1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <net/pkt_cls.h>
39 #include "stmmac_ptp.h"
40 #include "stmmac.h"
41 #include <linux/reset.h>
42 #include <linux/of_mdio.h>
43 #include "dwmac1000.h"
44 #include "dwxgmac2.h"
45 #include "hwif.h"
46 
47 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
48 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
49 
50 /* Module parameters */
51 #define TX_TIMEO	5000
52 static int watchdog = TX_TIMEO;
53 module_param(watchdog, int, 0644);
54 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
55 
56 static int debug = -1;
57 module_param(debug, int, 0644);
58 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
59 
60 static int phyaddr = -1;
61 module_param(phyaddr, int, 0444);
62 MODULE_PARM_DESC(phyaddr, "Physical device address");
63 
64 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
65 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
66 
67 static int flow_ctrl = FLOW_AUTO;
68 module_param(flow_ctrl, int, 0644);
69 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
70 
71 static int pause = PAUSE_TIME;
72 module_param(pause, int, 0644);
73 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
74 
75 #define TC_DEFAULT 64
76 static int tc = TC_DEFAULT;
77 module_param(tc, int, 0644);
78 MODULE_PARM_DESC(tc, "DMA threshold control value");
79 
80 #define	DEFAULT_BUFSIZE	1536
81 static int buf_sz = DEFAULT_BUFSIZE;
82 module_param(buf_sz, int, 0644);
83 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
84 
85 #define	STMMAC_RX_COPYBREAK	256
86 
87 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
88 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
89 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
90 
91 #define STMMAC_DEFAULT_LPI_TIMER	1000
92 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
93 module_param(eee_timer, int, 0644);
94 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
95 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
96 
97 /* By default the driver will use the ring mode to manage tx and rx descriptors,
98  * but allow user to force to use the chain instead of the ring
99  */
100 static unsigned int chain_mode;
101 module_param(chain_mode, int, 0444);
102 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
103 
104 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
105 
106 #ifdef CONFIG_DEBUG_FS
107 static int stmmac_init_fs(struct net_device *dev);
108 static void stmmac_exit_fs(struct net_device *dev);
109 #endif
110 
111 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
112 
113 /**
114  * stmmac_verify_args - verify the driver parameters.
115  * Description: it checks the driver parameters and set a default in case of
116  * errors.
117  */
118 static void stmmac_verify_args(void)
119 {
120 	if (unlikely(watchdog < 0))
121 		watchdog = TX_TIMEO;
122 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
123 		buf_sz = DEFAULT_BUFSIZE;
124 	if (unlikely(flow_ctrl > 1))
125 		flow_ctrl = FLOW_AUTO;
126 	else if (likely(flow_ctrl < 0))
127 		flow_ctrl = FLOW_OFF;
128 	if (unlikely((pause < 0) || (pause > 0xffff)))
129 		pause = PAUSE_TIME;
130 	if (eee_timer < 0)
131 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
132 }
133 
134 /**
135  * stmmac_disable_all_queues - Disable all queues
136  * @priv: driver private structure
137  */
138 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
139 {
140 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
141 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
142 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
143 	u32 queue;
144 
145 	for (queue = 0; queue < maxq; queue++) {
146 		struct stmmac_channel *ch = &priv->channel[queue];
147 
148 		if (queue < rx_queues_cnt)
149 			napi_disable(&ch->rx_napi);
150 		if (queue < tx_queues_cnt)
151 			napi_disable(&ch->tx_napi);
152 	}
153 }
154 
155 /**
156  * stmmac_enable_all_queues - Enable all queues
157  * @priv: driver private structure
158  */
159 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
160 {
161 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
162 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
163 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
164 	u32 queue;
165 
166 	for (queue = 0; queue < maxq; queue++) {
167 		struct stmmac_channel *ch = &priv->channel[queue];
168 
169 		if (queue < rx_queues_cnt)
170 			napi_enable(&ch->rx_napi);
171 		if (queue < tx_queues_cnt)
172 			napi_enable(&ch->tx_napi);
173 	}
174 }
175 
176 /**
177  * stmmac_stop_all_queues - Stop all queues
178  * @priv: driver private structure
179  */
180 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
181 {
182 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
183 	u32 queue;
184 
185 	for (queue = 0; queue < tx_queues_cnt; queue++)
186 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
187 }
188 
189 /**
190  * stmmac_start_all_queues - Start all queues
191  * @priv: driver private structure
192  */
193 static void stmmac_start_all_queues(struct stmmac_priv *priv)
194 {
195 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
196 	u32 queue;
197 
198 	for (queue = 0; queue < tx_queues_cnt; queue++)
199 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
200 }
201 
202 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
203 {
204 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
205 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
206 		queue_work(priv->wq, &priv->service_task);
207 }
208 
209 static void stmmac_global_err(struct stmmac_priv *priv)
210 {
211 	netif_carrier_off(priv->dev);
212 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
213 	stmmac_service_event_schedule(priv);
214 }
215 
216 /**
217  * stmmac_clk_csr_set - dynamically set the MDC clock
218  * @priv: driver private structure
219  * Description: this is to dynamically set the MDC clock according to the csr
220  * clock input.
221  * Note:
222  *	If a specific clk_csr value is passed from the platform
223  *	this means that the CSR Clock Range selection cannot be
224  *	changed at run-time and it is fixed (as reported in the driver
225  *	documentation). Viceversa the driver will try to set the MDC
226  *	clock dynamically according to the actual clock input.
227  */
228 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
229 {
230 	u32 clk_rate;
231 
232 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
233 
234 	/* Platform provided default clk_csr would be assumed valid
235 	 * for all other cases except for the below mentioned ones.
236 	 * For values higher than the IEEE 802.3 specified frequency
237 	 * we can not estimate the proper divider as it is not known
238 	 * the frequency of clk_csr_i. So we do not change the default
239 	 * divider.
240 	 */
241 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
242 		if (clk_rate < CSR_F_35M)
243 			priv->clk_csr = STMMAC_CSR_20_35M;
244 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
245 			priv->clk_csr = STMMAC_CSR_35_60M;
246 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
247 			priv->clk_csr = STMMAC_CSR_60_100M;
248 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
249 			priv->clk_csr = STMMAC_CSR_100_150M;
250 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
251 			priv->clk_csr = STMMAC_CSR_150_250M;
252 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
253 			priv->clk_csr = STMMAC_CSR_250_300M;
254 	}
255 
256 	if (priv->plat->has_sun8i) {
257 		if (clk_rate > 160000000)
258 			priv->clk_csr = 0x03;
259 		else if (clk_rate > 80000000)
260 			priv->clk_csr = 0x02;
261 		else if (clk_rate > 40000000)
262 			priv->clk_csr = 0x01;
263 		else
264 			priv->clk_csr = 0;
265 	}
266 
267 	if (priv->plat->has_xgmac) {
268 		if (clk_rate > 400000000)
269 			priv->clk_csr = 0x5;
270 		else if (clk_rate > 350000000)
271 			priv->clk_csr = 0x4;
272 		else if (clk_rate > 300000000)
273 			priv->clk_csr = 0x3;
274 		else if (clk_rate > 250000000)
275 			priv->clk_csr = 0x2;
276 		else if (clk_rate > 150000000)
277 			priv->clk_csr = 0x1;
278 		else
279 			priv->clk_csr = 0x0;
280 	}
281 }
282 
283 static void print_pkt(unsigned char *buf, int len)
284 {
285 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
286 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
287 }
288 
289 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
290 {
291 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
292 	u32 avail;
293 
294 	if (tx_q->dirty_tx > tx_q->cur_tx)
295 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
296 	else
297 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
298 
299 	return avail;
300 }
301 
302 /**
303  * stmmac_rx_dirty - Get RX queue dirty
304  * @priv: driver private structure
305  * @queue: RX queue index
306  */
307 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
308 {
309 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
310 	u32 dirty;
311 
312 	if (rx_q->dirty_rx <= rx_q->cur_rx)
313 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
314 	else
315 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
316 
317 	return dirty;
318 }
319 
320 /**
321  * stmmac_hw_fix_mac_speed - callback for speed selection
322  * @priv: driver private structure
323  * Description: on some platforms (e.g. ST), some HW system configuration
324  * registers have to be set according to the link speed negotiated.
325  */
326 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
327 {
328 	struct net_device *ndev = priv->dev;
329 	struct phy_device *phydev = ndev->phydev;
330 
331 	if (likely(priv->plat->fix_mac_speed))
332 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
333 }
334 
335 /**
336  * stmmac_enable_eee_mode - check and enter in LPI mode
337  * @priv: driver private structure
338  * Description: this function is to verify and enter in LPI mode in case of
339  * EEE.
340  */
341 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
342 {
343 	u32 tx_cnt = priv->plat->tx_queues_to_use;
344 	u32 queue;
345 
346 	/* check if all TX queues have the work finished */
347 	for (queue = 0; queue < tx_cnt; queue++) {
348 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
349 
350 		if (tx_q->dirty_tx != tx_q->cur_tx)
351 			return; /* still unfinished work */
352 	}
353 
354 	/* Check and enter in LPI mode */
355 	if (!priv->tx_path_in_lpi_mode)
356 		stmmac_set_eee_mode(priv, priv->hw,
357 				priv->plat->en_tx_lpi_clockgating);
358 }
359 
360 /**
361  * stmmac_disable_eee_mode - disable and exit from LPI mode
362  * @priv: driver private structure
363  * Description: this function is to exit and disable EEE in case of
364  * LPI state is true. This is called by the xmit.
365  */
366 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
367 {
368 	stmmac_reset_eee_mode(priv, priv->hw);
369 	del_timer_sync(&priv->eee_ctrl_timer);
370 	priv->tx_path_in_lpi_mode = false;
371 }
372 
373 /**
374  * stmmac_eee_ctrl_timer - EEE TX SW timer.
375  * @arg : data hook
376  * Description:
377  *  if there is no data transfer and if we are not in LPI state,
378  *  then MAC Transmitter can be moved to LPI state.
379  */
380 static void stmmac_eee_ctrl_timer(struct timer_list *t)
381 {
382 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
383 
384 	stmmac_enable_eee_mode(priv);
385 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
386 }
387 
388 /**
389  * stmmac_eee_init - init EEE
390  * @priv: driver private structure
391  * Description:
392  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
393  *  can also manage EEE, this function enable the LPI state and start related
394  *  timer.
395  */
396 bool stmmac_eee_init(struct stmmac_priv *priv)
397 {
398 	struct net_device *ndev = priv->dev;
399 	int interface = priv->plat->interface;
400 	bool ret = false;
401 
402 	if ((interface != PHY_INTERFACE_MODE_MII) &&
403 	    (interface != PHY_INTERFACE_MODE_GMII) &&
404 	    !phy_interface_mode_is_rgmii(interface))
405 		goto out;
406 
407 	/* Using PCS we cannot dial with the phy registers at this stage
408 	 * so we do not support extra feature like EEE.
409 	 */
410 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
411 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
412 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
413 		goto out;
414 
415 	/* MAC core supports the EEE feature. */
416 	if (priv->dma_cap.eee) {
417 		int tx_lpi_timer = priv->tx_lpi_timer;
418 
419 		/* Check if the PHY supports EEE */
420 		if (phy_init_eee(ndev->phydev, 1)) {
421 			/* To manage at run-time if the EEE cannot be supported
422 			 * anymore (for example because the lp caps have been
423 			 * changed).
424 			 * In that case the driver disable own timers.
425 			 */
426 			mutex_lock(&priv->lock);
427 			if (priv->eee_active) {
428 				netdev_dbg(priv->dev, "disable EEE\n");
429 				del_timer_sync(&priv->eee_ctrl_timer);
430 				stmmac_set_eee_timer(priv, priv->hw, 0,
431 						tx_lpi_timer);
432 			}
433 			priv->eee_active = 0;
434 			mutex_unlock(&priv->lock);
435 			goto out;
436 		}
437 		/* Activate the EEE and start timers */
438 		mutex_lock(&priv->lock);
439 		if (!priv->eee_active) {
440 			priv->eee_active = 1;
441 			timer_setup(&priv->eee_ctrl_timer,
442 				    stmmac_eee_ctrl_timer, 0);
443 			mod_timer(&priv->eee_ctrl_timer,
444 				  STMMAC_LPI_T(eee_timer));
445 
446 			stmmac_set_eee_timer(priv, priv->hw,
447 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
448 		}
449 		/* Set HW EEE according to the speed */
450 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
451 
452 		ret = true;
453 		mutex_unlock(&priv->lock);
454 
455 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
456 	}
457 out:
458 	return ret;
459 }
460 
461 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
462  * @priv: driver private structure
463  * @p : descriptor pointer
464  * @skb : the socket buffer
465  * Description :
466  * This function will read timestamp from the descriptor & pass it to stack.
467  * and also perform some sanity checks.
468  */
469 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
470 				   struct dma_desc *p, struct sk_buff *skb)
471 {
472 	struct skb_shared_hwtstamps shhwtstamp;
473 	u64 ns = 0;
474 
475 	if (!priv->hwts_tx_en)
476 		return;
477 
478 	/* exit if skb doesn't support hw tstamp */
479 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
480 		return;
481 
482 	/* check tx tstamp status */
483 	if (stmmac_get_tx_timestamp_status(priv, p)) {
484 		/* get the valid tstamp */
485 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
486 
487 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
489 
490 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
491 		/* pass tstamp to stack */
492 		skb_tstamp_tx(skb, &shhwtstamp);
493 	}
494 
495 	return;
496 }
497 
498 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
499  * @priv: driver private structure
500  * @p : descriptor pointer
501  * @np : next descriptor pointer
502  * @skb : the socket buffer
503  * Description :
504  * This function will read received packet's timestamp from the descriptor
505  * and pass it to stack. It also perform some sanity checks.
506  */
507 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
508 				   struct dma_desc *np, struct sk_buff *skb)
509 {
510 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
511 	struct dma_desc *desc = p;
512 	u64 ns = 0;
513 
514 	if (!priv->hwts_rx_en)
515 		return;
516 	/* For GMAC4, the valid timestamp is from CTX next desc. */
517 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
518 		desc = np;
519 
520 	/* Check if timestamp is available */
521 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
522 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
523 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
524 		shhwtstamp = skb_hwtstamps(skb);
525 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
526 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
527 	} else  {
528 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
529 	}
530 }
531 
532 /**
533  *  stmmac_hwtstamp_set - control hardware timestamping.
534  *  @dev: device pointer.
535  *  @ifr: An IOCTL specific structure, that can contain a pointer to
536  *  a proprietary structure used to pass information to the driver.
537  *  Description:
538  *  This function configures the MAC to enable/disable both outgoing(TX)
539  *  and incoming(RX) packets time stamping based on user input.
540  *  Return Value:
541  *  0 on success and an appropriate -ve integer on failure.
542  */
543 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
544 {
545 	struct stmmac_priv *priv = netdev_priv(dev);
546 	struct hwtstamp_config config;
547 	struct timespec64 now;
548 	u64 temp = 0;
549 	u32 ptp_v2 = 0;
550 	u32 tstamp_all = 0;
551 	u32 ptp_over_ipv4_udp = 0;
552 	u32 ptp_over_ipv6_udp = 0;
553 	u32 ptp_over_ethernet = 0;
554 	u32 snap_type_sel = 0;
555 	u32 ts_master_en = 0;
556 	u32 ts_event_en = 0;
557 	u32 sec_inc = 0;
558 	u32 value = 0;
559 	bool xmac;
560 
561 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
562 
563 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
564 		netdev_alert(priv->dev, "No support for HW time stamping\n");
565 		priv->hwts_tx_en = 0;
566 		priv->hwts_rx_en = 0;
567 
568 		return -EOPNOTSUPP;
569 	}
570 
571 	if (copy_from_user(&config, ifr->ifr_data,
572 			   sizeof(config)))
573 		return -EFAULT;
574 
575 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
576 		   __func__, config.flags, config.tx_type, config.rx_filter);
577 
578 	/* reserved for future extensions */
579 	if (config.flags)
580 		return -EINVAL;
581 
582 	if (config.tx_type != HWTSTAMP_TX_OFF &&
583 	    config.tx_type != HWTSTAMP_TX_ON)
584 		return -ERANGE;
585 
586 	if (priv->adv_ts) {
587 		switch (config.rx_filter) {
588 		case HWTSTAMP_FILTER_NONE:
589 			/* time stamp no incoming packet at all */
590 			config.rx_filter = HWTSTAMP_FILTER_NONE;
591 			break;
592 
593 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
594 			/* PTP v1, UDP, any kind of event packet */
595 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
596 			/* 'xmac' hardware can support Sync, Pdelay_Req and
597 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
598 			 * This leaves Delay_Req timestamps out.
