1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113 
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115 
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123 	if (unlikely(watchdog < 0))
124 		watchdog = TX_TIMEO;
125 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 		buf_sz = DEFAULT_BUFSIZE;
127 	if (unlikely(flow_ctrl > 1))
128 		flow_ctrl = FLOW_AUTO;
129 	else if (likely(flow_ctrl < 0))
130 		flow_ctrl = FLOW_OFF;
131 	if (unlikely((pause < 0) || (pause > 0xffff)))
132 		pause = PAUSE_TIME;
133 	if (eee_timer < 0)
134 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136 
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 	u32 queue;
147 
148 	for (queue = 0; queue < maxq; queue++) {
149 		struct stmmac_channel *ch = &priv->channel[queue];
150 
151 		if (queue < rx_queues_cnt)
152 			napi_disable(&ch->rx_napi);
153 		if (queue < tx_queues_cnt)
154 			napi_disable(&ch->tx_napi);
155 	}
156 }
157 
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 	u32 queue;
168 
169 	for (queue = 0; queue < maxq; queue++) {
170 		struct stmmac_channel *ch = &priv->channel[queue];
171 
172 		if (queue < rx_queues_cnt)
173 			napi_enable(&ch->rx_napi);
174 		if (queue < tx_queues_cnt)
175 			napi_enable(&ch->tx_napi);
176 	}
177 }
178 
179 /**
180  * stmmac_stop_all_queues - Stop all queues
181  * @priv: driver private structure
182  */
183 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
184 {
185 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
186 	u32 queue;
187 
188 	for (queue = 0; queue < tx_queues_cnt; queue++)
189 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
190 }
191 
192 /**
193  * stmmac_start_all_queues - Start all queues
194  * @priv: driver private structure
195  */
196 static void stmmac_start_all_queues(struct stmmac_priv *priv)
197 {
198 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199 	u32 queue;
200 
201 	for (queue = 0; queue < tx_queues_cnt; queue++)
202 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
203 }
204 
205 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
206 {
207 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
208 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
209 		queue_work(priv->wq, &priv->service_task);
210 }
211 
212 static void stmmac_global_err(struct stmmac_priv *priv)
213 {
214 	netif_carrier_off(priv->dev);
215 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
216 	stmmac_service_event_schedule(priv);
217 }
218 
219 /**
220  * stmmac_clk_csr_set - dynamically set the MDC clock
221  * @priv: driver private structure
222  * Description: this is to dynamically set the MDC clock according to the csr
223  * clock input.
224  * Note:
225  *	If a specific clk_csr value is passed from the platform
226  *	this means that the CSR Clock Range selection cannot be
227  *	changed at run-time and it is fixed (as reported in the driver
228  *	documentation). Viceversa the driver will try to set the MDC
229  *	clock dynamically according to the actual clock input.
230  */
231 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
232 {
233 	u32 clk_rate;
234 
235 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
236 
237 	/* Platform provided default clk_csr would be assumed valid
238 	 * for all other cases except for the below mentioned ones.
239 	 * For values higher than the IEEE 802.3 specified frequency
240 	 * we can not estimate the proper divider as it is not known
241 	 * the frequency of clk_csr_i. So we do not change the default
242 	 * divider.
243 	 */
244 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
245 		if (clk_rate < CSR_F_35M)
246 			priv->clk_csr = STMMAC_CSR_20_35M;
247 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
248 			priv->clk_csr = STMMAC_CSR_35_60M;
249 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
250 			priv->clk_csr = STMMAC_CSR_60_100M;
251 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
252 			priv->clk_csr = STMMAC_CSR_100_150M;
253 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
254 			priv->clk_csr = STMMAC_CSR_150_250M;
255 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
256 			priv->clk_csr = STMMAC_CSR_250_300M;
257 	}
258 
259 	if (priv->plat->has_sun8i) {
260 		if (clk_rate > 160000000)
261 			priv->clk_csr = 0x03;
262 		else if (clk_rate > 80000000)
263 			priv->clk_csr = 0x02;
264 		else if (clk_rate > 40000000)
265 			priv->clk_csr = 0x01;
266 		else
267 			priv->clk_csr = 0;
268 	}
269 
270 	if (priv->plat->has_xgmac) {
271 		if (clk_rate > 400000000)
272 			priv->clk_csr = 0x5;
273 		else if (clk_rate > 350000000)
274 			priv->clk_csr = 0x4;
275 		else if (clk_rate > 300000000)
276 			priv->clk_csr = 0x3;
277 		else if (clk_rate > 250000000)
278 			priv->clk_csr = 0x2;
279 		else if (clk_rate > 150000000)
280 			priv->clk_csr = 0x1;
281 		else
282 			priv->clk_csr = 0x0;
283 	}
284 }
285 
286 static void print_pkt(unsigned char *buf, int len)
287 {
288 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
289 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
290 }
291 
292 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
293 {
294 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
295 	u32 avail;
296 
297 	if (tx_q->dirty_tx > tx_q->cur_tx)
298 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
299 	else
300 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
301 
302 	return avail;
303 }
304 
305 /**
306  * stmmac_rx_dirty - Get RX queue dirty
307  * @priv: driver private structure
308  * @queue: RX queue index
309  */
310 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
311 {
312 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
313 	u32 dirty;
314 
315 	if (rx_q->dirty_rx <= rx_q->cur_rx)
316 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
317 	else
318 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
319 
320 	return dirty;
321 }
322 
323 /**
324  * stmmac_enable_eee_mode - check and enter in LPI mode
325  * @priv: driver private structure
326  * Description: this function is to verify and enter in LPI mode in case of
327  * EEE.
328  */
329 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
330 {
331 	u32 tx_cnt = priv->plat->tx_queues_to_use;
332 	u32 queue;
333 
334 	/* check if all TX queues have the work finished */
335 	for (queue = 0; queue < tx_cnt; queue++) {
336 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
337 
338 		if (tx_q->dirty_tx != tx_q->cur_tx)
339 			return; /* still unfinished work */
340 	}
341 
342 	/* Check and enter in LPI mode */
343 	if (!priv->tx_path_in_lpi_mode)
344 		stmmac_set_eee_mode(priv, priv->hw,
345 				priv->plat->en_tx_lpi_clockgating);
346 }
347 
348 /**
349  * stmmac_disable_eee_mode - disable and exit from LPI mode
350  * @priv: driver private structure
351  * Description: this function is to exit and disable EEE in case of
352  * LPI state is true. This is called by the xmit.
353  */
354 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
355 {
356 	stmmac_reset_eee_mode(priv, priv->hw);
357 	del_timer_sync(&priv->eee_ctrl_timer);
358 	priv->tx_path_in_lpi_mode = false;
359 }
360 
361 /**
362  * stmmac_eee_ctrl_timer - EEE TX SW timer.
363  * @arg : data hook
364  * Description:
365  *  if there is no data transfer and if we are not in LPI state,
366  *  then MAC Transmitter can be moved to LPI state.
367  */
368 static void stmmac_eee_ctrl_timer(struct timer_list *t)
369 {
370 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
371 
372 	stmmac_enable_eee_mode(priv);
373 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
374 }
375 
376 /**
377  * stmmac_eee_init - init EEE
378  * @priv: driver private structure
379  * Description:
380  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
381  *  can also manage EEE, this function enable the LPI state and start related
382  *  timer.
383  */
384 bool stmmac_eee_init(struct stmmac_priv *priv)
385 {
386 	int tx_lpi_timer = priv->tx_lpi_timer;
387 
388 	/* Using PCS we cannot dial with the phy registers at this stage
389 	 * so we do not support extra feature like EEE.
390 	 */
391 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
392 	    priv->hw->pcs == STMMAC_PCS_RTBI)
393 		return false;
394 
395 	/* Check if MAC core supports the EEE feature. */
396 	if (!priv->dma_cap.eee)
397 		return false;
398 
399 	mutex_lock(&priv->lock);
400 
401 	/* Check if it needs to be deactivated */
402 	if (!priv->eee_active) {
403 		if (priv->eee_enabled) {
404 			netdev_dbg(priv->dev, "disable EEE\n");
405 			del_timer_sync(&priv->eee_ctrl_timer);
406 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407 		}
408 		mutex_unlock(&priv->lock);
409 		return false;
410 	}
411 
412 	if (priv->eee_active && !priv->eee_enabled) {
413 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416 				     tx_lpi_timer);
417 	}
418 
419 	mutex_unlock(&priv->lock);
420 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421 	return true;
422 }
423 
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 				   struct dma_desc *p, struct sk_buff *skb)
434 {
435 	struct skb_shared_hwtstamps shhwtstamp;
436 	bool found = false;
437 	u64 ns = 0;
438 
439 	if (!priv->hwts_tx_en)
440 		return;
441 
442 	/* exit if skb doesn't support hw tstamp */
443 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444 		return;
445 
446 	/* check tx tstamp status */
447 	if (stmmac_get_tx_timestamp_status(priv, p)) {
448 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449 		found = true;
450 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451 		found = true;
452 	}
453 
454 	if (found) {
455 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
457 
458 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 		/* pass tstamp to stack */
460 		skb_tstamp_tx(skb, &shhwtstamp);
461 	}
462 }
463 
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 				   struct dma_desc *np, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 	struct dma_desc *desc = p;
478 	u64 ns = 0;
479 
480 	if (!priv->hwts_rx_en)
481 		return;
482 	/* For GMAC4, the valid timestamp is from CTX next desc. */
483 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484 		desc = np;
485 
486 	/* Check if timestamp is available */
487 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 		shhwtstamp = skb_hwtstamps(skb);
491 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 	} else  {
494 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495 	}
496 }
497 
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511 	struct stmmac_priv *priv = netdev_priv(dev);
512 	struct hwtstamp_config config;
513 	struct timespec64 now;
514 	u64 temp = 0;
515 	u32 ptp_v2 = 0;
516 	u32 tstamp_all = 0;
517 	u32 ptp_over_ipv4_udp = 0;
518 	u32 ptp_over_ipv6_udp = 0;
519 	u32 ptp_over_ethernet = 0;
520 	u32 snap_type_sel = 0;
521 	u32 ts_master_en = 0;
522 	u32 ts_event_en = 0;
523 	u32 sec_inc = 0;
524 	u32 value = 0;
525 	bool xmac;
526 
527 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528 
529 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 		netdev_alert(priv->dev, "No support for HW time stamping\n");
531 		priv->hwts_tx_en = 0;
532 		priv->hwts_rx_en = 0;
533 
534 		return -EOPNOTSUPP;
535 	}
536 
537 	if (copy_from_user(&config, ifr->ifr_data,
538 			   sizeof(config)))
539 		return -EFAULT;
540 
541 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 		   __func__, config.flags, config.tx_type, config.rx_filter);
543 
544 	/* reserved for future extensions */
545 	if (config.flags)
546 		return -EINVAL;
547 
548 	if (config.tx_type != HWTSTAMP_TX_OFF &&
549 	    config.tx_type != HWTSTAMP_TX_ON)
550 		return -ERANGE;
551 
552 	if (priv->adv_ts) {
553 		switch (config.rx_filter) {
554 		case HWTSTAMP_FILTER_NONE:
555 			/* time stamp no incoming packet at all */
556 			config.rx_filter = HWTSTAMP_FILTER_NONE;
557 			break;
558 
559 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 			/* PTP v1, UDP, any kind of event packet */
561 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 			/* 'xmac' hardware can support Sync, Pdelay_Req and
563 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 			 * This leaves Delay_Req timestamps out.
565 			 * Enable all events *and* general purpose message
566 			 * timestamping
567 			 */
568 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 			/* PTP v1, UDP, Sync packet */
575 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 			/* take time stamp for SYNC messages only */
577 			ts_event_en = PTP_TCR_TSEVNTENA;
578 
579 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581 			break;
582 
583 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 			/* PTP v1, UDP, Delay_req packet */
585 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 			/* take time stamp for Delay_Req messages only */
587 			ts_master_en = PTP_TCR_TSMSTRENA;
588 			ts_event_en = PTP_TCR_TSEVNTENA;
589 
590 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592 			break;
593 
594 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 			/* PTP v2, UDP, any kind of event packet */
596 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 			ptp_v2 = PTP_TCR_TSVER2ENA;
598 			/* take time stamp for all event messages */
599 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600 
601 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 			break;
604 
605 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 			/* PTP v2, UDP, Sync packet */
607 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 			ptp_v2 = PTP_TCR_TSVER2ENA;
609 			/* take time stamp for SYNC messages only */
610 			ts_event_en = PTP_TCR_TSEVNTENA;
611 
612 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 			break;
615 
616 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 			/* PTP v2, UDP, Delay_req packet */
618 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 			ptp_v2 = PTP_TCR_TSVER2ENA;
620 			/* take time stamp for Delay_Req messages only */
621 			ts_master_en = PTP_TCR_TSMSTRENA;
622 			ts_event_en = PTP_TCR_TSEVNTENA;
623 
624 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 			break;
627 
628 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 			/* PTP v2/802.AS1 any layer, any kind of event packet */
630 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 			ptp_v2 = PTP_TCR_TSVER2ENA;
632 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 			ts_event_en = PTP_TCR_TSEVNTENA;
634 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 			ptp_over_ethernet = PTP_TCR_TSIPENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 			/* PTP v2/802.AS1, any layer, Sync packet */
641 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 			ptp_v2 = PTP_TCR_TSVER2ENA;
643 			/* take time stamp for SYNC messages only */
644 			ts_event_en = PTP_TCR_TSEVNTENA;
645 
646 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 			ptp_over_ethernet = PTP_TCR_TSIPENA;
649 			break;
650 
651 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 			/* PTP v2/802.AS1, any layer, Delay_req packet */
653 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 			ptp_v2 = PTP_TCR_TSVER2ENA;
655 			/* take time stamp for Delay_Req messages only */
656 			ts_master_en = PTP_TCR_TSMSTRENA;
657 			ts_event_en = PTP_TCR_TSEVNTENA;
658 
659 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 			ptp_over_ethernet = PTP_TCR_TSIPENA;
662 			break;
663 
664 		case HWTSTAMP_FILTER_NTP_ALL:
665 		case HWTSTAMP_FILTER_ALL:
666 			/* time stamp any incoming packet */
667 			config.rx_filter = HWTSTAMP_FILTER_ALL;
668 			tstamp_all = PTP_TCR_TSENALL;
669 			break;
670 
671 		default:
672 			return -ERANGE;
673 		}
674 	} else {
675 		switch (config.rx_filter) {
676 		case HWTSTAMP_FILTER_NONE:
677 			config.rx_filter = HWTSTAMP_FILTER_NONE;
678 			break;
679 		default:
680 			/* PTP v1, UDP, any kind of event packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 			break;
683 		}
684 	}
685 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687 
688 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 	else {
691 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 			 ts_master_en | snap_type_sel);
695 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696 
697 		/* program Sub Second Increment reg */
698 		stmmac_config_sub_second_increment(priv,
699 				priv->ptpaddr, priv->plat->clk_ptp_rate,
700 				xmac, &sec_inc);
701 		temp = div_u64(1000000000ULL, sec_inc);
702 
703 		/* Store sub second increment and flags for later use */
704 		priv->sub_second_inc = sec_inc;
705 		priv->systime_flags = value;
706 
707 		/* calculate default added value:
708 		 * formula is :
709 		 * addend = (2^32)/freq_div_ratio;
710 		 * where, freq_div_ratio = 1e9ns/sec_inc
711 		 */
712 		temp = (u64)(temp << 32);
713 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715 
716 		/* initialize system time */
717 		ktime_get_real_ts64(&now);
718 
719 		/* lower 32 bits of tv_sec are safe until y2106 */
720 		stmmac_init_systime(priv, priv->ptpaddr,
721 				(u32)now.tv_sec, now.tv_nsec);
722 	}
723 
724 	memcpy(&priv->tstamp_config, &config, sizeof(config));
725 
726 	return copy_to_user(ifr->ifr_data, &config,
727 			    sizeof(config)) ? -EFAULT : 0;
728 }
729 
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 	struct stmmac_priv *priv = netdev_priv(dev);
742 	struct hwtstamp_config *config = &priv->tstamp_config;
743 
744 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 		return -EOPNOTSUPP;
746 
747 	return copy_to_user(ifr->ifr_data, config,
748 			    sizeof(*config)) ? -EFAULT : 0;
749 }
750 
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761 
762 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 		return -EOPNOTSUPP;
764 
765 	priv->adv_ts = 0;
766 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 	if (xmac && priv->dma_cap.atime_stamp)
768 		priv->adv_ts = 1;
769 	/* Dwmac 3.x core with extend_desc can support adv_ts */
770 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 		priv->adv_ts = 1;
772 
773 	if (priv->dma_cap.time_stamp)
774 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775 
776 	if (priv->adv_ts)
777 		netdev_info(priv->dev,
778 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
779 
780 	priv->hwts_tx_en = 0;
781 	priv->hwts_rx_en = 0;
782 
783 	stmmac_ptp_register(priv);
784 
785 	return 0;
786 }
787 
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 	if (priv->plat->clk_ptp_ref)
791 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
792 	stmmac_ptp_unregister(priv);
793 }
794 
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 	u32 tx_cnt = priv->plat->tx_queues_to_use;
803 
804 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 			priv->pause, tx_cnt);
806 }
807 
808 static void stmmac_validate(struct phylink_config *config,
809 			    unsigned long *supported,
810 			    struct phylink_link_state *state)
811 {
812 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 	int tx_cnt = priv->plat->tx_queues_to_use;
816 	int max_speed = priv->plat->max_speed;
817 
818 	phylink_set(mac_supported, 10baseT_Half);
819 	phylink_set(mac_supported, 10baseT_Full);
820 	phylink_set(mac_supported, 100baseT_Half);
821 	phylink_set(mac_supported, 100baseT_Full);
822 	phylink_set(mac_supported, 1000baseT_Half);
823 	phylink_set(mac_supported, 1000baseT_Full);
824 	phylink_set(mac_supported, 1000baseKX_Full);
825 
826 	phylink_set(mac_supported, Autoneg);
827 	phylink_set(mac_supported, Pause);
828 	phylink_set(mac_supported, Asym_Pause);
829 	phylink_set_port_modes(mac_supported);
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		if (!max_speed || (max_speed >= 2500)) {
837 			phylink_set(mac_supported, 2500baseT_Full);
838 			phylink_set(mac_supported, 2500baseX_Full);
839 		}
840 		if (!max_speed || (max_speed >= 5000)) {
841 			phylink_set(mac_supported, 5000baseT_Full);
842 		}
843 		if (!max_speed || (max_speed >= 10000)) {
844 			phylink_set(mac_supported, 10000baseSR_Full);
845 			phylink_set(mac_supported, 10000baseLR_Full);
846 			phylink_set(mac_supported, 10000baseER_Full);
847 			phylink_set(mac_supported, 10000baseLRM_Full);
848 			phylink_set(mac_supported, 10000baseT_Full);
