1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static void stmmac_init_fs(struct net_device *dev);
110 static void stmmac_exit_fs(struct net_device *dev);
111 #endif
112 
113 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
114 
115 /**
116  * stmmac_verify_args - verify the driver parameters.
117  * Description: it checks the driver parameters and set a default in case of
118  * errors.
119  */
120 static void stmmac_verify_args(void)
121 {
122 	if (unlikely(watchdog < 0))
123 		watchdog = TX_TIMEO;
124 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
125 		buf_sz = DEFAULT_BUFSIZE;
126 	if (unlikely(flow_ctrl > 1))
127 		flow_ctrl = FLOW_AUTO;
128 	else if (likely(flow_ctrl < 0))
129 		flow_ctrl = FLOW_OFF;
130 	if (unlikely((pause < 0) || (pause > 0xffff)))
131 		pause = PAUSE_TIME;
132 	if (eee_timer < 0)
133 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
134 }
135 
136 /**
137  * stmmac_disable_all_queues - Disable all queues
138  * @priv: driver private structure
139  */
140 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
141 {
142 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
143 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
144 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
145 	u32 queue;
146 
147 	for (queue = 0; queue < maxq; queue++) {
148 		struct stmmac_channel *ch = &priv->channel[queue];
149 
150 		if (queue < rx_queues_cnt)
151 			napi_disable(&ch->rx_napi);
152 		if (queue < tx_queues_cnt)
153 			napi_disable(&ch->tx_napi);
154 	}
155 }
156 
157 /**
158  * stmmac_enable_all_queues - Enable all queues
159  * @priv: driver private structure
160  */
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
162 {
163 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
164 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
165 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
166 	u32 queue;
167 
168 	for (queue = 0; queue < maxq; queue++) {
169 		struct stmmac_channel *ch = &priv->channel[queue];
170 
171 		if (queue < rx_queues_cnt)
172 			napi_enable(&ch->rx_napi);
173 		if (queue < tx_queues_cnt)
174 			napi_enable(&ch->tx_napi);
175 	}
176 }
177 
178 /**
179  * stmmac_stop_all_queues - Stop all queues
180  * @priv: driver private structure
181  */
182 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
183 {
184 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
185 	u32 queue;
186 
187 	for (queue = 0; queue < tx_queues_cnt; queue++)
188 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
189 }
190 
191 /**
192  * stmmac_start_all_queues - Start all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_start_all_queues(struct stmmac_priv *priv)
196 {
197 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
198 	u32 queue;
199 
200 	for (queue = 0; queue < tx_queues_cnt; queue++)
201 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
202 }
203 
204 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
205 {
206 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
207 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
208 		queue_work(priv->wq, &priv->service_task);
209 }
210 
211 static void stmmac_global_err(struct stmmac_priv *priv)
212 {
213 	netif_carrier_off(priv->dev);
214 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
215 	stmmac_service_event_schedule(priv);
216 }
217 
218 /**
219  * stmmac_clk_csr_set - dynamically set the MDC clock
220  * @priv: driver private structure
221  * Description: this is to dynamically set the MDC clock according to the csr
222  * clock input.
223  * Note:
224  *	If a specific clk_csr value is passed from the platform
225  *	this means that the CSR Clock Range selection cannot be
226  *	changed at run-time and it is fixed (as reported in the driver
227  *	documentation). Viceversa the driver will try to set the MDC
228  *	clock dynamically according to the actual clock input.
229  */
230 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
231 {
232 	u32 clk_rate;
233 
234 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
235 
236 	/* Platform provided default clk_csr would be assumed valid
237 	 * for all other cases except for the below mentioned ones.
238 	 * For values higher than the IEEE 802.3 specified frequency
239 	 * we can not estimate the proper divider as it is not known
240 	 * the frequency of clk_csr_i. So we do not change the default
241 	 * divider.
242 	 */
243 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
244 		if (clk_rate < CSR_F_35M)
245 			priv->clk_csr = STMMAC_CSR_20_35M;
246 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
247 			priv->clk_csr = STMMAC_CSR_35_60M;
248 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
249 			priv->clk_csr = STMMAC_CSR_60_100M;
250 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
251 			priv->clk_csr = STMMAC_CSR_100_150M;
252 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
253 			priv->clk_csr = STMMAC_CSR_150_250M;
254 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
255 			priv->clk_csr = STMMAC_CSR_250_300M;
256 	}
257 
258 	if (priv->plat->has_sun8i) {
259 		if (clk_rate > 160000000)
260 			priv->clk_csr = 0x03;
261 		else if (clk_rate > 80000000)
262 			priv->clk_csr = 0x02;
263 		else if (clk_rate > 40000000)
264 			priv->clk_csr = 0x01;
265 		else
266 			priv->clk_csr = 0;
267 	}
268 
269 	if (priv->plat->has_xgmac) {
270 		if (clk_rate > 400000000)
271 			priv->clk_csr = 0x5;
272 		else if (clk_rate > 350000000)
273 			priv->clk_csr = 0x4;
274 		else if (clk_rate > 300000000)
275 			priv->clk_csr = 0x3;
276 		else if (clk_rate > 250000000)
277 			priv->clk_csr = 0x2;
278 		else if (clk_rate > 150000000)
279 			priv->clk_csr = 0x1;
280 		else
281 			priv->clk_csr = 0x0;
282 	}
283 }
284 
285 static void print_pkt(unsigned char *buf, int len)
286 {
287 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
288 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
289 }
290 
291 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
292 {
293 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
294 	u32 avail;
295 
296 	if (tx_q->dirty_tx > tx_q->cur_tx)
297 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
298 	else
299 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
300 
301 	return avail;
302 }
303 
304 /**
305  * stmmac_rx_dirty - Get RX queue dirty
306  * @priv: driver private structure
307  * @queue: RX queue index
308  */
309 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
310 {
311 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
312 	u32 dirty;
313 
314 	if (rx_q->dirty_rx <= rx_q->cur_rx)
315 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
316 	else
317 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
318 
319 	return dirty;
320 }
321 
322 /**
323  * stmmac_enable_eee_mode - check and enter in LPI mode
324  * @priv: driver private structure
325  * Description: this function is to verify and enter in LPI mode in case of
326  * EEE.
327  */
328 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
329 {
330 	u32 tx_cnt = priv->plat->tx_queues_to_use;
331 	u32 queue;
332 
333 	/* check if all TX queues have the work finished */
334 	for (queue = 0; queue < tx_cnt; queue++) {
335 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
336 
337 		if (tx_q->dirty_tx != tx_q->cur_tx)
338 			return; /* still unfinished work */
339 	}
340 
341 	/* Check and enter in LPI mode */
342 	if (!priv->tx_path_in_lpi_mode)
343 		stmmac_set_eee_mode(priv, priv->hw,
344 				priv->plat->en_tx_lpi_clockgating);
345 }
346 
347 /**
348  * stmmac_disable_eee_mode - disable and exit from LPI mode
349  * @priv: driver private structure
350  * Description: this function is to exit and disable EEE in case of
351  * LPI state is true. This is called by the xmit.
352  */
353 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
354 {
355 	stmmac_reset_eee_mode(priv, priv->hw);
356 	del_timer_sync(&priv->eee_ctrl_timer);
357 	priv->tx_path_in_lpi_mode = false;
358 }
359 
360 /**
361  * stmmac_eee_ctrl_timer - EEE TX SW timer.
362  * @arg : data hook
363  * Description:
364  *  if there is no data transfer and if we are not in LPI state,
365  *  then MAC Transmitter can be moved to LPI state.
366  */
367 static void stmmac_eee_ctrl_timer(struct timer_list *t)
368 {
369 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
370 
371 	stmmac_enable_eee_mode(priv);
372 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
373 }
374 
375 /**
376  * stmmac_eee_init - init EEE
377  * @priv: driver private structure
378  * Description:
379  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
380  *  can also manage EEE, this function enable the LPI state and start related
381  *  timer.
382  */
383 bool stmmac_eee_init(struct stmmac_priv *priv)
384 {
385 	int tx_lpi_timer = priv->tx_lpi_timer;
386 
387 	/* Using PCS we cannot dial with the phy registers at this stage
388 	 * so we do not support extra feature like EEE.
389 	 */
390 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
391 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
392 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
393 		return false;
394 
395 	/* Check if MAC core supports the EEE feature. */
396 	if (!priv->dma_cap.eee)
397 		return false;
398 
399 	mutex_lock(&priv->lock);
400 
401 	/* Check if it needs to be deactivated */
402 	if (!priv->eee_active) {
403 		if (priv->eee_enabled) {
404 			netdev_dbg(priv->dev, "disable EEE\n");
405 			del_timer_sync(&priv->eee_ctrl_timer);
406 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407 		}
408 		mutex_unlock(&priv->lock);
409 		return false;
410 	}
411 
412 	if (priv->eee_active && !priv->eee_enabled) {
413 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416 				     tx_lpi_timer);
417 	}
418 
419 	mutex_unlock(&priv->lock);
420 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421 	return true;
422 }
423 
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 				   struct dma_desc *p, struct sk_buff *skb)
434 {
435 	struct skb_shared_hwtstamps shhwtstamp;
436 	bool found = false;
437 	u64 ns = 0;
438 
439 	if (!priv->hwts_tx_en)
440 		return;
441 
442 	/* exit if skb doesn't support hw tstamp */
443 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444 		return;
445 
446 	/* check tx tstamp status */
447 	if (stmmac_get_tx_timestamp_status(priv, p)) {
448 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449 		found = true;
450 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451 		found = true;
452 	}
453 
454 	if (found) {
455 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
457 
458 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 		/* pass tstamp to stack */
460 		skb_tstamp_tx(skb, &shhwtstamp);
461 	}
462 }
463 
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 				   struct dma_desc *np, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 	struct dma_desc *desc = p;
478 	u64 ns = 0;
479 
480 	if (!priv->hwts_rx_en)
481 		return;
482 	/* For GMAC4, the valid timestamp is from CTX next desc. */
483 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484 		desc = np;
485 
486 	/* Check if timestamp is available */
487 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 		shhwtstamp = skb_hwtstamps(skb);
491 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 	} else  {
494 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495 	}
496 }
497 
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511 	struct stmmac_priv *priv = netdev_priv(dev);
512 	struct hwtstamp_config config;
513 	struct timespec64 now;
514 	u64 temp = 0;
515 	u32 ptp_v2 = 0;
516 	u32 tstamp_all = 0;
517 	u32 ptp_over_ipv4_udp = 0;
518 	u32 ptp_over_ipv6_udp = 0;
519 	u32 ptp_over_ethernet = 0;
520 	u32 snap_type_sel = 0;
521 	u32 ts_master_en = 0;
522 	u32 ts_event_en = 0;
523 	u32 sec_inc = 0;
524 	u32 value = 0;
525 	bool xmac;
526 
527 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528 
529 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 		netdev_alert(priv->dev, "No support for HW time stamping\n");
531 		priv->hwts_tx_en = 0;
532 		priv->hwts_rx_en = 0;
533 
534 		return -EOPNOTSUPP;
535 	}
536 
537 	if (copy_from_user(&config, ifr->ifr_data,
538 			   sizeof(config)))
539 		return -EFAULT;
540 
541 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 		   __func__, config.flags, config.tx_type, config.rx_filter);
543 
544 	/* reserved for future extensions */
545 	if (config.flags)
546 		return -EINVAL;
547 
548 	if (config.tx_type != HWTSTAMP_TX_OFF &&
549 	    config.tx_type != HWTSTAMP_TX_ON)
550 		return -ERANGE;
551 
552 	if (priv->adv_ts) {
553 		switch (config.rx_filter) {
554 		case HWTSTAMP_FILTER_NONE:
555 			/* time stamp no incoming packet at all */
556 			config.rx_filter = HWTSTAMP_FILTER_NONE;
557 			break;
558 
559 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 			/* PTP v1, UDP, any kind of event packet */
561 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 			/* 'xmac' hardware can support Sync, Pdelay_Req and
563 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 			 * This leaves Delay_Req timestamps out.
565 			 * Enable all events *and* general purpose message
566 			 * timestamping
567 			 */
568 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 			/* PTP v1, UDP, Sync packet */
575 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 			/* take time stamp for SYNC messages only */
577 			ts_event_en = PTP_TCR_TSEVNTENA;
578 
579 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581 			break;
582 
583 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 			/* PTP v1, UDP, Delay_req packet */
585 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 			/* take time stamp for Delay_Req messages only */
587 			ts_master_en = PTP_TCR_TSMSTRENA;
588 			ts_event_en = PTP_TCR_TSEVNTENA;
589 
590 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592 			break;
593 
594 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 			/* PTP v2, UDP, any kind of event packet */
596 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 			ptp_v2 = PTP_TCR_TSVER2ENA;
598 			/* take time stamp for all event messages */
599 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600 
601 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 			break;
604 
605 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 			/* PTP v2, UDP, Sync packet */
607 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 			ptp_v2 = PTP_TCR_TSVER2ENA;
609 			/* take time stamp for SYNC messages only */
610 			ts_event_en = PTP_TCR_TSEVNTENA;
611 
612 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 			break;
615 
616 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 			/* PTP v2, UDP, Delay_req packet */
618 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 			ptp_v2 = PTP_TCR_TSVER2ENA;
620 			/* take time stamp for Delay_Req messages only */
621 			ts_master_en = PTP_TCR_TSMSTRENA;
622 			ts_event_en = PTP_TCR_TSEVNTENA;
623 
624 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 			break;
627 
628 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 			/* PTP v2/802.AS1 any layer, any kind of event packet */
630 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 			ptp_v2 = PTP_TCR_TSVER2ENA;
632 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 			ts_event_en = PTP_TCR_TSEVNTENA;
634 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 			ptp_over_ethernet = PTP_TCR_TSIPENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 			/* PTP v2/802.AS1, any layer, Sync packet */
641 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 			ptp_v2 = PTP_TCR_TSVER2ENA;
643 			/* take time stamp for SYNC messages only */
644 			ts_event_en = PTP_TCR_TSEVNTENA;
645 
646 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 			ptp_over_ethernet = PTP_TCR_TSIPENA;
649 			break;
650 
651 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 			/* PTP v2/802.AS1, any layer, Delay_req packet */
653 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 			ptp_v2 = PTP_TCR_TSVER2ENA;
655 			/* take time stamp for Delay_Req messages only */
656 			ts_master_en = PTP_TCR_TSMSTRENA;
657 			ts_event_en = PTP_TCR_TSEVNTENA;
658 
659 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 			ptp_over_ethernet = PTP_TCR_TSIPENA;
662 			break;
663 
664 		case HWTSTAMP_FILTER_NTP_ALL:
665 		case HWTSTAMP_FILTER_ALL:
666 			/* time stamp any incoming packet */
667 			config.rx_filter = HWTSTAMP_FILTER_ALL;
668 			tstamp_all = PTP_TCR_TSENALL;
669 			break;
670 
671 		default:
672 			return -ERANGE;
673 		}
674 	} else {
675 		switch (config.rx_filter) {
676 		case HWTSTAMP_FILTER_NONE:
677 			config.rx_filter = HWTSTAMP_FILTER_NONE;
678 			break;
679 		default:
680 			/* PTP v1, UDP, any kind of event packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 			break;
683 		}
684 	}
685 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687 
688 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 	else {
691 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 			 ts_master_en | snap_type_sel);
695 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696 
697 		/* program Sub Second Increment reg */
698 		stmmac_config_sub_second_increment(priv,
699 				priv->ptpaddr, priv->plat->clk_ptp_rate,
700 				xmac, &sec_inc);
701 		temp = div_u64(1000000000ULL, sec_inc);
702 
703 		/* Store sub second increment and flags for later use */
704 		priv->sub_second_inc = sec_inc;
705 		priv->systime_flags = value;
706 
707 		/* calculate default added value:
708 		 * formula is :
709 		 * addend = (2^32)/freq_div_ratio;
710 		 * where, freq_div_ratio = 1e9ns/sec_inc
711 		 */
712 		temp = (u64)(temp << 32);
713 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715 
716 		/* initialize system time */
717 		ktime_get_real_ts64(&now);
718 
719 		/* lower 32 bits of tv_sec are safe until y2106 */
720 		stmmac_init_systime(priv, priv->ptpaddr,
721 				(u32)now.tv_sec, now.tv_nsec);
722 	}
723 
724 	memcpy(&priv->tstamp_config, &config, sizeof(config));
725 
726 	return copy_to_user(ifr->ifr_data, &config,
727 			    sizeof(config)) ? -EFAULT : 0;
728 }
729 
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 	struct stmmac_priv *priv = netdev_priv(dev);
742 	struct hwtstamp_config *config = &priv->tstamp_config;
743 
744 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 		return -EOPNOTSUPP;
746 
747 	return copy_to_user(ifr->ifr_data, config,
748 			    sizeof(*config)) ? -EFAULT : 0;
749 }
750 
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761 
762 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 		return -EOPNOTSUPP;
764 
765 	priv->adv_ts = 0;
766 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 	if (xmac && priv->dma_cap.atime_stamp)
768 		priv->adv_ts = 1;
769 	/* Dwmac 3.x core with extend_desc can support adv_ts */
770 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 		priv->adv_ts = 1;
772 
773 	if (priv->dma_cap.time_stamp)
774 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775 
776 	if (priv->adv_ts)
777 		netdev_info(priv->dev,
778 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
779 
780 	priv->hwts_tx_en = 0;
781 	priv->hwts_rx_en = 0;
782 
783 	stmmac_ptp_register(priv);
784 
785 	return 0;
786 }
787 
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 	if (priv->plat->clk_ptp_ref)
791 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
792 	stmmac_ptp_unregister(priv);
793 }
794 
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 	u32 tx_cnt = priv->plat->tx_queues_to_use;
803 
804 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 			priv->pause, tx_cnt);
806 }
807 
808 static void stmmac_validate(struct phylink_config *config,
809 			    unsigned long *supported,
810 			    struct phylink_link_state *state)
811 {
812 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 	int tx_cnt = priv->plat->tx_queues_to_use;
816 	int max_speed = priv->plat->max_speed;
817 
818 	phylink_set(mac_supported, 10baseT_Half);
819 	phylink_set(mac_supported, 10baseT_Full);
820 	phylink_set(mac_supported, 100baseT_Half);
821 	phylink_set(mac_supported, 100baseT_Full);
822 	phylink_set(mac_supported, 1000baseT_Half);
823 	phylink_set(mac_supported, 1000baseT_Full);
824 	phylink_set(mac_supported, 1000baseKX_Full);
825 
826 	phylink_set(mac_supported, Autoneg);
827 	phylink_set(mac_supported, Pause);
828 	phylink_set(mac_supported, Asym_Pause);
829 	phylink_set_port_modes(mac_supported);
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		if (!max_speed || (max_speed >= 2500)) {
837 			phylink_set(mac_supported, 2500baseT_Full);
838 			phylink_set(mac_supported, 2500baseX_Full);
839 		}
840 		if (!max_speed || (max_speed >= 5000)) {
841 			phylink_set(mac_supported, 5000baseT_Full);
842 		}
843 		if (!max_speed || (max_speed >= 10000)) {
844 			phylink_set(mac_supported, 10000baseSR_Full);
845 			phylink_set(mac_supported, 10000baseLR_Full);
846 			phylink_set(mac_supported, 10000baseER_Full);
847 			phylink_set(mac_supported, 10000baseLRM_Full);
848 			phylink_set(mac_supported, 10000baseT_Full);
849 			phylink_set(mac_supported, 10000baseKX4_Full);
850 			phylink_set(mac_supported, 10000baseKR_Full);
851 		}
852 	}
853 
854 	/* Half-Duplex can only work with single queue */
855 	if (tx_cnt > 1) {
856 		phylink_set(mask, 10baseT_Half);
857 		phylink_set(mask, 100baseT_Half);
858 		phylink_set(mask, 1000baseT_Half);
859 	}
860 
861 	bitmap_and(supported, supported, mac_supported,
862 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
863 	bitmap_andnot(supported, supported, mask,
864 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
865 	bitmap_and(state->advertising, state->advertising, mac_supported,
866 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
867 	bitmap_andnot(state->advertising, state->advertising, mask,
868 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870 
871 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
872 				     struct phylink_link_state *state)
873 {
874 	state->link = 0;
875 }
876 
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878 			      const struct phylink_link_state *state)
879 {
880 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881 	u32 ctrl;
882 
883 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884 	ctrl &= ~priv->hw->link.speed_mask;
885 
886 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887 		switch (state->speed) {
888 		case SPEED_10000:
889 			ctrl |= priv->hw->link.xgmii.speed10000;
890 			break;
891 		case SPEED_5000:
892 			ctrl |= priv->hw->link.xgmii.speed5000;
893 			break;
894 		case SPEED_2500:
895 			ctrl |= priv->hw->link.xgmii.speed2500;
896 			break;
897 		default:
898 			return;
899 		}
900 	} else {
901 		switch (state->speed) {
902 		case SPEED_2500:
903 			ctrl |= priv->hw->link.speed2500;
904 			break;
905 		case SPEED_1000:
906 			ctrl |= priv->hw->link.speed1000;
907 			break;
908 		case SPEED_100:
909 			ctrl |= priv->hw->link.speed100;
910 			break;
911 		case SPEED_10:
912 			ctrl |= priv->hw->link.speed10;
913 			break;
914 		default:
915 			return;
916 		}
917 	}
918 
919 	priv->speed = state->speed;
920 
921 	if (priv->plat->fix_mac_speed)
922 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923 
924 	if (!state->duplex)
925 		ctrl &= ~priv->hw->link.duplex;
926 	else
927 		ctrl |= priv->hw->link.duplex;
928 
929 	/* Flow Control operation */
930 	if (state->pause)
931 		stmmac_mac_flow_ctrl(priv, state->duplex);
932 
933 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935 
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938 	/* Not Supported */
939 }
940 
941 static void stmmac_mac_link_down(struct phylink_config *config,
942 				 unsigned int mode, phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	stmmac_mac_set(priv, priv->ioaddr, false);
947 	priv->eee_active = false;
948 	stmmac_eee_init(priv);
949 	stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951 
952 static void stmmac_mac_link_up(struct phylink_config *config,
953 			       unsigned int mode, phy_interface_t interface,
954 			       struct phy_device *phy)
955 {
956 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
957 
958 	stmmac_mac_set(priv, priv->ioaddr, true);
959 	if (phy && priv->dma_cap.eee) {
960 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
961 		priv->eee_enabled = stmmac_eee_init(priv);
962 		stmmac_set_eee_pls(priv, priv->hw, true);
963 	}
964 }
965 
966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
967 	.validate = stmmac_validate,
968 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
969 	.mac_config = stmmac_mac_config,
970 	.mac_an_restart = stmmac_mac_an_restart,
971 	.mac_link_down = stmmac_mac_link_down,
972 	.mac_link_up = stmmac_mac_link_up,
973 };
974 
975 /**
976  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
977  * @priv: driver private structure
978  * Description: this is to verify if the HW supports the PCS.