599 			 * Enable all events *and* general purpose message
600 			 * timestamping
601 			 */
602 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
603 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
604 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
605 			break;
606 
607 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
608 			/* PTP v1, UDP, Sync packet */
609 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
610 			/* take time stamp for SYNC messages only */
611 			ts_event_en = PTP_TCR_TSEVNTENA;
612 
613 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
614 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
615 			break;
616 
617 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
618 			/* PTP v1, UDP, Delay_req packet */
619 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
620 			/* take time stamp for Delay_Req messages only */
621 			ts_master_en = PTP_TCR_TSMSTRENA;
622 			ts_event_en = PTP_TCR_TSEVNTENA;
623 
624 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 			break;
627 
628 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
629 			/* PTP v2, UDP, any kind of event packet */
630 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
631 			ptp_v2 = PTP_TCR_TSVER2ENA;
632 			/* take time stamp for all event messages */
633 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
634 
635 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
636 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
640 			/* PTP v2, UDP, Sync packet */
641 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
642 			ptp_v2 = PTP_TCR_TSVER2ENA;
643 			/* take time stamp for SYNC messages only */
644 			ts_event_en = PTP_TCR_TSEVNTENA;
645 
646 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 			break;
649 
650 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
651 			/* PTP v2, UDP, Delay_req packet */
652 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
653 			ptp_v2 = PTP_TCR_TSVER2ENA;
654 			/* take time stamp for Delay_Req messages only */
655 			ts_master_en = PTP_TCR_TSMSTRENA;
656 			ts_event_en = PTP_TCR_TSEVNTENA;
657 
658 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
659 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
660 			break;
661 
662 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
663 			/* PTP v2/802.AS1 any layer, any kind of event packet */
664 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
665 			ptp_v2 = PTP_TCR_TSVER2ENA;
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			ptp_over_ethernet = PTP_TCR_TSIPENA;
670 			break;
671 
672 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
673 			/* PTP v2/802.AS1, any layer, Sync packet */
674 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
675 			ptp_v2 = PTP_TCR_TSVER2ENA;
676 			/* take time stamp for SYNC messages only */
677 			ts_event_en = PTP_TCR_TSEVNTENA;
678 
679 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
680 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
681 			ptp_over_ethernet = PTP_TCR_TSIPENA;
682 			break;
683 
684 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
685 			/* PTP v2/802.AS1, any layer, Delay_req packet */
686 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
687 			ptp_v2 = PTP_TCR_TSVER2ENA;
688 			/* take time stamp for Delay_Req messages only */
689 			ts_master_en = PTP_TCR_TSMSTRENA;
690 			ts_event_en = PTP_TCR_TSEVNTENA;
691 
692 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
693 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
694 			ptp_over_ethernet = PTP_TCR_TSIPENA;
695 			break;
696 
697 		case HWTSTAMP_FILTER_NTP_ALL:
698 		case HWTSTAMP_FILTER_ALL:
699 			/* time stamp any incoming packet */
700 			config.rx_filter = HWTSTAMP_FILTER_ALL;
701 			tstamp_all = PTP_TCR_TSENALL;
702 			break;
703 
704 		default:
705 			return -ERANGE;
706 		}
707 	} else {
708 		switch (config.rx_filter) {
709 		case HWTSTAMP_FILTER_NONE:
710 			config.rx_filter = HWTSTAMP_FILTER_NONE;
711 			break;
712 		default:
713 			/* PTP v1, UDP, any kind of event packet */
714 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
715 			break;
716 		}
717 	}
718 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
719 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
720 
721 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
722 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
723 	else {
724 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
725 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
726 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
727 			 ts_master_en | snap_type_sel);
728 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
729 
730 		/* program Sub Second Increment reg */
731 		stmmac_config_sub_second_increment(priv,
732 				priv->ptpaddr, priv->plat->clk_ptp_rate,
733 				xmac, &sec_inc);
734 		temp = div_u64(1000000000ULL, sec_inc);
735 
736 		/* Store sub second increment and flags for later use */
737 		priv->sub_second_inc = sec_inc;
738 		priv->systime_flags = value;
739 
740 		/* calculate default added value:
741 		 * formula is :
742 		 * addend = (2^32)/freq_div_ratio;
743 		 * where, freq_div_ratio = 1e9ns/sec_inc
744 		 */
745 		temp = (u64)(temp << 32);
746 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
747 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
748 
749 		/* initialize system time */
750 		ktime_get_real_ts64(&now);
751 
752 		/* lower 32 bits of tv_sec are safe until y2106 */
753 		stmmac_init_systime(priv, priv->ptpaddr,
754 				(u32)now.tv_sec, now.tv_nsec);
755 	}
756 
757 	memcpy(&priv->tstamp_config, &config, sizeof(config));
758 
759 	return copy_to_user(ifr->ifr_data, &config,
760 			    sizeof(config)) ? -EFAULT : 0;
761 }
762 
763 /**
764  *  stmmac_hwtstamp_get - read hardware timestamping.
765  *  @dev: device pointer.
766  *  @ifr: An IOCTL specific structure, that can contain a pointer to
767  *  a proprietary structure used to pass information to the driver.
768  *  Description:
769  *  This function obtain the current hardware timestamping settings
770     as requested.
771  */
772 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
773 {
774 	struct stmmac_priv *priv = netdev_priv(dev);
775 	struct hwtstamp_config *config = &priv->tstamp_config;
776 
777 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
778 		return -EOPNOTSUPP;
779 
780 	return copy_to_user(ifr->ifr_data, config,
781 			    sizeof(*config)) ? -EFAULT : 0;
782 }
783 
784 /**
785  * stmmac_init_ptp - init PTP
786  * @priv: driver private structure
787  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
788  * This is done by looking at the HW cap. register.
789  * This function also registers the ptp driver.
790  */
791 static int stmmac_init_ptp(struct stmmac_priv *priv)
792 {
793 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
794 
795 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
796 		return -EOPNOTSUPP;
797 
798 	priv->adv_ts = 0;
799 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
800 	if (xmac && priv->dma_cap.atime_stamp)
801 		priv->adv_ts = 1;
802 	/* Dwmac 3.x core with extend_desc can support adv_ts */
803 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
804 		priv->adv_ts = 1;
805 
806 	if (priv->dma_cap.time_stamp)
807 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
808 
809 	if (priv->adv_ts)
810 		netdev_info(priv->dev,
811 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
812 
813 	priv->hwts_tx_en = 0;
814 	priv->hwts_rx_en = 0;
815 
816 	stmmac_ptp_register(priv);
817 
818 	return 0;
819 }
820 
821 static void stmmac_release_ptp(struct stmmac_priv *priv)
822 {
823 	if (priv->plat->clk_ptp_ref)
824 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
825 	stmmac_ptp_unregister(priv);
826 }
827 
828 /**
829  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
830  *  @priv: driver private structure
831  *  Description: It is used for configuring the flow control in all queues
832  */
833 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
834 {
835 	u32 tx_cnt = priv->plat->tx_queues_to_use;
836 
837 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
838 			priv->pause, tx_cnt);
839 }
840 
841 /**
842  * stmmac_adjust_link - adjusts the link parameters
843  * @dev: net device structure
844  * Description: this is the helper called by the physical abstraction layer
845  * drivers to communicate the phy link status. According the speed and duplex
846  * this driver can invoke registered glue-logic as well.
847  * It also invoke the eee initialization because it could happen when switch
848  * on different networks (that are eee capable).
849  */
850 static void stmmac_adjust_link(struct net_device *dev)
851 {
852 	struct stmmac_priv *priv = netdev_priv(dev);
853 	struct phy_device *phydev = dev->phydev;
854 	bool new_state = false;
855 
856 	if (!phydev)
857 		return;
858 
859 	mutex_lock(&priv->lock);
860 
861 	if (phydev->link) {
862 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
863 
864 		/* Now we make sure that we can be in full duplex mode.
865 		 * If not, we operate in half-duplex mode. */
866 		if (phydev->duplex != priv->oldduplex) {
867 			new_state = true;
868 			if (!phydev->duplex)
869 				ctrl &= ~priv->hw->link.duplex;
870 			else
871 				ctrl |= priv->hw->link.duplex;
872 			priv->oldduplex = phydev->duplex;
873 		}
874 		/* Flow Control operation */
875 		if (phydev->pause)
876 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
877 
878 		if (phydev->speed != priv->speed) {
879 			new_state = true;
880 			ctrl &= ~priv->hw->link.speed_mask;
881 			switch (phydev->speed) {
882 			case SPEED_1000:
883 				ctrl |= priv->hw->link.speed1000;
884 				break;
885 			case SPEED_100:
886 				ctrl |= priv->hw->link.speed100;
887 				break;
888 			case SPEED_10:
889 				ctrl |= priv->hw->link.speed10;
890 				break;
891 			default:
892 				netif_warn(priv, link, priv->dev,
893 					   "broken speed: %d\n", phydev->speed);
894 				phydev->speed = SPEED_UNKNOWN;
895 				break;
896 			}
897 			if (phydev->speed != SPEED_UNKNOWN)
898 				stmmac_hw_fix_mac_speed(priv);
899 			priv->speed = phydev->speed;
900 		}
901 
902 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
903 
904 		if (!priv->oldlink) {
905 			new_state = true;
906 			priv->oldlink = true;
907 		}
908 	} else if (priv->oldlink) {
909 		new_state = true;
910 		priv->oldlink = false;
911 		priv->speed = SPEED_UNKNOWN;
912 		priv->oldduplex = DUPLEX_UNKNOWN;
913 	}
914 
915 	if (new_state && netif_msg_link(priv))
916 		phy_print_status(phydev);
917 
918 	mutex_unlock(&priv->lock);
919 
920 	if (phydev->is_pseudo_fixed_link)
921 		/* Stop PHY layer to call the hook to adjust the link in case
922 		 * of a switch is attached to the stmmac driver.
923 		 */
924 		phydev->irq = PHY_IGNORE_INTERRUPT;
925 	else
926 		/* At this stage, init the EEE if supported.
927 		 * Never called in case of fixed_link.
928 		 */
929 		priv->eee_enabled = stmmac_eee_init(priv);
930 }
931 
932 /**
933  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
934  * @priv: driver private structure
935  * Description: this is to verify if the HW supports the PCS.
936  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
937  * configured for the TBI, RTBI, or SGMII PHY interface.
938  */
939 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
940 {
941 	int interface = priv->plat->interface;
942 
943 	if (priv->dma_cap.pcs) {
944 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
945 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
946 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
947 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
948 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
949 			priv->hw->pcs = STMMAC_PCS_RGMII;
950 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
951 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
952 			priv->hw->pcs = STMMAC_PCS_SGMII;
953 		}
954 	}
955 }
956 
957 /**
958  * stmmac_init_phy - PHY initialization
959  * @dev: net device structure
960  * Description: it initializes the driver's PHY state, and attaches the PHY
961  * to the mac driver.
962  *  Return value:
963  *  0 on success
964  */
965 static int stmmac_init_phy(struct net_device *dev)
966 {
967 	struct stmmac_priv *priv = netdev_priv(dev);
968 	u32 tx_cnt = priv->plat->tx_queues_to_use;
969 	struct phy_device *phydev;
970 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
971 	char bus_id[MII_BUS_ID_SIZE];
972 	int interface = priv->plat->interface;
973 	int max_speed = priv->plat->max_speed;
974 	priv->oldlink = false;
975 	priv->speed = SPEED_UNKNOWN;
976 	priv->oldduplex = DUPLEX_UNKNOWN;
977 
978 	if (priv->plat->phy_node) {
979 		phydev = of_phy_connect(dev, priv->plat->phy_node,
980 					&stmmac_adjust_link, 0, interface);
981 	} else {
982 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
983 			 priv->plat->bus_id);
984 
985 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
986 			 priv->plat->phy_addr);
987 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
988 			   phy_id_fmt);
989 
990 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
991 				     interface);
992 	}
993 
994 	if (IS_ERR_OR_NULL(phydev)) {
995 		netdev_err(priv->dev, "Could not attach to PHY\n");
996 		if (!phydev)
997 			return -ENODEV;
998 
999 		return PTR_ERR(phydev);
1000 	}
1001 
1002 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
1003 	if ((interface == PHY_INTERFACE_MODE_MII) ||
1004 	    (interface == PHY_INTERFACE_MODE_RMII) ||
1005 		(max_speed < 1000 && max_speed > 0))
1006 		phy_set_max_speed(phydev, SPEED_100);
1007 
1008 	/*
1009 	 * Half-duplex mode not supported with multiqueue
1010 	 * half-duplex can only works with single queue
1011 	 */
1012 	if (tx_cnt > 1) {
1013 		phy_remove_link_mode(phydev,
1014 				     ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1015 		phy_remove_link_mode(phydev,
1016 				     ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1017 		phy_remove_link_mode(phydev,
1018 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1019 	}
1020 
1021 	/*
1022 	 * Broken HW is sometimes missing the pull-up resistor on the
1023 	 * MDIO line, which results in reads to non-existent devices returning
1024 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1025 	 * device as well.
1026 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1027 	 */
1028 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1029 		phy_disconnect(phydev);
1030 		return -ENODEV;
1031 	}
1032 
1033 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1034 	 * subsequent PHY polling, make sure we force a link transition if
1035 	 * we have a UP/DOWN/UP transition
1036 	 */
1037 	if (phydev->is_pseudo_fixed_link)
1038 		phydev->irq = PHY_POLL;
1039 
1040 	phy_attached_info(phydev);
1041 	return 0;
1042 }
1043 
1044 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1045 {
1046 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1047 	void *head_rx;
1048 	u32 queue;
1049 
1050 	/* Display RX rings */
1051 	for (queue = 0; queue < rx_cnt; queue++) {
1052 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1053 
1054 		pr_info("\tRX Queue %u rings\n", queue);
1055 
1056 		if (priv->extend_desc)
1057 			head_rx = (void *)rx_q->dma_erx;
1058 		else
1059 			head_rx = (void *)rx_q->dma_rx;
1060 
1061 		/* Display RX ring */
1062 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1063 	}
1064 }
1065 
1066 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1067 {
1068 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1069 	void *head_tx;
1070 	u32 queue;
1071 
1072 	/* Display TX rings */
1073 	for (queue = 0; queue < tx_cnt; queue++) {
1074 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1075 
1076 		pr_info("\tTX Queue %d rings\n", queue);
1077 
1078 		if (priv->extend_desc)
1079 			head_tx = (void *)tx_q->dma_etx;
1080 		else
1081 			head_tx = (void *)tx_q->dma_tx;
1082 
1083 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1084 	}
1085 }
1086 
1087 static void stmmac_display_rings(struct stmmac_priv *priv)
1088 {
1089 	/* Display RX ring */
1090 	stmmac_display_rx_rings(priv);
1091 
1092 	/* Display TX ring */
1093 	stmmac_display_tx_rings(priv);
1094 }
1095 
1096 static int stmmac_set_bfsize(int mtu, int bufsize)
1097 {
1098 	int ret = bufsize;
1099 
1100 	if (mtu >= BUF_SIZE_4KiB)
1101 		ret = BUF_SIZE_8KiB;
1102 	else if (mtu >= BUF_SIZE_2KiB)
1103 		ret = BUF_SIZE_4KiB;
1104 	else if (mtu > DEFAULT_BUFSIZE)
1105 		ret = BUF_SIZE_2KiB;
1106 	else
1107 		ret = DEFAULT_BUFSIZE;
1108 
1109 	return ret;
1110 }
1111 
1112 /**
1113  * stmmac_clear_rx_descriptors - clear RX descriptors
1114  * @priv: driver private structure
1115  * @queue: RX queue index
1116  * Description: this function is called to clear the RX descriptors
1117  * in case of both basic and extended descriptors are used.
1118  */
1119 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1120 {
1121 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1122 	int i;
1123 
1124 	/* Clear the RX descriptors */
1125 	for (i = 0; i < DMA_RX_SIZE; i++)
1126 		if (priv->extend_desc)
1127 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1128 					priv->use_riwt, priv->mode,
1129 					(i == DMA_RX_SIZE - 1),
1130 					priv->dma_buf_sz);
1131 		else
1132 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1133 					priv->use_riwt, priv->mode,
1134 					(i == DMA_RX_SIZE - 1),
1135 					priv->dma_buf_sz);
1136 }
1137 
1138 /**
1139  * stmmac_clear_tx_descriptors - clear tx descriptors
1140  * @priv: driver private structure
1141  * @queue: TX queue index.
1142  * Description: this function is called to clear the TX descriptors
1143  * in case of both basic and extended descriptors are used.
1144  */
1145 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1146 {
1147 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1148 	int i;
1149 
1150 	/* Clear the TX descriptors */
1151 	for (i = 0; i < DMA_TX_SIZE; i++)
1152 		if (priv->extend_desc)
1153 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1154 					priv->mode, (i == DMA_TX_SIZE - 1));
1155 		else
1156 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1157 					priv->mode, (i == DMA_TX_SIZE - 1));
1158 }
1159 
1160 /**
1161  * stmmac_clear_descriptors - clear descriptors
1162  * @priv: driver private structure
1163  * Description: this function is called to clear the TX and RX descriptors
1164  * in case of both basic and extended descriptors are used.
1165  */
1166 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1167 {
1168 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1169 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1170 	u32 queue;
1171 
1172 	/* Clear the RX descriptors */
1173 	for (queue = 0; queue < rx_queue_cnt; queue++)
1174 		stmmac_clear_rx_descriptors(priv, queue);
1175 
1176 	/* Clear the TX descriptors */
1177 	for (queue = 0; queue < tx_queue_cnt; queue++)
1178 		stmmac_clear_tx_descriptors(priv, queue);
1179 }
1180 
1181 /**
1182  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1183  * @priv: driver private structure
1184  * @p: descriptor pointer
1185  * @i: descriptor index
1186  * @flags: gfp flag
1187  * @queue: RX queue index
1188  * Description: this function is called to allocate a receive buffer, perform
1189  * the DMA mapping and init the descriptor.
1190  */
1191 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1192 				  int i, gfp_t flags, u32 queue)
1193 {
1194 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1195 	struct sk_buff *skb;
1196 
1197 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1198 	if (!skb) {
1199 		netdev_err(priv->dev,
1200 			   "%s: Rx init fails; skb is NULL\n", __func__);
1201 		return -ENOMEM;
1202 	}
1203 	rx_q->rx_skbuff[i] = skb;
1204 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1205 						priv->dma_buf_sz,
1206 						DMA_FROM_DEVICE);
1207 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1208 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1209 		dev_kfree_skb_any(skb);
1210 		return -EINVAL;
1211 	}
1212 
1213 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1214 
1215 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1216 		stmmac_init_desc3(priv, p);
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * stmmac_free_rx_buffer - free RX dma buffers
1223  * @priv: private structure
1224  * @queue: RX queue index
1225  * @i: buffer index.
