1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 136 u32 rxmode, u32 chan); 137 138 #ifdef CONFIG_DEBUG_FS 139 static const struct net_device_ops stmmac_netdev_ops; 140 static void stmmac_init_fs(struct net_device *dev); 141 static void stmmac_exit_fs(struct net_device *dev); 142 #endif 143 144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 145 146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 147 { 148 int ret = 0; 149 150 if (enabled) { 151 ret = clk_prepare_enable(priv->plat->stmmac_clk); 152 if (ret) 153 return ret; 154 ret = clk_prepare_enable(priv->plat->pclk); 155 if (ret) { 156 clk_disable_unprepare(priv->plat->stmmac_clk); 157 return ret; 158 } 159 if (priv->plat->clks_config) { 160 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 161 if (ret) { 162 clk_disable_unprepare(priv->plat->stmmac_clk); 163 clk_disable_unprepare(priv->plat->pclk); 164 return ret; 165 } 166 } 167 } else { 168 clk_disable_unprepare(priv->plat->stmmac_clk); 169 clk_disable_unprepare(priv->plat->pclk); 170 if (priv->plat->clks_config) 171 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 172 } 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 177 178 /** 179 * stmmac_verify_args - verify the driver parameters. 180 * Description: it checks the driver parameters and set a default in case of 181 * errors. 182 */ 183 static void stmmac_verify_args(void) 184 { 185 if (unlikely(watchdog < 0)) 186 watchdog = TX_TIMEO; 187 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 188 buf_sz = DEFAULT_BUFSIZE; 189 if (unlikely(flow_ctrl > 1)) 190 flow_ctrl = FLOW_AUTO; 191 else if (likely(flow_ctrl < 0)) 192 flow_ctrl = FLOW_OFF; 193 if (unlikely((pause < 0) || (pause > 0xffff))) 194 pause = PAUSE_TIME; 195 if (eee_timer < 0) 196 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 197 } 198 199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 200 { 201 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 202 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 203 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 204 u32 queue; 205 206 for (queue = 0; queue < maxq; queue++) { 207 struct stmmac_channel *ch = &priv->channel[queue]; 208 209 if (stmmac_xdp_is_enabled(priv) && 210 test_bit(queue, priv->af_xdp_zc_qps)) { 211 napi_disable(&ch->rxtx_napi); 212 continue; 213 } 214 215 if (queue < rx_queues_cnt) 216 napi_disable(&ch->rx_napi); 217 if (queue < tx_queues_cnt) 218 napi_disable(&ch->tx_napi); 219 } 220 } 221 222 /** 223 * stmmac_disable_all_queues - Disable all queues 224 * @priv: driver private structure 225 */ 226 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 227 { 228 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 229 struct stmmac_rx_queue *rx_q; 230 u32 queue; 231 232 /* synchronize_rcu() needed for pending XDP buffers to drain */ 233 for (queue = 0; queue < rx_queues_cnt; queue++) { 234 rx_q = &priv->rx_queue[queue]; 235 if (rx_q->xsk_pool) { 236 synchronize_rcu(); 237 break; 238 } 239 } 240 241 __stmmac_disable_all_queues(priv); 242 } 243 244 /** 245 * stmmac_enable_all_queues - Enable all queues 246 * @priv: driver private structure 247 */ 248 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 249 { 250 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 251 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 252 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 253 u32 queue; 254 255 for (queue = 0; queue < maxq; queue++) { 256 struct stmmac_channel *ch = &priv->channel[queue]; 257 258 if (stmmac_xdp_is_enabled(priv) && 259 test_bit(queue, priv->af_xdp_zc_qps)) { 260 napi_enable(&ch->rxtx_napi); 261 continue; 262 } 263 264 if (queue < rx_queues_cnt) 265 napi_enable(&ch->rx_napi); 266 if (queue < tx_queues_cnt) 267 napi_enable(&ch->tx_napi); 268 } 269 } 270 271 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 272 { 273 if (!test_bit(STMMAC_DOWN, &priv->state) && 274 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 275 queue_work(priv->wq, &priv->service_task); 276 } 277 278 static void stmmac_global_err(struct stmmac_priv *priv) 279 { 280 netif_carrier_off(priv->dev); 281 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 282 stmmac_service_event_schedule(priv); 283 } 284 285 /** 286 * stmmac_clk_csr_set - dynamically set the MDC clock 287 * @priv: driver private structure 288 * Description: this is to dynamically set the MDC clock according to the csr 289 * clock input. 290 * Note: 291 * If a specific clk_csr value is passed from the platform 292 * this means that the CSR Clock Range selection cannot be 293 * changed at run-time and it is fixed (as reported in the driver 294 * documentation). Viceversa the driver will try to set the MDC 295 * clock dynamically according to the actual clock input. 296 */ 297 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 298 { 299 u32 clk_rate; 300 301 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 302 303 /* Platform provided default clk_csr would be assumed valid 304 * for all other cases except for the below mentioned ones. 305 * For values higher than the IEEE 802.3 specified frequency 306 * we can not estimate the proper divider as it is not known 307 * the frequency of clk_csr_i. So we do not change the default 308 * divider. 309 */ 310 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 311 if (clk_rate < CSR_F_35M) 312 priv->clk_csr = STMMAC_CSR_20_35M; 313 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 314 priv->clk_csr = STMMAC_CSR_35_60M; 315 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 316 priv->clk_csr = STMMAC_CSR_60_100M; 317 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 318 priv->clk_csr = STMMAC_CSR_100_150M; 319 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 320 priv->clk_csr = STMMAC_CSR_150_250M; 321 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 322 priv->clk_csr = STMMAC_CSR_250_300M; 323 } 324 325 if (priv->plat->has_sun8i) { 326 if (clk_rate > 160000000) 327 priv->clk_csr = 0x03; 328 else if (clk_rate > 80000000) 329 priv->clk_csr = 0x02; 330 else if (clk_rate > 40000000) 331 priv->clk_csr = 0x01; 332 else 333 priv->clk_csr = 0; 334 } 335 336 if (priv->plat->has_xgmac) { 337 if (clk_rate > 400000000) 338 priv->clk_csr = 0x5; 339 else if (clk_rate > 350000000) 340 priv->clk_csr = 0x4; 341 else if (clk_rate > 300000000) 342 priv->clk_csr = 0x3; 343 else if (clk_rate > 250000000) 344 priv->clk_csr = 0x2; 345 else if (clk_rate > 150000000) 346 priv->clk_csr = 0x1; 347 else 348 priv->clk_csr = 0x0; 349 } 350 } 351 352 static void print_pkt(unsigned char *buf, int len) 353 { 354 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 355 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 356 } 357 358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 359 { 360 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 361 u32 avail; 362 363 if (tx_q->dirty_tx > tx_q->cur_tx) 364 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 365 else 366 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 367 368 return avail; 369 } 370 371 /** 372 * stmmac_rx_dirty - Get RX queue dirty 373 * @priv: driver private structure 374 * @queue: RX queue index 375 */ 376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 377 { 378 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 379 u32 dirty; 380 381 if (rx_q->dirty_rx <= rx_q->cur_rx) 382 dirty = rx_q->cur_rx - rx_q->dirty_rx; 383 else 384 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 385 386 return dirty; 387 } 388 389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 390 { 391 int tx_lpi_timer; 392 393 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 394 priv->eee_sw_timer_en = en ? 0 : 1; 395 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 396 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 397 } 398 399 /** 400 * stmmac_enable_eee_mode - check and enter in LPI mode 401 * @priv: driver private structure 402 * Description: this function is to verify and enter in LPI mode in case of 403 * EEE. 404 */ 405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 406 { 407 u32 tx_cnt = priv->plat->tx_queues_to_use; 408 u32 queue; 409 410 /* check if all TX queues have the work finished */ 411 for (queue = 0; queue < tx_cnt; queue++) { 412 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 413 414 if (tx_q->dirty_tx != tx_q->cur_tx) 415 return -EBUSY; /* still unfinished work */ 416 } 417 418 /* Check and enter in LPI mode */ 419 if (!priv->tx_path_in_lpi_mode) 420 stmmac_set_eee_mode(priv, priv->hw, 421 priv->plat->en_tx_lpi_clockgating); 422 return 0; 423 } 424 425 /** 426 * stmmac_disable_eee_mode - disable and exit from LPI mode 427 * @priv: driver private structure 428 * Description: this function is to exit and disable EEE in case of 429 * LPI state is true. This is called by the xmit. 430 */ 431 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 432 { 433 if (!priv->eee_sw_timer_en) { 434 stmmac_lpi_entry_timer_config(priv, 0); 435 return; 436 } 437 438 stmmac_reset_eee_mode(priv, priv->hw); 439 del_timer_sync(&priv->eee_ctrl_timer); 440 priv->tx_path_in_lpi_mode = false; 441 } 442 443 /** 444 * stmmac_eee_ctrl_timer - EEE TX SW timer. 445 * @t: timer_list struct containing private info 446 * Description: 447 * if there is no data transfer and if we are not in LPI state, 448 * then MAC Transmitter can be moved to LPI state. 449 */ 450 static void stmmac_eee_ctrl_timer(struct timer_list *t) 451 { 452 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 453 454 if (stmmac_enable_eee_mode(priv)) 455 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 456 } 457 458 /** 459 * stmmac_eee_init - init EEE 460 * @priv: driver private structure 461 * Description: 462 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 463 * can also manage EEE, this function enable the LPI state and start related 464 * timer. 465 */ 466 bool stmmac_eee_init(struct stmmac_priv *priv) 467 { 468 int eee_tw_timer = priv->eee_tw_timer; 469 470 /* Using PCS we cannot dial with the phy registers at this stage 471 * so we do not support extra feature like EEE. 472 */ 473 if (priv->hw->pcs == STMMAC_PCS_TBI || 474 priv->hw->pcs == STMMAC_PCS_RTBI) 475 return false; 476 477 /* Check if MAC core supports the EEE feature. */ 478 if (!priv->dma_cap.eee) 479 return false; 480 481 mutex_lock(&priv->lock); 482 483 /* Check if it needs to be deactivated */ 484 if (!priv->eee_active) { 485 if (priv->eee_enabled) { 486 netdev_dbg(priv->dev, "disable EEE\n"); 487 stmmac_lpi_entry_timer_config(priv, 0); 488 del_timer_sync(&priv->eee_ctrl_timer); 489 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 490 if (priv->hw->xpcs) 491 xpcs_config_eee(priv->hw->xpcs, 492 priv->plat->mult_fact_100ns, 493 false); 494 } 495 mutex_unlock(&priv->lock); 496 return false; 497 } 498 499 if (priv->eee_active && !priv->eee_enabled) { 500 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 501 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 502 eee_tw_timer); 503 if (priv->hw->xpcs) 504 xpcs_config_eee(priv->hw->xpcs, 505 priv->plat->mult_fact_100ns, 506 true); 507 } 508 509 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 510 del_timer_sync(&priv->eee_ctrl_timer); 511 priv->tx_path_in_lpi_mode = false; 512 stmmac_lpi_entry_timer_config(priv, 1); 513 } else { 514 stmmac_lpi_entry_timer_config(priv, 0); 515 mod_timer(&priv->eee_ctrl_timer, 516 STMMAC_LPI_T(priv->tx_lpi_timer)); 517 } 518 519 mutex_unlock(&priv->lock); 520 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 521 return true; 522 } 523 524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 525 * @priv: driver private structure 526 * @p : descriptor pointer 527 * @skb : the socket buffer 528 * Description : 529 * This function will read timestamp from the descriptor & pass it to stack. 530 * and also perform some sanity checks. 531 */ 532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 533 struct dma_desc *p, struct sk_buff *skb) 534 { 535 struct skb_shared_hwtstamps shhwtstamp; 536 bool found = false; 537 u64 ns = 0; 538 539 if (!priv->hwts_tx_en) 540 return; 541 542 /* exit if skb doesn't support hw tstamp */ 543 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 544 return; 545 546 /* check tx tstamp status */ 547 if (stmmac_get_tx_timestamp_status(priv, p)) { 548 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 549 found = true; 550 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 551 found = true; 552 } 553 554 if (found) { 555 ns -= priv->plat->cdc_error_adj; 556 557 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 558 shhwtstamp.hwtstamp = ns_to_ktime(ns); 559 560 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 561 /* pass tstamp to stack */ 562 skb_tstamp_tx(skb, &shhwtstamp); 563 } 564 } 565 566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 567 * @priv: driver private structure 568 * @p : descriptor pointer 569 * @np : next descriptor pointer 570 * @skb : the socket buffer 571 * Description : 572 * This function will read received packet's timestamp from the descriptor 573 * and pass it to stack. It also perform some sanity checks. 574 */ 575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 576 struct dma_desc *np, struct sk_buff *skb) 577 { 578 struct skb_shared_hwtstamps *shhwtstamp = NULL; 579 struct dma_desc *desc = p; 580 u64 ns = 0; 581 582 if (!priv->hwts_rx_en) 583 return; 584 /* For GMAC4, the valid timestamp is from CTX next desc. */ 585 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 586 desc = np; 587 588 /* Check if timestamp is available */ 589 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 590 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 591 592 ns -= priv->plat->cdc_error_adj; 593 594 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 595 shhwtstamp = skb_hwtstamps(skb); 596 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 597 shhwtstamp->hwtstamp = ns_to_ktime(ns); 598 } else { 599 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 600 } 601 } 602 603 /** 604 * stmmac_hwtstamp_set - control hardware timestamping. 605 * @dev: device pointer. 606 * @ifr: An IOCTL specific structure, that can contain a pointer to 607 * a proprietary structure used to pass information to the driver. 608 * Description: 609 * This function configures the MAC to enable/disable both outgoing(TX) 610 * and incoming(RX) packets time stamping based on user input. 611 * Return Value: 612 * 0 on success and an appropriate -ve integer on failure. 613 */ 614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 615 { 616 struct stmmac_priv *priv = netdev_priv(dev); 617 struct hwtstamp_config config; 618 u32 ptp_v2 = 0; 619 u32 tstamp_all = 0; 620 u32 ptp_over_ipv4_udp = 0; 621 u32 ptp_over_ipv6_udp = 0; 622 u32 ptp_over_ethernet = 0; 623 u32 snap_type_sel = 0; 624 u32 ts_master_en = 0; 625 u32 ts_event_en = 0; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 if (config.tx_type != HWTSTAMP_TX_OFF && 643 config.tx_type != HWTSTAMP_TX_ON) 644 return -ERANGE; 645 646 if (priv->adv_ts) { 647 switch (config.rx_filter) { 648 case HWTSTAMP_FILTER_NONE: 649 /* time stamp no incoming packet at all */ 650 config.rx_filter = HWTSTAMP_FILTER_NONE; 651 break; 652 653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 654 /* PTP v1, UDP, any kind of event packet */ 655 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 656 /* 'xmac' hardware can support Sync, Pdelay_Req and 657 * Pdelay_resp by setting bit14 and bits17/16 to 01 658 * This leaves Delay_Req timestamps out. 659 * Enable all events *and* general purpose message 660 * timestamping 661 */ 662 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 663 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 664 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 665 break; 666 667 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 668 /* PTP v1, UDP, Sync packet */ 669 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 670 /* take time stamp for SYNC messages only */ 671 ts_event_en = PTP_TCR_TSEVNTENA; 672 673 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 674 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 675 break; 676 677 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 678 /* PTP v1, UDP, Delay_req packet */ 679 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 680 /* take time stamp for Delay_Req messages only */ 681 ts_master_en = PTP_TCR_TSMSTRENA; 682 ts_event_en = PTP_TCR_TSEVNTENA; 683 684 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 685 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 686 break; 687 688 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 689 /* PTP v2, UDP, any kind of event packet */ 690 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 691 ptp_v2 = PTP_TCR_TSVER2ENA; 692 /* take time stamp for all event messages */ 693 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 694 695 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 696 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 697 break; 698 699 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 700 /* PTP v2, UDP, Sync packet */ 701 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 702 ptp_v2 = PTP_TCR_TSVER2ENA; 703 /* take time stamp for SYNC messages only */ 704 ts_event_en = PTP_TCR_TSEVNTENA; 705 706 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 707 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 708 break; 709 710 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 711 /* PTP v2, UDP, Delay_req packet */ 712 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 713 ptp_v2 = PTP_TCR_TSVER2ENA; 714 /* take time stamp for Delay_Req messages only */ 715 ts_master_en = PTP_TCR_TSMSTRENA; 716 ts_event_en = PTP_TCR_TSEVNTENA; 717 718 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 719 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 720 break; 721 722 case HWTSTAMP_FILTER_PTP_V2_EVENT: 723 /* PTP v2/802.AS1 any layer, any kind of event packet */ 724 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 725 ptp_v2 = PTP_TCR_TSVER2ENA; 726 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 727 if (priv->synopsys_id < DWMAC_CORE_4_10) 728 ts_event_en = PTP_TCR_TSEVNTENA; 729 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 730 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 731 ptp_over_ethernet = PTP_TCR_TSIPENA; 732 break; 733 734 case HWTSTAMP_FILTER_PTP_V2_SYNC: 735 /* PTP v2/802.AS1, any layer, Sync packet */ 736 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 737 ptp_v2 = PTP_TCR_TSVER2ENA; 738 /* take time stamp for SYNC messages only */ 739 ts_event_en = PTP_TCR_TSEVNTENA; 740 741 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 742 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 743 ptp_over_ethernet = PTP_TCR_TSIPENA; 744 break; 745 746 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 747 /* PTP v2/802.AS1, any layer, Delay_req packet */ 748 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 749 ptp_v2 = PTP_TCR_TSVER2ENA; 750 /* take time stamp for Delay_Req messages only */ 751 ts_master_en = PTP_TCR_TSMSTRENA; 752 ts_event_en = PTP_TCR_TSEVNTENA; 753 754 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 755 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 756 ptp_over_ethernet = PTP_TCR_TSIPENA; 757 break; 758 759 case HWTSTAMP_FILTER_NTP_ALL: 760 case HWTSTAMP_FILTER_ALL: 761 /* time stamp any incoming packet */ 762 config.rx_filter = HWTSTAMP_FILTER_ALL; 763 tstamp_all = PTP_TCR_TSENALL; 764 break; 765 766 default: 767 return -ERANGE; 768 } 769 } else { 770 switch (config.rx_filter) { 771 case HWTSTAMP_FILTER_NONE: 772 config.rx_filter = HWTSTAMP_FILTER_NONE; 773 break; 774 default: 775 /* PTP v1, UDP, any kind of event packet */ 776 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 777 break; 778 } 779 } 780 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 781 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 782 783 priv->systime_flags = STMMAC_HWTS_ACTIVE; 784 785 if (priv->hwts_tx_en || priv->hwts_rx_en) { 786 priv->systime_flags |= tstamp_all | ptp_v2 | 787 ptp_over_ethernet | ptp_over_ipv6_udp | 788 ptp_over_ipv4_udp | ts_event_en | 789 ts_master_en | snap_type_sel; 790 } 791 792 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 793 794 memcpy(&priv->tstamp_config, &config, sizeof(config)); 795 796 return copy_to_user(ifr->ifr_data, &config, 797 sizeof(config)) ? -EFAULT : 0; 798 } 799 800 /** 801 * stmmac_hwtstamp_get - read hardware timestamping. 802 * @dev: device pointer. 803 * @ifr: An IOCTL specific structure, that can contain a pointer to 804 * a proprietary structure used to pass information to the driver. 805 * Description: 806 * This function obtain the current hardware timestamping settings 807 * as requested. 808 */ 809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 810 { 811 struct stmmac_priv *priv = netdev_priv(dev); 812 struct hwtstamp_config *config = &priv->tstamp_config; 813 814 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 815 return -EOPNOTSUPP; 816 817 return copy_to_user(ifr->ifr_data, config, 818 sizeof(*config)) ? -EFAULT : 0; 819 } 820 821 /** 822 * stmmac_init_tstamp_counter - init hardware timestamping counter 823 * @priv: driver private structure 824 * @systime_flags: timestamping flags 825 * Description: 826 * Initialize hardware counter for packet timestamping. 827 * This is valid as long as the interface is open and not suspended. 828 * Will be rerun after resuming from suspend, case in which the timestamping 829 * flags updated by stmmac_hwtstamp_set() also need to be restored. 830 */ 831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 832 { 833 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 834 struct timespec64 now; 835 u32 sec_inc = 0; 836 u64 temp = 0; 837 int ret; 838 839 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 840 return -EOPNOTSUPP; 841 842 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 843 if (ret < 0) { 844 netdev_warn(priv->dev, 845 "failed to enable PTP reference clock: %pe\n", 846 ERR_PTR(ret)); 847 return ret; 848 } 849 850 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 851 priv->systime_flags = systime_flags; 852 853 /* program Sub Second Increment reg */ 854 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 855 priv->plat->clk_ptp_rate, 856 xmac, &sec_inc); 857 temp = div_u64(1000000000ULL, sec_inc); 858 859 /* Store sub second increment for later use */ 860 priv->sub_second_inc = sec_inc; 861 862 /* calculate default added value: 863 * formula is : 864 * addend = (2^32)/freq_div_ratio; 865 * where, freq_div_ratio = 1e9ns/sec_inc 866 */ 867 temp = (u64)(temp << 32); 868 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 869 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 870 871 /* initialize system time */ 872 ktime_get_real_ts64(&now); 873 874 /* lower 32 bits of tv_sec are safe until y2106 */ 875 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 876 877 return 0; 878 } 879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 880 881 /** 882 * stmmac_init_ptp - init PTP 883 * @priv: driver private structure 884 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 885 * This is done by looking at the HW cap. register. 886 * This function also registers the ptp driver. 887 */ 888 static int stmmac_init_ptp(struct stmmac_priv *priv) 889 { 890 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 891 int ret; 892 893 if (priv->plat->ptp_clk_freq_config) 894 priv->plat->ptp_clk_freq_config(priv); 895 896 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 897 if (ret) 898 return ret; 899 900 priv->adv_ts = 0; 901 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 902 if (xmac && priv->dma_cap.atime_stamp) 903 priv->adv_ts = 1; 904 /* Dwmac 3.x core with extend_desc can support adv_ts */ 905 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 906 priv->adv_ts = 1; 907 908 if (priv->dma_cap.time_stamp) 909 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 910 911 if (priv->adv_ts) 912 netdev_info(priv->dev, 913 "IEEE 1588-2008 Advanced Timestamp supported\n"); 914 915 priv->hwts_tx_en = 0; 916 priv->hwts_rx_en = 0; 917 918 return 0; 919 } 920 921 static void stmmac_release_ptp(struct stmmac_priv *priv) 922 { 923 clk_disable_unprepare(priv->plat->clk_ptp_ref); 924 stmmac_ptp_unregister(priv); 925 } 926 927 /** 928 * stmmac_mac_flow_ctrl - Configure flow control in all queues 929 * @priv: driver private structure 930 * @duplex: duplex passed to the next function 931 * Description: It is used for configuring the flow control in all queues 932 */ 933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 934 { 935 u32 tx_cnt = priv->plat->tx_queues_to_use; 936 937 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 938 priv->pause, tx_cnt); 939 } 940 941 static void stmmac_validate(struct phylink_config *config, 942 unsigned long *supported, 943 struct phylink_link_state *state) 944 { 945 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 946 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 947 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 948 int tx_cnt = priv->plat->tx_queues_to_use; 949 int max_speed = priv->plat->max_speed; 950 951 phylink_set(mac_supported, 10baseT_Half); 952 phylink_set(mac_supported, 10baseT_Full); 953 phylink_set(mac_supported, 100baseT_Half); 954 phylink_set(mac_supported, 100baseT_Full); 955 phylink_set(mac_supported, 1000baseT_Half); 956 phylink_set(mac_supported, 1000baseT_Full); 957 phylink_set(mac_supported, 1000baseKX_Full); 958 959 phylink_set(mac_supported, Autoneg); 960 phylink_set(mac_supported, Pause); 961 phylink_set(mac_supported, Asym_Pause); 962 phylink_set_port_modes(mac_supported); 963 964 /* Cut down 1G if asked to */ 965 if ((max_speed > 0) && (max_speed < 1000)) { 966 phylink_set(mask, 1000baseT_Full); 967 phylink_set(mask, 1000baseX_Full); 968 } else if (priv->plat->has_gmac4) { 969 if (!max_speed || max_speed >= 2500) { 970 phylink_set(mac_supported, 2500baseT_Full); 971 phylink_set(mac_supported, 2500baseX_Full); 972 } 973 } else if (priv->plat->has_xgmac) { 974 if (!max_speed || (max_speed >= 2500)) { 975 phylink_set(mac_supported, 2500baseT_Full); 976 phylink_set(mac_supported, 2500baseX_Full); 977 } 978 if (!max_speed || (max_speed >= 5000)) { 979 phylink_set(mac_supported, 5000baseT_Full); 980 } 981 if (!max_speed || (max_speed >= 10000)) { 982 phylink_set(mac_supported, 10000baseSR_Full); 983 phylink_set(mac_supported, 10000baseLR_Full); 984 phylink_set(mac_supported, 10000baseER_Full); 985 phylink_set(mac_supported, 10000baseLRM_Full); 986 phylink_set(mac_supported, 10000baseT_Full); 987 phylink_set(mac_supported, 10000baseKX4_Full); 988 phylink_set(mac_supported, 10000baseKR_Full); 989 } 990 if (!max_speed || (max_speed >= 25000)) { 991 phylink_set(mac_supported, 25000baseCR_Full); 992 phylink_set(mac_supported, 25000baseKR_Full); 993 phylink_set(mac_supported, 25000baseSR_Full); 994 } 995 if (!max_speed || (max_speed >= 40000)) { 996 phylink_set(mac_supported, 40000baseKR4_Full); 997 phylink_set(mac_supported, 40000baseCR4_Full); 998 phylink_set(mac_supported, 40000baseSR4_Full); 999 phylink_set(mac_supported, 40000baseLR4_Full); 1000 } 1001 if (!max_speed || (max_speed >= 50000)) { 1002 phylink_set(mac_supported, 50000baseCR2_Full); 1003 phylink_set(mac_supported, 50000baseKR2_Full); 1004 phylink_set(mac_supported, 50000baseSR2_Full); 1005 phylink_set(mac_supported, 50000baseKR_Full); 1006 phylink_set(mac_supported, 50000baseSR_Full); 1007 phylink_set(mac_supported, 50000baseCR_Full); 1008 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 1009 phylink_set(mac_supported, 50000baseDR_Full); 1010 } 1011 if (!max_speed || (max_speed >= 100000)) { 1012 phylink_set(mac_supported, 