1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
67 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static void stmmac_init_fs(struct net_device *dev);
110 static void stmmac_exit_fs(struct net_device *dev);
111 #endif
112 
113 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
114 
115 /**
116  * stmmac_verify_args - verify the driver parameters.
117  * Description: it checks the driver parameters and set a default in case of
118  * errors.
119  */
120 static void stmmac_verify_args(void)
121 {
122 	if (unlikely(watchdog < 0))
123 		watchdog = TX_TIMEO;
124 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
125 		buf_sz = DEFAULT_BUFSIZE;
126 	if (unlikely(flow_ctrl > 1))
127 		flow_ctrl = FLOW_AUTO;
128 	else if (likely(flow_ctrl < 0))
129 		flow_ctrl = FLOW_OFF;
130 	if (unlikely((pause < 0) || (pause > 0xffff)))
131 		pause = PAUSE_TIME;
132 	if (eee_timer < 0)
133 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
134 }
135 
136 /**
137  * stmmac_disable_all_queues - Disable all queues
138  * @priv: driver private structure
139  */
140 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
141 {
142 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
143 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
144 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
145 	u32 queue;
146 
147 	for (queue = 0; queue < maxq; queue++) {
148 		struct stmmac_channel *ch = &priv->channel[queue];
149 
150 		if (queue < rx_queues_cnt)
151 			napi_disable(&ch->rx_napi);
152 		if (queue < tx_queues_cnt)
153 			napi_disable(&ch->tx_napi);
154 	}
155 }
156 
157 /**
158  * stmmac_enable_all_queues - Enable all queues
159  * @priv: driver private structure
160  */
161 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
162 {
163 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
164 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
165 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
166 	u32 queue;
167 
168 	for (queue = 0; queue < maxq; queue++) {
169 		struct stmmac_channel *ch = &priv->channel[queue];
170 
171 		if (queue < rx_queues_cnt)
172 			napi_enable(&ch->rx_napi);
173 		if (queue < tx_queues_cnt)
174 			napi_enable(&ch->tx_napi);
175 	}
176 }
177 
178 /**
179  * stmmac_stop_all_queues - Stop all queues
180  * @priv: driver private structure
181  */
182 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
183 {
184 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
185 	u32 queue;
186 
187 	for (queue = 0; queue < tx_queues_cnt; queue++)
188 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
189 }
190 
191 /**
192  * stmmac_start_all_queues - Start all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_start_all_queues(struct stmmac_priv *priv)
196 {
197 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
198 	u32 queue;
199 
200 	for (queue = 0; queue < tx_queues_cnt; queue++)
201 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
202 }
203 
204 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
205 {
206 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
207 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
208 		queue_work(priv->wq, &priv->service_task);
209 }
210 
211 static void stmmac_global_err(struct stmmac_priv *priv)
212 {
213 	netif_carrier_off(priv->dev);
214 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
215 	stmmac_service_event_schedule(priv);
216 }
217 
218 /**
219  * stmmac_clk_csr_set - dynamically set the MDC clock
220  * @priv: driver private structure
221  * Description: this is to dynamically set the MDC clock according to the csr
222  * clock input.
223  * Note:
224  *	If a specific clk_csr value is passed from the platform
225  *	this means that the CSR Clock Range selection cannot be
226  *	changed at run-time and it is fixed (as reported in the driver
227  *	documentation). Viceversa the driver will try to set the MDC
228  *	clock dynamically according to the actual clock input.
229  */
230 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
231 {
232 	u32 clk_rate;
233 
234 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
235 
236 	/* Platform provided default clk_csr would be assumed valid
237 	 * for all other cases except for the below mentioned ones.
238 	 * For values higher than the IEEE 802.3 specified frequency
239 	 * we can not estimate the proper divider as it is not known
240 	 * the frequency of clk_csr_i. So we do not change the default
241 	 * divider.
242 	 */
243 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
244 		if (clk_rate < CSR_F_35M)
245 			priv->clk_csr = STMMAC_CSR_20_35M;
246 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
247 			priv->clk_csr = STMMAC_CSR_35_60M;
248 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
249 			priv->clk_csr = STMMAC_CSR_60_100M;
250 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
251 			priv->clk_csr = STMMAC_CSR_100_150M;
252 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
253 			priv->clk_csr = STMMAC_CSR_150_250M;
254 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
255 			priv->clk_csr = STMMAC_CSR_250_300M;
256 	}
257 
258 	if (priv->plat->has_sun8i) {
259 		if (clk_rate > 160000000)
260 			priv->clk_csr = 0x03;
261 		else if (clk_rate > 80000000)
262 			priv->clk_csr = 0x02;
263 		else if (clk_rate > 40000000)
264 			priv->clk_csr = 0x01;
265 		else
266 			priv->clk_csr = 0;
267 	}
268 
269 	if (priv->plat->has_xgmac) {
270 		if (clk_rate > 400000000)
271 			priv->clk_csr = 0x5;
272 		else if (clk_rate > 350000000)
273 			priv->clk_csr = 0x4;
274 		else if (clk_rate > 300000000)
275 			priv->clk_csr = 0x3;
276 		else if (clk_rate > 250000000)
277 			priv->clk_csr = 0x2;
278 		else if (clk_rate > 150000000)
279 			priv->clk_csr = 0x1;
280 		else
281 			priv->clk_csr = 0x0;
282 	}
283 }
284 
285 static void print_pkt(unsigned char *buf, int len)
286 {
287 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
288 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
289 }
290 
291 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
292 {
293 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
294 	u32 avail;
295 
296 	if (tx_q->dirty_tx > tx_q->cur_tx)
297 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
298 	else
299 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
300 
301 	return avail;
302 }
303 
304 /**
305  * stmmac_rx_dirty - Get RX queue dirty
306  * @priv: driver private structure
307  * @queue: RX queue index
308  */
309 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
310 {
311 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
312 	u32 dirty;
313 
314 	if (rx_q->dirty_rx <= rx_q->cur_rx)
315 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
316 	else
317 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
318 
319 	return dirty;
320 }
321 
322 /**
323  * stmmac_enable_eee_mode - check and enter in LPI mode
324  * @priv: driver private structure
325  * Description: this function is to verify and enter in LPI mode in case of
326  * EEE.
327  */
328 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
329 {
330 	u32 tx_cnt = priv->plat->tx_queues_to_use;
331 	u32 queue;
332 
333 	/* check if all TX queues have the work finished */
334 	for (queue = 0; queue < tx_cnt; queue++) {
335 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
336 
337 		if (tx_q->dirty_tx != tx_q->cur_tx)
338 			return; /* still unfinished work */
339 	}
340 
341 	/* Check and enter in LPI mode */
342 	if (!priv->tx_path_in_lpi_mode)
343 		stmmac_set_eee_mode(priv, priv->hw,
344 				priv->plat->en_tx_lpi_clockgating);
345 }
346 
347 /**
348  * stmmac_disable_eee_mode - disable and exit from LPI mode
349  * @priv: driver private structure
350  * Description: this function is to exit and disable EEE in case of
351  * LPI state is true. This is called by the xmit.
352  */
353 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
354 {
355 	stmmac_reset_eee_mode(priv, priv->hw);
356 	del_timer_sync(&priv->eee_ctrl_timer);
357 	priv->tx_path_in_lpi_mode = false;
358 }
359 
360 /**
361  * stmmac_eee_ctrl_timer - EEE TX SW timer.
362  * @arg : data hook
363  * Description:
364  *  if there is no data transfer and if we are not in LPI state,
365  *  then MAC Transmitter can be moved to LPI state.
366  */
367 static void stmmac_eee_ctrl_timer(struct timer_list *t)
368 {
369 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
370 
371 	stmmac_enable_eee_mode(priv);
372 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
373 }
374 
375 /**
376  * stmmac_eee_init - init EEE
377  * @priv: driver private structure
378  * Description:
379  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
380  *  can also manage EEE, this function enable the LPI state and start related
381  *  timer.
382  */
383 bool stmmac_eee_init(struct stmmac_priv *priv)
384 {
385 	int tx_lpi_timer = priv->tx_lpi_timer;
386 
387 	/* Using PCS we cannot dial with the phy registers at this stage
388 	 * so we do not support extra feature like EEE.
389 	 */
390 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
391 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
392 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
393 		return false;
394 
395 	/* Check if MAC core supports the EEE feature. */
396 	if (!priv->dma_cap.eee)
397 		return false;
398 
399 	mutex_lock(&priv->lock);
400 
401 	/* Check if it needs to be deactivated */
402 	if (!priv->eee_active) {
403 		if (priv->eee_enabled) {
404 			netdev_dbg(priv->dev, "disable EEE\n");
405 			del_timer_sync(&priv->eee_ctrl_timer);
406 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
407 		}
408 		mutex_unlock(&priv->lock);
409 		return false;
410 	}
411 
412 	if (priv->eee_active && !priv->eee_enabled) {
413 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
414 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
415 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
416 				     tx_lpi_timer);
417 	}
418 
419 	mutex_unlock(&priv->lock);
420 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
421 	return true;
422 }
423 
424 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
425  * @priv: driver private structure
426  * @p : descriptor pointer
427  * @skb : the socket buffer
428  * Description :
429  * This function will read timestamp from the descriptor & pass it to stack.
430  * and also perform some sanity checks.
431  */
432 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
433 				   struct dma_desc *p, struct sk_buff *skb)
434 {
435 	struct skb_shared_hwtstamps shhwtstamp;
436 	bool found = false;
437 	u64 ns = 0;
438 
439 	if (!priv->hwts_tx_en)
440 		return;
441 
442 	/* exit if skb doesn't support hw tstamp */
443 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
444 		return;
445 
446 	/* check tx tstamp status */
447 	if (stmmac_get_tx_timestamp_status(priv, p)) {
448 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
449 		found = true;
450 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
451 		found = true;
452 	}
453 
454 	if (found) {
455 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
456 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
457 
458 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
459 		/* pass tstamp to stack */
460 		skb_tstamp_tx(skb, &shhwtstamp);
461 	}
462 }
463 
464 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
465  * @priv: driver private structure
466  * @p : descriptor pointer
467  * @np : next descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read received packet's timestamp from the descriptor
471  * and pass it to stack. It also perform some sanity checks.
472  */
473 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
474 				   struct dma_desc *np, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
477 	struct dma_desc *desc = p;
478 	u64 ns = 0;
479 
480 	if (!priv->hwts_rx_en)
481 		return;
482 	/* For GMAC4, the valid timestamp is from CTX next desc. */
483 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
484 		desc = np;
485 
486 	/* Check if timestamp is available */
487 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
488 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
489 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
490 		shhwtstamp = skb_hwtstamps(skb);
491 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
493 	} else  {
494 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
495 	}
496 }
497 
498 /**
499  *  stmmac_hwtstamp_set - control hardware timestamping.
500  *  @dev: device pointer.
501  *  @ifr: An IOCTL specific structure, that can contain a pointer to
502  *  a proprietary structure used to pass information to the driver.
503  *  Description:
504  *  This function configures the MAC to enable/disable both outgoing(TX)
505  *  and incoming(RX) packets time stamping based on user input.
506  *  Return Value:
507  *  0 on success and an appropriate -ve integer on failure.
508  */
509 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
510 {
511 	struct stmmac_priv *priv = netdev_priv(dev);
512 	struct hwtstamp_config config;
513 	struct timespec64 now;
514 	u64 temp = 0;
515 	u32 ptp_v2 = 0;
516 	u32 tstamp_all = 0;
517 	u32 ptp_over_ipv4_udp = 0;
518 	u32 ptp_over_ipv6_udp = 0;
519 	u32 ptp_over_ethernet = 0;
520 	u32 snap_type_sel = 0;
521 	u32 ts_master_en = 0;
522 	u32 ts_event_en = 0;
523 	u32 sec_inc = 0;
524 	u32 value = 0;
525 	bool xmac;
526 
527 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
528 
529 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
530 		netdev_alert(priv->dev, "No support for HW time stamping\n");
531 		priv->hwts_tx_en = 0;
532 		priv->hwts_rx_en = 0;
533 
534 		return -EOPNOTSUPP;
535 	}
536 
537 	if (copy_from_user(&config, ifr->ifr_data,
538 			   sizeof(config)))
539 		return -EFAULT;
540 
541 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
542 		   __func__, config.flags, config.tx_type, config.rx_filter);
543 
544 	/* reserved for future extensions */
545 	if (config.flags)
546 		return -EINVAL;
547 
548 	if (config.tx_type != HWTSTAMP_TX_OFF &&
549 	    config.tx_type != HWTSTAMP_TX_ON)
550 		return -ERANGE;
551 
552 	if (priv->adv_ts) {
553 		switch (config.rx_filter) {
554 		case HWTSTAMP_FILTER_NONE:
555 			/* time stamp no incoming packet at all */
556 			config.rx_filter = HWTSTAMP_FILTER_NONE;
557 			break;
558 
559 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
560 			/* PTP v1, UDP, any kind of event packet */
561 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
562 			/* 'xmac' hardware can support Sync, Pdelay_Req and
563 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
564 			 * This leaves Delay_Req timestamps out.
565 			 * Enable all events *and* general purpose message
566 			 * timestamping
567 			 */
568 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
569 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
570 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
574 			/* PTP v1, UDP, Sync packet */
575 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
576 			/* take time stamp for SYNC messages only */
577 			ts_event_en = PTP_TCR_TSEVNTENA;
578 
579 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
580 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
581 			break;
582 
583 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
584 			/* PTP v1, UDP, Delay_req packet */
585 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
586 			/* take time stamp for Delay_Req messages only */
587 			ts_master_en = PTP_TCR_TSMSTRENA;
588 			ts_event_en = PTP_TCR_TSEVNTENA;
589 
590 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
591 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
592 			break;
593 
594 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
595 			/* PTP v2, UDP, any kind of event packet */
596 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
597 			ptp_v2 = PTP_TCR_TSVER2ENA;
598 			/* take time stamp for all event messages */
599 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
600 
601 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 			break;
604 
605 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
606 			/* PTP v2, UDP, Sync packet */
607 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
608 			ptp_v2 = PTP_TCR_TSVER2ENA;
609 			/* take time stamp for SYNC messages only */
610 			ts_event_en = PTP_TCR_TSEVNTENA;
611 
612 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
613 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
614 			break;
615 
616 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
617 			/* PTP v2, UDP, Delay_req packet */
618 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
619 			ptp_v2 = PTP_TCR_TSVER2ENA;
620 			/* take time stamp for Delay_Req messages only */
621 			ts_master_en = PTP_TCR_TSMSTRENA;
622 			ts_event_en = PTP_TCR_TSEVNTENA;
623 
624 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
625 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
626 			break;
627 
628 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
629 			/* PTP v2/802.AS1 any layer, any kind of event packet */
630 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
631 			ptp_v2 = PTP_TCR_TSVER2ENA;
632 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
633 			ts_event_en = PTP_TCR_TSEVNTENA;
634 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 			ptp_over_ethernet = PTP_TCR_TSIPENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
640 			/* PTP v2/802.AS1, any layer, Sync packet */
641 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
642 			ptp_v2 = PTP_TCR_TSVER2ENA;
643 			/* take time stamp for SYNC messages only */
644 			ts_event_en = PTP_TCR_TSEVNTENA;
645 
646 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
647 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
648 			ptp_over_ethernet = PTP_TCR_TSIPENA;
649 			break;
650 
651 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
652 			/* PTP v2/802.AS1, any layer, Delay_req packet */
653 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
654 			ptp_v2 = PTP_TCR_TSVER2ENA;
655 			/* take time stamp for Delay_Req messages only */
656 			ts_master_en = PTP_TCR_TSMSTRENA;
657 			ts_event_en = PTP_TCR_TSEVNTENA;
658 
659 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
660 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
661 			ptp_over_ethernet = PTP_TCR_TSIPENA;
662 			break;
663 
664 		case HWTSTAMP_FILTER_NTP_ALL:
665 		case HWTSTAMP_FILTER_ALL:
666 			/* time stamp any incoming packet */
667 			config.rx_filter = HWTSTAMP_FILTER_ALL;
668 			tstamp_all = PTP_TCR_TSENALL;
669 			break;
670 
671 		default:
672 			return -ERANGE;
673 		}
674 	} else {
675 		switch (config.rx_filter) {
676 		case HWTSTAMP_FILTER_NONE:
677 			config.rx_filter = HWTSTAMP_FILTER_NONE;
678 			break;
679 		default:
680 			/* PTP v1, UDP, any kind of event packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
682 			break;
683 		}
684 	}
685 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
686 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
687 
688 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
689 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
690 	else {
691 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
692 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
693 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
694 			 ts_master_en | snap_type_sel);
695 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
696 
697 		/* program Sub Second Increment reg */
698 		stmmac_config_sub_second_increment(priv,
699 				priv->ptpaddr, priv->plat->clk_ptp_rate,
700 				xmac, &sec_inc);
701 		temp = div_u64(1000000000ULL, sec_inc);
702 
703 		/* Store sub second increment and flags for later use */
704 		priv->sub_second_inc = sec_inc;
705 		priv->systime_flags = value;
706 
707 		/* calculate default added value:
708 		 * formula is :
709 		 * addend = (2^32)/freq_div_ratio;
710 		 * where, freq_div_ratio = 1e9ns/sec_inc
711 		 */
712 		temp = (u64)(temp << 32);
713 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
714 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
715 
716 		/* initialize system time */
717 		ktime_get_real_ts64(&now);
718 
719 		/* lower 32 bits of tv_sec are safe until y2106 */
720 		stmmac_init_systime(priv, priv->ptpaddr,
721 				(u32)now.tv_sec, now.tv_nsec);
722 	}
723 
724 	memcpy(&priv->tstamp_config, &config, sizeof(config));
725 
726 	return copy_to_user(ifr->ifr_data, &config,
727 			    sizeof(config)) ? -EFAULT : 0;
728 }
729 
730 /**
731  *  stmmac_hwtstamp_get - read hardware timestamping.
732  *  @dev: device pointer.
733  *  @ifr: An IOCTL specific structure, that can contain a pointer to
734  *  a proprietary structure used to pass information to the driver.
735  *  Description:
736  *  This function obtain the current hardware timestamping settings
737     as requested.
738  */
739 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
740 {
741 	struct stmmac_priv *priv = netdev_priv(dev);
742 	struct hwtstamp_config *config = &priv->tstamp_config;
743 
744 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
745 		return -EOPNOTSUPP;
746 
747 	return copy_to_user(ifr->ifr_data, config,
748 			    sizeof(*config)) ? -EFAULT : 0;
749 }
750 
751 /**
752  * stmmac_init_ptp - init PTP
753  * @priv: driver private structure
754  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
755  * This is done by looking at the HW cap. register.
