1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 The full GNU General Public License is included in this distribution in 17 the file called "COPYING". 18 19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 20 21 Documentation available at: 22 http://www.stlinux.com 23 Support available at: 24 https://bugzilla.stlinux.com/ 25 *******************************************************************************/ 26 27 #include <linux/clk.h> 28 #include <linux/kernel.h> 29 #include <linux/interrupt.h> 30 #include <linux/ip.h> 31 #include <linux/tcp.h> 32 #include <linux/skbuff.h> 33 #include <linux/ethtool.h> 34 #include <linux/if_ether.h> 35 #include <linux/crc32.h> 36 #include <linux/mii.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/slab.h> 41 #include <linux/prefetch.h> 42 #include <linux/pinctrl/consumer.h> 43 #ifdef CONFIG_DEBUG_FS 44 #include <linux/debugfs.h> 45 #include <linux/seq_file.h> 46 #endif /* CONFIG_DEBUG_FS */ 47 #include <linux/net_tstamp.h> 48 #include <net/pkt_cls.h> 49 #include "stmmac_ptp.h" 50 #include "stmmac.h" 51 #include <linux/reset.h> 52 #include <linux/of_mdio.h> 53 #include "dwmac1000.h" 54 #include "dwxgmac2.h" 55 #include "hwif.h" 56 57 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES) 58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 59 60 /* Module parameters */ 61 #define TX_TIMEO 5000 62 static int watchdog = TX_TIMEO; 63 module_param(watchdog, int, 0644); 64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 65 66 static int debug = -1; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 69 70 static int phyaddr = -1; 71 module_param(phyaddr, int, 0444); 72 MODULE_PARM_DESC(phyaddr, "Physical device address"); 73 74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 76 77 static int flow_ctrl = FLOW_OFF; 78 module_param(flow_ctrl, int, 0644); 79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 80 81 static int pause = PAUSE_TIME; 82 module_param(pause, int, 0644); 83 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 84 85 #define TC_DEFAULT 64 86 static int tc = TC_DEFAULT; 87 module_param(tc, int, 0644); 88 MODULE_PARM_DESC(tc, "DMA threshold control value"); 89 90 #define DEFAULT_BUFSIZE 1536 91 static int buf_sz = DEFAULT_BUFSIZE; 92 module_param(buf_sz, int, 0644); 93 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 94 95 #define STMMAC_RX_COPYBREAK 256 96 97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 98 NETIF_MSG_LINK | NETIF_MSG_IFUP | 99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 100 101 #define STMMAC_DEFAULT_LPI_TIMER 1000 102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 103 module_param(eee_timer, int, 0644); 104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 106 107 /* By default the driver will use the ring mode to manage tx and rx descriptors, 108 * but allow user to force to use the chain instead of the ring 109 */ 110 static unsigned int chain_mode; 111 module_param(chain_mode, int, 0444); 112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 113 114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 115 116 #ifdef CONFIG_DEBUG_FS 117 static int stmmac_init_fs(struct net_device *dev); 118 static void stmmac_exit_fs(struct net_device *dev); 119 #endif 120 121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 122 123 /** 124 * stmmac_verify_args - verify the driver parameters. 125 * Description: it checks the driver parameters and set a default in case of 126 * errors. 127 */ 128 static void stmmac_verify_args(void) 129 { 130 if (unlikely(watchdog < 0)) 131 watchdog = TX_TIMEO; 132 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 133 buf_sz = DEFAULT_BUFSIZE; 134 if (unlikely(flow_ctrl > 1)) 135 flow_ctrl = FLOW_AUTO; 136 else if (likely(flow_ctrl < 0)) 137 flow_ctrl = FLOW_OFF; 138 if (unlikely((pause < 0) || (pause > 0xffff))) 139 pause = PAUSE_TIME; 140 if (eee_timer < 0) 141 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 142 } 143 144 /** 145 * stmmac_disable_all_queues - Disable all queues 146 * @priv: driver private structure 147 */ 148 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 149 { 150 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 151 u32 queue; 152 153 for (queue = 0; queue < rx_queues_cnt; queue++) { 154 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 155 156 napi_disable(&rx_q->napi); 157 } 158 } 159 160 /** 161 * stmmac_enable_all_queues - Enable all queues 162 * @priv: driver private structure 163 */ 164 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 165 { 166 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 167 u32 queue; 168 169 for (queue = 0; queue < rx_queues_cnt; queue++) { 170 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 171 172 napi_enable(&rx_q->napi); 173 } 174 } 175 176 /** 177 * stmmac_stop_all_queues - Stop all queues 178 * @priv: driver private structure 179 */ 180 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 181 { 182 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 183 u32 queue; 184 185 for (queue = 0; queue < tx_queues_cnt; queue++) 186 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 187 } 188 189 /** 190 * stmmac_start_all_queues - Start all queues 191 * @priv: driver private structure 192 */ 193 static void stmmac_start_all_queues(struct stmmac_priv *priv) 194 { 195 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 196 u32 queue; 197 198 for (queue = 0; queue < tx_queues_cnt; queue++) 199 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 200 } 201 202 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 203 { 204 if (!test_bit(STMMAC_DOWN, &priv->state) && 205 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 206 queue_work(priv->wq, &priv->service_task); 207 } 208 209 static void stmmac_global_err(struct stmmac_priv *priv) 210 { 211 netif_carrier_off(priv->dev); 212 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 213 stmmac_service_event_schedule(priv); 214 } 215 216 /** 217 * stmmac_clk_csr_set - dynamically set the MDC clock 218 * @priv: driver private structure 219 * Description: this is to dynamically set the MDC clock according to the csr 220 * clock input. 221 * Note: 222 * If a specific clk_csr value is passed from the platform 223 * this means that the CSR Clock Range selection cannot be 224 * changed at run-time and it is fixed (as reported in the driver 225 * documentation). Viceversa the driver will try to set the MDC 226 * clock dynamically according to the actual clock input. 227 */ 228 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 229 { 230 u32 clk_rate; 231 232 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 233 234 /* Platform provided default clk_csr would be assumed valid 235 * for all other cases except for the below mentioned ones. 236 * For values higher than the IEEE 802.3 specified frequency 237 * we can not estimate the proper divider as it is not known 238 * the frequency of clk_csr_i. So we do not change the default 239 * divider. 240 */ 241 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 242 if (clk_rate < CSR_F_35M) 243 priv->clk_csr = STMMAC_CSR_20_35M; 244 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 245 priv->clk_csr = STMMAC_CSR_35_60M; 246 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 247 priv->clk_csr = STMMAC_CSR_60_100M; 248 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 249 priv->clk_csr = STMMAC_CSR_100_150M; 250 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 251 priv->clk_csr = STMMAC_CSR_150_250M; 252 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 253 priv->clk_csr = STMMAC_CSR_250_300M; 254 } 255 256 if (priv->plat->has_sun8i) { 257 if (clk_rate > 160000000) 258 priv->clk_csr = 0x03; 259 else if (clk_rate > 80000000) 260 priv->clk_csr = 0x02; 261 else if (clk_rate > 40000000) 262 priv->clk_csr = 0x01; 263 else 264 priv->clk_csr = 0; 265 } 266 267 if (priv->plat->has_xgmac) { 268 if (clk_rate > 400000000) 269 priv->clk_csr = 0x5; 270 else if (clk_rate > 350000000) 271 priv->clk_csr = 0x4; 272 else if (clk_rate > 300000000) 273 priv->clk_csr = 0x3; 274 else if (clk_rate > 250000000) 275 priv->clk_csr = 0x2; 276 else if (clk_rate > 150000000) 277 priv->clk_csr = 0x1; 278 else 279 priv->clk_csr = 0x0; 280 } 281 } 282 283 static void print_pkt(unsigned char *buf, int len) 284 { 285 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 286 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 287 } 288 289 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 290 { 291 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 292 u32 avail; 293 294 if (tx_q->dirty_tx > tx_q->cur_tx) 295 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 296 else 297 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 298 299 return avail; 300 } 301 302 /** 303 * stmmac_rx_dirty - Get RX queue dirty 304 * @priv: driver private structure 305 * @queue: RX queue index 306 */ 307 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 308 { 309 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 310 u32 dirty; 311 312 if (rx_q->dirty_rx <= rx_q->cur_rx) 313 dirty = rx_q->cur_rx - rx_q->dirty_rx; 314 else 315 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 316 317 return dirty; 318 } 319 320 /** 321 * stmmac_hw_fix_mac_speed - callback for speed selection 322 * @priv: driver private structure 323 * Description: on some platforms (e.g. ST), some HW system configuration 324 * registers have to be set according to the link speed negotiated. 325 */ 326 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 327 { 328 struct net_device *ndev = priv->dev; 329 struct phy_device *phydev = ndev->phydev; 330 331 if (likely(priv->plat->fix_mac_speed)) 332 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 333 } 334 335 /** 336 * stmmac_enable_eee_mode - check and enter in LPI mode 337 * @priv: driver private structure 338 * Description: this function is to verify and enter in LPI mode in case of 339 * EEE. 340 */ 341 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 342 { 343 u32 tx_cnt = priv->plat->tx_queues_to_use; 344 u32 queue; 345 346 /* check if all TX queues have the work finished */ 347 for (queue = 0; queue < tx_cnt; queue++) { 348 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 349 350 if (tx_q->dirty_tx != tx_q->cur_tx) 351 return; /* still unfinished work */ 352 } 353 354 /* Check and enter in LPI mode */ 355 if (!priv->tx_path_in_lpi_mode) 356 stmmac_set_eee_mode(priv, priv->hw, 357 priv->plat->en_tx_lpi_clockgating); 358 } 359 360 /** 361 * stmmac_disable_eee_mode - disable and exit from LPI mode 362 * @priv: driver private structure 363 * Description: this function is to exit and disable EEE in case of 364 * LPI state is true. This is called by the xmit. 365 */ 366 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 367 { 368 stmmac_reset_eee_mode(priv, priv->hw); 369 del_timer_sync(&priv->eee_ctrl_timer); 370 priv->tx_path_in_lpi_mode = false; 371 } 372 373 /** 374 * stmmac_eee_ctrl_timer - EEE TX SW timer. 375 * @arg : data hook 376 * Description: 377 * if there is no data transfer and if we are not in LPI state, 378 * then MAC Transmitter can be moved to LPI state. 379 */ 380 static void stmmac_eee_ctrl_timer(struct timer_list *t) 381 { 382 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 383 384 stmmac_enable_eee_mode(priv); 385 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 386 } 387 388 /** 389 * stmmac_eee_init - init EEE 390 * @priv: driver private structure 391 * Description: 392 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 393 * can also manage EEE, this function enable the LPI state and start related 394 * timer. 395 */ 396 bool stmmac_eee_init(struct stmmac_priv *priv) 397 { 398 struct net_device *ndev = priv->dev; 399 int interface = priv->plat->interface; 400 bool ret = false; 401 402 if ((interface != PHY_INTERFACE_MODE_MII) && 403 (interface != PHY_INTERFACE_MODE_GMII) && 404 !phy_interface_mode_is_rgmii(interface)) 405 goto out; 406 407 /* Using PCS we cannot dial with the phy registers at this stage 408 * so we do not support extra feature like EEE. 409 */ 410 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 411 (priv->hw->pcs == STMMAC_PCS_TBI) || 412 (priv->hw->pcs == STMMAC_PCS_RTBI)) 413 goto out; 414 415 /* MAC core supports the EEE feature. */ 416 if (priv->dma_cap.eee) { 417 int tx_lpi_timer = priv->tx_lpi_timer; 418 419 /* Check if the PHY supports EEE */ 420 if (phy_init_eee(ndev->phydev, 1)) { 421 /* To manage at run-time if the EEE cannot be supported 422 * anymore (for example because the lp caps have been 423 * changed). 424 * In that case the driver disable own timers. 425 */ 426 mutex_lock(&priv->lock); 427 if (priv->eee_active) { 428 netdev_dbg(priv->dev, "disable EEE\n"); 429 del_timer_sync(&priv->eee_ctrl_timer); 430 stmmac_set_eee_timer(priv, priv->hw, 0, 431 tx_lpi_timer); 432 } 433 priv->eee_active = 0; 434 mutex_unlock(&priv->lock); 435 goto out; 436 } 437 /* Activate the EEE and start timers */ 438 mutex_lock(&priv->lock); 439 if (!priv->eee_active) { 440 priv->eee_active = 1; 441 timer_setup(&priv->eee_ctrl_timer, 442 stmmac_eee_ctrl_timer, 0); 443 mod_timer(&priv->eee_ctrl_timer, 444 STMMAC_LPI_T(eee_timer)); 445 446 stmmac_set_eee_timer(priv, priv->hw, 447 STMMAC_DEFAULT_LIT_LS, tx_lpi_timer); 448 } 449 /* Set HW EEE according to the speed */ 450 stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link); 451 452 ret = true; 453 mutex_unlock(&priv->lock); 454 455 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 456 } 457 out: 458 return ret; 459 } 460 461 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 462 * @priv: driver private structure 463 * @p : descriptor pointer 464 * @skb : the socket buffer 465 * Description : 466 * This function will read timestamp from the descriptor & pass it to stack. 467 * and also perform some sanity checks. 468 */ 469 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 470 struct dma_desc *p, struct sk_buff *skb) 471 { 472 struct skb_shared_hwtstamps shhwtstamp; 473 u64 ns; 474 475 if (!priv->hwts_tx_en) 476 return; 477 478 /* exit if skb doesn't support hw tstamp */ 479 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 480 return; 481 482 /* check tx tstamp status */ 483 if (stmmac_get_tx_timestamp_status(priv, p)) { 484 /* get the valid tstamp */ 485 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 486 487 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 488 shhwtstamp.hwtstamp = ns_to_ktime(ns); 489 490 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 491 /* pass tstamp to stack */ 492 skb_tstamp_tx(skb, &shhwtstamp); 493 } 494 495 return; 496 } 497 498 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 499 * @priv: driver private structure 500 * @p : descriptor pointer 501 * @np : next descriptor pointer 502 * @skb : the socket buffer 503 * Description : 504 * This function will read received packet's timestamp from the descriptor 505 * and pass it to stack. It also perform some sanity checks. 506 */ 507 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 508 struct dma_desc *np, struct sk_buff *skb) 509 { 510 struct skb_shared_hwtstamps *shhwtstamp = NULL; 511 struct dma_desc *desc = p; 512 u64 ns; 513 514 if (!priv->hwts_rx_en) 515 return; 516 /* For GMAC4, the valid timestamp is from CTX next desc. */ 517 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 518 desc = np; 519 520 /* Check if timestamp is available */ 521 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 522 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 523 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 524 shhwtstamp = skb_hwtstamps(skb); 525 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 526 shhwtstamp->hwtstamp = ns_to_ktime(ns); 527 } else { 528 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 529 } 530 } 531 532 /** 533 * stmmac_hwtstamp_ioctl - control hardware timestamping. 534 * @dev: device pointer. 535 * @ifr: An IOCTL specific structure, that can contain a pointer to 536 * a proprietary structure used to pass information to the driver. 537 * Description: 538 * This function configures the MAC to enable/disable both outgoing(TX) 539 * and incoming(RX) packets time stamping based on user input. 540 * Return Value: 541 * 0 on success and an appropriate -ve integer on failure. 