979  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
980  * configured for the TBI, RTBI, or SGMII PHY interface.
981  */
982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
983 {
984 	int interface = priv->plat->interface;
985 
986 	if (priv->dma_cap.pcs) {
987 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
988 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
989 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
990 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
991 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
992 			priv->hw->pcs = STMMAC_PCS_RGMII;
993 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
994 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
995 			priv->hw->pcs = STMMAC_PCS_SGMII;
996 		}
997 	}
998 }
999 
1000 /**
1001  * stmmac_init_phy - PHY initialization
1002  * @dev: net device structure
1003  * Description: it initializes the driver's PHY state, and attaches the PHY
1004  * to the mac driver.
1005  *  Return value:
1006  *  0 on success
1007  */
1008 static int stmmac_init_phy(struct net_device *dev)
1009 {
1010 	struct stmmac_priv *priv = netdev_priv(dev);
1011 	struct device_node *node;
1012 	int ret;
1013 
1014 	node = priv->plat->phylink_node;
1015 
1016 	if (node)
1017 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1018 
1019 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1020 	 * manually parse it
1021 	 */
1022 	if (!node || ret) {
1023 		int addr = priv->plat->phy_addr;
1024 		struct phy_device *phydev;
1025 
1026 		phydev = mdiobus_get_phy(priv->mii, addr);
1027 		if (!phydev) {
1028 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1029 			return -ENODEV;
1030 		}
1031 
1032 		ret = phylink_connect_phy(priv->phylink, phydev);
1033 	}
1034 
1035 	return ret;
1036 }
1037 
1038 static int stmmac_phy_setup(struct stmmac_priv *priv)
1039 {
1040 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1041 	int mode = priv->plat->phy_interface;
1042 	struct phylink *phylink;
1043 
1044 	priv->phylink_config.dev = &priv->dev->dev;
1045 	priv->phylink_config.type = PHYLINK_NETDEV;
1046 
1047 	phylink = phylink_create(&priv->phylink_config, fwnode,
1048 				 mode, &stmmac_phylink_mac_ops);
1049 	if (IS_ERR(phylink))
1050 		return PTR_ERR(phylink);
1051 
1052 	priv->phylink = phylink;
1053 	return 0;
1054 }
1055 
1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1057 {
1058 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1059 	void *head_rx;
1060 	u32 queue;
1061 
1062 	/* Display RX rings */
1063 	for (queue = 0; queue < rx_cnt; queue++) {
1064 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1065 
1066 		pr_info("\tRX Queue %u rings\n", queue);
1067 
1068 		if (priv->extend_desc)
1069 			head_rx = (void *)rx_q->dma_erx;
1070 		else
1071 			head_rx = (void *)rx_q->dma_rx;
1072 
1073 		/* Display RX ring */
1074 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1075 	}
1076 }
1077 
1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1079 {
1080 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1081 	void *head_tx;
1082 	u32 queue;
1083 
1084 	/* Display TX rings */
1085 	for (queue = 0; queue < tx_cnt; queue++) {
1086 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1087 
1088 		pr_info("\tTX Queue %d rings\n", queue);
1089 
1090 		if (priv->extend_desc)
1091 			head_tx = (void *)tx_q->dma_etx;
1092 		else
1093 			head_tx = (void *)tx_q->dma_tx;
1094 
1095 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1096 	}
1097 }
1098 
1099 static void stmmac_display_rings(struct stmmac_priv *priv)
1100 {
1101 	/* Display RX ring */
1102 	stmmac_display_rx_rings(priv);
1103 
1104 	/* Display TX ring */
1105 	stmmac_display_tx_rings(priv);
1106 }
1107 
1108 static int stmmac_set_bfsize(int mtu, int bufsize)
1109 {
1110 	int ret = bufsize;
1111 
1112 	if (mtu >= BUF_SIZE_8KiB)
1113 		ret = BUF_SIZE_16KiB;
1114 	else if (mtu >= BUF_SIZE_4KiB)
1115 		ret = BUF_SIZE_8KiB;
1116 	else if (mtu >= BUF_SIZE_2KiB)
1117 		ret = BUF_SIZE_4KiB;
1118 	else if (mtu > DEFAULT_BUFSIZE)
1119 		ret = BUF_SIZE_2KiB;
1120 	else
1121 		ret = DEFAULT_BUFSIZE;
1122 
1123 	return ret;
1124 }
1125 
1126 /**
1127  * stmmac_clear_rx_descriptors - clear RX descriptors
1128  * @priv: driver private structure
1129  * @queue: RX queue index
1130  * Description: this function is called to clear the RX descriptors
1131  * in case of both basic and extended descriptors are used.
1132  */
1133 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1134 {
1135 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1136 	int i;
1137 
1138 	/* Clear the RX descriptors */
1139 	for (i = 0; i < DMA_RX_SIZE; i++)
1140 		if (priv->extend_desc)
1141 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1142 					priv->use_riwt, priv->mode,
1143 					(i == DMA_RX_SIZE - 1),
1144 					priv->dma_buf_sz);
1145 		else
1146 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1147 					priv->use_riwt, priv->mode,
1148 					(i == DMA_RX_SIZE - 1),
1149 					priv->dma_buf_sz);
1150 }
1151 
1152 /**
1153  * stmmac_clear_tx_descriptors - clear tx descriptors
1154  * @priv: driver private structure
1155  * @queue: TX queue index.
1156  * Description: this function is called to clear the TX descriptors
1157  * in case of both basic and extended descriptors are used.
1158  */
1159 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1160 {
1161 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1162 	int i;
1163 
1164 	/* Clear the TX descriptors */
1165 	for (i = 0; i < DMA_TX_SIZE; i++)
1166 		if (priv->extend_desc)
1167 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1168 					priv->mode, (i == DMA_TX_SIZE - 1));
1169 		else
1170 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1171 					priv->mode, (i == DMA_TX_SIZE - 1));
1172 }
1173 
1174 /**
1175  * stmmac_clear_descriptors - clear descriptors
1176  * @priv: driver private structure
1177  * Description: this function is called to clear the TX and RX descriptors
1178  * in case of both basic and extended descriptors are used.
1179  */
1180 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1181 {
1182 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1183 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1184 	u32 queue;
1185 
1186 	/* Clear the RX descriptors */
1187 	for (queue = 0; queue < rx_queue_cnt; queue++)
1188 		stmmac_clear_rx_descriptors(priv, queue);
1189 
1190 	/* Clear the TX descriptors */
1191 	for (queue = 0; queue < tx_queue_cnt; queue++)
1192 		stmmac_clear_tx_descriptors(priv, queue);
1193 }
1194 
1195 /**
1196  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1197  * @priv: driver private structure
1198  * @p: descriptor pointer
1199  * @i: descriptor index
1200  * @flags: gfp flag
1201  * @queue: RX queue index
1202  * Description: this function is called to allocate a receive buffer, perform
1203  * the DMA mapping and init the descriptor.
1204  */
1205 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1206 				  int i, gfp_t flags, u32 queue)
1207 {
1208 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1209 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1210 
1211 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1212 	if (!buf->page)
1213 		return -ENOMEM;
1214 
1215 	if (priv->sph) {
1216 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1217 		if (!buf->sec_page)
1218 			return -ENOMEM;
1219 
1220 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1221 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1222 	} else {
1223 		buf->sec_page = NULL;
1224 	}
1225 
1226 	buf->addr = page_pool_get_dma_addr(buf->page);
1227 	stmmac_set_desc_addr(priv, p, buf->addr);
1228 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1229 		stmmac_init_desc3(priv, p);
1230 
1231 	return 0;
1232 }
1233 
1234 /**
1235  * stmmac_free_rx_buffer - free RX dma buffers
1236  * @priv: private structure
1237  * @queue: RX queue index
1238  * @i: buffer index.
1239  */
1240 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1241 {
1242 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1243 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1244 
1245 	if (buf->page)
1246 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1247 	buf->page = NULL;
1248 
1249 	if (buf->sec_page)
1250 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1251 	buf->sec_page = NULL;
1252 }
1253 
1254 /**
1255  * stmmac_free_tx_buffer - free RX dma buffers
1256  * @priv: private structure
1257  * @queue: RX queue index
1258  * @i: buffer index.
1259  */
1260 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1261 {
1262 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1263 
1264 	if (tx_q->tx_skbuff_dma[i].buf) {
1265 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1266 			dma_unmap_page(priv->device,
1267 				       tx_q->tx_skbuff_dma[i].buf,
1268 				       tx_q->tx_skbuff_dma[i].len,
1269 				       DMA_TO_DEVICE);
1270 		else
1271 			dma_unmap_single(priv->device,
1272 					 tx_q->tx_skbuff_dma[i].buf,
1273 					 tx_q->tx_skbuff_dma[i].len,
1274 					 DMA_TO_DEVICE);
1275 	}
1276 
1277 	if (tx_q->tx_skbuff[i]) {
1278 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1279 		tx_q->tx_skbuff[i] = NULL;
1280 		tx_q->tx_skbuff_dma[i].buf = 0;
1281 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1282 	}
1283 }
1284 
1285 /**
1286  * init_dma_rx_desc_rings - init the RX descriptor rings
1287  * @dev: net device structure
1288  * @flags: gfp flag.
1289  * Description: this function initializes the DMA RX descriptors
1290  * and allocates the socket buffers. It supports the chained and ring
1291  * modes.
1292  */
1293 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1294 {
1295 	struct stmmac_priv *priv = netdev_priv(dev);
1296 	u32 rx_count = priv->plat->rx_queues_to_use;
1297 	int ret = -ENOMEM;
1298 	int queue;
1299 	int i;
1300 
1301 	/* RX INITIALIZATION */
1302 	netif_dbg(priv, probe, priv->dev,
1303 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1304 
1305 	for (queue = 0; queue < rx_count; queue++) {
1306 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1307 
1308 		netif_dbg(priv, probe, priv->dev,
1309 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1310 			  (u32)rx_q->dma_rx_phy);
1311 
1312 		stmmac_clear_rx_descriptors(priv, queue);
1313 
1314 		for (i = 0; i < DMA_RX_SIZE; i++) {
1315 			struct dma_desc *p;
1316 
1317 			if (priv->extend_desc)
1318 				p = &((rx_q->dma_erx + i)->basic);
1319 			else
1320 				p = rx_q->dma_rx + i;
1321 
1322 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1323 						     queue);
1324 			if (ret)
1325 				goto err_init_rx_buffers;
1326 		}
1327 
1328 		rx_q->cur_rx = 0;
1329 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1330 
1331 		/* Setup the chained descriptor addresses */
1332 		if (priv->mode == STMMAC_CHAIN_MODE) {
1333 			if (priv->extend_desc)
1334 				stmmac_mode_init(priv, rx_q->dma_erx,
1335 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1336 			else
1337 				stmmac_mode_init(priv, rx_q->dma_rx,
1338 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1339 		}
1340 	}
1341 
1342 	return 0;
1343 
1344 err_init_rx_buffers:
1345 	while (queue >= 0) {
1346 		while (--i >= 0)
1347 			stmmac_free_rx_buffer(priv, queue, i);
1348 
1349 		if (queue == 0)
1350 			break;
1351 
1352 		i = DMA_RX_SIZE;
1353 		queue--;
1354 	}
1355 
1356 	return ret;
1357 }
1358 
1359 /**
1360  * init_dma_tx_desc_rings - init the TX descriptor rings
1361  * @dev: net device structure.
1362  * Description: this function initializes the DMA TX descriptors
1363  * and allocates the socket buffers. It supports the chained and ring
1364  * modes.
1365  */
1366 static int init_dma_tx_desc_rings(struct net_device *dev)
1367 {
1368 	struct stmmac_priv *priv = netdev_priv(dev);
1369 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1370 	u32 queue;
1371 	int i;
1372 
1373 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1374 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1375 
1376 		netif_dbg(priv, probe, priv->dev,
1377 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1378 			 (u32)tx_q->dma_tx_phy);
1379 
1380 		/* Setup the chained descriptor addresses */
1381 		if (priv->mode == STMMAC_CHAIN_MODE) {
1382 			if (priv->extend_desc)
1383 				stmmac_mode_init(priv, tx_q->dma_etx,
1384 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1385 			else
1386 				stmmac_mode_init(priv, tx_q->dma_tx,
1387 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1388 		}
1389 
1390 		for (i = 0; i < DMA_TX_SIZE; i++) {
1391 			struct dma_desc *p;
1392 			if (priv->extend_desc)
1393 				p = &((tx_q->dma_etx + i)->basic);
1394 			else
1395 				p = tx_q->dma_tx + i;
1396 
1397 			stmmac_clear_desc(priv, p);
1398 
1399 			tx_q->tx_skbuff_dma[i].buf = 0;
1400 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1401 			tx_q->tx_skbuff_dma[i].len = 0;
1402 			tx_q->tx_skbuff_dma[i].last_segment = false;
1403 			tx_q->tx_skbuff[i] = NULL;
1404 		}
1405 
1406 		tx_q->dirty_tx = 0;
1407 		tx_q->cur_tx = 0;
1408 		tx_q->mss = 0;
1409 
1410 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 /**
1417  * init_dma_desc_rings - init the RX/TX descriptor rings
1418  * @dev: net device structure
1419  * @flags: gfp flag.
1420  * Description: this function initializes the DMA RX/TX descriptors
1421  * and allocates the socket buffers. It supports the chained and ring
1422  * modes.
