xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/kernel.h>
32 #include <linux/interrupt.h>
33 #include <linux/ip.h>
34 #include <linux/tcp.h>
35 #include <linux/skbuff.h>
36 #include <linux/ethtool.h>
37 #include <linux/if_ether.h>
38 #include <linux/crc32.h>
39 #include <linux/mii.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/slab.h>
44 #include <linux/prefetch.h>
45 #ifdef CONFIG_STMMAC_DEBUG_FS
46 #include <linux/debugfs.h>
47 #include <linux/seq_file.h>
48 #endif
49 #include "stmmac.h"
50 
51 #undef STMMAC_DEBUG
52 /*#define STMMAC_DEBUG*/
53 #ifdef STMMAC_DEBUG
54 #define DBG(nlevel, klevel, fmt, args...) \
55 		((void)(netif_msg_##nlevel(priv) && \
56 		printk(KERN_##klevel fmt, ## args)))
57 #else
58 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
59 #endif
60 
61 #undef STMMAC_RX_DEBUG
62 /*#define STMMAC_RX_DEBUG*/
63 #ifdef STMMAC_RX_DEBUG
64 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
65 #else
66 #define RX_DBG(fmt, args...)  do { } while (0)
67 #endif
68 
69 #undef STMMAC_XMIT_DEBUG
70 /*#define STMMAC_XMIT_DEBUG*/
71 #ifdef STMMAC_TX_DEBUG
72 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
73 #else
74 #define TX_DBG(fmt, args...)  do { } while (0)
75 #endif
76 
77 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
78 #define JUMBO_LEN	9000
79 
80 /* Module parameters */
81 #define TX_TIMEO 5000 /* default 5 seconds */
82 static int watchdog = TX_TIMEO;
83 module_param(watchdog, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
85 
86 static int debug = -1;		/* -1: default, 0: no output, 16:  all */
87 module_param(debug, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
89 
90 int phyaddr = -1;
91 module_param(phyaddr, int, S_IRUGO);
92 MODULE_PARM_DESC(phyaddr, "Physical device address");
93 
94 #define DMA_TX_SIZE 256
95 static int dma_txsize = DMA_TX_SIZE;
96 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
98 
99 #define DMA_RX_SIZE 256
100 static int dma_rxsize = DMA_RX_SIZE;
101 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
102 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
103 
104 static int flow_ctrl = FLOW_OFF;
105 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
107 
108 static int pause = PAUSE_TIME;
109 module_param(pause, int, S_IRUGO | S_IWUSR);
110 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
111 
112 #define TC_DEFAULT 64
113 static int tc = TC_DEFAULT;
114 module_param(tc, int, S_IRUGO | S_IWUSR);
115 MODULE_PARM_DESC(tc, "DMA threshold control value");
116 
117 /* Pay attention to tune this parameter; take care of both
118  * hardware capability and network stabitily/performance impact.
119  * Many tests showed that ~4ms latency seems to be good enough. */
120 #ifdef CONFIG_STMMAC_TIMER
121 #define DEFAULT_PERIODIC_RATE	256
122 static int tmrate = DEFAULT_PERIODIC_RATE;
123 module_param(tmrate, int, S_IRUGO | S_IWUSR);
124 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
125 #endif
126 
127 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
128 static int buf_sz = DMA_BUFFER_SIZE;
129 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
130 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
131 
132 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
133 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
134 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
135 
136 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
137 
138 #ifdef CONFIG_STMMAC_DEBUG_FS
139 static int stmmac_init_fs(struct net_device *dev);
140 static void stmmac_exit_fs(void);
141 #endif
142 
143 /**
144  * stmmac_verify_args - verify the driver parameters.
145  * Description: it verifies if some wrong parameter is passed to the driver.
146  * Note that wrong parameters are replaced with the default values.
147  */
148 static void stmmac_verify_args(void)
149 {
150 	if (unlikely(watchdog < 0))
151 		watchdog = TX_TIMEO;
152 	if (unlikely(dma_rxsize < 0))
153 		dma_rxsize = DMA_RX_SIZE;
154 	if (unlikely(dma_txsize < 0))
155 		dma_txsize = DMA_TX_SIZE;
156 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
157 		buf_sz = DMA_BUFFER_SIZE;
158 	if (unlikely(flow_ctrl > 1))
159 		flow_ctrl = FLOW_AUTO;
160 	else if (likely(flow_ctrl < 0))
161 		flow_ctrl = FLOW_OFF;
162 	if (unlikely((pause < 0) || (pause > 0xffff)))
163 		pause = PAUSE_TIME;
164 }
165 
166 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
167 static void print_pkt(unsigned char *buf, int len)
168 {
169 	int j;
170 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
171 	for (j = 0; j < len; j++) {
172 		if ((j % 16) == 0)
173 			pr_info("\n %03x:", j);
174 		pr_info(" %02x", buf[j]);
175 	}
176 	pr_info("\n");
177 }
178 #endif
179 
180 /* minimum number of free TX descriptors required to wake up TX process */
181 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
182 
183 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
184 {
185 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
186 }
187 
188 /* On some ST platforms, some HW system configuraton registers have to be
189  * set according to the link speed negotiated.
190  */
191 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
192 {
193 	struct phy_device *phydev = priv->phydev;
194 
195 	if (likely(priv->plat->fix_mac_speed))
196 		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
197 					  phydev->speed);
198 }
199 
200 /**
201  * stmmac_adjust_link
202  * @dev: net device structure
203  * Description: it adjusts the link parameters.
204  */
205 static void stmmac_adjust_link(struct net_device *dev)
206 {
207 	struct stmmac_priv *priv = netdev_priv(dev);
208 	struct phy_device *phydev = priv->phydev;
209 	unsigned long flags;
210 	int new_state = 0;
211 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
212 
213 	if (phydev == NULL)
214 		return;
215 
216 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
217 	    phydev->addr, phydev->link);
218 
219 	spin_lock_irqsave(&priv->lock, flags);
220 	if (phydev->link) {
221 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
222 
223 		/* Now we make sure that we can be in full duplex mode.
224 		 * If not, we operate in half-duplex mode. */
225 		if (phydev->duplex != priv->oldduplex) {
226 			new_state = 1;
227 			if (!(phydev->duplex))
228 				ctrl &= ~priv->hw->link.duplex;
229 			else
230 				ctrl |= priv->hw->link.duplex;
231 			priv->oldduplex = phydev->duplex;
232 		}
233 		/* Flow Control operation */
234 		if (phydev->pause)
235 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
236 						 fc, pause_time);
237 
238 		if (phydev->speed != priv->speed) {
239 			new_state = 1;
240 			switch (phydev->speed) {
241 			case 1000:
242 				if (likely(priv->plat->has_gmac))
243 					ctrl &= ~priv->hw->link.port;
244 					stmmac_hw_fix_mac_speed(priv);
245 				break;
246 			case 100:
247 			case 10:
248 				if (priv->plat->has_gmac) {
249 					ctrl |= priv->hw->link.port;
250 					if (phydev->speed == SPEED_100) {
251 						ctrl |= priv->hw->link.speed;
252 					} else {
253 						ctrl &= ~(priv->hw->link.speed);
254 					}
255 				} else {
256 					ctrl &= ~priv->hw->link.port;
257 				}
258 				stmmac_hw_fix_mac_speed(priv);
259 				break;
260 			default:
261 				if (netif_msg_link(priv))
262 					pr_warning("%s: Speed (%d) is not 10"
263 				       " or 100!\n", dev->name, phydev->speed);
264 				break;
265 			}
266 
267 			priv->speed = phydev->speed;
268 		}
269 
270 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
271 
272 		if (!priv->oldlink) {
273 			new_state = 1;
274 			priv->oldlink = 1;
275 		}
276 	} else if (priv->oldlink) {
277 		new_state = 1;
278 		priv->oldlink = 0;
279 		priv->speed = 0;
280 		priv->oldduplex = -1;
281 	}
282 
283 	if (new_state && netif_msg_link(priv))
284 		phy_print_status(phydev);
285 
286 	spin_unlock_irqrestore(&priv->lock, flags);
287 
288 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
289 }
290 
291 /**
292  * stmmac_init_phy - PHY initialization
293  * @dev: net device structure
294  * Description: it initializes the driver's PHY state, and attaches the PHY
295  * to the mac driver.