100000baseKR4_Full); 1013 phylink_set(mac_supported, 100000baseSR4_Full); 1014 phylink_set(mac_supported, 100000baseCR4_Full); 1015 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 1016 phylink_set(mac_supported, 100000baseKR2_Full); 1017 phylink_set(mac_supported, 100000baseSR2_Full); 1018 phylink_set(mac_supported, 100000baseCR2_Full); 1019 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 1020 phylink_set(mac_supported, 100000baseDR2_Full); 1021 } 1022 } 1023 1024 /* Half-Duplex can only work with single queue */ 1025 if (tx_cnt > 1) { 1026 phylink_set(mask, 10baseT_Half); 1027 phylink_set(mask, 100baseT_Half); 1028 phylink_set(mask, 1000baseT_Half); 1029 } 1030 1031 linkmode_and(supported, supported, mac_supported); 1032 linkmode_andnot(supported, supported, mask); 1033 1034 linkmode_and(state->advertising, state->advertising, mac_supported); 1035 linkmode_andnot(state->advertising, state->advertising, mask); 1036 1037 /* If PCS is supported, check which modes it supports. */ 1038 if (priv->hw->xpcs) 1039 xpcs_validate(priv->hw->xpcs, supported, state); 1040 } 1041 1042 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1043 const struct phylink_link_state *state) 1044 { 1045 /* Nothing to do, xpcs_config() handles everything */ 1046 } 1047 1048 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1049 { 1050 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1051 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1052 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1053 bool *hs_enable = &fpe_cfg->hs_enable; 1054 1055 if (is_up && *hs_enable) { 1056 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1057 } else { 1058 *lo_state = FPE_STATE_OFF; 1059 *lp_state = FPE_STATE_OFF; 1060 } 1061 } 1062 1063 static void stmmac_mac_link_down(struct phylink_config *config, 1064 unsigned int mode, phy_interface_t interface) 1065 { 1066 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1067 1068 stmmac_mac_set(priv, priv->ioaddr, false); 1069 priv->eee_active = false; 1070 priv->tx_lpi_enabled = false; 1071 priv->eee_enabled = stmmac_eee_init(priv); 1072 stmmac_set_eee_pls(priv, priv->hw, false); 1073 1074 if (priv->dma_cap.fpesel) 1075 stmmac_fpe_link_state_handle(priv, false); 1076 } 1077 1078 static void stmmac_mac_link_up(struct phylink_config *config, 1079 struct phy_device *phy, 1080 unsigned int mode, phy_interface_t interface, 1081 int speed, int duplex, 1082 bool tx_pause, bool rx_pause) 1083 { 1084 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1085 u32 ctrl; 1086 1087 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1088 ctrl &= ~priv->hw->link.speed_mask; 1089 1090 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1091 switch (speed) { 1092 case SPEED_10000: 1093 ctrl |= priv->hw->link.xgmii.speed10000; 1094 break; 1095 case SPEED_5000: 1096 ctrl |= priv->hw->link.xgmii.speed5000; 1097 break; 1098 case SPEED_2500: 1099 ctrl |= priv->hw->link.xgmii.speed2500; 1100 break; 1101 default: 1102 return; 1103 } 1104 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1105 switch (speed) { 1106 case SPEED_100000: 1107 ctrl |= priv->hw->link.xlgmii.speed100000; 1108 break; 1109 case SPEED_50000: 1110 ctrl |= priv->hw->link.xlgmii.speed50000; 1111 break; 1112 case SPEED_40000: 1113 ctrl |= priv->hw->link.xlgmii.speed40000; 1114 break; 1115 case SPEED_25000: 1116 ctrl |= priv->hw->link.xlgmii.speed25000; 1117 break; 1118 case SPEED_10000: 1119 ctrl |= priv->hw->link.xgmii.speed10000; 1120 break; 1121 case SPEED_2500: 1122 ctrl |= priv->hw->link.speed2500; 1123 break; 1124 case SPEED_1000: 1125 ctrl |= priv->hw->link.speed1000; 1126 break; 1127 default: 1128 return; 1129 } 1130 } else { 1131 switch (speed) { 1132 case SPEED_2500: 1133 ctrl |= priv->hw->link.speed2500; 1134 break; 1135 case SPEED_1000: 1136 ctrl |= priv->hw->link.speed1000; 1137 break; 1138 case SPEED_100: 1139 ctrl |= priv->hw->link.speed100; 1140 break; 1141 case SPEED_10: 1142 ctrl |= priv->hw->link.speed10; 1143 break; 1144 default: 1145 return; 1146 } 1147 } 1148 1149 priv->speed = speed; 1150 1151 if (priv->plat->fix_mac_speed) 1152 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1153 1154 if (!duplex) 1155 ctrl &= ~priv->hw->link.duplex; 1156 else 1157 ctrl |= priv->hw->link.duplex; 1158 1159 /* Flow Control operation */ 1160 if (tx_pause && rx_pause) 1161 stmmac_mac_flow_ctrl(priv, duplex); 1162 1163 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1164 1165 stmmac_mac_set(priv, priv->ioaddr, true); 1166 if (phy && priv->dma_cap.eee) { 1167 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1168 priv->eee_enabled = stmmac_eee_init(priv); 1169 priv->tx_lpi_enabled = priv->eee_enabled; 1170 stmmac_set_eee_pls(priv, priv->hw, true); 1171 } 1172 1173 if (priv->dma_cap.fpesel) 1174 stmmac_fpe_link_state_handle(priv, true); 1175 } 1176 1177 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1178 .validate = stmmac_validate, 1179 .mac_config = stmmac_mac_config, 1180 .mac_link_down = stmmac_mac_link_down, 1181 .mac_link_up = stmmac_mac_link_up, 1182 }; 1183 1184 /** 1185 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1186 * @priv: driver private structure 1187 * Description: this is to verify if the HW supports the PCS. 1188 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1189 * configured for the TBI, RTBI, or SGMII PHY interface. 1190 */ 1191 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1192 { 1193 int interface = priv->plat->interface; 1194 1195 if (priv->dma_cap.pcs) { 1196 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1197 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1198 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1199 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1200 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1201 priv->hw->pcs = STMMAC_PCS_RGMII; 1202 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1203 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1204 priv->hw->pcs = STMMAC_PCS_SGMII; 1205 } 1206 } 1207 } 1208 1209 /** 1210 * stmmac_init_phy - PHY initialization 1211 * @dev: net device structure 1212 * Description: it initializes the driver's PHY state, and attaches the PHY 1213 * to the mac driver. 1214 * Return value: 1215 * 0 on success 1216 */ 1217 static int stmmac_init_phy(struct net_device *dev) 1218 { 1219 struct stmmac_priv *priv = netdev_priv(dev); 1220 struct device_node *node; 1221 int ret; 1222 1223 node = priv->plat->phylink_node; 1224 1225 if (node) 1226 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1227 1228 /* Some DT bindings do not set-up the PHY handle. Let's try to 1229 * manually parse it 1230 */ 1231 if (!node || ret) { 1232 int addr = priv->plat->phy_addr; 1233 struct phy_device *phydev; 1234 1235 phydev = mdiobus_get_phy(priv->mii, addr); 1236 if (!phydev) { 1237 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1238 return -ENODEV; 1239 } 1240 1241 ret = phylink_connect_phy(priv->phylink, phydev); 1242 } 1243 1244 if (!priv->plat->pmt) { 1245 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1246 1247 phylink_ethtool_get_wol(priv->phylink, &wol); 1248 device_set_wakeup_capable(priv->device, !!wol.supported); 1249 } 1250 1251 return ret; 1252 } 1253 1254 static int stmmac_phy_setup(struct stmmac_priv *priv) 1255 { 1256 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1257 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1258 int mode = priv->plat->phy_interface; 1259 struct phylink *phylink; 1260 1261 priv->phylink_config.dev = &priv->dev->dev; 1262 priv->phylink_config.type = PHYLINK_NETDEV; 1263 priv->phylink_config.pcs_poll = true; 1264 if (priv->plat->mdio_bus_data) 1265 priv->phylink_config.ovr_an_inband = 1266 mdio_bus_data->xpcs_an_inband; 1267 1268 if (!fwnode) 1269 fwnode = dev_fwnode(priv->device); 1270 1271 phylink = phylink_create(&priv->phylink_config, fwnode, 1272 mode, &stmmac_phylink_mac_ops); 1273 if (IS_ERR(phylink)) 1274 return PTR_ERR(phylink); 1275 1276 if (priv->hw->xpcs) 1277 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs); 1278 1279 priv->phylink = phylink; 1280 return 0; 1281 } 1282 1283 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1284 { 1285 u32 rx_cnt = priv->plat->rx_queues_to_use; 1286 unsigned int desc_size; 1287 void *head_rx; 1288 u32 queue; 1289 1290 /* Display RX rings */ 1291 for (queue = 0; queue < rx_cnt; queue++) { 1292 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1293 1294 pr_info("\tRX Queue %u rings\n", queue); 1295 1296 if (priv->extend_desc) { 1297 head_rx = (void *)rx_q->dma_erx; 1298 desc_size = sizeof(struct dma_extended_desc); 1299 } else { 1300 head_rx = (void *)rx_q->dma_rx; 1301 desc_size = sizeof(struct dma_desc); 1302 } 1303 1304 /* Display RX ring */ 1305 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1306 rx_q->dma_rx_phy, desc_size); 1307 } 1308 } 1309 1310 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1311 { 1312 u32 tx_cnt = priv->plat->tx_queues_to_use; 1313 unsigned int desc_size; 1314 void *head_tx; 1315 u32 queue; 1316 1317 /* Display TX rings */ 1318 for (queue = 0; queue < tx_cnt; queue++) { 1319 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1320 1321 pr_info("\tTX Queue %d rings\n", queue); 1322 1323 if (priv->extend_desc) { 1324 head_tx = (void *)tx_q->dma_etx; 1325 desc_size = sizeof(struct dma_extended_desc); 1326 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1327 head_tx = (void *)tx_q->dma_entx; 1328 desc_size = sizeof(struct dma_edesc); 1329 } else { 1330 head_tx = (void *)tx_q->dma_tx; 1331 desc_size = sizeof(struct dma_desc); 1332 } 1333 1334 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1335 tx_q->dma_tx_phy, desc_size); 1336 } 1337 } 1338 1339 static void stmmac_display_rings(struct stmmac_priv *priv) 1340 { 1341 /* Display RX ring */ 1342 stmmac_display_rx_rings(priv); 1343 1344 /* Display TX ring */ 1345 stmmac_display_tx_rings(priv); 1346 } 1347 1348 static int stmmac_set_bfsize(int mtu, int bufsize) 1349 { 1350 int ret = bufsize; 1351 1352 if (mtu >= BUF_SIZE_8KiB) 1353 ret = BUF_SIZE_16KiB; 1354 else if (mtu >= BUF_SIZE_4KiB) 1355 ret = BUF_SIZE_8KiB; 1356 else if (mtu >= BUF_SIZE_2KiB) 1357 ret = BUF_SIZE_4KiB; 1358 else if (mtu > DEFAULT_BUFSIZE) 1359 ret = BUF_SIZE_2KiB; 1360 else 1361 ret = DEFAULT_BUFSIZE; 1362 1363 return ret; 1364 } 1365 1366 /** 1367 * stmmac_clear_rx_descriptors - clear RX descriptors 1368 * @priv: driver private structure 1369 * @queue: RX queue index 1370 * Description: this function is called to clear the RX descriptors 1371 * in case of both basic and extended descriptors are used. 1372 */ 1373 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1374 { 1375 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1376 int i; 1377 1378 /* Clear the RX descriptors */ 1379 for (i = 0; i < priv->dma_rx_size; i++) 1380 if (priv->extend_desc) 1381 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1382 priv->use_riwt, priv->mode, 1383 (i == priv->dma_rx_size - 1), 1384 priv->dma_buf_sz); 1385 else 1386 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1387 priv->use_riwt, priv->mode, 1388 (i == priv->dma_rx_size - 1), 1389 priv->dma_buf_sz); 1390 } 1391 1392 /** 1393 * stmmac_clear_tx_descriptors - clear tx descriptors 1394 * @priv: driver private structure 1395 * @queue: TX queue index. 1396 * Description: this function is called to clear the TX descriptors 1397 * in case of both basic and extended descriptors are used. 1398 */ 1399 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1400 { 1401 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1402 int i; 1403 1404 /* Clear the TX descriptors */ 1405 for (i = 0; i < priv->dma_tx_size; i++) { 1406 int last = (i == (priv->dma_tx_size - 1)); 1407 struct dma_desc *p; 1408 1409 if (priv->extend_desc) 1410 p = &tx_q->dma_etx[i].basic; 1411 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1412 p = &tx_q->dma_entx[i].basic; 1413 else 1414 p = &tx_q->dma_tx[i]; 1415 1416 stmmac_init_tx_desc(priv, p, priv->mode, last); 1417 } 1418 } 1419 1420 /** 1421 * stmmac_clear_descriptors - clear descriptors 1422 * @priv: driver private structure 1423 * Description: this function is called to clear the TX and RX descriptors 1424 * in case of both basic and extended descriptors are used. 1425 */ 1426 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1427 { 1428 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1429 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1430 u32 queue; 1431 1432 /* Clear the RX descriptors */ 1433 for (queue = 0; queue < rx_queue_cnt; queue++) 1434 stmmac_clear_rx_descriptors(priv, queue); 1435 1436 /* Clear the TX descriptors */ 1437 for (queue = 0; queue < tx_queue_cnt; queue++) 1438 stmmac_clear_tx_descriptors(priv, queue); 1439 } 1440 1441 /** 1442 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1443 * @priv: driver private structure 1444 * @p: descriptor pointer 1445 * @i: descriptor index 1446 * @flags: gfp flag 1447 * @queue: RX queue index 1448 * Description: this function is called to allocate a receive buffer, perform 1449 * the DMA mapping and init the descriptor. 1450 */ 1451 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1452 int i, gfp_t flags, u32 queue) 1453 { 1454 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1455 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1456 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1457 1458 if (priv->dma_cap.addr64 <= 32) 1459 gfp |= GFP_DMA32; 1460 1461 if (!buf->page) { 1462 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1463 if (!buf->page) 1464 return -ENOMEM; 1465 buf->page_offset = stmmac_rx_offset(priv); 1466 } 1467 1468 if (priv->sph && !buf->sec_page) { 1469 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1470 if (!buf->sec_page) 1471 return -ENOMEM; 1472 1473 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1474 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1475 } else { 1476 buf->sec_page = NULL; 1477 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1478 } 1479 1480 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1481 1482 stmmac_set_desc_addr(priv, p, buf->addr); 1483 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1484 stmmac_init_desc3(priv, p); 1485 1486 return 0; 1487 } 1488 1489 /** 1490 * stmmac_free_rx_buffer - free RX dma buffers 1491 * @priv: private structure 1492 * @queue: RX queue index 1493 * @i: buffer index. 1494 */ 1495 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1496 { 1497 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1498 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1499 1500 if (buf->page) 1501 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1502 buf->page = NULL; 1503 1504 if (buf->sec_page) 1505 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1506 buf->sec_page = NULL; 1507 } 1508 1509 /** 1510 * stmmac_free_tx_buffer - free RX dma buffers 1511 * @priv: private structure 1512 * @queue: RX queue index 1513 * @i: buffer index. 1514 */ 1515 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1516 { 1517 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1518 1519 if (tx_q->tx_skbuff_dma[i].buf && 1520 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1521 if (tx_q->tx_skbuff_dma[i].map_as_page) 1522 dma_unmap_page(priv->device, 1523 tx_q->tx_skbuff_dma[i].buf, 1524 tx_q->tx_skbuff_dma[i].len, 1525 DMA_TO_DEVICE); 1526 else 1527 dma_unmap_single(priv->device, 1528 tx_q->tx_skbuff_dma[i].buf, 1529 tx_q->tx_skbuff_dma[i].len, 1530 DMA_TO_DEVICE); 1531 } 1532 1533 if (tx_q->xdpf[i] && 1534 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1535 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1536 xdp_return_frame(tx_q->xdpf[i]); 1537 tx_q->xdpf[i] = NULL; 1538 } 1539 1540 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1541 tx_q->xsk_frames_done++; 1542 1543 if (tx_q->tx_skbuff[i] && 1544 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1545 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1546 tx_q->tx_skbuff[i] = NULL; 1547 } 1548 1549 tx_q->tx_skbuff_dma[i].buf = 0; 1550 tx_q->tx_skbuff_dma[i].map_as_page = false; 1551 } 1552 1553 /** 1554 * dma_free_rx_skbufs - free RX dma buffers 1555 * @priv: private structure 1556 * @queue: RX queue index 1557 */ 1558 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1559 { 1560 int i; 1561 1562 for (i = 0; i < priv->dma_rx_size; i++) 1563 stmmac_free_rx_buffer(priv, queue, i); 1564 } 1565 1566 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1567 gfp_t flags) 1568 { 1569 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1570 int i; 1571 1572 for (i = 0; i < priv->dma_rx_size; i++) { 1573 struct dma_desc *p; 1574 int ret; 1575 1576 if (priv->extend_desc) 1577 p = &((rx_q->dma_erx + i)->basic); 1578 else 1579 p = rx_q->dma_rx + i; 1580 1581 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1582 queue); 1583 if (ret) 1584 return ret; 1585 1586 rx_q->buf_alloc_num++; 1587 } 1588 1589 return 0; 1590 } 1591 1592 /** 1593 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1594 * @priv: private structure 1595 * @queue: RX queue index 1596 */ 1597 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1598 { 1599 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1600 int i; 1601 1602 for (i = 0; i < priv->dma_rx_size; i++) { 1603 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1604 1605 if (!buf->xdp) 1606 continue; 1607 1608 xsk_buff_free(buf->xdp); 1609 buf->xdp = NULL; 1610 } 1611 } 1612 1613 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1614 { 1615 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1616 int i; 1617 1618 for (i = 0; i < priv->dma_rx_size; i++) { 1619 struct stmmac_rx_buffer *buf; 1620 dma_addr_t dma_addr; 1621 struct dma_desc *p; 1622 1623 if (priv->extend_desc) 1624 p = (struct dma_desc *)(rx_q->dma_erx + i); 1625 else 1626 p = rx_q->dma_rx + i; 1627 1628 buf = &rx_q->buf_pool[i]; 1629 1630 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1631 if (!buf->xdp) 1632 return -ENOMEM; 1633 1634 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1635 stmmac_set_desc_addr(priv, p, dma_addr); 1636 rx_q->buf_alloc_num++; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1643 { 1644 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1645 return NULL; 1646 1647 return xsk_get_pool_from_qid(priv->dev, queue); 1648 } 1649 1650 /** 1651 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1652 * @priv: driver private structure 1653 * @queue: RX queue index 1654 * @flags: gfp flag. 1655 * Description: this function initializes the DMA RX descriptors 1656 * and allocates the socket buffers. It supports the chained and ring 1657 * modes. 1658 */ 1659 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1660 { 1661 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1662 int ret; 1663 1664 netif_dbg(priv, probe, priv->dev, 1665 "(%s) dma_rx_phy=0x%08x\n", __func__, 1666 (u32)rx_q->dma_rx_phy); 1667 1668 stmmac_clear_rx_descriptors(priv, queue); 1669 1670 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1671 1672 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1673 1674 if (rx_q->xsk_pool) { 1675 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1676 MEM_TYPE_XSK_BUFF_POOL, 1677 NULL)); 1678 netdev_info(priv->dev, 1679 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1680 rx_q->queue_index); 1681 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1682 } else { 1683 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1684 MEM_TYPE_PAGE_POOL, 1685 rx_q->page_pool)); 1686 netdev_info(priv->dev, 1687 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1688 rx_q->queue_index); 1689 } 1690 1691 if (rx_q->xsk_pool) { 1692 /* RX XDP ZC buffer pool may not be populated, e.g. 1693 * xdpsock TX-only. 1694 */ 1695 stmmac_alloc_rx_buffers_zc(priv, queue); 1696 } else { 1697 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1698 if (ret < 0) 1699 return -ENOMEM; 1700 } 1701 1702 rx_q->cur_rx = 0; 1703 rx_q->dirty_rx = 0; 1704 1705 /* Setup the chained descriptor addresses */ 1706 if (priv->mode == STMMAC_CHAIN_MODE) { 1707 if (priv->extend_desc) 1708 stmmac_mode_init(priv, rx_q->dma_erx, 1709 rx_q->dma_rx_phy, 1710 priv->dma_rx_size, 1); 1711 else 1712 stmmac_mode_init(priv, rx_q->dma_rx, 1713 rx_q->dma_rx_phy, 1714 priv->dma_rx_size, 0); 1715 } 1716 1717 return 0; 1718 } 1719 1720 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1721 { 1722 struct stmmac_priv *priv = netdev_priv(dev); 1723 u32 rx_count = priv->plat->rx_queues_to_use; 1724 u32 queue; 1725 int ret; 1726 1727 /* RX INITIALIZATION */ 1728 netif_dbg(priv, probe, priv->dev, 1729 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1730 1731 for (queue = 0; queue < rx_count; queue++) { 1732 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1733 if (ret) 1734 goto err_init_rx_buffers; 1735 } 1736 1737 return 0; 1738 1739 err_init_rx_buffers: 1740 while (queue >= 0) { 1741 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1742 1743 if (rx_q->xsk_pool) 1744 dma_free_rx_xskbufs(priv, queue); 1745 else 1746 dma_free_rx_skbufs(priv, queue); 1747 1748 rx_q->buf_alloc_num = 0; 1749 rx_q->xsk_pool = NULL; 1750 1751 if (queue == 0) 1752 break; 1753 1754 queue--; 1755 } 1756 1757 return ret; 1758 } 1759 1760 /** 1761 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1762 * @priv: driver private structure 1763 * @queue : TX queue index 1764 * Description: this function initializes the DMA TX descriptors 1765 * and allocates the socket buffers. It supports the chained and ring 1766 * modes. 1767 */ 1768 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1769 { 1770 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1771 int i; 1772 1773 netif_dbg(priv, probe, priv->dev, 1774 "(%s) dma_tx_phy=0x%08x\n", __func__, 1775 (u32)tx_q->dma_tx_phy); 1776 1777 /* Setup the chained descriptor addresses */ 1778 if (priv->mode == STMMAC_CHAIN_MODE) { 1779 if (priv->extend_desc) 1780 stmmac_mode_init(priv, tx_q->dma_etx, 1781 tx_q->dma_tx_phy, 1782 priv->dma_tx_size, 1); 1783 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1784 stmmac_mode_init(priv, tx_q->dma_tx, 1785 tx_q->dma_tx_phy, 1786 priv->dma_tx_size, 0); 1787 } 1788 1789 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1790 1791 for (i = 0; i < priv->dma_tx_size; i++) { 1792 struct dma_desc *p; 1793 1794 if (priv->extend_desc) 1795 p = &((tx_q->dma_etx + i)->basic); 1796 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1797 p = &((tx_q->dma_entx + i)->basic); 1798 else 1799 p = tx_q->dma_tx + i; 1800 1801 stmmac_clear_desc(priv, p); 1802 1803 tx_q->tx_skbuff_dma[i].buf = 0; 1804 tx_q->tx_skbuff_dma[i].map_as_page = false; 1805 tx_q->tx_skbuff_dma[i].len = 0; 1806 tx_q->tx_skbuff_dma[i].last_segment = false; 1807 tx_q->tx_skbuff[i] = NULL; 1808 } 1809 1810 tx_q->dirty_tx = 0; 1811 tx_q->cur_tx = 0; 1812 tx_q->mss = 0; 1813 1814 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1815 1816 return 0; 1817 } 1818 1819 static int init_dma_tx_desc_rings(struct net_device *dev) 1820 { 1821 struct stmmac_priv *priv = netdev_priv(dev); 1822 u32 tx_queue_cnt; 1823 u32 queue; 1824 1825 tx_queue_cnt = priv->plat->tx_queues_to_use; 1826 1827 for (queue = 0; queue < tx_queue_cnt; queue++) 1828 __init_dma_tx_desc_rings(priv, queue); 1829 1830 return 0; 1831 } 1832 1833 /** 1834 * init_dma_desc_rings - init the RX/TX descriptor rings 1835 * @dev: net device structure 1836 * @flags: gfp flag. 1837 * Description: this function initializes the DMA RX/TX descriptors 1838 * and allocates the socket buffers. It supports the chained and ring 1839 * modes. 1840 */ 1841 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1842 { 1843 struct stmmac_priv *priv = netdev_priv(dev); 1844 int ret; 1845 1846 ret = init_dma_rx_desc_rings(dev, flags); 1847 if (ret) 1848 return ret; 1849 1850 ret = init_dma_tx_desc_rings(dev); 1851 1852 stmmac_clear_descriptors(priv); 1853 1854 if (netif_msg_hw(priv)) 1855 stmmac_display_rings(priv); 1856 1857 return ret; 1858 } 1859 1860 /** 1861 * dma_free_tx_skbufs - free TX dma buffers 1862 * @priv: private structure 1863 * @queue: TX queue index 1864 */ 1865 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1866 { 1867 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1868 int i; 1869 1870 tx_q->xsk_frames_done = 0; 1871 1872 for (i = 0; i < priv->dma_tx_size; i++) 1873 stmmac_free_tx_buffer(priv, queue, i); 1874 1875 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1876 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1877 tx_q->xsk_frames_done = 0; 1878 tx_q->xsk_pool = NULL; 1879 } 1880 } 1881 1882 /** 1883 * stmmac_free_tx_skbufs - free TX skb buffers 1884 * @priv: private structure 1885 */ 1886 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1887 { 1888 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1889 u32 queue; 1890 1891 for (queue = 0; queue < tx_queue_cnt; queue++) 1892 dma_free_tx_skbufs(priv, queue); 1893 } 1894 1895 /** 1896 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1897 * @priv: private structure 1898 * @queue: RX queue index 1899 */ 1900 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1901 { 1902 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1903 1904 /* Release the DMA RX socket buffers */ 1905 if (rx_q->xsk_pool) 1906 dma_free_rx_xskbufs(priv, queue); 1907 else 1908 dma_free_rx_skbufs(priv, queue); 1909 1910 rx_q->buf_alloc_num = 0; 1911 rx_q->xsk_pool = NULL; 1912 1913 /* Free DMA regions of consistent memory previously allocated */ 1914 if (!priv->extend_desc) 1915 dma_free_coherent(priv->device, priv->dma_rx_size * 1916 sizeof(struct dma_desc), 1917 rx_q->dma_rx, rx_q->dma_rx_phy); 1918 else 1919 dma_free_coherent(priv->device, priv->dma_rx_size * 1920 sizeof(struct dma_extended_desc), 1921 rx_q->dma_erx, rx_q->dma_rx_phy); 1922 1923 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1924 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1925 1926 kfree(rx_q->buf_pool); 1927 if (rx_q->page_pool) 1928 page_pool_destroy(rx_q->page_pool); 1929 } 1930 1931 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1932 { 1933 u32 rx_count = priv->plat->rx_queues_to_use; 1934 u32 queue; 1935 1936 /* Free RX queue resources */ 1937 for (queue = 0; queue < rx_count; queue++) 1938 __free_dma_rx_desc_resources(priv, queue); 1939 } 1940 1941 /** 1942 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1943 * @priv: private structure 1944 * @queue: TX queue index 1945 */ 1946 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1947 { 1948 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1949 size_t size; 1950 void *addr; 1951 1952 /* Release the DMA TX socket buffers */ 1953 dma_free_tx_skbufs(priv, queue); 1954 1955 if (priv->extend_desc) { 1956 size = sizeof(struct dma_extended_desc); 1957 addr = tx_q->dma_etx; 1958 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1959 size = sizeof(struct dma_edesc); 1960 addr = tx_q->dma_entx; 1961 } else { 1962 size = sizeof(struct dma_desc); 1963 addr = tx_q->dma_tx; 1964 } 1965 1966 size *= priv->dma_tx_size; 1967 1968 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1969 1970 kfree(tx_q->tx_skbuff_dma); 1971 kfree(tx_q->tx_skbuff); 1972 } 1973 1974 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1975 { 1976 u32 tx_count = priv->plat->tx_queues_to_use; 1977 u32 queue; 1978 1979 /* Free TX queue resources */ 1980 for (queue = 0; queue < tx_count; queue++) 1981 __free_dma_tx_desc_resources(priv, queue); 1982 } 1983 1984 /** 1985 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1986 * @priv: private structure 1987 * @queue: RX queue index 1988 * Description: according to which descriptor can be used (extend or basic) 1989 * this function allocates the resources for TX and RX paths. In case of 1990 * reception, for example, it pre-allocated the RX socket buffer in order to 1991 * allow zero-copy mechanism. 