1423  */
1424 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1425 {
1426 	struct stmmac_priv *priv = netdev_priv(dev);
1427 	int ret;
1428 
1429 	ret = init_dma_rx_desc_rings(dev, flags);
1430 	if (ret)
1431 		return ret;
1432 
1433 	ret = init_dma_tx_desc_rings(dev);
1434 
1435 	stmmac_clear_descriptors(priv);
1436 
1437 	if (netif_msg_hw(priv))
1438 		stmmac_display_rings(priv);
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  * dma_free_rx_skbufs - free RX dma buffers
1445  * @priv: private structure
1446  * @queue: RX queue index
1447  */
1448 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < DMA_RX_SIZE; i++)
1453 		stmmac_free_rx_buffer(priv, queue, i);
1454 }
1455 
1456 /**
1457  * dma_free_tx_skbufs - free TX dma buffers
1458  * @priv: private structure
1459  * @queue: TX queue index
1460  */
1461 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1462 {
1463 	int i;
1464 
1465 	for (i = 0; i < DMA_TX_SIZE; i++)
1466 		stmmac_free_tx_buffer(priv, queue, i);
1467 }
1468 
1469 /**
1470  * free_dma_rx_desc_resources - free RX dma desc resources
1471  * @priv: private structure
1472  */
1473 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1474 {
1475 	u32 rx_count = priv->plat->rx_queues_to_use;
1476 	u32 queue;
1477 
1478 	/* Free RX queue resources */
1479 	for (queue = 0; queue < rx_count; queue++) {
1480 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1481 
1482 		/* Release the DMA RX socket buffers */
1483 		dma_free_rx_skbufs(priv, queue);
1484 
1485 		/* Free DMA regions of consistent memory previously allocated */
1486 		if (!priv->extend_desc)
1487 			dma_free_coherent(priv->device,
1488 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1489 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1490 		else
1491 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1492 					  sizeof(struct dma_extended_desc),
1493 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1494 
1495 		kfree(rx_q->buf_pool);
1496 		if (rx_q->page_pool)
1497 			page_pool_destroy(rx_q->page_pool);
1498 	}
1499 }
1500 
1501 /**
1502  * free_dma_tx_desc_resources - free TX dma desc resources
1503  * @priv: private structure
1504  */
1505 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1506 {
1507 	u32 tx_count = priv->plat->tx_queues_to_use;
1508 	u32 queue;
1509 
1510 	/* Free TX queue resources */
1511 	for (queue = 0; queue < tx_count; queue++) {
1512 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1513 
1514 		/* Release the DMA TX socket buffers */
1515 		dma_free_tx_skbufs(priv, queue);
1516 
1517 		/* Free DMA regions of consistent memory previously allocated */
1518 		if (!priv->extend_desc)
1519 			dma_free_coherent(priv->device,
1520 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1521 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1522 		else
1523 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1524 					  sizeof(struct dma_extended_desc),
1525 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1526 
1527 		kfree(tx_q->tx_skbuff_dma);
1528 		kfree(tx_q->tx_skbuff);
1529 	}
1530 }
1531 
1532 /**
1533  * alloc_dma_rx_desc_resources - alloc RX resources.
1534  * @priv: private structure
1535  * Description: according to which descriptor can be used (extend or basic)
1536  * this function allocates the resources for TX and RX paths. In case of
1537  * reception, for example, it pre-allocated the RX socket buffer in order to
1538  * allow zero-copy mechanism.
1539  */
1540 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1541 {
1542 	u32 rx_count = priv->plat->rx_queues_to_use;
1543 	int ret = -ENOMEM;
1544 	u32 queue;
1545 
1546 	/* RX queues buffers and DMA */
1547 	for (queue = 0; queue < rx_count; queue++) {
1548 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1549 		struct page_pool_params pp_params = { 0 };
1550 		unsigned int num_pages;
1551 
1552 		rx_q->queue_index = queue;
1553 		rx_q->priv_data = priv;
1554 
1555 		pp_params.flags = PP_FLAG_DMA_MAP;
1556 		pp_params.pool_size = DMA_RX_SIZE;
1557 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1558 		pp_params.order = ilog2(num_pages);
1559 		pp_params.nid = dev_to_node(priv->device);
1560 		pp_params.dev = priv->device;
1561 		pp_params.dma_dir = DMA_FROM_DEVICE;
1562 
1563 		rx_q->page_pool = page_pool_create(&pp_params);
1564 		if (IS_ERR(rx_q->page_pool)) {
1565 			ret = PTR_ERR(rx_q->page_pool);
1566 			rx_q->page_pool = NULL;
1567 			goto err_dma;
1568 		}
1569 
1570 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1571 					 GFP_KERNEL);
1572 		if (!rx_q->buf_pool)
1573 			goto err_dma;
1574 
1575 		if (priv->extend_desc) {
1576 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1577 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1578 							   &rx_q->dma_rx_phy,
1579 							   GFP_KERNEL);
1580 			if (!rx_q->dma_erx)
1581 				goto err_dma;
1582 
1583 		} else {
1584 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1585 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1586 							  &rx_q->dma_rx_phy,
1587 							  GFP_KERNEL);
1588 			if (!rx_q->dma_rx)
1589 				goto err_dma;
1590 		}
1591 	}
1592 
1593 	return 0;
1594 
1595 err_dma:
1596 	free_dma_rx_desc_resources(priv);
1597 
1598 	return ret;
1599 }
1600 
1601 /**
1602  * alloc_dma_tx_desc_resources - alloc TX resources.
1603  * @priv: private structure
1604  * Description: according to which descriptor can be used (extend or basic)
1605  * this function allocates the resources for TX and RX paths. In case of
1606  * reception, for example, it pre-allocated the RX socket buffer in order to
1607  * allow zero-copy mechanism.
1608  */
1609 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1610 {
1611 	u32 tx_count = priv->plat->tx_queues_to_use;
1612 	int ret = -ENOMEM;
1613 	u32 queue;
1614 
1615 	/* TX queues buffers and DMA */
1616 	for (queue = 0; queue < tx_count; queue++) {
1617 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1618 
1619 		tx_q->queue_index = queue;
1620 		tx_q->priv_data = priv;
1621 
1622 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1623 					      sizeof(*tx_q->tx_skbuff_dma),
1624 					      GFP_KERNEL);
1625 		if (!tx_q->tx_skbuff_dma)
1626 			goto err_dma;
1627 
1628 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1629 					  sizeof(struct sk_buff *),
1630 					  GFP_KERNEL);
1631 		if (!tx_q->tx_skbuff)
1632 			goto err_dma;
1633 
1634 		if (priv->extend_desc) {
1635 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1636 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1637 							   &tx_q->dma_tx_phy,
1638 							   GFP_KERNEL);
1639 			if (!tx_q->dma_etx)
1640 				goto err_dma;
1641 		} else {
1642 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1643 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1644 							  &tx_q->dma_tx_phy,
1645 							  GFP_KERNEL);
1646 			if (!tx_q->dma_tx)
1647 				goto err_dma;
1648 		}
1649 	}
1650 
1651 	return 0;
1652 
1653 err_dma:
1654 	free_dma_tx_desc_resources(priv);
1655 
1656 	return ret;
1657 }
1658 
1659 /**
1660  * alloc_dma_desc_resources - alloc TX/RX resources.
1661  * @priv: private structure
1662  * Description: according to which descriptor can be used (extend or basic)
1663  * this function allocates the resources for TX and RX paths. In case of
1664  * reception, for example, it pre-allocated the RX socket buffer in order to
1665  * allow zero-copy mechanism.
1666  */
1667 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1668 {
1669 	/* RX Allocation */
1670 	int ret = alloc_dma_rx_desc_resources(priv);
1671 
1672 	if (ret)
1673 		return ret;
1674 
1675 	ret = alloc_dma_tx_desc_resources(priv);
1676 
1677 	return ret;
1678 }
1679 
1680 /**
1681  * free_dma_desc_resources - free dma desc resources
1682  * @priv: private structure
1683  */
1684 static void free_dma_desc_resources(struct stmmac_priv *priv)
1685 {
1686 	/* Release the DMA RX socket buffers */
1687 	free_dma_rx_desc_resources(priv);
1688 
1689 	/* Release the DMA TX socket buffers */
1690 	free_dma_tx_desc_resources(priv);
1691 }
1692 
1693 /**
1694  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1695  *  @priv: driver private structure
1696  *  Description: It is used for enabling the rx queues in the MAC
1697  */
1698 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1699 {
1700 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1701 	int queue;
1702 	u8 mode;
1703 
1704 	for (queue = 0; queue < rx_queues_count; queue++) {
1705 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1706 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1707 	}
1708 }
1709 
1710 /**
1711  * stmmac_start_rx_dma - start RX DMA channel
1712  * @priv: driver private structure
1713  * @chan: RX channel index
1714  * Description:
1715  * This starts a RX DMA channel
1716  */
1717 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1718 {
1719 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1720 	stmmac_start_rx(priv, priv->ioaddr, chan);
1721 }
1722 
1723 /**
1724  * stmmac_start_tx_dma - start TX DMA channel
1725  * @priv: driver private structure
1726  * @chan: TX channel index
1727  * Description:
1728  * This starts a TX DMA channel
1729  */
1730 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1731 {
1732 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1733 	stmmac_start_tx(priv, priv->ioaddr, chan);
1734 }
1735 
1736 /**
1737  * stmmac_stop_rx_dma - stop RX DMA channel
1738  * @priv: driver private structure
1739  * @chan: RX channel index
1740  * Description:
1741  * This stops a RX DMA channel
1742  */
1743 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1744 {
1745 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1746 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1747 }
1748 
1749 /**
1750  * stmmac_stop_tx_dma - stop TX DMA channel
1751  * @priv: driver private structure
1752  * @chan: TX channel index
1753  * Description:
1754  * This stops a TX DMA channel
1755  */
1756 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1757 {
1758 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1759 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1760 }
1761 
1762 /**
1763  * stmmac_start_all_dma - start all RX and TX DMA channels
1764  * @priv: driver private structure
1765  * Description:
1766  * This starts all the RX and TX DMA channels
1767  */
1768 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1769 {
1770 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1771 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1772 	u32 chan = 0;
1773 
1774 	for (chan = 0; chan < rx_channels_count; chan++)
1775 		stmmac_start_rx_dma(priv, chan);
1776 
1777 	for (chan = 0; chan < tx_channels_count; chan++)
1778 		stmmac_start_tx_dma(priv, chan);
1779 }
1780 
1781 /**
1782  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1783  * @priv: driver private structure
1784  * Description:
1785  * This stops the RX and TX DMA channels
1786  */
1787 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1788 {
1789 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1790 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1791 	u32 chan = 0;
1792 
1793 	for (chan = 0; chan < rx_channels_count; chan++)
1794 		stmmac_stop_rx_dma(priv, chan);
1795 
1796 	for (chan = 0; chan < tx_channels_count; chan++)
1797 		stmmac_stop_tx_dma(priv, chan);
1798 }
1799 
1800 /**
1801  *  stmmac_dma_operation_mode - HW DMA operation mode
1802  *  @priv: driver private structure
1803  *  Description: it is used for configuring the DMA operation mode register in
1804  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1805  */
1806 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1807 {
1808 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1809 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1810 	int rxfifosz = priv->plat->rx_fifo_size;
1811 	int txfifosz = priv->plat->tx_fifo_size;
1812 	u32 txmode = 0;
1813 	u32 rxmode = 0;
1814 	u32 chan = 0;
1815 	u8 qmode = 0;
1816 
1817 	if (rxfifosz == 0)
1818 		rxfifosz = priv->dma_cap.rx_fifo_size;
1819 	if (txfifosz == 0)
1820 		txfifosz = priv->dma_cap.tx_fifo_size;
1821 
1822 	/* Adjust for real per queue fifo size */
1823 	rxfifosz /= rx_channels_count;
1824 	txfifosz /= tx_channels_count;
1825 
1826 	if (priv->plat->force_thresh_dma_mode) {
1827 		txmode = tc;
1828 		rxmode = tc;
1829 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1830 		/*
1831 		 * In case of GMAC, SF mode can be enabled
1832 		 * to perform the TX COE in HW. This depends on:
1833 		 * 1) TX COE if actually supported
1834 		 * 2) There is no bugged Jumbo frame support
1835 		 *    that needs to not insert csum in the TDES.
1836 		 */
1837 		txmode = SF_DMA_MODE;
1838 		rxmode = SF_DMA_MODE;
1839 		priv->xstats.threshold = SF_DMA_MODE;
1840 	} else {
1841 		txmode = tc;
1842 		rxmode = SF_DMA_MODE;
1843 	}
1844 
1845 	/* configure all channels */
1846 	for (chan = 0; chan < rx_channels_count; chan++) {
1847 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1848 
1849 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1850 				rxfifosz, qmode);
1851 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1852 				chan);
1853 	}
1854 
1855 	for (chan = 0; chan < tx_channels_count; chan++) {
1856 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1857 
1858 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1859 				txfifosz, qmode);
1860 	}
1861 }
1862 
1863 /**
1864  * stmmac_tx_clean - to manage the transmission completion
1865  * @priv: driver private structure
1866  * @queue: TX queue index
1867  * Description: it reclaims the transmit resources after transmission completes.
1868  */
1869 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1870 {
1871 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1872 	unsigned int bytes_compl = 0, pkts_compl = 0;
1873 	unsigned int entry, count = 0;
1874 
1875 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1876 
1877 	priv->xstats.tx_clean++;
1878 
1879 	entry = tx_q->dirty_tx;
1880 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1881 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1882 		struct dma_desc *p;
1883 		int status;
1884 
1885 		if (priv->extend_desc)
1886 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1887 		else
1888 			p = tx_q->dma_tx + entry;
1889 
1890 		status = stmmac_tx_status(priv, &priv->dev->stats,
1891 				&priv->xstats, p, priv->ioaddr);
1892 		/* Check if the descriptor is owned by the DMA */
1893 		if (unlikely(status & tx_dma_own))
1894 			break;
1895 
1896 		count++;
1897 
1898 		/* Make sure descriptor fields are read after reading
1899 		 * the own bit.
1900 		 */
1901 		dma_rmb();
1902 
1903 		/* Just consider the last segment and ...*/
1904 		if (likely(!(status & tx_not_ls))) {
1905 			/* ... verify the status error condition */
1906 			if (unlikely(status & tx_err)) {
1907 				priv->dev->stats.tx_errors++;
1908 			} else {
1909 				priv->dev->stats.tx_packets++;
1910 				priv->xstats.tx_pkt_n++;
1911 			}
1912 			stmmac_get_tx_hwtstamp(priv, p, skb);
1913 		}
1914 
1915 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1916 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1917 				dma_unmap_page(priv->device,
1918 					       tx_q->tx_skbuff_dma[entry].buf,
1919 					       tx_q->tx_skbuff_dma[entry].len,
1920 					       DMA_TO_DEVICE);
1921 			else
1922 				dma_unmap_single(priv->device,
1923 						 tx_q->tx_skbuff_dma[entry].buf,
1924 						 tx_q->tx_skbuff_dma[entry].len,
1925 						 DMA_TO_DEVICE);
1926 			tx_q->tx_skbuff_dma[entry].buf = 0;
1927 			tx_q->tx_skbuff_dma[entry].len = 0;
1928 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1929 		}
1930 
1931 		stmmac_clean_desc3(priv, tx_q, p);
1932 
1933 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1934 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1935 
1936 		if (likely(skb != NULL)) {
1937 			pkts_compl++;
1938 			bytes_compl += skb->len;
1939 			dev_consume_skb_any(skb);
1940 			tx_q->tx_skbuff[entry] = NULL;
1941 		}
1942 
1943 		stmmac_release_tx_desc(priv, p, priv->mode);
1944 
1945 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1946 	}
1947 	tx_q->dirty_tx = entry;
1948 
1949 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1950 				  pkts_compl, bytes_compl);
1951 
1952 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1953 								queue))) &&
1954 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1955 
1956 		netif_dbg(priv, tx_done, priv->dev,
1957 			  "%s: restart transmit\n", __func__);
1958 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1959 	}
1960 
1961 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1962 		stmmac_enable_eee_mode(priv);
1963 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1964 	}
1965 
1966 	/* We still have pending packets, let's call for a new scheduling */
1967 	if (tx_q->dirty_tx != tx_q->cur_tx)
1968 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1969 
1970 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1971 
1972 	return count;
1973 }
1974 
1975 /**
1976  * stmmac_tx_err - to manage the tx error
1977  * @priv: driver private structure
1978  * @chan: channel index
1979  * Description: it cleans the descriptors and restarts the transmission
1980  * in case of transmission errors.
1981  */
1982 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1983 {
1984 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1985 	int i;
1986 
1987 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1988 
1989 	stmmac_stop_tx_dma(priv, chan);
1990 	dma_free_tx_skbufs(priv, chan);
1991 	for (i = 0; i < DMA_TX_SIZE; i++)
1992 		if (priv->extend_desc)
1993 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1994 					priv->mode, (i == DMA_TX_SIZE - 1));
1995 		else
1996 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1997 					priv->mode, (i == DMA_TX_SIZE - 1));
1998 	tx_q->dirty_tx = 0;
1999 	tx_q->cur_tx = 0;
2000 	tx_q->mss = 0;
2001 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2002 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2003 			    tx_q->dma_tx_phy, chan);
2004 	stmmac_start_tx_dma(priv, chan);
2005 
2006 	priv->dev->stats.tx_errors++;
2007 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2008 }
2009 
2010 /**
2011  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2012  *  @priv: driver private structure
2013  *  @txmode: TX operating mode
2014  *  @rxmode: RX operating mode
2015  *  @chan: channel index
2016  *  Description: it is used for configuring of the DMA operation mode in
2017  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2018  *  mode.