756  * This function also registers the ptp driver.
757  */
758 static int stmmac_init_ptp(struct stmmac_priv *priv)
759 {
760 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
761 
762 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
763 		return -EOPNOTSUPP;
764 
765 	priv->adv_ts = 0;
766 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
767 	if (xmac && priv->dma_cap.atime_stamp)
768 		priv->adv_ts = 1;
769 	/* Dwmac 3.x core with extend_desc can support adv_ts */
770 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
771 		priv->adv_ts = 1;
772 
773 	if (priv->dma_cap.time_stamp)
774 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
775 
776 	if (priv->adv_ts)
777 		netdev_info(priv->dev,
778 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
779 
780 	priv->hwts_tx_en = 0;
781 	priv->hwts_rx_en = 0;
782 
783 	stmmac_ptp_register(priv);
784 
785 	return 0;
786 }
787 
788 static void stmmac_release_ptp(struct stmmac_priv *priv)
789 {
790 	if (priv->plat->clk_ptp_ref)
791 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
792 	stmmac_ptp_unregister(priv);
793 }
794 
795 /**
796  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
797  *  @priv: driver private structure
798  *  Description: It is used for configuring the flow control in all queues
799  */
800 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
801 {
802 	u32 tx_cnt = priv->plat->tx_queues_to_use;
803 
804 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
805 			priv->pause, tx_cnt);
806 }
807 
808 static void stmmac_validate(struct phylink_config *config,
809 			    unsigned long *supported,
810 			    struct phylink_link_state *state)
811 {
812 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
813 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
814 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
815 	int tx_cnt = priv->plat->tx_queues_to_use;
816 	int max_speed = priv->plat->max_speed;
817 
818 	phylink_set(mac_supported, 10baseT_Half);
819 	phylink_set(mac_supported, 10baseT_Full);
820 	phylink_set(mac_supported, 100baseT_Half);
821 	phylink_set(mac_supported, 100baseT_Full);
822 	phylink_set(mac_supported, 1000baseT_Half);
823 	phylink_set(mac_supported, 1000baseT_Full);
824 	phylink_set(mac_supported, 1000baseKX_Full);
825 
826 	phylink_set(mac_supported, Autoneg);
827 	phylink_set(mac_supported, Pause);
828 	phylink_set(mac_supported, Asym_Pause);
829 	phylink_set_port_modes(mac_supported);
830 
831 	/* Cut down 1G if asked to */
832 	if ((max_speed > 0) && (max_speed < 1000)) {
833 		phylink_set(mask, 1000baseT_Full);
834 		phylink_set(mask, 1000baseX_Full);
835 	} else if (priv->plat->has_xgmac) {
836 		if (!max_speed || (max_speed >= 2500)) {
837 			phylink_set(mac_supported, 2500baseT_Full);
838 			phylink_set(mac_supported, 2500baseX_Full);
839 		}
840 		if (!max_speed || (max_speed >= 5000)) {
841 			phylink_set(mac_supported, 5000baseT_Full);
842 		}
843 		if (!max_speed || (max_speed >= 10000)) {
844 			phylink_set(mac_supported, 10000baseSR_Full);
845 			phylink_set(mac_supported, 10000baseLR_Full);
846 			phylink_set(mac_supported, 10000baseER_Full);
847 			phylink_set(mac_supported, 10000baseLRM_Full);
848 			phylink_set(mac_supported, 10000baseT_Full);
849 			phylink_set(mac_supported, 10000baseKX4_Full);
850 			phylink_set(mac_supported, 10000baseKR_Full);
851 		}
852 	}
853 
854 	/* Half-Duplex can only work with single queue */
855 	if (tx_cnt > 1) {
856 		phylink_set(mask, 10baseT_Half);
857 		phylink_set(mask, 100baseT_Half);
858 		phylink_set(mask, 1000baseT_Half);
859 	}
860 
861 	bitmap_and(supported, supported, mac_supported,
862 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
863 	bitmap_andnot(supported, supported, mask,
864 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
865 	bitmap_and(state->advertising, state->advertising, mac_supported,
866 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
867 	bitmap_andnot(state->advertising, state->advertising, mask,
868 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
869 }
870 
871 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
872 				     struct phylink_link_state *state)
873 {
874 	state->link = 0;
875 }
876 
877 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
878 			      const struct phylink_link_state *state)
879 {
880 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
881 	u32 ctrl;
882 
883 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
884 	ctrl &= ~priv->hw->link.speed_mask;
885 
886 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
887 		switch (state->speed) {
888 		case SPEED_10000:
889 			ctrl |= priv->hw->link.xgmii.speed10000;
890 			break;
891 		case SPEED_5000:
892 			ctrl |= priv->hw->link.xgmii.speed5000;
893 			break;
894 		case SPEED_2500:
895 			ctrl |= priv->hw->link.xgmii.speed2500;
896 			break;
897 		default:
898 			return;
899 		}
900 	} else {
901 		switch (state->speed) {
902 		case SPEED_2500:
903 			ctrl |= priv->hw->link.speed2500;
904 			break;
905 		case SPEED_1000:
906 			ctrl |= priv->hw->link.speed1000;
907 			break;
908 		case SPEED_100:
909 			ctrl |= priv->hw->link.speed100;
910 			break;
911 		case SPEED_10:
912 			ctrl |= priv->hw->link.speed10;
913 			break;
914 		default:
915 			return;
916 		}
917 	}
918 
919 	priv->speed = state->speed;
920 
921 	if (priv->plat->fix_mac_speed)
922 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
923 
924 	if (!state->duplex)
925 		ctrl &= ~priv->hw->link.duplex;
926 	else
927 		ctrl |= priv->hw->link.duplex;
928 
929 	/* Flow Control operation */
930 	if (state->pause)
931 		stmmac_mac_flow_ctrl(priv, state->duplex);
932 
933 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
934 }
935 
936 static void stmmac_mac_an_restart(struct phylink_config *config)
937 {
938 	/* Not Supported */
939 }
940 
941 static void stmmac_mac_link_down(struct phylink_config *config,
942 				 unsigned int mode, phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	stmmac_mac_set(priv, priv->ioaddr, false);
947 	priv->eee_active = false;
948 	stmmac_eee_init(priv);
949 	stmmac_set_eee_pls(priv, priv->hw, false);
950 }
951 
952 static void stmmac_mac_link_up(struct phylink_config *config,
953 			       unsigned int mode, phy_interface_t interface,
954 			       struct phy_device *phy)
955 {
956 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
957 
958 	stmmac_mac_set(priv, priv->ioaddr, true);
959 	if (phy && priv->dma_cap.eee) {
960 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
961 		priv->eee_enabled = stmmac_eee_init(priv);
962 		stmmac_set_eee_pls(priv, priv->hw, true);
963 	}
964 }
965 
966 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
967 	.validate = stmmac_validate,
968 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
969 	.mac_config = stmmac_mac_config,
970 	.mac_an_restart = stmmac_mac_an_restart,
971 	.mac_link_down = stmmac_mac_link_down,
972 	.mac_link_up = stmmac_mac_link_up,
973 };
974 
975 /**
976  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
977  * @priv: driver private structure
978  * Description: this is to verify if the HW supports the PCS.
979  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
980  * configured for the TBI, RTBI, or SGMII PHY interface.
981  */
982 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
983 {
984 	int interface = priv->plat->interface;
985 
986 	if (priv->dma_cap.pcs) {
987 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
988 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
989 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
990 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
991 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
992 			priv->hw->pcs = STMMAC_PCS_RGMII;
993 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
994 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
995 			priv->hw->pcs = STMMAC_PCS_SGMII;
996 		}
997 	}
998 }
999 
1000 /**
1001  * stmmac_init_phy - PHY initialization
1002  * @dev: net device structure
1003  * Description: it initializes the driver's PHY state, and attaches the PHY
1004  * to the mac driver.
1005  *  Return value:
1006  *  0 on success
1007  */
1008 static int stmmac_init_phy(struct net_device *dev)
1009 {
1010 	struct stmmac_priv *priv = netdev_priv(dev);
1011 	struct device_node *node;
1012 	int ret;
1013 
1014 	node = priv->plat->phylink_node;
1015 
1016 	if (node)
1017 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1018 
1019 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1020 	 * manually parse it
1021 	 */
1022 	if (!node || ret) {
1023 		int addr = priv->plat->phy_addr;
1024 		struct phy_device *phydev;
1025 
1026 		phydev = mdiobus_get_phy(priv->mii, addr);
1027 		if (!phydev) {
1028 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1029 			return -ENODEV;
1030 		}
1031 
1032 		ret = phylink_connect_phy(priv->phylink, phydev);
1033 	}
1034 
1035 	return ret;
1036 }
1037 
1038 static int stmmac_phy_setup(struct stmmac_priv *priv)
1039 {
1040 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1041 	int mode = priv->plat->phy_interface;
1042 	struct phylink *phylink;
1043 
1044 	priv->phylink_config.dev = &priv->dev->dev;
1045 	priv->phylink_config.type = PHYLINK_NETDEV;
1046 
1047 	phylink = phylink_create(&priv->phylink_config, fwnode,
1048 				 mode, &stmmac_phylink_mac_ops);
1049 	if (IS_ERR(phylink))
1050 		return PTR_ERR(phylink);
1051 
1052 	priv->phylink = phylink;
1053 	return 0;
1054 }
1055 
1056 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1057 {
1058 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1059 	void *head_rx;
1060 	u32 queue;
1061 
1062 	/* Display RX rings */
1063 	for (queue = 0; queue < rx_cnt; queue++) {
1064 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1065 
1066 		pr_info("\tRX Queue %u rings\n", queue);
1067 
1068 		if (priv->extend_desc)
1069 			head_rx = (void *)rx_q->dma_erx;
1070 		else
1071 			head_rx = (void *)rx_q->dma_rx;
1072 
1073 		/* Display RX ring */
1074 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1075 	}
1076 }
1077 
1078 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1079 {
1080 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1081 	void *head_tx;
1082 	u32 queue;
1083 
1084 	/* Display TX rings */
1085 	for (queue = 0; queue < tx_cnt; queue++) {
1086 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1087 
1088 		pr_info("\tTX Queue %d rings\n", queue);
1089 
1090 		if (priv->extend_desc)
1091 			head_tx = (void *)tx_q->dma_etx;
1092 		else
1093 			head_tx = (void *)tx_q->dma_tx;
1094 
1095 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1096 	}
1097 }
1098 
1099 static void stmmac_display_rings(struct stmmac_priv *priv)
1100 {
1101 	/* Display RX ring */
1102 	stmmac_display_rx_rings(priv);
1103 
1104 	/* Display TX ring */
1105 	stmmac_display_tx_rings(priv);
1106 }
1107 
1108 static int stmmac_set_bfsize(int mtu, int bufsize)
1109 {
1110 	int ret = bufsize;
1111 
1112 	if (mtu >= BUF_SIZE_4KiB)
1113 		ret = BUF_SIZE_8KiB;
1114 	else if (mtu >= BUF_SIZE_2KiB)
1115 		ret = BUF_SIZE_4KiB;
1116 	else if (mtu > DEFAULT_BUFSIZE)
1117 		ret = BUF_SIZE_2KiB;
1118 	else
1119 		ret = DEFAULT_BUFSIZE;
1120 
1121 	return ret;
1122 }
1123 
1124 /**
1125  * stmmac_clear_rx_descriptors - clear RX descriptors
1126  * @priv: driver private structure
1127  * @queue: RX queue index
1128  * Description: this function is called to clear the RX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1134 	int i;
1135 
1136 	/* Clear the RX descriptors */
1137 	for (i = 0; i < DMA_RX_SIZE; i++)
1138 		if (priv->extend_desc)
1139 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1140 					priv->use_riwt, priv->mode,
1141 					(i == DMA_RX_SIZE - 1),
1142 					priv->dma_buf_sz);
1143 		else
1144 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1145 					priv->use_riwt, priv->mode,
1146 					(i == DMA_RX_SIZE - 1),
1147 					priv->dma_buf_sz);
1148 }
1149 
1150 /**
1151  * stmmac_clear_tx_descriptors - clear tx descriptors
1152  * @priv: driver private structure
1153  * @queue: TX queue index.
1154  * Description: this function is called to clear the TX descriptors
1155  * in case of both basic and extended descriptors are used.
1156  */
1157 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1158 {
1159 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1160 	int i;
1161 
1162 	/* Clear the TX descriptors */
1163 	for (i = 0; i < DMA_TX_SIZE; i++)
1164 		if (priv->extend_desc)
1165 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1166 					priv->mode, (i == DMA_TX_SIZE - 1));
1167 		else
1168 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1169 					priv->mode, (i == DMA_TX_SIZE - 1));
1170 }
1171 
1172 /**
1173  * stmmac_clear_descriptors - clear descriptors
1174  * @priv: driver private structure
1175  * Description: this function is called to clear the TX and RX descriptors
1176  * in case of both basic and extended descriptors are used.
1177  */
1178 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1179 {
1180 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1181 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1182 	u32 queue;
1183 
1184 	/* Clear the RX descriptors */
1185 	for (queue = 0; queue < rx_queue_cnt; queue++)
1186 		stmmac_clear_rx_descriptors(priv, queue);
1187 
1188 	/* Clear the TX descriptors */
1189 	for (queue = 0; queue < tx_queue_cnt; queue++)
1190 		stmmac_clear_tx_descriptors(priv, queue);
1191 }
1192 
1193 /**
1194  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1195  * @priv: driver private structure
1196  * @p: descriptor pointer
1197  * @i: descriptor index
1198  * @flags: gfp flag
1199  * @queue: RX queue index
1200  * Description: this function is called to allocate a receive buffer, perform
1201  * the DMA mapping and init the descriptor.
1202  */
1203 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1204 				  int i, gfp_t flags, u32 queue)
1205 {
1206 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1207 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1208 
1209 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1210 	if (!buf->page)
1211 		return -ENOMEM;
1212 
1213 	if (priv->sph) {
1214 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1215 		if (!buf->sec_page)
1216 			return -ENOMEM;
1217 
1218 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1219 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1220 	} else {
1221 		buf->sec_page = NULL;
1222 	}
1223 
1224 	buf->addr = page_pool_get_dma_addr(buf->page);
1225 	stmmac_set_desc_addr(priv, p, buf->addr);
1226 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1227 		stmmac_init_desc3(priv, p);
1228 
1229 	return 0;
1230 }
1231 
1232 /**
1233  * stmmac_free_rx_buffer - free RX dma buffers
1234  * @priv: private structure
1235  * @queue: RX queue index
1236  * @i: buffer index.
1237  */
1238 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1239 {
1240 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1241 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1242 
1243 	if (buf->page)
1244 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1245 	buf->page = NULL;
1246 
1247 	if (buf->sec_page)
1248 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1249 	buf->sec_page = NULL;
1250 }
1251 
1252 /**
1253  * stmmac_free_tx_buffer - free RX dma buffers
1254  * @priv: private structure
1255  * @queue: RX queue index
1256  * @i: buffer index.
1257  */
1258 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1259 {
1260 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1261 
1262 	if (tx_q->tx_skbuff_dma[i].buf) {
1263 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1264 			dma_unmap_page(priv->device,
1265 				       tx_q->tx_skbuff_dma[i].buf,
1266 				       tx_q->tx_skbuff_dma[i].len,
1267 				       DMA_TO_DEVICE);
1268 		else
1269 			dma_unmap_single(priv->device,
1270 					 tx_q->tx_skbuff_dma[i].buf,
1271 					 tx_q->tx_skbuff_dma[i].len,
1272 					 DMA_TO_DEVICE);
1273 	}
1274 
1275 	if (tx_q->tx_skbuff[i]) {
1276 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1277 		tx_q->tx_skbuff[i] = NULL;
1278 		tx_q->tx_skbuff_dma[i].buf = 0;
1279 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1280 	}
1281 }
1282 
1283 /**
1284  * init_dma_rx_desc_rings - init the RX descriptor rings
1285  * @dev: net device structure
1286  * @flags: gfp flag.
1287  * Description: this function initializes the DMA RX descriptors
1288  * and allocates the socket buffers. It supports the chained and ring
1289  * modes.
1290  */
1291 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1292 {
1293 	struct stmmac_priv *priv = netdev_priv(dev);
1294 	u32 rx_count = priv->plat->rx_queues_to_use;
1295 	int ret = -ENOMEM;
1296 	int bfsize = 0;
1297 	int queue;
1298 	int i;
1299 
1300 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1301 	if (bfsize < 0)
1302 		bfsize = 0;
1303 
1304 	if (bfsize < BUF_SIZE_16KiB)
1305 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1306 
1307 	priv->dma_buf_sz = bfsize;
1308 
1309 	/* RX INITIALIZATION */
1310 	netif_dbg(priv, probe, priv->dev,
1311 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1312 
1313 	for (queue = 0; queue < rx_count; queue++) {
1314 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1315 
1316 		netif_dbg(priv, probe, priv->dev,
1317 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1318 			  (u32)rx_q->dma_rx_phy);
1319 
1320 		stmmac_clear_rx_descriptors(priv, queue);
1321 
1322 		for (i = 0; i < DMA_RX_SIZE; i++) {
1323 			struct dma_desc *p;
1324 
1325 			if (priv->extend_desc)
1326 				p = &((rx_q->dma_erx + i)->basic);
1327 			else
1328 				p = rx_q->dma_rx + i;
1329 
1330 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1331 						     queue);
1332 			if (ret)
1333 				goto err_init_rx_buffers;
1334 		}
1335 
1336 		rx_q->cur_rx = 0;
1337 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1338 
1339 		/* Setup the chained descriptor addresses */
1340 		if (priv->mode == STMMAC_CHAIN_MODE) {
1341 			if (priv->extend_desc)
1342 				stmmac_mode_init(priv, rx_q->dma_erx,
1343 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1344 			else
1345 				stmmac_mode_init(priv, rx_q->dma_rx,
1346 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1347 		}
1348 	}
1349 
1350 	buf_sz = bfsize;
1351 
1352 	return 0;
1353 
1354 err_init_rx_buffers:
1355 	while (queue >= 0) {
1356 		while (--i >= 0)
1357 			stmmac_free_rx_buffer(priv, queue, i);
1358 
1359 		if (queue == 0)
1360 			break;
1361 
1362 		i = DMA_RX_SIZE;
1363 		queue--;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /**
1370  * init_dma_tx_desc_rings - init the TX descriptor rings
1371  * @dev: net device structure.