296  *  Return value:
297  *  0 on success
298  */
299 static int stmmac_init_phy(struct net_device *dev)
300 {
301 	struct stmmac_priv *priv = netdev_priv(dev);
302 	struct phy_device *phydev;
303 	char phy_id[MII_BUS_ID_SIZE + 3];
304 	char bus_id[MII_BUS_ID_SIZE];
305 	int interface = priv->plat->interface;
306 	priv->oldlink = 0;
307 	priv->speed = 0;
308 	priv->oldduplex = -1;
309 
310 	snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", priv->plat->bus_id);
311 	snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
312 		 priv->plat->phy_addr);
313 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id);
314 
315 	phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0, interface);
316 
317 	if (IS_ERR(phydev)) {
318 		pr_err("%s: Could not attach to PHY\n", dev->name);
319 		return PTR_ERR(phydev);
320 	}
321 
322 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
323 	if ((interface == PHY_INTERFACE_MODE_MII) ||
324 	    (interface == PHY_INTERFACE_MODE_RMII))
325 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
326 					 SUPPORTED_1000baseT_Full);
327 
328 	/*
329 	 * Broken HW is sometimes missing the pull-up resistor on the
330 	 * MDIO line, which results in reads to non-existent devices returning
331 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
332 	 * device as well.
333 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
334 	 */
335 	if (phydev->phy_id == 0) {
336 		phy_disconnect(phydev);
337 		return -ENODEV;
338 	}
339 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
340 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
341 
342 	priv->phydev = phydev;
343 
344 	return 0;
345 }
346 
347 /**
348  * display_ring
349  * @p: pointer to the ring.
350  * @size: size of the ring.
351  * Description: display all the descriptors within the ring.
352  */
353 static void display_ring(struct dma_desc *p, int size)
354 {
355 	struct tmp_s {
356 		u64 a;
357 		unsigned int b;
358 		unsigned int c;
359 	};
360 	int i;
361 	for (i = 0; i < size; i++) {
362 		struct tmp_s *x = (struct tmp_s *)(p + i);
363 		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
364 		       i, (unsigned int)virt_to_phys(&p[i]),
365 		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
366 		       x->b, x->c);
367 		pr_info("\n");
368 	}
369 }
370 
371 static int stmmac_set_bfsize(int mtu, int bufsize)
372 {
373 	int ret = bufsize;
374 
375 	if (mtu >= BUF_SIZE_4KiB)
376 		ret = BUF_SIZE_8KiB;
377 	else if (mtu >= BUF_SIZE_2KiB)
378 		ret = BUF_SIZE_4KiB;
379 	else if (mtu >= DMA_BUFFER_SIZE)
380 		ret = BUF_SIZE_2KiB;
381 	else
382 		ret = DMA_BUFFER_SIZE;
383 
384 	return ret;
385 }
386 
387 /**
388  * init_dma_desc_rings - init the RX/TX descriptor rings
389  * @dev: net device structure
390  * Description:  this function initializes the DMA RX/TX descriptors
391  * and allocates the socket buffers. It suppors the chained and ring
392  * modes.
393  */
394 static void init_dma_desc_rings(struct net_device *dev)
395 {
396 	int i;
397 	struct stmmac_priv *priv = netdev_priv(dev);
398 	struct sk_buff *skb;
399 	unsigned int txsize = priv->dma_tx_size;
400 	unsigned int rxsize = priv->dma_rx_size;
401 	unsigned int bfsize;
402 	int dis_ic = 0;
403 	int des3_as_data_buf = 0;
404 
405 	/* Set the max buffer size according to the DESC mode
406 	 * and the MTU. Note that RING mode allows 16KiB bsize. */
407 	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
408 
409 	if (bfsize == BUF_SIZE_16KiB)
410 		des3_as_data_buf = 1;
411 	else
412 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
413 
414 #ifdef CONFIG_STMMAC_TIMER
415 	/* Disable interrupts on completion for the reception if timer is on */
416 	if (likely(priv->tm->enable))
417 		dis_ic = 1;
418 #endif
419 
420 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
421 	    txsize, rxsize, bfsize);
422 
423 	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
424 	priv->rx_skbuff =
425 	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
426 	priv->dma_rx =
427 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
428 						  rxsize *
429 						  sizeof(struct dma_desc),
430 						  &priv->dma_rx_phy,
431 						  GFP_KERNEL);
432 	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
433 				       GFP_KERNEL);
434 	priv->dma_tx =
435 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
436 						  txsize *
437 						  sizeof(struct dma_desc),
438 						  &priv->dma_tx_phy,
439 						  GFP_KERNEL);
440 
441 	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
442 		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
443 		return;
444 	}
445 
446 	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
447 	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
448 	    dev->name, priv->dma_rx, priv->dma_tx,
449 	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
450 
451 	/* RX INITIALIZATION */
452 	DBG(probe, INFO, "stmmac: SKB addresses:\n"
453 			 "skb\t\tskb data\tdma data\n");
454 
455 	for (i = 0; i < rxsize; i++) {
456 		struct dma_desc *p = priv->dma_rx + i;
457 
458 		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
459 					 GFP_KERNEL);
460 		if (unlikely(skb == NULL)) {
461 			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
462 			break;
463 		}
464 		skb_reserve(skb, NET_IP_ALIGN);
465 		priv->rx_skbuff[i] = skb;
466 		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
467 						bfsize, DMA_FROM_DEVICE);
468 
469 		p->des2 = priv->rx_skbuff_dma[i];
470 
471 		priv->hw->ring->init_desc3(des3_as_data_buf, p);
472 
473 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
474 			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
475 	}
476 	priv->cur_rx = 0;
477 	priv->dirty_rx = (unsigned int)(i - rxsize);
478 	priv->dma_buf_sz = bfsize;
479 	buf_sz = bfsize;
480 
481 	/* TX INITIALIZATION */
482 	for (i = 0; i < txsize; i++) {
483 		priv->tx_skbuff[i] = NULL;
484 		priv->dma_tx[i].des2 = 0;
485 	}
486 
487 	/* In case of Chained mode this sets the des3 to the next
488 	 * element in the chain */
489 	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
490 	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
491 
492 	priv->dirty_tx = 0;
493 	priv->cur_tx = 0;
494 
495 	/* Clear the Rx/Tx descriptors */
496 	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
497 	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
498 
499 	if (netif_msg_hw(priv)) {
500 		pr_info("RX descriptor ring:\n");
501 		display_ring(priv->dma_rx, rxsize);
502 		pr_info("TX descriptor ring:\n");
503 		display_ring(priv->dma_tx, txsize);
504 	}
505 }
506 
507 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
508 {
509 	int i;
510 
511 	for (i = 0; i < priv->dma_rx_size; i++) {
512 		if (priv->rx_skbuff[i]) {
513 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
514 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
515 			dev_kfree_skb_any(priv->rx_skbuff[i]);
516 		}
517 		priv->rx_skbuff[i] = NULL;
518 	}
519 }
520 
521 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
522 {
523 	int i;
524 
525 	for (i = 0; i < priv->dma_tx_size; i++) {
526 		if (priv->tx_skbuff[i] != NULL) {
527 			struct dma_desc *p = priv->dma_tx + i;
528 			if (p->des2)
529 				dma_unmap_single(priv->device, p->des2,
530 						 priv->hw->desc->get_tx_len(p),
531 						 DMA_TO_DEVICE);
532 			dev_kfree_skb_any(priv->tx_skbuff[i]);
533 			priv->tx_skbuff[i] = NULL;
534 		}
535 	}
536 }
537 
538 static void free_dma_desc_resources(struct stmmac_priv *priv)
539 {
540 	/* Release the DMA TX/RX socket buffers */
541 	dma_free_rx_skbufs(priv);
542 	dma_free_tx_skbufs(priv);
543 
544 	/* Free the region of consistent memory previously allocated for
545 	 * the DMA */
546 	dma_free_coherent(priv->device,
547 			  priv->dma_tx_size * sizeof(struct dma_desc),
548 			  priv->dma_tx, priv->dma_tx_phy);
549 	dma_free_coherent(priv->device,
550 			  priv->dma_rx_size * sizeof(struct dma_desc),
551 			  priv->dma_rx, priv->dma_rx_phy);
552 	kfree(priv->rx_skbuff_dma);
553 	kfree(priv->rx_skbuff);
554 	kfree(priv->tx_skbuff);
555 }
556 
557 /**
558  *  stmmac_dma_operation_mode - HW DMA operation mode
559  *  @priv : pointer to the private device structure.