1226  */
1227 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1228 {
1229 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1230 
1231 	if (rx_q->rx_skbuff[i]) {
1232 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1233 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1234 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1235 	}
1236 	rx_q->rx_skbuff[i] = NULL;
1237 }
1238 
1239 /**
1240  * stmmac_free_tx_buffer - free RX dma buffers
1241  * @priv: private structure
1242  * @queue: RX queue index
1243  * @i: buffer index.
1244  */
1245 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1246 {
1247 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1248 
1249 	if (tx_q->tx_skbuff_dma[i].buf) {
1250 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1251 			dma_unmap_page(priv->device,
1252 				       tx_q->tx_skbuff_dma[i].buf,
1253 				       tx_q->tx_skbuff_dma[i].len,
1254 				       DMA_TO_DEVICE);
1255 		else
1256 			dma_unmap_single(priv->device,
1257 					 tx_q->tx_skbuff_dma[i].buf,
1258 					 tx_q->tx_skbuff_dma[i].len,
1259 					 DMA_TO_DEVICE);
1260 	}
1261 
1262 	if (tx_q->tx_skbuff[i]) {
1263 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1264 		tx_q->tx_skbuff[i] = NULL;
1265 		tx_q->tx_skbuff_dma[i].buf = 0;
1266 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1267 	}
1268 }
1269 
1270 /**
1271  * init_dma_rx_desc_rings - init the RX descriptor rings
1272  * @dev: net device structure
1273  * @flags: gfp flag.
1274  * Description: this function initializes the DMA RX descriptors
1275  * and allocates the socket buffers. It supports the chained and ring
1276  * modes.
1277  */
1278 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1279 {
1280 	struct stmmac_priv *priv = netdev_priv(dev);
1281 	u32 rx_count = priv->plat->rx_queues_to_use;
1282 	int ret = -ENOMEM;
1283 	int bfsize = 0;
1284 	int queue;
1285 	int i;
1286 
1287 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1288 	if (bfsize < 0)
1289 		bfsize = 0;
1290 
1291 	if (bfsize < BUF_SIZE_16KiB)
1292 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1293 
1294 	priv->dma_buf_sz = bfsize;
1295 
1296 	/* RX INITIALIZATION */
1297 	netif_dbg(priv, probe, priv->dev,
1298 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1299 
1300 	for (queue = 0; queue < rx_count; queue++) {
1301 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1302 
1303 		netif_dbg(priv, probe, priv->dev,
1304 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1305 			  (u32)rx_q->dma_rx_phy);
1306 
1307 		for (i = 0; i < DMA_RX_SIZE; i++) {
1308 			struct dma_desc *p;
1309 
1310 			if (priv->extend_desc)
1311 				p = &((rx_q->dma_erx + i)->basic);
1312 			else
1313 				p = rx_q->dma_rx + i;
1314 
1315 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1316 						     queue);
1317 			if (ret)
1318 				goto err_init_rx_buffers;
1319 
1320 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1321 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1322 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1323 		}
1324 
1325 		rx_q->cur_rx = 0;
1326 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1327 
1328 		stmmac_clear_rx_descriptors(priv, queue);
1329 
1330 		/* Setup the chained descriptor addresses */
1331 		if (priv->mode == STMMAC_CHAIN_MODE) {
1332 			if (priv->extend_desc)
1333 				stmmac_mode_init(priv, rx_q->dma_erx,
1334 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1335 			else
1336 				stmmac_mode_init(priv, rx_q->dma_rx,
1337 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1338 		}
1339 	}
1340 
1341 	buf_sz = bfsize;
1342 
1343 	return 0;
1344 
1345 err_init_rx_buffers:
1346 	while (queue >= 0) {
1347 		while (--i >= 0)
1348 			stmmac_free_rx_buffer(priv, queue, i);
1349 
1350 		if (queue == 0)
1351 			break;
1352 
1353 		i = DMA_RX_SIZE;
1354 		queue--;
1355 	}
1356 
1357 	return ret;
1358 }
1359 
1360 /**
1361  * init_dma_tx_desc_rings - init the TX descriptor rings
1362  * @dev: net device structure.
1363  * Description: this function initializes the DMA TX descriptors
1364  * and allocates the socket buffers. It supports the chained and ring
1365  * modes.
1366  */
1367 static int init_dma_tx_desc_rings(struct net_device *dev)
1368 {
1369 	struct stmmac_priv *priv = netdev_priv(dev);
1370 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1371 	u32 queue;
1372 	int i;
1373 
1374 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1375 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376 
1377 		netif_dbg(priv, probe, priv->dev,
1378 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1379 			 (u32)tx_q->dma_tx_phy);
1380 
1381 		/* Setup the chained descriptor addresses */
1382 		if (priv->mode == STMMAC_CHAIN_MODE) {
1383 			if (priv->extend_desc)
1384 				stmmac_mode_init(priv, tx_q->dma_etx,
1385 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1386 			else
1387 				stmmac_mode_init(priv, tx_q->dma_tx,
1388 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1389 		}
1390 
1391 		for (i = 0; i < DMA_TX_SIZE; i++) {
1392 			struct dma_desc *p;
1393 			if (priv->extend_desc)
1394 				p = &((tx_q->dma_etx + i)->basic);
1395 			else
1396 				p = tx_q->dma_tx + i;
1397 
1398 			stmmac_clear_desc(priv, p);
1399 
1400 			tx_q->tx_skbuff_dma[i].buf = 0;
1401 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1402 			tx_q->tx_skbuff_dma[i].len = 0;
1403 			tx_q->tx_skbuff_dma[i].last_segment = false;
1404 			tx_q->tx_skbuff[i] = NULL;
1405 		}
1406 
1407 		tx_q->dirty_tx = 0;
1408 		tx_q->cur_tx = 0;
1409 		tx_q->mss = 0;
1410 
1411 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * init_dma_desc_rings - init the RX/TX descriptor rings
1419  * @dev: net device structure
1420  * @flags: gfp flag.
1421  * Description: this function initializes the DMA RX/TX descriptors
1422  * and allocates the socket buffers. It supports the chained and ring
1423  * modes.
1424  */
1425 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1426 {
1427 	struct stmmac_priv *priv = netdev_priv(dev);
1428 	int ret;
1429 
1430 	ret = init_dma_rx_desc_rings(dev, flags);
1431 	if (ret)
1432 		return ret;
1433 
1434 	ret = init_dma_tx_desc_rings(dev);
1435 
1436 	stmmac_clear_descriptors(priv);
1437 
1438 	if (netif_msg_hw(priv))
1439 		stmmac_display_rings(priv);
1440 
1441 	return ret;
1442 }
1443 
1444 /**
1445  * dma_free_rx_skbufs - free RX dma buffers
1446  * @priv: private structure
1447  * @queue: RX queue index
1448  */
1449 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 {
1451 	int i;
1452 
1453 	for (i = 0; i < DMA_RX_SIZE; i++)
1454 		stmmac_free_rx_buffer(priv, queue, i);
1455 }
1456 
1457 /**
1458  * dma_free_tx_skbufs - free TX dma buffers
1459  * @priv: private structure
1460  * @queue: TX queue index
1461  */
1462 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1463 {
1464 	int i;
1465 
1466 	for (i = 0; i < DMA_TX_SIZE; i++)
1467 		stmmac_free_tx_buffer(priv, queue, i);
1468 }
1469 
1470 /**
1471  * free_dma_rx_desc_resources - free RX dma desc resources
1472  * @priv: private structure
1473  */
1474 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1475 {
1476 	u32 rx_count = priv->plat->rx_queues_to_use;
1477 	u32 queue;
1478 
1479 	/* Free RX queue resources */
1480 	for (queue = 0; queue < rx_count; queue++) {
1481 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1482 
1483 		/* Release the DMA RX socket buffers */
1484 		dma_free_rx_skbufs(priv, queue);
1485 
1486 		/* Free DMA regions of consistent memory previously allocated */
1487 		if (!priv->extend_desc)
1488 			dma_free_coherent(priv->device,
1489 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1490 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1491 		else
1492 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1493 					  sizeof(struct dma_extended_desc),
1494 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1495 
1496 		kfree(rx_q->rx_skbuff_dma);
1497 		kfree(rx_q->rx_skbuff);
1498 	}
1499 }
1500 
1501 /**
1502  * free_dma_tx_desc_resources - free TX dma desc resources
1503  * @priv: private structure
1504  */
1505 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1506 {
1507 	u32 tx_count = priv->plat->tx_queues_to_use;
1508 	u32 queue;
1509 
1510 	/* Free TX queue resources */
1511 	for (queue = 0; queue < tx_count; queue++) {
1512 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1513 
1514 		/* Release the DMA TX socket buffers */
1515 		dma_free_tx_skbufs(priv, queue);
1516 
1517 		/* Free DMA regions of consistent memory previously allocated */
1518 		if (!priv->extend_desc)
1519 			dma_free_coherent(priv->device,
1520 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1521 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1522 		else
1523 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1524 					  sizeof(struct dma_extended_desc),
1525 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1526 
1527 		kfree(tx_q->tx_skbuff_dma);
1528 		kfree(tx_q->tx_skbuff);
1529 	}
1530 }
1531 
1532 /**
1533  * alloc_dma_rx_desc_resources - alloc RX resources.
1534  * @priv: private structure
1535  * Description: according to which descriptor can be used (extend or basic)
1536  * this function allocates the resources for TX and RX paths. In case of
1537  * reception, for example, it pre-allocated the RX socket buffer in order to
1538  * allow zero-copy mechanism.
1539  */
1540 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1541 {
1542 	u32 rx_count = priv->plat->rx_queues_to_use;
1543 	int ret = -ENOMEM;
1544 	u32 queue;
1545 
1546 	/* RX queues buffers and DMA */
1547 	for (queue = 0; queue < rx_count; queue++) {
1548 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1549 
1550 		rx_q->queue_index = queue;
1551 		rx_q->priv_data = priv;
1552 
1553 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1554 						    sizeof(dma_addr_t),
1555 						    GFP_KERNEL);
1556 		if (!rx_q->rx_skbuff_dma)
1557 			goto err_dma;
1558 
1559 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1560 						sizeof(struct sk_buff *),
1561 						GFP_KERNEL);
1562 		if (!rx_q->rx_skbuff)
1563 			goto err_dma;
1564 
1565 		if (priv->extend_desc) {
1566 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1567 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1568 							   &rx_q->dma_rx_phy,
1569 							   GFP_KERNEL);
1570 			if (!rx_q->dma_erx)
1571 				goto err_dma;
1572 
1573 		} else {
1574 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1575 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1576 							  &rx_q->dma_rx_phy,
1577 							  GFP_KERNEL);
1578 			if (!rx_q->dma_rx)
1579 				goto err_dma;
1580 		}
1581 	}
1582 
1583 	return 0;
1584 
1585 err_dma:
1586 	free_dma_rx_desc_resources(priv);
1587 
1588 	return ret;
1589 }
1590 
1591 /**
1592  * alloc_dma_tx_desc_resources - alloc TX resources.
1593  * @priv: private structure
1594  * Description: according to which descriptor can be used (extend or basic)
1595  * this function allocates the resources for TX and RX paths. In case of
1596  * reception, for example, it pre-allocated the RX socket buffer in order to
1597  * allow zero-copy mechanism.
1598  */
1599 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1600 {
1601 	u32 tx_count = priv->plat->tx_queues_to_use;
1602 	int ret = -ENOMEM;
1603 	u32 queue;
1604 
1605 	/* TX queues buffers and DMA */
1606 	for (queue = 0; queue < tx_count; queue++) {
1607 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1608 
1609 		tx_q->queue_index = queue;
1610 		tx_q->priv_data = priv;
1611 
1612 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1613 						    sizeof(*tx_q->tx_skbuff_dma),
1614 						    GFP_KERNEL);
1615 		if (!tx_q->tx_skbuff_dma)
1616 			goto err_dma;
1617 
1618 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1619 						sizeof(struct sk_buff *),
1620 						GFP_KERNEL);
1621 		if (!tx_q->tx_skbuff)
1622 			goto err_dma;
1623 
1624 		if (priv->extend_desc) {
1625 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1626 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1627 							   &tx_q->dma_tx_phy,
1628 							   GFP_KERNEL);
1629 			if (!tx_q->dma_etx)
1630 				goto err_dma;
1631 		} else {
1632 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1633 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1634 							  &tx_q->dma_tx_phy,
1635 							  GFP_KERNEL);
1636 			if (!tx_q->dma_tx)
1637 				goto err_dma;
1638 		}
1639 	}
1640 
1641 	return 0;
1642 
1643 err_dma:
1644 	free_dma_tx_desc_resources(priv);
1645 
1646 	return ret;
1647 }
1648 
1649 /**
1650  * alloc_dma_desc_resources - alloc TX/RX resources.
1651  * @priv: private structure
1652  * Description: according to which descriptor can be used (extend or basic)
1653  * this function allocates the resources for TX and RX paths. In case of
1654  * reception, for example, it pre-allocated the RX socket buffer in order to
1655  * allow zero-copy mechanism.
1656  */
1657 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1658 {
1659 	/* RX Allocation */
1660 	int ret = alloc_dma_rx_desc_resources(priv);
1661 
1662 	if (ret)
1663 		return ret;
1664 
1665 	ret = alloc_dma_tx_desc_resources(priv);
1666 
1667 	return ret;
1668 }
1669 
1670 /**
1671  * free_dma_desc_resources - free dma desc resources
1672  * @priv: private structure
1673  */
1674 static void free_dma_desc_resources(struct stmmac_priv *priv)
1675 {
1676 	/* Release the DMA RX socket buffers */
1677 	free_dma_rx_desc_resources(priv);
1678 
1679 	/* Release the DMA TX socket buffers */
1680 	free_dma_tx_desc_resources(priv);
1681 }
1682 
1683 /**
1684  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1685  *  @priv: driver private structure
1686  *  Description: It is used for enabling the rx queues in the MAC
1687  */
1688 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1689 {
1690 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1691 	int queue;
1692 	u8 mode;
1693 
1694 	for (queue = 0; queue < rx_queues_count; queue++) {
1695 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1696 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1697 	}
1698 }
1699 
1700 /**
1701  * stmmac_start_rx_dma - start RX DMA channel
1702  * @priv: driver private structure
1703  * @chan: RX channel index
1704  * Description:
1705  * This starts a RX DMA channel
1706  */
1707 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1708 {
1709 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1710 	stmmac_start_rx(priv, priv->ioaddr, chan);
1711 }
1712 
1713 /**
1714  * stmmac_start_tx_dma - start TX DMA channel
1715  * @priv: driver private structure
1716  * @chan: TX channel index
1717  * Description:
1718  * This starts a TX DMA channel
1719  */
1720 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1721 {
1722 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1723 	stmmac_start_tx(priv, priv->ioaddr, chan);
1724 }
1725 
1726 /**
1727  * stmmac_stop_rx_dma - stop RX DMA channel
1728  * @priv: driver private structure
1729  * @chan: RX channel index
1730  * Description:
1731  * This stops a RX DMA channel
1732  */
1733 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1734 {
1735 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1736 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1737 }
1738 
1739 /**
1740  * stmmac_stop_tx_dma - stop TX DMA channel
1741  * @priv: driver private structure
1742  * @chan: TX channel index
1743  * Description:
1744  * This stops a TX DMA channel
1745  */
1746 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1747 {
1748 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1749 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1750 }
1751 
1752 /**
1753  * stmmac_start_all_dma - start all RX and TX DMA channels
1754  * @priv: driver private structure
1755  * Description:
1756  * This starts all the RX and TX DMA channels
1757  */
1758 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1759 {
1760 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1761 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1762 	u32 chan = 0;
1763 
1764 	for (chan = 0; chan < rx_channels_count; chan++)
1765 		stmmac_start_rx_dma(priv, chan);
1766 
1767 	for (chan = 0; chan < tx_channels_count; chan++)
1768 		stmmac_start_tx_dma(priv, chan);
1769 }
1770 
1771 /**
1772  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1773  * @priv: driver private structure
1774  * Description:
1775  * This stops the RX and TX DMA channels
1776  */
1777 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1778 {
1779 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1780 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1781 	u32 chan = 0;
1782 
1783 	for (chan = 0; chan < rx_channels_count; chan++)
1784 		stmmac_stop_rx_dma(priv, chan);
1785 
1786 	for (chan = 0; chan < tx_channels_count; chan++)
1787 		stmmac_stop_tx_dma(priv, chan);
1788 }
1789 
1790 /**
1791  *  stmmac_dma_operation_mode - HW DMA operation mode
1792  *  @priv: driver private structure
1793  *  Description: it is used for configuring the DMA operation mode register in
1794  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1795  */
1796 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1797 {
1798 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1799 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1800 	int rxfifosz = priv->plat->rx_fifo_size;
1801 	int txfifosz = priv->plat->tx_fifo_size;
1802 	u32 txmode = 0;
1803 	u32 rxmode = 0;
1804 	u32 chan = 0;
1805 	u8 qmode = 0;
1806 
1807 	if (rxfifosz == 0)
1808 		rxfifosz = priv->dma_cap.rx_fifo_size;
1809 	if (txfifosz == 0)
1810 		txfifosz = priv->dma_cap.tx_fifo_size;
1811 
1812 	/* Adjust for real per queue fifo size */
1813 	rxfifosz /= rx_channels_count;
1814 	txfifosz /= tx_channels_count;
1815 
1816 	if (priv->plat->force_thresh_dma_mode) {
1817 		txmode = tc;
1818 		rxmode = tc;
1819 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1820 		/*
1821 		 * In case of GMAC, SF mode can be enabled
1822 		 * to perform the TX COE in HW. This depends on:
1823 		 * 1) TX COE if actually supported
1824 		 * 2) There is no bugged Jumbo frame support
1825 		 *    that needs to not insert csum in the TDES.
