1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 
57 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
58 
59 /* Module parameters */
60 #define TX_TIMEO	5000
61 static int watchdog = TX_TIMEO;
62 module_param(watchdog, int, S_IRUGO | S_IWUSR);
63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
64 
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO | S_IWUSR);
67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
68 
69 static int phyaddr = -1;
70 module_param(phyaddr, int, S_IRUGO);
71 MODULE_PARM_DESC(phyaddr, "Physical device address");
72 
73 #define DMA_TX_SIZE 256
74 static int dma_txsize = DMA_TX_SIZE;
75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
77 
78 #define DMA_RX_SIZE 256
79 static int dma_rxsize = DMA_RX_SIZE;
80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
82 
83 static int flow_ctrl = FLOW_OFF;
84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86 
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90 
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95 
96 #define	DEFAULT_BUFSIZE	1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100 
101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
102 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
103 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
104 
105 #define STMMAC_DEFAULT_LPI_TIMER	1000
106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
107 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
110 
111 /* By default the driver will use the ring mode to manage tx and rx descriptors
112  * but passing this value so user can force to use the chain instead of the ring
113  */
114 static unsigned int chain_mode;
115 module_param(chain_mode, int, S_IRUGO);
116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
117 
118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
119 
120 #ifdef CONFIG_DEBUG_FS
121 static int stmmac_init_fs(struct net_device *dev);
122 static void stmmac_exit_fs(struct net_device *dev);
123 #endif
124 
125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
126 
127 /**
128  * stmmac_verify_args - verify the driver parameters.
129  * Description: it checks the driver parameters and set a default in case of
130  * errors.
131  */
132 static void stmmac_verify_args(void)
133 {
134 	if (unlikely(watchdog < 0))
135 		watchdog = TX_TIMEO;
136 	if (unlikely(dma_rxsize < 0))
137 		dma_rxsize = DMA_RX_SIZE;
138 	if (unlikely(dma_txsize < 0))
139 		dma_txsize = DMA_TX_SIZE;
140 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
141 		buf_sz = DEFAULT_BUFSIZE;
142 	if (unlikely(flow_ctrl > 1))
143 		flow_ctrl = FLOW_AUTO;
144 	else if (likely(flow_ctrl < 0))
145 		flow_ctrl = FLOW_OFF;
146 	if (unlikely((pause < 0) || (pause > 0xffff)))
147 		pause = PAUSE_TIME;
148 	if (eee_timer < 0)
149 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
150 }
151 
152 /**
153  * stmmac_clk_csr_set - dynamically set the MDC clock
154  * @priv: driver private structure
155  * Description: this is to dynamically set the MDC clock according to the csr
156  * clock input.
157  * Note:
158  *	If a specific clk_csr value is passed from the platform
159  *	this means that the CSR Clock Range selection cannot be
160  *	changed at run-time and it is fixed (as reported in the driver
161  *	documentation). Viceversa the driver will try to set the MDC
162  *	clock dynamically according to the actual clock input.
163  */
164 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
165 {
166 	u32 clk_rate;
167 
168 	clk_rate = clk_get_rate(priv->stmmac_clk);
169 
170 	/* Platform provided default clk_csr would be assumed valid
171 	 * for all other cases except for the below mentioned ones.
172 	 * For values higher than the IEEE 802.3 specified frequency
173 	 * we can not estimate the proper divider as it is not known
174 	 * the frequency of clk_csr_i. So we do not change the default
175 	 * divider.
176 	 */
177 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
178 		if (clk_rate < CSR_F_35M)
179 			priv->clk_csr = STMMAC_CSR_20_35M;
180 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
181 			priv->clk_csr = STMMAC_CSR_35_60M;
182 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
183 			priv->clk_csr = STMMAC_CSR_60_100M;
184 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
185 			priv->clk_csr = STMMAC_CSR_100_150M;
186 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
187 			priv->clk_csr = STMMAC_CSR_150_250M;
188 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
189 			priv->clk_csr = STMMAC_CSR_250_300M;
190 	}
191 }
192 
193 static void print_pkt(unsigned char *buf, int len)
194 {
195 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
196 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
197 }
198 
199 /* minimum number of free TX descriptors required to wake up TX process */
200 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
201 
202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
203 {
204 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
205 }
206 
207 /**
208  * stmmac_hw_fix_mac_speed - callback for speed selection
209  * @priv: driver private structure
210  * Description: on some platforms (e.g. ST), some HW system configuraton
211  * registers have to be set according to the link speed negotiated.
212  */
213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
214 {
215 	struct phy_device *phydev = priv->phydev;
216 
217 	if (likely(priv->plat->fix_mac_speed))
218 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
219 }
220 
221 /**
222  * stmmac_enable_eee_mode - check and enter in LPI mode
223  * @priv: driver private structure
224  * Description: this function is to verify and enter in LPI mode in case of
225  * EEE.
226  */
227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
228 {
229 	/* Check and enter in LPI mode */
230 	if ((priv->dirty_tx == priv->cur_tx) &&
231 	    (priv->tx_path_in_lpi_mode == false))
232 		priv->hw->mac->set_eee_mode(priv->hw);
233 }
234 
235 /**
236  * stmmac_disable_eee_mode - disable and exit from LPI mode
237  * @priv: driver private structure
238  * Description: this function is to exit and disable EEE in case of
239  * LPI state is true. This is called by the xmit.
240  */
241 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
242 {
243 	priv->hw->mac->reset_eee_mode(priv->hw);
244 	del_timer_sync(&priv->eee_ctrl_timer);
245 	priv->tx_path_in_lpi_mode = false;
246 }
247 
248 /**
249  * stmmac_eee_ctrl_timer - EEE TX SW timer.
250  * @arg : data hook
251  * Description:
252  *  if there is no data transfer and if we are not in LPI state,
253  *  then MAC Transmitter can be moved to LPI state.
254  */
255 static void stmmac_eee_ctrl_timer(unsigned long arg)
256 {
257 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
258 
259 	stmmac_enable_eee_mode(priv);
260 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
261 }
262 
263 /**
264  * stmmac_eee_init - init EEE
265  * @priv: driver private structure
266  * Description:
267  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
268  *  can also manage EEE, this function enable the LPI state and start related
269  *  timer.
270  */
271 bool stmmac_eee_init(struct stmmac_priv *priv)
272 {
273 	char *phy_bus_name = priv->plat->phy_bus_name;
274 	unsigned long flags;
275 	bool ret = false;
276 
277 	/* Using PCS we cannot dial with the phy registers at this stage
278 	 * so we do not support extra feature like EEE.
279 	 */
280 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
281 	    (priv->pcs == STMMAC_PCS_RTBI))
282 		goto out;
283 
284 	/* Never init EEE in case of a switch is attached */
285 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
286 		goto out;
287 
288 	/* MAC core supports the EEE feature. */
289 	if (priv->dma_cap.eee) {
290 		int tx_lpi_timer = priv->tx_lpi_timer;
291 
292 		/* Check if the PHY supports EEE */
293 		if (phy_init_eee(priv->phydev, 1)) {
294 			/* To manage at run-time if the EEE cannot be supported
295 			 * anymore (for example because the lp caps have been
296 			 * changed).
297 			 * In that case the driver disable own timers.
298 			 */
299 			spin_lock_irqsave(&priv->lock, flags);
300 			if (priv->eee_active) {
301 				pr_debug("stmmac: disable EEE\n");
302 				del_timer_sync(&priv->eee_ctrl_timer);
303 				priv->hw->mac->set_eee_timer(priv->hw, 0,
304 							     tx_lpi_timer);
305 			}
306 			priv->eee_active = 0;
307 			spin_unlock_irqrestore(&priv->lock, flags);
308 			goto out;
309 		}
310 		/* Activate the EEE and start timers */
311 		spin_lock_irqsave(&priv->lock, flags);
312 		if (!priv->eee_active) {
313 			priv->eee_active = 1;
314 			setup_timer(&priv->eee_ctrl_timer,
315 				    stmmac_eee_ctrl_timer,
316 				    (unsigned long)priv);
317 			mod_timer(&priv->eee_ctrl_timer,
318 				  STMMAC_LPI_T(eee_timer));
319 
320 			priv->hw->mac->set_eee_timer(priv->hw,
321 						     STMMAC_DEFAULT_LIT_LS,
322 						     tx_lpi_timer);
323 		}
324 		/* Set HW EEE according to the speed */
325 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
326 
327 		ret = true;
328 		spin_unlock_irqrestore(&priv->lock, flags);
329 
330 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
331 	}
332 out:
333 	return ret;
334 }
335 
336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
337  * @priv: driver private structure
338  * @entry : descriptor index to be used.
339  * @skb : the socket buffer
340  * Description :
341  * This function will read timestamp from the descriptor & pass it to stack.
342  * and also perform some sanity checks.
343  */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345 				   unsigned int entry, struct sk_buff *skb)
346 {
347 	struct skb_shared_hwtstamps shhwtstamp;
348 	u64 ns;
349 	void *desc = NULL;
350 
351 	if (!priv->hwts_tx_en)
352 		return;
353 
354 	/* exit if skb doesn't support hw tstamp */
355 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356 		return;
357 
358 	if (priv->adv_ts)
359 		desc = (priv->dma_etx + entry);
360 	else
361 		desc = (priv->dma_tx + entry);
362 
363 	/* check tx tstamp status */
364 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365 		return;
366 
367 	/* get the valid tstamp */
368 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369 
370 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
372 	/* pass tstamp to stack */
373 	skb_tstamp_tx(skb, &shhwtstamp);
374 
375 	return;
376 }
377 
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379  * @priv: driver private structure
380  * @entry : descriptor index to be used.
