ic = false; 2405 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2406 set_ic = true; 2407 else 2408 set_ic = false; 2409 2410 if (set_ic) { 2411 tx_q->tx_count_frames = 0; 2412 stmmac_set_tx_ic(priv, tx_desc); 2413 priv->xstats.tx_set_ic_bit++; 2414 } 2415 2416 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2417 true, priv->mode, true, true, 2418 xdp_desc.len); 2419 2420 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2421 2422 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2423 entry = tx_q->cur_tx; 2424 } 2425 2426 if (tx_desc) { 2427 stmmac_flush_tx_descriptors(priv, queue); 2428 xsk_tx_release(pool); 2429 } 2430 2431 /* Return true if all of the 3 conditions are met 2432 * a) TX Budget is still available 2433 * b) work_done = true when XSK TX desc peek is empty (no more 2434 * pending XSK TX for transmission) 2435 */ 2436 return !!budget && work_done; 2437 } 2438 2439 /** 2440 * stmmac_tx_clean - to manage the transmission completion 2441 * @priv: driver private structure 2442 * @budget: napi budget limiting this functions packet handling 2443 * @queue: TX queue index 2444 * Description: it reclaims the transmit resources after transmission completes. 2445 */ 2446 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2447 { 2448 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2449 unsigned int bytes_compl = 0, pkts_compl = 0; 2450 unsigned int entry, xmits = 0, count = 0; 2451 2452 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2453 2454 priv->xstats.tx_clean++; 2455 2456 tx_q->xsk_frames_done = 0; 2457 2458 entry = tx_q->dirty_tx; 2459 2460 /* Try to clean all TX complete frame in 1 shot */ 2461 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2462 struct xdp_frame *xdpf; 2463 struct sk_buff *skb; 2464 struct dma_desc *p; 2465 int status; 2466 2467 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2468 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2469 xdpf = tx_q->xdpf[entry]; 2470 skb = NULL; 2471 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2472 xdpf = NULL; 2473 skb = tx_q->tx_skbuff[entry]; 2474 } else { 2475 xdpf = NULL; 2476 skb = NULL; 2477 } 2478 2479 if (priv->extend_desc) 2480 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2481 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2482 p = &tx_q->dma_entx[entry].basic; 2483 else 2484 p = tx_q->dma_tx + entry; 2485 2486 status = stmmac_tx_status(priv, &priv->dev->stats, 2487 &priv->xstats, p, priv->ioaddr); 2488 /* Check if the descriptor is owned by the DMA */ 2489 if (unlikely(status & tx_dma_own)) 2490 break; 2491 2492 count++; 2493 2494 /* Make sure descriptor fields are read after reading 2495 * the own bit. 2496 */ 2497 dma_rmb(); 2498 2499 /* Just consider the last segment and ...*/ 2500 if (likely(!(status & tx_not_ls))) { 2501 /* ... verify the status error condition */ 2502 if (unlikely(status & tx_err)) { 2503 priv->dev->stats.tx_errors++; 2504 } else { 2505 priv->dev->stats.tx_packets++; 2506 priv->xstats.tx_pkt_n++; 2507 priv->xstats.txq_stats[queue].tx_pkt_n++; 2508 } 2509 if (skb) 2510 stmmac_get_tx_hwtstamp(priv, p, skb); 2511 } 2512 2513 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2514 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2515 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2516 dma_unmap_page(priv->device, 2517 tx_q->tx_skbuff_dma[entry].buf, 2518 tx_q->tx_skbuff_dma[entry].len, 2519 DMA_TO_DEVICE); 2520 else 2521 dma_unmap_single(priv->device, 2522 tx_q->tx_skbuff_dma[entry].buf, 2523 tx_q->tx_skbuff_dma[entry].len, 2524 DMA_TO_DEVICE); 2525 tx_q->tx_skbuff_dma[entry].buf = 0; 2526 tx_q->tx_skbuff_dma[entry].len = 0; 2527 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2528 } 2529 2530 stmmac_clean_desc3(priv, tx_q, p); 2531 2532 tx_q->tx_skbuff_dma[entry].last_segment = false; 2533 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2534 2535 if (xdpf && 2536 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2537 xdp_return_frame_rx_napi(xdpf); 2538 tx_q->xdpf[entry] = NULL; 2539 } 2540 2541 if (xdpf && 2542 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2543 xdp_return_frame(xdpf); 2544 tx_q->xdpf[entry] = NULL; 2545 } 2546 2547 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2548 tx_q->xsk_frames_done++; 2549 2550 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2551 if (likely(skb)) { 2552 pkts_compl++; 2553 bytes_compl += skb->len; 2554 dev_consume_skb_any(skb); 2555 tx_q->tx_skbuff[entry] = NULL; 2556 } 2557 } 2558 2559 stmmac_release_tx_desc(priv, p, priv->mode); 2560 2561 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2562 } 2563 tx_q->dirty_tx = entry; 2564 2565 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2566 pkts_compl, bytes_compl); 2567 2568 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2569 queue))) && 2570 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2571 2572 netif_dbg(priv, tx_done, priv->dev, 2573 "%s: restart transmit\n", __func__); 2574 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2575 } 2576 2577 if (tx_q->xsk_pool) { 2578 bool work_done; 2579 2580 if (tx_q->xsk_frames_done) 2581 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2582 2583 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2584 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2585 2586 /* For XSK TX, we try to send as many as possible. 2587 * If XSK work done (XSK TX desc empty and budget still 2588 * available), return "budget - 1" to reenable TX IRQ. 2589 * Else, return "budget" to make NAPI continue polling. 2590 */ 2591 work_done = stmmac_xdp_xmit_zc(priv, queue, 2592 STMMAC_XSK_TX_BUDGET_MAX); 2593 if (work_done) 2594 xmits = budget - 1; 2595 else 2596 xmits = budget; 2597 } 2598 2599 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2600 priv->eee_sw_timer_en) { 2601 stmmac_enable_eee_mode(priv); 2602 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2603 } 2604 2605 /* We still have pending packets, let's call for a new scheduling */ 2606 if (tx_q->dirty_tx != tx_q->cur_tx) 2607 hrtimer_start(&tx_q->txtimer, 2608 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2609 HRTIMER_MODE_REL); 2610 2611 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2612 2613 /* Combine decisions from TX clean and XSK TX */ 2614 return max(count, xmits); 2615 } 2616 2617 /** 2618 * stmmac_tx_err - to manage the tx error 2619 * @priv: driver private structure 2620 * @chan: channel index 2621 * Description: it cleans the descriptors and restarts the transmission 2622 * in case of transmission errors. 2623 */ 2624 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2625 { 2626 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2627 2628 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2629 2630 stmmac_stop_tx_dma(priv, chan); 2631 dma_free_tx_skbufs(priv, chan); 2632 stmmac_clear_tx_descriptors(priv, chan); 2633 tx_q->dirty_tx = 0; 2634 tx_q->cur_tx = 0; 2635 tx_q->mss = 0; 2636 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2637 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2638 tx_q->dma_tx_phy, chan); 2639 stmmac_start_tx_dma(priv, chan); 2640 2641 priv->dev->stats.tx_errors++; 2642 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2643 } 2644 2645 /** 2646 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2647 * @priv: driver private structure 2648 * @txmode: TX operating mode 2649 * @rxmode: RX operating mode 2650 * @chan: channel index 2651 * Description: it is used for configuring of the DMA operation mode in 2652 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2653 * mode. 2654 */ 2655 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2656 u32 rxmode, u32 chan) 2657 { 2658 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2659 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2660 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2661 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2662 int rxfifosz = priv->plat->rx_fifo_size; 2663 int txfifosz = priv->plat->tx_fifo_size; 2664 2665 if (rxfifosz == 0) 2666 rxfifosz = priv->dma_cap.rx_fifo_size; 2667 if (txfifosz == 0) 2668 txfifosz = priv->dma_cap.tx_fifo_size; 2669 2670 /* Adjust for real per queue fifo size */ 2671 rxfifosz /= rx_channels_count; 2672 txfifosz /= tx_channels_count; 2673 2674 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2675 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2676 } 2677 2678 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2679 { 2680 int ret; 2681 2682 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2683 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2684 if (ret && (ret != -EINVAL)) { 2685 stmmac_global_err(priv); 2686 return true; 2687 } 2688 2689 return false; 2690 } 2691 2692 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2693 { 2694 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2695 &priv->xstats, chan, dir); 2696 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2697 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2698 struct stmmac_channel *ch = &priv->channel[chan]; 2699 struct napi_struct *rx_napi; 2700 struct napi_struct *tx_napi; 2701 unsigned long flags; 2702 2703 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2704 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2705 2706 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2707 if (napi_schedule_prep(rx_napi)) { 2708 spin_lock_irqsave(&ch->lock, flags); 2709 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2710 spin_unlock_irqrestore(&ch->lock, flags); 2711 __napi_schedule(rx_napi); 2712 } 2713 } 2714 2715 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2716 if (napi_schedule_prep(tx_napi)) { 2717 spin_lock_irqsave(&ch->lock, flags); 2718 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2719 spin_unlock_irqrestore(&ch->lock, flags); 2720 __napi_schedule(tx_napi); 2721 } 2722 } 2723 2724 return status; 2725 } 2726 2727 /** 2728 * stmmac_dma_interrupt - DMA ISR 2729 * @priv: driver private structure 2730 * Description: this is the DMA ISR. It is called by the main ISR. 2731 * It calls the dwmac dma routine and schedule poll method in case of some 2732 * work can be done. 2733 */ 2734 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2735 { 2736 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2737 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2738 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2739 tx_channel_count : rx_channel_count; 2740 u32 chan; 2741 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2742 2743 /* Make sure we never check beyond our status buffer. */ 2744 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2745 channels_to_check = ARRAY_SIZE(status); 2746 2747 for (chan = 0; chan < channels_to_check; chan++) 2748 status[chan] = stmmac_napi_check(priv, chan, 2749 DMA_DIR_RXTX); 2750 2751 for (chan = 0; chan < tx_channel_count; chan++) { 2752 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2753 /* Try to bump up the dma threshold on this failure */ 2754 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2755 (tc <= 256)) { 2756 tc += 64; 2757 if (priv->plat->force_thresh_dma_mode) 2758 stmmac_set_dma_operation_mode(priv, 2759 tc, 2760 tc, 2761 chan); 2762 else 2763 stmmac_set_dma_operation_mode(priv, 2764 tc, 2765 SF_DMA_MODE, 2766 chan); 2767 priv->xstats.threshold = tc; 2768 } 2769 } else if (unlikely(status[chan] == tx_hard_error)) { 2770 stmmac_tx_err(priv, chan); 2771 } 2772 } 2773 } 2774 2775 /** 2776 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2777 * @priv: driver private structure 2778 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2779 */ 2780 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2781 { 2782 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2783 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2784 2785 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2786 2787 if (priv->dma_cap.rmon) { 2788 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2789 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2790 } else 2791 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2792 } 2793 2794 /** 2795 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2796 * @priv: driver private structure 2797 * Description: 2798 * new GMAC chip generations have a new register to indicate the 2799 * presence of the optional feature/functions. 2800 * This can be also used to override the value passed through the 2801 * platform and necessary for old MAC10/100 and GMAC chips. 2802 */ 2803 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2804 { 2805 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2806 } 2807 2808 /** 2809 * stmmac_check_ether_addr - check if the MAC addr is valid 2810 * @priv: driver private structure 2811 * Description: 2812 * it is to verify if the MAC address is valid, in case of failures it 2813 * generates a random MAC address 2814 */ 2815 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2816 { 2817 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2818 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2819 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2820 eth_hw_addr_random(priv->dev); 2821 dev_info(priv->device, "device MAC address %pM\n", 2822 priv->dev->dev_addr); 2823 } 2824 } 2825 2826 /** 2827 * stmmac_init_dma_engine - DMA init. 2828 * @priv: driver private structure 2829 * Description: 2830 * It inits the DMA invoking the specific MAC/GMAC callback. 2831 * Some DMA parameters can be passed from the platform; 2832 * in case of these are not passed a default is kept for the MAC or GMAC. 2833 */ 2834 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2835 { 2836 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2837 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2838 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2839 struct stmmac_rx_queue *rx_q; 2840 struct stmmac_tx_queue *tx_q; 2841 u32 chan = 0; 2842 int atds = 0; 2843 int ret = 0; 2844 2845 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2846 dev_err(priv->device, "Invalid DMA configuration\n"); 2847 return -EINVAL; 2848 } 2849 2850 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2851 atds = 1; 2852 2853 ret = stmmac_reset(priv, priv->ioaddr); 2854 if (ret) { 2855 dev_err(priv->device, "Failed to reset the dma\n"); 2856 return ret; 2857 } 2858 2859 /* DMA Configuration */ 2860 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2861 2862 if (priv->plat->axi) 2863 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2864 2865 /* DMA CSR Channel configuration */ 2866 for (chan = 0; chan < dma_csr_ch; chan++) 2867 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2868 2869 /* DMA RX Channel Configuration */ 2870 for (chan = 0; chan < rx_channels_count; chan++) { 2871 rx_q = &priv->rx_queue[chan]; 2872 2873 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2874 rx_q->dma_rx_phy, chan); 2875 2876 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2877 (rx_q->buf_alloc_num * 2878 sizeof(struct dma_desc)); 2879 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2880 rx_q->rx_tail_addr, chan); 2881 } 2882 2883 /* DMA TX Channel Configuration */ 2884 for (chan = 0; chan < tx_channels_count; chan++) { 2885 tx_q = &priv->tx_queue[chan]; 2886 2887 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2888 tx_q->dma_tx_phy, chan); 2889 2890 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2891 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2892 tx_q->tx_tail_addr, chan); 2893 } 2894 2895 return ret; 2896 } 2897 2898 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2899 { 2900 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2901 2902 hrtimer_start(&tx_q->txtimer, 2903 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2904 HRTIMER_MODE_REL); 2905 } 2906 2907 /** 2908 * stmmac_tx_timer - mitigation sw timer for tx. 2909 * @t: data pointer 2910 * Description: 2911 * This is the timer handler to directly invoke the stmmac_tx_clean. 2912 */ 2913 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2914 { 2915 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2916 struct stmmac_priv *priv = tx_q->priv_data; 2917 struct stmmac_channel *ch; 2918 struct napi_struct *napi; 2919 2920 ch = &priv->channel[tx_q->queue_index]; 2921 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2922 2923 if (likely(napi_schedule_prep(napi))) { 2924 unsigned long flags; 2925 2926 spin_lock_irqsave(&ch->lock, flags); 2927 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2928 spin_unlock_irqrestore(&ch->lock, flags); 2929 __napi_schedule(napi); 2930 } 2931 2932 return HRTIMER_NORESTART; 2933 } 2934 2935 /** 2936 * stmmac_init_coalesce - init mitigation options. 