1826 		 */
1827 		txmode = SF_DMA_MODE;
1828 		rxmode = SF_DMA_MODE;
1829 		priv->xstats.threshold = SF_DMA_MODE;
1830 	} else {
1831 		txmode = tc;
1832 		rxmode = SF_DMA_MODE;
1833 	}
1834 
1835 	/* configure all channels */
1836 	for (chan = 0; chan < rx_channels_count; chan++) {
1837 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1838 
1839 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1840 				rxfifosz, qmode);
1841 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1842 				chan);
1843 	}
1844 
1845 	for (chan = 0; chan < tx_channels_count; chan++) {
1846 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1847 
1848 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1849 				txfifosz, qmode);
1850 	}
1851 }
1852 
1853 /**
1854  * stmmac_tx_clean - to manage the transmission completion
1855  * @priv: driver private structure
1856  * @queue: TX queue index
1857  * Description: it reclaims the transmit resources after transmission completes.
1858  */
1859 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1860 {
1861 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1862 	unsigned int bytes_compl = 0, pkts_compl = 0;
1863 	unsigned int entry, count = 0;
1864 
1865 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1866 
1867 	priv->xstats.tx_clean++;
1868 
1869 	entry = tx_q->dirty_tx;
1870 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1871 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1872 		struct dma_desc *p;
1873 		int status;
1874 
1875 		if (priv->extend_desc)
1876 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1877 		else
1878 			p = tx_q->dma_tx + entry;
1879 
1880 		status = stmmac_tx_status(priv, &priv->dev->stats,
1881 				&priv->xstats, p, priv->ioaddr);
1882 		/* Check if the descriptor is owned by the DMA */
1883 		if (unlikely(status & tx_dma_own))
1884 			break;
1885 
1886 		count++;
1887 
1888 		/* Make sure descriptor fields are read after reading
1889 		 * the own bit.
1890 		 */
1891 		dma_rmb();
1892 
1893 		/* Just consider the last segment and ...*/
1894 		if (likely(!(status & tx_not_ls))) {
1895 			/* ... verify the status error condition */
1896 			if (unlikely(status & tx_err)) {
1897 				priv->dev->stats.tx_errors++;
1898 			} else {
1899 				priv->dev->stats.tx_packets++;
1900 				priv->xstats.tx_pkt_n++;
1901 			}
1902 			stmmac_get_tx_hwtstamp(priv, p, skb);
1903 		}
1904 
1905 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1906 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1907 				dma_unmap_page(priv->device,
1908 					       tx_q->tx_skbuff_dma[entry].buf,
1909 					       tx_q->tx_skbuff_dma[entry].len,
1910 					       DMA_TO_DEVICE);
1911 			else
1912 				dma_unmap_single(priv->device,
1913 						 tx_q->tx_skbuff_dma[entry].buf,
1914 						 tx_q->tx_skbuff_dma[entry].len,
1915 						 DMA_TO_DEVICE);
1916 			tx_q->tx_skbuff_dma[entry].buf = 0;
1917 			tx_q->tx_skbuff_dma[entry].len = 0;
1918 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1919 		}
1920 
1921 		stmmac_clean_desc3(priv, tx_q, p);
1922 
1923 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1924 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1925 
1926 		if (likely(skb != NULL)) {
1927 			pkts_compl++;
1928 			bytes_compl += skb->len;
1929 			dev_consume_skb_any(skb);
1930 			tx_q->tx_skbuff[entry] = NULL;
1931 		}
1932 
1933 		stmmac_release_tx_desc(priv, p, priv->mode);
1934 
1935 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1936 	}
1937 	tx_q->dirty_tx = entry;
1938 
1939 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1940 				  pkts_compl, bytes_compl);
1941 
1942 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1943 								queue))) &&
1944 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1945 
1946 		netif_dbg(priv, tx_done, priv->dev,
1947 			  "%s: restart transmit\n", __func__);
1948 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1949 	}
1950 
1951 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1952 		stmmac_enable_eee_mode(priv);
1953 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1954 	}
1955 
1956 	/* We still have pending packets, let's call for a new scheduling */
1957 	if (tx_q->dirty_tx != tx_q->cur_tx)
1958 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1959 
1960 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1961 
1962 	return count;
1963 }
1964 
1965 /**
1966  * stmmac_tx_err - to manage the tx error
1967  * @priv: driver private structure
1968  * @chan: channel index
1969  * Description: it cleans the descriptors and restarts the transmission
1970  * in case of transmission errors.
1971  */
1972 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1973 {
1974 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1975 	int i;
1976 
1977 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1978 
1979 	stmmac_stop_tx_dma(priv, chan);
1980 	dma_free_tx_skbufs(priv, chan);
1981 	for (i = 0; i < DMA_TX_SIZE; i++)
1982 		if (priv->extend_desc)
1983 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1984 					priv->mode, (i == DMA_TX_SIZE - 1));
1985 		else
1986 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1987 					priv->mode, (i == DMA_TX_SIZE - 1));
1988 	tx_q->dirty_tx = 0;
1989 	tx_q->cur_tx = 0;
1990 	tx_q->mss = 0;
1991 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1992 	stmmac_start_tx_dma(priv, chan);
1993 
1994 	priv->dev->stats.tx_errors++;
1995 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1996 }
1997 
1998 /**
1999  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2000  *  @priv: driver private structure
2001  *  @txmode: TX operating mode
2002  *  @rxmode: RX operating mode
2003  *  @chan: channel index
2004  *  Description: it is used for configuring of the DMA operation mode in
2005  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2006  *  mode.
2007  */
2008 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2009 					  u32 rxmode, u32 chan)
2010 {
2011 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2012 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2013 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2014 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2015 	int rxfifosz = priv->plat->rx_fifo_size;
2016 	int txfifosz = priv->plat->tx_fifo_size;
2017 
2018 	if (rxfifosz == 0)
2019 		rxfifosz = priv->dma_cap.rx_fifo_size;
2020 	if (txfifosz == 0)
2021 		txfifosz = priv->dma_cap.tx_fifo_size;
2022 
2023 	/* Adjust for real per queue fifo size */
2024 	rxfifosz /= rx_channels_count;
2025 	txfifosz /= tx_channels_count;
2026 
2027 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2028 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2029 }
2030 
2031 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2032 {
2033 	int ret;
2034 
2035 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2036 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2037 	if (ret && (ret != -EINVAL)) {
2038 		stmmac_global_err(priv);
2039 		return true;
2040 	}
2041 
2042 	return false;
2043 }
2044 
2045 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2046 {
2047 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2048 						 &priv->xstats, chan);
2049 	struct stmmac_channel *ch = &priv->channel[chan];
2050 
2051 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2052 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2053 		napi_schedule_irqoff(&ch->rx_napi);
2054 	}
2055 
2056 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2057 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2058 		napi_schedule_irqoff(&ch->tx_napi);
2059 	}
2060 
2061 	return status;
2062 }
2063 
2064 /**
2065  * stmmac_dma_interrupt - DMA ISR
2066  * @priv: driver private structure
2067  * Description: this is the DMA ISR. It is called by the main ISR.
2068  * It calls the dwmac dma routine and schedule poll method in case of some
2069  * work can be done.
2070  */
2071 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2072 {
2073 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2074 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2075 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2076 				tx_channel_count : rx_channel_count;
2077 	u32 chan;
2078 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2079 
2080 	/* Make sure we never check beyond our status buffer. */
2081 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2082 		channels_to_check = ARRAY_SIZE(status);
2083 
2084 	for (chan = 0; chan < channels_to_check; chan++)
2085 		status[chan] = stmmac_napi_check(priv, chan);
2086 
2087 	for (chan = 0; chan < tx_channel_count; chan++) {
2088 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2089 			/* Try to bump up the dma threshold on this failure */
2090 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2091 			    (tc <= 256)) {
2092 				tc += 64;
2093 				if (priv->plat->force_thresh_dma_mode)
2094 					stmmac_set_dma_operation_mode(priv,
2095 								      tc,
2096 								      tc,
2097 								      chan);
2098 				else
2099 					stmmac_set_dma_operation_mode(priv,
2100 								    tc,
2101 								    SF_DMA_MODE,
2102 								    chan);
2103 				priv->xstats.threshold = tc;
2104 			}
2105 		} else if (unlikely(status[chan] == tx_hard_error)) {
2106 			stmmac_tx_err(priv, chan);
2107 		}
2108 	}
2109 }
2110 
2111 /**
2112  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2113  * @priv: driver private structure
2114  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2115  */
2116 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2117 {
2118 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2119 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2120 
2121 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2122 
2123 	if (priv->dma_cap.rmon) {
2124 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2125 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2126 	} else
2127 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2128 }
2129 
2130 /**
2131  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2132  * @priv: driver private structure
2133  * Description:
2134  *  new GMAC chip generations have a new register to indicate the
2135  *  presence of the optional feature/functions.
2136  *  This can be also used to override the value passed through the
2137  *  platform and necessary for old MAC10/100 and GMAC chips.
2138  */
2139 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2140 {
2141 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2142 }
2143 
2144 /**
2145  * stmmac_check_ether_addr - check if the MAC addr is valid
2146  * @priv: driver private structure
2147  * Description:
2148  * it is to verify if the MAC address is valid, in case of failures it
2149  * generates a random MAC address
2150  */
2151 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2152 {
2153 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2154 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2155 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2156 			eth_hw_addr_random(priv->dev);
2157 		netdev_info(priv->dev, "device MAC address %pM\n",
2158 			    priv->dev->dev_addr);
2159 	}
2160 }
2161 
2162 /**
2163  * stmmac_init_dma_engine - DMA init.
2164  * @priv: driver private structure
2165  * Description:
2166  * It inits the DMA invoking the specific MAC/GMAC callback.
2167  * Some DMA parameters can be passed from the platform;
2168  * in case of these are not passed a default is kept for the MAC or GMAC.
2169  */
2170 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2171 {
2172 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2173 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2174 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2175 	struct stmmac_rx_queue *rx_q;
2176 	struct stmmac_tx_queue *tx_q;
2177 	u32 chan = 0;
2178 	int atds = 0;
2179 	int ret = 0;
2180 
2181 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2182 		dev_err(priv->device, "Invalid DMA configuration\n");
2183 		return -EINVAL;
2184 	}
2185 
2186 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2187 		atds = 1;
2188 
2189 	ret = stmmac_reset(priv, priv->ioaddr);
2190 	if (ret) {
2191 		dev_err(priv->device, "Failed to reset the dma\n");
2192 		return ret;
2193 	}
2194 
2195 	/* DMA Configuration */
2196 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2197 
2198 	if (priv->plat->axi)
2199 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2200 
2201 	/* DMA CSR Channel configuration */
2202 	for (chan = 0; chan < dma_csr_ch; chan++)
2203 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2204 
2205 	/* DMA RX Channel Configuration */
2206 	for (chan = 0; chan < rx_channels_count; chan++) {
2207 		rx_q = &priv->rx_queue[chan];
2208 
2209 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2210 				    rx_q->dma_rx_phy, chan);
2211 
2212 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2213 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2214 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2215 				       rx_q->rx_tail_addr, chan);
2216 	}
2217 
2218 	/* DMA TX Channel Configuration */
2219 	for (chan = 0; chan < tx_channels_count; chan++) {
2220 		tx_q = &priv->tx_queue[chan];
2221 
2222 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2223 				    tx_q->dma_tx_phy, chan);
2224 
2225 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2226 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2227 				       tx_q->tx_tail_addr, chan);
2228 	}
2229 
2230 	return ret;
2231 }
2232 
2233 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2234 {
2235 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2236 
2237 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2238 }
2239 
2240 /**
2241  * stmmac_tx_timer - mitigation sw timer for tx.
2242  * @data: data pointer
2243  * Description:
2244  * This is the timer handler to directly invoke the stmmac_tx_clean.
2245  */
2246 static void stmmac_tx_timer(struct timer_list *t)
2247 {
2248 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2249 	struct stmmac_priv *priv = tx_q->priv_data;
2250 	struct stmmac_channel *ch;
2251 
2252 	ch = &priv->channel[tx_q->queue_index];
2253 
2254 	/*
2255 	 * If NAPI is already running we can miss some events. Let's rearm
2256 	 * the timer and try again.
2257 	 */
2258 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2259 		__napi_schedule(&ch->tx_napi);
2260 	else
2261 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2262 }
2263 
2264 /**
2265  * stmmac_init_tx_coalesce - init tx mitigation options.
2266  * @priv: driver private structure
2267  * Description:
2268  * This inits the transmit coalesce parameters: i.e. timer rate,
2269  * timer handler and default threshold used for enabling the
2270  * interrupt on completion bit.
2271  */
2272 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2273 {
2274 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2275 	u32 chan;
2276 
2277 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2278 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2279 
2280 	for (chan = 0; chan < tx_channel_count; chan++) {
2281 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2282 
2283 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2284 	}
2285 }
2286 
2287 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2288 {
2289 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2290 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2291 	u32 chan;
2292 
2293 	/* set TX ring length */
2294 	for (chan = 0; chan < tx_channels_count; chan++)
2295 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2296 				(DMA_TX_SIZE - 1), chan);
2297 
2298 	/* set RX ring length */
2299 	for (chan = 0; chan < rx_channels_count; chan++)
2300 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2301 				(DMA_RX_SIZE - 1), chan);
2302 }
2303 
2304 /**
2305  *  stmmac_set_tx_queue_weight - Set TX queue weight
2306  *  @priv: driver private structure
2307  *  Description: It is used for setting TX queues weight
2308  */
2309 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2310 {
2311 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2312 	u32 weight;
2313 	u32 queue;
2314 
2315 	for (queue = 0; queue < tx_queues_count; queue++) {
2316 		weight = priv->plat->tx_queues_cfg[queue].weight;
2317 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2318 	}
2319 }
2320 
2321 /**
2322  *  stmmac_configure_cbs - Configure CBS in TX queue
2323  *  @priv: driver private structure
2324  *  Description: It is used for configuring CBS in AVB TX queues
2325  */
2326 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2327 {
2328 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2329 	u32 mode_to_use;
2330 	u32 queue;
2331 
2332 	/* queue 0 is reserved for legacy traffic */
2333 	for (queue = 1; queue < tx_queues_count; queue++) {
2334 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2335 		if (mode_to_use == MTL_QUEUE_DCB)
2336 			continue;
2337 
2338 		stmmac_config_cbs(priv, priv->hw,
2339 				priv->plat->tx_queues_cfg[queue].send_slope,
2340 				priv->plat->tx_queues_cfg[queue].idle_slope,
2341 				priv->plat->tx_queues_cfg[queue].high_credit,
2342 				priv->plat->tx_queues_cfg[queue].low_credit,
2343 				queue);
2344 	}
2345 }
2346 
2347 /**
2348  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2349  *  @priv: driver private structure
2350  *  Description: It is used for mapping RX queues to RX dma channels
2351  */
2352 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2353 {
2354 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2355 	u32 queue;
2356 	u32 chan;
2357 
2358 	for (queue = 0; queue < rx_queues_count; queue++) {
2359 		chan = priv->plat->rx_queues_cfg[queue].chan;
2360 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2361 	}
2362 }
2363 
2364 /**
2365  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2366  *  @priv: driver private structure
2367  *  Description: It is used for configuring the RX Queue Priority
2368  */
2369 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2370 {
2371 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2372 	u32 queue;
2373 	u32 prio;
2374 
2375 	for (queue = 0; queue < rx_queues_count; queue++) {
2376 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2377 			continue;
2378 
2379 		prio = priv->plat->rx_queues_cfg[queue].prio;
2380 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2381 	}
2382 }
2383 
2384 /**
2385  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2386  *  @priv: driver private structure
2387  *  Description: It is used for configuring the TX Queue Priority
2388  */
2389 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2390 {
2391 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2392 	u32 queue;
2393 	u32 prio;
2394 
2395 	for (queue = 0; queue < tx_queues_count; queue++) {
2396 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2397 			continue;
2398 
2399 		prio = priv->plat->tx_queues_cfg[queue].prio;
2400 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2401 	}
2402 }
2403 
2404 /**
2405  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2406  *  @priv: driver private structure
2407  *  Description: It is used for configuring the RX queue routing
2408  */
2409 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2410 {
2411 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2412 	u32 queue;
2413 	u8 packet;
2414 
2415 	for (queue = 0; queue < rx_queues_count; queue++) {
2416 		/* no specific packet type routing specified for the queue */
2417 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2418 			continue;
2419 
2420 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2421 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2422 	}
2423 }
2424 
2425 /**
2426  *  stmmac_mtl_configuration - Configure MTL
2427  *  @priv: driver private structure
2428  *  Description: It is used for configurring MTL
2429  */
2430 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2431 {
2432 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2433 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2434 
2435 	if (tx_queues_count > 1)
2436 		stmmac_set_tx_queue_weight(priv);
2437 
2438 	/* Configure MTL RX algorithms */
2439 	if (rx_queues_count > 1)
2440 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2441 				priv->plat->rx_sched_algorithm);
2442 
2443 	/* Configure MTL TX algorithms */
2444 	if (tx_queues_count > 1)
2445 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2446 				priv->plat->tx_sched_algorithm);
2447 
2448 	/* Configure CBS in AVB TX queues */
2449 	if (tx_queues_count > 1)
2450 		stmmac_configure_cbs(priv);
2451 
2452 	/* Map RX MTL to DMA channels */
2453 	stmmac_rx_queue_dma_chan_map(priv);
2454 
2455 	/* Enable MAC RX Queues */
2456 	stmmac_mac_enable_rx_queues(priv);
2457 
2458 	/* Set RX priorities */
2459 	if (rx_queues_count > 1)
2460 		stmmac_mac_config_rx_queues_prio(priv);
2461 
2462 	/* Set TX priorities */
2463 	if (tx_queues_count > 1)
2464 		stmmac_mac_config_tx_queues_prio(priv);
2465 
2466 	/* Set RX routing */
2467 	if (rx_queues_count > 1)
2468 		stmmac_mac_config_rx_queues_routing(priv);
2469 }
2470 
2471 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2472 {
2473 	if (priv->dma_cap.asp) {
2474 		netdev_info(priv->dev, "Enabling Safety Features\n");
2475 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2476 	} else {
2477 		netdev_info(priv->dev, "No Safety Features support found\n");
2478 	}
2479 }
2480 
2481 /**
2482  * stmmac_hw_setup - setup mac in a usable state.