542 */ 543 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 544 { 545 struct stmmac_priv *priv = netdev_priv(dev); 546 struct hwtstamp_config config; 547 struct timespec64 now; 548 u64 temp = 0; 549 u32 ptp_v2 = 0; 550 u32 tstamp_all = 0; 551 u32 ptp_over_ipv4_udp = 0; 552 u32 ptp_over_ipv6_udp = 0; 553 u32 ptp_over_ethernet = 0; 554 u32 snap_type_sel = 0; 555 u32 ts_master_en = 0; 556 u32 ts_event_en = 0; 557 u32 value = 0; 558 u32 sec_inc; 559 bool xmac; 560 561 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 562 563 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 564 netdev_alert(priv->dev, "No support for HW time stamping\n"); 565 priv->hwts_tx_en = 0; 566 priv->hwts_rx_en = 0; 567 568 return -EOPNOTSUPP; 569 } 570 571 if (copy_from_user(&config, ifr->ifr_data, 572 sizeof(struct hwtstamp_config))) 573 return -EFAULT; 574 575 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 576 __func__, config.flags, config.tx_type, config.rx_filter); 577 578 /* reserved for future extensions */ 579 if (config.flags) 580 return -EINVAL; 581 582 if (config.tx_type != HWTSTAMP_TX_OFF && 583 config.tx_type != HWTSTAMP_TX_ON) 584 return -ERANGE; 585 586 if (priv->adv_ts) { 587 switch (config.rx_filter) { 588 case HWTSTAMP_FILTER_NONE: 589 /* time stamp no incoming packet at all */ 590 config.rx_filter = HWTSTAMP_FILTER_NONE; 591 break; 592 593 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 594 /* PTP v1, UDP, any kind of event packet */ 595 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 596 /* take time stamp for all event messages */ 597 if (xmac) 598 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1; 599 else 600 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 601 602 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 603 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 604 break; 605 606 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 607 /* PTP v1, UDP, Sync packet */ 608 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 609 /* take time stamp for SYNC messages only */ 610 ts_event_en = PTP_TCR_TSEVNTENA; 611 612 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 613 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 614 break; 615 616 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 617 /* PTP v1, UDP, Delay_req packet */ 618 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 619 /* take time stamp for Delay_Req messages only */ 620 ts_master_en = PTP_TCR_TSMSTRENA; 621 ts_event_en = PTP_TCR_TSEVNTENA; 622 623 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 624 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 625 break; 626 627 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 628 /* PTP v2, UDP, any kind of event packet */ 629 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 630 ptp_v2 = PTP_TCR_TSVER2ENA; 631 /* take time stamp for all event messages */ 632 if (xmac) 633 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1; 634 else 635 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 636 637 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 638 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 639 break; 640 641 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 642 /* PTP v2, UDP, Sync packet */ 643 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 644 ptp_v2 = PTP_TCR_TSVER2ENA; 645 /* take time stamp for SYNC messages only */ 646 ts_event_en = PTP_TCR_TSEVNTENA; 647 648 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 649 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 650 break; 651 652 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 653 /* PTP v2, UDP, Delay_req packet */ 654 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 655 ptp_v2 = PTP_TCR_TSVER2ENA; 656 /* take time stamp for Delay_Req messages only */ 657 ts_master_en = PTP_TCR_TSMSTRENA; 658 ts_event_en = PTP_TCR_TSEVNTENA; 659 660 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 661 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 662 break; 663 664 case HWTSTAMP_FILTER_PTP_V2_EVENT: 665 /* PTP v2/802.AS1 any layer, any kind of event packet */ 666 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 667 ptp_v2 = PTP_TCR_TSVER2ENA; 668 /* take time stamp for all event messages */ 669 if (xmac) 670 snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1; 671 else 672 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 673 674 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 675 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 676 ptp_over_ethernet = PTP_TCR_TSIPENA; 677 break; 678 679 case HWTSTAMP_FILTER_PTP_V2_SYNC: 680 /* PTP v2/802.AS1, any layer, Sync packet */ 681 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 682 ptp_v2 = PTP_TCR_TSVER2ENA; 683 /* take time stamp for SYNC messages only */ 684 ts_event_en = PTP_TCR_TSEVNTENA; 685 686 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 687 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 688 ptp_over_ethernet = PTP_TCR_TSIPENA; 689 break; 690 691 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 692 /* PTP v2/802.AS1, any layer, Delay_req packet */ 693 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 694 ptp_v2 = PTP_TCR_TSVER2ENA; 695 /* take time stamp for Delay_Req messages only */ 696 ts_master_en = PTP_TCR_TSMSTRENA; 697 ts_event_en = PTP_TCR_TSEVNTENA; 698 699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 701 ptp_over_ethernet = PTP_TCR_TSIPENA; 702 break; 703 704 case HWTSTAMP_FILTER_NTP_ALL: 705 case HWTSTAMP_FILTER_ALL: 706 /* time stamp any incoming packet */ 707 config.rx_filter = HWTSTAMP_FILTER_ALL; 708 tstamp_all = PTP_TCR_TSENALL; 709 break; 710 711 default: 712 return -ERANGE; 713 } 714 } else { 715 switch (config.rx_filter) { 716 case HWTSTAMP_FILTER_NONE: 717 config.rx_filter = HWTSTAMP_FILTER_NONE; 718 break; 719 default: 720 /* PTP v1, UDP, any kind of event packet */ 721 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 722 break; 723 } 724 } 725 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 726 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 727 728 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 729 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 730 else { 731 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 732 tstamp_all | ptp_v2 | ptp_over_ethernet | 733 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 734 ts_master_en | snap_type_sel); 735 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 736 737 /* program Sub Second Increment reg */ 738 stmmac_config_sub_second_increment(priv, 739 priv->ptpaddr, priv->plat->clk_ptp_rate, 740 xmac, &sec_inc); 741 temp = div_u64(1000000000ULL, sec_inc); 742 743 /* Store sub second increment and flags for later use */ 744 priv->sub_second_inc = sec_inc; 745 priv->systime_flags = value; 746 747 /* calculate default added value: 748 * formula is : 749 * addend = (2^32)/freq_div_ratio; 750 * where, freq_div_ratio = 1e9ns/sec_inc 751 */ 752 temp = (u64)(temp << 32); 753 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 754 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 755 756 /* initialize system time */ 757 ktime_get_real_ts64(&now); 758 759 /* lower 32 bits of tv_sec are safe until y2106 */ 760 stmmac_init_systime(priv, priv->ptpaddr, 761 (u32)now.tv_sec, now.tv_nsec); 762 } 763 764 return copy_to_user(ifr->ifr_data, &config, 765 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 766 } 767 768 /** 769 * stmmac_init_ptp - init PTP 770 * @priv: driver private structure 771 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 772 * This is done by looking at the HW cap. register. 773 * This function also registers the ptp driver. 774 */ 775 static int stmmac_init_ptp(struct stmmac_priv *priv) 776 { 777 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 778 779 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 780 return -EOPNOTSUPP; 781 782 priv->adv_ts = 0; 783 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 784 if (xmac && priv->dma_cap.atime_stamp) 785 priv->adv_ts = 1; 786 /* Dwmac 3.x core with extend_desc can support adv_ts */ 787 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 788 priv->adv_ts = 1; 789 790 if (priv->dma_cap.time_stamp) 791 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 792 793 if (priv->adv_ts) 794 netdev_info(priv->dev, 795 "IEEE 1588-2008 Advanced Timestamp supported\n"); 796 797 priv->hwts_tx_en = 0; 798 priv->hwts_rx_en = 0; 799 800 stmmac_ptp_register(priv); 801 802 return 0; 803 } 804 805 static void stmmac_release_ptp(struct stmmac_priv *priv) 806 { 807 if (priv->plat->clk_ptp_ref) 808 clk_disable_unprepare(priv->plat->clk_ptp_ref); 809 stmmac_ptp_unregister(priv); 810 } 811 812 /** 813 * stmmac_mac_flow_ctrl - Configure flow control in all queues 814 * @priv: driver private structure 815 * Description: It is used for configuring the flow control in all queues 816 */ 817 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 818 { 819 u32 tx_cnt = priv->plat->tx_queues_to_use; 820 821 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 822 priv->pause, tx_cnt); 823 } 824 825 /** 826 * stmmac_adjust_link - adjusts the link parameters 827 * @dev: net device structure 828 * Description: this is the helper called by the physical abstraction layer 829 * drivers to communicate the phy link status. According the speed and duplex 830 * this driver can invoke registered glue-logic as well. 831 * It also invoke the eee initialization because it could happen when switch 832 * on different networks (that are eee capable). 833 */ 834 static void stmmac_adjust_link(struct net_device *dev) 835 { 836 struct stmmac_priv *priv = netdev_priv(dev); 837 struct phy_device *phydev = dev->phydev; 838 bool new_state = false; 839 840 if (!phydev) 841 return; 842 843 mutex_lock(&priv->lock); 844 845 if (phydev->link) { 846 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 847 848 /* Now we make sure that we can be in full duplex mode. 849 * If not, we operate in half-duplex mode. */ 850 if (phydev->duplex != priv->oldduplex) { 851 new_state = true; 852 if (!phydev->duplex) 853 ctrl &= ~priv->hw->link.duplex; 854 else 855 ctrl |= priv->hw->link.duplex; 856 priv->oldduplex = phydev->duplex; 857 } 858 /* Flow Control operation */ 859 if (phydev->pause) 860 stmmac_mac_flow_ctrl(priv, phydev->duplex); 861 862 if (phydev->speed != priv->speed) { 863 new_state = true; 864 ctrl &= ~priv->hw->link.speed_mask; 865 switch (phydev->speed) { 866 case SPEED_1000: 867 ctrl |= priv->hw->link.speed1000; 868 break; 869 case SPEED_100: 870 ctrl |= priv->hw->link.speed100; 871 break; 872 case SPEED_10: 873 ctrl |= priv->hw->link.speed10; 874 break; 875 default: 876 netif_warn(priv, link, priv->dev, 877 "broken speed: %d\n", phydev->speed); 878 phydev->speed = SPEED_UNKNOWN; 879 break; 880 } 881 if (phydev->speed != SPEED_UNKNOWN) 882 stmmac_hw_fix_mac_speed(priv); 883 priv->speed = phydev->speed; 884 } 885 886 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 887 888 if (!priv->oldlink) { 889 new_state = true; 890 priv->oldlink = true; 891 } 892 } else if (priv->oldlink) { 893 new_state = true; 894 priv->oldlink = false; 895 priv->speed = SPEED_UNKNOWN; 896 priv->oldduplex = DUPLEX_UNKNOWN; 897 } 898 899 if (new_state && netif_msg_link(priv)) 900 phy_print_status(phydev); 901 902 mutex_unlock(&priv->lock); 903 904 if (phydev->is_pseudo_fixed_link) 905 /* Stop PHY layer to call the hook to adjust the link in case 906 * of a switch is attached to the stmmac driver. 907 */ 908 phydev->irq = PHY_IGNORE_INTERRUPT; 909 else 910 /* At this stage, init the EEE if supported. 911 * Never called in case of fixed_link. 912 */ 913 priv->eee_enabled = stmmac_eee_init(priv); 914 } 915 916 /** 917 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 918 * @priv: driver private structure 919 * Description: this is to verify if the HW supports the PCS. 920 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 921 * configured for the TBI, RTBI, or SGMII PHY interface. 922 */ 923 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 924 { 925 int interface = priv->plat->interface; 926 927 if (priv->dma_cap.pcs) { 928 if ((interface == PHY_INTERFACE_MODE_RGMII) || 929 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 930 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 931 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 932 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 933 priv->hw->pcs = STMMAC_PCS_RGMII; 934 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 935 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 936 priv->hw->pcs = STMMAC_PCS_SGMII; 937 } 938 } 939 } 940 941 /** 942 * stmmac_init_phy - PHY initialization 943 * @dev: net device structure 944 * Description: it initializes the driver's PHY state, and attaches the PHY 945 * to the mac driver. 946 * Return value: 947 * 0 on success 948 */ 949 static int stmmac_init_phy(struct net_device *dev) 950 { 951 struct stmmac_priv *priv = netdev_priv(dev); 952 u32 tx_cnt = priv->plat->tx_queues_to_use; 953 struct phy_device *phydev; 954 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 955 char bus_id[MII_BUS_ID_SIZE]; 956 int interface = priv->plat->interface; 957 int max_speed = priv->plat->max_speed; 958 priv->oldlink = false; 959 priv->speed = SPEED_UNKNOWN; 960 priv->oldduplex = DUPLEX_UNKNOWN; 961 962 if (priv->plat->phy_node) { 963 phydev = of_phy_connect(dev, priv->plat->phy_node, 964 &stmmac_adjust_link, 0, interface); 965 } else { 966 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 967 priv->plat->bus_id); 968 969 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 970 priv->plat->phy_addr); 971 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__, 972 phy_id_fmt); 973 974 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 975 interface); 976 } 977 978 if (IS_ERR_OR_NULL(phydev)) { 979 netdev_err(priv->dev, "Could not attach to PHY\n"); 980 if (!phydev) 981 return -ENODEV; 982 983 return PTR_ERR(phydev); 984 } 985 986 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 987 if ((interface == PHY_INTERFACE_MODE_MII) || 988 (interface == PHY_INTERFACE_MODE_RMII) || 989 (max_speed < 1000 && max_speed > 0)) 990 phy_set_max_speed(phydev, SPEED_100); 991 992 /* 993 * Half-duplex mode not supported with multiqueue 994 * half-duplex can only works with single queue 995 */ 996 if (tx_cnt > 1) { 997 phy_remove_link_mode(phydev, 998 ETHTOOL_LINK_MODE_10baseT_Half_BIT); 999 phy_remove_link_mode(phydev, 1000 ETHTOOL_LINK_MODE_100baseT_Half_BIT); 1001 phy_remove_link_mode(phydev, 1002 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1003 } 1004 1005 /* 1006 * Broken HW is sometimes missing the pull-up resistor on the 1007 * MDIO line, which results in reads to non-existent devices returning 1008 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 1009 * device as well. 1010 * Note: phydev->phy_id is the result of reading the UID PHY registers. 1011 */ 1012 if (!priv->plat->phy_node && phydev->phy_id == 0) { 1013 phy_disconnect(phydev); 1014 return -ENODEV; 1015 } 1016 1017 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid 1018 * subsequent PHY polling, make sure we force a link transition if 1019 * we have a UP/DOWN/UP transition 1020 */ 1021 if (phydev->is_pseudo_fixed_link) 1022 phydev->irq = PHY_POLL; 1023 1024 phy_attached_info(phydev); 1025 return 0; 1026 } 1027 1028 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1029 { 1030 u32 rx_cnt = priv->plat->rx_queues_to_use; 1031 void *head_rx; 1032 u32 queue; 1033 1034 /* Display RX rings */ 1035 for (queue = 0; queue < rx_cnt; queue++) { 1036 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1037 1038 pr_info("\tRX Queue %u rings\n", queue); 1039 1040 if (priv->extend_desc) 1041 head_rx = (void *)rx_q->dma_erx; 1042 else 1043 head_rx = (void *)rx_q->dma_rx; 1044 1045 /* Display RX ring */ 1046 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1047 } 1048 } 1049 1050 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1051 { 1052 u32 tx_cnt = priv->plat->tx_queues_to_use; 1053 void *head_tx; 1054 u32 queue; 1055 1056 /* Display TX rings */ 1057 for (queue = 0; queue < tx_cnt; queue++) { 1058 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1059 1060 pr_info("\tTX Queue %d rings\n", queue); 1061 1062 if (priv->extend_desc) 1063 head_tx = (void *)tx_q->dma_etx; 1064 else 1065 head_tx = (void *)tx_q->dma_tx; 1066 1067 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1068 } 1069 } 1070 1071 static void stmmac_display_rings(struct stmmac_priv *priv) 1072 { 1073 /* Display RX ring */ 1074 stmmac_display_rx_rings(priv); 1075 1076 /* Display TX ring */ 1077 stmmac_display_tx_rings(priv); 1078 } 1079 1080 static int stmmac_set_bfsize(int mtu, int bufsize) 1081 { 1082 int ret = bufsize; 1083 1084 if (mtu >= BUF_SIZE_4KiB) 1085 ret = BUF_SIZE_8KiB; 1086 else if (mtu >= BUF_SIZE_2KiB) 1087 ret = BUF_SIZE_4KiB; 1088 else if (mtu > DEFAULT_BUFSIZE) 1089 ret = BUF_SIZE_2KiB; 1090 else 1091 ret = DEFAULT_BUFSIZE; 1092 1093 return ret; 1094 } 1095 1096 /** 1097 * stmmac_clear_rx_descriptors - clear RX descriptors 1098 * @priv: driver private structure 1099 * @queue: RX queue index 1100 * Description: this function is called to clear the RX descriptors 1101 * in case of both basic and extended descriptors are used. 1102 */ 1103 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1104 { 1105 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1106 int i; 1107 1108 /* Clear the RX descriptors */ 1109 for (i = 0; i < DMA_RX_SIZE; i++) 1110 if (priv->extend_desc) 1111 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1112 priv->use_riwt, priv->mode, 1113 (i == DMA_RX_SIZE - 1)); 1114 else 1115 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1116 priv->use_riwt, priv->mode, 1117 (i == DMA_RX_SIZE - 1)); 1118 } 1119 1120 /** 1121 * stmmac_clear_tx_descriptors - clear tx descriptors 1122 * @priv: driver private structure 1123 * @queue: TX queue index. 1124 * Description: this function is called to clear the TX descriptors 1125 * in case of both basic and extended descriptors are used. 1126 */ 1127 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1128 { 1129 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1130 int i; 1131 1132 /* Clear the TX descriptors */ 1133 for (i = 0; i < DMA_TX_SIZE; i++) 1134 if (priv->extend_desc) 1135 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1136 priv->mode, (i == DMA_TX_SIZE - 1)); 1137 else 1138 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1139 priv->mode, (i == DMA_TX_SIZE - 1)); 1140 } 1141 1142 /** 1143 * stmmac_clear_descriptors - clear descriptors 1144 * @priv: driver private structure 1145 * Description: this function is called to clear the TX and RX descriptors 1146 * in case of both basic and extended descriptors are used. 1147 */ 1148 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1149 { 1150 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1151 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1152 u32 queue; 1153 1154 /* Clear the RX descriptors */ 1155 for (queue = 0; queue < rx_queue_cnt; queue++) 1156 stmmac_clear_rx_descriptors(priv, queue); 1157 1158 /* Clear the TX descriptors */ 1159 for (queue = 0; queue < tx_queue_cnt; queue++) 1160 stmmac_clear_tx_descriptors(priv, queue); 1161 } 1162 1163 /** 1164 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1165 * @priv: driver private structure 1166 * @p: descriptor pointer 1167 * @i: descriptor index 1168 * @flags: gfp flag 1169 * @queue: RX queue index 1170 * Description: this function is called to allocate a receive buffer, perform 1171 * the DMA mapping and init the descriptor. 