849 			phylink_set(mac_supported, 10000baseKX4_Full);
850 			phylink_set(mac_supported, 10000baseKR_Full);
851 		}
852 		if (!max_speed || (max_speed >= 25000)) {
853 			phylink_set(mac_supported, 25000baseCR_Full);
854 			phylink_set(mac_supported, 25000baseKR_Full);
855 			phylink_set(mac_supported, 25000baseSR_Full);
856 		}
857 		if (!max_speed || (max_speed >= 40000)) {
858 			phylink_set(mac_supported, 40000baseKR4_Full);
859 			phylink_set(mac_supported, 40000baseCR4_Full);
860 			phylink_set(mac_supported, 40000baseSR4_Full);
861 			phylink_set(mac_supported, 40000baseLR4_Full);
862 		}
863 		if (!max_speed || (max_speed >= 50000)) {
864 			phylink_set(mac_supported, 50000baseCR2_Full);
865 			phylink_set(mac_supported, 50000baseKR2_Full);
866 			phylink_set(mac_supported, 50000baseSR2_Full);
867 			phylink_set(mac_supported, 50000baseKR_Full);
868 			phylink_set(mac_supported, 50000baseSR_Full);
869 			phylink_set(mac_supported, 50000baseCR_Full);
870 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
871 			phylink_set(mac_supported, 50000baseDR_Full);
872 		}
873 		if (!max_speed || (max_speed >= 100000)) {
874 			phylink_set(mac_supported, 100000baseKR4_Full);
875 			phylink_set(mac_supported, 100000baseSR4_Full);
876 			phylink_set(mac_supported, 100000baseCR4_Full);
877 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
878 			phylink_set(mac_supported, 100000baseKR2_Full);
879 			phylink_set(mac_supported, 100000baseSR2_Full);
880 			phylink_set(mac_supported, 100000baseCR2_Full);
881 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
882 			phylink_set(mac_supported, 100000baseDR2_Full);
883 		}
884 	}
885 
886 	/* Half-Duplex can only work with single queue */
887 	if (tx_cnt > 1) {
888 		phylink_set(mask, 10baseT_Half);
889 		phylink_set(mask, 100baseT_Half);
890 		phylink_set(mask, 1000baseT_Half);
891 	}
892 
893 	linkmode_and(supported, supported, mac_supported);
894 	linkmode_andnot(supported, supported, mask);
895 
896 	linkmode_and(state->advertising, state->advertising, mac_supported);
897 	linkmode_andnot(state->advertising, state->advertising, mask);
898 
899 	/* If PCS is supported, check which modes it supports. */
900 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
901 }
902 
903 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
904 				     struct phylink_link_state *state)
905 {
906 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
907 
908 	state->link = 0;
909 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
910 }
911 
912 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
913 			      const struct phylink_link_state *state)
914 {
915 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
916 
917 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
918 }
919 
920 static void stmmac_mac_an_restart(struct phylink_config *config)
921 {
922 	/* Not Supported */
923 }
924 
925 static void stmmac_mac_link_down(struct phylink_config *config,
926 				 unsigned int mode, phy_interface_t interface)
927 {
928 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
929 
930 	stmmac_mac_set(priv, priv->ioaddr, false);
931 	priv->eee_active = false;
932 	stmmac_eee_init(priv);
933 	stmmac_set_eee_pls(priv, priv->hw, false);
934 }
935 
936 static void stmmac_mac_link_up(struct phylink_config *config,
937 			       struct phy_device *phy,
938 			       unsigned int mode, phy_interface_t interface,
939 			       int speed, int duplex,
940 			       bool tx_pause, bool rx_pause)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 	u32 ctrl;
944 
945 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
946 
947 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
948 	ctrl &= ~priv->hw->link.speed_mask;
949 
950 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
951 		switch (speed) {
952 		case SPEED_10000:
953 			ctrl |= priv->hw->link.xgmii.speed10000;
954 			break;
955 		case SPEED_5000:
956 			ctrl |= priv->hw->link.xgmii.speed5000;
957 			break;
958 		case SPEED_2500:
959 			ctrl |= priv->hw->link.xgmii.speed2500;
960 			break;
961 		default:
962 			return;
963 		}
964 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
965 		switch (speed) {
966 		case SPEED_100000:
967 			ctrl |= priv->hw->link.xlgmii.speed100000;
968 			break;
969 		case SPEED_50000:
970 			ctrl |= priv->hw->link.xlgmii.speed50000;
971 			break;
972 		case SPEED_40000:
973 			ctrl |= priv->hw->link.xlgmii.speed40000;
974 			break;
975 		case SPEED_25000:
976 			ctrl |= priv->hw->link.xlgmii.speed25000;
977 			break;
978 		case SPEED_10000:
979 			ctrl |= priv->hw->link.xgmii.speed10000;
980 			break;
981 		case SPEED_2500:
982 			ctrl |= priv->hw->link.speed2500;
983 			break;
984 		case SPEED_1000:
985 			ctrl |= priv->hw->link.speed1000;
986 			break;
987 		default:
988 			return;
989 		}
990 	} else {
991 		switch (speed) {
992 		case SPEED_2500:
993 			ctrl |= priv->hw->link.speed2500;
994 			break;
995 		case SPEED_1000:
996 			ctrl |= priv->hw->link.speed1000;
997 			break;
998 		case SPEED_100:
999 			ctrl |= priv->hw->link.speed100;
1000 			break;
1001 		case SPEED_10:
1002 			ctrl |= priv->hw->link.speed10;
1003 			break;
1004 		default:
1005 			return;
1006 		}
1007 	}
1008 
1009 	priv->speed = speed;
1010 
1011 	if (priv->plat->fix_mac_speed)
1012 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1013 
1014 	if (!duplex)
1015 		ctrl &= ~priv->hw->link.duplex;
1016 	else
1017 		ctrl |= priv->hw->link.duplex;
1018 
1019 	/* Flow Control operation */
1020 	if (tx_pause && rx_pause)
1021 		stmmac_mac_flow_ctrl(priv, duplex);
1022 
1023 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1024 
1025 	stmmac_mac_set(priv, priv->ioaddr, true);
1026 	if (phy && priv->dma_cap.eee) {
1027 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1028 		priv->eee_enabled = stmmac_eee_init(priv);
1029 		stmmac_set_eee_pls(priv, priv->hw, true);
1030 	}
1031 }
1032 
1033 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1034 	.validate = stmmac_validate,
1035 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1036 	.mac_config = stmmac_mac_config,
1037 	.mac_an_restart = stmmac_mac_an_restart,
1038 	.mac_link_down = stmmac_mac_link_down,
1039 	.mac_link_up = stmmac_mac_link_up,
1040 };
1041 
1042 /**
1043  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1044  * @priv: driver private structure
1045  * Description: this is to verify if the HW supports the PCS.
1046  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1047  * configured for the TBI, RTBI, or SGMII PHY interface.
1048  */
1049 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1050 {
1051 	int interface = priv->plat->interface;
1052 
1053 	if (priv->dma_cap.pcs) {
1054 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1055 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1056 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1057 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1058 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1059 			priv->hw->pcs = STMMAC_PCS_RGMII;
1060 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1061 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1062 			priv->hw->pcs = STMMAC_PCS_SGMII;
1063 		}
1064 	}
1065 }
1066 
1067 /**
1068  * stmmac_init_phy - PHY initialization
1069  * @dev: net device structure
1070  * Description: it initializes the driver's PHY state, and attaches the PHY
1071  * to the mac driver.
1072  *  Return value:
1073  *  0 on success
1074  */
1075 static int stmmac_init_phy(struct net_device *dev)
1076 {
1077 	struct stmmac_priv *priv = netdev_priv(dev);
1078 	struct device_node *node;
1079 	int ret;
1080 
1081 	node = priv->plat->phylink_node;
1082 
1083 	if (node)
1084 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1085 
1086 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1087 	 * manually parse it
1088 	 */
1089 	if (!node || ret) {
1090 		int addr = priv->plat->phy_addr;
1091 		struct phy_device *phydev;
1092 
1093 		phydev = mdiobus_get_phy(priv->mii, addr);
1094 		if (!phydev) {
1095 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1096 			return -ENODEV;
1097 		}
1098 
1099 		ret = phylink_connect_phy(priv->phylink, phydev);
1100 	}
1101 
1102 	return ret;
1103 }
1104 
1105 static int stmmac_phy_setup(struct stmmac_priv *priv)
1106 {
1107 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1108 	int mode = priv->plat->phy_interface;
1109 	struct phylink *phylink;
1110 
1111 	priv->phylink_config.dev = &priv->dev->dev;
1112 	priv->phylink_config.type = PHYLINK_NETDEV;
1113 	priv->phylink_config.pcs_poll = true;
1114 
1115 	if (!fwnode)
1116 		fwnode = dev_fwnode(priv->device);
1117 
1118 	phylink = phylink_create(&priv->phylink_config, fwnode,
1119 				 mode, &stmmac_phylink_mac_ops);
1120 	if (IS_ERR(phylink))
1121 		return PTR_ERR(phylink);
1122 
1123 	priv->phylink = phylink;
1124 	return 0;
1125 }
1126 
1127 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1128 {
1129 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1130 	void *head_rx;
1131 	u32 queue;
1132 
1133 	/* Display RX rings */
1134 	for (queue = 0; queue < rx_cnt; queue++) {
1135 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1136 
1137 		pr_info("\tRX Queue %u rings\n", queue);
1138 
1139 		if (priv->extend_desc)
1140 			head_rx = (void *)rx_q->dma_erx;
1141 		else
1142 			head_rx = (void *)rx_q->dma_rx;
1143 
1144 		/* Display RX ring */
1145 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1146 	}
1147 }
1148 
1149 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1150 {
1151 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1152 	void *head_tx;
1153 	u32 queue;
1154 
1155 	/* Display TX rings */
1156 	for (queue = 0; queue < tx_cnt; queue++) {
1157 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1158 
1159 		pr_info("\tTX Queue %d rings\n", queue);
1160 
1161 		if (priv->extend_desc)
1162 			head_tx = (void *)tx_q->dma_etx;
1163 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1164 			head_tx = (void *)tx_q->dma_entx;
1165 		else
1166 			head_tx = (void *)tx_q->dma_tx;
1167 
1168 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1169 	}
1170 }
1171 
1172 static void stmmac_display_rings(struct stmmac_priv *priv)
1173 {
1174 	/* Display RX ring */
1175 	stmmac_display_rx_rings(priv);
1176 
1177 	/* Display TX ring */
1178 	stmmac_display_tx_rings(priv);
1179 }
1180 
1181 static int stmmac_set_bfsize(int mtu, int bufsize)
1182 {
1183 	int ret = bufsize;
1184 
1185 	if (mtu >= BUF_SIZE_8KiB)
1186 		ret = BUF_SIZE_16KiB;
1187 	else if (mtu >= BUF_SIZE_4KiB)
1188 		ret = BUF_SIZE_8KiB;
1189 	else if (mtu >= BUF_SIZE_2KiB)
1190 		ret = BUF_SIZE_4KiB;
1191 	else if (mtu > DEFAULT_BUFSIZE)
1192 		ret = BUF_SIZE_2KiB;
1193 	else
1194 		ret = DEFAULT_BUFSIZE;
1195 
1196 	return ret;
1197 }
1198 
1199 /**
1200  * stmmac_clear_rx_descriptors - clear RX descriptors
1201  * @priv: driver private structure
1202  * @queue: RX queue index
1203  * Description: this function is called to clear the RX descriptors
1204  * in case of both basic and extended descriptors are used.
1205  */
1206 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1207 {
1208 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1209 	int i;
1210 
1211 	/* Clear the RX descriptors */
1212 	for (i = 0; i < DMA_RX_SIZE; i++)
1213 		if (priv->extend_desc)
1214 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1215 					priv->use_riwt, priv->mode,
1216 					(i == DMA_RX_SIZE - 1),
1217 					priv->dma_buf_sz);
1218 		else
1219 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1220 					priv->use_riwt, priv->mode,
1221 					(i == DMA_RX_SIZE - 1),
1222 					priv->dma_buf_sz);
1223 }
1224 
1225 /**
1226  * stmmac_clear_tx_descriptors - clear tx descriptors
1227  * @priv: driver private structure
1228  * @queue: TX queue index.
1229  * Description: this function is called to clear the TX descriptors
1230  * in case of both basic and extended descriptors are used.
1231  */
1232 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1233 {
1234 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1235 	int i;
1236 
1237 	/* Clear the TX descriptors */
1238 	for (i = 0; i < DMA_TX_SIZE; i++) {
1239 		int last = (i == (DMA_TX_SIZE - 1));
1240 		struct dma_desc *p;
1241 
1242 		if (priv->extend_desc)
1243 			p = &tx_q->dma_etx[i].basic;
1244 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1245 			p = &tx_q->dma_entx[i].basic;
1246 		else
1247 			p = &tx_q->dma_tx[i];
1248 
1249 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1250 	}
1251 }
1252 
1253 /**
1254  * stmmac_clear_descriptors - clear descriptors
1255  * @priv: driver private structure
1256  * Description: this function is called to clear the TX and RX descriptors
1257  * in case of both basic and extended descriptors are used.
1258  */
1259 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1260 {
1261 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1262 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1263 	u32 queue;
1264 
1265 	/* Clear the RX descriptors */
1266 	for (queue = 0; queue < rx_queue_cnt; queue++)
1267 		stmmac_clear_rx_descriptors(priv, queue);
1268 
1269 	/* Clear the TX descriptors */
1270 	for (queue = 0; queue < tx_queue_cnt; queue++)
1271 		stmmac_clear_tx_descriptors(priv, queue);
1272 }
1273 
1274 /**
1275  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1276  * @priv: driver private structure
1277  * @p: descriptor pointer
1278  * @i: descriptor index
1279  * @flags: gfp flag
1280  * @queue: RX queue index
1281  * Description: this function is called to allocate a receive buffer, perform
1282  * the DMA mapping and init the descriptor.
1283  */
1284 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1285 				  int i, gfp_t flags, u32 queue)
1286 {
1287 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1289 
1290 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1291 	if (!buf->page)
1292 		return -ENOMEM;
1293 
1294 	if (priv->sph) {
1295 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1296 		if (!buf->sec_page)
1297 			return -ENOMEM;
1298 
1299 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1300 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1301 	} else {
1302 		buf->sec_page = NULL;
1303 	}
1304 
1305 	buf->addr = page_pool_get_dma_addr(buf->page);
1306 	stmmac_set_desc_addr(priv, p, buf->addr);
1307 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1308 		stmmac_init_desc3(priv, p);
1309 
1310 	return 0;
1311 }
1312 
1313 /**
1314  * stmmac_free_rx_buffer - free RX dma buffers
1315  * @priv: private structure
1316  * @queue: RX queue index
1317  * @i: buffer index.
1318  */
1319 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1320 {
1321 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1322 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1323 
1324 	if (buf->page)
1325 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1326 	buf->page = NULL;
1327 
1328 	if (buf->sec_page)
1329 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1330 	buf->sec_page = NULL;
1331 }
1332 
1333 /**
1334  * stmmac_free_tx_buffer - free RX dma buffers
1335  * @priv: private structure
1336  * @queue: RX queue index
1337  * @i: buffer index.
1338  */
1339 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1340 {
1341 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1342 
1343 	if (tx_q->tx_skbuff_dma[i].buf) {
1344 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1345 			dma_unmap_page(priv->device,
1346 				       tx_q->tx_skbuff_dma[i].buf,
1347 				       tx_q->tx_skbuff_dma[i].len,
1348 				       DMA_TO_DEVICE);
1349 		else
1350 			dma_unmap_single(priv->device,
1351 					 tx_q->tx_skbuff_dma[i].buf,
1352 					 tx_q->tx_skbuff_dma[i].len,
1353 					 DMA_TO_DEVICE);
1354 	}
1355 
1356 	if (tx_q->tx_skbuff[i]) {
1357 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1358 		tx_q->tx_skbuff[i] = NULL;
1359 		tx_q->tx_skbuff_dma[i].buf = 0;
1360 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1361 	}
1362 }
1363 
1364 /**
1365  * init_dma_rx_desc_rings - init the RX descriptor rings
1366  * @dev: net device structure
1367  * @flags: gfp flag.
1368  * Description: this function initializes the DMA RX descriptors
1369  * and allocates the socket buffers. It supports the chained and ring
1370  * modes.
1371  */
1372 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1373 {
1374 	struct stmmac_priv *priv = netdev_priv(dev);
1375 	u32 rx_count = priv->plat->rx_queues_to_use;
1376 	int ret = -ENOMEM;
1377 	int queue;
1378 	int i;
1379 
1380 	/* RX INITIALIZATION */
1381 	netif_dbg(priv, probe, priv->dev,
1382 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1383 
1384 	for (queue = 0; queue < rx_count; queue++) {
1385 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1386 
1387 		netif_dbg(priv, probe, priv->dev,
1388 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1389 			  (u32)rx_q->dma_rx_phy);
1390 
1391 		stmmac_clear_rx_descriptors(priv, queue);
1392 
1393 		for (i = 0; i < DMA_RX_SIZE; i++) {
1394 			struct dma_desc *p;
1395 
1396 			if (priv->extend_desc)
1397 				p = &((rx_q->dma_erx + i)->basic);
1398 			else
1399 				p = rx_q->dma_rx + i;
1400 
1401 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1402 						     queue);
1403 			if (ret)
1404 				goto err_init_rx_buffers;
1405 		}
1406 
1407 		rx_q->cur_rx = 0;
1408 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1409 
1410 		/* Setup the chained descriptor addresses */
1411 		if (priv->mode == STMMAC_CHAIN_MODE) {
1412 			if (priv->extend_desc)
1413 				stmmac_mode_init(priv, rx_q->dma_erx,
1414 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1415 			else
1416 				stmmac_mode_init(priv, rx_q->dma_rx,
1417 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1418 		}
1419 	}
1420 
1421 	return 0;
1422 
1423 err_init_rx_buffers:
1424 	while (queue >= 0) {
1425 		while (--i >= 0)
1426 			stmmac_free_rx_buffer(priv, queue, i);
1427 
1428 		if (queue == 0)
1429 			break;
1430 
1431 		i = DMA_RX_SIZE;
1432 		queue--;
1433 	}
1434 
1435 	return ret;
1436 }
1437 
1438 /**
1439  * init_dma_tx_desc_rings - init the TX descriptor rings
1440  * @dev: net device structure.
1441  * Description: this function initializes the DMA TX descriptors
1442  * and allocates the socket buffers. It supports the chained and ring
1443  * modes.
1444  */
1445 static int init_dma_tx_desc_rings(struct net_device *dev)
1446 {
1447 	struct stmmac_priv *priv = netdev_priv(dev);
1448 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1449 	u32 queue;
1450 	int i;
1451 
1452 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1453 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1454 
1455 		netif_dbg(priv, probe, priv->dev,
1456 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1457 			 (u32)tx_q->dma_tx_phy);
1458 
1459 		/* Setup the chained descriptor addresses */
1460 		if (priv->mode == STMMAC_CHAIN_MODE) {
1461 			if (priv->extend_desc)
1462 				stmmac_mode_init(priv, tx_q->dma_etx,
1463 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1464 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1465 				stmmac_mode_init(priv, tx_q->dma_tx,
1466 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1467 		}
1468 
1469 		for (i = 0; i < DMA_TX_SIZE; i++) {
1470 			struct dma_desc *p;
1471 			if (priv->extend_desc)
1472 				p = &((tx_q->dma_etx + i)->basic);
1473 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1474 				p = &((tx_q->dma_entx + i)->basic);
1475 			else
1476 				p = tx_q->dma_tx + i;
1477 
1478 			stmmac_clear_desc(priv, p);
1479 
1480 			tx_q->tx_skbuff_dma[i].buf = 0;
1481 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1482 			tx_q->tx_skbuff_dma[i].len = 0;
1483 			tx_q->tx_skbuff_dma[i].last_segment = false;
1484 			tx_q->tx_skbuff[i] = NULL;
1485 		}
1486 
1487 		tx_q->dirty_tx = 0;
1488 		tx_q->cur_tx = 0;
1489 		tx_q->mss = 0;
1490 
1491 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 /**
1498  * init_dma_desc_rings - init the RX/TX descriptor rings
1499  * @dev: net device structure
1500  * @flags: gfp flag.