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387 				   unsigned int entry, struct sk_buff *skb)
388 {
389 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
390 	u64 ns;
391 	void *desc = NULL;
392 
393 	if (!priv->hwts_rx_en)
394 		return;
395 
396 	if (priv->adv_ts)
397 		desc = (priv->dma_erx + entry);
398 	else
399 		desc = (priv->dma_rx + entry);
400 
401 	/* exit if rx tstamp is not valid */
402 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403 		return;
404 
405 	/* get valid tstamp */
406 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407 	shhwtstamp = skb_hwtstamps(skb);
408 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411 
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425 	struct stmmac_priv *priv = netdev_priv(dev);
426 	struct hwtstamp_config config;
427 	struct timespec now;
428 	u64 temp = 0;
429 	u32 ptp_v2 = 0;
430 	u32 tstamp_all = 0;
431 	u32 ptp_over_ipv4_udp = 0;
432 	u32 ptp_over_ipv6_udp = 0;
433 	u32 ptp_over_ethernet = 0;
434 	u32 snap_type_sel = 0;
435 	u32 ts_master_en = 0;
436 	u32 ts_event_en = 0;
437 	u32 value = 0;
438 
439 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440 		netdev_alert(priv->dev, "No support for HW time stamping\n");
441 		priv->hwts_tx_en = 0;
442 		priv->hwts_rx_en = 0;
443 
444 		return -EOPNOTSUPP;
445 	}
446 
447 	if (copy_from_user(&config, ifr->ifr_data,
448 			   sizeof(struct hwtstamp_config)))
449 		return -EFAULT;
450 
451 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452 		 __func__, config.flags, config.tx_type, config.rx_filter);
453 
454 	/* reserved for future extensions */
455 	if (config.flags)
456 		return -EINVAL;
457 
458 	if (config.tx_type != HWTSTAMP_TX_OFF &&
459 	    config.tx_type != HWTSTAMP_TX_ON)
460 		return -ERANGE;
461 
462 	if (priv->adv_ts) {
463 		switch (config.rx_filter) {
464 		case HWTSTAMP_FILTER_NONE:
465 			/* time stamp no incoming packet at all */
466 			config.rx_filter = HWTSTAMP_FILTER_NONE;
467 			break;
468 
469 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470 			/* PTP v1, UDP, any kind of event packet */
471 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472 			/* take time stamp for all event messages */
473 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474 
475 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477 			break;
478 
479 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480 			/* PTP v1, UDP, Sync packet */
481 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482 			/* take time stamp for SYNC messages only */
483 			ts_event_en = PTP_TCR_TSEVNTENA;
484 
485 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487 			break;
488 
489 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490 			/* PTP v1, UDP, Delay_req packet */
491 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492 			/* take time stamp for Delay_Req messages only */
493 			ts_master_en = PTP_TCR_TSMSTRENA;
494 			ts_event_en = PTP_TCR_TSEVNTENA;
495 
496 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498 			break;
499 
500 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501 			/* PTP v2, UDP, any kind of event packet */
502 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503 			ptp_v2 = PTP_TCR_TSVER2ENA;
504 			/* take time stamp for all event messages */
505 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506 
507 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509 			break;
510 
511 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512 			/* PTP v2, UDP, Sync packet */
513 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514 			ptp_v2 = PTP_TCR_TSVER2ENA;
515 			/* take time stamp for SYNC messages only */
516 			ts_event_en = PTP_TCR_TSEVNTENA;
517 
518 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520 			break;
521 
522 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523 			/* PTP v2, UDP, Delay_req packet */
524 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525 			ptp_v2 = PTP_TCR_TSVER2ENA;
526 			/* take time stamp for Delay_Req messages only */
527 			ts_master_en = PTP_TCR_TSMSTRENA;
528 			ts_event_en = PTP_TCR_TSEVNTENA;
529 
530 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532 			break;
533 
534 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
535 			/* PTP v2/802.AS1 any layer, any kind of event packet */
536 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537 			ptp_v2 = PTP_TCR_TSVER2ENA;
538 			/* take time stamp for all event messages */
539 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540 
541 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543 			ptp_over_ethernet = PTP_TCR_TSIPENA;
544 			break;
545 
546 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
547 			/* PTP v2/802.AS1, any layer, Sync packet */
548 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549 			ptp_v2 = PTP_TCR_TSVER2ENA;
550 			/* take time stamp for SYNC messages only */
551 			ts_event_en = PTP_TCR_TSEVNTENA;
552 
553 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 			ptp_over_ethernet = PTP_TCR_TSIPENA;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559 			/* PTP v2/802.AS1, any layer, Delay_req packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561 			ptp_v2 = PTP_TCR_TSVER2ENA;
562 			/* take time stamp for Delay_Req messages only */
563 			ts_master_en = PTP_TCR_TSMSTRENA;
564 			ts_event_en = PTP_TCR_TSEVNTENA;
565 
566 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568 			ptp_over_ethernet = PTP_TCR_TSIPENA;
569 			break;
570 
571 		case HWTSTAMP_FILTER_ALL:
572 			/* time stamp any incoming packet */
573 			config.rx_filter = HWTSTAMP_FILTER_ALL;
574 			tstamp_all = PTP_TCR_TSENALL;
575 			break;
576 
577 		default:
578 			return -ERANGE;
579 		}
580 	} else {
581 		switch (config.rx_filter) {
582 		case HWTSTAMP_FILTER_NONE:
583 			config.rx_filter = HWTSTAMP_FILTER_NONE;
584 			break;
585 		default:
586 			/* PTP v1, UDP, any kind of event packet */
587 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588 			break;
589 		}
590 	}
591 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593 
594 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596 	else {
597 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
599 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600 			 ts_master_en | snap_type_sel);
601 
602 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603 
604 		/* program Sub Second Increment reg */
605 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606 
607 		/* calculate default added value:
608 		 * formula is :
609 		 * addend = (2^32)/freq_div_ratio;
610 		 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611 		 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612 		 * NOTE: clk_ptp_ref_i should be >= 50MHz to
613 		 *       achieve 20ns accuracy.
614 		 *
615 		 * 2^x * y == (y << x), hence
616 		 * 2^32 * 50000000 ==> (50000000 << 32)
617 		 */
618 		temp = (u64) (50000000ULL << 32);
619 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 		priv->hw->ptp->config_addend(priv->ioaddr,
621 					     priv->default_addend);
622 
623 		/* initialize system time */
624 		getnstimeofday(&now);
625 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
626 					    now.tv_nsec);
627 	}
628 
629 	return copy_to_user(ifr->ifr_data, &config,
630 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
631 }
632 
633 /**
634  * stmmac_init_ptp - init PTP
635  * @priv: driver private structure
636  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
637  * This is done by looking at the HW cap. register.
638  * This function also registers the ptp driver.
639  */
640 static int stmmac_init_ptp(struct stmmac_priv *priv)
641 {
642 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
643 		return -EOPNOTSUPP;
644 
645 	/* Fall-back to main clock in case of no PTP ref is passed */
646 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
647 	if (IS_ERR(priv->clk_ptp_ref)) {
648 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
649 		priv->clk_ptp_ref = NULL;
650 	} else {
651 		clk_prepare_enable(priv->clk_ptp_ref);
652 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
653 	}
654 
655 	priv->adv_ts = 0;
656 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
657 		priv->adv_ts = 1;
658 
659 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
660 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
661 
662 	if (netif_msg_hw(priv) && priv->adv_ts)
663 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
664 
665 	priv->hw->ptp = &stmmac_ptp;
666 	priv->hwts_tx_en = 0;
667 	priv->hwts_rx_en = 0;
668 
669 	return stmmac_ptp_register(priv);
670 }
671 
672 static void stmmac_release_ptp(struct stmmac_priv *priv)
673 {
674 	if (priv->clk_ptp_ref)
675 		clk_disable_unprepare(priv->clk_ptp_ref);
676 	stmmac_ptp_unregister(priv);
677 }
678 
679 /**
680  * stmmac_adjust_link - adjusts the link parameters
681  * @dev: net device structure
682  * Description: this is the helper called by the physical abstraction layer
683  * drivers to communicate the phy link status. According the speed and duplex
684  * this driver can invoke registered glue-logic as well.
685  * It also invoke the eee initialization because it could happen when switch
686  * on different networks (that are eee capable).
687  */
688 static void stmmac_adjust_link(struct net_device *dev)
689 {
690 	struct stmmac_priv *priv = netdev_priv(dev);
691 	struct phy_device *phydev = priv->phydev;
692 	unsigned long flags;
693 	int new_state = 0;
694 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
695 
696 	if (phydev == NULL)
697 		return;
698 
699 	spin_lock_irqsave(&priv->lock, flags);
700 
701 	if (phydev->link) {
702 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
703 
704 		/* Now we make sure that we can be in full duplex mode.
705 		 * If not, we operate in half-duplex mode. */
706 		if (phydev->duplex != priv->oldduplex) {
707 			new_state = 1;
708 			if (!(phydev->duplex))
709 				ctrl &= ~priv->hw->link.duplex;
710 			else
711 				ctrl |= priv->hw->link.duplex;
712 			priv->oldduplex = phydev->duplex;
713 		}
714 		/* Flow Control operation */
715 		if (phydev->pause)
716 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
717 						 fc, pause_time);
718 
719 		if (phydev->speed != priv->speed) {
720 			new_state = 1;
721 			switch (phydev->speed) {
722 			case 1000:
723 				if (likely(priv->plat->has_gmac))
724 					ctrl &= ~priv->hw->link.port;
725 				stmmac_hw_fix_mac_speed(priv);
726 				break;
727 			case 100:
728 			case 10:
729 				if (priv->plat->has_gmac) {
730 					ctrl |= priv->hw->link.port;
731 					if (phydev->speed == SPEED_100) {
732 						ctrl |= priv->hw->link.speed;
733 					} else {
734 						ctrl &= ~(priv->hw->link.speed);
735 					}
736 				} else {
737 					ctrl &= ~priv->hw->link.port;
738 				}
739 				stmmac_hw_fix_mac_speed(priv);
740 				break;
741 			default:
742 				if (netif_msg_link(priv))
743 					pr_warn("%s: Speed (%d) not 10/100\n",
744 						dev->name, phydev->speed);
745 				break;
746 			}
747 
748 			priv->speed = phydev->speed;
749 		}
750 
751 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
752 
753 		if (!priv->oldlink) {
754 			new_state = 1;
755 			priv->oldlink = 1;
756 		}
757 	} else if (priv->oldlink) {
758 		new_state = 1;
759 		priv->oldlink = 0;
760 		priv->speed = 0;
761 		priv->oldduplex = -1;
762 	}
763 
764 	if (new_state && netif_msg_link(priv))
765 		phy_print_status(phydev);
766 
767 	spin_unlock_irqrestore(&priv->lock, flags);
768 
769 	/* At this stage, it could be needed to setup the EEE or adjust some
770 	 * MAC related HW registers.
771 	 */
772 	priv->eee_enabled = stmmac_eee_init(priv);
773 }
774 
775 /**
776  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
777  * @priv: driver private structure
778  * Description: this is to verify if the HW supports the PCS.
779  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
780  * configured for the TBI, RTBI, or SGMII PHY interface.
781  */
782 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
783 {
784 	int interface = priv->plat->interface;
785 
786 	if (priv->dma_cap.pcs) {
787 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
788 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
789 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
790 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
791 			pr_debug("STMMAC: PCS RGMII support enable\n");
792 			priv->pcs = STMMAC_PCS_RGMII;
793 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
794 			pr_debug("STMMAC: PCS SGMII support enable\n");
795 			priv->pcs = STMMAC_PCS_SGMII;
796 		}
797 	}
798 }
799 
800 /**
801  * stmmac_init_phy - PHY initialization
802  * @dev: net device structure
803  * Description: it initializes the driver's PHY state, and attaches the PHY
804  * to the mac driver.
805  *  Return value:
806  *  0 on success
807  */
808 static int stmmac_init_phy(struct net_device *dev)
809 {
810 	struct stmmac_priv *priv = netdev_priv(dev);
811 	struct phy_device *phydev;
812 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
813 	char bus_id[MII_BUS_ID_SIZE];
814 	int interface = priv->plat->interface;
815 	int max_speed = priv->plat->max_speed;
816 	priv->oldlink = 0;
817 	priv->speed = 0;
818 	priv->oldduplex = -1;
819 
820 	if (priv->plat->phy_node) {
821 		phydev = of_phy_connect(dev, priv->plat->phy_node,
822 					&stmmac_adjust_link, 0, interface);
823 	} else {
824 		if (priv->plat->phy_bus_name)
825 			snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
826 				 priv->plat->phy_bus_name, priv->plat->bus_id);
827 		else
828 			snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
829 				 priv->plat->bus_id);
830 
831 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
832 			 priv->plat->phy_addr);
833 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
834 			 phy_id_fmt);
835 
836 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
837 				     interface);
838 	}
839 
840 	if (IS_ERR(phydev)) {
841 		pr_err("%s: Could not attach to PHY\n", dev->name);
842 		return PTR_ERR(phydev);
843 	}
844 
845 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
846 	if ((interface == PHY_INTERFACE_MODE_MII) ||
847 	    (interface == PHY_INTERFACE_MODE_RMII) ||
848 		(max_speed < 1000 && max_speed > 0))
849 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
850 					 SUPPORTED_1000baseT_Full);
851 
852 	/*
853 	 * Broken HW is sometimes missing the pull-up resistor on the
854 	 * MDIO line, which results in reads to non-existent devices returning
855 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
856 	 * device as well.
857 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
858 	 */
859 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
860 		phy_disconnect(phydev);
861 		return -ENODEV;
862 	}
863 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
864 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
865 
866 	priv->phydev = phydev;
867 
868 	return 0;
869 }
870 
871 /**
872  * stmmac_display_ring - display ring
873  * @head: pointer to the head of the ring passed.
874  * @size: size of the ring.
875  * @extend_desc: to verify if extended descriptors are used.
876  * Description: display the control/status and buffer descriptors.
877  */
878 static void stmmac_display_ring(void *head, int size, int extend_desc)
879 {
880 	int i;
881 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
882 	struct dma_desc *p = (struct dma_desc *)head;
883 
884 	for (i = 0; i < size; i++) {
885 		u64 x;
886 		if (extend_desc) {
887 			x = *(u64 *) ep;
888 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
889 				i, (unsigned int)virt_to_phys(ep),
890 				(unsigned int)x, (unsigned int)(x >> 32),
891 				ep->basic.des2, ep->basic.des3);
892 			ep++;
893 		} else {
894 			x = *(u64 *) p;
895 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
896 				i, (unsigned int)virt_to_phys(p),
897 				(unsigned int)x, (unsigned int)(x >> 32),
898 				p->des2, p->des3);
899 			p++;
900 		}
901 		pr_info("\n");
902 	}
903 }
904 
905 static void stmmac_display_rings(struct stmmac_priv *priv)
906 {
907 	unsigned int txsize = priv->dma_tx_size;
908 	unsigned int rxsize = priv->dma_rx_size;
909 
910 	if (priv->extend_desc) {
911 		pr_info("Extended RX descriptor ring:\n");
912 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
913 		pr_info("Extended TX descriptor ring:\n");
914 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
915 	} else {
916 		pr_info("RX descriptor ring:\n");
917 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
918 		pr_info("TX descriptor ring:\n");
919 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
920 	}
921 }
922 
923 static int stmmac_set_bfsize(int mtu, int bufsize)
924 {
925 	int ret = bufsize;
926 
927 	if (mtu >= BUF_SIZE_4KiB)
928 		ret = BUF_SIZE_8KiB;
929 	else if (mtu >= BUF_SIZE_2KiB)
930 		ret = BUF_SIZE_4KiB;
931 	else if (mtu > DEFAULT_BUFSIZE)
932 		ret = BUF_SIZE_2KiB;
933 	else
934 		ret = DEFAULT_BUFSIZE;
935 
936 	return ret;
937 }
938 
939 /**
940  * stmmac_clear_descriptors - clear descriptors
941  * @priv: driver private structure
942  * Description: this function is called to clear the tx and rx descriptors
943  * in case of both basic and extended descriptors are used.