1172 */ 1173 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1174 int i, gfp_t flags, u32 queue) 1175 { 1176 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1177 struct sk_buff *skb; 1178 1179 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 1180 if (!skb) { 1181 netdev_err(priv->dev, 1182 "%s: Rx init fails; skb is NULL\n", __func__); 1183 return -ENOMEM; 1184 } 1185 rx_q->rx_skbuff[i] = skb; 1186 rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 1187 priv->dma_buf_sz, 1188 DMA_FROM_DEVICE); 1189 if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) { 1190 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 1191 dev_kfree_skb_any(skb); 1192 return -EINVAL; 1193 } 1194 1195 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]); 1196 1197 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1198 stmmac_init_desc3(priv, p); 1199 1200 return 0; 1201 } 1202 1203 /** 1204 * stmmac_free_rx_buffer - free RX dma buffers 1205 * @priv: private structure 1206 * @queue: RX queue index 1207 * @i: buffer index. 1208 */ 1209 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1210 { 1211 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1212 1213 if (rx_q->rx_skbuff[i]) { 1214 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i], 1215 priv->dma_buf_sz, DMA_FROM_DEVICE); 1216 dev_kfree_skb_any(rx_q->rx_skbuff[i]); 1217 } 1218 rx_q->rx_skbuff[i] = NULL; 1219 } 1220 1221 /** 1222 * stmmac_free_tx_buffer - free RX dma buffers 1223 * @priv: private structure 1224 * @queue: RX queue index 1225 * @i: buffer index. 1226 */ 1227 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1228 { 1229 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1230 1231 if (tx_q->tx_skbuff_dma[i].buf) { 1232 if (tx_q->tx_skbuff_dma[i].map_as_page) 1233 dma_unmap_page(priv->device, 1234 tx_q->tx_skbuff_dma[i].buf, 1235 tx_q->tx_skbuff_dma[i].len, 1236 DMA_TO_DEVICE); 1237 else 1238 dma_unmap_single(priv->device, 1239 tx_q->tx_skbuff_dma[i].buf, 1240 tx_q->tx_skbuff_dma[i].len, 1241 DMA_TO_DEVICE); 1242 } 1243 1244 if (tx_q->tx_skbuff[i]) { 1245 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1246 tx_q->tx_skbuff[i] = NULL; 1247 tx_q->tx_skbuff_dma[i].buf = 0; 1248 tx_q->tx_skbuff_dma[i].map_as_page = false; 1249 } 1250 } 1251 1252 /** 1253 * init_dma_rx_desc_rings - init the RX descriptor rings 1254 * @dev: net device structure 1255 * @flags: gfp flag. 1256 * Description: this function initializes the DMA RX descriptors 1257 * and allocates the socket buffers. It supports the chained and ring 1258 * modes. 1259 */ 1260 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1261 { 1262 struct stmmac_priv *priv = netdev_priv(dev); 1263 u32 rx_count = priv->plat->rx_queues_to_use; 1264 int ret = -ENOMEM; 1265 int bfsize = 0; 1266 int queue; 1267 int i; 1268 1269 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 1270 if (bfsize < 0) 1271 bfsize = 0; 1272 1273 if (bfsize < BUF_SIZE_16KiB) 1274 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1275 1276 priv->dma_buf_sz = bfsize; 1277 1278 /* RX INITIALIZATION */ 1279 netif_dbg(priv, probe, priv->dev, 1280 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1281 1282 for (queue = 0; queue < rx_count; queue++) { 1283 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1284 1285 netif_dbg(priv, probe, priv->dev, 1286 "(%s) dma_rx_phy=0x%08x\n", __func__, 1287 (u32)rx_q->dma_rx_phy); 1288 1289 for (i = 0; i < DMA_RX_SIZE; i++) { 1290 struct dma_desc *p; 1291 1292 if (priv->extend_desc) 1293 p = &((rx_q->dma_erx + i)->basic); 1294 else 1295 p = rx_q->dma_rx + i; 1296 1297 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1298 queue); 1299 if (ret) 1300 goto err_init_rx_buffers; 1301 1302 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n", 1303 rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data, 1304 (unsigned int)rx_q->rx_skbuff_dma[i]); 1305 } 1306 1307 rx_q->cur_rx = 0; 1308 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1309 1310 stmmac_clear_rx_descriptors(priv, queue); 1311 1312 /* Setup the chained descriptor addresses */ 1313 if (priv->mode == STMMAC_CHAIN_MODE) { 1314 if (priv->extend_desc) 1315 stmmac_mode_init(priv, rx_q->dma_erx, 1316 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1317 else 1318 stmmac_mode_init(priv, rx_q->dma_rx, 1319 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1320 } 1321 } 1322 1323 buf_sz = bfsize; 1324 1325 return 0; 1326 1327 err_init_rx_buffers: 1328 while (queue >= 0) { 1329 while (--i >= 0) 1330 stmmac_free_rx_buffer(priv, queue, i); 1331 1332 if (queue == 0) 1333 break; 1334 1335 i = DMA_RX_SIZE; 1336 queue--; 1337 } 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * init_dma_tx_desc_rings - init the TX descriptor rings 1344 * @dev: net device structure. 1345 * Description: this function initializes the DMA TX descriptors 1346 * and allocates the socket buffers. It supports the chained and ring 1347 * modes. 1348 */ 1349 static int init_dma_tx_desc_rings(struct net_device *dev) 1350 { 1351 struct stmmac_priv *priv = netdev_priv(dev); 1352 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1353 u32 queue; 1354 int i; 1355 1356 for (queue = 0; queue < tx_queue_cnt; queue++) { 1357 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1358 1359 netif_dbg(priv, probe, priv->dev, 1360 "(%s) dma_tx_phy=0x%08x\n", __func__, 1361 (u32)tx_q->dma_tx_phy); 1362 1363 /* Setup the chained descriptor addresses */ 1364 if (priv->mode == STMMAC_CHAIN_MODE) { 1365 if (priv->extend_desc) 1366 stmmac_mode_init(priv, tx_q->dma_etx, 1367 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1368 else 1369 stmmac_mode_init(priv, tx_q->dma_tx, 1370 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1371 } 1372 1373 for (i = 0; i < DMA_TX_SIZE; i++) { 1374 struct dma_desc *p; 1375 if (priv->extend_desc) 1376 p = &((tx_q->dma_etx + i)->basic); 1377 else 1378 p = tx_q->dma_tx + i; 1379 1380 stmmac_clear_desc(priv, p); 1381 1382 tx_q->tx_skbuff_dma[i].buf = 0; 1383 tx_q->tx_skbuff_dma[i].map_as_page = false; 1384 tx_q->tx_skbuff_dma[i].len = 0; 1385 tx_q->tx_skbuff_dma[i].last_segment = false; 1386 tx_q->tx_skbuff[i] = NULL; 1387 } 1388 1389 tx_q->dirty_tx = 0; 1390 tx_q->cur_tx = 0; 1391 tx_q->mss = 0; 1392 1393 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1394 } 1395 1396 return 0; 1397 } 1398 1399 /** 1400 * init_dma_desc_rings - init the RX/TX descriptor rings 1401 * @dev: net device structure 1402 * @flags: gfp flag. 1403 * Description: this function initializes the DMA RX/TX descriptors 1404 * and allocates the socket buffers. It supports the chained and ring 1405 * modes. 1406 */ 1407 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1408 { 1409 struct stmmac_priv *priv = netdev_priv(dev); 1410 int ret; 1411 1412 ret = init_dma_rx_desc_rings(dev, flags); 1413 if (ret) 1414 return ret; 1415 1416 ret = init_dma_tx_desc_rings(dev); 1417 1418 stmmac_clear_descriptors(priv); 1419 1420 if (netif_msg_hw(priv)) 1421 stmmac_display_rings(priv); 1422 1423 return ret; 1424 } 1425 1426 /** 1427 * dma_free_rx_skbufs - free RX dma buffers 1428 * @priv: private structure 1429 * @queue: RX queue index 1430 */ 1431 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1432 { 1433 int i; 1434 1435 for (i = 0; i < DMA_RX_SIZE; i++) 1436 stmmac_free_rx_buffer(priv, queue, i); 1437 } 1438 1439 /** 1440 * dma_free_tx_skbufs - free TX dma buffers 1441 * @priv: private structure 1442 * @queue: TX queue index 1443 */ 1444 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1445 { 1446 int i; 1447 1448 for (i = 0; i < DMA_TX_SIZE; i++) 1449 stmmac_free_tx_buffer(priv, queue, i); 1450 } 1451 1452 /** 1453 * free_dma_rx_desc_resources - free RX dma desc resources 1454 * @priv: private structure 1455 */ 1456 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1457 { 1458 u32 rx_count = priv->plat->rx_queues_to_use; 1459 u32 queue; 1460 1461 /* Free RX queue resources */ 1462 for (queue = 0; queue < rx_count; queue++) { 1463 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1464 1465 /* Release the DMA RX socket buffers */ 1466 dma_free_rx_skbufs(priv, queue); 1467 1468 /* Free DMA regions of consistent memory previously allocated */ 1469 if (!priv->extend_desc) 1470 dma_free_coherent(priv->device, 1471 DMA_RX_SIZE * sizeof(struct dma_desc), 1472 rx_q->dma_rx, rx_q->dma_rx_phy); 1473 else 1474 dma_free_coherent(priv->device, DMA_RX_SIZE * 1475 sizeof(struct dma_extended_desc), 1476 rx_q->dma_erx, rx_q->dma_rx_phy); 1477 1478 kfree(rx_q->rx_skbuff_dma); 1479 kfree(rx_q->rx_skbuff); 1480 } 1481 } 1482 1483 /** 1484 * free_dma_tx_desc_resources - free TX dma desc resources 1485 * @priv: private structure 1486 */ 1487 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1488 { 1489 u32 tx_count = priv->plat->tx_queues_to_use; 1490 u32 queue; 1491 1492 /* Free TX queue resources */ 1493 for (queue = 0; queue < tx_count; queue++) { 1494 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1495 1496 /* Release the DMA TX socket buffers */ 1497 dma_free_tx_skbufs(priv, queue); 1498 1499 /* Free DMA regions of consistent memory previously allocated */ 1500 if (!priv->extend_desc) 1501 dma_free_coherent(priv->device, 1502 DMA_TX_SIZE * sizeof(struct dma_desc), 1503 tx_q->dma_tx, tx_q->dma_tx_phy); 1504 else 1505 dma_free_coherent(priv->device, DMA_TX_SIZE * 1506 sizeof(struct dma_extended_desc), 1507 tx_q->dma_etx, tx_q->dma_tx_phy); 1508 1509 kfree(tx_q->tx_skbuff_dma); 1510 kfree(tx_q->tx_skbuff); 1511 } 1512 } 1513 1514 /** 1515 * alloc_dma_rx_desc_resources - alloc RX resources. 1516 * @priv: private structure 1517 * Description: according to which descriptor can be used (extend or basic) 1518 * this function allocates the resources for TX and RX paths. In case of 1519 * reception, for example, it pre-allocated the RX socket buffer in order to 1520 * allow zero-copy mechanism. 1521 */ 1522 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1523 { 1524 u32 rx_count = priv->plat->rx_queues_to_use; 1525 int ret = -ENOMEM; 1526 u32 queue; 1527 1528 /* RX queues buffers and DMA */ 1529 for (queue = 0; queue < rx_count; queue++) { 1530 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1531 1532 rx_q->queue_index = queue; 1533 rx_q->priv_data = priv; 1534 1535 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, 1536 sizeof(dma_addr_t), 1537 GFP_KERNEL); 1538 if (!rx_q->rx_skbuff_dma) 1539 goto err_dma; 1540 1541 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE, 1542 sizeof(struct sk_buff *), 1543 GFP_KERNEL); 1544 if (!rx_q->rx_skbuff) 1545 goto err_dma; 1546 1547 if (priv->extend_desc) { 1548 rx_q->dma_erx = dma_zalloc_coherent(priv->device, 1549 DMA_RX_SIZE * 1550 sizeof(struct 1551 dma_extended_desc), 1552 &rx_q->dma_rx_phy, 1553 GFP_KERNEL); 1554 if (!rx_q->dma_erx) 1555 goto err_dma; 1556 1557 } else { 1558 rx_q->dma_rx = dma_zalloc_coherent(priv->device, 1559 DMA_RX_SIZE * 1560 sizeof(struct 1561 dma_desc), 1562 &rx_q->dma_rx_phy, 1563 GFP_KERNEL); 1564 if (!rx_q->dma_rx) 1565 goto err_dma; 1566 } 1567 } 1568 1569 return 0; 1570 1571 err_dma: 1572 free_dma_rx_desc_resources(priv); 1573 1574 return ret; 1575 } 1576 1577 /** 1578 * alloc_dma_tx_desc_resources - alloc TX resources. 1579 * @priv: private structure 1580 * Description: according to which descriptor can be used (extend or basic) 1581 * this function allocates the resources for TX and RX paths. In case of 1582 * reception, for example, it pre-allocated the RX socket buffer in order to 1583 * allow zero-copy mechanism. 1584 */ 1585 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1586 { 1587 u32 tx_count = priv->plat->tx_queues_to_use; 1588 int ret = -ENOMEM; 1589 u32 queue; 1590 1591 /* TX queues buffers and DMA */ 1592 for (queue = 0; queue < tx_count; queue++) { 1593 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1594 1595 tx_q->queue_index = queue; 1596 tx_q->priv_data = priv; 1597 1598 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE, 1599 sizeof(*tx_q->tx_skbuff_dma), 1600 GFP_KERNEL); 1601 if (!tx_q->tx_skbuff_dma) 1602 goto err_dma; 1603 1604 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE, 1605 sizeof(struct sk_buff *), 1606 GFP_KERNEL); 1607 if (!tx_q->tx_skbuff) 1608 goto err_dma; 1609 1610 if (priv->extend_desc) { 1611 tx_q->dma_etx = dma_zalloc_coherent(priv->device, 1612 DMA_TX_SIZE * 1613 sizeof(struct 1614 dma_extended_desc), 1615 &tx_q->dma_tx_phy, 1616 GFP_KERNEL); 1617 if (!tx_q->dma_etx) 1618 goto err_dma; 1619 } else { 1620 tx_q->dma_tx = dma_zalloc_coherent(priv->device, 1621 DMA_TX_SIZE * 1622 sizeof(struct 1623 dma_desc), 1624 &tx_q->dma_tx_phy, 1625 GFP_KERNEL); 1626 if (!tx_q->dma_tx) 1627 goto err_dma; 1628 } 1629 } 1630 1631 return 0; 1632 1633 err_dma: 1634 free_dma_tx_desc_resources(priv); 1635 1636 return ret; 1637 } 1638 1639 /** 1640 * alloc_dma_desc_resources - alloc TX/RX resources. 1641 * @priv: private structure 1642 * Description: according to which descriptor can be used (extend or basic) 1643 * this function allocates the resources for TX and RX paths. In case of 1644 * reception, for example, it pre-allocated the RX socket buffer in order to 1645 * allow zero-copy mechanism. 1646 */ 1647 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1648 { 1649 /* RX Allocation */ 1650 int ret = alloc_dma_rx_desc_resources(priv); 1651 1652 if (ret) 1653 return ret; 1654 1655 ret = alloc_dma_tx_desc_resources(priv); 1656 1657 return ret; 1658 } 1659 1660 /** 1661 * free_dma_desc_resources - free dma desc resources 1662 * @priv: private structure 1663 */ 1664 static void free_dma_desc_resources(struct stmmac_priv *priv) 1665 { 1666 /* Release the DMA RX socket buffers */ 1667 free_dma_rx_desc_resources(priv); 1668 1669 /* Release the DMA TX socket buffers */ 1670 free_dma_tx_desc_resources(priv); 1671 } 1672 1673 /** 1674 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1675 * @priv: driver private structure 1676 * Description: It is used for enabling the rx queues in the MAC 1677 */ 1678 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1679 { 1680 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1681 int queue; 1682 u8 mode; 1683 1684 for (queue = 0; queue < rx_queues_count; queue++) { 1685 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1686 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1687 } 1688 } 1689 1690 /** 1691 * stmmac_start_rx_dma - start RX DMA channel 1692 * @priv: driver private structure 1693 * @chan: RX channel index 1694 * Description: 1695 * This starts a RX DMA channel 1696 */ 1697 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1698 { 1699 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1700 stmmac_start_rx(priv, priv->ioaddr, chan); 1701 } 1702 1703 /** 1704 * stmmac_start_tx_dma - start TX DMA channel 1705 * @priv: driver private structure 1706 * @chan: TX channel index 1707 * Description: 1708 * This starts a TX DMA channel 1709 */ 1710 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1711 { 1712 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1713 stmmac_start_tx(priv, priv->ioaddr, chan); 1714 } 1715 1716 /** 1717 * stmmac_stop_rx_dma - stop RX DMA channel 1718 * @priv: driver private structure 1719 * @chan: RX channel index 1720 * Description: 1721 * This stops a RX DMA channel 1722 */ 1723 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1724 { 1725 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1726 stmmac_stop_rx(priv, priv->ioaddr, chan); 1727 } 1728 1729 /** 1730 * stmmac_stop_tx_dma - stop TX DMA channel 1731 * @priv: driver private structure 1732 * @chan: TX channel index 1733 * Description: 1734 * This stops a TX DMA channel 1735 */ 1736 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1737 { 1738 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1739 stmmac_stop_tx(priv, priv->ioaddr, chan); 1740 } 1741 1742 /** 1743 * stmmac_start_all_dma - start all RX and TX DMA channels 1744 * @priv: driver private structure 1745 * Description: 1746 * This starts all the RX and TX DMA channels 1747 */ 1748 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1749 { 1750 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1751 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1752 u32 chan = 0; 1753 1754 for (chan = 0; chan < rx_channels_count; chan++) 1755 stmmac_start_rx_dma(priv, chan); 1756 1757 for (chan = 0; chan < tx_channels_count; chan++) 1758 stmmac_start_tx_dma(priv, chan); 1759 } 1760 1761 /** 1762 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1763 * @priv: driver private structure 1764 * Description: 1765 * This stops the RX and TX DMA channels 1766 */ 1767 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1768 { 1769 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1770 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1771 u32 chan = 0; 1772 1773 for (chan = 0; chan < rx_channels_count; chan++) 1774 stmmac_stop_rx_dma(priv, chan); 1775 1776 for (chan = 0; chan < tx_channels_count; chan++) 1777 stmmac_stop_tx_dma(priv, chan); 1778 } 1779 1780 /** 1781 * stmmac_dma_operation_mode - HW DMA operation mode 1782 * @priv: driver private structure 1783 * Description: it is used for configuring the DMA operation mode register in 1784 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1785 */ 1786 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1787 { 1788 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1789 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1790 int rxfifosz = priv->plat->rx_fifo_size; 1791 int txfifosz = priv->plat->tx_fifo_size; 1792 u32 txmode = 0; 1793 u32 rxmode = 0; 1794 u32 chan = 0; 1795 u8 qmode = 0; 1796 1797 if (rxfifosz == 0) 1798 rxfifosz = priv->dma_cap.rx_fifo_size; 1799 if (txfifosz == 0) 1800 txfifosz = priv->dma_cap.tx_fifo_size; 1801 1802 /* Adjust for real per queue fifo size */ 1803 rxfifosz /= rx_channels_count; 1804 txfifosz /= tx_channels_count; 1805 1806 if (priv->plat->force_thresh_dma_mode) { 1807 txmode = tc; 1808 rxmode = tc; 1809 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1810 /* 1811 * In case of GMAC, SF mode can be enabled 1812 * to perform the TX COE in HW. This depends on: 1813 * 1) TX COE if actually supported 1814 * 2) There is no bugged Jumbo frame support 1815 * that needs to not insert csum in the TDES. 1816 */ 1817 txmode = SF_DMA_MODE; 1818 rxmode = SF_DMA_MODE; 1819 priv->xstats.threshold = SF_DMA_MODE; 1820 } else { 1821 txmode = tc; 1822 rxmode = SF_DMA_MODE; 1823 } 1824 1825 /* configure all channels */ 1826 for (chan = 0; chan < rx_channels_count; chan++) { 1827 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1828 1829 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1830 rxfifosz, qmode); 1831 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1832 chan); 1833 } 1834 1835 for (chan = 0; chan < tx_channels_count; chan++) { 1836 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1837 1838 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1839 txfifosz, qmode); 1840 } 1841 } 1842 1843 /** 1844 * stmmac_tx_clean - to manage the transmission completion 1845 * @priv: driver private structure 1846 * @queue: TX queue index 1847 * Description: it reclaims the transmit resources after transmission completes. 