2937 * @priv: driver private structure 2938 * Description: 2939 * This inits the coalesce parameters: i.e. timer rate, 2940 * timer handler and default threshold used for enabling the 2941 * interrupt on completion bit. 2942 */ 2943 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2944 { 2945 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2946 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2947 u32 chan; 2948 2949 for (chan = 0; chan < tx_channel_count; chan++) { 2950 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2951 2952 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2953 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2954 2955 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2956 tx_q->txtimer.function = stmmac_tx_timer; 2957 } 2958 2959 for (chan = 0; chan < rx_channel_count; chan++) 2960 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 2961 } 2962 2963 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2964 { 2965 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2966 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2967 u32 chan; 2968 2969 /* set TX ring length */ 2970 for (chan = 0; chan < tx_channels_count; chan++) 2971 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2972 (priv->dma_tx_size - 1), chan); 2973 2974 /* set RX ring length */ 2975 for (chan = 0; chan < rx_channels_count; chan++) 2976 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2977 (priv->dma_rx_size - 1), chan); 2978 } 2979 2980 /** 2981 * stmmac_set_tx_queue_weight - Set TX queue weight 2982 * @priv: driver private structure 2983 * Description: It is used for setting TX queues weight 2984 */ 2985 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2986 { 2987 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2988 u32 weight; 2989 u32 queue; 2990 2991 for (queue = 0; queue < tx_queues_count; queue++) { 2992 weight = priv->plat->tx_queues_cfg[queue].weight; 2993 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2994 } 2995 } 2996 2997 /** 2998 * stmmac_configure_cbs - Configure CBS in TX queue 2999 * @priv: driver private structure 3000 * Description: It is used for configuring CBS in AVB TX queues 3001 */ 3002 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3003 { 3004 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3005 u32 mode_to_use; 3006 u32 queue; 3007 3008 /* queue 0 is reserved for legacy traffic */ 3009 for (queue = 1; queue < tx_queues_count; queue++) { 3010 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3011 if (mode_to_use == MTL_QUEUE_DCB) 3012 continue; 3013 3014 stmmac_config_cbs(priv, priv->hw, 3015 priv->plat->tx_queues_cfg[queue].send_slope, 3016 priv->plat->tx_queues_cfg[queue].idle_slope, 3017 priv->plat->tx_queues_cfg[queue].high_credit, 3018 priv->plat->tx_queues_cfg[queue].low_credit, 3019 queue); 3020 } 3021 } 3022 3023 /** 3024 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3025 * @priv: driver private structure 3026 * Description: It is used for mapping RX queues to RX dma channels 3027 */ 3028 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3029 { 3030 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3031 u32 queue; 3032 u32 chan; 3033 3034 for (queue = 0; queue < rx_queues_count; queue++) { 3035 chan = priv->plat->rx_queues_cfg[queue].chan; 3036 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3037 } 3038 } 3039 3040 /** 3041 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3042 * @priv: driver private structure 3043 * Description: It is used for configuring the RX Queue Priority 3044 */ 3045 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3046 { 3047 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3048 u32 queue; 3049 u32 prio; 3050 3051 for (queue = 0; queue < rx_queues_count; queue++) { 3052 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3053 continue; 3054 3055 prio = priv->plat->rx_queues_cfg[queue].prio; 3056 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3057 } 3058 } 3059 3060 /** 3061 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3062 * @priv: driver private structure 3063 * Description: It is used for configuring the TX Queue Priority 3064 */ 3065 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3066 { 3067 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3068 u32 queue; 3069 u32 prio; 3070 3071 for (queue = 0; queue < tx_queues_count; queue++) { 3072 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3073 continue; 3074 3075 prio = priv->plat->tx_queues_cfg[queue].prio; 3076 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3077 } 3078 } 3079 3080 /** 3081 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3082 * @priv: driver private structure 3083 * Description: It is used for configuring the RX queue routing 3084 */ 3085 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3086 { 3087 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3088 u32 queue; 3089 u8 packet; 3090 3091 for (queue = 0; queue < rx_queues_count; queue++) { 3092 /* no specific packet type routing specified for the queue */ 3093 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3094 continue; 3095 3096 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3097 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3098 } 3099 } 3100 3101 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3102 { 3103 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3104 priv->rss.enable = false; 3105 return; 3106 } 3107 3108 if (priv->dev->features & NETIF_F_RXHASH) 3109 priv->rss.enable = true; 3110 else 3111 priv->rss.enable = false; 3112 3113 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3114 priv->plat->rx_queues_to_use); 3115 } 3116 3117 /** 3118 * stmmac_mtl_configuration - Configure MTL 3119 * @priv: driver private structure 3120 * Description: It is used for configurring MTL 3121 */ 3122 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3123 { 3124 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3125 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3126 3127 if (tx_queues_count > 1) 3128 stmmac_set_tx_queue_weight(priv); 3129 3130 /* Configure MTL RX algorithms */ 3131 if (rx_queues_count > 1) 3132 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3133 priv->plat->rx_sched_algorithm); 3134 3135 /* Configure MTL TX algorithms */ 3136 if (tx_queues_count > 1) 3137 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3138 priv->plat->tx_sched_algorithm); 3139 3140 /* Configure CBS in AVB TX queues */ 3141 if (tx_queues_count > 1) 3142 stmmac_configure_cbs(priv); 3143 3144 /* Map RX MTL to DMA channels */ 3145 stmmac_rx_queue_dma_chan_map(priv); 3146 3147 /* Enable MAC RX Queues */ 3148 stmmac_mac_enable_rx_queues(priv); 3149 3150 /* Set RX priorities */ 3151 if (rx_queues_count > 1) 3152 stmmac_mac_config_rx_queues_prio(priv); 3153 3154 /* Set TX priorities */ 3155 if (tx_queues_count > 1) 3156 stmmac_mac_config_tx_queues_prio(priv); 3157 3158 /* Set RX routing */ 3159 if (rx_queues_count > 1) 3160 stmmac_mac_config_rx_queues_routing(priv); 3161 3162 /* Receive Side Scaling */ 3163 if (rx_queues_count > 1) 3164 stmmac_mac_config_rss(priv); 3165 } 3166 3167 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3168 { 3169 if (priv->dma_cap.asp) { 3170 netdev_info(priv->dev, "Enabling Safety Features\n"); 3171 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3172 priv->plat->safety_feat_cfg); 3173 } else { 3174 netdev_info(priv->dev, "No Safety Features support found\n"); 3175 } 3176 } 3177 3178 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3179 { 3180 char *name; 3181 3182 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3183 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3184 3185 name = priv->wq_name; 3186 sprintf(name, "%s-fpe", priv->dev->name); 3187 3188 priv->fpe_wq = create_singlethread_workqueue(name); 3189 if (!priv->fpe_wq) { 3190 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3191 3192 return -ENOMEM; 3193 } 3194 netdev_info(priv->dev, "FPE workqueue start"); 3195 3196 return 0; 3197 } 3198 3199 /** 3200 * stmmac_hw_setup - setup mac in a usable state. 3201 * @dev : pointer to the device structure. 3202 * @init_ptp: initialize PTP if set 3203 * Description: 3204 * this is the main function to setup the HW in a usable state because the 3205 * dma engine is reset, the core registers are configured (e.g. AXI, 3206 * Checksum features, timers). The DMA is ready to start receiving and 3207 * transmitting. 3208 * Return value: 3209 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3210 * file on failure. 3211 */ 3212 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 3213 { 3214 struct stmmac_priv *priv = netdev_priv(dev); 3215 u32 rx_cnt = priv->plat->rx_queues_to_use; 3216 u32 tx_cnt = priv->plat->tx_queues_to_use; 3217 bool sph_en; 3218 u32 chan; 3219 int ret; 3220 3221 /* DMA initialization and SW reset */ 3222 ret = stmmac_init_dma_engine(priv); 3223 if (ret < 0) { 3224 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3225 __func__); 3226 return ret; 3227 } 3228 3229 /* Copy the MAC addr into the HW */ 3230 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3231 3232 /* PS and related bits will be programmed according to the speed */ 3233 if (priv->hw->pcs) { 3234 int speed = priv->plat->mac_port_sel_speed; 3235 3236 if ((speed == SPEED_10) || (speed == SPEED_100) || 3237 (speed == SPEED_1000)) { 3238 priv->hw->ps = speed; 3239 } else { 3240 dev_warn(priv->device, "invalid port speed\n"); 3241 priv->hw->ps = 0; 3242 } 3243 } 3244 3245 /* Initialize the MAC Core */ 3246 stmmac_core_init(priv, priv->hw, dev); 3247 3248 /* Initialize MTL*/ 3249 stmmac_mtl_configuration(priv); 3250 3251 /* Initialize Safety Features */ 3252 stmmac_safety_feat_configuration(priv); 3253 3254 ret = stmmac_rx_ipc(priv, priv->hw); 3255 if (!ret) { 3256 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3257 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3258 priv->hw->rx_csum = 0; 3259 } 3260 3261 /* Enable the MAC Rx/Tx */ 3262 stmmac_mac_set(priv, priv->ioaddr, true); 3263 3264 /* Set the HW DMA mode and the COE */ 3265 stmmac_dma_operation_mode(priv); 3266 3267 stmmac_mmc_setup(priv); 3268 3269 if (init_ptp) { 3270 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3271 if (ret < 0) 3272 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 3273 3274 ret = stmmac_init_ptp(priv); 3275 if (ret == -EOPNOTSUPP) 3276 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3277 else if (ret) 3278 netdev_warn(priv->dev, "PTP init failed\n"); 3279 } 3280 3281 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3282 3283 /* Convert the timer from msec to usec */ 3284 if (!priv->tx_lpi_timer) 3285 priv->tx_lpi_timer = eee_timer * 1000; 3286 3287 if (priv->use_riwt) { 3288 u32 queue; 3289 3290 for (queue = 0; queue < rx_cnt; queue++) { 3291 if (!priv->rx_riwt[queue]) 3292 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3293 3294 stmmac_rx_watchdog(priv, priv->ioaddr, 3295 priv->rx_riwt[queue], queue); 3296 } 3297 } 3298 3299 if (priv->hw->pcs) 3300 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3301 3302 /* set TX and RX rings length */ 3303 stmmac_set_rings_length(priv); 3304 3305 /* Enable TSO */ 3306 if (priv->tso) { 3307 for (chan = 0; chan < tx_cnt; chan++) { 3308 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3309 3310 /* TSO and TBS cannot co-exist */ 3311 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3312 continue; 3313 3314 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3315 } 3316 } 3317 3318 /* Enable Split Header */ 3319 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3320 for (chan = 0; chan < rx_cnt; chan++) 3321 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3322 3323 3324 /* VLAN Tag Insertion */ 3325 if (priv->dma_cap.vlins) 3326 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3327 3328 /* TBS */ 3329 for (chan = 0; chan < tx_cnt; chan++) { 3330 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3331 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3332 3333 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3334 } 3335 3336 /* Configure real RX and TX queues */ 3337 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3338 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3339 3340 /* Start the ball rolling... */ 3341 stmmac_start_all_dma(priv); 3342 3343 if (priv->dma_cap.fpesel) { 3344 stmmac_fpe_start_wq(priv); 3345 3346 if (priv->plat->fpe_cfg->enable) 3347 stmmac_fpe_handshake(priv, true); 3348 } 3349 3350 return 0; 3351 } 3352 3353 static void stmmac_hw_teardown(struct net_device *dev) 3354 { 3355 struct stmmac_priv *priv = netdev_priv(dev); 3356 3357 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3358 } 3359 3360 static void stmmac_free_irq(struct net_device *dev, 3361 enum request_irq_err irq_err, int irq_idx) 3362 { 3363 struct stmmac_priv *priv = netdev_priv(dev); 3364 int j; 3365 3366 switch (irq_err) { 3367 case REQ_IRQ_ERR_ALL: 3368 irq_idx = priv->plat->tx_queues_to_use; 3369 fallthrough; 3370 case REQ_IRQ_ERR_TX: 3371 for (j = irq_idx - 1; j >= 0; j--) { 3372 if (priv->tx_irq[j] > 0) { 3373 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3374 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3375 } 3376 } 3377 irq_idx = priv->plat->rx_queues_to_use; 3378 fallthrough; 3379 case REQ_IRQ_ERR_RX: 3380 for (j = irq_idx - 1; j >= 0; j--) { 3381 if (priv->rx_irq[j] > 0) { 3382 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3383 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3384 } 3385 } 3386 3387 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3388 free_irq(priv->sfty_ue_irq, dev); 3389 fallthrough; 3390 case REQ_IRQ_ERR_SFTY_UE: 3391 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3392 free_irq(priv->sfty_ce_irq, dev); 3393 fallthrough; 3394 case REQ_IRQ_ERR_SFTY_CE: 3395 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3396 free_irq(priv->lpi_irq, dev); 3397 fallthrough; 3398 case REQ_IRQ_ERR_LPI: 3399 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3400 free_irq(priv->wol_irq, dev); 3401 fallthrough; 3402 case REQ_IRQ_ERR_WOL: 3403 free_irq(dev->irq, dev); 3404 fallthrough; 3405 case REQ_IRQ_ERR_MAC: 3406 case REQ_IRQ_ERR_NO: 3407 /* If MAC IRQ request error, no more IRQ to free */ 3408 break; 3409 } 3410 } 3411 3412 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3413 { 3414 struct stmmac_priv *priv = netdev_priv(dev); 3415 enum request_irq_err irq_err; 3416 cpumask_t cpu_mask; 3417 int irq_idx = 0; 3418 char *int_name; 3419 int ret; 3420 int i; 3421 3422 /* For common interrupt */ 3423 int_name = priv->int_name_mac; 3424 sprintf(int_name, "%s:%s", dev->name, "mac"); 3425 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3426 0, int_name, dev); 3427 if (unlikely(ret < 0)) { 3428 netdev_err(priv->dev, 3429 "%s: alloc mac MSI %d (error: %d)\n", 3430 __func__, dev->irq, ret); 3431 irq_err = REQ_IRQ_ERR_MAC; 3432 goto irq_error; 3433 } 3434 3435 /* Request the Wake IRQ in case of another line 3436 * is used for WoL 3437 */ 3438 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3439 int_name = priv->int_name_wol; 3440 sprintf(int_name, "%s:%s", dev->name, "wol"); 3441 ret = request_irq(priv->wol_irq, 3442 stmmac_mac_interrupt, 3443 0, int_name, dev); 3444 if (unlikely(ret < 0)) { 3445 netdev_err(priv->dev, 3446 "%s: alloc wol MSI %d (error: %d)\n", 3447 __func__, priv->wol_irq, ret); 3448 irq_err = REQ_IRQ_ERR_WOL; 3449 goto irq_error; 3450 } 3451 } 3452 3453 /* Request the LPI IRQ in case of another line 3454 * is used for LPI 3455 */ 3456 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3457 int_name = priv->int_name_lpi; 3458 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3459 ret = request_irq(priv->lpi_irq, 3460 stmmac_mac_interrupt, 3461 0, int_name, dev); 3462 if (unlikely(ret < 0)) { 3463 netdev_err(priv->dev, 3464 "%s: alloc lpi MSI %d (error: %d)\n", 3465 __func__, priv->lpi_irq, ret); 3466 irq_err = REQ_IRQ_ERR_LPI; 3467 goto irq_error; 3468 } 3469 } 3470 3471 /* Request the Safety Feature Correctible Error line in 3472 * case of another line is used 3473 */ 3474 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3475 int_name = priv->int_name_sfty_ce; 3476 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3477 ret = request_irq(priv->sfty_ce_irq, 3478 stmmac_safety_interrupt, 3479 0, int_name, dev); 3480 if (unlikely(ret < 0)) { 3481 netdev_err(priv->dev, 3482 "%s: alloc sfty ce MSI %d (error: %d)\n", 3483 __func__, priv->sfty_ce_irq, ret); 3484 irq_err = REQ_IRQ_ERR_SFTY_CE; 3485 goto irq_error; 3486 } 3487 } 3488 3489 /* Request the Safety Feature Uncorrectible Error line in 3490 * case of another line is used 3491 */ 3492 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3493 int_name = priv->int_name_sfty_ue; 3494 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3495 ret = request_irq(priv->sfty_ue_irq, 3496 stmmac_safety_interrupt, 3497 0, int_name, dev); 3498 if (unlikely(ret < 0)) { 3499 netdev_err(priv->dev, 3500 "%s: alloc sfty ue MSI %d (error: %d)\n", 3501 __func__, priv->sfty_ue_irq, ret); 3502 irq_err = REQ_IRQ_ERR_SFTY_UE; 3503 goto irq_error; 3504 } 3505 } 3506 3507 /* Request Rx MSI irq */ 3508 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3509 if (i >= MTL_MAX_RX_QUEUES) 3510 break; 3511 if (priv->rx_irq[i] == 0) 3512 continue; 3513 3514 int_name = priv->int_name_rx_irq[i]; 3515 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3516 ret = request_irq(priv->rx_irq[i], 3517 stmmac_msi_intr_rx, 3518 0, int_name, &priv->rx_queue[i]); 3519 if (unlikely(ret < 0)) { 3520 netdev_err(priv->dev, 3521 "%s: alloc rx-%d MSI %d (error: %d)\n", 3522 __func__, i, priv->rx_irq[i], ret); 3523 irq_err = REQ_IRQ_ERR_RX; 3524 irq_idx = i; 3525 goto irq_error; 3526 } 3527 cpumask_clear(&cpu_mask); 3528 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3529 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3530 } 3531 3532 /* Request Tx MSI irq */ 3533 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3534 if (i >= MTL_MAX_TX_QUEUES) 3535 break; 3536 if (priv->tx_irq[i] == 0) 3537 continue; 3538 3539 int_name = priv->int_name_tx_irq[i]; 3540 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3541 ret = request_irq(priv->tx_irq[i], 3542 stmmac_msi_intr_tx, 3543 0, int_name, &priv->tx_queue[i]); 3544 if (unlikely(ret < 0)) { 3545 netdev_err(priv->dev, 3546 "%s: alloc tx-%d MSI %d (error: %d)\n", 3547 __func__, i, priv->tx_irq[i], ret); 3548 irq_err = REQ_IRQ_ERR_TX; 3549 irq_idx = i; 3550 goto irq_error; 3551 } 3552 cpumask_clear(&cpu_mask); 3553 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3554 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3555 } 3556 3557 return 0; 3558 3559 irq_error: 3560 stmmac_free_irq(dev, irq_err, irq_idx); 3561 return ret; 3562 } 3563 3564 static int stmmac_request_irq_single(struct net_device *dev) 3565 { 3566 struct stmmac_priv *priv = netdev_priv(dev); 3567 enum request_irq_err irq_err; 3568 int ret; 3569 3570 ret = request_irq(dev->irq, stmmac_interrupt, 3571 IRQF_SHARED, dev->name, dev); 3572 if (unlikely(ret < 0)) { 3573 netdev_err(priv->dev, 3574 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3575 __func__, dev->irq, ret); 3576 irq_err = REQ_IRQ_ERR_MAC; 3577 goto irq_error; 3578 } 3579 3580 /* Request the Wake IRQ in case of another line 3581 * is used for WoL 3582 */ 3583 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3584 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3585 IRQF_SHARED, dev->name, dev); 3586 if (unlikely(ret < 0)) { 3587 netdev_err(priv->dev, 3588 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3589 __func__, priv->wol_irq, ret); 3590 irq_err = REQ_IRQ_ERR_WOL; 3591 goto irq_error; 3592 } 3593 } 3594 3595 /* Request the IRQ lines */ 3596 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3597 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3598 IRQF_SHARED, dev->name, dev); 3599 if (unlikely(ret < 0)) { 3600 netdev_err(priv->dev, 3601 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3602 __func__, priv->lpi_irq, ret); 3603 irq_err = REQ_IRQ_ERR_LPI; 3604 goto irq_error; 3605 } 3606 } 3607 3608 return 0; 3609 3610 irq_error: 3611 stmmac_free_irq(dev, irq_err, 0); 3612 return ret; 3613 } 3614 3615 static int stmmac_request_irq(struct net_device *dev) 3616 { 3617 struct stmmac_priv *priv = netdev_priv(dev); 3618 int ret; 3619 3620 /* Request the IRQ lines */ 3621 if (priv->plat->multi_msi_en) 3622 ret = stmmac_request_irq_multi_msi(dev); 3623 else 3624 ret = stmmac_request_irq_single(dev); 3625 3626 return ret; 3627 } 3628 3629 /** 3630 * stmmac_open - open entry point of the driver 3631 * @dev : pointer to the device structure. 