2483  *  @dev : pointer to the device structure.
2484  *  Description:
2485  *  this is the main function to setup the HW in a usable state because the
2486  *  dma engine is reset, the core registers are configured (e.g. AXI,
2487  *  Checksum features, timers). The DMA is ready to start receiving and
2488  *  transmitting.
2489  *  Return value:
2490  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2491  *  file on failure.
2492  */
2493 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2494 {
2495 	struct stmmac_priv *priv = netdev_priv(dev);
2496 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2497 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2498 	u32 chan;
2499 	int ret;
2500 
2501 	/* DMA initialization and SW reset */
2502 	ret = stmmac_init_dma_engine(priv);
2503 	if (ret < 0) {
2504 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2505 			   __func__);
2506 		return ret;
2507 	}
2508 
2509 	/* Copy the MAC addr into the HW  */
2510 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2511 
2512 	/* PS and related bits will be programmed according to the speed */
2513 	if (priv->hw->pcs) {
2514 		int speed = priv->plat->mac_port_sel_speed;
2515 
2516 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2517 		    (speed == SPEED_1000)) {
2518 			priv->hw->ps = speed;
2519 		} else {
2520 			dev_warn(priv->device, "invalid port speed\n");
2521 			priv->hw->ps = 0;
2522 		}
2523 	}
2524 
2525 	/* Initialize the MAC Core */
2526 	stmmac_core_init(priv, priv->hw, dev);
2527 
2528 	/* Initialize MTL*/
2529 	stmmac_mtl_configuration(priv);
2530 
2531 	/* Initialize Safety Features */
2532 	stmmac_safety_feat_configuration(priv);
2533 
2534 	ret = stmmac_rx_ipc(priv, priv->hw);
2535 	if (!ret) {
2536 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2537 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2538 		priv->hw->rx_csum = 0;
2539 	}
2540 
2541 	/* Enable the MAC Rx/Tx */
2542 	stmmac_mac_set(priv, priv->ioaddr, true);
2543 
2544 	/* Set the HW DMA mode and the COE */
2545 	stmmac_dma_operation_mode(priv);
2546 
2547 	stmmac_mmc_setup(priv);
2548 
2549 	if (init_ptp) {
2550 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2551 		if (ret < 0)
2552 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2553 
2554 		ret = stmmac_init_ptp(priv);
2555 		if (ret == -EOPNOTSUPP)
2556 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2557 		else if (ret)
2558 			netdev_warn(priv->dev, "PTP init failed\n");
2559 	}
2560 
2561 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2562 
2563 	if (priv->use_riwt) {
2564 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2565 		if (!ret)
2566 			priv->rx_riwt = MAX_DMA_RIWT;
2567 	}
2568 
2569 	if (priv->hw->pcs)
2570 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2571 
2572 	/* set TX and RX rings length */
2573 	stmmac_set_rings_length(priv);
2574 
2575 	/* Enable TSO */
2576 	if (priv->tso) {
2577 		for (chan = 0; chan < tx_cnt; chan++)
2578 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2579 	}
2580 
2581 	/* Start the ball rolling... */
2582 	stmmac_start_all_dma(priv);
2583 
2584 	return 0;
2585 }
2586 
2587 static void stmmac_hw_teardown(struct net_device *dev)
2588 {
2589 	struct stmmac_priv *priv = netdev_priv(dev);
2590 
2591 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2592 }
2593 
2594 /**
2595  *  stmmac_open - open entry point of the driver
2596  *  @dev : pointer to the device structure.
2597  *  Description:
2598  *  This function is the open entry point of the driver.
2599  *  Return value:
2600  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2601  *  file on failure.
2602  */
2603 static int stmmac_open(struct net_device *dev)
2604 {
2605 	struct stmmac_priv *priv = netdev_priv(dev);
2606 	u32 chan;
2607 	int ret;
2608 
2609 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2610 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2611 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2612 		ret = stmmac_init_phy(dev);
2613 		if (ret) {
2614 			netdev_err(priv->dev,
2615 				   "%s: Cannot attach to PHY (error: %d)\n",
2616 				   __func__, ret);
2617 			return ret;
2618 		}
2619 	}
2620 
2621 	/* Extra statistics */
2622 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2623 	priv->xstats.threshold = tc;
2624 
2625 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2626 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2627 
2628 	ret = alloc_dma_desc_resources(priv);
2629 	if (ret < 0) {
2630 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2631 			   __func__);
2632 		goto dma_desc_error;
2633 	}
2634 
2635 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2636 	if (ret < 0) {
2637 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2638 			   __func__);
2639 		goto init_error;
2640 	}
2641 
2642 	ret = stmmac_hw_setup(dev, true);
2643 	if (ret < 0) {
2644 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2645 		goto init_error;
2646 	}
2647 
2648 	stmmac_init_tx_coalesce(priv);
2649 
2650 	if (dev->phydev)
2651 		phy_start(dev->phydev);
2652 
2653 	/* Request the IRQ lines */
2654 	ret = request_irq(dev->irq, stmmac_interrupt,
2655 			  IRQF_SHARED, dev->name, dev);
2656 	if (unlikely(ret < 0)) {
2657 		netdev_err(priv->dev,
2658 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2659 			   __func__, dev->irq, ret);
2660 		goto irq_error;
2661 	}
2662 
2663 	/* Request the Wake IRQ in case of another line is used for WoL */
2664 	if (priv->wol_irq != dev->irq) {
2665 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2666 				  IRQF_SHARED, dev->name, dev);
2667 		if (unlikely(ret < 0)) {
2668 			netdev_err(priv->dev,
2669 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2670 				   __func__, priv->wol_irq, ret);
2671 			goto wolirq_error;
2672 		}
2673 	}
2674 
2675 	/* Request the IRQ lines */
2676 	if (priv->lpi_irq > 0) {
2677 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2678 				  dev->name, dev);
2679 		if (unlikely(ret < 0)) {
2680 			netdev_err(priv->dev,
2681 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2682 				   __func__, priv->lpi_irq, ret);
2683 			goto lpiirq_error;
2684 		}
2685 	}
2686 
2687 	stmmac_enable_all_queues(priv);
2688 	stmmac_start_all_queues(priv);
2689 
2690 	return 0;
2691 
2692 lpiirq_error:
2693 	if (priv->wol_irq != dev->irq)
2694 		free_irq(priv->wol_irq, dev);
2695 wolirq_error:
2696 	free_irq(dev->irq, dev);
2697 irq_error:
2698 	if (dev->phydev)
2699 		phy_stop(dev->phydev);
2700 
2701 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2702 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2703 
2704 	stmmac_hw_teardown(dev);
2705 init_error:
2706 	free_dma_desc_resources(priv);
2707 dma_desc_error:
2708 	if (dev->phydev)
2709 		phy_disconnect(dev->phydev);
2710 
2711 	return ret;
2712 }
2713 
2714 /**
2715  *  stmmac_release - close entry point of the driver
2716  *  @dev : device pointer.
2717  *  Description:
2718  *  This is the stop entry point of the driver.
2719  */
2720 static int stmmac_release(struct net_device *dev)
2721 {
2722 	struct stmmac_priv *priv = netdev_priv(dev);
2723 	u32 chan;
2724 
2725 	if (priv->eee_enabled)
2726 		del_timer_sync(&priv->eee_ctrl_timer);
2727 
2728 	/* Stop and disconnect the PHY */
2729 	if (dev->phydev) {
2730 		phy_stop(dev->phydev);
2731 		phy_disconnect(dev->phydev);
2732 	}
2733 
2734 	stmmac_stop_all_queues(priv);
2735 
2736 	stmmac_disable_all_queues(priv);
2737 
2738 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2739 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2740 
2741 	/* Free the IRQ lines */
2742 	free_irq(dev->irq, dev);
2743 	if (priv->wol_irq != dev->irq)
2744 		free_irq(priv->wol_irq, dev);
2745 	if (priv->lpi_irq > 0)
2746 		free_irq(priv->lpi_irq, dev);
2747 
2748 	/* Stop TX/RX DMA and clear the descriptors */
2749 	stmmac_stop_all_dma(priv);
2750 
2751 	/* Release and free the Rx/Tx resources */
2752 	free_dma_desc_resources(priv);
2753 
2754 	/* Disable the MAC Rx/Tx */
2755 	stmmac_mac_set(priv, priv->ioaddr, false);
2756 
2757 	netif_carrier_off(dev);
2758 
2759 	stmmac_release_ptp(priv);
2760 
2761 	return 0;
2762 }
2763 
2764 /**
2765  *  stmmac_tso_allocator - close entry point of the driver
2766  *  @priv: driver private structure
2767  *  @des: buffer start address
2768  *  @total_len: total length to fill in descriptors
2769  *  @last_segmant: condition for the last descriptor
2770  *  @queue: TX queue index
2771  *  Description:
2772  *  This function fills descriptor and request new descriptors according to
2773  *  buffer length to fill
2774  */
2775 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2776 				 int total_len, bool last_segment, u32 queue)
2777 {
2778 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2779 	struct dma_desc *desc;
2780 	u32 buff_size;
2781 	int tmp_len;
2782 
2783 	tmp_len = total_len;
2784 
2785 	while (tmp_len > 0) {
2786 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2787 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2788 		desc = tx_q->dma_tx + tx_q->cur_tx;
2789 
2790 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2791 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2792 			    TSO_MAX_BUFF_SIZE : tmp_len;
2793 
2794 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2795 				0, 1,
2796 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2797 				0, 0);
2798 
2799 		tmp_len -= TSO_MAX_BUFF_SIZE;
2800 	}
2801 }
2802 
2803 /**
2804  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2805  *  @skb : the socket buffer
2806  *  @dev : device pointer
2807  *  Description: this is the transmit function that is called on TSO frames
2808  *  (support available on GMAC4 and newer chips).
2809  *  Diagram below show the ring programming in case of TSO frames:
2810  *
2811  *  First Descriptor
2812  *   --------
2813  *   | DES0 |---> buffer1 = L2/L3/L4 header
2814  *   | DES1 |---> TCP Payload (can continue on next descr...)
2815  *   | DES2 |---> buffer 1 and 2 len
2816  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2817  *   --------
2818  *	|
2819  *     ...
2820  *	|
2821  *   --------
2822  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2823  *   | DES1 | --|
2824  *   | DES2 | --> buffer 1 and 2 len
2825  *   | DES3 |
2826  *   --------
2827  *
2828  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2829  */
2830 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2831 {
2832 	struct dma_desc *desc, *first, *mss_desc = NULL;
2833 	struct stmmac_priv *priv = netdev_priv(dev);
2834 	int nfrags = skb_shinfo(skb)->nr_frags;
2835 	u32 queue = skb_get_queue_mapping(skb);
2836 	unsigned int first_entry, des;
2837 	struct stmmac_tx_queue *tx_q;
2838 	int tmp_pay_len = 0;
2839 	u32 pay_len, mss;
2840 	u8 proto_hdr_len;
2841 	int i;
2842 
2843 	tx_q = &priv->tx_queue[queue];
2844 
2845 	/* Compute header lengths */
2846 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2847 
2848 	/* Desc availability based on threshold should be enough safe */
2849 	if (unlikely(stmmac_tx_avail(priv, queue) <
2850 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2851 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2852 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2853 								queue));
2854 			/* This is a hard error, log it. */
2855 			netdev_err(priv->dev,
2856 				   "%s: Tx Ring full when queue awake\n",
2857 				   __func__);
2858 		}
2859 		return NETDEV_TX_BUSY;
2860 	}
2861 
2862 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2863 
2864 	mss = skb_shinfo(skb)->gso_size;
2865 
2866 	/* set new MSS value if needed */
2867 	if (mss != tx_q->mss) {
2868 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2869 		stmmac_set_mss(priv, mss_desc, mss);
2870 		tx_q->mss = mss;
2871 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2872 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2873 	}
2874 
2875 	if (netif_msg_tx_queued(priv)) {
2876 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2877 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2878 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2879 			skb->data_len);
2880 	}
2881 
2882 	first_entry = tx_q->cur_tx;
2883 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2884 
2885 	desc = tx_q->dma_tx + first_entry;
2886 	first = desc;
2887 
2888 	/* first descriptor: fill Headers on Buf1 */
2889 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2890 			     DMA_TO_DEVICE);
2891 	if (dma_mapping_error(priv->device, des))
2892 		goto dma_map_err;
2893 
2894 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2895 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2896 
2897 	first->des0 = cpu_to_le32(des);
2898 
2899 	/* Fill start of payload in buff2 of first descriptor */
2900 	if (pay_len)
2901 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2902 
2903 	/* If needed take extra descriptors to fill the remaining payload */
2904 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2905 
2906 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2907 
2908 	/* Prepare fragments */
2909 	for (i = 0; i < nfrags; i++) {
2910 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2911 
2912 		des = skb_frag_dma_map(priv->device, frag, 0,
2913 				       skb_frag_size(frag),
2914 				       DMA_TO_DEVICE);
2915 		if (dma_mapping_error(priv->device, des))
2916 			goto dma_map_err;
2917 
2918 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2919 				     (i == nfrags - 1), queue);
2920 
2921 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2922 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2923 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2924 	}
2925 
2926 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2927 
2928 	/* Only the last descriptor gets to point to the skb. */
2929 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2930 
2931 	/* We've used all descriptors we need for this skb, however,
2932 	 * advance cur_tx so that it references a fresh descriptor.
2933 	 * ndo_start_xmit will fill this descriptor the next time it's
2934 	 * called and stmmac_tx_clean may clean up to this descriptor.
2935 	 */
2936 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2937 
2938 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2939 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2940 			  __func__);
2941 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2942 	}
2943 
2944 	dev->stats.tx_bytes += skb->len;
2945 	priv->xstats.tx_tso_frames++;
2946 	priv->xstats.tx_tso_nfrags += nfrags;
2947 
2948 	/* Manage tx mitigation */
2949 	tx_q->tx_count_frames += nfrags + 1;
2950 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2951 		stmmac_set_tx_ic(priv, desc);
2952 		priv->xstats.tx_set_ic_bit++;
2953 		tx_q->tx_count_frames = 0;
2954 	} else {
2955 		stmmac_tx_timer_arm(priv, queue);
2956 	}
2957 
2958 	skb_tx_timestamp(skb);
2959 
2960 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2961 		     priv->hwts_tx_en)) {
2962 		/* declare that device is doing timestamping */
2963 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2964 		stmmac_enable_tx_timestamp(priv, first);
2965 	}
2966 
2967 	/* Complete the first descriptor before granting the DMA */
2968 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2969 			proto_hdr_len,
2970 			pay_len,
2971 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2972 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2973 
2974 	/* If context desc is used to change MSS */
2975 	if (mss_desc) {
2976 		/* Make sure that first descriptor has been completely
2977 		 * written, including its own bit. This is because MSS is
2978 		 * actually before first descriptor, so we need to make
2979 		 * sure that MSS's own bit is the last thing written.
2980 		 */
2981 		dma_wmb();
2982 		stmmac_set_tx_owner(priv, mss_desc);
2983 	}
2984 
2985 	/* The own bit must be the latest setting done when prepare the
2986 	 * descriptor and then barrier is needed to make sure that
2987 	 * all is coherent before granting the DMA engine.
2988 	 */
2989 	wmb();
2990 
2991 	if (netif_msg_pktdata(priv)) {
2992 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2993 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2994 			tx_q->cur_tx, first, nfrags);
2995 
2996 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2997 
2998 		pr_info(">>> frame to be transmitted: ");
2999 		print_pkt(skb->data, skb_headlen(skb));
3000 	}
3001 
3002 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3003 
3004 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3005 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3006 
3007 	return NETDEV_TX_OK;
3008 
3009 dma_map_err:
3010 	dev_err(priv->device, "Tx dma map failed\n");
3011 	dev_kfree_skb(skb);
3012 	priv->dev->stats.tx_dropped++;
3013 	return NETDEV_TX_OK;
3014 }
3015 
3016 /**
3017  *  stmmac_xmit - Tx entry point of the driver
3018  *  @skb : the socket buffer
3019  *  @dev : device pointer
3020  *  Description : this is the tx entry point of the driver.
3021  *  It programs the chain or the ring and supports oversized frames
3022  *  and SG feature.