1848 */ 1849 static void stmmac_tx_clean(struct stmmac_priv *priv, u32 queue) 1850 { 1851 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1852 unsigned int bytes_compl = 0, pkts_compl = 0; 1853 unsigned int entry; 1854 1855 netif_tx_lock(priv->dev); 1856 1857 priv->xstats.tx_clean++; 1858 1859 entry = tx_q->dirty_tx; 1860 while (entry != tx_q->cur_tx) { 1861 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1862 struct dma_desc *p; 1863 int status; 1864 1865 if (priv->extend_desc) 1866 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1867 else 1868 p = tx_q->dma_tx + entry; 1869 1870 status = stmmac_tx_status(priv, &priv->dev->stats, 1871 &priv->xstats, p, priv->ioaddr); 1872 /* Check if the descriptor is owned by the DMA */ 1873 if (unlikely(status & tx_dma_own)) 1874 break; 1875 1876 /* Make sure descriptor fields are read after reading 1877 * the own bit. 1878 */ 1879 dma_rmb(); 1880 1881 /* Just consider the last segment and ...*/ 1882 if (likely(!(status & tx_not_ls))) { 1883 /* ... verify the status error condition */ 1884 if (unlikely(status & tx_err)) { 1885 priv->dev->stats.tx_errors++; 1886 } else { 1887 priv->dev->stats.tx_packets++; 1888 priv->xstats.tx_pkt_n++; 1889 } 1890 stmmac_get_tx_hwtstamp(priv, p, skb); 1891 } 1892 1893 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1894 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1895 dma_unmap_page(priv->device, 1896 tx_q->tx_skbuff_dma[entry].buf, 1897 tx_q->tx_skbuff_dma[entry].len, 1898 DMA_TO_DEVICE); 1899 else 1900 dma_unmap_single(priv->device, 1901 tx_q->tx_skbuff_dma[entry].buf, 1902 tx_q->tx_skbuff_dma[entry].len, 1903 DMA_TO_DEVICE); 1904 tx_q->tx_skbuff_dma[entry].buf = 0; 1905 tx_q->tx_skbuff_dma[entry].len = 0; 1906 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1907 } 1908 1909 stmmac_clean_desc3(priv, tx_q, p); 1910 1911 tx_q->tx_skbuff_dma[entry].last_segment = false; 1912 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1913 1914 if (likely(skb != NULL)) { 1915 pkts_compl++; 1916 bytes_compl += skb->len; 1917 dev_consume_skb_any(skb); 1918 tx_q->tx_skbuff[entry] = NULL; 1919 } 1920 1921 stmmac_release_tx_desc(priv, p, priv->mode); 1922 1923 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1924 } 1925 tx_q->dirty_tx = entry; 1926 1927 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1928 pkts_compl, bytes_compl); 1929 1930 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1931 queue))) && 1932 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1933 1934 netif_dbg(priv, tx_done, priv->dev, 1935 "%s: restart transmit\n", __func__); 1936 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1937 } 1938 1939 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1940 stmmac_enable_eee_mode(priv); 1941 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1942 } 1943 netif_tx_unlock(priv->dev); 1944 } 1945 1946 /** 1947 * stmmac_tx_err - to manage the tx error 1948 * @priv: driver private structure 1949 * @chan: channel index 1950 * Description: it cleans the descriptors and restarts the transmission 1951 * in case of transmission errors. 1952 */ 1953 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 1954 { 1955 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 1956 int i; 1957 1958 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 1959 1960 stmmac_stop_tx_dma(priv, chan); 1961 dma_free_tx_skbufs(priv, chan); 1962 for (i = 0; i < DMA_TX_SIZE; i++) 1963 if (priv->extend_desc) 1964 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1965 priv->mode, (i == DMA_TX_SIZE - 1)); 1966 else 1967 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1968 priv->mode, (i == DMA_TX_SIZE - 1)); 1969 tx_q->dirty_tx = 0; 1970 tx_q->cur_tx = 0; 1971 tx_q->mss = 0; 1972 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 1973 stmmac_start_tx_dma(priv, chan); 1974 1975 priv->dev->stats.tx_errors++; 1976 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 1977 } 1978 1979 /** 1980 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 1981 * @priv: driver private structure 1982 * @txmode: TX operating mode 1983 * @rxmode: RX operating mode 1984 * @chan: channel index 1985 * Description: it is used for configuring of the DMA operation mode in 1986 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 1987 * mode. 1988 */ 1989 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 1990 u32 rxmode, u32 chan) 1991 { 1992 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1993 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1994 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1995 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1996 int rxfifosz = priv->plat->rx_fifo_size; 1997 int txfifosz = priv->plat->tx_fifo_size; 1998 1999 if (rxfifosz == 0) 2000 rxfifosz = priv->dma_cap.rx_fifo_size; 2001 if (txfifosz == 0) 2002 txfifosz = priv->dma_cap.tx_fifo_size; 2003 2004 /* Adjust for real per queue fifo size */ 2005 rxfifosz /= rx_channels_count; 2006 txfifosz /= tx_channels_count; 2007 2008 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2009 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2010 } 2011 2012 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2013 { 2014 int ret; 2015 2016 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2017 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2018 if (ret && (ret != -EINVAL)) { 2019 stmmac_global_err(priv); 2020 return true; 2021 } 2022 2023 return false; 2024 } 2025 2026 /** 2027 * stmmac_dma_interrupt - DMA ISR 2028 * @priv: driver private structure 2029 * Description: this is the DMA ISR. It is called by the main ISR. 2030 * It calls the dwmac dma routine and schedule poll method in case of some 2031 * work can be done. 2032 */ 2033 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2034 { 2035 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2036 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2037 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2038 tx_channel_count : rx_channel_count; 2039 u32 chan; 2040 bool poll_scheduled = false; 2041 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2042 2043 /* Make sure we never check beyond our status buffer. */ 2044 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2045 channels_to_check = ARRAY_SIZE(status); 2046 2047 /* Each DMA channel can be used for rx and tx simultaneously, yet 2048 * napi_struct is embedded in struct stmmac_rx_queue rather than in a 2049 * stmmac_channel struct. 2050 * Because of this, stmmac_poll currently checks (and possibly wakes) 2051 * all tx queues rather than just a single tx queue. 2052 */ 2053 for (chan = 0; chan < channels_to_check; chan++) 2054 status[chan] = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2055 &priv->xstats, chan); 2056 2057 for (chan = 0; chan < rx_channel_count; chan++) { 2058 if (likely(status[chan] & handle_rx)) { 2059 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2060 2061 if (likely(napi_schedule_prep(&rx_q->napi))) { 2062 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2063 __napi_schedule(&rx_q->napi); 2064 poll_scheduled = true; 2065 } 2066 } 2067 } 2068 2069 /* If we scheduled poll, we already know that tx queues will be checked. 2070 * If we didn't schedule poll, see if any DMA channel (used by tx) has a 2071 * completed transmission, if so, call stmmac_poll (once). 2072 */ 2073 if (!poll_scheduled) { 2074 for (chan = 0; chan < tx_channel_count; chan++) { 2075 if (status[chan] & handle_tx) { 2076 /* It doesn't matter what rx queue we choose 2077 * here. We use 0 since it always exists. 2078 */ 2079 struct stmmac_rx_queue *rx_q = 2080 &priv->rx_queue[0]; 2081 2082 if (likely(napi_schedule_prep(&rx_q->napi))) { 2083 stmmac_disable_dma_irq(priv, 2084 priv->ioaddr, chan); 2085 __napi_schedule(&rx_q->napi); 2086 } 2087 break; 2088 } 2089 } 2090 } 2091 2092 for (chan = 0; chan < tx_channel_count; chan++) { 2093 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2094 /* Try to bump up the dma threshold on this failure */ 2095 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2096 (tc <= 256)) { 2097 tc += 64; 2098 if (priv->plat->force_thresh_dma_mode) 2099 stmmac_set_dma_operation_mode(priv, 2100 tc, 2101 tc, 2102 chan); 2103 else 2104 stmmac_set_dma_operation_mode(priv, 2105 tc, 2106 SF_DMA_MODE, 2107 chan); 2108 priv->xstats.threshold = tc; 2109 } 2110 } else if (unlikely(status[chan] == tx_hard_error)) { 2111 stmmac_tx_err(priv, chan); 2112 } 2113 } 2114 } 2115 2116 /** 2117 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2118 * @priv: driver private structure 2119 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2120 */ 2121 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2122 { 2123 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2124 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2125 2126 dwmac_mmc_intr_all_mask(priv->mmcaddr); 2127 2128 if (priv->dma_cap.rmon) { 2129 dwmac_mmc_ctrl(priv->mmcaddr, mode); 2130 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2131 } else 2132 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2133 } 2134 2135 /** 2136 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2137 * @priv: driver private structure 2138 * Description: 2139 * new GMAC chip generations have a new register to indicate the 2140 * presence of the optional feature/functions. 2141 * This can be also used to override the value passed through the 2142 * platform and necessary for old MAC10/100 and GMAC chips. 2143 */ 2144 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2145 { 2146 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2147 } 2148 2149 /** 2150 * stmmac_check_ether_addr - check if the MAC addr is valid 2151 * @priv: driver private structure 2152 * Description: 2153 * it is to verify if the MAC address is valid, in case of failures it 2154 * generates a random MAC address 2155 */ 2156 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2157 { 2158 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2159 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2160 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2161 eth_hw_addr_random(priv->dev); 2162 netdev_info(priv->dev, "device MAC address %pM\n", 2163 priv->dev->dev_addr); 2164 } 2165 } 2166 2167 /** 2168 * stmmac_init_dma_engine - DMA init. 2169 * @priv: driver private structure 2170 * Description: 2171 * It inits the DMA invoking the specific MAC/GMAC callback. 2172 * Some DMA parameters can be passed from the platform; 2173 * in case of these are not passed a default is kept for the MAC or GMAC. 2174 */ 2175 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2176 { 2177 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2178 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2179 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2180 struct stmmac_rx_queue *rx_q; 2181 struct stmmac_tx_queue *tx_q; 2182 u32 chan = 0; 2183 int atds = 0; 2184 int ret = 0; 2185 2186 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2187 dev_err(priv->device, "Invalid DMA configuration\n"); 2188 return -EINVAL; 2189 } 2190 2191 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2192 atds = 1; 2193 2194 ret = stmmac_reset(priv, priv->ioaddr); 2195 if (ret) { 2196 dev_err(priv->device, "Failed to reset the dma\n"); 2197 return ret; 2198 } 2199 2200 /* DMA Configuration */ 2201 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2202 2203 if (priv->plat->axi) 2204 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2205 2206 /* DMA RX Channel Configuration */ 2207 for (chan = 0; chan < rx_channels_count; chan++) { 2208 rx_q = &priv->rx_queue[chan]; 2209 2210 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2211 rx_q->dma_rx_phy, chan); 2212 2213 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2214 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2215 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2216 rx_q->rx_tail_addr, chan); 2217 } 2218 2219 /* DMA TX Channel Configuration */ 2220 for (chan = 0; chan < tx_channels_count; chan++) { 2221 tx_q = &priv->tx_queue[chan]; 2222 2223 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2224 tx_q->dma_tx_phy, chan); 2225 2226 tx_q->tx_tail_addr = tx_q->dma_tx_phy + 2227 (DMA_TX_SIZE * sizeof(struct dma_desc)); 2228 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2229 tx_q->tx_tail_addr, chan); 2230 } 2231 2232 /* DMA CSR Channel configuration */ 2233 for (chan = 0; chan < dma_csr_ch; chan++) 2234 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2235 2236 return ret; 2237 } 2238 2239 /** 2240 * stmmac_tx_timer - mitigation sw timer for tx. 2241 * @data: data pointer 2242 * Description: 2243 * This is the timer handler to directly invoke the stmmac_tx_clean. 2244 */ 2245 static void stmmac_tx_timer(struct timer_list *t) 2246 { 2247 struct stmmac_priv *priv = from_timer(priv, t, txtimer); 2248 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2249 u32 queue; 2250 2251 /* let's scan all the tx queues */ 2252 for (queue = 0; queue < tx_queues_count; queue++) 2253 stmmac_tx_clean(priv, queue); 2254 } 2255 2256 /** 2257 * stmmac_init_tx_coalesce - init tx mitigation options. 