1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113 
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115 
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123 	if (unlikely(watchdog < 0))
124 		watchdog = TX_TIMEO;
125 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 		buf_sz = DEFAULT_BUFSIZE;
127 	if (unlikely(flow_ctrl > 1))
128 		flow_ctrl = FLOW_AUTO;
129 	else if (likely(flow_ctrl < 0))
130 		flow_ctrl = FLOW_OFF;
131 	if (unlikely((pause < 0) || (pause > 0xffff)))
132 		pause = PAUSE_TIME;
133 	if (eee_timer < 0)
134 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136 
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 	u32 queue;
147 
148 	for (queue = 0; queue < maxq; queue++) {
149 		struct stmmac_channel *ch = &priv->channel[queue];
150 
151 		if (queue < rx_queues_cnt)
152 			napi_disable(&ch->rx_napi);
153 		if (queue < tx_queues_cnt)
154 			napi_disable(&ch->tx_napi);
155 	}
156 }
157 
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 	u32 queue;
168 
169 	for (queue = 0; queue < maxq; queue++) {
170 		struct stmmac_channel *ch = &priv->channel[queue];
171 
172 		if (queue < rx_queues_cnt)
173 			napi_enable(&ch->rx_napi);
174 		if (queue < tx_queues_cnt)
175 			napi_enable(&ch->tx_napi);
176 	}
177 }
178 
179 /**
180  * stmmac_stop_all_queues - Stop all queues
181  * @priv: driver private structure
182  */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186 	u32 queue;
187 
188 	for (queue = 0; queue < tx_queues_cnt; queue++)
189 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191 
192 /**
193  * stmmac_start_all_queues - Start all queues
194  * @priv: driver private structure
195  */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199 	u32 queue;
200 
201 	for (queue = 0; queue < tx_queues_cnt; queue++)
202 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204 
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
208 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209 		queue_work(priv->wq, &priv->service_task);
210 }
211 
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214 	netif_carrier_off(priv->dev);
215 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216 	stmmac_service_event_schedule(priv);
217 }
218 
219 /**
220  * stmmac_clk_csr_set - dynamically set the MDC clock
221  * @priv: driver private structure
222  * Description: this is to dynamically set the MDC clock according to the csr
223  * clock input.
224  * Note:
225  *	If a specific clk_csr value is passed from the platform
226  *	this means that the CSR Clock Range selection cannot be
227  *	changed at run-time and it is fixed (as reported in the driver
228  *	documentation). Viceversa the driver will try to set the MDC
229  *	clock dynamically according to the actual clock input.
230  */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233 	u32 clk_rate;
234 
235 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236 
237 	/* Platform provided default clk_csr would be assumed valid
238 	 * for all other cases except for the below mentioned ones.
239 	 * For values higher than the IEEE 802.3 specified frequency
240 	 * we can not estimate the proper divider as it is not known
241 	 * the frequency of clk_csr_i. So we do not change the default
242 	 * divider.
243 	 */
244 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245 		if (clk_rate < CSR_F_35M)
246 			priv->clk_csr = STMMAC_CSR_20_35M;
247 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248 			priv->clk_csr = STMMAC_CSR_35_60M;
249 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250 			priv->clk_csr = STMMAC_CSR_60_100M;
251 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252 			priv->clk_csr = STMMAC_CSR_100_150M;
253 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254 			priv->clk_csr = STMMAC_CSR_150_250M;
255 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256 			priv->clk_csr = STMMAC_CSR_250_300M;
257 	}
258 
259 	if (priv->plat->has_sun8i) {
260 		if (clk_rate > 160000000)
261 			priv->clk_csr = 0x03;
262 		else if (clk_rate > 80000000)
263 			priv->clk_csr = 0x02;
264 		else if (clk_rate > 40000000)
265 			priv->clk_csr = 0x01;
266 		else
267 			priv->clk_csr = 0;
268 	}
269 
270 	if (priv->plat->has_xgmac) {
271 		if (clk_rate > 400000000)
272 			priv->clk_csr = 0x5;
273 		else if (clk_rate > 350000000)
274 			priv->clk_csr = 0x4;
275 		else if (clk_rate > 300000000)
276 			priv->clk_csr = 0x3;
277 		else if (clk_rate > 250000000)
278 			priv->clk_csr = 0x2;
279 		else if (clk_rate > 150000000)
280 			priv->clk_csr = 0x1;
281 		else
282 			priv->clk_csr = 0x0;
283 	}
284 }
285 
286 static void print_pkt(unsigned char *buf, int len)
287 {
288 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291 
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295 	u32 avail;
296 
297 	if (tx_q->dirty_tx > tx_q->cur_tx)
298 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299 	else
300 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301 
302 	return avail;
303 }
304 
305 /**
306  * stmmac_rx_dirty - Get RX queue dirty
307  * @priv: driver private structure
308  * @queue: RX queue index
309  */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313 	u32 dirty;
314 
315 	if (rx_q->dirty_rx <= rx_q->cur_rx)
316 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
317 	else
318 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319 
320 	return dirty;
321 }
322 
323 /**
324  * stmmac_enable_eee_mode - check and enter in LPI mode
325  * @priv: driver private structure
326  * Description: this function is to verify and enter in LPI mode in case of
327  * EEE.
328  */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331 	u32 tx_cnt = priv->plat->tx_queues_to_use;
332 	u32 queue;
333 
334 	/* check if all TX queues have the work finished */
335 	for (queue = 0; queue < tx_cnt; queue++) {
336 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337 
338 		if (tx_q->dirty_tx != tx_q->cur_tx)
339 			return; /* still unfinished work */
340 	}
341 
342 	/* Check and enter in LPI mode */
343 	if (!priv->tx_path_in_lpi_mode)
344 		stmmac_set_eee_mode(priv, priv->hw,
345 				priv->plat->en_tx_lpi_clockgating);
346 }
347 
348 /**
349  * stmmac_disable_eee_mode - disable and exit from LPI mode
350  * @priv: driver private structure
351  * Description: this function is to exit and disable EEE in case of
352  * LPI state is true. This is called by the xmit.
353  */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356 	stmmac_reset_eee_mode(priv, priv->hw);
357 	del_timer_sync(&priv->eee_ctrl_timer);
358 	priv->tx_path_in_lpi_mode = false;
359 }
360 
361 /**
362  * stmmac_eee_ctrl_timer - EEE TX SW timer.
363  * @arg : data hook
364  * Description:
365  *  if there is no data transfer and if we are not in LPI state,
366  *  then MAC Transmitter can be moved to LPI state.
367  */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371 
372 	stmmac_enable_eee_mode(priv);
373 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
374 }
375 
376 /**
377  * stmmac_eee_init - init EEE
378  * @priv: driver private structure
379  * Description:
380  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
381  *  can also manage EEE, this function enable the LPI state and start related
382  *  timer.
383  */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386 	int eee_tw_timer = priv->eee_tw_timer;
387 
388 	/* Using PCS we cannot dial with the phy registers at this stage
389 	 * so we do not support extra feature like EEE.
390 	 */
391 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
392 	    priv->hw->pcs == STMMAC_PCS_RTBI)
393 		return false;
394 
395 	/* Check if MAC core supports the EEE feature. */
396 	if (!priv->dma_cap.eee)
397 		return false;
398 
399 	mutex_lock(&priv->lock);
400 
401 	/* Check if it needs to be deactivated */
402 	if (!priv->eee_active) {
403 		if (priv->eee_enabled) {
404 			netdev_dbg(priv->dev, "disable EEE\n");
405 			del_timer_sync(&priv->eee_ctrl_timer);
406 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
407 		}
408 		mutex_unlock(&priv->lock);
409 		return false;
410 	}
411 
412 	if (priv->eee_active && !priv->eee_enabled) {
413 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     eee_tw_timer);
416 	}
417 
418 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
419 
420 	mutex_unlock(&priv->lock);
421 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
422 	return true;
423 }
424 
425 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
426  * @priv: driver private structure
427  * @p : descriptor pointer
428  * @skb : the socket buffer
429  * Description :
430  * This function will read timestamp from the descriptor & pass it to stack.
431  * and also perform some sanity checks.
432  */
433 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
434 				   struct dma_desc *p, struct sk_buff *skb)
435 {
436 	struct skb_shared_hwtstamps shhwtstamp;
437 	bool found = false;
438 	u64 ns = 0;
439 
440 	if (!priv->hwts_tx_en)
441 		return;
442 
443 	/* exit if skb doesn't support hw tstamp */
444 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
445 		return;
446 
447 	/* check tx tstamp status */
448 	if (stmmac_get_tx_timestamp_status(priv, p)) {
449 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
450 		found = true;
451 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
452 		found = true;
453 	}
454 
455 	if (found) {
456 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
457 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
458 
459 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
460 		/* pass tstamp to stack */
461 		skb_tstamp_tx(skb, &shhwtstamp);
462 	}
463 }
464 
465 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @np : next descriptor pointer
469  * @skb : the socket buffer
470  * Description :
471  * This function will read received packet's timestamp from the descriptor
472  * and pass it to stack. It also perform some sanity checks.
473  */
474 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
475 				   struct dma_desc *np, struct sk_buff *skb)
476 {
477 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
478 	struct dma_desc *desc = p;
479 	u64 ns = 0;
480 
481 	if (!priv->hwts_rx_en)
482 		return;
483 	/* For GMAC4, the valid timestamp is from CTX next desc. */
484 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
485 		desc = np;
486 
487 	/* Check if timestamp is available */
488 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
489 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
490 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
491 		shhwtstamp = skb_hwtstamps(skb);
492 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
493 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
494 	} else  {
495 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
496 	}
497 }
498 
499 /**
500  *  stmmac_hwtstamp_set - control hardware timestamping.
501  *  @dev: device pointer.
502  *  @ifr: An IOCTL specific structure, that can contain a pointer to
503  *  a proprietary structure used to pass information to the driver.
504  *  Description:
505  *  This function configures the MAC to enable/disable both outgoing(TX)
506  *  and incoming(RX) packets time stamping based on user input.
507  *  Return Value:
508  *  0 on success and an appropriate -ve integer on failure.
509  */
510 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
511 {
512 	struct stmmac_priv *priv = netdev_priv(dev);
513 	struct hwtstamp_config config;
514 	struct timespec64 now;
515 	u64 temp = 0;
516 	u32 ptp_v2 = 0;
517 	u32 tstamp_all = 0;
518 	u32 ptp_over_ipv4_udp = 0;
519 	u32 ptp_over_ipv6_udp = 0;
520 	u32 ptp_over_ethernet = 0;
521 	u32 snap_type_sel = 0;
522 	u32 ts_master_en = 0;
523 	u32 ts_event_en = 0;
524 	u32 sec_inc = 0;
525 	u32 value = 0;
526 	bool xmac;
527 
528 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
529 
530 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
531 		netdev_alert(priv->dev, "No support for HW time stamping\n");
532 		priv->hwts_tx_en = 0;
533 		priv->hwts_rx_en = 0;
534 
535 		return -EOPNOTSUPP;
536 	}
537 
538 	if (copy_from_user(&config, ifr->ifr_data,
539 			   sizeof(config)))
540 		return -EFAULT;
541 
542 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
543 		   __func__, config.flags, config.tx_type, config.rx_filter);
544 
545 	/* reserved for future extensions */
546 	if (config.flags)
547 		return -EINVAL;
548 
549 	if (config.tx_type != HWTSTAMP_TX_OFF &&
550 	    config.tx_type != HWTSTAMP_TX_ON)
551 		return -ERANGE;
552 
553 	if (priv->adv_ts) {
554 		switch (config.rx_filter) {
555 		case HWTSTAMP_FILTER_NONE:
556 			/* time stamp no incoming packet at all */
557 			config.rx_filter = HWTSTAMP_FILTER_NONE;
558 			break;
559 
560 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
561 			/* PTP v1, UDP, any kind of event packet */
562 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
563 			/* 'xmac' hardware can support Sync, Pdelay_Req and
564 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
565 			 * This leaves Delay_Req timestamps out.
566 			 * Enable all events *and* general purpose message
567 			 * timestamping
568 			 */
569 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
570 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
571 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
572 			break;
573 
574 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
575 			/* PTP v1, UDP, Sync packet */
576 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
577 			/* take time stamp for SYNC messages only */
578 			ts_event_en = PTP_TCR_TSEVNTENA;
579 
580 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
581 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
582 			break;
583 
584 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
585 			/* PTP v1, UDP, Delay_req packet */
586 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
587 			/* take time stamp for Delay_Req messages only */
588 			ts_master_en = PTP_TCR_TSMSTRENA;
589 			ts_event_en = PTP_TCR_TSEVNTENA;
590 
591 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
592 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
593 			break;
594 
595 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
596 			/* PTP v2, UDP, any kind of event packet */
597 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
598 			ptp_v2 = PTP_TCR_TSVER2ENA;
599 			/* take time stamp for all event messages */
600 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
601 
602 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
603 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
604 			break;
605 
606 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
607 			/* PTP v2, UDP, Sync packet */
608 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
609 			ptp_v2 = PTP_TCR_TSVER2ENA;
610 			/* take time stamp for SYNC messages only */
611 			ts_event_en = PTP_TCR_TSEVNTENA;
612 
613 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
614 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
615 			break;
616 
617 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
618 			/* PTP v2, UDP, Delay_req packet */
619 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
620 			ptp_v2 = PTP_TCR_TSVER2ENA;
621 			/* take time stamp for Delay_Req messages only */
622 			ts_master_en = PTP_TCR_TSMSTRENA;
623 			ts_event_en = PTP_TCR_TSEVNTENA;
624 
625 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
626 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
627 			break;
628 
629 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
630 			/* PTP v2/802.AS1 any layer, any kind of event packet */
631 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632 			ptp_v2 = PTP_TCR_TSVER2ENA;
633 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
634 			if (priv->synopsys_id != DWMAC_CORE_5_10)
635 				ts_event_en = PTP_TCR_TSEVNTENA;
636 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
637 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
638 			ptp_over_ethernet = PTP_TCR_TSIPENA;
639 			break;
640 
641 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
642 			/* PTP v2/802.AS1, any layer, Sync packet */
643 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
644 			ptp_v2 = PTP_TCR_TSVER2ENA;
645 			/* take time stamp for SYNC messages only */
646 			ts_event_en = PTP_TCR_TSEVNTENA;
647 
648 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
649 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
650 			ptp_over_ethernet = PTP_TCR_TSIPENA;
651 			break;
652 
653 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
654 			/* PTP v2/802.AS1, any layer, Delay_req packet */
655 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
656 			ptp_v2 = PTP_TCR_TSVER2ENA;
657 			/* take time stamp for Delay_Req messages only */
658 			ts_master_en = PTP_TCR_TSMSTRENA;
659 			ts_event_en = PTP_TCR_TSEVNTENA;
660 
661 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
662 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
663 			ptp_over_ethernet = PTP_TCR_TSIPENA;
664 			break;
665 
666 		case HWTSTAMP_FILTER_NTP_ALL:
667 		case HWTSTAMP_FILTER_ALL:
668 			/* time stamp any incoming packet */
669 			config.rx_filter = HWTSTAMP_FILTER_ALL;
670 			tstamp_all = PTP_TCR_TSENALL;
671 			break;
672 
673 		default:
674 			return -ERANGE;
675 		}
676 	} else {
677 		switch (config.rx_filter) {
678 		case HWTSTAMP_FILTER_NONE:
679 			config.rx_filter = HWTSTAMP_FILTER_NONE;
680 			break;
681 		default:
682 			/* PTP v1, UDP, any kind of event packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
684 			break;
685 		}
686 	}
687 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
688 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
689 
690 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
691 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
692 	else {
693 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
694 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
695 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
696 			 ts_master_en | snap_type_sel);
697 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
698 
699 		/* program Sub Second Increment reg */
700 		stmmac_config_sub_second_increment(priv,
701 				priv->ptpaddr, priv->plat->clk_ptp_rate,
702 				xmac, &sec_inc);
703 		temp = div_u64(1000000000ULL, sec_inc);
704 
705 		/* Store sub second increment and flags for later use */
706 		priv->sub_second_inc = sec_inc;
707 		priv->systime_flags = value;
708 
709 		/* calculate default added value:
710 		 * formula is :
711 		 * addend = (2^32)/freq_div_ratio;
712 		 * where, freq_div_ratio = 1e9ns/sec_inc
713 		 */
714 		temp = (u64)(temp << 32);
715 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
716 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
717 
718 		/* initialize system time */
719 		ktime_get_real_ts64(&now);
720 
721 		/* lower 32 bits of tv_sec are safe until y2106 */
722 		stmmac_init_systime(priv, priv->ptpaddr,
723 				(u32)now.tv_sec, now.tv_nsec);
724 	}
725 
726 	memcpy(&priv->tstamp_config, &config, sizeof(config));
727 
728 	return copy_to_user(ifr->ifr_data, &config,
729 			    sizeof(config)) ? -EFAULT : 0;
730 }
731 
732 /**
733  *  stmmac_hwtstamp_get - read hardware timestamping.
734  *  @dev: device pointer.
735  *  @ifr: An IOCTL specific structure, that can contain a pointer to
736  *  a proprietary structure used to pass information to the driver.
737  *  Description:
738  *  This function obtain the current hardware timestamping settings
739     as requested.
740  */
741 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
742 {
743 	struct stmmac_priv *priv = netdev_priv(dev);
744 	struct hwtstamp_config *config = &priv->tstamp_config;
745 
746 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
747 		return -EOPNOTSUPP;
748 
749 	return copy_to_user(ifr->ifr_data, config,
750 			    sizeof(*config)) ? -EFAULT : 0;
751 }
752 
753 /**
754  * stmmac_init_ptp - init PTP
755  * @priv: driver private structure
756  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
757  * This is done by looking at the HW cap. register.
758  * This function also registers the ptp driver.