3023  */
3024 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3025 {
3026 	struct stmmac_priv *priv = netdev_priv(dev);
3027 	unsigned int nopaged_len = skb_headlen(skb);
3028 	int i, csum_insertion = 0, is_jumbo = 0;
3029 	u32 queue = skb_get_queue_mapping(skb);
3030 	int nfrags = skb_shinfo(skb)->nr_frags;
3031 	int entry;
3032 	unsigned int first_entry;
3033 	struct dma_desc *desc, *first;
3034 	struct stmmac_tx_queue *tx_q;
3035 	unsigned int enh_desc;
3036 	unsigned int des;
3037 
3038 	tx_q = &priv->tx_queue[queue];
3039 
3040 	if (priv->tx_path_in_lpi_mode)
3041 		stmmac_disable_eee_mode(priv);
3042 
3043 	/* Manage oversized TCP frames for GMAC4 device */
3044 	if (skb_is_gso(skb) && priv->tso) {
3045 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3046 			/*
3047 			 * There is no way to determine the number of TSO
3048 			 * capable Queues. Let's use always the Queue 0
3049 			 * because if TSO is supported then at least this
3050 			 * one will be capable.
3051 			 */
3052 			skb_set_queue_mapping(skb, 0);
3053 
3054 			return stmmac_tso_xmit(skb, dev);
3055 		}
3056 	}
3057 
3058 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3059 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3060 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3061 								queue));
3062 			/* This is a hard error, log it. */
3063 			netdev_err(priv->dev,
3064 				   "%s: Tx Ring full when queue awake\n",
3065 				   __func__);
3066 		}
3067 		return NETDEV_TX_BUSY;
3068 	}
3069 
3070 	entry = tx_q->cur_tx;
3071 	first_entry = entry;
3072 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3073 
3074 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3075 
3076 	if (likely(priv->extend_desc))
3077 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3078 	else
3079 		desc = tx_q->dma_tx + entry;
3080 
3081 	first = desc;
3082 
3083 	enh_desc = priv->plat->enh_desc;
3084 	/* To program the descriptors according to the size of the frame */
3085 	if (enh_desc)
3086 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3087 
3088 	if (unlikely(is_jumbo)) {
3089 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3090 		if (unlikely(entry < 0) && (entry != -EINVAL))
3091 			goto dma_map_err;
3092 	}
3093 
3094 	for (i = 0; i < nfrags; i++) {
3095 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3096 		int len = skb_frag_size(frag);
3097 		bool last_segment = (i == (nfrags - 1));
3098 
3099 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3100 		WARN_ON(tx_q->tx_skbuff[entry]);
3101 
3102 		if (likely(priv->extend_desc))
3103 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3104 		else
3105 			desc = tx_q->dma_tx + entry;
3106 
3107 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3108 				       DMA_TO_DEVICE);
3109 		if (dma_mapping_error(priv->device, des))
3110 			goto dma_map_err; /* should reuse desc w/o issues */
3111 
3112 		tx_q->tx_skbuff_dma[entry].buf = des;
3113 
3114 		stmmac_set_desc_addr(priv, desc, des);
3115 
3116 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3117 		tx_q->tx_skbuff_dma[entry].len = len;
3118 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3119 
3120 		/* Prepare the descriptor and set the own bit too */
3121 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3122 				priv->mode, 1, last_segment, skb->len);
3123 	}
3124 
3125 	/* Only the last descriptor gets to point to the skb. */
3126 	tx_q->tx_skbuff[entry] = skb;
3127 
3128 	/* We've used all descriptors we need for this skb, however,
3129 	 * advance cur_tx so that it references a fresh descriptor.
3130 	 * ndo_start_xmit will fill this descriptor the next time it's
3131 	 * called and stmmac_tx_clean may clean up to this descriptor.
3132 	 */
3133 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3134 	tx_q->cur_tx = entry;
3135 
3136 	if (netif_msg_pktdata(priv)) {
3137 		void *tx_head;
3138 
3139 		netdev_dbg(priv->dev,
3140 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3141 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3142 			   entry, first, nfrags);
3143 
3144 		if (priv->extend_desc)
3145 			tx_head = (void *)tx_q->dma_etx;
3146 		else
3147 			tx_head = (void *)tx_q->dma_tx;
3148 
3149 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3150 
3151 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3152 		print_pkt(skb->data, skb->len);
3153 	}
3154 
3155 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3156 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3157 			  __func__);
3158 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3159 	}
3160 
3161 	dev->stats.tx_bytes += skb->len;
3162 
3163 	/* According to the coalesce parameter the IC bit for the latest
3164 	 * segment is reset and the timer re-started to clean the tx status.
3165 	 * This approach takes care about the fragments: desc is the first
3166 	 * element in case of no SG.
3167 	 */
3168 	tx_q->tx_count_frames += nfrags + 1;
3169 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3170 		stmmac_set_tx_ic(priv, desc);
3171 		priv->xstats.tx_set_ic_bit++;
3172 		tx_q->tx_count_frames = 0;
3173 	} else {
3174 		stmmac_tx_timer_arm(priv, queue);
3175 	}
3176 
3177 	skb_tx_timestamp(skb);
3178 
3179 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3180 	 * problems because all the descriptors are actually ready to be
3181 	 * passed to the DMA engine.
3182 	 */
3183 	if (likely(!is_jumbo)) {
3184 		bool last_segment = (nfrags == 0);
3185 
3186 		des = dma_map_single(priv->device, skb->data,
3187 				     nopaged_len, DMA_TO_DEVICE);
3188 		if (dma_mapping_error(priv->device, des))
3189 			goto dma_map_err;
3190 
3191 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3192 
3193 		stmmac_set_desc_addr(priv, first, des);
3194 
3195 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3196 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3197 
3198 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3199 			     priv->hwts_tx_en)) {
3200 			/* declare that device is doing timestamping */
3201 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3202 			stmmac_enable_tx_timestamp(priv, first);
3203 		}
3204 
3205 		/* Prepare the first descriptor setting the OWN bit too */
3206 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3207 				csum_insertion, priv->mode, 1, last_segment,
3208 				skb->len);
3209 	} else {
3210 		stmmac_set_tx_owner(priv, first);
3211 	}
3212 
3213 	/* The own bit must be the latest setting done when prepare the
3214 	 * descriptor and then barrier is needed to make sure that
3215 	 * all is coherent before granting the DMA engine.
3216 	 */
3217 	wmb();
3218 
3219 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3220 
3221 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3222 
3223 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3224 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3225 
3226 	return NETDEV_TX_OK;
3227 
3228 dma_map_err:
3229 	netdev_err(priv->dev, "Tx DMA map failed\n");
3230 	dev_kfree_skb(skb);
3231 	priv->dev->stats.tx_dropped++;
3232 	return NETDEV_TX_OK;
3233 }
3234 
3235 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3236 {
3237 	struct vlan_ethhdr *veth;
3238 	__be16 vlan_proto;
3239 	u16 vlanid;
3240 
3241 	veth = (struct vlan_ethhdr *)skb->data;
3242 	vlan_proto = veth->h_vlan_proto;
3243 
3244 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3245 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3246 	    (vlan_proto == htons(ETH_P_8021AD) &&
3247 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3248 		/* pop the vlan tag */
3249 		vlanid = ntohs(veth->h_vlan_TCI);
3250 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3251 		skb_pull(skb, VLAN_HLEN);
3252 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3253 	}
3254 }
3255 
3256 
3257 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3258 {
3259 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3260 		return 0;
3261 
3262 	return 1;
3263 }
3264 
3265 /**
3266  * stmmac_rx_refill - refill used skb preallocated buffers
3267  * @priv: driver private structure
3268  * @queue: RX queue index
3269  * Description : this is to reallocate the skb for the reception process
3270  * that is based on zero-copy.
3271  */
3272 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3273 {
3274 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3275 	int dirty = stmmac_rx_dirty(priv, queue);
3276 	unsigned int entry = rx_q->dirty_rx;
3277 
3278 	int bfsize = priv->dma_buf_sz;
3279 
3280 	while (dirty-- > 0) {
3281 		struct dma_desc *p;
3282 
3283 		if (priv->extend_desc)
3284 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3285 		else
3286 			p = rx_q->dma_rx + entry;
3287 
3288 		if (likely(!rx_q->rx_skbuff[entry])) {
3289 			struct sk_buff *skb;
3290 
3291 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3292 			if (unlikely(!skb)) {
3293 				/* so for a while no zero-copy! */
3294 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3295 				if (unlikely(net_ratelimit()))
3296 					dev_err(priv->device,
3297 						"fail to alloc skb entry %d\n",
3298 						entry);
3299 				break;
3300 			}
3301 
3302 			rx_q->rx_skbuff[entry] = skb;
3303 			rx_q->rx_skbuff_dma[entry] =
3304 			    dma_map_single(priv->device, skb->data, bfsize,
3305 					   DMA_FROM_DEVICE);
3306 			if (dma_mapping_error(priv->device,
3307 					      rx_q->rx_skbuff_dma[entry])) {
3308 				netdev_err(priv->dev, "Rx DMA map failed\n");
3309 				dev_kfree_skb(skb);
3310 				break;
3311 			}
3312 
3313 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3314 			stmmac_refill_desc3(priv, rx_q, p);
3315 
3316 			if (rx_q->rx_zeroc_thresh > 0)
3317 				rx_q->rx_zeroc_thresh--;
3318 
3319 			netif_dbg(priv, rx_status, priv->dev,
3320 				  "refill entry #%d\n", entry);
3321 		}
3322 		dma_wmb();
3323 
3324 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3325 
3326 		dma_wmb();
3327 
3328 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3329 	}
3330 	rx_q->dirty_rx = entry;
3331 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3332 }
3333 
3334 /**
3335  * stmmac_rx - manage the receive process
3336  * @priv: driver private structure
3337  * @limit: napi bugget
3338  * @queue: RX queue index.
3339  * Description :  this the function called by the napi poll method.
3340  * It gets all the frames inside the ring.
3341  */
3342 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3343 {
3344 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3345 	struct stmmac_channel *ch = &priv->channel[queue];
3346 	unsigned int next_entry = rx_q->cur_rx;
3347 	int coe = priv->hw->rx_csum;
3348 	unsigned int count = 0;
3349 	bool xmac;
3350 
3351 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3352 
3353 	if (netif_msg_rx_status(priv)) {
3354 		void *rx_head;
3355 
3356 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3357 		if (priv->extend_desc)
3358 			rx_head = (void *)rx_q->dma_erx;
3359 		else
3360 			rx_head = (void *)rx_q->dma_rx;
3361 
3362 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3363 	}
3364 	while (count < limit) {
3365 		int entry, status;
3366 		struct dma_desc *p;
3367 		struct dma_desc *np;
3368 
3369 		entry = next_entry;
3370 
3371 		if (priv->extend_desc)
3372 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3373 		else
3374 			p = rx_q->dma_rx + entry;
3375 
3376 		/* read the status of the incoming frame */
3377 		status = stmmac_rx_status(priv, &priv->dev->stats,
3378 				&priv->xstats, p);
3379 		/* check if managed by the DMA otherwise go ahead */
3380 		if (unlikely(status & dma_own))
3381 			break;
3382 
3383 		count++;
3384 
3385 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3386 		next_entry = rx_q->cur_rx;
3387 
3388 		if (priv->extend_desc)
3389 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3390 		else
3391 			np = rx_q->dma_rx + next_entry;
3392 
3393 		prefetch(np);
3394 
3395 		if (priv->extend_desc)
3396 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3397 					&priv->xstats, rx_q->dma_erx + entry);
3398 		if (unlikely(status == discard_frame)) {
3399 			priv->dev->stats.rx_errors++;
3400 			if (priv->hwts_rx_en && !priv->extend_desc) {
3401 				/* DESC2 & DESC3 will be overwritten by device
3402 				 * with timestamp value, hence reinitialize
3403 				 * them in stmmac_rx_refill() function so that
3404 				 * device can reuse it.
3405 				 */
3406 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3407 				rx_q->rx_skbuff[entry] = NULL;
3408 				dma_unmap_single(priv->device,
3409 						 rx_q->rx_skbuff_dma[entry],
3410 						 priv->dma_buf_sz,
3411 						 DMA_FROM_DEVICE);
3412 			}
3413 		} else {
3414 			struct sk_buff *skb;
3415 			int frame_len;
3416 			unsigned int des;
3417 
3418 			stmmac_get_desc_addr(priv, p, &des);
3419 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3420 
3421 			/*  If frame length is greater than skb buffer size
3422 			 *  (preallocated during init) then the packet is
3423 			 *  ignored
3424 			 */
3425 			if (frame_len > priv->dma_buf_sz) {
3426 				if (net_ratelimit())
3427 					netdev_err(priv->dev,
3428 						   "len %d larger than size (%d)\n",
3429 						   frame_len, priv->dma_buf_sz);
3430 				priv->dev->stats.rx_length_errors++;
3431 				continue;
3432 			}
3433 
3434 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3435 			 * Type frames (LLC/LLC-SNAP)
3436 			 *
3437 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3438 			 * feature is always disabled and packets need to be
3439 			 * stripped manually.
3440 			 */
3441 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3442 			    unlikely(status != llc_snap))
3443 				frame_len -= ETH_FCS_LEN;
3444 
3445 			if (netif_msg_rx_status(priv)) {
3446 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3447 					   p, entry, des);
3448 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3449 					   frame_len, status);
3450 			}
3451 
3452 			/* The zero-copy is always used for all the sizes
3453 			 * in case of GMAC4 because it needs
3454 			 * to refill the used descriptors, always.
3455 			 */
3456 			if (unlikely(!xmac &&
3457 				     ((frame_len < priv->rx_copybreak) ||
3458 				     stmmac_rx_threshold_count(rx_q)))) {
3459 				skb = netdev_alloc_skb_ip_align(priv->dev,
3460 								frame_len);
3461 				if (unlikely(!skb)) {
3462 					if (net_ratelimit())
3463 						dev_warn(priv->device,
3464 							 "packet dropped\n");
3465 					priv->dev->stats.rx_dropped++;
3466 					continue;
3467 				}
3468 
3469 				dma_sync_single_for_cpu(priv->device,
3470 							rx_q->rx_skbuff_dma
3471 							[entry], frame_len,
3472 							DMA_FROM_DEVICE);
3473 				skb_copy_to_linear_data(skb,
3474 							rx_q->
3475 							rx_skbuff[entry]->data,
3476 							frame_len);
3477 
3478 				skb_put(skb, frame_len);
3479 				dma_sync_single_for_device(priv->device,
3480 							   rx_q->rx_skbuff_dma
3481 							   [entry], frame_len,
3482 							   DMA_FROM_DEVICE);
3483 			} else {
3484 				skb = rx_q->rx_skbuff[entry];
3485 				if (unlikely(!skb)) {
3486 					if (net_ratelimit())
3487 						netdev_err(priv->dev,
3488 							   "%s: Inconsistent Rx chain\n",
3489 							   priv->dev->name);
3490 					priv->dev->stats.rx_dropped++;
3491 					continue;
3492 				}
3493 				prefetch(skb->data - NET_IP_ALIGN);
3494 				rx_q->rx_skbuff[entry] = NULL;
3495 				rx_q->rx_zeroc_thresh++;
3496 
3497 				skb_put(skb, frame_len);
3498 				dma_unmap_single(priv->device,
3499 						 rx_q->rx_skbuff_dma[entry],
3500 						 priv->dma_buf_sz,
3501 						 DMA_FROM_DEVICE);
3502 			}
3503 
3504 			if (netif_msg_pktdata(priv)) {
3505 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3506 					   frame_len);
3507 				print_pkt(skb->data, frame_len);
3508 			}
3509 
3510 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3511 
3512 			stmmac_rx_vlan(priv->dev, skb);
3513 
3514 			skb->protocol = eth_type_trans(skb, priv->dev);
3515 
3516 			if (unlikely(!coe))
3517 				skb_checksum_none_assert(skb);
3518 			else
3519 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3520 
3521 			napi_gro_receive(&ch->rx_napi, skb);
3522 
3523 			priv->dev->stats.rx_packets++;
3524 			priv->dev->stats.rx_bytes += frame_len;
3525 		}
3526 	}
3527 
3528 	stmmac_rx_refill(priv, queue);
3529 
3530 	priv->xstats.rx_pkt_n += count;
3531 
3532 	return count;
3533 }
3534 
3535 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3536 {
3537 	struct stmmac_channel *ch =
3538 		container_of(napi, struct stmmac_channel, rx_napi);
3539 	struct stmmac_priv *priv = ch->priv_data;
3540 	u32 chan = ch->index;
3541 	int work_done;
3542 
3543 	priv->xstats.napi_poll++;
3544 
3545 	work_done = stmmac_rx(priv, budget, chan);
3546 	if (work_done < budget && napi_complete_done(napi, work_done))
3547 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3548 	return work_done;
3549 }
3550 
3551 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3552 {
3553 	struct stmmac_channel *ch =
3554 		container_of(napi, struct stmmac_channel, tx_napi);
3555 	struct stmmac_priv *priv = ch->priv_data;
3556 	struct stmmac_tx_queue *tx_q;
3557 	u32 chan = ch->index;
3558 	int work_done;
3559 
3560 	priv->xstats.napi_poll++;
3561 
3562 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3563 	work_done = min(work_done, budget);
3564 
3565 	if (work_done < budget && napi_complete_done(napi, work_done))
3566 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3567 
3568 	/* Force transmission restart */
3569 	tx_q = &priv->tx_queue[chan];
3570 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3571 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3572 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3573 				       chan);
3574 	}
3575 
3576 	return work_done;
3577 }
3578 
3579 /**
3580  *  stmmac_tx_timeout
3581  *  @dev : Pointer to net device structure
3582  *  Description: this function is called when a packet transmission fails to
3583  *   complete within a reasonable time. The driver will mark the error in the
3584  *   netdev structure and arrange for the device to be reset to a sane state
3585  *   in order to transmit a new packet.