2258 * @priv: driver private structure 2259 * Description: 2260 * This inits the transmit coalesce parameters: i.e. timer rate, 2261 * timer handler and default threshold used for enabling the 2262 * interrupt on completion bit. 2263 */ 2264 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 2265 { 2266 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2267 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2268 timer_setup(&priv->txtimer, stmmac_tx_timer, 0); 2269 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 2270 add_timer(&priv->txtimer); 2271 } 2272 2273 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2274 { 2275 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2276 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2277 u32 chan; 2278 2279 /* set TX ring length */ 2280 for (chan = 0; chan < tx_channels_count; chan++) 2281 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2282 (DMA_TX_SIZE - 1), chan); 2283 2284 /* set RX ring length */ 2285 for (chan = 0; chan < rx_channels_count; chan++) 2286 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2287 (DMA_RX_SIZE - 1), chan); 2288 } 2289 2290 /** 2291 * stmmac_set_tx_queue_weight - Set TX queue weight 2292 * @priv: driver private structure 2293 * Description: It is used for setting TX queues weight 2294 */ 2295 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2296 { 2297 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2298 u32 weight; 2299 u32 queue; 2300 2301 for (queue = 0; queue < tx_queues_count; queue++) { 2302 weight = priv->plat->tx_queues_cfg[queue].weight; 2303 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2304 } 2305 } 2306 2307 /** 2308 * stmmac_configure_cbs - Configure CBS in TX queue 2309 * @priv: driver private structure 2310 * Description: It is used for configuring CBS in AVB TX queues 2311 */ 2312 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2313 { 2314 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2315 u32 mode_to_use; 2316 u32 queue; 2317 2318 /* queue 0 is reserved for legacy traffic */ 2319 for (queue = 1; queue < tx_queues_count; queue++) { 2320 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2321 if (mode_to_use == MTL_QUEUE_DCB) 2322 continue; 2323 2324 stmmac_config_cbs(priv, priv->hw, 2325 priv->plat->tx_queues_cfg[queue].send_slope, 2326 priv->plat->tx_queues_cfg[queue].idle_slope, 2327 priv->plat->tx_queues_cfg[queue].high_credit, 2328 priv->plat->tx_queues_cfg[queue].low_credit, 2329 queue); 2330 } 2331 } 2332 2333 /** 2334 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2335 * @priv: driver private structure 2336 * Description: It is used for mapping RX queues to RX dma channels 2337 */ 2338 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2339 { 2340 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2341 u32 queue; 2342 u32 chan; 2343 2344 for (queue = 0; queue < rx_queues_count; queue++) { 2345 chan = priv->plat->rx_queues_cfg[queue].chan; 2346 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2347 } 2348 } 2349 2350 /** 2351 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2352 * @priv: driver private structure 2353 * Description: It is used for configuring the RX Queue Priority 2354 */ 2355 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2356 { 2357 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2358 u32 queue; 2359 u32 prio; 2360 2361 for (queue = 0; queue < rx_queues_count; queue++) { 2362 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2363 continue; 2364 2365 prio = priv->plat->rx_queues_cfg[queue].prio; 2366 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2367 } 2368 } 2369 2370 /** 2371 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2372 * @priv: driver private structure 2373 * Description: It is used for configuring the TX Queue Priority 2374 */ 2375 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2376 { 2377 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2378 u32 queue; 2379 u32 prio; 2380 2381 for (queue = 0; queue < tx_queues_count; queue++) { 2382 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2383 continue; 2384 2385 prio = priv->plat->tx_queues_cfg[queue].prio; 2386 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2387 } 2388 } 2389 2390 /** 2391 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2392 * @priv: driver private structure 2393 * Description: It is used for configuring the RX queue routing 2394 */ 2395 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2396 { 2397 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2398 u32 queue; 2399 u8 packet; 2400 2401 for (queue = 0; queue < rx_queues_count; queue++) { 2402 /* no specific packet type routing specified for the queue */ 2403 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2404 continue; 2405 2406 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2407 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2408 } 2409 } 2410 2411 /** 2412 * stmmac_mtl_configuration - Configure MTL 2413 * @priv: driver private structure 2414 * Description: It is used for configurring MTL 2415 */ 2416 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2417 { 2418 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2419 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2420 2421 if (tx_queues_count > 1) 2422 stmmac_set_tx_queue_weight(priv); 2423 2424 /* Configure MTL RX algorithms */ 2425 if (rx_queues_count > 1) 2426 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2427 priv->plat->rx_sched_algorithm); 2428 2429 /* Configure MTL TX algorithms */ 2430 if (tx_queues_count > 1) 2431 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2432 priv->plat->tx_sched_algorithm); 2433 2434 /* Configure CBS in AVB TX queues */ 2435 if (tx_queues_count > 1) 2436 stmmac_configure_cbs(priv); 2437 2438 /* Map RX MTL to DMA channels */ 2439 stmmac_rx_queue_dma_chan_map(priv); 2440 2441 /* Enable MAC RX Queues */ 2442 stmmac_mac_enable_rx_queues(priv); 2443 2444 /* Set RX priorities */ 2445 if (rx_queues_count > 1) 2446 stmmac_mac_config_rx_queues_prio(priv); 2447 2448 /* Set TX priorities */ 2449 if (tx_queues_count > 1) 2450 stmmac_mac_config_tx_queues_prio(priv); 2451 2452 /* Set RX routing */ 2453 if (rx_queues_count > 1) 2454 stmmac_mac_config_rx_queues_routing(priv); 2455 } 2456 2457 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2458 { 2459 if (priv->dma_cap.asp) { 2460 netdev_info(priv->dev, "Enabling Safety Features\n"); 2461 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2462 } else { 2463 netdev_info(priv->dev, "No Safety Features support found\n"); 2464 } 2465 } 2466 2467 /** 2468 * stmmac_hw_setup - setup mac in a usable state. 2469 * @dev : pointer to the device structure. 2470 * Description: 2471 * this is the main function to setup the HW in a usable state because the 2472 * dma engine is reset, the core registers are configured (e.g. AXI, 2473 * Checksum features, timers). The DMA is ready to start receiving and 2474 * transmitting. 2475 * Return value: 2476 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2477 * file on failure. 2478 */ 2479 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2480 { 2481 struct stmmac_priv *priv = netdev_priv(dev); 2482 u32 rx_cnt = priv->plat->rx_queues_to_use; 2483 u32 tx_cnt = priv->plat->tx_queues_to_use; 2484 u32 chan; 2485 int ret; 2486 2487 /* DMA initialization and SW reset */ 2488 ret = stmmac_init_dma_engine(priv); 2489 if (ret < 0) { 2490 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2491 __func__); 2492 return ret; 2493 } 2494 2495 /* Copy the MAC addr into the HW */ 2496 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2497 2498 /* PS and related bits will be programmed according to the speed */ 2499 if (priv->hw->pcs) { 2500 int speed = priv->plat->mac_port_sel_speed; 2501 2502 if ((speed == SPEED_10) || (speed == SPEED_100) || 2503 (speed == SPEED_1000)) { 2504 priv->hw->ps = speed; 2505 } else { 2506 dev_warn(priv->device, "invalid port speed\n"); 2507 priv->hw->ps = 0; 2508 } 2509 } 2510 2511 /* Initialize the MAC Core */ 2512 stmmac_core_init(priv, priv->hw, dev); 2513 2514 /* Initialize MTL*/ 2515 stmmac_mtl_configuration(priv); 2516 2517 /* Initialize Safety Features */ 2518 stmmac_safety_feat_configuration(priv); 2519 2520 ret = stmmac_rx_ipc(priv, priv->hw); 2521 if (!ret) { 2522 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2523 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2524 priv->hw->rx_csum = 0; 2525 } 2526 2527 /* Enable the MAC Rx/Tx */ 2528 stmmac_mac_set(priv, priv->ioaddr, true); 2529 2530 /* Set the HW DMA mode and the COE */ 2531 stmmac_dma_operation_mode(priv); 2532 2533 stmmac_mmc_setup(priv); 2534 2535 if (init_ptp) { 2536 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2537 if (ret < 0) 2538 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2539 2540 ret = stmmac_init_ptp(priv); 2541 if (ret == -EOPNOTSUPP) 2542 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2543 else if (ret) 2544 netdev_warn(priv->dev, "PTP init failed\n"); 2545 } 2546 2547 #ifdef CONFIG_DEBUG_FS 2548 ret = stmmac_init_fs(dev); 2549 if (ret < 0) 2550 netdev_warn(priv->dev, "%s: failed debugFS registration\n", 2551 __func__); 2552 #endif 2553 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2554 2555 if (priv->use_riwt) { 2556 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt); 2557 if (!ret) 2558 priv->rx_riwt = MAX_DMA_RIWT; 2559 } 2560 2561 if (priv->hw->pcs) 2562 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0); 2563 2564 /* set TX and RX rings length */ 2565 stmmac_set_rings_length(priv); 2566 2567 /* Enable TSO */ 2568 if (priv->tso) { 2569 for (chan = 0; chan < tx_cnt; chan++) 2570 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2571 } 2572 2573 /* Start the ball rolling... */ 2574 stmmac_start_all_dma(priv); 2575 2576 return 0; 2577 } 2578 2579 static void stmmac_hw_teardown(struct net_device *dev) 2580 { 2581 struct stmmac_priv *priv = netdev_priv(dev); 2582 2583 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2584 } 2585 2586 /** 2587 * stmmac_open - open entry point of the driver 2588 * @dev : pointer to the device structure. 2589 * Description: 2590 * This function is the open entry point of the driver. 2591 * Return value: 2592 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2593 * file on failure. 2594 */ 2595 static int stmmac_open(struct net_device *dev) 2596 { 2597 struct stmmac_priv *priv = netdev_priv(dev); 2598 int ret; 2599 2600 stmmac_check_ether_addr(priv); 2601 2602 if (priv->hw->pcs != STMMAC_PCS_RGMII && 2603 priv->hw->pcs != STMMAC_PCS_TBI && 2604 priv->hw->pcs != STMMAC_PCS_RTBI) { 2605 ret = stmmac_init_phy(dev); 2606 if (ret) { 2607 netdev_err(priv->dev, 2608 "%s: Cannot attach to PHY (error: %d)\n", 2609 __func__, ret); 2610 return ret; 2611 } 2612 } 2613 2614 /* Extra statistics */ 2615 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2616 priv->xstats.threshold = tc; 2617 2618 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 2619 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2620 2621 ret = alloc_dma_desc_resources(priv); 2622 if (ret < 0) { 2623 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2624 __func__); 2625 goto dma_desc_error; 2626 } 2627 2628 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2629 if (ret < 0) { 2630 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2631 __func__); 2632 goto init_error; 2633 } 2634 2635 ret = stmmac_hw_setup(dev, true); 2636 if (ret < 0) { 2637 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2638 goto init_error; 2639 } 2640 2641 stmmac_init_tx_coalesce(priv); 2642 2643 if (dev->phydev) 2644 phy_start(dev->phydev); 2645 2646 /* Request the IRQ lines */ 2647 ret = request_irq(dev->irq, stmmac_interrupt, 2648 IRQF_SHARED, dev->name, dev); 2649 if (unlikely(ret < 0)) { 2650 netdev_err(priv->dev, 2651 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2652 __func__, dev->irq, ret); 2653 goto irq_error; 2654 } 2655 2656 /* Request the Wake IRQ in case of another line is used for WoL */ 2657 if (priv->wol_irq != dev->irq) { 2658 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2659 IRQF_SHARED, dev->name, dev); 2660 if (unlikely(ret < 0)) { 2661 netdev_err(priv->dev, 2662 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2663 __func__, priv->wol_irq, ret); 2664 goto wolirq_error; 2665 } 2666 } 2667 2668 /* Request the IRQ lines */ 2669 if (priv->lpi_irq > 0) { 2670 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2671 dev->name, dev); 2672 if (unlikely(ret < 0)) { 2673 netdev_err(priv->dev, 2674 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2675 __func__, priv->lpi_irq, ret); 2676 goto lpiirq_error; 2677 } 2678 } 2679 2680 stmmac_enable_all_queues(priv); 2681 stmmac_start_all_queues(priv); 2682 2683 return 0; 2684 2685 lpiirq_error: 2686 if (priv->wol_irq != dev->irq) 2687 free_irq(priv->wol_irq, dev); 2688 wolirq_error: 2689 free_irq(dev->irq, dev); 2690 irq_error: 2691 if (dev->phydev) 2692 phy_stop(dev->phydev); 2693 2694 del_timer_sync(&priv->txtimer); 2695 stmmac_hw_teardown(dev); 2696 init_error: 2697 free_dma_desc_resources(priv); 2698 dma_desc_error: 2699 if (dev->phydev) 2700 phy_disconnect(dev->phydev); 2701 2702 return ret; 2703 } 2704 2705 /** 2706 * stmmac_release - close entry point of the driver 2707 * @dev : device pointer. 2708 * Description: 2709 * This is the stop entry point of the driver. 2710 */ 2711 static int stmmac_release(struct net_device *dev) 2712 { 2713 struct stmmac_priv *priv = netdev_priv(dev); 2714 2715 if (priv->eee_enabled) 2716 del_timer_sync(&priv->eee_ctrl_timer); 2717 2718 /* Stop and disconnect the PHY */ 2719 if (dev->phydev) { 2720 phy_stop(dev->phydev); 2721 phy_disconnect(dev->phydev); 2722 } 2723 2724 stmmac_stop_all_queues(priv); 2725 2726 stmmac_disable_all_queues(priv); 2727 2728 del_timer_sync(&priv->txtimer); 2729 2730 /* Free the IRQ lines */ 2731 free_irq(dev->irq, dev); 2732 if (priv->wol_irq != dev->irq) 2733 free_irq(priv->wol_irq, dev); 2734 if (priv->lpi_irq > 0) 2735 free_irq(priv->lpi_irq, dev); 2736 2737 /* Stop TX/RX DMA and clear the descriptors */ 2738 stmmac_stop_all_dma(priv); 2739 2740 /* Release and free the Rx/Tx resources */ 2741 free_dma_desc_resources(priv); 2742 2743 /* Disable the MAC Rx/Tx */ 2744 stmmac_mac_set(priv, priv->ioaddr, false); 2745 2746 netif_carrier_off(dev); 2747 2748 #ifdef CONFIG_DEBUG_FS 2749 stmmac_exit_fs(dev); 2750 #endif 2751 2752 stmmac_release_ptp(priv); 2753 2754 return 0; 2755 } 2756 2757 /** 2758 * stmmac_tso_allocator - close entry point of the driver 2759 * @priv: driver private structure 2760 * @des: buffer start address 2761 * @total_len: total length to fill in descriptors 2762 * @last_segmant: condition for the last descriptor 2763 * @queue: TX queue index 2764 * Description: 2765 * This function fills descriptor and request new descriptors according to 2766 * buffer length to fill 2767 */ 2768 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, 2769 int total_len, bool last_segment, u32 queue) 2770 { 2771 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2772 struct dma_desc *desc; 2773 u32 buff_size; 2774 int tmp_len; 2775 2776 tmp_len = total_len; 2777 2778 while (tmp_len > 0) { 2779 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2780 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2781 desc = tx_q->dma_tx + tx_q->cur_tx; 2782 2783 desc->des0 = cpu_to_le32(des + (total_len - tmp_len)); 2784 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2785 TSO_MAX_BUFF_SIZE : tmp_len; 2786 2787 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2788 0, 1, 2789 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2790 0, 0); 2791 2792 tmp_len -= TSO_MAX_BUFF_SIZE; 2793 } 2794 } 2795 2796 /** 2797 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2798 * @skb : the socket buffer 2799 * @dev : device pointer 2800 * Description: this is the transmit function that is called on TSO frames 2801 * (support available on GMAC4 and newer chips). 2802 * Diagram below show the ring programming in case of TSO frames: 2803 * 2804 * First Descriptor 2805 * -------- 2806 * | DES0 |---> buffer1 = L2/L3/L4 header 2807 * | DES1 |---> TCP Payload (can continue on next descr...) 2808 * | DES2 |---> buffer 1 and 2 len 2809 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2810 * -------- 2811 * | 2812 * ... 2813 * | 2814 * -------- 2815 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2816 * | DES1 | --| 2817 * | DES2 | --> buffer 1 and 2 len 2818 * | DES3 | 2819 * -------- 2820 * 2821 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2822 */ 2823 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2824 { 2825 struct dma_desc *desc, *first, *mss_desc = NULL; 2826 struct stmmac_priv *priv = netdev_priv(dev); 2827 int nfrags = skb_shinfo(skb)->nr_frags; 2828 u32 queue = skb_get_queue_mapping(skb); 2829 unsigned int first_entry, des; 2830 struct stmmac_tx_queue *tx_q; 2831 int tmp_pay_len = 0; 2832 u32 pay_len, mss; 2833 u8 proto_hdr_len; 2834 int i; 2835 2836 tx_q = &priv->tx_queue[queue]; 2837 2838 /* Compute header lengths */ 2839 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2840 2841 /* Desc availability based on threshold should be enough safe */ 2842 if (unlikely(stmmac_tx_avail(priv, queue) < 2843 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2844 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2845 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2846 queue)); 2847 /* This is a hard error, log it. */ 2848 netdev_err(priv->dev, 2849 "%s: Tx Ring full when queue awake\n", 2850 __func__); 2851 } 2852 return NETDEV_TX_BUSY; 2853 } 2854 2855 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2856 2857 mss = skb_shinfo(skb)->gso_size; 2858 2859 /* set new MSS value if needed */ 2860 if (mss != tx_q->mss) { 2861 mss_desc = tx_q->dma_tx + tx_q->cur_tx; 2862 stmmac_set_mss(priv, mss_desc, mss); 2863 tx_q->mss = mss; 2864 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2865 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2866 } 2867 2868 if (netif_msg_tx_queued(priv)) { 2869 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2870 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2871 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2872 skb->data_len); 2873 } 2874 2875 first_entry = tx_q->cur_tx; 2876 WARN_ON(tx_q->tx_skbuff[first_entry]); 2877 2878 desc = tx_q->dma_tx + first_entry; 2879 first = desc; 2880 2881 /* first descriptor: fill Headers on Buf1 */ 2882 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2883 DMA_TO_DEVICE); 2884 if (dma_mapping_error(priv->device, des)) 2885 goto dma_map_err; 2886 2887 tx_q->tx_skbuff_dma[first_entry].buf = des; 2888 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2889 2890 first->des0 = cpu_to_le32(des); 2891 2892 /* Fill start of payload in buff2 of first descriptor */ 2893 if (pay_len) 2894 first->des1 = cpu_to_le32(des + proto_hdr_len); 2895 2896 /* If needed take extra descriptors to fill the remaining payload */ 2897 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2898 2899 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 2900 2901 /* Prepare fragments */ 2902 for (i = 0; i < nfrags; i++) { 2903 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2904 2905 des = skb_frag_dma_map(priv->device, frag, 0, 2906 skb_frag_size(frag), 2907 DMA_TO_DEVICE); 2908 if (dma_mapping_error(priv->device, des)) 2909 goto dma_map_err; 2910 2911 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 2912 (i == nfrags - 1), queue); 2913 2914 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 2915 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 2916 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 2917 } 2918 2919 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 2920 2921 /* Only the last descriptor gets to point to the skb. */ 2922 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 2923 2924 /* We've used all descriptors we need for this skb, however, 2925 * advance cur_tx so that it references a fresh descriptor. 