759  */
760 static int stmmac_init_ptp(struct stmmac_priv *priv)
761 {
762 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
763 
764 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
765 		return -EOPNOTSUPP;
766 
767 	priv->adv_ts = 0;
768 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
769 	if (xmac && priv->dma_cap.atime_stamp)
770 		priv->adv_ts = 1;
771 	/* Dwmac 3.x core with extend_desc can support adv_ts */
772 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
773 		priv->adv_ts = 1;
774 
775 	if (priv->dma_cap.time_stamp)
776 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
777 
778 	if (priv->adv_ts)
779 		netdev_info(priv->dev,
780 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
781 
782 	priv->hwts_tx_en = 0;
783 	priv->hwts_rx_en = 0;
784 
785 	stmmac_ptp_register(priv);
786 
787 	return 0;
788 }
789 
790 static void stmmac_release_ptp(struct stmmac_priv *priv)
791 {
792 	if (priv->plat->clk_ptp_ref)
793 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
794 	stmmac_ptp_unregister(priv);
795 }
796 
797 /**
798  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
799  *  @priv: driver private structure
800  *  Description: It is used for configuring the flow control in all queues
801  */
802 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
803 {
804 	u32 tx_cnt = priv->plat->tx_queues_to_use;
805 
806 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
807 			priv->pause, tx_cnt);
808 }
809 
810 static void stmmac_validate(struct phylink_config *config,
811 			    unsigned long *supported,
812 			    struct phylink_link_state *state)
813 {
814 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
815 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
816 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
817 	int tx_cnt = priv->plat->tx_queues_to_use;
818 	int max_speed = priv->plat->max_speed;
819 
820 	phylink_set(mac_supported, 10baseT_Half);
821 	phylink_set(mac_supported, 10baseT_Full);
822 	phylink_set(mac_supported, 100baseT_Half);
823 	phylink_set(mac_supported, 100baseT_Full);
824 	phylink_set(mac_supported, 1000baseT_Half);
825 	phylink_set(mac_supported, 1000baseT_Full);
826 	phylink_set(mac_supported, 1000baseKX_Full);
827 
828 	phylink_set(mac_supported, Autoneg);
829 	phylink_set(mac_supported, Pause);
830 	phylink_set(mac_supported, Asym_Pause);
831 	phylink_set_port_modes(mac_supported);
832 
833 	/* Cut down 1G if asked to */
834 	if ((max_speed > 0) && (max_speed < 1000)) {
835 		phylink_set(mask, 1000baseT_Full);
836 		phylink_set(mask, 1000baseX_Full);
837 	} else if (priv->plat->has_xgmac) {
838 		if (!max_speed || (max_speed >= 2500)) {
839 			phylink_set(mac_supported, 2500baseT_Full);
840 			phylink_set(mac_supported, 2500baseX_Full);
841 		}
842 		if (!max_speed || (max_speed >= 5000)) {
843 			phylink_set(mac_supported, 5000baseT_Full);
844 		}
845 		if (!max_speed || (max_speed >= 10000)) {
846 			phylink_set(mac_supported, 10000baseSR_Full);
847 			phylink_set(mac_supported, 10000baseLR_Full);
848 			phylink_set(mac_supported, 10000baseER_Full);
849 			phylink_set(mac_supported, 10000baseLRM_Full);
850 			phylink_set(mac_supported, 10000baseT_Full);
851 			phylink_set(mac_supported, 10000baseKX4_Full);
852 			phylink_set(mac_supported, 10000baseKR_Full);
853 		}
854 		if (!max_speed || (max_speed >= 25000)) {
855 			phylink_set(mac_supported, 25000baseCR_Full);
856 			phylink_set(mac_supported, 25000baseKR_Full);
857 			phylink_set(mac_supported, 25000baseSR_Full);
858 		}
859 		if (!max_speed || (max_speed >= 40000)) {
860 			phylink_set(mac_supported, 40000baseKR4_Full);
861 			phylink_set(mac_supported, 40000baseCR4_Full);
862 			phylink_set(mac_supported, 40000baseSR4_Full);
863 			phylink_set(mac_supported, 40000baseLR4_Full);
864 		}
865 		if (!max_speed || (max_speed >= 50000)) {
866 			phylink_set(mac_supported, 50000baseCR2_Full);
867 			phylink_set(mac_supported, 50000baseKR2_Full);
868 			phylink_set(mac_supported, 50000baseSR2_Full);
869 			phylink_set(mac_supported, 50000baseKR_Full);
870 			phylink_set(mac_supported, 50000baseSR_Full);
871 			phylink_set(mac_supported, 50000baseCR_Full);
872 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
873 			phylink_set(mac_supported, 50000baseDR_Full);
874 		}
875 		if (!max_speed || (max_speed >= 100000)) {
876 			phylink_set(mac_supported, 100000baseKR4_Full);
877 			phylink_set(mac_supported, 100000baseSR4_Full);
878 			phylink_set(mac_supported, 100000baseCR4_Full);
879 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
880 			phylink_set(mac_supported, 100000baseKR2_Full);
881 			phylink_set(mac_supported, 100000baseSR2_Full);
882 			phylink_set(mac_supported, 100000baseCR2_Full);
883 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
884 			phylink_set(mac_supported, 100000baseDR2_Full);
885 		}
886 	}
887 
888 	/* Half-Duplex can only work with single queue */
889 	if (tx_cnt > 1) {
890 		phylink_set(mask, 10baseT_Half);
891 		phylink_set(mask, 100baseT_Half);
892 		phylink_set(mask, 1000baseT_Half);
893 	}
894 
895 	linkmode_and(supported, supported, mac_supported);
896 	linkmode_andnot(supported, supported, mask);
897 
898 	linkmode_and(state->advertising, state->advertising, mac_supported);
899 	linkmode_andnot(state->advertising, state->advertising, mask);
900 
901 	/* If PCS is supported, check which modes it supports. */
902 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
903 }
904 
905 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
906 				     struct phylink_link_state *state)
907 {
908 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
909 
910 	state->link = 0;
911 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
912 }
913 
914 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
915 			      const struct phylink_link_state *state)
916 {
917 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
918 
919 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
920 }
921 
922 static void stmmac_mac_an_restart(struct phylink_config *config)
923 {
924 	/* Not Supported */
925 }
926 
927 static void stmmac_mac_link_down(struct phylink_config *config,
928 				 unsigned int mode, phy_interface_t interface)
929 {
930 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
931 
932 	stmmac_mac_set(priv, priv->ioaddr, false);
933 	priv->eee_active = false;
934 	priv->tx_lpi_enabled = false;
935 	stmmac_eee_init(priv);
936 	stmmac_set_eee_pls(priv, priv->hw, false);
937 }
938 
939 static void stmmac_mac_link_up(struct phylink_config *config,
940 			       struct phy_device *phy,
941 			       unsigned int mode, phy_interface_t interface,
942 			       int speed, int duplex,
943 			       bool tx_pause, bool rx_pause)
944 {
945 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
946 	u32 ctrl;
947 
948 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
949 
950 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
951 	ctrl &= ~priv->hw->link.speed_mask;
952 
953 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
954 		switch (speed) {
955 		case SPEED_10000:
956 			ctrl |= priv->hw->link.xgmii.speed10000;
957 			break;
958 		case SPEED_5000:
959 			ctrl |= priv->hw->link.xgmii.speed5000;
960 			break;
961 		case SPEED_2500:
962 			ctrl |= priv->hw->link.xgmii.speed2500;
963 			break;
964 		default:
965 			return;
966 		}
967 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
968 		switch (speed) {
969 		case SPEED_100000:
970 			ctrl |= priv->hw->link.xlgmii.speed100000;
971 			break;
972 		case SPEED_50000:
973 			ctrl |= priv->hw->link.xlgmii.speed50000;
974 			break;
975 		case SPEED_40000:
976 			ctrl |= priv->hw->link.xlgmii.speed40000;
977 			break;
978 		case SPEED_25000:
979 			ctrl |= priv->hw->link.xlgmii.speed25000;
980 			break;
981 		case SPEED_10000:
982 			ctrl |= priv->hw->link.xgmii.speed10000;
983 			break;
984 		case SPEED_2500:
985 			ctrl |= priv->hw->link.speed2500;
986 			break;
987 		case SPEED_1000:
988 			ctrl |= priv->hw->link.speed1000;
989 			break;
990 		default:
991 			return;
992 		}
993 	} else {
994 		switch (speed) {
995 		case SPEED_2500:
996 			ctrl |= priv->hw->link.speed2500;
997 			break;
998 		case SPEED_1000:
999 			ctrl |= priv->hw->link.speed1000;
1000 			break;
1001 		case SPEED_100:
1002 			ctrl |= priv->hw->link.speed100;
1003 			break;
1004 		case SPEED_10:
1005 			ctrl |= priv->hw->link.speed10;
1006 			break;
1007 		default:
1008 			return;
1009 		}
1010 	}
1011 
1012 	priv->speed = speed;
1013 
1014 	if (priv->plat->fix_mac_speed)
1015 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1016 
1017 	if (!duplex)
1018 		ctrl &= ~priv->hw->link.duplex;
1019 	else
1020 		ctrl |= priv->hw->link.duplex;
1021 
1022 	/* Flow Control operation */
1023 	if (tx_pause && rx_pause)
1024 		stmmac_mac_flow_ctrl(priv, duplex);
1025 
1026 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1027 
1028 	stmmac_mac_set(priv, priv->ioaddr, true);
1029 	if (phy && priv->dma_cap.eee) {
1030 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1031 		priv->eee_enabled = stmmac_eee_init(priv);
1032 		priv->tx_lpi_enabled = priv->eee_enabled;
1033 		stmmac_set_eee_pls(priv, priv->hw, true);
1034 	}
1035 }
1036 
1037 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1038 	.validate = stmmac_validate,
1039 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1040 	.mac_config = stmmac_mac_config,
1041 	.mac_an_restart = stmmac_mac_an_restart,
1042 	.mac_link_down = stmmac_mac_link_down,
1043 	.mac_link_up = stmmac_mac_link_up,
1044 };
1045 
1046 /**
1047  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1048  * @priv: driver private structure
1049  * Description: this is to verify if the HW supports the PCS.
1050  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1051  * configured for the TBI, RTBI, or SGMII PHY interface.
1052  */
1053 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1054 {
1055 	int interface = priv->plat->interface;
1056 
1057 	if (priv->dma_cap.pcs) {
1058 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1059 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1060 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1061 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1062 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1063 			priv->hw->pcs = STMMAC_PCS_RGMII;
1064 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1065 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1066 			priv->hw->pcs = STMMAC_PCS_SGMII;
1067 		}
1068 	}
1069 }
1070 
1071 /**
1072  * stmmac_init_phy - PHY initialization
1073  * @dev: net device structure
1074  * Description: it initializes the driver's PHY state, and attaches the PHY
1075  * to the mac driver.
1076  *  Return value:
1077  *  0 on success
1078  */
1079 static int stmmac_init_phy(struct net_device *dev)
1080 {
1081 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1082 	struct stmmac_priv *priv = netdev_priv(dev);
1083 	struct device_node *node;
1084 	int ret;
1085 
1086 	node = priv->plat->phylink_node;
1087 
1088 	if (node)
1089 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1090 
1091 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1092 	 * manually parse it
1093 	 */
1094 	if (!node || ret) {
1095 		int addr = priv->plat->phy_addr;
1096 		struct phy_device *phydev;
1097 
1098 		phydev = mdiobus_get_phy(priv->mii, addr);
1099 		if (!phydev) {
1100 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1101 			return -ENODEV;
1102 		}
1103 
1104 		ret = phylink_connect_phy(priv->phylink, phydev);
1105 	}
1106 
1107 	phylink_ethtool_get_wol(priv->phylink, &wol);
1108 	device_set_wakeup_capable(priv->device, !!wol.supported);
1109 
1110 	return ret;
1111 }
1112 
1113 static int stmmac_phy_setup(struct stmmac_priv *priv)
1114 {
1115 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1116 	int mode = priv->plat->phy_interface;
1117 	struct phylink *phylink;
1118 
1119 	priv->phylink_config.dev = &priv->dev->dev;
1120 	priv->phylink_config.type = PHYLINK_NETDEV;
1121 	priv->phylink_config.pcs_poll = true;
1122 
1123 	if (!fwnode)
1124 		fwnode = dev_fwnode(priv->device);
1125 
1126 	phylink = phylink_create(&priv->phylink_config, fwnode,
1127 				 mode, &stmmac_phylink_mac_ops);
1128 	if (IS_ERR(phylink))
1129 		return PTR_ERR(phylink);
1130 
1131 	priv->phylink = phylink;
1132 	return 0;
1133 }
1134 
1135 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1136 {
1137 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1138 	void *head_rx;
1139 	u32 queue;
1140 
1141 	/* Display RX rings */
1142 	for (queue = 0; queue < rx_cnt; queue++) {
1143 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1144 
1145 		pr_info("\tRX Queue %u rings\n", queue);
1146 
1147 		if (priv->extend_desc)
1148 			head_rx = (void *)rx_q->dma_erx;
1149 		else
1150 			head_rx = (void *)rx_q->dma_rx;
1151 
1152 		/* Display RX ring */
1153 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1154 	}
1155 }
1156 
1157 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1158 {
1159 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1160 	void *head_tx;
1161 	u32 queue;
1162 
1163 	/* Display TX rings */
1164 	for (queue = 0; queue < tx_cnt; queue++) {
1165 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1166 
1167 		pr_info("\tTX Queue %d rings\n", queue);
1168 
1169 		if (priv->extend_desc)
1170 			head_tx = (void *)tx_q->dma_etx;
1171 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1172 			head_tx = (void *)tx_q->dma_entx;
1173 		else
1174 			head_tx = (void *)tx_q->dma_tx;
1175 
1176 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1177 	}
1178 }
1179 
1180 static void stmmac_display_rings(struct stmmac_priv *priv)
1181 {
1182 	/* Display RX ring */
1183 	stmmac_display_rx_rings(priv);
1184 
1185 	/* Display TX ring */
1186 	stmmac_display_tx_rings(priv);
1187 }
1188 
1189 static int stmmac_set_bfsize(int mtu, int bufsize)
1190 {
1191 	int ret = bufsize;
1192 
1193 	if (mtu >= BUF_SIZE_8KiB)
1194 		ret = BUF_SIZE_16KiB;
1195 	else if (mtu >= BUF_SIZE_4KiB)
1196 		ret = BUF_SIZE_8KiB;
1197 	else if (mtu >= BUF_SIZE_2KiB)
1198 		ret = BUF_SIZE_4KiB;
1199 	else if (mtu > DEFAULT_BUFSIZE)
1200 		ret = BUF_SIZE_2KiB;
1201 	else
1202 		ret = DEFAULT_BUFSIZE;
1203 
1204 	return ret;
1205 }
1206 
1207 /**
1208  * stmmac_clear_rx_descriptors - clear RX descriptors
1209  * @priv: driver private structure
1210  * @queue: RX queue index
1211  * Description: this function is called to clear the RX descriptors
1212  * in case of both basic and extended descriptors are used.
1213  */
1214 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1215 {
1216 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1217 	int i;
1218 
1219 	/* Clear the RX descriptors */
1220 	for (i = 0; i < DMA_RX_SIZE; i++)
1221 		if (priv->extend_desc)
1222 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1223 					priv->use_riwt, priv->mode,
1224 					(i == DMA_RX_SIZE - 1),
1225 					priv->dma_buf_sz);
1226 		else
1227 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1228 					priv->use_riwt, priv->mode,
1229 					(i == DMA_RX_SIZE - 1),
1230 					priv->dma_buf_sz);
1231 }
1232 
1233 /**
1234  * stmmac_clear_tx_descriptors - clear tx descriptors
1235  * @priv: driver private structure
1236  * @queue: TX queue index.
1237  * Description: this function is called to clear the TX descriptors
1238  * in case of both basic and extended descriptors are used.
1239  */
1240 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1241 {
1242 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1243 	int i;
1244 
1245 	/* Clear the TX descriptors */
1246 	for (i = 0; i < DMA_TX_SIZE; i++) {
1247 		int last = (i == (DMA_TX_SIZE - 1));
1248 		struct dma_desc *p;
1249 
1250 		if (priv->extend_desc)
1251 			p = &tx_q->dma_etx[i].basic;
1252 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1253 			p = &tx_q->dma_entx[i].basic;
1254 		else
1255 			p = &tx_q->dma_tx[i];
1256 
1257 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1258 	}
1259 }
1260 
1261 /**
1262  * stmmac_clear_descriptors - clear descriptors
1263  * @priv: driver private structure
1264  * Description: this function is called to clear the TX and RX descriptors
1265  * in case of both basic and extended descriptors are used.
1266  */
1267 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1268 {
1269 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1270 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1271 	u32 queue;
1272 
1273 	/* Clear the RX descriptors */
1274 	for (queue = 0; queue < rx_queue_cnt; queue++)
1275 		stmmac_clear_rx_descriptors(priv, queue);
1276 
1277 	/* Clear the TX descriptors */
1278 	for (queue = 0; queue < tx_queue_cnt; queue++)
1279 		stmmac_clear_tx_descriptors(priv, queue);
1280 }
1281 
1282 /**
1283  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1284  * @priv: driver private structure
1285  * @p: descriptor pointer
1286  * @i: descriptor index
1287  * @flags: gfp flag
1288  * @queue: RX queue index
1289  * Description: this function is called to allocate a receive buffer, perform
1290  * the DMA mapping and init the descriptor.
1291  */
1292 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1293 				  int i, gfp_t flags, u32 queue)
1294 {
1295 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1296 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1297 
1298 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1299 	if (!buf->page)
1300 		return -ENOMEM;
1301 
1302 	if (priv->sph) {
1303 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1304 		if (!buf->sec_page)
1305 			return -ENOMEM;
1306 
1307 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1308 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1309 	} else {
1310 		buf->sec_page = NULL;
1311 	}
1312 
1313 	buf->addr = page_pool_get_dma_addr(buf->page);
1314 	stmmac_set_desc_addr(priv, p, buf->addr);
1315 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1316 		stmmac_init_desc3(priv, p);
1317 
1318 	return 0;
1319 }
1320 
1321 /**
1322  * stmmac_free_rx_buffer - free RX dma buffers
1323  * @priv: private structure
1324  * @queue: RX queue index
1325  * @i: buffer index.
1326  */
1327 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1328 {
1329 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1330 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1331 
1332 	if (buf->page)
1333 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1334 	buf->page = NULL;
1335 
1336 	if (buf->sec_page)
1337 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1338 	buf->sec_page = NULL;
1339 }
1340 
1341 /**
1342  * stmmac_free_tx_buffer - free RX dma buffers
1343  * @priv: private structure
1344  * @queue: RX queue index
1345  * @i: buffer index.
1346  */
1347 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1348 {
1349 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1350 
1351 	if (tx_q->tx_skbuff_dma[i].buf) {
1352 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1353 			dma_unmap_page(priv->device,
1354 				       tx_q->tx_skbuff_dma[i].buf,
1355 				       tx_q->tx_skbuff_dma[i].len,
1356 				       DMA_TO_DEVICE);
1357 		else
1358 			dma_unmap_single(priv->device,
1359 					 tx_q->tx_skbuff_dma[i].buf,
1360 					 tx_q->tx_skbuff_dma[i].len,
1361 					 DMA_TO_DEVICE);
1362 	}
1363 
1364 	if (tx_q->tx_skbuff[i]) {
1365 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1366 		tx_q->tx_skbuff[i] = NULL;
1367 		tx_q->tx_skbuff_dma[i].buf = 0;
1368 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1369 	}
1370 }
1371 
1372 /**
1373  * init_dma_rx_desc_rings - init the RX descriptor rings
1374  * @dev: net device structure
1375  * @flags: gfp flag.
1376  * Description: this function initializes the DMA RX descriptors
1377  * and allocates the socket buffers. It supports the chained and ring
1378  * modes.
1379  */
1380 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1381 {
1382 	struct stmmac_priv *priv = netdev_priv(dev);
1383 	u32 rx_count = priv->plat->rx_queues_to_use;
1384 	int ret = -ENOMEM;
1385 	int queue;
1386 	int i;
1387 
1388 	/* RX INITIALIZATION */
1389 	netif_dbg(priv, probe, priv->dev,
1390 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1391 
1392 	for (queue = 0; queue < rx_count; queue++) {
1393 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1394 
1395 		netif_dbg(priv, probe, priv->dev,
1396 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1397 			  (u32)rx_q->dma_rx_phy);
1398 
1399 		stmmac_clear_rx_descriptors(priv, queue);
1400 
1401 		for (i = 0; i < DMA_RX_SIZE; i++) {
1402 			struct dma_desc *p;
1403 
1404 			if (priv->extend_desc)
1405 				p = &((rx_q->dma_erx + i)->basic);
1406 			else
1407 				p = rx_q->dma_rx + i;
1408 
1409 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1410 						     queue);
1411 			if (ret)
1412 				goto err_init_rx_buffers;
1413 		}
1414 
1415 		rx_q->cur_rx = 0;
1416 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1417 
1418 		/* Setup the chained descriptor addresses */
1419 		if (priv->mode == STMMAC_CHAIN_MODE) {
1420 			if (priv->extend_desc)
1421 				stmmac_mode_init(priv, rx_q->dma_erx,
1422 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1423 			else
1424 				stmmac_mode_init(priv, rx_q->dma_rx,
1425 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1426 		}
1427 	}
1428 
1429 	return 0;
1430 
1431 err_init_rx_buffers:
1432 	while (queue >= 0) {
1433 		while (--i >= 0)
1434 			stmmac_free_rx_buffer(priv, queue, i);
1435 
1436 		if (queue == 0)
1437 			break;
1438 
1439 		i = DMA_RX_SIZE;
1440 		queue--;
1441 	}
1442 
1443 	return ret;
1444 }
1445 
1446 /**
1447  * init_dma_tx_desc_rings - init the TX descriptor rings
1448  * @dev: net device structure.