944  */
945 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
946 {
947 	int i;
948 	unsigned int txsize = priv->dma_tx_size;
949 	unsigned int rxsize = priv->dma_rx_size;
950 
951 	/* Clear the Rx/Tx descriptors */
952 	for (i = 0; i < rxsize; i++)
953 		if (priv->extend_desc)
954 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
955 						     priv->use_riwt, priv->mode,
956 						     (i == rxsize - 1));
957 		else
958 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
959 						     priv->use_riwt, priv->mode,
960 						     (i == rxsize - 1));
961 	for (i = 0; i < txsize; i++)
962 		if (priv->extend_desc)
963 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
964 						     priv->mode,
965 						     (i == txsize - 1));
966 		else
967 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
968 						     priv->mode,
969 						     (i == txsize - 1));
970 }
971 
972 /**
973  * stmmac_init_rx_buffers - init the RX descriptor buffer.
974  * @priv: driver private structure
975  * @p: descriptor pointer
976  * @i: descriptor index
977  * @flags: gfp flag.
978  * Description: this function is called to allocate a receive buffer, perform
979  * the DMA mapping and init the descriptor.
980  */
981 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
982 				  int i, gfp_t flags)
983 {
984 	struct sk_buff *skb;
985 
986 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
987 	if (!skb) {
988 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
989 		return -ENOMEM;
990 	}
991 	priv->rx_skbuff[i] = skb;
992 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
993 						priv->dma_buf_sz,
994 						DMA_FROM_DEVICE);
995 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
996 		pr_err("%s: DMA mapping error\n", __func__);
997 		dev_kfree_skb_any(skb);
998 		return -EINVAL;
999 	}
1000 
1001 	p->des2 = priv->rx_skbuff_dma[i];
1002 
1003 	if ((priv->hw->mode->init_desc3) &&
1004 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
1005 		priv->hw->mode->init_desc3(p);
1006 
1007 	return 0;
1008 }
1009 
1010 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1011 {
1012 	if (priv->rx_skbuff[i]) {
1013 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1014 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1015 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1016 	}
1017 	priv->rx_skbuff[i] = NULL;
1018 }
1019 
1020 /**
1021  * init_dma_desc_rings - init the RX/TX descriptor rings
1022  * @dev: net device structure
1023  * @flags: gfp flag.
1024  * Description: this function initializes the DMA RX/TX descriptors
1025  * and allocates the socket buffers. It suppors the chained and ring
1026  * modes.
1027  */
1028 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1029 {
1030 	int i;
1031 	struct stmmac_priv *priv = netdev_priv(dev);
1032 	unsigned int txsize = priv->dma_tx_size;
1033 	unsigned int rxsize = priv->dma_rx_size;
1034 	unsigned int bfsize = 0;
1035 	int ret = -ENOMEM;
1036 
1037 	if (priv->hw->mode->set_16kib_bfsize)
1038 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1039 
1040 	if (bfsize < BUF_SIZE_16KiB)
1041 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1042 
1043 	priv->dma_buf_sz = bfsize;
1044 
1045 	if (netif_msg_probe(priv))
1046 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1047 			 txsize, rxsize, bfsize);
1048 
1049 	if (netif_msg_probe(priv)) {
1050 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1051 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1052 
1053 		/* RX INITIALIZATION */
1054 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1055 	}
1056 	for (i = 0; i < rxsize; i++) {
1057 		struct dma_desc *p;
1058 		if (priv->extend_desc)
1059 			p = &((priv->dma_erx + i)->basic);
1060 		else
1061 			p = priv->dma_rx + i;
1062 
1063 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1064 		if (ret)
1065 			goto err_init_rx_buffers;
1066 
1067 		if (netif_msg_probe(priv))
1068 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1069 				 priv->rx_skbuff[i]->data,
1070 				 (unsigned int)priv->rx_skbuff_dma[i]);
1071 	}
1072 	priv->cur_rx = 0;
1073 	priv->dirty_rx = (unsigned int)(i - rxsize);
1074 	buf_sz = bfsize;
1075 
1076 	/* Setup the chained descriptor addresses */
1077 	if (priv->mode == STMMAC_CHAIN_MODE) {
1078 		if (priv->extend_desc) {
1079 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1080 					     rxsize, 1);
1081 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1082 					     txsize, 1);
1083 		} else {
1084 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1085 					     rxsize, 0);
1086 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1087 					     txsize, 0);
1088 		}
1089 	}
1090 
1091 	/* TX INITIALIZATION */
1092 	for (i = 0; i < txsize; i++) {
1093 		struct dma_desc *p;
1094 		if (priv->extend_desc)
1095 			p = &((priv->dma_etx + i)->basic);
1096 		else
1097 			p = priv->dma_tx + i;
1098 		p->des2 = 0;
1099 		priv->tx_skbuff_dma[i].buf = 0;
1100 		priv->tx_skbuff_dma[i].map_as_page = false;
1101 		priv->tx_skbuff[i] = NULL;
1102 	}
1103 
1104 	priv->dirty_tx = 0;
1105 	priv->cur_tx = 0;
1106 	netdev_reset_queue(priv->dev);
1107 
1108 	stmmac_clear_descriptors(priv);
1109 
1110 	if (netif_msg_hw(priv))
1111 		stmmac_display_rings(priv);
1112 
1113 	return 0;
1114 err_init_rx_buffers:
1115 	while (--i >= 0)
1116 		stmmac_free_rx_buffers(priv, i);
1117 	return ret;
1118 }
1119 
1120 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1121 {
1122 	int i;
1123 
1124 	for (i = 0; i < priv->dma_rx_size; i++)
1125 		stmmac_free_rx_buffers(priv, i);
1126 }
1127 
1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1129 {
1130 	int i;
1131 
1132 	for (i = 0; i < priv->dma_tx_size; i++) {
1133 		struct dma_desc *p;
1134 
1135 		if (priv->extend_desc)
1136 			p = &((priv->dma_etx + i)->basic);
1137 		else
1138 			p = priv->dma_tx + i;
1139 
1140 		if (priv->tx_skbuff_dma[i].buf) {
1141 			if (priv->tx_skbuff_dma[i].map_as_page)
1142 				dma_unmap_page(priv->device,
1143 					       priv->tx_skbuff_dma[i].buf,
1144 					       priv->hw->desc->get_tx_len(p),
1145 					       DMA_TO_DEVICE);
1146 			else
1147 				dma_unmap_single(priv->device,
1148 						 priv->tx_skbuff_dma[i].buf,
1149 						 priv->hw->desc->get_tx_len(p),
1150 						 DMA_TO_DEVICE);
1151 		}
1152 
1153 		if (priv->tx_skbuff[i] != NULL) {
1154 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1155 			priv->tx_skbuff[i] = NULL;
1156 			priv->tx_skbuff_dma[i].buf = 0;
1157 			priv->tx_skbuff_dma[i].map_as_page = false;
1158 		}
1159 	}
1160 }
1161 
1162 /**
1163  * alloc_dma_desc_resources - alloc TX/RX resources.
1164  * @priv: private structure
1165  * Description: according to which descriptor can be used (extend or basic)
1166  * this function allocates the resources for TX and RX paths. In case of
1167  * reception, for example, it pre-allocated the RX socket buffer in order to
1168  * allow zero-copy mechanism.
1169  */
1170 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1171 {
1172 	unsigned int txsize = priv->dma_tx_size;
1173 	unsigned int rxsize = priv->dma_rx_size;
1174 	int ret = -ENOMEM;
1175 
1176 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1177 					    GFP_KERNEL);
1178 	if (!priv->rx_skbuff_dma)
1179 		return -ENOMEM;
1180 
1181 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1182 					GFP_KERNEL);
1183 	if (!priv->rx_skbuff)
1184 		goto err_rx_skbuff;
1185 
1186 	priv->tx_skbuff_dma = kmalloc_array(txsize,
1187 					    sizeof(*priv->tx_skbuff_dma),
1188 					    GFP_KERNEL);
1189 	if (!priv->tx_skbuff_dma)
1190 		goto err_tx_skbuff_dma;
1191 
1192 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1193 					GFP_KERNEL);
1194 	if (!priv->tx_skbuff)
1195 		goto err_tx_skbuff;
1196 
1197 	if (priv->extend_desc) {
1198 		priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1199 						    sizeof(struct
1200 							   dma_extended_desc),
1201 						    &priv->dma_rx_phy,
1202 						    GFP_KERNEL);
1203 		if (!priv->dma_erx)
1204 			goto err_dma;
1205 
1206 		priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1207 						    sizeof(struct
1208 							   dma_extended_desc),
1209 						    &priv->dma_tx_phy,
1210 						    GFP_KERNEL);
1211 		if (!priv->dma_etx) {
1212 			dma_free_coherent(priv->device, priv->dma_rx_size *
1213 					  sizeof(struct dma_extended_desc),
1214 					  priv->dma_erx, priv->dma_rx_phy);
1215 			goto err_dma;
1216 		}
1217 	} else {
1218 		priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1219 						   sizeof(struct dma_desc),
1220 						   &priv->dma_rx_phy,
1221 						   GFP_KERNEL);
1222 		if (!priv->dma_rx)
1223 			goto err_dma;
1224 
1225 		priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1226 						   sizeof(struct dma_desc),
1227 						   &priv->dma_tx_phy,
1228 						   GFP_KERNEL);
1229 		if (!priv->dma_tx) {
1230 			dma_free_coherent(priv->device, priv->dma_rx_size *
1231 					  sizeof(struct dma_desc),
1232 					  priv->dma_rx, priv->dma_rx_phy);
1233 			goto err_dma;
1234 		}
1235 	}
1236 
1237 	return 0;
1238 
1239 err_dma:
1240 	kfree(priv->tx_skbuff);
1241 err_tx_skbuff:
1242 	kfree(priv->tx_skbuff_dma);
1243 err_tx_skbuff_dma:
1244 	kfree(priv->rx_skbuff);
1245 err_rx_skbuff:
1246 	kfree(priv->rx_skbuff_dma);
1247 	return ret;
1248 }
1249 
1250 static void free_dma_desc_resources(struct stmmac_priv *priv)
1251 {
1252 	/* Release the DMA TX/RX socket buffers */
1253 	dma_free_rx_skbufs(priv);
1254 	dma_free_tx_skbufs(priv);
1255 
1256 	/* Free DMA regions of consistent memory previously allocated */
1257 	if (!priv->extend_desc) {
1258 		dma_free_coherent(priv->device,
1259 				  priv->dma_tx_size * sizeof(struct dma_desc),
1260 				  priv->dma_tx, priv->dma_tx_phy);
1261 		dma_free_coherent(priv->device,
1262 				  priv->dma_rx_size * sizeof(struct dma_desc),
1263 				  priv->dma_rx, priv->dma_rx_phy);
1264 	} else {
1265 		dma_free_coherent(priv->device, priv->dma_tx_size *
1266 				  sizeof(struct dma_extended_desc),
1267 				  priv->dma_etx, priv->dma_tx_phy);
1268 		dma_free_coherent(priv->device, priv->dma_rx_size *
1269 				  sizeof(struct dma_extended_desc),
1270 				  priv->dma_erx, priv->dma_rx_phy);
1271 	}
1272 	kfree(priv->rx_skbuff_dma);
1273 	kfree(priv->rx_skbuff);
1274 	kfree(priv->tx_skbuff_dma);
1275 	kfree(priv->tx_skbuff);
1276 }
1277 
1278 /**
1279  *  stmmac_dma_operation_mode - HW DMA operation mode
1280  *  @priv: driver private structure
1281  *  Description: it is used for configuring the DMA operation mode register in
1282  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1283  */
1284 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1285 {
1286 	int rxfifosz = priv->plat->rx_fifo_size;
1287 
1288 	if (priv->plat->force_thresh_dma_mode)
1289 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1290 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1291 		/*
1292 		 * In case of GMAC, SF mode can be enabled
1293 		 * to perform the TX COE in HW. This depends on:
1294 		 * 1) TX COE if actually supported
1295 		 * 2) There is no bugged Jumbo frame support
1296 		 *    that needs to not insert csum in the TDES.