2019  */
2020 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2021 					  u32 rxmode, u32 chan)
2022 {
2023 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2024 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2025 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2026 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2027 	int rxfifosz = priv->plat->rx_fifo_size;
2028 	int txfifosz = priv->plat->tx_fifo_size;
2029 
2030 	if (rxfifosz == 0)
2031 		rxfifosz = priv->dma_cap.rx_fifo_size;
2032 	if (txfifosz == 0)
2033 		txfifosz = priv->dma_cap.tx_fifo_size;
2034 
2035 	/* Adjust for real per queue fifo size */
2036 	rxfifosz /= rx_channels_count;
2037 	txfifosz /= tx_channels_count;
2038 
2039 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2040 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2041 }
2042 
2043 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2044 {
2045 	int ret;
2046 
2047 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2048 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2049 	if (ret && (ret != -EINVAL)) {
2050 		stmmac_global_err(priv);
2051 		return true;
2052 	}
2053 
2054 	return false;
2055 }
2056 
2057 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2058 {
2059 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2060 						 &priv->xstats, chan);
2061 	struct stmmac_channel *ch = &priv->channel[chan];
2062 
2063 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2064 		if (napi_schedule_prep(&ch->rx_napi)) {
2065 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2066 			__napi_schedule_irqoff(&ch->rx_napi);
2067 			status |= handle_tx;
2068 		}
2069 	}
2070 
2071 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2072 		napi_schedule_irqoff(&ch->tx_napi);
2073 
2074 	return status;
2075 }
2076 
2077 /**
2078  * stmmac_dma_interrupt - DMA ISR
2079  * @priv: driver private structure
2080  * Description: this is the DMA ISR. It is called by the main ISR.
2081  * It calls the dwmac dma routine and schedule poll method in case of some
2082  * work can be done.
2083  */
2084 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2085 {
2086 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2087 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2088 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2089 				tx_channel_count : rx_channel_count;
2090 	u32 chan;
2091 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2092 
2093 	/* Make sure we never check beyond our status buffer. */
2094 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2095 		channels_to_check = ARRAY_SIZE(status);
2096 
2097 	for (chan = 0; chan < channels_to_check; chan++)
2098 		status[chan] = stmmac_napi_check(priv, chan);
2099 
2100 	for (chan = 0; chan < tx_channel_count; chan++) {
2101 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2102 			/* Try to bump up the dma threshold on this failure */
2103 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2104 			    (tc <= 256)) {
2105 				tc += 64;
2106 				if (priv->plat->force_thresh_dma_mode)
2107 					stmmac_set_dma_operation_mode(priv,
2108 								      tc,
2109 								      tc,
2110 								      chan);
2111 				else
2112 					stmmac_set_dma_operation_mode(priv,
2113 								    tc,
2114 								    SF_DMA_MODE,
2115 								    chan);
2116 				priv->xstats.threshold = tc;
2117 			}
2118 		} else if (unlikely(status[chan] == tx_hard_error)) {
2119 			stmmac_tx_err(priv, chan);
2120 		}
2121 	}
2122 }
2123 
2124 /**
2125  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2126  * @priv: driver private structure
2127  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2128  */
2129 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2130 {
2131 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2132 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2133 
2134 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2135 
2136 	if (priv->dma_cap.rmon) {
2137 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2138 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2139 	} else
2140 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2141 }
2142 
2143 /**
2144  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2145  * @priv: driver private structure
2146  * Description:
2147  *  new GMAC chip generations have a new register to indicate the
2148  *  presence of the optional feature/functions.
2149  *  This can be also used to override the value passed through the
2150  *  platform and necessary for old MAC10/100 and GMAC chips.
2151  */
2152 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2153 {
2154 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2155 }
2156 
2157 /**
2158  * stmmac_check_ether_addr - check if the MAC addr is valid
2159  * @priv: driver private structure
2160  * Description:
2161  * it is to verify if the MAC address is valid, in case of failures it
2162  * generates a random MAC address
2163  */
2164 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2165 {
2166 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2167 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2168 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2169 			eth_hw_addr_random(priv->dev);
2170 		dev_info(priv->device, "device MAC address %pM\n",
2171 			 priv->dev->dev_addr);
2172 	}
2173 }
2174 
2175 /**
2176  * stmmac_init_dma_engine - DMA init.
2177  * @priv: driver private structure
2178  * Description:
2179  * It inits the DMA invoking the specific MAC/GMAC callback.
2180  * Some DMA parameters can be passed from the platform;
2181  * in case of these are not passed a default is kept for the MAC or GMAC.
2182  */
2183 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2184 {
2185 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2186 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2187 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2188 	struct stmmac_rx_queue *rx_q;
2189 	struct stmmac_tx_queue *tx_q;
2190 	u32 chan = 0;
2191 	int atds = 0;
2192 	int ret = 0;
2193 
2194 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2195 		dev_err(priv->device, "Invalid DMA configuration\n");
2196 		return -EINVAL;
2197 	}
2198 
2199 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2200 		atds = 1;
2201 
2202 	ret = stmmac_reset(priv, priv->ioaddr);
2203 	if (ret) {
2204 		dev_err(priv->device, "Failed to reset the dma\n");
2205 		return ret;
2206 	}
2207 
2208 	/* DMA Configuration */
2209 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2210 
2211 	if (priv->plat->axi)
2212 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2213 
2214 	/* DMA CSR Channel configuration */
2215 	for (chan = 0; chan < dma_csr_ch; chan++)
2216 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2217 
2218 	/* DMA RX Channel Configuration */
2219 	for (chan = 0; chan < rx_channels_count; chan++) {
2220 		rx_q = &priv->rx_queue[chan];
2221 
2222 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2223 				    rx_q->dma_rx_phy, chan);
2224 
2225 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2226 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2227 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2228 				       rx_q->rx_tail_addr, chan);
2229 	}
2230 
2231 	/* DMA TX Channel Configuration */
2232 	for (chan = 0; chan < tx_channels_count; chan++) {
2233 		tx_q = &priv->tx_queue[chan];
2234 
2235 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2236 				    tx_q->dma_tx_phy, chan);
2237 
2238 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2239 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2240 				       tx_q->tx_tail_addr, chan);
2241 	}
2242 
2243 	return ret;
2244 }
2245 
2246 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2247 {
2248 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2249 
2250 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2251 }
2252 
2253 /**
2254  * stmmac_tx_timer - mitigation sw timer for tx.
2255  * @data: data pointer
2256  * Description:
2257  * This is the timer handler to directly invoke the stmmac_tx_clean.
2258  */
2259 static void stmmac_tx_timer(struct timer_list *t)
2260 {
2261 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2262 	struct stmmac_priv *priv = tx_q->priv_data;
2263 	struct stmmac_channel *ch;
2264 
2265 	ch = &priv->channel[tx_q->queue_index];
2266 
2267 	/*
2268 	 * If NAPI is already running we can miss some events. Let's rearm
2269 	 * the timer and try again.
2270 	 */
2271 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2272 		__napi_schedule(&ch->tx_napi);
2273 	else
2274 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2275 }
2276 
2277 /**
2278  * stmmac_init_coalesce - init mitigation options.
2279  * @priv: driver private structure
2280  * Description:
2281  * This inits the coalesce parameters: i.e. timer rate,
2282  * timer handler and default threshold used for enabling the
2283  * interrupt on completion bit.
2284  */
2285 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2286 {
2287 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2288 	u32 chan;
2289 
2290 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2291 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2292 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2293 
2294 	for (chan = 0; chan < tx_channel_count; chan++) {
2295 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2296 
2297 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2298 	}
2299 }
2300 
2301 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2302 {
2303 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2304 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2305 	u32 chan;
2306 
2307 	/* set TX ring length */
2308 	for (chan = 0; chan < tx_channels_count; chan++)
2309 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2310 				(DMA_TX_SIZE - 1), chan);
2311 
2312 	/* set RX ring length */
2313 	for (chan = 0; chan < rx_channels_count; chan++)
2314 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2315 				(DMA_RX_SIZE - 1), chan);
2316 }
2317 
2318 /**
2319  *  stmmac_set_tx_queue_weight - Set TX queue weight
2320  *  @priv: driver private structure
2321  *  Description: It is used for setting TX queues weight
2322  */
2323 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2324 {
2325 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2326 	u32 weight;
2327 	u32 queue;
2328 
2329 	for (queue = 0; queue < tx_queues_count; queue++) {
2330 		weight = priv->plat->tx_queues_cfg[queue].weight;
2331 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2332 	}
2333 }
2334 
2335 /**
2336  *  stmmac_configure_cbs - Configure CBS in TX queue
2337  *  @priv: driver private structure
2338  *  Description: It is used for configuring CBS in AVB TX queues
2339  */
2340 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2341 {
2342 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2343 	u32 mode_to_use;
2344 	u32 queue;
2345 
2346 	/* queue 0 is reserved for legacy traffic */
2347 	for (queue = 1; queue < tx_queues_count; queue++) {
2348 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2349 		if (mode_to_use == MTL_QUEUE_DCB)
2350 			continue;
2351 
2352 		stmmac_config_cbs(priv, priv->hw,
2353 				priv->plat->tx_queues_cfg[queue].send_slope,
2354 				priv->plat->tx_queues_cfg[queue].idle_slope,
2355 				priv->plat->tx_queues_cfg[queue].high_credit,
2356 				priv->plat->tx_queues_cfg[queue].low_credit,
2357 				queue);
2358 	}
2359 }
2360 
2361 /**
2362  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2363  *  @priv: driver private structure
2364  *  Description: It is used for mapping RX queues to RX dma channels
2365  */
2366 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2367 {
2368 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2369 	u32 queue;
2370 	u32 chan;
2371 
2372 	for (queue = 0; queue < rx_queues_count; queue++) {
2373 		chan = priv->plat->rx_queues_cfg[queue].chan;
2374 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2375 	}
2376 }
2377 
2378 /**
2379  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2380  *  @priv: driver private structure
2381  *  Description: It is used for configuring the RX Queue Priority
2382  */
2383 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2384 {
2385 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2386 	u32 queue;
2387 	u32 prio;
2388 
2389 	for (queue = 0; queue < rx_queues_count; queue++) {
2390 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2391 			continue;
2392 
2393 		prio = priv->plat->rx_queues_cfg[queue].prio;
2394 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2395 	}
2396 }
2397 
2398 /**
2399  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2400  *  @priv: driver private structure
2401  *  Description: It is used for configuring the TX Queue Priority
2402  */
2403 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2404 {
2405 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2406 	u32 queue;
2407 	u32 prio;
2408 
2409 	for (queue = 0; queue < tx_queues_count; queue++) {
2410 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2411 			continue;
2412 
2413 		prio = priv->plat->tx_queues_cfg[queue].prio;
2414 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2415 	}
2416 }
2417 
2418 /**
2419  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2420  *  @priv: driver private structure
2421  *  Description: It is used for configuring the RX queue routing
2422  */
2423 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2424 {
2425 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2426 	u32 queue;
2427 	u8 packet;
2428 
2429 	for (queue = 0; queue < rx_queues_count; queue++) {
2430 		/* no specific packet type routing specified for the queue */
2431 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2432 			continue;
2433 
2434 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2435 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2436 	}
2437 }
2438 
2439 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2440 {
2441 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2442 		priv->rss.enable = false;
2443 		return;
2444 	}
2445 
2446 	if (priv->dev->features & NETIF_F_RXHASH)
2447 		priv->rss.enable = true;
2448 	else
2449 		priv->rss.enable = false;
2450 
2451 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2452 			     priv->plat->rx_queues_to_use);
2453 }
2454 
2455 /**
2456  *  stmmac_mtl_configuration - Configure MTL
2457  *  @priv: driver private structure
2458  *  Description: It is used for configurring MTL
2459  */
2460 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2461 {
2462 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2463 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2464 
2465 	if (tx_queues_count > 1)
2466 		stmmac_set_tx_queue_weight(priv);
2467 
2468 	/* Configure MTL RX algorithms */
2469 	if (rx_queues_count > 1)
2470 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2471 				priv->plat->rx_sched_algorithm);
2472 
2473 	/* Configure MTL TX algorithms */
2474 	if (tx_queues_count > 1)
2475 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2476 				priv->plat->tx_sched_algorithm);
2477 
2478 	/* Configure CBS in AVB TX queues */
2479 	if (tx_queues_count > 1)
2480 		stmmac_configure_cbs(priv);
2481 
2482 	/* Map RX MTL to DMA channels */
2483 	stmmac_rx_queue_dma_chan_map(priv);
2484 
2485 	/* Enable MAC RX Queues */
2486 	stmmac_mac_enable_rx_queues(priv);
2487 
2488 	/* Set RX priorities */
2489 	if (rx_queues_count > 1)
2490 		stmmac_mac_config_rx_queues_prio(priv);
2491 
2492 	/* Set TX priorities */
2493 	if (tx_queues_count > 1)
2494 		stmmac_mac_config_tx_queues_prio(priv);
2495 
2496 	/* Set RX routing */
2497 	if (rx_queues_count > 1)
2498 		stmmac_mac_config_rx_queues_routing(priv);
2499 
2500 	/* Receive Side Scaling */
2501 	if (rx_queues_count > 1)
2502 		stmmac_mac_config_rss(priv);
2503 }
2504 
2505 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2506 {
2507 	if (priv->dma_cap.asp) {
2508 		netdev_info(priv->dev, "Enabling Safety Features\n");
2509 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2510 	} else {
2511 		netdev_info(priv->dev, "No Safety Features support found\n");
2512 	}
2513 }
2514 
2515 /**
2516  * stmmac_hw_setup - setup mac in a usable state.
2517  *  @dev : pointer to the device structure.
2518  *  Description:
2519  *  this is the main function to setup the HW in a usable state because the
2520  *  dma engine is reset, the core registers are configured (e.g. AXI,
2521  *  Checksum features, timers). The DMA is ready to start receiving and
2522  *  transmitting.
2523  *  Return value:
2524  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2525  *  file on failure.
2526  */
2527 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2528 {
2529 	struct stmmac_priv *priv = netdev_priv(dev);
2530 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2531 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2532 	u32 chan;
2533 	int ret;
2534 
2535 	/* DMA initialization and SW reset */
2536 	ret = stmmac_init_dma_engine(priv);
2537 	if (ret < 0) {
2538 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2539 			   __func__);
2540 		return ret;
2541 	}
2542 
2543 	/* Copy the MAC addr into the HW  */
2544 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2545 
2546 	/* PS and related bits will be programmed according to the speed */
2547 	if (priv->hw->pcs) {
2548 		int speed = priv->plat->mac_port_sel_speed;
2549 
2550 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2551 		    (speed == SPEED_1000)) {
2552 			priv->hw->ps = speed;
2553 		} else {
2554 			dev_warn(priv->device, "invalid port speed\n");
2555 			priv->hw->ps = 0;
2556 		}
2557 	}
2558 
2559 	/* Initialize the MAC Core */
2560 	stmmac_core_init(priv, priv->hw, dev);
2561 
2562 	/* Initialize MTL*/
2563 	stmmac_mtl_configuration(priv);
2564 
2565 	/* Initialize Safety Features */
2566 	stmmac_safety_feat_configuration(priv);
2567 
2568 	ret = stmmac_rx_ipc(priv, priv->hw);
2569 	if (!ret) {
2570 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2571 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2572 		priv->hw->rx_csum = 0;
2573 	}
2574 
2575 	/* Enable the MAC Rx/Tx */
2576 	stmmac_mac_set(priv, priv->ioaddr, true);
2577 
2578 	/* Set the HW DMA mode and the COE */
2579 	stmmac_dma_operation_mode(priv);
2580 
2581 	stmmac_mmc_setup(priv);
2582 
2583 	if (init_ptp) {
2584 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2585 		if (ret < 0)
2586 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2587 
2588 		ret = stmmac_init_ptp(priv);
2589 		if (ret == -EOPNOTSUPP)
2590 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2591 		else if (ret)
2592 			netdev_warn(priv->dev, "PTP init failed\n");
2593 	}
2594 
2595 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2596 
2597 	if (priv->use_riwt) {
2598 		if (!priv->rx_riwt)
2599 			priv->rx_riwt = DEF_DMA_RIWT;
2600 
2601 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2602 	}
2603 
2604 	if (priv->hw->pcs)
2605 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2606 
2607 	/* set TX and RX rings length */
2608 	stmmac_set_rings_length(priv);
2609 
2610 	/* Enable TSO */
2611 	if (priv->tso) {
2612 		for (chan = 0; chan < tx_cnt; chan++)
2613 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2614 	}
2615 
2616 	/* Enable Split Header */
2617 	if (priv->sph && priv->hw->rx_csum) {
2618 		for (chan = 0; chan < rx_cnt; chan++)
2619 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2620 	}
2621 
2622 	/* VLAN Tag Insertion */
2623 	if (priv->dma_cap.vlins)
2624 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2625 
2626 	/* Start the ball rolling... */
2627 	stmmac_start_all_dma(priv);
2628 
2629 	return 0;
2630 }
2631 
2632 static void stmmac_hw_teardown(struct net_device *dev)
2633 {
2634 	struct stmmac_priv *priv = netdev_priv(dev);
2635 
2636 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2637 }
2638 
2639 /**
2640  *  stmmac_open - open entry point of the driver
2641  *  @dev : pointer to the device structure.
2642  *  Description:
2643  *  This function is the open entry point of the driver.
2644  *  Return value:
2645  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2646  *  file on failure.