3632 * Description: 3633 * This function is the open entry point of the driver. 3634 * Return value: 3635 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3636 * file on failure. 3637 */ 3638 int stmmac_open(struct net_device *dev) 3639 { 3640 struct stmmac_priv *priv = netdev_priv(dev); 3641 int mode = priv->plat->phy_interface; 3642 int bfsize = 0; 3643 u32 chan; 3644 int ret; 3645 3646 ret = pm_runtime_get_sync(priv->device); 3647 if (ret < 0) { 3648 pm_runtime_put_noidle(priv->device); 3649 return ret; 3650 } 3651 3652 if (priv->hw->pcs != STMMAC_PCS_TBI && 3653 priv->hw->pcs != STMMAC_PCS_RTBI && 3654 (!priv->hw->xpcs || 3655 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3656 ret = stmmac_init_phy(dev); 3657 if (ret) { 3658 netdev_err(priv->dev, 3659 "%s: Cannot attach to PHY (error: %d)\n", 3660 __func__, ret); 3661 goto init_phy_error; 3662 } 3663 } 3664 3665 /* Extra statistics */ 3666 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3667 priv->xstats.threshold = tc; 3668 3669 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3670 if (bfsize < 0) 3671 bfsize = 0; 3672 3673 if (bfsize < BUF_SIZE_16KiB) 3674 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3675 3676 priv->dma_buf_sz = bfsize; 3677 buf_sz = bfsize; 3678 3679 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3680 3681 if (!priv->dma_tx_size) 3682 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3683 if (!priv->dma_rx_size) 3684 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3685 3686 /* Earlier check for TBS */ 3687 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3688 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3689 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3690 3691 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3692 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3693 } 3694 3695 ret = alloc_dma_desc_resources(priv); 3696 if (ret < 0) { 3697 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3698 __func__); 3699 goto dma_desc_error; 3700 } 3701 3702 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3703 if (ret < 0) { 3704 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3705 __func__); 3706 goto init_error; 3707 } 3708 3709 ret = stmmac_hw_setup(dev, true); 3710 if (ret < 0) { 3711 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3712 goto init_error; 3713 } 3714 3715 stmmac_init_coalesce(priv); 3716 3717 phylink_start(priv->phylink); 3718 /* We may have called phylink_speed_down before */ 3719 phylink_speed_up(priv->phylink); 3720 3721 ret = stmmac_request_irq(dev); 3722 if (ret) 3723 goto irq_error; 3724 3725 stmmac_enable_all_queues(priv); 3726 netif_tx_start_all_queues(priv->dev); 3727 3728 return 0; 3729 3730 irq_error: 3731 phylink_stop(priv->phylink); 3732 3733 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3734 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3735 3736 stmmac_hw_teardown(dev); 3737 init_error: 3738 free_dma_desc_resources(priv); 3739 dma_desc_error: 3740 phylink_disconnect_phy(priv->phylink); 3741 init_phy_error: 3742 pm_runtime_put(priv->device); 3743 return ret; 3744 } 3745 3746 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3747 { 3748 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3749 3750 if (priv->fpe_wq) 3751 destroy_workqueue(priv->fpe_wq); 3752 3753 netdev_info(priv->dev, "FPE workqueue stop"); 3754 } 3755 3756 /** 3757 * stmmac_release - close entry point of the driver 3758 * @dev : device pointer. 3759 * Description: 3760 * This is the stop entry point of the driver. 3761 */ 3762 int stmmac_release(struct net_device *dev) 3763 { 3764 struct stmmac_priv *priv = netdev_priv(dev); 3765 u32 chan; 3766 3767 if (device_may_wakeup(priv->device)) 3768 phylink_speed_down(priv->phylink, false); 3769 /* Stop and disconnect the PHY */ 3770 phylink_stop(priv->phylink); 3771 phylink_disconnect_phy(priv->phylink); 3772 3773 stmmac_disable_all_queues(priv); 3774 3775 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3776 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3777 3778 /* Free the IRQ lines */ 3779 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3780 3781 if (priv->eee_enabled) { 3782 priv->tx_path_in_lpi_mode = false; 3783 del_timer_sync(&priv->eee_ctrl_timer); 3784 } 3785 3786 /* Stop TX/RX DMA and clear the descriptors */ 3787 stmmac_stop_all_dma(priv); 3788 3789 /* Release and free the Rx/Tx resources */ 3790 free_dma_desc_resources(priv); 3791 3792 /* Disable the MAC Rx/Tx */ 3793 stmmac_mac_set(priv, priv->ioaddr, false); 3794 3795 netif_carrier_off(dev); 3796 3797 stmmac_release_ptp(priv); 3798 3799 pm_runtime_put(priv->device); 3800 3801 if (priv->dma_cap.fpesel) 3802 stmmac_fpe_stop_wq(priv); 3803 3804 return 0; 3805 } 3806 3807 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3808 struct stmmac_tx_queue *tx_q) 3809 { 3810 u16 tag = 0x0, inner_tag = 0x0; 3811 u32 inner_type = 0x0; 3812 struct dma_desc *p; 3813 3814 if (!priv->dma_cap.vlins) 3815 return false; 3816 if (!skb_vlan_tag_present(skb)) 3817 return false; 3818 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3819 inner_tag = skb_vlan_tag_get(skb); 3820 inner_type = STMMAC_VLAN_INSERT; 3821 } 3822 3823 tag = skb_vlan_tag_get(skb); 3824 3825 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3826 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3827 else 3828 p = &tx_q->dma_tx[tx_q->cur_tx]; 3829 3830 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3831 return false; 3832 3833 stmmac_set_tx_owner(priv, p); 3834 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3835 return true; 3836 } 3837 3838 /** 3839 * stmmac_tso_allocator - close entry point of the driver 3840 * @priv: driver private structure 3841 * @des: buffer start address 3842 * @total_len: total length to fill in descriptors 3843 * @last_segment: condition for the last descriptor 3844 * @queue: TX queue index 3845 * Description: 3846 * This function fills descriptor and request new descriptors according to 3847 * buffer length to fill 3848 */ 3849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3850 int total_len, bool last_segment, u32 queue) 3851 { 3852 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3853 struct dma_desc *desc; 3854 u32 buff_size; 3855 int tmp_len; 3856 3857 tmp_len = total_len; 3858 3859 while (tmp_len > 0) { 3860 dma_addr_t curr_addr; 3861 3862 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3863 priv->dma_tx_size); 3864 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3865 3866 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3867 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3868 else 3869 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3870 3871 curr_addr = des + (total_len - tmp_len); 3872 if (priv->dma_cap.addr64 <= 32) 3873 desc->des0 = cpu_to_le32(curr_addr); 3874 else 3875 stmmac_set_desc_addr(priv, desc, curr_addr); 3876 3877 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3878 TSO_MAX_BUFF_SIZE : tmp_len; 3879 3880 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3881 0, 1, 3882 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3883 0, 0); 3884 3885 tmp_len -= TSO_MAX_BUFF_SIZE; 3886 } 3887 } 3888 3889 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3890 { 3891 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3892 int desc_size; 3893 3894 if (likely(priv->extend_desc)) 3895 desc_size = sizeof(struct dma_extended_desc); 3896 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3897 desc_size = sizeof(struct dma_edesc); 3898 else 3899 desc_size = sizeof(struct dma_desc); 3900 3901 /* The own bit must be the latest setting done when prepare the 3902 * descriptor and then barrier is needed to make sure that 3903 * all is coherent before granting the DMA engine. 3904 */ 3905 wmb(); 3906 3907 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3908 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3909 } 3910 3911 /** 3912 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3913 * @skb : the socket buffer 3914 * @dev : device pointer 3915 * Description: this is the transmit function that is called on TSO frames 3916 * (support available on GMAC4 and newer chips). 3917 * Diagram below show the ring programming in case of TSO frames: 3918 * 3919 * First Descriptor 3920 * -------- 3921 * | DES0 |---> buffer1 = L2/L3/L4 header 3922 * | DES1 |---> TCP Payload (can continue on next descr...) 3923 * | DES2 |---> buffer 1 and 2 len 3924 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3925 * -------- 3926 * | 3927 * ... 3928 * | 3929 * -------- 3930 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3931 * | DES1 | --| 3932 * | DES2 | --> buffer 1 and 2 len 3933 * | DES3 | 3934 * -------- 3935 * 3936 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3937 */ 3938 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3939 { 3940 struct dma_desc *desc, *first, *mss_desc = NULL; 3941 struct stmmac_priv *priv = netdev_priv(dev); 3942 int nfrags = skb_shinfo(skb)->nr_frags; 3943 u32 queue = skb_get_queue_mapping(skb); 3944 unsigned int first_entry, tx_packets; 3945 int tmp_pay_len = 0, first_tx; 3946 struct stmmac_tx_queue *tx_q; 3947 bool has_vlan, set_ic; 3948 u8 proto_hdr_len, hdr; 3949 u32 pay_len, mss; 3950 dma_addr_t des; 3951 int i; 3952 3953 tx_q = &priv->tx_queue[queue]; 3954 first_tx = tx_q->cur_tx; 3955 3956 /* Compute header lengths */ 3957 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3958 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3959 hdr = sizeof(struct udphdr); 3960 } else { 3961 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3962 hdr = tcp_hdrlen(skb); 3963 } 3964 3965 /* Desc availability based on threshold should be enough safe */ 3966 if (unlikely(stmmac_tx_avail(priv, queue) < 3967 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3968 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3969 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3970 queue)); 3971 /* This is a hard error, log it. */ 3972 netdev_err(priv->dev, 3973 "%s: Tx Ring full when queue awake\n", 3974 __func__); 3975 } 3976 return NETDEV_TX_BUSY; 3977 } 3978 3979 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3980 3981 mss = skb_shinfo(skb)->gso_size; 3982 3983 /* set new MSS value if needed */ 3984 if (mss != tx_q->mss) { 3985 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3986 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3987 else 3988 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3989 3990 stmmac_set_mss(priv, mss_desc, mss); 3991 tx_q->mss = mss; 3992 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3993 priv->dma_tx_size); 3994 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3995 } 3996 3997 if (netif_msg_tx_queued(priv)) { 3998 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 3999 __func__, hdr, proto_hdr_len, pay_len, mss); 4000 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4001 skb->data_len); 4002 } 4003 4004 /* Check if VLAN can be inserted by HW */ 4005 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4006 4007 first_entry = tx_q->cur_tx; 4008 WARN_ON(tx_q->tx_skbuff[first_entry]); 4009 4010 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4011 desc = &tx_q->dma_entx[first_entry].basic; 4012 else 4013 desc = &tx_q->dma_tx[first_entry]; 4014 first = desc; 4015 4016 if (has_vlan) 4017 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4018 4019 /* first descriptor: fill Headers on Buf1 */ 4020 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4021 DMA_TO_DEVICE); 4022 if (dma_mapping_error(priv->device, des)) 4023 goto dma_map_err; 4024 4025 tx_q->tx_skbuff_dma[first_entry].buf = des; 4026 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4027 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4028 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4029 4030 if (priv->dma_cap.addr64 <= 32) { 4031 first->des0 = cpu_to_le32(des); 4032 4033 /* Fill start of payload in buff2 of first descriptor */ 4034 if (pay_len) 4035 first->des1 = cpu_to_le32(des + proto_hdr_len); 4036 4037 /* If needed take extra descriptors to fill the remaining payload */ 4038 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4039 } else { 4040 stmmac_set_desc_addr(priv, first, des); 4041 tmp_pay_len = pay_len; 4042 des += proto_hdr_len; 4043 pay_len = 0; 4044 } 4045 4046 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4047 4048 /* Prepare fragments */ 4049 for (i = 0; i < nfrags; i++) { 4050 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4051 4052 des = skb_frag_dma_map(priv->device, frag, 0, 4053 skb_frag_size(frag), 4054 DMA_TO_DEVICE); 4055 if (dma_mapping_error(priv->device, des)) 4056 goto dma_map_err; 4057 4058 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4059 (i == nfrags - 1), queue); 4060 4061 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4062 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4063 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4064 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4065 } 4066 4067 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4068 4069 /* Only the last descriptor gets to point to the skb. */ 4070 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4071 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4072 4073 /* Manage tx mitigation */ 4074 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4075 tx_q->tx_count_frames += tx_packets; 4076 4077 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4078 set_ic = true; 4079 else if (!priv->tx_coal_frames[queue]) 4080 set_ic = false; 4081 else if (tx_packets > priv->tx_coal_frames[queue]) 4082 set_ic = true; 4083 else if ((tx_q->tx_count_frames % 4084 priv->tx_coal_frames[queue]) < tx_packets) 4085 set_ic = true; 4086 else 4087 set_ic = false; 4088 4089 if (set_ic) { 4090 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4091 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4092 else 4093 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4094 4095 tx_q->tx_count_frames = 0; 4096 stmmac_set_tx_ic(priv, desc); 4097 priv->xstats.tx_set_ic_bit++; 4098 } 4099 4100 /* We've used all descriptors we need for this skb, however, 4101 * advance cur_tx so that it references a fresh descriptor. 4102 * ndo_start_xmit will fill this descriptor the next time it's 4103 * called and stmmac_tx_clean may clean up to this descriptor. 4104 */ 4105 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4106 4107 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4108 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4109 __func__); 4110 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4111 } 4112 4113 dev->stats.tx_bytes += skb->len; 4114 priv->xstats.tx_tso_frames++; 4115 priv->xstats.tx_tso_nfrags += nfrags; 4116 4117 if (priv->sarc_type) 4118 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4119 4120 skb_tx_timestamp(skb); 4121 4122 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4123 priv->hwts_tx_en)) { 4124 /* declare that device is doing timestamping */ 4125 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4126 stmmac_enable_tx_timestamp(priv, first); 4127 } 4128 4129 /* Complete the first descriptor before granting the DMA */ 4130 stmmac_prepare_tso_tx_desc(priv, first, 1, 4131 proto_hdr_len, 4132 pay_len, 4133 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4134 hdr / 4, (skb->len - proto_hdr_len)); 4135 4136 /* If context desc is used to change MSS */ 4137 if (mss_desc) { 4138 /* Make sure that first descriptor has been completely 4139 * written, including its own bit. This is because MSS is 4140 * actually before first descriptor, so we need to make 4141 * sure that MSS's own bit is the last thing written. 4142 */ 4143 dma_wmb(); 4144 stmmac_set_tx_owner(priv, mss_desc); 4145 } 4146 4147 if (netif_msg_pktdata(priv)) { 4148 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4149 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4150 tx_q->cur_tx, first, nfrags); 4151 pr_info(">>> frame to be transmitted: "); 4152 print_pkt(skb->data, skb_headlen(skb)); 4153 } 4154 4155 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4156 4157 stmmac_flush_tx_descriptors(priv, queue); 4158 stmmac_tx_timer_arm(priv, queue); 4159 4160 return NETDEV_TX_OK; 4161 4162 dma_map_err: 4163 dev_err(priv->device, "Tx dma map failed\n"); 4164 dev_kfree_skb(skb); 4165 priv->dev->stats.tx_dropped++; 4166 return NETDEV_TX_OK; 4167 } 4168 4169 /** 4170 * stmmac_xmit - Tx entry point of the driver 4171 * @skb : the socket buffer 4172 * @dev : device pointer 4173 * Description : this is the tx entry point of the driver. 4174 * It programs the chain or the ring and supports oversized frames 4175 * and SG feature. 