1297 		 */
1298 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1299 					rxfifosz);
1300 		priv->xstats.threshold = SF_DMA_MODE;
1301 	} else
1302 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1303 					rxfifosz);
1304 }
1305 
1306 /**
1307  * stmmac_tx_clean - to manage the transmission completion
1308  * @priv: driver private structure
1309  * Description: it reclaims the transmit resources after transmission completes.
1310  */
1311 static void stmmac_tx_clean(struct stmmac_priv *priv)
1312 {
1313 	unsigned int txsize = priv->dma_tx_size;
1314 	unsigned int bytes_compl = 0, pkts_compl = 0;
1315 
1316 	spin_lock(&priv->tx_lock);
1317 
1318 	priv->xstats.tx_clean++;
1319 
1320 	while (priv->dirty_tx != priv->cur_tx) {
1321 		int last;
1322 		unsigned int entry = priv->dirty_tx % txsize;
1323 		struct sk_buff *skb = priv->tx_skbuff[entry];
1324 		struct dma_desc *p;
1325 
1326 		if (priv->extend_desc)
1327 			p = (struct dma_desc *)(priv->dma_etx + entry);
1328 		else
1329 			p = priv->dma_tx + entry;
1330 
1331 		/* Check if the descriptor is owned by the DMA. */
1332 		if (priv->hw->desc->get_tx_owner(p))
1333 			break;
1334 
1335 		/* Verify tx error by looking at the last segment. */
1336 		last = priv->hw->desc->get_tx_ls(p);
1337 		if (likely(last)) {
1338 			int tx_error =
1339 			    priv->hw->desc->tx_status(&priv->dev->stats,
1340 						      &priv->xstats, p,
1341 						      priv->ioaddr);
1342 			if (likely(tx_error == 0)) {
1343 				priv->dev->stats.tx_packets++;
1344 				priv->xstats.tx_pkt_n++;
1345 			} else
1346 				priv->dev->stats.tx_errors++;
1347 
1348 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1349 		}
1350 		if (netif_msg_tx_done(priv))
1351 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1352 				 priv->cur_tx, priv->dirty_tx);
1353 
1354 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1355 			if (priv->tx_skbuff_dma[entry].map_as_page)
1356 				dma_unmap_page(priv->device,
1357 					       priv->tx_skbuff_dma[entry].buf,
1358 					       priv->hw->desc->get_tx_len(p),
1359 					       DMA_TO_DEVICE);
1360 			else
1361 				dma_unmap_single(priv->device,
1362 						 priv->tx_skbuff_dma[entry].buf,
1363 						 priv->hw->desc->get_tx_len(p),
1364 						 DMA_TO_DEVICE);
1365 			priv->tx_skbuff_dma[entry].buf = 0;
1366 			priv->tx_skbuff_dma[entry].map_as_page = false;
1367 		}
1368 		priv->hw->mode->clean_desc3(priv, p);
1369 
1370 		if (likely(skb != NULL)) {
1371 			pkts_compl++;
1372 			bytes_compl += skb->len;
1373 			dev_consume_skb_any(skb);
1374 			priv->tx_skbuff[entry] = NULL;
1375 		}
1376 
1377 		priv->hw->desc->release_tx_desc(p, priv->mode);
1378 
1379 		priv->dirty_tx++;
1380 	}
1381 
1382 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1383 
1384 	if (unlikely(netif_queue_stopped(priv->dev) &&
1385 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1386 		netif_tx_lock(priv->dev);
1387 		if (netif_queue_stopped(priv->dev) &&
1388 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1389 			if (netif_msg_tx_done(priv))
1390 				pr_debug("%s: restart transmit\n", __func__);
1391 			netif_wake_queue(priv->dev);
1392 		}
1393 		netif_tx_unlock(priv->dev);
1394 	}
1395 
1396 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1397 		stmmac_enable_eee_mode(priv);
1398 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1399 	}
1400 	spin_unlock(&priv->tx_lock);
1401 }
1402 
1403 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1404 {
1405 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1406 }
1407 
1408 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1409 {
1410 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1411 }
1412 
1413 /**
1414  * stmmac_tx_err - to manage the tx error
1415  * @priv: driver private structure
1416  * Description: it cleans the descriptors and restarts the transmission
1417  * in case of transmission errors.
1418  */
1419 static void stmmac_tx_err(struct stmmac_priv *priv)
1420 {
1421 	int i;
1422 	int txsize = priv->dma_tx_size;
1423 	netif_stop_queue(priv->dev);
1424 
1425 	priv->hw->dma->stop_tx(priv->ioaddr);
1426 	dma_free_tx_skbufs(priv);
1427 	for (i = 0; i < txsize; i++)
1428 		if (priv->extend_desc)
1429 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1430 						     priv->mode,
1431 						     (i == txsize - 1));
1432 		else
1433 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1434 						     priv->mode,
1435 						     (i == txsize - 1));
1436 	priv->dirty_tx = 0;
1437 	priv->cur_tx = 0;
1438 	netdev_reset_queue(priv->dev);
1439 	priv->hw->dma->start_tx(priv->ioaddr);
1440 
1441 	priv->dev->stats.tx_errors++;
1442 	netif_wake_queue(priv->dev);
1443 }
1444 
1445 /**
1446  * stmmac_dma_interrupt - DMA ISR
1447  * @priv: driver private structure
1448  * Description: this is the DMA ISR. It is called by the main ISR.
1449  * It calls the dwmac dma routine and schedule poll method in case of some
1450  * work can be done.
1451  */
1452 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1453 {
1454 	int status;
1455 	int rxfifosz = priv->plat->rx_fifo_size;
1456 
1457 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1458 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1459 		if (likely(napi_schedule_prep(&priv->napi))) {
1460 			stmmac_disable_dma_irq(priv);
1461 			__napi_schedule(&priv->napi);
1462 		}
1463 	}
1464 	if (unlikely(status & tx_hard_error_bump_tc)) {
1465 		/* Try to bump up the dma threshold on this failure */
1466 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1467 		    (tc <= 256)) {
1468 			tc += 64;
1469 			if (priv->plat->force_thresh_dma_mode)
1470 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1471 							rxfifosz);
1472 			else
1473 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1474 							SF_DMA_MODE, rxfifosz);
1475 			priv->xstats.threshold = tc;
1476 		}
1477 	} else if (unlikely(status == tx_hard_error))
1478 		stmmac_tx_err(priv);
1479 }
1480 
1481 /**
1482  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1483  * @priv: driver private structure
1484  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1485  */
1486 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1487 {
1488 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1489 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1490 
1491 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1492 
1493 	if (priv->dma_cap.rmon) {
1494 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1495 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1496 	} else
1497 		pr_info(" No MAC Management Counters available\n");
1498 }
1499 
1500 /**
1501  * stmmac_get_synopsys_id - return the SYINID.
1502  * @priv: driver private structure
1503  * Description: this simple function is to decode and return the SYINID
1504  * starting from the HW core register.
1505  */
1506 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1507 {
1508 	u32 hwid = priv->hw->synopsys_uid;
1509 
1510 	/* Check Synopsys Id (not available on old chips) */
1511 	if (likely(hwid)) {
1512 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1513 		u32 synid = (hwid & 0x000000ff);
1514 
1515 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1516 			uid, synid);
1517 
1518 		return synid;
1519 	}
1520 	return 0;
1521 }
1522 
1523 /**
1524  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1525  * @priv: driver private structure
1526  * Description: select the Enhanced/Alternate or Normal descriptors.
1527  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1528  * supported by the HW capability register.
1529  */
1530 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1531 {
1532 	if (priv->plat->enh_desc) {
1533 		pr_info(" Enhanced/Alternate descriptors\n");
1534 
1535 		/* GMAC older than 3.50 has no extended descriptors */
1536 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1537 			pr_info("\tEnabled extended descriptors\n");
1538 			priv->extend_desc = 1;
1539 		} else
1540 			pr_warn("Extended descriptors not supported\n");
1541 
1542 		priv->hw->desc = &enh_desc_ops;
1543 	} else {
1544 		pr_info(" Normal descriptors\n");
1545 		priv->hw->desc = &ndesc_ops;
1546 	}
1547 }
1548 
1549 /**
1550  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1551  * @priv: driver private structure
1552  * Description:
1553  *  new GMAC chip generations have a new register to indicate the
1554  *  presence of the optional feature/functions.
1555  *  This can be also used to override the value passed through the
1556  *  platform and necessary for old MAC10/100 and GMAC chips.
1557  */
1558 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1559 {
1560 	u32 hw_cap = 0;
1561 
1562 	if (priv->hw->dma->get_hw_feature) {
1563 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1564 
1565 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1566 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1567 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1568 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1569 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1570 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1571 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1572 		priv->dma_cap.pmt_remote_wake_up =
1573 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1574 		priv->dma_cap.pmt_magic_frame =
1575 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1576 		/* MMC */
1577 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1578 		/* IEEE 1588-2002 */
1579 		priv->dma_cap.time_stamp =
1580 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1581 		/* IEEE 1588-2008 */
1582 		priv->dma_cap.atime_stamp =
1583 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1584 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1585 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1586 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1587 		/* TX and RX csum */
1588 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1589 		priv->dma_cap.rx_coe_type1 =
1590 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1591 		priv->dma_cap.rx_coe_type2 =
1592 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1593 		priv->dma_cap.rxfifo_over_2048 =
1594 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1595 		/* TX and RX number of channels */
1596 		priv->dma_cap.number_rx_channel =
1597 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1598 		priv->dma_cap.number_tx_channel =
1599 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1600 		/* Alternate (enhanced) DESC mode */
1601 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1602 	}
1603 
1604 	return hw_cap;
1605 }
1606 
1607 /**
1608  * stmmac_check_ether_addr - check if the MAC addr is valid
1609  * @priv: driver private structure
1610  * Description:
1611  * it is to verify if the MAC address is valid, in case of failures it
1612  * generates a random MAC address
1613  */
1614 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1615 {
1616 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1617 		priv->hw->mac->get_umac_addr(priv->hw,
1618 					     priv->dev->dev_addr, 0);
1619 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1620 			eth_hw_addr_random(priv->dev);
1621 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1622 			priv->dev->dev_addr);
1623 	}
1624 }
1625 
1626 /**
1627  * stmmac_init_dma_engine - DMA init.
1628  * @priv: driver private structure
1629  * Description:
1630  * It inits the DMA invoking the specific MAC/GMAC callback.
1631  * Some DMA parameters can be passed from the platform;
1632  * in case of these are not passed a default is kept for the MAC or GMAC.
1633  */
1634 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1635 {
1636 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1637 	int mixed_burst = 0;
1638 	int atds = 0;
1639 
1640 	if (priv->plat->dma_cfg) {
1641 		pbl = priv->plat->dma_cfg->pbl;
1642 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1643 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1644 		burst_len = priv->plat->dma_cfg->burst_len;
1645 	}
1646 
1647 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1648 		atds = 1;
1649 
1650 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1651 				   burst_len, priv->dma_tx_phy,
1652 				   priv->dma_rx_phy, atds);
1653 }
1654 
1655 /**
1656  * stmmac_tx_timer - mitigation sw timer for tx.
1657  * @data: data pointer
1658  * Description:
1659  * This is the timer handler to directly invoke the stmmac_tx_clean.
1660  */
1661 static void stmmac_tx_timer(unsigned long data)
1662 {
1663 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1664 
1665 	stmmac_tx_clean(priv);
1666 }
1667 
1668 /**
1669  * stmmac_init_tx_coalesce - init tx mitigation options.
1670  * @priv: driver private structure
1671  * Description:
1672  * This inits the transmit coalesce parameters: i.e. timer rate,
1673  * timer handler and default threshold used for enabling the
1674  * interrupt on completion bit.
1675  */
1676 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1677 {
1678 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1679 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1680 	init_timer(&priv->txtimer);
1681 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1682 	priv->txtimer.data = (unsigned long)priv;
1683 	priv->txtimer.function = stmmac_tx_timer;
1684 	add_timer(&priv->txtimer);
1685 }
1686 
1687 /**
1688  * stmmac_hw_setup - setup mac in a usable state.