2926 * ndo_start_xmit will fill this descriptor the next time it's 2927 * called and stmmac_tx_clean may clean up to this descriptor. 2928 */ 2929 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2930 2931 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 2932 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 2933 __func__); 2934 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 2935 } 2936 2937 dev->stats.tx_bytes += skb->len; 2938 priv->xstats.tx_tso_frames++; 2939 priv->xstats.tx_tso_nfrags += nfrags; 2940 2941 /* Manage tx mitigation */ 2942 priv->tx_count_frames += nfrags + 1; 2943 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) { 2944 mod_timer(&priv->txtimer, 2945 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2946 } else { 2947 priv->tx_count_frames = 0; 2948 stmmac_set_tx_ic(priv, desc); 2949 priv->xstats.tx_set_ic_bit++; 2950 } 2951 2952 skb_tx_timestamp(skb); 2953 2954 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2955 priv->hwts_tx_en)) { 2956 /* declare that device is doing timestamping */ 2957 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2958 stmmac_enable_tx_timestamp(priv, first); 2959 } 2960 2961 /* Complete the first descriptor before granting the DMA */ 2962 stmmac_prepare_tso_tx_desc(priv, first, 1, 2963 proto_hdr_len, 2964 pay_len, 2965 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 2966 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 2967 2968 /* If context desc is used to change MSS */ 2969 if (mss_desc) { 2970 /* Make sure that first descriptor has been completely 2971 * written, including its own bit. This is because MSS is 2972 * actually before first descriptor, so we need to make 2973 * sure that MSS's own bit is the last thing written. 2974 */ 2975 dma_wmb(); 2976 stmmac_set_tx_owner(priv, mss_desc); 2977 } 2978 2979 /* The own bit must be the latest setting done when prepare the 2980 * descriptor and then barrier is needed to make sure that 2981 * all is coherent before granting the DMA engine. 2982 */ 2983 wmb(); 2984 2985 if (netif_msg_pktdata(priv)) { 2986 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 2987 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 2988 tx_q->cur_tx, first, nfrags); 2989 2990 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0); 2991 2992 pr_info(">>> frame to be transmitted: "); 2993 print_pkt(skb->data, skb_headlen(skb)); 2994 } 2995 2996 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 2997 2998 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 2999 3000 return NETDEV_TX_OK; 3001 3002 dma_map_err: 3003 dev_err(priv->device, "Tx dma map failed\n"); 3004 dev_kfree_skb(skb); 3005 priv->dev->stats.tx_dropped++; 3006 return NETDEV_TX_OK; 3007 } 3008 3009 /** 3010 * stmmac_xmit - Tx entry point of the driver 3011 * @skb : the socket buffer 3012 * @dev : device pointer 3013 * Description : this is the tx entry point of the driver. 3014 * It programs the chain or the ring and supports oversized frames 3015 * and SG feature. 3016 */ 3017 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3018 { 3019 struct stmmac_priv *priv = netdev_priv(dev); 3020 unsigned int nopaged_len = skb_headlen(skb); 3021 int i, csum_insertion = 0, is_jumbo = 0; 3022 u32 queue = skb_get_queue_mapping(skb); 3023 int nfrags = skb_shinfo(skb)->nr_frags; 3024 int entry; 3025 unsigned int first_entry; 3026 struct dma_desc *desc, *first; 3027 struct stmmac_tx_queue *tx_q; 3028 unsigned int enh_desc; 3029 unsigned int des; 3030 3031 tx_q = &priv->tx_queue[queue]; 3032 3033 /* Manage oversized TCP frames for GMAC4 device */ 3034 if (skb_is_gso(skb) && priv->tso) { 3035 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 3036 return stmmac_tso_xmit(skb, dev); 3037 } 3038 3039 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3040 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3041 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3042 queue)); 3043 /* This is a hard error, log it. */ 3044 netdev_err(priv->dev, 3045 "%s: Tx Ring full when queue awake\n", 3046 __func__); 3047 } 3048 return NETDEV_TX_BUSY; 3049 } 3050 3051 if (priv->tx_path_in_lpi_mode) 3052 stmmac_disable_eee_mode(priv); 3053 3054 entry = tx_q->cur_tx; 3055 first_entry = entry; 3056 WARN_ON(tx_q->tx_skbuff[first_entry]); 3057 3058 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3059 3060 if (likely(priv->extend_desc)) 3061 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3062 else 3063 desc = tx_q->dma_tx + entry; 3064 3065 first = desc; 3066 3067 enh_desc = priv->plat->enh_desc; 3068 /* To program the descriptors according to the size of the frame */ 3069 if (enh_desc) 3070 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3071 3072 if (unlikely(is_jumbo)) { 3073 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3074 if (unlikely(entry < 0) && (entry != -EINVAL)) 3075 goto dma_map_err; 3076 } 3077 3078 for (i = 0; i < nfrags; i++) { 3079 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3080 int len = skb_frag_size(frag); 3081 bool last_segment = (i == (nfrags - 1)); 3082 3083 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3084 WARN_ON(tx_q->tx_skbuff[entry]); 3085 3086 if (likely(priv->extend_desc)) 3087 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3088 else 3089 desc = tx_q->dma_tx + entry; 3090 3091 des = skb_frag_dma_map(priv->device, frag, 0, len, 3092 DMA_TO_DEVICE); 3093 if (dma_mapping_error(priv->device, des)) 3094 goto dma_map_err; /* should reuse desc w/o issues */ 3095 3096 tx_q->tx_skbuff_dma[entry].buf = des; 3097 3098 stmmac_set_desc_addr(priv, desc, des); 3099 3100 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3101 tx_q->tx_skbuff_dma[entry].len = len; 3102 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3103 3104 /* Prepare the descriptor and set the own bit too */ 3105 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3106 priv->mode, 1, last_segment, skb->len); 3107 } 3108 3109 /* Only the last descriptor gets to point to the skb. */ 3110 tx_q->tx_skbuff[entry] = skb; 3111 3112 /* We've used all descriptors we need for this skb, however, 3113 * advance cur_tx so that it references a fresh descriptor. 3114 * ndo_start_xmit will fill this descriptor the next time it's 3115 * called and stmmac_tx_clean may clean up to this descriptor. 3116 */ 3117 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3118 tx_q->cur_tx = entry; 3119 3120 if (netif_msg_pktdata(priv)) { 3121 void *tx_head; 3122 3123 netdev_dbg(priv->dev, 3124 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3125 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3126 entry, first, nfrags); 3127 3128 if (priv->extend_desc) 3129 tx_head = (void *)tx_q->dma_etx; 3130 else 3131 tx_head = (void *)tx_q->dma_tx; 3132 3133 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false); 3134 3135 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3136 print_pkt(skb->data, skb->len); 3137 } 3138 3139 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3140 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3141 __func__); 3142 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3143 } 3144 3145 dev->stats.tx_bytes += skb->len; 3146 3147 /* According to the coalesce parameter the IC bit for the latest 3148 * segment is reset and the timer re-started to clean the tx status. 3149 * This approach takes care about the fragments: desc is the first 3150 * element in case of no SG. 3151 */ 3152 priv->tx_count_frames += nfrags + 1; 3153 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) { 3154 mod_timer(&priv->txtimer, 3155 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 3156 } else { 3157 priv->tx_count_frames = 0; 3158 stmmac_set_tx_ic(priv, desc); 3159 priv->xstats.tx_set_ic_bit++; 3160 } 3161 3162 skb_tx_timestamp(skb); 3163 3164 /* Ready to fill the first descriptor and set the OWN bit w/o any 3165 * problems because all the descriptors are actually ready to be 3166 * passed to the DMA engine. 3167 */ 3168 if (likely(!is_jumbo)) { 3169 bool last_segment = (nfrags == 0); 3170 3171 des = dma_map_single(priv->device, skb->data, 3172 nopaged_len, DMA_TO_DEVICE); 3173 if (dma_mapping_error(priv->device, des)) 3174 goto dma_map_err; 3175 3176 tx_q->tx_skbuff_dma[first_entry].buf = des; 3177 3178 stmmac_set_desc_addr(priv, first, des); 3179 3180 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3181 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3182 3183 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3184 priv->hwts_tx_en)) { 3185 /* declare that device is doing timestamping */ 3186 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3187 stmmac_enable_tx_timestamp(priv, first); 3188 } 3189 3190 /* Prepare the first descriptor setting the OWN bit too */ 3191 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3192 csum_insertion, priv->mode, 1, last_segment, 3193 skb->len); 3194 3195 /* The own bit must be the latest setting done when prepare the 3196 * descriptor and then barrier is needed to make sure that 3197 * all is coherent before granting the DMA engine. 3198 */ 3199 wmb(); 3200 } 3201 3202 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3203 3204 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3205 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3206 3207 return NETDEV_TX_OK; 3208 3209 dma_map_err: 3210 netdev_err(priv->dev, "Tx DMA map failed\n"); 3211 dev_kfree_skb(skb); 3212 priv->dev->stats.tx_dropped++; 3213 return NETDEV_TX_OK; 3214 } 3215 3216 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3217 { 3218 struct vlan_ethhdr *veth; 3219 __be16 vlan_proto; 3220 u16 vlanid; 3221 3222 veth = (struct vlan_ethhdr *)skb->data; 3223 vlan_proto = veth->h_vlan_proto; 3224 3225 if ((vlan_proto == htons(ETH_P_8021Q) && 3226 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3227 (vlan_proto == htons(ETH_P_8021AD) && 3228 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3229 /* pop the vlan tag */ 3230 vlanid = ntohs(veth->h_vlan_TCI); 3231 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3232 skb_pull(skb, VLAN_HLEN); 3233 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3234 } 3235 } 3236 3237 3238 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3239 { 3240 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3241 return 0; 3242 3243 return 1; 3244 } 3245 3246 /** 3247 * stmmac_rx_refill - refill used skb preallocated buffers 3248 * @priv: driver private structure 3249 * @queue: RX queue index 3250 * Description : this is to reallocate the skb for the reception process 3251 * that is based on zero-copy. 3252 */ 3253 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3254 { 3255 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3256 int dirty = stmmac_rx_dirty(priv, queue); 3257 unsigned int entry = rx_q->dirty_rx; 3258 3259 int bfsize = priv->dma_buf_sz; 3260 3261 while (dirty-- > 0) { 3262 struct dma_desc *p; 3263 3264 if (priv->extend_desc) 3265 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3266 else 3267 p = rx_q->dma_rx + entry; 3268 3269 if (likely(!rx_q->rx_skbuff[entry])) { 3270 struct sk_buff *skb; 3271 3272 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 3273 if (unlikely(!skb)) { 3274 /* so for a while no zero-copy! */ 3275 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH; 3276 if (unlikely(net_ratelimit())) 3277 dev_err(priv->device, 3278 "fail to alloc skb entry %d\n", 3279 entry); 3280 break; 3281 } 3282 3283 rx_q->rx_skbuff[entry] = skb; 3284 rx_q->rx_skbuff_dma[entry] = 3285 dma_map_single(priv->device, skb->data, bfsize, 3286 DMA_FROM_DEVICE); 3287 if (dma_mapping_error(priv->device, 3288 rx_q->rx_skbuff_dma[entry])) { 3289 netdev_err(priv->dev, "Rx DMA map failed\n"); 3290 dev_kfree_skb(skb); 3291 break; 3292 } 3293 3294 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]); 3295 stmmac_refill_desc3(priv, rx_q, p); 3296 3297 if (rx_q->rx_zeroc_thresh > 0) 3298 rx_q->rx_zeroc_thresh--; 3299 3300 netif_dbg(priv, rx_status, priv->dev, 3301 "refill entry #%d\n", entry); 3302 } 3303 dma_wmb(); 3304 3305 stmmac_set_rx_owner(priv, p, priv->use_riwt); 3306 3307 dma_wmb(); 3308 3309 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3310 } 3311 rx_q->dirty_rx = entry; 3312 } 3313 3314 /** 3315 * stmmac_rx - manage the receive process 3316 * @priv: driver private structure 3317 * @limit: napi bugget 3318 * @queue: RX queue index. 3319 * Description : this the function called by the napi poll method. 3320 * It gets all the frames inside the ring. 3321 */ 3322 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3323 { 3324 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3325 unsigned int entry = rx_q->cur_rx; 3326 int coe = priv->hw->rx_csum; 3327 unsigned int next_entry; 3328 unsigned int count = 0; 3329 bool xmac; 3330 3331 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3332 3333 if (netif_msg_rx_status(priv)) { 3334 void *rx_head; 3335 3336 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3337 if (priv->extend_desc) 3338 rx_head = (void *)rx_q->dma_erx; 3339 else 3340 rx_head = (void *)rx_q->dma_rx; 3341 3342 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3343 } 3344 while (count < limit) { 3345 int status; 3346 struct dma_desc *p; 3347 struct dma_desc *np; 3348 3349 if (priv->extend_desc) 3350 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3351 else 3352 p = rx_q->dma_rx + entry; 3353 3354 /* read the status of the incoming frame */ 3355 status = stmmac_rx_status(priv, &priv->dev->stats, 3356 &priv->xstats, p); 3357 /* check if managed by the DMA otherwise go ahead */ 3358 if (unlikely(status & dma_own)) 3359 break; 3360 3361 count++; 3362 3363 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3364 next_entry = rx_q->cur_rx; 3365 3366 if (priv->extend_desc) 3367 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3368 else 3369 np = rx_q->dma_rx + next_entry; 3370 3371 prefetch(np); 3372 3373 if (priv->extend_desc) 3374 stmmac_rx_extended_status(priv, &priv->dev->stats, 3375 &priv->xstats, rx_q->dma_erx + entry); 3376 if (unlikely(status == discard_frame)) { 3377 priv->dev->stats.rx_errors++; 3378 if (priv->hwts_rx_en && !priv->extend_desc) { 3379 /* DESC2 & DESC3 will be overwritten by device 3380 * with timestamp value, hence reinitialize 3381 * them in stmmac_rx_refill() function so that 3382 * device can reuse it. 3383 */ 3384 dev_kfree_skb_any(rx_q->rx_skbuff[entry]); 3385 rx_q->rx_skbuff[entry] = NULL; 3386 dma_unmap_single(priv->device, 3387 rx_q->rx_skbuff_dma[entry], 3388 priv->dma_buf_sz, 3389 DMA_FROM_DEVICE); 3390 } 3391 } else { 3392 struct sk_buff *skb; 3393 int frame_len; 3394 unsigned int des; 3395 3396 stmmac_get_desc_addr(priv, p, &des); 3397 frame_len = stmmac_get_rx_frame_len(priv, p, coe); 3398 3399 /* If frame length is greater than skb buffer size 3400 * (preallocated during init) then the packet is 3401 * ignored 3402 */ 3403 if (frame_len > priv->dma_buf_sz) { 3404 netdev_err(priv->dev, 3405 "len %d larger than size (%d)\n", 3406 frame_len, priv->dma_buf_sz); 3407 priv->dev->stats.rx_length_errors++; 3408 break; 3409 } 3410 3411 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3412 * Type frames (LLC/LLC-SNAP) 3413 * 3414 * llc_snap is never checked in GMAC >= 4, so this ACS 3415 * feature is always disabled and packets need to be 3416 * stripped manually. 3417 */ 3418 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3419 unlikely(status != llc_snap)) 3420 frame_len -= ETH_FCS_LEN; 3421 3422 if (netif_msg_rx_status(priv)) { 3423 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n", 3424 p, entry, des); 3425 netdev_dbg(priv->dev, "frame size %d, COE: %d\n", 3426 frame_len, status); 3427 } 3428 3429 /* The zero-copy is always used for all the sizes 3430 * in case of GMAC4 because it needs 3431 * to refill the used descriptors, always. 3432 */ 3433 if (unlikely(!xmac && 3434 ((frame_len < priv->rx_copybreak) || 3435 stmmac_rx_threshold_count(rx_q)))) { 3436 skb = netdev_alloc_skb_ip_align(priv->dev, 3437 frame_len); 3438 if (unlikely(!skb)) { 3439 if (net_ratelimit()) 3440 dev_warn(priv->device, 3441 "packet dropped\n"); 3442 priv->dev->stats.rx_dropped++; 3443 break; 3444 } 3445 3446 dma_sync_single_for_cpu(priv->device, 3447 rx_q->rx_skbuff_dma 3448 [entry], frame_len, 3449 DMA_FROM_DEVICE); 3450 skb_copy_to_linear_data(skb, 3451 rx_q-> 3452 rx_skbuff[entry]->data, 3453 frame_len); 3454 3455 skb_put(skb, frame_len); 3456 dma_sync_single_for_device(priv->device, 3457 rx_q->rx_skbuff_dma 3458 [entry], frame_len, 3459 DMA_FROM_DEVICE); 3460 } else { 3461 skb = rx_q->rx_skbuff[entry]; 3462 if (unlikely(!skb)) { 3463 netdev_err(priv->dev, 3464 "%s: Inconsistent Rx chain\n", 3465 priv->dev->name); 3466 priv->dev->stats.rx_dropped++; 3467 break; 3468 } 3469 prefetch(skb->data - NET_IP_ALIGN); 3470 rx_q->rx_skbuff[entry] = NULL; 3471 rx_q->rx_zeroc_thresh++; 3472 3473 skb_put(skb, frame_len); 3474 dma_unmap_single(priv->device, 3475 rx_q->rx_skbuff_dma[entry], 3476 priv->dma_buf_sz, 3477 DMA_FROM_DEVICE); 3478 } 3479 3480 if (netif_msg_pktdata(priv)) { 3481 netdev_dbg(priv->dev, "frame received (%dbytes)", 3482 frame_len); 3483 print_pkt(skb->data, frame_len); 3484 } 3485 3486 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3487 3488 stmmac_rx_vlan(priv->dev, skb); 3489 3490 skb->protocol = eth_type_trans(skb, priv->dev); 3491 3492 if (unlikely(!coe)) 3493 skb_checksum_none_assert(skb); 3494 else 3495 skb->ip_summed = CHECKSUM_UNNECESSARY; 3496 3497 napi_gro_receive(&rx_q->napi, skb); 3498 3499 priv->dev->stats.rx_packets++; 3500 priv->dev->stats.rx_bytes += frame_len; 3501 } 3502 entry = next_entry; 3503 } 3504 3505 stmmac_rx_refill(priv, queue); 3506 3507 priv->xstats.rx_pkt_n += count; 3508 3509 return count; 3510 } 3511 3512 /** 3513 * stmmac_poll - stmmac poll method (NAPI) 3514 * @napi : pointer to the napi structure. 