1501  * Description: this function initializes the DMA RX/TX descriptors
1502  * and allocates the socket buffers. It supports the chained and ring
1503  * modes.
1504  */
1505 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1506 {
1507 	struct stmmac_priv *priv = netdev_priv(dev);
1508 	int ret;
1509 
1510 	ret = init_dma_rx_desc_rings(dev, flags);
1511 	if (ret)
1512 		return ret;
1513 
1514 	ret = init_dma_tx_desc_rings(dev);
1515 
1516 	stmmac_clear_descriptors(priv);
1517 
1518 	if (netif_msg_hw(priv))
1519 		stmmac_display_rings(priv);
1520 
1521 	return ret;
1522 }
1523 
1524 /**
1525  * dma_free_rx_skbufs - free RX dma buffers
1526  * @priv: private structure
1527  * @queue: RX queue index
1528  */
1529 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1530 {
1531 	int i;
1532 
1533 	for (i = 0; i < DMA_RX_SIZE; i++)
1534 		stmmac_free_rx_buffer(priv, queue, i);
1535 }
1536 
1537 /**
1538  * dma_free_tx_skbufs - free TX dma buffers
1539  * @priv: private structure
1540  * @queue: TX queue index
1541  */
1542 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1543 {
1544 	int i;
1545 
1546 	for (i = 0; i < DMA_TX_SIZE; i++)
1547 		stmmac_free_tx_buffer(priv, queue, i);
1548 }
1549 
1550 /**
1551  * free_dma_rx_desc_resources - free RX dma desc resources
1552  * @priv: private structure
1553  */
1554 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1555 {
1556 	u32 rx_count = priv->plat->rx_queues_to_use;
1557 	u32 queue;
1558 
1559 	/* Free RX queue resources */
1560 	for (queue = 0; queue < rx_count; queue++) {
1561 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562 
1563 		/* Release the DMA RX socket buffers */
1564 		dma_free_rx_skbufs(priv, queue);
1565 
1566 		/* Free DMA regions of consistent memory previously allocated */
1567 		if (!priv->extend_desc)
1568 			dma_free_coherent(priv->device,
1569 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1570 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1571 		else
1572 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1573 					  sizeof(struct dma_extended_desc),
1574 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1575 
1576 		kfree(rx_q->buf_pool);
1577 		if (rx_q->page_pool)
1578 			page_pool_destroy(rx_q->page_pool);
1579 	}
1580 }
1581 
1582 /**
1583  * free_dma_tx_desc_resources - free TX dma desc resources
1584  * @priv: private structure
1585  */
1586 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1587 {
1588 	u32 tx_count = priv->plat->tx_queues_to_use;
1589 	u32 queue;
1590 
1591 	/* Free TX queue resources */
1592 	for (queue = 0; queue < tx_count; queue++) {
1593 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1594 		size_t size;
1595 		void *addr;
1596 
1597 		/* Release the DMA TX socket buffers */
1598 		dma_free_tx_skbufs(priv, queue);
1599 
1600 		if (priv->extend_desc) {
1601 			size = sizeof(struct dma_extended_desc);
1602 			addr = tx_q->dma_etx;
1603 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1604 			size = sizeof(struct dma_edesc);
1605 			addr = tx_q->dma_entx;
1606 		} else {
1607 			size = sizeof(struct dma_desc);
1608 			addr = tx_q->dma_tx;
1609 		}
1610 
1611 		size *= DMA_TX_SIZE;
1612 
1613 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1614 
1615 		kfree(tx_q->tx_skbuff_dma);
1616 		kfree(tx_q->tx_skbuff);
1617 	}
1618 }
1619 
1620 /**
1621  * alloc_dma_rx_desc_resources - alloc RX resources.
1622  * @priv: private structure
1623  * Description: according to which descriptor can be used (extend or basic)
1624  * this function allocates the resources for TX and RX paths. In case of
1625  * reception, for example, it pre-allocated the RX socket buffer in order to
1626  * allow zero-copy mechanism.
1627  */
1628 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1629 {
1630 	u32 rx_count = priv->plat->rx_queues_to_use;
1631 	int ret = -ENOMEM;
1632 	u32 queue;
1633 
1634 	/* RX queues buffers and DMA */
1635 	for (queue = 0; queue < rx_count; queue++) {
1636 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1637 		struct page_pool_params pp_params = { 0 };
1638 		unsigned int num_pages;
1639 
1640 		rx_q->queue_index = queue;
1641 		rx_q->priv_data = priv;
1642 
1643 		pp_params.flags = PP_FLAG_DMA_MAP;
1644 		pp_params.pool_size = DMA_RX_SIZE;
1645 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1646 		pp_params.order = ilog2(num_pages);
1647 		pp_params.nid = dev_to_node(priv->device);
1648 		pp_params.dev = priv->device;
1649 		pp_params.dma_dir = DMA_FROM_DEVICE;
1650 
1651 		rx_q->page_pool = page_pool_create(&pp_params);
1652 		if (IS_ERR(rx_q->page_pool)) {
1653 			ret = PTR_ERR(rx_q->page_pool);
1654 			rx_q->page_pool = NULL;
1655 			goto err_dma;
1656 		}
1657 
1658 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1659 					 GFP_KERNEL);
1660 		if (!rx_q->buf_pool)
1661 			goto err_dma;
1662 
1663 		if (priv->extend_desc) {
1664 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1665 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1666 							   &rx_q->dma_rx_phy,
1667 							   GFP_KERNEL);
1668 			if (!rx_q->dma_erx)
1669 				goto err_dma;
1670 
1671 		} else {
1672 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1673 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1674 							  &rx_q->dma_rx_phy,
1675 							  GFP_KERNEL);
1676 			if (!rx_q->dma_rx)
1677 				goto err_dma;
1678 		}
1679 	}
1680 
1681 	return 0;
1682 
1683 err_dma:
1684 	free_dma_rx_desc_resources(priv);
1685 
1686 	return ret;
1687 }
1688 
1689 /**
1690  * alloc_dma_tx_desc_resources - alloc TX resources.
1691  * @priv: private structure
1692  * Description: according to which descriptor can be used (extend or basic)
1693  * this function allocates the resources for TX and RX paths. In case of
1694  * reception, for example, it pre-allocated the RX socket buffer in order to
1695  * allow zero-copy mechanism.
1696  */
1697 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1698 {
1699 	u32 tx_count = priv->plat->tx_queues_to_use;
1700 	int ret = -ENOMEM;
1701 	u32 queue;
1702 
1703 	/* TX queues buffers and DMA */
1704 	for (queue = 0; queue < tx_count; queue++) {
1705 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1706 		size_t size;
1707 		void *addr;
1708 
1709 		tx_q->queue_index = queue;
1710 		tx_q->priv_data = priv;
1711 
1712 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1713 					      sizeof(*tx_q->tx_skbuff_dma),
1714 					      GFP_KERNEL);
1715 		if (!tx_q->tx_skbuff_dma)
1716 			goto err_dma;
1717 
1718 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1719 					  sizeof(struct sk_buff *),
1720 					  GFP_KERNEL);
1721 		if (!tx_q->tx_skbuff)
1722 			goto err_dma;
1723 
1724 		if (priv->extend_desc)
1725 			size = sizeof(struct dma_extended_desc);
1726 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1727 			size = sizeof(struct dma_edesc);
1728 		else
1729 			size = sizeof(struct dma_desc);
1730 
1731 		size *= DMA_TX_SIZE;
1732 
1733 		addr = dma_alloc_coherent(priv->device, size,
1734 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1735 		if (!addr)
1736 			goto err_dma;
1737 
1738 		if (priv->extend_desc)
1739 			tx_q->dma_etx = addr;
1740 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1741 			tx_q->dma_entx = addr;
1742 		else
1743 			tx_q->dma_tx = addr;
1744 	}
1745 
1746 	return 0;
1747 
1748 err_dma:
1749 	free_dma_tx_desc_resources(priv);
1750 	return ret;
1751 }
1752 
1753 /**
1754  * alloc_dma_desc_resources - alloc TX/RX resources.
1755  * @priv: private structure
1756  * Description: according to which descriptor can be used (extend or basic)
1757  * this function allocates the resources for TX and RX paths. In case of
1758  * reception, for example, it pre-allocated the RX socket buffer in order to
1759  * allow zero-copy mechanism.
1760  */
1761 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1762 {
1763 	/* RX Allocation */
1764 	int ret = alloc_dma_rx_desc_resources(priv);
1765 
1766 	if (ret)
1767 		return ret;
1768 
1769 	ret = alloc_dma_tx_desc_resources(priv);
1770 
1771 	return ret;
1772 }
1773 
1774 /**
1775  * free_dma_desc_resources - free dma desc resources
1776  * @priv: private structure
1777  */
1778 static void free_dma_desc_resources(struct stmmac_priv *priv)
1779 {
1780 	/* Release the DMA RX socket buffers */
1781 	free_dma_rx_desc_resources(priv);
1782 
1783 	/* Release the DMA TX socket buffers */
1784 	free_dma_tx_desc_resources(priv);
1785 }
1786 
1787 /**
1788  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1789  *  @priv: driver private structure
1790  *  Description: It is used for enabling the rx queues in the MAC
1791  */
1792 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1793 {
1794 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1795 	int queue;
1796 	u8 mode;
1797 
1798 	for (queue = 0; queue < rx_queues_count; queue++) {
1799 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1800 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1801 	}
1802 }
1803 
1804 /**
1805  * stmmac_start_rx_dma - start RX DMA channel
1806  * @priv: driver private structure
1807  * @chan: RX channel index
1808  * Description:
1809  * This starts a RX DMA channel
1810  */
1811 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1812 {
1813 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1814 	stmmac_start_rx(priv, priv->ioaddr, chan);
1815 }
1816 
1817 /**
1818  * stmmac_start_tx_dma - start TX DMA channel
1819  * @priv: driver private structure
1820  * @chan: TX channel index
1821  * Description:
1822  * This starts a TX DMA channel
1823  */
1824 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1825 {
1826 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1827 	stmmac_start_tx(priv, priv->ioaddr, chan);
1828 }
1829 
1830 /**
1831  * stmmac_stop_rx_dma - stop RX DMA channel
1832  * @priv: driver private structure
1833  * @chan: RX channel index
1834  * Description:
1835  * This stops a RX DMA channel
1836  */
1837 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1838 {
1839 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1840 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1841 }
1842 
1843 /**
1844  * stmmac_stop_tx_dma - stop TX DMA channel
1845  * @priv: driver private structure
1846  * @chan: TX channel index
1847  * Description:
1848  * This stops a TX DMA channel
1849  */
1850 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1851 {
1852 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1853 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1854 }
1855 
1856 /**
1857  * stmmac_start_all_dma - start all RX and TX DMA channels
1858  * @priv: driver private structure
1859  * Description:
1860  * This starts all the RX and TX DMA channels
1861  */
1862 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1863 {
1864 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1865 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1866 	u32 chan = 0;
1867 
1868 	for (chan = 0; chan < rx_channels_count; chan++)
1869 		stmmac_start_rx_dma(priv, chan);
1870 
1871 	for (chan = 0; chan < tx_channels_count; chan++)
1872 		stmmac_start_tx_dma(priv, chan);
1873 }
1874 
1875 /**
1876  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1877  * @priv: driver private structure
1878  * Description:
1879  * This stops the RX and TX DMA channels
1880  */
1881 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1882 {
1883 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1884 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1885 	u32 chan = 0;
1886 
1887 	for (chan = 0; chan < rx_channels_count; chan++)
1888 		stmmac_stop_rx_dma(priv, chan);
1889 
1890 	for (chan = 0; chan < tx_channels_count; chan++)
1891 		stmmac_stop_tx_dma(priv, chan);
1892 }
1893 
1894 /**
1895  *  stmmac_dma_operation_mode - HW DMA operation mode
1896  *  @priv: driver private structure
1897  *  Description: it is used for configuring the DMA operation mode register in
1898  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1899  */
1900 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1901 {
1902 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1903 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1904 	int rxfifosz = priv->plat->rx_fifo_size;
1905 	int txfifosz = priv->plat->tx_fifo_size;
1906 	u32 txmode = 0;
1907 	u32 rxmode = 0;
1908 	u32 chan = 0;
1909 	u8 qmode = 0;
1910 
1911 	if (rxfifosz == 0)
1912 		rxfifosz = priv->dma_cap.rx_fifo_size;
1913 	if (txfifosz == 0)
1914 		txfifosz = priv->dma_cap.tx_fifo_size;
1915 
1916 	/* Adjust for real per queue fifo size */
1917 	rxfifosz /= rx_channels_count;
1918 	txfifosz /= tx_channels_count;
1919 
1920 	if (priv->plat->force_thresh_dma_mode) {
1921 		txmode = tc;
1922 		rxmode = tc;
1923 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1924 		/*
1925 		 * In case of GMAC, SF mode can be enabled
1926 		 * to perform the TX COE in HW. This depends on:
1927 		 * 1) TX COE if actually supported
1928 		 * 2) There is no bugged Jumbo frame support
1929 		 *    that needs to not insert csum in the TDES.
1930 		 */
1931 		txmode = SF_DMA_MODE;
1932 		rxmode = SF_DMA_MODE;
1933 		priv->xstats.threshold = SF_DMA_MODE;
1934 	} else {
1935 		txmode = tc;
1936 		rxmode = SF_DMA_MODE;
1937 	}
1938 
1939 	/* configure all channels */
1940 	for (chan = 0; chan < rx_channels_count; chan++) {
1941 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1942 
1943 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1944 				rxfifosz, qmode);
1945 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1946 				chan);
1947 	}
1948 
1949 	for (chan = 0; chan < tx_channels_count; chan++) {
1950 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1951 
1952 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1953 				txfifosz, qmode);
1954 	}
1955 }
1956 
1957 /**
1958  * stmmac_tx_clean - to manage the transmission completion
1959  * @priv: driver private structure
1960  * @queue: TX queue index
1961  * Description: it reclaims the transmit resources after transmission completes.
1962  */
1963 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1964 {
1965 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1966 	unsigned int bytes_compl = 0, pkts_compl = 0;
1967 	unsigned int entry, count = 0;
1968 
1969 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1970 
1971 	priv->xstats.tx_clean++;
1972 
1973 	entry = tx_q->dirty_tx;
1974 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1975 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1976 		struct dma_desc *p;
1977 		int status;
1978 
1979 		if (priv->extend_desc)
1980 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1981 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1982 			p = &tx_q->dma_entx[entry].basic;
1983 		else
1984 			p = tx_q->dma_tx + entry;
1985 
1986 		status = stmmac_tx_status(priv, &priv->dev->stats,
1987 				&priv->xstats, p, priv->ioaddr);
1988 		/* Check if the descriptor is owned by the DMA */
1989 		if (unlikely(status & tx_dma_own))
1990 			break;
1991 
1992 		count++;
1993 
1994 		/* Make sure descriptor fields are read after reading
1995 		 * the own bit.
1996 		 */
1997 		dma_rmb();
1998 
1999 		/* Just consider the last segment and ...*/
2000 		if (likely(!(status & tx_not_ls))) {
2001 			/* ... verify the status error condition */
2002 			if (unlikely(status & tx_err)) {
2003 				priv->dev->stats.tx_errors++;
2004 			} else {
2005 				priv->dev->stats.tx_packets++;
2006 				priv->xstats.tx_pkt_n++;
2007 			}
2008 			stmmac_get_tx_hwtstamp(priv, p, skb);
2009 		}
2010 
2011 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2012 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2013 				dma_unmap_page(priv->device,
2014 					       tx_q->tx_skbuff_dma[entry].buf,
2015 					       tx_q->tx_skbuff_dma[entry].len,
2016 					       DMA_TO_DEVICE);
2017 			else
2018 				dma_unmap_single(priv->device,
2019 						 tx_q->tx_skbuff_dma[entry].buf,
2020 						 tx_q->tx_skbuff_dma[entry].len,
2021 						 DMA_TO_DEVICE);
2022 			tx_q->tx_skbuff_dma[entry].buf = 0;
2023 			tx_q->tx_skbuff_dma[entry].len = 0;
2024 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2025 		}
2026 
2027 		stmmac_clean_desc3(priv, tx_q, p);
2028 
2029 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2030 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2031 
2032 		if (likely(skb != NULL)) {
2033 			pkts_compl++;
2034 			bytes_compl += skb->len;
2035 			dev_consume_skb_any(skb);
2036 			tx_q->tx_skbuff[entry] = NULL;
2037 		}
2038 
2039 		stmmac_release_tx_desc(priv, p, priv->mode);
2040 
2041 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2042 	}
2043 	tx_q->dirty_tx = entry;
2044 
2045 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2046 				  pkts_compl, bytes_compl);
2047 
2048 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2049 								queue))) &&
2050 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
2051 
2052 		netif_dbg(priv, tx_done, priv->dev,
2053 			  "%s: restart transmit\n", __func__);
2054 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2055 	}
2056 
2057 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2058 		stmmac_enable_eee_mode(priv);
2059 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
2060 	}
2061 
2062 	/* We still have pending packets, let's call for a new scheduling */
2063 	if (tx_q->dirty_tx != tx_q->cur_tx)
2064 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2065 
2066 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2067 
2068 	return count;
2069 }
2070 
2071 /**
2072  * stmmac_tx_err - to manage the tx error
2073  * @priv: driver private structure
2074  * @chan: channel index
2075  * Description: it cleans the descriptors and restarts the transmission
2076  * in case of transmission errors.
2077  */
2078 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2079 {
2080 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2081 
2082 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2083 
2084 	stmmac_stop_tx_dma(priv, chan);
2085 	dma_free_tx_skbufs(priv, chan);
2086 	stmmac_clear_tx_descriptors(priv, chan);
2087 	tx_q->dirty_tx = 0;
2088 	tx_q->cur_tx = 0;
2089 	tx_q->mss = 0;
2090 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2091 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2092 			    tx_q->dma_tx_phy, chan);
2093 	stmmac_start_tx_dma(priv, chan);
2094 
2095 	priv->dev->stats.tx_errors++;
2096 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2097 }
2098 
2099 /**
2100  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2101  *  @priv: driver private structure
2102  *  @txmode: TX operating mode
2103  *  @rxmode: RX operating mode
2104  *  @chan: channel index
2105  *  Description: it is used for configuring of the DMA operation mode in
2106  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2107  *  mode.