1372  * Description: this function initializes the DMA TX descriptors
1373  * and allocates the socket buffers. It supports the chained and ring
1374  * modes.
1375  */
1376 static int init_dma_tx_desc_rings(struct net_device *dev)
1377 {
1378 	struct stmmac_priv *priv = netdev_priv(dev);
1379 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1380 	u32 queue;
1381 	int i;
1382 
1383 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1384 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1385 
1386 		netif_dbg(priv, probe, priv->dev,
1387 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1388 			 (u32)tx_q->dma_tx_phy);
1389 
1390 		/* Setup the chained descriptor addresses */
1391 		if (priv->mode == STMMAC_CHAIN_MODE) {
1392 			if (priv->extend_desc)
1393 				stmmac_mode_init(priv, tx_q->dma_etx,
1394 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1395 			else
1396 				stmmac_mode_init(priv, tx_q->dma_tx,
1397 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1398 		}
1399 
1400 		for (i = 0; i < DMA_TX_SIZE; i++) {
1401 			struct dma_desc *p;
1402 			if (priv->extend_desc)
1403 				p = &((tx_q->dma_etx + i)->basic);
1404 			else
1405 				p = tx_q->dma_tx + i;
1406 
1407 			stmmac_clear_desc(priv, p);
1408 
1409 			tx_q->tx_skbuff_dma[i].buf = 0;
1410 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1411 			tx_q->tx_skbuff_dma[i].len = 0;
1412 			tx_q->tx_skbuff_dma[i].last_segment = false;
1413 			tx_q->tx_skbuff[i] = NULL;
1414 		}
1415 
1416 		tx_q->dirty_tx = 0;
1417 		tx_q->cur_tx = 0;
1418 		tx_q->mss = 0;
1419 
1420 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * init_dma_desc_rings - init the RX/TX descriptor rings
1428  * @dev: net device structure
1429  * @flags: gfp flag.
1430  * Description: this function initializes the DMA RX/TX descriptors
1431  * and allocates the socket buffers. It supports the chained and ring
1432  * modes.
1433  */
1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1435 {
1436 	struct stmmac_priv *priv = netdev_priv(dev);
1437 	int ret;
1438 
1439 	ret = init_dma_rx_desc_rings(dev, flags);
1440 	if (ret)
1441 		return ret;
1442 
1443 	ret = init_dma_tx_desc_rings(dev);
1444 
1445 	stmmac_clear_descriptors(priv);
1446 
1447 	if (netif_msg_hw(priv))
1448 		stmmac_display_rings(priv);
1449 
1450 	return ret;
1451 }
1452 
1453 /**
1454  * dma_free_rx_skbufs - free RX dma buffers
1455  * @priv: private structure
1456  * @queue: RX queue index
1457  */
1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1459 {
1460 	int i;
1461 
1462 	for (i = 0; i < DMA_RX_SIZE; i++)
1463 		stmmac_free_rx_buffer(priv, queue, i);
1464 }
1465 
1466 /**
1467  * dma_free_tx_skbufs - free TX dma buffers
1468  * @priv: private structure
1469  * @queue: TX queue index
1470  */
1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1472 {
1473 	int i;
1474 
1475 	for (i = 0; i < DMA_TX_SIZE; i++)
1476 		stmmac_free_tx_buffer(priv, queue, i);
1477 }
1478 
1479 /**
1480  * free_dma_rx_desc_resources - free RX dma desc resources
1481  * @priv: private structure
1482  */
1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1484 {
1485 	u32 rx_count = priv->plat->rx_queues_to_use;
1486 	u32 queue;
1487 
1488 	/* Free RX queue resources */
1489 	for (queue = 0; queue < rx_count; queue++) {
1490 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1491 
1492 		/* Release the DMA RX socket buffers */
1493 		dma_free_rx_skbufs(priv, queue);
1494 
1495 		/* Free DMA regions of consistent memory previously allocated */
1496 		if (!priv->extend_desc)
1497 			dma_free_coherent(priv->device,
1498 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1499 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1500 		else
1501 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1502 					  sizeof(struct dma_extended_desc),
1503 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1504 
1505 		kfree(rx_q->buf_pool);
1506 		if (rx_q->page_pool)
1507 			page_pool_destroy(rx_q->page_pool);
1508 	}
1509 }
1510 
1511 /**
1512  * free_dma_tx_desc_resources - free TX dma desc resources
1513  * @priv: private structure
1514  */
1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1516 {
1517 	u32 tx_count = priv->plat->tx_queues_to_use;
1518 	u32 queue;
1519 
1520 	/* Free TX queue resources */
1521 	for (queue = 0; queue < tx_count; queue++) {
1522 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1523 
1524 		/* Release the DMA TX socket buffers */
1525 		dma_free_tx_skbufs(priv, queue);
1526 
1527 		/* Free DMA regions of consistent memory previously allocated */
1528 		if (!priv->extend_desc)
1529 			dma_free_coherent(priv->device,
1530 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1531 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1532 		else
1533 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1534 					  sizeof(struct dma_extended_desc),
1535 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1536 
1537 		kfree(tx_q->tx_skbuff_dma);
1538 		kfree(tx_q->tx_skbuff);
1539 	}
1540 }
1541 
1542 /**
1543  * alloc_dma_rx_desc_resources - alloc RX resources.
1544  * @priv: private structure
1545  * Description: according to which descriptor can be used (extend or basic)
1546  * this function allocates the resources for TX and RX paths. In case of
1547  * reception, for example, it pre-allocated the RX socket buffer in order to
1548  * allow zero-copy mechanism.
1549  */
1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1551 {
1552 	u32 rx_count = priv->plat->rx_queues_to_use;
1553 	int ret = -ENOMEM;
1554 	u32 queue;
1555 
1556 	/* RX queues buffers and DMA */
1557 	for (queue = 0; queue < rx_count; queue++) {
1558 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1559 		struct page_pool_params pp_params = { 0 };
1560 		unsigned int num_pages;
1561 
1562 		rx_q->queue_index = queue;
1563 		rx_q->priv_data = priv;
1564 
1565 		pp_params.flags = PP_FLAG_DMA_MAP;
1566 		pp_params.pool_size = DMA_RX_SIZE;
1567 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1568 		pp_params.order = ilog2(num_pages);
1569 		pp_params.nid = dev_to_node(priv->device);
1570 		pp_params.dev = priv->device;
1571 		pp_params.dma_dir = DMA_FROM_DEVICE;
1572 
1573 		rx_q->page_pool = page_pool_create(&pp_params);
1574 		if (IS_ERR(rx_q->page_pool)) {
1575 			ret = PTR_ERR(rx_q->page_pool);
1576 			rx_q->page_pool = NULL;
1577 			goto err_dma;
1578 		}
1579 
1580 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1581 					 GFP_KERNEL);
1582 		if (!rx_q->buf_pool)
1583 			goto err_dma;
1584 
1585 		if (priv->extend_desc) {
1586 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1587 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1588 							   &rx_q->dma_rx_phy,
1589 							   GFP_KERNEL);
1590 			if (!rx_q->dma_erx)
1591 				goto err_dma;
1592 
1593 		} else {
1594 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1595 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1596 							  &rx_q->dma_rx_phy,
1597 							  GFP_KERNEL);
1598 			if (!rx_q->dma_rx)
1599 				goto err_dma;
1600 		}
1601 	}
1602 
1603 	return 0;
1604 
1605 err_dma:
1606 	free_dma_rx_desc_resources(priv);
1607 
1608 	return ret;
1609 }
1610 
1611 /**
1612  * alloc_dma_tx_desc_resources - alloc TX resources.
1613  * @priv: private structure
1614  * Description: according to which descriptor can be used (extend or basic)
1615  * this function allocates the resources for TX and RX paths. In case of
1616  * reception, for example, it pre-allocated the RX socket buffer in order to
1617  * allow zero-copy mechanism.
1618  */
1619 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1620 {
1621 	u32 tx_count = priv->plat->tx_queues_to_use;
1622 	int ret = -ENOMEM;
1623 	u32 queue;
1624 
1625 	/* TX queues buffers and DMA */
1626 	for (queue = 0; queue < tx_count; queue++) {
1627 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1628 
1629 		tx_q->queue_index = queue;
1630 		tx_q->priv_data = priv;
1631 
1632 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1633 					      sizeof(*tx_q->tx_skbuff_dma),
1634 					      GFP_KERNEL);
1635 		if (!tx_q->tx_skbuff_dma)
1636 			goto err_dma;
1637 
1638 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1639 					  sizeof(struct sk_buff *),
1640 					  GFP_KERNEL);
1641 		if (!tx_q->tx_skbuff)
1642 			goto err_dma;
1643 
1644 		if (priv->extend_desc) {
1645 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1646 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1647 							   &tx_q->dma_tx_phy,
1648 							   GFP_KERNEL);
1649 			if (!tx_q->dma_etx)
1650 				goto err_dma;
1651 		} else {
1652 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1653 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1654 							  &tx_q->dma_tx_phy,
1655 							  GFP_KERNEL);
1656 			if (!tx_q->dma_tx)
1657 				goto err_dma;
1658 		}
1659 	}
1660 
1661 	return 0;
1662 
1663 err_dma:
1664 	free_dma_tx_desc_resources(priv);
1665 
1666 	return ret;
1667 }
1668 
1669 /**
1670  * alloc_dma_desc_resources - alloc TX/RX resources.
1671  * @priv: private structure
1672  * Description: according to which descriptor can be used (extend or basic)
1673  * this function allocates the resources for TX and RX paths. In case of
1674  * reception, for example, it pre-allocated the RX socket buffer in order to
1675  * allow zero-copy mechanism.
1676  */
1677 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1678 {
1679 	/* RX Allocation */
1680 	int ret = alloc_dma_rx_desc_resources(priv);
1681 
1682 	if (ret)
1683 		return ret;
1684 
1685 	ret = alloc_dma_tx_desc_resources(priv);
1686 
1687 	return ret;
1688 }
1689 
1690 /**
1691  * free_dma_desc_resources - free dma desc resources
1692  * @priv: private structure
1693  */
1694 static void free_dma_desc_resources(struct stmmac_priv *priv)
1695 {
1696 	/* Release the DMA RX socket buffers */
1697 	free_dma_rx_desc_resources(priv);
1698 
1699 	/* Release the DMA TX socket buffers */
1700 	free_dma_tx_desc_resources(priv);
1701 }
1702 
1703 /**
1704  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1705  *  @priv: driver private structure
1706  *  Description: It is used for enabling the rx queues in the MAC
1707  */
1708 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1709 {
1710 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1711 	int queue;
1712 	u8 mode;
1713 
1714 	for (queue = 0; queue < rx_queues_count; queue++) {
1715 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1716 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1717 	}
1718 }
1719 
1720 /**
1721  * stmmac_start_rx_dma - start RX DMA channel
1722  * @priv: driver private structure
1723  * @chan: RX channel index
1724  * Description:
1725  * This starts a RX DMA channel
1726  */
1727 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1728 {
1729 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1730 	stmmac_start_rx(priv, priv->ioaddr, chan);
1731 }
1732 
1733 /**
1734  * stmmac_start_tx_dma - start TX DMA channel
1735  * @priv: driver private structure
1736  * @chan: TX channel index
1737  * Description:
1738  * This starts a TX DMA channel
1739  */
1740 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1741 {
1742 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1743 	stmmac_start_tx(priv, priv->ioaddr, chan);
1744 }
1745 
1746 /**
1747  * stmmac_stop_rx_dma - stop RX DMA channel
1748  * @priv: driver private structure
1749  * @chan: RX channel index
1750  * Description:
1751  * This stops a RX DMA channel
1752  */
1753 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1754 {
1755 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1756 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1757 }
1758 
1759 /**
1760  * stmmac_stop_tx_dma - stop TX DMA channel
1761  * @priv: driver private structure
1762  * @chan: TX channel index
1763  * Description:
1764  * This stops a TX DMA channel
1765  */
1766 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1767 {
1768 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1769 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1770 }
1771 
1772 /**
1773  * stmmac_start_all_dma - start all RX and TX DMA channels
1774  * @priv: driver private structure
1775  * Description:
1776  * This starts all the RX and TX DMA channels
1777  */
1778 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1779 {
1780 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1781 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1782 	u32 chan = 0;
1783 
1784 	for (chan = 0; chan < rx_channels_count; chan++)
1785 		stmmac_start_rx_dma(priv, chan);
1786 
1787 	for (chan = 0; chan < tx_channels_count; chan++)
1788 		stmmac_start_tx_dma(priv, chan);
1789 }
1790 
1791 /**
1792  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1793  * @priv: driver private structure
1794  * Description:
1795  * This stops the RX and TX DMA channels
1796  */
1797 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1798 {
1799 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1800 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1801 	u32 chan = 0;
1802 
1803 	for (chan = 0; chan < rx_channels_count; chan++)
1804 		stmmac_stop_rx_dma(priv, chan);
1805 
1806 	for (chan = 0; chan < tx_channels_count; chan++)
1807 		stmmac_stop_tx_dma(priv, chan);
1808 }
1809 
1810 /**
1811  *  stmmac_dma_operation_mode - HW DMA operation mode
1812  *  @priv: driver private structure
1813  *  Description: it is used for configuring the DMA operation mode register in
1814  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1815  */
1816 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1817 {
1818 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1819 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1820 	int rxfifosz = priv->plat->rx_fifo_size;
1821 	int txfifosz = priv->plat->tx_fifo_size;
1822 	u32 txmode = 0;
1823 	u32 rxmode = 0;
1824 	u32 chan = 0;
1825 	u8 qmode = 0;
1826 
1827 	if (rxfifosz == 0)
1828 		rxfifosz = priv->dma_cap.rx_fifo_size;
1829 	if (txfifosz == 0)
1830 		txfifosz = priv->dma_cap.tx_fifo_size;
1831 
1832 	/* Adjust for real per queue fifo size */
1833 	rxfifosz /= rx_channels_count;
1834 	txfifosz /= tx_channels_count;
1835 
1836 	if (priv->plat->force_thresh_dma_mode) {
1837 		txmode = tc;
1838 		rxmode = tc;
1839 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1840 		/*
1841 		 * In case of GMAC, SF mode can be enabled
1842 		 * to perform the TX COE in HW. This depends on:
1843 		 * 1) TX COE if actually supported
1844 		 * 2) There is no bugged Jumbo frame support
1845 		 *    that needs to not insert csum in the TDES.
1846 		 */
1847 		txmode = SF_DMA_MODE;
1848 		rxmode = SF_DMA_MODE;
1849 		priv->xstats.threshold = SF_DMA_MODE;
1850 	} else {
1851 		txmode = tc;
1852 		rxmode = SF_DMA_MODE;
1853 	}
1854 
1855 	/* configure all channels */
1856 	for (chan = 0; chan < rx_channels_count; chan++) {
1857 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1858 
1859 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1860 				rxfifosz, qmode);
1861 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1862 				chan);
1863 	}
1864 
1865 	for (chan = 0; chan < tx_channels_count; chan++) {
1866 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1867 
1868 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1869 				txfifosz, qmode);
1870 	}
1871 }
1872 
1873 /**
1874  * stmmac_tx_clean - to manage the transmission completion
1875  * @priv: driver private structure
1876  * @queue: TX queue index
1877  * Description: it reclaims the transmit resources after transmission completes.
1878  */
1879 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1880 {
1881 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1882 	unsigned int bytes_compl = 0, pkts_compl = 0;
1883 	unsigned int entry, count = 0;
1884 
1885 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1886 
1887 	priv->xstats.tx_clean++;
1888 
1889 	entry = tx_q->dirty_tx;
1890 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1891 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1892 		struct dma_desc *p;
1893 		int status;
1894 
1895 		if (priv->extend_desc)
1896 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1897 		else
1898 			p = tx_q->dma_tx + entry;
1899 
1900 		status = stmmac_tx_status(priv, &priv->dev->stats,
1901 				&priv->xstats, p, priv->ioaddr);
1902 		/* Check if the descriptor is owned by the DMA */
1903 		if (unlikely(status & tx_dma_own))
1904 			break;
1905 
1906 		count++;
1907 
1908 		/* Make sure descriptor fields are read after reading
1909 		 * the own bit.
1910 		 */
1911 		dma_rmb();
1912 
1913 		/* Just consider the last segment and ...*/
1914 		if (likely(!(status & tx_not_ls))) {
1915 			/* ... verify the status error condition */
1916 			if (unlikely(status & tx_err)) {
1917 				priv->dev->stats.tx_errors++;
1918 			} else {
1919 				priv->dev->stats.tx_packets++;
1920 				priv->xstats.tx_pkt_n++;
1921 			}
1922 			stmmac_get_tx_hwtstamp(priv, p, skb);
1923 		}
1924 
1925 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1926 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1927 				dma_unmap_page(priv->device,
1928 					       tx_q->tx_skbuff_dma[entry].buf,
1929 					       tx_q->tx_skbuff_dma[entry].len,
1930 					       DMA_TO_DEVICE);
1931 			else
1932 				dma_unmap_single(priv->device,
1933 						 tx_q->tx_skbuff_dma[entry].buf,
1934 						 tx_q->tx_skbuff_dma[entry].len,
1935 						 DMA_TO_DEVICE);
1936 			tx_q->tx_skbuff_dma[entry].buf = 0;
1937 			tx_q->tx_skbuff_dma[entry].len = 0;
1938 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1939 		}
1940 
1941 		stmmac_clean_desc3(priv, tx_q, p);
1942 
1943 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1944 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1945 
1946 		if (likely(skb != NULL)) {
1947 			pkts_compl++;
1948 			bytes_compl += skb->len;
1949 			dev_consume_skb_any(skb);
1950 			tx_q->tx_skbuff[entry] = NULL;
1951 		}
1952 
1953 		stmmac_release_tx_desc(priv, p, priv->mode);
1954 
1955 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1956 	}
1957 	tx_q->dirty_tx = entry;
1958 
1959 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1960 				  pkts_compl, bytes_compl);
1961 
1962 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1963 								queue))) &&
1964 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1965 
1966 		netif_dbg(priv, tx_done, priv->dev,
1967 			  "%s: restart transmit\n", __func__);
1968 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1969 	}
1970 
1971 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1972 		stmmac_enable_eee_mode(priv);
1973 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1974 	}
1975 
1976 	/* We still have pending packets, let's call for a new scheduling */
1977 	if (tx_q->dirty_tx != tx_q->cur_tx)
1978 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1979 
1980 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1981 
1982 	return count;
1983 }
1984 
1985 /**
1986  * stmmac_tx_err - to manage the tx error
1987  * @priv: driver private structure
1988  * @chan: channel index
1989  * Description: it cleans the descriptors and restarts the transmission
1990  * in case of transmission errors.