1449  * Description: this function initializes the DMA TX descriptors
1450  * and allocates the socket buffers. It supports the chained and ring
1451  * modes.
1452  */
1453 static int init_dma_tx_desc_rings(struct net_device *dev)
1454 {
1455 	struct stmmac_priv *priv = netdev_priv(dev);
1456 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1457 	u32 queue;
1458 	int i;
1459 
1460 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1461 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1462 
1463 		netif_dbg(priv, probe, priv->dev,
1464 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1465 			 (u32)tx_q->dma_tx_phy);
1466 
1467 		/* Setup the chained descriptor addresses */
1468 		if (priv->mode == STMMAC_CHAIN_MODE) {
1469 			if (priv->extend_desc)
1470 				stmmac_mode_init(priv, tx_q->dma_etx,
1471 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1472 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1473 				stmmac_mode_init(priv, tx_q->dma_tx,
1474 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1475 		}
1476 
1477 		for (i = 0; i < DMA_TX_SIZE; i++) {
1478 			struct dma_desc *p;
1479 			if (priv->extend_desc)
1480 				p = &((tx_q->dma_etx + i)->basic);
1481 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1482 				p = &((tx_q->dma_entx + i)->basic);
1483 			else
1484 				p = tx_q->dma_tx + i;
1485 
1486 			stmmac_clear_desc(priv, p);
1487 
1488 			tx_q->tx_skbuff_dma[i].buf = 0;
1489 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1490 			tx_q->tx_skbuff_dma[i].len = 0;
1491 			tx_q->tx_skbuff_dma[i].last_segment = false;
1492 			tx_q->tx_skbuff[i] = NULL;
1493 		}
1494 
1495 		tx_q->dirty_tx = 0;
1496 		tx_q->cur_tx = 0;
1497 		tx_q->mss = 0;
1498 
1499 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1500 	}
1501 
1502 	return 0;
1503 }
1504 
1505 /**
1506  * init_dma_desc_rings - init the RX/TX descriptor rings
1507  * @dev: net device structure
1508  * @flags: gfp flag.
1509  * Description: this function initializes the DMA RX/TX descriptors
1510  * and allocates the socket buffers. It supports the chained and ring
1511  * modes.
1512  */
1513 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1514 {
1515 	struct stmmac_priv *priv = netdev_priv(dev);
1516 	int ret;
1517 
1518 	ret = init_dma_rx_desc_rings(dev, flags);
1519 	if (ret)
1520 		return ret;
1521 
1522 	ret = init_dma_tx_desc_rings(dev);
1523 
1524 	stmmac_clear_descriptors(priv);
1525 
1526 	if (netif_msg_hw(priv))
1527 		stmmac_display_rings(priv);
1528 
1529 	return ret;
1530 }
1531 
1532 /**
1533  * dma_free_rx_skbufs - free RX dma buffers
1534  * @priv: private structure
1535  * @queue: RX queue index
1536  */
1537 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1538 {
1539 	int i;
1540 
1541 	for (i = 0; i < DMA_RX_SIZE; i++)
1542 		stmmac_free_rx_buffer(priv, queue, i);
1543 }
1544 
1545 /**
1546  * dma_free_tx_skbufs - free TX dma buffers
1547  * @priv: private structure
1548  * @queue: TX queue index
1549  */
1550 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1551 {
1552 	int i;
1553 
1554 	for (i = 0; i < DMA_TX_SIZE; i++)
1555 		stmmac_free_tx_buffer(priv, queue, i);
1556 }
1557 
1558 /**
1559  * free_dma_rx_desc_resources - free RX dma desc resources
1560  * @priv: private structure
1561  */
1562 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1563 {
1564 	u32 rx_count = priv->plat->rx_queues_to_use;
1565 	u32 queue;
1566 
1567 	/* Free RX queue resources */
1568 	for (queue = 0; queue < rx_count; queue++) {
1569 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1570 
1571 		/* Release the DMA RX socket buffers */
1572 		dma_free_rx_skbufs(priv, queue);
1573 
1574 		/* Free DMA regions of consistent memory previously allocated */
1575 		if (!priv->extend_desc)
1576 			dma_free_coherent(priv->device,
1577 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1578 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1579 		else
1580 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1581 					  sizeof(struct dma_extended_desc),
1582 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1583 
1584 		kfree(rx_q->buf_pool);
1585 		if (rx_q->page_pool)
1586 			page_pool_destroy(rx_q->page_pool);
1587 	}
1588 }
1589 
1590 /**
1591  * free_dma_tx_desc_resources - free TX dma desc resources
1592  * @priv: private structure
1593  */
1594 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1595 {
1596 	u32 tx_count = priv->plat->tx_queues_to_use;
1597 	u32 queue;
1598 
1599 	/* Free TX queue resources */
1600 	for (queue = 0; queue < tx_count; queue++) {
1601 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1602 		size_t size;
1603 		void *addr;
1604 
1605 		/* Release the DMA TX socket buffers */
1606 		dma_free_tx_skbufs(priv, queue);
1607 
1608 		if (priv->extend_desc) {
1609 			size = sizeof(struct dma_extended_desc);
1610 			addr = tx_q->dma_etx;
1611 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1612 			size = sizeof(struct dma_edesc);
1613 			addr = tx_q->dma_entx;
1614 		} else {
1615 			size = sizeof(struct dma_desc);
1616 			addr = tx_q->dma_tx;
1617 		}
1618 
1619 		size *= DMA_TX_SIZE;
1620 
1621 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1622 
1623 		kfree(tx_q->tx_skbuff_dma);
1624 		kfree(tx_q->tx_skbuff);
1625 	}
1626 }
1627 
1628 /**
1629  * alloc_dma_rx_desc_resources - alloc RX resources.
1630  * @priv: private structure
1631  * Description: according to which descriptor can be used (extend or basic)
1632  * this function allocates the resources for TX and RX paths. In case of
1633  * reception, for example, it pre-allocated the RX socket buffer in order to
1634  * allow zero-copy mechanism.
1635  */
1636 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1637 {
1638 	u32 rx_count = priv->plat->rx_queues_to_use;
1639 	int ret = -ENOMEM;
1640 	u32 queue;
1641 
1642 	/* RX queues buffers and DMA */
1643 	for (queue = 0; queue < rx_count; queue++) {
1644 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1645 		struct page_pool_params pp_params = { 0 };
1646 		unsigned int num_pages;
1647 
1648 		rx_q->queue_index = queue;
1649 		rx_q->priv_data = priv;
1650 
1651 		pp_params.flags = PP_FLAG_DMA_MAP;
1652 		pp_params.pool_size = DMA_RX_SIZE;
1653 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1654 		pp_params.order = ilog2(num_pages);
1655 		pp_params.nid = dev_to_node(priv->device);
1656 		pp_params.dev = priv->device;
1657 		pp_params.dma_dir = DMA_FROM_DEVICE;
1658 
1659 		rx_q->page_pool = page_pool_create(&pp_params);
1660 		if (IS_ERR(rx_q->page_pool)) {
1661 			ret = PTR_ERR(rx_q->page_pool);
1662 			rx_q->page_pool = NULL;
1663 			goto err_dma;
1664 		}
1665 
1666 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1667 					 GFP_KERNEL);
1668 		if (!rx_q->buf_pool)
1669 			goto err_dma;
1670 
1671 		if (priv->extend_desc) {
1672 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1673 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1674 							   &rx_q->dma_rx_phy,
1675 							   GFP_KERNEL);
1676 			if (!rx_q->dma_erx)
1677 				goto err_dma;
1678 
1679 		} else {
1680 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1681 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1682 							  &rx_q->dma_rx_phy,
1683 							  GFP_KERNEL);
1684 			if (!rx_q->dma_rx)
1685 				goto err_dma;
1686 		}
1687 	}
1688 
1689 	return 0;
1690 
1691 err_dma:
1692 	free_dma_rx_desc_resources(priv);
1693 
1694 	return ret;
1695 }
1696 
1697 /**
1698  * alloc_dma_tx_desc_resources - alloc TX resources.
1699  * @priv: private structure
1700  * Description: according to which descriptor can be used (extend or basic)
1701  * this function allocates the resources for TX and RX paths. In case of
1702  * reception, for example, it pre-allocated the RX socket buffer in order to
1703  * allow zero-copy mechanism.
1704  */
1705 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1706 {
1707 	u32 tx_count = priv->plat->tx_queues_to_use;
1708 	int ret = -ENOMEM;
1709 	u32 queue;
1710 
1711 	/* TX queues buffers and DMA */
1712 	for (queue = 0; queue < tx_count; queue++) {
1713 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1714 		size_t size;
1715 		void *addr;
1716 
1717 		tx_q->queue_index = queue;
1718 		tx_q->priv_data = priv;
1719 
1720 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1721 					      sizeof(*tx_q->tx_skbuff_dma),
1722 					      GFP_KERNEL);
1723 		if (!tx_q->tx_skbuff_dma)
1724 			goto err_dma;
1725 
1726 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1727 					  sizeof(struct sk_buff *),
1728 					  GFP_KERNEL);
1729 		if (!tx_q->tx_skbuff)
1730 			goto err_dma;
1731 
1732 		if (priv->extend_desc)
1733 			size = sizeof(struct dma_extended_desc);
1734 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1735 			size = sizeof(struct dma_edesc);
1736 		else
1737 			size = sizeof(struct dma_desc);
1738 
1739 		size *= DMA_TX_SIZE;
1740 
1741 		addr = dma_alloc_coherent(priv->device, size,
1742 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1743 		if (!addr)
1744 			goto err_dma;
1745 
1746 		if (priv->extend_desc)
1747 			tx_q->dma_etx = addr;
1748 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1749 			tx_q->dma_entx = addr;
1750 		else
1751 			tx_q->dma_tx = addr;
1752 	}
1753 
1754 	return 0;
1755 
1756 err_dma:
1757 	free_dma_tx_desc_resources(priv);
1758 	return ret;
1759 }
1760 
1761 /**
1762  * alloc_dma_desc_resources - alloc TX/RX resources.
1763  * @priv: private structure
1764  * Description: according to which descriptor can be used (extend or basic)
1765  * this function allocates the resources for TX and RX paths. In case of
1766  * reception, for example, it pre-allocated the RX socket buffer in order to
1767  * allow zero-copy mechanism.
1768  */
1769 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1770 {
1771 	/* RX Allocation */
1772 	int ret = alloc_dma_rx_desc_resources(priv);
1773 
1774 	if (ret)
1775 		return ret;
1776 
1777 	ret = alloc_dma_tx_desc_resources(priv);
1778 
1779 	return ret;
1780 }
1781 
1782 /**
1783  * free_dma_desc_resources - free dma desc resources
1784  * @priv: private structure
1785  */
1786 static void free_dma_desc_resources(struct stmmac_priv *priv)
1787 {
1788 	/* Release the DMA RX socket buffers */
1789 	free_dma_rx_desc_resources(priv);
1790 
1791 	/* Release the DMA TX socket buffers */
1792 	free_dma_tx_desc_resources(priv);
1793 }
1794 
1795 /**
1796  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1797  *  @priv: driver private structure
1798  *  Description: It is used for enabling the rx queues in the MAC
1799  */
1800 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1801 {
1802 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1803 	int queue;
1804 	u8 mode;
1805 
1806 	for (queue = 0; queue < rx_queues_count; queue++) {
1807 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1808 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1809 	}
1810 }
1811 
1812 /**
1813  * stmmac_start_rx_dma - start RX DMA channel
1814  * @priv: driver private structure
1815  * @chan: RX channel index
1816  * Description:
1817  * This starts a RX DMA channel
1818  */
1819 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1820 {
1821 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1822 	stmmac_start_rx(priv, priv->ioaddr, chan);
1823 }
1824 
1825 /**
1826  * stmmac_start_tx_dma - start TX DMA channel
1827  * @priv: driver private structure
1828  * @chan: TX channel index
1829  * Description:
1830  * This starts a TX DMA channel
1831  */
1832 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1833 {
1834 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1835 	stmmac_start_tx(priv, priv->ioaddr, chan);
1836 }
1837 
1838 /**
1839  * stmmac_stop_rx_dma - stop RX DMA channel
1840  * @priv: driver private structure
1841  * @chan: RX channel index
1842  * Description:
1843  * This stops a RX DMA channel
1844  */
1845 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1846 {
1847 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1848 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1849 }
1850 
1851 /**
1852  * stmmac_stop_tx_dma - stop TX DMA channel
1853  * @priv: driver private structure
1854  * @chan: TX channel index
1855  * Description:
1856  * This stops a TX DMA channel
1857  */
1858 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1859 {
1860 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1861 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1862 }
1863 
1864 /**
1865  * stmmac_start_all_dma - start all RX and TX DMA channels
1866  * @priv: driver private structure
1867  * Description:
1868  * This starts all the RX and TX DMA channels
1869  */
1870 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1871 {
1872 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1873 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1874 	u32 chan = 0;
1875 
1876 	for (chan = 0; chan < rx_channels_count; chan++)
1877 		stmmac_start_rx_dma(priv, chan);
1878 
1879 	for (chan = 0; chan < tx_channels_count; chan++)
1880 		stmmac_start_tx_dma(priv, chan);
1881 }
1882 
1883 /**
1884  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1885  * @priv: driver private structure
1886  * Description:
1887  * This stops the RX and TX DMA channels
1888  */
1889 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1890 {
1891 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1892 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1893 	u32 chan = 0;
1894 
1895 	for (chan = 0; chan < rx_channels_count; chan++)
1896 		stmmac_stop_rx_dma(priv, chan);
1897 
1898 	for (chan = 0; chan < tx_channels_count; chan++)
1899 		stmmac_stop_tx_dma(priv, chan);
1900 }
1901 
1902 /**
1903  *  stmmac_dma_operation_mode - HW DMA operation mode
1904  *  @priv: driver private structure
1905  *  Description: it is used for configuring the DMA operation mode register in
1906  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1907  */
1908 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1909 {
1910 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1911 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1912 	int rxfifosz = priv->plat->rx_fifo_size;
1913 	int txfifosz = priv->plat->tx_fifo_size;
1914 	u32 txmode = 0;
1915 	u32 rxmode = 0;
1916 	u32 chan = 0;
1917 	u8 qmode = 0;
1918 
1919 	if (rxfifosz == 0)
1920 		rxfifosz = priv->dma_cap.rx_fifo_size;
1921 	if (txfifosz == 0)
1922 		txfifosz = priv->dma_cap.tx_fifo_size;
1923 
1924 	/* Adjust for real per queue fifo size */
1925 	rxfifosz /= rx_channels_count;
1926 	txfifosz /= tx_channels_count;
1927 
1928 	if (priv->plat->force_thresh_dma_mode) {
1929 		txmode = tc;
1930 		rxmode = tc;
1931 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1932 		/*
1933 		 * In case of GMAC, SF mode can be enabled
1934 		 * to perform the TX COE in HW. This depends on:
1935 		 * 1) TX COE if actually supported
1936 		 * 2) There is no bugged Jumbo frame support
1937 		 *    that needs to not insert csum in the TDES.
1938 		 */
1939 		txmode = SF_DMA_MODE;
1940 		rxmode = SF_DMA_MODE;
1941 		priv->xstats.threshold = SF_DMA_MODE;
1942 	} else {
1943 		txmode = tc;
1944 		rxmode = SF_DMA_MODE;
1945 	}
1946 
1947 	/* configure all channels */
1948 	for (chan = 0; chan < rx_channels_count; chan++) {
1949 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1950 
1951 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1952 				rxfifosz, qmode);
1953 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1954 				chan);
1955 	}
1956 
1957 	for (chan = 0; chan < tx_channels_count; chan++) {
1958 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1959 
1960 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1961 				txfifosz, qmode);
1962 	}
1963 }
1964 
1965 /**
1966  * stmmac_tx_clean - to manage the transmission completion
1967  * @priv: driver private structure
1968  * @queue: TX queue index
1969  * Description: it reclaims the transmit resources after transmission completes.
1970  */
1971 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1972 {
1973 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1974 	unsigned int bytes_compl = 0, pkts_compl = 0;
1975 	unsigned int entry, count = 0;
1976 
1977 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1978 
1979 	priv->xstats.tx_clean++;
1980 
1981 	entry = tx_q->dirty_tx;
1982 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1983 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1984 		struct dma_desc *p;
1985 		int status;
1986 
1987 		if (priv->extend_desc)
1988 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1989 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1990 			p = &tx_q->dma_entx[entry].basic;
1991 		else
1992 			p = tx_q->dma_tx + entry;
1993 
1994 		status = stmmac_tx_status(priv, &priv->dev->stats,
1995 				&priv->xstats, p, priv->ioaddr);
1996 		/* Check if the descriptor is owned by the DMA */
1997 		if (unlikely(status & tx_dma_own))
1998 			break;
1999 
2000 		count++;
2001 
2002 		/* Make sure descriptor fields are read after reading
2003 		 * the own bit.
2004 		 */
2005 		dma_rmb();
2006 
2007 		/* Just consider the last segment and ...*/
2008 		if (likely(!(status & tx_not_ls))) {
2009 			/* ... verify the status error condition */
2010 			if (unlikely(status & tx_err)) {
2011 				priv->dev->stats.tx_errors++;
2012 			} else {
2013 				priv->dev->stats.tx_packets++;
2014 				priv->xstats.tx_pkt_n++;
2015 			}
2016 			stmmac_get_tx_hwtstamp(priv, p, skb);
2017 		}
2018 
2019 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2020 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2021 				dma_unmap_page(priv->device,
2022 					       tx_q->tx_skbuff_dma[entry].buf,
2023 					       tx_q->tx_skbuff_dma[entry].len,
2024 					       DMA_TO_DEVICE);
2025 			else
2026 				dma_unmap_single(priv->device,
2027 						 tx_q->tx_skbuff_dma[entry].buf,
2028 						 tx_q->tx_skbuff_dma[entry].len,
2029 						 DMA_TO_DEVICE);
2030 			tx_q->tx_skbuff_dma[entry].buf = 0;
2031 			tx_q->tx_skbuff_dma[entry].len = 0;
2032 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2033 		}
2034 
2035 		stmmac_clean_desc3(priv, tx_q, p);
2036 
2037 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2038 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2039 
2040 		if (likely(skb != NULL)) {
2041 			pkts_compl++;
2042 			bytes_compl += skb->len;
2043 			dev_consume_skb_any(skb);
2044 			tx_q->tx_skbuff[entry] = NULL;
2045 		}
2046 
2047 		stmmac_release_tx_desc(priv, p, priv->mode);
2048 
2049 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2050 	}
2051 	tx_q->dirty_tx = entry;
2052 
2053 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2054 				  pkts_compl, bytes_compl);
2055 
2056 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2057 								queue))) &&
2058 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
2059 
2060 		netif_dbg(priv, tx_done, priv->dev,
2061 			  "%s: restart transmit\n", __func__);
2062 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2063 	}
2064 
2065 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2066 		stmmac_enable_eee_mode(priv);
2067 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2068 	}
2069 
2070 	/* We still have pending packets, let's call for a new scheduling */
2071 	if (tx_q->dirty_tx != tx_q->cur_tx)
2072 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2073 
2074 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2075 
2076 	return count;
2077 }
2078 
2079 /**
2080  * stmmac_tx_err - to manage the tx error
2081  * @priv: driver private structure
2082  * @chan: channel index
2083  * Description: it cleans the descriptors and restarts the transmission
2084  * in case of transmission errors.
