1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/prefetch.h> 32 #include <linux/pinctrl/consumer.h> 33 #ifdef CONFIG_DEBUG_FS 34 #include <linux/debugfs.h> 35 #include <linux/seq_file.h> 36 #endif /* CONFIG_DEBUG_FS */ 37 #include <linux/net_tstamp.h> 38 #include <linux/phylink.h> 39 #include <linux/udp.h> 40 #include <net/pkt_cls.h> 41 #include "stmmac_ptp.h" 42 #include "stmmac.h" 43 #include <linux/reset.h> 44 #include <linux/of_mdio.h> 45 #include "dwmac1000.h" 46 #include "dwxgmac2.h" 47 #include "hwif.h" 48 49 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 50 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 51 52 /* Module parameters */ 53 #define TX_TIMEO 5000 54 static int watchdog = TX_TIMEO; 55 module_param(watchdog, int, 0644); 56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 57 58 static int debug = -1; 59 module_param(debug, int, 0644); 60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 61 62 static int phyaddr = -1; 63 module_param(phyaddr, int, 0444); 64 MODULE_PARM_DESC(phyaddr, "Physical device address"); 65 66 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 67 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 68 69 static int flow_ctrl = FLOW_AUTO; 70 module_param(flow_ctrl, int, 0644); 71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 72 73 static int pause = PAUSE_TIME; 74 module_param(pause, int, 0644); 75 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 76 77 #define TC_DEFAULT 64 78 static int tc = TC_DEFAULT; 79 module_param(tc, int, 0644); 80 MODULE_PARM_DESC(tc, "DMA threshold control value"); 81 82 #define DEFAULT_BUFSIZE 1536 83 static int buf_sz = DEFAULT_BUFSIZE; 84 module_param(buf_sz, int, 0644); 85 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 86 87 #define STMMAC_RX_COPYBREAK 256 88 89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 90 NETIF_MSG_LINK | NETIF_MSG_IFUP | 91 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 92 93 #define STMMAC_DEFAULT_LPI_TIMER 1000 94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 95 module_param(eee_timer, int, 0644); 96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 98 99 /* By default the driver will use the ring mode to manage tx and rx descriptors, 100 * but allow user to force to use the chain instead of the ring 101 */ 102 static unsigned int chain_mode; 103 module_param(chain_mode, int, 0444); 104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 105 106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 107 108 #ifdef CONFIG_DEBUG_FS 109 static const struct net_device_ops stmmac_netdev_ops; 110 static void stmmac_init_fs(struct net_device *dev); 111 static void stmmac_exit_fs(struct net_device *dev); 112 #endif 113 114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 115 116 /** 117 * stmmac_verify_args - verify the driver parameters. 118 * Description: it checks the driver parameters and set a default in case of 119 * errors. 120 */ 121 static void stmmac_verify_args(void) 122 { 123 if (unlikely(watchdog < 0)) 124 watchdog = TX_TIMEO; 125 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 126 buf_sz = DEFAULT_BUFSIZE; 127 if (unlikely(flow_ctrl > 1)) 128 flow_ctrl = FLOW_AUTO; 129 else if (likely(flow_ctrl < 0)) 130 flow_ctrl = FLOW_OFF; 131 if (unlikely((pause < 0) || (pause > 0xffff))) 132 pause = PAUSE_TIME; 133 if (eee_timer < 0) 134 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 135 } 136 137 /** 138 * stmmac_disable_all_queues - Disable all queues 139 * @priv: driver private structure 140 */ 141 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 142 { 143 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 144 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 145 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 146 u32 queue; 147 148 for (queue = 0; queue < maxq; queue++) { 149 struct stmmac_channel *ch = &priv->channel[queue]; 150 151 if (queue < rx_queues_cnt) 152 napi_disable(&ch->rx_napi); 153 if (queue < tx_queues_cnt) 154 napi_disable(&ch->tx_napi); 155 } 156 } 157 158 /** 159 * stmmac_enable_all_queues - Enable all queues 160 * @priv: driver private structure 161 */ 162 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 163 { 164 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 165 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 166 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 167 u32 queue; 168 169 for (queue = 0; queue < maxq; queue++) { 170 struct stmmac_channel *ch = &priv->channel[queue]; 171 172 if (queue < rx_queues_cnt) 173 napi_enable(&ch->rx_napi); 174 if (queue < tx_queues_cnt) 175 napi_enable(&ch->tx_napi); 176 } 177 } 178 179 /** 180 * stmmac_stop_all_queues - Stop all queues 181 * @priv: driver private structure 182 */ 183 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 184 { 185 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 186 u32 queue; 187 188 for (queue = 0; queue < tx_queues_cnt; queue++) 189 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 190 } 191 192 /** 193 * stmmac_start_all_queues - Start all queues 194 * @priv: driver private structure 195 */ 196 static void stmmac_start_all_queues(struct stmmac_priv *priv) 197 { 198 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 199 u32 queue; 200 201 for (queue = 0; queue < tx_queues_cnt; queue++) 202 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 203 } 204 205 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 206 { 207 if (!test_bit(STMMAC_DOWN, &priv->state) && 208 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 209 queue_work(priv->wq, &priv->service_task); 210 } 211 212 static void stmmac_global_err(struct stmmac_priv *priv) 213 { 214 netif_carrier_off(priv->dev); 215 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 216 stmmac_service_event_schedule(priv); 217 } 218 219 /** 220 * stmmac_clk_csr_set - dynamically set the MDC clock 221 * @priv: driver private structure 222 * Description: this is to dynamically set the MDC clock according to the csr 223 * clock input. 224 * Note: 225 * If a specific clk_csr value is passed from the platform 226 * this means that the CSR Clock Range selection cannot be 227 * changed at run-time and it is fixed (as reported in the driver 228 * documentation). Viceversa the driver will try to set the MDC 229 * clock dynamically according to the actual clock input. 230 */ 231 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 232 { 233 u32 clk_rate; 234 235 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 236 237 /* Platform provided default clk_csr would be assumed valid 238 * for all other cases except for the below mentioned ones. 239 * For values higher than the IEEE 802.3 specified frequency 240 * we can not estimate the proper divider as it is not known 241 * the frequency of clk_csr_i. So we do not change the default 242 * divider. 243 */ 244 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 245 if (clk_rate < CSR_F_35M) 246 priv->clk_csr = STMMAC_CSR_20_35M; 247 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 248 priv->clk_csr = STMMAC_CSR_35_60M; 249 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 250 priv->clk_csr = STMMAC_CSR_60_100M; 251 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 252 priv->clk_csr = STMMAC_CSR_100_150M; 253 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 254 priv->clk_csr = STMMAC_CSR_150_250M; 255 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 256 priv->clk_csr = STMMAC_CSR_250_300M; 257 } 258 259 if (priv->plat->has_sun8i) { 260 if (clk_rate > 160000000) 261 priv->clk_csr = 0x03; 262 else if (clk_rate > 80000000) 263 priv->clk_csr = 0x02; 264 else if (clk_rate > 40000000) 265 priv->clk_csr = 0x01; 266 else 267 priv->clk_csr = 0; 268 } 269 270 if (priv->plat->has_xgmac) { 271 if (clk_rate > 400000000) 272 priv->clk_csr = 0x5; 273 else if (clk_rate > 350000000) 274 priv->clk_csr = 0x4; 275 else if (clk_rate > 300000000) 276 priv->clk_csr = 0x3; 277 else if (clk_rate > 250000000) 278 priv->clk_csr = 0x2; 279 else if (clk_rate > 150000000) 280 priv->clk_csr = 0x1; 281 else 282 priv->clk_csr = 0x0; 283 } 284 } 285 286 static void print_pkt(unsigned char *buf, int len) 287 { 288 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 289 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 290 } 291 292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 293 { 294 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 295 u32 avail; 296 297 if (tx_q->dirty_tx > tx_q->cur_tx) 298 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 299 else 300 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 301 302 return avail; 303 } 304 305 /** 306 * stmmac_rx_dirty - Get RX queue dirty 307 * @priv: driver private structure 308 * @queue: RX queue index 309 */ 310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 311 { 312 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 313 u32 dirty; 314 315 if (rx_q->dirty_rx <= rx_q->cur_rx) 316 dirty = rx_q->cur_rx - rx_q->dirty_rx; 317 else 318 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 319 320 return dirty; 321 } 322 323 /** 324 * stmmac_enable_eee_mode - check and enter in LPI mode 325 * @priv: driver private structure 326 * Description: this function is to verify and enter in LPI mode in case of 327 * EEE. 328 */ 329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 330 { 331 u32 tx_cnt = priv->plat->tx_queues_to_use; 332 u32 queue; 333 334 /* check if all TX queues have the work finished */ 335 for (queue = 0; queue < tx_cnt; queue++) { 336 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 337 338 if (tx_q->dirty_tx != tx_q->cur_tx) 339 return; /* still unfinished work */ 340 } 341 342 /* Check and enter in LPI mode */ 343 if (!priv->tx_path_in_lpi_mode) 344 stmmac_set_eee_mode(priv, priv->hw, 345 priv->plat->en_tx_lpi_clockgating); 346 } 347 348 /** 349 * stmmac_disable_eee_mode - disable and exit from LPI mode 350 * @priv: driver private structure 351 * Description: this function is to exit and disable EEE in case of 352 * LPI state is true. This is called by the xmit. 353 */ 354 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 355 { 356 stmmac_reset_eee_mode(priv, priv->hw); 357 del_timer_sync(&priv->eee_ctrl_timer); 358 priv->tx_path_in_lpi_mode = false; 359 } 360 361 /** 362 * stmmac_eee_ctrl_timer - EEE TX SW timer. 363 * @arg : data hook 364 * Description: 365 * if there is no data transfer and if we are not in LPI state, 366 * then MAC Transmitter can be moved to LPI state. 367 */ 368 static void stmmac_eee_ctrl_timer(struct timer_list *t) 369 { 370 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 371 372 stmmac_enable_eee_mode(priv); 373 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 374 } 375 376 /** 377 * stmmac_eee_init - init EEE 378 * @priv: driver private structure 379 * Description: 380 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 381 * can also manage EEE, this function enable the LPI state and start related 382 * timer. 383 */ 384 bool stmmac_eee_init(struct stmmac_priv *priv) 385 { 386 int tx_lpi_timer = priv->tx_lpi_timer; 387 388 /* Using PCS we cannot dial with the phy registers at this stage 389 * so we do not support extra feature like EEE. 390 */ 391 if (priv->hw->pcs == STMMAC_PCS_TBI || 392 priv->hw->pcs == STMMAC_PCS_RTBI) 393 return false; 394 395 /* Check if MAC core supports the EEE feature. */ 396 if (!priv->dma_cap.eee) 397 return false; 398 399 mutex_lock(&priv->lock); 400 401 /* Check if it needs to be deactivated */ 402 if (!priv->eee_active) { 403 if (priv->eee_enabled) { 404 netdev_dbg(priv->dev, "disable EEE\n"); 405 del_timer_sync(&priv->eee_ctrl_timer); 406 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer); 407 } 408 mutex_unlock(&priv->lock); 409 return false; 410 } 411 412 if (priv->eee_active && !priv->eee_enabled) { 413 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 414 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 415 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 416 tx_lpi_timer); 417 } 418 419 mutex_unlock(&priv->lock); 420 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 421 return true; 422 } 423 424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 425 * @priv: driver private structure 426 * @p : descriptor pointer 427 * @skb : the socket buffer 428 * Description : 429 * This function will read timestamp from the descriptor & pass it to stack. 430 * and also perform some sanity checks. 431 */ 432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 433 struct dma_desc *p, struct sk_buff *skb) 434 { 435 struct skb_shared_hwtstamps shhwtstamp; 436 bool found = false; 437 u64 ns = 0; 438 439 if (!priv->hwts_tx_en) 440 return; 441 442 /* exit if skb doesn't support hw tstamp */ 443 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 444 return; 445 446 /* check tx tstamp status */ 447 if (stmmac_get_tx_timestamp_status(priv, p)) { 448 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 449 found = true; 450 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 451 found = true; 452 } 453 454 if (found) { 455 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 456 shhwtstamp.hwtstamp = ns_to_ktime(ns); 457 458 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 459 /* pass tstamp to stack */ 460 skb_tstamp_tx(skb, &shhwtstamp); 461 } 462 } 463 464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 465 * @priv: driver private structure 466 * @p : descriptor pointer 467 * @np : next descriptor pointer 468 * @skb : the socket buffer 469 * Description : 470 * This function will read received packet's timestamp from the descriptor 471 * and pass it to stack. It also perform some sanity checks. 472 */ 473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 474 struct dma_desc *np, struct sk_buff *skb) 475 { 476 struct skb_shared_hwtstamps *shhwtstamp = NULL; 477 struct dma_desc *desc = p; 478 u64 ns = 0; 479 480 if (!priv->hwts_rx_en) 481 return; 482 /* For GMAC4, the valid timestamp is from CTX next desc. */ 483 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 484 desc = np; 485 486 /* Check if timestamp is available */ 487 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 488 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 489 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 490 shhwtstamp = skb_hwtstamps(skb); 491 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 492 shhwtstamp->hwtstamp = ns_to_ktime(ns); 493 } else { 494 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 495 } 496 } 497 498 /** 499 * stmmac_hwtstamp_set - control hardware timestamping. 500 * @dev: device pointer. 501 * @ifr: An IOCTL specific structure, that can contain a pointer to 502 * a proprietary structure used to pass information to the driver. 503 * Description: 504 * This function configures the MAC to enable/disable both outgoing(TX) 505 * and incoming(RX) packets time stamping based on user input. 506 * Return Value: 507 * 0 on success and an appropriate -ve integer on failure. 508 */ 509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 510 { 511 struct stmmac_priv *priv = netdev_priv(dev); 512 struct hwtstamp_config config; 513 struct timespec64 now; 514 u64 temp = 0; 515 u32 ptp_v2 = 0; 516 u32 tstamp_all = 0; 517 u32 ptp_over_ipv4_udp = 0; 518 u32 ptp_over_ipv6_udp = 0; 519 u32 ptp_over_ethernet = 0; 520 u32 snap_type_sel = 0; 521 u32 ts_master_en = 0; 522 u32 ts_event_en = 0; 523 u32 sec_inc = 0; 524 u32 value = 0; 525 bool xmac; 526 527 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 528 529 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 530 netdev_alert(priv->dev, "No support for HW time stamping\n"); 531 priv->hwts_tx_en = 0; 532 priv->hwts_rx_en = 0; 533 534 return -EOPNOTSUPP; 535 } 536 537 if (copy_from_user(&config, ifr->ifr_data, 538 sizeof(config))) 539 return -EFAULT; 540 541 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 542 __func__, config.flags, config.tx_type, config.rx_filter); 543 544 /* reserved for future extensions */ 545 if (config.flags) 546 return -EINVAL; 547 548 if (config.tx_type != HWTSTAMP_TX_OFF && 549 config.tx_type != HWTSTAMP_TX_ON) 550 return -ERANGE; 551 552 if (priv->adv_ts) { 553 switch (config.rx_filter) { 554 case HWTSTAMP_FILTER_NONE: 555 /* time stamp no incoming packet at all */ 556 config.rx_filter = HWTSTAMP_FILTER_NONE; 557 break; 558 559 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 560 /* PTP v1, UDP, any kind of event packet */ 561 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 562 /* 'xmac' hardware can support Sync, Pdelay_Req and 563 * Pdelay_resp by setting bit14 and bits17/16 to 01 564 * This leaves Delay_Req timestamps out. 565 * Enable all events *and* general purpose message 566 * timestamping 567 */ 568 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 569 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 570 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 571 break; 572 573 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 574 /* PTP v1, UDP, Sync packet */ 575 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 576 /* take time stamp for SYNC messages only */ 577 ts_event_en = PTP_TCR_TSEVNTENA; 578 579 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 580 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 581 break; 582 583 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 584 /* PTP v1, UDP, Delay_req packet */ 585 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 586 /* take time stamp for Delay_Req messages only */ 587 ts_master_en = PTP_TCR_TSMSTRENA; 588 ts_event_en = PTP_TCR_TSEVNTENA; 589 590 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 591 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 592 break; 593 594 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 595 /* PTP v2, UDP, any kind of event packet */ 596 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 597 ptp_v2 = PTP_TCR_TSVER2ENA; 598 /* take time stamp for all event messages */ 599 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 600 601 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 602 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 603 break; 604 605 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 606 /* PTP v2, UDP, Sync packet */ 607 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 608 ptp_v2 = PTP_TCR_TSVER2ENA; 609 /* take time stamp for SYNC messages only */ 610 ts_event_en = PTP_TCR_TSEVNTENA; 611 612 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 613 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 614 break; 615 616 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 617 /* PTP v2, UDP, Delay_req packet */ 618 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 619 ptp_v2 = PTP_TCR_TSVER2ENA; 620 /* take time stamp for Delay_Req messages only */ 621 ts_master_en = PTP_TCR_TSMSTRENA; 622 ts_event_en = PTP_TCR_TSEVNTENA; 623 624 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 625 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 626 break; 627 628 case HWTSTAMP_FILTER_PTP_V2_EVENT: 629 /* PTP v2/802.AS1 any layer, any kind of event packet */ 630 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 631 ptp_v2 = PTP_TCR_TSVER2ENA; 632 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 633 ts_event_en = PTP_TCR_TSEVNTENA; 634 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 635 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 636 ptp_over_ethernet = PTP_TCR_TSIPENA; 637 break; 638 639 case HWTSTAMP_FILTER_PTP_V2_SYNC: 640 /* PTP v2/802.AS1, any layer, Sync packet */ 641 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 642 ptp_v2 = PTP_TCR_TSVER2ENA; 643 /* take time stamp for SYNC messages only */ 644 ts_event_en = PTP_TCR_TSEVNTENA; 645 646 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 647 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 648 ptp_over_ethernet = PTP_TCR_TSIPENA; 649 break; 650 651 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 652 /* PTP v2/802.AS1, any layer, Delay_req packet */ 653 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 654 ptp_v2 = PTP_TCR_TSVER2ENA; 655 /* take time stamp for Delay_Req messages only */ 656 ts_master_en = PTP_TCR_TSMSTRENA; 657 ts_event_en = PTP_TCR_TSEVNTENA; 658 659 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 660 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 661 ptp_over_ethernet = PTP_TCR_TSIPENA; 662 break; 663 664 case HWTSTAMP_FILTER_NTP_ALL: 665 case HWTSTAMP_FILTER_ALL: 666 /* time stamp any incoming packet */ 667 config.rx_filter = HWTSTAMP_FILTER_ALL; 668 tstamp_all = PTP_TCR_TSENALL; 669 break; 670 671 default: 672 return -ERANGE; 673 } 674 } else { 675 switch (config.rx_filter) { 676 case HWTSTAMP_FILTER_NONE: 677 config.rx_filter = HWTSTAMP_FILTER_NONE; 678 break; 679 default: 680 /* PTP v1, UDP, any kind of event packet */ 681 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 682 break; 683 } 684 } 685 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 686 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 687 688 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 689 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 690 else { 691 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 692 tstamp_all | ptp_v2 | ptp_over_ethernet | 693 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 694 ts_master_en | snap_type_sel); 695 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 696 697 /* program Sub Second Increment reg */ 698 stmmac_config_sub_second_increment(priv, 699 priv->ptpaddr, priv->plat->clk_ptp_rate, 700 xmac, &sec_inc); 701 temp = div_u64(1000000000ULL, sec_inc); 702 703 /* Store sub second increment and flags for later use */ 704 priv->sub_second_inc = sec_inc; 705 priv->systime_flags = value; 706 707 /* calculate default added value: 708 * formula is : 709 * addend = (2^32)/freq_div_ratio; 710 * where, freq_div_ratio = 1e9ns/sec_inc 711 */ 712 temp = (u64)(temp << 32); 713 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 714 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 715 716 /* initialize system time */ 717 ktime_get_real_ts64(&now); 718 719 /* lower 32 bits of tv_sec are safe until y2106 */ 720 stmmac_init_systime(priv, priv->ptpaddr, 721 (u32)now.tv_sec, now.tv_nsec); 722 } 723 724 memcpy(&priv->tstamp_config, &config, sizeof(config)); 725 726 return copy_to_user(ifr->ifr_data, &config, 727 sizeof(config)) ? -EFAULT : 0; 728 } 729 730 /** 731 * stmmac_hwtstamp_get - read hardware timestamping. 