1689  *  @dev : pointer to the device structure.
1690  *  Description:
1691  *  this is the main function to setup the HW in a usable state because the
1692  *  dma engine is reset, the core registers are configured (e.g. AXI,
1693  *  Checksum features, timers). The DMA is ready to start receiving and
1694  *  transmitting.
1695  *  Return value:
1696  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1697  *  file on failure.
1698  */
1699 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1700 {
1701 	struct stmmac_priv *priv = netdev_priv(dev);
1702 	int ret;
1703 
1704 	/* DMA initialization and SW reset */
1705 	ret = stmmac_init_dma_engine(priv);
1706 	if (ret < 0) {
1707 		pr_err("%s: DMA engine initialization failed\n", __func__);
1708 		return ret;
1709 	}
1710 
1711 	/* Copy the MAC addr into the HW  */
1712 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1713 
1714 	/* If required, perform hw setup of the bus. */
1715 	if (priv->plat->bus_setup)
1716 		priv->plat->bus_setup(priv->ioaddr);
1717 
1718 	/* Initialize the MAC Core */
1719 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1720 
1721 	ret = priv->hw->mac->rx_ipc(priv->hw);
1722 	if (!ret) {
1723 		pr_warn(" RX IPC Checksum Offload disabled\n");
1724 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1725 		priv->hw->rx_csum = 0;
1726 	}
1727 
1728 	/* Enable the MAC Rx/Tx */
1729 	stmmac_set_mac(priv->ioaddr, true);
1730 
1731 	/* Set the HW DMA mode and the COE */
1732 	stmmac_dma_operation_mode(priv);
1733 
1734 	stmmac_mmc_setup(priv);
1735 
1736 	if (init_ptp) {
1737 		ret = stmmac_init_ptp(priv);
1738 		if (ret && ret != -EOPNOTSUPP)
1739 			pr_warn("%s: failed PTP initialisation\n", __func__);
1740 	}
1741 
1742 #ifdef CONFIG_DEBUG_FS
1743 	ret = stmmac_init_fs(dev);
1744 	if (ret < 0)
1745 		pr_warn("%s: failed debugFS registration\n", __func__);
1746 #endif
1747 	/* Start the ball rolling... */
1748 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1749 	priv->hw->dma->start_tx(priv->ioaddr);
1750 	priv->hw->dma->start_rx(priv->ioaddr);
1751 
1752 	/* Dump DMA/MAC registers */
1753 	if (netif_msg_hw(priv)) {
1754 		priv->hw->mac->dump_regs(priv->hw);
1755 		priv->hw->dma->dump_regs(priv->ioaddr);
1756 	}
1757 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1758 
1759 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1760 		priv->rx_riwt = MAX_DMA_RIWT;
1761 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1762 	}
1763 
1764 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1765 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1766 
1767 	return 0;
1768 }
1769 
1770 /**
1771  *  stmmac_open - open entry point of the driver
1772  *  @dev : pointer to the device structure.
1773  *  Description:
1774  *  This function is the open entry point of the driver.
1775  *  Return value:
1776  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1777  *  file on failure.
1778  */
1779 static int stmmac_open(struct net_device *dev)
1780 {
1781 	struct stmmac_priv *priv = netdev_priv(dev);
1782 	int ret;
1783 
1784 	stmmac_check_ether_addr(priv);
1785 
1786 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1787 	    priv->pcs != STMMAC_PCS_RTBI) {
1788 		ret = stmmac_init_phy(dev);
1789 		if (ret) {
1790 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1791 			       __func__, ret);
1792 			return ret;
1793 		}
1794 	}
1795 
1796 	/* Extra statistics */
1797 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1798 	priv->xstats.threshold = tc;
1799 
1800 	/* Create and initialize the TX/RX descriptors chains. */
1801 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1802 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1803 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1804 
1805 	ret = alloc_dma_desc_resources(priv);
1806 	if (ret < 0) {
1807 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1808 		goto dma_desc_error;
1809 	}
1810 
1811 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1812 	if (ret < 0) {
1813 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1814 		goto init_error;
1815 	}
1816 
1817 	ret = stmmac_hw_setup(dev, true);
1818 	if (ret < 0) {
1819 		pr_err("%s: Hw setup failed\n", __func__);
1820 		goto init_error;
1821 	}
1822 
1823 	stmmac_init_tx_coalesce(priv);
1824 
1825 	if (priv->phydev)
1826 		phy_start(priv->phydev);
1827 
1828 	/* Request the IRQ lines */
1829 	ret = request_irq(dev->irq, stmmac_interrupt,
1830 			  IRQF_SHARED, dev->name, dev);
1831 	if (unlikely(ret < 0)) {
1832 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1833 		       __func__, dev->irq, ret);
1834 		goto init_error;
1835 	}
1836 
1837 	/* Request the Wake IRQ in case of another line is used for WoL */
1838 	if (priv->wol_irq != dev->irq) {
1839 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1840 				  IRQF_SHARED, dev->name, dev);
1841 		if (unlikely(ret < 0)) {
1842 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1843 			       __func__, priv->wol_irq, ret);
1844 			goto wolirq_error;
1845 		}
1846 	}
1847 
1848 	/* Request the IRQ lines */
1849 	if (priv->lpi_irq > 0) {
1850 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1851 				  dev->name, dev);
1852 		if (unlikely(ret < 0)) {
1853 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1854 			       __func__, priv->lpi_irq, ret);
1855 			goto lpiirq_error;
1856 		}
1857 	}
1858 
1859 	napi_enable(&priv->napi);
1860 	netif_start_queue(dev);
1861 
1862 	return 0;
1863 
1864 lpiirq_error:
1865 	if (priv->wol_irq != dev->irq)
1866 		free_irq(priv->wol_irq, dev);
1867 wolirq_error:
1868 	free_irq(dev->irq, dev);
1869 
1870 init_error:
1871 	free_dma_desc_resources(priv);
1872 dma_desc_error:
1873 	if (priv->phydev)
1874 		phy_disconnect(priv->phydev);
1875 
1876 	return ret;
1877 }
1878 
1879 /**
1880  *  stmmac_release - close entry point of the driver
1881  *  @dev : device pointer.
1882  *  Description:
1883  *  This is the stop entry point of the driver.
1884  */
1885 static int stmmac_release(struct net_device *dev)
1886 {
1887 	struct stmmac_priv *priv = netdev_priv(dev);
1888 
1889 	if (priv->eee_enabled)
1890 		del_timer_sync(&priv->eee_ctrl_timer);
1891 
1892 	/* Stop and disconnect the PHY */
1893 	if (priv->phydev) {
1894 		phy_stop(priv->phydev);
1895 		phy_disconnect(priv->phydev);
1896 		priv->phydev = NULL;
1897 	}
1898 
1899 	netif_stop_queue(dev);
1900 
1901 	napi_disable(&priv->napi);
1902 
1903 	del_timer_sync(&priv->txtimer);
1904 
1905 	/* Free the IRQ lines */
1906 	free_irq(dev->irq, dev);
1907 	if (priv->wol_irq != dev->irq)
1908 		free_irq(priv->wol_irq, dev);
1909 	if (priv->lpi_irq > 0)
1910 		free_irq(priv->lpi_irq, dev);
1911 
1912 	/* Stop TX/RX DMA and clear the descriptors */
1913 	priv->hw->dma->stop_tx(priv->ioaddr);
1914 	priv->hw->dma->stop_rx(priv->ioaddr);
1915 
1916 	/* Release and free the Rx/Tx resources */
1917 	free_dma_desc_resources(priv);
1918 
1919 	/* Disable the MAC Rx/Tx */
1920 	stmmac_set_mac(priv->ioaddr, false);
1921 
1922 	netif_carrier_off(dev);
1923 
1924 #ifdef CONFIG_DEBUG_FS
1925 	stmmac_exit_fs(dev);
1926 #endif
1927 
1928 	stmmac_release_ptp(priv);
1929 
1930 	return 0;
1931 }
1932 
1933 /**
1934  *  stmmac_xmit - Tx entry point of the driver
1935  *  @skb : the socket buffer
1936  *  @dev : device pointer
1937  *  Description : this is the tx entry point of the driver.
1938  *  It programs the chain or the ring and supports oversized frames
1939  *  and SG feature.
1940  */
1941 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1942 {
1943 	struct stmmac_priv *priv = netdev_priv(dev);
1944 	unsigned int txsize = priv->dma_tx_size;
1945 	unsigned int entry;
1946 	int i, csum_insertion = 0, is_jumbo = 0;
1947 	int nfrags = skb_shinfo(skb)->nr_frags;
1948 	struct dma_desc *desc, *first;
1949 	unsigned int nopaged_len = skb_headlen(skb);
1950 	unsigned int enh_desc = priv->plat->enh_desc;
1951 
1952 	spin_lock(&priv->tx_lock);
1953 
1954 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1955 		spin_unlock(&priv->tx_lock);
1956 		if (!netif_queue_stopped(dev)) {
1957 			netif_stop_queue(dev);
1958 			/* This is a hard error, log it. */
1959 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1960 		}
1961 		return NETDEV_TX_BUSY;
1962 	}
1963 
1964 	if (priv->tx_path_in_lpi_mode)
1965 		stmmac_disable_eee_mode(priv);
1966 
1967 	entry = priv->cur_tx % txsize;
1968 
1969 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1970 
1971 	if (priv->extend_desc)
1972 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1973 	else
1974 		desc = priv->dma_tx + entry;
1975 
1976 	first = desc;
1977 
1978 	/* To program the descriptors according to the size of the frame */
1979 	if (enh_desc)
1980 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1981 
1982 	if (likely(!is_jumbo)) {
1983 		desc->des2 = dma_map_single(priv->device, skb->data,
1984 					    nopaged_len, DMA_TO_DEVICE);
1985 		if (dma_mapping_error(priv->device, desc->des2))
1986 			goto dma_map_err;
1987 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1988 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1989 						csum_insertion, priv->mode);
1990 	} else {
1991 		desc = first;
1992 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1993 		if (unlikely(entry < 0))
1994 			goto dma_map_err;
1995 	}
1996 
1997 	for (i = 0; i < nfrags; i++) {
1998 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1999 		int len = skb_frag_size(frag);
2000 
2001 		priv->tx_skbuff[entry] = NULL;
2002 		entry = (++priv->cur_tx) % txsize;
2003 		if (priv->extend_desc)
2004 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2005 		else
2006 			desc = priv->dma_tx + entry;
2007 
2008 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2009 					      DMA_TO_DEVICE);
2010 		if (dma_mapping_error(priv->device, desc->des2))
2011 			goto dma_map_err; /* should reuse desc w/o issues */
2012 
2013 		priv->tx_skbuff_dma[entry].buf = desc->des2;
2014 		priv->tx_skbuff_dma[entry].map_as_page = true;
2015 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2016 						priv->mode);
2017 		wmb();
2018 		priv->hw->desc->set_tx_owner(desc);
2019 		wmb();
2020 	}
2021 
2022 	priv->tx_skbuff[entry] = skb;
2023 
2024 	/* Finalize the latest segment. */
2025 	priv->hw->desc->close_tx_desc(desc);
2026 
2027 	wmb();
2028 	/* According to the coalesce parameter the IC bit for the latest
2029 	 * segment could be reset and the timer re-started to invoke the
2030 	 * stmmac_tx function. This approach takes care about the fragments.