2647  */
2648 static int stmmac_open(struct net_device *dev)
2649 {
2650 	struct stmmac_priv *priv = netdev_priv(dev);
2651 	int bfsize = 0;
2652 	u32 chan;
2653 	int ret;
2654 
2655 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2656 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2657 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2658 		ret = stmmac_init_phy(dev);
2659 		if (ret) {
2660 			netdev_err(priv->dev,
2661 				   "%s: Cannot attach to PHY (error: %d)\n",
2662 				   __func__, ret);
2663 			return ret;
2664 		}
2665 	}
2666 
2667 	/* Extra statistics */
2668 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2669 	priv->xstats.threshold = tc;
2670 
2671 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2672 	if (bfsize < 0)
2673 		bfsize = 0;
2674 
2675 	if (bfsize < BUF_SIZE_16KiB)
2676 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2677 
2678 	priv->dma_buf_sz = bfsize;
2679 	buf_sz = bfsize;
2680 
2681 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2682 
2683 	ret = alloc_dma_desc_resources(priv);
2684 	if (ret < 0) {
2685 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2686 			   __func__);
2687 		goto dma_desc_error;
2688 	}
2689 
2690 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2691 	if (ret < 0) {
2692 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2693 			   __func__);
2694 		goto init_error;
2695 	}
2696 
2697 	ret = stmmac_hw_setup(dev, true);
2698 	if (ret < 0) {
2699 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2700 		goto init_error;
2701 	}
2702 
2703 	stmmac_init_coalesce(priv);
2704 
2705 	phylink_start(priv->phylink);
2706 
2707 	/* Request the IRQ lines */
2708 	ret = request_irq(dev->irq, stmmac_interrupt,
2709 			  IRQF_SHARED, dev->name, dev);
2710 	if (unlikely(ret < 0)) {
2711 		netdev_err(priv->dev,
2712 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2713 			   __func__, dev->irq, ret);
2714 		goto irq_error;
2715 	}
2716 
2717 	/* Request the Wake IRQ in case of another line is used for WoL */
2718 	if (priv->wol_irq != dev->irq) {
2719 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2720 				  IRQF_SHARED, dev->name, dev);
2721 		if (unlikely(ret < 0)) {
2722 			netdev_err(priv->dev,
2723 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2724 				   __func__, priv->wol_irq, ret);
2725 			goto wolirq_error;
2726 		}
2727 	}
2728 
2729 	/* Request the IRQ lines */
2730 	if (priv->lpi_irq > 0) {
2731 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2732 				  dev->name, dev);
2733 		if (unlikely(ret < 0)) {
2734 			netdev_err(priv->dev,
2735 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2736 				   __func__, priv->lpi_irq, ret);
2737 			goto lpiirq_error;
2738 		}
2739 	}
2740 
2741 	stmmac_enable_all_queues(priv);
2742 	stmmac_start_all_queues(priv);
2743 
2744 	return 0;
2745 
2746 lpiirq_error:
2747 	if (priv->wol_irq != dev->irq)
2748 		free_irq(priv->wol_irq, dev);
2749 wolirq_error:
2750 	free_irq(dev->irq, dev);
2751 irq_error:
2752 	phylink_stop(priv->phylink);
2753 
2754 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2755 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2756 
2757 	stmmac_hw_teardown(dev);
2758 init_error:
2759 	free_dma_desc_resources(priv);
2760 dma_desc_error:
2761 	phylink_disconnect_phy(priv->phylink);
2762 	return ret;
2763 }
2764 
2765 /**
2766  *  stmmac_release - close entry point of the driver
2767  *  @dev : device pointer.
2768  *  Description:
2769  *  This is the stop entry point of the driver.
2770  */
2771 static int stmmac_release(struct net_device *dev)
2772 {
2773 	struct stmmac_priv *priv = netdev_priv(dev);
2774 	u32 chan;
2775 
2776 	if (priv->eee_enabled)
2777 		del_timer_sync(&priv->eee_ctrl_timer);
2778 
2779 	/* Stop and disconnect the PHY */
2780 	phylink_stop(priv->phylink);
2781 	phylink_disconnect_phy(priv->phylink);
2782 
2783 	stmmac_stop_all_queues(priv);
2784 
2785 	stmmac_disable_all_queues(priv);
2786 
2787 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2788 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2789 
2790 	/* Free the IRQ lines */
2791 	free_irq(dev->irq, dev);
2792 	if (priv->wol_irq != dev->irq)
2793 		free_irq(priv->wol_irq, dev);
2794 	if (priv->lpi_irq > 0)
2795 		free_irq(priv->lpi_irq, dev);
2796 
2797 	/* Stop TX/RX DMA and clear the descriptors */
2798 	stmmac_stop_all_dma(priv);
2799 
2800 	/* Release and free the Rx/Tx resources */
2801 	free_dma_desc_resources(priv);
2802 
2803 	/* Disable the MAC Rx/Tx */
2804 	stmmac_mac_set(priv, priv->ioaddr, false);
2805 
2806 	netif_carrier_off(dev);
2807 
2808 	stmmac_release_ptp(priv);
2809 
2810 	return 0;
2811 }
2812 
2813 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2814 			       struct stmmac_tx_queue *tx_q)
2815 {
2816 	u16 tag = 0x0, inner_tag = 0x0;
2817 	u32 inner_type = 0x0;
2818 	struct dma_desc *p;
2819 
2820 	if (!priv->dma_cap.vlins)
2821 		return false;
2822 	if (!skb_vlan_tag_present(skb))
2823 		return false;
2824 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2825 		inner_tag = skb_vlan_tag_get(skb);
2826 		inner_type = STMMAC_VLAN_INSERT;
2827 	}
2828 
2829 	tag = skb_vlan_tag_get(skb);
2830 
2831 	p = tx_q->dma_tx + tx_q->cur_tx;
2832 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2833 		return false;
2834 
2835 	stmmac_set_tx_owner(priv, p);
2836 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2837 	return true;
2838 }
2839 
2840 /**
2841  *  stmmac_tso_allocator - close entry point of the driver
2842  *  @priv: driver private structure
2843  *  @des: buffer start address
2844  *  @total_len: total length to fill in descriptors
2845  *  @last_segmant: condition for the last descriptor
2846  *  @queue: TX queue index
2847  *  Description:
2848  *  This function fills descriptor and request new descriptors according to
2849  *  buffer length to fill
2850  */
2851 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2852 				 int total_len, bool last_segment, u32 queue)
2853 {
2854 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2855 	struct dma_desc *desc;
2856 	u32 buff_size;
2857 	int tmp_len;
2858 
2859 	tmp_len = total_len;
2860 
2861 	while (tmp_len > 0) {
2862 		dma_addr_t curr_addr;
2863 
2864 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2865 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2866 		desc = tx_q->dma_tx + tx_q->cur_tx;
2867 
2868 		curr_addr = des + (total_len - tmp_len);
2869 		if (priv->dma_cap.addr64 <= 32)
2870 			desc->des0 = cpu_to_le32(curr_addr);
2871 		else
2872 			stmmac_set_desc_addr(priv, desc, curr_addr);
2873 
2874 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2875 			    TSO_MAX_BUFF_SIZE : tmp_len;
2876 
2877 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2878 				0, 1,
2879 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2880 				0, 0);
2881 
2882 		tmp_len -= TSO_MAX_BUFF_SIZE;
2883 	}
2884 }
2885 
2886 /**
2887  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2888  *  @skb : the socket buffer
2889  *  @dev : device pointer
2890  *  Description: this is the transmit function that is called on TSO frames
2891  *  (support available on GMAC4 and newer chips).
2892  *  Diagram below show the ring programming in case of TSO frames:
2893  *
2894  *  First Descriptor
2895  *   --------
2896  *   | DES0 |---> buffer1 = L2/L3/L4 header
2897  *   | DES1 |---> TCP Payload (can continue on next descr...)
2898  *   | DES2 |---> buffer 1 and 2 len
2899  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2900  *   --------
2901  *	|
2902  *     ...
2903  *	|
2904  *   --------
2905  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2906  *   | DES1 | --|
2907  *   | DES2 | --> buffer 1 and 2 len
2908  *   | DES3 |
2909  *   --------
2910  *
2911  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2912  */
2913 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2914 {
2915 	struct dma_desc *desc, *first, *mss_desc = NULL;
2916 	struct stmmac_priv *priv = netdev_priv(dev);
2917 	int nfrags = skb_shinfo(skb)->nr_frags;
2918 	u32 queue = skb_get_queue_mapping(skb);
2919 	unsigned int first_entry, tx_packets;
2920 	int tmp_pay_len = 0, first_tx;
2921 	struct stmmac_tx_queue *tx_q;
2922 	u8 proto_hdr_len, hdr;
2923 	bool has_vlan, set_ic;
2924 	u32 pay_len, mss;
2925 	dma_addr_t des;
2926 	int i;
2927 
2928 	tx_q = &priv->tx_queue[queue];
2929 	first_tx = tx_q->cur_tx;
2930 
2931 	/* Compute header lengths */
2932 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2933 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2934 		hdr = sizeof(struct udphdr);
2935 	} else {
2936 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2937 		hdr = tcp_hdrlen(skb);
2938 	}
2939 
2940 	/* Desc availability based on threshold should be enough safe */
2941 	if (unlikely(stmmac_tx_avail(priv, queue) <
2942 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2943 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2944 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2945 								queue));
2946 			/* This is a hard error, log it. */
2947 			netdev_err(priv->dev,
2948 				   "%s: Tx Ring full when queue awake\n",
2949 				   __func__);
2950 		}
2951 		return NETDEV_TX_BUSY;
2952 	}
2953 
2954 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2955 
2956 	mss = skb_shinfo(skb)->gso_size;
2957 
2958 	/* set new MSS value if needed */
2959 	if (mss != tx_q->mss) {
2960 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2961 		stmmac_set_mss(priv, mss_desc, mss);
2962 		tx_q->mss = mss;
2963 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2964 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2965 	}
2966 
2967 	if (netif_msg_tx_queued(priv)) {
2968 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2969 			__func__, hdr, proto_hdr_len, pay_len, mss);
2970 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2971 			skb->data_len);
2972 	}
2973 
2974 	/* Check if VLAN can be inserted by HW */
2975 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2976 
2977 	first_entry = tx_q->cur_tx;
2978 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2979 
2980 	desc = tx_q->dma_tx + first_entry;
2981 	first = desc;
2982 
2983 	if (has_vlan)
2984 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2985 
2986 	/* first descriptor: fill Headers on Buf1 */
2987 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2988 			     DMA_TO_DEVICE);
2989 	if (dma_mapping_error(priv->device, des))
2990 		goto dma_map_err;
2991 
2992 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2993 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2994 
2995 	if (priv->dma_cap.addr64 <= 32) {
2996 		first->des0 = cpu_to_le32(des);
2997 
2998 		/* Fill start of payload in buff2 of first descriptor */
2999 		if (pay_len)
3000 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3001 
3002 		/* If needed take extra descriptors to fill the remaining payload */
3003 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3004 	} else {
3005 		stmmac_set_desc_addr(priv, first, des);
3006 		tmp_pay_len = pay_len;
3007 		des += proto_hdr_len;
3008 		pay_len = 0;
3009 	}
3010 
3011 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3012 
3013 	/* Prepare fragments */
3014 	for (i = 0; i < nfrags; i++) {
3015 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3016 
3017 		des = skb_frag_dma_map(priv->device, frag, 0,
3018 				       skb_frag_size(frag),
3019 				       DMA_TO_DEVICE);
3020 		if (dma_mapping_error(priv->device, des))
3021 			goto dma_map_err;
3022 
3023 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3024 				     (i == nfrags - 1), queue);
3025 
3026 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3027 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3028 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3029 	}
3030 
3031 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3032 
3033 	/* Only the last descriptor gets to point to the skb. */
3034 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3035 
3036 	/* Manage tx mitigation */
3037 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3038 	tx_q->tx_count_frames += tx_packets;
3039 
3040 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3041 		set_ic = true;
3042 	else if (!priv->tx_coal_frames)
3043 		set_ic = false;
3044 	else if (tx_packets > priv->tx_coal_frames)
3045 		set_ic = true;
3046 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3047 		set_ic = true;
3048 	else
3049 		set_ic = false;
3050 
3051 	if (set_ic) {
3052 		desc = &tx_q->dma_tx[tx_q->cur_tx];
3053 		tx_q->tx_count_frames = 0;
3054 		stmmac_set_tx_ic(priv, desc);
3055 		priv->xstats.tx_set_ic_bit++;
3056 	}
3057 
3058 	/* We've used all descriptors we need for this skb, however,
3059 	 * advance cur_tx so that it references a fresh descriptor.
3060 	 * ndo_start_xmit will fill this descriptor the next time it's
3061 	 * called and stmmac_tx_clean may clean up to this descriptor.
3062 	 */
3063 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3064 
3065 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3066 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3067 			  __func__);
3068 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3069 	}
3070 
3071 	dev->stats.tx_bytes += skb->len;
3072 	priv->xstats.tx_tso_frames++;
3073 	priv->xstats.tx_tso_nfrags += nfrags;
3074 
3075 	if (priv->sarc_type)
3076 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3077 
3078 	skb_tx_timestamp(skb);
3079 
3080 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3081 		     priv->hwts_tx_en)) {
3082 		/* declare that device is doing timestamping */
3083 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3084 		stmmac_enable_tx_timestamp(priv, first);
3085 	}
3086 
3087 	/* Complete the first descriptor before granting the DMA */
3088 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3089 			proto_hdr_len,
3090 			pay_len,
3091 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3092 			hdr / 4, (skb->len - proto_hdr_len));
3093 
3094 	/* If context desc is used to change MSS */
3095 	if (mss_desc) {
3096 		/* Make sure that first descriptor has been completely
3097 		 * written, including its own bit. This is because MSS is
3098 		 * actually before first descriptor, so we need to make
3099 		 * sure that MSS's own bit is the last thing written.
3100 		 */
3101 		dma_wmb();
3102 		stmmac_set_tx_owner(priv, mss_desc);
3103 	}
3104 
3105 	/* The own bit must be the latest setting done when prepare the
3106 	 * descriptor and then barrier is needed to make sure that
3107 	 * all is coherent before granting the DMA engine.
3108 	 */
3109 	wmb();
3110 
3111 	if (netif_msg_pktdata(priv)) {
3112 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3113 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3114 			tx_q->cur_tx, first, nfrags);
3115 
3116 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3117 
3118 		pr_info(">>> frame to be transmitted: ");
3119 		print_pkt(skb->data, skb_headlen(skb));
3120 	}
3121 
3122 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3123 
3124 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3125 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3126 	stmmac_tx_timer_arm(priv, queue);
3127 
3128 	return NETDEV_TX_OK;
3129 
3130 dma_map_err:
3131 	dev_err(priv->device, "Tx dma map failed\n");
3132 	dev_kfree_skb(skb);
3133 	priv->dev->stats.tx_dropped++;
3134 	return NETDEV_TX_OK;
3135 }
3136 
3137 /**
3138  *  stmmac_xmit - Tx entry point of the driver
3139  *  @skb : the socket buffer
3140  *  @dev : device pointer
3141  *  Description : this is the tx entry point of the driver.
3142  *  It programs the chain or the ring and supports oversized frames
3143  *  and SG feature.
3144  */
3145 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3146 {
3147 	unsigned int first_entry, tx_packets, enh_desc;
3148 	struct stmmac_priv *priv = netdev_priv(dev);
3149 	unsigned int nopaged_len = skb_headlen(skb);
3150 	int i, csum_insertion = 0, is_jumbo = 0;
3151 	u32 queue = skb_get_queue_mapping(skb);
3152 	int nfrags = skb_shinfo(skb)->nr_frags;
3153 	int gso = skb_shinfo(skb)->gso_type;
3154 	struct dma_desc *desc, *first;
3155 	struct stmmac_tx_queue *tx_q;
3156 	bool has_vlan, set_ic;
3157 	int entry, first_tx;
3158 	dma_addr_t des;
3159 
3160 	tx_q = &priv->tx_queue[queue];
3161 	first_tx = tx_q->cur_tx;
3162 
3163 	if (priv->tx_path_in_lpi_mode)
3164 		stmmac_disable_eee_mode(priv);
3165 
3166 	/* Manage oversized TCP frames for GMAC4 device */
3167 	if (skb_is_gso(skb) && priv->tso) {
3168 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3169 			return stmmac_tso_xmit(skb, dev);
3170 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3171 			return stmmac_tso_xmit(skb, dev);
3172 	}
3173 
3174 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3175 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3176 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3177 								queue));
3178 			/* This is a hard error, log it. */
3179 			netdev_err(priv->dev,
3180 				   "%s: Tx Ring full when queue awake\n",
3181 				   __func__);
3182 		}
3183 		return NETDEV_TX_BUSY;
3184 	}
3185 
3186 	/* Check if VLAN can be inserted by HW */
3187 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3188 
3189 	entry = tx_q->cur_tx;
3190 	first_entry = entry;
3191 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3192 
3193 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3194 
3195 	if (likely(priv->extend_desc))
3196 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3197 	else
3198 		desc = tx_q->dma_tx + entry;
3199 
3200 	first = desc;
3201 
3202 	if (has_vlan)
3203 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3204 
3205 	enh_desc = priv->plat->enh_desc;
3206 	/* To program the descriptors according to the size of the frame */
3207 	if (enh_desc)
3208 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3209 
3210 	if (unlikely(is_jumbo)) {
3211 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3212 		if (unlikely(entry < 0) && (entry != -EINVAL))
3213 			goto dma_map_err;
3214 	}
3215 
3216 	for (i = 0; i < nfrags; i++) {
3217 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3218 		int len = skb_frag_size(frag);
3219 		bool last_segment = (i == (nfrags - 1));
3220 
3221 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3222 		WARN_ON(tx_q->tx_skbuff[entry]);
3223 
3224 		if (likely(priv->extend_desc))
3225 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3226 		else
3227 			desc = tx_q->dma_tx + entry;
3228 
3229 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3230 				       DMA_TO_DEVICE);
3231 		if (dma_mapping_error(priv->device, des))
3232 			goto dma_map_err; /* should reuse desc w/o issues */
3233 
3234 		tx_q->tx_skbuff_dma[entry].buf = des;
3235 
3236 		stmmac_set_desc_addr(priv, desc, des);
3237 
3238 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3239 		tx_q->tx_skbuff_dma[entry].len = len;
3240 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3241 
3242 		/* Prepare the descriptor and set the own bit too */
3243 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3244 				priv->mode, 1, last_segment, skb->len);
3245 	}
3246 
3247 	/* Only the last descriptor gets to point to the skb. */
3248 	tx_q->tx_skbuff[entry] = skb;
3249 
3250 	/* According to the coalesce parameter the IC bit for the latest
3251 	 * segment is reset and the timer re-started to clean the tx status.
3252 	 * This approach takes care about the fragments: desc is the first
3253 	 * element in case of no SG.
3254 	 */
3255 	tx_packets = (entry + 1) - first_tx;
3256 	tx_q->tx_count_frames += tx_packets;
3257 
3258 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3259 		set_ic = true;
3260 	else if (!priv->tx_coal_frames)
3261 		set_ic = false;
3262 	else if (tx_packets > priv->tx_coal_frames)
3263 		set_ic = true;
3264 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3265 		set_ic = true;
3266 	else
3267 		set_ic = false;
3268 
3269 	if (set_ic) {
3270 		if (likely(priv->extend_desc))
3271 			desc = &tx_q->dma_etx[entry].basic;
3272 		else
3273 			desc = &tx_q->dma_tx[entry];
3274 
3275 		tx_q->tx_count_frames = 0;
3276 		stmmac_set_tx_ic(priv, desc);
3277 		priv->xstats.tx_set_ic_bit++;
3278 	}
3279 
3280 	/* We've used all descriptors we need for this skb, however,
3281 	 * advance cur_tx so that it references a fresh descriptor.