732 * @dev: device pointer. 733 * @ifr: An IOCTL specific structure, that can contain a pointer to 734 * a proprietary structure used to pass information to the driver. 735 * Description: 736 * This function obtain the current hardware timestamping settings 737 as requested. 738 */ 739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 740 { 741 struct stmmac_priv *priv = netdev_priv(dev); 742 struct hwtstamp_config *config = &priv->tstamp_config; 743 744 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 745 return -EOPNOTSUPP; 746 747 return copy_to_user(ifr->ifr_data, config, 748 sizeof(*config)) ? -EFAULT : 0; 749 } 750 751 /** 752 * stmmac_init_ptp - init PTP 753 * @priv: driver private structure 754 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 755 * This is done by looking at the HW cap. register. 756 * This function also registers the ptp driver. 757 */ 758 static int stmmac_init_ptp(struct stmmac_priv *priv) 759 { 760 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 761 762 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 763 return -EOPNOTSUPP; 764 765 priv->adv_ts = 0; 766 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 767 if (xmac && priv->dma_cap.atime_stamp) 768 priv->adv_ts = 1; 769 /* Dwmac 3.x core with extend_desc can support adv_ts */ 770 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 771 priv->adv_ts = 1; 772 773 if (priv->dma_cap.time_stamp) 774 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 775 776 if (priv->adv_ts) 777 netdev_info(priv->dev, 778 "IEEE 1588-2008 Advanced Timestamp supported\n"); 779 780 priv->hwts_tx_en = 0; 781 priv->hwts_rx_en = 0; 782 783 stmmac_ptp_register(priv); 784 785 return 0; 786 } 787 788 static void stmmac_release_ptp(struct stmmac_priv *priv) 789 { 790 if (priv->plat->clk_ptp_ref) 791 clk_disable_unprepare(priv->plat->clk_ptp_ref); 792 stmmac_ptp_unregister(priv); 793 } 794 795 /** 796 * stmmac_mac_flow_ctrl - Configure flow control in all queues 797 * @priv: driver private structure 798 * Description: It is used for configuring the flow control in all queues 799 */ 800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 801 { 802 u32 tx_cnt = priv->plat->tx_queues_to_use; 803 804 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 805 priv->pause, tx_cnt); 806 } 807 808 static void stmmac_validate(struct phylink_config *config, 809 unsigned long *supported, 810 struct phylink_link_state *state) 811 { 812 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 813 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 814 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 815 int tx_cnt = priv->plat->tx_queues_to_use; 816 int max_speed = priv->plat->max_speed; 817 818 phylink_set(mac_supported, 10baseT_Half); 819 phylink_set(mac_supported, 10baseT_Full); 820 phylink_set(mac_supported, 100baseT_Half); 821 phylink_set(mac_supported, 100baseT_Full); 822 phylink_set(mac_supported, 1000baseT_Half); 823 phylink_set(mac_supported, 1000baseT_Full); 824 phylink_set(mac_supported, 1000baseKX_Full); 825 826 phylink_set(mac_supported, Autoneg); 827 phylink_set(mac_supported, Pause); 828 phylink_set(mac_supported, Asym_Pause); 829 phylink_set_port_modes(mac_supported); 830 831 /* Cut down 1G if asked to */ 832 if ((max_speed > 0) && (max_speed < 1000)) { 833 phylink_set(mask, 1000baseT_Full); 834 phylink_set(mask, 1000baseX_Full); 835 } else if (priv->plat->has_xgmac) { 836 if (!max_speed || (max_speed >= 2500)) { 837 phylink_set(mac_supported, 2500baseT_Full); 838 phylink_set(mac_supported, 2500baseX_Full); 839 } 840 if (!max_speed || (max_speed >= 5000)) { 841 phylink_set(mac_supported, 5000baseT_Full); 842 } 843 if (!max_speed || (max_speed >= 10000)) { 844 phylink_set(mac_supported, 10000baseSR_Full); 845 phylink_set(mac_supported, 10000baseLR_Full); 846 phylink_set(mac_supported, 10000baseER_Full); 847 phylink_set(mac_supported, 10000baseLRM_Full); 848 phylink_set(mac_supported, 10000baseT_Full); 849 phylink_set(mac_supported, 10000baseKX4_Full); 850 phylink_set(mac_supported, 10000baseKR_Full); 851 } 852 } 853 854 /* Half-Duplex can only work with single queue */ 855 if (tx_cnt > 1) { 856 phylink_set(mask, 10baseT_Half); 857 phylink_set(mask, 100baseT_Half); 858 phylink_set(mask, 1000baseT_Half); 859 } 860 861 bitmap_and(supported, supported, mac_supported, 862 __ETHTOOL_LINK_MODE_MASK_NBITS); 863 bitmap_andnot(supported, supported, mask, 864 __ETHTOOL_LINK_MODE_MASK_NBITS); 865 bitmap_and(state->advertising, state->advertising, mac_supported, 866 __ETHTOOL_LINK_MODE_MASK_NBITS); 867 bitmap_andnot(state->advertising, state->advertising, mask, 868 __ETHTOOL_LINK_MODE_MASK_NBITS); 869 } 870 871 static void stmmac_mac_pcs_get_state(struct phylink_config *config, 872 struct phylink_link_state *state) 873 { 874 state->link = 0; 875 } 876 877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 878 const struct phylink_link_state *state) 879 { 880 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 881 u32 ctrl; 882 883 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 884 ctrl &= ~priv->hw->link.speed_mask; 885 886 if (state->interface == PHY_INTERFACE_MODE_USXGMII) { 887 switch (state->speed) { 888 case SPEED_10000: 889 ctrl |= priv->hw->link.xgmii.speed10000; 890 break; 891 case SPEED_5000: 892 ctrl |= priv->hw->link.xgmii.speed5000; 893 break; 894 case SPEED_2500: 895 ctrl |= priv->hw->link.xgmii.speed2500; 896 break; 897 default: 898 return; 899 } 900 } else { 901 switch (state->speed) { 902 case SPEED_2500: 903 ctrl |= priv->hw->link.speed2500; 904 break; 905 case SPEED_1000: 906 ctrl |= priv->hw->link.speed1000; 907 break; 908 case SPEED_100: 909 ctrl |= priv->hw->link.speed100; 910 break; 911 case SPEED_10: 912 ctrl |= priv->hw->link.speed10; 913 break; 914 default: 915 return; 916 } 917 } 918 919 priv->speed = state->speed; 920 921 if (priv->plat->fix_mac_speed) 922 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed); 923 924 if (!state->duplex) 925 ctrl &= ~priv->hw->link.duplex; 926 else 927 ctrl |= priv->hw->link.duplex; 928 929 /* Flow Control operation */ 930 if (state->pause) 931 stmmac_mac_flow_ctrl(priv, state->duplex); 932 933 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 934 } 935 936 static void stmmac_mac_an_restart(struct phylink_config *config) 937 { 938 /* Not Supported */ 939 } 940 941 static void stmmac_mac_link_down(struct phylink_config *config, 942 unsigned int mode, phy_interface_t interface) 943 { 944 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 945 946 stmmac_mac_set(priv, priv->ioaddr, false); 947 priv->eee_active = false; 948 stmmac_eee_init(priv); 949 stmmac_set_eee_pls(priv, priv->hw, false); 950 } 951 952 static void stmmac_mac_link_up(struct phylink_config *config, 953 unsigned int mode, phy_interface_t interface, 954 struct phy_device *phy) 955 { 956 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 957 958 stmmac_mac_set(priv, priv->ioaddr, true); 959 if (phy && priv->dma_cap.eee) { 960 priv->eee_active = phy_init_eee(phy, 1) >= 0; 961 priv->eee_enabled = stmmac_eee_init(priv); 962 stmmac_set_eee_pls(priv, priv->hw, true); 963 } 964 } 965 966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 967 .validate = stmmac_validate, 968 .mac_pcs_get_state = stmmac_mac_pcs_get_state, 969 .mac_config = stmmac_mac_config, 970 .mac_an_restart = stmmac_mac_an_restart, 971 .mac_link_down = stmmac_mac_link_down, 972 .mac_link_up = stmmac_mac_link_up, 973 }; 974 975 /** 976 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 977 * @priv: driver private structure 978 * Description: this is to verify if the HW supports the PCS. 979 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 980 * configured for the TBI, RTBI, or SGMII PHY interface. 981 */ 982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 983 { 984 int interface = priv->plat->interface; 985 986 if (priv->dma_cap.pcs) { 987 if ((interface == PHY_INTERFACE_MODE_RGMII) || 988 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 989 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 990 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 991 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 992 priv->hw->pcs = STMMAC_PCS_RGMII; 993 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 994 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 995 priv->hw->pcs = STMMAC_PCS_SGMII; 996 } 997 } 998 } 999 1000 /** 1001 * stmmac_init_phy - PHY initialization 1002 * @dev: net device structure 1003 * Description: it initializes the driver's PHY state, and attaches the PHY 1004 * to the mac driver. 1005 * Return value: 1006 * 0 on success 1007 */ 1008 static int stmmac_init_phy(struct net_device *dev) 1009 { 1010 struct stmmac_priv *priv = netdev_priv(dev); 1011 struct device_node *node; 1012 int ret; 1013 1014 node = priv->plat->phylink_node; 1015 1016 if (node) 1017 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1018 1019 /* Some DT bindings do not set-up the PHY handle. Let's try to 1020 * manually parse it 1021 */ 1022 if (!node || ret) { 1023 int addr = priv->plat->phy_addr; 1024 struct phy_device *phydev; 1025 1026 phydev = mdiobus_get_phy(priv->mii, addr); 1027 if (!phydev) { 1028 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1029 return -ENODEV; 1030 } 1031 1032 ret = phylink_connect_phy(priv->phylink, phydev); 1033 } 1034 1035 return ret; 1036 } 1037 1038 static int stmmac_phy_setup(struct stmmac_priv *priv) 1039 { 1040 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1041 int mode = priv->plat->phy_interface; 1042 struct phylink *phylink; 1043 1044 priv->phylink_config.dev = &priv->dev->dev; 1045 priv->phylink_config.type = PHYLINK_NETDEV; 1046 1047 phylink = phylink_create(&priv->phylink_config, fwnode, 1048 mode, &stmmac_phylink_mac_ops); 1049 if (IS_ERR(phylink)) 1050 return PTR_ERR(phylink); 1051 1052 priv->phylink = phylink; 1053 return 0; 1054 } 1055 1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1057 { 1058 u32 rx_cnt = priv->plat->rx_queues_to_use; 1059 void *head_rx; 1060 u32 queue; 1061 1062 /* Display RX rings */ 1063 for (queue = 0; queue < rx_cnt; queue++) { 1064 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1065 1066 pr_info("\tRX Queue %u rings\n", queue); 1067 1068 if (priv->extend_desc) 1069 head_rx = (void *)rx_q->dma_erx; 1070 else 1071 head_rx = (void *)rx_q->dma_rx; 1072 1073 /* Display RX ring */ 1074 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1075 } 1076 } 1077 1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1079 { 1080 u32 tx_cnt = priv->plat->tx_queues_to_use; 1081 void *head_tx; 1082 u32 queue; 1083 1084 /* Display TX rings */ 1085 for (queue = 0; queue < tx_cnt; queue++) { 1086 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1087 1088 pr_info("\tTX Queue %d rings\n", queue); 1089 1090 if (priv->extend_desc) 1091 head_tx = (void *)tx_q->dma_etx; 1092 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1093 head_tx = (void *)tx_q->dma_entx; 1094 else 1095 head_tx = (void *)tx_q->dma_tx; 1096 1097 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1098 } 1099 } 1100 1101 static void stmmac_display_rings(struct stmmac_priv *priv) 1102 { 1103 /* Display RX ring */ 1104 stmmac_display_rx_rings(priv); 1105 1106 /* Display TX ring */ 1107 stmmac_display_tx_rings(priv); 1108 } 1109 1110 static int stmmac_set_bfsize(int mtu, int bufsize) 1111 { 1112 int ret = bufsize; 1113 1114 if (mtu >= BUF_SIZE_8KiB) 1115 ret = BUF_SIZE_16KiB; 1116 else if (mtu >= BUF_SIZE_4KiB) 1117 ret = BUF_SIZE_8KiB; 1118 else if (mtu >= BUF_SIZE_2KiB) 1119 ret = BUF_SIZE_4KiB; 1120 else if (mtu > DEFAULT_BUFSIZE) 1121 ret = BUF_SIZE_2KiB; 1122 else 1123 ret = DEFAULT_BUFSIZE; 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * stmmac_clear_rx_descriptors - clear RX descriptors 1130 * @priv: driver private structure 1131 * @queue: RX queue index 1132 * Description: this function is called to clear the RX descriptors 1133 * in case of both basic and extended descriptors are used. 1134 */ 1135 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1136 { 1137 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1138 int i; 1139 1140 /* Clear the RX descriptors */ 1141 for (i = 0; i < DMA_RX_SIZE; i++) 1142 if (priv->extend_desc) 1143 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1144 priv->use_riwt, priv->mode, 1145 (i == DMA_RX_SIZE - 1), 1146 priv->dma_buf_sz); 1147 else 1148 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1149 priv->use_riwt, priv->mode, 1150 (i == DMA_RX_SIZE - 1), 1151 priv->dma_buf_sz); 1152 } 1153 1154 /** 1155 * stmmac_clear_tx_descriptors - clear tx descriptors 1156 * @priv: driver private structure 1157 * @queue: TX queue index. 1158 * Description: this function is called to clear the TX descriptors 1159 * in case of both basic and extended descriptors are used. 1160 */ 1161 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1162 { 1163 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1164 int i; 1165 1166 /* Clear the TX descriptors */ 1167 for (i = 0; i < DMA_TX_SIZE; i++) { 1168 int last = (i == (DMA_TX_SIZE - 1)); 1169 struct dma_desc *p; 1170 1171 if (priv->extend_desc) 1172 p = &tx_q->dma_etx[i].basic; 1173 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1174 p = &tx_q->dma_entx[i].basic; 1175 else 1176 p = &tx_q->dma_tx[i]; 1177 1178 stmmac_init_tx_desc(priv, p, priv->mode, last); 1179 } 1180 } 1181 1182 /** 1183 * stmmac_clear_descriptors - clear descriptors 1184 * @priv: driver private structure 1185 * Description: this function is called to clear the TX and RX descriptors 1186 * in case of both basic and extended descriptors are used. 1187 */ 1188 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1189 { 1190 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1191 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1192 u32 queue; 1193 1194 /* Clear the RX descriptors */ 1195 for (queue = 0; queue < rx_queue_cnt; queue++) 1196 stmmac_clear_rx_descriptors(priv, queue); 1197 1198 /* Clear the TX descriptors */ 1199 for (queue = 0; queue < tx_queue_cnt; queue++) 1200 stmmac_clear_tx_descriptors(priv, queue); 1201 } 1202 1203 /** 1204 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1205 * @priv: driver private structure 1206 * @p: descriptor pointer 1207 * @i: descriptor index 1208 * @flags: gfp flag 1209 * @queue: RX queue index 1210 * Description: this function is called to allocate a receive buffer, perform 1211 * the DMA mapping and init the descriptor. 1212 */ 1213 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1214 int i, gfp_t flags, u32 queue) 1215 { 1216 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1217 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1218 1219 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1220 if (!buf->page) 1221 return -ENOMEM; 1222 1223 if (priv->sph) { 1224 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1225 if (!buf->sec_page) 1226 return -ENOMEM; 1227 1228 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1229 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); 1230 } else { 1231 buf->sec_page = NULL; 1232 } 1233 1234 buf->addr = page_pool_get_dma_addr(buf->page); 1235 stmmac_set_desc_addr(priv, p, buf->addr); 1236 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1237 stmmac_init_desc3(priv, p); 1238 1239 return 0; 1240 } 1241 1242 /** 1243 * stmmac_free_rx_buffer - free RX dma buffers 1244 * @priv: private structure 1245 * @queue: RX queue index 1246 * @i: buffer index. 1247 */ 1248 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1249 { 1250 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1251 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1252 1253 if (buf->page) 1254 page_pool_put_page(rx_q->page_pool, buf->page, false); 1255 buf->page = NULL; 1256 1257 if (buf->sec_page) 1258 page_pool_put_page(rx_q->page_pool, buf->sec_page, false); 1259 buf->sec_page = NULL; 1260 } 1261 1262 /** 1263 * stmmac_free_tx_buffer - free RX dma buffers 1264 * @priv: private structure 1265 * @queue: RX queue index 1266 * @i: buffer index. 1267 */ 1268 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1269 { 1270 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1271 1272 if (tx_q->tx_skbuff_dma[i].buf) { 1273 if (tx_q->tx_skbuff_dma[i].map_as_page) 1274 dma_unmap_page(priv->device, 1275 tx_q->tx_skbuff_dma[i].buf, 1276 tx_q->tx_skbuff_dma[i].len, 1277 DMA_TO_DEVICE); 1278 else 1279 dma_unmap_single(priv->device, 1280 tx_q->tx_skbuff_dma[i].buf, 1281 tx_q->tx_skbuff_dma[i].len, 1282 DMA_TO_DEVICE); 1283 } 1284 1285 if (tx_q->tx_skbuff[i]) { 1286 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1287 tx_q->tx_skbuff[i] = NULL; 1288 tx_q->tx_skbuff_dma[i].buf = 0; 1289 tx_q->tx_skbuff_dma[i].map_as_page = false; 1290 } 1291 } 1292 1293 /** 1294 * init_dma_rx_desc_rings - init the RX descriptor rings 1295 * @dev: net device structure 1296 * @flags: gfp flag. 1297 * Description: this function initializes the DMA RX descriptors 1298 * and allocates the socket buffers. It supports the chained and ring 1299 * modes. 