2085  */
2086 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2087 {
2088 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2089 
2090 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2091 
2092 	stmmac_stop_tx_dma(priv, chan);
2093 	dma_free_tx_skbufs(priv, chan);
2094 	stmmac_clear_tx_descriptors(priv, chan);
2095 	tx_q->dirty_tx = 0;
2096 	tx_q->cur_tx = 0;
2097 	tx_q->mss = 0;
2098 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2099 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2100 			    tx_q->dma_tx_phy, chan);
2101 	stmmac_start_tx_dma(priv, chan);
2102 
2103 	priv->dev->stats.tx_errors++;
2104 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2105 }
2106 
2107 /**
2108  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2109  *  @priv: driver private structure
2110  *  @txmode: TX operating mode
2111  *  @rxmode: RX operating mode
2112  *  @chan: channel index
2113  *  Description: it is used for configuring of the DMA operation mode in
2114  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2115  *  mode.
2116  */
2117 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2118 					  u32 rxmode, u32 chan)
2119 {
2120 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2121 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2122 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2123 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2124 	int rxfifosz = priv->plat->rx_fifo_size;
2125 	int txfifosz = priv->plat->tx_fifo_size;
2126 
2127 	if (rxfifosz == 0)
2128 		rxfifosz = priv->dma_cap.rx_fifo_size;
2129 	if (txfifosz == 0)
2130 		txfifosz = priv->dma_cap.tx_fifo_size;
2131 
2132 	/* Adjust for real per queue fifo size */
2133 	rxfifosz /= rx_channels_count;
2134 	txfifosz /= tx_channels_count;
2135 
2136 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2137 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2138 }
2139 
2140 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2141 {
2142 	int ret;
2143 
2144 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2145 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2146 	if (ret && (ret != -EINVAL)) {
2147 		stmmac_global_err(priv);
2148 		return true;
2149 	}
2150 
2151 	return false;
2152 }
2153 
2154 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2155 {
2156 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2157 						 &priv->xstats, chan);
2158 	struct stmmac_channel *ch = &priv->channel[chan];
2159 	unsigned long flags;
2160 
2161 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2162 		if (napi_schedule_prep(&ch->rx_napi)) {
2163 			spin_lock_irqsave(&ch->lock, flags);
2164 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2165 			spin_unlock_irqrestore(&ch->lock, flags);
2166 			__napi_schedule_irqoff(&ch->rx_napi);
2167 		}
2168 	}
2169 
2170 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2171 		if (napi_schedule_prep(&ch->tx_napi)) {
2172 			spin_lock_irqsave(&ch->lock, flags);
2173 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2174 			spin_unlock_irqrestore(&ch->lock, flags);
2175 			__napi_schedule_irqoff(&ch->tx_napi);
2176 		}
2177 	}
2178 
2179 	return status;
2180 }
2181 
2182 /**
2183  * stmmac_dma_interrupt - DMA ISR
2184  * @priv: driver private structure
2185  * Description: this is the DMA ISR. It is called by the main ISR.
2186  * It calls the dwmac dma routine and schedule poll method in case of some
2187  * work can be done.
2188  */
2189 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2190 {
2191 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2192 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2193 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2194 				tx_channel_count : rx_channel_count;
2195 	u32 chan;
2196 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2197 
2198 	/* Make sure we never check beyond our status buffer. */
2199 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2200 		channels_to_check = ARRAY_SIZE(status);
2201 
2202 	for (chan = 0; chan < channels_to_check; chan++)
2203 		status[chan] = stmmac_napi_check(priv, chan);
2204 
2205 	for (chan = 0; chan < tx_channel_count; chan++) {
2206 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2207 			/* Try to bump up the dma threshold on this failure */
2208 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2209 			    (tc <= 256)) {
2210 				tc += 64;
2211 				if (priv->plat->force_thresh_dma_mode)
2212 					stmmac_set_dma_operation_mode(priv,
2213 								      tc,
2214 								      tc,
2215 								      chan);
2216 				else
2217 					stmmac_set_dma_operation_mode(priv,
2218 								    tc,
2219 								    SF_DMA_MODE,
2220 								    chan);
2221 				priv->xstats.threshold = tc;
2222 			}
2223 		} else if (unlikely(status[chan] == tx_hard_error)) {
2224 			stmmac_tx_err(priv, chan);
2225 		}
2226 	}
2227 }
2228 
2229 /**
2230  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2231  * @priv: driver private structure
2232  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2233  */
2234 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2235 {
2236 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2237 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2238 
2239 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2240 
2241 	if (priv->dma_cap.rmon) {
2242 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2243 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2244 	} else
2245 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2246 }
2247 
2248 /**
2249  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2250  * @priv: driver private structure
2251  * Description:
2252  *  new GMAC chip generations have a new register to indicate the
2253  *  presence of the optional feature/functions.
2254  *  This can be also used to override the value passed through the
2255  *  platform and necessary for old MAC10/100 and GMAC chips.
2256  */
2257 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2258 {
2259 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2260 }
2261 
2262 /**
2263  * stmmac_check_ether_addr - check if the MAC addr is valid
2264  * @priv: driver private structure
2265  * Description:
2266  * it is to verify if the MAC address is valid, in case of failures it
2267  * generates a random MAC address
2268  */
2269 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2270 {
2271 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2272 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2273 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2274 			eth_hw_addr_random(priv->dev);
2275 		dev_info(priv->device, "device MAC address %pM\n",
2276 			 priv->dev->dev_addr);
2277 	}
2278 }
2279 
2280 /**
2281  * stmmac_init_dma_engine - DMA init.
2282  * @priv: driver private structure
2283  * Description:
2284  * It inits the DMA invoking the specific MAC/GMAC callback.
2285  * Some DMA parameters can be passed from the platform;
2286  * in case of these are not passed a default is kept for the MAC or GMAC.
2287  */
2288 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2289 {
2290 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2291 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2292 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2293 	struct stmmac_rx_queue *rx_q;
2294 	struct stmmac_tx_queue *tx_q;
2295 	u32 chan = 0;
2296 	int atds = 0;
2297 	int ret = 0;
2298 
2299 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2300 		dev_err(priv->device, "Invalid DMA configuration\n");
2301 		return -EINVAL;
2302 	}
2303 
2304 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2305 		atds = 1;
2306 
2307 	ret = stmmac_reset(priv, priv->ioaddr);
2308 	if (ret) {
2309 		dev_err(priv->device, "Failed to reset the dma\n");
2310 		return ret;
2311 	}
2312 
2313 	/* DMA Configuration */
2314 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2315 
2316 	if (priv->plat->axi)
2317 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2318 
2319 	/* DMA CSR Channel configuration */
2320 	for (chan = 0; chan < dma_csr_ch; chan++)
2321 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2322 
2323 	/* DMA RX Channel Configuration */
2324 	for (chan = 0; chan < rx_channels_count; chan++) {
2325 		rx_q = &priv->rx_queue[chan];
2326 
2327 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2328 				    rx_q->dma_rx_phy, chan);
2329 
2330 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2331 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2332 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2333 				       rx_q->rx_tail_addr, chan);
2334 	}
2335 
2336 	/* DMA TX Channel Configuration */
2337 	for (chan = 0; chan < tx_channels_count; chan++) {
2338 		tx_q = &priv->tx_queue[chan];
2339 
2340 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2341 				    tx_q->dma_tx_phy, chan);
2342 
2343 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2344 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2345 				       tx_q->tx_tail_addr, chan);
2346 	}
2347 
2348 	return ret;
2349 }
2350 
2351 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2352 {
2353 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2354 
2355 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2356 }
2357 
2358 /**
2359  * stmmac_tx_timer - mitigation sw timer for tx.
2360  * @data: data pointer
2361  * Description:
2362  * This is the timer handler to directly invoke the stmmac_tx_clean.
2363  */
2364 static void stmmac_tx_timer(struct timer_list *t)
2365 {
2366 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2367 	struct stmmac_priv *priv = tx_q->priv_data;
2368 	struct stmmac_channel *ch;
2369 
2370 	ch = &priv->channel[tx_q->queue_index];
2371 
2372 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2373 		unsigned long flags;
2374 
2375 		spin_lock_irqsave(&ch->lock, flags);
2376 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2377 		spin_unlock_irqrestore(&ch->lock, flags);
2378 		__napi_schedule(&ch->tx_napi);
2379 	}
2380 }
2381 
2382 /**
2383  * stmmac_init_coalesce - init mitigation options.
2384  * @priv: driver private structure
2385  * Description:
2386  * This inits the coalesce parameters: i.e. timer rate,
2387  * timer handler and default threshold used for enabling the
2388  * interrupt on completion bit.
2389  */
2390 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2391 {
2392 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2393 	u32 chan;
2394 
2395 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2396 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2397 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2398 
2399 	for (chan = 0; chan < tx_channel_count; chan++) {
2400 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2401 
2402 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2403 	}
2404 }
2405 
2406 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2407 {
2408 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2409 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2410 	u32 chan;
2411 
2412 	/* set TX ring length */
2413 	for (chan = 0; chan < tx_channels_count; chan++)
2414 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2415 				(DMA_TX_SIZE - 1), chan);
2416 
2417 	/* set RX ring length */
2418 	for (chan = 0; chan < rx_channels_count; chan++)
2419 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2420 				(DMA_RX_SIZE - 1), chan);
2421 }
2422 
2423 /**
2424  *  stmmac_set_tx_queue_weight - Set TX queue weight
2425  *  @priv: driver private structure
2426  *  Description: It is used for setting TX queues weight
2427  */
2428 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2429 {
2430 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2431 	u32 weight;
2432 	u32 queue;
2433 
2434 	for (queue = 0; queue < tx_queues_count; queue++) {
2435 		weight = priv->plat->tx_queues_cfg[queue].weight;
2436 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2437 	}
2438 }
2439 
2440 /**
2441  *  stmmac_configure_cbs - Configure CBS in TX queue
2442  *  @priv: driver private structure
2443  *  Description: It is used for configuring CBS in AVB TX queues
2444  */
2445 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2446 {
2447 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2448 	u32 mode_to_use;
2449 	u32 queue;
2450 
2451 	/* queue 0 is reserved for legacy traffic */
2452 	for (queue = 1; queue < tx_queues_count; queue++) {
2453 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2454 		if (mode_to_use == MTL_QUEUE_DCB)
2455 			continue;
2456 
2457 		stmmac_config_cbs(priv, priv->hw,
2458 				priv->plat->tx_queues_cfg[queue].send_slope,
2459 				priv->plat->tx_queues_cfg[queue].idle_slope,
2460 				priv->plat->tx_queues_cfg[queue].high_credit,
2461 				priv->plat->tx_queues_cfg[queue].low_credit,
2462 				queue);
2463 	}
2464 }
2465 
2466 /**
2467  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2468  *  @priv: driver private structure
2469  *  Description: It is used for mapping RX queues to RX dma channels
2470  */
2471 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2472 {
2473 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2474 	u32 queue;
2475 	u32 chan;
2476 
2477 	for (queue = 0; queue < rx_queues_count; queue++) {
2478 		chan = priv->plat->rx_queues_cfg[queue].chan;
2479 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2480 	}
2481 }
2482 
2483 /**
2484  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2485  *  @priv: driver private structure
2486  *  Description: It is used for configuring the RX Queue Priority
2487  */
2488 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2489 {
2490 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2491 	u32 queue;
2492 	u32 prio;
2493 
2494 	for (queue = 0; queue < rx_queues_count; queue++) {
2495 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2496 			continue;
2497 
2498 		prio = priv->plat->rx_queues_cfg[queue].prio;
2499 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2500 	}
2501 }
2502 
2503 /**
2504  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2505  *  @priv: driver private structure
2506  *  Description: It is used for configuring the TX Queue Priority
2507  */
2508 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2509 {
2510 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2511 	u32 queue;
2512 	u32 prio;
2513 
2514 	for (queue = 0; queue < tx_queues_count; queue++) {
2515 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2516 			continue;
2517 
2518 		prio = priv->plat->tx_queues_cfg[queue].prio;
2519 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2520 	}
2521 }
2522 
2523 /**
2524  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2525  *  @priv: driver private structure
2526  *  Description: It is used for configuring the RX queue routing
2527  */
2528 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2529 {
2530 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2531 	u32 queue;
2532 	u8 packet;
2533 
2534 	for (queue = 0; queue < rx_queues_count; queue++) {
2535 		/* no specific packet type routing specified for the queue */
2536 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2537 			continue;
2538 
2539 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2540 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2541 	}
2542 }
2543 
2544 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2545 {
2546 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2547 		priv->rss.enable = false;
2548 		return;
2549 	}
2550 
2551 	if (priv->dev->features & NETIF_F_RXHASH)
2552 		priv->rss.enable = true;
2553 	else
2554 		priv->rss.enable = false;
2555 
2556 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2557 			     priv->plat->rx_queues_to_use);
2558 }
2559 
2560 /**
2561  *  stmmac_mtl_configuration - Configure MTL
2562  *  @priv: driver private structure
2563  *  Description: It is used for configurring MTL
2564  */
2565 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2566 {
2567 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2568 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2569 
2570 	if (tx_queues_count > 1)
2571 		stmmac_set_tx_queue_weight(priv);
2572 
2573 	/* Configure MTL RX algorithms */
2574 	if (rx_queues_count > 1)
2575 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2576 				priv->plat->rx_sched_algorithm);
2577 
2578 	/* Configure MTL TX algorithms */
2579 	if (tx_queues_count > 1)
2580 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2581 				priv->plat->tx_sched_algorithm);
2582 
2583 	/* Configure CBS in AVB TX queues */
2584 	if (tx_queues_count > 1)
2585 		stmmac_configure_cbs(priv);
2586 
2587 	/* Map RX MTL to DMA channels */
2588 	stmmac_rx_queue_dma_chan_map(priv);
2589 
2590 	/* Enable MAC RX Queues */
2591 	stmmac_mac_enable_rx_queues(priv);
2592 
2593 	/* Set RX priorities */
2594 	if (rx_queues_count > 1)
2595 		stmmac_mac_config_rx_queues_prio(priv);
2596 
2597 	/* Set TX priorities */
2598 	if (tx_queues_count > 1)
2599 		stmmac_mac_config_tx_queues_prio(priv);
2600 
2601 	/* Set RX routing */
2602 	if (rx_queues_count > 1)
2603 		stmmac_mac_config_rx_queues_routing(priv);
2604 
2605 	/* Receive Side Scaling */
2606 	if (rx_queues_count > 1)
2607 		stmmac_mac_config_rss(priv);
2608 }
2609 
2610 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2611 {
2612 	if (priv->dma_cap.asp) {
2613 		netdev_info(priv->dev, "Enabling Safety Features\n");
2614 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2615 	} else {
2616 		netdev_info(priv->dev, "No Safety Features support found\n");
2617 	}
2618 }
2619 
2620 /**
2621  * stmmac_hw_setup - setup mac in a usable state.
2622  *  @dev : pointer to the device structure.
2623  *  Description:
2624  *  this is the main function to setup the HW in a usable state because the
2625  *  dma engine is reset, the core registers are configured (e.g. AXI,
2626  *  Checksum features, timers). The DMA is ready to start receiving and
2627  *  transmitting.
2628  *  Return value:
2629  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2630  *  file on failure.
2631  */
2632 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2633 {
2634 	struct stmmac_priv *priv = netdev_priv(dev);
2635 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2636 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2637 	u32 chan;
2638 	int ret;
2639 
2640 	/* DMA initialization and SW reset */
2641 	ret = stmmac_init_dma_engine(priv);
2642 	if (ret < 0) {
2643 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2644 			   __func__);
2645 		return ret;
2646 	}
2647 
2648 	/* Copy the MAC addr into the HW  */
2649 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2650 
2651 	/* PS and related bits will be programmed according to the speed */
2652 	if (priv->hw->pcs) {
2653 		int speed = priv->plat->mac_port_sel_speed;
2654 
2655 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2656 		    (speed == SPEED_1000)) {
2657 			priv->hw->ps = speed;
2658 		} else {
2659 			dev_warn(priv->device, "invalid port speed\n");
2660 			priv->hw->ps = 0;
2661 		}
2662 	}
2663 
2664 	/* Initialize the MAC Core */
2665 	stmmac_core_init(priv, priv->hw, dev);
2666 
2667 	/* Initialize MTL*/
2668 	stmmac_mtl_configuration(priv);
2669 
2670 	/* Initialize Safety Features */
2671 	stmmac_safety_feat_configuration(priv);
2672 
2673 	ret = stmmac_rx_ipc(priv, priv->hw);
2674 	if (!ret) {
2675 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2676 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2677 		priv->hw->rx_csum = 0;
2678 	}
2679 
2680 	/* Enable the MAC Rx/Tx */
2681 	stmmac_mac_set(priv, priv->ioaddr, true);
2682 
2683 	/* Set the HW DMA mode and the COE */
2684 	stmmac_dma_operation_mode(priv);
2685 
2686 	stmmac_mmc_setup(priv);
2687 
2688 	if (init_ptp) {
2689 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2690 		if (ret < 0)
2691 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2692 
2693 		ret = stmmac_init_ptp(priv);
2694 		if (ret == -EOPNOTSUPP)
2695 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2696 		else if (ret)
2697 			netdev_warn(priv->dev, "PTP init failed\n");
2698 	}
2699 
2700 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2701 
2702 	/* Convert the timer from msec to usec */
2703 	if (!priv->tx_lpi_timer)
2704 		priv->tx_lpi_timer = eee_timer * 1000;
2705 
2706 	if (priv->use_riwt) {
2707 		if (!priv->rx_riwt)
2708 			priv->rx_riwt = DEF_DMA_RIWT;
2709 
2710 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2711 	}
2712 
2713 	if (priv->hw->pcs)
2714 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2715 
2716 	/* set TX and RX rings length */
2717 	stmmac_set_rings_length(priv);
2718 
2719 	/* Enable TSO */
2720 	if (priv->tso) {
2721 		for (chan = 0; chan < tx_cnt; chan++)
2722 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2723 	}
2724 
2725 	/* Enable Split Header */
2726 	if (priv->sph && priv->hw->rx_csum) {
2727 		for (chan = 0; chan < rx_cnt; chan++)
2728 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2729 	}
2730 
2731 	/* VLAN Tag Insertion */
2732 	if (priv->dma_cap.vlins)
2733 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2734 
2735 	/* TBS */
2736 	for (chan = 0; chan < tx_cnt; chan++) {
2737 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2738 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2739 
2740 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2741 	}
2742 
2743 	/* Start the ball rolling... */
2744 	stmmac_start_all_dma(priv);
2745 
2746 	return 0;
2747 }
2748 
2749 static void stmmac_hw_teardown(struct net_device *dev)
2750 {
2751 	struct stmmac_priv *priv = netdev_priv(dev);
2752 
2753 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2754 }
2755 
2756 /**
2757  *  stmmac_open - open entry point of the driver
2758  *  @dev : pointer to the device structure.
2759  *  Description:
2760  *  This function is the open entry point of the driver.
2761  *  Return value:
2762  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2763  *  file on failure.