1991  */
1992 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1993 {
1994 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1995 	int i;
1996 
1997 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1998 
1999 	stmmac_stop_tx_dma(priv, chan);
2000 	dma_free_tx_skbufs(priv, chan);
2001 	for (i = 0; i < DMA_TX_SIZE; i++)
2002 		if (priv->extend_desc)
2003 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2004 					priv->mode, (i == DMA_TX_SIZE - 1));
2005 		else
2006 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2007 					priv->mode, (i == DMA_TX_SIZE - 1));
2008 	tx_q->dirty_tx = 0;
2009 	tx_q->cur_tx = 0;
2010 	tx_q->mss = 0;
2011 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2012 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2013 			    tx_q->dma_tx_phy, chan);
2014 	stmmac_start_tx_dma(priv, chan);
2015 
2016 	priv->dev->stats.tx_errors++;
2017 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2018 }
2019 
2020 /**
2021  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2022  *  @priv: driver private structure
2023  *  @txmode: TX operating mode
2024  *  @rxmode: RX operating mode
2025  *  @chan: channel index
2026  *  Description: it is used for configuring of the DMA operation mode in
2027  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2028  *  mode.
2029  */
2030 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2031 					  u32 rxmode, u32 chan)
2032 {
2033 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2034 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2035 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2036 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2037 	int rxfifosz = priv->plat->rx_fifo_size;
2038 	int txfifosz = priv->plat->tx_fifo_size;
2039 
2040 	if (rxfifosz == 0)
2041 		rxfifosz = priv->dma_cap.rx_fifo_size;
2042 	if (txfifosz == 0)
2043 		txfifosz = priv->dma_cap.tx_fifo_size;
2044 
2045 	/* Adjust for real per queue fifo size */
2046 	rxfifosz /= rx_channels_count;
2047 	txfifosz /= tx_channels_count;
2048 
2049 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2050 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2051 }
2052 
2053 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2054 {
2055 	int ret;
2056 
2057 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2058 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2059 	if (ret && (ret != -EINVAL)) {
2060 		stmmac_global_err(priv);
2061 		return true;
2062 	}
2063 
2064 	return false;
2065 }
2066 
2067 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2068 {
2069 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2070 						 &priv->xstats, chan);
2071 	struct stmmac_channel *ch = &priv->channel[chan];
2072 
2073 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2074 		if (napi_schedule_prep(&ch->rx_napi)) {
2075 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2076 			__napi_schedule_irqoff(&ch->rx_napi);
2077 			status |= handle_tx;
2078 		}
2079 	}
2080 
2081 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2082 		napi_schedule_irqoff(&ch->tx_napi);
2083 
2084 	return status;
2085 }
2086 
2087 /**
2088  * stmmac_dma_interrupt - DMA ISR
2089  * @priv: driver private structure
2090  * Description: this is the DMA ISR. It is called by the main ISR.
2091  * It calls the dwmac dma routine and schedule poll method in case of some
2092  * work can be done.
2093  */
2094 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2095 {
2096 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2097 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2098 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2099 				tx_channel_count : rx_channel_count;
2100 	u32 chan;
2101 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2102 
2103 	/* Make sure we never check beyond our status buffer. */
2104 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2105 		channels_to_check = ARRAY_SIZE(status);
2106 
2107 	for (chan = 0; chan < channels_to_check; chan++)
2108 		status[chan] = stmmac_napi_check(priv, chan);
2109 
2110 	for (chan = 0; chan < tx_channel_count; chan++) {
2111 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2112 			/* Try to bump up the dma threshold on this failure */
2113 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2114 			    (tc <= 256)) {
2115 				tc += 64;
2116 				if (priv->plat->force_thresh_dma_mode)
2117 					stmmac_set_dma_operation_mode(priv,
2118 								      tc,
2119 								      tc,
2120 								      chan);
2121 				else
2122 					stmmac_set_dma_operation_mode(priv,
2123 								    tc,
2124 								    SF_DMA_MODE,
2125 								    chan);
2126 				priv->xstats.threshold = tc;
2127 			}
2128 		} else if (unlikely(status[chan] == tx_hard_error)) {
2129 			stmmac_tx_err(priv, chan);
2130 		}
2131 	}
2132 }
2133 
2134 /**
2135  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2136  * @priv: driver private structure
2137  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2138  */
2139 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2140 {
2141 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2142 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2143 
2144 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2145 
2146 	if (priv->dma_cap.rmon) {
2147 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2148 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2149 	} else
2150 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2151 }
2152 
2153 /**
2154  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2155  * @priv: driver private structure
2156  * Description:
2157  *  new GMAC chip generations have a new register to indicate the
2158  *  presence of the optional feature/functions.
2159  *  This can be also used to override the value passed through the
2160  *  platform and necessary for old MAC10/100 and GMAC chips.
2161  */
2162 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2163 {
2164 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2165 }
2166 
2167 /**
2168  * stmmac_check_ether_addr - check if the MAC addr is valid
2169  * @priv: driver private structure
2170  * Description:
2171  * it is to verify if the MAC address is valid, in case of failures it
2172  * generates a random MAC address
2173  */
2174 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2175 {
2176 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2177 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2178 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2179 			eth_hw_addr_random(priv->dev);
2180 		dev_info(priv->device, "device MAC address %pM\n",
2181 			 priv->dev->dev_addr);
2182 	}
2183 }
2184 
2185 /**
2186  * stmmac_init_dma_engine - DMA init.
2187  * @priv: driver private structure
2188  * Description:
2189  * It inits the DMA invoking the specific MAC/GMAC callback.
2190  * Some DMA parameters can be passed from the platform;
2191  * in case of these are not passed a default is kept for the MAC or GMAC.
2192  */
2193 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2194 {
2195 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2196 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2197 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2198 	struct stmmac_rx_queue *rx_q;
2199 	struct stmmac_tx_queue *tx_q;
2200 	u32 chan = 0;
2201 	int atds = 0;
2202 	int ret = 0;
2203 
2204 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2205 		dev_err(priv->device, "Invalid DMA configuration\n");
2206 		return -EINVAL;
2207 	}
2208 
2209 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2210 		atds = 1;
2211 
2212 	ret = stmmac_reset(priv, priv->ioaddr);
2213 	if (ret) {
2214 		dev_err(priv->device, "Failed to reset the dma\n");
2215 		return ret;
2216 	}
2217 
2218 	/* DMA Configuration */
2219 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2220 
2221 	if (priv->plat->axi)
2222 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2223 
2224 	/* DMA CSR Channel configuration */
2225 	for (chan = 0; chan < dma_csr_ch; chan++)
2226 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2227 
2228 	/* DMA RX Channel Configuration */
2229 	for (chan = 0; chan < rx_channels_count; chan++) {
2230 		rx_q = &priv->rx_queue[chan];
2231 
2232 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2233 				    rx_q->dma_rx_phy, chan);
2234 
2235 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2236 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2237 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2238 				       rx_q->rx_tail_addr, chan);
2239 	}
2240 
2241 	/* DMA TX Channel Configuration */
2242 	for (chan = 0; chan < tx_channels_count; chan++) {
2243 		tx_q = &priv->tx_queue[chan];
2244 
2245 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2246 				    tx_q->dma_tx_phy, chan);
2247 
2248 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2249 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2250 				       tx_q->tx_tail_addr, chan);
2251 	}
2252 
2253 	return ret;
2254 }
2255 
2256 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2257 {
2258 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2259 
2260 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2261 }
2262 
2263 /**
2264  * stmmac_tx_timer - mitigation sw timer for tx.
2265  * @data: data pointer
2266  * Description:
2267  * This is the timer handler to directly invoke the stmmac_tx_clean.
2268  */
2269 static void stmmac_tx_timer(struct timer_list *t)
2270 {
2271 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2272 	struct stmmac_priv *priv = tx_q->priv_data;
2273 	struct stmmac_channel *ch;
2274 
2275 	ch = &priv->channel[tx_q->queue_index];
2276 
2277 	/*
2278 	 * If NAPI is already running we can miss some events. Let's rearm
2279 	 * the timer and try again.
2280 	 */
2281 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2282 		__napi_schedule(&ch->tx_napi);
2283 	else
2284 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2285 }
2286 
2287 /**
2288  * stmmac_init_coalesce - init mitigation options.
2289  * @priv: driver private structure
2290  * Description:
2291  * This inits the coalesce parameters: i.e. timer rate,
2292  * timer handler and default threshold used for enabling the
2293  * interrupt on completion bit.
2294  */
2295 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2296 {
2297 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2298 	u32 chan;
2299 
2300 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2301 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2302 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2303 
2304 	for (chan = 0; chan < tx_channel_count; chan++) {
2305 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2306 
2307 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2308 	}
2309 }
2310 
2311 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2312 {
2313 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2314 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2315 	u32 chan;
2316 
2317 	/* set TX ring length */
2318 	for (chan = 0; chan < tx_channels_count; chan++)
2319 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2320 				(DMA_TX_SIZE - 1), chan);
2321 
2322 	/* set RX ring length */
2323 	for (chan = 0; chan < rx_channels_count; chan++)
2324 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2325 				(DMA_RX_SIZE - 1), chan);
2326 }
2327 
2328 /**
2329  *  stmmac_set_tx_queue_weight - Set TX queue weight
2330  *  @priv: driver private structure
2331  *  Description: It is used for setting TX queues weight
2332  */
2333 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2334 {
2335 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2336 	u32 weight;
2337 	u32 queue;
2338 
2339 	for (queue = 0; queue < tx_queues_count; queue++) {
2340 		weight = priv->plat->tx_queues_cfg[queue].weight;
2341 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2342 	}
2343 }
2344 
2345 /**
2346  *  stmmac_configure_cbs - Configure CBS in TX queue
2347  *  @priv: driver private structure
2348  *  Description: It is used for configuring CBS in AVB TX queues
2349  */
2350 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2351 {
2352 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2353 	u32 mode_to_use;
2354 	u32 queue;
2355 
2356 	/* queue 0 is reserved for legacy traffic */
2357 	for (queue = 1; queue < tx_queues_count; queue++) {
2358 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2359 		if (mode_to_use == MTL_QUEUE_DCB)
2360 			continue;
2361 
2362 		stmmac_config_cbs(priv, priv->hw,
2363 				priv->plat->tx_queues_cfg[queue].send_slope,
2364 				priv->plat->tx_queues_cfg[queue].idle_slope,
2365 				priv->plat->tx_queues_cfg[queue].high_credit,
2366 				priv->plat->tx_queues_cfg[queue].low_credit,
2367 				queue);
2368 	}
2369 }
2370 
2371 /**
2372  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2373  *  @priv: driver private structure
2374  *  Description: It is used for mapping RX queues to RX dma channels
2375  */
2376 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2377 {
2378 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2379 	u32 queue;
2380 	u32 chan;
2381 
2382 	for (queue = 0; queue < rx_queues_count; queue++) {
2383 		chan = priv->plat->rx_queues_cfg[queue].chan;
2384 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2385 	}
2386 }
2387 
2388 /**
2389  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2390  *  @priv: driver private structure
2391  *  Description: It is used for configuring the RX Queue Priority
2392  */
2393 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2394 {
2395 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2396 	u32 queue;
2397 	u32 prio;
2398 
2399 	for (queue = 0; queue < rx_queues_count; queue++) {
2400 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2401 			continue;
2402 
2403 		prio = priv->plat->rx_queues_cfg[queue].prio;
2404 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2405 	}
2406 }
2407 
2408 /**
2409  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2410  *  @priv: driver private structure
2411  *  Description: It is used for configuring the TX Queue Priority
2412  */
2413 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2414 {
2415 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2416 	u32 queue;
2417 	u32 prio;
2418 
2419 	for (queue = 0; queue < tx_queues_count; queue++) {
2420 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2421 			continue;
2422 
2423 		prio = priv->plat->tx_queues_cfg[queue].prio;
2424 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2425 	}
2426 }
2427 
2428 /**
2429  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2430  *  @priv: driver private structure
2431  *  Description: It is used for configuring the RX queue routing
2432  */
2433 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2434 {
2435 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2436 	u32 queue;
2437 	u8 packet;
2438 
2439 	for (queue = 0; queue < rx_queues_count; queue++) {
2440 		/* no specific packet type routing specified for the queue */
2441 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2442 			continue;
2443 
2444 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2445 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2446 	}
2447 }
2448 
2449 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2450 {
2451 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2452 		priv->rss.enable = false;
2453 		return;
2454 	}
2455 
2456 	if (priv->dev->features & NETIF_F_RXHASH)
2457 		priv->rss.enable = true;
2458 	else
2459 		priv->rss.enable = false;
2460 
2461 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2462 			     priv->plat->rx_queues_to_use);
2463 }
2464 
2465 /**
2466  *  stmmac_mtl_configuration - Configure MTL
2467  *  @priv: driver private structure
2468  *  Description: It is used for configurring MTL
2469  */
2470 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2471 {
2472 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2473 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2474 
2475 	if (tx_queues_count > 1)
2476 		stmmac_set_tx_queue_weight(priv);
2477 
2478 	/* Configure MTL RX algorithms */
2479 	if (rx_queues_count > 1)
2480 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2481 				priv->plat->rx_sched_algorithm);
2482 
2483 	/* Configure MTL TX algorithms */
2484 	if (tx_queues_count > 1)
2485 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2486 				priv->plat->tx_sched_algorithm);
2487 
2488 	/* Configure CBS in AVB TX queues */
2489 	if (tx_queues_count > 1)
2490 		stmmac_configure_cbs(priv);
2491 
2492 	/* Map RX MTL to DMA channels */
2493 	stmmac_rx_queue_dma_chan_map(priv);
2494 
2495 	/* Enable MAC RX Queues */
2496 	stmmac_mac_enable_rx_queues(priv);
2497 
2498 	/* Set RX priorities */
2499 	if (rx_queues_count > 1)
2500 		stmmac_mac_config_rx_queues_prio(priv);
2501 
2502 	/* Set TX priorities */
2503 	if (tx_queues_count > 1)
2504 		stmmac_mac_config_tx_queues_prio(priv);
2505 
2506 	/* Set RX routing */
2507 	if (rx_queues_count > 1)
2508 		stmmac_mac_config_rx_queues_routing(priv);
2509 
2510 	/* Receive Side Scaling */
2511 	if (rx_queues_count > 1)
2512 		stmmac_mac_config_rss(priv);
2513 }
2514 
2515 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2516 {
2517 	if (priv->dma_cap.asp) {
2518 		netdev_info(priv->dev, "Enabling Safety Features\n");
2519 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2520 	} else {
2521 		netdev_info(priv->dev, "No Safety Features support found\n");
2522 	}
2523 }
2524 
2525 /**
2526  * stmmac_hw_setup - setup mac in a usable state.
2527  *  @dev : pointer to the device structure.
2528  *  Description:
2529  *  this is the main function to setup the HW in a usable state because the
2530  *  dma engine is reset, the core registers are configured (e.g. AXI,
2531  *  Checksum features, timers). The DMA is ready to start receiving and
2532  *  transmitting.
2533  *  Return value:
2534  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2535  *  file on failure.
2536  */
2537 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2538 {
2539 	struct stmmac_priv *priv = netdev_priv(dev);
2540 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2541 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2542 	u32 chan;
2543 	int ret;
2544 
2545 	/* DMA initialization and SW reset */
2546 	ret = stmmac_init_dma_engine(priv);
2547 	if (ret < 0) {
2548 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2549 			   __func__);
2550 		return ret;
2551 	}
2552 
2553 	/* Copy the MAC addr into the HW  */
2554 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2555 
2556 	/* PS and related bits will be programmed according to the speed */
2557 	if (priv->hw->pcs) {
2558 		int speed = priv->plat->mac_port_sel_speed;
2559 
2560 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2561 		    (speed == SPEED_1000)) {
2562 			priv->hw->ps = speed;
2563 		} else {
2564 			dev_warn(priv->device, "invalid port speed\n");
2565 			priv->hw->ps = 0;
2566 		}
2567 	}
2568 
2569 	/* Initialize the MAC Core */
2570 	stmmac_core_init(priv, priv->hw, dev);
2571 
2572 	/* Initialize MTL*/
2573 	stmmac_mtl_configuration(priv);
2574 
2575 	/* Initialize Safety Features */
2576 	stmmac_safety_feat_configuration(priv);
2577 
2578 	ret = stmmac_rx_ipc(priv, priv->hw);
2579 	if (!ret) {
2580 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2581 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2582 		priv->hw->rx_csum = 0;
2583 	}
2584 
2585 	/* Enable the MAC Rx/Tx */
2586 	stmmac_mac_set(priv, priv->ioaddr, true);
2587 
2588 	/* Set the HW DMA mode and the COE */
2589 	stmmac_dma_operation_mode(priv);
2590 
2591 	stmmac_mmc_setup(priv);
2592 
2593 	if (init_ptp) {
2594 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2595 		if (ret < 0)
2596 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2597 
2598 		ret = stmmac_init_ptp(priv);
2599 		if (ret == -EOPNOTSUPP)
2600 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2601 		else if (ret)
2602 			netdev_warn(priv->dev, "PTP init failed\n");
2603 	}
2604 
2605 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2606 
2607 	if (priv->use_riwt) {
2608 		if (!priv->rx_riwt)
2609 			priv->rx_riwt = DEF_DMA_RIWT;
2610 
2611 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2612 	}
2613 
2614 	if (priv->hw->pcs)
2615 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2616 
2617 	/* set TX and RX rings length */
2618 	stmmac_set_rings_length(priv);
2619 
2620 	/* Enable TSO */
2621 	if (priv->tso) {
2622 		for (chan = 0; chan < tx_cnt; chan++)
2623 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2624 	}
2625 
2626 	/* Enable Split Header */
2627 	if (priv->sph && priv->hw->rx_csum) {
2628 		for (chan = 0; chan < rx_cnt; chan++)
2629 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2630 	}
2631 
2632 	/* VLAN Tag Insertion */
2633 	if (priv->dma_cap.vlins)
2634 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2635 
2636 	/* Start the ball rolling... */
2637 	stmmac_start_all_dma(priv);
2638 
2639 	return 0;
2640 }
2641 
2642 static void stmmac_hw_teardown(struct net_device *dev)
2643 {
2644 	struct stmmac_priv *priv = netdev_priv(dev);
2645 
2646 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2647 }
2648 
2649 /**
2650  *  stmmac_open - open entry point of the driver
2651  *  @dev : pointer to the device structure.