1992 */ 1993 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1994 { 1995 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1996 struct stmmac_channel *ch = &priv->channel[queue]; 1997 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1998 struct page_pool_params pp_params = { 0 }; 1999 unsigned int num_pages; 2000 unsigned int napi_id; 2001 int ret; 2002 2003 rx_q->queue_index = queue; 2004 rx_q->priv_data = priv; 2005 2006 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 2007 pp_params.pool_size = priv->dma_rx_size; 2008 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 2009 pp_params.order = ilog2(num_pages); 2010 pp_params.nid = dev_to_node(priv->device); 2011 pp_params.dev = priv->device; 2012 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2013 pp_params.offset = stmmac_rx_offset(priv); 2014 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2015 2016 rx_q->page_pool = page_pool_create(&pp_params); 2017 if (IS_ERR(rx_q->page_pool)) { 2018 ret = PTR_ERR(rx_q->page_pool); 2019 rx_q->page_pool = NULL; 2020 return ret; 2021 } 2022 2023 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 2024 sizeof(*rx_q->buf_pool), 2025 GFP_KERNEL); 2026 if (!rx_q->buf_pool) 2027 return -ENOMEM; 2028 2029 if (priv->extend_desc) { 2030 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2031 priv->dma_rx_size * 2032 sizeof(struct dma_extended_desc), 2033 &rx_q->dma_rx_phy, 2034 GFP_KERNEL); 2035 if (!rx_q->dma_erx) 2036 return -ENOMEM; 2037 2038 } else { 2039 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2040 priv->dma_rx_size * 2041 sizeof(struct dma_desc), 2042 &rx_q->dma_rx_phy, 2043 GFP_KERNEL); 2044 if (!rx_q->dma_rx) 2045 return -ENOMEM; 2046 } 2047 2048 if (stmmac_xdp_is_enabled(priv) && 2049 test_bit(queue, priv->af_xdp_zc_qps)) 2050 napi_id = ch->rxtx_napi.napi_id; 2051 else 2052 napi_id = ch->rx_napi.napi_id; 2053 2054 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2055 rx_q->queue_index, 2056 napi_id); 2057 if (ret) { 2058 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2059 return -EINVAL; 2060 } 2061 2062 return 0; 2063 } 2064 2065 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2066 { 2067 u32 rx_count = priv->plat->rx_queues_to_use; 2068 u32 queue; 2069 int ret; 2070 2071 /* RX queues buffers and DMA */ 2072 for (queue = 0; queue < rx_count; queue++) { 2073 ret = __alloc_dma_rx_desc_resources(priv, queue); 2074 if (ret) 2075 goto err_dma; 2076 } 2077 2078 return 0; 2079 2080 err_dma: 2081 free_dma_rx_desc_resources(priv); 2082 2083 return ret; 2084 } 2085 2086 /** 2087 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2088 * @priv: private structure 2089 * @queue: TX queue index 2090 * Description: according to which descriptor can be used (extend or basic) 2091 * this function allocates the resources for TX and RX paths. In case of 2092 * reception, for example, it pre-allocated the RX socket buffer in order to 2093 * allow zero-copy mechanism. 2094 */ 2095 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2096 { 2097 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2098 size_t size; 2099 void *addr; 2100 2101 tx_q->queue_index = queue; 2102 tx_q->priv_data = priv; 2103 2104 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2105 sizeof(*tx_q->tx_skbuff_dma), 2106 GFP_KERNEL); 2107 if (!tx_q->tx_skbuff_dma) 2108 return -ENOMEM; 2109 2110 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2111 sizeof(struct sk_buff *), 2112 GFP_KERNEL); 2113 if (!tx_q->tx_skbuff) 2114 return -ENOMEM; 2115 2116 if (priv->extend_desc) 2117 size = sizeof(struct dma_extended_desc); 2118 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2119 size = sizeof(struct dma_edesc); 2120 else 2121 size = sizeof(struct dma_desc); 2122 2123 size *= priv->dma_tx_size; 2124 2125 addr = dma_alloc_coherent(priv->device, size, 2126 &tx_q->dma_tx_phy, GFP_KERNEL); 2127 if (!addr) 2128 return -ENOMEM; 2129 2130 if (priv->extend_desc) 2131 tx_q->dma_etx = addr; 2132 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2133 tx_q->dma_entx = addr; 2134 else 2135 tx_q->dma_tx = addr; 2136 2137 return 0; 2138 } 2139 2140 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2141 { 2142 u32 tx_count = priv->plat->tx_queues_to_use; 2143 u32 queue; 2144 int ret; 2145 2146 /* TX queues buffers and DMA */ 2147 for (queue = 0; queue < tx_count; queue++) { 2148 ret = __alloc_dma_tx_desc_resources(priv, queue); 2149 if (ret) 2150 goto err_dma; 2151 } 2152 2153 return 0; 2154 2155 err_dma: 2156 free_dma_tx_desc_resources(priv); 2157 return ret; 2158 } 2159 2160 /** 2161 * alloc_dma_desc_resources - alloc TX/RX resources. 2162 * @priv: private structure 2163 * Description: according to which descriptor can be used (extend or basic) 2164 * this function allocates the resources for TX and RX paths. In case of 2165 * reception, for example, it pre-allocated the RX socket buffer in order to 2166 * allow zero-copy mechanism. 2167 */ 2168 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2169 { 2170 /* RX Allocation */ 2171 int ret = alloc_dma_rx_desc_resources(priv); 2172 2173 if (ret) 2174 return ret; 2175 2176 ret = alloc_dma_tx_desc_resources(priv); 2177 2178 return ret; 2179 } 2180 2181 /** 2182 * free_dma_desc_resources - free dma desc resources 2183 * @priv: private structure 2184 */ 2185 static void free_dma_desc_resources(struct stmmac_priv *priv) 2186 { 2187 /* Release the DMA TX socket buffers */ 2188 free_dma_tx_desc_resources(priv); 2189 2190 /* Release the DMA RX socket buffers later 2191 * to ensure all pending XDP_TX buffers are returned. 2192 */ 2193 free_dma_rx_desc_resources(priv); 2194 } 2195 2196 /** 2197 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2198 * @priv: driver private structure 2199 * Description: It is used for enabling the rx queues in the MAC 2200 */ 2201 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2202 { 2203 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2204 int queue; 2205 u8 mode; 2206 2207 for (queue = 0; queue < rx_queues_count; queue++) { 2208 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2209 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2210 } 2211 } 2212 2213 /** 2214 * stmmac_start_rx_dma - start RX DMA channel 2215 * @priv: driver private structure 2216 * @chan: RX channel index 2217 * Description: 2218 * This starts a RX DMA channel 2219 */ 2220 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2221 { 2222 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2223 stmmac_start_rx(priv, priv->ioaddr, chan); 2224 } 2225 2226 /** 2227 * stmmac_start_tx_dma - start TX DMA channel 2228 * @priv: driver private structure 2229 * @chan: TX channel index 2230 * Description: 2231 * This starts a TX DMA channel 2232 */ 2233 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2234 { 2235 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2236 stmmac_start_tx(priv, priv->ioaddr, chan); 2237 } 2238 2239 /** 2240 * stmmac_stop_rx_dma - stop RX DMA channel 2241 * @priv: driver private structure 2242 * @chan: RX channel index 2243 * Description: 2244 * This stops a RX DMA channel 2245 */ 2246 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2247 { 2248 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2249 stmmac_stop_rx(priv, priv->ioaddr, chan); 2250 } 2251 2252 /** 2253 * stmmac_stop_tx_dma - stop TX DMA channel 2254 * @priv: driver private structure 2255 * @chan: TX channel index 2256 * Description: 2257 * This stops a TX DMA channel 2258 */ 2259 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2260 { 2261 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2262 stmmac_stop_tx(priv, priv->ioaddr, chan); 2263 } 2264 2265 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2266 { 2267 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2268 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2269 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2270 u32 chan; 2271 2272 for (chan = 0; chan < dma_csr_ch; chan++) { 2273 struct stmmac_channel *ch = &priv->channel[chan]; 2274 unsigned long flags; 2275 2276 spin_lock_irqsave(&ch->lock, flags); 2277 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2278 spin_unlock_irqrestore(&ch->lock, flags); 2279 } 2280 } 2281 2282 /** 2283 * stmmac_start_all_dma - start all RX and TX DMA channels 2284 * @priv: driver private structure 2285 * Description: 2286 * This starts all the RX and TX DMA channels 2287 */ 2288 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2289 { 2290 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2291 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2292 u32 chan = 0; 2293 2294 for (chan = 0; chan < rx_channels_count; chan++) 2295 stmmac_start_rx_dma(priv, chan); 2296 2297 for (chan = 0; chan < tx_channels_count; chan++) 2298 stmmac_start_tx_dma(priv, chan); 2299 } 2300 2301 /** 2302 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2303 * @priv: driver private structure 2304 * Description: 2305 * This stops the RX and TX DMA channels 2306 */ 2307 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2308 { 2309 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2310 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2311 u32 chan = 0; 2312 2313 for (chan = 0; chan < rx_channels_count; chan++) 2314 stmmac_stop_rx_dma(priv, chan); 2315 2316 for (chan = 0; chan < tx_channels_count; chan++) 2317 stmmac_stop_tx_dma(priv, chan); 2318 } 2319 2320 /** 2321 * stmmac_dma_operation_mode - HW DMA operation mode 2322 * @priv: driver private structure 2323 * Description: it is used for configuring the DMA operation mode register in 2324 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2325 */ 2326 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2327 { 2328 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2329 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2330 int rxfifosz = priv->plat->rx_fifo_size; 2331 int txfifosz = priv->plat->tx_fifo_size; 2332 u32 txmode = 0; 2333 u32 rxmode = 0; 2334 u32 chan = 0; 2335 u8 qmode = 0; 2336 2337 if (rxfifosz == 0) 2338 rxfifosz = priv->dma_cap.rx_fifo_size; 2339 if (txfifosz == 0) 2340 txfifosz = priv->dma_cap.tx_fifo_size; 2341 2342 /* Adjust for real per queue fifo size */ 2343 rxfifosz /= rx_channels_count; 2344 txfifosz /= tx_channels_count; 2345 2346 if (priv->plat->force_thresh_dma_mode) { 2347 txmode = tc; 2348 rxmode = tc; 2349 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2350 /* 2351 * In case of GMAC, SF mode can be enabled 2352 * to perform the TX COE in HW. This depends on: 2353 * 1) TX COE if actually supported 2354 * 2) There is no bugged Jumbo frame support 2355 * that needs to not insert csum in the TDES. 2356 */ 2357 txmode = SF_DMA_MODE; 2358 rxmode = SF_DMA_MODE; 2359 priv->xstats.threshold = SF_DMA_MODE; 2360 } else { 2361 txmode = tc; 2362 rxmode = SF_DMA_MODE; 2363 } 2364 2365 /* configure all channels */ 2366 for (chan = 0; chan < rx_channels_count; chan++) { 2367 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2368 u32 buf_size; 2369 2370 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2371 2372 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2373 rxfifosz, qmode); 2374 2375 if (rx_q->xsk_pool) { 2376 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2377 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2378 buf_size, 2379 chan); 2380 } else { 2381 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2382 priv->dma_buf_sz, 2383 chan); 2384 } 2385 } 2386 2387 for (chan = 0; chan < tx_channels_count; chan++) { 2388 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2389 2390 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2391 txfifosz, qmode); 2392 } 2393 } 2394 2395 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2396 { 2397 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2398 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2399 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2400 unsigned int entry = tx_q->cur_tx; 2401 struct dma_desc *tx_desc = NULL; 2402 struct xdp_desc xdp_desc; 2403 bool work_done = true; 2404 2405 /* Avoids TX time-out as we are sharing with slow path */ 2406 txq_trans_cond_update(nq); 2407 2408 budget = min(budget, stmmac_tx_avail(priv, queue)); 2409 2410 while (budget-- > 0) { 2411 dma_addr_t dma_addr; 2412 bool set_ic; 2413 2414 /* We are sharing with slow path and stop XSK TX desc submission when 2415 * available TX ring is less than threshold. 2416 */ 2417 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2418 !netif_carrier_ok(priv->dev)) { 2419 work_done = false; 2420 break; 2421 } 2422 2423 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2424 break; 2425 2426 if (likely(priv->extend_desc)) 2427 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2428 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2429 tx_desc = &tx_q->dma_entx[entry].basic; 2430 else 2431 tx_desc = tx_q->dma_tx + entry; 2432 2433 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2434 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2435 2436 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2437 2438 /* To return XDP buffer to XSK pool, we simple call 2439 * xsk_tx_completed(), so we don't need to fill up 2440 * 'buf' and 'xdpf'. 2441 */ 2442 tx_q->tx_skbuff_dma[entry].buf = 0; 2443 tx_q->xdpf[entry] = NULL; 2444 2445 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2446 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2447 tx_q->tx_skbuff_dma[entry].last_segment = true; 2448 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2449 2450 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2451 2452 tx_q->tx_count_frames++; 2453 2454 if (!priv->tx_coal_frames[queue]) 2455 set_ic = false; 2456 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2457 set_ic = true; 2458 else 2459 set_ic = false; 2460 2461 if (set_ic) { 2462 tx_q->tx_count_frames = 0; 2463 stmmac_set_tx_ic(priv, tx_desc); 2464 priv->xstats.tx_set_ic_bit++; 2465 } 2466 2467 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2468 true, priv->mode, true, true, 2469 xdp_desc.len); 2470 2471 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2472 2473 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2474 entry = tx_q->cur_tx; 2475 } 2476 2477 if (tx_desc) { 2478 stmmac_flush_tx_descriptors(priv, queue); 2479 xsk_tx_release(pool); 2480 } 2481 2482 /* Return true if all of the 3 conditions are met 2483 * a) TX Budget is still available 2484 * b) work_done = true when XSK TX desc peek is empty (no more 2485 * pending XSK TX for transmission) 2486 */ 2487 return !!budget && work_done; 2488 } 2489 2490 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2491 { 2492 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2493 tc += 64; 2494 2495 if (priv->plat->force_thresh_dma_mode) 2496 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2497 else 2498 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2499 chan); 2500 2501 priv->xstats.threshold = tc; 2502 } 2503 } 2504 2505 /** 2506 * stmmac_tx_clean - to manage the transmission completion 2507 * @priv: driver private structure 2508 * @budget: napi budget limiting this functions packet handling 2509 * @queue: TX queue index 2510 * Description: it reclaims the transmit resources after transmission completes. 2511 */ 2512 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2513 { 2514 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2515 unsigned int bytes_compl = 0, pkts_compl = 0; 2516 unsigned int entry, xmits = 0, count = 0; 2517 2518 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2519 2520 priv->xstats.tx_clean++; 2521 2522 tx_q->xsk_frames_done = 0; 2523 2524 entry = tx_q->dirty_tx; 2525 2526 /* Try to clean all TX complete frame in 1 shot */ 2527 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2528 struct xdp_frame *xdpf; 2529 struct sk_buff *skb; 2530 struct dma_desc *p; 2531 int status; 2532 2533 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2534 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2535 xdpf = tx_q->xdpf[entry]; 2536 skb = NULL; 2537 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2538 xdpf = NULL; 2539 skb = tx_q->tx_skbuff[entry]; 2540 } else { 2541 xdpf = NULL; 2542 skb = NULL; 2543 } 2544 2545 if (priv->extend_desc) 2546 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2547 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2548 p = &tx_q->dma_entx[entry].basic; 2549 else 2550 p = tx_q->dma_tx + entry; 2551 2552 status = stmmac_tx_status(priv, &priv->dev->stats, 2553 &priv->xstats, p, priv->ioaddr); 2554 /* Check if the descriptor is owned by the DMA */ 2555 if (unlikely(status & tx_dma_own)) 2556 break; 2557 2558 count++; 2559 2560 /* Make sure descriptor fields are read after reading 2561 * the own bit. 2562 */ 2563 dma_rmb(); 2564 2565 /* Just consider the last segment and ...*/ 2566 if (likely(!(status & tx_not_ls))) { 2567 /* ... verify the status error condition */ 2568 if (unlikely(status & tx_err)) { 2569 priv->dev->stats.tx_errors++; 2570 if (unlikely(status & tx_err_bump_tc)) 2571 stmmac_bump_dma_threshold(priv, queue); 2572 } else { 2573 priv->dev->stats.tx_packets++; 2574 priv->xstats.tx_pkt_n++; 2575 priv->xstats.txq_stats[queue].tx_pkt_n++; 2576 } 2577 if (skb) 2578 stmmac_get_tx_hwtstamp(priv, p, skb); 2579 } 2580 2581 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2582 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2583 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2584 dma_unmap_page(priv->device, 2585 tx_q->tx_skbuff_dma[entry].buf, 2586 tx_q->tx_skbuff_dma[entry].len, 2587 DMA_TO_DEVICE); 2588 else 2589 dma_unmap_single(priv->device, 2590 tx_q->tx_skbuff_dma[entry].buf, 2591 tx_q->tx_skbuff_dma[entry].len, 2592 DMA_TO_DEVICE); 2593 tx_q->tx_skbuff_dma[entry].buf = 0; 2594 tx_q->tx_skbuff_dma[entry].len = 0; 2595 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2596 } 2597 2598 stmmac_clean_desc3(priv, tx_q, p); 2599 2600 tx_q->tx_skbuff_dma[entry].last_segment = false; 2601 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2602 2603 if (xdpf && 2604 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2605 xdp_return_frame_rx_napi(xdpf); 2606 tx_q->xdpf[entry] = NULL; 2607 } 2608 2609 if (xdpf && 2610 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2611 xdp_return_frame(xdpf); 2612 tx_q->xdpf[entry] = NULL; 2613 } 2614 2615 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2616 tx_q->xsk_frames_done++; 2617 2618 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2619 if (likely(skb)) { 2620 pkts_compl++; 2621 bytes_compl += skb->len; 2622 dev_consume_skb_any(skb); 2623 tx_q->tx_skbuff[entry] = NULL; 2624 } 2625 } 2626 2627 stmmac_release_tx_desc(priv, p, priv->mode); 2628 2629 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2630 } 2631 tx_q->dirty_tx = entry; 2632 2633 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2634 pkts_compl, bytes_compl); 2635 2636 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2637 queue))) && 2638 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2639 2640 netif_dbg(priv, tx_done, priv->dev, 2641 "%s: restart transmit\n", __func__); 2642 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2643 } 2644 2645 if (tx_q->xsk_pool) { 2646 bool work_done; 2647 2648 if (tx_q->xsk_frames_done) 2649 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2650 2651 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2652 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2653 2654 /* For XSK TX, we try to send as many as possible. 2655 * If XSK work done (XSK TX desc empty and budget still 2656 * available), return "budget - 1" to reenable TX IRQ. 2657 * Else, return "budget" to make NAPI continue polling. 2658 */ 2659 work_done = stmmac_xdp_xmit_zc(priv, queue, 2660 STMMAC_XSK_TX_BUDGET_MAX); 2661 if (work_done) 2662 xmits = budget - 1; 2663 else 2664 xmits = budget; 2665 } 2666 2667 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2668 priv->eee_sw_timer_en) { 2669 if (stmmac_enable_eee_mode(priv)) 2670 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2671 } 2672 2673 /* We still have pending packets, let's call for a new scheduling */ 2674 if (tx_q->dirty_tx != tx_q->cur_tx) 2675 hrtimer_start(&tx_q->txtimer, 2676 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2677 HRTIMER_MODE_REL); 2678 2679 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2680 2681 /* Combine decisions from TX clean and XSK TX */ 2682 return max(count, xmits); 2683 } 2684 2685 /** 2686 * stmmac_tx_err - to manage the tx error 2687 * @priv: driver private structure 2688 * @chan: channel index 2689 * Description: it cleans the descriptors and restarts the transmission 2690 * in case of transmission errors. 2691 */ 2692 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2693 { 2694 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2695 2696 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2697 2698 stmmac_stop_tx_dma(priv, chan); 2699 dma_free_tx_skbufs(priv, chan); 2700 stmmac_clear_tx_descriptors(priv, chan); 2701 tx_q->dirty_tx = 0; 2702 tx_q->cur_tx = 0; 2703 tx_q->mss = 0; 2704 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2705 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2706 tx_q->dma_tx_phy, chan); 2707 stmmac_start_tx_dma(priv, chan); 2708 2709 priv->dev->stats.tx_errors++; 2710 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2711 } 2712 2713 /** 2714 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2715 * @priv: driver private structure 2716 * @txmode: TX operating mode 2717 * @rxmode: RX operating mode 2718 * @chan: channel index 2719 * Description: it is used for configuring of the DMA operation mode in 2720 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2721 * mode. 2722 */ 2723 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2724 u32 rxmode, u32 chan) 2725 { 2726 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2727 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2728 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2729 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2730 int rxfifosz = priv->plat->rx_fifo_size; 2731 int txfifosz = priv->plat->tx_fifo_size; 2732 2733 if (rxfifosz == 0) 2734 rxfifosz = priv->dma_cap.rx_fifo_size; 2735 if (txfifosz == 0) 2736 txfifosz = priv->dma_cap.tx_fifo_size; 2737 2738 /* Adjust for real per queue fifo size */ 2739 rxfifosz /= rx_channels_count; 2740 txfifosz /= tx_channels_count; 2741 2742 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2743 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2744 } 2745 2746 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2747 { 2748 int ret; 2749 2750 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2751 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2752 if (ret && (ret != -EINVAL)) { 2753 stmmac_global_err(priv); 2754 return true; 2755 } 2756 2757 return false; 2758 } 2759 2760 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2761 { 2762 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2763 &priv->xstats, chan, dir); 2764 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2765 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2766 struct stmmac_channel *ch = &priv->channel[chan]; 2767 struct napi_struct *rx_napi; 2768 struct napi_struct *tx_napi; 2769 unsigned long flags; 2770 2771 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2772 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2773 2774 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2775 if (napi_schedule_prep(rx_napi)) { 2776 spin_lock_irqsave(&ch->lock, flags); 2777 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2778 spin_unlock_irqrestore(&ch->lock, flags); 2779 __napi_schedule(rx_napi); 2780 } 2781 } 2782 2783 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2784 if (napi_schedule_prep(tx_napi)) { 2785 spin_lock_irqsave(&ch->lock, flags); 2786 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2787 spin_unlock_irqrestore(&ch->lock, flags); 2788 __napi_schedule(tx_napi); 2789 } 2790 } 2791 2792 return status; 2793 } 2794 2795 /** 2796 * stmmac_dma_interrupt - DMA ISR 2797 * @priv: driver private structure 2798 * Description: this is the DMA ISR. It is called by the main ISR. 2799 * It calls the dwmac dma routine and schedule poll method in case of some 2800 * work can be done. 2801 */ 2802 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2803 { 2804 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2805 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2806 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2807 tx_channel_count : rx_channel_count; 2808 u32 chan; 2809 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2810 2811 /* Make sure we never check beyond our status buffer. */ 2812 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2813 channels_to_check = ARRAY_SIZE(status); 2814 2815 for (chan = 0; chan < channels_to_check; chan++) 2816 status[chan] = stmmac_napi_check(priv, chan, 2817 DMA_DIR_RXTX); 2818 2819 for (chan = 0; chan < tx_channel_count; chan++) { 2820 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2821 /* Try to bump up the dma threshold on this failure */ 2822 stmmac_bump_dma_threshold(priv, chan); 2823 } else if (unlikely(status[chan] == tx_hard_error)) { 2824 stmmac_tx_err(priv, chan); 2825 } 2826 } 2827 } 2828 2829 /** 2830 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2831 * @priv: driver private structure 2832 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2833 */ 2834 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2835 { 2836 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2837 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2838 2839 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2840 2841 if (priv->dma_cap.rmon) { 2842 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2843 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2844 } else 2845 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2846 } 2847 2848 /** 2849 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2850 * @priv: driver private structure 2851 * Description: 2852 * new GMAC chip generations have a new register to indicate the 2853 * presence of the optional feature/functions. 2854 * This can be also used to override the value passed through the 2855 * platform and necessary for old MAC10/100 and GMAC chips. 2856 */ 2857 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2858 { 2859 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2860 } 2861 2862 /** 2863 * stmmac_check_ether_addr - check if the MAC addr is valid 2864 * @priv: driver private structure 2865 * Description: 2866 * it is to verify if the MAC address is valid, in case of failures it 2867 * generates a random MAC address 2868 */ 2869 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2870 { 2871 u8 addr[ETH_ALEN]; 2872 2873 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2874 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2875 if (is_valid_ether_addr(addr)) 2876 eth_hw_addr_set(priv->dev, addr); 2877 else 2878 eth_hw_addr_random(priv->dev); 2879 dev_info(priv->device, "device MAC address %pM\n", 2880 priv->dev->dev_addr); 2881 } 2882 } 2883 2884 /** 2885 * stmmac_init_dma_engine - DMA init. 2886 * @priv: driver private structure 2887 * Description: 2888 * It inits the DMA invoking the specific MAC/GMAC callback. 