560  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
561  *  or Store-And-Forward capability.
562  */
563 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
564 {
565 	if (likely(priv->plat->force_sf_dma_mode ||
566 		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
567 		/*
568 		 * In case of GMAC, SF mode can be enabled
569 		 * to perform the TX COE in HW. This depends on:
570 		 * 1) TX COE if actually supported
571 		 * 2) There is no bugged Jumbo frame support
572 		 *    that needs to not insert csum in the TDES.
573 		 */
574 		priv->hw->dma->dma_mode(priv->ioaddr,
575 					SF_DMA_MODE, SF_DMA_MODE);
576 		tc = SF_DMA_MODE;
577 	} else
578 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
579 }
580 
581 /**
582  * stmmac_tx:
583  * @priv: private driver structure
584  * Description: it reclaims resources after transmission completes.
585  */
586 static void stmmac_tx(struct stmmac_priv *priv)
587 {
588 	unsigned int txsize = priv->dma_tx_size;
589 
590 	spin_lock(&priv->tx_lock);
591 
592 	while (priv->dirty_tx != priv->cur_tx) {
593 		int last;
594 		unsigned int entry = priv->dirty_tx % txsize;
595 		struct sk_buff *skb = priv->tx_skbuff[entry];
596 		struct dma_desc *p = priv->dma_tx + entry;
597 
598 		/* Check if the descriptor is owned by the DMA. */
599 		if (priv->hw->desc->get_tx_owner(p))
600 			break;
601 
602 		/* Verify tx error by looking at the last segment */
603 		last = priv->hw->desc->get_tx_ls(p);
604 		if (likely(last)) {
605 			int tx_error =
606 				priv->hw->desc->tx_status(&priv->dev->stats,
607 							  &priv->xstats, p,
608 							  priv->ioaddr);
609 			if (likely(tx_error == 0)) {
610 				priv->dev->stats.tx_packets++;
611 				priv->xstats.tx_pkt_n++;
612 			} else
613 				priv->dev->stats.tx_errors++;
614 		}
615 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
616 			priv->cur_tx, priv->dirty_tx);
617 
618 		if (likely(p->des2))
619 			dma_unmap_single(priv->device, p->des2,
620 					 priv->hw->desc->get_tx_len(p),
621 					 DMA_TO_DEVICE);
622 		priv->hw->ring->clean_desc3(p);
623 
624 		if (likely(skb != NULL)) {
625 			/*
626 			 * If there's room in the queue (limit it to size)
627 			 * we add this skb back into the pool,
628 			 * if it's the right size.
629 			 */
630 			if ((skb_queue_len(&priv->rx_recycle) <
631 				priv->dma_rx_size) &&
632 				skb_recycle_check(skb, priv->dma_buf_sz))
633 				__skb_queue_head(&priv->rx_recycle, skb);
634 			else
635 				dev_kfree_skb(skb);
636 
637 			priv->tx_skbuff[entry] = NULL;
638 		}
639 
640 		priv->hw->desc->release_tx_desc(p);
641 
642 		entry = (++priv->dirty_tx) % txsize;
643 	}
644 	if (unlikely(netif_queue_stopped(priv->dev) &&
645 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
646 		netif_tx_lock(priv->dev);
647 		if (netif_queue_stopped(priv->dev) &&
648 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
649 			TX_DBG("%s: restart transmit\n", __func__);
650 			netif_wake_queue(priv->dev);
651 		}
652 		netif_tx_unlock(priv->dev);
653 	}
654 	spin_unlock(&priv->tx_lock);
655 }
656 
657 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
658 {
659 #ifdef CONFIG_STMMAC_TIMER
660 	if (likely(priv->tm->enable))
661 		priv->tm->timer_start(tmrate);
662 	else
663 #endif
664 		priv->hw->dma->enable_dma_irq(priv->ioaddr);
665 }
666 
667 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
668 {
669 #ifdef CONFIG_STMMAC_TIMER
670 	if (likely(priv->tm->enable))
671 		priv->tm->timer_stop();
672 	else
673 #endif
674 		priv->hw->dma->disable_dma_irq(priv->ioaddr);
675 }
676 
677 static int stmmac_has_work(struct stmmac_priv *priv)
678 {
679 	unsigned int has_work = 0;
680 	int rxret, tx_work = 0;
681 
682 	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
683 		(priv->cur_rx % priv->dma_rx_size));
684 
685 	if (priv->dirty_tx != priv->cur_tx)
686 		tx_work = 1;
687 
688 	if (likely(!rxret || tx_work))
689 		has_work = 1;
690 
691 	return has_work;
692 }
693 
694 static inline void _stmmac_schedule(struct stmmac_priv *priv)
695 {
696 	if (likely(stmmac_has_work(priv))) {
697 		stmmac_disable_irq(priv);
698 		napi_schedule(&priv->napi);
699 	}
700 }
701 
702 #ifdef CONFIG_STMMAC_TIMER
703 void stmmac_schedule(struct net_device *dev)
704 {
705 	struct stmmac_priv *priv = netdev_priv(dev);
706 
707 	priv->xstats.sched_timer_n++;
708 
709 	_stmmac_schedule(priv);
710 }
711 
712 static void stmmac_no_timer_started(unsigned int x)
713 {;
714 };
715 
716 static void stmmac_no_timer_stopped(void)
717 {;
718 };
719 #endif
720 
721 /**
722  * stmmac_tx_err:
723  * @priv: pointer to the private device structure
724  * Description: it cleans the descriptors and restarts the transmission
725  * in case of errors.
726  */
727 static void stmmac_tx_err(struct stmmac_priv *priv)
728 {
729 	netif_stop_queue(priv->dev);
730 
731 	priv->hw->dma->stop_tx(priv->ioaddr);
732 	dma_free_tx_skbufs(priv);
733 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
734 	priv->dirty_tx = 0;
735 	priv->cur_tx = 0;
736 	priv->hw->dma->start_tx(priv->ioaddr);
737 
738 	priv->dev->stats.tx_errors++;
739 	netif_wake_queue(priv->dev);
740 }
741 
742 
743 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
744 {
745 	int status;
746 
747 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
748 	if (likely(status == handle_tx_rx))
749 		_stmmac_schedule(priv);
750 
751 	else if (unlikely(status == tx_hard_error_bump_tc)) {
752 		/* Try to bump up the dma threshold on this failure */
753 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
754 			tc += 64;
755 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
756 			priv->xstats.threshold = tc;
757 		}
758 	} else if (unlikely(status == tx_hard_error))
759 		stmmac_tx_err(priv);
760 }
761 
762 static void stmmac_mmc_setup(struct stmmac_priv *priv)
763 {
764 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
765 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
766 
767 	/* Mask MMC irq, counters are managed in SW and registers
768 	 * are cleared on each READ eventually. */
769 	dwmac_mmc_intr_all_mask(priv->ioaddr);
770 
771 	if (priv->dma_cap.rmon) {
772 		dwmac_mmc_ctrl(priv->ioaddr, mode);
773 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
774 	} else
775 		pr_info(" No MAC Management Counters available\n");
776 }
777 
778 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
779 {
780 	u32 hwid = priv->hw->synopsys_uid;
781 
782 	/* Only check valid Synopsys Id because old MAC chips
783 	 * have no HW registers where get the ID */
784 	if (likely(hwid)) {
785 		u32 uid = ((hwid & 0x0000ff00) >> 8);
786 		u32 synid = (hwid & 0x000000ff);
787 
788 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
789 			uid, synid);
790 
791 		return synid;
792 	}
793 	return 0;
794 }
795 
796 /**
797  * stmmac_selec_desc_mode
798  * @dev : device pointer
799  * Description: select the Enhanced/Alternate or Normal descriptors */
800 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
801 {
802 	if (priv->plat->enh_desc) {
803 		pr_info(" Enhanced/Alternate descriptors\n");
804 		priv->hw->desc = &enh_desc_ops;
805 	} else {
806 		pr_info(" Normal descriptors\n");
807 		priv->hw->desc = &ndesc_ops;
808 	}
809 }
810 
811 /**
812  * stmmac_get_hw_features
813  * @priv : private device pointer
814  * Description:
815  *  new GMAC chip generations have a new register to indicate the
816  *  presence of the optional feature/functions.