2764  */
2765 static int stmmac_open(struct net_device *dev)
2766 {
2767 	struct stmmac_priv *priv = netdev_priv(dev);
2768 	int bfsize = 0;
2769 	u32 chan;
2770 	int ret;
2771 
2772 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2773 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2774 	    priv->hw->xpcs == NULL) {
2775 		ret = stmmac_init_phy(dev);
2776 		if (ret) {
2777 			netdev_err(priv->dev,
2778 				   "%s: Cannot attach to PHY (error: %d)\n",
2779 				   __func__, ret);
2780 			return ret;
2781 		}
2782 	}
2783 
2784 	/* Extra statistics */
2785 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2786 	priv->xstats.threshold = tc;
2787 
2788 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2789 	if (bfsize < 0)
2790 		bfsize = 0;
2791 
2792 	if (bfsize < BUF_SIZE_16KiB)
2793 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2794 
2795 	priv->dma_buf_sz = bfsize;
2796 	buf_sz = bfsize;
2797 
2798 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2799 
2800 	/* Earlier check for TBS */
2801 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2802 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2803 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2804 
2805 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2806 		if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2807 			tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2808 	}
2809 
2810 	ret = alloc_dma_desc_resources(priv);
2811 	if (ret < 0) {
2812 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2813 			   __func__);
2814 		goto dma_desc_error;
2815 	}
2816 
2817 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2818 	if (ret < 0) {
2819 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2820 			   __func__);
2821 		goto init_error;
2822 	}
2823 
2824 	ret = stmmac_hw_setup(dev, true);
2825 	if (ret < 0) {
2826 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2827 		goto init_error;
2828 	}
2829 
2830 	stmmac_init_coalesce(priv);
2831 
2832 	phylink_start(priv->phylink);
2833 	/* We may have called phylink_speed_down before */
2834 	phylink_speed_up(priv->phylink);
2835 
2836 	/* Request the IRQ lines */
2837 	ret = request_irq(dev->irq, stmmac_interrupt,
2838 			  IRQF_SHARED, dev->name, dev);
2839 	if (unlikely(ret < 0)) {
2840 		netdev_err(priv->dev,
2841 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2842 			   __func__, dev->irq, ret);
2843 		goto irq_error;
2844 	}
2845 
2846 	/* Request the Wake IRQ in case of another line is used for WoL */
2847 	if (priv->wol_irq != dev->irq) {
2848 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2849 				  IRQF_SHARED, dev->name, dev);
2850 		if (unlikely(ret < 0)) {
2851 			netdev_err(priv->dev,
2852 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2853 				   __func__, priv->wol_irq, ret);
2854 			goto wolirq_error;
2855 		}
2856 	}
2857 
2858 	/* Request the IRQ lines */
2859 	if (priv->lpi_irq > 0) {
2860 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2861 				  dev->name, dev);
2862 		if (unlikely(ret < 0)) {
2863 			netdev_err(priv->dev,
2864 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2865 				   __func__, priv->lpi_irq, ret);
2866 			goto lpiirq_error;
2867 		}
2868 	}
2869 
2870 	stmmac_enable_all_queues(priv);
2871 	stmmac_start_all_queues(priv);
2872 
2873 	return 0;
2874 
2875 lpiirq_error:
2876 	if (priv->wol_irq != dev->irq)
2877 		free_irq(priv->wol_irq, dev);
2878 wolirq_error:
2879 	free_irq(dev->irq, dev);
2880 irq_error:
2881 	phylink_stop(priv->phylink);
2882 
2883 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2884 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2885 
2886 	stmmac_hw_teardown(dev);
2887 init_error:
2888 	free_dma_desc_resources(priv);
2889 dma_desc_error:
2890 	phylink_disconnect_phy(priv->phylink);
2891 	return ret;
2892 }
2893 
2894 /**
2895  *  stmmac_release - close entry point of the driver
2896  *  @dev : device pointer.
2897  *  Description:
2898  *  This is the stop entry point of the driver.
2899  */
2900 static int stmmac_release(struct net_device *dev)
2901 {
2902 	struct stmmac_priv *priv = netdev_priv(dev);
2903 	u32 chan;
2904 
2905 	if (priv->eee_enabled)
2906 		del_timer_sync(&priv->eee_ctrl_timer);
2907 
2908 	if (device_may_wakeup(priv->device))
2909 		phylink_speed_down(priv->phylink, false);
2910 	/* Stop and disconnect the PHY */
2911 	phylink_stop(priv->phylink);
2912 	phylink_disconnect_phy(priv->phylink);
2913 
2914 	stmmac_stop_all_queues(priv);
2915 
2916 	stmmac_disable_all_queues(priv);
2917 
2918 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2919 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2920 
2921 	/* Free the IRQ lines */
2922 	free_irq(dev->irq, dev);
2923 	if (priv->wol_irq != dev->irq)
2924 		free_irq(priv->wol_irq, dev);
2925 	if (priv->lpi_irq > 0)
2926 		free_irq(priv->lpi_irq, dev);
2927 
2928 	/* Stop TX/RX DMA and clear the descriptors */
2929 	stmmac_stop_all_dma(priv);
2930 
2931 	/* Release and free the Rx/Tx resources */
2932 	free_dma_desc_resources(priv);
2933 
2934 	/* Disable the MAC Rx/Tx */
2935 	stmmac_mac_set(priv, priv->ioaddr, false);
2936 
2937 	netif_carrier_off(dev);
2938 
2939 	stmmac_release_ptp(priv);
2940 
2941 	return 0;
2942 }
2943 
2944 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2945 			       struct stmmac_tx_queue *tx_q)
2946 {
2947 	u16 tag = 0x0, inner_tag = 0x0;
2948 	u32 inner_type = 0x0;
2949 	struct dma_desc *p;
2950 
2951 	if (!priv->dma_cap.vlins)
2952 		return false;
2953 	if (!skb_vlan_tag_present(skb))
2954 		return false;
2955 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2956 		inner_tag = skb_vlan_tag_get(skb);
2957 		inner_type = STMMAC_VLAN_INSERT;
2958 	}
2959 
2960 	tag = skb_vlan_tag_get(skb);
2961 
2962 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
2963 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2964 	else
2965 		p = &tx_q->dma_tx[tx_q->cur_tx];
2966 
2967 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2968 		return false;
2969 
2970 	stmmac_set_tx_owner(priv, p);
2971 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2972 	return true;
2973 }
2974 
2975 /**
2976  *  stmmac_tso_allocator - close entry point of the driver
2977  *  @priv: driver private structure
2978  *  @des: buffer start address
2979  *  @total_len: total length to fill in descriptors
2980  *  @last_segmant: condition for the last descriptor
2981  *  @queue: TX queue index
2982  *  Description:
2983  *  This function fills descriptor and request new descriptors according to
2984  *  buffer length to fill
2985  */
2986 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2987 				 int total_len, bool last_segment, u32 queue)
2988 {
2989 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2990 	struct dma_desc *desc;
2991 	u32 buff_size;
2992 	int tmp_len;
2993 
2994 	tmp_len = total_len;
2995 
2996 	while (tmp_len > 0) {
2997 		dma_addr_t curr_addr;
2998 
2999 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3000 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3001 
3002 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3003 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3004 		else
3005 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3006 
3007 		curr_addr = des + (total_len - tmp_len);
3008 		if (priv->dma_cap.addr64 <= 32)
3009 			desc->des0 = cpu_to_le32(curr_addr);
3010 		else
3011 			stmmac_set_desc_addr(priv, desc, curr_addr);
3012 
3013 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3014 			    TSO_MAX_BUFF_SIZE : tmp_len;
3015 
3016 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3017 				0, 1,
3018 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3019 				0, 0);
3020 
3021 		tmp_len -= TSO_MAX_BUFF_SIZE;
3022 	}
3023 }
3024 
3025 /**
3026  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3027  *  @skb : the socket buffer
3028  *  @dev : device pointer
3029  *  Description: this is the transmit function that is called on TSO frames
3030  *  (support available on GMAC4 and newer chips).
3031  *  Diagram below show the ring programming in case of TSO frames:
3032  *
3033  *  First Descriptor
3034  *   --------
3035  *   | DES0 |---> buffer1 = L2/L3/L4 header
3036  *   | DES1 |---> TCP Payload (can continue on next descr...)
3037  *   | DES2 |---> buffer 1 and 2 len
3038  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3039  *   --------
3040  *	|
3041  *     ...
3042  *	|
3043  *   --------
3044  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3045  *   | DES1 | --|
3046  *   | DES2 | --> buffer 1 and 2 len
3047  *   | DES3 |
3048  *   --------
3049  *
3050  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3051  */
3052 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3053 {
3054 	struct dma_desc *desc, *first, *mss_desc = NULL;
3055 	struct stmmac_priv *priv = netdev_priv(dev);
3056 	int desc_size, tmp_pay_len = 0, first_tx;
3057 	int nfrags = skb_shinfo(skb)->nr_frags;
3058 	u32 queue = skb_get_queue_mapping(skb);
3059 	unsigned int first_entry, tx_packets;
3060 	struct stmmac_tx_queue *tx_q;
3061 	bool has_vlan, set_ic;
3062 	u8 proto_hdr_len, hdr;
3063 	u32 pay_len, mss;
3064 	dma_addr_t des;
3065 	int i;
3066 
3067 	tx_q = &priv->tx_queue[queue];
3068 	first_tx = tx_q->cur_tx;
3069 
3070 	/* Compute header lengths */
3071 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3072 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3073 		hdr = sizeof(struct udphdr);
3074 	} else {
3075 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3076 		hdr = tcp_hdrlen(skb);
3077 	}
3078 
3079 	/* Desc availability based on threshold should be enough safe */
3080 	if (unlikely(stmmac_tx_avail(priv, queue) <
3081 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3082 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3083 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3084 								queue));
3085 			/* This is a hard error, log it. */
3086 			netdev_err(priv->dev,
3087 				   "%s: Tx Ring full when queue awake\n",
3088 				   __func__);
3089 		}
3090 		return NETDEV_TX_BUSY;
3091 	}
3092 
3093 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3094 
3095 	mss = skb_shinfo(skb)->gso_size;
3096 
3097 	/* set new MSS value if needed */
3098 	if (mss != tx_q->mss) {
3099 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3100 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3101 		else
3102 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3103 
3104 		stmmac_set_mss(priv, mss_desc, mss);
3105 		tx_q->mss = mss;
3106 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3107 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3108 	}
3109 
3110 	if (netif_msg_tx_queued(priv)) {
3111 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3112 			__func__, hdr, proto_hdr_len, pay_len, mss);
3113 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3114 			skb->data_len);
3115 	}
3116 
3117 	/* Check if VLAN can be inserted by HW */
3118 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3119 
3120 	first_entry = tx_q->cur_tx;
3121 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3122 
3123 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3124 		desc = &tx_q->dma_entx[first_entry].basic;
3125 	else
3126 		desc = &tx_q->dma_tx[first_entry];
3127 	first = desc;
3128 
3129 	if (has_vlan)
3130 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3131 
3132 	/* first descriptor: fill Headers on Buf1 */
3133 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3134 			     DMA_TO_DEVICE);
3135 	if (dma_mapping_error(priv->device, des))
3136 		goto dma_map_err;
3137 
3138 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3139 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3140 
3141 	if (priv->dma_cap.addr64 <= 32) {
3142 		first->des0 = cpu_to_le32(des);
3143 
3144 		/* Fill start of payload in buff2 of first descriptor */
3145 		if (pay_len)
3146 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3147 
3148 		/* If needed take extra descriptors to fill the remaining payload */
3149 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3150 	} else {
3151 		stmmac_set_desc_addr(priv, first, des);
3152 		tmp_pay_len = pay_len;
3153 		des += proto_hdr_len;
3154 		pay_len = 0;
3155 	}
3156 
3157 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3158 
3159 	/* Prepare fragments */
3160 	for (i = 0; i < nfrags; i++) {
3161 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3162 
3163 		des = skb_frag_dma_map(priv->device, frag, 0,
3164 				       skb_frag_size(frag),
3165 				       DMA_TO_DEVICE);
3166 		if (dma_mapping_error(priv->device, des))
3167 			goto dma_map_err;
3168 
3169 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3170 				     (i == nfrags - 1), queue);
3171 
3172 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3173 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3174 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3175 	}
3176 
3177 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3178 
3179 	/* Only the last descriptor gets to point to the skb. */
3180 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3181 
3182 	/* Manage tx mitigation */
3183 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3184 	tx_q->tx_count_frames += tx_packets;
3185 
3186 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3187 		set_ic = true;
3188 	else if (!priv->tx_coal_frames)
3189 		set_ic = false;
3190 	else if (tx_packets > priv->tx_coal_frames)
3191 		set_ic = true;
3192 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3193 		set_ic = true;
3194 	else
3195 		set_ic = false;
3196 
3197 	if (set_ic) {
3198 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3199 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3200 		else
3201 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3202 
3203 		tx_q->tx_count_frames = 0;
3204 		stmmac_set_tx_ic(priv, desc);
3205 		priv->xstats.tx_set_ic_bit++;
3206 	}
3207 
3208 	/* We've used all descriptors we need for this skb, however,
3209 	 * advance cur_tx so that it references a fresh descriptor.
3210 	 * ndo_start_xmit will fill this descriptor the next time it's
3211 	 * called and stmmac_tx_clean may clean up to this descriptor.
3212 	 */
3213 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3214 
3215 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3216 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3217 			  __func__);
3218 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3219 	}
3220 
3221 	dev->stats.tx_bytes += skb->len;
3222 	priv->xstats.tx_tso_frames++;
3223 	priv->xstats.tx_tso_nfrags += nfrags;
3224 
3225 	if (priv->sarc_type)
3226 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3227 
3228 	skb_tx_timestamp(skb);
3229 
3230 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3231 		     priv->hwts_tx_en)) {
3232 		/* declare that device is doing timestamping */
3233 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3234 		stmmac_enable_tx_timestamp(priv, first);
3235 	}
3236 
3237 	/* Complete the first descriptor before granting the DMA */
3238 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3239 			proto_hdr_len,
3240 			pay_len,
3241 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3242 			hdr / 4, (skb->len - proto_hdr_len));
3243 
3244 	/* If context desc is used to change MSS */
3245 	if (mss_desc) {
3246 		/* Make sure that first descriptor has been completely
3247 		 * written, including its own bit. This is because MSS is
3248 		 * actually before first descriptor, so we need to make
3249 		 * sure that MSS's own bit is the last thing written.
3250 		 */
3251 		dma_wmb();
3252 		stmmac_set_tx_owner(priv, mss_desc);
3253 	}
3254 
3255 	/* The own bit must be the latest setting done when prepare the
3256 	 * descriptor and then barrier is needed to make sure that
3257 	 * all is coherent before granting the DMA engine.
3258 	 */
3259 	wmb();
3260 
3261 	if (netif_msg_pktdata(priv)) {
3262 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3263 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3264 			tx_q->cur_tx, first, nfrags);
3265 		pr_info(">>> frame to be transmitted: ");
3266 		print_pkt(skb->data, skb_headlen(skb));
3267 	}
3268 
3269 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3270 
3271 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3272 		desc_size = sizeof(struct dma_edesc);
3273 	else
3274 		desc_size = sizeof(struct dma_desc);
3275 
3276 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3277 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3278 	stmmac_tx_timer_arm(priv, queue);
3279 
3280 	return NETDEV_TX_OK;
3281 
3282 dma_map_err:
3283 	dev_err(priv->device, "Tx dma map failed\n");
3284 	dev_kfree_skb(skb);
3285 	priv->dev->stats.tx_dropped++;
3286 	return NETDEV_TX_OK;
3287 }
3288 
3289 /**
3290  *  stmmac_xmit - Tx entry point of the driver
3291  *  @skb : the socket buffer
3292  *  @dev : device pointer
3293  *  Description : this is the tx entry point of the driver.
3294  *  It programs the chain or the ring and supports oversized frames
3295  *  and SG feature.
3296  */
3297 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3298 {
3299 	unsigned int first_entry, tx_packets, enh_desc;
3300 	struct stmmac_priv *priv = netdev_priv(dev);
3301 	unsigned int nopaged_len = skb_headlen(skb);
3302 	int i, csum_insertion = 0, is_jumbo = 0;
3303 	u32 queue = skb_get_queue_mapping(skb);
3304 	int nfrags = skb_shinfo(skb)->nr_frags;
3305 	int gso = skb_shinfo(skb)->gso_type;
3306 	struct dma_edesc *tbs_desc = NULL;
3307 	int entry, desc_size, first_tx;
3308 	struct dma_desc *desc, *first;
3309 	struct stmmac_tx_queue *tx_q;
3310 	bool has_vlan, set_ic;
3311 	dma_addr_t des;
3312 
3313 	tx_q = &priv->tx_queue[queue];
3314 	first_tx = tx_q->cur_tx;
3315 
3316 	if (priv->tx_path_in_lpi_mode)
3317 		stmmac_disable_eee_mode(priv);
3318 
3319 	/* Manage oversized TCP frames for GMAC4 device */
3320 	if (skb_is_gso(skb) && priv->tso) {
3321 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3322 			return stmmac_tso_xmit(skb, dev);
3323 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3324 			return stmmac_tso_xmit(skb, dev);
3325 	}
3326 
3327 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3328 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3329 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3330 								queue));
3331 			/* This is a hard error, log it. */
3332 			netdev_err(priv->dev,
3333 				   "%s: Tx Ring full when queue awake\n",
3334 				   __func__);
3335 		}
3336 		return NETDEV_TX_BUSY;
3337 	}
3338 
3339 	/* Check if VLAN can be inserted by HW */
3340 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3341 
3342 	entry = tx_q->cur_tx;
3343 	first_entry = entry;
3344 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3345 
3346 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3347 
3348 	if (likely(priv->extend_desc))
3349 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3350 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3351 		desc = &tx_q->dma_entx[entry].basic;
3352 	else
3353 		desc = tx_q->dma_tx + entry;
3354 
3355 	first = desc;
3356 
3357 	if (has_vlan)
3358 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3359 
3360 	enh_desc = priv->plat->enh_desc;
3361 	/* To program the descriptors according to the size of the frame */
3362 	if (enh_desc)
3363 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3364 
3365 	if (unlikely(is_jumbo)) {
3366 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3367 		if (unlikely(entry < 0) && (entry != -EINVAL))
3368 			goto dma_map_err;
3369 	}
3370 
3371 	for (i = 0; i < nfrags; i++) {
3372 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3373 		int len = skb_frag_size(frag);
3374 		bool last_segment = (i == (nfrags - 1));
3375 
3376 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3377 		WARN_ON(tx_q->tx_skbuff[entry]);
3378 
3379 		if (likely(priv->extend_desc))
3380 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3381 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3382 			desc = &tx_q->dma_entx[entry].basic;
3383 		else
3384 			desc = tx_q->dma_tx + entry;
3385 
3386 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3387 				       DMA_TO_DEVICE);
3388 		if (dma_mapping_error(priv->device, des))
3389 			goto dma_map_err; /* should reuse desc w/o issues */
3390 
3391 		tx_q->tx_skbuff_dma[entry].buf = des;
3392 
3393 		stmmac_set_desc_addr(priv, desc, des);
3394 
3395 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3396 		tx_q->tx_skbuff_dma[entry].len = len;
3397 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3398 
3399 		/* Prepare the descriptor and set the own bit too */
3400 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3401 				priv->mode, 1, last_segment, skb->len);
3402 	}
3403 
3404 	/* Only the last descriptor gets to point to the skb. */
3405 	tx_q->tx_skbuff[entry] = skb;
3406 
3407 	/* According to the coalesce parameter the IC bit for the latest
3408 	 * segment is reset and the timer re-started to clean the tx status.
3409 	 * This approach takes care about the fragments: desc is the first
3410 	 * element in case of no SG.