2889 * Some DMA parameters can be passed from the platform; 2890 * in case of these are not passed a default is kept for the MAC or GMAC. 2891 */ 2892 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2893 { 2894 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2895 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2896 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2897 struct stmmac_rx_queue *rx_q; 2898 struct stmmac_tx_queue *tx_q; 2899 u32 chan = 0; 2900 int atds = 0; 2901 int ret = 0; 2902 2903 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2904 dev_err(priv->device, "Invalid DMA configuration\n"); 2905 return -EINVAL; 2906 } 2907 2908 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2909 atds = 1; 2910 2911 ret = stmmac_reset(priv, priv->ioaddr); 2912 if (ret) { 2913 dev_err(priv->device, "Failed to reset the dma\n"); 2914 return ret; 2915 } 2916 2917 /* DMA Configuration */ 2918 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2919 2920 if (priv->plat->axi) 2921 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2922 2923 /* DMA CSR Channel configuration */ 2924 for (chan = 0; chan < dma_csr_ch; chan++) { 2925 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2926 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2927 } 2928 2929 /* DMA RX Channel Configuration */ 2930 for (chan = 0; chan < rx_channels_count; chan++) { 2931 rx_q = &priv->rx_queue[chan]; 2932 2933 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2934 rx_q->dma_rx_phy, chan); 2935 2936 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2937 (rx_q->buf_alloc_num * 2938 sizeof(struct dma_desc)); 2939 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2940 rx_q->rx_tail_addr, chan); 2941 } 2942 2943 /* DMA TX Channel Configuration */ 2944 for (chan = 0; chan < tx_channels_count; chan++) { 2945 tx_q = &priv->tx_queue[chan]; 2946 2947 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2948 tx_q->dma_tx_phy, chan); 2949 2950 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2951 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2952 tx_q->tx_tail_addr, chan); 2953 } 2954 2955 return ret; 2956 } 2957 2958 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2959 { 2960 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2961 2962 hrtimer_start(&tx_q->txtimer, 2963 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2964 HRTIMER_MODE_REL); 2965 } 2966 2967 /** 2968 * stmmac_tx_timer - mitigation sw timer for tx. 2969 * @t: data pointer 2970 * Description: 2971 * This is the timer handler to directly invoke the stmmac_tx_clean. 2972 */ 2973 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2974 { 2975 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2976 struct stmmac_priv *priv = tx_q->priv_data; 2977 struct stmmac_channel *ch; 2978 struct napi_struct *napi; 2979 2980 ch = &priv->channel[tx_q->queue_index]; 2981 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2982 2983 if (likely(napi_schedule_prep(napi))) { 2984 unsigned long flags; 2985 2986 spin_lock_irqsave(&ch->lock, flags); 2987 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2988 spin_unlock_irqrestore(&ch->lock, flags); 2989 __napi_schedule(napi); 2990 } 2991 2992 return HRTIMER_NORESTART; 2993 } 2994 2995 /** 2996 * stmmac_init_coalesce - init mitigation options. 2997 * @priv: driver private structure 2998 * Description: 2999 * This inits the coalesce parameters: i.e. timer rate, 3000 * timer handler and default threshold used for enabling the 3001 * interrupt on completion bit. 3002 */ 3003 static void stmmac_init_coalesce(struct stmmac_priv *priv) 3004 { 3005 u32 tx_channel_count = priv->plat->tx_queues_to_use; 3006 u32 rx_channel_count = priv->plat->rx_queues_to_use; 3007 u32 chan; 3008 3009 for (chan = 0; chan < tx_channel_count; chan++) { 3010 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3011 3012 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 3013 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 3014 3015 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3016 tx_q->txtimer.function = stmmac_tx_timer; 3017 } 3018 3019 for (chan = 0; chan < rx_channel_count; chan++) 3020 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3021 } 3022 3023 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3024 { 3025 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3026 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3027 u32 chan; 3028 3029 /* set TX ring length */ 3030 for (chan = 0; chan < tx_channels_count; chan++) 3031 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3032 (priv->dma_tx_size - 1), chan); 3033 3034 /* set RX ring length */ 3035 for (chan = 0; chan < rx_channels_count; chan++) 3036 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3037 (priv->dma_rx_size - 1), chan); 3038 } 3039 3040 /** 3041 * stmmac_set_tx_queue_weight - Set TX queue weight 3042 * @priv: driver private structure 3043 * Description: It is used for setting TX queues weight 3044 */ 3045 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3046 { 3047 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3048 u32 weight; 3049 u32 queue; 3050 3051 for (queue = 0; queue < tx_queues_count; queue++) { 3052 weight = priv->plat->tx_queues_cfg[queue].weight; 3053 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3054 } 3055 } 3056 3057 /** 3058 * stmmac_configure_cbs - Configure CBS in TX queue 3059 * @priv: driver private structure 3060 * Description: It is used for configuring CBS in AVB TX queues 3061 */ 3062 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3063 { 3064 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3065 u32 mode_to_use; 3066 u32 queue; 3067 3068 /* queue 0 is reserved for legacy traffic */ 3069 for (queue = 1; queue < tx_queues_count; queue++) { 3070 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3071 if (mode_to_use == MTL_QUEUE_DCB) 3072 continue; 3073 3074 stmmac_config_cbs(priv, priv->hw, 3075 priv->plat->tx_queues_cfg[queue].send_slope, 3076 priv->plat->tx_queues_cfg[queue].idle_slope, 3077 priv->plat->tx_queues_cfg[queue].high_credit, 3078 priv->plat->tx_queues_cfg[queue].low_credit, 3079 queue); 3080 } 3081 } 3082 3083 /** 3084 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3085 * @priv: driver private structure 3086 * Description: It is used for mapping RX queues to RX dma channels 3087 */ 3088 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3089 { 3090 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3091 u32 queue; 3092 u32 chan; 3093 3094 for (queue = 0; queue < rx_queues_count; queue++) { 3095 chan = priv->plat->rx_queues_cfg[queue].chan; 3096 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3097 } 3098 } 3099 3100 /** 3101 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3102 * @priv: driver private structure 3103 * Description: It is used for configuring the RX Queue Priority 3104 */ 3105 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3106 { 3107 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3108 u32 queue; 3109 u32 prio; 3110 3111 for (queue = 0; queue < rx_queues_count; queue++) { 3112 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3113 continue; 3114 3115 prio = priv->plat->rx_queues_cfg[queue].prio; 3116 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3117 } 3118 } 3119 3120 /** 3121 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3122 * @priv: driver private structure 3123 * Description: It is used for configuring the TX Queue Priority 3124 */ 3125 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3126 { 3127 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3128 u32 queue; 3129 u32 prio; 3130 3131 for (queue = 0; queue < tx_queues_count; queue++) { 3132 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3133 continue; 3134 3135 prio = priv->plat->tx_queues_cfg[queue].prio; 3136 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3137 } 3138 } 3139 3140 /** 3141 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3142 * @priv: driver private structure 3143 * Description: It is used for configuring the RX queue routing 3144 */ 3145 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3146 { 3147 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3148 u32 queue; 3149 u8 packet; 3150 3151 for (queue = 0; queue < rx_queues_count; queue++) { 3152 /* no specific packet type routing specified for the queue */ 3153 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3154 continue; 3155 3156 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3157 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3158 } 3159 } 3160 3161 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3162 { 3163 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3164 priv->rss.enable = false; 3165 return; 3166 } 3167 3168 if (priv->dev->features & NETIF_F_RXHASH) 3169 priv->rss.enable = true; 3170 else 3171 priv->rss.enable = false; 3172 3173 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3174 priv->plat->rx_queues_to_use); 3175 } 3176 3177 /** 3178 * stmmac_mtl_configuration - Configure MTL 3179 * @priv: driver private structure 3180 * Description: It is used for configurring MTL 3181 */ 3182 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3183 { 3184 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3185 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3186 3187 if (tx_queues_count > 1) 3188 stmmac_set_tx_queue_weight(priv); 3189 3190 /* Configure MTL RX algorithms */ 3191 if (rx_queues_count > 1) 3192 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3193 priv->plat->rx_sched_algorithm); 3194 3195 /* Configure MTL TX algorithms */ 3196 if (tx_queues_count > 1) 3197 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3198 priv->plat->tx_sched_algorithm); 3199 3200 /* Configure CBS in AVB TX queues */ 3201 if (tx_queues_count > 1) 3202 stmmac_configure_cbs(priv); 3203 3204 /* Map RX MTL to DMA channels */ 3205 stmmac_rx_queue_dma_chan_map(priv); 3206 3207 /* Enable MAC RX Queues */ 3208 stmmac_mac_enable_rx_queues(priv); 3209 3210 /* Set RX priorities */ 3211 if (rx_queues_count > 1) 3212 stmmac_mac_config_rx_queues_prio(priv); 3213 3214 /* Set TX priorities */ 3215 if (tx_queues_count > 1) 3216 stmmac_mac_config_tx_queues_prio(priv); 3217 3218 /* Set RX routing */ 3219 if (rx_queues_count > 1) 3220 stmmac_mac_config_rx_queues_routing(priv); 3221 3222 /* Receive Side Scaling */ 3223 if (rx_queues_count > 1) 3224 stmmac_mac_config_rss(priv); 3225 } 3226 3227 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3228 { 3229 if (priv->dma_cap.asp) { 3230 netdev_info(priv->dev, "Enabling Safety Features\n"); 3231 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3232 priv->plat->safety_feat_cfg); 3233 } else { 3234 netdev_info(priv->dev, "No Safety Features support found\n"); 3235 } 3236 } 3237 3238 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3239 { 3240 char *name; 3241 3242 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3243 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3244 3245 name = priv->wq_name; 3246 sprintf(name, "%s-fpe", priv->dev->name); 3247 3248 priv->fpe_wq = create_singlethread_workqueue(name); 3249 if (!priv->fpe_wq) { 3250 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3251 3252 return -ENOMEM; 3253 } 3254 netdev_info(priv->dev, "FPE workqueue start"); 3255 3256 return 0; 3257 } 3258 3259 /** 3260 * stmmac_hw_setup - setup mac in a usable state. 3261 * @dev : pointer to the device structure. 3262 * @ptp_register: register PTP if set 3263 * Description: 3264 * this is the main function to setup the HW in a usable state because the 3265 * dma engine is reset, the core registers are configured (e.g. AXI, 3266 * Checksum features, timers). The DMA is ready to start receiving and 3267 * transmitting. 3268 * Return value: 3269 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3270 * file on failure. 3271 */ 3272 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3273 { 3274 struct stmmac_priv *priv = netdev_priv(dev); 3275 u32 rx_cnt = priv->plat->rx_queues_to_use; 3276 u32 tx_cnt = priv->plat->tx_queues_to_use; 3277 bool sph_en; 3278 u32 chan; 3279 int ret; 3280 3281 /* DMA initialization and SW reset */ 3282 ret = stmmac_init_dma_engine(priv); 3283 if (ret < 0) { 3284 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3285 __func__); 3286 return ret; 3287 } 3288 3289 /* Copy the MAC addr into the HW */ 3290 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3291 3292 /* PS and related bits will be programmed according to the speed */ 3293 if (priv->hw->pcs) { 3294 int speed = priv->plat->mac_port_sel_speed; 3295 3296 if ((speed == SPEED_10) || (speed == SPEED_100) || 3297 (speed == SPEED_1000)) { 3298 priv->hw->ps = speed; 3299 } else { 3300 dev_warn(priv->device, "invalid port speed\n"); 3301 priv->hw->ps = 0; 3302 } 3303 } 3304 3305 /* Initialize the MAC Core */ 3306 stmmac_core_init(priv, priv->hw, dev); 3307 3308 /* Initialize MTL*/ 3309 stmmac_mtl_configuration(priv); 3310 3311 /* Initialize Safety Features */ 3312 stmmac_safety_feat_configuration(priv); 3313 3314 ret = stmmac_rx_ipc(priv, priv->hw); 3315 if (!ret) { 3316 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3317 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3318 priv->hw->rx_csum = 0; 3319 } 3320 3321 /* Enable the MAC Rx/Tx */ 3322 stmmac_mac_set(priv, priv->ioaddr, true); 3323 3324 /* Set the HW DMA mode and the COE */ 3325 stmmac_dma_operation_mode(priv); 3326 3327 stmmac_mmc_setup(priv); 3328 3329 ret = stmmac_init_ptp(priv); 3330 if (ret == -EOPNOTSUPP) 3331 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3332 else if (ret) 3333 netdev_warn(priv->dev, "PTP init failed\n"); 3334 else if (ptp_register) 3335 stmmac_ptp_register(priv); 3336 3337 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3338 3339 /* Convert the timer from msec to usec */ 3340 if (!priv->tx_lpi_timer) 3341 priv->tx_lpi_timer = eee_timer * 1000; 3342 3343 if (priv->use_riwt) { 3344 u32 queue; 3345 3346 for (queue = 0; queue < rx_cnt; queue++) { 3347 if (!priv->rx_riwt[queue]) 3348 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3349 3350 stmmac_rx_watchdog(priv, priv->ioaddr, 3351 priv->rx_riwt[queue], queue); 3352 } 3353 } 3354 3355 if (priv->hw->pcs) 3356 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3357 3358 /* set TX and RX rings length */ 3359 stmmac_set_rings_length(priv); 3360 3361 /* Enable TSO */ 3362 if (priv->tso) { 3363 for (chan = 0; chan < tx_cnt; chan++) { 3364 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3365 3366 /* TSO and TBS cannot co-exist */ 3367 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3368 continue; 3369 3370 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3371 } 3372 } 3373 3374 /* Enable Split Header */ 3375 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3376 for (chan = 0; chan < rx_cnt; chan++) 3377 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3378 3379 3380 /* VLAN Tag Insertion */ 3381 if (priv->dma_cap.vlins) 3382 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3383 3384 /* TBS */ 3385 for (chan = 0; chan < tx_cnt; chan++) { 3386 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3387 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3388 3389 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3390 } 3391 3392 /* Configure real RX and TX queues */ 3393 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3394 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3395 3396 /* Start the ball rolling... */ 3397 stmmac_start_all_dma(priv); 3398 3399 if (priv->dma_cap.fpesel) { 3400 stmmac_fpe_start_wq(priv); 3401 3402 if (priv->plat->fpe_cfg->enable) 3403 stmmac_fpe_handshake(priv, true); 3404 } 3405 3406 return 0; 3407 } 3408 3409 static void stmmac_hw_teardown(struct net_device *dev) 3410 { 3411 struct stmmac_priv *priv = netdev_priv(dev); 3412 3413 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3414 } 3415 3416 static void stmmac_free_irq(struct net_device *dev, 3417 enum request_irq_err irq_err, int irq_idx) 3418 { 3419 struct stmmac_priv *priv = netdev_priv(dev); 3420 int j; 3421 3422 switch (irq_err) { 3423 case REQ_IRQ_ERR_ALL: 3424 irq_idx = priv->plat->tx_queues_to_use; 3425 fallthrough; 3426 case REQ_IRQ_ERR_TX: 3427 for (j = irq_idx - 1; j >= 0; j--) { 3428 if (priv->tx_irq[j] > 0) { 3429 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3430 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3431 } 3432 } 3433 irq_idx = priv->plat->rx_queues_to_use; 3434 fallthrough; 3435 case REQ_IRQ_ERR_RX: 3436 for (j = irq_idx - 1; j >= 0; j--) { 3437 if (priv->rx_irq[j] > 0) { 3438 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3439 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3440 } 3441 } 3442 3443 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3444 free_irq(priv->sfty_ue_irq, dev); 3445 fallthrough; 3446 case REQ_IRQ_ERR_SFTY_UE: 3447 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3448 free_irq(priv->sfty_ce_irq, dev); 3449 fallthrough; 3450 case REQ_IRQ_ERR_SFTY_CE: 3451 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3452 free_irq(priv->lpi_irq, dev); 3453 fallthrough; 3454 case REQ_IRQ_ERR_LPI: 3455 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3456 free_irq(priv->wol_irq, dev); 3457 fallthrough; 3458 case REQ_IRQ_ERR_WOL: 3459 free_irq(dev->irq, dev); 3460 fallthrough; 3461 case REQ_IRQ_ERR_MAC: 3462 case REQ_IRQ_ERR_NO: 3463 /* If MAC IRQ request error, no more IRQ to free */ 3464 break; 3465 } 3466 } 3467 3468 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3469 { 3470 struct stmmac_priv *priv = netdev_priv(dev); 3471 enum request_irq_err irq_err; 3472 cpumask_t cpu_mask; 3473 int irq_idx = 0; 3474 char *int_name; 3475 int ret; 3476 int i; 3477 3478 /* For common interrupt */ 3479 int_name = priv->int_name_mac; 3480 sprintf(int_name, "%s:%s", dev->name, "mac"); 3481 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3482 0, int_name, dev); 3483 if (unlikely(ret < 0)) { 3484 netdev_err(priv->dev, 3485 "%s: alloc mac MSI %d (error: %d)\n", 3486 __func__, dev->irq, ret); 3487 irq_err = REQ_IRQ_ERR_MAC; 3488 goto irq_error; 3489 } 3490 3491 /* Request the Wake IRQ in case of another line 3492 * is used for WoL 3493 */ 3494 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3495 int_name = priv->int_name_wol; 3496 sprintf(int_name, "%s:%s", dev->name, "wol"); 3497 ret = request_irq(priv->wol_irq, 3498 stmmac_mac_interrupt, 3499 0, int_name, dev); 3500 if (unlikely(ret < 0)) { 3501 netdev_err(priv->dev, 3502 "%s: alloc wol MSI %d (error: %d)\n", 3503 __func__, priv->wol_irq, ret); 3504 irq_err = REQ_IRQ_ERR_WOL; 3505 goto irq_error; 3506 } 3507 } 3508 3509 /* Request the LPI IRQ in case of another line 3510 * is used for LPI 3511 */ 3512 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3513 int_name = priv->int_name_lpi; 3514 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3515 ret = request_irq(priv->lpi_irq, 3516 stmmac_mac_interrupt, 3517 0, int_name, dev); 3518 if (unlikely(ret < 0)) { 3519 netdev_err(priv->dev, 3520 "%s: alloc lpi MSI %d (error: %d)\n", 3521 __func__, priv->lpi_irq, ret); 3522 irq_err = REQ_IRQ_ERR_LPI; 3523 goto irq_error; 3524 } 3525 } 3526 3527 /* Request the Safety Feature Correctible Error line in 3528 * case of another line is used 3529 */ 3530 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3531 int_name = priv->int_name_sfty_ce; 3532 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3533 ret = request_irq(priv->sfty_ce_irq, 3534 stmmac_safety_interrupt, 3535 0, int_name, dev); 3536 if (unlikely(ret < 0)) { 3537 netdev_err(priv->dev, 3538 "%s: alloc sfty ce MSI %d (error: %d)\n", 3539 __func__, priv->sfty_ce_irq, ret); 3540 irq_err = REQ_IRQ_ERR_SFTY_CE; 3541 goto irq_error; 3542 } 3543 } 3544 3545 /* Request the Safety Feature Uncorrectible Error line in 3546 * case of another line is used 3547 */ 3548 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3549 int_name = priv->int_name_sfty_ue; 3550 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3551 ret = request_irq(priv->sfty_ue_irq, 3552 stmmac_safety_interrupt, 3553 0, int_name, dev); 3554 if (unlikely(ret < 0)) { 3555 netdev_err(priv->dev, 3556 "%s: alloc sfty ue MSI %d (error: %d)\n", 3557 __func__, priv->sfty_ue_irq, ret); 3558 irq_err = REQ_IRQ_ERR_SFTY_UE; 3559 goto irq_error; 3560 } 3561 } 3562 3563 /* Request Rx MSI irq */ 3564 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3565 if (i >= MTL_MAX_RX_QUEUES) 3566 break; 3567 if (priv->rx_irq[i] == 0) 3568 continue; 3569 3570 int_name = priv->int_name_rx_irq[i]; 3571 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3572 ret = request_irq(priv->rx_irq[i], 3573 stmmac_msi_intr_rx, 3574 0, int_name, &priv->rx_queue[i]); 3575 if (unlikely(ret < 0)) { 3576 netdev_err(priv->dev, 3577 "%s: alloc rx-%d MSI %d (error: %d)\n", 3578 __func__, i, priv->rx_irq[i], ret); 3579 irq_err = REQ_IRQ_ERR_RX; 3580 irq_idx = i; 3581 goto irq_error; 3582 } 3583 cpumask_clear(&cpu_mask); 3584 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3585 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3586 } 3587 3588 /* Request Tx MSI irq */ 3589 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3590 if (i >= MTL_MAX_TX_QUEUES) 3591 break; 3592 if (priv->tx_irq[i] == 0) 3593 continue; 3594 3595 int_name = priv->int_name_tx_irq[i]; 3596 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3597 ret = request_irq(priv->tx_irq[i], 3598 stmmac_msi_intr_tx, 3599 0, int_name, &priv->tx_queue[i]); 3600 if (unlikely(ret < 0)) { 3601 netdev_err(priv->dev, 3602 "%s: alloc tx-%d MSI %d (error: %d)\n", 3603 __func__, i, priv->tx_irq[i], ret); 3604 irq_err = REQ_IRQ_ERR_TX; 3605 irq_idx = i; 3606 goto irq_error; 3607 } 3608 cpumask_clear(&cpu_mask); 3609 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3610 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3611 } 3612 3613 return 0; 3614 3615 irq_error: 3616 stmmac_free_irq(dev, irq_err, irq_idx); 3617 return ret; 3618 } 3619 3620 static int stmmac_request_irq_single(struct net_device *dev) 3621 { 3622 struct stmmac_priv *priv = netdev_priv(dev); 3623 enum request_irq_err irq_err; 3624 int ret; 3625 3626 ret = request_irq(dev->irq, stmmac_interrupt, 3627 IRQF_SHARED, dev->name, dev); 3628 if (unlikely(ret < 0)) { 3629 netdev_err(priv->dev, 3630 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3631 __func__, dev->irq, ret); 3632 irq_err = REQ_IRQ_ERR_MAC; 3633 goto irq_error; 3634 } 3635 3636 /* Request the Wake IRQ in case of another line 3637 * is used for WoL 3638 */ 3639 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3640 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3641 IRQF_SHARED, dev->name, dev); 3642 if (unlikely(ret < 0)) { 3643 netdev_err(priv->dev, 3644 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3645 __func__, priv->wol_irq, ret); 3646 irq_err = REQ_IRQ_ERR_WOL; 3647 goto irq_error; 3648 } 3649 } 3650 3651 /* Request the IRQ lines */ 3652 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3653 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3654 IRQF_SHARED, dev->name, dev); 3655 if (unlikely(ret < 0)) { 3656 netdev_err(priv->dev, 3657 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3658 __func__, priv->lpi_irq, ret); 3659 irq_err = REQ_IRQ_ERR_LPI; 3660 goto irq_error; 3661 } 3662 } 3663 3664 return 0; 3665 3666 irq_error: 3667 stmmac_free_irq(dev, irq_err, 0); 3668 return ret; 3669 } 3670 3671 static int stmmac_request_irq(struct net_device *dev) 3672 { 3673 struct stmmac_priv *priv = netdev_priv(dev); 3674 int ret; 3675 3676 /* Request the IRQ lines */ 3677 if (priv->plat->multi_msi_en) 3678 ret = stmmac_request_irq_multi_msi(dev); 3679 else 3680 ret = stmmac_request_irq_single(dev); 3681 3682 return ret; 3683 } 3684 3685 /** 3686 * stmmac_open - open entry point of the driver 3687 * @dev : pointer to the device structure. 3688 * Description: 3689 * This function is the open entry point of the driver. 3690 * Return value: 3691 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3692 * file on failure. 3693 */ 3694 static int stmmac_open(struct net_device *dev) 3695 { 3696 struct stmmac_priv *priv = netdev_priv(dev); 3697 int mode = priv->plat->phy_interface; 3698 int bfsize = 0; 3699 u32 chan; 3700 int ret; 3701 3702 ret = pm_runtime_get_sync(priv->device); 3703 if (ret < 0) { 3704 pm_runtime_put_noidle(priv->device); 3705 return ret; 3706 } 3707 3708 if (priv->hw->pcs != STMMAC_PCS_TBI && 3709 priv->hw->pcs != STMMAC_PCS_RTBI && 3710 (!priv->hw->xpcs || 3711 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3712 ret = stmmac_init_phy(dev); 3713 if (ret) { 3714 netdev_err(priv->dev, 3715 "%s: Cannot attach to PHY (error: %d)\n", 3716 __func__, ret); 3717 goto init_phy_error; 3718 } 3719 } 3720 3721 /* Extra statistics */ 3722 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3723 priv->xstats.threshold = tc; 3724 3725 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3726 if (bfsize < 0) 3727 bfsize = 0; 3728 3729 if (bfsize < BUF_SIZE_16KiB) 3730 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3731 3732 priv->dma_buf_sz = bfsize; 3733 buf_sz = bfsize; 3734 3735 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3736 3737 if (!priv->dma_tx_size) 3738 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3739 if (!priv->dma_rx_size) 3740 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3741 3742 /* Earlier check for TBS */ 3743 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3744 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3745 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3746 3747 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3748 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3749 } 3750 3751 ret = alloc_dma_desc_resources(priv); 3752 if (ret < 0) { 3753 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3754 __func__); 3755 goto dma_desc_error; 3756 } 3757 3758 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3759 if (ret < 0) { 3760 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3761 __func__); 3762 goto init_error; 3763 } 3764 3765 ret = stmmac_hw_setup(dev, true); 3766 if (ret < 0) { 3767 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3768 goto init_error; 3769 } 3770 3771 stmmac_init_coalesce(priv); 3772 3773 phylink_start(priv->phylink); 3774 /* We may have called phylink_speed_down before */ 3775 phylink_speed_up(priv->phylink); 3776 3777 ret = stmmac_request_irq(dev); 3778 if (ret) 3779 goto irq_error; 3780 3781 stmmac_enable_all_queues(priv); 3782 netif_tx_start_all_queues(priv->dev); 3783 stmmac_enable_all_dma_irq(priv); 3784 3785 return 0; 3786 3787 irq_error: 3788 phylink_stop(priv->phylink); 3789 3790 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3791 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3792 3793 stmmac_hw_teardown(dev); 3794 init_error: 3795 free_dma_desc_resources(priv); 3796 dma_desc_error: 3797 phylink_disconnect_phy(priv->phylink); 3798 init_phy_error: 3799 pm_runtime_put(priv->device); 3800 return ret; 3801 } 3802 3803 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3804 { 3805 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3806 3807 if (priv->fpe_wq) 3808 destroy_workqueue(priv->fpe_wq); 3809 3810 netdev_info(priv->dev, "FPE workqueue stop"); 3811 } 3812 3813 /** 3814 * stmmac_release - close entry point of the driver 3815 * @dev : device pointer. 3816 * Description: 3817 * This is the stop entry point of the driver. 