3586  */
3587 static void stmmac_tx_timeout(struct net_device *dev)
3588 {
3589 	struct stmmac_priv *priv = netdev_priv(dev);
3590 
3591 	stmmac_global_err(priv);
3592 }
3593 
3594 /**
3595  *  stmmac_set_rx_mode - entry point for multicast addressing
3596  *  @dev : pointer to the device structure
3597  *  Description:
3598  *  This function is a driver entry point which gets called by the kernel
3599  *  whenever multicast addresses must be enabled/disabled.
3600  *  Return value:
3601  *  void.
3602  */
3603 static void stmmac_set_rx_mode(struct net_device *dev)
3604 {
3605 	struct stmmac_priv *priv = netdev_priv(dev);
3606 
3607 	stmmac_set_filter(priv, priv->hw, dev);
3608 }
3609 
3610 /**
3611  *  stmmac_change_mtu - entry point to change MTU size for the device.
3612  *  @dev : device pointer.
3613  *  @new_mtu : the new MTU size for the device.
3614  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3615  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3616  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3617  *  Return value:
3618  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3619  *  file on failure.
3620  */
3621 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3622 {
3623 	struct stmmac_priv *priv = netdev_priv(dev);
3624 
3625 	if (netif_running(dev)) {
3626 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3627 		return -EBUSY;
3628 	}
3629 
3630 	dev->mtu = new_mtu;
3631 
3632 	netdev_update_features(dev);
3633 
3634 	return 0;
3635 }
3636 
3637 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3638 					     netdev_features_t features)
3639 {
3640 	struct stmmac_priv *priv = netdev_priv(dev);
3641 
3642 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3643 		features &= ~NETIF_F_RXCSUM;
3644 
3645 	if (!priv->plat->tx_coe)
3646 		features &= ~NETIF_F_CSUM_MASK;
3647 
3648 	/* Some GMAC devices have a bugged Jumbo frame support that
3649 	 * needs to have the Tx COE disabled for oversized frames
3650 	 * (due to limited buffer sizes). In this case we disable
3651 	 * the TX csum insertion in the TDES and not use SF.
3652 	 */
3653 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3654 		features &= ~NETIF_F_CSUM_MASK;
3655 
3656 	/* Disable tso if asked by ethtool */
3657 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3658 		if (features & NETIF_F_TSO)
3659 			priv->tso = true;
3660 		else
3661 			priv->tso = false;
3662 	}
3663 
3664 	return features;
3665 }
3666 
3667 static int stmmac_set_features(struct net_device *netdev,
3668 			       netdev_features_t features)
3669 {
3670 	struct stmmac_priv *priv = netdev_priv(netdev);
3671 
3672 	/* Keep the COE Type in case of csum is supporting */
3673 	if (features & NETIF_F_RXCSUM)
3674 		priv->hw->rx_csum = priv->plat->rx_coe;
3675 	else
3676 		priv->hw->rx_csum = 0;
3677 	/* No check needed because rx_coe has been set before and it will be
3678 	 * fixed in case of issue.
3679 	 */
3680 	stmmac_rx_ipc(priv, priv->hw);
3681 
3682 	return 0;
3683 }
3684 
3685 /**
3686  *  stmmac_interrupt - main ISR
3687  *  @irq: interrupt number.
3688  *  @dev_id: to pass the net device pointer.
3689  *  Description: this is the main driver interrupt service routine.
3690  *  It can call:
3691  *  o DMA service routine (to manage incoming frame reception and transmission
3692  *    status)
3693  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3694  *    interrupts.
3695  */
3696 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3697 {
3698 	struct net_device *dev = (struct net_device *)dev_id;
3699 	struct stmmac_priv *priv = netdev_priv(dev);
3700 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3701 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3702 	u32 queues_count;
3703 	u32 queue;
3704 	bool xmac;
3705 
3706 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3707 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3708 
3709 	if (priv->irq_wake)
3710 		pm_wakeup_event(priv->device, 0);
3711 
3712 	if (unlikely(!dev)) {
3713 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3714 		return IRQ_NONE;
3715 	}
3716 
3717 	/* Check if adapter is up */
3718 	if (test_bit(STMMAC_DOWN, &priv->state))
3719 		return IRQ_HANDLED;
3720 	/* Check if a fatal error happened */
3721 	if (stmmac_safety_feat_interrupt(priv))
3722 		return IRQ_HANDLED;
3723 
3724 	/* To handle GMAC own interrupts */
3725 	if ((priv->plat->has_gmac) || xmac) {
3726 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3727 		int mtl_status;
3728 
3729 		if (unlikely(status)) {
3730 			/* For LPI we need to save the tx status */
3731 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3732 				priv->tx_path_in_lpi_mode = true;
3733 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3734 				priv->tx_path_in_lpi_mode = false;
3735 		}
3736 
3737 		for (queue = 0; queue < queues_count; queue++) {
3738 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3739 
3740 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3741 								queue);
3742 			if (mtl_status != -EINVAL)
3743 				status |= mtl_status;
3744 
3745 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3746 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3747 						       rx_q->rx_tail_addr,
3748 						       queue);
3749 		}
3750 
3751 		/* PCS link status */
3752 		if (priv->hw->pcs) {
3753 			if (priv->xstats.pcs_link)
3754 				netif_carrier_on(dev);
3755 			else
3756 				netif_carrier_off(dev);
3757 		}
3758 	}
3759 
3760 	/* To handle DMA interrupts */
3761 	stmmac_dma_interrupt(priv);
3762 
3763 	return IRQ_HANDLED;
3764 }
3765 
3766 #ifdef CONFIG_NET_POLL_CONTROLLER
3767 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3768  * to allow network I/O with interrupts disabled.
3769  */
3770 static void stmmac_poll_controller(struct net_device *dev)
3771 {
3772 	disable_irq(dev->irq);
3773 	stmmac_interrupt(dev->irq, dev);
3774 	enable_irq(dev->irq);
3775 }
3776 #endif
3777 
3778 /**
3779  *  stmmac_ioctl - Entry point for the Ioctl
3780  *  @dev: Device pointer.
3781  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3782  *  a proprietary structure used to pass information to the driver.
3783  *  @cmd: IOCTL command
3784  *  Description:
3785  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3786  */
3787 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3788 {
3789 	int ret = -EOPNOTSUPP;
3790 
3791 	if (!netif_running(dev))
3792 		return -EINVAL;
3793 
3794 	switch (cmd) {
3795 	case SIOCGMIIPHY:
3796 	case SIOCGMIIREG:
3797 	case SIOCSMIIREG:
3798 		if (!dev->phydev)
3799 			return -EINVAL;
3800 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3801 		break;
3802 	case SIOCSHWTSTAMP:
3803 		ret = stmmac_hwtstamp_set(dev, rq);
3804 		break;
3805 	case SIOCGHWTSTAMP:
3806 		ret = stmmac_hwtstamp_get(dev, rq);
3807 		break;
3808 	default:
3809 		break;
3810 	}
3811 
3812 	return ret;
3813 }
3814 
3815 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3816 				    void *cb_priv)
3817 {
3818 	struct stmmac_priv *priv = cb_priv;
3819 	int ret = -EOPNOTSUPP;
3820 
3821 	stmmac_disable_all_queues(priv);
3822 
3823 	switch (type) {
3824 	case TC_SETUP_CLSU32:
3825 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3826 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3827 		break;
3828 	default:
3829 		break;
3830 	}
3831 
3832 	stmmac_enable_all_queues(priv);
3833 	return ret;
3834 }
3835 
3836 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3837 				 struct tc_block_offload *f)
3838 {
3839 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3840 		return -EOPNOTSUPP;
3841 
3842 	switch (f->command) {
3843 	case TC_BLOCK_BIND:
3844 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3845 				priv, priv, f->extack);
3846 	case TC_BLOCK_UNBIND:
3847 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3848 		return 0;
3849 	default:
3850 		return -EOPNOTSUPP;
3851 	}
3852 }
3853 
3854 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3855 			   void *type_data)
3856 {
3857 	struct stmmac_priv *priv = netdev_priv(ndev);
3858 
3859 	switch (type) {
3860 	case TC_SETUP_BLOCK:
3861 		return stmmac_setup_tc_block(priv, type_data);
3862 	case TC_SETUP_QDISC_CBS:
3863 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3864 	default:
3865 		return -EOPNOTSUPP;
3866 	}
3867 }
3868 
3869 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3870 {
3871 	struct stmmac_priv *priv = netdev_priv(ndev);
3872 	int ret = 0;
3873 
3874 	ret = eth_mac_addr(ndev, addr);
3875 	if (ret)
3876 		return ret;
3877 
3878 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3879 
3880 	return ret;
3881 }
3882 
3883 #ifdef CONFIG_DEBUG_FS
3884 static struct dentry *stmmac_fs_dir;
3885 
3886 static void sysfs_display_ring(void *head, int size, int extend_desc,
3887 			       struct seq_file *seq)
3888 {
3889 	int i;
3890 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3891 	struct dma_desc *p = (struct dma_desc *)head;
3892 
3893 	for (i = 0; i < size; i++) {
3894 		if (extend_desc) {
3895 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3896 				   i, (unsigned int)virt_to_phys(ep),
3897 				   le32_to_cpu(ep->basic.des0),
3898 				   le32_to_cpu(ep->basic.des1),
3899 				   le32_to_cpu(ep->basic.des2),
3900 				   le32_to_cpu(ep->basic.des3));
3901 			ep++;
3902 		} else {
3903 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3904 				   i, (unsigned int)virt_to_phys(p),
3905 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3906 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3907 			p++;
3908 		}
3909 		seq_printf(seq, "\n");
3910 	}
3911 }
3912 
3913 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3914 {
3915 	struct net_device *dev = seq->private;
3916 	struct stmmac_priv *priv = netdev_priv(dev);
3917 	u32 rx_count = priv->plat->rx_queues_to_use;
3918 	u32 tx_count = priv->plat->tx_queues_to_use;
3919 	u32 queue;
3920 
3921 	if ((dev->flags & IFF_UP) == 0)
3922 		return 0;
3923 
3924 	for (queue = 0; queue < rx_count; queue++) {
3925 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3926 
3927 		seq_printf(seq, "RX Queue %d:\n", queue);
3928 
3929 		if (priv->extend_desc) {
3930 			seq_printf(seq, "Extended descriptor ring:\n");
3931 			sysfs_display_ring((void *)rx_q->dma_erx,
3932 					   DMA_RX_SIZE, 1, seq);
3933 		} else {
3934 			seq_printf(seq, "Descriptor ring:\n");
3935 			sysfs_display_ring((void *)rx_q->dma_rx,
3936 					   DMA_RX_SIZE, 0, seq);
3937 		}
3938 	}
3939 
3940 	for (queue = 0; queue < tx_count; queue++) {
3941 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3942 
3943 		seq_printf(seq, "TX Queue %d:\n", queue);
3944 
3945 		if (priv->extend_desc) {
3946 			seq_printf(seq, "Extended descriptor ring:\n");
3947 			sysfs_display_ring((void *)tx_q->dma_etx,
3948 					   DMA_TX_SIZE, 1, seq);
3949 		} else {
3950 			seq_printf(seq, "Descriptor ring:\n");
3951 			sysfs_display_ring((void *)tx_q->dma_tx,
3952 					   DMA_TX_SIZE, 0, seq);
3953 		}
3954 	}
3955 
3956 	return 0;
3957 }
3958 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3959 
3960 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3961 {
3962 	struct net_device *dev = seq->private;
3963 	struct stmmac_priv *priv = netdev_priv(dev);
3964 
3965 	if (!priv->hw_cap_support) {
3966 		seq_printf(seq, "DMA HW features not supported\n");
3967 		return 0;
3968 	}
3969 
3970 	seq_printf(seq, "==============================\n");
3971 	seq_printf(seq, "\tDMA HW features\n");
3972 	seq_printf(seq, "==============================\n");
3973 
3974 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3975 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3976 	seq_printf(seq, "\t1000 Mbps: %s\n",
3977 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3978 	seq_printf(seq, "\tHalf duplex: %s\n",
3979 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3980 	seq_printf(seq, "\tHash Filter: %s\n",
3981 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3982 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3983 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3984 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3985 		   (priv->dma_cap.pcs) ? "Y" : "N");
3986 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3987 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3988 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3989 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3990 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3991 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3992 	seq_printf(seq, "\tRMON module: %s\n",
3993 		   (priv->dma_cap.rmon) ? "Y" : "N");
3994 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3995 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3996 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3997 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3998 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3999 		   (priv->dma_cap.eee) ? "Y" : "N");
4000 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4001 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4002 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4003 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4004 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4005 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4006 	} else {
4007 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4008 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4009 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4010 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4011 	}
4012 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4013 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4014 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4015 		   priv->dma_cap.number_rx_channel);
4016 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4017 		   priv->dma_cap.number_tx_channel);
4018 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4019 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4020 
4021 	return 0;
4022 }
4023 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4024 
4025 static int stmmac_init_fs(struct net_device *dev)
4026 {
4027 	struct stmmac_priv *priv = netdev_priv(dev);
4028 
4029 	/* Create per netdev entries */
4030 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4031 
4032 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4033 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4034 
4035 		return -ENOMEM;
4036 	}
4037 
4038 	/* Entry to report DMA RX/TX rings */
4039 	priv->dbgfs_rings_status =
4040 		debugfs_create_file("descriptors_status", 0444,
4041 				    priv->dbgfs_dir, dev,
4042 				    &stmmac_rings_status_fops);
4043 
4044 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4045 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4046 		debugfs_remove_recursive(priv->dbgfs_dir);
4047 
4048 		return -ENOMEM;
4049 	}
4050 
4051 	/* Entry to report the DMA HW features */
4052 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4053 						  priv->dbgfs_dir,
4054 						  dev, &stmmac_dma_cap_fops);
4055 
4056 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4057 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4058 		debugfs_remove_recursive(priv->dbgfs_dir);
4059 
4060 		return -ENOMEM;
4061 	}
4062 
4063 	return 0;
4064 }
4065 
4066 static void stmmac_exit_fs(struct net_device *dev)
4067 {
4068 	struct stmmac_priv *priv = netdev_priv(dev);
4069 
4070 	debugfs_remove_recursive(priv->dbgfs_dir);
4071 }
4072 #endif /* CONFIG_DEBUG_FS */
4073 
4074 static const struct net_device_ops stmmac_netdev_ops = {
4075 	.ndo_open = stmmac_open,
4076 	.ndo_start_xmit = stmmac_xmit,
4077 	.ndo_stop = stmmac_release,
4078 	.ndo_change_mtu = stmmac_change_mtu,
4079 	.ndo_fix_features = stmmac_fix_features,
4080 	.ndo_set_features = stmmac_set_features,
4081 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4082 	.ndo_tx_timeout = stmmac_tx_timeout,
4083 	.ndo_do_ioctl = stmmac_ioctl,
4084 	.ndo_setup_tc = stmmac_setup_tc,
4085 #ifdef CONFIG_NET_POLL_CONTROLLER
4086 	.ndo_poll_controller = stmmac_poll_controller,
4087 #endif
4088 	.ndo_set_mac_address = stmmac_set_mac_address,
4089 };
4090 
4091 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4092 {
4093 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4094 		return;
4095 	if (test_bit(STMMAC_DOWN, &priv->state))
4096 		return;
4097 
4098 	netdev_err(priv->dev, "Reset adapter.\n");
4099 
4100 	rtnl_lock();
4101 	netif_trans_update(priv->dev);
4102 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4103 		usleep_range(1000, 2000);
4104 
4105 	set_bit(STMMAC_DOWN, &priv->state);
4106 	dev_close(priv->dev);
4107 	dev_open(priv->dev, NULL);
4108 	clear_bit(STMMAC_DOWN, &priv->state);
4109 	clear_bit(STMMAC_RESETING, &priv->state);
4110 	rtnl_unlock();
4111 }
4112 
4113 static void stmmac_service_task(struct work_struct *work)
4114 {
4115 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4116 			service_task);
4117 
4118 	stmmac_reset_subtask(priv);
4119 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4120 }
4121 
4122 /**
4123  *  stmmac_hw_init - Init the MAC device
4124  *  @priv: driver private structure
4125  *  Description: this function is to configure the MAC device according to
4126  *  some platform parameters or the HW capability register. It prepares the
4127  *  driver to use either ring or chain modes and to setup either enhanced or
4128  *  normal descriptors.
4129  */
4130 static int stmmac_hw_init(struct stmmac_priv *priv)
4131 {
4132 	int ret;
4133 
4134 	/* dwmac-sun8i only work in chain mode */
4135 	if (priv->plat->has_sun8i)
4136 		chain_mode = 1;
4137 	priv->chain_mode = chain_mode;
4138 
4139 	/* Initialize HW Interface */
4140 	ret = stmmac_hwif_init(priv);
4141 	if (ret)
4142 		return ret;
4143 
4144 	/* Get the HW capability (new GMAC newer than 3.50a) */
4145 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4146 	if (priv->hw_cap_support) {
4147 		dev_info(priv->device, "DMA HW capability register supported\n");
4148 
4149 		/* We can override some gmac/dma configuration fields: e.g.
4150 		 * enh_desc, tx_coe (e.g. that are passed through the
4151 		 * platform) with the values from the HW capability
4152 		 * register (if supported).