2652  *  Description:
2653  *  This function is the open entry point of the driver.
2654  *  Return value:
2655  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2656  *  file on failure.
2657  */
2658 static int stmmac_open(struct net_device *dev)
2659 {
2660 	struct stmmac_priv *priv = netdev_priv(dev);
2661 	u32 chan;
2662 	int ret;
2663 
2664 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2665 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2666 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2667 		ret = stmmac_init_phy(dev);
2668 		if (ret) {
2669 			netdev_err(priv->dev,
2670 				   "%s: Cannot attach to PHY (error: %d)\n",
2671 				   __func__, ret);
2672 			return ret;
2673 		}
2674 	}
2675 
2676 	/* Extra statistics */
2677 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2678 	priv->xstats.threshold = tc;
2679 
2680 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2681 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2682 
2683 	ret = alloc_dma_desc_resources(priv);
2684 	if (ret < 0) {
2685 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2686 			   __func__);
2687 		goto dma_desc_error;
2688 	}
2689 
2690 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2691 	if (ret < 0) {
2692 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2693 			   __func__);
2694 		goto init_error;
2695 	}
2696 
2697 	ret = stmmac_hw_setup(dev, true);
2698 	if (ret < 0) {
2699 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2700 		goto init_error;
2701 	}
2702 
2703 	stmmac_init_coalesce(priv);
2704 
2705 	phylink_start(priv->phylink);
2706 
2707 	/* Request the IRQ lines */
2708 	ret = request_irq(dev->irq, stmmac_interrupt,
2709 			  IRQF_SHARED, dev->name, dev);
2710 	if (unlikely(ret < 0)) {
2711 		netdev_err(priv->dev,
2712 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2713 			   __func__, dev->irq, ret);
2714 		goto irq_error;
2715 	}
2716 
2717 	/* Request the Wake IRQ in case of another line is used for WoL */
2718 	if (priv->wol_irq != dev->irq) {
2719 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2720 				  IRQF_SHARED, dev->name, dev);
2721 		if (unlikely(ret < 0)) {
2722 			netdev_err(priv->dev,
2723 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2724 				   __func__, priv->wol_irq, ret);
2725 			goto wolirq_error;
2726 		}
2727 	}
2728 
2729 	/* Request the IRQ lines */
2730 	if (priv->lpi_irq > 0) {
2731 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2732 				  dev->name, dev);
2733 		if (unlikely(ret < 0)) {
2734 			netdev_err(priv->dev,
2735 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2736 				   __func__, priv->lpi_irq, ret);
2737 			goto lpiirq_error;
2738 		}
2739 	}
2740 
2741 	stmmac_enable_all_queues(priv);
2742 	stmmac_start_all_queues(priv);
2743 
2744 	return 0;
2745 
2746 lpiirq_error:
2747 	if (priv->wol_irq != dev->irq)
2748 		free_irq(priv->wol_irq, dev);
2749 wolirq_error:
2750 	free_irq(dev->irq, dev);
2751 irq_error:
2752 	phylink_stop(priv->phylink);
2753 
2754 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2755 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2756 
2757 	stmmac_hw_teardown(dev);
2758 init_error:
2759 	free_dma_desc_resources(priv);
2760 dma_desc_error:
2761 	phylink_disconnect_phy(priv->phylink);
2762 	return ret;
2763 }
2764 
2765 /**
2766  *  stmmac_release - close entry point of the driver
2767  *  @dev : device pointer.
2768  *  Description:
2769  *  This is the stop entry point of the driver.
2770  */
2771 static int stmmac_release(struct net_device *dev)
2772 {
2773 	struct stmmac_priv *priv = netdev_priv(dev);
2774 	u32 chan;
2775 
2776 	if (priv->eee_enabled)
2777 		del_timer_sync(&priv->eee_ctrl_timer);
2778 
2779 	/* Stop and disconnect the PHY */
2780 	phylink_stop(priv->phylink);
2781 	phylink_disconnect_phy(priv->phylink);
2782 
2783 	stmmac_stop_all_queues(priv);
2784 
2785 	stmmac_disable_all_queues(priv);
2786 
2787 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2788 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2789 
2790 	/* Free the IRQ lines */
2791 	free_irq(dev->irq, dev);
2792 	if (priv->wol_irq != dev->irq)
2793 		free_irq(priv->wol_irq, dev);
2794 	if (priv->lpi_irq > 0)
2795 		free_irq(priv->lpi_irq, dev);
2796 
2797 	/* Stop TX/RX DMA and clear the descriptors */
2798 	stmmac_stop_all_dma(priv);
2799 
2800 	/* Release and free the Rx/Tx resources */
2801 	free_dma_desc_resources(priv);
2802 
2803 	/* Disable the MAC Rx/Tx */
2804 	stmmac_mac_set(priv, priv->ioaddr, false);
2805 
2806 	netif_carrier_off(dev);
2807 
2808 	stmmac_release_ptp(priv);
2809 
2810 	return 0;
2811 }
2812 
2813 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2814 			       struct stmmac_tx_queue *tx_q)
2815 {
2816 	u16 tag = 0x0, inner_tag = 0x0;
2817 	u32 inner_type = 0x0;
2818 	struct dma_desc *p;
2819 
2820 	if (!priv->dma_cap.vlins)
2821 		return false;
2822 	if (!skb_vlan_tag_present(skb))
2823 		return false;
2824 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2825 		inner_tag = skb_vlan_tag_get(skb);
2826 		inner_type = STMMAC_VLAN_INSERT;
2827 	}
2828 
2829 	tag = skb_vlan_tag_get(skb);
2830 
2831 	p = tx_q->dma_tx + tx_q->cur_tx;
2832 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2833 		return false;
2834 
2835 	stmmac_set_tx_owner(priv, p);
2836 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2837 	return true;
2838 }
2839 
2840 /**
2841  *  stmmac_tso_allocator - close entry point of the driver
2842  *  @priv: driver private structure
2843  *  @des: buffer start address
2844  *  @total_len: total length to fill in descriptors
2845  *  @last_segmant: condition for the last descriptor
2846  *  @queue: TX queue index
2847  *  Description:
2848  *  This function fills descriptor and request new descriptors according to
2849  *  buffer length to fill
2850  */
2851 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2852 				 int total_len, bool last_segment, u32 queue)
2853 {
2854 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2855 	struct dma_desc *desc;
2856 	u32 buff_size;
2857 	int tmp_len;
2858 
2859 	tmp_len = total_len;
2860 
2861 	while (tmp_len > 0) {
2862 		dma_addr_t curr_addr;
2863 
2864 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2865 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2866 		desc = tx_q->dma_tx + tx_q->cur_tx;
2867 
2868 		curr_addr = des + (total_len - tmp_len);
2869 		if (priv->dma_cap.addr64 <= 32)
2870 			desc->des0 = cpu_to_le32(curr_addr);
2871 		else
2872 			stmmac_set_desc_addr(priv, desc, curr_addr);
2873 
2874 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2875 			    TSO_MAX_BUFF_SIZE : tmp_len;
2876 
2877 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2878 				0, 1,
2879 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2880 				0, 0);
2881 
2882 		tmp_len -= TSO_MAX_BUFF_SIZE;
2883 	}
2884 }
2885 
2886 /**
2887  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2888  *  @skb : the socket buffer
2889  *  @dev : device pointer
2890  *  Description: this is the transmit function that is called on TSO frames
2891  *  (support available on GMAC4 and newer chips).
2892  *  Diagram below show the ring programming in case of TSO frames:
2893  *
2894  *  First Descriptor
2895  *   --------
2896  *   | DES0 |---> buffer1 = L2/L3/L4 header
2897  *   | DES1 |---> TCP Payload (can continue on next descr...)
2898  *   | DES2 |---> buffer 1 and 2 len
2899  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2900  *   --------
2901  *	|
2902  *     ...
2903  *	|
2904  *   --------
2905  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2906  *   | DES1 | --|
2907  *   | DES2 | --> buffer 1 and 2 len
2908  *   | DES3 |
2909  *   --------
2910  *
2911  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2912  */
2913 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2914 {
2915 	struct dma_desc *desc, *first, *mss_desc = NULL;
2916 	struct stmmac_priv *priv = netdev_priv(dev);
2917 	int nfrags = skb_shinfo(skb)->nr_frags;
2918 	u32 queue = skb_get_queue_mapping(skb);
2919 	unsigned int first_entry, tx_packets;
2920 	int tmp_pay_len = 0, first_tx;
2921 	struct stmmac_tx_queue *tx_q;
2922 	u8 proto_hdr_len, hdr;
2923 	bool has_vlan, set_ic;
2924 	u32 pay_len, mss;
2925 	dma_addr_t des;
2926 	int i;
2927 
2928 	tx_q = &priv->tx_queue[queue];
2929 	first_tx = tx_q->cur_tx;
2930 
2931 	/* Compute header lengths */
2932 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2933 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
2934 		hdr = sizeof(struct udphdr);
2935 	} else {
2936 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2937 		hdr = tcp_hdrlen(skb);
2938 	}
2939 
2940 	/* Desc availability based on threshold should be enough safe */
2941 	if (unlikely(stmmac_tx_avail(priv, queue) <
2942 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2943 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2944 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2945 								queue));
2946 			/* This is a hard error, log it. */
2947 			netdev_err(priv->dev,
2948 				   "%s: Tx Ring full when queue awake\n",
2949 				   __func__);
2950 		}
2951 		return NETDEV_TX_BUSY;
2952 	}
2953 
2954 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2955 
2956 	mss = skb_shinfo(skb)->gso_size;
2957 
2958 	/* set new MSS value if needed */
2959 	if (mss != tx_q->mss) {
2960 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2961 		stmmac_set_mss(priv, mss_desc, mss);
2962 		tx_q->mss = mss;
2963 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2964 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2965 	}
2966 
2967 	if (netif_msg_tx_queued(priv)) {
2968 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2969 			__func__, hdr, proto_hdr_len, pay_len, mss);
2970 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2971 			skb->data_len);
2972 	}
2973 
2974 	/* Check if VLAN can be inserted by HW */
2975 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2976 
2977 	first_entry = tx_q->cur_tx;
2978 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2979 
2980 	desc = tx_q->dma_tx + first_entry;
2981 	first = desc;
2982 
2983 	if (has_vlan)
2984 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2985 
2986 	/* first descriptor: fill Headers on Buf1 */
2987 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2988 			     DMA_TO_DEVICE);
2989 	if (dma_mapping_error(priv->device, des))
2990 		goto dma_map_err;
2991 
2992 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2993 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2994 
2995 	if (priv->dma_cap.addr64 <= 32) {
2996 		first->des0 = cpu_to_le32(des);
2997 
2998 		/* Fill start of payload in buff2 of first descriptor */
2999 		if (pay_len)
3000 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3001 
3002 		/* If needed take extra descriptors to fill the remaining payload */
3003 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3004 	} else {
3005 		stmmac_set_desc_addr(priv, first, des);
3006 		tmp_pay_len = pay_len;
3007 		des += proto_hdr_len;
3008 		pay_len = 0;
3009 	}
3010 
3011 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3012 
3013 	/* Prepare fragments */
3014 	for (i = 0; i < nfrags; i++) {
3015 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3016 
3017 		des = skb_frag_dma_map(priv->device, frag, 0,
3018 				       skb_frag_size(frag),
3019 				       DMA_TO_DEVICE);
3020 		if (dma_mapping_error(priv->device, des))
3021 			goto dma_map_err;
3022 
3023 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3024 				     (i == nfrags - 1), queue);
3025 
3026 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3027 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3028 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3029 	}
3030 
3031 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3032 
3033 	/* Only the last descriptor gets to point to the skb. */
3034 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3035 
3036 	/* Manage tx mitigation */
3037 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3038 	tx_q->tx_count_frames += tx_packets;
3039 
3040 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3041 		set_ic = true;
3042 	else if (!priv->tx_coal_frames)
3043 		set_ic = false;
3044 	else if (tx_packets > priv->tx_coal_frames)
3045 		set_ic = true;
3046 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3047 		set_ic = true;
3048 	else
3049 		set_ic = false;
3050 
3051 	if (set_ic) {
3052 		desc = &tx_q->dma_tx[tx_q->cur_tx];
3053 		tx_q->tx_count_frames = 0;
3054 		stmmac_set_tx_ic(priv, desc);
3055 		priv->xstats.tx_set_ic_bit++;
3056 	} else {
3057 		stmmac_tx_timer_arm(priv, queue);
3058 	}
3059 
3060 	/* We've used all descriptors we need for this skb, however,
3061 	 * advance cur_tx so that it references a fresh descriptor.
3062 	 * ndo_start_xmit will fill this descriptor the next time it's
3063 	 * called and stmmac_tx_clean may clean up to this descriptor.
3064 	 */
3065 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3066 
3067 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3068 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3069 			  __func__);
3070 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3071 	}
3072 
3073 	dev->stats.tx_bytes += skb->len;
3074 	priv->xstats.tx_tso_frames++;
3075 	priv->xstats.tx_tso_nfrags += nfrags;
3076 
3077 	if (priv->sarc_type)
3078 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3079 
3080 	skb_tx_timestamp(skb);
3081 
3082 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3083 		     priv->hwts_tx_en)) {
3084 		/* declare that device is doing timestamping */
3085 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3086 		stmmac_enable_tx_timestamp(priv, first);
3087 	}
3088 
3089 	/* Complete the first descriptor before granting the DMA */
3090 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3091 			proto_hdr_len,
3092 			pay_len,
3093 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3094 			hdr / 4, (skb->len - proto_hdr_len));
3095 
3096 	/* If context desc is used to change MSS */
3097 	if (mss_desc) {
3098 		/* Make sure that first descriptor has been completely
3099 		 * written, including its own bit. This is because MSS is
3100 		 * actually before first descriptor, so we need to make
3101 		 * sure that MSS's own bit is the last thing written.
3102 		 */
3103 		dma_wmb();
3104 		stmmac_set_tx_owner(priv, mss_desc);
3105 	}
3106 
3107 	/* The own bit must be the latest setting done when prepare the
3108 	 * descriptor and then barrier is needed to make sure that
3109 	 * all is coherent before granting the DMA engine.
3110 	 */
3111 	wmb();
3112 
3113 	if (netif_msg_pktdata(priv)) {
3114 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3115 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3116 			tx_q->cur_tx, first, nfrags);
3117 
3118 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3119 
3120 		pr_info(">>> frame to be transmitted: ");
3121 		print_pkt(skb->data, skb_headlen(skb));
3122 	}
3123 
3124 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3125 
3126 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3127 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3128 
3129 	return NETDEV_TX_OK;
3130 
3131 dma_map_err:
3132 	dev_err(priv->device, "Tx dma map failed\n");
3133 	dev_kfree_skb(skb);
3134 	priv->dev->stats.tx_dropped++;
3135 	return NETDEV_TX_OK;
3136 }
3137 
3138 /**
3139  *  stmmac_xmit - Tx entry point of the driver
3140  *  @skb : the socket buffer
3141  *  @dev : device pointer
3142  *  Description : this is the tx entry point of the driver.
3143  *  It programs the chain or the ring and supports oversized frames
3144  *  and SG feature.
3145  */
3146 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3147 {
3148 	unsigned int first_entry, tx_packets, enh_desc;
3149 	struct stmmac_priv *priv = netdev_priv(dev);
3150 	unsigned int nopaged_len = skb_headlen(skb);
3151 	int i, csum_insertion = 0, is_jumbo = 0;
3152 	u32 queue = skb_get_queue_mapping(skb);
3153 	int nfrags = skb_shinfo(skb)->nr_frags;
3154 	int gso = skb_shinfo(skb)->gso_type;
3155 	struct dma_desc *desc, *first;
3156 	struct stmmac_tx_queue *tx_q;
3157 	bool has_vlan, set_ic;
3158 	int entry, first_tx;
3159 	dma_addr_t des;
3160 
3161 	tx_q = &priv->tx_queue[queue];
3162 	first_tx = tx_q->cur_tx;
3163 
3164 	if (priv->tx_path_in_lpi_mode)
3165 		stmmac_disable_eee_mode(priv);
3166 
3167 	/* Manage oversized TCP frames for GMAC4 device */
3168 	if (skb_is_gso(skb) && priv->tso) {
3169 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3170 			return stmmac_tso_xmit(skb, dev);
3171 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3172 			return stmmac_tso_xmit(skb, dev);
3173 	}
3174 
3175 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3176 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3177 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3178 								queue));
3179 			/* This is a hard error, log it. */
3180 			netdev_err(priv->dev,
3181 				   "%s: Tx Ring full when queue awake\n",
3182 				   __func__);
3183 		}
3184 		return NETDEV_TX_BUSY;
3185 	}
3186 
3187 	/* Check if VLAN can be inserted by HW */
3188 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3189 
3190 	entry = tx_q->cur_tx;
3191 	first_entry = entry;
3192 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3193 
3194 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3195 
3196 	if (likely(priv->extend_desc))
3197 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3198 	else
3199 		desc = tx_q->dma_tx + entry;
3200 
3201 	first = desc;
3202 
3203 	if (has_vlan)
3204 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3205 
3206 	enh_desc = priv->plat->enh_desc;
3207 	/* To program the descriptors according to the size of the frame */
3208 	if (enh_desc)
3209 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3210 
3211 	if (unlikely(is_jumbo)) {
3212 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3213 		if (unlikely(entry < 0) && (entry != -EINVAL))
3214 			goto dma_map_err;
3215 	}
3216 
3217 	for (i = 0; i < nfrags; i++) {
3218 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3219 		int len = skb_frag_size(frag);
3220 		bool last_segment = (i == (nfrags - 1));
3221 
3222 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3223 		WARN_ON(tx_q->tx_skbuff[entry]);
3224 
3225 		if (likely(priv->extend_desc))
3226 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3227 		else
3228 			desc = tx_q->dma_tx + entry;
3229 
3230 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3231 				       DMA_TO_DEVICE);
3232 		if (dma_mapping_error(priv->device, des))
3233 			goto dma_map_err; /* should reuse desc w/o issues */
3234 
3235 		tx_q->tx_skbuff_dma[entry].buf = des;
3236 
3237 		stmmac_set_desc_addr(priv, desc, des);
3238 
3239 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3240 		tx_q->tx_skbuff_dma[entry].len = len;
3241 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3242 
3243 		/* Prepare the descriptor and set the own bit too */
3244 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3245 				priv->mode, 1, last_segment, skb->len);
3246 	}
3247 
3248 	/* Only the last descriptor gets to point to the skb. */
3249 	tx_q->tx_skbuff[entry] = skb;
3250 
3251 	/* According to the coalesce parameter the IC bit for the latest
3252 	 * segment is reset and the timer re-started to clean the tx status.