3411 	 */
3412 	tx_packets = (entry + 1) - first_tx;
3413 	tx_q->tx_count_frames += tx_packets;
3414 
3415 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3416 		set_ic = true;
3417 	else if (!priv->tx_coal_frames)
3418 		set_ic = false;
3419 	else if (tx_packets > priv->tx_coal_frames)
3420 		set_ic = true;
3421 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3422 		set_ic = true;
3423 	else
3424 		set_ic = false;
3425 
3426 	if (set_ic) {
3427 		if (likely(priv->extend_desc))
3428 			desc = &tx_q->dma_etx[entry].basic;
3429 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3430 			desc = &tx_q->dma_entx[entry].basic;
3431 		else
3432 			desc = &tx_q->dma_tx[entry];
3433 
3434 		tx_q->tx_count_frames = 0;
3435 		stmmac_set_tx_ic(priv, desc);
3436 		priv->xstats.tx_set_ic_bit++;
3437 	}
3438 
3439 	/* We've used all descriptors we need for this skb, however,
3440 	 * advance cur_tx so that it references a fresh descriptor.
3441 	 * ndo_start_xmit will fill this descriptor the next time it's
3442 	 * called and stmmac_tx_clean may clean up to this descriptor.
3443 	 */
3444 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3445 	tx_q->cur_tx = entry;
3446 
3447 	if (netif_msg_pktdata(priv)) {
3448 		netdev_dbg(priv->dev,
3449 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3450 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3451 			   entry, first, nfrags);
3452 
3453 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3454 		print_pkt(skb->data, skb->len);
3455 	}
3456 
3457 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3458 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3459 			  __func__);
3460 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3461 	}
3462 
3463 	dev->stats.tx_bytes += skb->len;
3464 
3465 	if (priv->sarc_type)
3466 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3467 
3468 	skb_tx_timestamp(skb);
3469 
3470 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3471 	 * problems because all the descriptors are actually ready to be
3472 	 * passed to the DMA engine.
3473 	 */
3474 	if (likely(!is_jumbo)) {
3475 		bool last_segment = (nfrags == 0);
3476 
3477 		des = dma_map_single(priv->device, skb->data,
3478 				     nopaged_len, DMA_TO_DEVICE);
3479 		if (dma_mapping_error(priv->device, des))
3480 			goto dma_map_err;
3481 
3482 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3483 
3484 		stmmac_set_desc_addr(priv, first, des);
3485 
3486 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3487 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3488 
3489 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3490 			     priv->hwts_tx_en)) {
3491 			/* declare that device is doing timestamping */
3492 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3493 			stmmac_enable_tx_timestamp(priv, first);
3494 		}
3495 
3496 		/* Prepare the first descriptor setting the OWN bit too */
3497 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3498 				csum_insertion, priv->mode, 0, last_segment,
3499 				skb->len);
3500 	}
3501 
3502 	if (tx_q->tbs & STMMAC_TBS_EN) {
3503 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3504 
3505 		tbs_desc = &tx_q->dma_entx[first_entry];
3506 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3507 	}
3508 
3509 	stmmac_set_tx_owner(priv, first);
3510 
3511 	/* The own bit must be the latest setting done when prepare the
3512 	 * descriptor and then barrier is needed to make sure that
3513 	 * all is coherent before granting the DMA engine.
3514 	 */
3515 	wmb();
3516 
3517 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3518 
3519 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3520 
3521 	if (likely(priv->extend_desc))
3522 		desc_size = sizeof(struct dma_extended_desc);
3523 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3524 		desc_size = sizeof(struct dma_edesc);
3525 	else
3526 		desc_size = sizeof(struct dma_desc);
3527 
3528 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3529 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3530 	stmmac_tx_timer_arm(priv, queue);
3531 
3532 	return NETDEV_TX_OK;
3533 
3534 dma_map_err:
3535 	netdev_err(priv->dev, "Tx DMA map failed\n");
3536 	dev_kfree_skb(skb);
3537 	priv->dev->stats.tx_dropped++;
3538 	return NETDEV_TX_OK;
3539 }
3540 
3541 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3542 {
3543 	struct vlan_ethhdr *veth;
3544 	__be16 vlan_proto;
3545 	u16 vlanid;
3546 
3547 	veth = (struct vlan_ethhdr *)skb->data;
3548 	vlan_proto = veth->h_vlan_proto;
3549 
3550 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3551 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3552 	    (vlan_proto == htons(ETH_P_8021AD) &&
3553 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3554 		/* pop the vlan tag */
3555 		vlanid = ntohs(veth->h_vlan_TCI);
3556 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3557 		skb_pull(skb, VLAN_HLEN);
3558 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3559 	}
3560 }
3561 
3562 /**
3563  * stmmac_rx_refill - refill used skb preallocated buffers
3564  * @priv: driver private structure
3565  * @queue: RX queue index
3566  * Description : this is to reallocate the skb for the reception process
3567  * that is based on zero-copy.
3568  */
3569 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3570 {
3571 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3572 	int len, dirty = stmmac_rx_dirty(priv, queue);
3573 	unsigned int entry = rx_q->dirty_rx;
3574 
3575 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3576 
3577 	while (dirty-- > 0) {
3578 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3579 		struct dma_desc *p;
3580 		bool use_rx_wd;
3581 
3582 		if (priv->extend_desc)
3583 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3584 		else
3585 			p = rx_q->dma_rx + entry;
3586 
3587 		if (!buf->page) {
3588 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3589 			if (!buf->page)
3590 				break;
3591 		}
3592 
3593 		if (priv->sph && !buf->sec_page) {
3594 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3595 			if (!buf->sec_page)
3596 				break;
3597 
3598 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3599 
3600 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3601 						   len, DMA_FROM_DEVICE);
3602 		}
3603 
3604 		buf->addr = page_pool_get_dma_addr(buf->page);
3605 
3606 		/* Sync whole allocation to device. This will invalidate old
3607 		 * data.
3608 		 */
3609 		dma_sync_single_for_device(priv->device, buf->addr, len,
3610 					   DMA_FROM_DEVICE);
3611 
3612 		stmmac_set_desc_addr(priv, p, buf->addr);
3613 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3614 		stmmac_refill_desc3(priv, rx_q, p);
3615 
3616 		rx_q->rx_count_frames++;
3617 		rx_q->rx_count_frames += priv->rx_coal_frames;
3618 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3619 			rx_q->rx_count_frames = 0;
3620 
3621 		use_rx_wd = !priv->rx_coal_frames;
3622 		use_rx_wd |= rx_q->rx_count_frames > 0;
3623 		if (!priv->use_riwt)
3624 			use_rx_wd = false;
3625 
3626 		dma_wmb();
3627 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3628 
3629 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3630 	}
3631 	rx_q->dirty_rx = entry;
3632 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3633 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3634 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3635 }
3636 
3637 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3638 				       struct dma_desc *p,
3639 				       int status, unsigned int len)
3640 {
3641 	int ret, coe = priv->hw->rx_csum;
3642 	unsigned int plen = 0, hlen = 0;
3643 
3644 	/* Not first descriptor, buffer is always zero */
3645 	if (priv->sph && len)
3646 		return 0;
3647 
3648 	/* First descriptor, get split header length */
3649 	ret = stmmac_get_rx_header_len(priv, p, &hlen);
3650 	if (priv->sph && hlen) {
3651 		priv->xstats.rx_split_hdr_pkt_n++;
3652 		return hlen;
3653 	}
3654 
3655 	/* First descriptor, not last descriptor and not split header */
3656 	if (status & rx_not_ls)
3657 		return priv->dma_buf_sz;
3658 
3659 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3660 
3661 	/* First descriptor and last descriptor and not split header */
3662 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3663 }
3664 
3665 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3666 				       struct dma_desc *p,
3667 				       int status, unsigned int len)
3668 {
3669 	int coe = priv->hw->rx_csum;
3670 	unsigned int plen = 0;
3671 
3672 	/* Not split header, buffer is not available */
3673 	if (!priv->sph)
3674 		return 0;
3675 
3676 	/* Not last descriptor */
3677 	if (status & rx_not_ls)
3678 		return priv->dma_buf_sz;
3679 
3680 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3681 
3682 	/* Last descriptor */
3683 	return plen - len;
3684 }
3685 
3686 /**
3687  * stmmac_rx - manage the receive process
3688  * @priv: driver private structure
3689  * @limit: napi bugget
3690  * @queue: RX queue index.
3691  * Description :  this the function called by the napi poll method.
3692  * It gets all the frames inside the ring.
3693  */
3694 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3695 {
3696 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3697 	struct stmmac_channel *ch = &priv->channel[queue];
3698 	unsigned int count = 0, error = 0, len = 0;
3699 	int status = 0, coe = priv->hw->rx_csum;
3700 	unsigned int next_entry = rx_q->cur_rx;
3701 	struct sk_buff *skb = NULL;
3702 
3703 	if (netif_msg_rx_status(priv)) {
3704 		void *rx_head;
3705 
3706 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3707 		if (priv->extend_desc)
3708 			rx_head = (void *)rx_q->dma_erx;
3709 		else
3710 			rx_head = (void *)rx_q->dma_rx;
3711 
3712 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3713 	}
3714 	while (count < limit) {
3715 		unsigned int buf1_len = 0, buf2_len = 0;
3716 		enum pkt_hash_types hash_type;
3717 		struct stmmac_rx_buffer *buf;
3718 		struct dma_desc *np, *p;
3719 		int entry;
3720 		u32 hash;
3721 
3722 		if (!count && rx_q->state_saved) {
3723 			skb = rx_q->state.skb;
3724 			error = rx_q->state.error;
3725 			len = rx_q->state.len;
3726 		} else {
3727 			rx_q->state_saved = false;
3728 			skb = NULL;
3729 			error = 0;
3730 			len = 0;
3731 		}
3732 
3733 		if (count >= limit)
3734 			break;
3735 
3736 read_again:
3737 		buf1_len = 0;
3738 		buf2_len = 0;
3739 		entry = next_entry;
3740 		buf = &rx_q->buf_pool[entry];
3741 
3742 		if (priv->extend_desc)
3743 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3744 		else
3745 			p = rx_q->dma_rx + entry;
3746 
3747 		/* read the status of the incoming frame */
3748 		status = stmmac_rx_status(priv, &priv->dev->stats,
3749 				&priv->xstats, p);
3750 		/* check if managed by the DMA otherwise go ahead */
3751 		if (unlikely(status & dma_own))
3752 			break;
3753 
3754 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3755 		next_entry = rx_q->cur_rx;
3756 
3757 		if (priv->extend_desc)
3758 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3759 		else
3760 			np = rx_q->dma_rx + next_entry;
3761 
3762 		prefetch(np);
3763 
3764 		if (priv->extend_desc)
3765 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3766 					&priv->xstats, rx_q->dma_erx + entry);
3767 		if (unlikely(status == discard_frame)) {
3768 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3769 			buf->page = NULL;
3770 			error = 1;
3771 			if (!priv->hwts_rx_en)
3772 				priv->dev->stats.rx_errors++;
3773 		}
3774 
3775 		if (unlikely(error && (status & rx_not_ls)))
3776 			goto read_again;
3777 		if (unlikely(error)) {
3778 			dev_kfree_skb(skb);
3779 			skb = NULL;
3780 			count++;
3781 			continue;
3782 		}
3783 
3784 		/* Buffer is good. Go on. */
3785 
3786 		prefetch(page_address(buf->page));
3787 		if (buf->sec_page)
3788 			prefetch(page_address(buf->sec_page));
3789 
3790 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3791 		len += buf1_len;
3792 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3793 		len += buf2_len;
3794 
3795 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3796 		 * Type frames (LLC/LLC-SNAP)
3797 		 *
3798 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3799 		 * feature is always disabled and packets need to be
3800 		 * stripped manually.
3801 		 */
3802 		if (likely(!(status & rx_not_ls)) &&
3803 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3804 		     unlikely(status != llc_snap))) {
3805 			if (buf2_len)
3806 				buf2_len -= ETH_FCS_LEN;
3807 			else
3808 				buf1_len -= ETH_FCS_LEN;
3809 
3810 			len -= ETH_FCS_LEN;
3811 		}
3812 
3813 		if (!skb) {
3814 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3815 			if (!skb) {
3816 				priv->dev->stats.rx_dropped++;
3817 				count++;
3818 				goto drain_data;
3819 			}
3820 
3821 			dma_sync_single_for_cpu(priv->device, buf->addr,
3822 						buf1_len, DMA_FROM_DEVICE);
3823 			skb_copy_to_linear_data(skb, page_address(buf->page),
3824 						buf1_len);
3825 			skb_put(skb, buf1_len);
3826 
3827 			/* Data payload copied into SKB, page ready for recycle */
3828 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3829 			buf->page = NULL;
3830 		} else if (buf1_len) {
3831 			dma_sync_single_for_cpu(priv->device, buf->addr,
3832 						buf1_len, DMA_FROM_DEVICE);
3833 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3834 					buf->page, 0, buf1_len,
3835 					priv->dma_buf_sz);
3836 
3837 			/* Data payload appended into SKB */
3838 			page_pool_release_page(rx_q->page_pool, buf->page);
3839 			buf->page = NULL;
3840 		}
3841 
3842 		if (buf2_len) {
3843 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3844 						buf2_len, DMA_FROM_DEVICE);
3845 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3846 					buf->sec_page, 0, buf2_len,
3847 					priv->dma_buf_sz);
3848 
3849 			/* Data payload appended into SKB */
3850 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3851 			buf->sec_page = NULL;
3852 		}
3853 
3854 drain_data:
3855 		if (likely(status & rx_not_ls))
3856 			goto read_again;
3857 		if (!skb)
3858 			continue;
3859 
3860 		/* Got entire packet into SKB. Finish it. */
3861 
3862 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3863 		stmmac_rx_vlan(priv->dev, skb);
3864 		skb->protocol = eth_type_trans(skb, priv->dev);
3865 
3866 		if (unlikely(!coe))
3867 			skb_checksum_none_assert(skb);
3868 		else
3869 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3870 
3871 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3872 			skb_set_hash(skb, hash, hash_type);
3873 
3874 		skb_record_rx_queue(skb, queue);
3875 		napi_gro_receive(&ch->rx_napi, skb);
3876 		skb = NULL;
3877 
3878 		priv->dev->stats.rx_packets++;
3879 		priv->dev->stats.rx_bytes += len;
3880 		count++;
3881 	}
3882 
3883 	if (status & rx_not_ls || skb) {
3884 		rx_q->state_saved = true;
3885 		rx_q->state.skb = skb;
3886 		rx_q->state.error = error;
3887 		rx_q->state.len = len;
3888 	}
3889 
3890 	stmmac_rx_refill(priv, queue);
3891 
3892 	priv->xstats.rx_pkt_n += count;
3893 
3894 	return count;
3895 }
3896 
3897 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3898 {
3899 	struct stmmac_channel *ch =
3900 		container_of(napi, struct stmmac_channel, rx_napi);
3901 	struct stmmac_priv *priv = ch->priv_data;
3902 	u32 chan = ch->index;
3903 	int work_done;
3904 
3905 	priv->xstats.napi_poll++;
3906 
3907 	work_done = stmmac_rx(priv, budget, chan);
3908 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3909 		unsigned long flags;
3910 
3911 		spin_lock_irqsave(&ch->lock, flags);
3912 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3913 		spin_unlock_irqrestore(&ch->lock, flags);
3914 	}
3915 
3916 	return work_done;
3917 }
3918 
3919 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3920 {
3921 	struct stmmac_channel *ch =
3922 		container_of(napi, struct stmmac_channel, tx_napi);
3923 	struct stmmac_priv *priv = ch->priv_data;
3924 	u32 chan = ch->index;
3925 	int work_done;
3926 
3927 	priv->xstats.napi_poll++;
3928 
3929 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3930 	work_done = min(work_done, budget);
3931 
3932 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3933 		unsigned long flags;
3934 
3935 		spin_lock_irqsave(&ch->lock, flags);
3936 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3937 		spin_unlock_irqrestore(&ch->lock, flags);
3938 	}
3939 
3940 	return work_done;
3941 }
3942 
3943 /**
3944  *  stmmac_tx_timeout
3945  *  @dev : Pointer to net device structure
3946  *  Description: this function is called when a packet transmission fails to
3947  *   complete within a reasonable time. The driver will mark the error in the
3948  *   netdev structure and arrange for the device to be reset to a sane state
3949  *   in order to transmit a new packet.
3950  */
3951 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3952 {
3953 	struct stmmac_priv *priv = netdev_priv(dev);
3954 
3955 	stmmac_global_err(priv);
3956 }
3957 
3958 /**
3959  *  stmmac_set_rx_mode - entry point for multicast addressing
3960  *  @dev : pointer to the device structure
3961  *  Description:
3962  *  This function is a driver entry point which gets called by the kernel
3963  *  whenever multicast addresses must be enabled/disabled.
3964  *  Return value:
3965  *  void.
3966  */
3967 static void stmmac_set_rx_mode(struct net_device *dev)
3968 {
3969 	struct stmmac_priv *priv = netdev_priv(dev);
3970 
3971 	stmmac_set_filter(priv, priv->hw, dev);
3972 }
3973 
3974 /**
3975  *  stmmac_change_mtu - entry point to change MTU size for the device.
3976  *  @dev : device pointer.
3977  *  @new_mtu : the new MTU size for the device.
3978  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3979  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3980  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3981  *  Return value:
3982  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3983  *  file on failure.
3984  */
3985 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3986 {
3987 	struct stmmac_priv *priv = netdev_priv(dev);
3988 	int txfifosz = priv->plat->tx_fifo_size;
3989 
3990 	if (txfifosz == 0)
3991 		txfifosz = priv->dma_cap.tx_fifo_size;
3992 
3993 	txfifosz /= priv->plat->tx_queues_to_use;
3994 
3995 	if (netif_running(dev)) {
3996 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3997 		return -EBUSY;
3998 	}
3999 
4000 	new_mtu = STMMAC_ALIGN(new_mtu);
4001 
4002 	/* If condition true, FIFO is too small or MTU too large */
4003 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4004 		return -EINVAL;
4005 
4006 	dev->mtu = new_mtu;
4007 
4008 	netdev_update_features(dev);
4009 
4010 	return 0;
4011 }
4012 
4013 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4014 					     netdev_features_t features)
4015 {
4016 	struct stmmac_priv *priv = netdev_priv(dev);
4017 
4018 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4019 		features &= ~NETIF_F_RXCSUM;
4020 
4021 	if (!priv->plat->tx_coe)
4022 		features &= ~NETIF_F_CSUM_MASK;
4023 
4024 	/* Some GMAC devices have a bugged Jumbo frame support that
4025 	 * needs to have the Tx COE disabled for oversized frames
4026 	 * (due to limited buffer sizes). In this case we disable
4027 	 * the TX csum insertion in the TDES and not use SF.
4028 	 */
4029 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4030 		features &= ~NETIF_F_CSUM_MASK;
4031 
4032 	/* Disable tso if asked by ethtool */
4033 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4034 		if (features & NETIF_F_TSO)
4035 			priv->tso = true;
4036 		else
4037 			priv->tso = false;
4038 	}
4039 
4040 	return features;
4041 }
4042 
4043 static int stmmac_set_features(struct net_device *netdev,
4044 			       netdev_features_t features)
4045 {
4046 	struct stmmac_priv *priv = netdev_priv(netdev);
4047 	bool sph_en;
4048 	u32 chan;
4049 
4050 	/* Keep the COE Type in case of csum is supporting */
4051 	if (features & NETIF_F_RXCSUM)
4052 		priv->hw->rx_csum = priv->plat->rx_coe;
4053 	else
4054 		priv->hw->rx_csum = 0;
4055 	/* No check needed because rx_coe has been set before and it will be
4056 	 * fixed in case of issue.
4057 	 */
4058 	stmmac_rx_ipc(priv, priv->hw);
4059 
4060 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4061 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4062 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4063 
4064 	return 0;
4065 }
4066 
4067 /**
4068  *  stmmac_interrupt - main ISR
4069  *  @irq: interrupt number.
4070  *  @dev_id: to pass the net device pointer (must be valid).
4071  *  Description: this is the main driver interrupt service routine.