3818 */ 3819 static int stmmac_release(struct net_device *dev) 3820 { 3821 struct stmmac_priv *priv = netdev_priv(dev); 3822 u32 chan; 3823 3824 netif_tx_disable(dev); 3825 3826 if (device_may_wakeup(priv->device)) 3827 phylink_speed_down(priv->phylink, false); 3828 /* Stop and disconnect the PHY */ 3829 phylink_stop(priv->phylink); 3830 phylink_disconnect_phy(priv->phylink); 3831 3832 stmmac_disable_all_queues(priv); 3833 3834 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3835 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3836 3837 /* Free the IRQ lines */ 3838 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3839 3840 if (priv->eee_enabled) { 3841 priv->tx_path_in_lpi_mode = false; 3842 del_timer_sync(&priv->eee_ctrl_timer); 3843 } 3844 3845 /* Stop TX/RX DMA and clear the descriptors */ 3846 stmmac_stop_all_dma(priv); 3847 3848 /* Release and free the Rx/Tx resources */ 3849 free_dma_desc_resources(priv); 3850 3851 /* Disable the MAC Rx/Tx */ 3852 stmmac_mac_set(priv, priv->ioaddr, false); 3853 3854 netif_carrier_off(dev); 3855 3856 stmmac_release_ptp(priv); 3857 3858 pm_runtime_put(priv->device); 3859 3860 if (priv->dma_cap.fpesel) 3861 stmmac_fpe_stop_wq(priv); 3862 3863 return 0; 3864 } 3865 3866 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3867 struct stmmac_tx_queue *tx_q) 3868 { 3869 u16 tag = 0x0, inner_tag = 0x0; 3870 u32 inner_type = 0x0; 3871 struct dma_desc *p; 3872 3873 if (!priv->dma_cap.vlins) 3874 return false; 3875 if (!skb_vlan_tag_present(skb)) 3876 return false; 3877 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3878 inner_tag = skb_vlan_tag_get(skb); 3879 inner_type = STMMAC_VLAN_INSERT; 3880 } 3881 3882 tag = skb_vlan_tag_get(skb); 3883 3884 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3885 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3886 else 3887 p = &tx_q->dma_tx[tx_q->cur_tx]; 3888 3889 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3890 return false; 3891 3892 stmmac_set_tx_owner(priv, p); 3893 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3894 return true; 3895 } 3896 3897 /** 3898 * stmmac_tso_allocator - close entry point of the driver 3899 * @priv: driver private structure 3900 * @des: buffer start address 3901 * @total_len: total length to fill in descriptors 3902 * @last_segment: condition for the last descriptor 3903 * @queue: TX queue index 3904 * Description: 3905 * This function fills descriptor and request new descriptors according to 3906 * buffer length to fill 3907 */ 3908 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3909 int total_len, bool last_segment, u32 queue) 3910 { 3911 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3912 struct dma_desc *desc; 3913 u32 buff_size; 3914 int tmp_len; 3915 3916 tmp_len = total_len; 3917 3918 while (tmp_len > 0) { 3919 dma_addr_t curr_addr; 3920 3921 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3922 priv->dma_tx_size); 3923 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3924 3925 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3926 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3927 else 3928 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3929 3930 curr_addr = des + (total_len - tmp_len); 3931 if (priv->dma_cap.addr64 <= 32) 3932 desc->des0 = cpu_to_le32(curr_addr); 3933 else 3934 stmmac_set_desc_addr(priv, desc, curr_addr); 3935 3936 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3937 TSO_MAX_BUFF_SIZE : tmp_len; 3938 3939 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3940 0, 1, 3941 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3942 0, 0); 3943 3944 tmp_len -= TSO_MAX_BUFF_SIZE; 3945 } 3946 } 3947 3948 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3949 { 3950 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3951 int desc_size; 3952 3953 if (likely(priv->extend_desc)) 3954 desc_size = sizeof(struct dma_extended_desc); 3955 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3956 desc_size = sizeof(struct dma_edesc); 3957 else 3958 desc_size = sizeof(struct dma_desc); 3959 3960 /* The own bit must be the latest setting done when prepare the 3961 * descriptor and then barrier is needed to make sure that 3962 * all is coherent before granting the DMA engine. 3963 */ 3964 wmb(); 3965 3966 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3967 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3968 } 3969 3970 /** 3971 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3972 * @skb : the socket buffer 3973 * @dev : device pointer 3974 * Description: this is the transmit function that is called on TSO frames 3975 * (support available on GMAC4 and newer chips). 3976 * Diagram below show the ring programming in case of TSO frames: 3977 * 3978 * First Descriptor 3979 * -------- 3980 * | DES0 |---> buffer1 = L2/L3/L4 header 3981 * | DES1 |---> TCP Payload (can continue on next descr...) 3982 * | DES2 |---> buffer 1 and 2 len 3983 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3984 * -------- 3985 * | 3986 * ... 3987 * | 3988 * -------- 3989 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3990 * | DES1 | --| 3991 * | DES2 | --> buffer 1 and 2 len 3992 * | DES3 | 3993 * -------- 3994 * 3995 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3996 */ 3997 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3998 { 3999 struct dma_desc *desc, *first, *mss_desc = NULL; 4000 struct stmmac_priv *priv = netdev_priv(dev); 4001 int nfrags = skb_shinfo(skb)->nr_frags; 4002 u32 queue = skb_get_queue_mapping(skb); 4003 unsigned int first_entry, tx_packets; 4004 int tmp_pay_len = 0, first_tx; 4005 struct stmmac_tx_queue *tx_q; 4006 bool has_vlan, set_ic; 4007 u8 proto_hdr_len, hdr; 4008 u32 pay_len, mss; 4009 dma_addr_t des; 4010 int i; 4011 4012 tx_q = &priv->tx_queue[queue]; 4013 first_tx = tx_q->cur_tx; 4014 4015 /* Compute header lengths */ 4016 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 4017 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 4018 hdr = sizeof(struct udphdr); 4019 } else { 4020 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4021 hdr = tcp_hdrlen(skb); 4022 } 4023 4024 /* Desc availability based on threshold should be enough safe */ 4025 if (unlikely(stmmac_tx_avail(priv, queue) < 4026 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4027 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4028 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4029 queue)); 4030 /* This is a hard error, log it. */ 4031 netdev_err(priv->dev, 4032 "%s: Tx Ring full when queue awake\n", 4033 __func__); 4034 } 4035 return NETDEV_TX_BUSY; 4036 } 4037 4038 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4039 4040 mss = skb_shinfo(skb)->gso_size; 4041 4042 /* set new MSS value if needed */ 4043 if (mss != tx_q->mss) { 4044 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4045 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4046 else 4047 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4048 4049 stmmac_set_mss(priv, mss_desc, mss); 4050 tx_q->mss = mss; 4051 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4052 priv->dma_tx_size); 4053 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4054 } 4055 4056 if (netif_msg_tx_queued(priv)) { 4057 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4058 __func__, hdr, proto_hdr_len, pay_len, mss); 4059 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4060 skb->data_len); 4061 } 4062 4063 /* Check if VLAN can be inserted by HW */ 4064 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4065 4066 first_entry = tx_q->cur_tx; 4067 WARN_ON(tx_q->tx_skbuff[first_entry]); 4068 4069 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4070 desc = &tx_q->dma_entx[first_entry].basic; 4071 else 4072 desc = &tx_q->dma_tx[first_entry]; 4073 first = desc; 4074 4075 if (has_vlan) 4076 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4077 4078 /* first descriptor: fill Headers on Buf1 */ 4079 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4080 DMA_TO_DEVICE); 4081 if (dma_mapping_error(priv->device, des)) 4082 goto dma_map_err; 4083 4084 tx_q->tx_skbuff_dma[first_entry].buf = des; 4085 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4086 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4087 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4088 4089 if (priv->dma_cap.addr64 <= 32) { 4090 first->des0 = cpu_to_le32(des); 4091 4092 /* Fill start of payload in buff2 of first descriptor */ 4093 if (pay_len) 4094 first->des1 = cpu_to_le32(des + proto_hdr_len); 4095 4096 /* If needed take extra descriptors to fill the remaining payload */ 4097 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4098 } else { 4099 stmmac_set_desc_addr(priv, first, des); 4100 tmp_pay_len = pay_len; 4101 des += proto_hdr_len; 4102 pay_len = 0; 4103 } 4104 4105 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4106 4107 /* Prepare fragments */ 4108 for (i = 0; i < nfrags; i++) { 4109 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4110 4111 des = skb_frag_dma_map(priv->device, frag, 0, 4112 skb_frag_size(frag), 4113 DMA_TO_DEVICE); 4114 if (dma_mapping_error(priv->device, des)) 4115 goto dma_map_err; 4116 4117 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4118 (i == nfrags - 1), queue); 4119 4120 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4121 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4122 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4123 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4124 } 4125 4126 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4127 4128 /* Only the last descriptor gets to point to the skb. */ 4129 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4130 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4131 4132 /* Manage tx mitigation */ 4133 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4134 tx_q->tx_count_frames += tx_packets; 4135 4136 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4137 set_ic = true; 4138 else if (!priv->tx_coal_frames[queue]) 4139 set_ic = false; 4140 else if (tx_packets > priv->tx_coal_frames[queue]) 4141 set_ic = true; 4142 else if ((tx_q->tx_count_frames % 4143 priv->tx_coal_frames[queue]) < tx_packets) 4144 set_ic = true; 4145 else 4146 set_ic = false; 4147 4148 if (set_ic) { 4149 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4150 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4151 else 4152 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4153 4154 tx_q->tx_count_frames = 0; 4155 stmmac_set_tx_ic(priv, desc); 4156 priv->xstats.tx_set_ic_bit++; 4157 } 4158 4159 /* We've used all descriptors we need for this skb, however, 4160 * advance cur_tx so that it references a fresh descriptor. 4161 * ndo_start_xmit will fill this descriptor the next time it's 4162 * called and stmmac_tx_clean may clean up to this descriptor. 4163 */ 4164 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4165 4166 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4167 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4168 __func__); 4169 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4170 } 4171 4172 dev->stats.tx_bytes += skb->len; 4173 priv->xstats.tx_tso_frames++; 4174 priv->xstats.tx_tso_nfrags += nfrags; 4175 4176 if (priv->sarc_type) 4177 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4178 4179 skb_tx_timestamp(skb); 4180 4181 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4182 priv->hwts_tx_en)) { 4183 /* declare that device is doing timestamping */ 4184 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4185 stmmac_enable_tx_timestamp(priv, first); 4186 } 4187 4188 /* Complete the first descriptor before granting the DMA */ 4189 stmmac_prepare_tso_tx_desc(priv, first, 1, 4190 proto_hdr_len, 4191 pay_len, 4192 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4193 hdr / 4, (skb->len - proto_hdr_len)); 4194 4195 /* If context desc is used to change MSS */ 4196 if (mss_desc) { 4197 /* Make sure that first descriptor has been completely 4198 * written, including its own bit. This is because MSS is 4199 * actually before first descriptor, so we need to make 4200 * sure that MSS's own bit is the last thing written. 4201 */ 4202 dma_wmb(); 4203 stmmac_set_tx_owner(priv, mss_desc); 4204 } 4205 4206 if (netif_msg_pktdata(priv)) { 4207 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4208 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4209 tx_q->cur_tx, first, nfrags); 4210 pr_info(">>> frame to be transmitted: "); 4211 print_pkt(skb->data, skb_headlen(skb)); 4212 } 4213 4214 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4215 4216 stmmac_flush_tx_descriptors(priv, queue); 4217 stmmac_tx_timer_arm(priv, queue); 4218 4219 return NETDEV_TX_OK; 4220 4221 dma_map_err: 4222 dev_err(priv->device, "Tx dma map failed\n"); 4223 dev_kfree_skb(skb); 4224 priv->dev->stats.tx_dropped++; 4225 return NETDEV_TX_OK; 4226 } 4227 4228 /** 4229 * stmmac_xmit - Tx entry point of the driver 4230 * @skb : the socket buffer 4231 * @dev : device pointer 4232 * Description : this is the tx entry point of the driver. 4233 * It programs the chain or the ring and supports oversized frames 4234 * and SG feature. 4235 */ 4236 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4237 { 4238 unsigned int first_entry, tx_packets, enh_desc; 4239 struct stmmac_priv *priv = netdev_priv(dev); 4240 unsigned int nopaged_len = skb_headlen(skb); 4241 int i, csum_insertion = 0, is_jumbo = 0; 4242 u32 queue = skb_get_queue_mapping(skb); 4243 int nfrags = skb_shinfo(skb)->nr_frags; 4244 int gso = skb_shinfo(skb)->gso_type; 4245 struct dma_edesc *tbs_desc = NULL; 4246 struct dma_desc *desc, *first; 4247 struct stmmac_tx_queue *tx_q; 4248 bool has_vlan, set_ic; 4249 int entry, first_tx; 4250 dma_addr_t des; 4251 4252 tx_q = &priv->tx_queue[queue]; 4253 first_tx = tx_q->cur_tx; 4254 4255 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4256 stmmac_disable_eee_mode(priv); 4257 4258 /* Manage oversized TCP frames for GMAC4 device */ 4259 if (skb_is_gso(skb) && priv->tso) { 4260 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4261 return stmmac_tso_xmit(skb, dev); 4262 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4263 return stmmac_tso_xmit(skb, dev); 4264 } 4265 4266 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4267 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4268 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4269 queue)); 4270 /* This is a hard error, log it. */ 4271 netdev_err(priv->dev, 4272 "%s: Tx Ring full when queue awake\n", 4273 __func__); 4274 } 4275 return NETDEV_TX_BUSY; 4276 } 4277 4278 /* Check if VLAN can be inserted by HW */ 4279 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4280 4281 entry = tx_q->cur_tx; 4282 first_entry = entry; 4283 WARN_ON(tx_q->tx_skbuff[first_entry]); 4284 4285 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4286 4287 if (likely(priv->extend_desc)) 4288 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4289 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4290 desc = &tx_q->dma_entx[entry].basic; 4291 else 4292 desc = tx_q->dma_tx + entry; 4293 4294 first = desc; 4295 4296 if (has_vlan) 4297 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4298 4299 enh_desc = priv->plat->enh_desc; 4300 /* To program the descriptors according to the size of the frame */ 4301 if (enh_desc) 4302 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4303 4304 if (unlikely(is_jumbo)) { 4305 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4306 if (unlikely(entry < 0) && (entry != -EINVAL)) 4307 goto dma_map_err; 4308 } 4309 4310 for (i = 0; i < nfrags; i++) { 4311 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4312 int len = skb_frag_size(frag); 4313 bool last_segment = (i == (nfrags - 1)); 4314 4315 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4316 WARN_ON(tx_q->tx_skbuff[entry]); 4317 4318 if (likely(priv->extend_desc)) 4319 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4320 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4321 desc = &tx_q->dma_entx[entry].basic; 4322 else 4323 desc = tx_q->dma_tx + entry; 4324 4325 des = skb_frag_dma_map(priv->device, frag, 0, len, 4326 DMA_TO_DEVICE); 4327 if (dma_mapping_error(priv->device, des)) 4328 goto dma_map_err; /* should reuse desc w/o issues */ 4329 4330 tx_q->tx_skbuff_dma[entry].buf = des; 4331 4332 stmmac_set_desc_addr(priv, desc, des); 4333 4334 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4335 tx_q->tx_skbuff_dma[entry].len = len; 4336 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4337 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4338 4339 /* Prepare the descriptor and set the own bit too */ 4340 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4341 priv->mode, 1, last_segment, skb->len); 4342 } 4343 4344 /* Only the last descriptor gets to point to the skb. */ 4345 tx_q->tx_skbuff[entry] = skb; 4346 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4347 4348 /* According to the coalesce parameter the IC bit for the latest 4349 * segment is reset and the timer re-started to clean the tx status. 4350 * This approach takes care about the fragments: desc is the first 4351 * element in case of no SG. 4352 */ 4353 tx_packets = (entry + 1) - first_tx; 4354 tx_q->tx_count_frames += tx_packets; 4355 4356 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4357 set_ic = true; 4358 else if (!priv->tx_coal_frames[queue]) 4359 set_ic = false; 4360 else if (tx_packets > priv->tx_coal_frames[queue]) 4361 set_ic = true; 4362 else if ((tx_q->tx_count_frames % 4363 priv->tx_coal_frames[queue]) < tx_packets) 4364 set_ic = true; 4365 else 4366 set_ic = false; 4367 4368 if (set_ic) { 4369 if (likely(priv->extend_desc)) 4370 desc = &tx_q->dma_etx[entry].basic; 4371 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4372 desc = &tx_q->dma_entx[entry].basic; 4373 else 4374 desc = &tx_q->dma_tx[entry]; 4375 4376 tx_q->tx_count_frames = 0; 4377 stmmac_set_tx_ic(priv, desc); 4378 priv->xstats.tx_set_ic_bit++; 4379 } 4380 4381 /* We've used all descriptors we need for this skb, however, 4382 * advance cur_tx so that it references a fresh descriptor. 4383 * ndo_start_xmit will fill this descriptor the next time it's 4384 * called and stmmac_tx_clean may clean up to this descriptor. 4385 */ 4386 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4387 tx_q->cur_tx = entry; 4388 4389 if (netif_msg_pktdata(priv)) { 4390 netdev_dbg(priv->dev, 4391 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4392 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4393 entry, first, nfrags); 4394 4395 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4396 print_pkt(skb->data, skb->len); 4397 } 4398 4399 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4400 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4401 __func__); 4402 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4403 } 4404 4405 dev->stats.tx_bytes += skb->len; 4406 4407 if (priv->sarc_type) 4408 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4409 4410 skb_tx_timestamp(skb); 4411 4412 /* Ready to fill the first descriptor and set the OWN bit w/o any 4413 * problems because all the descriptors are actually ready to be 4414 * passed to the DMA engine. 4415 */ 4416 if (likely(!is_jumbo)) { 4417 bool last_segment = (nfrags == 0); 4418 4419 des = dma_map_single(priv->device, skb->data, 4420 nopaged_len, DMA_TO_DEVICE); 4421 if (dma_mapping_error(priv->device, des)) 4422 goto dma_map_err; 4423 4424 tx_q->tx_skbuff_dma[first_entry].buf = des; 4425 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4426 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4427 4428 stmmac_set_desc_addr(priv, first, des); 4429 4430 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4431 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4432 4433 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4434 priv->hwts_tx_en)) { 4435 /* declare that device is doing timestamping */ 4436 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4437 stmmac_enable_tx_timestamp(priv, first); 4438 } 4439 4440 /* Prepare the first descriptor setting the OWN bit too */ 4441 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4442 csum_insertion, priv->mode, 0, last_segment, 4443 skb->len); 4444 } 4445 4446 if (tx_q->tbs & STMMAC_TBS_EN) { 4447 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4448 4449 tbs_desc = &tx_q->dma_entx[first_entry]; 4450 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4451 } 4452 4453 stmmac_set_tx_owner(priv, first); 4454 4455 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4456 4457 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4458 4459 stmmac_flush_tx_descriptors(priv, queue); 4460 stmmac_tx_timer_arm(priv, queue); 4461 4462 return NETDEV_TX_OK; 4463 4464 dma_map_err: 4465 netdev_err(priv->dev, "Tx DMA map failed\n"); 4466 dev_kfree_skb(skb); 4467 priv->dev->stats.tx_dropped++; 4468 return NETDEV_TX_OK; 4469 } 4470 4471 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4472 { 4473 struct vlan_ethhdr *veth; 4474 __be16 vlan_proto; 4475 u16 vlanid; 4476 4477 veth = (struct vlan_ethhdr *)skb->data; 4478 vlan_proto = veth->h_vlan_proto; 4479 4480 if ((vlan_proto == htons(ETH_P_8021Q) && 4481 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4482 (vlan_proto == htons(ETH_P_8021AD) && 4483 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4484 /* pop the vlan tag */ 4485 vlanid = ntohs(veth->h_vlan_TCI); 4486 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4487 skb_pull(skb, VLAN_HLEN); 4488 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4489 } 4490 } 4491 4492 /** 4493 * stmmac_rx_refill - refill used skb preallocated buffers 4494 * @priv: driver private structure 4495 * @queue: RX queue index 4496 * Description : this is to reallocate the skb for the reception process 4497 * that is based on zero-copy. 4498 */ 4499 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4500 { 4501 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4502 int dirty = stmmac_rx_dirty(priv, queue); 4503 unsigned int entry = rx_q->dirty_rx; 4504 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4505 4506 if (priv->dma_cap.addr64 <= 32) 4507 gfp |= GFP_DMA32; 4508 4509 while (dirty-- > 0) { 4510 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4511 struct dma_desc *p; 4512 bool use_rx_wd; 4513 4514 if (priv->extend_desc) 4515 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4516 else 4517 p = rx_q->dma_rx + entry; 4518 4519 if (!buf->page) { 4520 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4521 if (!buf->page) 4522 break; 4523 } 4524 4525 if (priv->sph && !buf->sec_page) { 4526 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4527 if (!buf->sec_page) 4528 break; 4529 4530 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4531 } 4532 4533 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4534 4535 stmmac_set_desc_addr(priv, p, buf->addr); 4536 if (priv->sph) 4537 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4538 else 4539 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4540 stmmac_refill_desc3(priv, rx_q, p); 4541 4542 rx_q->rx_count_frames++; 4543 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4544 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4545 rx_q->rx_count_frames = 0; 4546 4547 use_rx_wd = !priv->rx_coal_frames[queue]; 4548 use_rx_wd |= rx_q->rx_count_frames > 0; 4549 if (!priv->use_riwt) 4550 use_rx_wd = false; 4551 4552 dma_wmb(); 4553 stmmac_set_rx_owner(priv, p, use_rx_wd); 4554 4555 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4556 } 4557 rx_q->dirty_rx = entry; 4558 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4559 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4560 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4561 } 4562 4563 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4564 struct dma_desc *p, 4565 int status, unsigned int len) 4566 { 4567 unsigned int plen = 0, hlen = 0; 4568 int coe = priv->hw->rx_csum; 4569 4570 /* Not first descriptor, buffer is always zero */ 4571 if (priv->sph && len) 4572 return 0; 4573 4574 /* First descriptor, get split header length */ 4575 stmmac_get_rx_header_len(priv, p, &hlen); 4576 if (priv->sph && hlen) { 4577 priv->xstats.rx_split_hdr_pkt_n++; 4578 return hlen; 4579 } 4580 4581 /* First descriptor, not last descriptor and not split header */ 4582 if (status & rx_not_ls) 4583 return priv->dma_buf_sz; 4584 4585 plen = stmmac_get_rx_frame_len(priv, p, coe); 4586 4587 /* First descriptor and last descriptor and not split header */ 4588 return min_t(unsigned int, priv->dma_buf_sz, plen); 4589 } 4590 4591 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4592 struct dma_desc *p, 4593 int status, unsigned int len) 4594 { 4595 int coe = priv->hw->rx_csum; 4596 unsigned int plen = 0; 4597 4598 /* Not split header, buffer is not available */ 4599 if (!priv->sph) 4600 return 0; 4601 4602 /* Not last descriptor */ 4603 if (status & rx_not_ls) 4604 return priv->dma_buf_sz; 4605 4606 plen = stmmac_get_rx_frame_len(priv, p, coe); 4607 4608 /* Last descriptor */ 4609 return plen - len; 4610 } 4611 4612 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4613 struct xdp_frame *xdpf, bool dma_map) 4614 { 4615 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4616 unsigned int entry = tx_q->cur_tx; 4617 struct dma_desc *tx_desc; 4618 dma_addr_t dma_addr; 4619 bool set_ic; 4620 4621 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4622 return STMMAC_XDP_CONSUMED; 4623 4624 if (likely(priv->extend_desc)) 4625 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4626 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4627 tx_desc = &tx_q->dma_entx[entry].basic; 4628 else 4629 tx_desc = tx_q->dma_tx + entry; 4630 4631 if (dma_map) { 4632 dma_addr = dma_map_single(priv->device, xdpf->data, 4633 xdpf->len, DMA_TO_DEVICE); 4634 if (dma_mapping_error(priv->device, dma_addr)) 4635 return STMMAC_XDP_CONSUMED; 4636 4637 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4638 } else { 4639 struct page *page = virt_to_page(xdpf->data); 4640 4641 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4642 xdpf->headroom; 4643 dma_sync_single_for_device(priv->device, dma_addr, 4644 xdpf->len, DMA_BIDIRECTIONAL); 4645 4646 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4647 } 4648 4649 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4650 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4651 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4652 tx_q->tx_skbuff_dma[entry].last_segment = true; 4653 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4654 4655 tx_q->xdpf[entry] = xdpf; 4656 4657 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4658 4659 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4660 true, priv->mode, true, true, 4661 xdpf->len); 4662 4663 tx_q->tx_count_frames++; 4664 4665 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4666 set_ic = true; 4667 else 4668 set_ic = false; 4669 4670 if (set_ic) { 4671 tx_q->tx_count_frames = 0; 4672 stmmac_set_tx_ic(priv, tx_desc); 4673 priv->xstats.tx_set_ic_bit++; 4674 } 4675 4676 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4677 4678 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4679 tx_q->cur_tx = entry; 4680 4681 return STMMAC_XDP_TX; 4682 } 4683 4684 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4685 int cpu) 4686 { 4687 int index = cpu; 4688 4689 if (unlikely(index < 0)) 4690 index = 0; 4691 4692 while (index >= priv->plat->tx_queues_to_use) 4693 index -= priv->plat->tx_queues_to_use; 4694 4695 return index; 4696 } 4697 4698 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4699 struct xdp_buff *xdp) 4700 { 4701 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4702 int cpu = smp_processor_id(); 4703 struct netdev_queue *nq; 4704 int queue; 4705 int res; 4706 4707 if (unlikely(!xdpf)) 4708 return STMMAC_XDP_CONSUMED; 4709 4710 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4711 nq = netdev_get_tx_queue(priv->dev, queue); 4712 4713 __netif_tx_lock(nq, cpu); 4714 /* Avoids TX time-out as we are sharing with slow path */ 4715 txq_trans_cond_update(nq); 4716 4717 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4718 if (res == STMMAC_XDP_TX) 4719 stmmac_flush_tx_descriptors(priv, queue); 4720 4721 __netif_tx_unlock(nq); 4722 4723 return res; 4724 } 4725 4726 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4727 struct bpf_prog *prog, 4728 struct xdp_buff *xdp) 4729 { 4730 u32 act; 4731 int res; 4732 4733 act = bpf_prog_run_xdp(prog, xdp); 4734 switch (act) { 4735 case XDP_PASS: 4736 res = STMMAC_XDP_PASS; 4737 break; 4738 case XDP_TX: 4739 res = stmmac_xdp_xmit_back(priv, xdp); 4740 break; 4741 case XDP_REDIRECT: 4742 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4743 res = STMMAC_XDP_CONSUMED; 4744 else 4745 res = STMMAC_XDP_REDIRECT; 4746 break; 4747 default: 4748 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4749 fallthrough; 4750 case XDP_ABORTED: 4751 trace_xdp_exception(priv->dev, prog, act); 4752 fallthrough; 4753 case XDP_DROP: 4754 res = STMMAC_XDP_CONSUMED; 4755 break; 4756 } 4757 4758 return res; 4759 } 4760 4761 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4762 struct xdp_buff *xdp) 4763 { 4764 struct bpf_prog *prog; 4765 int res; 4766 4767 prog = READ_ONCE(priv->xdp_prog); 4768 if (!prog) { 4769 res = STMMAC_XDP_PASS; 4770 goto out; 4771 } 4772 4773 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4774 out: 4775 return ERR_PTR(-res); 4776 } 4777 4778 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4779 int xdp_status) 4780 { 4781 int cpu = smp_processor_id(); 4782 int queue; 4783 4784 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4785 4786 if (xdp_status & STMMAC_XDP_TX) 4787 stmmac_tx_timer_arm(priv, queue); 4788 4789 if (xdp_status & STMMAC_XDP_REDIRECT) 4790 xdp_do_flush(); 4791 } 4792 4793 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4794 struct xdp_buff *xdp) 4795 { 4796 unsigned int metasize = xdp->data - xdp->data_meta; 4797 unsigned int datasize = xdp->data_end - xdp->data; 4798 struct sk_buff *skb; 4799 4800 skb = __napi_alloc_skb(&ch->rxtx_napi, 4801 xdp->data_end - xdp->data_hard_start, 4802 GFP_ATOMIC | __GFP_NOWARN); 4803 if (unlikely(!skb)) 4804 return NULL; 4805 4806 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4807 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4808 if (metasize) 4809 skb_metadata_set(skb, metasize); 4810 4811 return skb; 4812 } 4813 4814 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4815 struct dma_desc *p, struct dma_desc *np, 4816 struct xdp_buff *xdp) 4817 { 4818 struct stmmac_channel *ch = &priv->channel[queue]; 4819 unsigned int len = xdp->data_end - xdp->data; 4820 enum pkt_hash_types hash_type; 4821 int coe = priv->hw->rx_csum; 4822 struct sk_buff *skb; 4823 u32 hash; 4824 4825 skb = stmmac_construct_skb_zc(ch, xdp); 4826 if (!skb) { 4827 priv->dev->stats.rx_dropped++; 4828 return; 4829 } 4830 4831 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4832 stmmac_rx_vlan(priv->dev, skb); 4833 skb->protocol = eth_type_trans(skb, priv->dev); 4834 4835 if (unlikely(!coe)) 4836 skb_checksum_none_assert(skb); 4837 else 4838 skb->ip_summed = CHECKSUM_UNNECESSARY; 4839 4840 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4841 skb_set_hash(skb, hash, hash_type); 4842 4843 skb_record_rx_queue(skb, queue); 4844 napi_gro_receive(&ch->rxtx_napi, skb); 4845 4846 priv->dev->stats.rx_packets++; 4847 priv->dev->stats.rx_bytes += len; 4848 } 4849 4850 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4851 { 4852 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4853 unsigned int entry = rx_q->dirty_rx; 4854 struct dma_desc *rx_desc = NULL; 4855 bool ret = true; 4856 4857 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4858 4859 while (budget-- > 0 && entry != rx_q->cur_rx) { 4860 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4861 dma_addr_t dma_addr; 4862 bool use_rx_wd; 4863 4864 if (!buf->xdp) { 4865 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4866 if (!buf->xdp) { 4867 ret = false; 4868 break; 4869 } 4870 } 4871 4872 if (priv->extend_desc) 4873 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4874 else 4875 rx_desc = rx_q->dma_rx + entry; 4876 4877 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4878 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4879 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4880 stmmac_refill_desc3(priv, rx_q, rx_desc); 4881 4882 rx_q->rx_count_frames++; 4883 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4884 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4885 rx_q->rx_count_frames = 0; 4886 4887 use_rx_wd = !priv->rx_coal_frames[queue]; 4888 use_rx_wd |= rx_q->rx_count_frames > 0; 4889 if (!priv->use_riwt) 4890 use_rx_wd = false; 4891 4892 dma_wmb(); 4893 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4894 4895 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4896 } 4897 4898 if (rx_desc) { 4899 rx_q->dirty_rx = entry; 4900 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4901 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4902 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4903 } 4904 4905 return ret; 4906 } 4907 4908 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4909 { 4910 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4911 unsigned int count = 0, error = 0, len = 0; 4912 int dirty = stmmac_rx_dirty(priv, queue); 4913 unsigned int next_entry = rx_q->cur_rx; 4914 unsigned int desc_size; 4915 struct bpf_prog *prog; 4916 bool failure = false; 4917 int xdp_status = 0; 4918 int status = 0; 4919 4920 if (netif_msg_rx_status(priv)) { 4921 void *rx_head; 4922 4923 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4924 if (priv->extend_desc) { 4925 rx_head = (void *)rx_q->dma_erx; 4926 desc_size = sizeof(struct dma_extended_desc); 4927 } else { 4928 rx_head = (void *)rx_q->dma_rx; 4929 desc_size = sizeof(struct dma_desc); 4930 } 4931 4932 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4933 rx_q->dma_rx_phy, desc_size); 4934 } 4935 while (count < limit) { 4936 struct stmmac_rx_buffer *buf; 4937 unsigned int buf1_len = 0; 4938 struct dma_desc *np, *p; 4939 int entry; 4940 int res; 4941 4942 if (!count && rx_q->state_saved) { 4943 error = rx_q->state.error; 4944 len = rx_q->state.len; 4945 } else { 4946 rx_q->state_saved = false; 4947 error = 0; 4948 len = 0; 4949 } 4950 4951 if (count >= limit) 4952 break; 4953 4954 read_again: 4955 buf1_len = 0; 4956 entry = next_entry; 4957 buf = &rx_q->buf_pool[entry]; 4958 4959 if (dirty >= STMMAC_RX_FILL_BATCH) { 4960 failure = failure || 4961 !stmmac_rx_refill_zc(priv, queue, dirty); 4962 dirty = 0; 4963 } 4964 4965 if (priv->extend_desc) 4966 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4967 else 4968 p = rx_q->dma_rx + entry; 4969 4970 /* read the status of the incoming frame */ 4971 status = stmmac_rx_status(priv, &priv->dev->stats, 4972 &priv->xstats, p); 4973 /* check if managed by the DMA otherwise go ahead */ 4974 if (unlikely(status & dma_own)) 4975 break; 4976 4977 /* Prefetch the next RX descriptor */ 4978 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4979 priv->dma_rx_size); 4980 next_entry = rx_q->cur_rx; 4981 4982 if (priv->extend_desc) 4983 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4984 else 4985 np = rx_q->dma_rx + next_entry; 4986 4987 prefetch(np); 4988 4989 /* Ensure a valid XSK buffer before proceed */ 4990 if (!buf->xdp) 4991 break; 4992 4993 if (priv->extend_desc) 4994 stmmac_rx_extended_status(priv, &priv->dev->stats, 4995 &priv->xstats, 4996 rx_q->dma_erx + entry); 4997 if (unlikely(status == discard_frame)) { 4998 xsk_buff_free(buf->xdp); 4999 buf->xdp = NULL; 5000 dirty++; 5001 error = 1; 5002 if (!priv->hwts_rx_en) 5003 priv->dev->stats.rx_errors++; 5004 } 5005 5006 if (unlikely(error && (status & rx_not_ls))) 5007 goto read_again; 5008 if (unlikely(error)) { 5009 count++; 5010 continue; 5011 } 5012 5013 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 5014 if (likely(status & rx_not_ls)) { 5015 xsk_buff_free(buf->xdp); 5016 buf->xdp = NULL; 5017 dirty++; 5018 count++; 5019 goto read_again; 5020 } 5021 5022 /* XDP ZC Frame only support primary buffers for now */ 5023 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5024 len += buf1_len; 5025 5026 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5027 * Type frames (LLC/LLC-SNAP) 5028 * 5029 * llc_snap is never checked in GMAC >= 4, so this ACS 5030 * feature is always disabled and packets need to be 5031 * stripped manually. 5032 */ 5033 if (likely(!(status & rx_not_ls)) && 5034 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5035 unlikely(status != llc_snap))) { 5036 buf1_len -= ETH_FCS_LEN; 5037 len -= ETH_FCS_LEN; 5038 } 5039 5040 /* RX buffer is good and fit into a XSK pool buffer */ 5041 buf->xdp->data_end = buf->xdp->data + buf1_len; 5042 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5043 5044 prog = READ_ONCE(priv->xdp_prog); 5045 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5046 5047 switch (res) { 5048 case STMMAC_XDP_PASS: 5049 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5050 xsk_buff_free(buf->xdp); 5051 break; 5052 case STMMAC_XDP_CONSUMED: 5053 xsk_buff_free(buf->xdp); 5054 priv->dev->stats.rx_dropped++; 5055 break; 5056 case STMMAC_XDP_TX: 5057 case STMMAC_XDP_REDIRECT: 5058 xdp_status |= res; 5059 break; 5060 } 5061 5062 buf->xdp = NULL; 5063 dirty++; 5064 count++; 5065 } 5066 5067 if (status & rx_not_ls) { 5068 rx_q->state_saved = true; 5069 rx_q->state.error = error; 5070 rx_q->state.len = len; 5071 } 5072 5073 stmmac_finalize_xdp_rx(priv, xdp_status); 5074 5075 priv->xstats.rx_pkt_n += count; 5076 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5077 5078 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5079 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5080 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5081 else 5082 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5083 5084 return (int)count; 5085 } 5086 5087 return failure ? limit : (int)count; 5088 } 5089 5090 /** 5091 * stmmac_rx - manage the receive process 5092 * @priv: driver private structure 5093 * @limit: napi bugget 5094 * @queue: RX queue index. 5095 * Description : this the function called by the napi poll method. 5096 * It gets all the frames inside the ring. 5097 */ 5098 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5099 { 5100 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5101 struct stmmac_channel *ch = &priv->channel[queue]; 5102 unsigned int count = 0, error = 0, len = 0; 5103 int status = 0, coe = priv->hw->rx_csum; 5104 unsigned int next_entry = rx_q->cur_rx; 5105 enum dma_data_direction dma_dir; 5106 unsigned int desc_size; 5107 struct sk_buff *skb = NULL; 5108 struct xdp_buff xdp; 5109 int xdp_status = 0; 5110 int buf_sz; 5111 5112 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5113 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5114 5115 if (netif_msg_rx_status(priv)) { 5116 void *rx_head; 5117 5118 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5119 if (priv->extend_desc) { 5120 rx_head = (void *)rx_q->dma_erx; 5121 desc_size = sizeof(struct dma_extended_desc); 5122 } else { 5123 rx_head = (void *)rx_q->dma_rx; 5124 desc_size = sizeof(struct dma_desc); 5125 } 5126 5127 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5128 rx_q->dma_rx_phy, desc_size); 5129 } 5130 while (count < limit) { 5131 unsigned int buf1_len = 0, buf2_len = 0; 5132 enum pkt_hash_types hash_type; 5133 struct stmmac_rx_buffer *buf; 5134 struct dma_desc *np, *p; 5135 int entry; 5136 u32 hash; 5137 5138 if (!count && rx_q->state_saved) { 5139 skb = rx_q->state.skb; 5140 error = rx_q->state.error; 5141 len = rx_q->state.len; 5142 } else { 5143 rx_q->state_saved = false; 5144 skb = NULL; 5145 error = 0; 5146 len = 0; 5147 } 5148 5149 if (count >= limit) 5150 break; 5151 5152 read_again: 5153 buf1_len = 0; 5154 buf2_len = 0; 5155 entry = next_entry; 5156 buf = &rx_q->buf_pool[entry]; 5157 5158 if (priv->extend_desc) 5159 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5160 else 5161 p = rx_q->dma_rx + entry; 5162 5163 /* read the status of the incoming frame */ 5164 status = stmmac_rx_status(priv, &priv->dev->stats, 5165 &priv->xstats, p); 5166 /* check if managed by the DMA otherwise go ahead */ 5167 if (unlikely(status & dma_own)) 5168 break; 5169 5170 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5171 priv->dma_rx_size); 5172 next_entry = rx_q->cur_rx; 5173 5174 if (priv->extend_desc) 5175 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5176 else 5177 np = rx_q->dma_rx + next_entry; 5178 5179 prefetch(np); 5180 5181 if (priv->extend_desc) 5182 stmmac_rx_extended_status(priv, &priv->dev->stats, 5183 &priv->xstats, rx_q->dma_erx + entry); 5184 if (unlikely(status == discard_frame)) { 5185 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5186 buf->page = NULL; 5187 error = 1; 5188 if (!priv->hwts_rx_en) 5189 priv->dev->stats.rx_errors++; 5190 } 5191 5192 if (unlikely(error && (status & rx_not_ls))) 5193 goto read_again; 5194 if (unlikely(error)) { 5195 dev_kfree_skb(skb); 5196 skb = NULL; 5197 count++; 5198 continue; 5199 } 5200 5201 /* Buffer is good. Go on. */ 5202 5203 prefetch(page_address(buf->page) + buf->page_offset); 5204 if (buf->sec_page) 5205 prefetch(page_address(buf->sec_page)); 5206 5207 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5208 len += buf1_len; 5209 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5210 len += buf2_len; 5211 5212 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5213 * Type frames (LLC/LLC-SNAP) 5214 * 5215 * llc_snap is never checked in GMAC >= 4, so this ACS 5216 * feature is always disabled and packets need to be 5217 * stripped manually. 5218 */ 5219 if (likely(!(status & rx_not_ls)) && 5220 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5221 unlikely(status != llc_snap))) { 5222 if (buf2_len) { 5223 buf2_len -= ETH_FCS_LEN; 5224 len -= ETH_FCS_LEN; 5225 } else if (buf1_len) { 5226 buf1_len -= ETH_FCS_LEN; 5227 len -= ETH_FCS_LEN; 5228 } 5229 } 5230 5231 if (!skb) { 5232 unsigned int pre_len, sync_len; 5233 5234 dma_sync_single_for_cpu(priv->device, buf->addr, 5235 buf1_len, dma_dir); 5236 5237 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5238 xdp_prepare_buff(&xdp, page_address(buf->page), 5239 buf->page_offset, buf1_len, false); 5240 5241 pre_len = xdp.data_end - xdp.data_hard_start - 5242 buf->page_offset; 5243 skb = stmmac_xdp_run_prog(priv, &xdp); 5244 /* Due xdp_adjust_tail: DMA sync for_device 5245 * cover max len CPU touch 5246 */ 5247 sync_len = xdp.data_end - xdp.data_hard_start - 5248 buf->page_offset; 5249 sync_len = max(sync_len, pre_len); 5250 5251 /* For Not XDP_PASS verdict */ 5252 if (IS_ERR(skb)) { 5253 unsigned int xdp_res = -PTR_ERR(skb); 5254 5255 if (xdp_res & STMMAC_XDP_CONSUMED) { 5256 page_pool_put_page(rx_q->page_pool, 5257 virt_to_head_page(xdp.data), 5258 sync_len, true); 5259 buf->page = NULL; 5260 priv->dev->stats.rx_dropped++; 5261 5262 /* Clear skb as it was set as 5263 * status by XDP program. 5264 */ 5265 skb = NULL; 5266 5267 if (unlikely((status & rx_not_ls))) 5268 goto read_again; 5269 5270 count++; 5271 continue; 5272 } else if (xdp_res & (STMMAC_XDP_TX | 5273 STMMAC_XDP_REDIRECT)) { 5274 xdp_status |= xdp_res; 5275 buf->page = NULL; 5276 skb = NULL; 5277 count++; 5278 continue; 5279 } 5280 } 5281 } 5282 5283 if (!skb) { 5284 /* XDP program may expand or reduce tail */ 5285 buf1_len = xdp.data_end - xdp.data; 5286 5287 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5288 if (!skb) { 5289 priv->dev->stats.rx_dropped++; 5290 count++; 5291 goto drain_data; 5292 } 5293 5294 /* XDP program may adjust header */ 5295 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5296 skb_put(skb, buf1_len); 5297 5298 /* Data payload copied into SKB, page ready for recycle */ 5299 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5300 buf->page = NULL; 5301 } else if (buf1_len) { 5302 dma_sync_single_for_cpu(priv->device, buf->addr, 5303 buf1_len, dma_dir); 5304 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5305 buf->page, buf->page_offset, buf1_len, 5306 priv->dma_buf_sz); 5307 5308 /* Data payload appended into SKB */ 5309 page_pool_release_page(rx_q->page_pool, buf->page); 5310 buf->page = NULL; 5311 } 5312 5313 if (buf2_len) { 5314 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5315 buf2_len, dma_dir); 5316 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5317 buf->sec_page, 0, buf2_len, 5318 priv->dma_buf_sz); 5319 5320 /* Data payload appended into SKB */ 5321 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5322 buf->sec_page = NULL; 5323 } 5324 5325 drain_data: 5326 if (likely(status & rx_not_ls)) 5327 goto read_again; 5328 if (!skb) 5329 continue; 5330 5331 /* Got entire packet into SKB. Finish it. */ 5332 5333 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5334 stmmac_rx_vlan(priv->dev, skb); 5335 skb->protocol = eth_type_trans(skb, priv->dev); 5336 5337 if (unlikely(!coe)) 5338 skb_checksum_none_assert(skb); 5339 else 5340 skb->ip_summed = CHECKSUM_UNNECESSARY; 5341 5342 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5343 skb_set_hash(skb, hash, hash_type); 5344 5345 skb_record_rx_queue(skb, queue); 5346 napi_gro_receive(&ch->rx_napi, skb); 5347 skb = NULL; 5348 5349 priv->dev->stats.rx_packets++; 5350 priv->dev->stats.rx_bytes += len; 5351 count++; 5352 } 5353 5354 if (status & rx_not_ls || skb) { 5355 rx_q->state_saved = true; 5356 rx_q->state.skb = skb; 5357 rx_q->state.error = error; 5358 rx_q->state.len = len; 5359 } 5360 5361 stmmac_finalize_xdp_rx(priv, xdp_status); 5362 5363 stmmac_rx_refill(priv, queue); 5364 5365 priv->xstats.rx_pkt_n += count; 5366 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5367 5368 return count; 5369 } 5370 5371 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5372 { 5373 struct stmmac_channel *ch = 5374 container_of(napi, struct stmmac_channel, rx_napi); 5375 struct stmmac_priv *priv = ch->priv_data; 5376 u32 chan = ch->index; 5377 int work_done; 5378 5379 priv->xstats.napi_poll++; 5380 5381 work_done = stmmac_rx(priv, budget, chan); 5382 if (work_done < budget && napi_complete_done(napi, work_done)) { 5383 unsigned long flags; 5384 5385 spin_lock_irqsave(&ch->lock, flags); 5386 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5387 spin_unlock_irqrestore(&ch->lock, flags); 5388 } 5389 5390 return work_done; 5391 } 5392 5393 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5394 { 5395 struct stmmac_channel *ch = 5396 container_of(napi, struct stmmac_channel, tx_napi); 5397 struct stmmac_priv *priv = ch->priv_data; 5398 u32 chan = ch->index; 5399 int work_done; 5400 5401 priv->xstats.napi_poll++; 5402 5403 work_done = stmmac_tx_clean(priv, budget, chan); 5404 work_done = min(work_done, budget); 5405 5406 if (work_done < budget && napi_complete_done(napi, work_done)) { 5407 unsigned long flags; 5408 5409 spin_lock_irqsave(&ch->lock, flags); 5410 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5411 spin_unlock_irqrestore(&ch->lock, flags); 5412 } 5413 5414 return work_done; 5415 } 5416 5417 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5418 { 5419 struct stmmac_channel *ch = 5420 container_of(napi, struct stmmac_channel, rxtx_napi); 5421 struct stmmac_priv *priv = ch->priv_data; 5422 int rx_done, tx_done, rxtx_done; 5423 u32 chan = ch->index; 5424 5425 priv->xstats.napi_poll++; 5426 5427 tx_done = stmmac_tx_clean(priv, budget, chan); 5428 tx_done = min(tx_done, budget); 5429 5430 rx_done = stmmac_rx_zc(priv, budget, chan); 5431 5432 rxtx_done = max(tx_done, rx_done); 5433 5434 /* If either TX or RX work is not complete, return budget 5435 * and keep pooling 5436 */ 5437 if (rxtx_done >= budget) 5438 return budget; 5439 5440 /* all work done, exit the polling mode */ 5441 if (napi_complete_done(napi, rxtx_done)) { 5442 unsigned long flags; 5443 5444 spin_lock_irqsave(&ch->lock, flags); 5445 /* Both RX and TX work done are compelte, 5446 * so enable both RX & TX IRQs. 5447 */ 5448 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5449 spin_unlock_irqrestore(&ch->lock, flags); 5450 } 5451 5452 return min(rxtx_done, budget - 1); 5453 } 5454 5455 /** 5456 * stmmac_tx_timeout 5457 * @dev : Pointer to net device structure 5458 * @txqueue: the index of the hanging transmit queue 5459 * Description: this function is called when a packet transmission fails to 5460 * complete within a reasonable time. The driver will mark the error in the 5461 * netdev structure and arrange for the device to be reset to a sane state 5462 * in order to transmit a new packet. 5463 */ 5464 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5465 { 5466 struct stmmac_priv *priv = netdev_priv(dev); 5467 5468 stmmac_global_err(priv); 5469 } 5470 5471 /** 5472 * stmmac_set_rx_mode - entry point for multicast addressing 5473 * @dev : pointer to the device structure 5474 * Description: 5475 * This function is a driver entry point which gets called by the kernel 5476 * whenever multicast addresses must be enabled/disabled. 5477 * Return value: 5478 * void. 5479 */ 5480 static void stmmac_set_rx_mode(struct net_device *dev) 5481 { 5482 struct stmmac_priv *priv = netdev_priv(dev); 5483 5484 stmmac_set_filter(priv, priv->hw, dev); 5485 } 5486 5487 /** 5488 * stmmac_change_mtu - entry point to change MTU size for the device. 5489 * @dev : device pointer. 5490 * @new_mtu : the new MTU size for the device. 5491 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5492 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5493 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5494 * Return value: 5495 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5496 * file on failure. 5497 */ 5498 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5499 { 5500 struct stmmac_priv *priv = netdev_priv(dev); 5501 int txfifosz = priv->plat->tx_fifo_size; 5502 const int mtu = new_mtu; 5503 5504 if (txfifosz == 0) 5505 txfifosz = priv->dma_cap.tx_fifo_size; 5506 5507 txfifosz /= priv->plat->tx_queues_to_use; 5508 5509 if (netif_running(dev)) { 5510 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5511 return -EBUSY; 5512 } 5513 5514 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5515 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5516 return -EINVAL; 5517 } 5518 5519 new_mtu = STMMAC_ALIGN(new_mtu); 5520 5521 /* If condition true, FIFO is too small or MTU too large */ 5522 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5523 return -EINVAL; 5524 5525 dev->mtu = mtu; 5526 5527 netdev_update_features(dev); 5528 5529 return 0; 5530 } 5531 5532 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5533 netdev_features_t features) 5534 { 5535 struct stmmac_priv *priv = netdev_priv(dev); 5536 5537 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5538 features &= ~NETIF_F_RXCSUM; 5539 5540 if (!priv->plat->tx_coe) 5541 features &= ~NETIF_F_CSUM_MASK; 5542 5543 /* Some GMAC devices have a bugged Jumbo frame support that 5544 * needs to have the Tx COE disabled for oversized frames 5545 * (due to limited buffer sizes). In this case we disable 5546 * the TX csum insertion in the TDES and not use SF. 5547 */ 5548 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5549 features &= ~NETIF_F_CSUM_MASK; 5550 5551 /* Disable tso if asked by ethtool */ 5552 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5553 if (features & NETIF_F_TSO) 5554 priv->tso = true; 5555 else 5556 priv->tso = false; 5557 } 5558 5559 return features; 5560 } 5561 5562 static int stmmac_set_features(struct net_device *netdev, 5563 netdev_features_t features) 5564 { 5565 struct stmmac_priv *priv = netdev_priv(netdev); 5566 5567 /* Keep the COE Type in case of csum is supporting */ 5568 if (features & NETIF_F_RXCSUM) 5569 priv->hw->rx_csum = priv->plat->rx_coe; 5570 else 5571 priv->hw->rx_csum = 0; 5572 /* No check needed because rx_coe has been set before and it will be 5573 * fixed in case of issue. 5574 */ 5575 stmmac_rx_ipc(priv, priv->hw); 5576 5577 if (priv->sph_cap) { 5578 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5579 u32 chan; 5580 5581 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5582 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5583 } 5584 5585 return 0; 5586 } 5587 5588 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5589 { 5590 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5591 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5592 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5593 bool *hs_enable = &fpe_cfg->hs_enable; 5594 5595 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5596 return; 5597 5598 /* If LP has sent verify mPacket, LP is FPE capable */ 5599 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5600 if (*lp_state < FPE_STATE_CAPABLE) 5601 *lp_state = FPE_STATE_CAPABLE; 5602 5603 /* If user has requested FPE enable, quickly response */ 5604 if (*hs_enable) 5605 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5606 MPACKET_RESPONSE); 5607 } 5608 5609 /* If Local has sent verify mPacket, Local is FPE capable */ 5610 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5611 if (*lo_state < FPE_STATE_CAPABLE) 5612 *lo_state = FPE_STATE_CAPABLE; 5613 } 5614 5615 /* If LP has sent response mPacket, LP is entering FPE ON */ 5616 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5617 *lp_state = FPE_STATE_ENTERING_ON; 5618 5619 /* If Local has sent response mPacket, Local is entering FPE ON */ 5620 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5621 *lo_state = FPE_STATE_ENTERING_ON; 5622 5623 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5624 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5625 priv->fpe_wq) { 5626 queue_work(priv->fpe_wq, &priv->fpe_task); 5627 } 5628 } 5629 5630 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5631 { 5632 u32 rx_cnt = priv->plat->rx_queues_to_use; 5633 u32 tx_cnt = priv->plat->tx_queues_to_use; 5634 u32 queues_count; 5635 u32 queue; 5636 bool xmac; 5637 5638 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5639 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5640 5641 if (priv->irq_wake) 5642 pm_wakeup_event(priv->device, 0); 5643 5644 if (priv->dma_cap.estsel) 5645 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5646 &priv->xstats, tx_cnt); 5647 5648 if (priv->dma_cap.fpesel) { 5649 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5650 priv->dev); 5651 5652 stmmac_fpe_event_status(priv, status); 5653 } 5654 5655 /* To handle GMAC own interrupts */ 5656 if ((priv->plat->has_gmac) || xmac) { 5657 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5658 5659 if (unlikely(status)) { 5660 /* For LPI we need to save the tx status */ 5661 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5662 priv->tx_path_in_lpi_mode = true; 5663 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5664 priv->tx_path_in_lpi_mode = false; 5665 } 5666 5667 for (queue = 0; queue < queues_count; queue++) { 5668 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5669 queue); 5670 } 5671 5672 /* PCS link status */ 5673 if (priv->hw->pcs) { 5674 if (priv->xstats.pcs_link) 5675 netif_carrier_on(priv->dev); 5676 else 5677 netif_carrier_off(priv->dev); 5678 } 5679 5680 stmmac_timestamp_interrupt(priv, priv); 5681 } 5682 } 5683 5684 /** 5685 * stmmac_interrupt - main ISR 5686 * @irq: interrupt number. 5687 * @dev_id: to pass the net device pointer. 5688 * Description: this is the main driver interrupt service routine. 5689 * It can call: 5690 * o DMA service routine (to manage incoming frame reception and transmission 5691 * status) 5692 * o Core interrupts to manage: remote wake-up, management counter, LPI 5693 * interrupts. 