4176 */ 4177 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4178 { 4179 unsigned int first_entry, tx_packets, enh_desc; 4180 struct stmmac_priv *priv = netdev_priv(dev); 4181 unsigned int nopaged_len = skb_headlen(skb); 4182 int i, csum_insertion = 0, is_jumbo = 0; 4183 u32 queue = skb_get_queue_mapping(skb); 4184 int nfrags = skb_shinfo(skb)->nr_frags; 4185 int gso = skb_shinfo(skb)->gso_type; 4186 struct dma_edesc *tbs_desc = NULL; 4187 struct dma_desc *desc, *first; 4188 struct stmmac_tx_queue *tx_q; 4189 bool has_vlan, set_ic; 4190 int entry, first_tx; 4191 dma_addr_t des; 4192 4193 tx_q = &priv->tx_queue[queue]; 4194 first_tx = tx_q->cur_tx; 4195 4196 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4197 stmmac_disable_eee_mode(priv); 4198 4199 /* Manage oversized TCP frames for GMAC4 device */ 4200 if (skb_is_gso(skb) && priv->tso) { 4201 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4202 return stmmac_tso_xmit(skb, dev); 4203 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4204 return stmmac_tso_xmit(skb, dev); 4205 } 4206 4207 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4208 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4209 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4210 queue)); 4211 /* This is a hard error, log it. */ 4212 netdev_err(priv->dev, 4213 "%s: Tx Ring full when queue awake\n", 4214 __func__); 4215 } 4216 return NETDEV_TX_BUSY; 4217 } 4218 4219 /* Check if VLAN can be inserted by HW */ 4220 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4221 4222 entry = tx_q->cur_tx; 4223 first_entry = entry; 4224 WARN_ON(tx_q->tx_skbuff[first_entry]); 4225 4226 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4227 4228 if (likely(priv->extend_desc)) 4229 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4230 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4231 desc = &tx_q->dma_entx[entry].basic; 4232 else 4233 desc = tx_q->dma_tx + entry; 4234 4235 first = desc; 4236 4237 if (has_vlan) 4238 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4239 4240 enh_desc = priv->plat->enh_desc; 4241 /* To program the descriptors according to the size of the frame */ 4242 if (enh_desc) 4243 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4244 4245 if (unlikely(is_jumbo)) { 4246 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4247 if (unlikely(entry < 0) && (entry != -EINVAL)) 4248 goto dma_map_err; 4249 } 4250 4251 for (i = 0; i < nfrags; i++) { 4252 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4253 int len = skb_frag_size(frag); 4254 bool last_segment = (i == (nfrags - 1)); 4255 4256 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4257 WARN_ON(tx_q->tx_skbuff[entry]); 4258 4259 if (likely(priv->extend_desc)) 4260 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4261 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4262 desc = &tx_q->dma_entx[entry].basic; 4263 else 4264 desc = tx_q->dma_tx + entry; 4265 4266 des = skb_frag_dma_map(priv->device, frag, 0, len, 4267 DMA_TO_DEVICE); 4268 if (dma_mapping_error(priv->device, des)) 4269 goto dma_map_err; /* should reuse desc w/o issues */ 4270 4271 tx_q->tx_skbuff_dma[entry].buf = des; 4272 4273 stmmac_set_desc_addr(priv, desc, des); 4274 4275 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4276 tx_q->tx_skbuff_dma[entry].len = len; 4277 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4278 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4279 4280 /* Prepare the descriptor and set the own bit too */ 4281 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4282 priv->mode, 1, last_segment, skb->len); 4283 } 4284 4285 /* Only the last descriptor gets to point to the skb. */ 4286 tx_q->tx_skbuff[entry] = skb; 4287 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4288 4289 /* According to the coalesce parameter the IC bit for the latest 4290 * segment is reset and the timer re-started to clean the tx status. 4291 * This approach takes care about the fragments: desc is the first 4292 * element in case of no SG. 4293 */ 4294 tx_packets = (entry + 1) - first_tx; 4295 tx_q->tx_count_frames += tx_packets; 4296 4297 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4298 set_ic = true; 4299 else if (!priv->tx_coal_frames[queue]) 4300 set_ic = false; 4301 else if (tx_packets > priv->tx_coal_frames[queue]) 4302 set_ic = true; 4303 else if ((tx_q->tx_count_frames % 4304 priv->tx_coal_frames[queue]) < tx_packets) 4305 set_ic = true; 4306 else 4307 set_ic = false; 4308 4309 if (set_ic) { 4310 if (likely(priv->extend_desc)) 4311 desc = &tx_q->dma_etx[entry].basic; 4312 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4313 desc = &tx_q->dma_entx[entry].basic; 4314 else 4315 desc = &tx_q->dma_tx[entry]; 4316 4317 tx_q->tx_count_frames = 0; 4318 stmmac_set_tx_ic(priv, desc); 4319 priv->xstats.tx_set_ic_bit++; 4320 } 4321 4322 /* We've used all descriptors we need for this skb, however, 4323 * advance cur_tx so that it references a fresh descriptor. 4324 * ndo_start_xmit will fill this descriptor the next time it's 4325 * called and stmmac_tx_clean may clean up to this descriptor. 4326 */ 4327 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4328 tx_q->cur_tx = entry; 4329 4330 if (netif_msg_pktdata(priv)) { 4331 netdev_dbg(priv->dev, 4332 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4333 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4334 entry, first, nfrags); 4335 4336 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4337 print_pkt(skb->data, skb->len); 4338 } 4339 4340 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4341 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4342 __func__); 4343 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4344 } 4345 4346 dev->stats.tx_bytes += skb->len; 4347 4348 if (priv->sarc_type) 4349 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4350 4351 skb_tx_timestamp(skb); 4352 4353 /* Ready to fill the first descriptor and set the OWN bit w/o any 4354 * problems because all the descriptors are actually ready to be 4355 * passed to the DMA engine. 4356 */ 4357 if (likely(!is_jumbo)) { 4358 bool last_segment = (nfrags == 0); 4359 4360 des = dma_map_single(priv->device, skb->data, 4361 nopaged_len, DMA_TO_DEVICE); 4362 if (dma_mapping_error(priv->device, des)) 4363 goto dma_map_err; 4364 4365 tx_q->tx_skbuff_dma[first_entry].buf = des; 4366 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4367 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4368 4369 stmmac_set_desc_addr(priv, first, des); 4370 4371 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4372 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4373 4374 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4375 priv->hwts_tx_en)) { 4376 /* declare that device is doing timestamping */ 4377 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4378 stmmac_enable_tx_timestamp(priv, first); 4379 } 4380 4381 /* Prepare the first descriptor setting the OWN bit too */ 4382 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4383 csum_insertion, priv->mode, 0, last_segment, 4384 skb->len); 4385 } 4386 4387 if (tx_q->tbs & STMMAC_TBS_EN) { 4388 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4389 4390 tbs_desc = &tx_q->dma_entx[first_entry]; 4391 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4392 } 4393 4394 stmmac_set_tx_owner(priv, first); 4395 4396 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4397 4398 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4399 4400 stmmac_flush_tx_descriptors(priv, queue); 4401 stmmac_tx_timer_arm(priv, queue); 4402 4403 return NETDEV_TX_OK; 4404 4405 dma_map_err: 4406 netdev_err(priv->dev, "Tx DMA map failed\n"); 4407 dev_kfree_skb(skb); 4408 priv->dev->stats.tx_dropped++; 4409 return NETDEV_TX_OK; 4410 } 4411 4412 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4413 { 4414 struct vlan_ethhdr *veth; 4415 __be16 vlan_proto; 4416 u16 vlanid; 4417 4418 veth = (struct vlan_ethhdr *)skb->data; 4419 vlan_proto = veth->h_vlan_proto; 4420 4421 if ((vlan_proto == htons(ETH_P_8021Q) && 4422 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4423 (vlan_proto == htons(ETH_P_8021AD) && 4424 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4425 /* pop the vlan tag */ 4426 vlanid = ntohs(veth->h_vlan_TCI); 4427 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4428 skb_pull(skb, VLAN_HLEN); 4429 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4430 } 4431 } 4432 4433 /** 4434 * stmmac_rx_refill - refill used skb preallocated buffers 4435 * @priv: driver private structure 4436 * @queue: RX queue index 4437 * Description : this is to reallocate the skb for the reception process 4438 * that is based on zero-copy. 4439 */ 4440 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4441 { 4442 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4443 int dirty = stmmac_rx_dirty(priv, queue); 4444 unsigned int entry = rx_q->dirty_rx; 4445 4446 while (dirty-- > 0) { 4447 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4448 struct dma_desc *p; 4449 bool use_rx_wd; 4450 4451 if (priv->extend_desc) 4452 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4453 else 4454 p = rx_q->dma_rx + entry; 4455 4456 if (!buf->page) { 4457 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 4458 if (!buf->page) 4459 break; 4460 } 4461 4462 if (priv->sph && !buf->sec_page) { 4463 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 4464 if (!buf->sec_page) 4465 break; 4466 4467 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4468 } 4469 4470 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4471 4472 stmmac_set_desc_addr(priv, p, buf->addr); 4473 if (priv->sph) 4474 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4475 else 4476 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4477 stmmac_refill_desc3(priv, rx_q, p); 4478 4479 rx_q->rx_count_frames++; 4480 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4481 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4482 rx_q->rx_count_frames = 0; 4483 4484 use_rx_wd = !priv->rx_coal_frames[queue]; 4485 use_rx_wd |= rx_q->rx_count_frames > 0; 4486 if (!priv->use_riwt) 4487 use_rx_wd = false; 4488 4489 dma_wmb(); 4490 stmmac_set_rx_owner(priv, p, use_rx_wd); 4491 4492 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4493 } 4494 rx_q->dirty_rx = entry; 4495 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4496 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4497 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4498 } 4499 4500 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4501 struct dma_desc *p, 4502 int status, unsigned int len) 4503 { 4504 unsigned int plen = 0, hlen = 0; 4505 int coe = priv->hw->rx_csum; 4506 4507 /* Not first descriptor, buffer is always zero */ 4508 if (priv->sph && len) 4509 return 0; 4510 4511 /* First descriptor, get split header length */ 4512 stmmac_get_rx_header_len(priv, p, &hlen); 4513 if (priv->sph && hlen) { 4514 priv->xstats.rx_split_hdr_pkt_n++; 4515 return hlen; 4516 } 4517 4518 /* First descriptor, not last descriptor and not split header */ 4519 if (status & rx_not_ls) 4520 return priv->dma_buf_sz; 4521 4522 plen = stmmac_get_rx_frame_len(priv, p, coe); 4523 4524 /* First descriptor and last descriptor and not split header */ 4525 return min_t(unsigned int, priv->dma_buf_sz, plen); 4526 } 4527 4528 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4529 struct dma_desc *p, 4530 int status, unsigned int len) 4531 { 4532 int coe = priv->hw->rx_csum; 4533 unsigned int plen = 0; 4534 4535 /* Not split header, buffer is not available */ 4536 if (!priv->sph) 4537 return 0; 4538 4539 /* Not last descriptor */ 4540 if (status & rx_not_ls) 4541 return priv->dma_buf_sz; 4542 4543 plen = stmmac_get_rx_frame_len(priv, p, coe); 4544 4545 /* Last descriptor */ 4546 return plen - len; 4547 } 4548 4549 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4550 struct xdp_frame *xdpf, bool dma_map) 4551 { 4552 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4553 unsigned int entry = tx_q->cur_tx; 4554 struct dma_desc *tx_desc; 4555 dma_addr_t dma_addr; 4556 bool set_ic; 4557 4558 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4559 return STMMAC_XDP_CONSUMED; 4560 4561 if (likely(priv->extend_desc)) 4562 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4563 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4564 tx_desc = &tx_q->dma_entx[entry].basic; 4565 else 4566 tx_desc = tx_q->dma_tx + entry; 4567 4568 if (dma_map) { 4569 dma_addr = dma_map_single(priv->device, xdpf->data, 4570 xdpf->len, DMA_TO_DEVICE); 4571 if (dma_mapping_error(priv->device, dma_addr)) 4572 return STMMAC_XDP_CONSUMED; 4573 4574 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4575 } else { 4576 struct page *page = virt_to_page(xdpf->data); 4577 4578 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4579 xdpf->headroom; 4580 dma_sync_single_for_device(priv->device, dma_addr, 4581 xdpf->len, DMA_BIDIRECTIONAL); 4582 4583 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4584 } 4585 4586 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4587 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4588 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4589 tx_q->tx_skbuff_dma[entry].last_segment = true; 4590 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4591 4592 tx_q->xdpf[entry] = xdpf; 4593 4594 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4595 4596 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4597 true, priv->mode, true, true, 4598 xdpf->len); 4599 4600 tx_q->tx_count_frames++; 4601 4602 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4603 set_ic = true; 4604 else 4605 set_ic = false; 4606 4607 if (set_ic) { 4608 tx_q->tx_count_frames = 0; 4609 stmmac_set_tx_ic(priv, tx_desc); 4610 priv->xstats.tx_set_ic_bit++; 4611 } 4612 4613 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4614 4615 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4616 tx_q->cur_tx = entry; 4617 4618 return STMMAC_XDP_TX; 4619 } 4620 4621 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4622 int cpu) 4623 { 4624 int index = cpu; 4625 4626 if (unlikely(index < 0)) 4627 index = 0; 4628 4629 while (index >= priv->plat->tx_queues_to_use) 4630 index -= priv->plat->tx_queues_to_use; 4631 4632 return index; 4633 } 4634 4635 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4636 struct xdp_buff *xdp) 4637 { 4638 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4639 int cpu = smp_processor_id(); 4640 struct netdev_queue *nq; 4641 int queue; 4642 int res; 4643 4644 if (unlikely(!xdpf)) 4645 return STMMAC_XDP_CONSUMED; 4646 4647 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4648 nq = netdev_get_tx_queue(priv->dev, queue); 4649 4650 __netif_tx_lock(nq, cpu); 4651 /* Avoids TX time-out as we are sharing with slow path */ 4652 nq->trans_start = jiffies; 4653 4654 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4655 if (res == STMMAC_XDP_TX) 4656 stmmac_flush_tx_descriptors(priv, queue); 4657 4658 __netif_tx_unlock(nq); 4659 4660 return res; 4661 } 4662 4663 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4664 struct bpf_prog *prog, 4665 struct xdp_buff *xdp) 4666 { 4667 u32 act; 4668 int res; 4669 4670 act = bpf_prog_run_xdp(prog, xdp); 4671 switch (act) { 4672 case XDP_PASS: 4673 res = STMMAC_XDP_PASS; 4674 break; 4675 case XDP_TX: 4676 res = stmmac_xdp_xmit_back(priv, xdp); 4677 break; 4678 case XDP_REDIRECT: 4679 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4680 res = STMMAC_XDP_CONSUMED; 4681 else 4682 res = STMMAC_XDP_REDIRECT; 4683 break; 4684 default: 4685 bpf_warn_invalid_xdp_action(act); 4686 fallthrough; 4687 case XDP_ABORTED: 4688 trace_xdp_exception(priv->dev, prog, act); 4689 fallthrough; 4690 case XDP_DROP: 4691 res = STMMAC_XDP_CONSUMED; 4692 break; 4693 } 4694 4695 return res; 4696 } 4697 4698 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4699 struct xdp_buff *xdp) 4700 { 4701 struct bpf_prog *prog; 4702 int res; 4703 4704 prog = READ_ONCE(priv->xdp_prog); 4705 if (!prog) { 4706 res = STMMAC_XDP_PASS; 4707 goto out; 4708 } 4709 4710 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4711 out: 4712 return ERR_PTR(-res); 4713 } 4714 4715 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4716 int xdp_status) 4717 { 4718 int cpu = smp_processor_id(); 4719 int queue; 4720 4721 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4722 4723 if (xdp_status & STMMAC_XDP_TX) 4724 stmmac_tx_timer_arm(priv, queue); 4725 4726 if (xdp_status & STMMAC_XDP_REDIRECT) 4727 xdp_do_flush(); 4728 } 4729 4730 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4731 struct xdp_buff *xdp) 4732 { 4733 unsigned int metasize = xdp->data - xdp->data_meta; 4734 unsigned int datasize = xdp->data_end - xdp->data; 4735 struct sk_buff *skb; 4736 4737 skb = __napi_alloc_skb(&ch->rxtx_napi, 4738 xdp->data_end - xdp->data_hard_start, 4739 GFP_ATOMIC | __GFP_NOWARN); 4740 if (unlikely(!skb)) 4741 return NULL; 4742 4743 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4744 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4745 if (metasize) 4746 skb_metadata_set(skb, metasize); 4747 4748 return skb; 4749 } 4750 4751 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4752 struct dma_desc *p, struct dma_desc *np, 4753 struct xdp_buff *xdp) 4754 { 4755 struct stmmac_channel *ch = &priv->channel[queue]; 4756 unsigned int len = xdp->data_end - xdp->data; 4757 enum pkt_hash_types hash_type; 4758 int coe = priv->hw->rx_csum; 4759 struct sk_buff *skb; 4760 u32 hash; 4761 4762 skb = stmmac_construct_skb_zc(ch, xdp); 4763 if (!skb) { 4764 priv->dev->stats.rx_dropped++; 4765 return; 4766 } 4767 4768 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4769 stmmac_rx_vlan(priv->dev, skb); 4770 skb->protocol = eth_type_trans(skb, priv->dev); 4771 4772 if (unlikely(!coe)) 4773 skb_checksum_none_assert(skb); 4774 else 4775 skb->ip_summed = CHECKSUM_UNNECESSARY; 4776 4777 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4778 skb_set_hash(skb, hash, hash_type); 4779 4780 skb_record_rx_queue(skb, queue); 4781 napi_gro_receive(&ch->rxtx_napi, skb); 4782 4783 priv->dev->stats.rx_packets++; 4784 priv->dev->stats.rx_bytes += len; 4785 } 4786 4787 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4788 { 4789 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4790 unsigned int entry = rx_q->dirty_rx; 4791 struct dma_desc *rx_desc = NULL; 4792 bool ret = true; 4793 4794 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4795 4796 while (budget-- > 0 && entry != rx_q->cur_rx) { 4797 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4798 dma_addr_t dma_addr; 4799 bool use_rx_wd; 4800 4801 if (!buf->xdp) { 4802 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4803 if (!buf->xdp) { 4804 ret = false; 4805 break; 4806 } 4807 } 4808 4809 if (priv->extend_desc) 4810 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4811 else 4812 rx_desc = rx_q->dma_rx + entry; 4813 4814 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4815 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4816 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4817 stmmac_refill_desc3(priv, rx_q, rx_desc); 4818 4819 rx_q->rx_count_frames++; 4820 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4821 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4822 rx_q->rx_count_frames = 0; 4823 4824 use_rx_wd = !priv->rx_coal_frames[queue]; 4825 use_rx_wd |= rx_q->rx_count_frames > 0; 4826 if (!priv->use_riwt) 4827 use_rx_wd = false; 4828 4829 dma_wmb(); 4830 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4831 4832 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4833 } 4834 4835 if (rx_desc) { 4836 rx_q->dirty_rx = entry; 4837 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4838 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4839 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4840 } 4841 4842 return ret; 4843 } 4844 4845 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4846 { 4847 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4848 unsigned int count = 0, error = 0, len = 0; 4849 int dirty = stmmac_rx_dirty(priv, queue); 4850 unsigned int