2108  */
2109 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2110 					  u32 rxmode, u32 chan)
2111 {
2112 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2113 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2114 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2115 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2116 	int rxfifosz = priv->plat->rx_fifo_size;
2117 	int txfifosz = priv->plat->tx_fifo_size;
2118 
2119 	if (rxfifosz == 0)
2120 		rxfifosz = priv->dma_cap.rx_fifo_size;
2121 	if (txfifosz == 0)
2122 		txfifosz = priv->dma_cap.tx_fifo_size;
2123 
2124 	/* Adjust for real per queue fifo size */
2125 	rxfifosz /= rx_channels_count;
2126 	txfifosz /= tx_channels_count;
2127 
2128 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2129 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2130 }
2131 
2132 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2133 {
2134 	int ret;
2135 
2136 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2137 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2138 	if (ret && (ret != -EINVAL)) {
2139 		stmmac_global_err(priv);
2140 		return true;
2141 	}
2142 
2143 	return false;
2144 }
2145 
2146 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2147 {
2148 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2149 						 &priv->xstats, chan);
2150 	struct stmmac_channel *ch = &priv->channel[chan];
2151 	unsigned long flags;
2152 
2153 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2154 		if (napi_schedule_prep(&ch->rx_napi)) {
2155 			spin_lock_irqsave(&ch->lock, flags);
2156 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2157 			spin_unlock_irqrestore(&ch->lock, flags);
2158 			__napi_schedule_irqoff(&ch->rx_napi);
2159 		}
2160 	}
2161 
2162 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2163 		if (napi_schedule_prep(&ch->tx_napi)) {
2164 			spin_lock_irqsave(&ch->lock, flags);
2165 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2166 			spin_unlock_irqrestore(&ch->lock, flags);
2167 			__napi_schedule_irqoff(&ch->tx_napi);
2168 		}
2169 	}
2170 
2171 	return status;
2172 }
2173 
2174 /**
2175  * stmmac_dma_interrupt - DMA ISR
2176  * @priv: driver private structure
2177  * Description: this is the DMA ISR. It is called by the main ISR.
2178  * It calls the dwmac dma routine and schedule poll method in case of some
2179  * work can be done.
2180  */
2181 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2182 {
2183 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2184 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2185 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2186 				tx_channel_count : rx_channel_count;
2187 	u32 chan;
2188 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2189 
2190 	/* Make sure we never check beyond our status buffer. */
2191 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2192 		channels_to_check = ARRAY_SIZE(status);
2193 
2194 	for (chan = 0; chan < channels_to_check; chan++)
2195 		status[chan] = stmmac_napi_check(priv, chan);
2196 
2197 	for (chan = 0; chan < tx_channel_count; chan++) {
2198 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2199 			/* Try to bump up the dma threshold on this failure */
2200 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2201 			    (tc <= 256)) {
2202 				tc += 64;
2203 				if (priv->plat->force_thresh_dma_mode)
2204 					stmmac_set_dma_operation_mode(priv,
2205 								      tc,
2206 								      tc,
2207 								      chan);
2208 				else
2209 					stmmac_set_dma_operation_mode(priv,
2210 								    tc,
2211 								    SF_DMA_MODE,
2212 								    chan);
2213 				priv->xstats.threshold = tc;
2214 			}
2215 		} else if (unlikely(status[chan] == tx_hard_error)) {
2216 			stmmac_tx_err(priv, chan);
2217 		}
2218 	}
2219 }
2220 
2221 /**
2222  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2223  * @priv: driver private structure
2224  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2225  */
2226 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2227 {
2228 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2229 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2230 
2231 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2232 
2233 	if (priv->dma_cap.rmon) {
2234 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2235 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2236 	} else
2237 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2238 }
2239 
2240 /**
2241  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2242  * @priv: driver private structure
2243  * Description:
2244  *  new GMAC chip generations have a new register to indicate the
2245  *  presence of the optional feature/functions.
2246  *  This can be also used to override the value passed through the
2247  *  platform and necessary for old MAC10/100 and GMAC chips.
2248  */
2249 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2250 {
2251 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2252 }
2253 
2254 /**
2255  * stmmac_check_ether_addr - check if the MAC addr is valid
2256  * @priv: driver private structure
2257  * Description:
2258  * it is to verify if the MAC address is valid, in case of failures it
2259  * generates a random MAC address
2260  */
2261 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2262 {
2263 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2264 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2265 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2266 			eth_hw_addr_random(priv->dev);
2267 		dev_info(priv->device, "device MAC address %pM\n",
2268 			 priv->dev->dev_addr);
2269 	}
2270 }
2271 
2272 /**
2273  * stmmac_init_dma_engine - DMA init.
2274  * @priv: driver private structure
2275  * Description:
2276  * It inits the DMA invoking the specific MAC/GMAC callback.
2277  * Some DMA parameters can be passed from the platform;
2278  * in case of these are not passed a default is kept for the MAC or GMAC.
2279  */
2280 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2281 {
2282 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2283 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2284 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2285 	struct stmmac_rx_queue *rx_q;
2286 	struct stmmac_tx_queue *tx_q;
2287 	u32 chan = 0;
2288 	int atds = 0;
2289 	int ret = 0;
2290 
2291 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2292 		dev_err(priv->device, "Invalid DMA configuration\n");
2293 		return -EINVAL;
2294 	}
2295 
2296 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2297 		atds = 1;
2298 
2299 	ret = stmmac_reset(priv, priv->ioaddr);
2300 	if (ret) {
2301 		dev_err(priv->device, "Failed to reset the dma\n");
2302 		return ret;
2303 	}
2304 
2305 	/* DMA Configuration */
2306 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2307 
2308 	if (priv->plat->axi)
2309 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2310 
2311 	/* DMA CSR Channel configuration */
2312 	for (chan = 0; chan < dma_csr_ch; chan++)
2313 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2314 
2315 	/* DMA RX Channel Configuration */
2316 	for (chan = 0; chan < rx_channels_count; chan++) {
2317 		rx_q = &priv->rx_queue[chan];
2318 
2319 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2320 				    rx_q->dma_rx_phy, chan);
2321 
2322 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2323 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2324 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2325 				       rx_q->rx_tail_addr, chan);
2326 	}
2327 
2328 	/* DMA TX Channel Configuration */
2329 	for (chan = 0; chan < tx_channels_count; chan++) {
2330 		tx_q = &priv->tx_queue[chan];
2331 
2332 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2333 				    tx_q->dma_tx_phy, chan);
2334 
2335 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2336 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2337 				       tx_q->tx_tail_addr, chan);
2338 	}
2339 
2340 	return ret;
2341 }
2342 
2343 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2344 {
2345 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2346 
2347 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2348 }
2349 
2350 /**
2351  * stmmac_tx_timer - mitigation sw timer for tx.
2352  * @data: data pointer
2353  * Description:
2354  * This is the timer handler to directly invoke the stmmac_tx_clean.
2355  */
2356 static void stmmac_tx_timer(struct timer_list *t)
2357 {
2358 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2359 	struct stmmac_priv *priv = tx_q->priv_data;
2360 	struct stmmac_channel *ch;
2361 
2362 	ch = &priv->channel[tx_q->queue_index];
2363 
2364 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2365 		unsigned long flags;
2366 
2367 		spin_lock_irqsave(&ch->lock, flags);
2368 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2369 		spin_unlock_irqrestore(&ch->lock, flags);
2370 		__napi_schedule(&ch->tx_napi);
2371 	}
2372 }
2373 
2374 /**
2375  * stmmac_init_coalesce - init mitigation options.
2376  * @priv: driver private structure
2377  * Description:
2378  * This inits the coalesce parameters: i.e. timer rate,
2379  * timer handler and default threshold used for enabling the
2380  * interrupt on completion bit.
2381  */
2382 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2383 {
2384 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2385 	u32 chan;
2386 
2387 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2388 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2389 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2390 
2391 	for (chan = 0; chan < tx_channel_count; chan++) {
2392 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2393 
2394 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2395 	}
2396 }
2397 
2398 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2399 {
2400 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2401 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2402 	u32 chan;
2403 
2404 	/* set TX ring length */
2405 	for (chan = 0; chan < tx_channels_count; chan++)
2406 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2407 				(DMA_TX_SIZE - 1), chan);
2408 
2409 	/* set RX ring length */
2410 	for (chan = 0; chan < rx_channels_count; chan++)
2411 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2412 				(DMA_RX_SIZE - 1), chan);
2413 }
2414 
2415 /**
2416  *  stmmac_set_tx_queue_weight - Set TX queue weight
2417  *  @priv: driver private structure
2418  *  Description: It is used for setting TX queues weight
2419  */
2420 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2421 {
2422 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2423 	u32 weight;
2424 	u32 queue;
2425 
2426 	for (queue = 0; queue < tx_queues_count; queue++) {
2427 		weight = priv->plat->tx_queues_cfg[queue].weight;
2428 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2429 	}
2430 }
2431 
2432 /**
2433  *  stmmac_configure_cbs - Configure CBS in TX queue
2434  *  @priv: driver private structure
2435  *  Description: It is used for configuring CBS in AVB TX queues
2436  */
2437 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2438 {
2439 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2440 	u32 mode_to_use;
2441 	u32 queue;
2442 
2443 	/* queue 0 is reserved for legacy traffic */
2444 	for (queue = 1; queue < tx_queues_count; queue++) {
2445 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2446 		if (mode_to_use == MTL_QUEUE_DCB)
2447 			continue;
2448 
2449 		stmmac_config_cbs(priv, priv->hw,
2450 				priv->plat->tx_queues_cfg[queue].send_slope,
2451 				priv->plat->tx_queues_cfg[queue].idle_slope,
2452 				priv->plat->tx_queues_cfg[queue].high_credit,
2453 				priv->plat->tx_queues_cfg[queue].low_credit,
2454 				queue);
2455 	}
2456 }
2457 
2458 /**
2459  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2460  *  @priv: driver private structure
2461  *  Description: It is used for mapping RX queues to RX dma channels
2462  */
2463 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2464 {
2465 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2466 	u32 queue;
2467 	u32 chan;
2468 
2469 	for (queue = 0; queue < rx_queues_count; queue++) {
2470 		chan = priv->plat->rx_queues_cfg[queue].chan;
2471 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2472 	}
2473 }
2474 
2475 /**
2476  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2477  *  @priv: driver private structure
2478  *  Description: It is used for configuring the RX Queue Priority
2479  */
2480 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2481 {
2482 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2483 	u32 queue;
2484 	u32 prio;
2485 
2486 	for (queue = 0; queue < rx_queues_count; queue++) {
2487 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2488 			continue;
2489 
2490 		prio = priv->plat->rx_queues_cfg[queue].prio;
2491 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2492 	}
2493 }
2494 
2495 /**
2496  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2497  *  @priv: driver private structure
2498  *  Description: It is used for configuring the TX Queue Priority
2499  */
2500 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2501 {
2502 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2503 	u32 queue;
2504 	u32 prio;
2505 
2506 	for (queue = 0; queue < tx_queues_count; queue++) {
2507 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2508 			continue;
2509 
2510 		prio = priv->plat->tx_queues_cfg[queue].prio;
2511 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2512 	}
2513 }
2514 
2515 /**
2516  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2517  *  @priv: driver private structure
2518  *  Description: It is used for configuring the RX queue routing
2519  */
2520 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2521 {
2522 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2523 	u32 queue;
2524 	u8 packet;
2525 
2526 	for (queue = 0; queue < rx_queues_count; queue++) {
2527 		/* no specific packet type routing specified for the queue */
2528 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2529 			continue;
2530 
2531 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2532 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2533 	}
2534 }
2535 
2536 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2537 {
2538 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2539 		priv->rss.enable = false;
2540 		return;
2541 	}
2542 
2543 	if (priv->dev->features & NETIF_F_RXHASH)
2544 		priv->rss.enable = true;
2545 	else
2546 		priv->rss.enable = false;
2547 
2548 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2549 			     priv->plat->rx_queues_to_use);
2550 }
2551 
2552 /**
2553  *  stmmac_mtl_configuration - Configure MTL
2554  *  @priv: driver private structure
2555  *  Description: It is used for configurring MTL
2556  */
2557 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2558 {
2559 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2560 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2561 
2562 	if (tx_queues_count > 1)
2563 		stmmac_set_tx_queue_weight(priv);
2564 
2565 	/* Configure MTL RX algorithms */
2566 	if (rx_queues_count > 1)
2567 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2568 				priv->plat->rx_sched_algorithm);
2569 
2570 	/* Configure MTL TX algorithms */
2571 	if (tx_queues_count > 1)
2572 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2573 				priv->plat->tx_sched_algorithm);
2574 
2575 	/* Configure CBS in AVB TX queues */
2576 	if (tx_queues_count > 1)
2577 		stmmac_configure_cbs(priv);
2578 
2579 	/* Map RX MTL to DMA channels */
2580 	stmmac_rx_queue_dma_chan_map(priv);
2581 
2582 	/* Enable MAC RX Queues */
2583 	stmmac_mac_enable_rx_queues(priv);
2584 
2585 	/* Set RX priorities */
2586 	if (rx_queues_count > 1)
2587 		stmmac_mac_config_rx_queues_prio(priv);
2588 
2589 	/* Set TX priorities */
2590 	if (tx_queues_count > 1)
2591 		stmmac_mac_config_tx_queues_prio(priv);
2592 
2593 	/* Set RX routing */
2594 	if (rx_queues_count > 1)
2595 		stmmac_mac_config_rx_queues_routing(priv);
2596 
2597 	/* Receive Side Scaling */
2598 	if (rx_queues_count > 1)
2599 		stmmac_mac_config_rss(priv);
2600 }
2601 
2602 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2603 {
2604 	if (priv->dma_cap.asp) {
2605 		netdev_info(priv->dev, "Enabling Safety Features\n");
2606 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2607 	} else {
2608 		netdev_info(priv->dev, "No Safety Features support found\n");
2609 	}
2610 }
2611 
2612 /**
2613  * stmmac_hw_setup - setup mac in a usable state.
2614  *  @dev : pointer to the device structure.
2615  *  Description:
2616  *  this is the main function to setup the HW in a usable state because the
2617  *  dma engine is reset, the core registers are configured (e.g. AXI,
2618  *  Checksum features, timers). The DMA is ready to start receiving and
2619  *  transmitting.
2620  *  Return value:
2621  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2622  *  file on failure.
2623  */
2624 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2625 {
2626 	struct stmmac_priv *priv = netdev_priv(dev);
2627 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2628 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2629 	u32 chan;
2630 	int ret;
2631 
2632 	/* DMA initialization and SW reset */
2633 	ret = stmmac_init_dma_engine(priv);
2634 	if (ret < 0) {
2635 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2636 			   __func__);
2637 		return ret;
2638 	}
2639 
2640 	/* Copy the MAC addr into the HW  */
2641 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2642 
2643 	/* PS and related bits will be programmed according to the speed */
2644 	if (priv->hw->pcs) {
2645 		int speed = priv->plat->mac_port_sel_speed;
2646 
2647 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2648 		    (speed == SPEED_1000)) {
2649 			priv->hw->ps = speed;
2650 		} else {
2651 			dev_warn(priv->device, "invalid port speed\n");
2652 			priv->hw->ps = 0;
2653 		}
2654 	}
2655 
2656 	/* Initialize the MAC Core */
2657 	stmmac_core_init(priv, priv->hw, dev);
2658 
2659 	/* Initialize MTL*/
2660 	stmmac_mtl_configuration(priv);
2661 
2662 	/* Initialize Safety Features */
2663 	stmmac_safety_feat_configuration(priv);
2664 
2665 	ret = stmmac_rx_ipc(priv, priv->hw);
2666 	if (!ret) {
2667 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2668 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2669 		priv->hw->rx_csum = 0;
2670 	}
2671 
2672 	/* Enable the MAC Rx/Tx */
2673 	stmmac_mac_set(priv, priv->ioaddr, true);
2674 
2675 	/* Set the HW DMA mode and the COE */
2676 	stmmac_dma_operation_mode(priv);
2677 
2678 	stmmac_mmc_setup(priv);
2679 
2680 	if (init_ptp) {
2681 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2682 		if (ret < 0)
2683 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2684 
2685 		ret = stmmac_init_ptp(priv);
2686 		if (ret == -EOPNOTSUPP)
2687 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2688 		else if (ret)
2689 			netdev_warn(priv->dev, "PTP init failed\n");
2690 	}
2691 
2692 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2693 
2694 	if (priv->use_riwt) {
2695 		if (!priv->rx_riwt)
2696 			priv->rx_riwt = DEF_DMA_RIWT;
2697 
2698 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2699 	}
2700 
2701 	if (priv->hw->pcs)
2702 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2703 
2704 	/* set TX and RX rings length */
2705 	stmmac_set_rings_length(priv);
2706 
2707 	/* Enable TSO */
2708 	if (priv->tso) {
2709 		for (chan = 0; chan < tx_cnt; chan++)
2710 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2711 	}
2712 
2713 	/* Enable Split Header */
2714 	if (priv->sph && priv->hw->rx_csum) {
2715 		for (chan = 0; chan < rx_cnt; chan++)
2716 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2717 	}
2718 
2719 	/* VLAN Tag Insertion */
2720 	if (priv->dma_cap.vlins)
2721 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2722 
2723 	/* TBS */
2724 	for (chan = 0; chan < tx_cnt; chan++) {
2725 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2726 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2727 
2728 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2729 	}
2730 
2731 	/* Start the ball rolling... */
2732 	stmmac_start_all_dma(priv);
2733 
2734 	return 0;
2735 }
2736 
2737 static void stmmac_hw_teardown(struct net_device *dev)
2738 {
2739 	struct stmmac_priv *priv = netdev_priv(dev);
2740 
2741 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2742 }
2743 
2744 /**
2745  *  stmmac_open - open entry point of the driver
2746  *  @dev : pointer to the device structure.
2747  *  Description:
2748  *  This function is the open entry point of the driver.
2749  *  Return value:
2750  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2751  *  file on failure.
2752  */
2753 static int stmmac_open(struct net_device *dev)
2754 {
2755 	struct stmmac_priv *priv = netdev_priv(dev);
2756 	int bfsize = 0;
2757 	u32 chan;
2758 	int ret;
2759 
2760 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2761 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2762 	    priv->hw->xpcs == NULL) {
2763 		ret = stmmac_init_phy(dev);
2764 		if (ret) {
2765 			netdev_err(priv->dev,
2766 				   "%s: Cannot attach to PHY (error: %d)\n",
2767 				   __func__, ret);
2768 			return ret;
2769 		}
2770 	}
2771 
2772 	/* Extra statistics */
2773 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2774 	priv->xstats.threshold = tc;
2775 
2776 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2777 	if (bfsize < 0)
2778 		bfsize = 0;
2779 
2780 	if (bfsize < BUF_SIZE_16KiB)
2781 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2782 
2783 	priv->dma_buf_sz = bfsize;
2784 	buf_sz = bfsize;
2785 
2786 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2787 
2788 	/* Earlier check for TBS */
2789 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2790 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2791 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2792 
2793 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2794 		if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2795 			tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2796 	}
2797 
2798 	ret = alloc_dma_desc_resources(priv);
2799 	if (ret < 0) {
2800 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2801 			   __func__);
2802 		goto dma_desc_error;
2803 	}
2804 
2805 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2806 	if (ret < 0) {
2807 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2808 			   __func__);
2809 		goto init_error;
2810 	}
2811 
2812 	ret = stmmac_hw_setup(dev, true);
2813 	if (ret < 0) {
2814 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2815 		goto init_error;
2816 	}
2817 
2818 	stmmac_init_coalesce(priv);
2819 
2820 	phylink_start(priv->phylink);
2821 
2822 	/* Request the IRQ lines */
2823 	ret = request_irq(dev->irq, stmmac_interrupt,
2824 			  IRQF_SHARED, dev->name, dev);
2825 	if (unlikely(ret < 0)) {
2826 		netdev_err(priv->dev,
2827 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2828 			   __func__, dev->irq, ret);
2829 		goto irq_error;
2830 	}
2831 
2832 	/* Request the Wake IRQ in case of another line is used for WoL */
2833 	if (priv->wol_irq != dev->irq) {
2834 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2835 				  IRQF_SHARED, dev->name, dev);
2836 		if (unlikely(ret < 0)) {
2837 			netdev_err(priv->dev,
2838 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2839 				   __func__, priv->wol_irq, ret);
2840 			goto wolirq_error;
2841 		}
2842 	}
2843 
2844 	/* Request the IRQ lines */
2845 	if (priv->lpi_irq > 0) {
2846 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2847 				  dev->name, dev);
2848 		if (unlikely(ret < 0)) {
2849 			netdev_err(priv->dev,
2850 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2851 				   __func__, priv->lpi_irq, ret);
2852 			goto lpiirq_error;
2853 		}
2854 	}
2855 
2856 	stmmac_enable_all_queues(priv);
2857 	stmmac_start_all_queues(priv);
2858 
2859 	return 0;
2860 
2861 lpiirq_error:
2862 	if (priv->wol_irq != dev->irq)
2863 		free_irq(priv->wol_irq, dev);
2864 wolirq_error:
2865 	free_irq(dev->irq, dev);
2866 irq_error:
2867 	phylink_stop(priv->phylink);
2868 
2869 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2870 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2871 
2872 	stmmac_hw_teardown(dev);
2873 init_error:
2874 	free_dma_desc_resources(priv);
2875 dma_desc_error:
2876 	phylink_disconnect_phy(priv->phylink);
2877 	return ret;
2878 }
2879 
2880 /**
2881  *  stmmac_release - close entry point of the driver
2882  *  @dev : device pointer.