3282 	 * ndo_start_xmit will fill this descriptor the next time it's
3283 	 * called and stmmac_tx_clean may clean up to this descriptor.
3284 	 */
3285 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3286 	tx_q->cur_tx = entry;
3287 
3288 	if (netif_msg_pktdata(priv)) {
3289 		void *tx_head;
3290 
3291 		netdev_dbg(priv->dev,
3292 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3293 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3294 			   entry, first, nfrags);
3295 
3296 		if (priv->extend_desc)
3297 			tx_head = (void *)tx_q->dma_etx;
3298 		else
3299 			tx_head = (void *)tx_q->dma_tx;
3300 
3301 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3302 
3303 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3304 		print_pkt(skb->data, skb->len);
3305 	}
3306 
3307 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3308 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3309 			  __func__);
3310 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3311 	}
3312 
3313 	dev->stats.tx_bytes += skb->len;
3314 
3315 	if (priv->sarc_type)
3316 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3317 
3318 	skb_tx_timestamp(skb);
3319 
3320 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3321 	 * problems because all the descriptors are actually ready to be
3322 	 * passed to the DMA engine.
3323 	 */
3324 	if (likely(!is_jumbo)) {
3325 		bool last_segment = (nfrags == 0);
3326 
3327 		des = dma_map_single(priv->device, skb->data,
3328 				     nopaged_len, DMA_TO_DEVICE);
3329 		if (dma_mapping_error(priv->device, des))
3330 			goto dma_map_err;
3331 
3332 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3333 
3334 		stmmac_set_desc_addr(priv, first, des);
3335 
3336 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3337 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3338 
3339 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3340 			     priv->hwts_tx_en)) {
3341 			/* declare that device is doing timestamping */
3342 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3343 			stmmac_enable_tx_timestamp(priv, first);
3344 		}
3345 
3346 		/* Prepare the first descriptor setting the OWN bit too */
3347 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3348 				csum_insertion, priv->mode, 1, last_segment,
3349 				skb->len);
3350 	} else {
3351 		stmmac_set_tx_owner(priv, first);
3352 	}
3353 
3354 	/* The own bit must be the latest setting done when prepare the
3355 	 * descriptor and then barrier is needed to make sure that
3356 	 * all is coherent before granting the DMA engine.
3357 	 */
3358 	wmb();
3359 
3360 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3361 
3362 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3363 
3364 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3365 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3366 	stmmac_tx_timer_arm(priv, queue);
3367 
3368 	return NETDEV_TX_OK;
3369 
3370 dma_map_err:
3371 	netdev_err(priv->dev, "Tx DMA map failed\n");
3372 	dev_kfree_skb(skb);
3373 	priv->dev->stats.tx_dropped++;
3374 	return NETDEV_TX_OK;
3375 }
3376 
3377 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3378 {
3379 	struct vlan_ethhdr *veth;
3380 	__be16 vlan_proto;
3381 	u16 vlanid;
3382 
3383 	veth = (struct vlan_ethhdr *)skb->data;
3384 	vlan_proto = veth->h_vlan_proto;
3385 
3386 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3387 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3388 	    (vlan_proto == htons(ETH_P_8021AD) &&
3389 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3390 		/* pop the vlan tag */
3391 		vlanid = ntohs(veth->h_vlan_TCI);
3392 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3393 		skb_pull(skb, VLAN_HLEN);
3394 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3395 	}
3396 }
3397 
3398 
3399 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3400 {
3401 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3402 		return 0;
3403 
3404 	return 1;
3405 }
3406 
3407 /**
3408  * stmmac_rx_refill - refill used skb preallocated buffers
3409  * @priv: driver private structure
3410  * @queue: RX queue index
3411  * Description : this is to reallocate the skb for the reception process
3412  * that is based on zero-copy.
3413  */
3414 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3415 {
3416 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3417 	int len, dirty = stmmac_rx_dirty(priv, queue);
3418 	unsigned int entry = rx_q->dirty_rx;
3419 
3420 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3421 
3422 	while (dirty-- > 0) {
3423 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3424 		struct dma_desc *p;
3425 		bool use_rx_wd;
3426 
3427 		if (priv->extend_desc)
3428 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3429 		else
3430 			p = rx_q->dma_rx + entry;
3431 
3432 		if (!buf->page) {
3433 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3434 			if (!buf->page)
3435 				break;
3436 		}
3437 
3438 		if (priv->sph && !buf->sec_page) {
3439 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3440 			if (!buf->sec_page)
3441 				break;
3442 
3443 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3444 
3445 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3446 						   len, DMA_FROM_DEVICE);
3447 		}
3448 
3449 		buf->addr = page_pool_get_dma_addr(buf->page);
3450 
3451 		/* Sync whole allocation to device. This will invalidate old
3452 		 * data.
3453 		 */
3454 		dma_sync_single_for_device(priv->device, buf->addr, len,
3455 					   DMA_FROM_DEVICE);
3456 
3457 		stmmac_set_desc_addr(priv, p, buf->addr);
3458 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3459 		stmmac_refill_desc3(priv, rx_q, p);
3460 
3461 		rx_q->rx_count_frames++;
3462 		rx_q->rx_count_frames += priv->rx_coal_frames;
3463 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3464 			rx_q->rx_count_frames = 0;
3465 
3466 		use_rx_wd = !priv->rx_coal_frames;
3467 		use_rx_wd |= rx_q->rx_count_frames > 0;
3468 		if (!priv->use_riwt)
3469 			use_rx_wd = false;
3470 
3471 		dma_wmb();
3472 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3473 
3474 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3475 	}
3476 	rx_q->dirty_rx = entry;
3477 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3478 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3479 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3480 }
3481 
3482 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3483 				       struct dma_desc *p,
3484 				       int status, unsigned int len)
3485 {
3486 	int ret, coe = priv->hw->rx_csum;
3487 	unsigned int plen = 0, hlen = 0;
3488 
3489 	/* Not first descriptor, buffer is always zero */
3490 	if (priv->sph && len)
3491 		return 0;
3492 
3493 	/* First descriptor, get split header length */
3494 	ret = stmmac_get_rx_header_len(priv, p, &hlen);
3495 	if (priv->sph && hlen) {
3496 		priv->xstats.rx_split_hdr_pkt_n++;
3497 		return hlen;
3498 	}
3499 
3500 	/* First descriptor, not last descriptor and not split header */
3501 	if (status & rx_not_ls)
3502 		return priv->dma_buf_sz;
3503 
3504 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3505 
3506 	/* First descriptor and last descriptor and not split header */
3507 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3508 }
3509 
3510 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3511 				       struct dma_desc *p,
3512 				       int status, unsigned int len)
3513 {
3514 	int coe = priv->hw->rx_csum;
3515 	unsigned int plen = 0;
3516 
3517 	/* Not split header, buffer is not available */
3518 	if (!priv->sph)
3519 		return 0;
3520 
3521 	/* Not last descriptor */
3522 	if (status & rx_not_ls)
3523 		return priv->dma_buf_sz;
3524 
3525 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3526 
3527 	/* Last descriptor */
3528 	return plen - len;
3529 }
3530 
3531 /**
3532  * stmmac_rx - manage the receive process
3533  * @priv: driver private structure
3534  * @limit: napi bugget
3535  * @queue: RX queue index.
3536  * Description :  this the function called by the napi poll method.
3537  * It gets all the frames inside the ring.
3538  */
3539 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3540 {
3541 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3542 	struct stmmac_channel *ch = &priv->channel[queue];
3543 	unsigned int count = 0, error = 0, len = 0;
3544 	int status = 0, coe = priv->hw->rx_csum;
3545 	unsigned int next_entry = rx_q->cur_rx;
3546 	struct sk_buff *skb = NULL;
3547 
3548 	if (netif_msg_rx_status(priv)) {
3549 		void *rx_head;
3550 
3551 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3552 		if (priv->extend_desc)
3553 			rx_head = (void *)rx_q->dma_erx;
3554 		else
3555 			rx_head = (void *)rx_q->dma_rx;
3556 
3557 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3558 	}
3559 	while (count < limit) {
3560 		unsigned int buf1_len = 0, buf2_len = 0;
3561 		enum pkt_hash_types hash_type;
3562 		struct stmmac_rx_buffer *buf;
3563 		struct dma_desc *np, *p;
3564 		int entry;
3565 		u32 hash;
3566 
3567 		if (!count && rx_q->state_saved) {
3568 			skb = rx_q->state.skb;
3569 			error = rx_q->state.error;
3570 			len = rx_q->state.len;
3571 		} else {
3572 			rx_q->state_saved = false;
3573 			skb = NULL;
3574 			error = 0;
3575 			len = 0;
3576 		}
3577 
3578 		if (count >= limit)
3579 			break;
3580 
3581 read_again:
3582 		buf1_len = 0;
3583 		buf2_len = 0;
3584 		entry = next_entry;
3585 		buf = &rx_q->buf_pool[entry];
3586 
3587 		if (priv->extend_desc)
3588 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3589 		else
3590 			p = rx_q->dma_rx + entry;
3591 
3592 		/* read the status of the incoming frame */
3593 		status = stmmac_rx_status(priv, &priv->dev->stats,
3594 				&priv->xstats, p);
3595 		/* check if managed by the DMA otherwise go ahead */
3596 		if (unlikely(status & dma_own))
3597 			break;
3598 
3599 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3600 		next_entry = rx_q->cur_rx;
3601 
3602 		if (priv->extend_desc)
3603 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3604 		else
3605 			np = rx_q->dma_rx + next_entry;
3606 
3607 		prefetch(np);
3608 
3609 		if (priv->extend_desc)
3610 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3611 					&priv->xstats, rx_q->dma_erx + entry);
3612 		if (unlikely(status == discard_frame)) {
3613 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3614 			buf->page = NULL;
3615 			error = 1;
3616 			if (!priv->hwts_rx_en)
3617 				priv->dev->stats.rx_errors++;
3618 		}
3619 
3620 		if (unlikely(error && (status & rx_not_ls)))
3621 			goto read_again;
3622 		if (unlikely(error)) {
3623 			dev_kfree_skb(skb);
3624 			skb = NULL;
3625 			count++;
3626 			continue;
3627 		}
3628 
3629 		/* Buffer is good. Go on. */
3630 
3631 		prefetch(page_address(buf->page));
3632 		if (buf->sec_page)
3633 			prefetch(page_address(buf->sec_page));
3634 
3635 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3636 		len += buf1_len;
3637 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3638 		len += buf2_len;
3639 
3640 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3641 		 * Type frames (LLC/LLC-SNAP)
3642 		 *
3643 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3644 		 * feature is always disabled and packets need to be
3645 		 * stripped manually.
3646 		 */
3647 		if (likely(!(status & rx_not_ls)) &&
3648 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3649 		     unlikely(status != llc_snap))) {
3650 			if (buf2_len)
3651 				buf2_len -= ETH_FCS_LEN;
3652 			else
3653 				buf1_len -= ETH_FCS_LEN;
3654 
3655 			len -= ETH_FCS_LEN;
3656 		}
3657 
3658 		if (!skb) {
3659 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3660 			if (!skb) {
3661 				priv->dev->stats.rx_dropped++;
3662 				count++;
3663 				goto drain_data;
3664 			}
3665 
3666 			dma_sync_single_for_cpu(priv->device, buf->addr,
3667 						buf1_len, DMA_FROM_DEVICE);
3668 			skb_copy_to_linear_data(skb, page_address(buf->page),
3669 						buf1_len);
3670 			skb_put(skb, buf1_len);
3671 
3672 			/* Data payload copied into SKB, page ready for recycle */
3673 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3674 			buf->page = NULL;
3675 		} else if (buf1_len) {
3676 			dma_sync_single_for_cpu(priv->device, buf->addr,
3677 						buf1_len, DMA_FROM_DEVICE);
3678 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3679 					buf->page, 0, buf1_len,
3680 					priv->dma_buf_sz);
3681 
3682 			/* Data payload appended into SKB */
3683 			page_pool_release_page(rx_q->page_pool, buf->page);
3684 			buf->page = NULL;
3685 		}
3686 
3687 		if (buf2_len) {
3688 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3689 						buf2_len, DMA_FROM_DEVICE);
3690 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3691 					buf->sec_page, 0, buf2_len,
3692 					priv->dma_buf_sz);
3693 
3694 			/* Data payload appended into SKB */
3695 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3696 			buf->sec_page = NULL;
3697 		}
3698 
3699 drain_data:
3700 		if (likely(status & rx_not_ls))
3701 			goto read_again;
3702 		if (!skb)
3703 			continue;
3704 
3705 		/* Got entire packet into SKB. Finish it. */
3706 
3707 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3708 		stmmac_rx_vlan(priv->dev, skb);
3709 		skb->protocol = eth_type_trans(skb, priv->dev);
3710 
3711 		if (unlikely(!coe))
3712 			skb_checksum_none_assert(skb);
3713 		else
3714 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3715 
3716 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3717 			skb_set_hash(skb, hash, hash_type);
3718 
3719 		skb_record_rx_queue(skb, queue);
3720 		napi_gro_receive(&ch->rx_napi, skb);
3721 		skb = NULL;
3722 
3723 		priv->dev->stats.rx_packets++;
3724 		priv->dev->stats.rx_bytes += len;
3725 		count++;
3726 	}
3727 
3728 	if (status & rx_not_ls || skb) {
3729 		rx_q->state_saved = true;
3730 		rx_q->state.skb = skb;
3731 		rx_q->state.error = error;
3732 		rx_q->state.len = len;
3733 	}
3734 
3735 	stmmac_rx_refill(priv, queue);
3736 
3737 	priv->xstats.rx_pkt_n += count;
3738 
3739 	return count;
3740 }
3741 
3742 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3743 {
3744 	struct stmmac_channel *ch =
3745 		container_of(napi, struct stmmac_channel, rx_napi);
3746 	struct stmmac_priv *priv = ch->priv_data;
3747 	u32 chan = ch->index;
3748 	int work_done;
3749 
3750 	priv->xstats.napi_poll++;
3751 
3752 	work_done = stmmac_rx(priv, budget, chan);
3753 	if (work_done < budget && napi_complete_done(napi, work_done))
3754 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3755 	return work_done;
3756 }
3757 
3758 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3759 {
3760 	struct stmmac_channel *ch =
3761 		container_of(napi, struct stmmac_channel, tx_napi);
3762 	struct stmmac_priv *priv = ch->priv_data;
3763 	struct stmmac_tx_queue *tx_q;
3764 	u32 chan = ch->index;
3765 	int work_done;
3766 
3767 	priv->xstats.napi_poll++;
3768 
3769 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3770 	work_done = min(work_done, budget);
3771 
3772 	if (work_done < budget)
3773 		napi_complete_done(napi, work_done);
3774 
3775 	/* Force transmission restart */
3776 	tx_q = &priv->tx_queue[chan];
3777 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3778 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3779 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3780 				       chan);
3781 	}
3782 
3783 	return work_done;
3784 }
3785 
3786 /**
3787  *  stmmac_tx_timeout
3788  *  @dev : Pointer to net device structure
3789  *  Description: this function is called when a packet transmission fails to
3790  *   complete within a reasonable time. The driver will mark the error in the
3791  *   netdev structure and arrange for the device to be reset to a sane state
3792  *   in order to transmit a new packet.
3793  */
3794 static void stmmac_tx_timeout(struct net_device *dev)
3795 {
3796 	struct stmmac_priv *priv = netdev_priv(dev);
3797 
3798 	stmmac_global_err(priv);
3799 }
3800 
3801 /**
3802  *  stmmac_set_rx_mode - entry point for multicast addressing
3803  *  @dev : pointer to the device structure
3804  *  Description:
3805  *  This function is a driver entry point which gets called by the kernel
3806  *  whenever multicast addresses must be enabled/disabled.
3807  *  Return value:
3808  *  void.
3809  */
3810 static void stmmac_set_rx_mode(struct net_device *dev)
3811 {
3812 	struct stmmac_priv *priv = netdev_priv(dev);
3813 
3814 	stmmac_set_filter(priv, priv->hw, dev);
3815 }
3816 
3817 /**
3818  *  stmmac_change_mtu - entry point to change MTU size for the device.
3819  *  @dev : device pointer.
3820  *  @new_mtu : the new MTU size for the device.
3821  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3822  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3823  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3824  *  Return value:
3825  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3826  *  file on failure.
3827  */
3828 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3829 {
3830 	struct stmmac_priv *priv = netdev_priv(dev);
3831 	int txfifosz = priv->plat->tx_fifo_size;
3832 
3833 	if (txfifosz == 0)
3834 		txfifosz = priv->dma_cap.tx_fifo_size;
3835 
3836 	txfifosz /= priv->plat->tx_queues_to_use;
3837 
3838 	if (netif_running(dev)) {
3839 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3840 		return -EBUSY;
3841 	}
3842 
3843 	new_mtu = STMMAC_ALIGN(new_mtu);
3844 
3845 	/* If condition true, FIFO is too small or MTU too large */
3846 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3847 		return -EINVAL;
3848 
3849 	dev->mtu = new_mtu;
3850 
3851 	netdev_update_features(dev);
3852 
3853 	return 0;
3854 }
3855 
3856 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3857 					     netdev_features_t features)
3858 {
3859 	struct stmmac_priv *priv = netdev_priv(dev);
3860 
3861 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3862 		features &= ~NETIF_F_RXCSUM;
3863 
3864 	if (!priv->plat->tx_coe)
3865 		features &= ~NETIF_F_CSUM_MASK;
3866 
3867 	/* Some GMAC devices have a bugged Jumbo frame support that
3868 	 * needs to have the Tx COE disabled for oversized frames
3869 	 * (due to limited buffer sizes). In this case we disable
3870 	 * the TX csum insertion in the TDES and not use SF.
3871 	 */
3872 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3873 		features &= ~NETIF_F_CSUM_MASK;
3874 
3875 	/* Disable tso if asked by ethtool */
3876 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3877 		if (features & NETIF_F_TSO)
3878 			priv->tso = true;
3879 		else
3880 			priv->tso = false;
3881 	}
3882 
3883 	return features;
3884 }
3885 
3886 static int stmmac_set_features(struct net_device *netdev,
3887 			       netdev_features_t features)
3888 {
3889 	struct stmmac_priv *priv = netdev_priv(netdev);
3890 	bool sph_en;
3891 	u32 chan;
3892 
3893 	/* Keep the COE Type in case of csum is supporting */
3894 	if (features & NETIF_F_RXCSUM)
3895 		priv->hw->rx_csum = priv->plat->rx_coe;
3896 	else
3897 		priv->hw->rx_csum = 0;
3898 	/* No check needed because rx_coe has been set before and it will be
3899 	 * fixed in case of issue.