817  *  This can be also used to override the value passed through the
818  *  platform and necessary for old MAC10/100 and GMAC chips.
819  */
820 static int stmmac_get_hw_features(struct stmmac_priv *priv)
821 {
822 	u32 hw_cap = 0;
823 
824 	if (priv->hw->dma->get_hw_feature) {
825 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
826 
827 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
828 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
829 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
830 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
831 		priv->dma_cap.multi_addr =
832 			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
833 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
834 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
835 		priv->dma_cap.pmt_remote_wake_up =
836 			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
837 		priv->dma_cap.pmt_magic_frame =
838 			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
839 		/* MMC */
840 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
841 		/* IEEE 1588-2002*/
842 		priv->dma_cap.time_stamp =
843 			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
844 		/* IEEE 1588-2008*/
845 		priv->dma_cap.atime_stamp =
846 			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
847 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
848 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
849 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
850 		/* TX and RX csum */
851 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
852 		priv->dma_cap.rx_coe_type1 =
853 			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
854 		priv->dma_cap.rx_coe_type2 =
855 			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
856 		priv->dma_cap.rxfifo_over_2048 =
857 			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
858 		/* TX and RX number of channels */
859 		priv->dma_cap.number_rx_channel =
860 			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
861 		priv->dma_cap.number_tx_channel =
862 			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
863 		/* Alternate (enhanced) DESC mode*/
864 		priv->dma_cap.enh_desc =
865 			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
866 
867 	}
868 
869 	return hw_cap;
870 }
871 
872 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
873 {
874 	/* verify if the MAC address is valid, in case of failures it
875 	 * generates a random MAC address */
876 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
877 		priv->hw->mac->get_umac_addr((void __iomem *)
878 					     priv->dev->base_addr,
879 					     priv->dev->dev_addr, 0);
880 		if  (!is_valid_ether_addr(priv->dev->dev_addr))
881 			eth_hw_addr_random(priv->dev);
882 	}
883 	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
884 						   priv->dev->dev_addr);
885 }
886 
887 /**
888  *  stmmac_open - open entry point of the driver
889  *  @dev : pointer to the device structure.
890  *  Description:
891  *  This function is the open entry point of the driver.
892  *  Return value:
893  *  0 on success and an appropriate (-)ve integer as defined in errno.h
894  *  file on failure.
895  */
896 static int stmmac_open(struct net_device *dev)
897 {
898 	struct stmmac_priv *priv = netdev_priv(dev);
899 	int ret;
900 
901 	stmmac_check_ether_addr(priv);
902 
903 	/* MDIO bus Registration */
904 	ret = stmmac_mdio_register(dev);
905 	if (ret < 0) {
906 		pr_debug("%s: MDIO bus (id: %d) registration failed",
907 			 __func__, priv->plat->bus_id);
908 		return ret;
909 	}
910 
911 #ifdef CONFIG_STMMAC_TIMER
912 	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
913 	if (unlikely(priv->tm == NULL))
914 		return -ENOMEM;
915 
916 	priv->tm->freq = tmrate;
917 
918 	/* Test if the external timer can be actually used.
919 	 * In case of failure continue without timer. */
920 	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
921 		pr_warning("stmmaceth: cannot attach the external timer.\n");
922 		priv->tm->freq = 0;
923 		priv->tm->timer_start = stmmac_no_timer_started;
924 		priv->tm->timer_stop = stmmac_no_timer_stopped;
925 	} else
926 		priv->tm->enable = 1;
927 #endif
928 	ret = stmmac_init_phy(dev);
929 	if (unlikely(ret)) {
930 		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
931 		goto open_error;
932 	}
933 
934 	/* Create and initialize the TX/RX descriptors chains. */
935 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
936 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
937 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
938 	init_dma_desc_rings(dev);
939 
940 	/* DMA initialization and SW reset */
941 	ret = priv->hw->dma->init(priv->ioaddr, priv->plat->pbl,
942 				  priv->dma_tx_phy, priv->dma_rx_phy);
943 	if (ret < 0) {
944 		pr_err("%s: DMA initialization failed\n", __func__);
945 		goto open_error;
946 	}
947 
948 	/* Copy the MAC addr into the HW  */
949 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
950 
951 	/* If required, perform hw setup of the bus. */
952 	if (priv->plat->bus_setup)
953 		priv->plat->bus_setup(priv->ioaddr);
954 
955 	/* Initialize the MAC Core */
956 	priv->hw->mac->core_init(priv->ioaddr);
957 
958 	/* Request the IRQ lines */
959 	ret = request_irq(dev->irq, stmmac_interrupt,
960 			 IRQF_SHARED, dev->name, dev);
961 	if (unlikely(ret < 0)) {
962 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
963 		       __func__, dev->irq, ret);
964 		goto open_error;
965 	}
966 
967 	/* Request the Wake IRQ in case of another line is used for WoL */
968 	if (priv->wol_irq != dev->irq) {
969 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
970 				  IRQF_SHARED, dev->name, dev);
971 		if (unlikely(ret < 0)) {
972 			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
973 			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
974 			goto open_error_wolirq;
975 		}
976 	}
977 
978 	/* Enable the MAC Rx/Tx */
979 	stmmac_set_mac(priv->ioaddr, true);
980 
981 	/* Set the HW DMA mode and the COE */
982 	stmmac_dma_operation_mode(priv);
983 
984 	/* Extra statistics */
985 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
986 	priv->xstats.threshold = tc;
987 
988 	stmmac_mmc_setup(priv);
989 
990 #ifdef CONFIG_STMMAC_DEBUG_FS
991 	ret = stmmac_init_fs(dev);
992 	if (ret < 0)
993 		pr_warning("%s: failed debugFS registration\n", __func__);
994 #endif
995 	/* Start the ball rolling... */
996 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
997 	priv->hw->dma->start_tx(priv->ioaddr);
998 	priv->hw->dma->start_rx(priv->ioaddr);
999 
1000 #ifdef CONFIG_STMMAC_TIMER
1001 	priv->tm->timer_start(tmrate);
1002 #endif
1003 
1004 	/* Dump DMA/MAC registers */
1005 	if (netif_msg_hw(priv)) {
1006 		priv->hw->mac->dump_regs(priv->ioaddr);
1007 		priv->hw->dma->dump_regs(priv->ioaddr);
1008 	}
1009 
1010 	if (priv->phydev)
1011 		phy_start(priv->phydev);
1012 
1013 	napi_enable(&priv->napi);
1014 	skb_queue_head_init(&priv->rx_recycle);
1015 	netif_start_queue(dev);
1016 
1017 	return 0;
1018 
1019 open_error_wolirq:
1020 	free_irq(dev->irq, dev);
1021 
1022 open_error:
1023 #ifdef CONFIG_STMMAC_TIMER
1024 	kfree(priv->tm);
1025 #endif
1026 	if (priv->phydev)
1027 		phy_disconnect(priv->phydev);
1028 
1029 	return ret;
1030 }
1031 
1032 /**
1033  *  stmmac_release - close entry point of the driver
1034  *  @dev : device pointer.
1035  *  Description:
1036  *  This is the stop entry point of the driver.
1037  */
1038 static int stmmac_release(struct net_device *dev)
1039 {
1040 	struct stmmac_priv *priv = netdev_priv(dev);
1041 
1042 	/* Stop and disconnect the PHY */
1043 	if (priv->phydev) {
1044 		phy_stop(priv->phydev);
1045 		phy_disconnect(priv->phydev);
1046 		priv->phydev = NULL;
1047 	}
1048 
1049 	netif_stop_queue(dev);
1050 
1051 #ifdef CONFIG_STMMAC_TIMER
1052 	/* Stop and release the timer */
1053 	stmmac_close_ext_timer();
1054 	if (priv->tm != NULL)
1055 		kfree(priv->tm);
1056 #endif
1057 	napi_disable(&priv->napi);
1058 	skb_queue_purge(&priv->rx_recycle);
1059 
1060 	/* Free the IRQ lines */
1061 	free_irq(dev->irq, dev);
1062 	if (priv->wol_irq != dev->irq)
1063 		free_irq(priv->wol_irq, dev);
1064 
1065 	/* Stop TX/RX DMA and clear the descriptors */
1066 	priv->hw->dma->stop_tx(priv->ioaddr);
1067 	priv->hw->dma->stop_rx(priv->ioaddr);
1068 
1069 	/* Release and free the Rx/Tx resources */
1070 	free_dma_desc_resources(priv);
1071 
1072 	/* Disable the MAC Rx/Tx */
1073 	stmmac_set_mac(priv->ioaddr, false);
1074 
1075 	netif_carrier_off(dev);
1076 
1077 #ifdef CONFIG_STMMAC_DEBUG_FS
1078 	stmmac_exit_fs();
1079 #endif
1080 	stmmac_mdio_unregister(dev);
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  *  stmmac_xmit:
1087  *  @skb : the socket buffer
1088  *  @dev : device pointer
1089  *  Description : Tx entry point of the driver.
