1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 	u32 queue;
154 
155 	for (queue = 0; queue < maxq; queue++) {
156 		struct stmmac_channel *ch = &priv->channel[queue];
157 
158 		napi_disable(&ch->napi);
159 	}
160 }
161 
162 /**
163  * stmmac_enable_all_queues - Enable all queues
164  * @priv: driver private structure
165  */
166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
167 {
168 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 	u32 queue;
172 
173 	for (queue = 0; queue < maxq; queue++) {
174 		struct stmmac_channel *ch = &priv->channel[queue];
175 
176 		napi_enable(&ch->napi);
177 	}
178 }
179 
180 /**
181  * stmmac_stop_all_queues - Stop all queues
182  * @priv: driver private structure
183  */
184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 {
186 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 	u32 queue;
188 
189 	for (queue = 0; queue < tx_queues_cnt; queue++)
190 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
191 }
192 
193 /**
194  * stmmac_start_all_queues - Start all queues
195  * @priv: driver private structure
196  */
197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 	u32 queue;
201 
202 	for (queue = 0; queue < tx_queues_cnt; queue++)
203 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
204 }
205 
206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 {
208 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 		queue_work(priv->wq, &priv->service_task);
211 }
212 
213 static void stmmac_global_err(struct stmmac_priv *priv)
214 {
215 	netif_carrier_off(priv->dev);
216 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 	stmmac_service_event_schedule(priv);
218 }
219 
220 /**
221  * stmmac_clk_csr_set - dynamically set the MDC clock
222  * @priv: driver private structure
223  * Description: this is to dynamically set the MDC clock according to the csr
224  * clock input.
225  * Note:
226  *	If a specific clk_csr value is passed from the platform
227  *	this means that the CSR Clock Range selection cannot be
228  *	changed at run-time and it is fixed (as reported in the driver
229  *	documentation). Viceversa the driver will try to set the MDC
230  *	clock dynamically according to the actual clock input.
231  */
232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
233 {
234 	u32 clk_rate;
235 
236 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 
238 	/* Platform provided default clk_csr would be assumed valid
239 	 * for all other cases except for the below mentioned ones.
240 	 * For values higher than the IEEE 802.3 specified frequency
241 	 * we can not estimate the proper divider as it is not known
242 	 * the frequency of clk_csr_i. So we do not change the default
243 	 * divider.
244 	 */
245 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 		if (clk_rate < CSR_F_35M)
247 			priv->clk_csr = STMMAC_CSR_20_35M;
248 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 			priv->clk_csr = STMMAC_CSR_35_60M;
250 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 			priv->clk_csr = STMMAC_CSR_60_100M;
252 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 			priv->clk_csr = STMMAC_CSR_100_150M;
254 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 			priv->clk_csr = STMMAC_CSR_150_250M;
256 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 			priv->clk_csr = STMMAC_CSR_250_300M;
258 	}
259 
260 	if (priv->plat->has_sun8i) {
261 		if (clk_rate > 160000000)
262 			priv->clk_csr = 0x03;
263 		else if (clk_rate > 80000000)
264 			priv->clk_csr = 0x02;
265 		else if (clk_rate > 40000000)
266 			priv->clk_csr = 0x01;
267 		else
268 			priv->clk_csr = 0;
269 	}
270 
271 	if (priv->plat->has_xgmac) {
272 		if (clk_rate > 400000000)
273 			priv->clk_csr = 0x5;
274 		else if (clk_rate > 350000000)
275 			priv->clk_csr = 0x4;
276 		else if (clk_rate > 300000000)
277 			priv->clk_csr = 0x3;
278 		else if (clk_rate > 250000000)
279 			priv->clk_csr = 0x2;
280 		else if (clk_rate > 150000000)
281 			priv->clk_csr = 0x1;
282 		else
283 			priv->clk_csr = 0x0;
284 	}
285 }
286 
287 static void print_pkt(unsigned char *buf, int len)
288 {
289 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
291 }
292 
293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 {
295 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 	u32 avail;
297 
298 	if (tx_q->dirty_tx > tx_q->cur_tx)
299 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 	else
301 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
302 
303 	return avail;
304 }
305 
306 /**
307  * stmmac_rx_dirty - Get RX queue dirty
308  * @priv: driver private structure
309  * @queue: RX queue index
310  */
311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 {
313 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 	u32 dirty;
315 
316 	if (rx_q->dirty_rx <= rx_q->cur_rx)
317 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 	else
319 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
320 
321 	return dirty;
322 }
323 
324 /**
325  * stmmac_hw_fix_mac_speed - callback for speed selection
326  * @priv: driver private structure
327  * Description: on some platforms (e.g. ST), some HW system configuration
328  * registers have to be set according to the link speed negotiated.
329  */
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
331 {
332 	struct net_device *ndev = priv->dev;
333 	struct phy_device *phydev = ndev->phydev;
334 
335 	if (likely(priv->plat->fix_mac_speed))
336 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
337 }
338 
339 /**
340  * stmmac_enable_eee_mode - check and enter in LPI mode
341  * @priv: driver private structure
342  * Description: this function is to verify and enter in LPI mode in case of
343  * EEE.
344  */
345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
346 {
347 	u32 tx_cnt = priv->plat->tx_queues_to_use;
348 	u32 queue;
349 
350 	/* check if all TX queues have the work finished */
351 	for (queue = 0; queue < tx_cnt; queue++) {
352 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
353 
354 		if (tx_q->dirty_tx != tx_q->cur_tx)
355 			return; /* still unfinished work */
356 	}
357 
358 	/* Check and enter in LPI mode */
359 	if (!priv->tx_path_in_lpi_mode)
360 		stmmac_set_eee_mode(priv, priv->hw,
361 				priv->plat->en_tx_lpi_clockgating);
362 }
363 
364 /**
365  * stmmac_disable_eee_mode - disable and exit from LPI mode
366  * @priv: driver private structure
367  * Description: this function is to exit and disable EEE in case of
368  * LPI state is true. This is called by the xmit.
369  */
370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
371 {
372 	stmmac_reset_eee_mode(priv, priv->hw);
373 	del_timer_sync(&priv->eee_ctrl_timer);
374 	priv->tx_path_in_lpi_mode = false;
375 }
376 
377 /**
378  * stmmac_eee_ctrl_timer - EEE TX SW timer.
379  * @arg : data hook
380  * Description:
381  *  if there is no data transfer and if we are not in LPI state,
382  *  then MAC Transmitter can be moved to LPI state.
383  */
384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
385 {
386 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
387 
388 	stmmac_enable_eee_mode(priv);
389 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
390 }
391 
392 /**
393  * stmmac_eee_init - init EEE
394  * @priv: driver private structure
395  * Description:
396  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
397  *  can also manage EEE, this function enable the LPI state and start related
398  *  timer.
399  */
400 bool stmmac_eee_init(struct stmmac_priv *priv)
401 {
402 	struct net_device *ndev = priv->dev;
403 	int interface = priv->plat->interface;
404 	bool ret = false;
405 
406 	if ((interface != PHY_INTERFACE_MODE_MII) &&
407 	    (interface != PHY_INTERFACE_MODE_GMII) &&
408 	    !phy_interface_mode_is_rgmii(interface))
409 		goto out;
410 
411 	/* Using PCS we cannot dial with the phy registers at this stage
412 	 * so we do not support extra feature like EEE.
413 	 */
414 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
417 		goto out;
418 
419 	/* MAC core supports the EEE feature. */
420 	if (priv->dma_cap.eee) {
421 		int tx_lpi_timer = priv->tx_lpi_timer;
422 
423 		/* Check if the PHY supports EEE */
424 		if (phy_init_eee(ndev->phydev, 1)) {
425 			/* To manage at run-time if the EEE cannot be supported
426 			 * anymore (for example because the lp caps have been
427 			 * changed).
428 			 * In that case the driver disable own timers.
429 			 */
430 			mutex_lock(&priv->lock);
431 			if (priv->eee_active) {
432 				netdev_dbg(priv->dev, "disable EEE\n");
433 				del_timer_sync(&priv->eee_ctrl_timer);
434 				stmmac_set_eee_timer(priv, priv->hw, 0,
435 						tx_lpi_timer);
436 			}
437 			priv->eee_active = 0;
438 			mutex_unlock(&priv->lock);
439 			goto out;
440 		}
441 		/* Activate the EEE and start timers */
442 		mutex_lock(&priv->lock);
443 		if (!priv->eee_active) {
444 			priv->eee_active = 1;
445 			timer_setup(&priv->eee_ctrl_timer,
446 				    stmmac_eee_ctrl_timer, 0);
447 			mod_timer(&priv->eee_ctrl_timer,
448 				  STMMAC_LPI_T(eee_timer));
449 
450 			stmmac_set_eee_timer(priv, priv->hw,
451 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
452 		}
453 		/* Set HW EEE according to the speed */
454 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
455 
456 		ret = true;
457 		mutex_unlock(&priv->lock);
458 
459 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
460 	}
461 out:
462 	return ret;
463 }
464 
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read timestamp from the descriptor & pass it to stack.
471  * and also perform some sanity checks.
472  */
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 				   struct dma_desc *p, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps shhwtstamp;
477 	u64 ns;
478 
479 	if (!priv->hwts_tx_en)
480 		return;
481 
482 	/* exit if skb doesn't support hw tstamp */
483 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 		return;
485 
486 	/* check tx tstamp status */
487 	if (stmmac_get_tx_timestamp_status(priv, p)) {
488 		/* get the valid tstamp */
489 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
490 
491 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
493 
494 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 		/* pass tstamp to stack */
496 		skb_tstamp_tx(skb, &shhwtstamp);
497 	}
498 
499 	return;
500 }
501 
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503  * @priv: driver private structure
504  * @p : descriptor pointer
505  * @np : next descriptor pointer
506  * @skb : the socket buffer
507  * Description :
508  * This function will read received packet's timestamp from the descriptor
509  * and pass it to stack. It also perform some sanity checks.
510  */
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 				   struct dma_desc *np, struct sk_buff *skb)
513 {
514 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 	struct dma_desc *desc = p;
516 	u64 ns;
517 
518 	if (!priv->hwts_rx_en)
519 		return;
520 	/* For GMAC4, the valid timestamp is from CTX next desc. */
521 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 		desc = np;
523 
524 	/* Check if timestamp is available */
525 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 		shhwtstamp = skb_hwtstamps(skb);
529 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 	} else  {
532 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
533 	}
534 }
535 
536 /**
537  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
538  *  @dev: device pointer.
539  *  @ifr: An IOCTL specific structure, that can contain a pointer to
540  *  a proprietary structure used to pass information to the driver.
541  *  Description:
542  *  This function configures the MAC to enable/disable both outgoing(TX)
543  *  and incoming(RX) packets time stamping based on user input.
544  *  Return Value:
545  *  0 on success and an appropriate -ve integer on failure.
546  */
547 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
548 {
549 	struct stmmac_priv *priv = netdev_priv(dev);
550 	struct hwtstamp_config config;
551 	struct timespec64 now;
552 	u64 temp = 0;
553 	u32 ptp_v2 = 0;
554 	u32 tstamp_all = 0;
555 	u32 ptp_over_ipv4_udp = 0;
556 	u32 ptp_over_ipv6_udp = 0;
557 	u32 ptp_over_ethernet = 0;
558 	u32 snap_type_sel = 0;
559 	u32 ts_master_en = 0;
560 	u32 ts_event_en = 0;
561 	u32 value = 0;
562 	u32 sec_inc;
563 	bool xmac;
564 
565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
566 
567 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 		netdev_alert(priv->dev, "No support for HW time stamping\n");
569 		priv->hwts_tx_en = 0;
570 		priv->hwts_rx_en = 0;
571 
572 		return -EOPNOTSUPP;
573 	}
574 
575 	if (copy_from_user(&config, ifr->ifr_data,
576 			   sizeof(struct hwtstamp_config)))
577 		return -EFAULT;
578 
579 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 		   __func__, config.flags, config.tx_type, config.rx_filter);
581 
582 	/* reserved for future extensions */
583 	if (config.flags)
584 		return -EINVAL;
585 
586 	if (config.tx_type != HWTSTAMP_TX_OFF &&
587 	    config.tx_type != HWTSTAMP_TX_ON)
588 		return -ERANGE;
589 
590 	if (priv->adv_ts) {
591 		switch (config.rx_filter) {
592 		case HWTSTAMP_FILTER_NONE:
593 			/* time stamp no incoming packet at all */
594 			config.rx_filter = HWTSTAMP_FILTER_NONE;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 			/* PTP v1, UDP, any kind of event packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 			/* take time stamp for all event messages */
601 			if (xmac)
602 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
603 			else
604 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
605 
606 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
607 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
608 			break;
609 
610 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
611 			/* PTP v1, UDP, Sync packet */
612 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
613 			/* take time stamp for SYNC messages only */
614 			ts_event_en = PTP_TCR_TSEVNTENA;
615 
616 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
617 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
618 			break;
619 
620 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
621 			/* PTP v1, UDP, Delay_req packet */
622 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
623 			/* take time stamp for Delay_Req messages only */
624 			ts_master_en = PTP_TCR_TSMSTRENA;
625 			ts_event_en = PTP_TCR_TSEVNTENA;
626 
627 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629 			break;
630 
631 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
632 			/* PTP v2, UDP, any kind of event packet */
633 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
634 			ptp_v2 = PTP_TCR_TSVER2ENA;
635 			/* take time stamp for all event messages */
636 			if (xmac)
637 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
638 			else
639 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			break;
644 
645 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646 			/* PTP v2, UDP, Sync packet */
647 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
648 			ptp_v2 = PTP_TCR_TSVER2ENA;
649 			/* take time stamp for SYNC messages only */
650 			ts_event_en = PTP_TCR_TSEVNTENA;
651 
652 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
653 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 			/* PTP v2, UDP, Delay_req packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
659 			ptp_v2 = PTP_TCR_TSVER2ENA;
660 			/* take time stamp for Delay_Req messages only */
661 			ts_master_en = PTP_TCR_TSMSTRENA;
662 			ts_event_en = PTP_TCR_TSEVNTENA;
663 
664 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
665 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
666 			break;
667 
668 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
669 			/* PTP v2/802.AS1 any layer, any kind of event packet */
670 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
671 			ptp_v2 = PTP_TCR_TSVER2ENA;
672 			/* take time stamp for all event messages */
673 			if (xmac)
674 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
675 			else
676 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
677 
678 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
679 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 			ptp_over_ethernet = PTP_TCR_TSIPENA;
681 			break;
682 
683 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
684 			/* PTP v2/802.AS1, any layer, Sync packet */
685 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
686 			ptp_v2 = PTP_TCR_TSVER2ENA;
687 			/* take time stamp for SYNC messages only */
688 			ts_event_en = PTP_TCR_TSEVNTENA;
689 
690 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
691 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
692 			ptp_over_ethernet = PTP_TCR_TSIPENA;
693 			break;
694 
695 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
696 			/* PTP v2/802.AS1, any layer, Delay_req packet */
697 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
698 			ptp_v2 = PTP_TCR_TSVER2ENA;
699 			/* take time stamp for Delay_Req messages only */
700 			ts_master_en = PTP_TCR_TSMSTRENA;
701 			ts_event_en = PTP_TCR_TSEVNTENA;
702 
703 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
704 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
705 			ptp_over_ethernet = PTP_TCR_TSIPENA;
706 			break;
707 
708 		case HWTSTAMP_FILTER_NTP_ALL:
709 		case HWTSTAMP_FILTER_ALL:
710 			/* time stamp any incoming packet */
711 			config.rx_filter = HWTSTAMP_FILTER_ALL;
712 			tstamp_all = PTP_TCR_TSENALL;
713 			break;
714 
715 		default:
716 			return -ERANGE;
717 		}
718 	} else {
719 		switch (config.rx_filter) {
720 		case HWTSTAMP_FILTER_NONE:
721 			config.rx_filter = HWTSTAMP_FILTER_NONE;
722 			break;
723 		default:
724 			/* PTP v1, UDP, any kind of event packet */
725 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
726 			break;
727 		}
728 	}
729 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
730 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
731 
732 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
733 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
734 	else {
735 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
736 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
737 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
738 			 ts_master_en | snap_type_sel);
739 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
740 
741 		/* program Sub Second Increment reg */
742 		stmmac_config_sub_second_increment(priv,
743 				priv->ptpaddr, priv->plat->clk_ptp_rate,
744 				xmac, &sec_inc);
745 		temp = div_u64(1000000000ULL, sec_inc);
746 
747 		/* Store sub second increment and flags for later use */
748 		priv->sub_second_inc = sec_inc;
749 		priv->systime_flags = value;
750 
751 		/* calculate default added value:
752 		 * formula is :
753 		 * addend = (2^32)/freq_div_ratio;
754 		 * where, freq_div_ratio = 1e9ns/sec_inc
755 		 */
756 		temp = (u64)(temp << 32);
757 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
758 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
759 
760 		/* initialize system time */
761 		ktime_get_real_ts64(&now);
762 
763 		/* lower 32 bits of tv_sec are safe until y2106 */
764 		stmmac_init_systime(priv, priv->ptpaddr,
765 				(u32)now.tv_sec, now.tv_nsec);
766 	}
767 
768 	return copy_to_user(ifr->ifr_data, &config,
769 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
770 }
771 
772 /**
773  * stmmac_init_ptp - init PTP
774  * @priv: driver private structure
775  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
776  * This is done by looking at the HW cap. register.