2883  *  Description:
2884  *  This is the stop entry point of the driver.
2885  */
2886 static int stmmac_release(struct net_device *dev)
2887 {
2888 	struct stmmac_priv *priv = netdev_priv(dev);
2889 	u32 chan;
2890 
2891 	if (priv->eee_enabled)
2892 		del_timer_sync(&priv->eee_ctrl_timer);
2893 
2894 	/* Stop and disconnect the PHY */
2895 	phylink_stop(priv->phylink);
2896 	phylink_disconnect_phy(priv->phylink);
2897 
2898 	stmmac_stop_all_queues(priv);
2899 
2900 	stmmac_disable_all_queues(priv);
2901 
2902 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2903 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2904 
2905 	/* Free the IRQ lines */
2906 	free_irq(dev->irq, dev);
2907 	if (priv->wol_irq != dev->irq)
2908 		free_irq(priv->wol_irq, dev);
2909 	if (priv->lpi_irq > 0)
2910 		free_irq(priv->lpi_irq, dev);
2911 
2912 	/* Stop TX/RX DMA and clear the descriptors */
2913 	stmmac_stop_all_dma(priv);
2914 
2915 	/* Release and free the Rx/Tx resources */
2916 	free_dma_desc_resources(priv);
2917 
2918 	/* Disable the MAC Rx/Tx */
2919 	stmmac_mac_set(priv, priv->ioaddr, false);
2920 
2921 	netif_carrier_off(dev);
2922 
2923 	stmmac_release_ptp(priv);
2924 
2925 	return 0;
2926 }
2927 
2928 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2929 			       struct stmmac_tx_queue *tx_q)
2930 {
2931 	u16 tag = 0x0, inner_tag = 0x0;
2932 	u32 inner_type = 0x0;
2933 	struct dma_desc *p;
2934 
2935 	if (!priv->dma_cap.vlins)
2936 		return false;
2937 	if (!skb_vlan_tag_present(skb))
2938 		return false;
2939 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2940 		inner_tag = skb_vlan_tag_get(skb);
2941 		inner_type = STMMAC_VLAN_INSERT;
2942 	}
2943 
2944 	tag = skb_vlan_tag_get(skb);
2945 
2946 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
2947 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2948 	else
2949 		p = &tx_q->dma_tx[tx_q->cur_tx];
2950 
2951 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2952 		return false;
2953 
2954 	stmmac_set_tx_owner(priv, p);
2955 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2956 	return true;
2957 }
2958 
2959 /**
2960  *  stmmac_tso_allocator - close entry point of the driver
2961  *  @priv: driver private structure
2962  *  @des: buffer start address
2963  *  @total_len: total length to fill in descriptors
2964  *  @last_segmant: condition for the last descriptor
2965  *  @queue: TX queue index
2966  *  Description:
2967  *  This function fills descriptor and request new descriptors according to
2968  *  buffer length to fill
2969  */
2970 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2971 				 int total_len, bool last_segment, u32 queue)
2972 {
2973 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2974 	struct dma_desc *desc;
2975 	u32 buff_size;
2976 	int tmp_len;
2977 
2978 	tmp_len = total_len;
2979 
2980 	while (tmp_len > 0) {
2981 		dma_addr_t curr_addr;
2982 
2983 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2984 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2985 
2986 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
2987 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2988 		else
2989 			desc = &tx_q->dma_tx[tx_q->cur_tx];
2990 
2991 		curr_addr = des + (total_len - tmp_len);
2992 		if (priv->dma_cap.addr64 <= 32)
2993 			desc->des0 = cpu_to_le32(curr_addr);
2994 		else
2995 			stmmac_set_desc_addr(priv, desc, curr_addr);
2996 
2997 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2998 			    TSO_MAX_BUFF_SIZE : tmp_len;
2999 
3000 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3001 				0, 1,
3002 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3003 				0, 0);
3004 
3005 		tmp_len -= TSO_MAX_BUFF_SIZE;
3006 	}
3007 }
3008 
3009 /**
3010  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3011  *  @skb : the socket buffer
3012  *  @dev : device pointer
3013  *  Description: this is the transmit function that is called on TSO frames
3014  *  (support available on GMAC4 and newer chips).
3015  *  Diagram below show the ring programming in case of TSO frames:
3016  *
3017  *  First Descriptor
3018  *   --------
3019  *   | DES0 |---> buffer1 = L2/L3/L4 header
3020  *   | DES1 |---> TCP Payload (can continue on next descr...)
3021  *   | DES2 |---> buffer 1 and 2 len
3022  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3023  *   --------
3024  *	|
3025  *     ...
3026  *	|
3027  *   --------
3028  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3029  *   | DES1 | --|
3030  *   | DES2 | --> buffer 1 and 2 len
3031  *   | DES3 |
3032  *   --------
3033  *
3034  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3035  */
3036 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3037 {
3038 	struct dma_desc *desc, *first, *mss_desc = NULL;
3039 	struct stmmac_priv *priv = netdev_priv(dev);
3040 	int desc_size, tmp_pay_len = 0, first_tx;
3041 	int nfrags = skb_shinfo(skb)->nr_frags;
3042 	u32 queue = skb_get_queue_mapping(skb);
3043 	unsigned int first_entry, tx_packets;
3044 	struct stmmac_tx_queue *tx_q;
3045 	bool has_vlan, set_ic;
3046 	u8 proto_hdr_len, hdr;
3047 	u32 pay_len, mss;
3048 	dma_addr_t des;
3049 	int i;
3050 
3051 	tx_q = &priv->tx_queue[queue];
3052 	first_tx = tx_q->cur_tx;
3053 
3054 	/* Compute header lengths */
3055 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3056 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3057 		hdr = sizeof(struct udphdr);
3058 	} else {
3059 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3060 		hdr = tcp_hdrlen(skb);
3061 	}
3062 
3063 	/* Desc availability based on threshold should be enough safe */
3064 	if (unlikely(stmmac_tx_avail(priv, queue) <
3065 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3066 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3067 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3068 								queue));
3069 			/* This is a hard error, log it. */
3070 			netdev_err(priv->dev,
3071 				   "%s: Tx Ring full when queue awake\n",
3072 				   __func__);
3073 		}
3074 		return NETDEV_TX_BUSY;
3075 	}
3076 
3077 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3078 
3079 	mss = skb_shinfo(skb)->gso_size;
3080 
3081 	/* set new MSS value if needed */
3082 	if (mss != tx_q->mss) {
3083 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3084 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3085 		else
3086 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3087 
3088 		stmmac_set_mss(priv, mss_desc, mss);
3089 		tx_q->mss = mss;
3090 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3091 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3092 	}
3093 
3094 	if (netif_msg_tx_queued(priv)) {
3095 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3096 			__func__, hdr, proto_hdr_len, pay_len, mss);
3097 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3098 			skb->data_len);
3099 	}
3100 
3101 	/* Check if VLAN can be inserted by HW */
3102 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3103 
3104 	first_entry = tx_q->cur_tx;
3105 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3106 
3107 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3108 		desc = &tx_q->dma_entx[first_entry].basic;
3109 	else
3110 		desc = &tx_q->dma_tx[first_entry];
3111 	first = desc;
3112 
3113 	if (has_vlan)
3114 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3115 
3116 	/* first descriptor: fill Headers on Buf1 */
3117 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3118 			     DMA_TO_DEVICE);
3119 	if (dma_mapping_error(priv->device, des))
3120 		goto dma_map_err;
3121 
3122 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3123 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3124 
3125 	if (priv->dma_cap.addr64 <= 32) {
3126 		first->des0 = cpu_to_le32(des);
3127 
3128 		/* Fill start of payload in buff2 of first descriptor */
3129 		if (pay_len)
3130 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3131 
3132 		/* If needed take extra descriptors to fill the remaining payload */
3133 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3134 	} else {
3135 		stmmac_set_desc_addr(priv, first, des);
3136 		tmp_pay_len = pay_len;
3137 		des += proto_hdr_len;
3138 		pay_len = 0;
3139 	}
3140 
3141 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3142 
3143 	/* Prepare fragments */
3144 	for (i = 0; i < nfrags; i++) {
3145 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3146 
3147 		des = skb_frag_dma_map(priv->device, frag, 0,
3148 				       skb_frag_size(frag),
3149 				       DMA_TO_DEVICE);
3150 		if (dma_mapping_error(priv->device, des))
3151 			goto dma_map_err;
3152 
3153 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3154 				     (i == nfrags - 1), queue);
3155 
3156 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3157 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3158 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3159 	}
3160 
3161 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3162 
3163 	/* Only the last descriptor gets to point to the skb. */
3164 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3165 
3166 	/* Manage tx mitigation */
3167 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3168 	tx_q->tx_count_frames += tx_packets;
3169 
3170 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3171 		set_ic = true;
3172 	else if (!priv->tx_coal_frames)
3173 		set_ic = false;
3174 	else if (tx_packets > priv->tx_coal_frames)
3175 		set_ic = true;
3176 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3177 		set_ic = true;
3178 	else
3179 		set_ic = false;
3180 
3181 	if (set_ic) {
3182 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3183 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3184 		else
3185 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3186 
3187 		tx_q->tx_count_frames = 0;
3188 		stmmac_set_tx_ic(priv, desc);
3189 		priv->xstats.tx_set_ic_bit++;
3190 	}
3191 
3192 	/* We've used all descriptors we need for this skb, however,
3193 	 * advance cur_tx so that it references a fresh descriptor.
3194 	 * ndo_start_xmit will fill this descriptor the next time it's
3195 	 * called and stmmac_tx_clean may clean up to this descriptor.
3196 	 */
3197 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3198 
3199 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3200 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3201 			  __func__);
3202 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3203 	}
3204 
3205 	dev->stats.tx_bytes += skb->len;
3206 	priv->xstats.tx_tso_frames++;
3207 	priv->xstats.tx_tso_nfrags += nfrags;
3208 
3209 	if (priv->sarc_type)
3210 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3211 
3212 	skb_tx_timestamp(skb);
3213 
3214 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3215 		     priv->hwts_tx_en)) {
3216 		/* declare that device is doing timestamping */
3217 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3218 		stmmac_enable_tx_timestamp(priv, first);
3219 	}
3220 
3221 	/* Complete the first descriptor before granting the DMA */
3222 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3223 			proto_hdr_len,
3224 			pay_len,
3225 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3226 			hdr / 4, (skb->len - proto_hdr_len));
3227 
3228 	/* If context desc is used to change MSS */
3229 	if (mss_desc) {
3230 		/* Make sure that first descriptor has been completely
3231 		 * written, including its own bit. This is because MSS is
3232 		 * actually before first descriptor, so we need to make
3233 		 * sure that MSS's own bit is the last thing written.
3234 		 */
3235 		dma_wmb();
3236 		stmmac_set_tx_owner(priv, mss_desc);
3237 	}
3238 
3239 	/* The own bit must be the latest setting done when prepare the
3240 	 * descriptor and then barrier is needed to make sure that
3241 	 * all is coherent before granting the DMA engine.
3242 	 */
3243 	wmb();
3244 
3245 	if (netif_msg_pktdata(priv)) {
3246 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3247 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3248 			tx_q->cur_tx, first, nfrags);
3249 		pr_info(">>> frame to be transmitted: ");
3250 		print_pkt(skb->data, skb_headlen(skb));
3251 	}
3252 
3253 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3254 
3255 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3256 		desc_size = sizeof(struct dma_edesc);
3257 	else
3258 		desc_size = sizeof(struct dma_desc);
3259 
3260 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3261 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3262 	stmmac_tx_timer_arm(priv, queue);
3263 
3264 	return NETDEV_TX_OK;
3265 
3266 dma_map_err:
3267 	dev_err(priv->device, "Tx dma map failed\n");
3268 	dev_kfree_skb(skb);
3269 	priv->dev->stats.tx_dropped++;
3270 	return NETDEV_TX_OK;
3271 }
3272 
3273 /**
3274  *  stmmac_xmit - Tx entry point of the driver
3275  *  @skb : the socket buffer
3276  *  @dev : device pointer
3277  *  Description : this is the tx entry point of the driver.
3278  *  It programs the chain or the ring and supports oversized frames
3279  *  and SG feature.
3280  */
3281 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3282 {
3283 	unsigned int first_entry, tx_packets, enh_desc;
3284 	struct stmmac_priv *priv = netdev_priv(dev);
3285 	unsigned int nopaged_len = skb_headlen(skb);
3286 	int i, csum_insertion = 0, is_jumbo = 0;
3287 	u32 queue = skb_get_queue_mapping(skb);
3288 	int nfrags = skb_shinfo(skb)->nr_frags;
3289 	int gso = skb_shinfo(skb)->gso_type;
3290 	struct dma_edesc *tbs_desc = NULL;
3291 	int entry, desc_size, first_tx;
3292 	struct dma_desc *desc, *first;
3293 	struct stmmac_tx_queue *tx_q;
3294 	bool has_vlan, set_ic;
3295 	dma_addr_t des;
3296 
3297 	tx_q = &priv->tx_queue[queue];
3298 	first_tx = tx_q->cur_tx;
3299 
3300 	if (priv->tx_path_in_lpi_mode)
3301 		stmmac_disable_eee_mode(priv);
3302 
3303 	/* Manage oversized TCP frames for GMAC4 device */
3304 	if (skb_is_gso(skb) && priv->tso) {
3305 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3306 			return stmmac_tso_xmit(skb, dev);
3307 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3308 			return stmmac_tso_xmit(skb, dev);
3309 	}
3310 
3311 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3312 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3313 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3314 								queue));
3315 			/* This is a hard error, log it. */
3316 			netdev_err(priv->dev,
3317 				   "%s: Tx Ring full when queue awake\n",
3318 				   __func__);
3319 		}
3320 		return NETDEV_TX_BUSY;
3321 	}
3322 
3323 	/* Check if VLAN can be inserted by HW */
3324 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3325 
3326 	entry = tx_q->cur_tx;
3327 	first_entry = entry;
3328 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3329 
3330 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3331 
3332 	if (likely(priv->extend_desc))
3333 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3334 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3335 		desc = &tx_q->dma_entx[entry].basic;
3336 	else
3337 		desc = tx_q->dma_tx + entry;
3338 
3339 	first = desc;
3340 
3341 	if (has_vlan)
3342 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3343 
3344 	enh_desc = priv->plat->enh_desc;
3345 	/* To program the descriptors according to the size of the frame */
3346 	if (enh_desc)
3347 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3348 
3349 	if (unlikely(is_jumbo)) {
3350 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3351 		if (unlikely(entry < 0) && (entry != -EINVAL))
3352 			goto dma_map_err;
3353 	}
3354 
3355 	for (i = 0; i < nfrags; i++) {
3356 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3357 		int len = skb_frag_size(frag);
3358 		bool last_segment = (i == (nfrags - 1));
3359 
3360 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3361 		WARN_ON(tx_q->tx_skbuff[entry]);
3362 
3363 		if (likely(priv->extend_desc))
3364 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3365 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3366 			desc = &tx_q->dma_entx[entry].basic;
3367 		else
3368 			desc = tx_q->dma_tx + entry;
3369 
3370 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3371 				       DMA_TO_DEVICE);
3372 		if (dma_mapping_error(priv->device, des))
3373 			goto dma_map_err; /* should reuse desc w/o issues */
3374 
3375 		tx_q->tx_skbuff_dma[entry].buf = des;
3376 
3377 		stmmac_set_desc_addr(priv, desc, des);
3378 
3379 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3380 		tx_q->tx_skbuff_dma[entry].len = len;
3381 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3382 
3383 		/* Prepare the descriptor and set the own bit too */
3384 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3385 				priv->mode, 1, last_segment, skb->len);
3386 	}
3387 
3388 	/* Only the last descriptor gets to point to the skb. */
3389 	tx_q->tx_skbuff[entry] = skb;
3390 
3391 	/* According to the coalesce parameter the IC bit for the latest
3392 	 * segment is reset and the timer re-started to clean the tx status.
3393 	 * This approach takes care about the fragments: desc is the first
3394 	 * element in case of no SG.
3395 	 */
3396 	tx_packets = (entry + 1) - first_tx;
3397 	tx_q->tx_count_frames += tx_packets;
3398 
3399 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3400 		set_ic = true;
3401 	else if (!priv->tx_coal_frames)
3402 		set_ic = false;
3403 	else if (tx_packets > priv->tx_coal_frames)
3404 		set_ic = true;
3405 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3406 		set_ic = true;
3407 	else
3408 		set_ic = false;
3409 
3410 	if (set_ic) {
3411 		if (likely(priv->extend_desc))
3412 			desc = &tx_q->dma_etx[entry].basic;
3413 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3414 			desc = &tx_q->dma_entx[entry].basic;
3415 		else
3416 			desc = &tx_q->dma_tx[entry];
3417 
3418 		tx_q->tx_count_frames = 0;
3419 		stmmac_set_tx_ic(priv, desc);
3420 		priv->xstats.tx_set_ic_bit++;
3421 	}
3422 
3423 	/* We've used all descriptors we need for this skb, however,
3424 	 * advance cur_tx so that it references a fresh descriptor.
3425 	 * ndo_start_xmit will fill this descriptor the next time it's
3426 	 * called and stmmac_tx_clean may clean up to this descriptor.
3427 	 */
3428 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3429 	tx_q->cur_tx = entry;
3430 
3431 	if (netif_msg_pktdata(priv)) {
3432 		netdev_dbg(priv->dev,
3433 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3434 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3435 			   entry, first, nfrags);
3436 
3437 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3438 		print_pkt(skb->data, skb->len);
3439 	}
3440 
3441 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3442 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3443 			  __func__);
3444 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3445 	}
3446 
3447 	dev->stats.tx_bytes += skb->len;
3448 
3449 	if (priv->sarc_type)
3450 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3451 
3452 	skb_tx_timestamp(skb);
3453 
3454 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3455 	 * problems because all the descriptors are actually ready to be
3456 	 * passed to the DMA engine.