3900 	 */
3901 	stmmac_rx_ipc(priv, priv->hw);
3902 
3903 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3904 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3905 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3906 
3907 	return 0;
3908 }
3909 
3910 /**
3911  *  stmmac_interrupt - main ISR
3912  *  @irq: interrupt number.
3913  *  @dev_id: to pass the net device pointer.
3914  *  Description: this is the main driver interrupt service routine.
3915  *  It can call:
3916  *  o DMA service routine (to manage incoming frame reception and transmission
3917  *    status)
3918  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3919  *    interrupts.
3920  */
3921 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3922 {
3923 	struct net_device *dev = (struct net_device *)dev_id;
3924 	struct stmmac_priv *priv = netdev_priv(dev);
3925 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3926 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3927 	u32 queues_count;
3928 	u32 queue;
3929 	bool xmac;
3930 
3931 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3932 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3933 
3934 	if (priv->irq_wake)
3935 		pm_wakeup_event(priv->device, 0);
3936 
3937 	if (unlikely(!dev)) {
3938 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3939 		return IRQ_NONE;
3940 	}
3941 
3942 	/* Check if adapter is up */
3943 	if (test_bit(STMMAC_DOWN, &priv->state))
3944 		return IRQ_HANDLED;
3945 	/* Check if a fatal error happened */
3946 	if (stmmac_safety_feat_interrupt(priv))
3947 		return IRQ_HANDLED;
3948 
3949 	/* To handle GMAC own interrupts */
3950 	if ((priv->plat->has_gmac) || xmac) {
3951 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3952 		int mtl_status;
3953 
3954 		if (unlikely(status)) {
3955 			/* For LPI we need to save the tx status */
3956 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3957 				priv->tx_path_in_lpi_mode = true;
3958 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3959 				priv->tx_path_in_lpi_mode = false;
3960 		}
3961 
3962 		for (queue = 0; queue < queues_count; queue++) {
3963 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3964 
3965 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3966 								queue);
3967 			if (mtl_status != -EINVAL)
3968 				status |= mtl_status;
3969 
3970 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3971 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3972 						       rx_q->rx_tail_addr,
3973 						       queue);
3974 		}
3975 
3976 		/* PCS link status */
3977 		if (priv->hw->pcs) {
3978 			if (priv->xstats.pcs_link)
3979 				netif_carrier_on(dev);
3980 			else
3981 				netif_carrier_off(dev);
3982 		}
3983 	}
3984 
3985 	/* To handle DMA interrupts */
3986 	stmmac_dma_interrupt(priv);
3987 
3988 	return IRQ_HANDLED;
3989 }
3990 
3991 #ifdef CONFIG_NET_POLL_CONTROLLER
3992 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3993  * to allow network I/O with interrupts disabled.
3994  */
3995 static void stmmac_poll_controller(struct net_device *dev)
3996 {
3997 	disable_irq(dev->irq);
3998 	stmmac_interrupt(dev->irq, dev);
3999 	enable_irq(dev->irq);
4000 }
4001 #endif
4002 
4003 /**
4004  *  stmmac_ioctl - Entry point for the Ioctl
4005  *  @dev: Device pointer.
4006  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4007  *  a proprietary structure used to pass information to the driver.
4008  *  @cmd: IOCTL command
4009  *  Description:
4010  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4011  */
4012 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4013 {
4014 	struct stmmac_priv *priv = netdev_priv (dev);
4015 	int ret = -EOPNOTSUPP;
4016 
4017 	if (!netif_running(dev))
4018 		return -EINVAL;
4019 
4020 	switch (cmd) {
4021 	case SIOCGMIIPHY:
4022 	case SIOCGMIIREG:
4023 	case SIOCSMIIREG:
4024 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4025 		break;
4026 	case SIOCSHWTSTAMP:
4027 		ret = stmmac_hwtstamp_set(dev, rq);
4028 		break;
4029 	case SIOCGHWTSTAMP:
4030 		ret = stmmac_hwtstamp_get(dev, rq);
4031 		break;
4032 	default:
4033 		break;
4034 	}
4035 
4036 	return ret;
4037 }
4038 
4039 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4040 				    void *cb_priv)
4041 {
4042 	struct stmmac_priv *priv = cb_priv;
4043 	int ret = -EOPNOTSUPP;
4044 
4045 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4046 		return ret;
4047 
4048 	stmmac_disable_all_queues(priv);
4049 
4050 	switch (type) {
4051 	case TC_SETUP_CLSU32:
4052 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4053 		break;
4054 	case TC_SETUP_CLSFLOWER:
4055 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4056 		break;
4057 	default:
4058 		break;
4059 	}
4060 
4061 	stmmac_enable_all_queues(priv);
4062 	return ret;
4063 }
4064 
4065 static LIST_HEAD(stmmac_block_cb_list);
4066 
4067 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4068 			   void *type_data)
4069 {
4070 	struct stmmac_priv *priv = netdev_priv(ndev);
4071 
4072 	switch (type) {
4073 	case TC_SETUP_BLOCK:
4074 		return flow_block_cb_setup_simple(type_data,
4075 						  &stmmac_block_cb_list,
4076 						  stmmac_setup_tc_block_cb,
4077 						  priv, priv, true);
4078 	case TC_SETUP_QDISC_CBS:
4079 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4080 	default:
4081 		return -EOPNOTSUPP;
4082 	}
4083 }
4084 
4085 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4086 			       struct net_device *sb_dev)
4087 {
4088 	int gso = skb_shinfo(skb)->gso_type;
4089 
4090 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4091 		/*
4092 		 * There is no way to determine the number of TSO/USO
4093 		 * capable Queues. Let's use always the Queue 0
4094 		 * because if TSO/USO is supported then at least this
4095 		 * one will be capable.
4096 		 */
4097 		return 0;
4098 	}
4099 
4100 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4101 }
4102 
4103 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4104 {
4105 	struct stmmac_priv *priv = netdev_priv(ndev);
4106 	int ret = 0;
4107 
4108 	ret = eth_mac_addr(ndev, addr);
4109 	if (ret)
4110 		return ret;
4111 
4112 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4113 
4114 	return ret;
4115 }
4116 
4117 #ifdef CONFIG_DEBUG_FS
4118 static struct dentry *stmmac_fs_dir;
4119 
4120 static void sysfs_display_ring(void *head, int size, int extend_desc,
4121 			       struct seq_file *seq)
4122 {
4123 	int i;
4124 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4125 	struct dma_desc *p = (struct dma_desc *)head;
4126 
4127 	for (i = 0; i < size; i++) {
4128 		if (extend_desc) {
4129 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4130 				   i, (unsigned int)virt_to_phys(ep),
4131 				   le32_to_cpu(ep->basic.des0),
4132 				   le32_to_cpu(ep->basic.des1),
4133 				   le32_to_cpu(ep->basic.des2),
4134 				   le32_to_cpu(ep->basic.des3));
4135 			ep++;
4136 		} else {
4137 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4138 				   i, (unsigned int)virt_to_phys(p),
4139 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4140 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4141 			p++;
4142 		}
4143 		seq_printf(seq, "\n");
4144 	}
4145 }
4146 
4147 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4148 {
4149 	struct net_device *dev = seq->private;
4150 	struct stmmac_priv *priv = netdev_priv(dev);
4151 	u32 rx_count = priv->plat->rx_queues_to_use;
4152 	u32 tx_count = priv->plat->tx_queues_to_use;
4153 	u32 queue;
4154 
4155 	if ((dev->flags & IFF_UP) == 0)
4156 		return 0;
4157 
4158 	for (queue = 0; queue < rx_count; queue++) {
4159 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4160 
4161 		seq_printf(seq, "RX Queue %d:\n", queue);
4162 
4163 		if (priv->extend_desc) {
4164 			seq_printf(seq, "Extended descriptor ring:\n");
4165 			sysfs_display_ring((void *)rx_q->dma_erx,
4166 					   DMA_RX_SIZE, 1, seq);
4167 		} else {
4168 			seq_printf(seq, "Descriptor ring:\n");
4169 			sysfs_display_ring((void *)rx_q->dma_rx,
4170 					   DMA_RX_SIZE, 0, seq);
4171 		}
4172 	}
4173 
4174 	for (queue = 0; queue < tx_count; queue++) {
4175 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4176 
4177 		seq_printf(seq, "TX Queue %d:\n", queue);
4178 
4179 		if (priv->extend_desc) {
4180 			seq_printf(seq, "Extended descriptor ring:\n");
4181 			sysfs_display_ring((void *)tx_q->dma_etx,
4182 					   DMA_TX_SIZE, 1, seq);
4183 		} else {
4184 			seq_printf(seq, "Descriptor ring:\n");
4185 			sysfs_display_ring((void *)tx_q->dma_tx,
4186 					   DMA_TX_SIZE, 0, seq);
4187 		}
4188 	}
4189 
4190 	return 0;
4191 }
4192 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4193 
4194 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4195 {
4196 	struct net_device *dev = seq->private;
4197 	struct stmmac_priv *priv = netdev_priv(dev);
4198 
4199 	if (!priv->hw_cap_support) {
4200 		seq_printf(seq, "DMA HW features not supported\n");
4201 		return 0;
4202 	}
4203 
4204 	seq_printf(seq, "==============================\n");
4205 	seq_printf(seq, "\tDMA HW features\n");
4206 	seq_printf(seq, "==============================\n");
4207 
4208 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4209 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4210 	seq_printf(seq, "\t1000 Mbps: %s\n",
4211 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4212 	seq_printf(seq, "\tHalf duplex: %s\n",
4213 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4214 	seq_printf(seq, "\tHash Filter: %s\n",
4215 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4216 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4217 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4218 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4219 		   (priv->dma_cap.pcs) ? "Y" : "N");
4220 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4221 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4222 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4223 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4224 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4225 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4226 	seq_printf(seq, "\tRMON module: %s\n",
4227 		   (priv->dma_cap.rmon) ? "Y" : "N");
4228 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4229 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4230 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4231 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4232 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4233 		   (priv->dma_cap.eee) ? "Y" : "N");
4234 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4235 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4236 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4237 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4238 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4239 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4240 	} else {
4241 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4242 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4243 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4244 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4245 	}
4246 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4247 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4248 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4249 		   priv->dma_cap.number_rx_channel);
4250 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4251 		   priv->dma_cap.number_tx_channel);
4252 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4253 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4254 
4255 	return 0;
4256 }
4257 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4258 
4259 static void stmmac_init_fs(struct net_device *dev)
4260 {
4261 	struct stmmac_priv *priv = netdev_priv(dev);
4262 
4263 	/* Create per netdev entries */
4264 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4265 
4266 	/* Entry to report DMA RX/TX rings */
4267 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4268 			    &stmmac_rings_status_fops);
4269 
4270 	/* Entry to report the DMA HW features */
4271 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4272 			    &stmmac_dma_cap_fops);
4273 }
4274 
4275 static void stmmac_exit_fs(struct net_device *dev)
4276 {
4277 	struct stmmac_priv *priv = netdev_priv(dev);
4278 
4279 	debugfs_remove_recursive(priv->dbgfs_dir);
4280 }
4281 #endif /* CONFIG_DEBUG_FS */
4282 
4283 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4284 {
4285 	unsigned char *data = (unsigned char *)&vid_le;
4286 	unsigned char data_byte = 0;
4287 	u32 crc = ~0x0;
4288 	u32 temp = 0;
4289 	int i, bits;
4290 
4291 	bits = get_bitmask_order(VLAN_VID_MASK);
4292 	for (i = 0; i < bits; i++) {
4293 		if ((i % 8) == 0)
4294 			data_byte = data[i / 8];
4295 
4296 		temp = ((crc & 1) ^ data_byte) & 1;
4297 		crc >>= 1;
4298 		data_byte >>= 1;
4299 
4300 		if (temp)
4301 			crc ^= 0xedb88320;
4302 	}
4303 
4304 	return crc;
4305 }
4306 
4307 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4308 {
4309 	u32 crc, hash = 0;
4310 	__le16 pmatch = 0;
4311 	int count = 0;
4312 	u16 vid = 0;
4313 
4314 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4315 		__le16 vid_le = cpu_to_le16(vid);
4316 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4317 		hash |= (1 << crc);
4318 		count++;
4319 	}
4320 
4321 	if (!priv->dma_cap.vlhash) {
4322 		if (count > 2) /* VID = 0 always passes filter */
4323 			return -EOPNOTSUPP;
4324 
4325 		pmatch = cpu_to_le16(vid);
4326 		hash = 0;
4327 	}
4328 
4329 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4330 }
4331 
4332 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4333 {
4334 	struct stmmac_priv *priv = netdev_priv(ndev);
4335 	bool is_double = false;
4336 	int ret;
4337 
4338 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4339 		is_double = true;
4340 
4341 	set_bit(vid, priv->active_vlans);
4342 	ret = stmmac_vlan_update(priv, is_double);
4343 	if (ret) {
4344 		clear_bit(vid, priv->active_vlans);
4345 		return ret;
4346 	}
4347 
4348 	return ret;
4349 }
4350 
4351 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4352 {
4353 	struct stmmac_priv *priv = netdev_priv(ndev);
4354 	bool is_double = false;
4355 
4356 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4357 		is_double = true;
4358 
4359 	clear_bit(vid, priv->active_vlans);
4360 	return stmmac_vlan_update(priv, is_double);
4361 }
4362 
4363 static const struct net_device_ops stmmac_netdev_ops = {
4364 	.ndo_open = stmmac_open,
4365 	.ndo_start_xmit = stmmac_xmit,
4366 	.ndo_stop = stmmac_release,
4367 	.ndo_change_mtu = stmmac_change_mtu,
4368 	.ndo_fix_features = stmmac_fix_features,
4369 	.ndo_set_features = stmmac_set_features,
4370 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4371 	.ndo_tx_timeout = stmmac_tx_timeout,
4372 	.ndo_do_ioctl = stmmac_ioctl,
4373 	.ndo_setup_tc = stmmac_setup_tc,
4374 	.ndo_select_queue = stmmac_select_queue,
4375 #ifdef CONFIG_NET_POLL_CONTROLLER
4376 	.ndo_poll_controller = stmmac_poll_controller,
4377 #endif
4378 	.ndo_set_mac_address = stmmac_set_mac_address,
4379 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4380 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4381 };
4382 
4383 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4384 {
4385 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4386 		return;
4387 	if (test_bit(STMMAC_DOWN, &priv->state))
4388 		return;
4389 
4390 	netdev_err(priv->dev, "Reset adapter.\n");
4391 
4392 	rtnl_lock();
4393 	netif_trans_update(priv->dev);
4394 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4395 		usleep_range(1000, 2000);
4396 
4397 	set_bit(STMMAC_DOWN, &priv->state);
4398 	dev_close(priv->dev);
4399 	dev_open(priv->dev, NULL);
4400 	clear_bit(STMMAC_DOWN, &priv->state);
4401 	clear_bit(STMMAC_RESETING, &priv->state);
4402 	rtnl_unlock();
4403 }
4404 
4405 static void stmmac_service_task(struct work_struct *work)
4406 {
4407 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4408 			service_task);
4409 
4410 	stmmac_reset_subtask(priv);
4411 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4412 }
4413 
4414 /**
4415  *  stmmac_hw_init - Init the MAC device
4416  *  @priv: driver private structure
4417  *  Description: this function is to configure the MAC device according to
4418  *  some platform parameters or the HW capability register. It prepares the
4419  *  driver to use either ring or chain modes and to setup either enhanced or
4420  *  normal descriptors.
4421  */
4422 static int stmmac_hw_init(struct stmmac_priv *priv)
4423 {
4424 	int ret;
4425 
4426 	/* dwmac-sun8i only work in chain mode */
4427 	if (priv->plat->has_sun8i)
4428 		chain_mode = 1;
4429 	priv->chain_mode = chain_mode;
4430 
4431 	/* Initialize HW Interface */
4432 	ret = stmmac_hwif_init(priv);
4433 	if (ret)
4434 		return ret;
4435 
4436 	/* Get the HW capability (new GMAC newer than 3.50a) */
4437 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4438 	if (priv->hw_cap_support) {
4439 		dev_info(priv->device, "DMA HW capability register supported\n");
4440 
4441 		/* We can override some gmac/dma configuration fields: e.g.
4442 		 * enh_desc, tx_coe (e.g. that are passed through the
4443 		 * platform) with the values from the HW capability
4444 		 * register (if supported).
4445 		 */
4446 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4447 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4448 		priv->hw->pmt = priv->plat->pmt;
4449 		if (priv->dma_cap.hash_tb_sz) {
4450 			priv->hw->multicast_filter_bins =
4451 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4452 			priv->hw->mcast_bits_log2 =
4453 					ilog2(priv->hw->multicast_filter_bins);
4454 		}
4455 
4456 		/* TXCOE doesn't work in thresh DMA mode */
4457 		if (priv->plat->force_thresh_dma_mode)
4458 			priv->plat->tx_coe = 0;
4459 		else
4460 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4461 
4462 		/* In case of GMAC4 rx_coe is from HW cap register. */
4463 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4464 
4465 		if (priv->dma_cap.rx_coe_type2)
4466 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4467 		else if (priv->dma_cap.rx_coe_type1)
4468 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4469 
4470 	} else {
4471 		dev_info(priv->device, "No HW DMA feature register supported\n");
4472 	}
4473 
4474 	if (priv->plat->rx_coe) {
4475 		priv->hw->rx_csum = priv->plat->rx_coe;
4476 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4477 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4478 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4479 	}
4480 	if (priv->plat->tx_coe)
4481 		dev_info(priv->device, "TX Checksum insertion supported\n");
4482 
4483 	if (priv->plat->pmt) {
4484 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4485 		device_set_wakeup_capable(priv->device, 1);
4486 	}
4487 
4488 	if (priv->dma_cap.tsoen)
4489 		dev_info(priv->device, "TSO supported\n");
4490 
4491 	/* Run HW quirks, if any */
4492 	if (priv->hwif_quirks) {
4493 		ret = priv->hwif_quirks(priv);
4494 		if (ret)
4495 			return ret;
4496 	}
4497 
4498 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4499 	 * In some case, for example on bugged HW this feature
4500 	 * has to be disable and this can be done by passing the
4501 	 * riwt_off field from the platform.