3253 	 * This approach takes care about the fragments: desc is the first
3254 	 * element in case of no SG.
3255 	 */
3256 	tx_packets = (entry + 1) - first_tx;
3257 	tx_q->tx_count_frames += tx_packets;
3258 
3259 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3260 		set_ic = true;
3261 	else if (!priv->tx_coal_frames)
3262 		set_ic = false;
3263 	else if (tx_packets > priv->tx_coal_frames)
3264 		set_ic = true;
3265 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3266 		set_ic = true;
3267 	else
3268 		set_ic = false;
3269 
3270 	if (set_ic) {
3271 		if (likely(priv->extend_desc))
3272 			desc = &tx_q->dma_etx[entry].basic;
3273 		else
3274 			desc = &tx_q->dma_tx[entry];
3275 
3276 		tx_q->tx_count_frames = 0;
3277 		stmmac_set_tx_ic(priv, desc);
3278 		priv->xstats.tx_set_ic_bit++;
3279 	} else {
3280 		stmmac_tx_timer_arm(priv, queue);
3281 	}
3282 
3283 	/* We've used all descriptors we need for this skb, however,
3284 	 * advance cur_tx so that it references a fresh descriptor.
3285 	 * ndo_start_xmit will fill this descriptor the next time it's
3286 	 * called and stmmac_tx_clean may clean up to this descriptor.
3287 	 */
3288 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3289 	tx_q->cur_tx = entry;
3290 
3291 	if (netif_msg_pktdata(priv)) {
3292 		void *tx_head;
3293 
3294 		netdev_dbg(priv->dev,
3295 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3296 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3297 			   entry, first, nfrags);
3298 
3299 		if (priv->extend_desc)
3300 			tx_head = (void *)tx_q->dma_etx;
3301 		else
3302 			tx_head = (void *)tx_q->dma_tx;
3303 
3304 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3305 
3306 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3307 		print_pkt(skb->data, skb->len);
3308 	}
3309 
3310 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3311 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3312 			  __func__);
3313 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3314 	}
3315 
3316 	dev->stats.tx_bytes += skb->len;
3317 
3318 	if (priv->sarc_type)
3319 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3320 
3321 	skb_tx_timestamp(skb);
3322 
3323 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3324 	 * problems because all the descriptors are actually ready to be
3325 	 * passed to the DMA engine.
3326 	 */
3327 	if (likely(!is_jumbo)) {
3328 		bool last_segment = (nfrags == 0);
3329 
3330 		des = dma_map_single(priv->device, skb->data,
3331 				     nopaged_len, DMA_TO_DEVICE);
3332 		if (dma_mapping_error(priv->device, des))
3333 			goto dma_map_err;
3334 
3335 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3336 
3337 		stmmac_set_desc_addr(priv, first, des);
3338 
3339 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3340 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3341 
3342 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3343 			     priv->hwts_tx_en)) {
3344 			/* declare that device is doing timestamping */
3345 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3346 			stmmac_enable_tx_timestamp(priv, first);
3347 		}
3348 
3349 		/* Prepare the first descriptor setting the OWN bit too */
3350 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3351 				csum_insertion, priv->mode, 1, last_segment,
3352 				skb->len);
3353 	} else {
3354 		stmmac_set_tx_owner(priv, first);
3355 	}
3356 
3357 	/* The own bit must be the latest setting done when prepare the
3358 	 * descriptor and then barrier is needed to make sure that
3359 	 * all is coherent before granting the DMA engine.
3360 	 */
3361 	wmb();
3362 
3363 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3364 
3365 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3366 
3367 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3368 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3369 
3370 	return NETDEV_TX_OK;
3371 
3372 dma_map_err:
3373 	netdev_err(priv->dev, "Tx DMA map failed\n");
3374 	dev_kfree_skb(skb);
3375 	priv->dev->stats.tx_dropped++;
3376 	return NETDEV_TX_OK;
3377 }
3378 
3379 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3380 {
3381 	struct vlan_ethhdr *veth;
3382 	__be16 vlan_proto;
3383 	u16 vlanid;
3384 
3385 	veth = (struct vlan_ethhdr *)skb->data;
3386 	vlan_proto = veth->h_vlan_proto;
3387 
3388 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3389 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3390 	    (vlan_proto == htons(ETH_P_8021AD) &&
3391 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3392 		/* pop the vlan tag */
3393 		vlanid = ntohs(veth->h_vlan_TCI);
3394 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3395 		skb_pull(skb, VLAN_HLEN);
3396 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3397 	}
3398 }
3399 
3400 
3401 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3402 {
3403 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3404 		return 0;
3405 
3406 	return 1;
3407 }
3408 
3409 /**
3410  * stmmac_rx_refill - refill used skb preallocated buffers
3411  * @priv: driver private structure
3412  * @queue: RX queue index
3413  * Description : this is to reallocate the skb for the reception process
3414  * that is based on zero-copy.
3415  */
3416 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3417 {
3418 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3419 	int len, dirty = stmmac_rx_dirty(priv, queue);
3420 	unsigned int entry = rx_q->dirty_rx;
3421 
3422 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3423 
3424 	while (dirty-- > 0) {
3425 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3426 		struct dma_desc *p;
3427 		bool use_rx_wd;
3428 
3429 		if (priv->extend_desc)
3430 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3431 		else
3432 			p = rx_q->dma_rx + entry;
3433 
3434 		if (!buf->page) {
3435 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3436 			if (!buf->page)
3437 				break;
3438 		}
3439 
3440 		if (priv->sph && !buf->sec_page) {
3441 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3442 			if (!buf->sec_page)
3443 				break;
3444 
3445 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3446 
3447 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3448 						   len, DMA_FROM_DEVICE);
3449 		}
3450 
3451 		buf->addr = page_pool_get_dma_addr(buf->page);
3452 
3453 		/* Sync whole allocation to device. This will invalidate old
3454 		 * data.
3455 		 */
3456 		dma_sync_single_for_device(priv->device, buf->addr, len,
3457 					   DMA_FROM_DEVICE);
3458 
3459 		stmmac_set_desc_addr(priv, p, buf->addr);
3460 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3461 		stmmac_refill_desc3(priv, rx_q, p);
3462 
3463 		rx_q->rx_count_frames++;
3464 		rx_q->rx_count_frames += priv->rx_coal_frames;
3465 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3466 			rx_q->rx_count_frames = 0;
3467 
3468 		use_rx_wd = !priv->rx_coal_frames;
3469 		use_rx_wd |= rx_q->rx_count_frames > 0;
3470 		if (!priv->use_riwt)
3471 			use_rx_wd = false;
3472 
3473 		dma_wmb();
3474 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3475 
3476 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3477 	}
3478 	rx_q->dirty_rx = entry;
3479 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3480 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3481 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3482 }
3483 
3484 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3485 				       struct dma_desc *p,
3486 				       int status, unsigned int len)
3487 {
3488 	int ret, coe = priv->hw->rx_csum;
3489 	unsigned int plen = 0, hlen = 0;
3490 
3491 	/* Not first descriptor, buffer is always zero */
3492 	if (priv->sph && len)
3493 		return 0;
3494 
3495 	/* First descriptor, get split header length */
3496 	ret = stmmac_get_rx_header_len(priv, p, &hlen);
3497 	if (priv->sph && hlen) {
3498 		priv->xstats.rx_split_hdr_pkt_n++;
3499 		return hlen;
3500 	}
3501 
3502 	/* First descriptor, not last descriptor and not split header */
3503 	if (status & rx_not_ls)
3504 		return priv->dma_buf_sz;
3505 
3506 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3507 
3508 	/* First descriptor and last descriptor and not split header */
3509 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3510 }
3511 
3512 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3513 				       struct dma_desc *p,
3514 				       int status, unsigned int len)
3515 {
3516 	int coe = priv->hw->rx_csum;
3517 	unsigned int plen = 0;
3518 
3519 	/* Not split header, buffer is not available */
3520 	if (!priv->sph)
3521 		return 0;
3522 
3523 	/* Not last descriptor */
3524 	if (status & rx_not_ls)
3525 		return priv->dma_buf_sz;
3526 
3527 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3528 
3529 	/* Last descriptor */
3530 	return plen - len;
3531 }
3532 
3533 /**
3534  * stmmac_rx - manage the receive process
3535  * @priv: driver private structure
3536  * @limit: napi bugget
3537  * @queue: RX queue index.
3538  * Description :  this the function called by the napi poll method.
3539  * It gets all the frames inside the ring.
3540  */
3541 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3542 {
3543 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3544 	struct stmmac_channel *ch = &priv->channel[queue];
3545 	unsigned int count = 0, error = 0, len = 0;
3546 	int status = 0, coe = priv->hw->rx_csum;
3547 	unsigned int next_entry = rx_q->cur_rx;
3548 	struct sk_buff *skb = NULL;
3549 
3550 	if (netif_msg_rx_status(priv)) {
3551 		void *rx_head;
3552 
3553 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3554 		if (priv->extend_desc)
3555 			rx_head = (void *)rx_q->dma_erx;
3556 		else
3557 			rx_head = (void *)rx_q->dma_rx;
3558 
3559 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3560 	}
3561 	while (count < limit) {
3562 		unsigned int buf1_len = 0, buf2_len = 0;
3563 		enum pkt_hash_types hash_type;
3564 		struct stmmac_rx_buffer *buf;
3565 		struct dma_desc *np, *p;
3566 		int entry;
3567 		u32 hash;
3568 
3569 		if (!count && rx_q->state_saved) {
3570 			skb = rx_q->state.skb;
3571 			error = rx_q->state.error;
3572 			len = rx_q->state.len;
3573 		} else {
3574 			rx_q->state_saved = false;
3575 			skb = NULL;
3576 			error = 0;
3577 			len = 0;
3578 		}
3579 
3580 		if (count >= limit)
3581 			break;
3582 
3583 read_again:
3584 		buf1_len = 0;
3585 		buf2_len = 0;
3586 		entry = next_entry;
3587 		buf = &rx_q->buf_pool[entry];
3588 
3589 		if (priv->extend_desc)
3590 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3591 		else
3592 			p = rx_q->dma_rx + entry;
3593 
3594 		/* read the status of the incoming frame */
3595 		status = stmmac_rx_status(priv, &priv->dev->stats,
3596 				&priv->xstats, p);
3597 		/* check if managed by the DMA otherwise go ahead */
3598 		if (unlikely(status & dma_own))
3599 			break;
3600 
3601 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3602 		next_entry = rx_q->cur_rx;
3603 
3604 		if (priv->extend_desc)
3605 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3606 		else
3607 			np = rx_q->dma_rx + next_entry;
3608 
3609 		prefetch(np);
3610 
3611 		if (priv->extend_desc)
3612 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3613 					&priv->xstats, rx_q->dma_erx + entry);
3614 		if (unlikely(status == discard_frame)) {
3615 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3616 			buf->page = NULL;
3617 			error = 1;
3618 			if (!priv->hwts_rx_en)
3619 				priv->dev->stats.rx_errors++;
3620 		}
3621 
3622 		if (unlikely(error && (status & rx_not_ls)))
3623 			goto read_again;
3624 		if (unlikely(error)) {
3625 			dev_kfree_skb(skb);
3626 			skb = NULL;
3627 			count++;
3628 			continue;
3629 		}
3630 
3631 		/* Buffer is good. Go on. */
3632 
3633 		prefetch(page_address(buf->page));
3634 		if (buf->sec_page)
3635 			prefetch(page_address(buf->sec_page));
3636 
3637 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3638 		len += buf1_len;
3639 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3640 		len += buf2_len;
3641 
3642 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3643 		 * Type frames (LLC/LLC-SNAP)
3644 		 *
3645 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3646 		 * feature is always disabled and packets need to be
3647 		 * stripped manually.
3648 		 */
3649 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3650 		    unlikely(status != llc_snap)) {
3651 			if (buf2_len)
3652 				buf2_len -= ETH_FCS_LEN;
3653 			else
3654 				buf1_len -= ETH_FCS_LEN;
3655 
3656 			len -= ETH_FCS_LEN;
3657 		}
3658 
3659 		if (!skb) {
3660 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3661 			if (!skb) {
3662 				priv->dev->stats.rx_dropped++;
3663 				count++;
3664 				goto drain_data;
3665 			}
3666 
3667 			dma_sync_single_for_cpu(priv->device, buf->addr,
3668 						buf1_len, DMA_FROM_DEVICE);
3669 			skb_copy_to_linear_data(skb, page_address(buf->page),
3670 						buf1_len);
3671 			skb_put(skb, buf1_len);
3672 
3673 			/* Data payload copied into SKB, page ready for recycle */
3674 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3675 			buf->page = NULL;
3676 		} else if (buf1_len) {
3677 			dma_sync_single_for_cpu(priv->device, buf->addr,
3678 						buf1_len, DMA_FROM_DEVICE);
3679 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3680 					buf->page, 0, buf1_len,
3681 					priv->dma_buf_sz);
3682 
3683 			/* Data payload appended into SKB */
3684 			page_pool_release_page(rx_q->page_pool, buf->page);
3685 			buf->page = NULL;
3686 		}
3687 
3688 		if (buf2_len) {
3689 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3690 						buf2_len, DMA_FROM_DEVICE);
3691 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3692 					buf->sec_page, 0, buf2_len,
3693 					priv->dma_buf_sz);
3694 
3695 			/* Data payload appended into SKB */
3696 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3697 			buf->sec_page = NULL;
3698 		}
3699 
3700 drain_data:
3701 		if (likely(status & rx_not_ls))
3702 			goto read_again;
3703 		if (!skb)
3704 			continue;
3705 
3706 		/* Got entire packet into SKB. Finish it. */
3707 
3708 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3709 		stmmac_rx_vlan(priv->dev, skb);
3710 		skb->protocol = eth_type_trans(skb, priv->dev);
3711 
3712 		if (unlikely(!coe))
3713 			skb_checksum_none_assert(skb);
3714 		else
3715 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3716 
3717 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3718 			skb_set_hash(skb, hash, hash_type);
3719 
3720 		skb_record_rx_queue(skb, queue);
3721 		napi_gro_receive(&ch->rx_napi, skb);
3722 		skb = NULL;
3723 
3724 		priv->dev->stats.rx_packets++;
3725 		priv->dev->stats.rx_bytes += len;
3726 		count++;
3727 	}
3728 
3729 	if (status & rx_not_ls || skb) {
3730 		rx_q->state_saved = true;
3731 		rx_q->state.skb = skb;
3732 		rx_q->state.error = error;
3733 		rx_q->state.len = len;
3734 	}
3735 
3736 	stmmac_rx_refill(priv, queue);
3737 
3738 	priv->xstats.rx_pkt_n += count;
3739 
3740 	return count;
3741 }
3742 
3743 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3744 {
3745 	struct stmmac_channel *ch =
3746 		container_of(napi, struct stmmac_channel, rx_napi);
3747 	struct stmmac_priv *priv = ch->priv_data;
3748 	u32 chan = ch->index;
3749 	int work_done;
3750 
3751 	priv->xstats.napi_poll++;
3752 
3753 	work_done = stmmac_rx(priv, budget, chan);
3754 	if (work_done < budget && napi_complete_done(napi, work_done))
3755 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3756 	return work_done;
3757 }
3758 
3759 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3760 {
3761 	struct stmmac_channel *ch =
3762 		container_of(napi, struct stmmac_channel, tx_napi);
3763 	struct stmmac_priv *priv = ch->priv_data;
3764 	struct stmmac_tx_queue *tx_q;
3765 	u32 chan = ch->index;
3766 	int work_done;
3767 
3768 	priv->xstats.napi_poll++;
3769 
3770 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3771 	work_done = min(work_done, budget);
3772 
3773 	if (work_done < budget)
3774 		napi_complete_done(napi, work_done);
3775 
3776 	/* Force transmission restart */
3777 	tx_q = &priv->tx_queue[chan];
3778 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3779 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3780 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3781 				       chan);
3782 	}
3783 
3784 	return work_done;
3785 }
3786 
3787 /**
3788  *  stmmac_tx_timeout
3789  *  @dev : Pointer to net device structure
3790  *  Description: this function is called when a packet transmission fails to
3791  *   complete within a reasonable time. The driver will mark the error in the
3792  *   netdev structure and arrange for the device to be reset to a sane state
3793  *   in order to transmit a new packet.
3794  */
3795 static void stmmac_tx_timeout(struct net_device *dev)
3796 {
3797 	struct stmmac_priv *priv = netdev_priv(dev);
3798 
3799 	stmmac_global_err(priv);
3800 }
3801 
3802 /**
3803  *  stmmac_set_rx_mode - entry point for multicast addressing
3804  *  @dev : pointer to the device structure
3805  *  Description:
3806  *  This function is a driver entry point which gets called by the kernel
3807  *  whenever multicast addresses must be enabled/disabled.
3808  *  Return value:
3809  *  void.
3810  */
3811 static void stmmac_set_rx_mode(struct net_device *dev)
3812 {
3813 	struct stmmac_priv *priv = netdev_priv(dev);
3814 
3815 	stmmac_set_filter(priv, priv->hw, dev);
3816 }
3817 
3818 /**
3819  *  stmmac_change_mtu - entry point to change MTU size for the device.
3820  *  @dev : device pointer.
3821  *  @new_mtu : the new MTU size for the device.
3822  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3823  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3824  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3825  *  Return value:
3826  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3827  *  file on failure.
3828  */
3829 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3830 {
3831 	struct stmmac_priv *priv = netdev_priv(dev);
3832 
3833 	if (netif_running(dev)) {
3834 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3835 		return -EBUSY;
3836 	}
3837 
3838 	dev->mtu = new_mtu;
3839 
3840 	netdev_update_features(dev);
3841 
3842 	return 0;
3843 }
3844 
3845 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3846 					     netdev_features_t features)
3847 {
3848 	struct stmmac_priv *priv = netdev_priv(dev);
3849 
3850 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3851 		features &= ~NETIF_F_RXCSUM;
3852 
3853 	if (!priv->plat->tx_coe)
3854 		features &= ~NETIF_F_CSUM_MASK;
3855 
3856 	/* Some GMAC devices have a bugged Jumbo frame support that
3857 	 * needs to have the Tx COE disabled for oversized frames
3858 	 * (due to limited buffer sizes). In this case we disable
3859 	 * the TX csum insertion in the TDES and not use SF.