1300 */ 1301 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1302 { 1303 struct stmmac_priv *priv = netdev_priv(dev); 1304 u32 rx_count = priv->plat->rx_queues_to_use; 1305 int ret = -ENOMEM; 1306 int queue; 1307 int i; 1308 1309 /* RX INITIALIZATION */ 1310 netif_dbg(priv, probe, priv->dev, 1311 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1312 1313 for (queue = 0; queue < rx_count; queue++) { 1314 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1315 1316 netif_dbg(priv, probe, priv->dev, 1317 "(%s) dma_rx_phy=0x%08x\n", __func__, 1318 (u32)rx_q->dma_rx_phy); 1319 1320 stmmac_clear_rx_descriptors(priv, queue); 1321 1322 for (i = 0; i < DMA_RX_SIZE; i++) { 1323 struct dma_desc *p; 1324 1325 if (priv->extend_desc) 1326 p = &((rx_q->dma_erx + i)->basic); 1327 else 1328 p = rx_q->dma_rx + i; 1329 1330 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1331 queue); 1332 if (ret) 1333 goto err_init_rx_buffers; 1334 } 1335 1336 rx_q->cur_rx = 0; 1337 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1338 1339 /* Setup the chained descriptor addresses */ 1340 if (priv->mode == STMMAC_CHAIN_MODE) { 1341 if (priv->extend_desc) 1342 stmmac_mode_init(priv, rx_q->dma_erx, 1343 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1344 else 1345 stmmac_mode_init(priv, rx_q->dma_rx, 1346 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1347 } 1348 } 1349 1350 return 0; 1351 1352 err_init_rx_buffers: 1353 while (queue >= 0) { 1354 while (--i >= 0) 1355 stmmac_free_rx_buffer(priv, queue, i); 1356 1357 if (queue == 0) 1358 break; 1359 1360 i = DMA_RX_SIZE; 1361 queue--; 1362 } 1363 1364 return ret; 1365 } 1366 1367 /** 1368 * init_dma_tx_desc_rings - init the TX descriptor rings 1369 * @dev: net device structure. 1370 * Description: this function initializes the DMA TX descriptors 1371 * and allocates the socket buffers. It supports the chained and ring 1372 * modes. 1373 */ 1374 static int init_dma_tx_desc_rings(struct net_device *dev) 1375 { 1376 struct stmmac_priv *priv = netdev_priv(dev); 1377 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1378 u32 queue; 1379 int i; 1380 1381 for (queue = 0; queue < tx_queue_cnt; queue++) { 1382 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1383 1384 netif_dbg(priv, probe, priv->dev, 1385 "(%s) dma_tx_phy=0x%08x\n", __func__, 1386 (u32)tx_q->dma_tx_phy); 1387 1388 /* Setup the chained descriptor addresses */ 1389 if (priv->mode == STMMAC_CHAIN_MODE) { 1390 if (priv->extend_desc) 1391 stmmac_mode_init(priv, tx_q->dma_etx, 1392 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1393 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1394 stmmac_mode_init(priv, tx_q->dma_tx, 1395 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1396 } 1397 1398 for (i = 0; i < DMA_TX_SIZE; i++) { 1399 struct dma_desc *p; 1400 if (priv->extend_desc) 1401 p = &((tx_q->dma_etx + i)->basic); 1402 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1403 p = &((tx_q->dma_entx + i)->basic); 1404 else 1405 p = tx_q->dma_tx + i; 1406 1407 stmmac_clear_desc(priv, p); 1408 1409 tx_q->tx_skbuff_dma[i].buf = 0; 1410 tx_q->tx_skbuff_dma[i].map_as_page = false; 1411 tx_q->tx_skbuff_dma[i].len = 0; 1412 tx_q->tx_skbuff_dma[i].last_segment = false; 1413 tx_q->tx_skbuff[i] = NULL; 1414 } 1415 1416 tx_q->dirty_tx = 0; 1417 tx_q->cur_tx = 0; 1418 tx_q->mss = 0; 1419 1420 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1421 } 1422 1423 return 0; 1424 } 1425 1426 /** 1427 * init_dma_desc_rings - init the RX/TX descriptor rings 1428 * @dev: net device structure 1429 * @flags: gfp flag. 1430 * Description: this function initializes the DMA RX/TX descriptors 1431 * and allocates the socket buffers. It supports the chained and ring 1432 * modes. 1433 */ 1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1435 { 1436 struct stmmac_priv *priv = netdev_priv(dev); 1437 int ret; 1438 1439 ret = init_dma_rx_desc_rings(dev, flags); 1440 if (ret) 1441 return ret; 1442 1443 ret = init_dma_tx_desc_rings(dev); 1444 1445 stmmac_clear_descriptors(priv); 1446 1447 if (netif_msg_hw(priv)) 1448 stmmac_display_rings(priv); 1449 1450 return ret; 1451 } 1452 1453 /** 1454 * dma_free_rx_skbufs - free RX dma buffers 1455 * @priv: private structure 1456 * @queue: RX queue index 1457 */ 1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1459 { 1460 int i; 1461 1462 for (i = 0; i < DMA_RX_SIZE; i++) 1463 stmmac_free_rx_buffer(priv, queue, i); 1464 } 1465 1466 /** 1467 * dma_free_tx_skbufs - free TX dma buffers 1468 * @priv: private structure 1469 * @queue: TX queue index 1470 */ 1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1472 { 1473 int i; 1474 1475 for (i = 0; i < DMA_TX_SIZE; i++) 1476 stmmac_free_tx_buffer(priv, queue, i); 1477 } 1478 1479 /** 1480 * free_dma_rx_desc_resources - free RX dma desc resources 1481 * @priv: private structure 1482 */ 1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1484 { 1485 u32 rx_count = priv->plat->rx_queues_to_use; 1486 u32 queue; 1487 1488 /* Free RX queue resources */ 1489 for (queue = 0; queue < rx_count; queue++) { 1490 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1491 1492 /* Release the DMA RX socket buffers */ 1493 dma_free_rx_skbufs(priv, queue); 1494 1495 /* Free DMA regions of consistent memory previously allocated */ 1496 if (!priv->extend_desc) 1497 dma_free_coherent(priv->device, 1498 DMA_RX_SIZE * sizeof(struct dma_desc), 1499 rx_q->dma_rx, rx_q->dma_rx_phy); 1500 else 1501 dma_free_coherent(priv->device, DMA_RX_SIZE * 1502 sizeof(struct dma_extended_desc), 1503 rx_q->dma_erx, rx_q->dma_rx_phy); 1504 1505 kfree(rx_q->buf_pool); 1506 if (rx_q->page_pool) 1507 page_pool_destroy(rx_q->page_pool); 1508 } 1509 } 1510 1511 /** 1512 * free_dma_tx_desc_resources - free TX dma desc resources 1513 * @priv: private structure 1514 */ 1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1516 { 1517 u32 tx_count = priv->plat->tx_queues_to_use; 1518 u32 queue; 1519 1520 /* Free TX queue resources */ 1521 for (queue = 0; queue < tx_count; queue++) { 1522 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1523 size_t size; 1524 void *addr; 1525 1526 /* Release the DMA TX socket buffers */ 1527 dma_free_tx_skbufs(priv, queue); 1528 1529 if (priv->extend_desc) { 1530 size = sizeof(struct dma_extended_desc); 1531 addr = tx_q->dma_etx; 1532 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1533 size = sizeof(struct dma_edesc); 1534 addr = tx_q->dma_entx; 1535 } else { 1536 size = sizeof(struct dma_desc); 1537 addr = tx_q->dma_tx; 1538 } 1539 1540 size *= DMA_TX_SIZE; 1541 1542 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1543 1544 kfree(tx_q->tx_skbuff_dma); 1545 kfree(tx_q->tx_skbuff); 1546 } 1547 } 1548 1549 /** 1550 * alloc_dma_rx_desc_resources - alloc RX resources. 1551 * @priv: private structure 1552 * Description: according to which descriptor can be used (extend or basic) 1553 * this function allocates the resources for TX and RX paths. In case of 1554 * reception, for example, it pre-allocated the RX socket buffer in order to 1555 * allow zero-copy mechanism. 1556 */ 1557 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1558 { 1559 u32 rx_count = priv->plat->rx_queues_to_use; 1560 int ret = -ENOMEM; 1561 u32 queue; 1562 1563 /* RX queues buffers and DMA */ 1564 for (queue = 0; queue < rx_count; queue++) { 1565 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1566 struct page_pool_params pp_params = { 0 }; 1567 unsigned int num_pages; 1568 1569 rx_q->queue_index = queue; 1570 rx_q->priv_data = priv; 1571 1572 pp_params.flags = PP_FLAG_DMA_MAP; 1573 pp_params.pool_size = DMA_RX_SIZE; 1574 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1575 pp_params.order = ilog2(num_pages); 1576 pp_params.nid = dev_to_node(priv->device); 1577 pp_params.dev = priv->device; 1578 pp_params.dma_dir = DMA_FROM_DEVICE; 1579 1580 rx_q->page_pool = page_pool_create(&pp_params); 1581 if (IS_ERR(rx_q->page_pool)) { 1582 ret = PTR_ERR(rx_q->page_pool); 1583 rx_q->page_pool = NULL; 1584 goto err_dma; 1585 } 1586 1587 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool), 1588 GFP_KERNEL); 1589 if (!rx_q->buf_pool) 1590 goto err_dma; 1591 1592 if (priv->extend_desc) { 1593 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1594 DMA_RX_SIZE * sizeof(struct dma_extended_desc), 1595 &rx_q->dma_rx_phy, 1596 GFP_KERNEL); 1597 if (!rx_q->dma_erx) 1598 goto err_dma; 1599 1600 } else { 1601 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1602 DMA_RX_SIZE * sizeof(struct dma_desc), 1603 &rx_q->dma_rx_phy, 1604 GFP_KERNEL); 1605 if (!rx_q->dma_rx) 1606 goto err_dma; 1607 } 1608 } 1609 1610 return 0; 1611 1612 err_dma: 1613 free_dma_rx_desc_resources(priv); 1614 1615 return ret; 1616 } 1617 1618 /** 1619 * alloc_dma_tx_desc_resources - alloc TX resources. 1620 * @priv: private structure 1621 * Description: according to which descriptor can be used (extend or basic) 1622 * this function allocates the resources for TX and RX paths. In case of 1623 * reception, for example, it pre-allocated the RX socket buffer in order to 1624 * allow zero-copy mechanism. 1625 */ 1626 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1627 { 1628 u32 tx_count = priv->plat->tx_queues_to_use; 1629 int ret = -ENOMEM; 1630 u32 queue; 1631 1632 /* TX queues buffers and DMA */ 1633 for (queue = 0; queue < tx_count; queue++) { 1634 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1635 size_t size; 1636 void *addr; 1637 1638 tx_q->queue_index = queue; 1639 tx_q->priv_data = priv; 1640 1641 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE, 1642 sizeof(*tx_q->tx_skbuff_dma), 1643 GFP_KERNEL); 1644 if (!tx_q->tx_skbuff_dma) 1645 goto err_dma; 1646 1647 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE, 1648 sizeof(struct sk_buff *), 1649 GFP_KERNEL); 1650 if (!tx_q->tx_skbuff) 1651 goto err_dma; 1652 1653 if (priv->extend_desc) 1654 size = sizeof(struct dma_extended_desc); 1655 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1656 size = sizeof(struct dma_edesc); 1657 else 1658 size = sizeof(struct dma_desc); 1659 1660 size *= DMA_TX_SIZE; 1661 1662 addr = dma_alloc_coherent(priv->device, size, 1663 &tx_q->dma_tx_phy, GFP_KERNEL); 1664 if (!addr) 1665 goto err_dma; 1666 1667 if (priv->extend_desc) 1668 tx_q->dma_etx = addr; 1669 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1670 tx_q->dma_entx = addr; 1671 else 1672 tx_q->dma_tx = addr; 1673 } 1674 1675 return 0; 1676 1677 err_dma: 1678 free_dma_tx_desc_resources(priv); 1679 return ret; 1680 } 1681 1682 /** 1683 * alloc_dma_desc_resources - alloc TX/RX resources. 1684 * @priv: private structure 1685 * Description: according to which descriptor can be used (extend or basic) 1686 * this function allocates the resources for TX and RX paths. In case of 1687 * reception, for example, it pre-allocated the RX socket buffer in order to 1688 * allow zero-copy mechanism. 1689 */ 1690 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1691 { 1692 /* RX Allocation */ 1693 int ret = alloc_dma_rx_desc_resources(priv); 1694 1695 if (ret) 1696 return ret; 1697 1698 ret = alloc_dma_tx_desc_resources(priv); 1699 1700 return ret; 1701 } 1702 1703 /** 1704 * free_dma_desc_resources - free dma desc resources 1705 * @priv: private structure 1706 */ 1707 static void free_dma_desc_resources(struct stmmac_priv *priv) 1708 { 1709 /* Release the DMA RX socket buffers */ 1710 free_dma_rx_desc_resources(priv); 1711 1712 /* Release the DMA TX socket buffers */ 1713 free_dma_tx_desc_resources(priv); 1714 } 1715 1716 /** 1717 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1718 * @priv: driver private structure 1719 * Description: It is used for enabling the rx queues in the MAC 1720 */ 1721 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1722 { 1723 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1724 int queue; 1725 u8 mode; 1726 1727 for (queue = 0; queue < rx_queues_count; queue++) { 1728 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1729 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1730 } 1731 } 1732 1733 /** 1734 * stmmac_start_rx_dma - start RX DMA channel 1735 * @priv: driver private structure 1736 * @chan: RX channel index 1737 * Description: 1738 * This starts a RX DMA channel 1739 */ 1740 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1741 { 1742 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1743 stmmac_start_rx(priv, priv->ioaddr, chan); 1744 } 1745 1746 /** 1747 * stmmac_start_tx_dma - start TX DMA channel 1748 * @priv: driver private structure 1749 * @chan: TX channel index 1750 * Description: 1751 * This starts a TX DMA channel 1752 */ 1753 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1754 { 1755 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1756 stmmac_start_tx(priv, priv->ioaddr, chan); 1757 } 1758 1759 /** 1760 * stmmac_stop_rx_dma - stop RX DMA channel 1761 * @priv: driver private structure 1762 * @chan: RX channel index 1763 * Description: 1764 * This stops a RX DMA channel 1765 */ 1766 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1767 { 1768 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1769 stmmac_stop_rx(priv, priv->ioaddr, chan); 1770 } 1771 1772 /** 1773 * stmmac_stop_tx_dma - stop TX DMA channel 1774 * @priv: driver private structure 1775 * @chan: TX channel index 1776 * Description: 1777 * This stops a TX DMA channel 1778 */ 1779 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1780 { 1781 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1782 stmmac_stop_tx(priv, priv->ioaddr, chan); 1783 } 1784 1785 /** 1786 * stmmac_start_all_dma - start all RX and TX DMA channels 1787 * @priv: driver private structure 1788 * Description: 1789 * This starts all the RX and TX DMA channels 1790 */ 1791 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1792 { 1793 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1794 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1795 u32 chan = 0; 1796 1797 for (chan = 0; chan < rx_channels_count; chan++) 1798 stmmac_start_rx_dma(priv, chan); 1799 1800 for (chan = 0; chan < tx_channels_count; chan++) 1801 stmmac_start_tx_dma(priv, chan); 1802 } 1803 1804 /** 1805 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1806 * @priv: driver private structure 1807 * Description: 1808 * This stops the RX and TX DMA channels 1809 */ 1810 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1811 { 1812 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1813 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1814 u32 chan = 0; 1815 1816 for (chan = 0; chan < rx_channels_count; chan++) 1817 stmmac_stop_rx_dma(priv, chan); 1818 1819 for (chan = 0; chan < tx_channels_count; chan++) 1820 stmmac_stop_tx_dma(priv, chan); 1821 } 1822 1823 /** 1824 * stmmac_dma_operation_mode - HW DMA operation mode 1825 * @priv: driver private structure 1826 * Description: it is used for configuring the DMA operation mode register in 1827 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1828 */ 1829 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1830 { 1831 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1832 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1833 int rxfifosz = priv->plat->rx_fifo_size; 1834 int txfifosz = priv->plat->tx_fifo_size; 1835 u32 txmode = 0; 1836 u32 rxmode = 0; 1837 u32 chan = 0; 1838 u8 qmode = 0; 1839 1840 if (rxfifosz == 0) 1841 rxfifosz = priv->dma_cap.rx_fifo_size; 1842 if (txfifosz == 0) 1843 txfifosz = priv->dma_cap.tx_fifo_size; 1844 1845 /* Adjust for real per queue fifo size */ 1846 rxfifosz /= rx_channels_count; 1847 txfifosz /= tx_channels_count; 1848 1849 if (priv->plat->force_thresh_dma_mode) { 1850 txmode = tc; 1851 rxmode = tc; 1852 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1853 /* 1854 * In case of GMAC, SF mode can be enabled 1855 * to perform the TX COE in HW. This depends on: 1856 * 1) TX COE if actually supported 1857 * 2) There is no bugged Jumbo frame support 1858 * that needs to not insert csum in the TDES. 1859 */ 1860 txmode = SF_DMA_MODE; 1861 rxmode = SF_DMA_MODE; 1862 priv->xstats.threshold = SF_DMA_MODE; 1863 } else { 1864 txmode = tc; 1865 rxmode = SF_DMA_MODE; 1866 } 1867 1868 /* configure all channels */ 1869 for (chan = 0; chan < rx_channels_count; chan++) { 1870 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1871 1872 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1873 rxfifosz, qmode); 1874 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1875 chan); 1876 } 1877 1878 for (chan = 0; chan < tx_channels_count; chan++) { 1879 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1880 1881 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1882 txfifosz, qmode); 1883 } 1884 } 1885 1886 /** 1887 * stmmac_tx_clean - to manage the transmission completion 1888 * @priv: driver private structure 1889 * @queue: TX queue index 1890 * Description: it reclaims the transmit resources after transmission completes. 1891 */ 1892 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1893 { 1894 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1895 unsigned int bytes_compl = 0, pkts_compl = 0; 1896 unsigned int entry, count = 0; 1897 1898 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1899 1900 priv->xstats.tx_clean++; 1901 1902 entry = tx_q->dirty_tx; 1903 while ((entry != tx_q->cur_tx) && (count < budget)) { 1904 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1905 struct dma_desc *p; 1906 int status; 1907 1908 if (priv->extend_desc) 1909 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1910 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1911 p = &tx_q->dma_entx[entry].basic; 1912 else 1913 p = tx_q->dma_tx + entry; 1914 1915 status = stmmac_tx_status(priv, &priv->dev->stats, 1916 &priv->xstats, p, priv->ioaddr); 1917 /* Check if the descriptor is owned by the DMA */ 1918 if (unlikely(status & tx_dma_own)) 1919 break; 1920 1921 count++; 1922 1923 /* Make sure descriptor fields are read after reading 1924 * the own bit. 1925 */ 1926 dma_rmb(); 1927 1928 /* Just consider the last segment and ...*/ 1929 if (likely(!(status & tx_not_ls))) { 1930 /* ... verify the status error condition */ 1931 if (unlikely(status & tx_err)) { 1932 priv->dev->stats.tx_errors++; 1933 } else { 1934 priv->dev->stats.tx_packets++; 1935 priv->xstats.tx_pkt_n++; 1936 } 1937 stmmac_get_tx_hwtstamp(priv, p, skb); 1938 } 1939 1940 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1941 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1942 dma_unmap_page(priv->device, 1943 tx_q->tx_skbuff_dma[entry].buf, 1944 tx_q->tx_skbuff_dma[entry].len, 1945 DMA_TO_DEVICE); 1946 else 1947 dma_unmap_single(priv->device, 1948 tx_q->tx_skbuff_dma[entry].buf, 1949 tx_q->tx_skbuff_dma[entry].len, 1950 DMA_TO_DEVICE); 1951 tx_q->tx_skbuff_dma[entry].buf = 0; 1952 tx_q->tx_skbuff_dma[entry].len = 0; 1953 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1954 } 1955 1956 stmmac_clean_desc3(priv, tx_q, p); 1957 1958 tx_q->tx_skbuff_dma[entry].last_segment = false; 1959 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1960 1961 if (likely(skb != NULL)) { 1962 pkts_compl++; 1963 bytes_compl += skb->len; 1964 dev_consume_skb_any(skb); 1965 tx_q->tx_skbuff[entry] = NULL; 1966 } 1967 1968 stmmac_release_tx_desc(priv, p, priv->mode); 1969 1970 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1971 } 1972 tx_q->dirty_tx = entry; 1973 1974 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1975 pkts_compl, bytes_compl); 1976 1977 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1978 queue))) && 1979 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1980 1981 netif_dbg(priv, tx_done, priv->dev, 1982 "%s: restart transmit\n", __func__); 1983 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1984 } 1985 1986 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1987 stmmac_enable_eee_mode(priv); 1988 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1989 } 1990 1991 /* We still have pending packets, let's call for a new scheduling */ 1992 if (tx_q->dirty_tx != tx_q->cur_tx) 1993 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 1994 1995 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 1996 1997 return count; 1998 } 1999 2000 /** 2001 * stmmac_tx_err - to manage the tx error 2002 * @priv: driver private structure 2003 * @chan: channel index 2004 * Description: it cleans the descriptors and restarts the transmission 2005 * in case of transmission errors. 