1090  */
1091 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1092 {
1093 	struct stmmac_priv *priv = netdev_priv(dev);
1094 	unsigned int txsize = priv->dma_tx_size;
1095 	unsigned int entry;
1096 	int i, csum_insertion = 0;
1097 	int nfrags = skb_shinfo(skb)->nr_frags;
1098 	struct dma_desc *desc, *first;
1099 	unsigned int nopaged_len = skb_headlen(skb);
1100 
1101 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1102 		if (!netif_queue_stopped(dev)) {
1103 			netif_stop_queue(dev);
1104 			/* This is a hard error, log it. */
1105 			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1106 				__func__);
1107 		}
1108 		return NETDEV_TX_BUSY;
1109 	}
1110 
1111 	spin_lock(&priv->tx_lock);
1112 
1113 	entry = priv->cur_tx % txsize;
1114 
1115 #ifdef STMMAC_XMIT_DEBUG
1116 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1117 		pr_info("stmmac xmit:\n"
1118 		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
1119 		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1120 		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1121 		       !skb_is_gso(skb) ? "isn't" : "is");
1122 #endif
1123 
1124 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1125 
1126 	desc = priv->dma_tx + entry;
1127 	first = desc;
1128 
1129 #ifdef STMMAC_XMIT_DEBUG
1130 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1131 		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1132 		       "\t\tn_frags: %d, ip_summed: %d\n",
1133 		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1134 #endif
1135 	priv->tx_skbuff[entry] = skb;
1136 
1137 	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1138 		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1139 		desc = priv->dma_tx + entry;
1140 	} else {
1141 		desc->des2 = dma_map_single(priv->device, skb->data,
1142 					nopaged_len, DMA_TO_DEVICE);
1143 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1144 						csum_insertion);
1145 	}
1146 
1147 	for (i = 0; i < nfrags; i++) {
1148 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1149 		int len = skb_frag_size(frag);
1150 
1151 		entry = (++priv->cur_tx) % txsize;
1152 		desc = priv->dma_tx + entry;
1153 
1154 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1155 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1156 					      DMA_TO_DEVICE);
1157 		priv->tx_skbuff[entry] = NULL;
1158 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1159 		wmb();
1160 		priv->hw->desc->set_tx_owner(desc);
1161 	}
1162 
1163 	/* Interrupt on completition only for the latest segment */
1164 	priv->hw->desc->close_tx_desc(desc);
1165 
1166 #ifdef CONFIG_STMMAC_TIMER
1167 	/* Clean IC while using timer */
1168 	if (likely(priv->tm->enable))
1169 		priv->hw->desc->clear_tx_ic(desc);
1170 #endif
1171 
1172 	wmb();
1173 
1174 	/* To avoid raise condition */
1175 	priv->hw->desc->set_tx_owner(first);
1176 
1177 	priv->cur_tx++;
1178 
1179 #ifdef STMMAC_XMIT_DEBUG
1180 	if (netif_msg_pktdata(priv)) {
1181 		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1182 		       "first=%p, nfrags=%d\n",
1183 		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1184 		       entry, first, nfrags);
1185 		display_ring(priv->dma_tx, txsize);
1186 		pr_info(">>> frame to be transmitted: ");
1187 		print_pkt(skb->data, skb->len);
1188 	}
1189 #endif
1190 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1191 		TX_DBG("%s: stop transmitted packets\n", __func__);
1192 		netif_stop_queue(dev);
1193 	}
1194 
1195 	dev->stats.tx_bytes += skb->len;
1196 
1197 	skb_tx_timestamp(skb);
1198 
1199 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1200 
1201 	spin_unlock(&priv->tx_lock);
1202 
1203 	return NETDEV_TX_OK;
1204 }
1205 
1206 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1207 {
1208 	unsigned int rxsize = priv->dma_rx_size;
1209 	int bfsize = priv->dma_buf_sz;
1210 	struct dma_desc *p = priv->dma_rx;
1211 
1212 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1213 		unsigned int entry = priv->dirty_rx % rxsize;
1214 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1215 			struct sk_buff *skb;
1216 
1217 			skb = __skb_dequeue(&priv->rx_recycle);
1218 			if (skb == NULL)
1219 				skb = netdev_alloc_skb_ip_align(priv->dev,
1220 								bfsize);
1221 
1222 			if (unlikely(skb == NULL))
1223 				break;
1224 
1225 			priv->rx_skbuff[entry] = skb;
1226 			priv->rx_skbuff_dma[entry] =
1227 			    dma_map_single(priv->device, skb->data, bfsize,
1228 					   DMA_FROM_DEVICE);
1229 
1230 			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1231 
1232 			if (unlikely(priv->plat->has_gmac))
1233 				priv->hw->ring->refill_desc3(bfsize, p + entry);
1234 
1235 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1236 		}
1237 		wmb();
1238 		priv->hw->desc->set_rx_owner(p + entry);
1239 	}
1240 }
1241 
1242 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1243 {
1244 	unsigned int rxsize = priv->dma_rx_size;
1245 	unsigned int entry = priv->cur_rx % rxsize;
1246 	unsigned int next_entry;
1247 	unsigned int count = 0;
1248 	struct dma_desc *p = priv->dma_rx + entry;
1249 	struct dma_desc *p_next;
1250 
1251 #ifdef STMMAC_RX_DEBUG
1252 	if (netif_msg_hw(priv)) {
1253 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1254 		display_ring(priv->dma_rx, rxsize);
1255 	}
1256 #endif
1257 	count = 0;
1258 	while (!priv->hw->desc->get_rx_owner(p)) {
1259 		int status;
1260 
1261 		if (count >= limit)
1262 			break;
1263 
1264 		count++;
1265 
1266 		next_entry = (++priv->cur_rx) % rxsize;
1267 		p_next = priv->dma_rx + next_entry;
1268 		prefetch(p_next);
1269 
1270 		/* read the status of the incoming frame */
1271 		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1272 						    &priv->xstats, p));
1273 		if (unlikely(status == discard_frame))
1274 			priv->dev->stats.rx_errors++;
1275 		else {
1276 			struct sk_buff *skb;
1277 			int frame_len;
1278 
1279 			frame_len = priv->hw->desc->get_rx_frame_len(p);
1280 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1281 			 * Type frames (LLC/LLC-SNAP) */
1282 			if (unlikely(status != llc_snap))
1283 				frame_len -= ETH_FCS_LEN;
1284 #ifdef STMMAC_RX_DEBUG
1285 			if (frame_len > ETH_FRAME_LEN)
1286 				pr_debug("\tRX frame size %d, COE status: %d\n",
1287 					frame_len, status);
1288 
1289 			if (netif_msg_hw(priv))
1290 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1291 					p, entry, p->des2);
1292 #endif
1293 			skb = priv->rx_skbuff[entry];
1294 			if (unlikely(!skb)) {
1295 				pr_err("%s: Inconsistent Rx descriptor chain\n",
1296 					priv->dev->name);
1297 				priv->dev->stats.rx_dropped++;
1298 				break;
1299 			}
1300 			prefetch(skb->data - NET_IP_ALIGN);
1301 			priv->rx_skbuff[entry] = NULL;
1302 
1303 			skb_put(skb, frame_len);
1304 			dma_unmap_single(priv->device,
1305 					 priv->rx_skbuff_dma[entry],
1306 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1307 #ifdef STMMAC_RX_DEBUG
1308 			if (netif_msg_pktdata(priv)) {
1309 				pr_info(" frame received (%dbytes)", frame_len);
1310 				print_pkt(skb->data, frame_len);
1311 			}
1312 #endif
1313 			skb->protocol = eth_type_trans(skb, priv->dev);
1314 
1315 			if (unlikely(!priv->rx_coe)) {
1316 				/* No RX COE for old mac10/100 devices */
1317 				skb_checksum_none_assert(skb);
1318 				netif_receive_skb(skb);
1319 			} else {
1320 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1321 				napi_gro_receive(&priv->napi, skb);
1322 			}
1323 
1324 			priv->dev->stats.rx_packets++;
1325 			priv->dev->stats.rx_bytes += frame_len;
1326 		}
1327 		entry = next_entry;
1328 		p = p_next;	/* use prefetched values */
1329 	}
1330 
1331 	stmmac_rx_refill(priv);
1332 
1333 	priv->xstats.rx_pkt_n += count;
1334 
1335 	return count;
1336 }
1337 
1338 /**
1339  *  stmmac_poll - stmmac poll method (NAPI)
1340  *  @napi : pointer to the napi structure.