777  * This function also registers the ptp driver.
778  */
779 static int stmmac_init_ptp(struct stmmac_priv *priv)
780 {
781 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
782 
783 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
784 		return -EOPNOTSUPP;
785 
786 	priv->adv_ts = 0;
787 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
788 	if (xmac && priv->dma_cap.atime_stamp)
789 		priv->adv_ts = 1;
790 	/* Dwmac 3.x core with extend_desc can support adv_ts */
791 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
792 		priv->adv_ts = 1;
793 
794 	if (priv->dma_cap.time_stamp)
795 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
796 
797 	if (priv->adv_ts)
798 		netdev_info(priv->dev,
799 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
800 
801 	priv->hwts_tx_en = 0;
802 	priv->hwts_rx_en = 0;
803 
804 	stmmac_ptp_register(priv);
805 
806 	return 0;
807 }
808 
809 static void stmmac_release_ptp(struct stmmac_priv *priv)
810 {
811 	if (priv->plat->clk_ptp_ref)
812 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
813 	stmmac_ptp_unregister(priv);
814 }
815 
816 /**
817  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
818  *  @priv: driver private structure
819  *  Description: It is used for configuring the flow control in all queues
820  */
821 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
822 {
823 	u32 tx_cnt = priv->plat->tx_queues_to_use;
824 
825 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
826 			priv->pause, tx_cnt);
827 }
828 
829 /**
830  * stmmac_adjust_link - adjusts the link parameters
831  * @dev: net device structure
832  * Description: this is the helper called by the physical abstraction layer
833  * drivers to communicate the phy link status. According the speed and duplex
834  * this driver can invoke registered glue-logic as well.
835  * It also invoke the eee initialization because it could happen when switch
836  * on different networks (that are eee capable).
837  */
838 static void stmmac_adjust_link(struct net_device *dev)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct phy_device *phydev = dev->phydev;
842 	bool new_state = false;
843 
844 	if (!phydev)
845 		return;
846 
847 	mutex_lock(&priv->lock);
848 
849 	if (phydev->link) {
850 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
851 
852 		/* Now we make sure that we can be in full duplex mode.
853 		 * If not, we operate in half-duplex mode. */
854 		if (phydev->duplex != priv->oldduplex) {
855 			new_state = true;
856 			if (!phydev->duplex)
857 				ctrl &= ~priv->hw->link.duplex;
858 			else
859 				ctrl |= priv->hw->link.duplex;
860 			priv->oldduplex = phydev->duplex;
861 		}
862 		/* Flow Control operation */
863 		if (phydev->pause)
864 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
865 
866 		if (phydev->speed != priv->speed) {
867 			new_state = true;
868 			ctrl &= ~priv->hw->link.speed_mask;
869 			switch (phydev->speed) {
870 			case SPEED_1000:
871 				ctrl |= priv->hw->link.speed1000;
872 				break;
873 			case SPEED_100:
874 				ctrl |= priv->hw->link.speed100;
875 				break;
876 			case SPEED_10:
877 				ctrl |= priv->hw->link.speed10;
878 				break;
879 			default:
880 				netif_warn(priv, link, priv->dev,
881 					   "broken speed: %d\n", phydev->speed);
882 				phydev->speed = SPEED_UNKNOWN;
883 				break;
884 			}
885 			if (phydev->speed != SPEED_UNKNOWN)
886 				stmmac_hw_fix_mac_speed(priv);
887 			priv->speed = phydev->speed;
888 		}
889 
890 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
891 
892 		if (!priv->oldlink) {
893 			new_state = true;
894 			priv->oldlink = true;
895 		}
896 	} else if (priv->oldlink) {
897 		new_state = true;
898 		priv->oldlink = false;
899 		priv->speed = SPEED_UNKNOWN;
900 		priv->oldduplex = DUPLEX_UNKNOWN;
901 	}
902 
903 	if (new_state && netif_msg_link(priv))
904 		phy_print_status(phydev);
905 
906 	mutex_unlock(&priv->lock);
907 
908 	if (phydev->is_pseudo_fixed_link)
909 		/* Stop PHY layer to call the hook to adjust the link in case
910 		 * of a switch is attached to the stmmac driver.
911 		 */
912 		phydev->irq = PHY_IGNORE_INTERRUPT;
913 	else
914 		/* At this stage, init the EEE if supported.
915 		 * Never called in case of fixed_link.
916 		 */
917 		priv->eee_enabled = stmmac_eee_init(priv);
918 }
919 
920 /**
921  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
922  * @priv: driver private structure
923  * Description: this is to verify if the HW supports the PCS.
924  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
925  * configured for the TBI, RTBI, or SGMII PHY interface.
926  */
927 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
928 {
929 	int interface = priv->plat->interface;
930 
931 	if (priv->dma_cap.pcs) {
932 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
933 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
934 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
935 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
936 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
937 			priv->hw->pcs = STMMAC_PCS_RGMII;
938 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
939 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
940 			priv->hw->pcs = STMMAC_PCS_SGMII;
941 		}
942 	}
943 }
944 
945 /**
946  * stmmac_init_phy - PHY initialization
947  * @dev: net device structure
948  * Description: it initializes the driver's PHY state, and attaches the PHY
949  * to the mac driver.
950  *  Return value:
951  *  0 on success
952  */
953 static int stmmac_init_phy(struct net_device *dev)
954 {
955 	struct stmmac_priv *priv = netdev_priv(dev);
956 	u32 tx_cnt = priv->plat->tx_queues_to_use;
957 	struct phy_device *phydev;
958 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
959 	char bus_id[MII_BUS_ID_SIZE];
960 	int interface = priv->plat->interface;
961 	int max_speed = priv->plat->max_speed;
962 	priv->oldlink = false;
963 	priv->speed = SPEED_UNKNOWN;
964 	priv->oldduplex = DUPLEX_UNKNOWN;
965 
966 	if (priv->plat->phy_node) {
967 		phydev = of_phy_connect(dev, priv->plat->phy_node,
968 					&stmmac_adjust_link, 0, interface);
969 	} else {
970 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
971 			 priv->plat->bus_id);
972 
973 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
974 			 priv->plat->phy_addr);
975 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
976 			   phy_id_fmt);
977 
978 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
979 				     interface);
980 	}
981 
982 	if (IS_ERR_OR_NULL(phydev)) {
983 		netdev_err(priv->dev, "Could not attach to PHY\n");
984 		if (!phydev)
985 			return -ENODEV;
986 
987 		return PTR_ERR(phydev);
988 	}
989 
990 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
991 	if ((interface == PHY_INTERFACE_MODE_MII) ||
992 	    (interface == PHY_INTERFACE_MODE_RMII) ||
993 		(max_speed < 1000 && max_speed > 0))
994 		phy_set_max_speed(phydev, SPEED_100);
995 
996 	/*
997 	 * Half-duplex mode not supported with multiqueue
998 	 * half-duplex can only works with single queue
999 	 */
1000 	if (tx_cnt > 1) {
1001 		phy_remove_link_mode(phydev,
1002 				     ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1003 		phy_remove_link_mode(phydev,
1004 				     ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1005 		phy_remove_link_mode(phydev,
1006 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1007 	}
1008 
1009 	/*
1010 	 * Broken HW is sometimes missing the pull-up resistor on the
1011 	 * MDIO line, which results in reads to non-existent devices returning
1012 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1013 	 * device as well.
1014 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1015 	 */
1016 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1017 		phy_disconnect(phydev);
1018 		return -ENODEV;
1019 	}
1020 
1021 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1022 	 * subsequent PHY polling, make sure we force a link transition if
1023 	 * we have a UP/DOWN/UP transition
1024 	 */
1025 	if (phydev->is_pseudo_fixed_link)
1026 		phydev->irq = PHY_POLL;
1027 
1028 	phy_attached_info(phydev);
1029 	return 0;
1030 }
1031 
1032 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1033 {
1034 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1035 	void *head_rx;
1036 	u32 queue;
1037 
1038 	/* Display RX rings */
1039 	for (queue = 0; queue < rx_cnt; queue++) {
1040 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1041 
1042 		pr_info("\tRX Queue %u rings\n", queue);
1043 
1044 		if (priv->extend_desc)
1045 			head_rx = (void *)rx_q->dma_erx;
1046 		else
1047 			head_rx = (void *)rx_q->dma_rx;
1048 
1049 		/* Display RX ring */
1050 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1051 	}
1052 }
1053 
1054 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1055 {
1056 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1057 	void *head_tx;
1058 	u32 queue;
1059 
1060 	/* Display TX rings */
1061 	for (queue = 0; queue < tx_cnt; queue++) {
1062 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1063 
1064 		pr_info("\tTX Queue %d rings\n", queue);
1065 
1066 		if (priv->extend_desc)
1067 			head_tx = (void *)tx_q->dma_etx;
1068 		else
1069 			head_tx = (void *)tx_q->dma_tx;
1070 
1071 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1072 	}
1073 }
1074 
1075 static void stmmac_display_rings(struct stmmac_priv *priv)
1076 {
1077 	/* Display RX ring */
1078 	stmmac_display_rx_rings(priv);
1079 
1080 	/* Display TX ring */
1081 	stmmac_display_tx_rings(priv);
1082 }
1083 
1084 static int stmmac_set_bfsize(int mtu, int bufsize)
1085 {
1086 	int ret = bufsize;
1087 
1088 	if (mtu >= BUF_SIZE_4KiB)
1089 		ret = BUF_SIZE_8KiB;
1090 	else if (mtu >= BUF_SIZE_2KiB)
1091 		ret = BUF_SIZE_4KiB;
1092 	else if (mtu > DEFAULT_BUFSIZE)
1093 		ret = BUF_SIZE_2KiB;
1094 	else
1095 		ret = DEFAULT_BUFSIZE;
1096 
1097 	return ret;
1098 }
1099 
1100 /**
1101  * stmmac_clear_rx_descriptors - clear RX descriptors
1102  * @priv: driver private structure
1103  * @queue: RX queue index
1104  * Description: this function is called to clear the RX descriptors
1105  * in case of both basic and extended descriptors are used.
1106  */
1107 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1108 {
1109 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1110 	int i;
1111 
1112 	/* Clear the RX descriptors */
1113 	for (i = 0; i < DMA_RX_SIZE; i++)
1114 		if (priv->extend_desc)
1115 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1116 					priv->use_riwt, priv->mode,
1117 					(i == DMA_RX_SIZE - 1));
1118 		else
1119 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1120 					priv->use_riwt, priv->mode,
1121 					(i == DMA_RX_SIZE - 1));
1122 }
1123 
1124 /**
1125  * stmmac_clear_tx_descriptors - clear tx descriptors
1126  * @priv: driver private structure
1127  * @queue: TX queue index.
1128  * Description: this function is called to clear the TX descriptors
1129  * in case of both basic and extended descriptors are used.
1130  */
1131 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1132 {
1133 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1134 	int i;
1135 
1136 	/* Clear the TX descriptors */
1137 	for (i = 0; i < DMA_TX_SIZE; i++)
1138 		if (priv->extend_desc)
1139 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1140 					priv->mode, (i == DMA_TX_SIZE - 1));
1141 		else
1142 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1143 					priv->mode, (i == DMA_TX_SIZE - 1));
1144 }
1145 
1146 /**
1147  * stmmac_clear_descriptors - clear descriptors
1148  * @priv: driver private structure
1149  * Description: this function is called to clear the TX and RX descriptors
1150  * in case of both basic and extended descriptors are used.
1151  */
1152 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1153 {
1154 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1155 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1156 	u32 queue;
1157 
1158 	/* Clear the RX descriptors */
1159 	for (queue = 0; queue < rx_queue_cnt; queue++)
1160 		stmmac_clear_rx_descriptors(priv, queue);
1161 
1162 	/* Clear the TX descriptors */
1163 	for (queue = 0; queue < tx_queue_cnt; queue++)
1164 		stmmac_clear_tx_descriptors(priv, queue);
1165 }
1166 
1167 /**
1168  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1169  * @priv: driver private structure
1170  * @p: descriptor pointer
1171  * @i: descriptor index
1172  * @flags: gfp flag
1173  * @queue: RX queue index
1174  * Description: this function is called to allocate a receive buffer, perform
1175  * the DMA mapping and init the descriptor.
1176  */
1177 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1178 				  int i, gfp_t flags, u32 queue)
1179 {
1180 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1181 	struct sk_buff *skb;
1182 
1183 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1184 	if (!skb) {
1185 		netdev_err(priv->dev,
1186 			   "%s: Rx init fails; skb is NULL\n", __func__);
1187 		return -ENOMEM;
1188 	}
1189 	rx_q->rx_skbuff[i] = skb;
1190 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1191 						priv->dma_buf_sz,
1192 						DMA_FROM_DEVICE);
1193 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1194 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1195 		dev_kfree_skb_any(skb);
1196 		return -EINVAL;
1197 	}
1198 
1199 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1200 
1201 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1202 		stmmac_init_desc3(priv, p);
1203 
1204 	return 0;
1205 }
1206 
1207 /**
1208  * stmmac_free_rx_buffer - free RX dma buffers
1209  * @priv: private structure
1210  * @queue: RX queue index
1211  * @i: buffer index.
1212  */
1213 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1214 {
1215 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1216 
1217 	if (rx_q->rx_skbuff[i]) {
1218 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1219 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1220 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1221 	}
1222 	rx_q->rx_skbuff[i] = NULL;
1223 }
1224 
1225 /**
1226  * stmmac_free_tx_buffer - free RX dma buffers
1227  * @priv: private structure
1228  * @queue: RX queue index
1229  * @i: buffer index.