3515 * @budget : maximum number of packets that the current CPU can receive from 3516 * all interfaces. 3517 * Description : 3518 * To look at the incoming frames and clear the tx resources. 3519 */ 3520 static int stmmac_poll(struct napi_struct *napi, int budget) 3521 { 3522 struct stmmac_rx_queue *rx_q = 3523 container_of(napi, struct stmmac_rx_queue, napi); 3524 struct stmmac_priv *priv = rx_q->priv_data; 3525 u32 tx_count = priv->plat->tx_queues_to_use; 3526 u32 chan = rx_q->queue_index; 3527 int work_done = 0; 3528 u32 queue; 3529 3530 priv->xstats.napi_poll++; 3531 3532 /* check all the queues */ 3533 for (queue = 0; queue < tx_count; queue++) 3534 stmmac_tx_clean(priv, queue); 3535 3536 work_done = stmmac_rx(priv, budget, rx_q->queue_index); 3537 if (work_done < budget) { 3538 napi_complete_done(napi, work_done); 3539 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3540 } 3541 return work_done; 3542 } 3543 3544 /** 3545 * stmmac_tx_timeout 3546 * @dev : Pointer to net device structure 3547 * Description: this function is called when a packet transmission fails to 3548 * complete within a reasonable time. The driver will mark the error in the 3549 * netdev structure and arrange for the device to be reset to a sane state 3550 * in order to transmit a new packet. 3551 */ 3552 static void stmmac_tx_timeout(struct net_device *dev) 3553 { 3554 struct stmmac_priv *priv = netdev_priv(dev); 3555 3556 stmmac_global_err(priv); 3557 } 3558 3559 /** 3560 * stmmac_set_rx_mode - entry point for multicast addressing 3561 * @dev : pointer to the device structure 3562 * Description: 3563 * This function is a driver entry point which gets called by the kernel 3564 * whenever multicast addresses must be enabled/disabled. 3565 * Return value: 3566 * void. 3567 */ 3568 static void stmmac_set_rx_mode(struct net_device *dev) 3569 { 3570 struct stmmac_priv *priv = netdev_priv(dev); 3571 3572 stmmac_set_filter(priv, priv->hw, dev); 3573 } 3574 3575 /** 3576 * stmmac_change_mtu - entry point to change MTU size for the device. 3577 * @dev : device pointer. 3578 * @new_mtu : the new MTU size for the device. 3579 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3580 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3581 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3582 * Return value: 3583 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3584 * file on failure. 3585 */ 3586 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3587 { 3588 struct stmmac_priv *priv = netdev_priv(dev); 3589 3590 if (netif_running(dev)) { 3591 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3592 return -EBUSY; 3593 } 3594 3595 dev->mtu = new_mtu; 3596 3597 netdev_update_features(dev); 3598 3599 return 0; 3600 } 3601 3602 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3603 netdev_features_t features) 3604 { 3605 struct stmmac_priv *priv = netdev_priv(dev); 3606 3607 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3608 features &= ~NETIF_F_RXCSUM; 3609 3610 if (!priv->plat->tx_coe) 3611 features &= ~NETIF_F_CSUM_MASK; 3612 3613 /* Some GMAC devices have a bugged Jumbo frame support that 3614 * needs to have the Tx COE disabled for oversized frames 3615 * (due to limited buffer sizes). In this case we disable 3616 * the TX csum insertion in the TDES and not use SF. 3617 */ 3618 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3619 features &= ~NETIF_F_CSUM_MASK; 3620 3621 /* Disable tso if asked by ethtool */ 3622 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3623 if (features & NETIF_F_TSO) 3624 priv->tso = true; 3625 else 3626 priv->tso = false; 3627 } 3628 3629 return features; 3630 } 3631 3632 static int stmmac_set_features(struct net_device *netdev, 3633 netdev_features_t features) 3634 { 3635 struct stmmac_priv *priv = netdev_priv(netdev); 3636 3637 /* Keep the COE Type in case of csum is supporting */ 3638 if (features & NETIF_F_RXCSUM) 3639 priv->hw->rx_csum = priv->plat->rx_coe; 3640 else 3641 priv->hw->rx_csum = 0; 3642 /* No check needed because rx_coe has been set before and it will be 3643 * fixed in case of issue. 3644 */ 3645 stmmac_rx_ipc(priv, priv->hw); 3646 3647 return 0; 3648 } 3649 3650 /** 3651 * stmmac_interrupt - main ISR 3652 * @irq: interrupt number. 3653 * @dev_id: to pass the net device pointer. 3654 * Description: this is the main driver interrupt service routine. 3655 * It can call: 3656 * o DMA service routine (to manage incoming frame reception and transmission 3657 * status) 3658 * o Core interrupts to manage: remote wake-up, management counter, LPI 3659 * interrupts. 3660 */ 3661 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 3662 { 3663 struct net_device *dev = (struct net_device *)dev_id; 3664 struct stmmac_priv *priv = netdev_priv(dev); 3665 u32 rx_cnt = priv->plat->rx_queues_to_use; 3666 u32 tx_cnt = priv->plat->tx_queues_to_use; 3667 u32 queues_count; 3668 u32 queue; 3669 bool xmac; 3670 3671 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3672 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 3673 3674 if (priv->irq_wake) 3675 pm_wakeup_event(priv->device, 0); 3676 3677 if (unlikely(!dev)) { 3678 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 3679 return IRQ_NONE; 3680 } 3681 3682 /* Check if adapter is up */ 3683 if (test_bit(STMMAC_DOWN, &priv->state)) 3684 return IRQ_HANDLED; 3685 /* Check if a fatal error happened */ 3686 if (stmmac_safety_feat_interrupt(priv)) 3687 return IRQ_HANDLED; 3688 3689 /* To handle GMAC own interrupts */ 3690 if ((priv->plat->has_gmac) || xmac) { 3691 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 3692 int mtl_status; 3693 3694 if (unlikely(status)) { 3695 /* For LPI we need to save the tx status */ 3696 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 3697 priv->tx_path_in_lpi_mode = true; 3698 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 3699 priv->tx_path_in_lpi_mode = false; 3700 } 3701 3702 for (queue = 0; queue < queues_count; queue++) { 3703 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3704 3705 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 3706 queue); 3707 if (mtl_status != -EINVAL) 3708 status |= mtl_status; 3709 3710 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 3711 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3712 rx_q->rx_tail_addr, 3713 queue); 3714 } 3715 3716 /* PCS link status */ 3717 if (priv->hw->pcs) { 3718 if (priv->xstats.pcs_link) 3719 netif_carrier_on(dev); 3720 else 3721 netif_carrier_off(dev); 3722 } 3723 } 3724 3725 /* To handle DMA interrupts */ 3726 stmmac_dma_interrupt(priv); 3727 3728 return IRQ_HANDLED; 3729 } 3730 3731 #ifdef CONFIG_NET_POLL_CONTROLLER 3732 /* Polling receive - used by NETCONSOLE and other diagnostic tools 3733 * to allow network I/O with interrupts disabled. 3734 */ 3735 static void stmmac_poll_controller(struct net_device *dev) 3736 { 3737 disable_irq(dev->irq); 3738 stmmac_interrupt(dev->irq, dev); 3739 enable_irq(dev->irq); 3740 } 3741 #endif 3742 3743 /** 3744 * stmmac_ioctl - Entry point for the Ioctl 3745 * @dev: Device pointer. 3746 * @rq: An IOCTL specefic structure, that can contain a pointer to 3747 * a proprietary structure used to pass information to the driver. 3748 * @cmd: IOCTL command 3749 * Description: 3750 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 3751 */ 3752 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3753 { 3754 int ret = -EOPNOTSUPP; 3755 3756 if (!netif_running(dev)) 3757 return -EINVAL; 3758 3759 switch (cmd) { 3760 case SIOCGMIIPHY: 3761 case SIOCGMIIREG: 3762 case SIOCSMIIREG: 3763 if (!dev->phydev) 3764 return -EINVAL; 3765 ret = phy_mii_ioctl(dev->phydev, rq, cmd); 3766 break; 3767 case SIOCSHWTSTAMP: 3768 ret = stmmac_hwtstamp_ioctl(dev, rq); 3769 break; 3770 default: 3771 break; 3772 } 3773 3774 return ret; 3775 } 3776 3777 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3778 void *cb_priv) 3779 { 3780 struct stmmac_priv *priv = cb_priv; 3781 int ret = -EOPNOTSUPP; 3782 3783 stmmac_disable_all_queues(priv); 3784 3785 switch (type) { 3786 case TC_SETUP_CLSU32: 3787 if (tc_cls_can_offload_and_chain0(priv->dev, type_data)) 3788 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 3789 break; 3790 default: 3791 break; 3792 } 3793 3794 stmmac_enable_all_queues(priv); 3795 return ret; 3796 } 3797 3798 static int stmmac_setup_tc_block(struct stmmac_priv *priv, 3799 struct tc_block_offload *f) 3800 { 3801 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3802 return -EOPNOTSUPP; 3803 3804 switch (f->command) { 3805 case TC_BLOCK_BIND: 3806 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb, 3807 priv, priv, f->extack); 3808 case TC_BLOCK_UNBIND: 3809 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv); 3810 return 0; 3811 default: 3812 return -EOPNOTSUPP; 3813 } 3814 } 3815 3816 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 3817 void *type_data) 3818 { 3819 struct stmmac_priv *priv = netdev_priv(ndev); 3820 3821 switch (type) { 3822 case TC_SETUP_BLOCK: 3823 return stmmac_setup_tc_block(priv, type_data); 3824 case TC_SETUP_QDISC_CBS: 3825 return stmmac_tc_setup_cbs(priv, priv, type_data); 3826 default: 3827 return -EOPNOTSUPP; 3828 } 3829 } 3830 3831 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 3832 { 3833 struct stmmac_priv *priv = netdev_priv(ndev); 3834 int ret = 0; 3835 3836 ret = eth_mac_addr(ndev, addr); 3837 if (ret) 3838 return ret; 3839 3840 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 3841 3842 return ret; 3843 } 3844 3845 #ifdef CONFIG_DEBUG_FS 3846 static struct dentry *stmmac_fs_dir; 3847 3848 static void sysfs_display_ring(void *head, int size, int extend_desc, 3849 struct seq_file *seq) 3850 { 3851 int i; 3852 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 3853 struct dma_desc *p = (struct dma_desc *)head; 3854 3855 for (i = 0; i < size; i++) { 3856 if (extend_desc) { 3857 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3858 i, (unsigned int)virt_to_phys(ep), 3859 le32_to_cpu(ep->basic.des0), 3860 le32_to_cpu(ep->basic.des1), 3861 le32_to_cpu(ep->basic.des2), 3862 le32_to_cpu(ep->basic.des3)); 3863 ep++; 3864 } else { 3865 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3866 i, (unsigned int)virt_to_phys(p), 3867 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 3868 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 3869 p++; 3870 } 3871 seq_printf(seq, "\n"); 3872 } 3873 } 3874 3875 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 3876 { 3877 struct net_device *dev = seq->private; 3878 struct stmmac_priv *priv = netdev_priv(dev); 3879 u32 rx_count = priv->plat->rx_queues_to_use; 3880 u32 tx_count = priv->plat->tx_queues_to_use; 3881 u32 queue; 3882 3883 for (queue = 0; queue < rx_count; queue++) { 3884 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3885 3886 seq_printf(seq, "RX Queue %d:\n", queue); 3887 3888 if (priv->extend_desc) { 3889 seq_printf(seq, "Extended descriptor ring:\n"); 3890 sysfs_display_ring((void *)rx_q->dma_erx, 3891 DMA_RX_SIZE, 1, seq); 3892 } else { 3893 seq_printf(seq, "Descriptor ring:\n"); 3894 sysfs_display_ring((void *)rx_q->dma_rx, 3895 DMA_RX_SIZE, 0, seq); 3896 } 3897 } 3898 3899 for (queue = 0; queue < tx_count; queue++) { 3900 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3901 3902 seq_printf(seq, "TX Queue %d:\n", queue); 3903 3904 if (priv->extend_desc) { 3905 seq_printf(seq, "Extended descriptor ring:\n"); 3906 sysfs_display_ring((void *)tx_q->dma_etx, 3907 DMA_TX_SIZE, 1, seq); 3908 } else { 3909 seq_printf(seq, "Descriptor ring:\n"); 3910 sysfs_display_ring((void *)tx_q->dma_tx, 3911 DMA_TX_SIZE, 0, seq); 3912 } 3913 } 3914 3915 return 0; 3916 } 3917 3918 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 3919 { 3920 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 3921 } 3922 3923 /* Debugfs files, should appear in /sys/kernel/debug/stmmaceth/eth0 */ 3924 3925 static const struct file_operations stmmac_rings_status_fops = { 3926 .owner = THIS_MODULE, 3927 .open = stmmac_sysfs_ring_open, 3928 .read = seq_read, 3929 .llseek = seq_lseek, 3930 .release = single_release, 3931 }; 3932 3933 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 3934 { 3935 struct net_device *dev = seq->private; 3936 struct stmmac_priv *priv = netdev_priv(dev); 3937 3938 if (!priv->hw_cap_support) { 3939 seq_printf(seq, "DMA HW features not supported\n"); 3940 return 0; 3941 } 3942 3943 seq_printf(seq, "==============================\n"); 3944 seq_printf(seq, "\tDMA HW features\n"); 3945 seq_printf(seq, "==============================\n"); 3946 3947 seq_printf(seq, "\t10/100 Mbps: %s\n", 3948 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 3949 seq_printf(seq, "\t1000 Mbps: %s\n", 3950 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 3951 seq_printf(seq, "\tHalf duplex: %s\n", 3952 (priv->dma_cap.half_duplex) ? "Y" : "N"); 3953 seq_printf(seq, "\tHash Filter: %s\n", 3954 (priv->dma_cap.hash_filter) ? "Y" : "N"); 3955 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 3956 (priv->dma_cap.multi_addr) ? "Y" : "N"); 3957 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 3958 (priv->dma_cap.pcs) ? "Y" : "N"); 3959 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 3960 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 3961 seq_printf(seq, "\tPMT Remote wake up: %s\n", 3962 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 3963 seq_printf(seq, "\tPMT Magic Frame: %s\n", 3964 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 3965 seq_printf(seq, "\tRMON module: %s\n", 3966 (priv->dma_cap.rmon) ? "Y" : "N"); 3967 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 3968 (priv->dma_cap.time_stamp) ? "Y" : "N"); 3969 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 3970 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 3971 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 3972 (priv->dma_cap.eee) ? "Y" : "N"); 3973 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 3974 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 3975 (priv->dma_cap.tx_coe) ? "Y" : "N"); 3976 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 3977 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 3978 (priv->dma_cap.rx_coe) ? "Y" : "N"); 3979 } else { 3980 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 3981 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 3982 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 3983 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 3984 } 3985 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 3986 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 3987 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 3988 priv->dma_cap.number_rx_channel); 3989 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 3990 priv->dma_cap.number_tx_channel); 3991 seq_printf(seq, "\tEnhanced descriptors: %s\n", 3992 (priv->dma_cap.enh_desc) ? "Y" : "N"); 3993 3994 return 0; 3995 } 3996 3997 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 3998 { 3999 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 4000 } 4001 4002 static const struct file_operations stmmac_dma_cap_fops = { 4003 .owner = THIS_MODULE, 4004 .open = stmmac_sysfs_dma_cap_open, 4005 .read = seq_read, 4006 .llseek = seq_lseek, 4007 .release = single_release, 4008 }; 4009 4010 static int stmmac_init_fs(struct net_device *dev) 4011 { 4012 struct stmmac_priv *priv = netdev_priv(dev); 4013 4014 /* Create per netdev entries */ 4015 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 4016 4017 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 4018 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n"); 4019 4020 return -ENOMEM; 4021 } 4022 4023 /* Entry to report DMA RX/TX rings */ 4024 priv->dbgfs_rings_status = 4025 debugfs_create_file("descriptors_status", 0444, 4026 priv->dbgfs_dir, dev, 4027 &stmmac_rings_status_fops); 4028 4029 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 4030 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n"); 4031 debugfs_remove_recursive(priv->dbgfs_dir); 4032 4033 return -ENOMEM; 4034 } 4035 4036 /* Entry to report the DMA HW features */ 4037 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444, 4038 priv->dbgfs_dir, 4039 dev, &stmmac_dma_cap_fops); 4040 4041 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 4042 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n"); 4043 debugfs_remove_recursive(priv->dbgfs_dir); 4044 4045 return -ENOMEM; 4046 } 4047 4048 return 0; 4049 } 4050 4051 static void stmmac_exit_fs(struct net_device *dev) 4052 { 4053 struct stmmac_priv *priv = netdev_priv(dev); 4054 4055 debugfs_remove_recursive(priv->dbgfs_dir); 4056 } 4057 #endif /* CONFIG_DEBUG_FS */ 4058 4059 static const struct net_device_ops stmmac_netdev_ops = { 4060 .ndo_open = stmmac_open, 4061 .ndo_start_xmit = stmmac_xmit, 4062 .ndo_stop = stmmac_release, 4063 .ndo_change_mtu = stmmac_change_mtu, 4064 .ndo_fix_features = stmmac_fix_features, 4065 .ndo_set_features = stmmac_set_features, 4066 .ndo_set_rx_mode = stmmac_set_rx_mode, 4067 .ndo_tx_timeout = stmmac_tx_timeout, 4068 .ndo_do_ioctl = stmmac_ioctl, 4069 .ndo_setup_tc = stmmac_setup_tc, 4070 #ifdef CONFIG_NET_POLL_CONTROLLER 4071 .ndo_poll_controller = stmmac_poll_controller, 4072 #endif 4073 .ndo_set_mac_address = stmmac_set_mac_address, 4074 }; 4075 4076 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4077 { 4078 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4079 return; 4080 if (test_bit(STMMAC_DOWN, &priv->state)) 4081 return; 4082 4083 netdev_err(priv->dev, "Reset adapter.