2006 */ 2007 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2008 { 2009 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2010 2011 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2012 2013 stmmac_stop_tx_dma(priv, chan); 2014 dma_free_tx_skbufs(priv, chan); 2015 stmmac_clear_tx_descriptors(priv, chan); 2016 tx_q->dirty_tx = 0; 2017 tx_q->cur_tx = 0; 2018 tx_q->mss = 0; 2019 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2020 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2021 tx_q->dma_tx_phy, chan); 2022 stmmac_start_tx_dma(priv, chan); 2023 2024 priv->dev->stats.tx_errors++; 2025 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2026 } 2027 2028 /** 2029 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2030 * @priv: driver private structure 2031 * @txmode: TX operating mode 2032 * @rxmode: RX operating mode 2033 * @chan: channel index 2034 * Description: it is used for configuring of the DMA operation mode in 2035 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2036 * mode. 2037 */ 2038 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2039 u32 rxmode, u32 chan) 2040 { 2041 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2042 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2043 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2044 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2045 int rxfifosz = priv->plat->rx_fifo_size; 2046 int txfifosz = priv->plat->tx_fifo_size; 2047 2048 if (rxfifosz == 0) 2049 rxfifosz = priv->dma_cap.rx_fifo_size; 2050 if (txfifosz == 0) 2051 txfifosz = priv->dma_cap.tx_fifo_size; 2052 2053 /* Adjust for real per queue fifo size */ 2054 rxfifosz /= rx_channels_count; 2055 txfifosz /= tx_channels_count; 2056 2057 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2058 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2059 } 2060 2061 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2062 { 2063 int ret; 2064 2065 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2066 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2067 if (ret && (ret != -EINVAL)) { 2068 stmmac_global_err(priv); 2069 return true; 2070 } 2071 2072 return false; 2073 } 2074 2075 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2076 { 2077 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2078 &priv->xstats, chan); 2079 struct stmmac_channel *ch = &priv->channel[chan]; 2080 unsigned long flags; 2081 2082 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2083 if (napi_schedule_prep(&ch->rx_napi)) { 2084 spin_lock_irqsave(&ch->lock, flags); 2085 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2086 spin_unlock_irqrestore(&ch->lock, flags); 2087 __napi_schedule_irqoff(&ch->rx_napi); 2088 } 2089 } 2090 2091 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2092 if (napi_schedule_prep(&ch->tx_napi)) { 2093 spin_lock_irqsave(&ch->lock, flags); 2094 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2095 spin_unlock_irqrestore(&ch->lock, flags); 2096 __napi_schedule_irqoff(&ch->tx_napi); 2097 } 2098 } 2099 2100 return status; 2101 } 2102 2103 /** 2104 * stmmac_dma_interrupt - DMA ISR 2105 * @priv: driver private structure 2106 * Description: this is the DMA ISR. It is called by the main ISR. 2107 * It calls the dwmac dma routine and schedule poll method in case of some 2108 * work can be done. 2109 */ 2110 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2111 { 2112 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2113 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2114 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2115 tx_channel_count : rx_channel_count; 2116 u32 chan; 2117 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2118 2119 /* Make sure we never check beyond our status buffer. */ 2120 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2121 channels_to_check = ARRAY_SIZE(status); 2122 2123 for (chan = 0; chan < channels_to_check; chan++) 2124 status[chan] = stmmac_napi_check(priv, chan); 2125 2126 for (chan = 0; chan < tx_channel_count; chan++) { 2127 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2128 /* Try to bump up the dma threshold on this failure */ 2129 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2130 (tc <= 256)) { 2131 tc += 64; 2132 if (priv->plat->force_thresh_dma_mode) 2133 stmmac_set_dma_operation_mode(priv, 2134 tc, 2135 tc, 2136 chan); 2137 else 2138 stmmac_set_dma_operation_mode(priv, 2139 tc, 2140 SF_DMA_MODE, 2141 chan); 2142 priv->xstats.threshold = tc; 2143 } 2144 } else if (unlikely(status[chan] == tx_hard_error)) { 2145 stmmac_tx_err(priv, chan); 2146 } 2147 } 2148 } 2149 2150 /** 2151 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2152 * @priv: driver private structure 2153 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2154 */ 2155 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2156 { 2157 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2158 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2159 2160 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2161 2162 if (priv->dma_cap.rmon) { 2163 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2164 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2165 } else 2166 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2167 } 2168 2169 /** 2170 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2171 * @priv: driver private structure 2172 * Description: 2173 * new GMAC chip generations have a new register to indicate the 2174 * presence of the optional feature/functions. 2175 * This can be also used to override the value passed through the 2176 * platform and necessary for old MAC10/100 and GMAC chips. 2177 */ 2178 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2179 { 2180 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2181 } 2182 2183 /** 2184 * stmmac_check_ether_addr - check if the MAC addr is valid 2185 * @priv: driver private structure 2186 * Description: 2187 * it is to verify if the MAC address is valid, in case of failures it 2188 * generates a random MAC address 2189 */ 2190 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2191 { 2192 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2193 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2194 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2195 eth_hw_addr_random(priv->dev); 2196 dev_info(priv->device, "device MAC address %pM\n", 2197 priv->dev->dev_addr); 2198 } 2199 } 2200 2201 /** 2202 * stmmac_init_dma_engine - DMA init. 2203 * @priv: driver private structure 2204 * Description: 2205 * It inits the DMA invoking the specific MAC/GMAC callback. 2206 * Some DMA parameters can be passed from the platform; 2207 * in case of these are not passed a default is kept for the MAC or GMAC. 2208 */ 2209 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2210 { 2211 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2212 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2213 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2214 struct stmmac_rx_queue *rx_q; 2215 struct stmmac_tx_queue *tx_q; 2216 u32 chan = 0; 2217 int atds = 0; 2218 int ret = 0; 2219 2220 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2221 dev_err(priv->device, "Invalid DMA configuration\n"); 2222 return -EINVAL; 2223 } 2224 2225 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2226 atds = 1; 2227 2228 ret = stmmac_reset(priv, priv->ioaddr); 2229 if (ret) { 2230 dev_err(priv->device, "Failed to reset the dma\n"); 2231 return ret; 2232 } 2233 2234 /* DMA Configuration */ 2235 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2236 2237 if (priv->plat->axi) 2238 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2239 2240 /* DMA CSR Channel configuration */ 2241 for (chan = 0; chan < dma_csr_ch; chan++) 2242 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2243 2244 /* DMA RX Channel Configuration */ 2245 for (chan = 0; chan < rx_channels_count; chan++) { 2246 rx_q = &priv->rx_queue[chan]; 2247 2248 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2249 rx_q->dma_rx_phy, chan); 2250 2251 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2252 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2253 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2254 rx_q->rx_tail_addr, chan); 2255 } 2256 2257 /* DMA TX Channel Configuration */ 2258 for (chan = 0; chan < tx_channels_count; chan++) { 2259 tx_q = &priv->tx_queue[chan]; 2260 2261 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2262 tx_q->dma_tx_phy, chan); 2263 2264 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2265 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2266 tx_q->tx_tail_addr, chan); 2267 } 2268 2269 return ret; 2270 } 2271 2272 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2273 { 2274 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2275 2276 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2277 } 2278 2279 /** 2280 * stmmac_tx_timer - mitigation sw timer for tx. 2281 * @data: data pointer 2282 * Description: 2283 * This is the timer handler to directly invoke the stmmac_tx_clean. 2284 */ 2285 static void stmmac_tx_timer(struct timer_list *t) 2286 { 2287 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2288 struct stmmac_priv *priv = tx_q->priv_data; 2289 struct stmmac_channel *ch; 2290 2291 ch = &priv->channel[tx_q->queue_index]; 2292 2293 if (likely(napi_schedule_prep(&ch->tx_napi))) { 2294 unsigned long flags; 2295 2296 spin_lock_irqsave(&ch->lock, flags); 2297 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2298 spin_unlock_irqrestore(&ch->lock, flags); 2299 __napi_schedule(&ch->tx_napi); 2300 } 2301 } 2302 2303 /** 2304 * stmmac_init_coalesce - init mitigation options. 2305 * @priv: driver private structure 2306 * Description: 2307 * This inits the coalesce parameters: i.e. timer rate, 2308 * timer handler and default threshold used for enabling the 2309 * interrupt on completion bit. 2310 */ 2311 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2312 { 2313 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2314 u32 chan; 2315 2316 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2317 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2318 priv->rx_coal_frames = STMMAC_RX_FRAMES; 2319 2320 for (chan = 0; chan < tx_channel_count; chan++) { 2321 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2322 2323 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2324 } 2325 } 2326 2327 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2328 { 2329 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2330 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2331 u32 chan; 2332 2333 /* set TX ring length */ 2334 for (chan = 0; chan < tx_channels_count; chan++) 2335 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2336 (DMA_TX_SIZE - 1), chan); 2337 2338 /* set RX ring length */ 2339 for (chan = 0; chan < rx_channels_count; chan++) 2340 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2341 (DMA_RX_SIZE - 1), chan); 2342 } 2343 2344 /** 2345 * stmmac_set_tx_queue_weight - Set TX queue weight 2346 * @priv: driver private structure 2347 * Description: It is used for setting TX queues weight 2348 */ 2349 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2350 { 2351 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2352 u32 weight; 2353 u32 queue; 2354 2355 for (queue = 0; queue < tx_queues_count; queue++) { 2356 weight = priv->plat->tx_queues_cfg[queue].weight; 2357 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2358 } 2359 } 2360 2361 /** 2362 * stmmac_configure_cbs - Configure CBS in TX queue 2363 * @priv: driver private structure 2364 * Description: It is used for configuring CBS in AVB TX queues 2365 */ 2366 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2367 { 2368 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2369 u32 mode_to_use; 2370 u32 queue; 2371 2372 /* queue 0 is reserved for legacy traffic */ 2373 for (queue = 1; queue < tx_queues_count; queue++) { 2374 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2375 if (mode_to_use == MTL_QUEUE_DCB) 2376 continue; 2377 2378 stmmac_config_cbs(priv, priv->hw, 2379 priv->plat->tx_queues_cfg[queue].send_slope, 2380 priv->plat->tx_queues_cfg[queue].idle_slope, 2381 priv->plat->tx_queues_cfg[queue].high_credit, 2382 priv->plat->tx_queues_cfg[queue].low_credit, 2383 queue); 2384 } 2385 } 2386 2387 /** 2388 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2389 * @priv: driver private structure 2390 * Description: It is used for mapping RX queues to RX dma channels 2391 */ 2392 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2393 { 2394 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2395 u32 queue; 2396 u32 chan; 2397 2398 for (queue = 0; queue < rx_queues_count; queue++) { 2399 chan = priv->plat->rx_queues_cfg[queue].chan; 2400 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2401 } 2402 } 2403 2404 /** 2405 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2406 * @priv: driver private structure 2407 * Description: It is used for configuring the RX Queue Priority 2408 */ 2409 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2410 { 2411 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2412 u32 queue; 2413 u32 prio; 2414 2415 for (queue = 0; queue < rx_queues_count; queue++) { 2416 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2417 continue; 2418 2419 prio = priv->plat->rx_queues_cfg[queue].prio; 2420 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2421 } 2422 } 2423 2424 /** 2425 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2426 * @priv: driver private structure 2427 * Description: It is used for configuring the TX Queue Priority 2428 */ 2429 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2430 { 2431 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2432 u32 queue; 2433 u32 prio; 2434 2435 for (queue = 0; queue < tx_queues_count; queue++) { 2436 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2437 continue; 2438 2439 prio = priv->plat->tx_queues_cfg[queue].prio; 2440 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2441 } 2442 } 2443 2444 /** 2445 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2446 * @priv: driver private structure 2447 * Description: It is used for configuring the RX queue routing 2448 */ 2449 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2450 { 2451 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2452 u32 queue; 2453 u8 packet; 2454 2455 for (queue = 0; queue < rx_queues_count; queue++) { 2456 /* no specific packet type routing specified for the queue */ 2457 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2458 continue; 2459 2460 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2461 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2462 } 2463 } 2464 2465 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 2466 { 2467 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 2468 priv->rss.enable = false; 2469 return; 2470 } 2471 2472 if (priv->dev->features & NETIF_F_RXHASH) 2473 priv->rss.enable = true; 2474 else 2475 priv->rss.enable = false; 2476 2477 stmmac_rss_configure(priv, priv->hw, &priv->rss, 2478 priv->plat->rx_queues_to_use); 2479 } 2480 2481 /** 2482 * stmmac_mtl_configuration - Configure MTL 2483 * @priv: driver private structure 2484 * Description: It is used for configurring MTL 2485 */ 2486 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2487 { 2488 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2489 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2490 2491 if (tx_queues_count > 1) 2492 stmmac_set_tx_queue_weight(priv); 2493 2494 /* Configure MTL RX algorithms */ 2495 if (rx_queues_count > 1) 2496 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2497 priv->plat->rx_sched_algorithm); 2498 2499 /* Configure MTL TX algorithms */ 2500 if (tx_queues_count > 1) 2501 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2502 priv->plat->tx_sched_algorithm); 2503 2504 /* Configure CBS in AVB TX queues */ 2505 if (tx_queues_count > 1) 2506 stmmac_configure_cbs(priv); 2507 2508 /* Map RX MTL to DMA channels */ 2509 stmmac_rx_queue_dma_chan_map(priv); 2510 2511 /* Enable MAC RX Queues */ 2512 stmmac_mac_enable_rx_queues(priv); 2513 2514 /* Set RX priorities */ 2515 if (rx_queues_count > 1) 2516 stmmac_mac_config_rx_queues_prio(priv); 2517 2518 /* Set TX priorities */ 2519 if (tx_queues_count > 1) 2520 stmmac_mac_config_tx_queues_prio(priv); 2521 2522 /* Set RX routing */ 2523 if (rx_queues_count > 1) 2524 stmmac_mac_config_rx_queues_routing(priv); 2525 2526 /* Receive Side Scaling */ 2527 if (rx_queues_count > 1) 2528 stmmac_mac_config_rss(priv); 2529 } 2530 2531 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2532 { 2533 if (priv->dma_cap.asp) { 2534 netdev_info(priv->dev, "Enabling Safety Features\n"); 2535 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2536 } else { 2537 netdev_info(priv->dev, "No Safety Features support found\n"); 2538 } 2539 } 2540 2541 /** 2542 * stmmac_hw_setup - setup mac in a usable state. 2543 * @dev : pointer to the device structure. 2544 * Description: 2545 * this is the main function to setup the HW in a usable state because the 2546 * dma engine is reset, the core registers are configured (e.g. AXI, 2547 * Checksum features, timers). The DMA is ready to start receiving and 2548 * transmitting. 2549 * Return value: 2550 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2551 * file on failure. 