2031 	 */
2032 	priv->tx_count_frames += nfrags + 1;
2033 	if (priv->tx_coal_frames > priv->tx_count_frames) {
2034 		priv->hw->desc->clear_tx_ic(desc);
2035 		priv->xstats.tx_reset_ic_bit++;
2036 		mod_timer(&priv->txtimer,
2037 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2038 	} else
2039 		priv->tx_count_frames = 0;
2040 
2041 	/* To avoid raise condition */
2042 	priv->hw->desc->set_tx_owner(first);
2043 	wmb();
2044 
2045 	priv->cur_tx++;
2046 
2047 	if (netif_msg_pktdata(priv)) {
2048 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2049 			__func__, (priv->cur_tx % txsize),
2050 			(priv->dirty_tx % txsize), entry, first, nfrags);
2051 
2052 		if (priv->extend_desc)
2053 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2054 		else
2055 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2056 
2057 		pr_debug(">>> frame to be transmitted: ");
2058 		print_pkt(skb->data, skb->len);
2059 	}
2060 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2061 		if (netif_msg_hw(priv))
2062 			pr_debug("%s: stop transmitted packets\n", __func__);
2063 		netif_stop_queue(dev);
2064 	}
2065 
2066 	dev->stats.tx_bytes += skb->len;
2067 
2068 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2069 		     priv->hwts_tx_en)) {
2070 		/* declare that device is doing timestamping */
2071 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2072 		priv->hw->desc->enable_tx_timestamp(first);
2073 	}
2074 
2075 	if (!priv->hwts_tx_en)
2076 		skb_tx_timestamp(skb);
2077 
2078 	netdev_sent_queue(dev, skb->len);
2079 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2080 
2081 	spin_unlock(&priv->tx_lock);
2082 	return NETDEV_TX_OK;
2083 
2084 dma_map_err:
2085 	spin_unlock(&priv->tx_lock);
2086 	dev_err(priv->device, "Tx dma map failed\n");
2087 	dev_kfree_skb(skb);
2088 	priv->dev->stats.tx_dropped++;
2089 	return NETDEV_TX_OK;
2090 }
2091 
2092 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2093 {
2094 	struct ethhdr *ehdr;
2095 	u16 vlanid;
2096 
2097 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2098 	    NETIF_F_HW_VLAN_CTAG_RX &&
2099 	    !__vlan_get_tag(skb, &vlanid)) {
2100 		/* pop the vlan tag */
2101 		ehdr = (struct ethhdr *)skb->data;
2102 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2103 		skb_pull(skb, VLAN_HLEN);
2104 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2105 	}
2106 }
2107 
2108 
2109 /**
2110  * stmmac_rx_refill - refill used skb preallocated buffers
2111  * @priv: driver private structure
2112  * Description : this is to reallocate the skb for the reception process
2113  * that is based on zero-copy.
2114  */
2115 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2116 {
2117 	unsigned int rxsize = priv->dma_rx_size;
2118 	int bfsize = priv->dma_buf_sz;
2119 
2120 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2121 		unsigned int entry = priv->dirty_rx % rxsize;
2122 		struct dma_desc *p;
2123 
2124 		if (priv->extend_desc)
2125 			p = (struct dma_desc *)(priv->dma_erx + entry);
2126 		else
2127 			p = priv->dma_rx + entry;
2128 
2129 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2130 			struct sk_buff *skb;
2131 
2132 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2133 
2134 			if (unlikely(skb == NULL))
2135 				break;
2136 
2137 			priv->rx_skbuff[entry] = skb;
2138 			priv->rx_skbuff_dma[entry] =
2139 			    dma_map_single(priv->device, skb->data, bfsize,
2140 					   DMA_FROM_DEVICE);
2141 			if (dma_mapping_error(priv->device,
2142 					      priv->rx_skbuff_dma[entry])) {
2143 				dev_err(priv->device, "Rx dma map failed\n");
2144 				dev_kfree_skb(skb);
2145 				break;
2146 			}
2147 			p->des2 = priv->rx_skbuff_dma[entry];
2148 
2149 			priv->hw->mode->refill_desc3(priv, p);
2150 
2151 			if (netif_msg_rx_status(priv))
2152 				pr_debug("\trefill entry #%d\n", entry);
2153 		}
2154 		wmb();
2155 		priv->hw->desc->set_rx_owner(p);
2156 		wmb();
2157 	}
2158 }
2159 
2160 /**
2161  * stmmac_rx - manage the receive process
2162  * @priv: driver private structure
2163  * @limit: napi bugget.
2164  * Description :  this the function called by the napi poll method.
2165  * It gets all the frames inside the ring.
2166  */
2167 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2168 {
2169 	unsigned int rxsize = priv->dma_rx_size;
2170 	unsigned int entry = priv->cur_rx % rxsize;
2171 	unsigned int next_entry;
2172 	unsigned int count = 0;
2173 	int coe = priv->hw->rx_csum;
2174 
2175 	if (netif_msg_rx_status(priv)) {
2176 		pr_debug("%s: descriptor ring:\n", __func__);
2177 		if (priv->extend_desc)
2178 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2179 		else
2180 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2181 	}
2182 	while (count < limit) {
2183 		int status;
2184 		struct dma_desc *p;
2185 
2186 		if (priv->extend_desc)
2187 			p = (struct dma_desc *)(priv->dma_erx + entry);
2188 		else
2189 			p = priv->dma_rx + entry;
2190 
2191 		if (priv->hw->desc->get_rx_owner(p))
2192 			break;
2193 
2194 		count++;
2195 
2196 		next_entry = (++priv->cur_rx) % rxsize;
2197 		if (priv->extend_desc)
2198 			prefetch(priv->dma_erx + next_entry);
2199 		else
2200 			prefetch(priv->dma_rx + next_entry);
2201 
2202 		/* read the status of the incoming frame */
2203 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2204 						   &priv->xstats, p);
2205 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2206 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2207 							   &priv->xstats,
2208 							   priv->dma_erx +
2209 							   entry);
2210 		if (unlikely(status == discard_frame)) {
2211 			priv->dev->stats.rx_errors++;
2212 			if (priv->hwts_rx_en && !priv->extend_desc) {
2213 				/* DESC2 & DESC3 will be overwitten by device
2214 				 * with timestamp value, hence reinitialize
2215 				 * them in stmmac_rx_refill() function so that
2216 				 * device can reuse it.
2217 				 */
2218 				priv->rx_skbuff[entry] = NULL;
2219 				dma_unmap_single(priv->device,
2220 						 priv->rx_skbuff_dma[entry],
2221 						 priv->dma_buf_sz,
2222 						 DMA_FROM_DEVICE);
2223 			}
2224 		} else {
2225 			struct sk_buff *skb;
2226 			int frame_len;
2227 
2228 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2229 
2230 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2231 			 * Type frames (LLC/LLC-SNAP)
2232 			 */
2233 			if (unlikely(status != llc_snap))
2234 				frame_len -= ETH_FCS_LEN;
2235 
2236 			if (netif_msg_rx_status(priv)) {
2237 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2238 					 p, entry, p->des2);
2239 				if (frame_len > ETH_FRAME_LEN)
2240 					pr_debug("\tframe size %d, COE: %d\n",
2241 						 frame_len, status);
2242 			}
2243 			skb = priv->rx_skbuff[entry];
2244 			if (unlikely(!skb)) {
2245 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2246 				       priv->dev->name);
2247 				priv->dev->stats.rx_dropped++;
2248 				break;
2249 			}
2250 			prefetch(skb->data - NET_IP_ALIGN);
2251 			priv->rx_skbuff[entry] = NULL;
2252 
2253 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2254 
2255 			skb_put(skb, frame_len);
2256 			dma_unmap_single(priv->device,
2257 					 priv->rx_skbuff_dma[entry],
2258 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2259 
2260 			if (netif_msg_pktdata(priv)) {
2261 				pr_debug("frame received (%dbytes)", frame_len);
2262 				print_pkt(skb->data, frame_len);
2263 			}
2264 
2265 			stmmac_rx_vlan(priv->dev, skb);
2266 
2267 			skb->protocol = eth_type_trans(skb, priv->dev);
2268 
2269 			if (unlikely(!coe))
2270 				skb_checksum_none_assert(skb);
2271 			else
2272 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2273 
2274 			napi_gro_receive(&priv->napi, skb);
2275 
2276 			priv->dev->stats.rx_packets++;
2277 			priv->dev->stats.rx_bytes += frame_len;
2278 		}
2279 		entry = next_entry;
2280 	}
2281 
2282 	stmmac_rx_refill(priv);
2283 
2284 	priv->xstats.rx_pkt_n += count;
2285 
2286 	return count;
2287 }
2288 
2289 /**
2290  *  stmmac_poll - stmmac poll method (NAPI)
2291  *  @napi : pointer to the napi structure.
2292  *  @budget : maximum number of packets that the current CPU can receive from
2293  *	      all interfaces.
2294  *  Description :
2295  *  To look at the incoming frames and clear the tx resources.
2296  */
2297 static int stmmac_poll(struct napi_struct *napi, int budget)
2298 {
2299 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2300 	int work_done = 0;
2301 
2302 	priv->xstats.napi_poll++;
2303 	stmmac_tx_clean(priv);
2304 
2305 	work_done = stmmac_rx(priv, budget);
2306 	if (work_done < budget) {
2307 		napi_complete(napi);
2308 		stmmac_enable_dma_irq(priv);
2309 	}
2310 	return work_done;
2311 }
2312 
2313 /**
2314  *  stmmac_tx_timeout
2315  *  @dev : Pointer to net device structure
2316  *  Description: this function is called when a packet transmission fails to
2317  *   complete within a reasonable time. The driver will mark the error in the
2318  *   netdev structure and arrange for the device to be reset to a sane state
2319  *   in order to transmit a new packet.
2320  */
2321 static void stmmac_tx_timeout(struct net_device *dev)
2322 {
2323 	struct stmmac_priv *priv = netdev_priv(dev);
2324 
2325 	/* Clear Tx resources and restart transmitting again */
2326 	stmmac_tx_err(priv);
2327 }
2328 
2329 /**
2330  *  stmmac_set_rx_mode - entry point for multicast addressing
2331  *  @dev : pointer to the device structure
2332  *  Description:
2333  *  This function is a driver entry point which gets called by the kernel
2334  *  whenever multicast addresses must be enabled/disabled.
2335  *  Return value:
2336  *  void.
2337  */
2338 static void stmmac_set_rx_mode(struct net_device *dev)
2339 {
2340 	struct stmmac_priv *priv = netdev_priv(dev);
2341 
2342 	priv->hw->mac->set_filter(priv->hw, dev);
2343 }
2344 
2345 /**
2346  *  stmmac_change_mtu - entry point to change MTU size for the device.
2347  *  @dev : device pointer.
2348  *  @new_mtu : the new MTU size for the device.
2349  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2350  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2351  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2352  *  Return value:
2353  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2354  *  file on failure.
2355  */
2356 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2357 {
2358 	struct stmmac_priv *priv = netdev_priv(dev);
2359 	int max_mtu;
2360 
2361 	if (netif_running(dev)) {
2362 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2363 		return -EBUSY;
2364 	}
2365 
2366 	if (priv->plat->enh_desc)
2367 		max_mtu = JUMBO_LEN;
2368 	else
2369 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2370 
2371 	if (priv->plat->maxmtu < max_mtu)
2372 		max_mtu = priv->plat->maxmtu;
2373 
2374 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2375 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2376 		return -EINVAL;
2377 	}
2378 
2379 	dev->mtu = new_mtu;
2380 	netdev_update_features(dev);
2381 
2382 	return 0;
2383 }
2384 
2385 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2386 					     netdev_features_t features)
2387 {
2388 	struct stmmac_priv *priv = netdev_priv(dev);
2389 
2390 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2391 		features &= ~NETIF_F_RXCSUM;
2392 
2393 	if (!priv->plat->tx_coe)
2394 		features &= ~NETIF_F_ALL_CSUM;
2395 
2396 	/* Some GMAC devices have a bugged Jumbo frame support that
2397 	 * needs to have the Tx COE disabled for oversized frames
2398 	 * (due to limited buffer sizes). In this case we disable
2399 	 * the TX csum insertionin the TDES and not use SF.
2400 	 */
2401 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2402 		features &= ~NETIF_F_ALL_CSUM;
2403 
2404 	return features;
2405 }
2406 
2407 static int stmmac_set_features(struct net_device *netdev,
2408 			       netdev_features_t features)
2409 {
2410 	struct stmmac_priv *priv = netdev_priv(netdev);
2411 
2412 	/* Keep the COE Type in case of csum is supporting */
2413 	if (features & NETIF_F_RXCSUM)
2414 		priv->hw->rx_csum = priv->plat->rx_coe;
2415 	else
2416 		priv->hw->rx_csum = 0;
2417 	/* No check needed because rx_coe has been set before and it will be
2418 	 * fixed in case of issue.
2419 	 */
2420 	priv->hw->mac->rx_ipc(priv->hw);
2421 
2422 	return 0;
2423 }
2424 
2425 /**
2426  *  stmmac_interrupt - main ISR
2427  *  @irq: interrupt number.
2428  *  @dev_id: to pass the net device pointer.
2429  *  Description: this is the main driver interrupt service routine.
2430  *  It can call:
2431  *  o DMA service routine (to manage incoming frame reception and transmission
2432  *    status)
2433  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2434  *    interrupts.