3860 	 */
3861 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3862 		features &= ~NETIF_F_CSUM_MASK;
3863 
3864 	/* Disable tso if asked by ethtool */
3865 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3866 		if (features & NETIF_F_TSO)
3867 			priv->tso = true;
3868 		else
3869 			priv->tso = false;
3870 	}
3871 
3872 	return features;
3873 }
3874 
3875 static int stmmac_set_features(struct net_device *netdev,
3876 			       netdev_features_t features)
3877 {
3878 	struct stmmac_priv *priv = netdev_priv(netdev);
3879 	bool sph_en;
3880 	u32 chan;
3881 
3882 	/* Keep the COE Type in case of csum is supporting */
3883 	if (features & NETIF_F_RXCSUM)
3884 		priv->hw->rx_csum = priv->plat->rx_coe;
3885 	else
3886 		priv->hw->rx_csum = 0;
3887 	/* No check needed because rx_coe has been set before and it will be
3888 	 * fixed in case of issue.
3889 	 */
3890 	stmmac_rx_ipc(priv, priv->hw);
3891 
3892 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3893 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3894 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3895 
3896 	return 0;
3897 }
3898 
3899 /**
3900  *  stmmac_interrupt - main ISR
3901  *  @irq: interrupt number.
3902  *  @dev_id: to pass the net device pointer.
3903  *  Description: this is the main driver interrupt service routine.
3904  *  It can call:
3905  *  o DMA service routine (to manage incoming frame reception and transmission
3906  *    status)
3907  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3908  *    interrupts.
3909  */
3910 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3911 {
3912 	struct net_device *dev = (struct net_device *)dev_id;
3913 	struct stmmac_priv *priv = netdev_priv(dev);
3914 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3915 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3916 	u32 queues_count;
3917 	u32 queue;
3918 	bool xmac;
3919 
3920 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3921 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3922 
3923 	if (priv->irq_wake)
3924 		pm_wakeup_event(priv->device, 0);
3925 
3926 	if (unlikely(!dev)) {
3927 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3928 		return IRQ_NONE;
3929 	}
3930 
3931 	/* Check if adapter is up */
3932 	if (test_bit(STMMAC_DOWN, &priv->state))
3933 		return IRQ_HANDLED;
3934 	/* Check if a fatal error happened */
3935 	if (stmmac_safety_feat_interrupt(priv))
3936 		return IRQ_HANDLED;
3937 
3938 	/* To handle GMAC own interrupts */
3939 	if ((priv->plat->has_gmac) || xmac) {
3940 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3941 		int mtl_status;
3942 
3943 		if (unlikely(status)) {
3944 			/* For LPI we need to save the tx status */
3945 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3946 				priv->tx_path_in_lpi_mode = true;
3947 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3948 				priv->tx_path_in_lpi_mode = false;
3949 		}
3950 
3951 		for (queue = 0; queue < queues_count; queue++) {
3952 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3953 
3954 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3955 								queue);
3956 			if (mtl_status != -EINVAL)
3957 				status |= mtl_status;
3958 
3959 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3960 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3961 						       rx_q->rx_tail_addr,
3962 						       queue);
3963 		}
3964 
3965 		/* PCS link status */
3966 		if (priv->hw->pcs) {
3967 			if (priv->xstats.pcs_link)
3968 				netif_carrier_on(dev);
3969 			else
3970 				netif_carrier_off(dev);
3971 		}
3972 	}
3973 
3974 	/* To handle DMA interrupts */
3975 	stmmac_dma_interrupt(priv);
3976 
3977 	return IRQ_HANDLED;
3978 }
3979 
3980 #ifdef CONFIG_NET_POLL_CONTROLLER
3981 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3982  * to allow network I/O with interrupts disabled.
3983  */
3984 static void stmmac_poll_controller(struct net_device *dev)
3985 {
3986 	disable_irq(dev->irq);
3987 	stmmac_interrupt(dev->irq, dev);
3988 	enable_irq(dev->irq);
3989 }
3990 #endif
3991 
3992 /**
3993  *  stmmac_ioctl - Entry point for the Ioctl
3994  *  @dev: Device pointer.
3995  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3996  *  a proprietary structure used to pass information to the driver.
3997  *  @cmd: IOCTL command
3998  *  Description:
3999  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4000  */
4001 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4002 {
4003 	struct stmmac_priv *priv = netdev_priv (dev);
4004 	int ret = -EOPNOTSUPP;
4005 
4006 	if (!netif_running(dev))
4007 		return -EINVAL;
4008 
4009 	switch (cmd) {
4010 	case SIOCGMIIPHY:
4011 	case SIOCGMIIREG:
4012 	case SIOCSMIIREG:
4013 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4014 		break;
4015 	case SIOCSHWTSTAMP:
4016 		ret = stmmac_hwtstamp_set(dev, rq);
4017 		break;
4018 	case SIOCGHWTSTAMP:
4019 		ret = stmmac_hwtstamp_get(dev, rq);
4020 		break;
4021 	default:
4022 		break;
4023 	}
4024 
4025 	return ret;
4026 }
4027 
4028 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4029 				    void *cb_priv)
4030 {
4031 	struct stmmac_priv *priv = cb_priv;
4032 	int ret = -EOPNOTSUPP;
4033 
4034 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4035 		return ret;
4036 
4037 	stmmac_disable_all_queues(priv);
4038 
4039 	switch (type) {
4040 	case TC_SETUP_CLSU32:
4041 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4042 		break;
4043 	case TC_SETUP_CLSFLOWER:
4044 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4045 		break;
4046 	default:
4047 		break;
4048 	}
4049 
4050 	stmmac_enable_all_queues(priv);
4051 	return ret;
4052 }
4053 
4054 static LIST_HEAD(stmmac_block_cb_list);
4055 
4056 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4057 			   void *type_data)
4058 {
4059 	struct stmmac_priv *priv = netdev_priv(ndev);
4060 
4061 	switch (type) {
4062 	case TC_SETUP_BLOCK:
4063 		return flow_block_cb_setup_simple(type_data,
4064 						  &stmmac_block_cb_list,
4065 						  stmmac_setup_tc_block_cb,
4066 						  priv, priv, true);
4067 	case TC_SETUP_QDISC_CBS:
4068 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4069 	default:
4070 		return -EOPNOTSUPP;
4071 	}
4072 }
4073 
4074 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4075 			       struct net_device *sb_dev)
4076 {
4077 	int gso = skb_shinfo(skb)->gso_type;
4078 
4079 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4080 		/*
4081 		 * There is no way to determine the number of TSO/USO
4082 		 * capable Queues. Let's use always the Queue 0
4083 		 * because if TSO/USO is supported then at least this
4084 		 * one will be capable.
4085 		 */
4086 		return 0;
4087 	}
4088 
4089 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4090 }
4091 
4092 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4093 {
4094 	struct stmmac_priv *priv = netdev_priv(ndev);
4095 	int ret = 0;
4096 
4097 	ret = eth_mac_addr(ndev, addr);
4098 	if (ret)
4099 		return ret;
4100 
4101 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4102 
4103 	return ret;
4104 }
4105 
4106 #ifdef CONFIG_DEBUG_FS
4107 static struct dentry *stmmac_fs_dir;
4108 
4109 static void sysfs_display_ring(void *head, int size, int extend_desc,
4110 			       struct seq_file *seq)
4111 {
4112 	int i;
4113 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4114 	struct dma_desc *p = (struct dma_desc *)head;
4115 
4116 	for (i = 0; i < size; i++) {
4117 		if (extend_desc) {
4118 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4119 				   i, (unsigned int)virt_to_phys(ep),
4120 				   le32_to_cpu(ep->basic.des0),
4121 				   le32_to_cpu(ep->basic.des1),
4122 				   le32_to_cpu(ep->basic.des2),
4123 				   le32_to_cpu(ep->basic.des3));
4124 			ep++;
4125 		} else {
4126 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4127 				   i, (unsigned int)virt_to_phys(p),
4128 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4129 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4130 			p++;
4131 		}
4132 		seq_printf(seq, "\n");
4133 	}
4134 }
4135 
4136 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4137 {
4138 	struct net_device *dev = seq->private;
4139 	struct stmmac_priv *priv = netdev_priv(dev);
4140 	u32 rx_count = priv->plat->rx_queues_to_use;
4141 	u32 tx_count = priv->plat->tx_queues_to_use;
4142 	u32 queue;
4143 
4144 	if ((dev->flags & IFF_UP) == 0)
4145 		return 0;
4146 
4147 	for (queue = 0; queue < rx_count; queue++) {
4148 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4149 
4150 		seq_printf(seq, "RX Queue %d:\n", queue);
4151 
4152 		if (priv->extend_desc) {
4153 			seq_printf(seq, "Extended descriptor ring:\n");
4154 			sysfs_display_ring((void *)rx_q->dma_erx,
4155 					   DMA_RX_SIZE, 1, seq);
4156 		} else {
4157 			seq_printf(seq, "Descriptor ring:\n");
4158 			sysfs_display_ring((void *)rx_q->dma_rx,
4159 					   DMA_RX_SIZE, 0, seq);
4160 		}
4161 	}
4162 
4163 	for (queue = 0; queue < tx_count; queue++) {
4164 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4165 
4166 		seq_printf(seq, "TX Queue %d:\n", queue);
4167 
4168 		if (priv->extend_desc) {
4169 			seq_printf(seq, "Extended descriptor ring:\n");
4170 			sysfs_display_ring((void *)tx_q->dma_etx,
4171 					   DMA_TX_SIZE, 1, seq);
4172 		} else {
4173 			seq_printf(seq, "Descriptor ring:\n");
4174 			sysfs_display_ring((void *)tx_q->dma_tx,
4175 					   DMA_TX_SIZE, 0, seq);
4176 		}
4177 	}
4178 
4179 	return 0;
4180 }
4181 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4182 
4183 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4184 {
4185 	struct net_device *dev = seq->private;
4186 	struct stmmac_priv *priv = netdev_priv(dev);
4187 
4188 	if (!priv->hw_cap_support) {
4189 		seq_printf(seq, "DMA HW features not supported\n");
4190 		return 0;
4191 	}
4192 
4193 	seq_printf(seq, "==============================\n");
4194 	seq_printf(seq, "\tDMA HW features\n");
4195 	seq_printf(seq, "==============================\n");
4196 
4197 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4198 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4199 	seq_printf(seq, "\t1000 Mbps: %s\n",
4200 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4201 	seq_printf(seq, "\tHalf duplex: %s\n",
4202 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4203 	seq_printf(seq, "\tHash Filter: %s\n",
4204 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4205 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4206 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4207 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4208 		   (priv->dma_cap.pcs) ? "Y" : "N");
4209 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4210 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4211 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4212 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4213 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4214 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4215 	seq_printf(seq, "\tRMON module: %s\n",
4216 		   (priv->dma_cap.rmon) ? "Y" : "N");
4217 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4218 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4219 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4220 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4221 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4222 		   (priv->dma_cap.eee) ? "Y" : "N");
4223 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4224 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4225 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4226 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4227 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4228 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4229 	} else {
4230 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4231 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4232 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4233 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4234 	}
4235 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4236 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4237 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4238 		   priv->dma_cap.number_rx_channel);
4239 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4240 		   priv->dma_cap.number_tx_channel);
4241 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4242 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4243 
4244 	return 0;
4245 }
4246 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4247 
4248 static void stmmac_init_fs(struct net_device *dev)
4249 {
4250 	struct stmmac_priv *priv = netdev_priv(dev);
4251 
4252 	/* Create per netdev entries */
4253 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4254 
4255 	/* Entry to report DMA RX/TX rings */
4256 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4257 			    &stmmac_rings_status_fops);
4258 
4259 	/* Entry to report the DMA HW features */
4260 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4261 			    &stmmac_dma_cap_fops);
4262 }
4263 
4264 static void stmmac_exit_fs(struct net_device *dev)
4265 {
4266 	struct stmmac_priv *priv = netdev_priv(dev);
4267 
4268 	debugfs_remove_recursive(priv->dbgfs_dir);
4269 }
4270 #endif /* CONFIG_DEBUG_FS */
4271 
4272 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4273 {
4274 	unsigned char *data = (unsigned char *)&vid_le;
4275 	unsigned char data_byte = 0;
4276 	u32 crc = ~0x0;
4277 	u32 temp = 0;
4278 	int i, bits;
4279 
4280 	bits = get_bitmask_order(VLAN_VID_MASK);
4281 	for (i = 0; i < bits; i++) {
4282 		if ((i % 8) == 0)
4283 			data_byte = data[i / 8];
4284 
4285 		temp = ((crc & 1) ^ data_byte) & 1;
4286 		crc >>= 1;
4287 		data_byte >>= 1;
4288 
4289 		if (temp)
4290 			crc ^= 0xedb88320;
4291 	}
4292 
4293 	return crc;
4294 }
4295 
4296 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4297 {
4298 	u32 crc, hash = 0;
4299 	__le16 pmatch = 0;
4300 	int count = 0;
4301 	u16 vid = 0;
4302 
4303 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4304 		__le16 vid_le = cpu_to_le16(vid);
4305 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4306 		hash |= (1 << crc);
4307 		count++;
4308 	}
4309 
4310 	if (!priv->dma_cap.vlhash) {
4311 		if (count > 2) /* VID = 0 always passes filter */
4312 			return -EOPNOTSUPP;
4313 
4314 		pmatch = cpu_to_le16(vid);
4315 		hash = 0;
4316 	}
4317 
4318 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4319 }
4320 
4321 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4322 {
4323 	struct stmmac_priv *priv = netdev_priv(ndev);
4324 	bool is_double = false;
4325 	int ret;
4326 
4327 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4328 		is_double = true;
4329 
4330 	set_bit(vid, priv->active_vlans);
4331 	ret = stmmac_vlan_update(priv, is_double);
4332 	if (ret) {
4333 		clear_bit(vid, priv->active_vlans);
4334 		return ret;
4335 	}
4336 
4337 	return ret;
4338 }
4339 
4340 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4341 {
4342 	struct stmmac_priv *priv = netdev_priv(ndev);
4343 	bool is_double = false;
4344 
4345 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4346 		is_double = true;
4347 
4348 	clear_bit(vid, priv->active_vlans);
4349 	return stmmac_vlan_update(priv, is_double);
4350 }
4351 
4352 static const struct net_device_ops stmmac_netdev_ops = {
4353 	.ndo_open = stmmac_open,
4354 	.ndo_start_xmit = stmmac_xmit,
4355 	.ndo_stop = stmmac_release,
4356 	.ndo_change_mtu = stmmac_change_mtu,
4357 	.ndo_fix_features = stmmac_fix_features,
4358 	.ndo_set_features = stmmac_set_features,
4359 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4360 	.ndo_tx_timeout = stmmac_tx_timeout,
4361 	.ndo_do_ioctl = stmmac_ioctl,
4362 	.ndo_setup_tc = stmmac_setup_tc,
4363 	.ndo_select_queue = stmmac_select_queue,
4364 #ifdef CONFIG_NET_POLL_CONTROLLER
4365 	.ndo_poll_controller = stmmac_poll_controller,
4366 #endif
4367 	.ndo_set_mac_address = stmmac_set_mac_address,
4368 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4369 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4370 };
4371 
4372 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4373 {
4374 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4375 		return;
4376 	if (test_bit(STMMAC_DOWN, &priv->state))
4377 		return;
4378 
4379 	netdev_err(priv->dev, "Reset adapter.\n");
4380 
4381 	rtnl_lock();
4382 	netif_trans_update(priv->dev);
4383 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4384 		usleep_range(1000, 2000);
4385 
4386 	set_bit(STMMAC_DOWN, &priv->state);
4387 	dev_close(priv->dev);
4388 	dev_open(priv->dev, NULL);
4389 	clear_bit(STMMAC_DOWN, &priv->state);
4390 	clear_bit(STMMAC_RESETING, &priv->state);
4391 	rtnl_unlock();
4392 }
4393 
4394 static void stmmac_service_task(struct work_struct *work)
4395 {
4396 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4397 			service_task);
4398 
4399 	stmmac_reset_subtask(priv);
4400 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4401 }
4402 
4403 /**
4404  *  stmmac_hw_init - Init the MAC device
4405  *  @priv: driver private structure
4406  *  Description: this function is to configure the MAC device according to
4407  *  some platform parameters or the HW capability register. It prepares the
4408  *  driver to use either ring or chain modes and to setup either enhanced or
4409  *  normal descriptors.
4410  */
4411 static int stmmac_hw_init(struct stmmac_priv *priv)
4412 {
4413 	int ret;
4414 
4415 	/* dwmac-sun8i only work in chain mode */
4416 	if (priv->plat->has_sun8i)
4417 		chain_mode = 1;
4418 	priv->chain_mode = chain_mode;
4419 
4420 	/* Initialize HW Interface */
4421 	ret = stmmac_hwif_init(priv);
4422 	if (ret)
4423 		return ret;
4424 
4425 	/* Get the HW capability (new GMAC newer than 3.50a) */
4426 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4427 	if (priv->hw_cap_support) {
4428 		dev_info(priv->device, "DMA HW capability register supported\n");
4429 
4430 		/* We can override some gmac/dma configuration fields: e.g.
4431 		 * enh_desc, tx_coe (e.g. that are passed through the
4432 		 * platform) with the values from the HW capability
4433 		 * register (if supported).
4434 		 */
4435 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4436 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4437 		priv->hw->pmt = priv->plat->pmt;
4438 		if (priv->dma_cap.hash_tb_sz) {
4439 			priv->hw->multicast_filter_bins =
4440 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4441 			priv->hw->mcast_bits_log2 =
4442 					ilog2(priv->hw->multicast_filter_bins);
4443 		}
4444 
4445 		/* TXCOE doesn't work in thresh DMA mode */
4446 		if (priv->plat->force_thresh_dma_mode)
4447 			priv->plat->tx_coe = 0;
4448 		else
4449 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4450 
4451 		/* In case of GMAC4 rx_coe is from HW cap register. */
4452 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4453 
4454 		if (priv->dma_cap.rx_coe_type2)
4455 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4456 		else if (priv->dma_cap.rx_coe_type1)
4457 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4458 
4459 	} else {
4460 		dev_info(priv->device, "No HW DMA feature register supported\n");
4461 	}
4462 
4463 	if (priv->plat->rx_coe) {
4464 		priv->hw->rx_csum = priv->plat->rx_coe;
4465 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4466 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4467 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4468 	}
4469 	if (priv->plat->tx_coe)
4470 		dev_info(priv->device, "TX Checksum insertion supported\n");
4471 
4472 	if (priv->plat->pmt) {
4473 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4474 		device_set_wakeup_capable(priv->device, 1);
4475 	}
4476 
4477 	if (priv->dma_cap.tsoen)
4478 		dev_info(priv->device, "TSO supported\n");
4479 
4480 	/* Run HW quirks, if any */
4481 	if (priv->hwif_quirks) {
4482 		ret = priv->hwif_quirks(priv);
4483 		if (ret)
4484 			return ret;
4485 	}
4486 
4487 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4488 	 * In some case, for example on bugged HW this feature
4489 	 * has to be disable and this can be done by passing the
4490 	 * riwt_off field from the platform.