2552 */ 2553 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2554 { 2555 struct stmmac_priv *priv = netdev_priv(dev); 2556 u32 rx_cnt = priv->plat->rx_queues_to_use; 2557 u32 tx_cnt = priv->plat->tx_queues_to_use; 2558 u32 chan; 2559 int ret; 2560 2561 /* DMA initialization and SW reset */ 2562 ret = stmmac_init_dma_engine(priv); 2563 if (ret < 0) { 2564 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2565 __func__); 2566 return ret; 2567 } 2568 2569 /* Copy the MAC addr into the HW */ 2570 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2571 2572 /* PS and related bits will be programmed according to the speed */ 2573 if (priv->hw->pcs) { 2574 int speed = priv->plat->mac_port_sel_speed; 2575 2576 if ((speed == SPEED_10) || (speed == SPEED_100) || 2577 (speed == SPEED_1000)) { 2578 priv->hw->ps = speed; 2579 } else { 2580 dev_warn(priv->device, "invalid port speed\n"); 2581 priv->hw->ps = 0; 2582 } 2583 } 2584 2585 /* Initialize the MAC Core */ 2586 stmmac_core_init(priv, priv->hw, dev); 2587 2588 /* Initialize MTL*/ 2589 stmmac_mtl_configuration(priv); 2590 2591 /* Initialize Safety Features */ 2592 stmmac_safety_feat_configuration(priv); 2593 2594 ret = stmmac_rx_ipc(priv, priv->hw); 2595 if (!ret) { 2596 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2597 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2598 priv->hw->rx_csum = 0; 2599 } 2600 2601 /* Enable the MAC Rx/Tx */ 2602 stmmac_mac_set(priv, priv->ioaddr, true); 2603 2604 /* Set the HW DMA mode and the COE */ 2605 stmmac_dma_operation_mode(priv); 2606 2607 stmmac_mmc_setup(priv); 2608 2609 if (init_ptp) { 2610 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2611 if (ret < 0) 2612 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2613 2614 ret = stmmac_init_ptp(priv); 2615 if (ret == -EOPNOTSUPP) 2616 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2617 else if (ret) 2618 netdev_warn(priv->dev, "PTP init failed\n"); 2619 } 2620 2621 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2622 2623 if (priv->use_riwt) { 2624 if (!priv->rx_riwt) 2625 priv->rx_riwt = DEF_DMA_RIWT; 2626 2627 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt); 2628 } 2629 2630 if (priv->hw->pcs) 2631 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 2632 2633 /* set TX and RX rings length */ 2634 stmmac_set_rings_length(priv); 2635 2636 /* Enable TSO */ 2637 if (priv->tso) { 2638 for (chan = 0; chan < tx_cnt; chan++) 2639 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2640 } 2641 2642 /* Enable Split Header */ 2643 if (priv->sph && priv->hw->rx_csum) { 2644 for (chan = 0; chan < rx_cnt; chan++) 2645 stmmac_enable_sph(priv, priv->ioaddr, 1, chan); 2646 } 2647 2648 /* VLAN Tag Insertion */ 2649 if (priv->dma_cap.vlins) 2650 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 2651 2652 /* TBS */ 2653 for (chan = 0; chan < tx_cnt; chan++) { 2654 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2655 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 2656 2657 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 2658 } 2659 2660 /* Start the ball rolling... */ 2661 stmmac_start_all_dma(priv); 2662 2663 return 0; 2664 } 2665 2666 static void stmmac_hw_teardown(struct net_device *dev) 2667 { 2668 struct stmmac_priv *priv = netdev_priv(dev); 2669 2670 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2671 } 2672 2673 /** 2674 * stmmac_open - open entry point of the driver 2675 * @dev : pointer to the device structure. 2676 * Description: 2677 * This function is the open entry point of the driver. 2678 * Return value: 2679 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2680 * file on failure. 2681 */ 2682 static int stmmac_open(struct net_device *dev) 2683 { 2684 struct stmmac_priv *priv = netdev_priv(dev); 2685 int bfsize = 0; 2686 u32 chan; 2687 int ret; 2688 2689 if (priv->hw->pcs != STMMAC_PCS_TBI && 2690 priv->hw->pcs != STMMAC_PCS_RTBI) { 2691 ret = stmmac_init_phy(dev); 2692 if (ret) { 2693 netdev_err(priv->dev, 2694 "%s: Cannot attach to PHY (error: %d)\n", 2695 __func__, ret); 2696 return ret; 2697 } 2698 } 2699 2700 /* Extra statistics */ 2701 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2702 priv->xstats.threshold = tc; 2703 2704 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 2705 if (bfsize < 0) 2706 bfsize = 0; 2707 2708 if (bfsize < BUF_SIZE_16KiB) 2709 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 2710 2711 priv->dma_buf_sz = bfsize; 2712 buf_sz = bfsize; 2713 2714 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2715 2716 /* Earlier check for TBS */ 2717 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 2718 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2719 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 2720 2721 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 2722 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan)) 2723 tx_q->tbs &= ~STMMAC_TBS_AVAIL; 2724 } 2725 2726 ret = alloc_dma_desc_resources(priv); 2727 if (ret < 0) { 2728 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2729 __func__); 2730 goto dma_desc_error; 2731 } 2732 2733 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2734 if (ret < 0) { 2735 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2736 __func__); 2737 goto init_error; 2738 } 2739 2740 ret = stmmac_hw_setup(dev, true); 2741 if (ret < 0) { 2742 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2743 goto init_error; 2744 } 2745 2746 stmmac_init_coalesce(priv); 2747 2748 phylink_start(priv->phylink); 2749 2750 /* Request the IRQ lines */ 2751 ret = request_irq(dev->irq, stmmac_interrupt, 2752 IRQF_SHARED, dev->name, dev); 2753 if (unlikely(ret < 0)) { 2754 netdev_err(priv->dev, 2755 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2756 __func__, dev->irq, ret); 2757 goto irq_error; 2758 } 2759 2760 /* Request the Wake IRQ in case of another line is used for WoL */ 2761 if (priv->wol_irq != dev->irq) { 2762 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2763 IRQF_SHARED, dev->name, dev); 2764 if (unlikely(ret < 0)) { 2765 netdev_err(priv->dev, 2766 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2767 __func__, priv->wol_irq, ret); 2768 goto wolirq_error; 2769 } 2770 } 2771 2772 /* Request the IRQ lines */ 2773 if (priv->lpi_irq > 0) { 2774 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2775 dev->name, dev); 2776 if (unlikely(ret < 0)) { 2777 netdev_err(priv->dev, 2778 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2779 __func__, priv->lpi_irq, ret); 2780 goto lpiirq_error; 2781 } 2782 } 2783 2784 stmmac_enable_all_queues(priv); 2785 stmmac_start_all_queues(priv); 2786 2787 return 0; 2788 2789 lpiirq_error: 2790 if (priv->wol_irq != dev->irq) 2791 free_irq(priv->wol_irq, dev); 2792 wolirq_error: 2793 free_irq(dev->irq, dev); 2794 irq_error: 2795 phylink_stop(priv->phylink); 2796 2797 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2798 del_timer_sync(&priv->tx_queue[chan].txtimer); 2799 2800 stmmac_hw_teardown(dev); 2801 init_error: 2802 free_dma_desc_resources(priv); 2803 dma_desc_error: 2804 phylink_disconnect_phy(priv->phylink); 2805 return ret; 2806 } 2807 2808 /** 2809 * stmmac_release - close entry point of the driver 2810 * @dev : device pointer. 2811 * Description: 2812 * This is the stop entry point of the driver. 2813 */ 2814 static int stmmac_release(struct net_device *dev) 2815 { 2816 struct stmmac_priv *priv = netdev_priv(dev); 2817 u32 chan; 2818 2819 if (priv->eee_enabled) 2820 del_timer_sync(&priv->eee_ctrl_timer); 2821 2822 /* Stop and disconnect the PHY */ 2823 phylink_stop(priv->phylink); 2824 phylink_disconnect_phy(priv->phylink); 2825 2826 stmmac_stop_all_queues(priv); 2827 2828 stmmac_disable_all_queues(priv); 2829 2830 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2831 del_timer_sync(&priv->tx_queue[chan].txtimer); 2832 2833 /* Free the IRQ lines */ 2834 free_irq(dev->irq, dev); 2835 if (priv->wol_irq != dev->irq) 2836 free_irq(priv->wol_irq, dev); 2837 if (priv->lpi_irq > 0) 2838 free_irq(priv->lpi_irq, dev); 2839 2840 /* Stop TX/RX DMA and clear the descriptors */ 2841 stmmac_stop_all_dma(priv); 2842 2843 /* Release and free the Rx/Tx resources */ 2844 free_dma_desc_resources(priv); 2845 2846 /* Disable the MAC Rx/Tx */ 2847 stmmac_mac_set(priv, priv->ioaddr, false); 2848 2849 netif_carrier_off(dev); 2850 2851 stmmac_release_ptp(priv); 2852 2853 return 0; 2854 } 2855 2856 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 2857 struct stmmac_tx_queue *tx_q) 2858 { 2859 u16 tag = 0x0, inner_tag = 0x0; 2860 u32 inner_type = 0x0; 2861 struct dma_desc *p; 2862 2863 if (!priv->dma_cap.vlins) 2864 return false; 2865 if (!skb_vlan_tag_present(skb)) 2866 return false; 2867 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 2868 inner_tag = skb_vlan_tag_get(skb); 2869 inner_type = STMMAC_VLAN_INSERT; 2870 } 2871 2872 tag = skb_vlan_tag_get(skb); 2873 2874 if (tx_q->tbs & STMMAC_TBS_AVAIL) 2875 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 2876 else 2877 p = &tx_q->dma_tx[tx_q->cur_tx]; 2878 2879 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 2880 return false; 2881 2882 stmmac_set_tx_owner(priv, p); 2883 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2884 return true; 2885 } 2886 2887 /** 2888 * stmmac_tso_allocator - close entry point of the driver 2889 * @priv: driver private structure 2890 * @des: buffer start address 2891 * @total_len: total length to fill in descriptors 2892 * @last_segmant: condition for the last descriptor 2893 * @queue: TX queue index 2894 * Description: 2895 * This function fills descriptor and request new descriptors according to 2896 * buffer length to fill 2897 */ 2898 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 2899 int total_len, bool last_segment, u32 queue) 2900 { 2901 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2902 struct dma_desc *desc; 2903 u32 buff_size; 2904 int tmp_len; 2905 2906 tmp_len = total_len; 2907 2908 while (tmp_len > 0) { 2909 dma_addr_t curr_addr; 2910 2911 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2912 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2913 2914 if (tx_q->tbs & STMMAC_TBS_AVAIL) 2915 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 2916 else 2917 desc = &tx_q->dma_tx[tx_q->cur_tx]; 2918 2919 curr_addr = des + (total_len - tmp_len); 2920 if (priv->dma_cap.addr64 <= 32) 2921 desc->des0 = cpu_to_le32(curr_addr); 2922 else 2923 stmmac_set_desc_addr(priv, desc, curr_addr); 2924 2925 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2926 TSO_MAX_BUFF_SIZE : tmp_len; 2927 2928 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2929 0, 1, 2930 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2931 0, 0); 2932 2933 tmp_len -= TSO_MAX_BUFF_SIZE; 2934 } 2935 } 2936 2937 /** 2938 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2939 * @skb : the socket buffer 2940 * @dev : device pointer 2941 * Description: this is the transmit function that is called on TSO frames 2942 * (support available on GMAC4 and newer chips). 2943 * Diagram below show the ring programming in case of TSO frames: 2944 * 2945 * First Descriptor 2946 * -------- 2947 * | DES0 |---> buffer1 = L2/L3/L4 header 2948 * | DES1 |---> TCP Payload (can continue on next descr...) 2949 * | DES2 |---> buffer 1 and 2 len 2950 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2951 * -------- 2952 * | 2953 * ... 2954 * | 2955 * -------- 2956 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2957 * | DES1 | --| 2958 * | DES2 | --> buffer 1 and 2 len 2959 * | DES3 | 2960 * -------- 2961 * 2962 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2963 */ 2964 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2965 { 2966 struct dma_desc *desc, *first, *mss_desc = NULL; 2967 struct stmmac_priv *priv = netdev_priv(dev); 2968 int desc_size, tmp_pay_len = 0, first_tx; 2969 int nfrags = skb_shinfo(skb)->nr_frags; 2970 u32 queue = skb_get_queue_mapping(skb); 2971 unsigned int first_entry, tx_packets; 2972 struct stmmac_tx_queue *tx_q; 2973 bool has_vlan, set_ic; 2974 u8 proto_hdr_len, hdr; 2975 u32 pay_len, mss; 2976 dma_addr_t des; 2977 int i; 2978 2979 tx_q = &priv->tx_queue[queue]; 2980 first_tx = tx_q->cur_tx; 2981 2982 /* Compute header lengths */ 2983 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 2984 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 2985 hdr = sizeof(struct udphdr); 2986 } else { 2987 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2988 hdr = tcp_hdrlen(skb); 2989 } 2990 2991 /* Desc availability based on threshold should be enough safe */ 2992 if (unlikely(stmmac_tx_avail(priv, queue) < 2993 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2994 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2995 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2996 queue)); 2997 /* This is a hard error, log it. */ 2998 netdev_err(priv->dev, 2999 "%s: Tx Ring full when queue awake\n", 3000 __func__); 3001 } 3002 return NETDEV_TX_BUSY; 3003 } 3004 3005 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3006 3007 mss = skb_shinfo(skb)->gso_size; 3008 3009 /* set new MSS value if needed */ 3010 if (mss != tx_q->mss) { 3011 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3012 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3013 else 3014 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3015 3016 stmmac_set_mss(priv, mss_desc, mss); 3017 tx_q->mss = mss; 3018 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 3019 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3020 } 3021 3022 if (netif_msg_tx_queued(priv)) { 3023 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 3024 __func__, hdr, proto_hdr_len, pay_len, mss); 3025 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 3026 skb->data_len); 3027 } 3028 3029 /* Check if VLAN can be inserted by HW */ 3030 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3031 3032 first_entry = tx_q->cur_tx; 3033 WARN_ON(tx_q->tx_skbuff[first_entry]); 3034 3035 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3036 desc = &tx_q->dma_entx[first_entry].basic; 3037 else 3038 desc = &tx_q->dma_tx[first_entry]; 3039 first = desc; 3040 3041 if (has_vlan) 3042 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 3043 3044 /* first descriptor: fill Headers on Buf1 */ 3045 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 3046 DMA_TO_DEVICE); 3047 if (dma_mapping_error(priv->device, des)) 3048 goto dma_map_err; 3049 3050 tx_q->tx_skbuff_dma[first_entry].buf = des; 3051 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 3052 3053 if (priv->dma_cap.addr64 <= 32) { 3054 first->des0 = cpu_to_le32(des); 3055 3056 /* Fill start of payload in buff2 of first descriptor */ 3057 if (pay_len) 3058 first->des1 = cpu_to_le32(des + proto_hdr_len); 3059 3060 /* If needed take extra descriptors to fill the remaining payload */ 3061 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 3062 } else { 3063 stmmac_set_desc_addr(priv, first, des); 3064 tmp_pay_len = pay_len; 3065 des += proto_hdr_len; 3066 pay_len = 0; 3067 } 3068 3069 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 3070 3071 /* Prepare fragments */ 3072 for (i = 0; i < nfrags; i++) { 3073 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3074 3075 des = skb_frag_dma_map(priv->device, frag, 0, 3076 skb_frag_size(frag), 3077 DMA_TO_DEVICE); 3078 if (dma_mapping_error(priv->device, des)) 3079 goto dma_map_err; 3080 3081 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 3082 (i == nfrags - 1), queue); 3083 3084 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 3085 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 3086 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 3087 } 3088 3089 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 3090 3091 /* Only the last descriptor gets to point to the skb. */ 3092 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 3093 3094 /* Manage tx mitigation */ 3095 tx_packets = (tx_q->cur_tx + 1) - first_tx; 3096 tx_q->tx_count_frames += tx_packets; 3097 3098 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 3099 set_ic = true; 3100 else if (!priv->tx_coal_frames) 3101 set_ic = false; 3102 else if (tx_packets > priv->tx_coal_frames) 3103 set_ic = true; 3104 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) 3105 set_ic = true; 3106 else 3107 set_ic = false; 3108 3109 if (set_ic) { 3110 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3111 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3112 else 3113 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3114 3115 tx_q->tx_count_frames = 0; 3116 stmmac_set_tx_ic(priv, desc); 3117 priv->xstats.tx_set_ic_bit++; 3118 } 3119 3120 /* We've used all descriptors we need for this skb, however, 3121 * advance cur_tx so that it references a fresh descriptor. 3122 * ndo_start_xmit will fill this descriptor the next time it's 3123 * called and stmmac_tx_clean may clean up to this descriptor. 3124 */ 3125 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 3126 3127 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3128 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3129 __func__); 3130 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3131 } 3132 3133 dev->stats.tx_bytes += skb->len; 3134 priv->xstats.tx_tso_frames++; 3135 priv->xstats.tx_tso_nfrags += nfrags; 3136 3137 if (priv->sarc_type) 3138 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 3139 3140 skb_tx_timestamp(skb); 3141 3142 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3143 priv->hwts_tx_en)) { 3144 /* declare that device is doing timestamping */ 3145 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3146 stmmac_enable_tx_timestamp(priv, first); 3147 } 3148 3149 /* Complete the first descriptor before granting the DMA */ 3150 stmmac_prepare_tso_tx_desc(priv, first, 1, 3151 proto_hdr_len, 3152 pay_len, 3153 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 3154 hdr / 4, (skb->len - proto_hdr_len)); 3155 3156 /* If context desc is used to change MSS */ 3157 if (mss_desc) { 3158 /* Make sure that first descriptor has been completely 3159 * written, including its own bit. This is because MSS is 3160 * actually before first descriptor, so we need to make 3161 * sure that MSS's own bit is the last thing written. 3162 */ 3163 dma_wmb(); 3164 stmmac_set_tx_owner(priv, mss_desc); 3165 } 3166 3167 /* The own bit must be the latest setting done when prepare the 3168 * descriptor and then barrier is needed to make sure that 3169 * all is coherent before granting the DMA engine. 3170 */ 3171 wmb(); 3172 3173 if (netif_msg_pktdata(priv)) { 3174 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 3175 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3176 tx_q->cur_tx, first, nfrags); 3177 pr_info(">>> frame to be transmitted: "); 3178 print_pkt(skb->data, skb_headlen(skb)); 3179 } 3180 3181 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3182 3183 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3184 desc_size = sizeof(struct dma_edesc); 3185 else 3186 desc_size = sizeof(struct dma_desc); 3187 3188 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3189 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3190 stmmac_tx_timer_arm(priv, queue); 3191 3192 return NETDEV_TX_OK; 3193 3194 dma_map_err: 3195 dev_err(priv->device, "Tx dma map failed\n"); 3196 dev_kfree_skb(skb); 3197 priv->dev->stats.tx_dropped++; 3198 return NETDEV_TX_OK; 3199 } 3200 3201 /** 3202 * stmmac_xmit - Tx entry point of the driver 3203 * @skb : the socket buffer 3204 * @dev : device pointer 3205 * Description : this is the tx entry point of the driver. 3206 * It programs the chain or the ring and supports oversized frames 3207 * and SG feature. 