1230  */
1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1232 {
1233 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1234 
1235 	if (tx_q->tx_skbuff_dma[i].buf) {
1236 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1237 			dma_unmap_page(priv->device,
1238 				       tx_q->tx_skbuff_dma[i].buf,
1239 				       tx_q->tx_skbuff_dma[i].len,
1240 				       DMA_TO_DEVICE);
1241 		else
1242 			dma_unmap_single(priv->device,
1243 					 tx_q->tx_skbuff_dma[i].buf,
1244 					 tx_q->tx_skbuff_dma[i].len,
1245 					 DMA_TO_DEVICE);
1246 	}
1247 
1248 	if (tx_q->tx_skbuff[i]) {
1249 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1250 		tx_q->tx_skbuff[i] = NULL;
1251 		tx_q->tx_skbuff_dma[i].buf = 0;
1252 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1253 	}
1254 }
1255 
1256 /**
1257  * init_dma_rx_desc_rings - init the RX descriptor rings
1258  * @dev: net device structure
1259  * @flags: gfp flag.
1260  * Description: this function initializes the DMA RX descriptors
1261  * and allocates the socket buffers. It supports the chained and ring
1262  * modes.
1263  */
1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1265 {
1266 	struct stmmac_priv *priv = netdev_priv(dev);
1267 	u32 rx_count = priv->plat->rx_queues_to_use;
1268 	int ret = -ENOMEM;
1269 	int bfsize = 0;
1270 	int queue;
1271 	int i;
1272 
1273 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1274 	if (bfsize < 0)
1275 		bfsize = 0;
1276 
1277 	if (bfsize < BUF_SIZE_16KiB)
1278 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1279 
1280 	priv->dma_buf_sz = bfsize;
1281 
1282 	/* RX INITIALIZATION */
1283 	netif_dbg(priv, probe, priv->dev,
1284 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1285 
1286 	for (queue = 0; queue < rx_count; queue++) {
1287 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288 
1289 		netif_dbg(priv, probe, priv->dev,
1290 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1291 			  (u32)rx_q->dma_rx_phy);
1292 
1293 		for (i = 0; i < DMA_RX_SIZE; i++) {
1294 			struct dma_desc *p;
1295 
1296 			if (priv->extend_desc)
1297 				p = &((rx_q->dma_erx + i)->basic);
1298 			else
1299 				p = rx_q->dma_rx + i;
1300 
1301 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1302 						     queue);
1303 			if (ret)
1304 				goto err_init_rx_buffers;
1305 
1306 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1307 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1308 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1309 		}
1310 
1311 		rx_q->cur_rx = 0;
1312 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1313 
1314 		stmmac_clear_rx_descriptors(priv, queue);
1315 
1316 		/* Setup the chained descriptor addresses */
1317 		if (priv->mode == STMMAC_CHAIN_MODE) {
1318 			if (priv->extend_desc)
1319 				stmmac_mode_init(priv, rx_q->dma_erx,
1320 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1321 			else
1322 				stmmac_mode_init(priv, rx_q->dma_rx,
1323 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1324 		}
1325 	}
1326 
1327 	buf_sz = bfsize;
1328 
1329 	return 0;
1330 
1331 err_init_rx_buffers:
1332 	while (queue >= 0) {
1333 		while (--i >= 0)
1334 			stmmac_free_rx_buffer(priv, queue, i);
1335 
1336 		if (queue == 0)
1337 			break;
1338 
1339 		i = DMA_RX_SIZE;
1340 		queue--;
1341 	}
1342 
1343 	return ret;
1344 }
1345 
1346 /**
1347  * init_dma_tx_desc_rings - init the TX descriptor rings
1348  * @dev: net device structure.
1349  * Description: this function initializes the DMA TX descriptors
1350  * and allocates the socket buffers. It supports the chained and ring
1351  * modes.
1352  */
1353 static int init_dma_tx_desc_rings(struct net_device *dev)
1354 {
1355 	struct stmmac_priv *priv = netdev_priv(dev);
1356 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1357 	u32 queue;
1358 	int i;
1359 
1360 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1361 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1362 
1363 		netif_dbg(priv, probe, priv->dev,
1364 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1365 			 (u32)tx_q->dma_tx_phy);
1366 
1367 		/* Setup the chained descriptor addresses */
1368 		if (priv->mode == STMMAC_CHAIN_MODE) {
1369 			if (priv->extend_desc)
1370 				stmmac_mode_init(priv, tx_q->dma_etx,
1371 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1372 			else
1373 				stmmac_mode_init(priv, tx_q->dma_tx,
1374 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1375 		}
1376 
1377 		for (i = 0; i < DMA_TX_SIZE; i++) {
1378 			struct dma_desc *p;
1379 			if (priv->extend_desc)
1380 				p = &((tx_q->dma_etx + i)->basic);
1381 			else
1382 				p = tx_q->dma_tx + i;
1383 
1384 			stmmac_clear_desc(priv, p);
1385 
1386 			tx_q->tx_skbuff_dma[i].buf = 0;
1387 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1388 			tx_q->tx_skbuff_dma[i].len = 0;
1389 			tx_q->tx_skbuff_dma[i].last_segment = false;
1390 			tx_q->tx_skbuff[i] = NULL;
1391 		}
1392 
1393 		tx_q->dirty_tx = 0;
1394 		tx_q->cur_tx = 0;
1395 		tx_q->mss = 0;
1396 
1397 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * init_dma_desc_rings - init the RX/TX descriptor rings
1405  * @dev: net device structure
1406  * @flags: gfp flag.
1407  * Description: this function initializes the DMA RX/TX descriptors
1408  * and allocates the socket buffers. It supports the chained and ring
1409  * modes.
1410  */
1411 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1412 {
1413 	struct stmmac_priv *priv = netdev_priv(dev);
1414 	int ret;
1415 
1416 	ret = init_dma_rx_desc_rings(dev, flags);
1417 	if (ret)
1418 		return ret;
1419 
1420 	ret = init_dma_tx_desc_rings(dev);
1421 
1422 	stmmac_clear_descriptors(priv);
1423 
1424 	if (netif_msg_hw(priv))
1425 		stmmac_display_rings(priv);
1426 
1427 	return ret;
1428 }
1429 
1430 /**
1431  * dma_free_rx_skbufs - free RX dma buffers
1432  * @priv: private structure
1433  * @queue: RX queue index
1434  */
1435 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1436 {
1437 	int i;
1438 
1439 	for (i = 0; i < DMA_RX_SIZE; i++)
1440 		stmmac_free_rx_buffer(priv, queue, i);
1441 }
1442 
1443 /**
1444  * dma_free_tx_skbufs - free TX dma buffers
1445  * @priv: private structure
1446  * @queue: TX queue index
1447  */
1448 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1449 {
1450 	int i;
1451 
1452 	for (i = 0; i < DMA_TX_SIZE; i++)
1453 		stmmac_free_tx_buffer(priv, queue, i);
1454 }
1455 
1456 /**
1457  * free_dma_rx_desc_resources - free RX dma desc resources
1458  * @priv: private structure
1459  */
1460 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1461 {
1462 	u32 rx_count = priv->plat->rx_queues_to_use;
1463 	u32 queue;
1464 
1465 	/* Free RX queue resources */
1466 	for (queue = 0; queue < rx_count; queue++) {
1467 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1468 
1469 		/* Release the DMA RX socket buffers */
1470 		dma_free_rx_skbufs(priv, queue);
1471 
1472 		/* Free DMA regions of consistent memory previously allocated */
1473 		if (!priv->extend_desc)
1474 			dma_free_coherent(priv->device,
1475 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1476 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1477 		else
1478 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1479 					  sizeof(struct dma_extended_desc),
1480 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1481 
1482 		kfree(rx_q->rx_skbuff_dma);
1483 		kfree(rx_q->rx_skbuff);
1484 	}
1485 }
1486 
1487 /**
1488  * free_dma_tx_desc_resources - free TX dma desc resources
1489  * @priv: private structure
1490  */
1491 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1492 {
1493 	u32 tx_count = priv->plat->tx_queues_to_use;
1494 	u32 queue;
1495 
1496 	/* Free TX queue resources */
1497 	for (queue = 0; queue < tx_count; queue++) {
1498 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1499 
1500 		/* Release the DMA TX socket buffers */
1501 		dma_free_tx_skbufs(priv, queue);
1502 
1503 		/* Free DMA regions of consistent memory previously allocated */
1504 		if (!priv->extend_desc)
1505 			dma_free_coherent(priv->device,
1506 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1507 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1508 		else
1509 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1510 					  sizeof(struct dma_extended_desc),
1511 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1512 
1513 		kfree(tx_q->tx_skbuff_dma);
1514 		kfree(tx_q->tx_skbuff);
1515 	}
1516 }
1517 
1518 /**
1519  * alloc_dma_rx_desc_resources - alloc RX resources.
1520  * @priv: private structure
1521  * Description: according to which descriptor can be used (extend or basic)
1522  * this function allocates the resources for TX and RX paths. In case of
1523  * reception, for example, it pre-allocated the RX socket buffer in order to
1524  * allow zero-copy mechanism.
1525  */
1526 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1527 {
1528 	u32 rx_count = priv->plat->rx_queues_to_use;
1529 	int ret = -ENOMEM;
1530 	u32 queue;
1531 
1532 	/* RX queues buffers and DMA */
1533 	for (queue = 0; queue < rx_count; queue++) {
1534 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1535 
1536 		rx_q->queue_index = queue;
1537 		rx_q->priv_data = priv;
1538 
1539 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1540 						    sizeof(dma_addr_t),
1541 						    GFP_KERNEL);
1542 		if (!rx_q->rx_skbuff_dma)
1543 			goto err_dma;
1544 
1545 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1546 						sizeof(struct sk_buff *),
1547 						GFP_KERNEL);
1548 		if (!rx_q->rx_skbuff)
1549 			goto err_dma;
1550 
1551 		if (priv->extend_desc) {
1552 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1553 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1554 							   &rx_q->dma_rx_phy,
1555 							   GFP_KERNEL);
1556 			if (!rx_q->dma_erx)
1557 				goto err_dma;
1558 
1559 		} else {
1560 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1561 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1562 							  &rx_q->dma_rx_phy,
1563 							  GFP_KERNEL);
1564 			if (!rx_q->dma_rx)
1565 				goto err_dma;
1566 		}
1567 	}
1568 
1569 	return 0;
1570 
1571 err_dma:
1572 	free_dma_rx_desc_resources(priv);
1573 
1574 	return ret;
1575 }
1576 
1577 /**
1578  * alloc_dma_tx_desc_resources - alloc TX resources.
1579  * @priv: private structure
1580  * Description: according to which descriptor can be used (extend or basic)
1581  * this function allocates the resources for TX and RX paths. In case of
1582  * reception, for example, it pre-allocated the RX socket buffer in order to
1583  * allow zero-copy mechanism.
1584  */
1585 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1586 {
1587 	u32 tx_count = priv->plat->tx_queues_to_use;
1588 	int ret = -ENOMEM;
1589 	u32 queue;
1590 
1591 	/* TX queues buffers and DMA */
1592 	for (queue = 0; queue < tx_count; queue++) {
1593 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1594 
1595 		tx_q->queue_index = queue;
1596 		tx_q->priv_data = priv;
1597 
1598 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1599 						    sizeof(*tx_q->tx_skbuff_dma),
1600 						    GFP_KERNEL);
1601 		if (!tx_q->tx_skbuff_dma)
1602 			goto err_dma;
1603 
1604 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1605 						sizeof(struct sk_buff *),
1606 						GFP_KERNEL);
1607 		if (!tx_q->tx_skbuff)
1608 			goto err_dma;
1609 
1610 		if (priv->extend_desc) {
1611 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1612 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1613 							   &tx_q->dma_tx_phy,
1614 							   GFP_KERNEL);
1615 			if (!tx_q->dma_etx)
1616 				goto err_dma;
1617 		} else {
1618 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1619 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1620 							  &tx_q->dma_tx_phy,
1621 							  GFP_KERNEL);
1622 			if (!tx_q->dma_tx)
1623 				goto err_dma;
1624 		}
1625 	}
1626 
1627 	return 0;
1628 
1629 err_dma:
1630 	free_dma_tx_desc_resources(priv);
1631 
1632 	return ret;
1633 }
1634 
1635 /**
1636  * alloc_dma_desc_resources - alloc TX/RX resources.
1637  * @priv: private structure
1638  * Description: according to which descriptor can be used (extend or basic)
1639  * this function allocates the resources for TX and RX paths. In case of
1640  * reception, for example, it pre-allocated the RX socket buffer in order to
1641  * allow zero-copy mechanism.
1642  */
1643 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1644 {
1645 	/* RX Allocation */
1646 	int ret = alloc_dma_rx_desc_resources(priv);
1647 
1648 	if (ret)
1649 		return ret;
1650 
1651 	ret = alloc_dma_tx_desc_resources(priv);
1652 
1653 	return ret;
1654 }
1655 
1656 /**
1657  * free_dma_desc_resources - free dma desc resources
1658  * @priv: private structure
1659  */
1660 static void free_dma_desc_resources(struct stmmac_priv *priv)
1661 {
1662 	/* Release the DMA RX socket buffers */
1663 	free_dma_rx_desc_resources(priv);
1664 
1665 	/* Release the DMA TX socket buffers */
1666 	free_dma_tx_desc_resources(priv);
1667 }
1668 
1669 /**
1670  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1671  *  @priv: driver private structure
1672  *  Description: It is used for enabling the rx queues in the MAC
1673  */
1674 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1675 {
1676 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1677 	int queue;
1678 	u8 mode;
1679 
1680 	for (queue = 0; queue < rx_queues_count; queue++) {
1681 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1682 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1683 	}
1684 }
1685 
1686 /**
1687  * stmmac_start_rx_dma - start RX DMA channel
1688  * @priv: driver private structure
1689  * @chan: RX channel index
1690  * Description:
1691  * This starts a RX DMA channel
1692  */
1693 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1694 {
1695 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1696 	stmmac_start_rx(priv, priv->ioaddr, chan);
1697 }
1698 
1699 /**
1700  * stmmac_start_tx_dma - start TX DMA channel
1701  * @priv: driver private structure
1702  * @chan: TX channel index
1703  * Description:
1704  * This starts a TX DMA channel
1705  */
1706 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1707 {
1708 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1709 	stmmac_start_tx(priv, priv->ioaddr, chan);
1710 }
1711 
1712 /**
1713  * stmmac_stop_rx_dma - stop RX DMA channel
1714  * @priv: driver private structure
1715  * @chan: RX channel index
1716  * Description:
1717  * This stops a RX DMA channel
1718  */
1719 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1720 {
1721 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1722 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1723 }
1724 
1725 /**
1726  * stmmac_stop_tx_dma - stop TX DMA channel
1727  * @priv: driver private structure
1728  * @chan: TX channel index
1729  * Description:
1730  * This stops a TX DMA channel
1731  */
1732 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1733 {
1734 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1735 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1736 }
1737 
1738 /**
1739  * stmmac_start_all_dma - start all RX and TX DMA channels
1740  * @priv: driver private structure
1741  * Description:
1742  * This starts all the RX and TX DMA channels
1743  */
1744 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1745 {
1746 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1747 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1748 	u32 chan = 0;
1749 
1750 	for (chan = 0; chan < rx_channels_count; chan++)
1751 		stmmac_start_rx_dma(priv, chan);
1752 
1753 	for (chan = 0; chan < tx_channels_count; chan++)
1754 		stmmac_start_tx_dma(priv, chan);
1755 }
1756 
1757 /**
1758  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1759  * @priv: driver private structure
1760  * Description:
1761  * This stops the RX and TX DMA channels
1762  */
1763 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1764 {
1765 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1766 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1767 	u32 chan = 0;
1768 
1769 	for (chan = 0; chan < rx_channels_count; chan++)
1770 		stmmac_stop_rx_dma(priv, chan);
1771 
1772 	for (chan = 0; chan < tx_channels_count; chan++)
1773 		stmmac_stop_tx_dma(priv, chan);
1774 }
1775 
1776 /**
1777  *  stmmac_dma_operation_mode - HW DMA operation mode
1778  *  @priv: driver private structure
1779  *  Description: it is used for configuring the DMA operation mode register in
1780  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1781  */
1782 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1783 {
1784 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1785 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1786 	int rxfifosz = priv->plat->rx_fifo_size;
1787 	int txfifosz = priv->plat->tx_fifo_size;
1788 	u32 txmode = 0;
1789 	u32 rxmode = 0;
1790 	u32 chan = 0;
1791 	u8 qmode = 0;
1792 
1793 	if (rxfifosz == 0)
1794 		rxfifosz = priv->dma_cap.rx_fifo_size;
1795 	if (txfifosz == 0)
1796 		txfifosz = priv->dma_cap.tx_fifo_size;
1797 
1798 	/* Adjust for real per queue fifo size */
1799 	rxfifosz /= rx_channels_count;
1800 	txfifosz /= tx_channels_count;
1801 
1802 	if (priv->plat->force_thresh_dma_mode) {
1803 		txmode = tc;
1804 		rxmode = tc;
1805 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1806 		/*
1807 		 * In case of GMAC, SF mode can be enabled
1808 		 * to perform the TX COE in HW. This depends on:
1809 		 * 1) TX COE if actually supported
1810 		 * 2) There is no bugged Jumbo frame support
1811 		 *    that needs to not insert csum in the TDES.