1341  *  @budget : maximum number of packets that the current CPU can receive from
1342  *	      all interfaces.
1343  *  Description :
1344  *   This function implements the the reception process.
1345  *   Also it runs the TX completion thread
1346  */
1347 static int stmmac_poll(struct napi_struct *napi, int budget)
1348 {
1349 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1350 	int work_done = 0;
1351 
1352 	priv->xstats.poll_n++;
1353 	stmmac_tx(priv);
1354 	work_done = stmmac_rx(priv, budget);
1355 
1356 	if (work_done < budget) {
1357 		napi_complete(napi);
1358 		stmmac_enable_irq(priv);
1359 	}
1360 	return work_done;
1361 }
1362 
1363 /**
1364  *  stmmac_tx_timeout
1365  *  @dev : Pointer to net device structure
1366  *  Description: this function is called when a packet transmission fails to
1367  *   complete within a reasonable tmrate. The driver will mark the error in the
1368  *   netdev structure and arrange for the device to be reset to a sane state
1369  *   in order to transmit a new packet.
1370  */
1371 static void stmmac_tx_timeout(struct net_device *dev)
1372 {
1373 	struct stmmac_priv *priv = netdev_priv(dev);
1374 
1375 	/* Clear Tx resources and restart transmitting again */
1376 	stmmac_tx_err(priv);
1377 }
1378 
1379 /* Configuration changes (passed on by ifconfig) */
1380 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1381 {
1382 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1383 		return -EBUSY;
1384 
1385 	/* Don't allow changing the I/O address */
1386 	if (map->base_addr != dev->base_addr) {
1387 		pr_warning("%s: can't change I/O address\n", dev->name);
1388 		return -EOPNOTSUPP;
1389 	}
1390 
1391 	/* Don't allow changing the IRQ */
1392 	if (map->irq != dev->irq) {
1393 		pr_warning("%s: can't change IRQ number %d\n",
1394 		       dev->name, dev->irq);
1395 		return -EOPNOTSUPP;
1396 	}
1397 
1398 	/* ignore other fields */
1399 	return 0;
1400 }
1401 
1402 /**
1403  *  stmmac_set_rx_mode - entry point for multicast addressing
1404  *  @dev : pointer to the device structure
1405  *  Description:
1406  *  This function is a driver entry point which gets called by the kernel
1407  *  whenever multicast addresses must be enabled/disabled.
1408  *  Return value:
1409  *  void.
1410  */
1411 static void stmmac_set_rx_mode(struct net_device *dev)
1412 {
1413 	struct stmmac_priv *priv = netdev_priv(dev);
1414 
1415 	spin_lock(&priv->lock);
1416 	priv->hw->mac->set_filter(dev);
1417 	spin_unlock(&priv->lock);
1418 }
1419 
1420 /**
1421  *  stmmac_change_mtu - entry point to change MTU size for the device.
1422  *  @dev : device pointer.
1423  *  @new_mtu : the new MTU size for the device.
1424  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1425  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1426  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1427  *  Return value:
1428  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1429  *  file on failure.
1430  */
1431 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1432 {
1433 	struct stmmac_priv *priv = netdev_priv(dev);
1434 	int max_mtu;
1435 
1436 	if (netif_running(dev)) {
1437 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1438 		return -EBUSY;
1439 	}
1440 
1441 	if (priv->plat->enh_desc)
1442 		max_mtu = JUMBO_LEN;
1443 	else
1444 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1445 
1446 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1447 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1448 		return -EINVAL;
1449 	}
1450 
1451 	dev->mtu = new_mtu;
1452 	netdev_update_features(dev);
1453 
1454 	return 0;
1455 }
1456 
1457 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1458 	netdev_features_t features)
1459 {
1460 	struct stmmac_priv *priv = netdev_priv(dev);
1461 
1462 	if (!priv->rx_coe)
1463 		features &= ~NETIF_F_RXCSUM;
1464 	if (!priv->plat->tx_coe)
1465 		features &= ~NETIF_F_ALL_CSUM;
1466 
1467 	/* Some GMAC devices have a bugged Jumbo frame support that
1468 	 * needs to have the Tx COE disabled for oversized frames
1469 	 * (due to limited buffer sizes). In this case we disable
1470 	 * the TX csum insertionin the TDES and not use SF. */
1471 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1472 		features &= ~NETIF_F_ALL_CSUM;
1473 
1474 	return features;
1475 }
1476 
1477 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1478 {
1479 	struct net_device *dev = (struct net_device *)dev_id;
1480 	struct stmmac_priv *priv = netdev_priv(dev);
1481 
1482 	if (unlikely(!dev)) {
1483 		pr_err("%s: invalid dev pointer\n", __func__);
1484 		return IRQ_NONE;
1485 	}
1486 
1487 	if (priv->plat->has_gmac)
1488 		/* To handle GMAC own interrupts */
1489 		priv->hw->mac->host_irq_status((void __iomem *) dev->base_addr);
1490 
1491 	stmmac_dma_interrupt(priv);
1492 
1493 	return IRQ_HANDLED;
1494 }
1495 
1496 #ifdef CONFIG_NET_POLL_CONTROLLER
1497 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1498  * to allow network I/O with interrupts disabled. */
1499 static void stmmac_poll_controller(struct net_device *dev)
1500 {
1501 	disable_irq(dev->irq);
1502 	stmmac_interrupt(dev->irq, dev);
1503 	enable_irq(dev->irq);
1504 }
1505 #endif
1506 
1507 /**
1508  *  stmmac_ioctl - Entry point for the Ioctl
1509  *  @dev: Device pointer.
1510  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1511  *  a proprietary structure used to pass information to the driver.
1512  *  @cmd: IOCTL command
1513  *  Description:
1514  *  Currently there are no special functionality supported in IOCTL, just the
1515  *  phy_mii_ioctl(...) can be invoked.