4072  *  It can call:
4073  *  o DMA service routine (to manage incoming frame reception and transmission
4074  *    status)
4075  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4076  *    interrupts.
4077  */
4078 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4079 {
4080 	struct net_device *dev = (struct net_device *)dev_id;
4081 	struct stmmac_priv *priv = netdev_priv(dev);
4082 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4083 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4084 	u32 queues_count;
4085 	u32 queue;
4086 	bool xmac;
4087 
4088 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4089 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4090 
4091 	if (priv->irq_wake)
4092 		pm_wakeup_event(priv->device, 0);
4093 
4094 	/* Check if adapter is up */
4095 	if (test_bit(STMMAC_DOWN, &priv->state))
4096 		return IRQ_HANDLED;
4097 	/* Check if a fatal error happened */
4098 	if (stmmac_safety_feat_interrupt(priv))
4099 		return IRQ_HANDLED;
4100 
4101 	/* To handle GMAC own interrupts */
4102 	if ((priv->plat->has_gmac) || xmac) {
4103 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4104 		int mtl_status;
4105 
4106 		if (unlikely(status)) {
4107 			/* For LPI we need to save the tx status */
4108 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4109 				priv->tx_path_in_lpi_mode = true;
4110 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4111 				priv->tx_path_in_lpi_mode = false;
4112 		}
4113 
4114 		for (queue = 0; queue < queues_count; queue++) {
4115 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4116 
4117 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4118 								queue);
4119 			if (mtl_status != -EINVAL)
4120 				status |= mtl_status;
4121 
4122 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4123 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4124 						       rx_q->rx_tail_addr,
4125 						       queue);
4126 		}
4127 
4128 		/* PCS link status */
4129 		if (priv->hw->pcs) {
4130 			if (priv->xstats.pcs_link)
4131 				netif_carrier_on(dev);
4132 			else
4133 				netif_carrier_off(dev);
4134 		}
4135 	}
4136 
4137 	/* To handle DMA interrupts */
4138 	stmmac_dma_interrupt(priv);
4139 
4140 	return IRQ_HANDLED;
4141 }
4142 
4143 #ifdef CONFIG_NET_POLL_CONTROLLER
4144 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4145  * to allow network I/O with interrupts disabled.
4146  */
4147 static void stmmac_poll_controller(struct net_device *dev)
4148 {
4149 	disable_irq(dev->irq);
4150 	stmmac_interrupt(dev->irq, dev);
4151 	enable_irq(dev->irq);
4152 }
4153 #endif
4154 
4155 /**
4156  *  stmmac_ioctl - Entry point for the Ioctl
4157  *  @dev: Device pointer.
4158  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4159  *  a proprietary structure used to pass information to the driver.
4160  *  @cmd: IOCTL command
4161  *  Description:
4162  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4163  */
4164 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4165 {
4166 	struct stmmac_priv *priv = netdev_priv (dev);
4167 	int ret = -EOPNOTSUPP;
4168 
4169 	if (!netif_running(dev))
4170 		return -EINVAL;
4171 
4172 	switch (cmd) {
4173 	case SIOCGMIIPHY:
4174 	case SIOCGMIIREG:
4175 	case SIOCSMIIREG:
4176 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4177 		break;
4178 	case SIOCSHWTSTAMP:
4179 		ret = stmmac_hwtstamp_set(dev, rq);
4180 		break;
4181 	case SIOCGHWTSTAMP:
4182 		ret = stmmac_hwtstamp_get(dev, rq);
4183 		break;
4184 	default:
4185 		break;
4186 	}
4187 
4188 	return ret;
4189 }
4190 
4191 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4192 				    void *cb_priv)
4193 {
4194 	struct stmmac_priv *priv = cb_priv;
4195 	int ret = -EOPNOTSUPP;
4196 
4197 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4198 		return ret;
4199 
4200 	stmmac_disable_all_queues(priv);
4201 
4202 	switch (type) {
4203 	case TC_SETUP_CLSU32:
4204 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4205 		break;
4206 	case TC_SETUP_CLSFLOWER:
4207 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4208 		break;
4209 	default:
4210 		break;
4211 	}
4212 
4213 	stmmac_enable_all_queues(priv);
4214 	return ret;
4215 }
4216 
4217 static LIST_HEAD(stmmac_block_cb_list);
4218 
4219 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4220 			   void *type_data)
4221 {
4222 	struct stmmac_priv *priv = netdev_priv(ndev);
4223 
4224 	switch (type) {
4225 	case TC_SETUP_BLOCK:
4226 		return flow_block_cb_setup_simple(type_data,
4227 						  &stmmac_block_cb_list,
4228 						  stmmac_setup_tc_block_cb,
4229 						  priv, priv, true);
4230 	case TC_SETUP_QDISC_CBS:
4231 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4232 	case TC_SETUP_QDISC_TAPRIO:
4233 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4234 	case TC_SETUP_QDISC_ETF:
4235 		return stmmac_tc_setup_etf(priv, priv, type_data);
4236 	default:
4237 		return -EOPNOTSUPP;
4238 	}
4239 }
4240 
4241 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4242 			       struct net_device *sb_dev)
4243 {
4244 	int gso = skb_shinfo(skb)->gso_type;
4245 
4246 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4247 		/*
4248 		 * There is no way to determine the number of TSO/USO
4249 		 * capable Queues. Let's use always the Queue 0
4250 		 * because if TSO/USO is supported then at least this
4251 		 * one will be capable.
4252 		 */
4253 		return 0;
4254 	}
4255 
4256 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4257 }
4258 
4259 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4260 {
4261 	struct stmmac_priv *priv = netdev_priv(ndev);
4262 	int ret = 0;
4263 
4264 	ret = eth_mac_addr(ndev, addr);
4265 	if (ret)
4266 		return ret;
4267 
4268 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4269 
4270 	return ret;
4271 }
4272 
4273 #ifdef CONFIG_DEBUG_FS
4274 static struct dentry *stmmac_fs_dir;
4275 
4276 static void sysfs_display_ring(void *head, int size, int extend_desc,
4277 			       struct seq_file *seq)
4278 {
4279 	int i;
4280 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4281 	struct dma_desc *p = (struct dma_desc *)head;
4282 
4283 	for (i = 0; i < size; i++) {
4284 		if (extend_desc) {
4285 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4286 				   i, (unsigned int)virt_to_phys(ep),
4287 				   le32_to_cpu(ep->basic.des0),
4288 				   le32_to_cpu(ep->basic.des1),
4289 				   le32_to_cpu(ep->basic.des2),
4290 				   le32_to_cpu(ep->basic.des3));
4291 			ep++;
4292 		} else {
4293 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4294 				   i, (unsigned int)virt_to_phys(p),
4295 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4296 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4297 			p++;
4298 		}
4299 		seq_printf(seq, "\n");
4300 	}
4301 }
4302 
4303 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4304 {
4305 	struct net_device *dev = seq->private;
4306 	struct stmmac_priv *priv = netdev_priv(dev);
4307 	u32 rx_count = priv->plat->rx_queues_to_use;
4308 	u32 tx_count = priv->plat->tx_queues_to_use;
4309 	u32 queue;
4310 
4311 	if ((dev->flags & IFF_UP) == 0)
4312 		return 0;
4313 
4314 	for (queue = 0; queue < rx_count; queue++) {
4315 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4316 
4317 		seq_printf(seq, "RX Queue %d:\n", queue);
4318 
4319 		if (priv->extend_desc) {
4320 			seq_printf(seq, "Extended descriptor ring:\n");
4321 			sysfs_display_ring((void *)rx_q->dma_erx,
4322 					   DMA_RX_SIZE, 1, seq);
4323 		} else {
4324 			seq_printf(seq, "Descriptor ring:\n");
4325 			sysfs_display_ring((void *)rx_q->dma_rx,
4326 					   DMA_RX_SIZE, 0, seq);
4327 		}
4328 	}
4329 
4330 	for (queue = 0; queue < tx_count; queue++) {
4331 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4332 
4333 		seq_printf(seq, "TX Queue %d:\n", queue);
4334 
4335 		if (priv->extend_desc) {
4336 			seq_printf(seq, "Extended descriptor ring:\n");
4337 			sysfs_display_ring((void *)tx_q->dma_etx,
4338 					   DMA_TX_SIZE, 1, seq);
4339 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4340 			seq_printf(seq, "Descriptor ring:\n");
4341 			sysfs_display_ring((void *)tx_q->dma_tx,
4342 					   DMA_TX_SIZE, 0, seq);
4343 		}
4344 	}
4345 
4346 	return 0;
4347 }
4348 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4349 
4350 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4351 {
4352 	struct net_device *dev = seq->private;
4353 	struct stmmac_priv *priv = netdev_priv(dev);
4354 
4355 	if (!priv->hw_cap_support) {
4356 		seq_printf(seq, "DMA HW features not supported\n");
4357 		return 0;
4358 	}
4359 
4360 	seq_printf(seq, "==============================\n");
4361 	seq_printf(seq, "\tDMA HW features\n");
4362 	seq_printf(seq, "==============================\n");
4363 
4364 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4365 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4366 	seq_printf(seq, "\t1000 Mbps: %s\n",
4367 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4368 	seq_printf(seq, "\tHalf duplex: %s\n",
4369 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4370 	seq_printf(seq, "\tHash Filter: %s\n",
4371 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4372 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4373 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4374 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4375 		   (priv->dma_cap.pcs) ? "Y" : "N");
4376 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4377 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4378 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4379 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4380 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4381 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4382 	seq_printf(seq, "\tRMON module: %s\n",
4383 		   (priv->dma_cap.rmon) ? "Y" : "N");
4384 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4385 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4386 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4387 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4388 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4389 		   (priv->dma_cap.eee) ? "Y" : "N");
4390 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4391 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4392 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4393 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4394 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4395 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4396 	} else {
4397 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4398 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4399 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4400 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4401 	}
4402 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4403 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4404 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4405 		   priv->dma_cap.number_rx_channel);
4406 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4407 		   priv->dma_cap.number_tx_channel);
4408 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4409 		   priv->dma_cap.number_rx_queues);
4410 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4411 		   priv->dma_cap.number_tx_queues);
4412 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4413 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4414 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4415 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4416 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4417 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4418 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4419 		   priv->dma_cap.pps_out_num);
4420 	seq_printf(seq, "\tSafety Features: %s\n",
4421 		   priv->dma_cap.asp ? "Y" : "N");
4422 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4423 		   priv->dma_cap.frpsel ? "Y" : "N");
4424 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4425 		   priv->dma_cap.addr64);
4426 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4427 		   priv->dma_cap.rssen ? "Y" : "N");
4428 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4429 		   priv->dma_cap.vlhash ? "Y" : "N");
4430 	seq_printf(seq, "\tSplit Header: %s\n",
4431 		   priv->dma_cap.sphen ? "Y" : "N");
4432 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4433 		   priv->dma_cap.vlins ? "Y" : "N");
4434 	seq_printf(seq, "\tDouble VLAN: %s\n",
4435 		   priv->dma_cap.dvlan ? "Y" : "N");
4436 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4437 		   priv->dma_cap.l3l4fnum);
4438 	seq_printf(seq, "\tARP Offloading: %s\n",
4439 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4440 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4441 		   priv->dma_cap.estsel ? "Y" : "N");
4442 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4443 		   priv->dma_cap.fpesel ? "Y" : "N");
4444 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4445 		   priv->dma_cap.tbssel ? "Y" : "N");
4446 	return 0;
4447 }
4448 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4449 
4450 /* Use network device events to rename debugfs file entries.
4451  */
4452 static int stmmac_device_event(struct notifier_block *unused,
4453 			       unsigned long event, void *ptr)
4454 {
4455 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4456 	struct stmmac_priv *priv = netdev_priv(dev);
4457 
4458 	if (dev->netdev_ops != &stmmac_netdev_ops)
4459 		goto done;
4460 
4461 	switch (event) {
4462 	case NETDEV_CHANGENAME:
4463 		if (priv->dbgfs_dir)
4464 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4465 							 priv->dbgfs_dir,
4466 							 stmmac_fs_dir,
4467 							 dev->name);
4468 		break;
4469 	}
4470 done:
4471 	return NOTIFY_DONE;
4472 }
4473 
4474 static struct notifier_block stmmac_notifier = {
4475 	.notifier_call = stmmac_device_event,
4476 };
4477 
4478 static void stmmac_init_fs(struct net_device *dev)
4479 {
4480 	struct stmmac_priv *priv = netdev_priv(dev);
4481 
4482 	rtnl_lock();
4483 
4484 	/* Create per netdev entries */
4485 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4486 
4487 	/* Entry to report DMA RX/TX rings */
4488 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4489 			    &stmmac_rings_status_fops);
4490 
4491 	/* Entry to report the DMA HW features */
4492 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4493 			    &stmmac_dma_cap_fops);
4494 
4495 	rtnl_unlock();
4496 }
4497 
4498 static void stmmac_exit_fs(struct net_device *dev)
4499 {
4500 	struct stmmac_priv *priv = netdev_priv(dev);
4501 
4502 	debugfs_remove_recursive(priv->dbgfs_dir);
4503 }
4504 #endif /* CONFIG_DEBUG_FS */
4505 
4506 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4507 {
4508 	unsigned char *data = (unsigned char *)&vid_le;
4509 	unsigned char data_byte = 0;
4510 	u32 crc = ~0x0;
4511 	u32 temp = 0;
4512 	int i, bits;
4513 
4514 	bits = get_bitmask_order(VLAN_VID_MASK);
4515 	for (i = 0; i < bits; i++) {
4516 		if ((i % 8) == 0)
4517 			data_byte = data[i / 8];
4518 
4519 		temp = ((crc & 1) ^ data_byte) & 1;
4520 		crc >>= 1;
4521 		data_byte >>= 1;
4522 
4523 		if (temp)
4524 			crc ^= 0xedb88320;
4525 	}
4526 
4527 	return crc;
4528 }
4529 
4530 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4531 {
4532 	u32 crc, hash = 0;
4533 	__le16 pmatch = 0;
4534 	int count = 0;
4535 	u16 vid = 0;
4536 
4537 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4538 		__le16 vid_le = cpu_to_le16(vid);
4539 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4540 		hash |= (1 << crc);
4541 		count++;
4542 	}
4543 
4544 	if (!priv->dma_cap.vlhash) {
4545 		if (count > 2) /* VID = 0 always passes filter */
4546 			return -EOPNOTSUPP;
4547 
4548 		pmatch = cpu_to_le16(vid);
4549 		hash = 0;
4550 	}
4551 
4552 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4553 }
4554 
4555 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4556 {
4557 	struct stmmac_priv *priv = netdev_priv(ndev);
4558 	bool is_double = false;
4559 	int ret;
4560 
4561 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4562 		is_double = true;
4563 
4564 	set_bit(vid, priv->active_vlans);
4565 	ret = stmmac_vlan_update(priv, is_double);
4566 	if (ret) {
4567 		clear_bit(vid, priv->active_vlans);
4568 		return ret;
4569 	}
4570 
4571 	if (priv->hw->num_vlan) {
4572 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4573 		if (ret)
4574 			return ret;
4575 	}
4576 
4577 	return 0;
4578 }
4579 
4580 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4581 {
4582 	struct stmmac_priv *priv = netdev_priv(ndev);
4583 	bool is_double = false;
4584 	int ret;
4585 
4586 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4587 		is_double = true;
4588 
4589 	clear_bit(vid, priv->active_vlans);
4590 
4591 	if (priv->hw->num_vlan) {
4592 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4593 		if (ret)
4594 			return ret;
4595 	}
4596 
4597 	return stmmac_vlan_update(priv, is_double);
4598 }
4599 
4600 static const struct net_device_ops stmmac_netdev_ops = {
4601 	.ndo_open = stmmac_open,
4602 	.ndo_start_xmit = stmmac_xmit,
4603 	.ndo_stop = stmmac_release,
4604 	.ndo_change_mtu = stmmac_change_mtu,
4605 	.ndo_fix_features = stmmac_fix_features,
4606 	.ndo_set_features = stmmac_set_features,
4607 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4608 	.ndo_tx_timeout = stmmac_tx_timeout,
4609 	.ndo_do_ioctl = stmmac_ioctl,
4610 	.ndo_setup_tc = stmmac_setup_tc,
4611 	.ndo_select_queue = stmmac_select_queue,
4612 #ifdef CONFIG_NET_POLL_CONTROLLER
4613 	.ndo_poll_controller = stmmac_poll_controller,
4614 #endif
4615 	.ndo_set_mac_address = stmmac_set_mac_address,
4616 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4617 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4618 };
4619 
4620 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4621 {
4622 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4623 		return;
4624 	if (test_bit(STMMAC_DOWN, &priv->state))
4625 		return;
4626 
4627 	netdev_err(priv->dev, "Reset adapter.\n");
4628 
4629 	rtnl_lock();
4630 	netif_trans_update(priv->dev);
4631 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4632 		usleep_range(1000, 2000);
4633 
4634 	set_bit(STMMAC_DOWN, &priv->state);
4635 	dev_close(priv->dev);
4636 	dev_open(priv->dev, NULL);
4637 	clear_bit(STMMAC_DOWN, &priv->state);
4638 	clear_bit(STMMAC_RESETING, &priv->state);
4639 	rtnl_unlock();
4640 }
4641 
4642 static void stmmac_service_task(struct work_struct *work)
4643 {
4644 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4645 			service_task);
4646 
4647 	stmmac_reset_subtask(priv);
4648 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4649 }
4650 
4651 /**
4652  *  stmmac_hw_init - Init the MAC device
4653  *  @priv: driver private structure
4654  *  Description: this function is to configure the MAC device according to
4655  *  some platform parameters or the HW capability register. It prepares the
4656  *  driver to use either ring or chain modes and to setup either enhanced or
4657  *  normal descriptors.
4658  */
4659 static int stmmac_hw_init(struct stmmac_priv *priv)
4660 {
4661 	int ret;
4662 
4663 	/* dwmac-sun8i only work in chain mode */
4664 	if (priv->plat->has_sun8i)
4665 		chain_mode = 1;
4666 	priv->chain_mode = chain_mode;
4667 
4668 	/* Initialize HW Interface */
4669 	ret = stmmac_hwif_init(priv);
4670 	if (ret)
4671 		return ret;
4672 
4673 	/* Get the HW capability (new GMAC newer than 3.50a) */
4674 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4675 	if (priv->hw_cap_support) {
4676 		dev_info(priv->device, "DMA HW capability register supported\n");
4677 
4678 		/* We can override some gmac/dma configuration fields: e.g.
4679 		 * enh_desc, tx_coe (e.g. that are passed through the
4680 		 * platform) with the values from the HW capability
4681 		 * register (if supported).
4682 		 */
4683 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4684 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4685 		priv->hw->pmt = priv->plat->pmt;
4686 		if (priv->dma_cap.hash_tb_sz) {
4687 			priv->hw->multicast_filter_bins =
4688 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4689 			priv->hw->mcast_bits_log2 =
4690 					ilog2(priv->hw->multicast_filter_bins);
4691 		}
4692 
4693 		/* TXCOE doesn't work in thresh DMA mode */
4694 		if (priv->plat->force_thresh_dma_mode)
4695 			priv->plat->tx_coe = 0;
4696 		else
4697 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4698 
4699 		/* In case of GMAC4 rx_coe is from HW cap register. */
4700 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4701 
4702 		if (priv->dma_cap.rx_coe_type2)
4703 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4704 		else if (priv->dma_cap.rx_coe_type1)
4705 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4706 
4707 	} else {
4708 		dev_info(priv->device, "No HW DMA feature register supported\n");
4709 	}
4710 
4711 	if (priv->plat->rx_coe) {
4712 		priv->hw->rx_csum = priv->plat->rx_coe;
4713 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4714 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4715 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4716 	}
4717 	if (priv->plat->tx_coe)
4718 		dev_info(priv->device, "TX Checksum insertion supported\n");
4719 
4720 	if (priv->plat->pmt) {
4721 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4722 		device_set_wakeup_capable(priv->device, 1);
4723 	}
4724 
4725 	if (priv->dma_cap.tsoen)
4726 		dev_info(priv->device, "TSO supported\n");
4727 
4728 	/* Run HW quirks, if any */
4729 	if (priv->hwif_quirks) {
4730 		ret = priv->hwif_quirks(priv);
4731 		if (ret)
4732 			return ret;
4733 	}
4734 
4735 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4736 	 * In some case, for example on bugged HW this feature
4737 	 * has to be disable and this can be done by passing the
4738 	 * riwt_off field from the platform.