3208 */ 3209 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3210 { 3211 unsigned int first_entry, tx_packets, enh_desc; 3212 struct stmmac_priv *priv = netdev_priv(dev); 3213 unsigned int nopaged_len = skb_headlen(skb); 3214 int i, csum_insertion = 0, is_jumbo = 0; 3215 u32 queue = skb_get_queue_mapping(skb); 3216 int nfrags = skb_shinfo(skb)->nr_frags; 3217 int gso = skb_shinfo(skb)->gso_type; 3218 struct dma_edesc *tbs_desc = NULL; 3219 int entry, desc_size, first_tx; 3220 struct dma_desc *desc, *first; 3221 struct stmmac_tx_queue *tx_q; 3222 bool has_vlan, set_ic; 3223 dma_addr_t des; 3224 3225 tx_q = &priv->tx_queue[queue]; 3226 first_tx = tx_q->cur_tx; 3227 3228 if (priv->tx_path_in_lpi_mode) 3229 stmmac_disable_eee_mode(priv); 3230 3231 /* Manage oversized TCP frames for GMAC4 device */ 3232 if (skb_is_gso(skb) && priv->tso) { 3233 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 3234 return stmmac_tso_xmit(skb, dev); 3235 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 3236 return stmmac_tso_xmit(skb, dev); 3237 } 3238 3239 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3240 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3241 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3242 queue)); 3243 /* This is a hard error, log it. */ 3244 netdev_err(priv->dev, 3245 "%s: Tx Ring full when queue awake\n", 3246 __func__); 3247 } 3248 return NETDEV_TX_BUSY; 3249 } 3250 3251 /* Check if VLAN can be inserted by HW */ 3252 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3253 3254 entry = tx_q->cur_tx; 3255 first_entry = entry; 3256 WARN_ON(tx_q->tx_skbuff[first_entry]); 3257 3258 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3259 3260 if (likely(priv->extend_desc)) 3261 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3262 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3263 desc = &tx_q->dma_entx[entry].basic; 3264 else 3265 desc = tx_q->dma_tx + entry; 3266 3267 first = desc; 3268 3269 if (has_vlan) 3270 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 3271 3272 enh_desc = priv->plat->enh_desc; 3273 /* To program the descriptors according to the size of the frame */ 3274 if (enh_desc) 3275 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3276 3277 if (unlikely(is_jumbo)) { 3278 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3279 if (unlikely(entry < 0) && (entry != -EINVAL)) 3280 goto dma_map_err; 3281 } 3282 3283 for (i = 0; i < nfrags; i++) { 3284 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3285 int len = skb_frag_size(frag); 3286 bool last_segment = (i == (nfrags - 1)); 3287 3288 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3289 WARN_ON(tx_q->tx_skbuff[entry]); 3290 3291 if (likely(priv->extend_desc)) 3292 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3293 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3294 desc = &tx_q->dma_entx[entry].basic; 3295 else 3296 desc = tx_q->dma_tx + entry; 3297 3298 des = skb_frag_dma_map(priv->device, frag, 0, len, 3299 DMA_TO_DEVICE); 3300 if (dma_mapping_error(priv->device, des)) 3301 goto dma_map_err; /* should reuse desc w/o issues */ 3302 3303 tx_q->tx_skbuff_dma[entry].buf = des; 3304 3305 stmmac_set_desc_addr(priv, desc, des); 3306 3307 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3308 tx_q->tx_skbuff_dma[entry].len = len; 3309 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3310 3311 /* Prepare the descriptor and set the own bit too */ 3312 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3313 priv->mode, 1, last_segment, skb->len); 3314 } 3315 3316 /* Only the last descriptor gets to point to the skb. */ 3317 tx_q->tx_skbuff[entry] = skb; 3318 3319 /* According to the coalesce parameter the IC bit for the latest 3320 * segment is reset and the timer re-started to clean the tx status. 3321 * This approach takes care about the fragments: desc is the first 3322 * element in case of no SG. 3323 */ 3324 tx_packets = (entry + 1) - first_tx; 3325 tx_q->tx_count_frames += tx_packets; 3326 3327 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 3328 set_ic = true; 3329 else if (!priv->tx_coal_frames) 3330 set_ic = false; 3331 else if (tx_packets > priv->tx_coal_frames) 3332 set_ic = true; 3333 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) 3334 set_ic = true; 3335 else 3336 set_ic = false; 3337 3338 if (set_ic) { 3339 if (likely(priv->extend_desc)) 3340 desc = &tx_q->dma_etx[entry].basic; 3341 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3342 desc = &tx_q->dma_entx[entry].basic; 3343 else 3344 desc = &tx_q->dma_tx[entry]; 3345 3346 tx_q->tx_count_frames = 0; 3347 stmmac_set_tx_ic(priv, desc); 3348 priv->xstats.tx_set_ic_bit++; 3349 } 3350 3351 /* We've used all descriptors we need for this skb, however, 3352 * advance cur_tx so that it references a fresh descriptor. 3353 * ndo_start_xmit will fill this descriptor the next time it's 3354 * called and stmmac_tx_clean may clean up to this descriptor. 3355 */ 3356 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3357 tx_q->cur_tx = entry; 3358 3359 if (netif_msg_pktdata(priv)) { 3360 netdev_dbg(priv->dev, 3361 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3362 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3363 entry, first, nfrags); 3364 3365 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3366 print_pkt(skb->data, skb->len); 3367 } 3368 3369 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3370 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3371 __func__); 3372 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3373 } 3374 3375 dev->stats.tx_bytes += skb->len; 3376 3377 if (priv->sarc_type) 3378 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 3379 3380 skb_tx_timestamp(skb); 3381 3382 /* Ready to fill the first descriptor and set the OWN bit w/o any 3383 * problems because all the descriptors are actually ready to be 3384 * passed to the DMA engine. 3385 */ 3386 if (likely(!is_jumbo)) { 3387 bool last_segment = (nfrags == 0); 3388 3389 des = dma_map_single(priv->device, skb->data, 3390 nopaged_len, DMA_TO_DEVICE); 3391 if (dma_mapping_error(priv->device, des)) 3392 goto dma_map_err; 3393 3394 tx_q->tx_skbuff_dma[first_entry].buf = des; 3395 3396 stmmac_set_desc_addr(priv, first, des); 3397 3398 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3399 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3400 3401 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3402 priv->hwts_tx_en)) { 3403 /* declare that device is doing timestamping */ 3404 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3405 stmmac_enable_tx_timestamp(priv, first); 3406 } 3407 3408 /* Prepare the first descriptor setting the OWN bit too */ 3409 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3410 csum_insertion, priv->mode, 0, last_segment, 3411 skb->len); 3412 } 3413 3414 if (tx_q->tbs & STMMAC_TBS_EN) { 3415 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 3416 3417 tbs_desc = &tx_q->dma_entx[first_entry]; 3418 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 3419 } 3420 3421 stmmac_set_tx_owner(priv, first); 3422 3423 /* The own bit must be the latest setting done when prepare the 3424 * descriptor and then barrier is needed to make sure that 3425 * all is coherent before granting the DMA engine. 3426 */ 3427 wmb(); 3428 3429 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3430 3431 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3432 3433 if (likely(priv->extend_desc)) 3434 desc_size = sizeof(struct dma_extended_desc); 3435 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3436 desc_size = sizeof(struct dma_edesc); 3437 else 3438 desc_size = sizeof(struct dma_desc); 3439 3440 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3441 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3442 stmmac_tx_timer_arm(priv, queue); 3443 3444 return NETDEV_TX_OK; 3445 3446 dma_map_err: 3447 netdev_err(priv->dev, "Tx DMA map failed\n"); 3448 dev_kfree_skb(skb); 3449 priv->dev->stats.tx_dropped++; 3450 return NETDEV_TX_OK; 3451 } 3452 3453 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3454 { 3455 struct vlan_ethhdr *veth; 3456 __be16 vlan_proto; 3457 u16 vlanid; 3458 3459 veth = (struct vlan_ethhdr *)skb->data; 3460 vlan_proto = veth->h_vlan_proto; 3461 3462 if ((vlan_proto == htons(ETH_P_8021Q) && 3463 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3464 (vlan_proto == htons(ETH_P_8021AD) && 3465 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3466 /* pop the vlan tag */ 3467 vlanid = ntohs(veth->h_vlan_TCI); 3468 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3469 skb_pull(skb, VLAN_HLEN); 3470 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3471 } 3472 } 3473 3474 3475 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3476 { 3477 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3478 return 0; 3479 3480 return 1; 3481 } 3482 3483 /** 3484 * stmmac_rx_refill - refill used skb preallocated buffers 3485 * @priv: driver private structure 3486 * @queue: RX queue index 3487 * Description : this is to reallocate the skb for the reception process 3488 * that is based on zero-copy. 3489 */ 3490 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3491 { 3492 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3493 int len, dirty = stmmac_rx_dirty(priv, queue); 3494 unsigned int entry = rx_q->dirty_rx; 3495 3496 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 3497 3498 while (dirty-- > 0) { 3499 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 3500 struct dma_desc *p; 3501 bool use_rx_wd; 3502 3503 if (priv->extend_desc) 3504 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3505 else 3506 p = rx_q->dma_rx + entry; 3507 3508 if (!buf->page) { 3509 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 3510 if (!buf->page) 3511 break; 3512 } 3513 3514 if (priv->sph && !buf->sec_page) { 3515 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 3516 if (!buf->sec_page) 3517 break; 3518 3519 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 3520 3521 dma_sync_single_for_device(priv->device, buf->sec_addr, 3522 len, DMA_FROM_DEVICE); 3523 } 3524 3525 buf->addr = page_pool_get_dma_addr(buf->page); 3526 3527 /* Sync whole allocation to device. This will invalidate old 3528 * data. 3529 */ 3530 dma_sync_single_for_device(priv->device, buf->addr, len, 3531 DMA_FROM_DEVICE); 3532 3533 stmmac_set_desc_addr(priv, p, buf->addr); 3534 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); 3535 stmmac_refill_desc3(priv, rx_q, p); 3536 3537 rx_q->rx_count_frames++; 3538 rx_q->rx_count_frames += priv->rx_coal_frames; 3539 if (rx_q->rx_count_frames > priv->rx_coal_frames) 3540 rx_q->rx_count_frames = 0; 3541 3542 use_rx_wd = !priv->rx_coal_frames; 3543 use_rx_wd |= rx_q->rx_count_frames > 0; 3544 if (!priv->use_riwt) 3545 use_rx_wd = false; 3546 3547 dma_wmb(); 3548 stmmac_set_rx_owner(priv, p, use_rx_wd); 3549 3550 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3551 } 3552 rx_q->dirty_rx = entry; 3553 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 3554 (rx_q->dirty_rx * sizeof(struct dma_desc)); 3555 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 3556 } 3557 3558 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 3559 struct dma_desc *p, 3560 int status, unsigned int len) 3561 { 3562 int ret, coe = priv->hw->rx_csum; 3563 unsigned int plen = 0, hlen = 0; 3564 3565 /* Not first descriptor, buffer is always zero */ 3566 if (priv->sph && len) 3567 return 0; 3568 3569 /* First descriptor, get split header length */ 3570 ret = stmmac_get_rx_header_len(priv, p, &hlen); 3571 if (priv->sph && hlen) { 3572 priv->xstats.rx_split_hdr_pkt_n++; 3573 return hlen; 3574 } 3575 3576 /* First descriptor, not last descriptor and not split header */ 3577 if (status & rx_not_ls) 3578 return priv->dma_buf_sz; 3579 3580 plen = stmmac_get_rx_frame_len(priv, p, coe); 3581 3582 /* First descriptor and last descriptor and not split header */ 3583 return min_t(unsigned int, priv->dma_buf_sz, plen); 3584 } 3585 3586 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 3587 struct dma_desc *p, 3588 int status, unsigned int len) 3589 { 3590 int coe = priv->hw->rx_csum; 3591 unsigned int plen = 0; 3592 3593 /* Not split header, buffer is not available */ 3594 if (!priv->sph) 3595 return 0; 3596 3597 /* Not last descriptor */ 3598 if (status & rx_not_ls) 3599 return priv->dma_buf_sz; 3600 3601 plen = stmmac_get_rx_frame_len(priv, p, coe); 3602 3603 /* Last descriptor */ 3604 return plen - len; 3605 } 3606 3607 /** 3608 * stmmac_rx - manage the receive process 3609 * @priv: driver private structure 3610 * @limit: napi bugget 3611 * @queue: RX queue index. 3612 * Description : this the function called by the napi poll method. 3613 * It gets all the frames inside the ring. 3614 */ 3615 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3616 { 3617 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3618 struct stmmac_channel *ch = &priv->channel[queue]; 3619 unsigned int count = 0, error = 0, len = 0; 3620 int status = 0, coe = priv->hw->rx_csum; 3621 unsigned int next_entry = rx_q->cur_rx; 3622 struct sk_buff *skb = NULL; 3623 3624 if (netif_msg_rx_status(priv)) { 3625 void *rx_head; 3626 3627 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3628 if (priv->extend_desc) 3629 rx_head = (void *)rx_q->dma_erx; 3630 else 3631 rx_head = (void *)rx_q->dma_rx; 3632 3633 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3634 } 3635 while (count < limit) { 3636 unsigned int buf1_len = 0, buf2_len = 0; 3637 enum pkt_hash_types hash_type; 3638 struct stmmac_rx_buffer *buf; 3639 struct dma_desc *np, *p; 3640 int entry; 3641 u32 hash; 3642 3643 if (!count && rx_q->state_saved) { 3644 skb = rx_q->state.skb; 3645 error = rx_q->state.error; 3646 len = rx_q->state.len; 3647 } else { 3648 rx_q->state_saved = false; 3649 skb = NULL; 3650 error = 0; 3651 len = 0; 3652 } 3653 3654 if (count >= limit) 3655 break; 3656 3657 read_again: 3658 buf1_len = 0; 3659 buf2_len = 0; 3660 entry = next_entry; 3661 buf = &rx_q->buf_pool[entry]; 3662 3663 if (priv->extend_desc) 3664 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3665 else 3666 p = rx_q->dma_rx + entry; 3667 3668 /* read the status of the incoming frame */ 3669 status = stmmac_rx_status(priv, &priv->dev->stats, 3670 &priv->xstats, p); 3671 /* check if managed by the DMA otherwise go ahead */ 3672 if (unlikely(status & dma_own)) 3673 break; 3674 3675 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3676 next_entry = rx_q->cur_rx; 3677 3678 if (priv->extend_desc) 3679 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3680 else 3681 np = rx_q->dma_rx + next_entry; 3682 3683 prefetch(np); 3684 3685 if (priv->extend_desc) 3686 stmmac_rx_extended_status(priv, &priv->dev->stats, 3687 &priv->xstats, rx_q->dma_erx + entry); 3688 if (unlikely(status == discard_frame)) { 3689 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3690 buf->page = NULL; 3691 error = 1; 3692 if (!priv->hwts_rx_en) 3693 priv->dev->stats.rx_errors++; 3694 } 3695 3696 if (unlikely(error && (status & rx_not_ls))) 3697 goto read_again; 3698 if (unlikely(error)) { 3699 dev_kfree_skb(skb); 3700 skb = NULL; 3701 count++; 3702 continue; 3703 } 3704 3705 /* Buffer is good. Go on. */ 3706 3707 prefetch(page_address(buf->page)); 3708 if (buf->sec_page) 3709 prefetch(page_address(buf->sec_page)); 3710 3711 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 3712 len += buf1_len; 3713 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 3714 len += buf2_len; 3715 3716 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3717 * Type frames (LLC/LLC-SNAP) 3718 * 3719 * llc_snap is never checked in GMAC >= 4, so this ACS 3720 * feature is always disabled and packets need to be 3721 * stripped manually. 3722 */ 3723 if (likely(!(status & rx_not_ls)) && 3724 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3725 unlikely(status != llc_snap))) { 3726 if (buf2_len) 3727 buf2_len -= ETH_FCS_LEN; 3728 else 3729 buf1_len -= ETH_FCS_LEN; 3730 3731 len -= ETH_FCS_LEN; 3732 } 3733 3734 if (!skb) { 3735 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 3736 if (!skb) { 3737 priv->dev->stats.rx_dropped++; 3738 count++; 3739 goto drain_data; 3740 } 3741 3742 dma_sync_single_for_cpu(priv->device, buf->addr, 3743 buf1_len, DMA_FROM_DEVICE); 3744 skb_copy_to_linear_data(skb, page_address(buf->page), 3745 buf1_len); 3746 skb_put(skb, buf1_len); 3747 3748 /* Data payload copied into SKB, page ready for recycle */ 3749 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3750 buf->page = NULL; 3751 } else if (buf1_len) { 3752 dma_sync_single_for_cpu(priv->device, buf->addr, 3753 buf1_len, DMA_FROM_DEVICE); 3754 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 3755 buf->page, 0, buf1_len, 3756 priv->dma_buf_sz); 3757 3758 /* Data payload appended into SKB */ 3759 page_pool_release_page(rx_q->page_pool, buf->page); 3760 buf->page = NULL; 3761 } 3762 3763 if (buf2_len) { 3764 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 3765 buf2_len, DMA_FROM_DEVICE); 3766 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 3767 buf->sec_page, 0, buf2_len, 3768 priv->dma_buf_sz); 3769 3770 /* Data payload appended into SKB */ 3771 page_pool_release_page(rx_q->page_pool, buf->sec_page); 3772 buf->sec_page = NULL; 3773 } 3774 3775 drain_data: 3776 if (likely(status & rx_not_ls)) 3777 goto read_again; 3778 if (!skb) 3779 continue; 3780 3781 /* Got entire packet into SKB. Finish it. */ 3782 3783 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3784 stmmac_rx_vlan(priv->dev, skb); 3785 skb->protocol = eth_type_trans(skb, priv->dev); 3786 3787 if (unlikely(!coe)) 3788 skb_checksum_none_assert(skb); 3789 else 3790 skb->ip_summed = CHECKSUM_UNNECESSARY; 3791 3792 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 3793 skb_set_hash(skb, hash, hash_type); 3794 3795 skb_record_rx_queue(skb, queue); 3796 napi_gro_receive(&ch->rx_napi, skb); 3797 skb = NULL; 3798 3799 priv->dev->stats.rx_packets++; 3800 priv->dev->stats.rx_bytes += len; 3801 count++; 3802 } 3803 3804 if (status & rx_not_ls || skb) { 3805 rx_q->state_saved = true; 3806 rx_q->state.skb = skb; 3807 rx_q->state.error = error; 3808 rx_q->state.len = len; 3809 } 3810 3811 stmmac_rx_refill(priv, queue); 3812 3813 priv->xstats.rx_pkt_n += count; 3814 3815 return count; 3816 } 3817 3818 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 3819 { 3820 struct stmmac_channel *ch = 3821 container_of(napi, struct stmmac_channel, rx_napi); 3822 struct stmmac_priv *priv = ch->priv_data; 3823 u32 chan = ch->index; 3824 int work_done; 3825 3826 priv->xstats.napi_poll++; 3827 3828 work_done = stmmac_rx(priv, budget, chan); 3829 if (work_done < budget && napi_complete_done(napi, work_done)) { 3830 unsigned long flags; 3831 3832 spin_lock_irqsave(&ch->lock, flags); 3833 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 3834 spin_unlock_irqrestore(&ch->lock, flags); 3835 } 3836 3837 return work_done; 3838 } 3839 3840 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 3841 { 3842 struct stmmac_channel *ch = 3843 container_of(napi, struct stmmac_channel, tx_napi); 3844 struct stmmac_priv *priv = ch->priv_data; 3845 u32 chan = ch->index; 3846 int work_done; 3847 3848 priv->xstats.napi_poll++; 3849 3850 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan); 3851 work_done = min(work_done, budget); 3852 3853 if (work_done < budget && napi_complete_done(napi, work_done)) { 3854 unsigned long flags; 3855 3856 spin_lock_irqsave(&ch->lock, flags); 3857 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 3858 spin_unlock_irqrestore(&ch->lock, flags); 3859 } 3860 3861 return work_done; 3862 } 3863 3864 /** 3865 * stmmac_tx_timeout 3866 * @dev : Pointer to net device structure 3867 * Description: this function is called when a packet transmission fails to 3868 * complete within a reasonable time. The driver will mark the error in the 3869 * netdev structure and arrange for the device to be reset to a sane state 3870 * in order to transmit a new packet. 3871 */ 3872 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 3873 { 3874 struct stmmac_priv *priv = netdev_priv(dev); 3875 3876 stmmac_global_err(priv); 3877 } 3878 3879 /** 3880 * stmmac_set_rx_mode - entry point for multicast addressing 3881 * @dev : pointer to the device structure 3882 * Description: 3883 * This function is a driver entry point which gets called by the kernel 3884 * whenever multicast addresses must be enabled/disabled. 3885 * Return value: 3886 * void. 3887 */ 3888 static void stmmac_set_rx_mode(struct net_device *dev) 3889 { 3890 struct stmmac_priv *priv = netdev_priv(dev); 3891 3892 stmmac_set_filter(priv, priv->hw, dev); 3893 } 3894 3895 /** 3896 * stmmac_change_mtu - entry point to change MTU size for the device. 3897 * @dev : device pointer. 3898 * @new_mtu : the new MTU size for the device. 3899 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3900 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3901 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3902 * Return value: 3903 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3904 * file on failure. 