3457 	 */
3458 	if (likely(!is_jumbo)) {
3459 		bool last_segment = (nfrags == 0);
3460 
3461 		des = dma_map_single(priv->device, skb->data,
3462 				     nopaged_len, DMA_TO_DEVICE);
3463 		if (dma_mapping_error(priv->device, des))
3464 			goto dma_map_err;
3465 
3466 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3467 
3468 		stmmac_set_desc_addr(priv, first, des);
3469 
3470 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3471 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3472 
3473 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3474 			     priv->hwts_tx_en)) {
3475 			/* declare that device is doing timestamping */
3476 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3477 			stmmac_enable_tx_timestamp(priv, first);
3478 		}
3479 
3480 		/* Prepare the first descriptor setting the OWN bit too */
3481 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3482 				csum_insertion, priv->mode, 0, last_segment,
3483 				skb->len);
3484 	}
3485 
3486 	if (tx_q->tbs & STMMAC_TBS_EN) {
3487 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3488 
3489 		tbs_desc = &tx_q->dma_entx[first_entry];
3490 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3491 	}
3492 
3493 	stmmac_set_tx_owner(priv, first);
3494 
3495 	/* The own bit must be the latest setting done when prepare the
3496 	 * descriptor and then barrier is needed to make sure that
3497 	 * all is coherent before granting the DMA engine.
3498 	 */
3499 	wmb();
3500 
3501 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3502 
3503 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3504 
3505 	if (likely(priv->extend_desc))
3506 		desc_size = sizeof(struct dma_extended_desc);
3507 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3508 		desc_size = sizeof(struct dma_edesc);
3509 	else
3510 		desc_size = sizeof(struct dma_desc);
3511 
3512 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3513 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3514 	stmmac_tx_timer_arm(priv, queue);
3515 
3516 	return NETDEV_TX_OK;
3517 
3518 dma_map_err:
3519 	netdev_err(priv->dev, "Tx DMA map failed\n");
3520 	dev_kfree_skb(skb);
3521 	priv->dev->stats.tx_dropped++;
3522 	return NETDEV_TX_OK;
3523 }
3524 
3525 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3526 {
3527 	struct vlan_ethhdr *veth;
3528 	__be16 vlan_proto;
3529 	u16 vlanid;
3530 
3531 	veth = (struct vlan_ethhdr *)skb->data;
3532 	vlan_proto = veth->h_vlan_proto;
3533 
3534 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3535 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3536 	    (vlan_proto == htons(ETH_P_8021AD) &&
3537 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3538 		/* pop the vlan tag */
3539 		vlanid = ntohs(veth->h_vlan_TCI);
3540 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3541 		skb_pull(skb, VLAN_HLEN);
3542 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3543 	}
3544 }
3545 
3546 
3547 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3548 {
3549 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3550 		return 0;
3551 
3552 	return 1;
3553 }
3554 
3555 /**
3556  * stmmac_rx_refill - refill used skb preallocated buffers
3557  * @priv: driver private structure
3558  * @queue: RX queue index
3559  * Description : this is to reallocate the skb for the reception process
3560  * that is based on zero-copy.
3561  */
3562 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3563 {
3564 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3565 	int len, dirty = stmmac_rx_dirty(priv, queue);
3566 	unsigned int entry = rx_q->dirty_rx;
3567 
3568 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3569 
3570 	while (dirty-- > 0) {
3571 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3572 		struct dma_desc *p;
3573 		bool use_rx_wd;
3574 
3575 		if (priv->extend_desc)
3576 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3577 		else
3578 			p = rx_q->dma_rx + entry;
3579 
3580 		if (!buf->page) {
3581 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3582 			if (!buf->page)
3583 				break;
3584 		}
3585 
3586 		if (priv->sph && !buf->sec_page) {
3587 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3588 			if (!buf->sec_page)
3589 				break;
3590 
3591 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3592 
3593 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3594 						   len, DMA_FROM_DEVICE);
3595 		}
3596 
3597 		buf->addr = page_pool_get_dma_addr(buf->page);
3598 
3599 		/* Sync whole allocation to device. This will invalidate old
3600 		 * data.
3601 		 */
3602 		dma_sync_single_for_device(priv->device, buf->addr, len,
3603 					   DMA_FROM_DEVICE);
3604 
3605 		stmmac_set_desc_addr(priv, p, buf->addr);
3606 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3607 		stmmac_refill_desc3(priv, rx_q, p);
3608 
3609 		rx_q->rx_count_frames++;
3610 		rx_q->rx_count_frames += priv->rx_coal_frames;
3611 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3612 			rx_q->rx_count_frames = 0;
3613 
3614 		use_rx_wd = !priv->rx_coal_frames;
3615 		use_rx_wd |= rx_q->rx_count_frames > 0;
3616 		if (!priv->use_riwt)
3617 			use_rx_wd = false;
3618 
3619 		dma_wmb();
3620 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3621 
3622 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3623 	}
3624 	rx_q->dirty_rx = entry;
3625 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3626 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3627 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3628 }
3629 
3630 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3631 				       struct dma_desc *p,
3632 				       int status, unsigned int len)
3633 {
3634 	int ret, coe = priv->hw->rx_csum;
3635 	unsigned int plen = 0, hlen = 0;
3636 
3637 	/* Not first descriptor, buffer is always zero */
3638 	if (priv->sph && len)
3639 		return 0;
3640 
3641 	/* First descriptor, get split header length */
3642 	ret = stmmac_get_rx_header_len(priv, p, &hlen);
3643 	if (priv->sph && hlen) {
3644 		priv->xstats.rx_split_hdr_pkt_n++;
3645 		return hlen;
3646 	}
3647 
3648 	/* First descriptor, not last descriptor and not split header */
3649 	if (status & rx_not_ls)
3650 		return priv->dma_buf_sz;
3651 
3652 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3653 
3654 	/* First descriptor and last descriptor and not split header */
3655 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3656 }
3657 
3658 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3659 				       struct dma_desc *p,
3660 				       int status, unsigned int len)
3661 {
3662 	int coe = priv->hw->rx_csum;
3663 	unsigned int plen = 0;
3664 
3665 	/* Not split header, buffer is not available */
3666 	if (!priv->sph)
3667 		return 0;
3668 
3669 	/* Not last descriptor */
3670 	if (status & rx_not_ls)
3671 		return priv->dma_buf_sz;
3672 
3673 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3674 
3675 	/* Last descriptor */
3676 	return plen - len;
3677 }
3678 
3679 /**
3680  * stmmac_rx - manage the receive process
3681  * @priv: driver private structure
3682  * @limit: napi bugget
3683  * @queue: RX queue index.
3684  * Description :  this the function called by the napi poll method.
3685  * It gets all the frames inside the ring.
3686  */
3687 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3688 {
3689 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3690 	struct stmmac_channel *ch = &priv->channel[queue];
3691 	unsigned int count = 0, error = 0, len = 0;
3692 	int status = 0, coe = priv->hw->rx_csum;
3693 	unsigned int next_entry = rx_q->cur_rx;
3694 	struct sk_buff *skb = NULL;
3695 
3696 	if (netif_msg_rx_status(priv)) {
3697 		void *rx_head;
3698 
3699 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3700 		if (priv->extend_desc)
3701 			rx_head = (void *)rx_q->dma_erx;
3702 		else
3703 			rx_head = (void *)rx_q->dma_rx;
3704 
3705 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3706 	}
3707 	while (count < limit) {
3708 		unsigned int buf1_len = 0, buf2_len = 0;
3709 		enum pkt_hash_types hash_type;
3710 		struct stmmac_rx_buffer *buf;
3711 		struct dma_desc *np, *p;
3712 		int entry;
3713 		u32 hash;
3714 
3715 		if (!count && rx_q->state_saved) {
3716 			skb = rx_q->state.skb;
3717 			error = rx_q->state.error;
3718 			len = rx_q->state.len;
3719 		} else {
3720 			rx_q->state_saved = false;
3721 			skb = NULL;
3722 			error = 0;
3723 			len = 0;
3724 		}
3725 
3726 		if (count >= limit)
3727 			break;
3728 
3729 read_again:
3730 		buf1_len = 0;
3731 		buf2_len = 0;
3732 		entry = next_entry;
3733 		buf = &rx_q->buf_pool[entry];
3734 
3735 		if (priv->extend_desc)
3736 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3737 		else
3738 			p = rx_q->dma_rx + entry;
3739 
3740 		/* read the status of the incoming frame */
3741 		status = stmmac_rx_status(priv, &priv->dev->stats,
3742 				&priv->xstats, p);
3743 		/* check if managed by the DMA otherwise go ahead */
3744 		if (unlikely(status & dma_own))
3745 			break;
3746 
3747 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3748 		next_entry = rx_q->cur_rx;
3749 
3750 		if (priv->extend_desc)
3751 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3752 		else
3753 			np = rx_q->dma_rx + next_entry;
3754 
3755 		prefetch(np);
3756 
3757 		if (priv->extend_desc)
3758 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3759 					&priv->xstats, rx_q->dma_erx + entry);
3760 		if (unlikely(status == discard_frame)) {
3761 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3762 			buf->page = NULL;
3763 			error = 1;
3764 			if (!priv->hwts_rx_en)
3765 				priv->dev->stats.rx_errors++;
3766 		}
3767 
3768 		if (unlikely(error && (status & rx_not_ls)))
3769 			goto read_again;
3770 		if (unlikely(error)) {
3771 			dev_kfree_skb(skb);
3772 			skb = NULL;
3773 			count++;
3774 			continue;
3775 		}
3776 
3777 		/* Buffer is good. Go on. */
3778 
3779 		prefetch(page_address(buf->page));
3780 		if (buf->sec_page)
3781 			prefetch(page_address(buf->sec_page));
3782 
3783 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3784 		len += buf1_len;
3785 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3786 		len += buf2_len;
3787 
3788 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3789 		 * Type frames (LLC/LLC-SNAP)
3790 		 *
3791 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3792 		 * feature is always disabled and packets need to be
3793 		 * stripped manually.
3794 		 */
3795 		if (likely(!(status & rx_not_ls)) &&
3796 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3797 		     unlikely(status != llc_snap))) {
3798 			if (buf2_len)
3799 				buf2_len -= ETH_FCS_LEN;
3800 			else
3801 				buf1_len -= ETH_FCS_LEN;
3802 
3803 			len -= ETH_FCS_LEN;
3804 		}
3805 
3806 		if (!skb) {
3807 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3808 			if (!skb) {
3809 				priv->dev->stats.rx_dropped++;
3810 				count++;
3811 				goto drain_data;
3812 			}
3813 
3814 			dma_sync_single_for_cpu(priv->device, buf->addr,
3815 						buf1_len, DMA_FROM_DEVICE);
3816 			skb_copy_to_linear_data(skb, page_address(buf->page),
3817 						buf1_len);
3818 			skb_put(skb, buf1_len);
3819 
3820 			/* Data payload copied into SKB, page ready for recycle */
3821 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3822 			buf->page = NULL;
3823 		} else if (buf1_len) {
3824 			dma_sync_single_for_cpu(priv->device, buf->addr,
3825 						buf1_len, DMA_FROM_DEVICE);
3826 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3827 					buf->page, 0, buf1_len,
3828 					priv->dma_buf_sz);
3829 
3830 			/* Data payload appended into SKB */
3831 			page_pool_release_page(rx_q->page_pool, buf->page);
3832 			buf->page = NULL;
3833 		}
3834 
3835 		if (buf2_len) {
3836 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3837 						buf2_len, DMA_FROM_DEVICE);
3838 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3839 					buf->sec_page, 0, buf2_len,
3840 					priv->dma_buf_sz);
3841 
3842 			/* Data payload appended into SKB */
3843 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3844 			buf->sec_page = NULL;
3845 		}
3846 
3847 drain_data:
3848 		if (likely(status & rx_not_ls))
3849 			goto read_again;
3850 		if (!skb)
3851 			continue;
3852 
3853 		/* Got entire packet into SKB. Finish it. */
3854 
3855 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3856 		stmmac_rx_vlan(priv->dev, skb);
3857 		skb->protocol = eth_type_trans(skb, priv->dev);
3858 
3859 		if (unlikely(!coe))
3860 			skb_checksum_none_assert(skb);
3861 		else
3862 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3863 
3864 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3865 			skb_set_hash(skb, hash, hash_type);
3866 
3867 		skb_record_rx_queue(skb, queue);
3868 		napi_gro_receive(&ch->rx_napi, skb);
3869 		skb = NULL;
3870 
3871 		priv->dev->stats.rx_packets++;
3872 		priv->dev->stats.rx_bytes += len;
3873 		count++;
3874 	}
3875 
3876 	if (status & rx_not_ls || skb) {
3877 		rx_q->state_saved = true;
3878 		rx_q->state.skb = skb;
3879 		rx_q->state.error = error;
3880 		rx_q->state.len = len;
3881 	}
3882 
3883 	stmmac_rx_refill(priv, queue);
3884 
3885 	priv->xstats.rx_pkt_n += count;
3886 
3887 	return count;
3888 }
3889 
3890 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3891 {
3892 	struct stmmac_channel *ch =
3893 		container_of(napi, struct stmmac_channel, rx_napi);
3894 	struct stmmac_priv *priv = ch->priv_data;
3895 	u32 chan = ch->index;
3896 	int work_done;
3897 
3898 	priv->xstats.napi_poll++;
3899 
3900 	work_done = stmmac_rx(priv, budget, chan);
3901 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3902 		unsigned long flags;
3903 
3904 		spin_lock_irqsave(&ch->lock, flags);
3905 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3906 		spin_unlock_irqrestore(&ch->lock, flags);
3907 	}
3908 
3909 	return work_done;
3910 }
3911 
3912 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3913 {
3914 	struct stmmac_channel *ch =
3915 		container_of(napi, struct stmmac_channel, tx_napi);
3916 	struct stmmac_priv *priv = ch->priv_data;
3917 	u32 chan = ch->index;
3918 	int work_done;
3919 
3920 	priv->xstats.napi_poll++;
3921 
3922 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3923 	work_done = min(work_done, budget);
3924 
3925 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3926 		unsigned long flags;
3927 
3928 		spin_lock_irqsave(&ch->lock, flags);
3929 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3930 		spin_unlock_irqrestore(&ch->lock, flags);
3931 	}
3932 
3933 	return work_done;
3934 }
3935 
3936 /**
3937  *  stmmac_tx_timeout
3938  *  @dev : Pointer to net device structure
3939  *  Description: this function is called when a packet transmission fails to
3940  *   complete within a reasonable time. The driver will mark the error in the
3941  *   netdev structure and arrange for the device to be reset to a sane state
3942  *   in order to transmit a new packet.
3943  */
3944 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3945 {
3946 	struct stmmac_priv *priv = netdev_priv(dev);
3947 
3948 	stmmac_global_err(priv);
3949 }
3950 
3951 /**
3952  *  stmmac_set_rx_mode - entry point for multicast addressing
3953  *  @dev : pointer to the device structure
3954  *  Description:
3955  *  This function is a driver entry point which gets called by the kernel
3956  *  whenever multicast addresses must be enabled/disabled.
3957  *  Return value:
3958  *  void.
3959  */
3960 static void stmmac_set_rx_mode(struct net_device *dev)
3961 {
3962 	struct stmmac_priv *priv = netdev_priv(dev);
3963 
3964 	stmmac_set_filter(priv, priv->hw, dev);
3965 }
3966 
3967 /**
3968  *  stmmac_change_mtu - entry point to change MTU size for the device.
3969  *  @dev : device pointer.
3970  *  @new_mtu : the new MTU size for the device.
3971  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3972  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3973  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3974  *  Return value:
3975  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3976  *  file on failure.
3977  */
3978 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3979 {
3980 	struct stmmac_priv *priv = netdev_priv(dev);
3981 	int txfifosz = priv->plat->tx_fifo_size;
3982 
3983 	if (txfifosz == 0)
3984 		txfifosz = priv->dma_cap.tx_fifo_size;
3985 
3986 	txfifosz /= priv->plat->tx_queues_to_use;
3987 
3988 	if (netif_running(dev)) {
3989 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3990 		return -EBUSY;
3991 	}
3992 
3993 	new_mtu = STMMAC_ALIGN(new_mtu);
3994 
3995 	/* If condition true, FIFO is too small or MTU too large */
3996 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3997 		return -EINVAL;
3998 
3999 	dev->mtu = new_mtu;
4000 
4001 	netdev_update_features(dev);
4002 
4003 	return 0;
4004 }
4005 
4006 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4007 					     netdev_features_t features)
4008 {
4009 	struct stmmac_priv *priv = netdev_priv(dev);
4010 
4011 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4012 		features &= ~NETIF_F_RXCSUM;
4013 
4014 	if (!priv->plat->tx_coe)
4015 		features &= ~NETIF_F_CSUM_MASK;
4016 
4017 	/* Some GMAC devices have a bugged Jumbo frame support that
4018 	 * needs to have the Tx COE disabled for oversized frames
4019 	 * (due to limited buffer sizes). In this case we disable
4020 	 * the TX csum insertion in the TDES and not use SF.
4021 	 */
4022 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4023 		features &= ~NETIF_F_CSUM_MASK;
4024 
4025 	/* Disable tso if asked by ethtool */
4026 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4027 		if (features & NETIF_F_TSO)
4028 			priv->tso = true;
4029 		else
4030 			priv->tso = false;
4031 	}
4032 
4033 	return features;
4034 }
4035 
4036 static int stmmac_set_features(struct net_device *netdev,
4037 			       netdev_features_t features)
4038 {
4039 	struct stmmac_priv *priv = netdev_priv(netdev);
4040 	bool sph_en;
4041 	u32 chan;
4042 
4043 	/* Keep the COE Type in case of csum is supporting */
4044 	if (features & NETIF_F_RXCSUM)
4045 		priv->hw->rx_csum = priv->plat->rx_coe;
4046 	else
4047 		priv->hw->rx_csum = 0;
4048 	/* No check needed because rx_coe has been set before and it will be
4049 	 * fixed in case of issue.
4050 	 */
4051 	stmmac_rx_ipc(priv, priv->hw);
4052 
4053 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4054 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4055 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4056 
4057 	return 0;
4058 }
4059 
4060 /**
4061  *  stmmac_interrupt - main ISR
4062  *  @irq: interrupt number.
4063  *  @dev_id: to pass the net device pointer (must be valid).
4064  *  Description: this is the main driver interrupt service routine.
4065  *  It can call:
4066  *  o DMA service routine (to manage incoming frame reception and transmission
4067  *    status)
4068  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4069  *    interrupts.