5694 */ 5695 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5696 { 5697 struct net_device *dev = (struct net_device *)dev_id; 5698 struct stmmac_priv *priv = netdev_priv(dev); 5699 5700 /* Check if adapter is up */ 5701 if (test_bit(STMMAC_DOWN, &priv->state)) 5702 return IRQ_HANDLED; 5703 5704 /* Check if a fatal error happened */ 5705 if (stmmac_safety_feat_interrupt(priv)) 5706 return IRQ_HANDLED; 5707 5708 /* To handle Common interrupts */ 5709 stmmac_common_interrupt(priv); 5710 5711 /* To handle DMA interrupts */ 5712 stmmac_dma_interrupt(priv); 5713 5714 return IRQ_HANDLED; 5715 } 5716 5717 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5718 { 5719 struct net_device *dev = (struct net_device *)dev_id; 5720 struct stmmac_priv *priv = netdev_priv(dev); 5721 5722 if (unlikely(!dev)) { 5723 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5724 return IRQ_NONE; 5725 } 5726 5727 /* Check if adapter is up */ 5728 if (test_bit(STMMAC_DOWN, &priv->state)) 5729 return IRQ_HANDLED; 5730 5731 /* To handle Common interrupts */ 5732 stmmac_common_interrupt(priv); 5733 5734 return IRQ_HANDLED; 5735 } 5736 5737 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5738 { 5739 struct net_device *dev = (struct net_device *)dev_id; 5740 struct stmmac_priv *priv = netdev_priv(dev); 5741 5742 if (unlikely(!dev)) { 5743 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5744 return IRQ_NONE; 5745 } 5746 5747 /* Check if adapter is up */ 5748 if (test_bit(STMMAC_DOWN, &priv->state)) 5749 return IRQ_HANDLED; 5750 5751 /* Check if a fatal error happened */ 5752 stmmac_safety_feat_interrupt(priv); 5753 5754 return IRQ_HANDLED; 5755 } 5756 5757 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5758 { 5759 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5760 int chan = tx_q->queue_index; 5761 struct stmmac_priv *priv; 5762 int status; 5763 5764 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5765 5766 if (unlikely(!data)) { 5767 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5768 return IRQ_NONE; 5769 } 5770 5771 /* Check if adapter is up */ 5772 if (test_bit(STMMAC_DOWN, &priv->state)) 5773 return IRQ_HANDLED; 5774 5775 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5776 5777 if (unlikely(status & tx_hard_error_bump_tc)) { 5778 /* Try to bump up the dma threshold on this failure */ 5779 stmmac_bump_dma_threshold(priv, chan); 5780 } else if (unlikely(status == tx_hard_error)) { 5781 stmmac_tx_err(priv, chan); 5782 } 5783 5784 return IRQ_HANDLED; 5785 } 5786 5787 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5788 { 5789 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5790 int chan = rx_q->queue_index; 5791 struct stmmac_priv *priv; 5792 5793 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5794 5795 if (unlikely(!data)) { 5796 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5797 return IRQ_NONE; 5798 } 5799 5800 /* Check if adapter is up */ 5801 if (test_bit(STMMAC_DOWN, &priv->state)) 5802 return IRQ_HANDLED; 5803 5804 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5805 5806 return IRQ_HANDLED; 5807 } 5808 5809 #ifdef CONFIG_NET_POLL_CONTROLLER 5810 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5811 * to allow network I/O with interrupts disabled. 5812 */ 5813 static void stmmac_poll_controller(struct net_device *dev) 5814 { 5815 struct stmmac_priv *priv = netdev_priv(dev); 5816 int i; 5817 5818 /* If adapter is down, do nothing */ 5819 if (test_bit(STMMAC_DOWN, &priv->state)) 5820 return; 5821 5822 if (priv->plat->multi_msi_en) { 5823 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5824 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5825 5826 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5827 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5828 } else { 5829 disable_irq(dev->irq); 5830 stmmac_interrupt(dev->irq, dev); 5831 enable_irq(dev->irq); 5832 } 5833 } 5834 #endif 5835 5836 /** 5837 * stmmac_ioctl - Entry point for the Ioctl 5838 * @dev: Device pointer. 5839 * @rq: An IOCTL specefic structure, that can contain a pointer to 5840 * a proprietary structure used to pass information to the driver. 5841 * @cmd: IOCTL command 5842 * Description: 5843 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5844 */ 5845 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5846 { 5847 struct stmmac_priv *priv = netdev_priv (dev); 5848 int ret = -EOPNOTSUPP; 5849 5850 if (!netif_running(dev)) 5851 return -EINVAL; 5852 5853 switch (cmd) { 5854 case SIOCGMIIPHY: 5855 case SIOCGMIIREG: 5856 case SIOCSMIIREG: 5857 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5858 break; 5859 case SIOCSHWTSTAMP: 5860 ret = stmmac_hwtstamp_set(dev, rq); 5861 break; 5862 case SIOCGHWTSTAMP: 5863 ret = stmmac_hwtstamp_get(dev, rq); 5864 break; 5865 default: 5866 break; 5867 } 5868 5869 return ret; 5870 } 5871 5872 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5873 void *cb_priv) 5874 { 5875 struct stmmac_priv *priv = cb_priv; 5876 int ret = -EOPNOTSUPP; 5877 5878 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5879 return ret; 5880 5881 __stmmac_disable_all_queues(priv); 5882 5883 switch (type) { 5884 case TC_SETUP_CLSU32: 5885 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5886 break; 5887 case TC_SETUP_CLSFLOWER: 5888 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5889 break; 5890 default: 5891 break; 5892 } 5893 5894 stmmac_enable_all_queues(priv); 5895 return ret; 5896 } 5897 5898 static LIST_HEAD(stmmac_block_cb_list); 5899 5900 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5901 void *type_data) 5902 { 5903 struct stmmac_priv *priv = netdev_priv(ndev); 5904 5905 switch (type) { 5906 case TC_SETUP_BLOCK: 5907 return flow_block_cb_setup_simple(type_data, 5908 &stmmac_block_cb_list, 5909 stmmac_setup_tc_block_cb, 5910 priv, priv, true); 5911 case TC_SETUP_QDISC_CBS: 5912 return stmmac_tc_setup_cbs(priv, priv, type_data); 5913 case TC_SETUP_QDISC_TAPRIO: 5914 return stmmac_tc_setup_taprio(priv, priv, type_data); 5915 case TC_SETUP_QDISC_ETF: 5916 return stmmac_tc_setup_etf(priv, priv, type_data); 5917 default: 5918 return -EOPNOTSUPP; 5919 } 5920 } 5921 5922 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5923 struct net_device *sb_dev) 5924 { 5925 int gso = skb_shinfo(skb)->gso_type; 5926 5927 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5928 /* 5929 * There is no way to determine the number of TSO/USO 5930 * capable Queues. Let's use always the Queue 0 5931 * because if TSO/USO is supported then at least this 5932 * one will be capable. 5933 */ 5934 return 0; 5935 } 5936 5937 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5938 } 5939 5940 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5941 { 5942 struct stmmac_priv *priv = netdev_priv(ndev); 5943 int ret = 0; 5944 5945 ret = pm_runtime_get_sync(priv->device); 5946 if (ret < 0) { 5947 pm_runtime_put_noidle(priv->device); 5948 return ret; 5949 } 5950 5951 ret = eth_mac_addr(ndev, addr); 5952 if (ret) 5953 goto set_mac_error; 5954 5955 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5956 5957 set_mac_error: 5958 pm_runtime_put(priv->device); 5959 5960 return ret; 5961 } 5962 5963 #ifdef CONFIG_DEBUG_FS 5964 static struct dentry *stmmac_fs_dir; 5965 5966 static void sysfs_display_ring(void *head, int size, int extend_desc, 5967 struct seq_file *seq, dma_addr_t dma_phy_addr) 5968 { 5969 int i; 5970 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5971 struct dma_desc *p = (struct dma_desc *)head; 5972 dma_addr_t dma_addr; 5973 5974 for (i = 0; i < size; i++) { 5975 if (extend_desc) { 5976 dma_addr = dma_phy_addr + i * sizeof(*ep); 5977 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5978 i, &dma_addr, 5979 le32_to_cpu(ep->basic.des0), 5980 le32_to_cpu(ep->basic.des1), 5981 le32_to_cpu(ep->basic.des2), 5982 le32_to_cpu(ep->basic.des3)); 5983 ep++; 5984 } else { 5985 dma_addr = dma_phy_addr + i * sizeof(*p); 5986 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5987 i, &dma_addr, 5988 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5989 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5990 p++; 5991 } 5992 seq_printf(seq, "\n"); 5993 } 5994 } 5995 5996 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5997 { 5998 struct net_device *dev = seq->private; 5999 struct stmmac_priv *priv = netdev_priv(dev); 6000 u32 rx_count = priv->plat->rx_queues_to_use; 6001 u32 tx_count = priv->plat->tx_queues_to_use; 6002 u32 queue; 6003 6004 if ((dev->flags & IFF_UP) == 0) 6005 return 0; 6006 6007 for (queue = 0; queue < rx_count; queue++) { 6008 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6009 6010 seq_printf(seq, "RX Queue %d:\n", queue); 6011 6012 if (priv->extend_desc) { 6013 seq_printf(seq, "Extended descriptor ring:\n"); 6014 sysfs_display_ring((void *)rx_q->dma_erx, 6015 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6016 } else { 6017 seq_printf(seq, "Descriptor ring:\n"); 6018 sysfs_display_ring((void *)rx_q->dma_rx, 6019 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6020 } 6021 } 6022 6023 for (queue = 0; queue < tx_count; queue++) { 6024 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6025 6026 seq_printf(seq, "TX Queue %d:\n", queue); 6027 6028 if (priv->extend_desc) { 6029 seq_printf(seq, "Extended descriptor ring:\n"); 6030 sysfs_display_ring((void *)tx_q->dma_etx, 6031 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6032 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6033 seq_printf(seq, "Descriptor ring:\n"); 6034 sysfs_display_ring((void *)tx_q->dma_tx, 6035 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6036 } 6037 } 6038 6039 return 0; 6040 } 6041 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6042 6043 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6044 { 6045 struct net_device *dev = seq->private; 6046 struct stmmac_priv *priv = netdev_priv(dev); 6047 6048 if (!priv->hw_cap_support) { 6049 seq_printf(seq, "DMA HW features not supported\n"); 6050 return 0; 6051 } 6052 6053 seq_printf(seq, "==============================\n"); 6054 seq_printf(seq, "\tDMA HW features\n"); 6055 seq_printf(seq, "==============================\n"); 6056 6057 seq_printf(seq, "\t10/100 Mbps: %s\n", 6058 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6059 seq_printf(seq, "\t1000 Mbps: %s\n", 6060 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6061 seq_printf(seq, "\tHalf duplex: %s\n", 6062 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6063 seq_printf(seq, "\tHash Filter: %s\n", 6064 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6065 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6066 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6067 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6068 (priv->dma_cap.pcs) ? "Y" : "N"); 6069 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6070 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6071 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6072 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6073 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6074 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6075 seq_printf(seq, "\tRMON module: %s\n", 6076 (priv->dma_cap.rmon) ? "Y" : "N"); 6077 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6078 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6079 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6080 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6081 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6082 (priv->dma_cap.eee) ? "Y" : "N"); 6083 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6084 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6085 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6086 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6087 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6088 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6089 } else { 6090 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6091 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6092 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6093 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6094 } 6095 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6096 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6097 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6098 priv->dma_cap.number_rx_channel); 6099 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6100 priv->dma_cap.number_tx_channel); 6101 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6102 priv->dma_cap.number_rx_queues); 6103 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6104 priv->dma_cap.number_tx_queues); 6105 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6106 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6107 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6108 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6109 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6110 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6111 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6112 priv->dma_cap.pps_out_num); 6113 seq_printf(seq, "\tSafety Features: %s\n", 6114 priv->dma_cap.asp ? "Y" : "N"); 6115 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6116 priv->dma_cap.frpsel ? "Y" : "N"); 6117 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6118 priv->dma_cap.addr64); 6119 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6120 priv->dma_cap.rssen ? "Y" : "N"); 6121 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6122 priv->dma_cap.vlhash ? "Y" : "N"); 6123 seq_printf(seq, "\tSplit Header: %s\n", 6124 priv->dma_cap.sphen ? "Y" : "N"); 6125 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6126 priv->dma_cap.vlins ? "Y" : "N"); 6127 seq_printf(seq, "\tDouble VLAN: %s\n", 6128 priv->dma_cap.dvlan ? "Y" : "N"); 6129 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6130 priv->dma_cap.l3l4fnum); 6131 seq_printf(seq, "\tARP Offloading: %s\n", 6132 priv->dma_cap.arpoffsel ? "Y" : "N"); 6133 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6134 priv->dma_cap.estsel ? "Y" : "N"); 6135 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6136 priv->dma_cap.fpesel ? "Y" : "N"); 6137 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6138 priv->dma_cap.tbssel ? "Y" : "N"); 6139 return 0; 6140 } 6141 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6142 6143 /* Use network device events to rename debugfs file entries. 6144 */ 6145 static int stmmac_device_event(struct notifier_block *unused, 6146 unsigned long event, void *ptr) 6147 { 6148 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6149 struct stmmac_priv *priv = netdev_priv(dev); 6150 6151 if (dev->netdev_ops != &stmmac_netdev_ops) 6152 goto done; 6153 6154 switch (event) { 6155 case NETDEV_CHANGENAME: 6156 if (priv->dbgfs_dir) 6157 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6158 priv->dbgfs_dir, 6159 stmmac_fs_dir, 6160 dev->name); 6161 break; 6162 } 6163 done: 6164 return NOTIFY_DONE; 6165 } 6166 6167 static struct notifier_block stmmac_notifier = { 6168 .notifier_call = stmmac_device_event, 6169 }; 6170 6171 static void stmmac_init_fs(struct net_device *dev) 6172 { 6173 struct stmmac_priv *priv = netdev_priv(dev); 6174 6175 rtnl_lock(); 6176 6177 /* Create per netdev entries */ 6178 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6179 6180 /* Entry to report DMA RX/TX rings */ 6181 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6182 &stmmac_rings_status_fops); 6183 6184 /* Entry to report the DMA HW features */ 6185 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6186 &stmmac_dma_cap_fops); 6187 6188 rtnl_unlock(); 6189 } 6190 6191 static void stmmac_exit_fs(struct net_device *dev) 6192 { 6193 struct stmmac_priv *priv = netdev_priv(dev); 6194 6195 debugfs_remove_recursive(priv->dbgfs_dir); 6196 } 6197 #endif /* CONFIG_DEBUG_FS */ 6198 6199 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6200 { 6201 unsigned char *data = (unsigned char *)&vid_le; 6202 unsigned char data_byte = 0; 6203 u32 crc = ~0x0; 6204 u32 temp = 0; 6205 int i, bits; 6206 6207 bits = get_bitmask_order(VLAN_VID_MASK); 6208 for (i = 0; i < bits; i++) { 6209 if ((i % 8) == 0) 6210 data_byte = data[i / 8]; 6211 6212 temp = ((crc & 1) ^ data_byte) & 1; 6213 crc >>= 1; 6214 data_byte >>= 1; 6215 6216 if (temp) 6217 crc ^= 0xedb88320; 6218 } 6219 6220 return crc; 6221 } 6222 6223 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6224 { 6225 u32 crc, hash = 0; 6226 __le16 pmatch = 0; 6227 int count = 0; 6228 u16 vid = 0; 6229 6230 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6231 __le16 vid_le = cpu_to_le16(vid); 6232 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6233 hash |= (1 << crc); 6234 count++; 6235 } 6236 6237 if (!priv->dma_cap.vlhash) { 6238 if (count > 2) /* VID = 0 always passes filter */ 6239 return -EOPNOTSUPP; 6240 6241 pmatch = cpu_to_le16(vid); 6242 hash = 0; 6243 } 6244 6245 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6246 } 6247 6248 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6249 { 6250 struct stmmac_priv *priv = netdev_priv(ndev); 6251 bool is_double = false; 6252 int ret; 6253 6254 if (be16_to_cpu(proto) == ETH_P_8021AD) 6255 is_double = true; 6256 6257 set_bit(vid, priv->active_vlans); 6258 ret = stmmac_vlan_update(priv, is_double); 6259 if (ret) { 6260 clear_bit(vid, priv->active_vlans); 6261 return ret; 6262 } 6263 6264 if (priv->hw->num_vlan) { 6265 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6266 if (ret) 6267 return ret; 6268 } 6269 6270 return 0; 6271 } 6272 6273 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6274 { 6275 struct stmmac_priv *priv = netdev_priv(ndev); 6276 bool is_double = false; 6277 int ret; 6278 6279 ret = pm_runtime_get_sync(priv->device); 6280 if (ret < 0) { 6281 pm_runtime_put_noidle(priv->device); 6282 return ret; 6283 } 6284 6285 if (be16_to_cpu(proto) == ETH_P_8021AD) 6286 is_double = true; 6287 6288 clear_bit(vid, priv->active_vlans); 6289 6290 if (priv->hw->num_vlan) { 6291 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6292 if (ret) 6293 goto del_vlan_error; 6294 } 6295 6296 ret = stmmac_vlan_update(priv, is_double); 6297 6298 del_vlan_error: 6299 pm_runtime_put(priv->device); 6300 6301 return ret; 6302 } 6303 6304 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6305 { 6306 struct stmmac_priv *priv = netdev_priv(dev); 6307 6308 switch (bpf->command) { 6309 case XDP_SETUP_PROG: 6310 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6311 case XDP_SETUP_XSK_POOL: 6312 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6313 bpf->xsk.queue_id); 6314 default: 6315 return -EOPNOTSUPP; 6316 } 6317 } 6318 6319 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6320 struct xdp_frame **frames, u32 flags) 6321 { 6322 struct stmmac_priv *priv = netdev_priv(dev); 6323 int cpu = smp_processor_id(); 6324 struct netdev_queue *nq; 6325 int i, nxmit = 0; 6326 int queue; 6327 6328 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6329 return -ENETDOWN; 6330 6331 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6332 return -EINVAL; 6333 6334 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6335 nq = netdev_get_tx_queue(priv->dev, queue); 6336 6337 __netif_tx_lock(nq, cpu); 6338 /* Avoids TX time-out as we are sharing with slow path */ 6339 txq_trans_cond_update(nq); 6340 6341 for (i = 0; i < num_frames; i++) { 6342 int res; 6343 6344 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6345 if (res == STMMAC_XDP_CONSUMED) 6346 break; 6347 6348 nxmit++; 6349 } 6350 6351 if (flags & XDP_XMIT_FLUSH) { 6352 stmmac_flush_tx_descriptors(priv, queue); 6353 stmmac_tx_timer_arm(priv, queue); 6354 } 6355 6356 __netif_tx_unlock(nq); 6357 6358 return nxmit; 6359 } 6360 6361 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6362 { 6363 struct stmmac_channel *ch = &priv->channel[queue]; 6364 unsigned long flags; 6365 6366 spin_lock_irqsave(&ch->lock, flags); 6367 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6368 spin_unlock_irqrestore(&ch->lock, flags); 6369 6370 stmmac_stop_rx_dma(priv, queue); 6371 __free_dma_rx_desc_resources(priv, queue); 6372 } 6373 6374 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6375 { 6376 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6377 struct stmmac_channel *ch = &priv->channel[queue]; 6378 unsigned long flags; 6379 u32 buf_size; 6380 int ret; 6381 6382 ret = __alloc_dma_rx_desc_resources(priv, queue); 6383 if (ret) { 6384 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6385 return; 6386 } 6387 6388 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6389 if (ret) { 6390 __free_dma_rx_desc_resources(priv, queue); 6391 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6392 return; 6393 } 6394 6395 stmmac_clear_rx_descriptors(priv, queue); 6396 6397 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6398 rx_q->dma_rx_phy, rx_q->queue_index); 6399 6400 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6401 sizeof(struct dma_desc)); 6402 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6403 rx_q->rx_tail_addr, rx_q->queue_index); 6404 6405 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6406 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6407 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6408 buf_size, 6409 rx_q->queue_index); 6410 } else { 6411 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6412 priv->dma_buf_sz, 6413 rx_q->queue_index); 6414 } 6415 6416 stmmac_start_rx_dma(priv, queue); 6417 6418 spin_lock_irqsave(&ch->lock, flags); 6419 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6420 spin_unlock_irqrestore(&ch->lock, flags); 6421 } 6422 6423 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6424 { 6425 struct stmmac_channel *ch = &priv->channel[queue]; 6426 unsigned long flags; 6427 6428 spin_lock_irqsave(&ch->lock, flags); 6429 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6430 spin_unlock_irqrestore(&ch->lock, flags); 6431 6432 stmmac_stop_tx_dma(priv, queue); 6433 __free_dma_tx_desc_resources(priv, queue); 6434 } 6435 6436 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6437 { 6438 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6439 struct stmmac_channel *ch = &priv->channel[queue]; 6440 unsigned long flags; 6441 int ret; 6442 6443 ret = __alloc_dma_tx_desc_resources(priv, queue); 6444 if (ret) { 6445 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6446 return; 6447 } 6448 6449 ret = __init_dma_tx_desc_rings(priv, queue); 6450 if (ret) { 6451 __free_dma_tx_desc_resources(priv, queue); 6452 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6453 return; 6454 } 6455 6456 stmmac_clear_tx_descriptors(priv, queue); 6457 6458 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6459 tx_q->dma_tx_phy, tx_q->queue_index); 6460 6461 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6462 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6463 6464 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6465 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6466 tx_q->tx_tail_addr, tx_q->queue_index); 6467 6468 stmmac_start_tx_dma(priv, queue); 6469 6470 spin_lock_irqsave(&ch->lock, flags); 6471 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6472 spin_unlock_irqrestore(&ch->lock, flags); 6473 } 6474 6475 void stmmac_xdp_release(struct net_device *dev) 6476 { 6477 struct stmmac_priv *priv = netdev_priv(dev); 6478 u32 chan; 6479 6480 /* Disable NAPI process */ 6481 stmmac_disable_all_queues(priv); 6482 6483 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6484 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6485 6486 /* Free the IRQ lines */ 6487 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6488 6489 /* Stop TX/RX DMA channels */ 6490 stmmac_stop_all_dma(priv); 6491 6492 /* Release and free the Rx/Tx resources */ 6493 free_dma_desc_resources(priv); 6494 6495 /* Disable the MAC Rx/Tx */ 6496 stmmac_mac_set(priv, priv->ioaddr, false); 6497 6498 /* set trans_start so we don't get spurious 6499 * watchdogs during reset 6500 */ 6501 netif_trans_update(dev); 6502 netif_carrier_off(dev); 6503 } 6504 6505 int stmmac_xdp_open(struct net_device *dev) 6506 { 6507 struct stmmac_priv *priv = netdev_priv(dev); 6508 u32 rx_cnt = priv->plat->rx_queues_to_use; 6509 u32 tx_cnt = priv->plat->tx_queues_to_use; 6510 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6511 struct stmmac_rx_queue *rx_q; 6512 struct stmmac_tx_queue *tx_q; 6513 u32 buf_size; 6514 bool sph_en; 6515 u32 chan; 6516 int ret; 6517 6518 ret = alloc_dma_desc_resources(priv); 6519 if (ret < 0) { 6520 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6521 __func__); 6522 goto dma_desc_error; 6523 } 6524 6525 ret = init_dma_desc_rings(dev, GFP_KERNEL); 6526 if (ret < 0) { 6527 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6528 __func__); 6529 goto init_error; 6530 } 6531 6532 /* DMA CSR Channel configuration */ 6533 for (chan = 0; chan < dma_csr_ch; chan++) { 6534 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6535 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6536 } 6537 6538 /* Adjust Split header */ 6539 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6540 6541 /* DMA RX Channel Configuration */ 6542 for (chan = 0; chan < rx_cnt; chan++) { 6543 rx_q = &priv->rx_queue[chan]; 6544 6545 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6546 rx_q->dma_rx_phy, chan); 6547 6548 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6549 (rx_q->buf_alloc_num * 6550 sizeof(struct dma_desc)); 6551 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6552 rx_q->rx_tail_addr, chan); 6553 6554 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6555 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6556 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6557 buf_size, 6558 rx_q->queue_index); 6559 } else { 6560 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6561 priv->dma_buf_sz, 6562 rx_q->queue_index); 6563 } 6564 6565 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6566 } 6567 6568 /* DMA TX Channel Configuration */ 6569 for (chan = 0; chan < tx_cnt; chan++) { 6570 tx_q = &priv->tx_queue[chan]; 6571 6572 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6573 tx_q->dma_tx_phy, chan); 6574 6575 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6576 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6577 tx_q->tx_tail_addr, chan); 6578 6579 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6580 tx_q->txtimer.function = stmmac_tx_timer; 6581 } 6582 6583 /* Enable the MAC Rx/Tx */ 6584 stmmac_mac_set(priv, priv->ioaddr, true); 6585 6586 /* Start Rx & Tx DMA Channels */ 6587 stmmac_start_all_dma(priv); 6588 6589 ret = stmmac_request_irq(dev); 6590 if (ret) 6591 goto irq_error; 6592 6593 /* Enable NAPI process*/ 6594 stmmac_enable_all_queues(priv); 6595 netif_carrier_on(dev); 6596 netif_tx_start_all_queues(dev); 6597 stmmac_enable_all_dma_irq(priv); 6598 6599 return 0; 6600 6601 irq_error: 6602 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6603 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6604 6605 stmmac_hw_teardown(dev); 6606 init_error: 6607 free_dma_desc_resources(priv); 6608 dma_desc_error: 6609 return ret; 6610 } 6611 6612 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6613 { 6614 struct stmmac_priv *priv = netdev_priv(dev); 6615 struct stmmac_rx_queue *rx_q; 6616 struct stmmac_tx_queue *tx_q; 6617 struct stmmac_channel *ch; 6618 6619 if (test_bit(STMMAC_DOWN, &priv->state) || 6620 !netif_carrier_ok(priv->dev)) 6621 return -ENETDOWN; 6622 6623 if (!stmmac_xdp_is_enabled(priv)) 6624 return -ENXIO; 6625 6626 if (queue >= priv->plat->rx_queues_to_use || 6627 queue >= priv->plat->tx_queues_to_use) 6628 return -EINVAL; 6629 6630 rx_q = &priv->rx_queue[queue]; 6631 tx_q = &priv->tx_queue[queue]; 6632 ch = &priv->channel[queue]; 6633 6634 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6635 return -ENXIO; 6636 6637 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6638 /* EQoS does not have per-DMA channel SW interrupt, 6639 * so we schedule RX Napi straight-away. 6640 */ 6641 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6642 __napi_schedule(&ch->rxtx_napi); 6643 } 6644 6645 return 0; 6646 } 6647 6648 static const struct net_device_ops stmmac_netdev_ops = { 6649 .ndo_open = stmmac_open, 6650 .ndo_start_xmit = stmmac_xmit, 6651 .ndo_stop = stmmac_release, 6652 .ndo_change_mtu = stmmac_change_mtu, 6653 .ndo_fix_features = stmmac_fix_features, 6654 .ndo_set_features = stmmac_set_features, 6655 .ndo_set_rx_mode = stmmac_set_rx_mode, 6656 .ndo_tx_timeout = stmmac_tx_timeout, 6657 .ndo_eth_ioctl = stmmac_ioctl, 6658 .ndo_setup_tc = stmmac_setup_tc, 6659 .ndo_select_queue = stmmac_select_queue, 6660 #ifdef CONFIG_NET_POLL_CONTROLLER 6661 .ndo_poll_controller = stmmac_poll_controller, 6662 #endif 6663 .ndo_set_mac_address = stmmac_set_mac_address, 6664 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6665 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6666 .ndo_bpf = stmmac_bpf, 6667 .ndo_xdp_xmit = stmmac_xdp_xmit, 6668 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6669 }; 6670 6671 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6672 { 6673 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6674 return; 6675 if (test_bit(STMMAC_DOWN, &priv->state)) 6676 return; 6677 6678 netdev_err(priv->dev, "Reset adapter.