1516  */
1517 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1518 {
1519 	struct stmmac_priv *priv = netdev_priv(dev);
1520 	int ret;
1521 
1522 	if (!netif_running(dev))
1523 		return -EINVAL;
1524 
1525 	if (!priv->phydev)
1526 		return -EINVAL;
1527 
1528 	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1529 
1530 	return ret;
1531 }
1532 
1533 #ifdef CONFIG_STMMAC_DEBUG_FS
1534 static struct dentry *stmmac_fs_dir;
1535 static struct dentry *stmmac_rings_status;
1536 static struct dentry *stmmac_dma_cap;
1537 
1538 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1539 {
1540 	struct tmp_s {
1541 		u64 a;
1542 		unsigned int b;
1543 		unsigned int c;
1544 	};
1545 	int i;
1546 	struct net_device *dev = seq->private;
1547 	struct stmmac_priv *priv = netdev_priv(dev);
1548 
1549 	seq_printf(seq, "=======================\n");
1550 	seq_printf(seq, " RX descriptor ring\n");
1551 	seq_printf(seq, "=======================\n");
1552 
1553 	for (i = 0; i < priv->dma_rx_size; i++) {
1554 		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1555 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1556 			   i, (unsigned int)(x->a),
1557 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1558 		seq_printf(seq, "\n");
1559 	}
1560 
1561 	seq_printf(seq, "\n");
1562 	seq_printf(seq, "=======================\n");
1563 	seq_printf(seq, "  TX descriptor ring\n");
1564 	seq_printf(seq, "=======================\n");
1565 
1566 	for (i = 0; i < priv->dma_tx_size; i++) {
1567 		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1568 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1569 			   i, (unsigned int)(x->a),
1570 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1571 		seq_printf(seq, "\n");
1572 	}
1573 
1574 	return 0;
1575 }
1576 
1577 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1578 {
1579 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1580 }
1581 
1582 static const struct file_operations stmmac_rings_status_fops = {
1583 	.owner = THIS_MODULE,
1584 	.open = stmmac_sysfs_ring_open,
1585 	.read = seq_read,
1586 	.llseek = seq_lseek,
1587 	.release = seq_release,
1588 };
1589 
1590 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1591 {
1592 	struct net_device *dev = seq->private;
1593 	struct stmmac_priv *priv = netdev_priv(dev);
1594 
1595 	if (!priv->hw_cap_support) {
1596 		seq_printf(seq, "DMA HW features not supported\n");
1597 		return 0;
1598 	}
1599 
1600 	seq_printf(seq, "==============================\n");
1601 	seq_printf(seq, "\tDMA HW features\n");
1602 	seq_printf(seq, "==============================\n");
1603 
1604 	seq_printf(seq, "\t10/100 Mbps %s\n",
1605 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1606 	seq_printf(seq, "\t1000 Mbps %s\n",
1607 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1608 	seq_printf(seq, "\tHalf duple %s\n",
1609 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1610 	seq_printf(seq, "\tHash Filter: %s\n",
1611 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1612 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1613 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1614 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1615 		   (priv->dma_cap.pcs) ? "Y" : "N");
1616 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1617 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1618 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1619 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1620 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1621 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1622 	seq_printf(seq, "\tRMON module: %s\n",
1623 		   (priv->dma_cap.rmon) ? "Y" : "N");
1624 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1625 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1626 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1627 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1628 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1629 		   (priv->dma_cap.eee) ? "Y" : "N");
1630 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1631 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1632 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1633 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1634 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1635 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1636 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1637 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1638 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1639 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1640 		   priv->dma_cap.number_rx_channel);
1641 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1642 		   priv->dma_cap.number_tx_channel);
1643 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1644 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1645 
1646 	return 0;
1647 }
1648 
1649 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1650 {
1651 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1652 }
1653 
1654 static const struct file_operations stmmac_dma_cap_fops = {
1655 	.owner = THIS_MODULE,
1656 	.open = stmmac_sysfs_dma_cap_open,
1657 	.read = seq_read,
1658 	.llseek = seq_lseek,
1659 	.release = seq_release,
1660 };
1661 
1662 static int stmmac_init_fs(struct net_device *dev)
1663 {
1664 	/* Create debugfs entries */
1665 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1666 
1667 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1668 		pr_err("ERROR %s, debugfs create directory failed\n",
1669 		       STMMAC_RESOURCE_NAME);
1670 
1671 		return -ENOMEM;
1672 	}
1673 
1674 	/* Entry to report DMA RX/TX rings */
1675 	stmmac_rings_status = debugfs_create_file("descriptors_status",
1676 					   S_IRUGO, stmmac_fs_dir, dev,
1677 					   &stmmac_rings_status_fops);
1678 
1679 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1680 		pr_info("ERROR creating stmmac ring debugfs file\n");
1681 		debugfs_remove(stmmac_fs_dir);
1682 
1683 		return -ENOMEM;
1684 	}
1685 
1686 	/* Entry to report the DMA HW features */
1687 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1688 					     dev, &stmmac_dma_cap_fops);
1689 
1690 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1691 		pr_info("ERROR creating stmmac MMC debugfs file\n");
1692 		debugfs_remove(stmmac_rings_status);
1693 		debugfs_remove(stmmac_fs_dir);
1694 
1695 		return -ENOMEM;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 static void stmmac_exit_fs(void)
1702 {
1703 	debugfs_remove(stmmac_rings_status);
1704 	debugfs_remove(stmmac_dma_cap);
1705 	debugfs_remove(stmmac_fs_dir);
1706 }
1707 #endif /* CONFIG_STMMAC_DEBUG_FS */
1708 
1709 static const struct net_device_ops stmmac_netdev_ops = {
1710 	.ndo_open = stmmac_open,
1711 	.ndo_start_xmit = stmmac_xmit,
1712 	.ndo_stop = stmmac_release,
1713 	.ndo_change_mtu = stmmac_change_mtu,
1714 	.ndo_fix_features = stmmac_fix_features,
1715 	.ndo_set_rx_mode = stmmac_set_rx_mode,
1716 	.ndo_tx_timeout = stmmac_tx_timeout,
1717 	.ndo_do_ioctl = stmmac_ioctl,
1718 	.ndo_set_config = stmmac_config,
1719 #ifdef CONFIG_NET_POLL_CONTROLLER
1720 	.ndo_poll_controller = stmmac_poll_controller,
1721 #endif
1722 	.ndo_set_mac_address = eth_mac_addr,
1723 };
1724 
1725 /**
1726  *  stmmac_hw_init - Init the MAC device
1727  *  @priv : pointer to the private device structure.
1728  *  Description: this function detects which MAC device
1729  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1730  *  (if supported) and sets the driver's features (for example
1731  *  to use the ring or chaine mode or support the normal/enh
1732  *  descriptor structure).
1733  */
1734 static int stmmac_hw_init(struct stmmac_priv *priv)
1735 {
1736 	int ret = 0;
1737 	struct mac_device_info *mac;
1738 
1739 	/* Identify the MAC HW device */
1740 	if (priv->plat->has_gmac) {
1741 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1742 		mac = dwmac1000_setup(priv->ioaddr);
1743 	} else {
1744 		mac = dwmac100_setup(priv->ioaddr);
1745 	}
1746 	if (!mac)
1747 		return -ENOMEM;
1748 
1749 	priv->hw = mac;
1750 
1751 	/* To use the chained or ring mode */
1752 	priv->hw->ring = &ring_mode_ops;
1753 
1754 	/* Get and dump the chip ID */
1755 	stmmac_get_synopsys_id(priv);
1756 
1757 	/* Get the HW capability (new GMAC newer than 3.50a) */
1758 	priv->hw_cap_support = stmmac_get_hw_features(priv);
1759 	if (priv->hw_cap_support) {
1760 		pr_info(" DMA HW capability register supported");
1761 
1762 		/* We can override some gmac/dma configuration fields: e.g.
1763 		 * enh_desc, tx_coe (e.g. that are passed through the
1764 		 * platform) with the values from the HW capability
1765 		 * register (if supported).
1766 		 */
1767 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1768 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1769 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1770 	} else
1771 		pr_info(" No HW DMA feature register supported");
1772 
1773 	/* Select the enhnaced/normal descriptor structures */
1774 	stmmac_selec_desc_mode(priv);
1775 
1776 	priv->rx_coe = priv->hw->mac->rx_coe(priv->ioaddr);
1777 	if (priv->rx_coe)
1778 		pr_info(" RX Checksum Offload Engine supported\n");
1779 	if (priv->plat->tx_coe)
1780 		pr_info(" TX Checksum insertion supported\n");
1781 
1782 	if (priv->plat->pmt) {
1783 		pr_info(" Wake-Up On Lan supported\n");
1784 		device_set_wakeup_capable(priv->device, 1);
1785 	}
1786 
1787 	return ret;
1788 }
1789 
1790 /**
1791  * stmmac_dvr_probe
1792  * @device: device pointer
1793  * Description: this is the main probe function used to
1794  * call the alloc_etherdev, allocate the priv structure.