2435  */
2436 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2437 {
2438 	struct net_device *dev = (struct net_device *)dev_id;
2439 	struct stmmac_priv *priv = netdev_priv(dev);
2440 
2441 	if (priv->irq_wake)
2442 		pm_wakeup_event(priv->device, 0);
2443 
2444 	if (unlikely(!dev)) {
2445 		pr_err("%s: invalid dev pointer\n", __func__);
2446 		return IRQ_NONE;
2447 	}
2448 
2449 	/* To handle GMAC own interrupts */
2450 	if (priv->plat->has_gmac) {
2451 		int status = priv->hw->mac->host_irq_status(priv->hw,
2452 							    &priv->xstats);
2453 		if (unlikely(status)) {
2454 			/* For LPI we need to save the tx status */
2455 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2456 				priv->tx_path_in_lpi_mode = true;
2457 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2458 				priv->tx_path_in_lpi_mode = false;
2459 		}
2460 	}
2461 
2462 	/* To handle DMA interrupts */
2463 	stmmac_dma_interrupt(priv);
2464 
2465 	return IRQ_HANDLED;
2466 }
2467 
2468 #ifdef CONFIG_NET_POLL_CONTROLLER
2469 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2470  * to allow network I/O with interrupts disabled.
2471  */
2472 static void stmmac_poll_controller(struct net_device *dev)
2473 {
2474 	disable_irq(dev->irq);
2475 	stmmac_interrupt(dev->irq, dev);
2476 	enable_irq(dev->irq);
2477 }
2478 #endif
2479 
2480 /**
2481  *  stmmac_ioctl - Entry point for the Ioctl
2482  *  @dev: Device pointer.
2483  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2484  *  a proprietary structure used to pass information to the driver.
2485  *  @cmd: IOCTL command
2486  *  Description:
2487  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2488  */
2489 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2490 {
2491 	struct stmmac_priv *priv = netdev_priv(dev);
2492 	int ret = -EOPNOTSUPP;
2493 
2494 	if (!netif_running(dev))
2495 		return -EINVAL;
2496 
2497 	switch (cmd) {
2498 	case SIOCGMIIPHY:
2499 	case SIOCGMIIREG:
2500 	case SIOCSMIIREG:
2501 		if (!priv->phydev)
2502 			return -EINVAL;
2503 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2504 		break;
2505 	case SIOCSHWTSTAMP:
2506 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2507 		break;
2508 	default:
2509 		break;
2510 	}
2511 
2512 	return ret;
2513 }
2514 
2515 #ifdef CONFIG_DEBUG_FS
2516 static struct dentry *stmmac_fs_dir;
2517 
2518 static void sysfs_display_ring(void *head, int size, int extend_desc,
2519 			       struct seq_file *seq)
2520 {
2521 	int i;
2522 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2523 	struct dma_desc *p = (struct dma_desc *)head;
2524 
2525 	for (i = 0; i < size; i++) {
2526 		u64 x;
2527 		if (extend_desc) {
2528 			x = *(u64 *) ep;
2529 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2530 				   i, (unsigned int)virt_to_phys(ep),
2531 				   (unsigned int)x, (unsigned int)(x >> 32),
2532 				   ep->basic.des2, ep->basic.des3);
2533 			ep++;
2534 		} else {
2535 			x = *(u64 *) p;
2536 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2537 				   i, (unsigned int)virt_to_phys(ep),
2538 				   (unsigned int)x, (unsigned int)(x >> 32),
2539 				   p->des2, p->des3);
2540 			p++;
2541 		}
2542 		seq_printf(seq, "\n");
2543 	}
2544 }
2545 
2546 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2547 {
2548 	struct net_device *dev = seq->private;
2549 	struct stmmac_priv *priv = netdev_priv(dev);
2550 	unsigned int txsize = priv->dma_tx_size;
2551 	unsigned int rxsize = priv->dma_rx_size;
2552 
2553 	if (priv->extend_desc) {
2554 		seq_printf(seq, "Extended RX descriptor ring:\n");
2555 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2556 		seq_printf(seq, "Extended TX descriptor ring:\n");
2557 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2558 	} else {
2559 		seq_printf(seq, "RX descriptor ring:\n");
2560 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2561 		seq_printf(seq, "TX descriptor ring:\n");
2562 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2563 	}
2564 
2565 	return 0;
2566 }
2567 
2568 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2569 {
2570 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2571 }
2572 
2573 static const struct file_operations stmmac_rings_status_fops = {
2574 	.owner = THIS_MODULE,
2575 	.open = stmmac_sysfs_ring_open,
2576 	.read = seq_read,
2577 	.llseek = seq_lseek,
2578 	.release = single_release,
2579 };
2580 
2581 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2582 {
2583 	struct net_device *dev = seq->private;
2584 	struct stmmac_priv *priv = netdev_priv(dev);
2585 
2586 	if (!priv->hw_cap_support) {
2587 		seq_printf(seq, "DMA HW features not supported\n");
2588 		return 0;
2589 	}
2590 
2591 	seq_printf(seq, "==============================\n");
2592 	seq_printf(seq, "\tDMA HW features\n");
2593 	seq_printf(seq, "==============================\n");
2594 
2595 	seq_printf(seq, "\t10/100 Mbps %s\n",
2596 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2597 	seq_printf(seq, "\t1000 Mbps %s\n",
2598 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2599 	seq_printf(seq, "\tHalf duple %s\n",
2600 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2601 	seq_printf(seq, "\tHash Filter: %s\n",
2602 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2603 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2604 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2605 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2606 		   (priv->dma_cap.pcs) ? "Y" : "N");
2607 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2608 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2609 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2610 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2611 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2612 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2613 	seq_printf(seq, "\tRMON module: %s\n",
2614 		   (priv->dma_cap.rmon) ? "Y" : "N");
2615 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2616 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2617 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2618 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2619 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2620 		   (priv->dma_cap.eee) ? "Y" : "N");
2621 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2622 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2623 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2624 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2625 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2626 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2627 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2628 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2629 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2630 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2631 		   priv->dma_cap.number_rx_channel);
2632 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2633 		   priv->dma_cap.number_tx_channel);
2634 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2635 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2636 
2637 	return 0;
2638 }
2639 
2640 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2641 {
2642 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2643 }
2644 
2645 static const struct file_operations stmmac_dma_cap_fops = {
2646 	.owner = THIS_MODULE,
2647 	.open = stmmac_sysfs_dma_cap_open,
2648 	.read = seq_read,
2649 	.llseek = seq_lseek,
2650 	.release = single_release,
2651 };
2652 
2653 static int stmmac_init_fs(struct net_device *dev)
2654 {
2655 	struct stmmac_priv *priv = netdev_priv(dev);
2656 
2657 	/* Create per netdev entries */
2658 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2659 
2660 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2661 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
2662 		       STMMAC_RESOURCE_NAME, dev->name);
2663 
2664 		return -ENOMEM;
2665 	}
2666 
2667 	/* Entry to report DMA RX/TX rings */
2668 	priv->dbgfs_rings_status =
2669 		debugfs_create_file("descriptors_status", S_IRUGO,
2670 				    priv->dbgfs_dir, dev,
2671 				    &stmmac_rings_status_fops);
2672 
2673 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2674 		pr_info("ERROR creating stmmac ring debugfs file\n");
2675 		debugfs_remove_recursive(priv->dbgfs_dir);
2676 
2677 		return -ENOMEM;
2678 	}
2679 
2680 	/* Entry to report the DMA HW features */
2681 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2682 					    priv->dbgfs_dir,
2683 					    dev, &stmmac_dma_cap_fops);
2684 
2685 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2686 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2687 		debugfs_remove_recursive(priv->dbgfs_dir);
2688 
2689 		return -ENOMEM;
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static void stmmac_exit_fs(struct net_device *dev)
2696 {
2697 	struct stmmac_priv *priv = netdev_priv(dev);
2698 
2699 	debugfs_remove_recursive(priv->dbgfs_dir);
2700 }
2701 #endif /* CONFIG_DEBUG_FS */
2702 
2703 static const struct net_device_ops stmmac_netdev_ops = {
2704 	.ndo_open = stmmac_open,
2705 	.ndo_start_xmit = stmmac_xmit,
2706 	.ndo_stop = stmmac_release,
2707 	.ndo_change_mtu = stmmac_change_mtu,
2708 	.ndo_fix_features = stmmac_fix_features,
2709 	.ndo_set_features = stmmac_set_features,
2710 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2711 	.ndo_tx_timeout = stmmac_tx_timeout,
2712 	.ndo_do_ioctl = stmmac_ioctl,
2713 #ifdef CONFIG_NET_POLL_CONTROLLER
2714 	.ndo_poll_controller = stmmac_poll_controller,
2715 #endif
2716 	.ndo_set_mac_address = eth_mac_addr,
2717 };
2718 
2719 /**
2720  *  stmmac_hw_init - Init the MAC device
2721  *  @priv: driver private structure
2722  *  Description: this function is to configure the MAC device according to
2723  *  some platform parameters or the HW capability register. It prepares the
2724  *  driver to use either ring or chain modes and to setup either enhanced or
2725  *  normal descriptors.
2726  */
2727 static int stmmac_hw_init(struct stmmac_priv *priv)
2728 {
2729 	struct mac_device_info *mac;
2730 
2731 	/* Identify the MAC HW device */
2732 	if (priv->plat->has_gmac) {
2733 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2734 		mac = dwmac1000_setup(priv->ioaddr,
2735 				      priv->plat->multicast_filter_bins,
2736 				      priv->plat->unicast_filter_entries);
2737 	} else {
2738 		mac = dwmac100_setup(priv->ioaddr);
2739 	}
2740 	if (!mac)
2741 		return -ENOMEM;
2742 
2743 	priv->hw = mac;
2744 
2745 	/* Get and dump the chip ID */
2746 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2747 
2748 	/* To use the chained or ring mode */
2749 	if (chain_mode) {
2750 		priv->hw->mode = &chain_mode_ops;
2751 		pr_info(" Chain mode enabled\n");
2752 		priv->mode = STMMAC_CHAIN_MODE;
2753 	} else {
2754 		priv->hw->mode = &ring_mode_ops;
2755 		pr_info(" Ring mode enabled\n");
2756 		priv->mode = STMMAC_RING_MODE;
2757 	}
2758 
2759 	/* Get the HW capability (new GMAC newer than 3.50a) */
2760 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2761 	if (priv->hw_cap_support) {
2762 		pr_info(" DMA HW capability register supported");
2763 
2764 		/* We can override some gmac/dma configuration fields: e.g.
2765 		 * enh_desc, tx_coe (e.g. that are passed through the
2766 		 * platform) with the values from the HW capability
2767 		 * register (if supported).
2768 		 */
2769 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2770 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2771 
2772 		/* TXCOE doesn't work in thresh DMA mode */
2773 		if (priv->plat->force_thresh_dma_mode)
2774 			priv->plat->tx_coe = 0;
2775 		else
2776 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
2777 
2778 		if (priv->dma_cap.rx_coe_type2)
2779 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2780 		else if (priv->dma_cap.rx_coe_type1)
2781 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2782 
2783 	} else
2784 		pr_info(" No HW DMA feature register supported");
2785 
2786 	/* To use alternate (extended) or normal descriptor structures */
2787 	stmmac_selec_desc_mode(priv);
2788 
2789 	if (priv->plat->rx_coe) {
2790 		priv->hw->rx_csum = priv->plat->rx_coe;
2791 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2792 			priv->plat->rx_coe);
2793 	}
2794 	if (priv->plat->tx_coe)
2795 		pr_info(" TX Checksum insertion supported\n");
2796 
2797 	if (priv->plat->pmt) {
2798 		pr_info(" Wake-Up On Lan supported\n");
2799 		device_set_wakeup_capable(priv->device, 1);
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 /**
2806  * stmmac_dvr_probe
2807  * @device: device pointer
2808  * @plat_dat: platform data pointer
2809  * @res: stmmac resource pointer
2810  * Description: this is the main probe function used to
2811  * call the alloc_etherdev, allocate the priv structure.
2812  * Return:
2813  * returns 0 on success, otherwise errno.