next_entry = rx_q->cur_rx; 4851 unsigned int desc_size; 4852 struct bpf_prog *prog; 4853 bool failure = false; 4854 int xdp_status = 0; 4855 int status = 0; 4856 4857 if (netif_msg_rx_status(priv)) { 4858 void *rx_head; 4859 4860 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4861 if (priv->extend_desc) { 4862 rx_head = (void *)rx_q->dma_erx; 4863 desc_size = sizeof(struct dma_extended_desc); 4864 } else { 4865 rx_head = (void *)rx_q->dma_rx; 4866 desc_size = sizeof(struct dma_desc); 4867 } 4868 4869 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4870 rx_q->dma_rx_phy, desc_size); 4871 } 4872 while (count < limit) { 4873 struct stmmac_rx_buffer *buf; 4874 unsigned int buf1_len = 0; 4875 struct dma_desc *np, *p; 4876 int entry; 4877 int res; 4878 4879 if (!count && rx_q->state_saved) { 4880 error = rx_q->state.error; 4881 len = rx_q->state.len; 4882 } else { 4883 rx_q->state_saved = false; 4884 error = 0; 4885 len = 0; 4886 } 4887 4888 if (count >= limit) 4889 break; 4890 4891 read_again: 4892 buf1_len = 0; 4893 entry = next_entry; 4894 buf = &rx_q->buf_pool[entry]; 4895 4896 if (dirty >= STMMAC_RX_FILL_BATCH) { 4897 failure = failure || 4898 !stmmac_rx_refill_zc(priv, queue, dirty); 4899 dirty = 0; 4900 } 4901 4902 if (priv->extend_desc) 4903 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4904 else 4905 p = rx_q->dma_rx + entry; 4906 4907 /* read the status of the incoming frame */ 4908 status = stmmac_rx_status(priv, &priv->dev->stats, 4909 &priv->xstats, p); 4910 /* check if managed by the DMA otherwise go ahead */ 4911 if (unlikely(status & dma_own)) 4912 break; 4913 4914 /* Prefetch the next RX descriptor */ 4915 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4916 priv->dma_rx_size); 4917 next_entry = rx_q->cur_rx; 4918 4919 if (priv->extend_desc) 4920 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4921 else 4922 np = rx_q->dma_rx + next_entry; 4923 4924 prefetch(np); 4925 4926 /* Ensure a valid XSK buffer before proceed */ 4927 if (!buf->xdp) 4928 break; 4929 4930 if (priv->extend_desc) 4931 stmmac_rx_extended_status(priv, &priv->dev->stats, 4932 &priv->xstats, 4933 rx_q->dma_erx + entry); 4934 if (unlikely(status == discard_frame)) { 4935 xsk_buff_free(buf->xdp); 4936 buf->xdp = NULL; 4937 dirty++; 4938 error = 1; 4939 if (!priv->hwts_rx_en) 4940 priv->dev->stats.rx_errors++; 4941 } 4942 4943 if (unlikely(error && (status & rx_not_ls))) 4944 goto read_again; 4945 if (unlikely(error)) { 4946 count++; 4947 continue; 4948 } 4949 4950 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4951 if (likely(status & rx_not_ls)) { 4952 xsk_buff_free(buf->xdp); 4953 buf->xdp = NULL; 4954 dirty++; 4955 count++; 4956 goto read_again; 4957 } 4958 4959 /* XDP ZC Frame only support primary buffers for now */ 4960 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 4961 len += buf1_len; 4962 4963 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 4964 * Type frames (LLC/LLC-SNAP) 4965 * 4966 * llc_snap is never checked in GMAC >= 4, so this ACS 4967 * feature is always disabled and packets need to be 4968 * stripped manually. 4969 */ 4970 if (likely(!(status & rx_not_ls)) && 4971 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 4972 unlikely(status != llc_snap))) { 4973 buf1_len -= ETH_FCS_LEN; 4974 len -= ETH_FCS_LEN; 4975 } 4976 4977 /* RX buffer is good and fit into a XSK pool buffer */ 4978 buf->xdp->data_end = buf->xdp->data + buf1_len; 4979 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 4980 4981 prog = READ_ONCE(priv->xdp_prog); 4982 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 4983 4984 switch (res) { 4985 case STMMAC_XDP_PASS: 4986 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 4987 xsk_buff_free(buf->xdp); 4988 break; 4989 case STMMAC_XDP_CONSUMED: 4990 xsk_buff_free(buf->xdp); 4991 priv->dev->stats.rx_dropped++; 4992 break; 4993 case STMMAC_XDP_TX: 4994 case STMMAC_XDP_REDIRECT: 4995 xdp_status |= res; 4996 break; 4997 } 4998 4999 buf->xdp = NULL; 5000 dirty++; 5001 count++; 5002 } 5003 5004 if (status & rx_not_ls) { 5005 rx_q->state_saved = true; 5006 rx_q->state.error = error; 5007 rx_q->state.len = len; 5008 } 5009 5010 stmmac_finalize_xdp_rx(priv, xdp_status); 5011 5012 priv->xstats.rx_pkt_n += count; 5013 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5014 5015 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5016 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5017 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5018 else 5019 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5020 5021 return (int)count; 5022 } 5023 5024 return failure ? limit : (int)count; 5025 } 5026 5027 /** 5028 * stmmac_rx - manage the receive process 5029 * @priv: driver private structure 5030 * @limit: napi bugget 5031 * @queue: RX queue index. 5032 * Description : this the function called by the napi poll method. 5033 * It gets all the frames inside the ring. 5034 */ 5035 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5036 { 5037 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5038 struct stmmac_channel *ch = &priv->channel[queue]; 5039 unsigned int count = 0, error = 0, len = 0; 5040 int status = 0, coe = priv->hw->rx_csum; 5041 unsigned int next_entry = rx_q->cur_rx; 5042 enum dma_data_direction dma_dir; 5043 unsigned int desc_size; 5044 struct sk_buff *skb = NULL; 5045 struct xdp_buff xdp; 5046 int xdp_status = 0; 5047 int buf_sz; 5048 5049 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5050 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5051 5052 if (netif_msg_rx_status(priv)) { 5053 void *rx_head; 5054 5055 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5056 if (priv->extend_desc) { 5057 rx_head = (void *)rx_q->dma_erx; 5058 desc_size = sizeof(struct dma_extended_desc); 5059 } else { 5060 rx_head = (void *)rx_q->dma_rx; 5061 desc_size = sizeof(struct dma_desc); 5062 } 5063 5064 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5065 rx_q->dma_rx_phy, desc_size); 5066 } 5067 while (count < limit) { 5068 unsigned int buf1_len = 0, buf2_len = 0; 5069 enum pkt_hash_types hash_type; 5070 struct stmmac_rx_buffer *buf; 5071 struct dma_desc *np, *p; 5072 int entry; 5073 u32 hash; 5074 5075 if (!count && rx_q->state_saved) { 5076 skb = rx_q->state.skb; 5077 error = rx_q->state.error; 5078 len = rx_q->state.len; 5079 } else { 5080 rx_q->state_saved = false; 5081 skb = NULL; 5082 error = 0; 5083 len = 0; 5084 } 5085 5086 if (count >= limit) 5087 break; 5088 5089 read_again: 5090 buf1_len = 0; 5091 buf2_len = 0; 5092 entry = next_entry; 5093 buf = &rx_q->buf_pool[entry]; 5094 5095 if (priv->extend_desc) 5096 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5097 else 5098 p = rx_q->dma_rx + entry; 5099 5100 /* read the status of the incoming frame */ 5101 status = stmmac_rx_status(priv, &priv->dev->stats, 5102 &priv->xstats, p); 5103 /* check if managed by the DMA otherwise go ahead */ 5104 if (unlikely(status & dma_own)) 5105 break; 5106 5107 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5108 priv->dma_rx_size); 5109 next_entry = rx_q->cur_rx; 5110 5111 if (priv->extend_desc) 5112 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5113 else 5114 np = rx_q->dma_rx + next_entry; 5115 5116 prefetch(np); 5117 5118 if (priv->extend_desc) 5119 stmmac_rx_extended_status(priv, &priv->dev->stats, 5120 &priv->xstats, rx_q->dma_erx + entry); 5121 if (unlikely(status == discard_frame)) { 5122 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5123 buf->page = NULL; 5124 error = 1; 5125 if (!priv->hwts_rx_en) 5126 priv->dev->stats.rx_errors++; 5127 } 5128 5129 if (unlikely(error && (status & rx_not_ls))) 5130 goto read_again; 5131 if (unlikely(error)) { 5132 dev_kfree_skb(skb); 5133 skb = NULL; 5134 count++; 5135 continue; 5136 } 5137 5138 /* Buffer is good. Go on. */ 5139 5140 prefetch(page_address(buf->page) + buf->page_offset); 5141 if (buf->sec_page) 5142 prefetch(page_address(buf->sec_page)); 5143 5144 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5145 len += buf1_len; 5146 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5147 len += buf2_len; 5148 5149 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5150 * Type frames (LLC/LLC-SNAP) 5151 * 5152 * llc_snap is never checked in GMAC >= 4, so this ACS 5153 * feature is always disabled and packets need to be 5154 * stripped manually. 5155 */ 5156 if (likely(!(status & rx_not_ls)) && 5157 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5158 unlikely(status != llc_snap))) { 5159 if (buf2_len) 5160 buf2_len -= ETH_FCS_LEN; 5161 else 5162 buf1_len -= ETH_FCS_LEN; 5163 5164 len -= ETH_FCS_LEN; 5165 } 5166 5167 if (!skb) { 5168 unsigned int pre_len, sync_len; 5169 5170 dma_sync_single_for_cpu(priv->device, buf->addr, 5171 buf1_len, dma_dir); 5172 5173 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5174 xdp_prepare_buff(&xdp, page_address(buf->page), 5175 buf->page_offset, buf1_len, false); 5176 5177 pre_len = xdp.data_end - xdp.data_hard_start - 5178 buf->page_offset; 5179 skb = stmmac_xdp_run_prog(priv, &xdp); 5180 /* Due xdp_adjust_tail: DMA sync for_device 5181 * cover max len CPU touch 5182 */ 5183 sync_len = xdp.data_end - xdp.data_hard_start - 5184 buf->page_offset; 5185 sync_len = max(sync_len, pre_len); 5186 5187 /* For Not XDP_PASS verdict */ 5188 if (IS_ERR(skb)) { 5189 unsigned int xdp_res = -PTR_ERR(skb); 5190 5191 if (xdp_res & STMMAC_XDP_CONSUMED) { 5192 page_pool_put_page(rx_q->page_pool, 5193 virt_to_head_page(xdp.data), 5194 sync_len, true); 5195 buf->page = NULL; 5196 priv->dev->stats.rx_dropped++; 5197 5198 /* Clear skb as it was set as 5199 * status by XDP program. 5200 */ 5201 skb = NULL; 5202 5203 if (unlikely((status & rx_not_ls))) 5204 goto read_again; 5205 5206 count++; 5207 continue; 5208 } else if (xdp_res & (STMMAC_XDP_TX | 5209 STMMAC_XDP_REDIRECT)) { 5210 xdp_status |= xdp_res; 5211 buf->page = NULL; 5212 skb = NULL; 5213 count++; 5214 continue; 5215 } 5216 } 5217 } 5218 5219 if (!skb) { 5220 /* XDP program may expand or reduce tail */ 5221 buf1_len = xdp.data_end - xdp.data; 5222 5223 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5224 if (!skb) { 5225 priv->dev->stats.rx_dropped++; 5226 count++; 5227 goto drain_data; 5228 } 5229 5230 /* XDP program may adjust header */ 5231 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5232 skb_put(skb, buf1_len); 5233 5234 /* Data payload copied into SKB, page ready for recycle */ 5235 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5236 buf->page = NULL; 5237 } else if (buf1_len) { 5238 dma_sync_single_for_cpu(priv->device, buf->addr, 5239 buf1_len, dma_dir); 5240 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5241 buf->page, buf->page_offset, buf1_len, 5242 priv->dma_buf_sz); 5243 5244 /* Data payload appended into SKB */ 5245 page_pool_release_page(rx_q->page_pool, buf->page); 5246 buf->page = NULL; 5247 } 5248 5249 if (buf2_len) { 5250 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5251 buf2_len, dma_dir); 5252 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5253 buf->sec_page, 0, buf2_len, 5254 priv->dma_buf_sz); 5255 5256 /* Data payload appended into SKB */ 5257 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5258 buf->sec_page = NULL; 5259 } 5260 5261 drain_data: 5262 if (likely(status & rx_not_ls)) 5263 goto read_again; 5264 if (!skb) 5265 continue; 5266 5267 /* Got entire packet into SKB. Finish it. */ 5268 5269 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5270 stmmac_rx_vlan(priv->dev, skb); 5271 skb->protocol = eth_type_trans(skb, priv->dev); 5272 5273 if (unlikely(!coe)) 5274 skb_checksum_none_assert(skb); 5275 else 5276 skb->ip_summed = CHECKSUM_UNNECESSARY; 5277 5278 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5279 skb_set_hash(skb, hash, hash_type); 5280 5281 skb_record_rx_queue(skb, queue); 5282 napi_gro_receive(&ch->rx_napi, skb); 5283 skb = NULL; 5284 5285 priv->dev->stats.rx_packets++; 5286 priv->dev->stats.rx_bytes += len; 5287 count++; 5288 } 5289 5290 if (status & rx_not_ls || skb) { 5291 rx_q->state_saved = true; 5292 rx_q->state.skb = skb; 5293 rx_q->state.error = error; 5294 rx_q->state.len = len; 5295 } 5296 5297 stmmac_finalize_xdp_rx(priv, xdp_status); 5298 5299 stmmac_rx_refill(priv, queue); 5300 5301 priv->xstats.rx_pkt_n += count; 5302 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5303 5304 return count; 5305 } 5306 5307 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5308 { 5309 struct stmmac_channel *ch = 5310 container_of(napi, struct stmmac_channel, rx_napi); 5311 struct stmmac_priv *priv = ch->priv_data; 5312 u32 chan = ch->index; 5313 int work_done; 5314 5315 priv->xstats.napi_poll++; 5316 5317 work_done = stmmac_rx(priv, budget, chan); 5318 if (work_done < budget && napi_complete_done(napi, work_done)) { 5319 unsigned long flags; 5320 5321 spin_lock_irqsave(&ch->lock, flags); 5322 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5323 spin_unlock_irqrestore(&ch->lock, flags); 5324 } 5325 5326 return work_done; 5327 } 5328 5329 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5330 { 5331 struct stmmac_channel *ch = 5332 container_of(napi, struct stmmac_channel, tx_napi); 5333 struct stmmac_priv *priv = ch->priv_data; 5334 u32 chan = ch->index; 5335 int work_done; 5336 5337 priv->xstats.napi_poll++; 5338 5339 work_done = stmmac_tx_clean(priv, budget, chan); 5340 work_done = min(work_done, budget); 5341 5342 if (work_done < budget && napi_complete_done(napi, work_done)) { 5343 unsigned long flags; 5344 5345 spin_lock_irqsave(&ch->lock, flags); 5346 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5347 spin_unlock_irqrestore(&ch->lock, flags); 5348 } 5349 5350 return work_done; 5351 } 5352 5353 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5354 { 5355 struct stmmac_channel *ch = 5356 container_of(napi, struct stmmac_channel, rxtx_napi); 5357 struct stmmac_priv *priv = ch->priv_data; 5358 int rx_done, tx_done, rxtx_done; 5359 u32 chan = ch->index; 5360 5361 priv->xstats.napi_poll++; 5362 5363 tx_done = stmmac_tx_clean(priv, budget, chan); 5364 tx_done = min(tx_done, budget); 5365 5366 rx_done = stmmac_rx_zc(priv, budget, chan); 5367 5368 rxtx_done = max(tx_done, rx_done); 5369 5370 /* If either TX or RX work is not complete, return budget 5371 * and keep pooling 5372 */ 5373 if (rxtx_done >= budget) 5374 return budget; 5375 5376 /* all work done, exit the polling mode */ 5377 if (napi_complete_done(napi, rxtx_done)) { 5378 unsigned long flags; 5379 5380 spin_lock_irqsave(&ch->lock, flags); 5381 /* Both RX and TX work done are compelte, 5382 * so enable both RX & TX IRQs. 5383 */ 5384 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5385 spin_unlock_irqrestore(&ch->lock, flags); 5386 } 5387 5388 return min(rxtx_done, budget - 1); 5389 } 5390 5391 /** 5392 * stmmac_tx_timeout 5393 * @dev : Pointer to net device structure 5394 * @txqueue: the index of the hanging transmit queue 5395 * Description: this function is called when a packet transmission fails to 5396 * complete within a reasonable time. The driver will mark the error in the 5397 * netdev structure and arrange for the device to be reset to a sane state 5398 * in order to transmit a new packet. 5399 */ 5400 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5401 { 5402 struct stmmac_priv *priv = netdev_priv(dev); 5403 5404 stmmac_global_err(priv); 5405 } 5406 5407 /** 5408 * stmmac_set_rx_mode - entry point for multicast addressing 5409 * @dev : pointer to the device structure 5410 * Description: 5411 * This function is a driver entry point which gets called by the kernel 5412 * whenever multicast addresses must be enabled/disabled. 5413 * Return value: 5414 * void. 5415 */ 5416 static void stmmac_set_rx_mode(struct net_device *dev) 5417 { 5418 struct stmmac_priv *priv = netdev_priv(dev); 5419 5420 stmmac_set_filter(priv, priv->hw, dev); 5421 } 5422 5423 /** 5424 * stmmac_change_mtu - entry point to change MTU size for the device. 5425 * @dev : device pointer. 5426 * @new_mtu : the new MTU size for the device. 5427 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5428 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5429 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5430 * Return value: 5431 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5432 * file on failure. 5433 */ 5434 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5435 { 5436 struct stmmac_priv *priv = netdev_priv(dev); 5437 int txfifosz = priv->plat->tx_fifo_size; 5438 const int mtu = new_mtu; 5439 5440 if (txfifosz == 0) 5441 txfifosz = priv->dma_cap.tx_fifo_size; 5442 5443 txfifosz /= priv->plat->tx_queues_to_use; 5444 5445 if (netif_running(dev)) { 5446 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5447 return -EBUSY; 5448 } 5449 5450 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5451 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5452 return -EINVAL; 5453 } 5454 5455 new_mtu = STMMAC_ALIGN(new_mtu); 5456 5457 /* If condition true, FIFO is too small or MTU too large */ 5458 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5459 return -EINVAL; 5460 5461 dev->mtu = mtu; 5462 5463 netdev_update_features(dev); 5464 5465 return 0; 5466 } 5467 5468 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5469 netdev_features_t features) 5470 { 5471 struct stmmac_priv *priv = netdev_priv(dev); 5472 5473 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5474 features &= ~NETIF_F_RXCSUM; 5475 5476 if (!priv->plat->tx_coe) 5477 features &= ~NETIF_F_CSUM_MASK; 5478 5479 /* Some GMAC devices have a bugged Jumbo frame support that 5480 * needs to have the Tx COE disabled for oversized frames 5481 * (due to limited buffer sizes). In this case we disable 5482 * the TX csum insertion in the TDES and not use SF. 5483 */ 5484 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5485 features &= ~NETIF_F_CSUM_MASK; 5486 5487 /* Disable tso if asked by ethtool */ 5488 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5489 if (features & NETIF_F_TSO) 5490 priv->tso = true; 5491 else 5492 priv->tso = false; 5493 } 5494 5495 return features; 5496 } 5497 5498 static int stmmac_set_features(struct net_device *netdev, 5499 netdev_features_t features) 5500 { 5501 struct stmmac_priv *priv = netdev_priv(netdev); 5502 bool sph_en; 5503 u32 chan; 5504 5505 /* Keep the COE Type in case of csum is supporting */ 5506 if (features & NETIF_F_RXCSUM) 5507 priv->hw->rx_csum = priv->plat->rx_coe; 5508 else 5509 priv->hw->rx_csum = 0; 5510 /* No check needed because rx_coe has been set before and it will be 5511 * fixed in case of issue. 