1812 		 */
1813 		txmode = SF_DMA_MODE;
1814 		rxmode = SF_DMA_MODE;
1815 		priv->xstats.threshold = SF_DMA_MODE;
1816 	} else {
1817 		txmode = tc;
1818 		rxmode = SF_DMA_MODE;
1819 	}
1820 
1821 	/* configure all channels */
1822 	for (chan = 0; chan < rx_channels_count; chan++) {
1823 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1824 
1825 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1826 				rxfifosz, qmode);
1827 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1828 				chan);
1829 	}
1830 
1831 	for (chan = 0; chan < tx_channels_count; chan++) {
1832 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1833 
1834 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1835 				txfifosz, qmode);
1836 	}
1837 }
1838 
1839 /**
1840  * stmmac_tx_clean - to manage the transmission completion
1841  * @priv: driver private structure
1842  * @queue: TX queue index
1843  * Description: it reclaims the transmit resources after transmission completes.
1844  */
1845 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1846 {
1847 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1848 	unsigned int bytes_compl = 0, pkts_compl = 0;
1849 	unsigned int entry, count = 0;
1850 
1851 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1852 
1853 	priv->xstats.tx_clean++;
1854 
1855 	entry = tx_q->dirty_tx;
1856 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1857 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1858 		struct dma_desc *p;
1859 		int status;
1860 
1861 		if (priv->extend_desc)
1862 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1863 		else
1864 			p = tx_q->dma_tx + entry;
1865 
1866 		status = stmmac_tx_status(priv, &priv->dev->stats,
1867 				&priv->xstats, p, priv->ioaddr);
1868 		/* Check if the descriptor is owned by the DMA */
1869 		if (unlikely(status & tx_dma_own))
1870 			break;
1871 
1872 		count++;
1873 
1874 		/* Make sure descriptor fields are read after reading
1875 		 * the own bit.
1876 		 */
1877 		dma_rmb();
1878 
1879 		/* Just consider the last segment and ...*/
1880 		if (likely(!(status & tx_not_ls))) {
1881 			/* ... verify the status error condition */
1882 			if (unlikely(status & tx_err)) {
1883 				priv->dev->stats.tx_errors++;
1884 			} else {
1885 				priv->dev->stats.tx_packets++;
1886 				priv->xstats.tx_pkt_n++;
1887 			}
1888 			stmmac_get_tx_hwtstamp(priv, p, skb);
1889 		}
1890 
1891 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1892 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1893 				dma_unmap_page(priv->device,
1894 					       tx_q->tx_skbuff_dma[entry].buf,
1895 					       tx_q->tx_skbuff_dma[entry].len,
1896 					       DMA_TO_DEVICE);
1897 			else
1898 				dma_unmap_single(priv->device,
1899 						 tx_q->tx_skbuff_dma[entry].buf,
1900 						 tx_q->tx_skbuff_dma[entry].len,
1901 						 DMA_TO_DEVICE);
1902 			tx_q->tx_skbuff_dma[entry].buf = 0;
1903 			tx_q->tx_skbuff_dma[entry].len = 0;
1904 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1905 		}
1906 
1907 		stmmac_clean_desc3(priv, tx_q, p);
1908 
1909 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1910 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1911 
1912 		if (likely(skb != NULL)) {
1913 			pkts_compl++;
1914 			bytes_compl += skb->len;
1915 			dev_consume_skb_any(skb);
1916 			tx_q->tx_skbuff[entry] = NULL;
1917 		}
1918 
1919 		stmmac_release_tx_desc(priv, p, priv->mode);
1920 
1921 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1922 	}
1923 	tx_q->dirty_tx = entry;
1924 
1925 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1926 				  pkts_compl, bytes_compl);
1927 
1928 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1929 								queue))) &&
1930 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1931 
1932 		netif_dbg(priv, tx_done, priv->dev,
1933 			  "%s: restart transmit\n", __func__);
1934 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1935 	}
1936 
1937 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1938 		stmmac_enable_eee_mode(priv);
1939 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1940 	}
1941 
1942 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1943 
1944 	return count;
1945 }
1946 
1947 /**
1948  * stmmac_tx_err - to manage the tx error
1949  * @priv: driver private structure
1950  * @chan: channel index
1951  * Description: it cleans the descriptors and restarts the transmission
1952  * in case of transmission errors.
1953  */
1954 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1955 {
1956 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1957 	int i;
1958 
1959 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1960 
1961 	stmmac_stop_tx_dma(priv, chan);
1962 	dma_free_tx_skbufs(priv, chan);
1963 	for (i = 0; i < DMA_TX_SIZE; i++)
1964 		if (priv->extend_desc)
1965 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1966 					priv->mode, (i == DMA_TX_SIZE - 1));
1967 		else
1968 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1969 					priv->mode, (i == DMA_TX_SIZE - 1));
1970 	tx_q->dirty_tx = 0;
1971 	tx_q->cur_tx = 0;
1972 	tx_q->mss = 0;
1973 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1974 	stmmac_start_tx_dma(priv, chan);
1975 
1976 	priv->dev->stats.tx_errors++;
1977 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1978 }
1979 
1980 /**
1981  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1982  *  @priv: driver private structure
1983  *  @txmode: TX operating mode
1984  *  @rxmode: RX operating mode
1985  *  @chan: channel index
1986  *  Description: it is used for configuring of the DMA operation mode in
1987  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1988  *  mode.
1989  */
1990 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
1991 					  u32 rxmode, u32 chan)
1992 {
1993 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1994 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1995 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1996 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1997 	int rxfifosz = priv->plat->rx_fifo_size;
1998 	int txfifosz = priv->plat->tx_fifo_size;
1999 
2000 	if (rxfifosz == 0)
2001 		rxfifosz = priv->dma_cap.rx_fifo_size;
2002 	if (txfifosz == 0)
2003 		txfifosz = priv->dma_cap.tx_fifo_size;
2004 
2005 	/* Adjust for real per queue fifo size */
2006 	rxfifosz /= rx_channels_count;
2007 	txfifosz /= tx_channels_count;
2008 
2009 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2010 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2011 }
2012 
2013 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2014 {
2015 	int ret;
2016 
2017 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2018 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2019 	if (ret && (ret != -EINVAL)) {
2020 		stmmac_global_err(priv);
2021 		return true;
2022 	}
2023 
2024 	return false;
2025 }
2026 
2027 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2028 {
2029 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2030 						 &priv->xstats, chan);
2031 	struct stmmac_channel *ch = &priv->channel[chan];
2032 	bool needs_work = false;
2033 
2034 	if ((status & handle_rx) && ch->has_rx) {
2035 		needs_work = true;
2036 	} else {
2037 		status &= ~handle_rx;
2038 	}
2039 
2040 	if ((status & handle_tx) && ch->has_tx) {
2041 		needs_work = true;
2042 	} else {
2043 		status &= ~handle_tx;
2044 	}
2045 
2046 	if (needs_work && napi_schedule_prep(&ch->napi)) {
2047 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2048 		__napi_schedule(&ch->napi);
2049 	}
2050 
2051 	return status;
2052 }
2053 
2054 /**
2055  * stmmac_dma_interrupt - DMA ISR
2056  * @priv: driver private structure
2057  * Description: this is the DMA ISR. It is called by the main ISR.
2058  * It calls the dwmac dma routine and schedule poll method in case of some
2059  * work can be done.
2060  */
2061 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2062 {
2063 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2064 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2065 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2066 				tx_channel_count : rx_channel_count;
2067 	u32 chan;
2068 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2069 
2070 	/* Make sure we never check beyond our status buffer. */
2071 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2072 		channels_to_check = ARRAY_SIZE(status);
2073 
2074 	for (chan = 0; chan < channels_to_check; chan++)
2075 		status[chan] = stmmac_napi_check(priv, chan);
2076 
2077 	for (chan = 0; chan < tx_channel_count; chan++) {
2078 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2079 			/* Try to bump up the dma threshold on this failure */
2080 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2081 			    (tc <= 256)) {
2082 				tc += 64;
2083 				if (priv->plat->force_thresh_dma_mode)
2084 					stmmac_set_dma_operation_mode(priv,
2085 								      tc,
2086 								      tc,
2087 								      chan);
2088 				else
2089 					stmmac_set_dma_operation_mode(priv,
2090 								    tc,
2091 								    SF_DMA_MODE,
2092 								    chan);
2093 				priv->xstats.threshold = tc;
2094 			}
2095 		} else if (unlikely(status[chan] == tx_hard_error)) {
2096 			stmmac_tx_err(priv, chan);
2097 		}
2098 	}
2099 }
2100 
2101 /**
2102  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2103  * @priv: driver private structure
2104  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2105  */
2106 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2107 {
2108 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2109 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2110 
2111 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2112 
2113 	if (priv->dma_cap.rmon) {
2114 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2115 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2116 	} else
2117 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2118 }
2119 
2120 /**
2121  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2122  * @priv: driver private structure
2123  * Description:
2124  *  new GMAC chip generations have a new register to indicate the
2125  *  presence of the optional feature/functions.
2126  *  This can be also used to override the value passed through the
2127  *  platform and necessary for old MAC10/100 and GMAC chips.
2128  */
2129 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2130 {
2131 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2132 }
2133 
2134 /**
2135  * stmmac_check_ether_addr - check if the MAC addr is valid
2136  * @priv: driver private structure
2137  * Description:
2138  * it is to verify if the MAC address is valid, in case of failures it
2139  * generates a random MAC address
2140  */
2141 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2142 {
2143 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2144 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2145 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2146 			eth_hw_addr_random(priv->dev);
2147 		netdev_info(priv->dev, "device MAC address %pM\n",
2148 			    priv->dev->dev_addr);
2149 	}
2150 }
2151 
2152 /**
2153  * stmmac_init_dma_engine - DMA init.
2154  * @priv: driver private structure
2155  * Description:
2156  * It inits the DMA invoking the specific MAC/GMAC callback.
2157  * Some DMA parameters can be passed from the platform;
2158  * in case of these are not passed a default is kept for the MAC or GMAC.
2159  */
2160 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2161 {
2162 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2163 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2164 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2165 	struct stmmac_rx_queue *rx_q;
2166 	struct stmmac_tx_queue *tx_q;
2167 	u32 chan = 0;
2168 	int atds = 0;
2169 	int ret = 0;
2170 
2171 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2172 		dev_err(priv->device, "Invalid DMA configuration\n");
2173 		return -EINVAL;
2174 	}
2175 
2176 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2177 		atds = 1;
2178 
2179 	ret = stmmac_reset(priv, priv->ioaddr);
2180 	if (ret) {
2181 		dev_err(priv->device, "Failed to reset the dma\n");
2182 		return ret;
2183 	}
2184 
2185 	/* DMA Configuration */
2186 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2187 
2188 	if (priv->plat->axi)
2189 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2190 
2191 	/* DMA RX Channel Configuration */
2192 	for (chan = 0; chan < rx_channels_count; chan++) {
2193 		rx_q = &priv->rx_queue[chan];
2194 
2195 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2196 				    rx_q->dma_rx_phy, chan);
2197 
2198 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2199 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2200 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2201 				       rx_q->rx_tail_addr, chan);
2202 	}
2203 
2204 	/* DMA TX Channel Configuration */
2205 	for (chan = 0; chan < tx_channels_count; chan++) {
2206 		tx_q = &priv->tx_queue[chan];
2207 
2208 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2209 				    tx_q->dma_tx_phy, chan);
2210 
2211 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2212 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2213 				       tx_q->tx_tail_addr, chan);
2214 	}
2215 
2216 	/* DMA CSR Channel configuration */
2217 	for (chan = 0; chan < dma_csr_ch; chan++)
2218 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2219 
2220 	return ret;
2221 }
2222 
2223 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2224 {
2225 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2226 
2227 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2228 }
2229 
2230 /**
2231  * stmmac_tx_timer - mitigation sw timer for tx.
2232  * @data: data pointer
2233  * Description:
2234  * This is the timer handler to directly invoke the stmmac_tx_clean.
2235  */
2236 static void stmmac_tx_timer(struct timer_list *t)
2237 {
2238 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2239 	struct stmmac_priv *priv = tx_q->priv_data;
2240 	struct stmmac_channel *ch;
2241 
2242 	ch = &priv->channel[tx_q->queue_index];
2243 
2244 	if (likely(napi_schedule_prep(&ch->napi)))
2245 		__napi_schedule(&ch->napi);
2246 }
2247 
2248 /**
2249  * stmmac_init_tx_coalesce - init tx mitigation options.
2250  * @priv: driver private structure
2251  * Description:
2252  * This inits the transmit coalesce parameters: i.e. timer rate,
2253  * timer handler and default threshold used for enabling the
2254  * interrupt on completion bit.