1795  */
1796 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
1797 				     struct plat_stmmacenet_data *plat_dat,
1798 				     void __iomem *addr)
1799 {
1800 	int ret = 0;
1801 	struct net_device *ndev = NULL;
1802 	struct stmmac_priv *priv;
1803 
1804 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1805 	if (!ndev)
1806 		return NULL;
1807 
1808 	SET_NETDEV_DEV(ndev, device);
1809 
1810 	priv = netdev_priv(ndev);
1811 	priv->device = device;
1812 	priv->dev = ndev;
1813 
1814 	ether_setup(ndev);
1815 
1816 	stmmac_set_ethtool_ops(ndev);
1817 	priv->pause = pause;
1818 	priv->plat = plat_dat;
1819 	priv->ioaddr = addr;
1820 	priv->dev->base_addr = (unsigned long)addr;
1821 
1822 	/* Verify driver arguments */
1823 	stmmac_verify_args();
1824 
1825 	/* Override with kernel parameters if supplied XXX CRS XXX
1826 	 * this needs to have multiple instances */
1827 	if ((phyaddr >= 0) && (phyaddr <= 31))
1828 		priv->plat->phy_addr = phyaddr;
1829 
1830 	/* Init MAC and get the capabilities */
1831 	stmmac_hw_init(priv);
1832 
1833 	ndev->netdev_ops = &stmmac_netdev_ops;
1834 
1835 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1836 			    NETIF_F_RXCSUM;
1837 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
1838 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1839 #ifdef STMMAC_VLAN_TAG_USED
1840 	/* Both mac100 and gmac support receive VLAN tag detection */
1841 	ndev->features |= NETIF_F_HW_VLAN_RX;
1842 #endif
1843 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
1844 
1845 	if (flow_ctrl)
1846 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
1847 
1848 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
1849 
1850 	spin_lock_init(&priv->lock);
1851 	spin_lock_init(&priv->tx_lock);
1852 
1853 	ret = register_netdev(ndev);
1854 	if (ret) {
1855 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
1856 		goto error;
1857 	}
1858 
1859 	return priv;
1860 
1861 error:
1862 	netif_napi_del(&priv->napi);
1863 
1864 	unregister_netdev(ndev);
1865 	free_netdev(ndev);
1866 
1867 	return NULL;
1868 }
1869 
1870 /**
1871  * stmmac_dvr_remove
1872  * @ndev: net device pointer
1873  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1874  * changes the link status, releases the DMA descriptor rings.
1875  */
1876 int stmmac_dvr_remove(struct net_device *ndev)
1877 {
1878 	struct stmmac_priv *priv = netdev_priv(ndev);
1879 
1880 	pr_info("%s:\n\tremoving driver", __func__);
1881 
1882 	priv->hw->dma->stop_rx(priv->ioaddr);
1883 	priv->hw->dma->stop_tx(priv->ioaddr);
1884 
1885 	stmmac_set_mac(priv->ioaddr, false);
1886 	netif_carrier_off(ndev);
1887 	unregister_netdev(ndev);
1888 	free_netdev(ndev);
1889 
1890 	return 0;
1891 }
1892 
1893 #ifdef CONFIG_PM
1894 int stmmac_suspend(struct net_device *ndev)
1895 {
1896 	struct stmmac_priv *priv = netdev_priv(ndev);
1897 	int dis_ic = 0;
1898 
1899 	if (!ndev || !netif_running(ndev))
1900 		return 0;
1901 
1902 	if (priv->phydev)
1903 		phy_stop(priv->phydev);
1904 
1905 	spin_lock(&priv->lock);
1906 
1907 	netif_device_detach(ndev);
1908 	netif_stop_queue(ndev);
1909 
1910 #ifdef CONFIG_STMMAC_TIMER
1911 	priv->tm->timer_stop();
1912 	if (likely(priv->tm->enable))
1913 		dis_ic = 1;
1914 #endif
1915 	napi_disable(&priv->napi);
1916 
1917 	/* Stop TX/RX DMA */
1918 	priv->hw->dma->stop_tx(priv->ioaddr);
1919 	priv->hw->dma->stop_rx(priv->ioaddr);
1920 	/* Clear the Rx/Tx descriptors */
1921 	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1922 				     dis_ic);
1923 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
1924 
1925 	/* Enable Power down mode by programming the PMT regs */
1926 	if (device_may_wakeup(priv->device))
1927 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
1928 	else
1929 		stmmac_set_mac(priv->ioaddr, false);
1930 
1931 	spin_unlock(&priv->lock);
1932 	return 0;
1933 }
1934 
1935 int stmmac_resume(struct net_device *ndev)
1936 {
1937 	struct stmmac_priv *priv = netdev_priv(ndev);
1938 
1939 	if (!netif_running(ndev))
1940 		return 0;
1941 
1942 	spin_lock(&priv->lock);
1943 
1944 	/* Power Down bit, into the PM register, is cleared
1945 	 * automatically as soon as a magic packet or a Wake-up frame
1946 	 * is received. Anyway, it's better to manually clear
1947 	 * this bit because it can generate problems while resuming
1948 	 * from another devices (e.g. serial console). */
1949 	if (device_may_wakeup(priv->device))
1950 		priv->hw->mac->pmt(priv->ioaddr, 0);
1951 
1952 	netif_device_attach(ndev);
1953 
1954 	/* Enable the MAC and DMA */
1955 	stmmac_set_mac(priv->ioaddr, true);
1956 	priv->hw->dma->start_tx(priv->ioaddr);
1957 	priv->hw->dma->start_rx(priv->ioaddr);
1958 
1959 #ifdef CONFIG_STMMAC_TIMER
1960 	if (likely(priv->tm->enable))
1961 		priv->tm->timer_start(tmrate);
1962 #endif
1963 	napi_enable(&priv->napi);
1964 
1965 	netif_start_queue(ndev);
1966 
1967 	spin_unlock(&priv->lock);
1968 
1969 	if (priv->phydev)
1970 		phy_start(priv->phydev);
1971 
1972 	return 0;
1973 }
1974 
1975 int stmmac_freeze(struct net_device *ndev)
1976 {
1977 	if (!ndev || !netif_running(ndev))
1978 		return 0;
1979 
1980 	return stmmac_release(ndev);
1981 }
1982 
1983 int stmmac_restore(struct net_device *ndev)
1984 {
1985 	if (!ndev || !netif_running(ndev))
1986 		return 0;
1987 
1988 	return stmmac_open(ndev);
1989 }
1990 #endif /* CONFIG_PM */
1991 
1992 #ifndef MODULE
1993 static int __init stmmac_cmdline_opt(char *str)
1994 {
1995 	char *opt;
1996 
1997 	if (!str || !*str)
1998 		return -EINVAL;
1999 	while ((opt = strsep(&str, ",")) != NULL) {
2000 		if (!strncmp(opt, "debug:", 6)) {
2001 			if (strict_strtoul(opt + 6, 0, (unsigned long *)&debug))
2002 				goto err;
2003 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2004 			if (strict_strtoul(opt + 8, 0,
2005 					   (unsigned long *)&phyaddr))
2006 				goto err;
2007 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2008 			if (strict_strtoul(opt + 11, 0,
2009 					   (unsigned long *)&dma_txsize))
2010 				goto err;
2011 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2012 			if (strict_strtoul(opt + 11, 0,
2013 					   (unsigned long *)&dma_rxsize))
2014 				goto err;
2015 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2016 			if (strict_strtoul(opt + 7, 0,
2017 					   (unsigned long *)&buf_sz))
2018 				goto err;
2019 		} else if (!strncmp(opt, "tc:", 3)) {
2020 			if (strict_strtoul(opt + 3, 0, (unsigned long *)&tc))
2021 				goto err;
2022 		} else if (!strncmp(opt, "watchdog:", 9)) {
2023 			if (strict_strtoul(opt + 9, 0,
2024 					   (unsigned long *)&watchdog))
2025 				goto err;
2026 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2027 			if (strict_strtoul(opt + 10, 0,
2028 					   (unsigned long *)&flow_ctrl))
2029 				goto err;
2030 		} else if (!strncmp(opt, "pause:", 6)) {
2031 			if (strict_strtoul(opt + 6, 0, (unsigned long *)&pause))
2032 				goto err;
2033 #ifdef CONFIG_STMMAC_TIMER
2034 		} else if (!strncmp(opt, "tmrate:", 7)) {
2035 			if (strict_strtoul(opt + 7, 0,
2036 					   (unsigned long *)&tmrate))
2037 				goto err;
2038 #endif
2039 		}
2040 	}
2041 	return 0;
2042 
2043 err:
2044 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2045 	return -EINVAL;
2046 }
2047 
2048 __setup("stmmaceth=", stmmac_cmdline_opt);
2049 #endif
2050 
2051 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2052 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2053 MODULE_LICENSE("GPL");
2054