5512 */ 5513 stmmac_rx_ipc(priv, priv->hw); 5514 5515 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5516 5517 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5518 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5519 5520 return 0; 5521 } 5522 5523 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5524 { 5525 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5526 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5527 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5528 bool *hs_enable = &fpe_cfg->hs_enable; 5529 5530 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5531 return; 5532 5533 /* If LP has sent verify mPacket, LP is FPE capable */ 5534 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5535 if (*lp_state < FPE_STATE_CAPABLE) 5536 *lp_state = FPE_STATE_CAPABLE; 5537 5538 /* If user has requested FPE enable, quickly response */ 5539 if (*hs_enable) 5540 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5541 MPACKET_RESPONSE); 5542 } 5543 5544 /* If Local has sent verify mPacket, Local is FPE capable */ 5545 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5546 if (*lo_state < FPE_STATE_CAPABLE) 5547 *lo_state = FPE_STATE_CAPABLE; 5548 } 5549 5550 /* If LP has sent response mPacket, LP is entering FPE ON */ 5551 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5552 *lp_state = FPE_STATE_ENTERING_ON; 5553 5554 /* If Local has sent response mPacket, Local is entering FPE ON */ 5555 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5556 *lo_state = FPE_STATE_ENTERING_ON; 5557 5558 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5559 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5560 priv->fpe_wq) { 5561 queue_work(priv->fpe_wq, &priv->fpe_task); 5562 } 5563 } 5564 5565 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5566 { 5567 u32 rx_cnt = priv->plat->rx_queues_to_use; 5568 u32 tx_cnt = priv->plat->tx_queues_to_use; 5569 u32 queues_count; 5570 u32 queue; 5571 bool xmac; 5572 5573 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5574 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5575 5576 if (priv->irq_wake) 5577 pm_wakeup_event(priv->device, 0); 5578 5579 if (priv->dma_cap.estsel) 5580 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5581 &priv->xstats, tx_cnt); 5582 5583 if (priv->dma_cap.fpesel) { 5584 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5585 priv->dev); 5586 5587 stmmac_fpe_event_status(priv, status); 5588 } 5589 5590 /* To handle GMAC own interrupts */ 5591 if ((priv->plat->has_gmac) || xmac) { 5592 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5593 5594 if (unlikely(status)) { 5595 /* For LPI we need to save the tx status */ 5596 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5597 priv->tx_path_in_lpi_mode = true; 5598 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5599 priv->tx_path_in_lpi_mode = false; 5600 } 5601 5602 for (queue = 0; queue < queues_count; queue++) { 5603 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5604 queue); 5605 } 5606 5607 /* PCS link status */ 5608 if (priv->hw->pcs) { 5609 if (priv->xstats.pcs_link) 5610 netif_carrier_on(priv->dev); 5611 else 5612 netif_carrier_off(priv->dev); 5613 } 5614 5615 stmmac_timestamp_interrupt(priv, priv); 5616 } 5617 } 5618 5619 /** 5620 * stmmac_interrupt - main ISR 5621 * @irq: interrupt number. 5622 * @dev_id: to pass the net device pointer. 5623 * Description: this is the main driver interrupt service routine. 5624 * It can call: 5625 * o DMA service routine (to manage incoming frame reception and transmission 5626 * status) 5627 * o Core interrupts to manage: remote wake-up, management counter, LPI 5628 * interrupts. 5629 */ 5630 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5631 { 5632 struct net_device *dev = (struct net_device *)dev_id; 5633 struct stmmac_priv *priv = netdev_priv(dev); 5634 5635 /* Check if adapter is up */ 5636 if (test_bit(STMMAC_DOWN, &priv->state)) 5637 return IRQ_HANDLED; 5638 5639 /* Check if a fatal error happened */ 5640 if (stmmac_safety_feat_interrupt(priv)) 5641 return IRQ_HANDLED; 5642 5643 /* To handle Common interrupts */ 5644 stmmac_common_interrupt(priv); 5645 5646 /* To handle DMA interrupts */ 5647 stmmac_dma_interrupt(priv); 5648 5649 return IRQ_HANDLED; 5650 } 5651 5652 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5653 { 5654 struct net_device *dev = (struct net_device *)dev_id; 5655 struct stmmac_priv *priv = netdev_priv(dev); 5656 5657 if (unlikely(!dev)) { 5658 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5659 return IRQ_NONE; 5660 } 5661 5662 /* Check if adapter is up */ 5663 if (test_bit(STMMAC_DOWN, &priv->state)) 5664 return IRQ_HANDLED; 5665 5666 /* To handle Common interrupts */ 5667 stmmac_common_interrupt(priv); 5668 5669 return IRQ_HANDLED; 5670 } 5671 5672 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5673 { 5674 struct net_device *dev = (struct net_device *)dev_id; 5675 struct stmmac_priv *priv = netdev_priv(dev); 5676 5677 if (unlikely(!dev)) { 5678 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5679 return IRQ_NONE; 5680 } 5681 5682 /* Check if adapter is up */ 5683 if (test_bit(STMMAC_DOWN, &priv->state)) 5684 return IRQ_HANDLED; 5685 5686 /* Check if a fatal error happened */ 5687 stmmac_safety_feat_interrupt(priv); 5688 5689 return IRQ_HANDLED; 5690 } 5691 5692 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5693 { 5694 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5695 int chan = tx_q->queue_index; 5696 struct stmmac_priv *priv; 5697 int status; 5698 5699 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5700 5701 if (unlikely(!data)) { 5702 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5703 return IRQ_NONE; 5704 } 5705 5706 /* Check if adapter is up */ 5707 if (test_bit(STMMAC_DOWN, &priv->state)) 5708 return IRQ_HANDLED; 5709 5710 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5711 5712 if (unlikely(status & tx_hard_error_bump_tc)) { 5713 /* Try to bump up the dma threshold on this failure */ 5714 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 5715 tc <= 256) { 5716 tc += 64; 5717 if (priv->plat->force_thresh_dma_mode) 5718 stmmac_set_dma_operation_mode(priv, 5719 tc, 5720 tc, 5721 chan); 5722 else 5723 stmmac_set_dma_operation_mode(priv, 5724 tc, 5725 SF_DMA_MODE, 5726 chan); 5727 priv->xstats.threshold = tc; 5728 } 5729 } else if (unlikely(status == tx_hard_error)) { 5730 stmmac_tx_err(priv, chan); 5731 } 5732 5733 return IRQ_HANDLED; 5734 } 5735 5736 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5737 { 5738 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5739 int chan = rx_q->queue_index; 5740 struct stmmac_priv *priv; 5741 5742 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5743 5744 if (unlikely(!data)) { 5745 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5746 return IRQ_NONE; 5747 } 5748 5749 /* Check if adapter is up */ 5750 if (test_bit(STMMAC_DOWN, &priv->state)) 5751 return IRQ_HANDLED; 5752 5753 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5754 5755 return IRQ_HANDLED; 5756 } 5757 5758 #ifdef CONFIG_NET_POLL_CONTROLLER 5759 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5760 * to allow network I/O with interrupts disabled. 5761 */ 5762 static void stmmac_poll_controller(struct net_device *dev) 5763 { 5764 struct stmmac_priv *priv = netdev_priv(dev); 5765 int i; 5766 5767 /* If adapter is down, do nothing */ 5768 if (test_bit(STMMAC_DOWN, &priv->state)) 5769 return; 5770 5771 if (priv->plat->multi_msi_en) { 5772 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5773 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5774 5775 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5776 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5777 } else { 5778 disable_irq(dev->irq); 5779 stmmac_interrupt(dev->irq, dev); 5780 enable_irq(dev->irq); 5781 } 5782 } 5783 #endif 5784 5785 /** 5786 * stmmac_ioctl - Entry point for the Ioctl 5787 * @dev: Device pointer. 5788 * @rq: An IOCTL specefic structure, that can contain a pointer to 5789 * a proprietary structure used to pass information to the driver. 5790 * @cmd: IOCTL command 5791 * Description: 5792 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5793 */ 5794 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5795 { 5796 struct stmmac_priv *priv = netdev_priv (dev); 5797 int ret = -EOPNOTSUPP; 5798 5799 if (!netif_running(dev)) 5800 return -EINVAL; 5801 5802 switch (cmd) { 5803 case SIOCGMIIPHY: 5804 case SIOCGMIIREG: 5805 case SIOCSMIIREG: 5806 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5807 break; 5808 case SIOCSHWTSTAMP: 5809 ret = stmmac_hwtstamp_set(dev, rq); 5810 break; 5811 case SIOCGHWTSTAMP: 5812 ret = stmmac_hwtstamp_get(dev, rq); 5813 break; 5814 default: 5815 break; 5816 } 5817 5818 return ret; 5819 } 5820 5821 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5822 void *cb_priv) 5823 { 5824 struct stmmac_priv *priv = cb_priv; 5825 int ret = -EOPNOTSUPP; 5826 5827 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5828 return ret; 5829 5830 __stmmac_disable_all_queues(priv); 5831 5832 switch (type) { 5833 case TC_SETUP_CLSU32: 5834 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5835 break; 5836 case TC_SETUP_CLSFLOWER: 5837 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5838 break; 5839 default: 5840 break; 5841 } 5842 5843 stmmac_enable_all_queues(priv); 5844 return ret; 5845 } 5846 5847 static LIST_HEAD(stmmac_block_cb_list); 5848 5849 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5850 void *type_data) 5851 { 5852 struct stmmac_priv *priv = netdev_priv(ndev); 5853 5854 switch (type) { 5855 case TC_SETUP_BLOCK: 5856 return flow_block_cb_setup_simple(type_data, 5857 &stmmac_block_cb_list, 5858 stmmac_setup_tc_block_cb, 5859 priv, priv, true); 5860 case TC_SETUP_QDISC_CBS: 5861 return stmmac_tc_setup_cbs(priv, priv, type_data); 5862 case TC_SETUP_QDISC_TAPRIO: 5863 return stmmac_tc_setup_taprio(priv, priv, type_data); 5864 case TC_SETUP_QDISC_ETF: 5865 return stmmac_tc_setup_etf(priv, priv, type_data); 5866 default: 5867 return -EOPNOTSUPP; 5868 } 5869 } 5870 5871 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5872 struct net_device *sb_dev) 5873 { 5874 int gso = skb_shinfo(skb)->gso_type; 5875 5876 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5877 /* 5878 * There is no way to determine the number of TSO/USO 5879 * capable Queues. Let's use always the Queue 0 5880 * because if TSO/USO is supported then at least this 5881 * one will be capable. 5882 */ 5883 return 0; 5884 } 5885 5886 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5887 } 5888 5889 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5890 { 5891 struct stmmac_priv *priv = netdev_priv(ndev); 5892 int ret = 0; 5893 5894 ret = pm_runtime_get_sync(priv->device); 5895 if (ret < 0) { 5896 pm_runtime_put_noidle(priv->device); 5897 return ret; 5898 } 5899 5900 ret = eth_mac_addr(ndev, addr); 5901 if (ret) 5902 goto set_mac_error; 5903 5904 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5905 5906 set_mac_error: 5907 pm_runtime_put(priv->device); 5908 5909 return ret; 5910 } 5911 5912 #ifdef CONFIG_DEBUG_FS 5913 static struct dentry *stmmac_fs_dir; 5914 5915 static void sysfs_display_ring(void *head, int size, int extend_desc, 5916 struct seq_file *seq, dma_addr_t dma_phy_addr) 5917 { 5918 int i; 5919 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5920 struct dma_desc *p = (struct dma_desc *)head; 5921 dma_addr_t dma_addr; 5922 5923 for (i = 0; i < size; i++) { 5924 if (extend_desc) { 5925 dma_addr = dma_phy_addr + i * sizeof(*ep); 5926 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5927 i, &dma_addr, 5928 le32_to_cpu(ep->basic.des0), 5929 le32_to_cpu(ep->basic.des1), 5930 le32_to_cpu(ep->basic.des2), 5931 le32_to_cpu(ep->basic.des3)); 5932 ep++; 5933 } else { 5934 dma_addr = dma_phy_addr + i * sizeof(*p); 5935 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5936 i, &dma_addr, 5937 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5938 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5939 p++; 5940 } 5941 seq_printf(seq, "\n"); 5942 } 5943 } 5944 5945 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5946 { 5947 struct net_device *dev = seq->private; 5948 struct stmmac_priv *priv = netdev_priv(dev); 5949 u32 rx_count = priv->plat->rx_queues_to_use; 5950 u32 tx_count = priv->plat->tx_queues_to_use; 5951 u32 queue; 5952 5953 if ((dev->flags & IFF_UP) == 0) 5954 return 0; 5955 5956 for (queue = 0; queue < rx_count; queue++) { 5957 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5958 5959 seq_printf(seq, "RX Queue %d:\n", queue); 5960 5961 if (priv->extend_desc) { 5962 seq_printf(seq, "Extended descriptor ring:\n"); 5963 sysfs_display_ring((void *)rx_q->dma_erx, 5964 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5965 } else { 5966 seq_printf(seq, "Descriptor ring:\n"); 5967 sysfs_display_ring((void *)rx_q->dma_rx, 5968 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5969 } 5970 } 5971 5972 for (queue = 0; queue < tx_count; queue++) { 5973 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5974 5975 seq_printf(seq, "TX Queue %d:\n", queue); 5976 5977 if (priv->extend_desc) { 5978 seq_printf(seq, "Extended descriptor ring:\n"); 5979 sysfs_display_ring((void *)tx_q->dma_etx, 5980 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 5981 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 5982 seq_printf(seq, "Descriptor ring:\n"); 5983 sysfs_display_ring((void *)tx_q->dma_tx, 5984 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 5985 } 5986 } 5987 5988 return 0; 5989 } 5990 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 5991 5992 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 5993 { 5994 struct net_device *dev = seq->private; 5995 struct stmmac_priv *priv = netdev_priv(dev); 5996 5997 if (!priv->hw_cap_support) { 5998 seq_printf(seq, "DMA HW features not supported\n"); 5999 return 0; 6000 } 6001 6002 seq_printf(seq, "==============================\n"); 6003 seq_printf(seq, "\tDMA HW features\n"); 6004 seq_printf(seq, "==============================\n"); 6005 6006 seq_printf(seq, "\t10/100 Mbps: %s\n", 6007 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6008 seq_printf(seq, "\t1000 Mbps: %s\n", 6009 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6010 seq_printf(seq, "\tHalf duplex: %s\n", 6011 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6012 seq_printf(seq, "\tHash Filter: %s\n", 6013 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6014 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6015 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6016 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6017 (priv->dma_cap.pcs) ? "Y" : "N"); 6018 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6019 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6020 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6021 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6022 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6023 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6024 seq_printf(seq, "\tRMON module: %s\n", 6025 (priv->dma_cap.rmon) ? "Y" : "N"); 6026 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6027 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6028 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6029 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6030 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6031 (priv->dma_cap.eee) ? "Y" : "N"); 6032 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6033 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6034 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6035 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6036 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6037 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6038 } else { 6039 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6040 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6041 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6042 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6043 } 6044 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6045 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6046 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6047 priv->dma_cap.number_rx_channel); 6048 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6049 priv->dma_cap.number_tx_channel); 6050 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6051 priv->dma_cap.number_rx_queues); 6052 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6053 priv->dma_cap.number_tx_queues); 6054 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6055 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6056 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6057 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6058 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6059 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6060 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6061 priv->dma_cap.pps_out_num); 6062 seq_printf(seq, "\tSafety Features: %s\n", 6063 priv->dma_cap.asp ? "Y" : "N"); 6064 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6065 priv->dma_cap.frpsel ? "Y" : "N"); 6066 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6067 priv->dma_cap.addr64); 6068 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6069 priv->dma_cap.rssen ? "Y" : "N"); 6070 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6071 priv->dma_cap.vlhash ? "Y" : "N"); 6072 seq_printf(seq, "\tSplit Header: %s\n", 6073 priv->dma_cap.sphen ? "Y" : "N"); 6074 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6075 priv->dma_cap.vlins ? "Y" : "N"); 6076 seq_printf(seq, "\tDouble VLAN: %s\n", 6077 priv->dma_cap.dvlan ? "Y" : "N"); 6078 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6079 priv->dma_cap.l3l4fnum); 6080 seq_printf(seq, "\tARP Offloading: %s\n", 6081 priv->dma_cap.arpoffsel ? "Y" : "N"); 6082 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6083 priv->dma_cap.estsel ? "Y" : "N"); 6084 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6085 priv->dma_cap.fpesel ? "Y" : "N"); 6086 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6087 priv->dma_cap.tbssel ? "Y" : "N"); 6088 return 0; 6089 } 6090 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6091 6092 /* Use network device events to rename debugfs file entries. 