4739 	 */
4740 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4741 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4742 		priv->use_riwt = 1;
4743 		dev_info(priv->device,
4744 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4745 	}
4746 
4747 	return 0;
4748 }
4749 
4750 /**
4751  * stmmac_dvr_probe
4752  * @device: device pointer
4753  * @plat_dat: platform data pointer
4754  * @res: stmmac resource pointer
4755  * Description: this is the main probe function used to
4756  * call the alloc_etherdev, allocate the priv structure.
4757  * Return:
4758  * returns 0 on success, otherwise errno.
4759  */
4760 int stmmac_dvr_probe(struct device *device,
4761 		     struct plat_stmmacenet_data *plat_dat,
4762 		     struct stmmac_resources *res)
4763 {
4764 	struct net_device *ndev = NULL;
4765 	struct stmmac_priv *priv;
4766 	u32 queue, rxq, maxq;
4767 	int i, ret = 0;
4768 
4769 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4770 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4771 	if (!ndev)
4772 		return -ENOMEM;
4773 
4774 	SET_NETDEV_DEV(ndev, device);
4775 
4776 	priv = netdev_priv(ndev);
4777 	priv->device = device;
4778 	priv->dev = ndev;
4779 
4780 	stmmac_set_ethtool_ops(ndev);
4781 	priv->pause = pause;
4782 	priv->plat = plat_dat;
4783 	priv->ioaddr = res->addr;
4784 	priv->dev->base_addr = (unsigned long)res->addr;
4785 
4786 	priv->dev->irq = res->irq;
4787 	priv->wol_irq = res->wol_irq;
4788 	priv->lpi_irq = res->lpi_irq;
4789 
4790 	if (!IS_ERR_OR_NULL(res->mac))
4791 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4792 
4793 	dev_set_drvdata(device, priv->dev);
4794 
4795 	/* Verify driver arguments */
4796 	stmmac_verify_args();
4797 
4798 	/* Allocate workqueue */
4799 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4800 	if (!priv->wq) {
4801 		dev_err(priv->device, "failed to create workqueue\n");
4802 		return -ENOMEM;
4803 	}
4804 
4805 	INIT_WORK(&priv->service_task, stmmac_service_task);
4806 
4807 	/* Override with kernel parameters if supplied XXX CRS XXX
4808 	 * this needs to have multiple instances
4809 	 */
4810 	if ((phyaddr >= 0) && (phyaddr <= 31))
4811 		priv->plat->phy_addr = phyaddr;
4812 
4813 	if (priv->plat->stmmac_rst) {
4814 		ret = reset_control_assert(priv->plat->stmmac_rst);
4815 		reset_control_deassert(priv->plat->stmmac_rst);
4816 		/* Some reset controllers have only reset callback instead of
4817 		 * assert + deassert callbacks pair.
4818 		 */
4819 		if (ret == -ENOTSUPP)
4820 			reset_control_reset(priv->plat->stmmac_rst);
4821 	}
4822 
4823 	/* Init MAC and get the capabilities */
4824 	ret = stmmac_hw_init(priv);
4825 	if (ret)
4826 		goto error_hw_init;
4827 
4828 	stmmac_check_ether_addr(priv);
4829 
4830 	/* Configure real RX and TX queues */
4831 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4832 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4833 
4834 	ndev->netdev_ops = &stmmac_netdev_ops;
4835 
4836 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4837 			    NETIF_F_RXCSUM;
4838 
4839 	ret = stmmac_tc_init(priv, priv);
4840 	if (!ret) {
4841 		ndev->hw_features |= NETIF_F_HW_TC;
4842 	}
4843 
4844 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4845 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4846 		if (priv->plat->has_gmac4)
4847 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4848 		priv->tso = true;
4849 		dev_info(priv->device, "TSO feature enabled\n");
4850 	}
4851 
4852 	if (priv->dma_cap.sphen) {
4853 		ndev->hw_features |= NETIF_F_GRO;
4854 		priv->sph = true;
4855 		dev_info(priv->device, "SPH feature enabled\n");
4856 	}
4857 
4858 	if (priv->dma_cap.addr64) {
4859 		ret = dma_set_mask_and_coherent(device,
4860 				DMA_BIT_MASK(priv->dma_cap.addr64));
4861 		if (!ret) {
4862 			dev_info(priv->device, "Using %d bits DMA width\n",
4863 				 priv->dma_cap.addr64);
4864 
4865 			/*
4866 			 * If more than 32 bits can be addressed, make sure to
4867 			 * enable enhanced addressing mode.
4868 			 */
4869 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4870 				priv->plat->dma_cfg->eame = true;
4871 		} else {
4872 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4873 			if (ret) {
4874 				dev_err(priv->device, "Failed to set DMA Mask\n");
4875 				goto error_hw_init;
4876 			}
4877 
4878 			priv->dma_cap.addr64 = 32;
4879 		}
4880 	}
4881 
4882 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4883 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4884 #ifdef STMMAC_VLAN_TAG_USED
4885 	/* Both mac100 and gmac support receive VLAN tag detection */
4886 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4887 	if (priv->dma_cap.vlhash) {
4888 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4889 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4890 	}
4891 	if (priv->dma_cap.vlins) {
4892 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4893 		if (priv->dma_cap.dvlan)
4894 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4895 	}
4896 #endif
4897 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4898 
4899 	/* Initialize RSS */
4900 	rxq = priv->plat->rx_queues_to_use;
4901 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4902 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4903 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4904 
4905 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4906 		ndev->features |= NETIF_F_RXHASH;
4907 
4908 	/* MTU range: 46 - hw-specific max */
4909 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4910 	if (priv->plat->has_xgmac)
4911 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4912 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4913 		ndev->max_mtu = JUMBO_LEN;
4914 	else
4915 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4916 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4917 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4918 	 */
4919 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4920 	    (priv->plat->maxmtu >= ndev->min_mtu))
4921 		ndev->max_mtu = priv->plat->maxmtu;
4922 	else if (priv->plat->maxmtu < ndev->min_mtu)
4923 		dev_warn(priv->device,
4924 			 "%s: warning: maxmtu having invalid value (%d)\n",
4925 			 __func__, priv->plat->maxmtu);
4926 
4927 	if (flow_ctrl)
4928 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4929 
4930 	/* Setup channels NAPI */
4931 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4932 
4933 	for (queue = 0; queue < maxq; queue++) {
4934 		struct stmmac_channel *ch = &priv->channel[queue];
4935 
4936 		spin_lock_init(&ch->lock);
4937 		ch->priv_data = priv;
4938 		ch->index = queue;
4939 
4940 		if (queue < priv->plat->rx_queues_to_use) {
4941 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4942 				       NAPI_POLL_WEIGHT);
4943 		}
4944 		if (queue < priv->plat->tx_queues_to_use) {
4945 			netif_tx_napi_add(ndev, &ch->tx_napi,
4946 					  stmmac_napi_poll_tx,
4947 					  NAPI_POLL_WEIGHT);
4948 		}
4949 	}
4950 
4951 	mutex_init(&priv->lock);
4952 
4953 	/* If a specific clk_csr value is passed from the platform
4954 	 * this means that the CSR Clock Range selection cannot be
4955 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4956 	 * set the MDC clock dynamically according to the csr actual
4957 	 * clock input.
4958 	 */
4959 	if (priv->plat->clk_csr >= 0)
4960 		priv->clk_csr = priv->plat->clk_csr;
4961 	else
4962 		stmmac_clk_csr_set(priv);
4963 
4964 	stmmac_check_pcs_mode(priv);
4965 
4966 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
4967 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4968 		/* MDIO bus Registration */
4969 		ret = stmmac_mdio_register(ndev);
4970 		if (ret < 0) {
4971 			dev_err(priv->device,
4972 				"%s: MDIO bus (id: %d) registration failed",
4973 				__func__, priv->plat->bus_id);
4974 			goto error_mdio_register;
4975 		}
4976 	}
4977 
4978 	ret = stmmac_phy_setup(priv);
4979 	if (ret) {
4980 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4981 		goto error_phy_setup;
4982 	}
4983 
4984 	ret = register_netdev(ndev);
4985 	if (ret) {
4986 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4987 			__func__, ret);
4988 		goto error_netdev_register;
4989 	}
4990 
4991 	if (priv->plat->serdes_powerup) {
4992 		ret = priv->plat->serdes_powerup(ndev,
4993 						 priv->plat->bsp_priv);
4994 
4995 		if (ret < 0)
4996 			goto error_serdes_powerup;
4997 	}
4998 
4999 #ifdef CONFIG_DEBUG_FS
5000 	stmmac_init_fs(ndev);
5001 #endif
5002 
5003 	return ret;
5004 
5005 error_serdes_powerup:
5006 	unregister_netdev(ndev);
5007 error_netdev_register:
5008 	phylink_destroy(priv->phylink);
5009 error_phy_setup:
5010 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5011 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5012 		stmmac_mdio_unregister(ndev);
5013 error_mdio_register:
5014 	for (queue = 0; queue < maxq; queue++) {
5015 		struct stmmac_channel *ch = &priv->channel[queue];
5016 
5017 		if (queue < priv->plat->rx_queues_to_use)
5018 			netif_napi_del(&ch->rx_napi);
5019 		if (queue < priv->plat->tx_queues_to_use)
5020 			netif_napi_del(&ch->tx_napi);
5021 	}
5022 error_hw_init:
5023 	destroy_workqueue(priv->wq);
5024 
5025 	return ret;
5026 }
5027 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5028 
5029 /**
5030  * stmmac_dvr_remove
5031  * @dev: device pointer
5032  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5033  * changes the link status, releases the DMA descriptor rings.
5034  */
5035 int stmmac_dvr_remove(struct device *dev)
5036 {
5037 	struct net_device *ndev = dev_get_drvdata(dev);
5038 	struct stmmac_priv *priv = netdev_priv(ndev);
5039 
5040 	netdev_info(priv->dev, "%s: removing driver", __func__);
5041 
5042 	stmmac_stop_all_dma(priv);
5043 
5044 	if (priv->plat->serdes_powerdown)
5045 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5046 
5047 	stmmac_mac_set(priv, priv->ioaddr, false);
5048 	netif_carrier_off(ndev);
5049 	unregister_netdev(ndev);
5050 #ifdef CONFIG_DEBUG_FS
5051 	stmmac_exit_fs(ndev);
5052 #endif
5053 	phylink_destroy(priv->phylink);
5054 	if (priv->plat->stmmac_rst)
5055 		reset_control_assert(priv->plat->stmmac_rst);
5056 	clk_disable_unprepare(priv->plat->pclk);
5057 	clk_disable_unprepare(priv->plat->stmmac_clk);
5058 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5059 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5060 		stmmac_mdio_unregister(ndev);
5061 	destroy_workqueue(priv->wq);
5062 	mutex_destroy(&priv->lock);
5063 
5064 	return 0;
5065 }
5066 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5067 
5068 /**
5069  * stmmac_suspend - suspend callback
5070  * @dev: device pointer
5071  * Description: this is the function to suspend the device and it is called
5072  * by the platform driver to stop the network queue, release the resources,
5073  * program the PMT register (for WoL), clean and release driver resources.
5074  */
5075 int stmmac_suspend(struct device *dev)
5076 {
5077 	struct net_device *ndev = dev_get_drvdata(dev);
5078 	struct stmmac_priv *priv = netdev_priv(ndev);
5079 	u32 chan;
5080 
5081 	if (!ndev || !netif_running(ndev))
5082 		return 0;
5083 
5084 	phylink_mac_change(priv->phylink, false);
5085 
5086 	mutex_lock(&priv->lock);
5087 
5088 	netif_device_detach(ndev);
5089 	stmmac_stop_all_queues(priv);
5090 
5091 	stmmac_disable_all_queues(priv);
5092 
5093 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5094 		del_timer_sync(&priv->tx_queue[chan].txtimer);
5095 
5096 	/* Stop TX/RX DMA */
5097 	stmmac_stop_all_dma(priv);
5098 
5099 	if (priv->plat->serdes_powerdown)
5100 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5101 
5102 	/* Enable Power down mode by programming the PMT regs */
5103 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5104 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5105 		priv->irq_wake = 1;
5106 	} else {
5107 		mutex_unlock(&priv->lock);
5108 		rtnl_lock();
5109 		if (device_may_wakeup(priv->device))
5110 			phylink_speed_down(priv->phylink, false);
5111 		phylink_stop(priv->phylink);
5112 		rtnl_unlock();
5113 		mutex_lock(&priv->lock);
5114 
5115 		stmmac_mac_set(priv, priv->ioaddr, false);
5116 		pinctrl_pm_select_sleep_state(priv->device);
5117 		/* Disable clock in case of PWM is off */
5118 		if (priv->plat->clk_ptp_ref)
5119 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
5120 		clk_disable_unprepare(priv->plat->pclk);
5121 		clk_disable_unprepare(priv->plat->stmmac_clk);
5122 	}
5123 	mutex_unlock(&priv->lock);
5124 
5125 	priv->speed = SPEED_UNKNOWN;
5126 	return 0;
5127 }
5128 EXPORT_SYMBOL_GPL(stmmac_suspend);
5129 
5130 /**
5131  * stmmac_reset_queues_param - reset queue parameters
5132  * @dev: device pointer
5133  */
5134 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5135 {
5136 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5137 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5138 	u32 queue;
5139 
5140 	for (queue = 0; queue < rx_cnt; queue++) {
5141 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5142 
5143 		rx_q->cur_rx = 0;
5144 		rx_q->dirty_rx = 0;
5145 	}
5146 
5147 	for (queue = 0; queue < tx_cnt; queue++) {
5148 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5149 
5150 		tx_q->cur_tx = 0;
5151 		tx_q->dirty_tx = 0;
5152 		tx_q->mss = 0;
5153 	}
5154 }
5155 
5156 /**
5157  * stmmac_resume - resume callback
5158  * @dev: device pointer
5159  * Description: when resume this function is invoked to setup the DMA and CORE
5160  * in a usable state.
5161  */
5162 int stmmac_resume(struct device *dev)
5163 {
5164 	struct net_device *ndev = dev_get_drvdata(dev);
5165 	struct stmmac_priv *priv = netdev_priv(ndev);
5166 	int ret;
5167 
5168 	if (!netif_running(ndev))
5169 		return 0;
5170 
5171 	/* Power Down bit, into the PM register, is cleared
5172 	 * automatically as soon as a magic packet or a Wake-up frame
5173 	 * is received. Anyway, it's better to manually clear
5174 	 * this bit because it can generate problems while resuming
5175 	 * from another devices (e.g. serial console).
5176 	 */
5177 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5178 		mutex_lock(&priv->lock);
5179 		stmmac_pmt(priv, priv->hw, 0);
5180 		mutex_unlock(&priv->lock);
5181 		priv->irq_wake = 0;
5182 	} else {
5183 		pinctrl_pm_select_default_state(priv->device);
5184 		/* enable the clk previously disabled */
5185 		clk_prepare_enable(priv->plat->stmmac_clk);
5186 		clk_prepare_enable(priv->plat->pclk);
5187 		if (priv->plat->clk_ptp_ref)
5188 			clk_prepare_enable(priv->plat->clk_ptp_ref);
5189 		/* reset the phy so that it's ready */
5190 		if (priv->mii)
5191 			stmmac_mdio_reset(priv->mii);
5192 	}
5193 
5194 	if (priv->plat->serdes_powerup) {
5195 		ret = priv->plat->serdes_powerup(ndev,
5196 						 priv->plat->bsp_priv);
5197 
5198 		if (ret < 0)
5199 			return ret;
5200 	}
5201 
5202 	mutex_lock(&priv->lock);
5203 
5204 	stmmac_reset_queues_param(priv);
5205 
5206 	stmmac_clear_descriptors(priv);
5207 
5208 	stmmac_hw_setup(ndev, false);
5209 	stmmac_init_coalesce(priv);
5210 	stmmac_set_rx_mode(ndev);
5211 
5212 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5213 
5214 	stmmac_enable_all_queues(priv);
5215 
5216 	stmmac_start_all_queues(priv);
5217 
5218 	mutex_unlock(&priv->lock);
5219 
5220 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5221 		rtnl_lock();
5222 		phylink_start(priv->phylink);
5223 		/* We may have called phylink_speed_down before */
5224 		phylink_speed_up(priv->phylink);
5225 		rtnl_unlock();
5226 	}
5227 
5228 	phylink_mac_change(priv->phylink, true);
5229 
5230 	netif_device_attach(ndev);
5231 
5232 	return 0;
5233 }
5234 EXPORT_SYMBOL_GPL(stmmac_resume);
5235 
5236 #ifndef MODULE
5237 static int __init stmmac_cmdline_opt(char *str)
5238 {
5239 	char *opt;
5240 
5241 	if (!str || !*str)
5242 		return -EINVAL;
5243 	while ((opt = strsep(&str, ",")) != NULL) {
5244 		if (!strncmp(opt, "debug:", 6)) {
5245 			if (kstrtoint(opt + 6, 0, &debug))
5246 				goto err;
5247 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5248 			if (kstrtoint(opt + 8, 0, &phyaddr))
5249 				goto err;
5250 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5251 			if (kstrtoint(opt + 7, 0, &buf_sz))
5252 				goto err;
5253 		} else if (!strncmp(opt, "tc:", 3)) {
5254 			if (kstrtoint(opt + 3, 0, &tc))
5255 				goto err;
5256 		} else if (!strncmp(opt, "watchdog:", 9)) {
5257 			if (kstrtoint(opt + 9, 0, &watchdog))
5258 				goto err;
5259 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5260 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5261 				goto err;
5262 		} else if (!strncmp(opt, "pause:", 6)) {
5263 			if (kstrtoint(opt + 6, 0, &pause))
5264 				goto err;
5265 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5266 			if (kstrtoint(opt + 10, 0, &eee_timer))
5267 				goto err;
5268 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5269 			if (kstrtoint(opt + 11, 0, &chain_mode))
5270 				goto err;
5271 		}
5272 	}
5273 	return 0;
5274 
5275 err:
5276 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5277 	return -EINVAL;
5278 }
5279 
5280 __setup("stmmaceth=", stmmac_cmdline_opt);
5281 #endif /* MODULE */
5282 
5283 static int __init stmmac_init(void)
5284 {
5285 #ifdef CONFIG_DEBUG_FS
5286 	/* Create debugfs main directory if it doesn't exist yet */
5287 	if (!stmmac_fs_dir)
5288 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5289 	register_netdevice_notifier(&stmmac_notifier);
5290 #endif
5291 
5292 	return 0;
5293 }
5294 
5295 static void __exit stmmac_exit(void)
5296 {
5297 #ifdef CONFIG_DEBUG_FS
5298 	unregister_netdevice_notifier(&stmmac_notifier);
5299 	debugfs_remove_recursive(stmmac_fs_dir);
5300 #endif
5301 }
5302 
5303 module_init(stmmac_init)
5304 module_exit(stmmac_exit)
5305 
5306 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5307 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5308 MODULE_LICENSE("GPL");
5309