4502 	 */
4503 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4504 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4505 		priv->use_riwt = 1;
4506 		dev_info(priv->device,
4507 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4508 	}
4509 
4510 	return 0;
4511 }
4512 
4513 /**
4514  * stmmac_dvr_probe
4515  * @device: device pointer
4516  * @plat_dat: platform data pointer
4517  * @res: stmmac resource pointer
4518  * Description: this is the main probe function used to
4519  * call the alloc_etherdev, allocate the priv structure.
4520  * Return:
4521  * returns 0 on success, otherwise errno.
4522  */
4523 int stmmac_dvr_probe(struct device *device,
4524 		     struct plat_stmmacenet_data *plat_dat,
4525 		     struct stmmac_resources *res)
4526 {
4527 	struct net_device *ndev = NULL;
4528 	struct stmmac_priv *priv;
4529 	u32 queue, rxq, maxq;
4530 	int i, ret = 0;
4531 
4532 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4533 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4534 	if (!ndev)
4535 		return -ENOMEM;
4536 
4537 	SET_NETDEV_DEV(ndev, device);
4538 
4539 	priv = netdev_priv(ndev);
4540 	priv->device = device;
4541 	priv->dev = ndev;
4542 
4543 	stmmac_set_ethtool_ops(ndev);
4544 	priv->pause = pause;
4545 	priv->plat = plat_dat;
4546 	priv->ioaddr = res->addr;
4547 	priv->dev->base_addr = (unsigned long)res->addr;
4548 
4549 	priv->dev->irq = res->irq;
4550 	priv->wol_irq = res->wol_irq;
4551 	priv->lpi_irq = res->lpi_irq;
4552 
4553 	if (!IS_ERR_OR_NULL(res->mac))
4554 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4555 
4556 	dev_set_drvdata(device, priv->dev);
4557 
4558 	/* Verify driver arguments */
4559 	stmmac_verify_args();
4560 
4561 	/* Allocate workqueue */
4562 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4563 	if (!priv->wq) {
4564 		dev_err(priv->device, "failed to create workqueue\n");
4565 		return -ENOMEM;
4566 	}
4567 
4568 	INIT_WORK(&priv->service_task, stmmac_service_task);
4569 
4570 	/* Override with kernel parameters if supplied XXX CRS XXX
4571 	 * this needs to have multiple instances
4572 	 */
4573 	if ((phyaddr >= 0) && (phyaddr <= 31))
4574 		priv->plat->phy_addr = phyaddr;
4575 
4576 	if (priv->plat->stmmac_rst) {
4577 		ret = reset_control_assert(priv->plat->stmmac_rst);
4578 		reset_control_deassert(priv->plat->stmmac_rst);
4579 		/* Some reset controllers have only reset callback instead of
4580 		 * assert + deassert callbacks pair.
4581 		 */
4582 		if (ret == -ENOTSUPP)
4583 			reset_control_reset(priv->plat->stmmac_rst);
4584 	}
4585 
4586 	/* Init MAC and get the capabilities */
4587 	ret = stmmac_hw_init(priv);
4588 	if (ret)
4589 		goto error_hw_init;
4590 
4591 	stmmac_check_ether_addr(priv);
4592 
4593 	/* Configure real RX and TX queues */
4594 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4595 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4596 
4597 	ndev->netdev_ops = &stmmac_netdev_ops;
4598 
4599 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4600 			    NETIF_F_RXCSUM;
4601 
4602 	ret = stmmac_tc_init(priv, priv);
4603 	if (!ret) {
4604 		ndev->hw_features |= NETIF_F_HW_TC;
4605 	}
4606 
4607 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4608 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4609 		if (priv->plat->has_gmac4)
4610 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4611 		priv->tso = true;
4612 		dev_info(priv->device, "TSO feature enabled\n");
4613 	}
4614 
4615 	if (priv->dma_cap.sphen) {
4616 		ndev->hw_features |= NETIF_F_GRO;
4617 		priv->sph = true;
4618 		dev_info(priv->device, "SPH feature enabled\n");
4619 	}
4620 
4621 	if (priv->dma_cap.addr64) {
4622 		ret = dma_set_mask_and_coherent(device,
4623 				DMA_BIT_MASK(priv->dma_cap.addr64));
4624 		if (!ret) {
4625 			dev_info(priv->device, "Using %d bits DMA width\n",
4626 				 priv->dma_cap.addr64);
4627 
4628 			/*
4629 			 * If more than 32 bits can be addressed, make sure to
4630 			 * enable enhanced addressing mode.
4631 			 */
4632 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4633 				priv->plat->dma_cfg->eame = true;
4634 		} else {
4635 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4636 			if (ret) {
4637 				dev_err(priv->device, "Failed to set DMA Mask\n");
4638 				goto error_hw_init;
4639 			}
4640 
4641 			priv->dma_cap.addr64 = 32;
4642 		}
4643 	}
4644 
4645 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4646 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4647 #ifdef STMMAC_VLAN_TAG_USED
4648 	/* Both mac100 and gmac support receive VLAN tag detection */
4649 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4650 	if (priv->dma_cap.vlhash) {
4651 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4652 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4653 	}
4654 	if (priv->dma_cap.vlins) {
4655 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4656 		if (priv->dma_cap.dvlan)
4657 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4658 	}
4659 #endif
4660 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4661 
4662 	/* Initialize RSS */
4663 	rxq = priv->plat->rx_queues_to_use;
4664 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4665 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4666 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4667 
4668 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4669 		ndev->features |= NETIF_F_RXHASH;
4670 
4671 	/* MTU range: 46 - hw-specific max */
4672 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4673 	if (priv->plat->has_xgmac)
4674 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4675 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4676 		ndev->max_mtu = JUMBO_LEN;
4677 	else
4678 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4679 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4680 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4681 	 */
4682 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4683 	    (priv->plat->maxmtu >= ndev->min_mtu))
4684 		ndev->max_mtu = priv->plat->maxmtu;
4685 	else if (priv->plat->maxmtu < ndev->min_mtu)
4686 		dev_warn(priv->device,
4687 			 "%s: warning: maxmtu having invalid value (%d)\n",
4688 			 __func__, priv->plat->maxmtu);
4689 
4690 	if (flow_ctrl)
4691 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4692 
4693 	/* Setup channels NAPI */
4694 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4695 
4696 	for (queue = 0; queue < maxq; queue++) {
4697 		struct stmmac_channel *ch = &priv->channel[queue];
4698 
4699 		ch->priv_data = priv;
4700 		ch->index = queue;
4701 
4702 		if (queue < priv->plat->rx_queues_to_use) {
4703 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4704 				       NAPI_POLL_WEIGHT);
4705 		}
4706 		if (queue < priv->plat->tx_queues_to_use) {
4707 			netif_tx_napi_add(ndev, &ch->tx_napi,
4708 					  stmmac_napi_poll_tx,
4709 					  NAPI_POLL_WEIGHT);
4710 		}
4711 	}
4712 
4713 	mutex_init(&priv->lock);
4714 
4715 	/* If a specific clk_csr value is passed from the platform
4716 	 * this means that the CSR Clock Range selection cannot be
4717 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4718 	 * set the MDC clock dynamically according to the csr actual
4719 	 * clock input.
4720 	 */
4721 	if (priv->plat->clk_csr >= 0)
4722 		priv->clk_csr = priv->plat->clk_csr;
4723 	else
4724 		stmmac_clk_csr_set(priv);
4725 
4726 	stmmac_check_pcs_mode(priv);
4727 
4728 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4729 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4730 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4731 		/* MDIO bus Registration */
4732 		ret = stmmac_mdio_register(ndev);
4733 		if (ret < 0) {
4734 			dev_err(priv->device,
4735 				"%s: MDIO bus (id: %d) registration failed",
4736 				__func__, priv->plat->bus_id);
4737 			goto error_mdio_register;
4738 		}
4739 	}
4740 
4741 	ret = stmmac_phy_setup(priv);
4742 	if (ret) {
4743 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4744 		goto error_phy_setup;
4745 	}
4746 
4747 	ret = register_netdev(ndev);
4748 	if (ret) {
4749 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4750 			__func__, ret);
4751 		goto error_netdev_register;
4752 	}
4753 
4754 #ifdef CONFIG_DEBUG_FS
4755 	stmmac_init_fs(ndev);
4756 #endif
4757 
4758 	return ret;
4759 
4760 error_netdev_register:
4761 	phylink_destroy(priv->phylink);
4762 error_phy_setup:
4763 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4764 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4765 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4766 		stmmac_mdio_unregister(ndev);
4767 error_mdio_register:
4768 	for (queue = 0; queue < maxq; queue++) {
4769 		struct stmmac_channel *ch = &priv->channel[queue];
4770 
4771 		if (queue < priv->plat->rx_queues_to_use)
4772 			netif_napi_del(&ch->rx_napi);
4773 		if (queue < priv->plat->tx_queues_to_use)
4774 			netif_napi_del(&ch->tx_napi);
4775 	}
4776 error_hw_init:
4777 	destroy_workqueue(priv->wq);
4778 
4779 	return ret;
4780 }
4781 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4782 
4783 /**
4784  * stmmac_dvr_remove
4785  * @dev: device pointer
4786  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4787  * changes the link status, releases the DMA descriptor rings.
4788  */
4789 int stmmac_dvr_remove(struct device *dev)
4790 {
4791 	struct net_device *ndev = dev_get_drvdata(dev);
4792 	struct stmmac_priv *priv = netdev_priv(ndev);
4793 
4794 	netdev_info(priv->dev, "%s: removing driver", __func__);
4795 
4796 #ifdef CONFIG_DEBUG_FS
4797 	stmmac_exit_fs(ndev);
4798 #endif
4799 	stmmac_stop_all_dma(priv);
4800 
4801 	stmmac_mac_set(priv, priv->ioaddr, false);
4802 	netif_carrier_off(ndev);
4803 	unregister_netdev(ndev);
4804 	phylink_destroy(priv->phylink);
4805 	if (priv->plat->stmmac_rst)
4806 		reset_control_assert(priv->plat->stmmac_rst);
4807 	clk_disable_unprepare(priv->plat->pclk);
4808 	clk_disable_unprepare(priv->plat->stmmac_clk);
4809 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4810 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4811 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4812 		stmmac_mdio_unregister(ndev);
4813 	destroy_workqueue(priv->wq);
4814 	mutex_destroy(&priv->lock);
4815 
4816 	return 0;
4817 }
4818 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4819 
4820 /**
4821  * stmmac_suspend - suspend callback
4822  * @dev: device pointer
4823  * Description: this is the function to suspend the device and it is called
4824  * by the platform driver to stop the network queue, release the resources,
4825  * program the PMT register (for WoL), clean and release driver resources.
4826  */
4827 int stmmac_suspend(struct device *dev)
4828 {
4829 	struct net_device *ndev = dev_get_drvdata(dev);
4830 	struct stmmac_priv *priv = netdev_priv(ndev);
4831 
4832 	if (!ndev || !netif_running(ndev))
4833 		return 0;
4834 
4835 	phylink_mac_change(priv->phylink, false);
4836 
4837 	mutex_lock(&priv->lock);
4838 
4839 	netif_device_detach(ndev);
4840 	stmmac_stop_all_queues(priv);
4841 
4842 	stmmac_disable_all_queues(priv);
4843 
4844 	/* Stop TX/RX DMA */
4845 	stmmac_stop_all_dma(priv);
4846 
4847 	/* Enable Power down mode by programming the PMT regs */
4848 	if (device_may_wakeup(priv->device)) {
4849 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4850 		priv->irq_wake = 1;
4851 	} else {
4852 		mutex_unlock(&priv->lock);
4853 		rtnl_lock();
4854 		phylink_stop(priv->phylink);
4855 		rtnl_unlock();
4856 		mutex_lock(&priv->lock);
4857 
4858 		stmmac_mac_set(priv, priv->ioaddr, false);
4859 		pinctrl_pm_select_sleep_state(priv->device);
4860 		/* Disable clock in case of PWM is off */
4861 		if (priv->plat->clk_ptp_ref)
4862 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
4863 		clk_disable_unprepare(priv->plat->pclk);
4864 		clk_disable_unprepare(priv->plat->stmmac_clk);
4865 	}
4866 	mutex_unlock(&priv->lock);
4867 
4868 	priv->speed = SPEED_UNKNOWN;
4869 	return 0;
4870 }
4871 EXPORT_SYMBOL_GPL(stmmac_suspend);
4872 
4873 /**
4874  * stmmac_reset_queues_param - reset queue parameters
4875  * @dev: device pointer
4876  */
4877 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4878 {
4879 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4880 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4881 	u32 queue;
4882 
4883 	for (queue = 0; queue < rx_cnt; queue++) {
4884 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4885 
4886 		rx_q->cur_rx = 0;
4887 		rx_q->dirty_rx = 0;
4888 	}
4889 
4890 	for (queue = 0; queue < tx_cnt; queue++) {
4891 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4892 
4893 		tx_q->cur_tx = 0;
4894 		tx_q->dirty_tx = 0;
4895 		tx_q->mss = 0;
4896 	}
4897 }
4898 
4899 /**
4900  * stmmac_resume - resume callback
4901  * @dev: device pointer
4902  * Description: when resume this function is invoked to setup the DMA and CORE
4903  * in a usable state.
4904  */
4905 int stmmac_resume(struct device *dev)
4906 {
4907 	struct net_device *ndev = dev_get_drvdata(dev);
4908 	struct stmmac_priv *priv = netdev_priv(ndev);
4909 
4910 	if (!netif_running(ndev))
4911 		return 0;
4912 
4913 	/* Power Down bit, into the PM register, is cleared
4914 	 * automatically as soon as a magic packet or a Wake-up frame
4915 	 * is received. Anyway, it's better to manually clear
4916 	 * this bit because it can generate problems while resuming
4917 	 * from another devices (e.g. serial console).
4918 	 */
4919 	if (device_may_wakeup(priv->device)) {
4920 		mutex_lock(&priv->lock);
4921 		stmmac_pmt(priv, priv->hw, 0);
4922 		mutex_unlock(&priv->lock);
4923 		priv->irq_wake = 0;
4924 	} else {
4925 		pinctrl_pm_select_default_state(priv->device);
4926 		/* enable the clk previously disabled */
4927 		clk_prepare_enable(priv->plat->stmmac_clk);
4928 		clk_prepare_enable(priv->plat->pclk);
4929 		if (priv->plat->clk_ptp_ref)
4930 			clk_prepare_enable(priv->plat->clk_ptp_ref);
4931 		/* reset the phy so that it's ready */
4932 		if (priv->mii)
4933 			stmmac_mdio_reset(priv->mii);
4934 	}
4935 
4936 	netif_device_attach(ndev);
4937 
4938 	mutex_lock(&priv->lock);
4939 
4940 	stmmac_reset_queues_param(priv);
4941 
4942 	stmmac_clear_descriptors(priv);
4943 
4944 	stmmac_hw_setup(ndev, false);
4945 	stmmac_init_coalesce(priv);
4946 	stmmac_set_rx_mode(ndev);
4947 
4948 	stmmac_enable_all_queues(priv);
4949 
4950 	stmmac_start_all_queues(priv);
4951 
4952 	mutex_unlock(&priv->lock);
4953 
4954 	if (!device_may_wakeup(priv->device)) {
4955 		rtnl_lock();
4956 		phylink_start(priv->phylink);
4957 		rtnl_unlock();
4958 	}
4959 
4960 	phylink_mac_change(priv->phylink, true);
4961 
4962 	return 0;
4963 }
4964 EXPORT_SYMBOL_GPL(stmmac_resume);
4965 
4966 #ifndef MODULE
4967 static int __init stmmac_cmdline_opt(char *str)
4968 {
4969 	char *opt;
4970 
4971 	if (!str || !*str)
4972 		return -EINVAL;
4973 	while ((opt = strsep(&str, ",")) != NULL) {
4974 		if (!strncmp(opt, "debug:", 6)) {
4975 			if (kstrtoint(opt + 6, 0, &debug))
4976 				goto err;
4977 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4978 			if (kstrtoint(opt + 8, 0, &phyaddr))
4979 				goto err;
4980 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4981 			if (kstrtoint(opt + 7, 0, &buf_sz))
4982 				goto err;
4983 		} else if (!strncmp(opt, "tc:", 3)) {
4984 			if (kstrtoint(opt + 3, 0, &tc))
4985 				goto err;
4986 		} else if (!strncmp(opt, "watchdog:", 9)) {
4987 			if (kstrtoint(opt + 9, 0, &watchdog))
4988 				goto err;
4989 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4990 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4991 				goto err;
4992 		} else if (!strncmp(opt, "pause:", 6)) {
4993 			if (kstrtoint(opt + 6, 0, &pause))
4994 				goto err;
4995 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4996 			if (kstrtoint(opt + 10, 0, &eee_timer))
4997 				goto err;
4998 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4999 			if (kstrtoint(opt + 11, 0, &chain_mode))
5000 				goto err;
5001 		}
5002 	}
5003 	return 0;
5004 
5005 err:
5006 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5007 	return -EINVAL;
5008 }
5009 
5010 __setup("stmmaceth=", stmmac_cmdline_opt);
5011 #endif /* MODULE */
5012 
5013 static int __init stmmac_init(void)
5014 {
5015 #ifdef CONFIG_DEBUG_FS
5016 	/* Create debugfs main directory if it doesn't exist yet */
5017 	if (!stmmac_fs_dir)
5018 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5019 #endif
5020 
5021 	return 0;
5022 }
5023 
5024 static void __exit stmmac_exit(void)
5025 {
5026 #ifdef CONFIG_DEBUG_FS
5027 	debugfs_remove_recursive(stmmac_fs_dir);
5028 #endif
5029 }
5030 
5031 module_init(stmmac_init)
5032 module_exit(stmmac_exit)
5033 
5034 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5035 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5036 MODULE_LICENSE("GPL");
5037