6093 */ 6094 static int stmmac_device_event(struct notifier_block *unused, 6095 unsigned long event, void *ptr) 6096 { 6097 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6098 struct stmmac_priv *priv = netdev_priv(dev); 6099 6100 if (dev->netdev_ops != &stmmac_netdev_ops) 6101 goto done; 6102 6103 switch (event) { 6104 case NETDEV_CHANGENAME: 6105 if (priv->dbgfs_dir) 6106 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6107 priv->dbgfs_dir, 6108 stmmac_fs_dir, 6109 dev->name); 6110 break; 6111 } 6112 done: 6113 return NOTIFY_DONE; 6114 } 6115 6116 static struct notifier_block stmmac_notifier = { 6117 .notifier_call = stmmac_device_event, 6118 }; 6119 6120 static void stmmac_init_fs(struct net_device *dev) 6121 { 6122 struct stmmac_priv *priv = netdev_priv(dev); 6123 6124 rtnl_lock(); 6125 6126 /* Create per netdev entries */ 6127 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6128 6129 /* Entry to report DMA RX/TX rings */ 6130 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6131 &stmmac_rings_status_fops); 6132 6133 /* Entry to report the DMA HW features */ 6134 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6135 &stmmac_dma_cap_fops); 6136 6137 rtnl_unlock(); 6138 } 6139 6140 static void stmmac_exit_fs(struct net_device *dev) 6141 { 6142 struct stmmac_priv *priv = netdev_priv(dev); 6143 6144 debugfs_remove_recursive(priv->dbgfs_dir); 6145 } 6146 #endif /* CONFIG_DEBUG_FS */ 6147 6148 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6149 { 6150 unsigned char *data = (unsigned char *)&vid_le; 6151 unsigned char data_byte = 0; 6152 u32 crc = ~0x0; 6153 u32 temp = 0; 6154 int i, bits; 6155 6156 bits = get_bitmask_order(VLAN_VID_MASK); 6157 for (i = 0; i < bits; i++) { 6158 if ((i % 8) == 0) 6159 data_byte = data[i / 8]; 6160 6161 temp = ((crc & 1) ^ data_byte) & 1; 6162 crc >>= 1; 6163 data_byte >>= 1; 6164 6165 if (temp) 6166 crc ^= 0xedb88320; 6167 } 6168 6169 return crc; 6170 } 6171 6172 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6173 { 6174 u32 crc, hash = 0; 6175 __le16 pmatch = 0; 6176 int count = 0; 6177 u16 vid = 0; 6178 6179 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6180 __le16 vid_le = cpu_to_le16(vid); 6181 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6182 hash |= (1 << crc); 6183 count++; 6184 } 6185 6186 if (!priv->dma_cap.vlhash) { 6187 if (count > 2) /* VID = 0 always passes filter */ 6188 return -EOPNOTSUPP; 6189 6190 pmatch = cpu_to_le16(vid); 6191 hash = 0; 6192 } 6193 6194 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6195 } 6196 6197 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6198 { 6199 struct stmmac_priv *priv = netdev_priv(ndev); 6200 bool is_double = false; 6201 int ret; 6202 6203 if (be16_to_cpu(proto) == ETH_P_8021AD) 6204 is_double = true; 6205 6206 set_bit(vid, priv->active_vlans); 6207 ret = stmmac_vlan_update(priv, is_double); 6208 if (ret) { 6209 clear_bit(vid, priv->active_vlans); 6210 return ret; 6211 } 6212 6213 if (priv->hw->num_vlan) { 6214 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6215 if (ret) 6216 return ret; 6217 } 6218 6219 return 0; 6220 } 6221 6222 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6223 { 6224 struct stmmac_priv *priv = netdev_priv(ndev); 6225 bool is_double = false; 6226 int ret; 6227 6228 ret = pm_runtime_get_sync(priv->device); 6229 if (ret < 0) { 6230 pm_runtime_put_noidle(priv->device); 6231 return ret; 6232 } 6233 6234 if (be16_to_cpu(proto) == ETH_P_8021AD) 6235 is_double = true; 6236 6237 clear_bit(vid, priv->active_vlans); 6238 6239 if (priv->hw->num_vlan) { 6240 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6241 if (ret) 6242 goto del_vlan_error; 6243 } 6244 6245 ret = stmmac_vlan_update(priv, is_double); 6246 6247 del_vlan_error: 6248 pm_runtime_put(priv->device); 6249 6250 return ret; 6251 } 6252 6253 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6254 { 6255 struct stmmac_priv *priv = netdev_priv(dev); 6256 6257 switch (bpf->command) { 6258 case XDP_SETUP_PROG: 6259 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6260 case XDP_SETUP_XSK_POOL: 6261 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6262 bpf->xsk.queue_id); 6263 default: 6264 return -EOPNOTSUPP; 6265 } 6266 } 6267 6268 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6269 struct xdp_frame **frames, u32 flags) 6270 { 6271 struct stmmac_priv *priv = netdev_priv(dev); 6272 int cpu = smp_processor_id(); 6273 struct netdev_queue *nq; 6274 int i, nxmit = 0; 6275 int queue; 6276 6277 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6278 return -ENETDOWN; 6279 6280 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6281 return -EINVAL; 6282 6283 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6284 nq = netdev_get_tx_queue(priv->dev, queue); 6285 6286 __netif_tx_lock(nq, cpu); 6287 /* Avoids TX time-out as we are sharing with slow path */ 6288 nq->trans_start = jiffies; 6289 6290 for (i = 0; i < num_frames; i++) { 6291 int res; 6292 6293 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6294 if (res == STMMAC_XDP_CONSUMED) 6295 break; 6296 6297 nxmit++; 6298 } 6299 6300 if (flags & XDP_XMIT_FLUSH) { 6301 stmmac_flush_tx_descriptors(priv, queue); 6302 stmmac_tx_timer_arm(priv, queue); 6303 } 6304 6305 __netif_tx_unlock(nq); 6306 6307 return nxmit; 6308 } 6309 6310 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6311 { 6312 struct stmmac_channel *ch = &priv->channel[queue]; 6313 unsigned long flags; 6314 6315 spin_lock_irqsave(&ch->lock, flags); 6316 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6317 spin_unlock_irqrestore(&ch->lock, flags); 6318 6319 stmmac_stop_rx_dma(priv, queue); 6320 __free_dma_rx_desc_resources(priv, queue); 6321 } 6322 6323 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6324 { 6325 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6326 struct stmmac_channel *ch = &priv->channel[queue]; 6327 unsigned long flags; 6328 u32 buf_size; 6329 int ret; 6330 6331 ret = __alloc_dma_rx_desc_resources(priv, queue); 6332 if (ret) { 6333 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6334 return; 6335 } 6336 6337 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6338 if (ret) { 6339 __free_dma_rx_desc_resources(priv, queue); 6340 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6341 return; 6342 } 6343 6344 stmmac_clear_rx_descriptors(priv, queue); 6345 6346 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6347 rx_q->dma_rx_phy, rx_q->queue_index); 6348 6349 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6350 sizeof(struct dma_desc)); 6351 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6352 rx_q->rx_tail_addr, rx_q->queue_index); 6353 6354 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6355 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6356 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6357 buf_size, 6358 rx_q->queue_index); 6359 } else { 6360 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6361 priv->dma_buf_sz, 6362 rx_q->queue_index); 6363 } 6364 6365 stmmac_start_rx_dma(priv, queue); 6366 6367 spin_lock_irqsave(&ch->lock, flags); 6368 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6369 spin_unlock_irqrestore(&ch->lock, flags); 6370 } 6371 6372 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6373 { 6374 struct stmmac_channel *ch = &priv->channel[queue]; 6375 unsigned long flags; 6376 6377 spin_lock_irqsave(&ch->lock, flags); 6378 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6379 spin_unlock_irqrestore(&ch->lock, flags); 6380 6381 stmmac_stop_tx_dma(priv, queue); 6382 __free_dma_tx_desc_resources(priv, queue); 6383 } 6384 6385 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6386 { 6387 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6388 struct stmmac_channel *ch = &priv->channel[queue]; 6389 unsigned long flags; 6390 int ret; 6391 6392 ret = __alloc_dma_tx_desc_resources(priv, queue); 6393 if (ret) { 6394 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6395 return; 6396 } 6397 6398 ret = __init_dma_tx_desc_rings(priv, queue); 6399 if (ret) { 6400 __free_dma_tx_desc_resources(priv, queue); 6401 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6402 return; 6403 } 6404 6405 stmmac_clear_tx_descriptors(priv, queue); 6406 6407 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6408 tx_q->dma_tx_phy, tx_q->queue_index); 6409 6410 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6411 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6412 6413 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6414 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6415 tx_q->tx_tail_addr, tx_q->queue_index); 6416 6417 stmmac_start_tx_dma(priv, queue); 6418 6419 spin_lock_irqsave(&ch->lock, flags); 6420 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6421 spin_unlock_irqrestore(&ch->lock, flags); 6422 } 6423 6424 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6425 { 6426 struct stmmac_priv *priv = netdev_priv(dev); 6427 struct stmmac_rx_queue *rx_q; 6428 struct stmmac_tx_queue *tx_q; 6429 struct stmmac_channel *ch; 6430 6431 if (test_bit(STMMAC_DOWN, &priv->state) || 6432 !netif_carrier_ok(priv->dev)) 6433 return -ENETDOWN; 6434 6435 if (!stmmac_xdp_is_enabled(priv)) 6436 return -ENXIO; 6437 6438 if (queue >= priv->plat->rx_queues_to_use || 6439 queue >= priv->plat->tx_queues_to_use) 6440 return -EINVAL; 6441 6442 rx_q = &priv->rx_queue[queue]; 6443 tx_q = &priv->tx_queue[queue]; 6444 ch = &priv->channel[queue]; 6445 6446 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6447 return -ENXIO; 6448 6449 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6450 /* EQoS does not have per-DMA channel SW interrupt, 6451 * so we schedule RX Napi straight-away. 6452 */ 6453 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6454 __napi_schedule(&ch->rxtx_napi); 6455 } 6456 6457 return 0; 6458 } 6459 6460 static const struct net_device_ops stmmac_netdev_ops = { 6461 .ndo_open = stmmac_open, 6462 .ndo_start_xmit = stmmac_xmit, 6463 .ndo_stop = stmmac_release, 6464 .ndo_change_mtu = stmmac_change_mtu, 6465 .ndo_fix_features = stmmac_fix_features, 6466 .ndo_set_features = stmmac_set_features, 6467 .ndo_set_rx_mode = stmmac_set_rx_mode, 6468 .ndo_tx_timeout = stmmac_tx_timeout, 6469 .ndo_eth_ioctl = stmmac_ioctl, 6470 .ndo_setup_tc = stmmac_setup_tc, 6471 .ndo_select_queue = stmmac_select_queue, 6472 #ifdef CONFIG_NET_POLL_CONTROLLER 6473 .ndo_poll_controller = stmmac_poll_controller, 6474 #endif 6475 .ndo_set_mac_address = stmmac_set_mac_address, 6476 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6477 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6478 .ndo_bpf = stmmac_bpf, 6479 .ndo_xdp_xmit = stmmac_xdp_xmit, 6480 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6481 }; 6482 6483 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6484 { 6485 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6486 return; 6487 if (test_bit(STMMAC_DOWN, &priv->state)) 6488 return; 6489 6490 netdev_err(priv->dev, "Reset adapter.\n"); 6491 6492 rtnl_lock(); 6493 netif_trans_update(priv->dev); 6494 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6495 usleep_range(1000, 2000); 6496 6497 set_bit(STMMAC_DOWN, &priv->state); 6498 dev_close(priv->dev); 6499 dev_open(priv->dev, NULL); 6500 clear_bit(STMMAC_DOWN, &priv->state); 6501 clear_bit(STMMAC_RESETING, &priv->state); 6502 rtnl_unlock(); 6503 } 6504 6505 static void stmmac_service_task(struct work_struct *work) 6506 { 6507 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6508 service_task); 6509 6510 stmmac_reset_subtask(priv); 6511 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6512 } 6513 6514 /** 6515 * stmmac_hw_init - Init the MAC device 6516 * @priv: driver private structure 6517 * Description: this function is to configure the MAC device according to 6518 * some platform parameters or the HW capability register. It prepares the 6519 * driver to use either ring or chain modes and to setup either enhanced or 6520 * normal descriptors. 6521 */ 6522 static int stmmac_hw_init(struct stmmac_priv *priv) 6523 { 6524 int ret; 6525 6526 /* dwmac-sun8i only work in chain mode */ 6527 if (priv->plat->has_sun8i) 6528 chain_mode = 1; 6529 priv->chain_mode = chain_mode; 6530 6531 /* Initialize HW Interface */ 6532 ret = stmmac_hwif_init(priv); 6533 if (ret) 6534 return ret; 6535 6536 /* Get the HW capability (new GMAC newer than 3.50a) */ 6537 priv->hw_cap_support = stmmac_get_hw_features(priv); 6538 if (priv->hw_cap_support) { 6539 dev_info(priv->device, "DMA HW capability register supported\n"); 6540 6541 /* We can override some gmac/dma configuration fields: e.g. 6542 * enh_desc, tx_coe (e.g. that are passed through the 6543 * platform) with the values from the HW capability 6544 * register (if supported). 6545 */ 6546 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6547 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6548 !priv->plat->use_phy_wol; 6549 priv->hw->pmt = priv->plat->pmt; 6550 if (priv->dma_cap.hash_tb_sz) { 6551 priv->hw->multicast_filter_bins = 6552 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6553 priv->hw->mcast_bits_log2 = 6554 ilog2(priv->hw->multicast_filter_bins); 6555 } 6556 6557 /* TXCOE doesn't work in thresh DMA mode */ 6558 if (priv->plat->force_thresh_dma_mode) 6559 priv->plat->tx_coe = 0; 6560 else 6561 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6562 6563 /* In case of GMAC4 rx_coe is from HW cap register. */ 6564 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6565 6566 if (priv->dma_cap.rx_coe_type2) 6567 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6568 else if (priv->dma_cap.rx_coe_type1) 6569 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6570 6571 } else { 6572 dev_info(priv->device, "No HW DMA feature register supported\n"); 6573 } 6574 6575 if (priv->plat->rx_coe) { 6576 priv->hw->rx_csum = priv->plat->rx_coe; 6577 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6578 if (priv->synopsys_id < DWMAC_CORE_4_00) 6579 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6580 } 6581 if (priv->plat->tx_coe) 6582 dev_info(priv->device, "TX Checksum insertion supported\n"); 6583 6584 if (priv->plat->pmt) { 6585 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6586 device_set_wakeup_capable(priv->device, 1); 6587 } 6588 6589 if (priv->dma_cap.tsoen) 6590 dev_info(priv->device, "TSO supported\n"); 6591 6592 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6593 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6594 6595 /* Run HW quirks, if any */ 6596 if (priv->hwif_quirks) { 6597 ret = priv->hwif_quirks(priv); 6598 if (ret) 6599 return ret; 6600 } 6601 6602 /* Rx Watchdog is available in the COREs newer than the 3.40. 6603 * In some case, for example on bugged HW this feature 6604 * has to be disable and this can be done by passing the 6605 * riwt_off field from the platform. 6606 */ 6607 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6608 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6609 priv->use_riwt = 1; 6610 dev_info(priv->device, 6611 "Enable RX Mitigation via HW Watchdog Timer\n"); 6612 } 6613 6614 return 0; 6615 } 6616 6617 static void stmmac_napi_add(struct net_device *dev) 6618 { 6619 struct stmmac_priv *priv = netdev_priv(dev); 6620 u32 queue, maxq; 6621 6622 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6623 6624 for (queue = 0; queue < maxq; queue++) { 6625 struct stmmac_channel *ch = &priv->channel[queue]; 6626 6627 ch->priv_data = priv; 6628 ch->index = queue; 6629 spin_lock_init(&ch->lock); 6630 6631 if (queue < priv->plat->rx_queues_to_use) { 6632 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6633 NAPI_POLL_WEIGHT); 6634 } 6635 if (queue < priv->plat->tx_queues_to_use) { 6636 netif_tx_napi_add(dev, &ch->tx_napi, 6637 stmmac_napi_poll_tx, 6638 NAPI_POLL_WEIGHT); 6639 } 6640 if (queue < priv->plat->rx_queues_to_use && 6641 queue < priv->plat->tx_queues_to_use) { 6642 netif_napi_add(dev, &ch->rxtx_napi, 6643 stmmac_napi_poll_rxtx, 6644 NAPI_POLL_WEIGHT); 6645 } 6646 } 6647 } 6648 6649 static void stmmac_napi_del(struct net_device *dev) 6650 { 6651 struct stmmac_priv *priv = netdev_priv(dev); 6652 u32 queue, maxq; 6653 6654 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6655 6656 for (queue = 0; queue < maxq; queue++) { 6657 struct stmmac_channel *ch = &priv->channel[queue]; 6658 6659 if (queue < priv->plat->rx_queues_to_use) 6660 netif_napi_del(&ch->rx_napi); 6661 if (queue < priv->plat->tx_queues_to_use) 6662 netif_napi_del(&ch->tx_napi); 6663 if (queue < priv->plat->rx_queues_to_use && 6664 queue < priv->plat->tx_queues_to_use) { 6665 netif_napi_del(&ch->rxtx_napi); 6666 } 6667 } 6668 } 6669 6670 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6671 { 6672 struct stmmac_priv *priv = netdev_priv(dev); 6673 int ret = 0; 6674 6675 if (netif_running(dev)) 6676 stmmac_release(dev); 6677 6678 stmmac_napi_del(dev); 6679 6680 priv->plat->rx_queues_to_use = rx_cnt; 6681 priv->plat->tx_queues_to_use = tx_cnt; 6682 6683 stmmac_napi_add(dev); 6684 6685 if (netif_running(dev)) 6686 ret = stmmac_open(dev); 6687 6688 return ret; 6689 } 6690 6691 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6692 { 6693 struct stmmac_priv *priv = netdev_priv(dev); 6694 int ret = 0; 6695 6696 if (netif_running(dev)) 6697 stmmac_release(dev); 6698 6699 priv->dma_rx_size = rx_size; 6700 priv->dma_tx_size = tx_size; 6701 6702 if (netif_running(dev)) 6703 ret = stmmac_open(dev); 6704 6705 return ret; 6706 } 6707 6708 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6709 static void stmmac_fpe_lp_task(struct work_struct *work) 6710 { 6711 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6712 fpe_task); 6713 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6714 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6715 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6716 bool *hs_enable = &fpe_cfg->hs_enable; 6717 bool *enable = &fpe_cfg->enable; 6718 int retries = 20; 6719 6720 while (retries-- > 0) { 6721 /* Bail out immediately if FPE handshake is OFF */ 6722 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6723 break; 6724 6725 if (*lo_state == FPE_STATE_ENTERING_ON && 6726 *lp_state == FPE_STATE_ENTERING_ON) { 6727 stmmac_fpe_configure(priv, priv->ioaddr, 6728 priv->plat->tx_queues_to_use, 6729 priv->plat->rx_queues_to_use, 6730 *enable); 6731 6732 netdev_info(priv->dev, "configured FPE\n"); 6733 6734 *lo_state = FPE_STATE_ON; 6735 *lp_state = FPE_STATE_ON; 6736 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6737 break; 6738 } 6739 6740 if ((*lo_state == FPE_STATE_CAPABLE || 6741 *lo_state == FPE_STATE_ENTERING_ON) && 6742 *lp_state != FPE_STATE_ON) { 6743 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6744 *lo_state, *lp_state); 6745 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6746 MPACKET_VERIFY); 6747 } 6748 /* Sleep then retry */ 6749 msleep(500); 6750 } 6751 6752 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6753 } 6754 6755 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6756 { 6757 if (priv->plat->fpe_cfg->hs_enable != enable) { 6758 if (enable) { 6759 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6760 MPACKET_VERIFY); 6761 } else { 6762 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6763 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6764 } 6765 6766 priv->plat->fpe_cfg->hs_enable = enable; 6767 } 6768 } 6769 6770 /** 6771 * stmmac_dvr_probe 6772 * @device: device pointer 6773 * @plat_dat: platform data pointer 6774 * @res: stmmac resource pointer 6775 * Description: this is the main probe function used to 6776 * call the alloc_etherdev, allocate the priv structure. 