2255  */
2256 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2257 {
2258 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2259 	u32 chan;
2260 
2261 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2262 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2263 
2264 	for (chan = 0; chan < tx_channel_count; chan++) {
2265 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2266 
2267 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2268 	}
2269 }
2270 
2271 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2272 {
2273 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275 	u32 chan;
2276 
2277 	/* set TX ring length */
2278 	for (chan = 0; chan < tx_channels_count; chan++)
2279 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2280 				(DMA_TX_SIZE - 1), chan);
2281 
2282 	/* set RX ring length */
2283 	for (chan = 0; chan < rx_channels_count; chan++)
2284 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2285 				(DMA_RX_SIZE - 1), chan);
2286 }
2287 
2288 /**
2289  *  stmmac_set_tx_queue_weight - Set TX queue weight
2290  *  @priv: driver private structure
2291  *  Description: It is used for setting TX queues weight
2292  */
2293 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2294 {
2295 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2296 	u32 weight;
2297 	u32 queue;
2298 
2299 	for (queue = 0; queue < tx_queues_count; queue++) {
2300 		weight = priv->plat->tx_queues_cfg[queue].weight;
2301 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2302 	}
2303 }
2304 
2305 /**
2306  *  stmmac_configure_cbs - Configure CBS in TX queue
2307  *  @priv: driver private structure
2308  *  Description: It is used for configuring CBS in AVB TX queues
2309  */
2310 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2311 {
2312 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2313 	u32 mode_to_use;
2314 	u32 queue;
2315 
2316 	/* queue 0 is reserved for legacy traffic */
2317 	for (queue = 1; queue < tx_queues_count; queue++) {
2318 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2319 		if (mode_to_use == MTL_QUEUE_DCB)
2320 			continue;
2321 
2322 		stmmac_config_cbs(priv, priv->hw,
2323 				priv->plat->tx_queues_cfg[queue].send_slope,
2324 				priv->plat->tx_queues_cfg[queue].idle_slope,
2325 				priv->plat->tx_queues_cfg[queue].high_credit,
2326 				priv->plat->tx_queues_cfg[queue].low_credit,
2327 				queue);
2328 	}
2329 }
2330 
2331 /**
2332  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2333  *  @priv: driver private structure
2334  *  Description: It is used for mapping RX queues to RX dma channels
2335  */
2336 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2337 {
2338 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2339 	u32 queue;
2340 	u32 chan;
2341 
2342 	for (queue = 0; queue < rx_queues_count; queue++) {
2343 		chan = priv->plat->rx_queues_cfg[queue].chan;
2344 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2345 	}
2346 }
2347 
2348 /**
2349  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2350  *  @priv: driver private structure
2351  *  Description: It is used for configuring the RX Queue Priority
2352  */
2353 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2354 {
2355 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2356 	u32 queue;
2357 	u32 prio;
2358 
2359 	for (queue = 0; queue < rx_queues_count; queue++) {
2360 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2361 			continue;
2362 
2363 		prio = priv->plat->rx_queues_cfg[queue].prio;
2364 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2365 	}
2366 }
2367 
2368 /**
2369  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2370  *  @priv: driver private structure
2371  *  Description: It is used for configuring the TX Queue Priority
2372  */
2373 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2374 {
2375 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2376 	u32 queue;
2377 	u32 prio;
2378 
2379 	for (queue = 0; queue < tx_queues_count; queue++) {
2380 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2381 			continue;
2382 
2383 		prio = priv->plat->tx_queues_cfg[queue].prio;
2384 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2385 	}
2386 }
2387 
2388 /**
2389  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2390  *  @priv: driver private structure
2391  *  Description: It is used for configuring the RX queue routing
2392  */
2393 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2394 {
2395 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2396 	u32 queue;
2397 	u8 packet;
2398 
2399 	for (queue = 0; queue < rx_queues_count; queue++) {
2400 		/* no specific packet type routing specified for the queue */
2401 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2402 			continue;
2403 
2404 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2405 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2406 	}
2407 }
2408 
2409 /**
2410  *  stmmac_mtl_configuration - Configure MTL
2411  *  @priv: driver private structure
2412  *  Description: It is used for configurring MTL
2413  */
2414 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2415 {
2416 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2417 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2418 
2419 	if (tx_queues_count > 1)
2420 		stmmac_set_tx_queue_weight(priv);
2421 
2422 	/* Configure MTL RX algorithms */
2423 	if (rx_queues_count > 1)
2424 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2425 				priv->plat->rx_sched_algorithm);
2426 
2427 	/* Configure MTL TX algorithms */
2428 	if (tx_queues_count > 1)
2429 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2430 				priv->plat->tx_sched_algorithm);
2431 
2432 	/* Configure CBS in AVB TX queues */
2433 	if (tx_queues_count > 1)
2434 		stmmac_configure_cbs(priv);
2435 
2436 	/* Map RX MTL to DMA channels */
2437 	stmmac_rx_queue_dma_chan_map(priv);
2438 
2439 	/* Enable MAC RX Queues */
2440 	stmmac_mac_enable_rx_queues(priv);
2441 
2442 	/* Set RX priorities */
2443 	if (rx_queues_count > 1)
2444 		stmmac_mac_config_rx_queues_prio(priv);
2445 
2446 	/* Set TX priorities */
2447 	if (tx_queues_count > 1)
2448 		stmmac_mac_config_tx_queues_prio(priv);
2449 
2450 	/* Set RX routing */
2451 	if (rx_queues_count > 1)
2452 		stmmac_mac_config_rx_queues_routing(priv);
2453 }
2454 
2455 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2456 {
2457 	if (priv->dma_cap.asp) {
2458 		netdev_info(priv->dev, "Enabling Safety Features\n");
2459 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2460 	} else {
2461 		netdev_info(priv->dev, "No Safety Features support found\n");
2462 	}
2463 }
2464 
2465 /**
2466  * stmmac_hw_setup - setup mac in a usable state.
2467  *  @dev : pointer to the device structure.
2468  *  Description:
2469  *  this is the main function to setup the HW in a usable state because the
2470  *  dma engine is reset, the core registers are configured (e.g. AXI,
2471  *  Checksum features, timers). The DMA is ready to start receiving and
2472  *  transmitting.
2473  *  Return value:
2474  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2475  *  file on failure.
2476  */
2477 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2478 {
2479 	struct stmmac_priv *priv = netdev_priv(dev);
2480 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2481 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2482 	u32 chan;
2483 	int ret;
2484 
2485 	/* DMA initialization and SW reset */
2486 	ret = stmmac_init_dma_engine(priv);
2487 	if (ret < 0) {
2488 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2489 			   __func__);
2490 		return ret;
2491 	}
2492 
2493 	/* Copy the MAC addr into the HW  */
2494 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2495 
2496 	/* PS and related bits will be programmed according to the speed */
2497 	if (priv->hw->pcs) {
2498 		int speed = priv->plat->mac_port_sel_speed;
2499 
2500 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2501 		    (speed == SPEED_1000)) {
2502 			priv->hw->ps = speed;
2503 		} else {
2504 			dev_warn(priv->device, "invalid port speed\n");
2505 			priv->hw->ps = 0;
2506 		}
2507 	}
2508 
2509 	/* Initialize the MAC Core */
2510 	stmmac_core_init(priv, priv->hw, dev);
2511 
2512 	/* Initialize MTL*/
2513 	stmmac_mtl_configuration(priv);
2514 
2515 	/* Initialize Safety Features */
2516 	stmmac_safety_feat_configuration(priv);
2517 
2518 	ret = stmmac_rx_ipc(priv, priv->hw);
2519 	if (!ret) {
2520 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2521 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2522 		priv->hw->rx_csum = 0;
2523 	}
2524 
2525 	/* Enable the MAC Rx/Tx */
2526 	stmmac_mac_set(priv, priv->ioaddr, true);
2527 
2528 	/* Set the HW DMA mode and the COE */
2529 	stmmac_dma_operation_mode(priv);
2530 
2531 	stmmac_mmc_setup(priv);
2532 
2533 	if (init_ptp) {
2534 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2535 		if (ret < 0)
2536 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2537 
2538 		ret = stmmac_init_ptp(priv);
2539 		if (ret == -EOPNOTSUPP)
2540 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2541 		else if (ret)
2542 			netdev_warn(priv->dev, "PTP init failed\n");
2543 	}
2544 
2545 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2546 
2547 	if (priv->use_riwt) {
2548 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2549 		if (!ret)
2550 			priv->rx_riwt = MAX_DMA_RIWT;
2551 	}
2552 
2553 	if (priv->hw->pcs)
2554 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2555 
2556 	/* set TX and RX rings length */
2557 	stmmac_set_rings_length(priv);
2558 
2559 	/* Enable TSO */
2560 	if (priv->tso) {
2561 		for (chan = 0; chan < tx_cnt; chan++)
2562 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2563 	}
2564 
2565 	/* Start the ball rolling... */
2566 	stmmac_start_all_dma(priv);
2567 
2568 	return 0;
2569 }
2570 
2571 static void stmmac_hw_teardown(struct net_device *dev)
2572 {
2573 	struct stmmac_priv *priv = netdev_priv(dev);
2574 
2575 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2576 }
2577 
2578 /**
2579  *  stmmac_open - open entry point of the driver
2580  *  @dev : pointer to the device structure.
2581  *  Description:
2582  *  This function is the open entry point of the driver.
2583  *  Return value:
2584  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2585  *  file on failure.
2586  */
2587 static int stmmac_open(struct net_device *dev)
2588 {
2589 	struct stmmac_priv *priv = netdev_priv(dev);
2590 	u32 chan;
2591 	int ret;
2592 
2593 	stmmac_check_ether_addr(priv);
2594 
2595 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2596 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2597 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2598 		ret = stmmac_init_phy(dev);
2599 		if (ret) {
2600 			netdev_err(priv->dev,
2601 				   "%s: Cannot attach to PHY (error: %d)\n",
2602 				   __func__, ret);
2603 			return ret;
2604 		}
2605 	}
2606 
2607 	/* Extra statistics */
2608 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2609 	priv->xstats.threshold = tc;
2610 
2611 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2612 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2613 
2614 	ret = alloc_dma_desc_resources(priv);
2615 	if (ret < 0) {
2616 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2617 			   __func__);
2618 		goto dma_desc_error;
2619 	}
2620 
2621 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2622 	if (ret < 0) {
2623 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2624 			   __func__);
2625 		goto init_error;
2626 	}
2627 
2628 	ret = stmmac_hw_setup(dev, true);
2629 	if (ret < 0) {
2630 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2631 		goto init_error;
2632 	}
2633 
2634 	stmmac_init_tx_coalesce(priv);
2635 
2636 	if (dev->phydev)
2637 		phy_start(dev->phydev);
2638 
2639 	/* Request the IRQ lines */
2640 	ret = request_irq(dev->irq, stmmac_interrupt,
2641 			  IRQF_SHARED, dev->name, dev);
2642 	if (unlikely(ret < 0)) {
2643 		netdev_err(priv->dev,
2644 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2645 			   __func__, dev->irq, ret);
2646 		goto irq_error;
2647 	}
2648 
2649 	/* Request the Wake IRQ in case of another line is used for WoL */
2650 	if (priv->wol_irq != dev->irq) {
2651 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2652 				  IRQF_SHARED, dev->name, dev);
2653 		if (unlikely(ret < 0)) {
2654 			netdev_err(priv->dev,
2655 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2656 				   __func__, priv->wol_irq, ret);
2657 			goto wolirq_error;
2658 		}
2659 	}
2660 
2661 	/* Request the IRQ lines */
2662 	if (priv->lpi_irq > 0) {
2663 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2664 				  dev->name, dev);
2665 		if (unlikely(ret < 0)) {
2666 			netdev_err(priv->dev,
2667 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2668 				   __func__, priv->lpi_irq, ret);
2669 			goto lpiirq_error;
2670 		}
2671 	}
2672 
2673 	stmmac_enable_all_queues(priv);
2674 	stmmac_start_all_queues(priv);
2675 
2676 	return 0;
2677 
2678 lpiirq_error:
2679 	if (priv->wol_irq != dev->irq)
2680 		free_irq(priv->wol_irq, dev);
2681 wolirq_error:
2682 	free_irq(dev->irq, dev);
2683 irq_error:
2684 	if (dev->phydev)
2685 		phy_stop(dev->phydev);
2686 
2687 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2688 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2689 
2690 	stmmac_hw_teardown(dev);
2691 init_error:
2692 	free_dma_desc_resources(priv);
2693 dma_desc_error:
2694 	if (dev->phydev)
2695 		phy_disconnect(dev->phydev);
2696 
2697 	return ret;
2698 }
2699 
2700 /**
2701  *  stmmac_release - close entry point of the driver
2702  *  @dev : device pointer.
2703  *  Description:
2704  *  This is the stop entry point of the driver.
2705  */
2706 static int stmmac_release(struct net_device *dev)
2707 {
2708 	struct stmmac_priv *priv = netdev_priv(dev);
2709 	u32 chan;
2710 
2711 	if (priv->eee_enabled)
2712 		del_timer_sync(&priv->eee_ctrl_timer);
2713 
2714 	/* Stop and disconnect the PHY */
2715 	if (dev->phydev) {
2716 		phy_stop(dev->phydev);
2717 		phy_disconnect(dev->phydev);
2718 	}
2719 
2720 	stmmac_stop_all_queues(priv);
2721 
2722 	stmmac_disable_all_queues(priv);
2723 
2724 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2725 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2726 
2727 	/* Free the IRQ lines */
2728 	free_irq(dev->irq, dev);
2729 	if (priv->wol_irq != dev->irq)
2730 		free_irq(priv->wol_irq, dev);
2731 	if (priv->lpi_irq > 0)
2732 		free_irq(priv->lpi_irq, dev);
2733 
2734 	/* Stop TX/RX DMA and clear the descriptors */
2735 	stmmac_stop_all_dma(priv);
2736 
2737 	/* Release and free the Rx/Tx resources */
2738 	free_dma_desc_resources(priv);
2739 
2740 	/* Disable the MAC Rx/Tx */
2741 	stmmac_mac_set(priv, priv->ioaddr, false);
2742 
2743 	netif_carrier_off(dev);
2744 
2745 	stmmac_release_ptp(priv);
2746 
2747 	return 0;
2748 }
2749 
2750 /**
2751  *  stmmac_tso_allocator - close entry point of the driver
2752  *  @priv: driver private structure
2753  *  @des: buffer start address
2754  *  @total_len: total length to fill in descriptors
2755  *  @last_segmant: condition for the last descriptor
2756  *  @queue: TX queue index
2757  *  Description:
2758  *  This function fills descriptor and request new descriptors according to
2759  *  buffer length to fill
2760  */
2761 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2762 				 int total_len, bool last_segment, u32 queue)
2763 {
2764 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2765 	struct dma_desc *desc;
2766 	u32 buff_size;
2767 	int tmp_len;
2768 
2769 	tmp_len = total_len;
2770 
2771 	while (tmp_len > 0) {
2772 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2773 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2774 		desc = tx_q->dma_tx + tx_q->cur_tx;
2775 
2776 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2777 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2778 			    TSO_MAX_BUFF_SIZE : tmp_len;
2779 
2780 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2781 				0, 1,
2782 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2783 				0, 0);
2784 
2785 		tmp_len -= TSO_MAX_BUFF_SIZE;
2786 	}
2787 }
2788 
2789 /**
2790  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2791  *  @skb : the socket buffer
2792  *  @dev : device pointer
2793  *  Description: this is the transmit function that is called on TSO frames
2794  *  (support available on GMAC4 and newer chips).
2795  *  Diagram below show the ring programming in case of TSO frames:
2796  *
2797  *  First Descriptor
2798  *   --------
2799  *   | DES0 |---> buffer1 = L2/L3/L4 header
2800  *   | DES1 |---> TCP Payload (can continue on next descr...)
2801  *   | DES2 |---> buffer 1 and 2 len
2802  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2803  *   --------
2804  *	|
2805  *     ...