4153 		 */
4154 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4155 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4156 		priv->hw->pmt = priv->plat->pmt;
4157 
4158 		/* TXCOE doesn't work in thresh DMA mode */
4159 		if (priv->plat->force_thresh_dma_mode)
4160 			priv->plat->tx_coe = 0;
4161 		else
4162 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4163 
4164 		/* In case of GMAC4 rx_coe is from HW cap register. */
4165 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4166 
4167 		if (priv->dma_cap.rx_coe_type2)
4168 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4169 		else if (priv->dma_cap.rx_coe_type1)
4170 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4171 
4172 	} else {
4173 		dev_info(priv->device, "No HW DMA feature register supported\n");
4174 	}
4175 
4176 	if (priv->plat->rx_coe) {
4177 		priv->hw->rx_csum = priv->plat->rx_coe;
4178 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4179 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4180 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4181 	}
4182 	if (priv->plat->tx_coe)
4183 		dev_info(priv->device, "TX Checksum insertion supported\n");
4184 
4185 	if (priv->plat->pmt) {
4186 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4187 		device_set_wakeup_capable(priv->device, 1);
4188 	}
4189 
4190 	if (priv->dma_cap.tsoen)
4191 		dev_info(priv->device, "TSO supported\n");
4192 
4193 	/* Run HW quirks, if any */
4194 	if (priv->hwif_quirks) {
4195 		ret = priv->hwif_quirks(priv);
4196 		if (ret)
4197 			return ret;
4198 	}
4199 
4200 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4201 	 * In some case, for example on bugged HW this feature
4202 	 * has to be disable and this can be done by passing the
4203 	 * riwt_off field from the platform.
4204 	 */
4205 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4206 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4207 		priv->use_riwt = 1;
4208 		dev_info(priv->device,
4209 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4210 	}
4211 
4212 	return 0;
4213 }
4214 
4215 /**
4216  * stmmac_dvr_probe
4217  * @device: device pointer
4218  * @plat_dat: platform data pointer
4219  * @res: stmmac resource pointer
4220  * Description: this is the main probe function used to
4221  * call the alloc_etherdev, allocate the priv structure.
4222  * Return:
4223  * returns 0 on success, otherwise errno.
4224  */
4225 int stmmac_dvr_probe(struct device *device,
4226 		     struct plat_stmmacenet_data *plat_dat,
4227 		     struct stmmac_resources *res)
4228 {
4229 	struct net_device *ndev = NULL;
4230 	struct stmmac_priv *priv;
4231 	u32 queue, maxq;
4232 	int ret = 0;
4233 
4234 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4235 				  MTL_MAX_TX_QUEUES,
4236 				  MTL_MAX_RX_QUEUES);
4237 	if (!ndev)
4238 		return -ENOMEM;
4239 
4240 	SET_NETDEV_DEV(ndev, device);
4241 
4242 	priv = netdev_priv(ndev);
4243 	priv->device = device;
4244 	priv->dev = ndev;
4245 
4246 	stmmac_set_ethtool_ops(ndev);
4247 	priv->pause = pause;
4248 	priv->plat = plat_dat;
4249 	priv->ioaddr = res->addr;
4250 	priv->dev->base_addr = (unsigned long)res->addr;
4251 
4252 	priv->dev->irq = res->irq;
4253 	priv->wol_irq = res->wol_irq;
4254 	priv->lpi_irq = res->lpi_irq;
4255 
4256 	if (!IS_ERR_OR_NULL(res->mac))
4257 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4258 
4259 	dev_set_drvdata(device, priv->dev);
4260 
4261 	/* Verify driver arguments */
4262 	stmmac_verify_args();
4263 
4264 	/* Allocate workqueue */
4265 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4266 	if (!priv->wq) {
4267 		dev_err(priv->device, "failed to create workqueue\n");
4268 		ret = -ENOMEM;
4269 		goto error_wq;
4270 	}
4271 
4272 	INIT_WORK(&priv->service_task, stmmac_service_task);
4273 
4274 	/* Override with kernel parameters if supplied XXX CRS XXX
4275 	 * this needs to have multiple instances
4276 	 */
4277 	if ((phyaddr >= 0) && (phyaddr <= 31))
4278 		priv->plat->phy_addr = phyaddr;
4279 
4280 	if (priv->plat->stmmac_rst) {
4281 		ret = reset_control_assert(priv->plat->stmmac_rst);
4282 		reset_control_deassert(priv->plat->stmmac_rst);
4283 		/* Some reset controllers have only reset callback instead of
4284 		 * assert + deassert callbacks pair.
4285 		 */
4286 		if (ret == -ENOTSUPP)
4287 			reset_control_reset(priv->plat->stmmac_rst);
4288 	}
4289 
4290 	/* Init MAC and get the capabilities */
4291 	ret = stmmac_hw_init(priv);
4292 	if (ret)
4293 		goto error_hw_init;
4294 
4295 	stmmac_check_ether_addr(priv);
4296 
4297 	/* Configure real RX and TX queues */
4298 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4299 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4300 
4301 	ndev->netdev_ops = &stmmac_netdev_ops;
4302 
4303 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4304 			    NETIF_F_RXCSUM;
4305 
4306 	ret = stmmac_tc_init(priv, priv);
4307 	if (!ret) {
4308 		ndev->hw_features |= NETIF_F_HW_TC;
4309 	}
4310 
4311 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4312 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4313 		priv->tso = true;
4314 		dev_info(priv->device, "TSO feature enabled\n");
4315 	}
4316 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4317 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4318 #ifdef STMMAC_VLAN_TAG_USED
4319 	/* Both mac100 and gmac support receive VLAN tag detection */
4320 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4321 #endif
4322 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4323 
4324 	/* MTU range: 46 - hw-specific max */
4325 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4326 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4327 		ndev->max_mtu = JUMBO_LEN;
4328 	else if (priv->plat->has_xgmac)
4329 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4330 	else
4331 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4332 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4333 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4334 	 */
4335 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4336 	    (priv->plat->maxmtu >= ndev->min_mtu))
4337 		ndev->max_mtu = priv->plat->maxmtu;
4338 	else if (priv->plat->maxmtu < ndev->min_mtu)
4339 		dev_warn(priv->device,
4340 			 "%s: warning: maxmtu having invalid value (%d)\n",
4341 			 __func__, priv->plat->maxmtu);
4342 
4343 	if (flow_ctrl)
4344 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4345 
4346 	/* Setup channels NAPI */
4347 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4348 
4349 	for (queue = 0; queue < maxq; queue++) {
4350 		struct stmmac_channel *ch = &priv->channel[queue];
4351 
4352 		ch->priv_data = priv;
4353 		ch->index = queue;
4354 
4355 		if (queue < priv->plat->rx_queues_to_use) {
4356 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4357 				       NAPI_POLL_WEIGHT);
4358 		}
4359 		if (queue < priv->plat->tx_queues_to_use) {
4360 			netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx,
4361 				       NAPI_POLL_WEIGHT);
4362 		}
4363 	}
4364 
4365 	mutex_init(&priv->lock);
4366 
4367 	/* If a specific clk_csr value is passed from the platform
4368 	 * this means that the CSR Clock Range selection cannot be
4369 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4370 	 * set the MDC clock dynamically according to the csr actual
4371 	 * clock input.
4372 	 */
4373 	if (priv->plat->clk_csr >= 0)
4374 		priv->clk_csr = priv->plat->clk_csr;
4375 	else
4376 		stmmac_clk_csr_set(priv);
4377 
4378 	stmmac_check_pcs_mode(priv);
4379 
4380 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4381 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4382 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4383 		/* MDIO bus Registration */
4384 		ret = stmmac_mdio_register(ndev);
4385 		if (ret < 0) {
4386 			dev_err(priv->device,
4387 				"%s: MDIO bus (id: %d) registration failed",
4388 				__func__, priv->plat->bus_id);
4389 			goto error_mdio_register;
4390 		}
4391 	}
4392 
4393 	ret = register_netdev(ndev);
4394 	if (ret) {
4395 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4396 			__func__, ret);
4397 		goto error_netdev_register;
4398 	}
4399 
4400 #ifdef CONFIG_DEBUG_FS
4401 	ret = stmmac_init_fs(ndev);
4402 	if (ret < 0)
4403 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4404 			    __func__);
4405 #endif
4406 
4407 	return ret;
4408 
4409 error_netdev_register:
4410 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4411 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4412 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4413 		stmmac_mdio_unregister(ndev);
4414 error_mdio_register:
4415 	for (queue = 0; queue < maxq; queue++) {
4416 		struct stmmac_channel *ch = &priv->channel[queue];
4417 
4418 		if (queue < priv->plat->rx_queues_to_use)
4419 			netif_napi_del(&ch->rx_napi);
4420 		if (queue < priv->plat->tx_queues_to_use)
4421 			netif_napi_del(&ch->tx_napi);
4422 	}
4423 error_hw_init:
4424 	destroy_workqueue(priv->wq);
4425 error_wq:
4426 	free_netdev(ndev);
4427 
4428 	return ret;
4429 }
4430 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4431 
4432 /**
4433  * stmmac_dvr_remove
4434  * @dev: device pointer
4435  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4436  * changes the link status, releases the DMA descriptor rings.
4437  */
4438 int stmmac_dvr_remove(struct device *dev)
4439 {
4440 	struct net_device *ndev = dev_get_drvdata(dev);
4441 	struct stmmac_priv *priv = netdev_priv(ndev);
4442 
4443 	netdev_info(priv->dev, "%s: removing driver", __func__);
4444 
4445 #ifdef CONFIG_DEBUG_FS
4446 	stmmac_exit_fs(ndev);
4447 #endif
4448 	stmmac_stop_all_dma(priv);
4449 
4450 	stmmac_mac_set(priv, priv->ioaddr, false);
4451 	netif_carrier_off(ndev);
4452 	unregister_netdev(ndev);
4453 	if (priv->plat->stmmac_rst)
4454 		reset_control_assert(priv->plat->stmmac_rst);
4455 	clk_disable_unprepare(priv->plat->pclk);
4456 	clk_disable_unprepare(priv->plat->stmmac_clk);
4457 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4458 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4459 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4460 		stmmac_mdio_unregister(ndev);
4461 	destroy_workqueue(priv->wq);
4462 	mutex_destroy(&priv->lock);
4463 	free_netdev(ndev);
4464 
4465 	return 0;
4466 }
4467 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4468 
4469 /**
4470  * stmmac_suspend - suspend callback
4471  * @dev: device pointer
4472  * Description: this is the function to suspend the device and it is called
4473  * by the platform driver to stop the network queue, release the resources,
4474  * program the PMT register (for WoL), clean and release driver resources.
4475  */
4476 int stmmac_suspend(struct device *dev)
4477 {
4478 	struct net_device *ndev = dev_get_drvdata(dev);
4479 	struct stmmac_priv *priv = netdev_priv(ndev);
4480 
4481 	if (!ndev || !netif_running(ndev))
4482 		return 0;
4483 
4484 	if (ndev->phydev)
4485 		phy_stop(ndev->phydev);
4486 
4487 	mutex_lock(&priv->lock);
4488 
4489 	netif_device_detach(ndev);
4490 	stmmac_stop_all_queues(priv);
4491 
4492 	stmmac_disable_all_queues(priv);
4493 
4494 	/* Stop TX/RX DMA */
4495 	stmmac_stop_all_dma(priv);
4496 
4497 	/* Enable Power down mode by programming the PMT regs */
4498 	if (device_may_wakeup(priv->device)) {
4499 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4500 		priv->irq_wake = 1;
4501 	} else {
4502 		stmmac_mac_set(priv, priv->ioaddr, false);
4503 		pinctrl_pm_select_sleep_state(priv->device);
4504 		/* Disable clock in case of PWM is off */
4505 		clk_disable(priv->plat->pclk);
4506 		clk_disable(priv->plat->stmmac_clk);
4507 	}
4508 	mutex_unlock(&priv->lock);
4509 
4510 	priv->oldlink = false;
4511 	priv->speed = SPEED_UNKNOWN;
4512 	priv->oldduplex = DUPLEX_UNKNOWN;
4513 	return 0;
4514 }
4515 EXPORT_SYMBOL_GPL(stmmac_suspend);
4516 
4517 /**
4518  * stmmac_reset_queues_param - reset queue parameters
4519  * @dev: device pointer
4520  */
4521 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4522 {
4523 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4524 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4525 	u32 queue;
4526 
4527 	for (queue = 0; queue < rx_cnt; queue++) {
4528 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4529 
4530 		rx_q->cur_rx = 0;
4531 		rx_q->dirty_rx = 0;
4532 	}
4533 
4534 	for (queue = 0; queue < tx_cnt; queue++) {
4535 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4536 
4537 		tx_q->cur_tx = 0;
4538 		tx_q->dirty_tx = 0;
4539 		tx_q->mss = 0;
4540 	}
4541 }
4542 
4543 /**
4544  * stmmac_resume - resume callback
4545  * @dev: device pointer
4546  * Description: when resume this function is invoked to setup the DMA and CORE
4547  * in a usable state.
4548  */
4549 int stmmac_resume(struct device *dev)
4550 {
4551 	struct net_device *ndev = dev_get_drvdata(dev);
4552 	struct stmmac_priv *priv = netdev_priv(ndev);
4553 
4554 	if (!netif_running(ndev))
4555 		return 0;
4556 
4557 	/* Power Down bit, into the PM register, is cleared
4558 	 * automatically as soon as a magic packet or a Wake-up frame
4559 	 * is received. Anyway, it's better to manually clear
4560 	 * this bit because it can generate problems while resuming
4561 	 * from another devices (e.g. serial console).
4562 	 */
4563 	if (device_may_wakeup(priv->device)) {
4564 		mutex_lock(&priv->lock);
4565 		stmmac_pmt(priv, priv->hw, 0);
4566 		mutex_unlock(&priv->lock);
4567 		priv->irq_wake = 0;
4568 	} else {
4569 		pinctrl_pm_select_default_state(priv->device);
4570 		/* enable the clk previously disabled */
4571 		clk_enable(priv->plat->stmmac_clk);
4572 		clk_enable(priv->plat->pclk);
4573 		/* reset the phy so that it's ready */
4574 		if (priv->mii)
4575 			stmmac_mdio_reset(priv->mii);
4576 	}
4577 
4578 	netif_device_attach(ndev);
4579 
4580 	mutex_lock(&priv->lock);
4581 
4582 	stmmac_reset_queues_param(priv);
4583 
4584 	stmmac_clear_descriptors(priv);
4585 
4586 	stmmac_hw_setup(ndev, false);
4587 	stmmac_init_tx_coalesce(priv);
4588 	stmmac_set_rx_mode(ndev);
4589 
4590 	stmmac_enable_all_queues(priv);
4591 
4592 	stmmac_start_all_queues(priv);
4593 
4594 	mutex_unlock(&priv->lock);
4595 
4596 	if (ndev->phydev)
4597 		phy_start(ndev->phydev);
4598 
4599 	return 0;
4600 }
4601 EXPORT_SYMBOL_GPL(stmmac_resume);
4602 
4603 #ifndef MODULE
4604 static int __init stmmac_cmdline_opt(char *str)
4605 {
4606 	char *opt;
4607 
4608 	if (!str || !*str)
4609 		return -EINVAL;
4610 	while ((opt = strsep(&str, ",")) != NULL) {
4611 		if (!strncmp(opt, "debug:", 6)) {
4612 			if (kstrtoint(opt + 6, 0, &debug))
4613 				goto err;
4614 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4615 			if (kstrtoint(opt + 8, 0, &phyaddr))
4616 				goto err;
4617 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4618 			if (kstrtoint(opt + 7, 0, &buf_sz))
4619 				goto err;
4620 		} else if (!strncmp(opt, "tc:", 3)) {
4621 			if (kstrtoint(opt + 3, 0, &tc))
4622 				goto err;
4623 		} else if (!strncmp(opt, "watchdog:", 9)) {
4624 			if (kstrtoint(opt + 9, 0, &watchdog))
4625 				goto err;
4626 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4627 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4628 				goto err;
4629 		} else if (!strncmp(opt, "pause:", 6)) {
4630 			if (kstrtoint(opt + 6, 0, &pause))
4631 				goto err;
4632 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4633 			if (kstrtoint(opt + 10, 0, &eee_timer))
4634 				goto err;
4635 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4636 			if (kstrtoint(opt + 11, 0, &chain_mode))
4637 				goto err;
4638 		}
4639 	}
4640 	return 0;
4641 
4642 err:
4643 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4644 	return -EINVAL;
4645 }
4646 
4647 __setup("stmmaceth=", stmmac_cmdline_opt);
4648 #endif /* MODULE */
4649 
4650 static int __init stmmac_init(void)
4651 {
4652 #ifdef CONFIG_DEBUG_FS
4653 	/* Create debugfs main directory if it doesn't exist yet */
4654 	if (!stmmac_fs_dir) {
4655 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4656 
4657 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4658 			pr_err("ERROR %s, debugfs create directory failed\n",
4659 			       STMMAC_RESOURCE_NAME);
4660 
4661 			return -ENOMEM;
4662 		}
4663 	}
4664 #endif
4665 
4666 	return 0;
4667 }
4668 
4669 static void __exit stmmac_exit(void)
4670 {
4671 #ifdef CONFIG_DEBUG_FS
4672 	debugfs_remove_recursive(stmmac_fs_dir);
4673 #endif
4674 }
4675 
4676 module_init(stmmac_init)
4677 module_exit(stmmac_exit)
4678 
4679 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4680 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4681 MODULE_LICENSE("GPL");
4682