6777 * Return: 6778 * returns 0 on success, otherwise errno. 6779 */ 6780 int stmmac_dvr_probe(struct device *device, 6781 struct plat_stmmacenet_data *plat_dat, 6782 struct stmmac_resources *res) 6783 { 6784 struct net_device *ndev = NULL; 6785 struct stmmac_priv *priv; 6786 u32 rxq; 6787 int i, ret = 0; 6788 6789 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6790 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6791 if (!ndev) 6792 return -ENOMEM; 6793 6794 SET_NETDEV_DEV(ndev, device); 6795 6796 priv = netdev_priv(ndev); 6797 priv->device = device; 6798 priv->dev = ndev; 6799 6800 stmmac_set_ethtool_ops(ndev); 6801 priv->pause = pause; 6802 priv->plat = plat_dat; 6803 priv->ioaddr = res->addr; 6804 priv->dev->base_addr = (unsigned long)res->addr; 6805 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6806 6807 priv->dev->irq = res->irq; 6808 priv->wol_irq = res->wol_irq; 6809 priv->lpi_irq = res->lpi_irq; 6810 priv->sfty_ce_irq = res->sfty_ce_irq; 6811 priv->sfty_ue_irq = res->sfty_ue_irq; 6812 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6813 priv->rx_irq[i] = res->rx_irq[i]; 6814 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6815 priv->tx_irq[i] = res->tx_irq[i]; 6816 6817 if (!is_zero_ether_addr(res->mac)) 6818 eth_hw_addr_set(priv->dev, res->mac); 6819 6820 dev_set_drvdata(device, priv->dev); 6821 6822 /* Verify driver arguments */ 6823 stmmac_verify_args(); 6824 6825 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6826 if (!priv->af_xdp_zc_qps) 6827 return -ENOMEM; 6828 6829 /* Allocate workqueue */ 6830 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6831 if (!priv->wq) { 6832 dev_err(priv->device, "failed to create workqueue\n"); 6833 return -ENOMEM; 6834 } 6835 6836 INIT_WORK(&priv->service_task, stmmac_service_task); 6837 6838 /* Initialize Link Partner FPE workqueue */ 6839 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6840 6841 /* Override with kernel parameters if supplied XXX CRS XXX 6842 * this needs to have multiple instances 6843 */ 6844 if ((phyaddr >= 0) && (phyaddr <= 31)) 6845 priv->plat->phy_addr = phyaddr; 6846 6847 if (priv->plat->stmmac_rst) { 6848 ret = reset_control_assert(priv->plat->stmmac_rst); 6849 reset_control_deassert(priv->plat->stmmac_rst); 6850 /* Some reset controllers have only reset callback instead of 6851 * assert + deassert callbacks pair. 6852 */ 6853 if (ret == -ENOTSUPP) 6854 reset_control_reset(priv->plat->stmmac_rst); 6855 } 6856 6857 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 6858 if (ret == -ENOTSUPP) 6859 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 6860 ERR_PTR(ret)); 6861 6862 /* Init MAC and get the capabilities */ 6863 ret = stmmac_hw_init(priv); 6864 if (ret) 6865 goto error_hw_init; 6866 6867 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 6868 */ 6869 if (priv->synopsys_id < DWMAC_CORE_5_20) 6870 priv->plat->dma_cfg->dche = false; 6871 6872 stmmac_check_ether_addr(priv); 6873 6874 ndev->netdev_ops = &stmmac_netdev_ops; 6875 6876 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6877 NETIF_F_RXCSUM; 6878 6879 ret = stmmac_tc_init(priv, priv); 6880 if (!ret) { 6881 ndev->hw_features |= NETIF_F_HW_TC; 6882 } 6883 6884 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 6885 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 6886 if (priv->plat->has_gmac4) 6887 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 6888 priv->tso = true; 6889 dev_info(priv->device, "TSO feature enabled\n"); 6890 } 6891 6892 if (priv->dma_cap.sphen) { 6893 ndev->hw_features |= NETIF_F_GRO; 6894 priv->sph_cap = true; 6895 priv->sph = priv->sph_cap; 6896 dev_info(priv->device, "SPH feature enabled\n"); 6897 } 6898 6899 /* The current IP register MAC_HW_Feature1[ADDR64] only define 6900 * 32/40/64 bit width, but some SOC support others like i.MX8MP 6901 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 6902 * So overwrite dma_cap.addr64 according to HW real design. 6903 */ 6904 if (priv->plat->addr64) 6905 priv->dma_cap.addr64 = priv->plat->addr64; 6906 6907 if (priv->dma_cap.addr64) { 6908 ret = dma_set_mask_and_coherent(device, 6909 DMA_BIT_MASK(priv->dma_cap.addr64)); 6910 if (!ret) { 6911 dev_info(priv->device, "Using %d bits DMA width\n", 6912 priv->dma_cap.addr64); 6913 6914 /* 6915 * If more than 32 bits can be addressed, make sure to 6916 * enable enhanced addressing mode. 6917 */ 6918 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 6919 priv->plat->dma_cfg->eame = true; 6920 } else { 6921 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 6922 if (ret) { 6923 dev_err(priv->device, "Failed to set DMA Mask\n"); 6924 goto error_hw_init; 6925 } 6926 6927 priv->dma_cap.addr64 = 32; 6928 } 6929 } 6930 6931 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 6932 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 6933 #ifdef STMMAC_VLAN_TAG_USED 6934 /* Both mac100 and gmac support receive VLAN tag detection */ 6935 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 6936 if (priv->dma_cap.vlhash) { 6937 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6938 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 6939 } 6940 if (priv->dma_cap.vlins) { 6941 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 6942 if (priv->dma_cap.dvlan) 6943 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 6944 } 6945 #endif 6946 priv->msg_enable = netif_msg_init(debug, default_msg_level); 6947 6948 /* Initialize RSS */ 6949 rxq = priv->plat->rx_queues_to_use; 6950 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 6951 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 6952 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 6953 6954 if (priv->dma_cap.rssen && priv->plat->rss_en) 6955 ndev->features |= NETIF_F_RXHASH; 6956 6957 /* MTU range: 46 - hw-specific max */ 6958 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 6959 if (priv->plat->has_xgmac) 6960 ndev->max_mtu = XGMAC_JUMBO_LEN; 6961 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 6962 ndev->max_mtu = JUMBO_LEN; 6963 else 6964 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 6965 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 6966 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 6967 */ 6968 if ((priv->plat->maxmtu < ndev->max_mtu) && 6969 (priv->plat->maxmtu >= ndev->min_mtu)) 6970 ndev->max_mtu = priv->plat->maxmtu; 6971 else if (priv->plat->maxmtu < ndev->min_mtu) 6972 dev_warn(priv->device, 6973 "%s: warning: maxmtu having invalid value (%d)\n", 6974 __func__, priv->plat->maxmtu); 6975 6976 if (flow_ctrl) 6977 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 6978 6979 /* Setup channels NAPI */ 6980 stmmac_napi_add(ndev); 6981 6982 mutex_init(&priv->lock); 6983 6984 /* If a specific clk_csr value is passed from the platform 6985 * this means that the CSR Clock Range selection cannot be 6986 * changed at run-time and it is fixed. Viceversa the driver'll try to 6987 * set the MDC clock dynamically according to the csr actual 6988 * clock input. 6989 */ 6990 if (priv->plat->clk_csr >= 0) 6991 priv->clk_csr = priv->plat->clk_csr; 6992 else 6993 stmmac_clk_csr_set(priv); 6994 6995 stmmac_check_pcs_mode(priv); 6996 6997 pm_runtime_get_noresume(device); 6998 pm_runtime_set_active(device); 6999 pm_runtime_enable(device); 7000 7001 if (priv->hw->pcs != STMMAC_PCS_TBI && 7002 priv->hw->pcs != STMMAC_PCS_RTBI) { 7003 /* MDIO bus Registration */ 7004 ret = stmmac_mdio_register(ndev); 7005 if (ret < 0) { 7006 dev_err(priv->device, 7007 "%s: MDIO bus (id: %d) registration failed", 7008 __func__, priv->plat->bus_id); 7009 goto error_mdio_register; 7010 } 7011 } 7012 7013 if (priv->plat->speed_mode_2500) 7014 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7015 7016 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7017 ret = stmmac_xpcs_setup(priv->mii); 7018 if (ret) 7019 goto error_xpcs_setup; 7020 } 7021 7022 ret = stmmac_phy_setup(priv); 7023 if (ret) { 7024 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7025 goto error_phy_setup; 7026 } 7027 7028 ret = register_netdev(ndev); 7029 if (ret) { 7030 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7031 __func__, ret); 7032 goto error_netdev_register; 7033 } 7034 7035 if (priv->plat->serdes_powerup) { 7036 ret = priv->plat->serdes_powerup(ndev, 7037 priv->plat->bsp_priv); 7038 7039 if (ret < 0) 7040 goto error_serdes_powerup; 7041 } 7042 7043 #ifdef CONFIG_DEBUG_FS 7044 stmmac_init_fs(ndev); 7045 #endif 7046 7047 /* Let pm_runtime_put() disable the clocks. 7048 * If CONFIG_PM is not enabled, the clocks will stay powered. 7049 */ 7050 pm_runtime_put(device); 7051 7052 return ret; 7053 7054 error_serdes_powerup: 7055 unregister_netdev(ndev); 7056 error_netdev_register: 7057 phylink_destroy(priv->phylink); 7058 error_xpcs_setup: 7059 error_phy_setup: 7060 if (priv->hw->pcs != STMMAC_PCS_TBI && 7061 priv->hw->pcs != STMMAC_PCS_RTBI) 7062 stmmac_mdio_unregister(ndev); 7063 error_mdio_register: 7064 stmmac_napi_del(ndev); 7065 error_hw_init: 7066 destroy_workqueue(priv->wq); 7067 bitmap_free(priv->af_xdp_zc_qps); 7068 7069 return ret; 7070 } 7071 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7072 7073 /** 7074 * stmmac_dvr_remove 7075 * @dev: device pointer 7076 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7077 * changes the link status, releases the DMA descriptor rings. 7078 */ 7079 int stmmac_dvr_remove(struct device *dev) 7080 { 7081 struct net_device *ndev = dev_get_drvdata(dev); 7082 struct stmmac_priv *priv = netdev_priv(ndev); 7083 7084 netdev_info(priv->dev, "%s: removing driver", __func__); 7085 7086 stmmac_stop_all_dma(priv); 7087 stmmac_mac_set(priv, priv->ioaddr, false); 7088 netif_carrier_off(ndev); 7089 unregister_netdev(ndev); 7090 7091 /* Serdes power down needs to happen after VLAN filter 7092 * is deleted that is triggered by unregister_netdev(). 7093 */ 7094 if (priv->plat->serdes_powerdown) 7095 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7096 7097 #ifdef CONFIG_DEBUG_FS 7098 stmmac_exit_fs(ndev); 7099 #endif 7100 phylink_destroy(priv->phylink); 7101 if (priv->plat->stmmac_rst) 7102 reset_control_assert(priv->plat->stmmac_rst); 7103 reset_control_assert(priv->plat->stmmac_ahb_rst); 7104 pm_runtime_put(dev); 7105 pm_runtime_disable(dev); 7106 if (priv->hw->pcs != STMMAC_PCS_TBI && 7107 priv->hw->pcs != STMMAC_PCS_RTBI) 7108 stmmac_mdio_unregister(ndev); 7109 destroy_workqueue(priv->wq); 7110 mutex_destroy(&priv->lock); 7111 bitmap_free(priv->af_xdp_zc_qps); 7112 7113 return 0; 7114 } 7115 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7116 7117 /** 7118 * stmmac_suspend - suspend callback 7119 * @dev: device pointer 7120 * Description: this is the function to suspend the device and it is called 7121 * by the platform driver to stop the network queue, release the resources, 7122 * program the PMT register (for WoL), clean and release driver resources. 7123 */ 7124 int stmmac_suspend(struct device *dev) 7125 { 7126 struct net_device *ndev = dev_get_drvdata(dev); 7127 struct stmmac_priv *priv = netdev_priv(ndev); 7128 u32 chan; 7129 7130 if (!ndev || !netif_running(ndev)) 7131 return 0; 7132 7133 mutex_lock(&priv->lock); 7134 7135 netif_device_detach(ndev); 7136 7137 stmmac_disable_all_queues(priv); 7138 7139 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7140 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7141 7142 if (priv->eee_enabled) { 7143 priv->tx_path_in_lpi_mode = false; 7144 del_timer_sync(&priv->eee_ctrl_timer); 7145 } 7146 7147 /* Stop TX/RX DMA */ 7148 stmmac_stop_all_dma(priv); 7149 7150 if (priv->plat->serdes_powerdown) 7151 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7152 7153 /* Enable Power down mode by programming the PMT regs */ 7154 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7155 stmmac_pmt(priv, priv->hw, priv->wolopts); 7156 priv->irq_wake = 1; 7157 } else { 7158 stmmac_mac_set(priv, priv->ioaddr, false); 7159 pinctrl_pm_select_sleep_state(priv->device); 7160 } 7161 7162 mutex_unlock(&priv->lock); 7163 7164 rtnl_lock(); 7165 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7166 phylink_suspend(priv->phylink, true); 7167 } else { 7168 if (device_may_wakeup(priv->device)) 7169 phylink_speed_down(priv->phylink, false); 7170 phylink_suspend(priv->phylink, false); 7171 } 7172 rtnl_unlock(); 7173 7174 if (priv->dma_cap.fpesel) { 7175 /* Disable FPE */ 7176 stmmac_fpe_configure(priv, priv->ioaddr, 7177 priv->plat->tx_queues_to_use, 7178 priv->plat->rx_queues_to_use, false); 7179 7180 stmmac_fpe_handshake(priv, false); 7181 stmmac_fpe_stop_wq(priv); 7182 } 7183 7184 priv->speed = SPEED_UNKNOWN; 7185 return 0; 7186 } 7187 EXPORT_SYMBOL_GPL(stmmac_suspend); 7188 7189 /** 7190 * stmmac_reset_queues_param - reset queue parameters 7191 * @priv: device pointer 7192 */ 7193 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7194 { 7195 u32 rx_cnt = priv->plat->rx_queues_to_use; 7196 u32 tx_cnt = priv->plat->tx_queues_to_use; 7197 u32 queue; 7198 7199 for (queue = 0; queue < rx_cnt; queue++) { 7200 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7201 7202 rx_q->cur_rx = 0; 7203 rx_q->dirty_rx = 0; 7204 } 7205 7206 for (queue = 0; queue < tx_cnt; queue++) { 7207 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7208 7209 tx_q->cur_tx = 0; 7210 tx_q->dirty_tx = 0; 7211 tx_q->mss = 0; 7212 7213 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7214 } 7215 } 7216 7217 /** 7218 * stmmac_resume - resume callback 7219 * @dev: device pointer 7220 * Description: when resume this function is invoked to setup the DMA and CORE 7221 * in a usable state. 7222 */ 7223 int stmmac_resume(struct device *dev) 7224 { 7225 struct net_device *ndev = dev_get_drvdata(dev); 7226 struct stmmac_priv *priv = netdev_priv(ndev); 7227 int ret; 7228 7229 if (!netif_running(ndev)) 7230 return 0; 7231 7232 /* Power Down bit, into the PM register, is cleared 7233 * automatically as soon as a magic packet or a Wake-up frame 7234 * is received. Anyway, it's better to manually clear 7235 * this bit because it can generate problems while resuming 7236 * from another devices (e.g. serial console). 7237 */ 7238 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7239 mutex_lock(&priv->lock); 7240 stmmac_pmt(priv, priv->hw, 0); 7241 mutex_unlock(&priv->lock); 7242 priv->irq_wake = 0; 7243 } else { 7244 pinctrl_pm_select_default_state(priv->device); 7245 /* reset the phy so that it's ready */ 7246 if (priv->mii) 7247 stmmac_mdio_reset(priv->mii); 7248 } 7249 7250 if (priv->plat->serdes_powerup) { 7251 ret = priv->plat->serdes_powerup(ndev, 7252 priv->plat->bsp_priv); 7253 7254 if (ret < 0) 7255 return ret; 7256 } 7257 7258 rtnl_lock(); 7259 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7260 phylink_resume(priv->phylink); 7261 } else { 7262 phylink_resume(priv->phylink); 7263 if (device_may_wakeup(priv->device)) 7264 phylink_speed_up(priv->phylink); 7265 } 7266 rtnl_unlock(); 7267 7268 rtnl_lock(); 7269 mutex_lock(&priv->lock); 7270 7271 stmmac_reset_queues_param(priv); 7272 7273 stmmac_free_tx_skbufs(priv); 7274 stmmac_clear_descriptors(priv); 7275 7276 stmmac_hw_setup(ndev, false); 7277 stmmac_init_coalesce(priv); 7278 stmmac_set_rx_mode(ndev); 7279 7280 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7281 7282 stmmac_enable_all_queues(priv); 7283 7284 mutex_unlock(&priv->lock); 7285 rtnl_unlock(); 7286 7287 netif_device_attach(ndev); 7288 7289 return 0; 7290 } 7291 EXPORT_SYMBOL_GPL(stmmac_resume); 7292 7293 #ifndef MODULE 7294 static int __init stmmac_cmdline_opt(char *str) 7295 { 7296 char *opt; 7297 7298 if (!str || !*str) 7299 return -EINVAL; 7300 while ((opt = strsep(&str, ",")) != NULL) { 7301 if (!strncmp(opt, "debug:", 6)) { 7302 if (kstrtoint(opt + 6, 0, &debug)) 7303 goto err; 7304 } else if (!strncmp(opt, "phyaddr:", 8)) { 7305 if (kstrtoint(opt + 8, 0, &phyaddr)) 7306 goto err; 7307 } else if (!strncmp(opt, "buf_sz:", 7)) { 7308 if (kstrtoint(opt + 7, 0, &buf_sz)) 7309 goto err; 7310 } else if (!strncmp(opt, "tc:", 3)) { 7311 if (kstrtoint(opt + 3, 0, &tc)) 7312 goto err; 7313 } else if (!strncmp(opt, "watchdog:", 9)) { 7314 if (kstrtoint(opt + 9, 0, &watchdog)) 7315 goto err; 7316 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7317 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7318 goto err; 7319 } else if (!strncmp(opt, "pause:", 6)) { 7320 if (kstrtoint(opt + 6, 0, &pause)) 7321 goto err; 7322 } else if (!strncmp(opt, "eee_timer:", 10)) { 7323 if (kstrtoint(opt + 10, 0, &eee_timer)) 7324 goto err; 7325 } else if (!strncmp(opt, "chain_mode:", 11)) { 7326 if (kstrtoint(opt + 11, 0, &chain_mode)) 7327 goto err; 7328 } 7329 } 7330 return 0; 7331 7332 err: 7333 pr_err("%s: ERROR broken module parameter conversion", __func__); 7334 return -EINVAL; 7335 } 7336 7337 __setup("stmmaceth=", stmmac_cmdline_opt); 7338 #endif /* MODULE */ 7339 7340 static int __init stmmac_init(void) 7341 { 7342 #ifdef CONFIG_DEBUG_FS 7343 /* Create debugfs main directory if it doesn't exist yet */ 7344 if (!stmmac_fs_dir) 7345 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7346 register_netdevice_notifier(&stmmac_notifier); 7347 #endif 7348 7349 return 0; 7350 } 7351 7352 static void __exit stmmac_exit(void) 7353 { 7354 #ifdef CONFIG_DEBUG_FS 7355 unregister_netdevice_notifier(&stmmac_notifier); 7356 debugfs_remove_recursive(stmmac_fs_dir); 7357 #endif 7358 } 7359 7360 module_init(stmmac_init) 7361 module_exit(stmmac_exit) 7362 7363 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7364 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7365 MODULE_LICENSE("GPL"); 7366