4491 	 */
4492 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4493 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4494 		priv->use_riwt = 1;
4495 		dev_info(priv->device,
4496 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4497 	}
4498 
4499 	return 0;
4500 }
4501 
4502 /**
4503  * stmmac_dvr_probe
4504  * @device: device pointer
4505  * @plat_dat: platform data pointer
4506  * @res: stmmac resource pointer
4507  * Description: this is the main probe function used to
4508  * call the alloc_etherdev, allocate the priv structure.
4509  * Return:
4510  * returns 0 on success, otherwise errno.
4511  */
4512 int stmmac_dvr_probe(struct device *device,
4513 		     struct plat_stmmacenet_data *plat_dat,
4514 		     struct stmmac_resources *res)
4515 {
4516 	struct net_device *ndev = NULL;
4517 	struct stmmac_priv *priv;
4518 	u32 queue, rxq, maxq;
4519 	int i, ret = 0;
4520 
4521 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4522 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4523 	if (!ndev)
4524 		return -ENOMEM;
4525 
4526 	SET_NETDEV_DEV(ndev, device);
4527 
4528 	priv = netdev_priv(ndev);
4529 	priv->device = device;
4530 	priv->dev = ndev;
4531 
4532 	stmmac_set_ethtool_ops(ndev);
4533 	priv->pause = pause;
4534 	priv->plat = plat_dat;
4535 	priv->ioaddr = res->addr;
4536 	priv->dev->base_addr = (unsigned long)res->addr;
4537 
4538 	priv->dev->irq = res->irq;
4539 	priv->wol_irq = res->wol_irq;
4540 	priv->lpi_irq = res->lpi_irq;
4541 
4542 	if (!IS_ERR_OR_NULL(res->mac))
4543 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4544 
4545 	dev_set_drvdata(device, priv->dev);
4546 
4547 	/* Verify driver arguments */
4548 	stmmac_verify_args();
4549 
4550 	/* Allocate workqueue */
4551 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4552 	if (!priv->wq) {
4553 		dev_err(priv->device, "failed to create workqueue\n");
4554 		return -ENOMEM;
4555 	}
4556 
4557 	INIT_WORK(&priv->service_task, stmmac_service_task);
4558 
4559 	/* Override with kernel parameters if supplied XXX CRS XXX
4560 	 * this needs to have multiple instances
4561 	 */
4562 	if ((phyaddr >= 0) && (phyaddr <= 31))
4563 		priv->plat->phy_addr = phyaddr;
4564 
4565 	if (priv->plat->stmmac_rst) {
4566 		ret = reset_control_assert(priv->plat->stmmac_rst);
4567 		reset_control_deassert(priv->plat->stmmac_rst);
4568 		/* Some reset controllers have only reset callback instead of
4569 		 * assert + deassert callbacks pair.
4570 		 */
4571 		if (ret == -ENOTSUPP)
4572 			reset_control_reset(priv->plat->stmmac_rst);
4573 	}
4574 
4575 	/* Init MAC and get the capabilities */
4576 	ret = stmmac_hw_init(priv);
4577 	if (ret)
4578 		goto error_hw_init;
4579 
4580 	stmmac_check_ether_addr(priv);
4581 
4582 	/* Configure real RX and TX queues */
4583 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4584 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4585 
4586 	ndev->netdev_ops = &stmmac_netdev_ops;
4587 
4588 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4589 			    NETIF_F_RXCSUM;
4590 
4591 	ret = stmmac_tc_init(priv, priv);
4592 	if (!ret) {
4593 		ndev->hw_features |= NETIF_F_HW_TC;
4594 	}
4595 
4596 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4597 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4598 		if (priv->plat->has_gmac4)
4599 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4600 		priv->tso = true;
4601 		dev_info(priv->device, "TSO feature enabled\n");
4602 	}
4603 
4604 	if (priv->dma_cap.sphen) {
4605 		ndev->hw_features |= NETIF_F_GRO;
4606 		priv->sph = true;
4607 		dev_info(priv->device, "SPH feature enabled\n");
4608 	}
4609 
4610 	if (priv->dma_cap.addr64) {
4611 		ret = dma_set_mask_and_coherent(device,
4612 				DMA_BIT_MASK(priv->dma_cap.addr64));
4613 		if (!ret) {
4614 			dev_info(priv->device, "Using %d bits DMA width\n",
4615 				 priv->dma_cap.addr64);
4616 
4617 			/*
4618 			 * If more than 32 bits can be addressed, make sure to
4619 			 * enable enhanced addressing mode.
4620 			 */
4621 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4622 				priv->plat->dma_cfg->eame = true;
4623 		} else {
4624 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4625 			if (ret) {
4626 				dev_err(priv->device, "Failed to set DMA Mask\n");
4627 				goto error_hw_init;
4628 			}
4629 
4630 			priv->dma_cap.addr64 = 32;
4631 		}
4632 	}
4633 
4634 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4635 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4636 #ifdef STMMAC_VLAN_TAG_USED
4637 	/* Both mac100 and gmac support receive VLAN tag detection */
4638 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4639 	if (priv->dma_cap.vlhash) {
4640 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4641 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4642 	}
4643 	if (priv->dma_cap.vlins) {
4644 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4645 		if (priv->dma_cap.dvlan)
4646 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4647 	}
4648 #endif
4649 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4650 
4651 	/* Initialize RSS */
4652 	rxq = priv->plat->rx_queues_to_use;
4653 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4654 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4655 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4656 
4657 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4658 		ndev->features |= NETIF_F_RXHASH;
4659 
4660 	/* MTU range: 46 - hw-specific max */
4661 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4662 	if (priv->plat->has_xgmac)
4663 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4664 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4665 		ndev->max_mtu = JUMBO_LEN;
4666 	else
4667 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4668 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4669 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4670 	 */
4671 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4672 	    (priv->plat->maxmtu >= ndev->min_mtu))
4673 		ndev->max_mtu = priv->plat->maxmtu;
4674 	else if (priv->plat->maxmtu < ndev->min_mtu)
4675 		dev_warn(priv->device,
4676 			 "%s: warning: maxmtu having invalid value (%d)\n",
4677 			 __func__, priv->plat->maxmtu);
4678 
4679 	if (flow_ctrl)
4680 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4681 
4682 	/* Setup channels NAPI */
4683 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4684 
4685 	for (queue = 0; queue < maxq; queue++) {
4686 		struct stmmac_channel *ch = &priv->channel[queue];
4687 
4688 		ch->priv_data = priv;
4689 		ch->index = queue;
4690 
4691 		if (queue < priv->plat->rx_queues_to_use) {
4692 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4693 				       NAPI_POLL_WEIGHT);
4694 		}
4695 		if (queue < priv->plat->tx_queues_to_use) {
4696 			netif_tx_napi_add(ndev, &ch->tx_napi,
4697 					  stmmac_napi_poll_tx,
4698 					  NAPI_POLL_WEIGHT);
4699 		}
4700 	}
4701 
4702 	mutex_init(&priv->lock);
4703 
4704 	/* If a specific clk_csr value is passed from the platform
4705 	 * this means that the CSR Clock Range selection cannot be
4706 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4707 	 * set the MDC clock dynamically according to the csr actual
4708 	 * clock input.
4709 	 */
4710 	if (priv->plat->clk_csr >= 0)
4711 		priv->clk_csr = priv->plat->clk_csr;
4712 	else
4713 		stmmac_clk_csr_set(priv);
4714 
4715 	stmmac_check_pcs_mode(priv);
4716 
4717 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4718 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4719 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4720 		/* MDIO bus Registration */
4721 		ret = stmmac_mdio_register(ndev);
4722 		if (ret < 0) {
4723 			dev_err(priv->device,
4724 				"%s: MDIO bus (id: %d) registration failed",
4725 				__func__, priv->plat->bus_id);
4726 			goto error_mdio_register;
4727 		}
4728 	}
4729 
4730 	ret = stmmac_phy_setup(priv);
4731 	if (ret) {
4732 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4733 		goto error_phy_setup;
4734 	}
4735 
4736 	ret = register_netdev(ndev);
4737 	if (ret) {
4738 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4739 			__func__, ret);
4740 		goto error_netdev_register;
4741 	}
4742 
4743 #ifdef CONFIG_DEBUG_FS
4744 	stmmac_init_fs(ndev);
4745 #endif
4746 
4747 	return ret;
4748 
4749 error_netdev_register:
4750 	phylink_destroy(priv->phylink);
4751 error_phy_setup:
4752 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4753 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4754 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4755 		stmmac_mdio_unregister(ndev);
4756 error_mdio_register:
4757 	for (queue = 0; queue < maxq; queue++) {
4758 		struct stmmac_channel *ch = &priv->channel[queue];
4759 
4760 		if (queue < priv->plat->rx_queues_to_use)
4761 			netif_napi_del(&ch->rx_napi);
4762 		if (queue < priv->plat->tx_queues_to_use)
4763 			netif_napi_del(&ch->tx_napi);
4764 	}
4765 error_hw_init:
4766 	destroy_workqueue(priv->wq);
4767 
4768 	return ret;
4769 }
4770 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4771 
4772 /**
4773  * stmmac_dvr_remove
4774  * @dev: device pointer
4775  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4776  * changes the link status, releases the DMA descriptor rings.
4777  */
4778 int stmmac_dvr_remove(struct device *dev)
4779 {
4780 	struct net_device *ndev = dev_get_drvdata(dev);
4781 	struct stmmac_priv *priv = netdev_priv(ndev);
4782 
4783 	netdev_info(priv->dev, "%s: removing driver", __func__);
4784 
4785 #ifdef CONFIG_DEBUG_FS
4786 	stmmac_exit_fs(ndev);
4787 #endif
4788 	stmmac_stop_all_dma(priv);
4789 
4790 	stmmac_mac_set(priv, priv->ioaddr, false);
4791 	netif_carrier_off(ndev);
4792 	unregister_netdev(ndev);
4793 	phylink_destroy(priv->phylink);
4794 	if (priv->plat->stmmac_rst)
4795 		reset_control_assert(priv->plat->stmmac_rst);
4796 	clk_disable_unprepare(priv->plat->pclk);
4797 	clk_disable_unprepare(priv->plat->stmmac_clk);
4798 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4799 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4800 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4801 		stmmac_mdio_unregister(ndev);
4802 	destroy_workqueue(priv->wq);
4803 	mutex_destroy(&priv->lock);
4804 
4805 	return 0;
4806 }
4807 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4808 
4809 /**
4810  * stmmac_suspend - suspend callback
4811  * @dev: device pointer
4812  * Description: this is the function to suspend the device and it is called
4813  * by the platform driver to stop the network queue, release the resources,
4814  * program the PMT register (for WoL), clean and release driver resources.
4815  */
4816 int stmmac_suspend(struct device *dev)
4817 {
4818 	struct net_device *ndev = dev_get_drvdata(dev);
4819 	struct stmmac_priv *priv = netdev_priv(ndev);
4820 
4821 	if (!ndev || !netif_running(ndev))
4822 		return 0;
4823 
4824 	phylink_mac_change(priv->phylink, false);
4825 
4826 	mutex_lock(&priv->lock);
4827 
4828 	netif_device_detach(ndev);
4829 	stmmac_stop_all_queues(priv);
4830 
4831 	stmmac_disable_all_queues(priv);
4832 
4833 	/* Stop TX/RX DMA */
4834 	stmmac_stop_all_dma(priv);
4835 
4836 	/* Enable Power down mode by programming the PMT regs */
4837 	if (device_may_wakeup(priv->device)) {
4838 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4839 		priv->irq_wake = 1;
4840 	} else {
4841 		mutex_unlock(&priv->lock);
4842 		rtnl_lock();
4843 		phylink_stop(priv->phylink);
4844 		rtnl_unlock();
4845 		mutex_lock(&priv->lock);
4846 
4847 		stmmac_mac_set(priv, priv->ioaddr, false);
4848 		pinctrl_pm_select_sleep_state(priv->device);
4849 		/* Disable clock in case of PWM is off */
4850 		if (priv->plat->clk_ptp_ref)
4851 			clk_disable_unprepare(priv->plat->clk_ptp_ref);
4852 		clk_disable_unprepare(priv->plat->pclk);
4853 		clk_disable_unprepare(priv->plat->stmmac_clk);
4854 	}
4855 	mutex_unlock(&priv->lock);
4856 
4857 	priv->speed = SPEED_UNKNOWN;
4858 	return 0;
4859 }
4860 EXPORT_SYMBOL_GPL(stmmac_suspend);
4861 
4862 /**
4863  * stmmac_reset_queues_param - reset queue parameters
4864  * @dev: device pointer
4865  */
4866 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4867 {
4868 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4869 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4870 	u32 queue;
4871 
4872 	for (queue = 0; queue < rx_cnt; queue++) {
4873 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4874 
4875 		rx_q->cur_rx = 0;
4876 		rx_q->dirty_rx = 0;
4877 	}
4878 
4879 	for (queue = 0; queue < tx_cnt; queue++) {
4880 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4881 
4882 		tx_q->cur_tx = 0;
4883 		tx_q->dirty_tx = 0;
4884 		tx_q->mss = 0;
4885 	}
4886 }
4887 
4888 /**
4889  * stmmac_resume - resume callback
4890  * @dev: device pointer
4891  * Description: when resume this function is invoked to setup the DMA and CORE
4892  * in a usable state.
4893  */
4894 int stmmac_resume(struct device *dev)
4895 {
4896 	struct net_device *ndev = dev_get_drvdata(dev);
4897 	struct stmmac_priv *priv = netdev_priv(ndev);
4898 
4899 	if (!netif_running(ndev))
4900 		return 0;
4901 
4902 	/* Power Down bit, into the PM register, is cleared
4903 	 * automatically as soon as a magic packet or a Wake-up frame
4904 	 * is received. Anyway, it's better to manually clear
4905 	 * this bit because it can generate problems while resuming
4906 	 * from another devices (e.g. serial console).
4907 	 */
4908 	if (device_may_wakeup(priv->device)) {
4909 		mutex_lock(&priv->lock);
4910 		stmmac_pmt(priv, priv->hw, 0);
4911 		mutex_unlock(&priv->lock);
4912 		priv->irq_wake = 0;
4913 	} else {
4914 		pinctrl_pm_select_default_state(priv->device);
4915 		/* enable the clk previously disabled */
4916 		clk_prepare_enable(priv->plat->stmmac_clk);
4917 		clk_prepare_enable(priv->plat->pclk);
4918 		if (priv->plat->clk_ptp_ref)
4919 			clk_prepare_enable(priv->plat->clk_ptp_ref);
4920 		/* reset the phy so that it's ready */
4921 		if (priv->mii)
4922 			stmmac_mdio_reset(priv->mii);
4923 	}
4924 
4925 	netif_device_attach(ndev);
4926 
4927 	mutex_lock(&priv->lock);
4928 
4929 	stmmac_reset_queues_param(priv);
4930 
4931 	stmmac_clear_descriptors(priv);
4932 
4933 	stmmac_hw_setup(ndev, false);
4934 	stmmac_init_coalesce(priv);
4935 	stmmac_set_rx_mode(ndev);
4936 
4937 	stmmac_enable_all_queues(priv);
4938 
4939 	stmmac_start_all_queues(priv);
4940 
4941 	mutex_unlock(&priv->lock);
4942 
4943 	if (!device_may_wakeup(priv->device)) {
4944 		rtnl_lock();
4945 		phylink_start(priv->phylink);
4946 		rtnl_unlock();
4947 	}
4948 
4949 	phylink_mac_change(priv->phylink, true);
4950 
4951 	return 0;
4952 }
4953 EXPORT_SYMBOL_GPL(stmmac_resume);
4954 
4955 #ifndef MODULE
4956 static int __init stmmac_cmdline_opt(char *str)
4957 {
4958 	char *opt;
4959 
4960 	if (!str || !*str)
4961 		return -EINVAL;
4962 	while ((opt = strsep(&str, ",")) != NULL) {
4963 		if (!strncmp(opt, "debug:", 6)) {
4964 			if (kstrtoint(opt + 6, 0, &debug))
4965 				goto err;
4966 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4967 			if (kstrtoint(opt + 8, 0, &phyaddr))
4968 				goto err;
4969 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4970 			if (kstrtoint(opt + 7, 0, &buf_sz))
4971 				goto err;
4972 		} else if (!strncmp(opt, "tc:", 3)) {
4973 			if (kstrtoint(opt + 3, 0, &tc))
4974 				goto err;
4975 		} else if (!strncmp(opt, "watchdog:", 9)) {
4976 			if (kstrtoint(opt + 9, 0, &watchdog))
4977 				goto err;
4978 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4979 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4980 				goto err;
4981 		} else if (!strncmp(opt, "pause:", 6)) {
4982 			if (kstrtoint(opt + 6, 0, &pause))
4983 				goto err;
4984 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4985 			if (kstrtoint(opt + 10, 0, &eee_timer))
4986 				goto err;
4987 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4988 			if (kstrtoint(opt + 11, 0, &chain_mode))
4989 				goto err;
4990 		}
4991 	}
4992 	return 0;
4993 
4994 err:
4995 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4996 	return -EINVAL;
4997 }
4998 
4999 __setup("stmmaceth=", stmmac_cmdline_opt);
5000 #endif /* MODULE */
5001 
5002 static int __init stmmac_init(void)
5003 {
5004 #ifdef CONFIG_DEBUG_FS
5005 	/* Create debugfs main directory if it doesn't exist yet */
5006 	if (!stmmac_fs_dir)
5007 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5008 #endif
5009 
5010 	return 0;
5011 }
5012 
5013 static void __exit stmmac_exit(void)
5014 {
5015 #ifdef CONFIG_DEBUG_FS
5016 	debugfs_remove_recursive(stmmac_fs_dir);
5017 #endif
5018 }
5019 
5020 module_init(stmmac_init)
5021 module_exit(stmmac_exit)
5022 
5023 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5024 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5025 MODULE_LICENSE("GPL");
5026