3905 */ 3906 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3907 { 3908 struct stmmac_priv *priv = netdev_priv(dev); 3909 int txfifosz = priv->plat->tx_fifo_size; 3910 3911 if (txfifosz == 0) 3912 txfifosz = priv->dma_cap.tx_fifo_size; 3913 3914 txfifosz /= priv->plat->tx_queues_to_use; 3915 3916 if (netif_running(dev)) { 3917 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3918 return -EBUSY; 3919 } 3920 3921 new_mtu = STMMAC_ALIGN(new_mtu); 3922 3923 /* If condition true, FIFO is too small or MTU too large */ 3924 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 3925 return -EINVAL; 3926 3927 dev->mtu = new_mtu; 3928 3929 netdev_update_features(dev); 3930 3931 return 0; 3932 } 3933 3934 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3935 netdev_features_t features) 3936 { 3937 struct stmmac_priv *priv = netdev_priv(dev); 3938 3939 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3940 features &= ~NETIF_F_RXCSUM; 3941 3942 if (!priv->plat->tx_coe) 3943 features &= ~NETIF_F_CSUM_MASK; 3944 3945 /* Some GMAC devices have a bugged Jumbo frame support that 3946 * needs to have the Tx COE disabled for oversized frames 3947 * (due to limited buffer sizes). In this case we disable 3948 * the TX csum insertion in the TDES and not use SF. 3949 */ 3950 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3951 features &= ~NETIF_F_CSUM_MASK; 3952 3953 /* Disable tso if asked by ethtool */ 3954 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3955 if (features & NETIF_F_TSO) 3956 priv->tso = true; 3957 else 3958 priv->tso = false; 3959 } 3960 3961 return features; 3962 } 3963 3964 static int stmmac_set_features(struct net_device *netdev, 3965 netdev_features_t features) 3966 { 3967 struct stmmac_priv *priv = netdev_priv(netdev); 3968 bool sph_en; 3969 u32 chan; 3970 3971 /* Keep the COE Type in case of csum is supporting */ 3972 if (features & NETIF_F_RXCSUM) 3973 priv->hw->rx_csum = priv->plat->rx_coe; 3974 else 3975 priv->hw->rx_csum = 0; 3976 /* No check needed because rx_coe has been set before and it will be 3977 * fixed in case of issue. 3978 */ 3979 stmmac_rx_ipc(priv, priv->hw); 3980 3981 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3982 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 3983 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3984 3985 return 0; 3986 } 3987 3988 /** 3989 * stmmac_interrupt - main ISR 3990 * @irq: interrupt number. 3991 * @dev_id: to pass the net device pointer. 3992 * Description: this is the main driver interrupt service routine. 3993 * It can call: 3994 * o DMA service routine (to manage incoming frame reception and transmission 3995 * status) 3996 * o Core interrupts to manage: remote wake-up, management counter, LPI 3997 * interrupts. 3998 */ 3999 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 4000 { 4001 struct net_device *dev = (struct net_device *)dev_id; 4002 struct stmmac_priv *priv = netdev_priv(dev); 4003 u32 rx_cnt = priv->plat->rx_queues_to_use; 4004 u32 tx_cnt = priv->plat->tx_queues_to_use; 4005 u32 queues_count; 4006 u32 queue; 4007 bool xmac; 4008 4009 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 4010 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 4011 4012 if (priv->irq_wake) 4013 pm_wakeup_event(priv->device, 0); 4014 4015 if (unlikely(!dev)) { 4016 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 4017 return IRQ_NONE; 4018 } 4019 4020 /* Check if adapter is up */ 4021 if (test_bit(STMMAC_DOWN, &priv->state)) 4022 return IRQ_HANDLED; 4023 /* Check if a fatal error happened */ 4024 if (stmmac_safety_feat_interrupt(priv)) 4025 return IRQ_HANDLED; 4026 4027 /* To handle GMAC own interrupts */ 4028 if ((priv->plat->has_gmac) || xmac) { 4029 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 4030 int mtl_status; 4031 4032 if (unlikely(status)) { 4033 /* For LPI we need to save the tx status */ 4034 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 4035 priv->tx_path_in_lpi_mode = true; 4036 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 4037 priv->tx_path_in_lpi_mode = false; 4038 } 4039 4040 for (queue = 0; queue < queues_count; queue++) { 4041 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4042 4043 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 4044 queue); 4045 if (mtl_status != -EINVAL) 4046 status |= mtl_status; 4047 4048 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 4049 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 4050 rx_q->rx_tail_addr, 4051 queue); 4052 } 4053 4054 /* PCS link status */ 4055 if (priv->hw->pcs) { 4056 if (priv->xstats.pcs_link) 4057 netif_carrier_on(dev); 4058 else 4059 netif_carrier_off(dev); 4060 } 4061 } 4062 4063 /* To handle DMA interrupts */ 4064 stmmac_dma_interrupt(priv); 4065 4066 return IRQ_HANDLED; 4067 } 4068 4069 #ifdef CONFIG_NET_POLL_CONTROLLER 4070 /* Polling receive - used by NETCONSOLE and other diagnostic tools 4071 * to allow network I/O with interrupts disabled. 4072 */ 4073 static void stmmac_poll_controller(struct net_device *dev) 4074 { 4075 disable_irq(dev->irq); 4076 stmmac_interrupt(dev->irq, dev); 4077 enable_irq(dev->irq); 4078 } 4079 #endif 4080 4081 /** 4082 * stmmac_ioctl - Entry point for the Ioctl 4083 * @dev: Device pointer. 4084 * @rq: An IOCTL specefic structure, that can contain a pointer to 4085 * a proprietary structure used to pass information to the driver. 4086 * @cmd: IOCTL command 4087 * Description: 4088 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 4089 */ 4090 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 4091 { 4092 struct stmmac_priv *priv = netdev_priv (dev); 4093 int ret = -EOPNOTSUPP; 4094 4095 if (!netif_running(dev)) 4096 return -EINVAL; 4097 4098 switch (cmd) { 4099 case SIOCGMIIPHY: 4100 case SIOCGMIIREG: 4101 case SIOCSMIIREG: 4102 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 4103 break; 4104 case SIOCSHWTSTAMP: 4105 ret = stmmac_hwtstamp_set(dev, rq); 4106 break; 4107 case SIOCGHWTSTAMP: 4108 ret = stmmac_hwtstamp_get(dev, rq); 4109 break; 4110 default: 4111 break; 4112 } 4113 4114 return ret; 4115 } 4116 4117 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4118 void *cb_priv) 4119 { 4120 struct stmmac_priv *priv = cb_priv; 4121 int ret = -EOPNOTSUPP; 4122 4123 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 4124 return ret; 4125 4126 stmmac_disable_all_queues(priv); 4127 4128 switch (type) { 4129 case TC_SETUP_CLSU32: 4130 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 4131 break; 4132 case TC_SETUP_CLSFLOWER: 4133 ret = stmmac_tc_setup_cls(priv, priv, type_data); 4134 break; 4135 default: 4136 break; 4137 } 4138 4139 stmmac_enable_all_queues(priv); 4140 return ret; 4141 } 4142 4143 static LIST_HEAD(stmmac_block_cb_list); 4144 4145 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 4146 void *type_data) 4147 { 4148 struct stmmac_priv *priv = netdev_priv(ndev); 4149 4150 switch (type) { 4151 case TC_SETUP_BLOCK: 4152 return flow_block_cb_setup_simple(type_data, 4153 &stmmac_block_cb_list, 4154 stmmac_setup_tc_block_cb, 4155 priv, priv, true); 4156 case TC_SETUP_QDISC_CBS: 4157 return stmmac_tc_setup_cbs(priv, priv, type_data); 4158 case TC_SETUP_QDISC_TAPRIO: 4159 return stmmac_tc_setup_taprio(priv, priv, type_data); 4160 case TC_SETUP_QDISC_ETF: 4161 return stmmac_tc_setup_etf(priv, priv, type_data); 4162 default: 4163 return -EOPNOTSUPP; 4164 } 4165 } 4166 4167 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 4168 struct net_device *sb_dev) 4169 { 4170 int gso = skb_shinfo(skb)->gso_type; 4171 4172 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 4173 /* 4174 * There is no way to determine the number of TSO/USO 4175 * capable Queues. Let's use always the Queue 0 4176 * because if TSO/USO is supported then at least this 4177 * one will be capable. 4178 */ 4179 return 0; 4180 } 4181 4182 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 4183 } 4184 4185 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 4186 { 4187 struct stmmac_priv *priv = netdev_priv(ndev); 4188 int ret = 0; 4189 4190 ret = eth_mac_addr(ndev, addr); 4191 if (ret) 4192 return ret; 4193 4194 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 4195 4196 return ret; 4197 } 4198 4199 #ifdef CONFIG_DEBUG_FS 4200 static struct dentry *stmmac_fs_dir; 4201 4202 static void sysfs_display_ring(void *head, int size, int extend_desc, 4203 struct seq_file *seq) 4204 { 4205 int i; 4206 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 4207 struct dma_desc *p = (struct dma_desc *)head; 4208 4209 for (i = 0; i < size; i++) { 4210 if (extend_desc) { 4211 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 4212 i, (unsigned int)virt_to_phys(ep), 4213 le32_to_cpu(ep->basic.des0), 4214 le32_to_cpu(ep->basic.des1), 4215 le32_to_cpu(ep->basic.des2), 4216 le32_to_cpu(ep->basic.des3)); 4217 ep++; 4218 } else { 4219 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 4220 i, (unsigned int)virt_to_phys(p), 4221 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 4222 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 4223 p++; 4224 } 4225 seq_printf(seq, "\n"); 4226 } 4227 } 4228 4229 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 4230 { 4231 struct net_device *dev = seq->private; 4232 struct stmmac_priv *priv = netdev_priv(dev); 4233 u32 rx_count = priv->plat->rx_queues_to_use; 4234 u32 tx_count = priv->plat->tx_queues_to_use; 4235 u32 queue; 4236 4237 if ((dev->flags & IFF_UP) == 0) 4238 return 0; 4239 4240 for (queue = 0; queue < rx_count; queue++) { 4241 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4242 4243 seq_printf(seq, "RX Queue %d:\n", queue); 4244 4245 if (priv->extend_desc) { 4246 seq_printf(seq, "Extended descriptor ring:\n"); 4247 sysfs_display_ring((void *)rx_q->dma_erx, 4248 DMA_RX_SIZE, 1, seq); 4249 } else { 4250 seq_printf(seq, "Descriptor ring:\n"); 4251 sysfs_display_ring((void *)rx_q->dma_rx, 4252 DMA_RX_SIZE, 0, seq); 4253 } 4254 } 4255 4256 for (queue = 0; queue < tx_count; queue++) { 4257 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4258 4259 seq_printf(seq, "TX Queue %d:\n", queue); 4260 4261 if (priv->extend_desc) { 4262 seq_printf(seq, "Extended descriptor ring:\n"); 4263 sysfs_display_ring((void *)tx_q->dma_etx, 4264 DMA_TX_SIZE, 1, seq); 4265 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 4266 seq_printf(seq, "Descriptor ring:\n"); 4267 sysfs_display_ring((void *)tx_q->dma_tx, 4268 DMA_TX_SIZE, 0, seq); 4269 } 4270 } 4271 4272 return 0; 4273 } 4274 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 4275 4276 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 4277 { 4278 struct net_device *dev = seq->private; 4279 struct stmmac_priv *priv = netdev_priv(dev); 4280 4281 if (!priv->hw_cap_support) { 4282 seq_printf(seq, "DMA HW features not supported\n"); 4283 return 0; 4284 } 4285 4286 seq_printf(seq, "==============================\n"); 4287 seq_printf(seq, "\tDMA HW features\n"); 4288 seq_printf(seq, "==============================\n"); 4289 4290 seq_printf(seq, "\t10/100 Mbps: %s\n", 4291 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 4292 seq_printf(seq, "\t1000 Mbps: %s\n", 4293 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 4294 seq_printf(seq, "\tHalf duplex: %s\n", 4295 (priv->dma_cap.half_duplex) ? "Y" : "N"); 4296 seq_printf(seq, "\tHash Filter: %s\n", 4297 (priv->dma_cap.hash_filter) ? "Y" : "N"); 4298 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 4299 (priv->dma_cap.multi_addr) ? "Y" : "N"); 4300 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 4301 (priv->dma_cap.pcs) ? "Y" : "N"); 4302 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 4303 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 4304 seq_printf(seq, "\tPMT Remote wake up: %s\n", 4305 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 4306 seq_printf(seq, "\tPMT Magic Frame: %s\n", 4307 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 4308 seq_printf(seq, "\tRMON module: %s\n", 4309 (priv->dma_cap.rmon) ? "Y" : "N"); 4310 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 4311 (priv->dma_cap.time_stamp) ? "Y" : "N"); 4312 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 4313 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 4314 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 4315 (priv->dma_cap.eee) ? "Y" : "N"); 4316 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 4317 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 4318 (priv->dma_cap.tx_coe) ? "Y" : "N"); 4319 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 4320 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 4321 (priv->dma_cap.rx_coe) ? "Y" : "N"); 4322 } else { 4323 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 4324 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 4325 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 4326 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 4327 } 4328 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 4329 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 4330 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 4331 priv->dma_cap.number_rx_channel); 4332 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 4333 priv->dma_cap.number_tx_channel); 4334 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 4335 priv->dma_cap.number_rx_queues); 4336 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 4337 priv->dma_cap.number_tx_queues); 4338 seq_printf(seq, "\tEnhanced descriptors: %s\n", 4339 (priv->dma_cap.enh_desc) ? "Y" : "N"); 4340 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 4341 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 4342 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 4343 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 4344 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 4345 priv->dma_cap.pps_out_num); 4346 seq_printf(seq, "\tSafety Features: %s\n", 4347 priv->dma_cap.asp ? "Y" : "N"); 4348 seq_printf(seq, "\tFlexible RX Parser: %s\n", 4349 priv->dma_cap.frpsel ? "Y" : "N"); 4350 seq_printf(seq, "\tEnhanced Addressing: %d\n", 4351 priv->dma_cap.addr64); 4352 seq_printf(seq, "\tReceive Side Scaling: %s\n", 4353 priv->dma_cap.rssen ? "Y" : "N"); 4354 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 4355 priv->dma_cap.vlhash ? "Y" : "N"); 4356 seq_printf(seq, "\tSplit Header: %s\n", 4357 priv->dma_cap.sphen ? "Y" : "N"); 4358 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 4359 priv->dma_cap.vlins ? "Y" : "N"); 4360 seq_printf(seq, "\tDouble VLAN: %s\n", 4361 priv->dma_cap.dvlan ? "Y" : "N"); 4362 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 4363 priv->dma_cap.l3l4fnum); 4364 seq_printf(seq, "\tARP Offloading: %s\n", 4365 priv->dma_cap.arpoffsel ? "Y" : "N"); 4366 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 4367 priv->dma_cap.estsel ? "Y" : "N"); 4368 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 4369 priv->dma_cap.fpesel ? "Y" : "N"); 4370 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 4371 priv->dma_cap.tbssel ? "Y" : "N"); 4372 return 0; 4373 } 4374 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 4375 4376 /* Use network device events to rename debugfs file entries. 4377 */ 4378 static int stmmac_device_event(struct notifier_block *unused, 4379 unsigned long event, void *ptr) 4380 { 4381 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4382 struct stmmac_priv *priv = netdev_priv(dev); 4383 4384 if (dev->netdev_ops != &stmmac_netdev_ops) 4385 goto done; 4386 4387 switch (event) { 4388 case NETDEV_CHANGENAME: 4389 if (priv->dbgfs_dir) 4390 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 4391 priv->dbgfs_dir, 4392 stmmac_fs_dir, 4393 dev->name); 4394 break; 4395 } 4396 done: 4397 return NOTIFY_DONE; 4398 } 4399 4400 static struct notifier_block stmmac_notifier = { 4401 .notifier_call = stmmac_device_event, 4402 }; 4403 4404 static void stmmac_init_fs(struct net_device *dev) 4405 { 4406 struct stmmac_priv *priv = netdev_priv(dev); 4407 4408 /* Create per netdev entries */ 4409 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 4410 4411 /* Entry to report DMA RX/TX rings */ 4412 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 4413 &stmmac_rings_status_fops); 4414 4415 /* Entry to report the DMA HW features */ 4416 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 4417 &stmmac_dma_cap_fops); 4418 4419 register_netdevice_notifier(&stmmac_notifier); 4420 } 4421 4422 static void stmmac_exit_fs(struct net_device *dev) 4423 { 4424 struct stmmac_priv *priv = netdev_priv(dev); 4425 4426 unregister_netdevice_notifier(&stmmac_notifier); 4427 debugfs_remove_recursive(priv->dbgfs_dir); 4428 } 4429 #endif /* CONFIG_DEBUG_FS */ 4430 4431 static u32 stmmac_vid_crc32_le(__le16 vid_le) 4432 { 4433 unsigned char *data = (unsigned char *)&vid_le; 4434 unsigned char data_byte = 0; 4435 u32 crc = ~0x0; 4436 u32 temp = 0; 4437 int i, bits; 4438 4439 bits = get_bitmask_order(VLAN_VID_MASK); 4440 for (i = 0; i < bits; i++) { 4441 if ((i % 8) == 0) 4442 data_byte = data[i / 8]; 4443 4444 temp = ((crc & 1) ^ data_byte) & 1; 4445 crc >>= 1; 4446 data_byte >>= 1; 4447 4448 if (temp) 4449 crc ^= 0xedb88320; 4450 } 4451 4452 return crc; 4453 } 4454 4455 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 4456 { 4457 u32 crc, hash = 0; 4458 __le16 pmatch = 0; 4459 int count = 0; 4460 u16 vid = 0; 4461 4462 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 4463 __le16 vid_le = cpu_to_le16(vid); 4464 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 4465 hash |= (1 << crc); 4466 count++; 4467 } 4468 4469 if (!priv->dma_cap.vlhash) { 4470 if (count > 2) /* VID = 0 always passes filter */ 4471 return -EOPNOTSUPP; 4472 4473 pmatch = cpu_to_le16(vid); 4474 hash = 0; 4475 } 4476 4477 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 4478 } 4479 4480 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 4481 { 4482 struct stmmac_priv *priv = netdev_priv(ndev); 4483 bool is_double = false; 4484 int ret; 4485 4486 if (be16_to_cpu(proto) == ETH_P_8021AD) 4487 is_double = true; 4488 4489 set_bit(vid, priv->active_vlans); 4490 ret = stmmac_vlan_update(priv, is_double); 4491 if (ret) { 4492 clear_bit(vid, priv->active_vlans); 4493 return ret; 4494 } 4495 4496 return ret; 4497 } 4498 4499 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 4500 { 4501 struct stmmac_priv *priv = netdev_priv(ndev); 4502 bool is_double = false; 4503 4504 if (be16_to_cpu(proto) == ETH_P_8021AD) 4505 is_double = true; 4506 4507 clear_bit(vid, priv->active_vlans); 4508 return stmmac_vlan_update(priv, is_double); 4509 } 4510 4511 static const struct net_device_ops stmmac_netdev_ops = { 4512 .ndo_open = stmmac_open, 4513 .ndo_start_xmit = stmmac_xmit, 4514 .ndo_stop = stmmac_release, 4515 .ndo_change_mtu = stmmac_change_mtu, 4516 .ndo_fix_features = stmmac_fix_features, 4517 .ndo_set_features = stmmac_set_features, 4518 .ndo_set_rx_mode = stmmac_set_rx_mode, 4519 .ndo_tx_timeout = stmmac_tx_timeout, 4520 .ndo_do_ioctl = stmmac_ioctl, 4521 .ndo_setup_tc = stmmac_setup_tc, 4522 .ndo_select_queue = stmmac_select_queue, 4523 #ifdef CONFIG_NET_POLL_CONTROLLER 4524 .ndo_poll_controller = stmmac_poll_controller, 4525 #endif 4526 .ndo_set_mac_address = stmmac_set_mac_address, 4527 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 4528 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 4529 }; 4530 4531 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4532 { 4533 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4534 return; 4535 if (test_bit(STMMAC_DOWN, &priv->state)) 4536 return; 4537 4538 netdev_err(priv->dev, "Reset adapter.