\n"); 4084 4085 rtnl_lock(); 4086 netif_trans_update(priv->dev); 4087 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4088 usleep_range(1000, 2000); 4089 4090 set_bit(STMMAC_DOWN, &priv->state); 4091 dev_close(priv->dev); 4092 dev_open(priv->dev); 4093 clear_bit(STMMAC_DOWN, &priv->state); 4094 clear_bit(STMMAC_RESETING, &priv->state); 4095 rtnl_unlock(); 4096 } 4097 4098 static void stmmac_service_task(struct work_struct *work) 4099 { 4100 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4101 service_task); 4102 4103 stmmac_reset_subtask(priv); 4104 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4105 } 4106 4107 /** 4108 * stmmac_hw_init - Init the MAC device 4109 * @priv: driver private structure 4110 * Description: this function is to configure the MAC device according to 4111 * some platform parameters or the HW capability register. It prepares the 4112 * driver to use either ring or chain modes and to setup either enhanced or 4113 * normal descriptors. 4114 */ 4115 static int stmmac_hw_init(struct stmmac_priv *priv) 4116 { 4117 int ret; 4118 4119 /* dwmac-sun8i only work in chain mode */ 4120 if (priv->plat->has_sun8i) 4121 chain_mode = 1; 4122 priv->chain_mode = chain_mode; 4123 4124 /* Initialize HW Interface */ 4125 ret = stmmac_hwif_init(priv); 4126 if (ret) 4127 return ret; 4128 4129 /* Get the HW capability (new GMAC newer than 3.50a) */ 4130 priv->hw_cap_support = stmmac_get_hw_features(priv); 4131 if (priv->hw_cap_support) { 4132 dev_info(priv->device, "DMA HW capability register supported\n"); 4133 4134 /* We can override some gmac/dma configuration fields: e.g. 4135 * enh_desc, tx_coe (e.g. that are passed through the 4136 * platform) with the values from the HW capability 4137 * register (if supported). 4138 */ 4139 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4140 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4141 priv->hw->pmt = priv->plat->pmt; 4142 4143 /* TXCOE doesn't work in thresh DMA mode */ 4144 if (priv->plat->force_thresh_dma_mode) 4145 priv->plat->tx_coe = 0; 4146 else 4147 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4148 4149 /* In case of GMAC4 rx_coe is from HW cap register. */ 4150 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4151 4152 if (priv->dma_cap.rx_coe_type2) 4153 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4154 else if (priv->dma_cap.rx_coe_type1) 4155 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4156 4157 } else { 4158 dev_info(priv->device, "No HW DMA feature register supported\n"); 4159 } 4160 4161 if (priv->plat->rx_coe) { 4162 priv->hw->rx_csum = priv->plat->rx_coe; 4163 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4164 if (priv->synopsys_id < DWMAC_CORE_4_00) 4165 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4166 } 4167 if (priv->plat->tx_coe) 4168 dev_info(priv->device, "TX Checksum insertion supported\n"); 4169 4170 if (priv->plat->pmt) { 4171 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4172 device_set_wakeup_capable(priv->device, 1); 4173 } 4174 4175 if (priv->dma_cap.tsoen) 4176 dev_info(priv->device, "TSO supported\n"); 4177 4178 /* Run HW quirks, if any */ 4179 if (priv->hwif_quirks) { 4180 ret = priv->hwif_quirks(priv); 4181 if (ret) 4182 return ret; 4183 } 4184 4185 return 0; 4186 } 4187 4188 /** 4189 * stmmac_dvr_probe 4190 * @device: device pointer 4191 * @plat_dat: platform data pointer 4192 * @res: stmmac resource pointer 4193 * Description: this is the main probe function used to 4194 * call the alloc_etherdev, allocate the priv structure. 4195 * Return: 4196 * returns 0 on success, otherwise errno. 4197 */ 4198 int stmmac_dvr_probe(struct device *device, 4199 struct plat_stmmacenet_data *plat_dat, 4200 struct stmmac_resources *res) 4201 { 4202 struct net_device *ndev = NULL; 4203 struct stmmac_priv *priv; 4204 int ret = 0; 4205 u32 queue; 4206 4207 ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv), 4208 MTL_MAX_TX_QUEUES, 4209 MTL_MAX_RX_QUEUES); 4210 if (!ndev) 4211 return -ENOMEM; 4212 4213 SET_NETDEV_DEV(ndev, device); 4214 4215 priv = netdev_priv(ndev); 4216 priv->device = device; 4217 priv->dev = ndev; 4218 4219 stmmac_set_ethtool_ops(ndev); 4220 priv->pause = pause; 4221 priv->plat = plat_dat; 4222 priv->ioaddr = res->addr; 4223 priv->dev->base_addr = (unsigned long)res->addr; 4224 4225 priv->dev->irq = res->irq; 4226 priv->wol_irq = res->wol_irq; 4227 priv->lpi_irq = res->lpi_irq; 4228 4229 if (res->mac) 4230 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4231 4232 dev_set_drvdata(device, priv->dev); 4233 4234 /* Verify driver arguments */ 4235 stmmac_verify_args(); 4236 4237 /* Allocate workqueue */ 4238 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4239 if (!priv->wq) { 4240 dev_err(priv->device, "failed to create workqueue\n"); 4241 goto error_wq; 4242 } 4243 4244 INIT_WORK(&priv->service_task, stmmac_service_task); 4245 4246 /* Override with kernel parameters if supplied XXX CRS XXX 4247 * this needs to have multiple instances 4248 */ 4249 if ((phyaddr >= 0) && (phyaddr <= 31)) 4250 priv->plat->phy_addr = phyaddr; 4251 4252 if (priv->plat->stmmac_rst) { 4253 ret = reset_control_assert(priv->plat->stmmac_rst); 4254 reset_control_deassert(priv->plat->stmmac_rst); 4255 /* Some reset controllers have only reset callback instead of 4256 * assert + deassert callbacks pair. 4257 */ 4258 if (ret == -ENOTSUPP) 4259 reset_control_reset(priv->plat->stmmac_rst); 4260 } 4261 4262 /* Init MAC and get the capabilities */ 4263 ret = stmmac_hw_init(priv); 4264 if (ret) 4265 goto error_hw_init; 4266 4267 /* Configure real RX and TX queues */ 4268 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4269 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4270 4271 ndev->netdev_ops = &stmmac_netdev_ops; 4272 4273 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4274 NETIF_F_RXCSUM; 4275 4276 ret = stmmac_tc_init(priv, priv); 4277 if (!ret) { 4278 ndev->hw_features |= NETIF_F_HW_TC; 4279 } 4280 4281 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4282 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4283 priv->tso = true; 4284 dev_info(priv->device, "TSO feature enabled\n"); 4285 } 4286 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4287 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4288 #ifdef STMMAC_VLAN_TAG_USED 4289 /* Both mac100 and gmac support receive VLAN tag detection */ 4290 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4291 #endif 4292 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4293 4294 /* MTU range: 46 - hw-specific max */ 4295 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4296 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4297 ndev->max_mtu = JUMBO_LEN; 4298 else if (priv->plat->has_xgmac) 4299 ndev->max_mtu = XGMAC_JUMBO_LEN; 4300 else 4301 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4302 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4303 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4304 */ 4305 if ((priv->plat->maxmtu < ndev->max_mtu) && 4306 (priv->plat->maxmtu >= ndev->min_mtu)) 4307 ndev->max_mtu = priv->plat->maxmtu; 4308 else if (priv->plat->maxmtu < ndev->min_mtu) 4309 dev_warn(priv->device, 4310 "%s: warning: maxmtu having invalid value (%d)\n", 4311 __func__, priv->plat->maxmtu); 4312 4313 if (flow_ctrl) 4314 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4315 4316 /* Rx Watchdog is available in the COREs newer than the 3.40. 4317 * In some case, for example on bugged HW this feature 4318 * has to be disable and this can be done by passing the 4319 * riwt_off field from the platform. 4320 */ 4321 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4322 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4323 priv->use_riwt = 1; 4324 dev_info(priv->device, 4325 "Enable RX Mitigation via HW Watchdog Timer\n"); 4326 } 4327 4328 for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) { 4329 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4330 4331 netif_napi_add(ndev, &rx_q->napi, stmmac_poll, 4332 (8 * priv->plat->rx_queues_to_use)); 4333 } 4334 4335 mutex_init(&priv->lock); 4336 4337 /* If a specific clk_csr value is passed from the platform 4338 * this means that the CSR Clock Range selection cannot be 4339 * changed at run-time and it is fixed. Viceversa the driver'll try to 4340 * set the MDC clock dynamically according to the csr actual 4341 * clock input. 4342 */ 4343 if (!priv->plat->clk_csr) 4344 stmmac_clk_csr_set(priv); 4345 else 4346 priv->clk_csr = priv->plat->clk_csr; 4347 4348 stmmac_check_pcs_mode(priv); 4349 4350 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4351 priv->hw->pcs != STMMAC_PCS_TBI && 4352 priv->hw->pcs != STMMAC_PCS_RTBI) { 4353 /* MDIO bus Registration */ 4354 ret = stmmac_mdio_register(ndev); 4355 if (ret < 0) { 4356 dev_err(priv->device, 4357 "%s: MDIO bus (id: %d) registration failed", 4358 __func__, priv->plat->bus_id); 4359 goto error_mdio_register; 4360 } 4361 } 4362 4363 ret = register_netdev(ndev); 4364 if (ret) { 4365 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4366 __func__, ret); 4367 goto error_netdev_register; 4368 } 4369 4370 return ret; 4371 4372 error_netdev_register: 4373 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4374 priv->hw->pcs != STMMAC_PCS_TBI && 4375 priv->hw->pcs != STMMAC_PCS_RTBI) 4376 stmmac_mdio_unregister(ndev); 4377 error_mdio_register: 4378 for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) { 4379 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4380 4381 netif_napi_del(&rx_q->napi); 4382 } 4383 error_hw_init: 4384 destroy_workqueue(priv->wq); 4385 error_wq: 4386 free_netdev(ndev); 4387 4388 return ret; 4389 } 4390 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4391 4392 /** 4393 * stmmac_dvr_remove 4394 * @dev: device pointer 4395 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4396 * changes the link status, releases the DMA descriptor rings. 4397 */ 4398 int stmmac_dvr_remove(struct device *dev) 4399 { 4400 struct net_device *ndev = dev_get_drvdata(dev); 4401 struct stmmac_priv *priv = netdev_priv(ndev); 4402 4403 netdev_info(priv->dev, "%s: removing driver", __func__); 4404 4405 stmmac_stop_all_dma(priv); 4406 4407 stmmac_mac_set(priv, priv->ioaddr, false); 4408 netif_carrier_off(ndev); 4409 unregister_netdev(ndev); 4410 if (priv->plat->stmmac_rst) 4411 reset_control_assert(priv->plat->stmmac_rst); 4412 clk_disable_unprepare(priv->plat->pclk); 4413 clk_disable_unprepare(priv->plat->stmmac_clk); 4414 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4415 priv->hw->pcs != STMMAC_PCS_TBI && 4416 priv->hw->pcs != STMMAC_PCS_RTBI) 4417 stmmac_mdio_unregister(ndev); 4418 destroy_workqueue(priv->wq); 4419 mutex_destroy(&priv->lock); 4420 free_netdev(ndev); 4421 4422 return 0; 4423 } 4424 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4425 4426 /** 4427 * stmmac_suspend - suspend callback 4428 * @dev: device pointer 4429 * Description: this is the function to suspend the device and it is called 4430 * by the platform driver to stop the network queue, release the resources, 4431 * program the PMT register (for WoL), clean and release driver resources. 4432 */ 4433 int stmmac_suspend(struct device *dev) 4434 { 4435 struct net_device *ndev = dev_get_drvdata(dev); 4436 struct stmmac_priv *priv = netdev_priv(ndev); 4437 4438 if (!ndev || !netif_running(ndev)) 4439 return 0; 4440 4441 if (ndev->phydev) 4442 phy_stop(ndev->phydev); 4443 4444 mutex_lock(&priv->lock); 4445 4446 netif_device_detach(ndev); 4447 stmmac_stop_all_queues(priv); 4448 4449 stmmac_disable_all_queues(priv); 4450 4451 /* Stop TX/RX DMA */ 4452 stmmac_stop_all_dma(priv); 4453 4454 /* Enable Power down mode by programming the PMT regs */ 4455 if (device_may_wakeup(priv->device)) { 4456 stmmac_pmt(priv, priv->hw, priv->wolopts); 4457 priv->irq_wake = 1; 4458 } else { 4459 stmmac_mac_set(priv, priv->ioaddr, false); 4460 pinctrl_pm_select_sleep_state(priv->device); 4461 /* Disable clock in case of PWM is off */ 4462 clk_disable(priv->plat->pclk); 4463 clk_disable(priv->plat->stmmac_clk); 4464 } 4465 mutex_unlock(&priv->lock); 4466 4467 priv->oldlink = false; 4468 priv->speed = SPEED_UNKNOWN; 4469 priv->oldduplex = DUPLEX_UNKNOWN; 4470 return 0; 4471 } 4472 EXPORT_SYMBOL_GPL(stmmac_suspend); 4473 4474 /** 4475 * stmmac_reset_queues_param - reset queue parameters 4476 * @dev: device pointer 4477 */ 4478 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 4479 { 4480 u32 rx_cnt = priv->plat->rx_queues_to_use; 4481 u32 tx_cnt = priv->plat->tx_queues_to_use; 4482 u32 queue; 4483 4484 for (queue = 0; queue < rx_cnt; queue++) { 4485 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4486 4487 rx_q->cur_rx = 0; 4488 rx_q->dirty_rx = 0; 4489 } 4490 4491 for (queue = 0; queue < tx_cnt; queue++) { 4492 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4493 4494 tx_q->cur_tx = 0; 4495 tx_q->dirty_tx = 0; 4496 tx_q->mss = 0; 4497 } 4498 } 4499 4500 /** 4501 * stmmac_resume - resume callback 4502 * @dev: device pointer 4503 * Description: when resume this function is invoked to setup the DMA and CORE 4504 * in a usable state. 4505 */ 4506 int stmmac_resume(struct device *dev) 4507 { 4508 struct net_device *ndev = dev_get_drvdata(dev); 4509 struct stmmac_priv *priv = netdev_priv(ndev); 4510 4511 if (!netif_running(ndev)) 4512 return 0; 4513 4514 /* Power Down bit, into the PM register, is cleared 4515 * automatically as soon as a magic packet or a Wake-up frame 4516 * is received. Anyway, it's better to manually clear 4517 * this bit because it can generate problems while resuming 4518 * from another devices (e.g. serial console). 4519 */ 4520 if (device_may_wakeup(priv->device)) { 4521 mutex_lock(&priv->lock); 4522 stmmac_pmt(priv, priv->hw, 0); 4523 mutex_unlock(&priv->lock); 4524 priv->irq_wake = 0; 4525 } else { 4526 pinctrl_pm_select_default_state(priv->device); 4527 /* enable the clk previously disabled */ 4528 clk_enable(priv->plat->stmmac_clk); 4529 clk_enable(priv->plat->pclk); 4530 /* reset the phy so that it's ready */ 4531 if (priv->mii) 4532 stmmac_mdio_reset(priv->mii); 4533 } 4534 4535 netif_device_attach(ndev); 4536 4537 mutex_lock(&priv->lock); 4538 4539 stmmac_reset_queues_param(priv); 4540 4541 stmmac_clear_descriptors(priv); 4542 4543 stmmac_hw_setup(ndev, false); 4544 stmmac_init_tx_coalesce(priv); 4545 stmmac_set_rx_mode(ndev); 4546 4547 stmmac_enable_all_queues(priv); 4548 4549 stmmac_start_all_queues(priv); 4550 4551 mutex_unlock(&priv->lock); 4552 4553 if (ndev->phydev) 4554 phy_start(ndev->phydev); 4555 4556 return 0; 4557 } 4558 EXPORT_SYMBOL_GPL(stmmac_resume); 4559 4560 #ifndef MODULE 4561 static int __init stmmac_cmdline_opt(char *str) 4562 { 4563 char *opt; 4564 4565 if (!str || !*str) 4566 return -EINVAL; 4567 while ((opt = strsep(&str, ",")) != NULL) { 4568 if (!strncmp(opt, "debug:", 6)) { 4569 if (kstrtoint(opt + 6, 0, &debug)) 4570 goto err; 4571 } else if (!strncmp(opt, "phyaddr:", 8)) { 4572 if (kstrtoint(opt + 8, 0, &phyaddr)) 4573 goto err; 4574 } else if (!strncmp(opt, "buf_sz:", 7)) { 4575 if (kstrtoint(opt + 7, 0, &buf_sz)) 4576 goto err; 4577 } else if (!strncmp(opt, "tc:", 3)) { 4578 if (kstrtoint(opt + 3, 0, &tc)) 4579 goto err; 4580 } else if (!strncmp(opt, "watchdog:", 9)) { 4581 if (kstrtoint(opt + 9, 0, &watchdog)) 4582 goto err; 4583 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 4584 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 4585 goto err; 4586 } else if (!strncmp(opt, "pause:", 6)) { 4587 if (kstrtoint(opt + 6, 0, &pause)) 4588 goto err; 4589 } else if (!strncmp(opt, "eee_timer:", 10)) { 4590 if (kstrtoint(opt + 10, 0, &eee_timer)) 4591 goto err; 4592 } else if (!strncmp(opt, "chain_mode:", 11)) { 4593 if (kstrtoint(opt + 11, 0, &chain_mode)) 4594 goto err; 4595 } 4596 } 4597 return 0; 4598 4599 err: 4600 pr_err("%s: ERROR broken module parameter conversion", __func__); 4601 return -EINVAL; 4602 } 4603 4604 __setup("stmmaceth=", stmmac_cmdline_opt); 4605 #endif /* MODULE */ 4606 4607 static int __init stmmac_init(void) 4608 { 4609 #ifdef CONFIG_DEBUG_FS 4610 /* Create debugfs main directory if it doesn't exist yet */ 4611 if (!stmmac_fs_dir) { 4612 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 4613 4614 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 4615 pr_err("ERROR %s, debugfs create directory failed\n", 4616 STMMAC_RESOURCE_NAME); 4617 4618 return -ENOMEM; 4619 } 4620 } 4621 #endif 4622 4623 return 0; 4624 } 4625 4626 static void __exit stmmac_exit(void) 4627 { 4628 #ifdef CONFIG_DEBUG_FS 4629 debugfs_remove_recursive(stmmac_fs_dir); 4630 #endif 4631 } 4632 4633 module_init(stmmac_init) 4634 module_exit(stmmac_exit) 4635 4636 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 4637 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 4638 MODULE_LICENSE("GPL"); 4639