2806  *	|
2807  *   --------
2808  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2809  *   | DES1 | --|
2810  *   | DES2 | --> buffer 1 and 2 len
2811  *   | DES3 |
2812  *   --------
2813  *
2814  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2815  */
2816 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2817 {
2818 	struct dma_desc *desc, *first, *mss_desc = NULL;
2819 	struct stmmac_priv *priv = netdev_priv(dev);
2820 	int nfrags = skb_shinfo(skb)->nr_frags;
2821 	u32 queue = skb_get_queue_mapping(skb);
2822 	unsigned int first_entry, des;
2823 	struct stmmac_tx_queue *tx_q;
2824 	int tmp_pay_len = 0;
2825 	u32 pay_len, mss;
2826 	u8 proto_hdr_len;
2827 	int i;
2828 
2829 	tx_q = &priv->tx_queue[queue];
2830 
2831 	/* Compute header lengths */
2832 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2833 
2834 	/* Desc availability based on threshold should be enough safe */
2835 	if (unlikely(stmmac_tx_avail(priv, queue) <
2836 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2837 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2838 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2839 								queue));
2840 			/* This is a hard error, log it. */
2841 			netdev_err(priv->dev,
2842 				   "%s: Tx Ring full when queue awake\n",
2843 				   __func__);
2844 		}
2845 		return NETDEV_TX_BUSY;
2846 	}
2847 
2848 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2849 
2850 	mss = skb_shinfo(skb)->gso_size;
2851 
2852 	/* set new MSS value if needed */
2853 	if (mss != tx_q->mss) {
2854 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2855 		stmmac_set_mss(priv, mss_desc, mss);
2856 		tx_q->mss = mss;
2857 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2858 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2859 	}
2860 
2861 	if (netif_msg_tx_queued(priv)) {
2862 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2863 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2864 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2865 			skb->data_len);
2866 	}
2867 
2868 	first_entry = tx_q->cur_tx;
2869 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2870 
2871 	desc = tx_q->dma_tx + first_entry;
2872 	first = desc;
2873 
2874 	/* first descriptor: fill Headers on Buf1 */
2875 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2876 			     DMA_TO_DEVICE);
2877 	if (dma_mapping_error(priv->device, des))
2878 		goto dma_map_err;
2879 
2880 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2881 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2882 
2883 	first->des0 = cpu_to_le32(des);
2884 
2885 	/* Fill start of payload in buff2 of first descriptor */
2886 	if (pay_len)
2887 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2888 
2889 	/* If needed take extra descriptors to fill the remaining payload */
2890 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2891 
2892 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2893 
2894 	/* Prepare fragments */
2895 	for (i = 0; i < nfrags; i++) {
2896 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2897 
2898 		des = skb_frag_dma_map(priv->device, frag, 0,
2899 				       skb_frag_size(frag),
2900 				       DMA_TO_DEVICE);
2901 		if (dma_mapping_error(priv->device, des))
2902 			goto dma_map_err;
2903 
2904 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2905 				     (i == nfrags - 1), queue);
2906 
2907 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2908 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2909 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2910 	}
2911 
2912 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2913 
2914 	/* Only the last descriptor gets to point to the skb. */
2915 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2916 
2917 	/* We've used all descriptors we need for this skb, however,
2918 	 * advance cur_tx so that it references a fresh descriptor.
2919 	 * ndo_start_xmit will fill this descriptor the next time it's
2920 	 * called and stmmac_tx_clean may clean up to this descriptor.
2921 	 */
2922 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2923 
2924 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2925 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2926 			  __func__);
2927 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2928 	}
2929 
2930 	dev->stats.tx_bytes += skb->len;
2931 	priv->xstats.tx_tso_frames++;
2932 	priv->xstats.tx_tso_nfrags += nfrags;
2933 
2934 	/* Manage tx mitigation */
2935 	tx_q->tx_count_frames += nfrags + 1;
2936 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2937 		stmmac_set_tx_ic(priv, desc);
2938 		priv->xstats.tx_set_ic_bit++;
2939 		tx_q->tx_count_frames = 0;
2940 	} else {
2941 		stmmac_tx_timer_arm(priv, queue);
2942 	}
2943 
2944 	skb_tx_timestamp(skb);
2945 
2946 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2947 		     priv->hwts_tx_en)) {
2948 		/* declare that device is doing timestamping */
2949 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2950 		stmmac_enable_tx_timestamp(priv, first);
2951 	}
2952 
2953 	/* Complete the first descriptor before granting the DMA */
2954 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2955 			proto_hdr_len,
2956 			pay_len,
2957 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2958 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2959 
2960 	/* If context desc is used to change MSS */
2961 	if (mss_desc) {
2962 		/* Make sure that first descriptor has been completely
2963 		 * written, including its own bit. This is because MSS is
2964 		 * actually before first descriptor, so we need to make
2965 		 * sure that MSS's own bit is the last thing written.
2966 		 */
2967 		dma_wmb();
2968 		stmmac_set_tx_owner(priv, mss_desc);
2969 	}
2970 
2971 	/* The own bit must be the latest setting done when prepare the
2972 	 * descriptor and then barrier is needed to make sure that
2973 	 * all is coherent before granting the DMA engine.
2974 	 */
2975 	wmb();
2976 
2977 	if (netif_msg_pktdata(priv)) {
2978 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2979 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2980 			tx_q->cur_tx, first, nfrags);
2981 
2982 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
2983 
2984 		pr_info(">>> frame to be transmitted: ");
2985 		print_pkt(skb->data, skb_headlen(skb));
2986 	}
2987 
2988 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
2989 
2990 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
2991 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
2992 
2993 	return NETDEV_TX_OK;
2994 
2995 dma_map_err:
2996 	dev_err(priv->device, "Tx dma map failed\n");
2997 	dev_kfree_skb(skb);
2998 	priv->dev->stats.tx_dropped++;
2999 	return NETDEV_TX_OK;
3000 }
3001 
3002 /**
3003  *  stmmac_xmit - Tx entry point of the driver
3004  *  @skb : the socket buffer
3005  *  @dev : device pointer
3006  *  Description : this is the tx entry point of the driver.
3007  *  It programs the chain or the ring and supports oversized frames
3008  *  and SG feature.
3009  */
3010 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3011 {
3012 	struct stmmac_priv *priv = netdev_priv(dev);
3013 	unsigned int nopaged_len = skb_headlen(skb);
3014 	int i, csum_insertion = 0, is_jumbo = 0;
3015 	u32 queue = skb_get_queue_mapping(skb);
3016 	int nfrags = skb_shinfo(skb)->nr_frags;
3017 	int entry;
3018 	unsigned int first_entry;
3019 	struct dma_desc *desc, *first;
3020 	struct stmmac_tx_queue *tx_q;
3021 	unsigned int enh_desc;
3022 	unsigned int des;
3023 
3024 	tx_q = &priv->tx_queue[queue];
3025 
3026 	if (priv->tx_path_in_lpi_mode)
3027 		stmmac_disable_eee_mode(priv);
3028 
3029 	/* Manage oversized TCP frames for GMAC4 device */
3030 	if (skb_is_gso(skb) && priv->tso) {
3031 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3032 			/*
3033 			 * There is no way to determine the number of TSO
3034 			 * capable Queues. Let's use always the Queue 0
3035 			 * because if TSO is supported then at least this
3036 			 * one will be capable.
3037 			 */
3038 			skb_set_queue_mapping(skb, 0);
3039 
3040 			return stmmac_tso_xmit(skb, dev);
3041 		}
3042 	}
3043 
3044 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3045 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3046 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3047 								queue));
3048 			/* This is a hard error, log it. */
3049 			netdev_err(priv->dev,
3050 				   "%s: Tx Ring full when queue awake\n",
3051 				   __func__);
3052 		}
3053 		return NETDEV_TX_BUSY;
3054 	}
3055 
3056 	entry = tx_q->cur_tx;
3057 	first_entry = entry;
3058 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3059 
3060 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3061 
3062 	if (likely(priv->extend_desc))
3063 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3064 	else
3065 		desc = tx_q->dma_tx + entry;
3066 
3067 	first = desc;
3068 
3069 	enh_desc = priv->plat->enh_desc;
3070 	/* To program the descriptors according to the size of the frame */
3071 	if (enh_desc)
3072 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3073 
3074 	if (unlikely(is_jumbo)) {
3075 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3076 		if (unlikely(entry < 0) && (entry != -EINVAL))
3077 			goto dma_map_err;
3078 	}
3079 
3080 	for (i = 0; i < nfrags; i++) {
3081 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3082 		int len = skb_frag_size(frag);
3083 		bool last_segment = (i == (nfrags - 1));
3084 
3085 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3086 		WARN_ON(tx_q->tx_skbuff[entry]);
3087 
3088 		if (likely(priv->extend_desc))
3089 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3090 		else
3091 			desc = tx_q->dma_tx + entry;
3092 
3093 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3094 				       DMA_TO_DEVICE);
3095 		if (dma_mapping_error(priv->device, des))
3096 			goto dma_map_err; /* should reuse desc w/o issues */
3097 
3098 		tx_q->tx_skbuff_dma[entry].buf = des;
3099 
3100 		stmmac_set_desc_addr(priv, desc, des);
3101 
3102 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3103 		tx_q->tx_skbuff_dma[entry].len = len;
3104 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3105 
3106 		/* Prepare the descriptor and set the own bit too */
3107 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3108 				priv->mode, 1, last_segment, skb->len);
3109 	}
3110 
3111 	/* Only the last descriptor gets to point to the skb. */
3112 	tx_q->tx_skbuff[entry] = skb;
3113 
3114 	/* We've used all descriptors we need for this skb, however,
3115 	 * advance cur_tx so that it references a fresh descriptor.
3116 	 * ndo_start_xmit will fill this descriptor the next time it's
3117 	 * called and stmmac_tx_clean may clean up to this descriptor.
3118 	 */
3119 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3120 	tx_q->cur_tx = entry;
3121 
3122 	if (netif_msg_pktdata(priv)) {
3123 		void *tx_head;
3124 
3125 		netdev_dbg(priv->dev,
3126 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3127 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3128 			   entry, first, nfrags);
3129 
3130 		if (priv->extend_desc)
3131 			tx_head = (void *)tx_q->dma_etx;
3132 		else
3133 			tx_head = (void *)tx_q->dma_tx;
3134 
3135 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3136 
3137 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3138 		print_pkt(skb->data, skb->len);
3139 	}
3140 
3141 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3142 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3143 			  __func__);
3144 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3145 	}
3146 
3147 	dev->stats.tx_bytes += skb->len;
3148 
3149 	/* According to the coalesce parameter the IC bit for the latest
3150 	 * segment is reset and the timer re-started to clean the tx status.
3151 	 * This approach takes care about the fragments: desc is the first
3152 	 * element in case of no SG.
3153 	 */
3154 	tx_q->tx_count_frames += nfrags + 1;
3155 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3156 		stmmac_set_tx_ic(priv, desc);
3157 		priv->xstats.tx_set_ic_bit++;
3158 		tx_q->tx_count_frames = 0;
3159 	} else {
3160 		stmmac_tx_timer_arm(priv, queue);
3161 	}
3162 
3163 	skb_tx_timestamp(skb);
3164 
3165 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3166 	 * problems because all the descriptors are actually ready to be
3167 	 * passed to the DMA engine.
3168 	 */
3169 	if (likely(!is_jumbo)) {
3170 		bool last_segment = (nfrags == 0);
3171 
3172 		des = dma_map_single(priv->device, skb->data,
3173 				     nopaged_len, DMA_TO_DEVICE);
3174 		if (dma_mapping_error(priv->device, des))
3175 			goto dma_map_err;
3176 
3177 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3178 
3179 		stmmac_set_desc_addr(priv, first, des);
3180 
3181 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3182 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3183 
3184 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3185 			     priv->hwts_tx_en)) {
3186 			/* declare that device is doing timestamping */
3187 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3188 			stmmac_enable_tx_timestamp(priv, first);
3189 		}
3190 
3191 		/* Prepare the first descriptor setting the OWN bit too */
3192 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3193 				csum_insertion, priv->mode, 1, last_segment,
3194 				skb->len);
3195 
3196 		/* The own bit must be the latest setting done when prepare the
3197 		 * descriptor and then barrier is needed to make sure that
3198 		 * all is coherent before granting the DMA engine.
3199 		 */
3200 		wmb();
3201 	}
3202 
3203 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3204 
3205 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3206 
3207 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3208 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3209 
3210 	return NETDEV_TX_OK;
3211 
3212 dma_map_err:
3213 	netdev_err(priv->dev, "Tx DMA map failed\n");
3214 	dev_kfree_skb(skb);
3215 	priv->dev->stats.tx_dropped++;
3216 	return NETDEV_TX_OK;
3217 }
3218 
3219 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3220 {
3221 	struct vlan_ethhdr *veth;
3222 	__be16 vlan_proto;
3223 	u16 vlanid;
3224 
3225 	veth = (struct vlan_ethhdr *)skb->data;
3226 	vlan_proto = veth->h_vlan_proto;
3227 
3228 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3229 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3230 	    (vlan_proto == htons(ETH_P_8021AD) &&
3231 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3232 		/* pop the vlan tag */
3233 		vlanid = ntohs(veth->h_vlan_TCI);
3234 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3235 		skb_pull(skb, VLAN_HLEN);
3236 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3237 	}
3238 }
3239 
3240 
3241 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3242 {
3243 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3244 		return 0;
3245 
3246 	return 1;
3247 }
3248 
3249 /**
3250  * stmmac_rx_refill - refill used skb preallocated buffers
3251  * @priv: driver private structure
3252  * @queue: RX queue index
3253  * Description : this is to reallocate the skb for the reception process
3254  * that is based on zero-copy.
3255  */
3256 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3257 {
3258 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3259 	int dirty = stmmac_rx_dirty(priv, queue);
3260 	unsigned int entry = rx_q->dirty_rx;
3261 
3262 	int bfsize = priv->dma_buf_sz;
3263 
3264 	while (dirty-- > 0) {
3265 		struct dma_desc *p;
3266 
3267 		if (priv->extend_desc)
3268 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3269 		else
3270 			p = rx_q->dma_rx + entry;
3271 
3272 		if (likely(!rx_q->rx_skbuff[entry])) {
3273 			struct sk_buff *skb;
3274 
3275 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3276 			if (unlikely(!skb)) {
3277 				/* so for a while no zero-copy! */
3278 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3279 				if (unlikely(net_ratelimit()))
3280 					dev_err(priv->device,
3281 						"fail to alloc skb entry %d\n",
3282 						entry);
3283 				break;
3284 			}
3285 
3286 			rx_q->rx_skbuff[entry] = skb;
3287 			rx_q->rx_skbuff_dma[entry] =
3288 			    dma_map_single(priv->device, skb->data, bfsize,
3289 					   DMA_FROM_DEVICE);
3290 			if (dma_mapping_error(priv->device,
3291 					      rx_q->rx_skbuff_dma[entry])) {
3292 				netdev_err(priv->dev, "Rx DMA map failed\n");
3293 				dev_kfree_skb(skb);
3294 				break;
3295 			}
3296 
3297 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3298 			stmmac_refill_desc3(priv, rx_q, p);
3299 
3300 			if (rx_q->rx_zeroc_thresh > 0)
3301 				rx_q->rx_zeroc_thresh--;
3302 
3303 			netif_dbg(priv, rx_status, priv->dev,
3304 				  "refill entry #%d\n", entry);
3305 		}
3306 		dma_wmb();
3307 
3308 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3309 
3310 		dma_wmb();
3311 
3312 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3313 	}
3314 	rx_q->dirty_rx = entry;
3315 }
3316 
3317 /**
3318  * stmmac_rx - manage the receive process
3319  * @priv: driver private structure
3320  * @limit: napi bugget
3321  * @queue: RX queue index.
3322  * Description :  this the function called by the napi poll method.