4070  */
4071 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4072 {
4073 	struct net_device *dev = (struct net_device *)dev_id;
4074 	struct stmmac_priv *priv = netdev_priv(dev);
4075 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4076 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4077 	u32 queues_count;
4078 	u32 queue;
4079 	bool xmac;
4080 
4081 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4082 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4083 
4084 	if (priv->irq_wake)
4085 		pm_wakeup_event(priv->device, 0);
4086 
4087 	/* Check if adapter is up */
4088 	if (test_bit(STMMAC_DOWN, &priv->state))
4089 		return IRQ_HANDLED;
4090 	/* Check if a fatal error happened */
4091 	if (stmmac_safety_feat_interrupt(priv))
4092 		return IRQ_HANDLED;
4093 
4094 	/* To handle GMAC own interrupts */
4095 	if ((priv->plat->has_gmac) || xmac) {
4096 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4097 		int mtl_status;
4098 
4099 		if (unlikely(status)) {
4100 			/* For LPI we need to save the tx status */
4101 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4102 				priv->tx_path_in_lpi_mode = true;
4103 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4104 				priv->tx_path_in_lpi_mode = false;
4105 		}
4106 
4107 		for (queue = 0; queue < queues_count; queue++) {
4108 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4109 
4110 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4111 								queue);
4112 			if (mtl_status != -EINVAL)
4113 				status |= mtl_status;
4114 
4115 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4116 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4117 						       rx_q->rx_tail_addr,
4118 						       queue);
4119 		}
4120 
4121 		/* PCS link status */
4122 		if (priv->hw->pcs) {
4123 			if (priv->xstats.pcs_link)
4124 				netif_carrier_on(dev);
4125 			else
4126 				netif_carrier_off(dev);
4127 		}
4128 	}
4129 
4130 	/* To handle DMA interrupts */
4131 	stmmac_dma_interrupt(priv);
4132 
4133 	return IRQ_HANDLED;
4134 }
4135 
4136 #ifdef CONFIG_NET_POLL_CONTROLLER
4137 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4138  * to allow network I/O with interrupts disabled.
4139  */
4140 static void stmmac_poll_controller(struct net_device *dev)
4141 {
4142 	disable_irq(dev->irq);
4143 	stmmac_interrupt(dev->irq, dev);
4144 	enable_irq(dev->irq);
4145 }
4146 #endif
4147 
4148 /**
4149  *  stmmac_ioctl - Entry point for the Ioctl
4150  *  @dev: Device pointer.
4151  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4152  *  a proprietary structure used to pass information to the driver.
4153  *  @cmd: IOCTL command
4154  *  Description:
4155  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4156  */
4157 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4158 {
4159 	struct stmmac_priv *priv = netdev_priv (dev);
4160 	int ret = -EOPNOTSUPP;
4161 
4162 	if (!netif_running(dev))
4163 		return -EINVAL;
4164 
4165 	switch (cmd) {
4166 	case SIOCGMIIPHY:
4167 	case SIOCGMIIREG:
4168 	case SIOCSMIIREG:
4169 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4170 		break;
4171 	case SIOCSHWTSTAMP:
4172 		ret = stmmac_hwtstamp_set(dev, rq);
4173 		break;
4174 	case SIOCGHWTSTAMP:
4175 		ret = stmmac_hwtstamp_get(dev, rq);
4176 		break;
4177 	default:
4178 		break;
4179 	}
4180 
4181 	return ret;
4182 }
4183 
4184 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4185 				    void *cb_priv)
4186 {
4187 	struct stmmac_priv *priv = cb_priv;
4188 	int ret = -EOPNOTSUPP;
4189 
4190 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4191 		return ret;
4192 
4193 	stmmac_disable_all_queues(priv);
4194 
4195 	switch (type) {
4196 	case TC_SETUP_CLSU32:
4197 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4198 		break;
4199 	case TC_SETUP_CLSFLOWER:
4200 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4201 		break;
4202 	default:
4203 		break;
4204 	}
4205 
4206 	stmmac_enable_all_queues(priv);
4207 	return ret;
4208 }
4209 
4210 static LIST_HEAD(stmmac_block_cb_list);
4211 
4212 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4213 			   void *type_data)
4214 {
4215 	struct stmmac_priv *priv = netdev_priv(ndev);
4216 
4217 	switch (type) {
4218 	case TC_SETUP_BLOCK:
4219 		return flow_block_cb_setup_simple(type_data,
4220 						  &stmmac_block_cb_list,
4221 						  stmmac_setup_tc_block_cb,
4222 						  priv, priv, true);
4223 	case TC_SETUP_QDISC_CBS:
4224 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4225 	case TC_SETUP_QDISC_TAPRIO:
4226 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4227 	case TC_SETUP_QDISC_ETF:
4228 		return stmmac_tc_setup_etf(priv, priv, type_data);
4229 	default:
4230 		return -EOPNOTSUPP;
4231 	}
4232 }
4233 
4234 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4235 			       struct net_device *sb_dev)
4236 {
4237 	int gso = skb_shinfo(skb)->gso_type;
4238 
4239 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4240 		/*
4241 		 * There is no way to determine the number of TSO/USO
4242 		 * capable Queues. Let's use always the Queue 0
4243 		 * because if TSO/USO is supported then at least this
4244 		 * one will be capable.
4245 		 */
4246 		return 0;
4247 	}
4248 
4249 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4250 }
4251 
4252 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4253 {
4254 	struct stmmac_priv *priv = netdev_priv(ndev);
4255 	int ret = 0;
4256 
4257 	ret = eth_mac_addr(ndev, addr);
4258 	if (ret)
4259 		return ret;
4260 
4261 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4262 
4263 	return ret;
4264 }
4265 
4266 #ifdef CONFIG_DEBUG_FS
4267 static struct dentry *stmmac_fs_dir;
4268 
4269 static void sysfs_display_ring(void *head, int size, int extend_desc,
4270 			       struct seq_file *seq)
4271 {
4272 	int i;
4273 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4274 	struct dma_desc *p = (struct dma_desc *)head;
4275 
4276 	for (i = 0; i < size; i++) {
4277 		if (extend_desc) {
4278 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4279 				   i, (unsigned int)virt_to_phys(ep),
4280 				   le32_to_cpu(ep->basic.des0),
4281 				   le32_to_cpu(ep->basic.des1),
4282 				   le32_to_cpu(ep->basic.des2),
4283 				   le32_to_cpu(ep->basic.des3));
4284 			ep++;
4285 		} else {
4286 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4287 				   i, (unsigned int)virt_to_phys(p),
4288 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4289 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4290 			p++;
4291 		}
4292 		seq_printf(seq, "\n");
4293 	}
4294 }
4295 
4296 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4297 {
4298 	struct net_device *dev = seq->private;
4299 	struct stmmac_priv *priv = netdev_priv(dev);
4300 	u32 rx_count = priv->plat->rx_queues_to_use;
4301 	u32 tx_count = priv->plat->tx_queues_to_use;
4302 	u32 queue;
4303 
4304 	if ((dev->flags & IFF_UP) == 0)
4305 		return 0;
4306 
4307 	for (queue = 0; queue < rx_count; queue++) {
4308 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4309 
4310 		seq_printf(seq, "RX Queue %d:\n", queue);
4311 
4312 		if (priv->extend_desc) {
4313 			seq_printf(seq, "Extended descriptor ring:\n");
4314 			sysfs_display_ring((void *)rx_q->dma_erx,
4315 					   DMA_RX_SIZE, 1, seq);
4316 		} else {
4317 			seq_printf(seq, "Descriptor ring:\n");
4318 			sysfs_display_ring((void *)rx_q->dma_rx,
4319 					   DMA_RX_SIZE, 0, seq);
4320 		}
4321 	}
4322 
4323 	for (queue = 0; queue < tx_count; queue++) {
4324 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4325 
4326 		seq_printf(seq, "TX Queue %d:\n", queue);
4327 
4328 		if (priv->extend_desc) {
4329 			seq_printf(seq, "Extended descriptor ring:\n");
4330 			sysfs_display_ring((void *)tx_q->dma_etx,
4331 					   DMA_TX_SIZE, 1, seq);
4332 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4333 			seq_printf(seq, "Descriptor ring:\n");
4334 			sysfs_display_ring((void *)tx_q->dma_tx,
4335 					   DMA_TX_SIZE, 0, seq);
4336 		}
4337 	}
4338 
4339 	return 0;
4340 }
4341 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4342 
4343 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4344 {
4345 	struct net_device *dev = seq->private;
4346 	struct stmmac_priv *priv = netdev_priv(dev);
4347 
4348 	if (!priv->hw_cap_support) {
4349 		seq_printf(seq, "DMA HW features not supported\n");
4350 		return 0;
4351 	}
4352 
4353 	seq_printf(seq, "==============================\n");
4354 	seq_printf(seq, "\tDMA HW features\n");
4355 	seq_printf(seq, "==============================\n");
4356 
4357 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4358 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4359 	seq_printf(seq, "\t1000 Mbps: %s\n",
4360 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4361 	seq_printf(seq, "\tHalf duplex: %s\n",
4362 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4363 	seq_printf(seq, "\tHash Filter: %s\n",
4364 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4365 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4366 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4367 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4368 		   (priv->dma_cap.pcs) ? "Y" : "N");
4369 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4370 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4371 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4372 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4373 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4374 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4375 	seq_printf(seq, "\tRMON module: %s\n",
4376 		   (priv->dma_cap.rmon) ? "Y" : "N");
4377 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4378 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4379 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4380 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4381 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4382 		   (priv->dma_cap.eee) ? "Y" : "N");
4383 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4384 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4385 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4386 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4387 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4388 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4389 	} else {
4390 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4391 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4392 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4393 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4394 	}
4395 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4396 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4397 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4398 		   priv->dma_cap.number_rx_channel);
4399 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4400 		   priv->dma_cap.number_tx_channel);
4401 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4402 		   priv->dma_cap.number_rx_queues);
4403 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4404 		   priv->dma_cap.number_tx_queues);
4405 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4406 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4407 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4408 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4409 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4410 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4411 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4412 		   priv->dma_cap.pps_out_num);
4413 	seq_printf(seq, "\tSafety Features: %s\n",
4414 		   priv->dma_cap.asp ? "Y" : "N");
4415 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4416 		   priv->dma_cap.frpsel ? "Y" : "N");
4417 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4418 		   priv->dma_cap.addr64);
4419 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4420 		   priv->dma_cap.rssen ? "Y" : "N");
4421 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4422 		   priv->dma_cap.vlhash ? "Y" : "N");
4423 	seq_printf(seq, "\tSplit Header: %s\n",
4424 		   priv->dma_cap.sphen ? "Y" : "N");
4425 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4426 		   priv->dma_cap.vlins ? "Y" : "N");
4427 	seq_printf(seq, "\tDouble VLAN: %s\n",
4428 		   priv->dma_cap.dvlan ? "Y" : "N");
4429 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4430 		   priv->dma_cap.l3l4fnum);
4431 	seq_printf(seq, "\tARP Offloading: %s\n",
4432 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4433 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4434 		   priv->dma_cap.estsel ? "Y" : "N");
4435 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4436 		   priv->dma_cap.fpesel ? "Y" : "N");
4437 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4438 		   priv->dma_cap.tbssel ? "Y" : "N");
4439 	return 0;
4440 }
4441 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4442 
4443 /* Use network device events to rename debugfs file entries.
4444  */
4445 static int stmmac_device_event(struct notifier_block *unused,
4446 			       unsigned long event, void *ptr)
4447 {
4448 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4449 	struct stmmac_priv *priv = netdev_priv(dev);
4450 
4451 	if (dev->netdev_ops != &stmmac_netdev_ops)
4452 		goto done;
4453 
4454 	switch (event) {
4455 	case NETDEV_CHANGENAME:
4456 		if (priv->dbgfs_dir)
4457 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4458 							 priv->dbgfs_dir,
4459 							 stmmac_fs_dir,
4460 							 dev->name);
4461 		break;
4462 	}
4463 done:
4464 	return NOTIFY_DONE;
4465 }
4466 
4467 static struct notifier_block stmmac_notifier = {
4468 	.notifier_call = stmmac_device_event,
4469 };
4470 
4471 static void stmmac_init_fs(struct net_device *dev)
4472 {
4473 	struct stmmac_priv *priv = netdev_priv(dev);
4474 
4475 	rtnl_lock();
4476 
4477 	/* Create per netdev entries */
4478 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4479 
4480 	/* Entry to report DMA RX/TX rings */
4481 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4482 			    &stmmac_rings_status_fops);
4483 
4484 	/* Entry to report the DMA HW features */
4485 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4486 			    &stmmac_dma_cap_fops);
4487 
4488 	rtnl_unlock();
4489 }
4490 
4491 static void stmmac_exit_fs(struct net_device *dev)
4492 {
4493 	struct stmmac_priv *priv = netdev_priv(dev);
4494 
4495 	debugfs_remove_recursive(priv->dbgfs_dir);
4496 }
4497 #endif /* CONFIG_DEBUG_FS */
4498 
4499 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4500 {
4501 	unsigned char *data = (unsigned char *)&vid_le;
4502 	unsigned char data_byte = 0;
4503 	u32 crc = ~0x0;
4504 	u32 temp = 0;
4505 	int i, bits;
4506 
4507 	bits = get_bitmask_order(VLAN_VID_MASK);
4508 	for (i = 0; i < bits; i++) {
4509 		if ((i % 8) == 0)
4510 			data_byte = data[i / 8];
4511 
4512 		temp = ((crc & 1) ^ data_byte) & 1;
4513 		crc >>= 1;
4514 		data_byte >>= 1;
4515 
4516 		if (temp)
4517 			crc ^= 0xedb88320;
4518 	}
4519 
4520 	return crc;
4521 }
4522 
4523 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4524 {
4525 	u32 crc, hash = 0;
4526 	__le16 pmatch = 0;
4527 	int count = 0;
4528 	u16 vid = 0;
4529 
4530 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4531 		__le16 vid_le = cpu_to_le16(vid);
4532 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4533 		hash |= (1 << crc);
4534 		count++;
4535 	}
4536 
4537 	if (!priv->dma_cap.vlhash) {
4538 		if (count > 2) /* VID = 0 always passes filter */
4539 			return -EOPNOTSUPP;
4540 
4541 		pmatch = cpu_to_le16(vid);
4542 		hash = 0;
4543 	}
4544 
4545 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4546 }
4547 
4548 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4549 {
4550 	struct stmmac_priv *priv = netdev_priv(ndev);
4551 	bool is_double = false;
4552 	int ret;
4553 
4554 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4555 		is_double = true;
4556 
4557 	set_bit(vid, priv->active_vlans);
4558 	ret = stmmac_vlan_update(priv, is_double);
4559 	if (ret) {
4560 		clear_bit(vid, priv->active_vlans);
4561 		return ret;
4562 	}
4563 
4564 	if (priv->hw->num_vlan) {
4565 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4566 		if (ret)
4567 			return ret;
4568 	}
4569 
4570 	return 0;
4571 }
4572 
4573 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4574 {
4575 	struct stmmac_priv *priv = netdev_priv(ndev);
4576 	bool is_double = false;
4577 	int ret;
4578 
4579 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4580 		is_double = true;
4581 
4582 	clear_bit(vid, priv->active_vlans);
4583 
4584 	if (priv->hw->num_vlan) {
4585 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4586 		if (ret)
4587 			return ret;
4588 	}
4589 
4590 	return stmmac_vlan_update(priv, is_double);
4591 }
4592 
4593 static const struct net_device_ops stmmac_netdev_ops = {
4594 	.ndo_open = stmmac_open,
4595 	.ndo_start_xmit = stmmac_xmit,
4596 	.ndo_stop = stmmac_release,
4597 	.ndo_change_mtu = stmmac_change_mtu,
4598 	.ndo_fix_features = stmmac_fix_features,
4599 	.ndo_set_features = stmmac_set_features,
4600 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4601 	.ndo_tx_timeout = stmmac_tx_timeout,
4602 	.ndo_do_ioctl = stmmac_ioctl,
4603 	.ndo_setup_tc = stmmac_setup_tc,
4604 	.ndo_select_queue = stmmac_select_queue,
4605 #ifdef CONFIG_NET_POLL_CONTROLLER
4606 	.ndo_poll_controller = stmmac_poll_controller,
4607 #endif
4608 	.ndo_set_mac_address = stmmac_set_mac_address,
4609 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4610 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4611 };
4612 
4613 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4614 {
4615 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4616 		return;
4617 	if (test_bit(STMMAC_DOWN, &priv->state))
4618 		return;
4619 
4620 	netdev_err(priv->dev, "Reset adapter.\n");
4621 
4622 	rtnl_lock();
4623 	netif_trans_update(priv->dev);
4624 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4625 		usleep_range(1000, 2000);
4626 
4627 	set_bit(STMMAC_DOWN, &priv->state);
4628 	dev_close(priv->dev);
4629 	dev_open(priv->dev, NULL);
4630 	clear_bit(STMMAC_DOWN, &priv->state);
4631 	clear_bit(STMMAC_RESETING, &priv->state);
4632 	rtnl_unlock();
4633 }
4634 
4635 static void stmmac_service_task(struct work_struct *work)
4636 {
4637 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4638 			service_task);
4639 
4640 	stmmac_reset_subtask(priv);
4641 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4642 }
4643 
4644 /**
4645  *  stmmac_hw_init - Init the MAC device
4646  *  @priv: driver private structure
4647  *  Description: this function is to configure the MAC device according to
4648  *  some platform parameters or the HW capability register. It prepares the
4649  *  driver to use either ring or chain modes and to setup either enhanced or
4650  *  normal descriptors.
4651  */
4652 static int stmmac_hw_init(struct stmmac_priv *priv)
4653 {
4654 	int ret;
4655 
4656 	/* dwmac-sun8i only work in chain mode */
4657 	if (priv->plat->has_sun8i)
4658 		chain_mode = 1;
4659 	priv->chain_mode = chain_mode;
4660 
4661 	/* Initialize HW Interface */
4662 	ret = stmmac_hwif_init(priv);
4663 	if (ret)
4664 		return ret;
4665 
4666 	/* Get the HW capability (new GMAC newer than 3.50a) */
4667 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4668 	if (priv->hw_cap_support) {
4669 		dev_info(priv->device, "DMA HW capability register supported\n");
4670 
4671 		/* We can override some gmac/dma configuration fields: e.g.
4672 		 * enh_desc, tx_coe (e.g. that are passed through the
4673 		 * platform) with the values from the HW capability
4674 		 * register (if supported).
4675 		 */
4676 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4677 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4678 		priv->hw->pmt = priv->plat->pmt;
4679 		if (priv->dma_cap.hash_tb_sz) {
4680 			priv->hw->multicast_filter_bins =
4681 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4682 			priv->hw->mcast_bits_log2 =
4683 					ilog2(priv->hw->multicast_filter_bins);
4684 		}
4685 
4686 		/* TXCOE doesn't work in thresh DMA mode */
4687 		if (priv->plat->force_thresh_dma_mode)
4688 			priv->plat->tx_coe = 0;
4689 		else
4690 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4691 
4692 		/* In case of GMAC4 rx_coe is from HW cap register. */
4693 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4694 
4695 		if (priv->dma_cap.rx_coe_type2)
4696 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4697 		else if (priv->dma_cap.rx_coe_type1)
4698 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4699 
4700 	} else {
4701 		dev_info(priv->device, "No HW DMA feature register supported\n");
4702 	}
4703 
4704 	if (priv->plat->rx_coe) {
4705 		priv->hw->rx_csum = priv->plat->rx_coe;
4706 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4707 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4708 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4709 	}
4710 	if (priv->plat->tx_coe)
4711 		dev_info(priv->device, "TX Checksum insertion supported\n");
4712 
4713 	if (priv->plat->pmt) {
4714 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4715 		device_set_wakeup_capable(priv->device, 1);
4716 	}
4717 
4718 	if (priv->dma_cap.tsoen)
4719 		dev_info(priv->device, "TSO supported\n");
4720 
4721 	/* Run HW quirks, if any */
4722 	if (priv->hwif_quirks) {
4723 		ret = priv->hwif_quirks(priv);
4724 		if (ret)
4725 			return ret;
4726 	}
4727 
4728 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4729 	 * In some case, for example on bugged HW this feature
4730 	 * has to be disable and this can be done by passing the
4731 	 * riwt_off field from the platform.