\n"); 4539 4540 rtnl_lock(); 4541 netif_trans_update(priv->dev); 4542 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4543 usleep_range(1000, 2000); 4544 4545 set_bit(STMMAC_DOWN, &priv->state); 4546 dev_close(priv->dev); 4547 dev_open(priv->dev, NULL); 4548 clear_bit(STMMAC_DOWN, &priv->state); 4549 clear_bit(STMMAC_RESETING, &priv->state); 4550 rtnl_unlock(); 4551 } 4552 4553 static void stmmac_service_task(struct work_struct *work) 4554 { 4555 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4556 service_task); 4557 4558 stmmac_reset_subtask(priv); 4559 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4560 } 4561 4562 /** 4563 * stmmac_hw_init - Init the MAC device 4564 * @priv: driver private structure 4565 * Description: this function is to configure the MAC device according to 4566 * some platform parameters or the HW capability register. It prepares the 4567 * driver to use either ring or chain modes and to setup either enhanced or 4568 * normal descriptors. 4569 */ 4570 static int stmmac_hw_init(struct stmmac_priv *priv) 4571 { 4572 int ret; 4573 4574 /* dwmac-sun8i only work in chain mode */ 4575 if (priv->plat->has_sun8i) 4576 chain_mode = 1; 4577 priv->chain_mode = chain_mode; 4578 4579 /* Initialize HW Interface */ 4580 ret = stmmac_hwif_init(priv); 4581 if (ret) 4582 return ret; 4583 4584 /* Get the HW capability (new GMAC newer than 3.50a) */ 4585 priv->hw_cap_support = stmmac_get_hw_features(priv); 4586 if (priv->hw_cap_support) { 4587 dev_info(priv->device, "DMA HW capability register supported\n"); 4588 4589 /* We can override some gmac/dma configuration fields: e.g. 4590 * enh_desc, tx_coe (e.g. that are passed through the 4591 * platform) with the values from the HW capability 4592 * register (if supported). 4593 */ 4594 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4595 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4596 priv->hw->pmt = priv->plat->pmt; 4597 if (priv->dma_cap.hash_tb_sz) { 4598 priv->hw->multicast_filter_bins = 4599 (BIT(priv->dma_cap.hash_tb_sz) << 5); 4600 priv->hw->mcast_bits_log2 = 4601 ilog2(priv->hw->multicast_filter_bins); 4602 } 4603 4604 /* TXCOE doesn't work in thresh DMA mode */ 4605 if (priv->plat->force_thresh_dma_mode) 4606 priv->plat->tx_coe = 0; 4607 else 4608 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4609 4610 /* In case of GMAC4 rx_coe is from HW cap register. */ 4611 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4612 4613 if (priv->dma_cap.rx_coe_type2) 4614 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4615 else if (priv->dma_cap.rx_coe_type1) 4616 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4617 4618 } else { 4619 dev_info(priv->device, "No HW DMA feature register supported\n"); 4620 } 4621 4622 if (priv->plat->rx_coe) { 4623 priv->hw->rx_csum = priv->plat->rx_coe; 4624 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4625 if (priv->synopsys_id < DWMAC_CORE_4_00) 4626 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4627 } 4628 if (priv->plat->tx_coe) 4629 dev_info(priv->device, "TX Checksum insertion supported\n"); 4630 4631 if (priv->plat->pmt) { 4632 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4633 device_set_wakeup_capable(priv->device, 1); 4634 } 4635 4636 if (priv->dma_cap.tsoen) 4637 dev_info(priv->device, "TSO supported\n"); 4638 4639 /* Run HW quirks, if any */ 4640 if (priv->hwif_quirks) { 4641 ret = priv->hwif_quirks(priv); 4642 if (ret) 4643 return ret; 4644 } 4645 4646 /* Rx Watchdog is available in the COREs newer than the 3.40. 4647 * In some case, for example on bugged HW this feature 4648 * has to be disable and this can be done by passing the 4649 * riwt_off field from the platform. 4650 */ 4651 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4652 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4653 priv->use_riwt = 1; 4654 dev_info(priv->device, 4655 "Enable RX Mitigation via HW Watchdog Timer\n"); 4656 } 4657 4658 return 0; 4659 } 4660 4661 /** 4662 * stmmac_dvr_probe 4663 * @device: device pointer 4664 * @plat_dat: platform data pointer 4665 * @res: stmmac resource pointer 4666 * Description: this is the main probe function used to 4667 * call the alloc_etherdev, allocate the priv structure. 4668 * Return: 4669 * returns 0 on success, otherwise errno. 4670 */ 4671 int stmmac_dvr_probe(struct device *device, 4672 struct plat_stmmacenet_data *plat_dat, 4673 struct stmmac_resources *res) 4674 { 4675 struct net_device *ndev = NULL; 4676 struct stmmac_priv *priv; 4677 u32 queue, rxq, maxq; 4678 int i, ret = 0; 4679 4680 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 4681 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 4682 if (!ndev) 4683 return -ENOMEM; 4684 4685 SET_NETDEV_DEV(ndev, device); 4686 4687 priv = netdev_priv(ndev); 4688 priv->device = device; 4689 priv->dev = ndev; 4690 4691 stmmac_set_ethtool_ops(ndev); 4692 priv->pause = pause; 4693 priv->plat = plat_dat; 4694 priv->ioaddr = res->addr; 4695 priv->dev->base_addr = (unsigned long)res->addr; 4696 4697 priv->dev->irq = res->irq; 4698 priv->wol_irq = res->wol_irq; 4699 priv->lpi_irq = res->lpi_irq; 4700 4701 if (!IS_ERR_OR_NULL(res->mac)) 4702 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4703 4704 dev_set_drvdata(device, priv->dev); 4705 4706 /* Verify driver arguments */ 4707 stmmac_verify_args(); 4708 4709 /* Allocate workqueue */ 4710 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4711 if (!priv->wq) { 4712 dev_err(priv->device, "failed to create workqueue\n"); 4713 return -ENOMEM; 4714 } 4715 4716 INIT_WORK(&priv->service_task, stmmac_service_task); 4717 4718 /* Override with kernel parameters if supplied XXX CRS XXX 4719 * this needs to have multiple instances 4720 */ 4721 if ((phyaddr >= 0) && (phyaddr <= 31)) 4722 priv->plat->phy_addr = phyaddr; 4723 4724 if (priv->plat->stmmac_rst) { 4725 ret = reset_control_assert(priv->plat->stmmac_rst); 4726 reset_control_deassert(priv->plat->stmmac_rst); 4727 /* Some reset controllers have only reset callback instead of 4728 * assert + deassert callbacks pair. 4729 */ 4730 if (ret == -ENOTSUPP) 4731 reset_control_reset(priv->plat->stmmac_rst); 4732 } 4733 4734 /* Init MAC and get the capabilities */ 4735 ret = stmmac_hw_init(priv); 4736 if (ret) 4737 goto error_hw_init; 4738 4739 stmmac_check_ether_addr(priv); 4740 4741 /* Configure real RX and TX queues */ 4742 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4743 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4744 4745 ndev->netdev_ops = &stmmac_netdev_ops; 4746 4747 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4748 NETIF_F_RXCSUM; 4749 4750 ret = stmmac_tc_init(priv, priv); 4751 if (!ret) { 4752 ndev->hw_features |= NETIF_F_HW_TC; 4753 } 4754 4755 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4756 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4757 if (priv->plat->has_gmac4) 4758 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 4759 priv->tso = true; 4760 dev_info(priv->device, "TSO feature enabled\n"); 4761 } 4762 4763 if (priv->dma_cap.sphen) { 4764 ndev->hw_features |= NETIF_F_GRO; 4765 priv->sph = true; 4766 dev_info(priv->device, "SPH feature enabled\n"); 4767 } 4768 4769 if (priv->dma_cap.addr64) { 4770 ret = dma_set_mask_and_coherent(device, 4771 DMA_BIT_MASK(priv->dma_cap.addr64)); 4772 if (!ret) { 4773 dev_info(priv->device, "Using %d bits DMA width\n", 4774 priv->dma_cap.addr64); 4775 4776 /* 4777 * If more than 32 bits can be addressed, make sure to 4778 * enable enhanced addressing mode. 4779 */ 4780 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 4781 priv->plat->dma_cfg->eame = true; 4782 } else { 4783 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 4784 if (ret) { 4785 dev_err(priv->device, "Failed to set DMA Mask\n"); 4786 goto error_hw_init; 4787 } 4788 4789 priv->dma_cap.addr64 = 32; 4790 } 4791 } 4792 4793 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4794 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4795 #ifdef STMMAC_VLAN_TAG_USED 4796 /* Both mac100 and gmac support receive VLAN tag detection */ 4797 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4798 if (priv->dma_cap.vlhash) { 4799 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4800 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 4801 } 4802 if (priv->dma_cap.vlins) { 4803 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 4804 if (priv->dma_cap.dvlan) 4805 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 4806 } 4807 #endif 4808 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4809 4810 /* Initialize RSS */ 4811 rxq = priv->plat->rx_queues_to_use; 4812 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 4813 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 4814 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 4815 4816 if (priv->dma_cap.rssen && priv->plat->rss_en) 4817 ndev->features |= NETIF_F_RXHASH; 4818 4819 /* MTU range: 46 - hw-specific max */ 4820 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4821 if (priv->plat->has_xgmac) 4822 ndev->max_mtu = XGMAC_JUMBO_LEN; 4823 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4824 ndev->max_mtu = JUMBO_LEN; 4825 else 4826 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4827 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4828 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4829 */ 4830 if ((priv->plat->maxmtu < ndev->max_mtu) && 4831 (priv->plat->maxmtu >= ndev->min_mtu)) 4832 ndev->max_mtu = priv->plat->maxmtu; 4833 else if (priv->plat->maxmtu < ndev->min_mtu) 4834 dev_warn(priv->device, 4835 "%s: warning: maxmtu having invalid value (%d)\n", 4836 __func__, priv->plat->maxmtu); 4837 4838 if (flow_ctrl) 4839 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4840 4841 /* Setup channels NAPI */ 4842 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4843 4844 for (queue = 0; queue < maxq; queue++) { 4845 struct stmmac_channel *ch = &priv->channel[queue]; 4846 4847 spin_lock_init(&ch->lock); 4848 ch->priv_data = priv; 4849 ch->index = queue; 4850 4851 if (queue < priv->plat->rx_queues_to_use) { 4852 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx, 4853 NAPI_POLL_WEIGHT); 4854 } 4855 if (queue < priv->plat->tx_queues_to_use) { 4856 netif_tx_napi_add(ndev, &ch->tx_napi, 4857 stmmac_napi_poll_tx, 4858 NAPI_POLL_WEIGHT); 4859 } 4860 } 4861 4862 mutex_init(&priv->lock); 4863 4864 /* If a specific clk_csr value is passed from the platform 4865 * this means that the CSR Clock Range selection cannot be 4866 * changed at run-time and it is fixed. Viceversa the driver'll try to 4867 * set the MDC clock dynamically according to the csr actual 4868 * clock input. 4869 */ 4870 if (priv->plat->clk_csr >= 0) 4871 priv->clk_csr = priv->plat->clk_csr; 4872 else 4873 stmmac_clk_csr_set(priv); 4874 4875 stmmac_check_pcs_mode(priv); 4876 4877 if (priv->hw->pcs != STMMAC_PCS_TBI && 4878 priv->hw->pcs != STMMAC_PCS_RTBI) { 4879 /* MDIO bus Registration */ 4880 ret = stmmac_mdio_register(ndev); 4881 if (ret < 0) { 4882 dev_err(priv->device, 4883 "%s: MDIO bus (id: %d) registration failed", 4884 __func__, priv->plat->bus_id); 4885 goto error_mdio_register; 4886 } 4887 } 4888 4889 ret = stmmac_phy_setup(priv); 4890 if (ret) { 4891 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 4892 goto error_phy_setup; 4893 } 4894 4895 ret = register_netdev(ndev); 4896 if (ret) { 4897 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4898 __func__, ret); 4899 goto error_netdev_register; 4900 } 4901 4902 #ifdef CONFIG_DEBUG_FS 4903 stmmac_init_fs(ndev); 4904 #endif 4905 4906 return ret; 4907 4908 error_netdev_register: 4909 phylink_destroy(priv->phylink); 4910 error_phy_setup: 4911 if (priv->hw->pcs != STMMAC_PCS_TBI && 4912 priv->hw->pcs != STMMAC_PCS_RTBI) 4913 stmmac_mdio_unregister(ndev); 4914 error_mdio_register: 4915 for (queue = 0; queue < maxq; queue++) { 4916 struct stmmac_channel *ch = &priv->channel[queue]; 4917 4918 if (queue < priv->plat->rx_queues_to_use) 4919 netif_napi_del(&ch->rx_napi); 4920 if (queue < priv->plat->tx_queues_to_use) 4921 netif_napi_del(&ch->tx_napi); 4922 } 4923 error_hw_init: 4924 destroy_workqueue(priv->wq); 4925 4926 return ret; 4927 } 4928 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4929 4930 /** 4931 * stmmac_dvr_remove 4932 * @dev: device pointer 4933 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4934 * changes the link status, releases the DMA descriptor rings. 4935 */ 4936 int stmmac_dvr_remove(struct device *dev) 4937 { 4938 struct net_device *ndev = dev_get_drvdata(dev); 4939 struct stmmac_priv *priv = netdev_priv(ndev); 4940 4941 netdev_info(priv->dev, "%s: removing driver", __func__); 4942 4943 #ifdef CONFIG_DEBUG_FS 4944 stmmac_exit_fs(ndev); 4945 #endif 4946 stmmac_stop_all_dma(priv); 4947 4948 stmmac_mac_set(priv, priv->ioaddr, false); 4949 netif_carrier_off(ndev); 4950 unregister_netdev(ndev); 4951 phylink_destroy(priv->phylink); 4952 if (priv->plat->stmmac_rst) 4953 reset_control_assert(priv->plat->stmmac_rst); 4954 clk_disable_unprepare(priv->plat->pclk); 4955 clk_disable_unprepare(priv->plat->stmmac_clk); 4956 if (priv->hw->pcs != STMMAC_PCS_TBI && 4957 priv->hw->pcs != STMMAC_PCS_RTBI) 4958 stmmac_mdio_unregister(ndev); 4959 destroy_workqueue(priv->wq); 4960 mutex_destroy(&priv->lock); 4961 4962 return 0; 4963 } 4964 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4965 4966 /** 4967 * stmmac_suspend - suspend callback 4968 * @dev: device pointer 4969 * Description: this is the function to suspend the device and it is called 4970 * by the platform driver to stop the network queue, release the resources, 4971 * program the PMT register (for WoL), clean and release driver resources. 4972 */ 4973 int stmmac_suspend(struct device *dev) 4974 { 4975 struct net_device *ndev = dev_get_drvdata(dev); 4976 struct stmmac_priv *priv = netdev_priv(ndev); 4977 u32 chan; 4978 4979 if (!ndev || !netif_running(ndev)) 4980 return 0; 4981 4982 phylink_mac_change(priv->phylink, false); 4983 4984 mutex_lock(&priv->lock); 4985 4986 netif_device_detach(ndev); 4987 stmmac_stop_all_queues(priv); 4988 4989 stmmac_disable_all_queues(priv); 4990 4991 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 4992 del_timer_sync(&priv->tx_queue[chan].txtimer); 4993 4994 /* Stop TX/RX DMA */ 4995 stmmac_stop_all_dma(priv); 4996 4997 /* Enable Power down mode by programming the PMT regs */ 4998 if (device_may_wakeup(priv->device)) { 4999 stmmac_pmt(priv, priv->hw, priv->wolopts); 5000 priv->irq_wake = 1; 5001 } else { 5002 mutex_unlock(&priv->lock); 5003 rtnl_lock(); 5004 phylink_stop(priv->phylink); 5005 rtnl_unlock(); 5006 mutex_lock(&priv->lock); 5007 5008 stmmac_mac_set(priv, priv->ioaddr, false); 5009 pinctrl_pm_select_sleep_state(priv->device); 5010 /* Disable clock in case of PWM is off */ 5011 if (priv->plat->clk_ptp_ref) 5012 clk_disable_unprepare(priv->plat->clk_ptp_ref); 5013 clk_disable_unprepare(priv->plat->pclk); 5014 clk_disable_unprepare(priv->plat->stmmac_clk); 5015 } 5016 mutex_unlock(&priv->lock); 5017 5018 priv->speed = SPEED_UNKNOWN; 5019 return 0; 5020 } 5021 EXPORT_SYMBOL_GPL(stmmac_suspend); 5022 5023 /** 5024 * stmmac_reset_queues_param - reset queue parameters 5025 * @dev: device pointer 5026 */ 5027 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 5028 { 5029 u32 rx_cnt = priv->plat->rx_queues_to_use; 5030 u32 tx_cnt = priv->plat->tx_queues_to_use; 5031 u32 queue; 5032 5033 for (queue = 0; queue < rx_cnt; queue++) { 5034 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5035 5036 rx_q->cur_rx = 0; 5037 rx_q->dirty_rx = 0; 5038 } 5039 5040 for (queue = 0; queue < tx_cnt; queue++) { 5041 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5042 5043 tx_q->cur_tx = 0; 5044 tx_q->dirty_tx = 0; 5045 tx_q->mss = 0; 5046 } 5047 } 5048 5049 /** 5050 * stmmac_resume - resume callback 5051 * @dev: device pointer 5052 * Description: when resume this function is invoked to setup the DMA and CORE 5053 * in a usable state. 5054 */ 5055 int stmmac_resume(struct device *dev) 5056 { 5057 struct net_device *ndev = dev_get_drvdata(dev); 5058 struct stmmac_priv *priv = netdev_priv(ndev); 5059 5060 if (!netif_running(ndev)) 5061 return 0; 5062 5063 /* Power Down bit, into the PM register, is cleared 5064 * automatically as soon as a magic packet or a Wake-up frame 5065 * is received. Anyway, it's better to manually clear 5066 * this bit because it can generate problems while resuming 5067 * from another devices (e.g. serial console). 5068 */ 5069 if (device_may_wakeup(priv->device)) { 5070 mutex_lock(&priv->lock); 5071 stmmac_pmt(priv, priv->hw, 0); 5072 mutex_unlock(&priv->lock); 5073 priv->irq_wake = 0; 5074 } else { 5075 pinctrl_pm_select_default_state(priv->device); 5076 /* enable the clk previously disabled */ 5077 clk_prepare_enable(priv->plat->stmmac_clk); 5078 clk_prepare_enable(priv->plat->pclk); 5079 if (priv->plat->clk_ptp_ref) 5080 clk_prepare_enable(priv->plat->clk_ptp_ref); 5081 /* reset the phy so that it's ready */ 5082 if (priv->mii) 5083 stmmac_mdio_reset(priv->mii); 5084 } 5085 5086 netif_device_attach(ndev); 5087 5088 mutex_lock(&priv->lock); 5089 5090 stmmac_reset_queues_param(priv); 5091 5092 stmmac_clear_descriptors(priv); 5093 5094 stmmac_hw_setup(ndev, false); 5095 stmmac_init_coalesce(priv); 5096 stmmac_set_rx_mode(ndev); 5097 5098 stmmac_enable_all_queues(priv); 5099 5100 stmmac_start_all_queues(priv); 5101 5102 mutex_unlock(&priv->lock); 5103 5104 if (!device_may_wakeup(priv->device)) { 5105 rtnl_lock(); 5106 phylink_start(priv->phylink); 5107 rtnl_unlock(); 5108 } 5109 5110 phylink_mac_change(priv->phylink, true); 5111 5112 return 0; 5113 } 5114 EXPORT_SYMBOL_GPL(stmmac_resume); 5115 5116 #ifndef MODULE 5117 static int __init stmmac_cmdline_opt(char *str) 5118 { 5119 char *opt; 5120 5121 if (!str || !*str) 5122 return -EINVAL; 5123 while ((opt = strsep(&str, ",")) != NULL) { 5124 if (!strncmp(opt, "debug:", 6)) { 5125 if (kstrtoint(opt + 6, 0, &debug)) 5126 goto err; 5127 } else if (!strncmp(opt, "phyaddr:", 8)) { 5128 if (kstrtoint(opt + 8, 0, &phyaddr)) 5129 goto err; 5130 } else if (!strncmp(opt, "buf_sz:", 7)) { 5131 if (kstrtoint(opt + 7, 0, &buf_sz)) 5132 goto err; 5133 } else if (!strncmp(opt, "tc:", 3)) { 5134 if (kstrtoint(opt + 3, 0, &tc)) 5135 goto err; 5136 } else if (!strncmp(opt, "watchdog:", 9)) { 5137 if (kstrtoint(opt + 9, 0, &watchdog)) 5138 goto err; 5139 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 5140 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 5141 goto err; 5142 } else if (!strncmp(opt, "pause:", 6)) { 5143 if (kstrtoint(opt + 6, 0, &pause)) 5144 goto err; 5145 } else if (!strncmp(opt, "eee_timer:", 10)) { 5146 if (kstrtoint(opt + 10, 0, &eee_timer)) 5147 goto err; 5148 } else if (!strncmp(opt, "chain_mode:", 11)) { 5149 if (kstrtoint(opt + 11, 0, &chain_mode)) 5150 goto err; 5151 } 5152 } 5153 return 0; 5154 5155 err: 5156 pr_err("%s: ERROR broken module parameter conversion", __func__); 5157 return -EINVAL; 5158 } 5159 5160 __setup("stmmaceth=", stmmac_cmdline_opt); 5161 #endif /* MODULE */ 5162 5163 static int __init stmmac_init(void) 5164 { 5165 #ifdef CONFIG_DEBUG_FS 5166 /* Create debugfs main directory if it doesn't exist yet */ 5167 if (!stmmac_fs_dir) 5168 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 5169 #endif 5170 5171 return 0; 5172 } 5173 5174 static void __exit stmmac_exit(void) 5175 { 5176 #ifdef CONFIG_DEBUG_FS 5177 debugfs_remove_recursive(stmmac_fs_dir); 5178 #endif 5179 } 5180 5181 module_init(stmmac_init) 5182 module_exit(stmmac_exit) 5183 5184 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 5185 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 5186 MODULE_LICENSE("GPL"); 5187