3323  * It gets all the frames inside the ring.
3324  */
3325 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3326 {
3327 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3328 	struct stmmac_channel *ch = &priv->channel[queue];
3329 	unsigned int entry = rx_q->cur_rx;
3330 	int coe = priv->hw->rx_csum;
3331 	unsigned int next_entry;
3332 	unsigned int count = 0;
3333 	bool xmac;
3334 
3335 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3336 
3337 	if (netif_msg_rx_status(priv)) {
3338 		void *rx_head;
3339 
3340 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3341 		if (priv->extend_desc)
3342 			rx_head = (void *)rx_q->dma_erx;
3343 		else
3344 			rx_head = (void *)rx_q->dma_rx;
3345 
3346 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3347 	}
3348 	while (count < limit) {
3349 		int status;
3350 		struct dma_desc *p;
3351 		struct dma_desc *np;
3352 
3353 		if (priv->extend_desc)
3354 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3355 		else
3356 			p = rx_q->dma_rx + entry;
3357 
3358 		/* read the status of the incoming frame */
3359 		status = stmmac_rx_status(priv, &priv->dev->stats,
3360 				&priv->xstats, p);
3361 		/* check if managed by the DMA otherwise go ahead */
3362 		if (unlikely(status & dma_own))
3363 			break;
3364 
3365 		count++;
3366 
3367 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3368 		next_entry = rx_q->cur_rx;
3369 
3370 		if (priv->extend_desc)
3371 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3372 		else
3373 			np = rx_q->dma_rx + next_entry;
3374 
3375 		prefetch(np);
3376 
3377 		if (priv->extend_desc)
3378 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3379 					&priv->xstats, rx_q->dma_erx + entry);
3380 		if (unlikely(status == discard_frame)) {
3381 			priv->dev->stats.rx_errors++;
3382 			if (priv->hwts_rx_en && !priv->extend_desc) {
3383 				/* DESC2 & DESC3 will be overwritten by device
3384 				 * with timestamp value, hence reinitialize
3385 				 * them in stmmac_rx_refill() function so that
3386 				 * device can reuse it.
3387 				 */
3388 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3389 				rx_q->rx_skbuff[entry] = NULL;
3390 				dma_unmap_single(priv->device,
3391 						 rx_q->rx_skbuff_dma[entry],
3392 						 priv->dma_buf_sz,
3393 						 DMA_FROM_DEVICE);
3394 			}
3395 		} else {
3396 			struct sk_buff *skb;
3397 			int frame_len;
3398 			unsigned int des;
3399 
3400 			stmmac_get_desc_addr(priv, p, &des);
3401 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3402 
3403 			/*  If frame length is greater than skb buffer size
3404 			 *  (preallocated during init) then the packet is
3405 			 *  ignored
3406 			 */
3407 			if (frame_len > priv->dma_buf_sz) {
3408 				netdev_err(priv->dev,
3409 					   "len %d larger than size (%d)\n",
3410 					   frame_len, priv->dma_buf_sz);
3411 				priv->dev->stats.rx_length_errors++;
3412 				break;
3413 			}
3414 
3415 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3416 			 * Type frames (LLC/LLC-SNAP)
3417 			 *
3418 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3419 			 * feature is always disabled and packets need to be
3420 			 * stripped manually.
3421 			 */
3422 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3423 			    unlikely(status != llc_snap))
3424 				frame_len -= ETH_FCS_LEN;
3425 
3426 			if (netif_msg_rx_status(priv)) {
3427 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3428 					   p, entry, des);
3429 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3430 					   frame_len, status);
3431 			}
3432 
3433 			/* The zero-copy is always used for all the sizes
3434 			 * in case of GMAC4 because it needs
3435 			 * to refill the used descriptors, always.
3436 			 */
3437 			if (unlikely(!xmac &&
3438 				     ((frame_len < priv->rx_copybreak) ||
3439 				     stmmac_rx_threshold_count(rx_q)))) {
3440 				skb = netdev_alloc_skb_ip_align(priv->dev,
3441 								frame_len);
3442 				if (unlikely(!skb)) {
3443 					if (net_ratelimit())
3444 						dev_warn(priv->device,
3445 							 "packet dropped\n");
3446 					priv->dev->stats.rx_dropped++;
3447 					break;
3448 				}
3449 
3450 				dma_sync_single_for_cpu(priv->device,
3451 							rx_q->rx_skbuff_dma
3452 							[entry], frame_len,
3453 							DMA_FROM_DEVICE);
3454 				skb_copy_to_linear_data(skb,
3455 							rx_q->
3456 							rx_skbuff[entry]->data,
3457 							frame_len);
3458 
3459 				skb_put(skb, frame_len);
3460 				dma_sync_single_for_device(priv->device,
3461 							   rx_q->rx_skbuff_dma
3462 							   [entry], frame_len,
3463 							   DMA_FROM_DEVICE);
3464 			} else {
3465 				skb = rx_q->rx_skbuff[entry];
3466 				if (unlikely(!skb)) {
3467 					netdev_err(priv->dev,
3468 						   "%s: Inconsistent Rx chain\n",
3469 						   priv->dev->name);
3470 					priv->dev->stats.rx_dropped++;
3471 					break;
3472 				}
3473 				prefetch(skb->data - NET_IP_ALIGN);
3474 				rx_q->rx_skbuff[entry] = NULL;
3475 				rx_q->rx_zeroc_thresh++;
3476 
3477 				skb_put(skb, frame_len);
3478 				dma_unmap_single(priv->device,
3479 						 rx_q->rx_skbuff_dma[entry],
3480 						 priv->dma_buf_sz,
3481 						 DMA_FROM_DEVICE);
3482 			}
3483 
3484 			if (netif_msg_pktdata(priv)) {
3485 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3486 					   frame_len);
3487 				print_pkt(skb->data, frame_len);
3488 			}
3489 
3490 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3491 
3492 			stmmac_rx_vlan(priv->dev, skb);
3493 
3494 			skb->protocol = eth_type_trans(skb, priv->dev);
3495 
3496 			if (unlikely(!coe))
3497 				skb_checksum_none_assert(skb);
3498 			else
3499 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3500 
3501 			napi_gro_receive(&ch->napi, skb);
3502 
3503 			priv->dev->stats.rx_packets++;
3504 			priv->dev->stats.rx_bytes += frame_len;
3505 		}
3506 		entry = next_entry;
3507 	}
3508 
3509 	stmmac_rx_refill(priv, queue);
3510 
3511 	priv->xstats.rx_pkt_n += count;
3512 
3513 	return count;
3514 }
3515 
3516 /**
3517  *  stmmac_poll - stmmac poll method (NAPI)
3518  *  @napi : pointer to the napi structure.
3519  *  @budget : maximum number of packets that the current CPU can receive from
3520  *	      all interfaces.
3521  *  Description :
3522  *  To look at the incoming frames and clear the tx resources.
3523  */
3524 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3525 {
3526 	struct stmmac_channel *ch =
3527 		container_of(napi, struct stmmac_channel, napi);
3528 	struct stmmac_priv *priv = ch->priv_data;
3529 	int work_done, rx_done = 0, tx_done = 0;
3530 	u32 chan = ch->index;
3531 
3532 	priv->xstats.napi_poll++;
3533 
3534 	if (ch->has_tx)
3535 		tx_done = stmmac_tx_clean(priv, budget, chan);
3536 	if (ch->has_rx)
3537 		rx_done = stmmac_rx(priv, budget, chan);
3538 
3539 	work_done = max(rx_done, tx_done);
3540 	work_done = min(work_done, budget);
3541 
3542 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3543 		int stat;
3544 
3545 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3546 		stat = stmmac_dma_interrupt_status(priv, priv->ioaddr,
3547 						   &priv->xstats, chan);
3548 		if (stat && napi_reschedule(napi))
3549 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
3550 	}
3551 
3552 	return work_done;
3553 }
3554 
3555 /**
3556  *  stmmac_tx_timeout
3557  *  @dev : Pointer to net device structure
3558  *  Description: this function is called when a packet transmission fails to
3559  *   complete within a reasonable time. The driver will mark the error in the
3560  *   netdev structure and arrange for the device to be reset to a sane state
3561  *   in order to transmit a new packet.
3562  */
3563 static void stmmac_tx_timeout(struct net_device *dev)
3564 {
3565 	struct stmmac_priv *priv = netdev_priv(dev);
3566 
3567 	stmmac_global_err(priv);
3568 }
3569 
3570 /**
3571  *  stmmac_set_rx_mode - entry point for multicast addressing
3572  *  @dev : pointer to the device structure
3573  *  Description:
3574  *  This function is a driver entry point which gets called by the kernel
3575  *  whenever multicast addresses must be enabled/disabled.
3576  *  Return value:
3577  *  void.
3578  */
3579 static void stmmac_set_rx_mode(struct net_device *dev)
3580 {
3581 	struct stmmac_priv *priv = netdev_priv(dev);
3582 
3583 	stmmac_set_filter(priv, priv->hw, dev);
3584 }
3585 
3586 /**
3587  *  stmmac_change_mtu - entry point to change MTU size for the device.
3588  *  @dev : device pointer.
3589  *  @new_mtu : the new MTU size for the device.
3590  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3591  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3592  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3593  *  Return value:
3594  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3595  *  file on failure.
3596  */
3597 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3598 {
3599 	struct stmmac_priv *priv = netdev_priv(dev);
3600 
3601 	if (netif_running(dev)) {
3602 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3603 		return -EBUSY;
3604 	}
3605 
3606 	dev->mtu = new_mtu;
3607 
3608 	netdev_update_features(dev);
3609 
3610 	return 0;
3611 }
3612 
3613 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3614 					     netdev_features_t features)
3615 {
3616 	struct stmmac_priv *priv = netdev_priv(dev);
3617 
3618 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3619 		features &= ~NETIF_F_RXCSUM;
3620 
3621 	if (!priv->plat->tx_coe)
3622 		features &= ~NETIF_F_CSUM_MASK;
3623 
3624 	/* Some GMAC devices have a bugged Jumbo frame support that
3625 	 * needs to have the Tx COE disabled for oversized frames
3626 	 * (due to limited buffer sizes). In this case we disable
3627 	 * the TX csum insertion in the TDES and not use SF.
3628 	 */
3629 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3630 		features &= ~NETIF_F_CSUM_MASK;
3631 
3632 	/* Disable tso if asked by ethtool */
3633 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3634 		if (features & NETIF_F_TSO)
3635 			priv->tso = true;
3636 		else
3637 			priv->tso = false;
3638 	}
3639 
3640 	return features;
3641 }
3642 
3643 static int stmmac_set_features(struct net_device *netdev,
3644 			       netdev_features_t features)
3645 {
3646 	struct stmmac_priv *priv = netdev_priv(netdev);
3647 
3648 	/* Keep the COE Type in case of csum is supporting */
3649 	if (features & NETIF_F_RXCSUM)
3650 		priv->hw->rx_csum = priv->plat->rx_coe;
3651 	else
3652 		priv->hw->rx_csum = 0;
3653 	/* No check needed because rx_coe has been set before and it will be
3654 	 * fixed in case of issue.
3655 	 */
3656 	stmmac_rx_ipc(priv, priv->hw);
3657 
3658 	return 0;
3659 }
3660 
3661 /**
3662  *  stmmac_interrupt - main ISR
3663  *  @irq: interrupt number.
3664  *  @dev_id: to pass the net device pointer.
3665  *  Description: this is the main driver interrupt service routine.
3666  *  It can call:
3667  *  o DMA service routine (to manage incoming frame reception and transmission
3668  *    status)
3669  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3670  *    interrupts.
3671  */
3672 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3673 {
3674 	struct net_device *dev = (struct net_device *)dev_id;
3675 	struct stmmac_priv *priv = netdev_priv(dev);
3676 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3677 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3678 	u32 queues_count;
3679 	u32 queue;
3680 	bool xmac;
3681 
3682 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3683 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3684 
3685 	if (priv->irq_wake)
3686 		pm_wakeup_event(priv->device, 0);
3687 
3688 	if (unlikely(!dev)) {
3689 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3690 		return IRQ_NONE;
3691 	}
3692 
3693 	/* Check if adapter is up */
3694 	if (test_bit(STMMAC_DOWN, &priv->state))
3695 		return IRQ_HANDLED;
3696 	/* Check if a fatal error happened */
3697 	if (stmmac_safety_feat_interrupt(priv))
3698 		return IRQ_HANDLED;
3699 
3700 	/* To handle GMAC own interrupts */
3701 	if ((priv->plat->has_gmac) || xmac) {
3702 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3703 		int mtl_status;
3704 
3705 		if (unlikely(status)) {
3706 			/* For LPI we need to save the tx status */
3707 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3708 				priv->tx_path_in_lpi_mode = true;
3709 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3710 				priv->tx_path_in_lpi_mode = false;
3711 		}
3712 
3713 		for (queue = 0; queue < queues_count; queue++) {
3714 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3715 
3716 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3717 								queue);
3718 			if (mtl_status != -EINVAL)
3719 				status |= mtl_status;
3720 
3721 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3722 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3723 						       rx_q->rx_tail_addr,
3724 						       queue);
3725 		}
3726 
3727 		/* PCS link status */
3728 		if (priv->hw->pcs) {
3729 			if (priv->xstats.pcs_link)
3730 				netif_carrier_on(dev);
3731 			else
3732 				netif_carrier_off(dev);
3733 		}
3734 	}
3735 
3736 	/* To handle DMA interrupts */
3737 	stmmac_dma_interrupt(priv);
3738 
3739 	return IRQ_HANDLED;
3740 }
3741 
3742 #ifdef CONFIG_NET_POLL_CONTROLLER
3743 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3744  * to allow network I/O with interrupts disabled.
3745  */
3746 static void stmmac_poll_controller(struct net_device *dev)
3747 {
3748 	disable_irq(dev->irq);
3749 	stmmac_interrupt(dev->irq, dev);
3750 	enable_irq(dev->irq);
3751 }
3752 #endif
3753 
3754 /**
3755  *  stmmac_ioctl - Entry point for the Ioctl
3756  *  @dev: Device pointer.
3757  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3758  *  a proprietary structure used to pass information to the driver.