4732 	 */
4733 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4734 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4735 		priv->use_riwt = 1;
4736 		dev_info(priv->device,
4737 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4738 	}
4739 
4740 	return 0;
4741 }
4742 
4743 /**
4744  * stmmac_dvr_probe
4745  * @device: device pointer
4746  * @plat_dat: platform data pointer
4747  * @res: stmmac resource pointer
4748  * Description: this is the main probe function used to
4749  * call the alloc_etherdev, allocate the priv structure.
4750  * Return:
4751  * returns 0 on success, otherwise errno.
4752  */
4753 int stmmac_dvr_probe(struct device *device,
4754 		     struct plat_stmmacenet_data *plat_dat,
4755 		     struct stmmac_resources *res)
4756 {
4757 	struct net_device *ndev = NULL;
4758 	struct stmmac_priv *priv;
4759 	u32 queue, rxq, maxq;
4760 	int i, ret = 0;
4761 
4762 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4763 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4764 	if (!ndev)
4765 		return -ENOMEM;
4766 
4767 	SET_NETDEV_DEV(ndev, device);
4768 
4769 	priv = netdev_priv(ndev);
4770 	priv->device = device;
4771 	priv->dev = ndev;
4772 
4773 	stmmac_set_ethtool_ops(ndev);
4774 	priv->pause = pause;
4775 	priv->plat = plat_dat;
4776 	priv->ioaddr = res->addr;
4777 	priv->dev->base_addr = (unsigned long)res->addr;
4778 
4779 	priv->dev->irq = res->irq;
4780 	priv->wol_irq = res->wol_irq;
4781 	priv->lpi_irq = res->lpi_irq;
4782 
4783 	if (!IS_ERR_OR_NULL(res->mac))
4784 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4785 
4786 	dev_set_drvdata(device, priv->dev);
4787 
4788 	/* Verify driver arguments */
4789 	stmmac_verify_args();
4790 
4791 	/* Allocate workqueue */
4792 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4793 	if (!priv->wq) {
4794 		dev_err(priv->device, "failed to create workqueue\n");
4795 		return -ENOMEM;
4796 	}
4797 
4798 	INIT_WORK(&priv->service_task, stmmac_service_task);
4799 
4800 	/* Override with kernel parameters if supplied XXX CRS XXX
4801 	 * this needs to have multiple instances
4802 	 */
4803 	if ((phyaddr >= 0) && (phyaddr <= 31))
4804 		priv->plat->phy_addr = phyaddr;
4805 
4806 	if (priv->plat->stmmac_rst) {
4807 		ret = reset_control_assert(priv->plat->stmmac_rst);
4808 		reset_control_deassert(priv->plat->stmmac_rst);
4809 		/* Some reset controllers have only reset callback instead of
4810 		 * assert + deassert callbacks pair.
4811 		 */
4812 		if (ret == -ENOTSUPP)
4813 			reset_control_reset(priv->plat->stmmac_rst);
4814 	}
4815 
4816 	/* Init MAC and get the capabilities */
4817 	ret = stmmac_hw_init(priv);
4818 	if (ret)
4819 		goto error_hw_init;
4820 
4821 	stmmac_check_ether_addr(priv);
4822 
4823 	/* Configure real RX and TX queues */
4824 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4825 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4826 
4827 	ndev->netdev_ops = &stmmac_netdev_ops;
4828 
4829 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4830 			    NETIF_F_RXCSUM;
4831 
4832 	ret = stmmac_tc_init(priv, priv);
4833 	if (!ret) {
4834 		ndev->hw_features |= NETIF_F_HW_TC;
4835 	}
4836 
4837 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4838 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4839 		if (priv->plat->has_gmac4)
4840 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4841 		priv->tso = true;
4842 		dev_info(priv->device, "TSO feature enabled\n");
4843 	}
4844 
4845 	if (priv->dma_cap.sphen) {
4846 		ndev->hw_features |= NETIF_F_GRO;
4847 		priv->sph = true;
4848 		dev_info(priv->device, "SPH feature enabled\n");
4849 	}
4850 
4851 	if (priv->dma_cap.addr64) {
4852 		ret = dma_set_mask_and_coherent(device,
4853 				DMA_BIT_MASK(priv->dma_cap.addr64));
4854 		if (!ret) {
4855 			dev_info(priv->device, "Using %d bits DMA width\n",
4856 				 priv->dma_cap.addr64);
4857 
4858 			/*
4859 			 * If more than 32 bits can be addressed, make sure to
4860 			 * enable enhanced addressing mode.
4861 			 */
4862 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4863 				priv->plat->dma_cfg->eame = true;
4864 		} else {
4865 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4866 			if (ret) {
4867 				dev_err(priv->device, "Failed to set DMA Mask\n");
4868 				goto error_hw_init;
4869 			}
4870 
4871 			priv->dma_cap.addr64 = 32;
4872 		}
4873 	}
4874 
4875 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4876 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4877 #ifdef STMMAC_VLAN_TAG_USED
4878 	/* Both mac100 and gmac support receive VLAN tag detection */
4879 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4880 	if (priv->dma_cap.vlhash) {
4881 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4882 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4883 	}
4884 	if (priv->dma_cap.vlins) {
4885 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4886 		if (priv->dma_cap.dvlan)
4887 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4888 	}
4889 #endif
4890 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4891 
4892 	/* Initialize RSS */
4893 	rxq = priv->plat->rx_queues_to_use;
4894 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4895 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4896 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4897 
4898 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4899 		ndev->features |= NETIF_F_RXHASH;
4900 
4901 	/* MTU range: 46 - hw-specific max */
4902 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4903 	if (priv->plat->has_xgmac)
4904 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4905 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4906 		ndev->max_mtu = JUMBO_LEN;
4907 	else
4908 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4909 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4910 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4911 	 */
4912 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4913 	    (priv->plat->maxmtu >= ndev->min_mtu))
4914 		ndev->max_mtu = priv->plat->maxmtu;
4915 	else if (priv->plat->maxmtu < ndev->min_mtu)
4916 		dev_warn(priv->device,
4917 			 "%s: warning: maxmtu having invalid value (%d)\n",
4918 			 __func__, priv->plat->maxmtu);
4919 
4920 	if (flow_ctrl)
4921 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4922 
4923 	/* Setup channels NAPI */
4924 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4925 
4926 	for (queue = 0; queue < maxq; queue++) {
4927 		struct stmmac_channel *ch = &priv->channel[queue];
4928 
4929 		spin_lock_init(&ch->lock);
4930 		ch->priv_data = priv;
4931 		ch->index = queue;
4932 
4933 		if (queue < priv->plat->rx_queues_to_use) {
4934 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4935 				       NAPI_POLL_WEIGHT);
4936 		}
4937 		if (queue < priv->plat->tx_queues_to_use) {
4938 			netif_tx_napi_add(ndev, &ch->tx_napi,
4939 					  stmmac_napi_poll_tx,
4940 					  NAPI_POLL_WEIGHT);
4941 		}
4942 	}
4943 
4944 	mutex_init(&priv->lock);
4945 
4946 	/* If a specific clk_csr value is passed from the platform
4947 	 * this means that the CSR Clock Range selection cannot be
4948 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4949 	 * set the MDC clock dynamically according to the csr actual
4950 	 * clock input.
4951 	 */
4952 	if (priv->plat->clk_csr >= 0)
4953 		priv->clk_csr = priv->plat->clk_csr;
4954 	else
4955 		stmmac_clk_csr_set(priv);
4956 
4957 	stmmac_check_pcs_mode(priv);
4958 
4959 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
4960 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4961 		/* MDIO bus Registration */
4962 		ret = stmmac_mdio_register(ndev);
4963 		if (ret < 0) {
4964 			dev_err(priv->device,
4965 				"%s: MDIO bus (id: %d) registration failed",
4966 				__func__, priv->plat->bus_id);
4967 			goto error_mdio_register;
4968 		}
4969 	}
4970 
4971 	ret = stmmac_phy_setup(priv);
4972 	if (ret) {
4973 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4974 		goto error_phy_setup;
4975 	}
4976 
4977 	ret = register_netdev(ndev);
4978 	if (ret) {
4979 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4980 			__func__, ret);
4981 		goto error_netdev_register;
4982 	}
4983 
4984 	if (priv->plat->serdes_powerup) {
4985 		ret = priv->plat->serdes_powerup(ndev,
4986 						 priv->plat->bsp_priv);
4987 
4988 		if (ret < 0)
4989 			goto error_serdes_powerup;
4990 	}
4991 
4992 #ifdef CONFIG_DEBUG_FS
4993 	stmmac_init_fs(ndev);
4994 #endif
4995 
4996 	return ret;
4997 
4998 error_serdes_powerup:
4999 	unregister_netdev(ndev);
5000 error_netdev_register:
5001 	phylink_destroy(priv->phylink);
5002 error_phy_setup:
5003 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5004 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5005 		stmmac_mdio_unregister(ndev);
5006 error_mdio_register:
5007 	for (queue = 0; queue < maxq; queue++) {
5008 		struct stmmac_channel *ch = &priv->channel[queue];
5009 
5010 		if (queue < priv->plat->rx_queues_to_use)
5011 			netif_napi_del(&ch->rx_napi);
5012 		if (queue < priv->plat->tx_queues_to_use)
5013 			netif_napi_del(&ch->tx_napi);
5014 	}
5015 error_hw_init:
5016 	destroy_workqueue(priv->wq);
5017 
5018 	return ret;
5019 }
5020 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5021 
5022 /**
5023  * stmmac_dvr_remove
5024  * @dev: device pointer
5025  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5026  * changes the link status, releases the DMA descriptor rings.
5027  */
5028 int stmmac_dvr_remove(struct device *dev)
5029 {
5030 	struct net_device *ndev = dev_get_drvdata(dev);
5031 	struct stmmac_priv *priv = netdev_priv(ndev);
5032 
5033 	netdev_info(priv->dev, "%s: removing driver", __func__);
5034 
5035 	stmmac_stop_all_dma(priv);
5036 
5037 	if (priv->plat->serdes_powerdown)
5038 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5039 
5040 	stmmac_mac_set(priv, priv->ioaddr, false);
5041 	netif_carrier_off(ndev);
5042 	unregister_netdev(ndev);
5043 #ifdef CONFIG_DEBUG_FS
5044 	stmmac_exit_fs(ndev);
5045 #endif
5046 	phylink_destroy(priv->phylink);
5047 	if (priv->plat->stmmac_rst)
5048 		reset_control_assert(priv->plat->stmmac_rst);
5049 	clk_disable_unprepare(priv->plat->pclk);
5050 	clk_disable_unprepare(priv->plat->stmmac_clk);
5051 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5052 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5053 		stmmac_mdio_unregister(ndev);
5054 	destroy_workqueue(priv->wq);
5055 	mutex_destroy(&priv->lock);
5056 
5057 	return 0;
5058 }
5059 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5060 
5061 /**
5062  * stmmac_suspend - suspend callback
5063  * @dev: device pointer
5064  * Description: this is the function to suspend the device and it is called
5065  * by the platform driver to stop the network queue, release the resources,
5066  * program the PMT register (for WoL), clean and release driver resources.
5067  */
5068 int stmmac_suspend(struct device *dev)
5069 {
5070 	struct net_device *ndev = dev_get_drvdata(dev);
5071 	struct stmmac_priv *priv = netdev_priv(ndev);
5072 	u32 chan;
5073 
5074 	if (!ndev || !netif_running(ndev))
5075 		return 0;
5076 
5077 	phylink_mac_change(priv->phylink, false);
5078 
5079 	mutex_lock(&priv->lock);
5080 
5081 	netif_device_detach(ndev);
5082 	stmmac_stop_all_queues(priv);
5083 
5084 	stmmac_disable_all_queues(priv);
5085 
5086 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5087 		del_timer_sync(&priv->tx_queue[chan].txtimer);
5088 
5089 	/* Stop TX/RX DMA */
5090 	stmmac_stop_all_dma(priv);
5091 
5092 	if (priv->plat->serdes_powerdown)
5093 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5094 
5095 	/* Enable Power down mode by programming the PMT regs */
5096 	if (device_may_wakeup(priv->device)) {
5097 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5098 		priv->irq_wake = 1;
5099 	} else {
5100 		mutex_unlock(&priv->lock);
5101 		rtnl_lock();
5102 		phylink_stop(priv->phylink);
5103 		rtnl_unlock();
5104 		mutex_lock(&priv->lock);
5105 
5106 		stmmac_mac_set(priv, priv->ioaddr, false);
5107 		pinctrl_pm_select_sleep_state(priv->device);
5108 		/* Disable clock in case of PWM is off */
5109 		if (priv->plat->clk_ptp_ref)
5110 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
5111 		clk_disable_unprepare(priv->plat->pclk);
5112 		clk_disable_unprepare(priv->plat->stmmac_clk);
5113 	}
5114 	mutex_unlock(&priv->lock);
5115 
5116 	priv->speed = SPEED_UNKNOWN;
5117 	return 0;
5118 }
5119 EXPORT_SYMBOL_GPL(stmmac_suspend);
5120 
5121 /**
5122  * stmmac_reset_queues_param - reset queue parameters
5123  * @dev: device pointer
5124  */
5125 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5126 {
5127 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5128 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5129 	u32 queue;
5130 
5131 	for (queue = 0; queue < rx_cnt; queue++) {
5132 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5133 
5134 		rx_q->cur_rx = 0;
5135 		rx_q->dirty_rx = 0;
5136 	}
5137 
5138 	for (queue = 0; queue < tx_cnt; queue++) {
5139 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5140 
5141 		tx_q->cur_tx = 0;
5142 		tx_q->dirty_tx = 0;
5143 		tx_q->mss = 0;
5144 	}
5145 }
5146 
5147 /**
5148  * stmmac_resume - resume callback
5149  * @dev: device pointer
5150  * Description: when resume this function is invoked to setup the DMA and CORE
5151  * in a usable state.
5152  */
5153 int stmmac_resume(struct device *dev)
5154 {
5155 	struct net_device *ndev = dev_get_drvdata(dev);
5156 	struct stmmac_priv *priv = netdev_priv(ndev);
5157 	int ret;
5158 
5159 	if (!netif_running(ndev))
5160 		return 0;
5161 
5162 	/* Power Down bit, into the PM register, is cleared
5163 	 * automatically as soon as a magic packet or a Wake-up frame
5164 	 * is received. Anyway, it's better to manually clear
5165 	 * this bit because it can generate problems while resuming
5166 	 * from another devices (e.g. serial console).
5167 	 */
5168 	if (device_may_wakeup(priv->device)) {
5169 		mutex_lock(&priv->lock);
5170 		stmmac_pmt(priv, priv->hw, 0);
5171 		mutex_unlock(&priv->lock);
5172 		priv->irq_wake = 0;
5173 	} else {
5174 		pinctrl_pm_select_default_state(priv->device);
5175 		/* enable the clk previously disabled */
5176 		clk_prepare_enable(priv->plat->stmmac_clk);
5177 		clk_prepare_enable(priv->plat->pclk);
5178 		if (priv->plat->clk_ptp_ref)
5179 			clk_prepare_enable(priv->plat->clk_ptp_ref);
5180 		/* reset the phy so that it's ready */
5181 		if (priv->mii)
5182 			stmmac_mdio_reset(priv->mii);
5183 	}
5184 
5185 	if (priv->plat->serdes_powerup) {
5186 		ret = priv->plat->serdes_powerup(ndev,
5187 						 priv->plat->bsp_priv);
5188 
5189 		if (ret < 0)
5190 			return ret;
5191 	}
5192 
5193 	netif_device_attach(ndev);
5194 
5195 	mutex_lock(&priv->lock);
5196 
5197 	stmmac_reset_queues_param(priv);
5198 
5199 	stmmac_clear_descriptors(priv);
5200 
5201 	stmmac_hw_setup(ndev, false);
5202 	stmmac_init_coalesce(priv);
5203 	stmmac_set_rx_mode(ndev);
5204 
5205 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5206 
5207 	stmmac_enable_all_queues(priv);
5208 
5209 	stmmac_start_all_queues(priv);
5210 
5211 	mutex_unlock(&priv->lock);
5212 
5213 	if (!device_may_wakeup(priv->device)) {
5214 		rtnl_lock();
5215 		phylink_start(priv->phylink);
5216 		rtnl_unlock();
5217 	}
5218 
5219 	phylink_mac_change(priv->phylink, true);
5220 
5221 	return 0;
5222 }
5223 EXPORT_SYMBOL_GPL(stmmac_resume);
5224 
5225 #ifndef MODULE
5226 static int __init stmmac_cmdline_opt(char *str)
5227 {
5228 	char *opt;
5229 
5230 	if (!str || !*str)
5231 		return -EINVAL;
5232 	while ((opt = strsep(&str, ",")) != NULL) {
5233 		if (!strncmp(opt, "debug:", 6)) {
5234 			if (kstrtoint(opt + 6, 0, &debug))
5235 				goto err;
5236 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5237 			if (kstrtoint(opt + 8, 0, &phyaddr))
5238 				goto err;
5239 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5240 			if (kstrtoint(opt + 7, 0, &buf_sz))
5241 				goto err;
5242 		} else if (!strncmp(opt, "tc:", 3)) {
5243 			if (kstrtoint(opt + 3, 0, &tc))
5244 				goto err;
5245 		} else if (!strncmp(opt, "watchdog:", 9)) {
5246 			if (kstrtoint(opt + 9, 0, &watchdog))
5247 				goto err;
5248 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5249 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5250 				goto err;
5251 		} else if (!strncmp(opt, "pause:", 6)) {
5252 			if (kstrtoint(opt + 6, 0, &pause))
5253 				goto err;
5254 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5255 			if (kstrtoint(opt + 10, 0, &eee_timer))
5256 				goto err;
5257 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5258 			if (kstrtoint(opt + 11, 0, &chain_mode))
5259 				goto err;
5260 		}
5261 	}
5262 	return 0;
5263 
5264 err:
5265 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5266 	return -EINVAL;
5267 }
5268 
5269 __setup("stmmaceth=", stmmac_cmdline_opt);
5270 #endif /* MODULE */
5271 
5272 static int __init stmmac_init(void)
5273 {
5274 #ifdef CONFIG_DEBUG_FS
5275 	/* Create debugfs main directory if it doesn't exist yet */
5276 	if (!stmmac_fs_dir)
5277 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5278 	register_netdevice_notifier(&stmmac_notifier);
5279 #endif
5280 
5281 	return 0;
5282 }
5283 
5284 static void __exit stmmac_exit(void)
5285 {
5286 #ifdef CONFIG_DEBUG_FS
5287 	unregister_netdevice_notifier(&stmmac_notifier);
5288 	debugfs_remove_recursive(stmmac_fs_dir);
5289 #endif
5290 }
5291 
5292 module_init(stmmac_init)
5293 module_exit(stmmac_exit)
5294 
5295 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5296 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5297 MODULE_LICENSE("GPL");
5298