\n"); 6679 6680 rtnl_lock(); 6681 netif_trans_update(priv->dev); 6682 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6683 usleep_range(1000, 2000); 6684 6685 set_bit(STMMAC_DOWN, &priv->state); 6686 dev_close(priv->dev); 6687 dev_open(priv->dev, NULL); 6688 clear_bit(STMMAC_DOWN, &priv->state); 6689 clear_bit(STMMAC_RESETING, &priv->state); 6690 rtnl_unlock(); 6691 } 6692 6693 static void stmmac_service_task(struct work_struct *work) 6694 { 6695 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6696 service_task); 6697 6698 stmmac_reset_subtask(priv); 6699 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6700 } 6701 6702 /** 6703 * stmmac_hw_init - Init the MAC device 6704 * @priv: driver private structure 6705 * Description: this function is to configure the MAC device according to 6706 * some platform parameters or the HW capability register. It prepares the 6707 * driver to use either ring or chain modes and to setup either enhanced or 6708 * normal descriptors. 6709 */ 6710 static int stmmac_hw_init(struct stmmac_priv *priv) 6711 { 6712 int ret; 6713 6714 /* dwmac-sun8i only work in chain mode */ 6715 if (priv->plat->has_sun8i) 6716 chain_mode = 1; 6717 priv->chain_mode = chain_mode; 6718 6719 /* Initialize HW Interface */ 6720 ret = stmmac_hwif_init(priv); 6721 if (ret) 6722 return ret; 6723 6724 /* Get the HW capability (new GMAC newer than 3.50a) */ 6725 priv->hw_cap_support = stmmac_get_hw_features(priv); 6726 if (priv->hw_cap_support) { 6727 dev_info(priv->device, "DMA HW capability register supported\n"); 6728 6729 /* We can override some gmac/dma configuration fields: e.g. 6730 * enh_desc, tx_coe (e.g. that are passed through the 6731 * platform) with the values from the HW capability 6732 * register (if supported). 6733 */ 6734 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6735 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6736 !priv->plat->use_phy_wol; 6737 priv->hw->pmt = priv->plat->pmt; 6738 if (priv->dma_cap.hash_tb_sz) { 6739 priv->hw->multicast_filter_bins = 6740 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6741 priv->hw->mcast_bits_log2 = 6742 ilog2(priv->hw->multicast_filter_bins); 6743 } 6744 6745 /* TXCOE doesn't work in thresh DMA mode */ 6746 if (priv->plat->force_thresh_dma_mode) 6747 priv->plat->tx_coe = 0; 6748 else 6749 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6750 6751 /* In case of GMAC4 rx_coe is from HW cap register. */ 6752 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6753 6754 if (priv->dma_cap.rx_coe_type2) 6755 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6756 else if (priv->dma_cap.rx_coe_type1) 6757 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6758 6759 } else { 6760 dev_info(priv->device, "No HW DMA feature register supported\n"); 6761 } 6762 6763 if (priv->plat->rx_coe) { 6764 priv->hw->rx_csum = priv->plat->rx_coe; 6765 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6766 if (priv->synopsys_id < DWMAC_CORE_4_00) 6767 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6768 } 6769 if (priv->plat->tx_coe) 6770 dev_info(priv->device, "TX Checksum insertion supported\n"); 6771 6772 if (priv->plat->pmt) { 6773 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6774 device_set_wakeup_capable(priv->device, 1); 6775 } 6776 6777 if (priv->dma_cap.tsoen) 6778 dev_info(priv->device, "TSO supported\n"); 6779 6780 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6781 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6782 6783 /* Run HW quirks, if any */ 6784 if (priv->hwif_quirks) { 6785 ret = priv->hwif_quirks(priv); 6786 if (ret) 6787 return ret; 6788 } 6789 6790 /* Rx Watchdog is available in the COREs newer than the 3.40. 6791 * In some case, for example on bugged HW this feature 6792 * has to be disable and this can be done by passing the 6793 * riwt_off field from the platform. 6794 */ 6795 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6796 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6797 priv->use_riwt = 1; 6798 dev_info(priv->device, 6799 "Enable RX Mitigation via HW Watchdog Timer\n"); 6800 } 6801 6802 return 0; 6803 } 6804 6805 static void stmmac_napi_add(struct net_device *dev) 6806 { 6807 struct stmmac_priv *priv = netdev_priv(dev); 6808 u32 queue, maxq; 6809 6810 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6811 6812 for (queue = 0; queue < maxq; queue++) { 6813 struct stmmac_channel *ch = &priv->channel[queue]; 6814 6815 ch->priv_data = priv; 6816 ch->index = queue; 6817 spin_lock_init(&ch->lock); 6818 6819 if (queue < priv->plat->rx_queues_to_use) { 6820 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6821 NAPI_POLL_WEIGHT); 6822 } 6823 if (queue < priv->plat->tx_queues_to_use) { 6824 netif_tx_napi_add(dev, &ch->tx_napi, 6825 stmmac_napi_poll_tx, 6826 NAPI_POLL_WEIGHT); 6827 } 6828 if (queue < priv->plat->rx_queues_to_use && 6829 queue < priv->plat->tx_queues_to_use) { 6830 netif_napi_add(dev, &ch->rxtx_napi, 6831 stmmac_napi_poll_rxtx, 6832 NAPI_POLL_WEIGHT); 6833 } 6834 } 6835 } 6836 6837 static void stmmac_napi_del(struct net_device *dev) 6838 { 6839 struct stmmac_priv *priv = netdev_priv(dev); 6840 u32 queue, maxq; 6841 6842 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6843 6844 for (queue = 0; queue < maxq; queue++) { 6845 struct stmmac_channel *ch = &priv->channel[queue]; 6846 6847 if (queue < priv->plat->rx_queues_to_use) 6848 netif_napi_del(&ch->rx_napi); 6849 if (queue < priv->plat->tx_queues_to_use) 6850 netif_napi_del(&ch->tx_napi); 6851 if (queue < priv->plat->rx_queues_to_use && 6852 queue < priv->plat->tx_queues_to_use) { 6853 netif_napi_del(&ch->rxtx_napi); 6854 } 6855 } 6856 } 6857 6858 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6859 { 6860 struct stmmac_priv *priv = netdev_priv(dev); 6861 int ret = 0; 6862 6863 if (netif_running(dev)) 6864 stmmac_release(dev); 6865 6866 stmmac_napi_del(dev); 6867 6868 priv->plat->rx_queues_to_use = rx_cnt; 6869 priv->plat->tx_queues_to_use = tx_cnt; 6870 6871 stmmac_napi_add(dev); 6872 6873 if (netif_running(dev)) 6874 ret = stmmac_open(dev); 6875 6876 return ret; 6877 } 6878 6879 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6880 { 6881 struct stmmac_priv *priv = netdev_priv(dev); 6882 int ret = 0; 6883 6884 if (netif_running(dev)) 6885 stmmac_release(dev); 6886 6887 priv->dma_rx_size = rx_size; 6888 priv->dma_tx_size = tx_size; 6889 6890 if (netif_running(dev)) 6891 ret = stmmac_open(dev); 6892 6893 return ret; 6894 } 6895 6896 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6897 static void stmmac_fpe_lp_task(struct work_struct *work) 6898 { 6899 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6900 fpe_task); 6901 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6902 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6903 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6904 bool *hs_enable = &fpe_cfg->hs_enable; 6905 bool *enable = &fpe_cfg->enable; 6906 int retries = 20; 6907 6908 while (retries-- > 0) { 6909 /* Bail out immediately if FPE handshake is OFF */ 6910 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6911 break; 6912 6913 if (*lo_state == FPE_STATE_ENTERING_ON && 6914 *lp_state == FPE_STATE_ENTERING_ON) { 6915 stmmac_fpe_configure(priv, priv->ioaddr, 6916 priv->plat->tx_queues_to_use, 6917 priv->plat->rx_queues_to_use, 6918 *enable); 6919 6920 netdev_info(priv->dev, "configured FPE\n"); 6921 6922 *lo_state = FPE_STATE_ON; 6923 *lp_state = FPE_STATE_ON; 6924 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6925 break; 6926 } 6927 6928 if ((*lo_state == FPE_STATE_CAPABLE || 6929 *lo_state == FPE_STATE_ENTERING_ON) && 6930 *lp_state != FPE_STATE_ON) { 6931 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6932 *lo_state, *lp_state); 6933 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6934 MPACKET_VERIFY); 6935 } 6936 /* Sleep then retry */ 6937 msleep(500); 6938 } 6939 6940 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6941 } 6942 6943 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6944 { 6945 if (priv->plat->fpe_cfg->hs_enable != enable) { 6946 if (enable) { 6947 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6948 MPACKET_VERIFY); 6949 } else { 6950 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6951 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6952 } 6953 6954 priv->plat->fpe_cfg->hs_enable = enable; 6955 } 6956 } 6957 6958 /** 6959 * stmmac_dvr_probe 6960 * @device: device pointer 6961 * @plat_dat: platform data pointer 6962 * @res: stmmac resource pointer 6963 * Description: this is the main probe function used to 6964 * call the alloc_etherdev, allocate the priv structure. 6965 * Return: 6966 * returns 0 on success, otherwise errno. 6967 */ 6968 int stmmac_dvr_probe(struct device *device, 6969 struct plat_stmmacenet_data *plat_dat, 6970 struct stmmac_resources *res) 6971 { 6972 struct net_device *ndev = NULL; 6973 struct stmmac_priv *priv; 6974 u32 rxq; 6975 int i, ret = 0; 6976 6977 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6978 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6979 if (!ndev) 6980 return -ENOMEM; 6981 6982 SET_NETDEV_DEV(ndev, device); 6983 6984 priv = netdev_priv(ndev); 6985 priv->device = device; 6986 priv->dev = ndev; 6987 6988 stmmac_set_ethtool_ops(ndev); 6989 priv->pause = pause; 6990 priv->plat = plat_dat; 6991 priv->ioaddr = res->addr; 6992 priv->dev->base_addr = (unsigned long)res->addr; 6993 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6994 6995 priv->dev->irq = res->irq; 6996 priv->wol_irq = res->wol_irq; 6997 priv->lpi_irq = res->lpi_irq; 6998 priv->sfty_ce_irq = res->sfty_ce_irq; 6999 priv->sfty_ue_irq = res->sfty_ue_irq; 7000 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7001 priv->rx_irq[i] = res->rx_irq[i]; 7002 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 7003 priv->tx_irq[i] = res->tx_irq[i]; 7004 7005 if (!is_zero_ether_addr(res->mac)) 7006 eth_hw_addr_set(priv->dev, res->mac); 7007 7008 dev_set_drvdata(device, priv->dev); 7009 7010 /* Verify driver arguments */ 7011 stmmac_verify_args(); 7012 7013 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 7014 if (!priv->af_xdp_zc_qps) 7015 return -ENOMEM; 7016 7017 /* Allocate workqueue */ 7018 priv->wq = create_singlethread_workqueue("stmmac_wq"); 7019 if (!priv->wq) { 7020 dev_err(priv->device, "failed to create workqueue\n"); 7021 return -ENOMEM; 7022 } 7023 7024 INIT_WORK(&priv->service_task, stmmac_service_task); 7025 7026 /* Initialize Link Partner FPE workqueue */ 7027 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7028 7029 /* Override with kernel parameters if supplied XXX CRS XXX 7030 * this needs to have multiple instances 7031 */ 7032 if ((phyaddr >= 0) && (phyaddr <= 31)) 7033 priv->plat->phy_addr = phyaddr; 7034 7035 if (priv->plat->stmmac_rst) { 7036 ret = reset_control_assert(priv->plat->stmmac_rst); 7037 reset_control_deassert(priv->plat->stmmac_rst); 7038 /* Some reset controllers have only reset callback instead of 7039 * assert + deassert callbacks pair. 7040 */ 7041 if (ret == -ENOTSUPP) 7042 reset_control_reset(priv->plat->stmmac_rst); 7043 } 7044 7045 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7046 if (ret == -ENOTSUPP) 7047 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7048 ERR_PTR(ret)); 7049 7050 /* Init MAC and get the capabilities */ 7051 ret = stmmac_hw_init(priv); 7052 if (ret) 7053 goto error_hw_init; 7054 7055 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7056 */ 7057 if (priv->synopsys_id < DWMAC_CORE_5_20) 7058 priv->plat->dma_cfg->dche = false; 7059 7060 stmmac_check_ether_addr(priv); 7061 7062 ndev->netdev_ops = &stmmac_netdev_ops; 7063 7064 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7065 NETIF_F_RXCSUM; 7066 7067 ret = stmmac_tc_init(priv, priv); 7068 if (!ret) { 7069 ndev->hw_features |= NETIF_F_HW_TC; 7070 } 7071 7072 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7073 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7074 if (priv->plat->has_gmac4) 7075 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7076 priv->tso = true; 7077 dev_info(priv->device, "TSO feature enabled\n"); 7078 } 7079 7080 if (priv->dma_cap.sphen) { 7081 ndev->hw_features |= NETIF_F_GRO; 7082 priv->sph_cap = true; 7083 priv->sph = priv->sph_cap; 7084 dev_info(priv->device, "SPH feature enabled\n"); 7085 } 7086 7087 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7088 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7089 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7090 * So overwrite dma_cap.addr64 according to HW real design. 7091 */ 7092 if (priv->plat->addr64) 7093 priv->dma_cap.addr64 = priv->plat->addr64; 7094 7095 if (priv->dma_cap.addr64) { 7096 ret = dma_set_mask_and_coherent(device, 7097 DMA_BIT_MASK(priv->dma_cap.addr64)); 7098 if (!ret) { 7099 dev_info(priv->device, "Using %d bits DMA width\n", 7100 priv->dma_cap.addr64); 7101 7102 /* 7103 * If more than 32 bits can be addressed, make sure to 7104 * enable enhanced addressing mode. 7105 */ 7106 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7107 priv->plat->dma_cfg->eame = true; 7108 } else { 7109 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7110 if (ret) { 7111 dev_err(priv->device, "Failed to set DMA Mask\n"); 7112 goto error_hw_init; 7113 } 7114 7115 priv->dma_cap.addr64 = 32; 7116 } 7117 } 7118 7119 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7120 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7121 #ifdef STMMAC_VLAN_TAG_USED 7122 /* Both mac100 and gmac support receive VLAN tag detection */ 7123 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7124 if (priv->dma_cap.vlhash) { 7125 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7126 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7127 } 7128 if (priv->dma_cap.vlins) { 7129 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7130 if (priv->dma_cap.dvlan) 7131 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7132 } 7133 #endif 7134 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7135 7136 /* Initialize RSS */ 7137 rxq = priv->plat->rx_queues_to_use; 7138 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7139 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7140 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7141 7142 if (priv->dma_cap.rssen && priv->plat->rss_en) 7143 ndev->features |= NETIF_F_RXHASH; 7144 7145 /* MTU range: 46 - hw-specific max */ 7146 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7147 if (priv->plat->has_xgmac) 7148 ndev->max_mtu = XGMAC_JUMBO_LEN; 7149 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7150 ndev->max_mtu = JUMBO_LEN; 7151 else 7152 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7153 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7154 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7155 */ 7156 if ((priv->plat->maxmtu < ndev->max_mtu) && 7157 (priv->plat->maxmtu >= ndev->min_mtu)) 7158 ndev->max_mtu = priv->plat->maxmtu; 7159 else if (priv->plat->maxmtu < ndev->min_mtu) 7160 dev_warn(priv->device, 7161 "%s: warning: maxmtu having invalid value (%d)\n", 7162 __func__, priv->plat->maxmtu); 7163 7164 if (flow_ctrl) 7165 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7166 7167 /* Setup channels NAPI */ 7168 stmmac_napi_add(ndev); 7169 7170 mutex_init(&priv->lock); 7171 7172 /* If a specific clk_csr value is passed from the platform 7173 * this means that the CSR Clock Range selection cannot be 7174 * changed at run-time and it is fixed. Viceversa the driver'll try to 7175 * set the MDC clock dynamically according to the csr actual 7176 * clock input. 7177 */ 7178 if (priv->plat->clk_csr >= 0) 7179 priv->clk_csr = priv->plat->clk_csr; 7180 else 7181 stmmac_clk_csr_set(priv); 7182 7183 stmmac_check_pcs_mode(priv); 7184 7185 pm_runtime_get_noresume(device); 7186 pm_runtime_set_active(device); 7187 if (!pm_runtime_enabled(device)) 7188 pm_runtime_enable(device); 7189 7190 if (priv->hw->pcs != STMMAC_PCS_TBI && 7191 priv->hw->pcs != STMMAC_PCS_RTBI) { 7192 /* MDIO bus Registration */ 7193 ret = stmmac_mdio_register(ndev); 7194 if (ret < 0) { 7195 dev_err(priv->device, 7196 "%s: MDIO bus (id: %d) registration failed", 7197 __func__, priv->plat->bus_id); 7198 goto error_mdio_register; 7199 } 7200 } 7201 7202 if (priv->plat->speed_mode_2500) 7203 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7204 7205 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7206 ret = stmmac_xpcs_setup(priv->mii); 7207 if (ret) 7208 goto error_xpcs_setup; 7209 } 7210 7211 ret = stmmac_phy_setup(priv); 7212 if (ret) { 7213 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7214 goto error_phy_setup; 7215 } 7216 7217 ret = register_netdev(ndev); 7218 if (ret) { 7219 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7220 __func__, ret); 7221 goto error_netdev_register; 7222 } 7223 7224 if (priv->plat->serdes_powerup) { 7225 ret = priv->plat->serdes_powerup(ndev, 7226 priv->plat->bsp_priv); 7227 7228 if (ret < 0) 7229 goto error_serdes_powerup; 7230 } 7231 7232 #ifdef CONFIG_DEBUG_FS 7233 stmmac_init_fs(ndev); 7234 #endif 7235 7236 if (priv->plat->dump_debug_regs) 7237 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7238 7239 /* Let pm_runtime_put() disable the clocks. 7240 * If CONFIG_PM is not enabled, the clocks will stay powered. 7241 */ 7242 pm_runtime_put(device); 7243 7244 return ret; 7245 7246 error_serdes_powerup: 7247 unregister_netdev(ndev); 7248 error_netdev_register: 7249 phylink_destroy(priv->phylink); 7250 error_xpcs_setup: 7251 error_phy_setup: 7252 if (priv->hw->pcs != STMMAC_PCS_TBI && 7253 priv->hw->pcs != STMMAC_PCS_RTBI) 7254 stmmac_mdio_unregister(ndev); 7255 error_mdio_register: 7256 stmmac_napi_del(ndev); 7257 error_hw_init: 7258 destroy_workqueue(priv->wq); 7259 bitmap_free(priv->af_xdp_zc_qps); 7260 7261 return ret; 7262 } 7263 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7264 7265 /** 7266 * stmmac_dvr_remove 7267 * @dev: device pointer 7268 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7269 * changes the link status, releases the DMA descriptor rings. 7270 */ 7271 int stmmac_dvr_remove(struct device *dev) 7272 { 7273 struct net_device *ndev = dev_get_drvdata(dev); 7274 struct stmmac_priv *priv = netdev_priv(ndev); 7275 7276 netdev_info(priv->dev, "%s: removing driver", __func__); 7277 7278 pm_runtime_get_sync(dev); 7279 pm_runtime_disable(dev); 7280 pm_runtime_put_noidle(dev); 7281 7282 stmmac_stop_all_dma(priv); 7283 stmmac_mac_set(priv, priv->ioaddr, false); 7284 netif_carrier_off(ndev); 7285 unregister_netdev(ndev); 7286 7287 /* Serdes power down needs to happen after VLAN filter 7288 * is deleted that is triggered by unregister_netdev(). 7289 */ 7290 if (priv->plat->serdes_powerdown) 7291 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7292 7293 #ifdef CONFIG_DEBUG_FS 7294 stmmac_exit_fs(ndev); 7295 #endif 7296 phylink_destroy(priv->phylink); 7297 if (priv->plat->stmmac_rst) 7298 reset_control_assert(priv->plat->stmmac_rst); 7299 reset_control_assert(priv->plat->stmmac_ahb_rst); 7300 if (priv->hw->pcs != STMMAC_PCS_TBI && 7301 priv->hw->pcs != STMMAC_PCS_RTBI) 7302 stmmac_mdio_unregister(ndev); 7303 destroy_workqueue(priv->wq); 7304 mutex_destroy(&priv->lock); 7305 bitmap_free(priv->af_xdp_zc_qps); 7306 7307 return 0; 7308 } 7309 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7310 7311 /** 7312 * stmmac_suspend - suspend callback 7313 * @dev: device pointer 7314 * Description: this is the function to suspend the device and it is called 7315 * by the platform driver to stop the network queue, release the resources, 7316 * program the PMT register (for WoL), clean and release driver resources. 7317 */ 7318 int stmmac_suspend(struct device *dev) 7319 { 7320 struct net_device *ndev = dev_get_drvdata(dev); 7321 struct stmmac_priv *priv = netdev_priv(ndev); 7322 u32 chan; 7323 7324 if (!ndev || !netif_running(ndev)) 7325 return 0; 7326 7327 mutex_lock(&priv->lock); 7328 7329 netif_device_detach(ndev); 7330 7331 stmmac_disable_all_queues(priv); 7332 7333 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7334 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7335 7336 if (priv->eee_enabled) { 7337 priv->tx_path_in_lpi_mode = false; 7338 del_timer_sync(&priv->eee_ctrl_timer); 7339 } 7340 7341 /* Stop TX/RX DMA */ 7342 stmmac_stop_all_dma(priv); 7343 7344 if (priv->plat->serdes_powerdown) 7345 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7346 7347 /* Enable Power down mode by programming the PMT regs */ 7348 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7349 stmmac_pmt(priv, priv->hw, priv->wolopts); 7350 priv->irq_wake = 1; 7351 } else { 7352 stmmac_mac_set(priv, priv->ioaddr, false); 7353 pinctrl_pm_select_sleep_state(priv->device); 7354 } 7355 7356 mutex_unlock(&priv->lock); 7357 7358 rtnl_lock(); 7359 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7360 phylink_suspend(priv->phylink, true); 7361 } else { 7362 if (device_may_wakeup(priv->device)) 7363 phylink_speed_down(priv->phylink, false); 7364 phylink_suspend(priv->phylink, false); 7365 } 7366 rtnl_unlock(); 7367 7368 if (priv->dma_cap.fpesel) { 7369 /* Disable FPE */ 7370 stmmac_fpe_configure(priv, priv->ioaddr, 7371 priv->plat->tx_queues_to_use, 7372 priv->plat->rx_queues_to_use, false); 7373 7374 stmmac_fpe_handshake(priv, false); 7375 stmmac_fpe_stop_wq(priv); 7376 } 7377 7378 priv->speed = SPEED_UNKNOWN; 7379 return 0; 7380 } 7381 EXPORT_SYMBOL_GPL(stmmac_suspend); 7382 7383 /** 7384 * stmmac_reset_queues_param - reset queue parameters 7385 * @priv: device pointer 7386 */ 7387 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7388 { 7389 u32 rx_cnt = priv->plat->rx_queues_to_use; 7390 u32 tx_cnt = priv->plat->tx_queues_to_use; 7391 u32 queue; 7392 7393 for (queue = 0; queue < rx_cnt; queue++) { 7394 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7395 7396 rx_q->cur_rx = 0; 7397 rx_q->dirty_rx = 0; 7398 } 7399 7400 for (queue = 0; queue < tx_cnt; queue++) { 7401 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7402 7403 tx_q->cur_tx = 0; 7404 tx_q->dirty_tx = 0; 7405 tx_q->mss = 0; 7406 7407 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7408 } 7409 } 7410 7411 /** 7412 * stmmac_resume - resume callback 7413 * @dev: device pointer 7414 * Description: when resume this function is invoked to setup the DMA and CORE 7415 * in a usable state. 7416 */ 7417 int stmmac_resume(struct device *dev) 7418 { 7419 struct net_device *ndev = dev_get_drvdata(dev); 7420 struct stmmac_priv *priv = netdev_priv(ndev); 7421 int ret; 7422 7423 if (!netif_running(ndev)) 7424 return 0; 7425 7426 /* Power Down bit, into the PM register, is cleared 7427 * automatically as soon as a magic packet or a Wake-up frame 7428 * is received. Anyway, it's better to manually clear 7429 * this bit because it can generate problems while resuming 7430 * from another devices (e.g. serial console). 7431 */ 7432 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7433 mutex_lock(&priv->lock); 7434 stmmac_pmt(priv, priv->hw, 0); 7435 mutex_unlock(&priv->lock); 7436 priv->irq_wake = 0; 7437 } else { 7438 pinctrl_pm_select_default_state(priv->device); 7439 /* reset the phy so that it's ready */ 7440 if (priv->mii) 7441 stmmac_mdio_reset(priv->mii); 7442 } 7443 7444 if (priv->plat->serdes_powerup) { 7445 ret = priv->plat->serdes_powerup(ndev, 7446 priv->plat->bsp_priv); 7447 7448 if (ret < 0) 7449 return ret; 7450 } 7451 7452 rtnl_lock(); 7453 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7454 phylink_resume(priv->phylink); 7455 } else { 7456 phylink_resume(priv->phylink); 7457 if (device_may_wakeup(priv->device)) 7458 phylink_speed_up(priv->phylink); 7459 } 7460 rtnl_unlock(); 7461 7462 rtnl_lock(); 7463 mutex_lock(&priv->lock); 7464 7465 stmmac_reset_queues_param(priv); 7466 7467 stmmac_free_tx_skbufs(priv); 7468 stmmac_clear_descriptors(priv); 7469 7470 stmmac_hw_setup(ndev, false); 7471 stmmac_init_coalesce(priv); 7472 stmmac_set_rx_mode(ndev); 7473 7474 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7475 7476 stmmac_enable_all_queues(priv); 7477 stmmac_enable_all_dma_irq(priv); 7478 7479 mutex_unlock(&priv->lock); 7480 rtnl_unlock(); 7481 7482 netif_device_attach(ndev); 7483 7484 return 0; 7485 } 7486 EXPORT_SYMBOL_GPL(stmmac_resume); 7487 7488 #ifndef MODULE 7489 static int __init stmmac_cmdline_opt(char *str) 7490 { 7491 char *opt; 7492 7493 if (!str || !*str) 7494 return 1; 7495 while ((opt = strsep(&str, ",")) != NULL) { 7496 if (!strncmp(opt, "debug:", 6)) { 7497 if (kstrtoint(opt + 6, 0, &debug)) 7498 goto err; 7499 } else if (!strncmp(opt, "phyaddr:", 8)) { 7500 if (kstrtoint(opt + 8, 0, &phyaddr)) 7501 goto err; 7502 } else if (!strncmp(opt, "buf_sz:", 7)) { 7503 if (kstrtoint(opt + 7, 0, &buf_sz)) 7504 goto err; 7505 } else if (!strncmp(opt, "tc:", 3)) { 7506 if (kstrtoint(opt + 3, 0, &tc)) 7507 goto err; 7508 } else if (!strncmp(opt, "watchdog:", 9)) { 7509 if (kstrtoint(opt + 9, 0, &watchdog)) 7510 goto err; 7511 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7512 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7513 goto err; 7514 } else if (!strncmp(opt, "pause:", 6)) { 7515 if (kstrtoint(opt + 6, 0, &pause)) 7516 goto err; 7517 } else if (!strncmp(opt, "eee_timer:", 10)) { 7518 if (kstrtoint(opt + 10, 0, &eee_timer)) 7519 goto err; 7520 } else if (!strncmp(opt, "chain_mode:", 11)) { 7521 if (kstrtoint(opt + 11, 0, &chain_mode)) 7522 goto err; 7523 } 7524 } 7525 return 1; 7526 7527 err: 7528 pr_err("%s: ERROR broken module parameter conversion", __func__); 7529 return 1; 7530 } 7531 7532 __setup("stmmaceth=", stmmac_cmdline_opt); 7533 #endif /* MODULE */ 7534 7535 static int __init stmmac_init(void) 7536 { 7537 #ifdef CONFIG_DEBUG_FS 7538 /* Create debugfs main directory if it doesn't exist yet */ 7539 if (!stmmac_fs_dir) 7540 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7541 register_netdevice_notifier(&stmmac_notifier); 7542 #endif 7543 7544 return 0; 7545 } 7546 7547 static void __exit stmmac_exit(void) 7548 { 7549 #ifdef CONFIG_DEBUG_FS 7550 unregister_netdevice_notifier(&stmmac_notifier); 7551 debugfs_remove_recursive(stmmac_fs_dir); 7552 #endif 7553 } 7554 7555 module_init(stmmac_init) 7556 module_exit(stmmac_exit) 7557 7558 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7559 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7560 MODULE_LICENSE("GPL"); 7561