2814  */
2815 int stmmac_dvr_probe(struct device *device,
2816 		     struct plat_stmmacenet_data *plat_dat,
2817 		     struct stmmac_resources *res)
2818 {
2819 	int ret = 0;
2820 	struct net_device *ndev = NULL;
2821 	struct stmmac_priv *priv;
2822 
2823 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2824 	if (!ndev)
2825 		return -ENOMEM;
2826 
2827 	SET_NETDEV_DEV(ndev, device);
2828 
2829 	priv = netdev_priv(ndev);
2830 	priv->device = device;
2831 	priv->dev = ndev;
2832 
2833 	stmmac_set_ethtool_ops(ndev);
2834 	priv->pause = pause;
2835 	priv->plat = plat_dat;
2836 	priv->ioaddr = res->addr;
2837 	priv->dev->base_addr = (unsigned long)res->addr;
2838 
2839 	priv->dev->irq = res->irq;
2840 	priv->wol_irq = res->wol_irq;
2841 	priv->lpi_irq = res->lpi_irq;
2842 
2843 	if (res->mac)
2844 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2845 
2846 	dev_set_drvdata(device, priv);
2847 
2848 	/* Verify driver arguments */
2849 	stmmac_verify_args();
2850 
2851 	/* Override with kernel parameters if supplied XXX CRS XXX
2852 	 * this needs to have multiple instances
2853 	 */
2854 	if ((phyaddr >= 0) && (phyaddr <= 31))
2855 		priv->plat->phy_addr = phyaddr;
2856 
2857 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2858 	if (IS_ERR(priv->stmmac_clk)) {
2859 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2860 			 __func__);
2861 		/* If failed to obtain stmmac_clk and specific clk_csr value
2862 		 * is NOT passed from the platform, probe fail.
2863 		 */
2864 		if (!priv->plat->clk_csr) {
2865 			ret = PTR_ERR(priv->stmmac_clk);
2866 			goto error_clk_get;
2867 		} else {
2868 			priv->stmmac_clk = NULL;
2869 		}
2870 	}
2871 	clk_prepare_enable(priv->stmmac_clk);
2872 
2873 	priv->pclk = devm_clk_get(priv->device, "pclk");
2874 	if (IS_ERR(priv->pclk)) {
2875 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2876 			ret = -EPROBE_DEFER;
2877 			goto error_pclk_get;
2878 		}
2879 		priv->pclk = NULL;
2880 	}
2881 	clk_prepare_enable(priv->pclk);
2882 
2883 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2884 						  STMMAC_RESOURCE_NAME);
2885 	if (IS_ERR(priv->stmmac_rst)) {
2886 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2887 			ret = -EPROBE_DEFER;
2888 			goto error_hw_init;
2889 		}
2890 		dev_info(priv->device, "no reset control found\n");
2891 		priv->stmmac_rst = NULL;
2892 	}
2893 	if (priv->stmmac_rst)
2894 		reset_control_deassert(priv->stmmac_rst);
2895 
2896 	/* Init MAC and get the capabilities */
2897 	ret = stmmac_hw_init(priv);
2898 	if (ret)
2899 		goto error_hw_init;
2900 
2901 	ndev->netdev_ops = &stmmac_netdev_ops;
2902 
2903 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2904 			    NETIF_F_RXCSUM;
2905 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2906 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2907 #ifdef STMMAC_VLAN_TAG_USED
2908 	/* Both mac100 and gmac support receive VLAN tag detection */
2909 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2910 #endif
2911 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2912 
2913 	if (flow_ctrl)
2914 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2915 
2916 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2917 	 * In some case, for example on bugged HW this feature
2918 	 * has to be disable and this can be done by passing the
2919 	 * riwt_off field from the platform.
2920 	 */
2921 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2922 		priv->use_riwt = 1;
2923 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2924 	}
2925 
2926 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2927 
2928 	spin_lock_init(&priv->lock);
2929 	spin_lock_init(&priv->tx_lock);
2930 
2931 	ret = register_netdev(ndev);
2932 	if (ret) {
2933 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2934 		goto error_netdev_register;
2935 	}
2936 
2937 	/* If a specific clk_csr value is passed from the platform
2938 	 * this means that the CSR Clock Range selection cannot be
2939 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2940 	 * set the MDC clock dynamically according to the csr actual
2941 	 * clock input.
2942 	 */
2943 	if (!priv->plat->clk_csr)
2944 		stmmac_clk_csr_set(priv);
2945 	else
2946 		priv->clk_csr = priv->plat->clk_csr;
2947 
2948 	stmmac_check_pcs_mode(priv);
2949 
2950 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2951 	    priv->pcs != STMMAC_PCS_RTBI) {
2952 		/* MDIO bus Registration */
2953 		ret = stmmac_mdio_register(ndev);
2954 		if (ret < 0) {
2955 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2956 				 __func__, priv->plat->bus_id);
2957 			goto error_mdio_register;
2958 		}
2959 	}
2960 
2961 	return 0;
2962 
2963 error_mdio_register:
2964 	unregister_netdev(ndev);
2965 error_netdev_register:
2966 	netif_napi_del(&priv->napi);
2967 error_hw_init:
2968 	clk_disable_unprepare(priv->pclk);
2969 error_pclk_get:
2970 	clk_disable_unprepare(priv->stmmac_clk);
2971 error_clk_get:
2972 	free_netdev(ndev);
2973 
2974 	return ret;
2975 }
2976 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2977 
2978 /**
2979  * stmmac_dvr_remove
2980  * @ndev: net device pointer
2981  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2982  * changes the link status, releases the DMA descriptor rings.
2983  */
2984 int stmmac_dvr_remove(struct net_device *ndev)
2985 {
2986 	struct stmmac_priv *priv = netdev_priv(ndev);
2987 
2988 	pr_info("%s:\n\tremoving driver", __func__);
2989 
2990 	priv->hw->dma->stop_rx(priv->ioaddr);
2991 	priv->hw->dma->stop_tx(priv->ioaddr);
2992 
2993 	stmmac_set_mac(priv->ioaddr, false);
2994 	netif_carrier_off(ndev);
2995 	unregister_netdev(ndev);
2996 	if (priv->stmmac_rst)
2997 		reset_control_assert(priv->stmmac_rst);
2998 	clk_disable_unprepare(priv->pclk);
2999 	clk_disable_unprepare(priv->stmmac_clk);
3000 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3001 	    priv->pcs != STMMAC_PCS_RTBI)
3002 		stmmac_mdio_unregister(ndev);
3003 	free_netdev(ndev);
3004 
3005 	return 0;
3006 }
3007 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3008 
3009 /**
3010  * stmmac_suspend - suspend callback
3011  * @ndev: net device pointer
3012  * Description: this is the function to suspend the device and it is called
3013  * by the platform driver to stop the network queue, release the resources,
3014  * program the PMT register (for WoL), clean and release driver resources.
3015  */
3016 int stmmac_suspend(struct net_device *ndev)
3017 {
3018 	struct stmmac_priv *priv = netdev_priv(ndev);
3019 	unsigned long flags;
3020 
3021 	if (!ndev || !netif_running(ndev))
3022 		return 0;
3023 
3024 	if (priv->phydev)
3025 		phy_stop(priv->phydev);
3026 
3027 	spin_lock_irqsave(&priv->lock, flags);
3028 
3029 	netif_device_detach(ndev);
3030 	netif_stop_queue(ndev);
3031 
3032 	napi_disable(&priv->napi);
3033 
3034 	/* Stop TX/RX DMA */
3035 	priv->hw->dma->stop_tx(priv->ioaddr);
3036 	priv->hw->dma->stop_rx(priv->ioaddr);
3037 
3038 	stmmac_clear_descriptors(priv);
3039 
3040 	/* Enable Power down mode by programming the PMT regs */
3041 	if (device_may_wakeup(priv->device)) {
3042 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3043 		priv->irq_wake = 1;
3044 	} else {
3045 		stmmac_set_mac(priv->ioaddr, false);
3046 		pinctrl_pm_select_sleep_state(priv->device);
3047 		/* Disable clock in case of PWM is off */
3048 		clk_disable(priv->pclk);
3049 		clk_disable(priv->stmmac_clk);
3050 	}
3051 	spin_unlock_irqrestore(&priv->lock, flags);
3052 
3053 	priv->oldlink = 0;
3054 	priv->speed = 0;
3055 	priv->oldduplex = -1;
3056 	return 0;
3057 }
3058 EXPORT_SYMBOL_GPL(stmmac_suspend);
3059 
3060 /**
3061  * stmmac_resume - resume callback
3062  * @ndev: net device pointer
3063  * Description: when resume this function is invoked to setup the DMA and CORE
3064  * in a usable state.
3065  */
3066 int stmmac_resume(struct net_device *ndev)
3067 {
3068 	struct stmmac_priv *priv = netdev_priv(ndev);
3069 	unsigned long flags;
3070 
3071 	if (!netif_running(ndev))
3072 		return 0;
3073 
3074 	spin_lock_irqsave(&priv->lock, flags);
3075 
3076 	/* Power Down bit, into the PM register, is cleared
3077 	 * automatically as soon as a magic packet or a Wake-up frame
3078 	 * is received. Anyway, it's better to manually clear
3079 	 * this bit because it can generate problems while resuming
3080 	 * from another devices (e.g. serial console).
3081 	 */
3082 	if (device_may_wakeup(priv->device)) {
3083 		priv->hw->mac->pmt(priv->hw, 0);
3084 		priv->irq_wake = 0;
3085 	} else {
3086 		pinctrl_pm_select_default_state(priv->device);
3087 		/* enable the clk prevously disabled */
3088 		clk_enable(priv->stmmac_clk);
3089 		clk_enable(priv->pclk);
3090 		/* reset the phy so that it's ready */
3091 		if (priv->mii)
3092 			stmmac_mdio_reset(priv->mii);
3093 	}
3094 
3095 	netif_device_attach(ndev);
3096 
3097 	init_dma_desc_rings(ndev, GFP_ATOMIC);
3098 	stmmac_hw_setup(ndev, false);
3099 	stmmac_init_tx_coalesce(priv);
3100 
3101 	napi_enable(&priv->napi);
3102 
3103 	netif_start_queue(ndev);
3104 
3105 	spin_unlock_irqrestore(&priv->lock, flags);
3106 
3107 	if (priv->phydev)
3108 		phy_start(priv->phydev);
3109 
3110 	return 0;
3111 }
3112 EXPORT_SYMBOL_GPL(stmmac_resume);
3113 
3114 #ifndef MODULE
3115 static int __init stmmac_cmdline_opt(char *str)
3116 {
3117 	char *opt;
3118 
3119 	if (!str || !*str)
3120 		return -EINVAL;
3121 	while ((opt = strsep(&str, ",")) != NULL) {
3122 		if (!strncmp(opt, "debug:", 6)) {
3123 			if (kstrtoint(opt + 6, 0, &debug))
3124 				goto err;
3125 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3126 			if (kstrtoint(opt + 8, 0, &phyaddr))
3127 				goto err;
3128 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3129 			if (kstrtoint(opt + 11, 0, &dma_txsize))
3130 				goto err;
3131 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3132 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3133 				goto err;
3134 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3135 			if (kstrtoint(opt + 7, 0, &buf_sz))
3136 				goto err;
3137 		} else if (!strncmp(opt, "tc:", 3)) {
3138 			if (kstrtoint(opt + 3, 0, &tc))
3139 				goto err;
3140 		} else if (!strncmp(opt, "watchdog:", 9)) {
3141 			if (kstrtoint(opt + 9, 0, &watchdog))
3142 				goto err;
3143 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3144 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3145 				goto err;
3146 		} else if (!strncmp(opt, "pause:", 6)) {
3147 			if (kstrtoint(opt + 6, 0, &pause))
3148 				goto err;
3149 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3150 			if (kstrtoint(opt + 10, 0, &eee_timer))
3151 				goto err;
3152 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3153 			if (kstrtoint(opt + 11, 0, &chain_mode))
3154 				goto err;
3155 		}
3156 	}
3157 	return 0;
3158 
3159 err:
3160 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3161 	return -EINVAL;
3162 }
3163 
3164 __setup("stmmaceth=", stmmac_cmdline_opt);
3165 #endif /* MODULE */
3166 
3167 static int __init stmmac_init(void)
3168 {
3169 #ifdef CONFIG_DEBUG_FS
3170 	/* Create debugfs main directory if it doesn't exist yet */
3171 	if (!stmmac_fs_dir) {
3172 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3173 
3174 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3175 			pr_err("ERROR %s, debugfs create directory failed\n",
3176 			       STMMAC_RESOURCE_NAME);
3177 
3178 			return -ENOMEM;
3179 		}
3180 	}
3181 #endif
3182 
3183 	return 0;
3184 }
3185 
3186 static void __exit stmmac_exit(void)
3187 {
3188 #ifdef CONFIG_DEBUG_FS
3189 	debugfs_remove_recursive(stmmac_fs_dir);
3190 #endif
3191 }
3192 
3193 module_init(stmmac_init)
3194 module_exit(stmmac_exit)
3195 
3196 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3197 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3198 MODULE_LICENSE("GPL");
3199