3759  *  @cmd: IOCTL command
3760  *  Description:
3761  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3762  */
3763 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3764 {
3765 	int ret = -EOPNOTSUPP;
3766 
3767 	if (!netif_running(dev))
3768 		return -EINVAL;
3769 
3770 	switch (cmd) {
3771 	case SIOCGMIIPHY:
3772 	case SIOCGMIIREG:
3773 	case SIOCSMIIREG:
3774 		if (!dev->phydev)
3775 			return -EINVAL;
3776 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3777 		break;
3778 	case SIOCSHWTSTAMP:
3779 		ret = stmmac_hwtstamp_ioctl(dev, rq);
3780 		break;
3781 	default:
3782 		break;
3783 	}
3784 
3785 	return ret;
3786 }
3787 
3788 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3789 				    void *cb_priv)
3790 {
3791 	struct stmmac_priv *priv = cb_priv;
3792 	int ret = -EOPNOTSUPP;
3793 
3794 	stmmac_disable_all_queues(priv);
3795 
3796 	switch (type) {
3797 	case TC_SETUP_CLSU32:
3798 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3799 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3800 		break;
3801 	default:
3802 		break;
3803 	}
3804 
3805 	stmmac_enable_all_queues(priv);
3806 	return ret;
3807 }
3808 
3809 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3810 				 struct tc_block_offload *f)
3811 {
3812 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3813 		return -EOPNOTSUPP;
3814 
3815 	switch (f->command) {
3816 	case TC_BLOCK_BIND:
3817 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3818 				priv, priv, f->extack);
3819 	case TC_BLOCK_UNBIND:
3820 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3821 		return 0;
3822 	default:
3823 		return -EOPNOTSUPP;
3824 	}
3825 }
3826 
3827 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3828 			   void *type_data)
3829 {
3830 	struct stmmac_priv *priv = netdev_priv(ndev);
3831 
3832 	switch (type) {
3833 	case TC_SETUP_BLOCK:
3834 		return stmmac_setup_tc_block(priv, type_data);
3835 	case TC_SETUP_QDISC_CBS:
3836 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3837 	default:
3838 		return -EOPNOTSUPP;
3839 	}
3840 }
3841 
3842 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3843 {
3844 	struct stmmac_priv *priv = netdev_priv(ndev);
3845 	int ret = 0;
3846 
3847 	ret = eth_mac_addr(ndev, addr);
3848 	if (ret)
3849 		return ret;
3850 
3851 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3852 
3853 	return ret;
3854 }
3855 
3856 #ifdef CONFIG_DEBUG_FS
3857 static struct dentry *stmmac_fs_dir;
3858 
3859 static void sysfs_display_ring(void *head, int size, int extend_desc,
3860 			       struct seq_file *seq)
3861 {
3862 	int i;
3863 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3864 	struct dma_desc *p = (struct dma_desc *)head;
3865 
3866 	for (i = 0; i < size; i++) {
3867 		if (extend_desc) {
3868 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3869 				   i, (unsigned int)virt_to_phys(ep),
3870 				   le32_to_cpu(ep->basic.des0),
3871 				   le32_to_cpu(ep->basic.des1),
3872 				   le32_to_cpu(ep->basic.des2),
3873 				   le32_to_cpu(ep->basic.des3));
3874 			ep++;
3875 		} else {
3876 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3877 				   i, (unsigned int)virt_to_phys(p),
3878 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3879 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3880 			p++;
3881 		}
3882 		seq_printf(seq, "\n");
3883 	}
3884 }
3885 
3886 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3887 {
3888 	struct net_device *dev = seq->private;
3889 	struct stmmac_priv *priv = netdev_priv(dev);
3890 	u32 rx_count = priv->plat->rx_queues_to_use;
3891 	u32 tx_count = priv->plat->tx_queues_to_use;
3892 	u32 queue;
3893 
3894 	if ((dev->flags & IFF_UP) == 0)
3895 		return 0;
3896 
3897 	for (queue = 0; queue < rx_count; queue++) {
3898 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3899 
3900 		seq_printf(seq, "RX Queue %d:\n", queue);
3901 
3902 		if (priv->extend_desc) {
3903 			seq_printf(seq, "Extended descriptor ring:\n");
3904 			sysfs_display_ring((void *)rx_q->dma_erx,
3905 					   DMA_RX_SIZE, 1, seq);
3906 		} else {
3907 			seq_printf(seq, "Descriptor ring:\n");
3908 			sysfs_display_ring((void *)rx_q->dma_rx,
3909 					   DMA_RX_SIZE, 0, seq);
3910 		}
3911 	}
3912 
3913 	for (queue = 0; queue < tx_count; queue++) {
3914 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3915 
3916 		seq_printf(seq, "TX Queue %d:\n", queue);
3917 
3918 		if (priv->extend_desc) {
3919 			seq_printf(seq, "Extended descriptor ring:\n");
3920 			sysfs_display_ring((void *)tx_q->dma_etx,
3921 					   DMA_TX_SIZE, 1, seq);
3922 		} else {
3923 			seq_printf(seq, "Descriptor ring:\n");
3924 			sysfs_display_ring((void *)tx_q->dma_tx,
3925 					   DMA_TX_SIZE, 0, seq);
3926 		}
3927 	}
3928 
3929 	return 0;
3930 }
3931 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3932 
3933 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3934 {
3935 	struct net_device *dev = seq->private;
3936 	struct stmmac_priv *priv = netdev_priv(dev);
3937 
3938 	if (!priv->hw_cap_support) {
3939 		seq_printf(seq, "DMA HW features not supported\n");
3940 		return 0;
3941 	}
3942 
3943 	seq_printf(seq, "==============================\n");
3944 	seq_printf(seq, "\tDMA HW features\n");
3945 	seq_printf(seq, "==============================\n");
3946 
3947 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3948 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3949 	seq_printf(seq, "\t1000 Mbps: %s\n",
3950 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3951 	seq_printf(seq, "\tHalf duplex: %s\n",
3952 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3953 	seq_printf(seq, "\tHash Filter: %s\n",
3954 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3955 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3956 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3957 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3958 		   (priv->dma_cap.pcs) ? "Y" : "N");
3959 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3960 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3961 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3962 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3963 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3964 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3965 	seq_printf(seq, "\tRMON module: %s\n",
3966 		   (priv->dma_cap.rmon) ? "Y" : "N");
3967 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3968 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3969 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3970 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3971 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3972 		   (priv->dma_cap.eee) ? "Y" : "N");
3973 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3974 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3975 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3976 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3977 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3978 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3979 	} else {
3980 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3981 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3982 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3983 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3984 	}
3985 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3986 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3987 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3988 		   priv->dma_cap.number_rx_channel);
3989 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3990 		   priv->dma_cap.number_tx_channel);
3991 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3992 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3993 
3994 	return 0;
3995 }
3996 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3997 
3998 static int stmmac_init_fs(struct net_device *dev)
3999 {
4000 	struct stmmac_priv *priv = netdev_priv(dev);
4001 
4002 	/* Create per netdev entries */
4003 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4004 
4005 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4006 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4007 
4008 		return -ENOMEM;
4009 	}
4010 
4011 	/* Entry to report DMA RX/TX rings */
4012 	priv->dbgfs_rings_status =
4013 		debugfs_create_file("descriptors_status", 0444,
4014 				    priv->dbgfs_dir, dev,
4015 				    &stmmac_rings_status_fops);
4016 
4017 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4018 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4019 		debugfs_remove_recursive(priv->dbgfs_dir);
4020 
4021 		return -ENOMEM;
4022 	}
4023 
4024 	/* Entry to report the DMA HW features */
4025 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4026 						  priv->dbgfs_dir,
4027 						  dev, &stmmac_dma_cap_fops);
4028 
4029 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4030 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4031 		debugfs_remove_recursive(priv->dbgfs_dir);
4032 
4033 		return -ENOMEM;
4034 	}
4035 
4036 	return 0;
4037 }
4038 
4039 static void stmmac_exit_fs(struct net_device *dev)
4040 {
4041 	struct stmmac_priv *priv = netdev_priv(dev);
4042 
4043 	debugfs_remove_recursive(priv->dbgfs_dir);
4044 }
4045 #endif /* CONFIG_DEBUG_FS */
4046 
4047 static const struct net_device_ops stmmac_netdev_ops = {
4048 	.ndo_open = stmmac_open,
4049 	.ndo_start_xmit = stmmac_xmit,
4050 	.ndo_stop = stmmac_release,
4051 	.ndo_change_mtu = stmmac_change_mtu,
4052 	.ndo_fix_features = stmmac_fix_features,
4053 	.ndo_set_features = stmmac_set_features,
4054 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4055 	.ndo_tx_timeout = stmmac_tx_timeout,
4056 	.ndo_do_ioctl = stmmac_ioctl,
4057 	.ndo_setup_tc = stmmac_setup_tc,
4058 #ifdef CONFIG_NET_POLL_CONTROLLER
4059 	.ndo_poll_controller = stmmac_poll_controller,
4060 #endif
4061 	.ndo_set_mac_address = stmmac_set_mac_address,
4062 };
4063 
4064 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4065 {
4066 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4067 		return;
4068 	if (test_bit(STMMAC_DOWN, &priv->state))
4069 		return;
4070 
4071 	netdev_err(priv->dev, "Reset adapter.\n");
4072 
4073 	rtnl_lock();
4074 	netif_trans_update(priv->dev);
4075 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4076 		usleep_range(1000, 2000);
4077 
4078 	set_bit(STMMAC_DOWN, &priv->state);
4079 	dev_close(priv->dev);
4080 	dev_open(priv->dev, NULL);
4081 	clear_bit(STMMAC_DOWN, &priv->state);
4082 	clear_bit(STMMAC_RESETING, &priv->state);
4083 	rtnl_unlock();
4084 }
4085 
4086 static void stmmac_service_task(struct work_struct *work)
4087 {
4088 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4089 			service_task);
4090 
4091 	stmmac_reset_subtask(priv);
4092 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4093 }
4094 
4095 /**
4096  *  stmmac_hw_init - Init the MAC device
4097  *  @priv: driver private structure
4098  *  Description: this function is to configure the MAC device according to
4099  *  some platform parameters or the HW capability register. It prepares the
4100  *  driver to use either ring or chain modes and to setup either enhanced or
4101  *  normal descriptors.
4102  */
4103 static int stmmac_hw_init(struct stmmac_priv *priv)
4104 {
4105 	int ret;
4106 
4107 	/* dwmac-sun8i only work in chain mode */
4108 	if (priv->plat->has_sun8i)
4109 		chain_mode = 1;
4110 	priv->chain_mode = chain_mode;
4111 
4112 	/* Initialize HW Interface */
4113 	ret = stmmac_hwif_init(priv);
4114 	if (ret)
4115 		return ret;
4116 
4117 	/* Get the HW capability (new GMAC newer than 3.50a) */
4118 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4119 	if (priv->hw_cap_support) {
4120 		dev_info(priv->device, "DMA HW capability register supported\n");
4121 
4122 		/* We can override some gmac/dma configuration fields: e.g.
4123 		 * enh_desc, tx_coe (e.g. that are passed through the
4124 		 * platform) with the values from the HW capability
4125 		 * register (if supported).
4126 		 */
4127 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4128 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4129 		priv->hw->pmt = priv->plat->pmt;
4130 
4131 		/* TXCOE doesn't work in thresh DMA mode */
4132 		if (priv->plat->force_thresh_dma_mode)
4133 			priv->plat->tx_coe = 0;
4134 		else
4135 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4136 
4137 		/* In case of GMAC4 rx_coe is from HW cap register. */
4138 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4139 
4140 		if (priv->dma_cap.rx_coe_type2)
4141 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4142 		else if (priv->dma_cap.rx_coe_type1)
4143 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4144 
4145 	} else {
4146 		dev_info(priv->device, "No HW DMA feature register supported\n");
4147 	}
4148 
4149 	if (priv->plat->rx_coe) {
4150 		priv->hw->rx_csum = priv->plat->rx_coe;
4151 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4152 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4153 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4154 	}
4155 	if (priv->plat->tx_coe)
4156 		dev_info(priv->device, "TX Checksum insertion supported\n");
4157 
4158 	if (priv->plat->pmt) {
4159 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4160 		device_set_wakeup_capable(priv->device, 1);
4161 	}
4162 
4163 	if (priv->dma_cap.tsoen)
4164 		dev_info(priv->device, "TSO supported\n");
4165 
4166 	/* Run HW quirks, if any */
4167 	if (priv->hwif_quirks) {
4168 		ret = priv->hwif_quirks(priv);
4169 		if (ret)
4170 			return ret;
4171 	}
4172 
4173 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4174 	 * In some case, for example on bugged HW this feature
4175 	 * has to be disable and this can be done by passing the
4176 	 * riwt_off field from the platform.
4177 	 */
4178 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4179 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4180 		priv->use_riwt = 1;
4181 		dev_info(priv->device,
4182 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4183 	}
4184 
4185 	return 0;
4186 }
4187 
4188 /**
4189  * stmmac_dvr_probe
4190  * @device: device pointer
4191  * @plat_dat: platform data pointer
4192  * @res: stmmac resource pointer
4193  * Description: this is the main probe function used to
4194  * call the alloc_etherdev, allocate the priv structure.
4195  * Return:
4196  * returns 0 on success, otherwise errno.
4197  */
4198 int stmmac_dvr_probe(struct device *device,
4199 		     struct plat_stmmacenet_data *plat_dat,
4200 		     struct stmmac_resources *res)
4201 {
4202 	struct net_device *ndev = NULL;
4203 	struct stmmac_priv *priv;
4204 	u32 queue, maxq;
4205 	int ret = 0;
4206 
4207 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4208 				  MTL_MAX_TX_QUEUES,
4209 				  MTL_MAX_RX_QUEUES);
4210 	if (!ndev)
4211 		return -ENOMEM;
4212 
4213 	SET_NETDEV_DEV(ndev, device);
4214 
4215 	priv = netdev_priv(ndev);
4216 	priv->device = device;
4217 	priv->dev = ndev;
4218 
4219 	stmmac_set_ethtool_ops(ndev);
4220 	priv->pause = pause;
4221 	priv->plat = plat_dat;
4222 	priv->ioaddr = res->addr;
4223 	priv->dev->base_addr = (unsigned long)res->addr;
4224 
4225 	priv->dev->irq = res->irq;
4226 	priv->wol_irq = res->wol_irq;
4227 	priv->lpi_irq = res->lpi_irq;
4228 
4229 	if (res->mac)
4230 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4231 
4232 	dev_set_drvdata(device, priv->dev);
4233 
4234 	/* Verify driver arguments */
4235 	stmmac_verify_args();
4236 
4237 	/* Allocate workqueue */
4238 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4239 	if (!priv->wq) {
4240 		dev_err(priv->device, "failed to create workqueue\n");
4241 		ret = -ENOMEM;
4242 		goto error_wq;
4243 	}
4244 
4245 	INIT_WORK(&priv->service_task, stmmac_service_task);
4246 
4247 	/* Override with kernel parameters if supplied XXX CRS XXX
4248 	 * this needs to have multiple instances
4249 	 */
4250 	if ((phyaddr >= 0) && (phyaddr <= 31))
4251 		priv->plat->phy_addr = phyaddr;
4252 
4253 	if (priv->plat->stmmac_rst) {
4254 		ret = reset_control_assert(priv->plat->stmmac_rst);
4255 		reset_control_deassert(priv->plat->stmmac_rst);
4256 		/* Some reset controllers have only reset callback instead of
4257 		 * assert + deassert callbacks pair.
4258 		 */
4259 		if (ret == -ENOTSUPP)
4260 			reset_control_reset(priv->plat->stmmac_rst);
4261 	}
4262 
4263 	/* Init MAC and get the capabilities */
4264 	ret = stmmac_hw_init(priv);
4265 	if (ret)
4266 		goto error_hw_init;
4267 
4268 	/* Configure real RX and TX queues */
4269 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4270 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4271 
4272 	ndev->netdev_ops = &stmmac_netdev_ops;
4273 
4274 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4275 			    NETIF_F_RXCSUM;
4276 
4277 	ret = stmmac_tc_init(priv, priv);
4278 	if (!ret) {
4279 		ndev->hw_features |= NETIF_F_HW_TC;
4280 	}
4281 
4282 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4283 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4284 		priv->tso = true;
4285 		dev_info(priv->device, "TSO feature enabled\n");
4286 	}
4287 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4288 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4289 #ifdef STMMAC_VLAN_TAG_USED
4290 	/* Both mac100 and gmac support receive VLAN tag detection */
4291 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4292 #endif
4293 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4294 
4295 	/* MTU range: 46 - hw-specific max */
4296 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4297 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4298 		ndev->max_mtu = JUMBO_LEN;
4299 	else if (priv->plat->has_xgmac)
4300 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4301 	else
4302 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4303 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4304 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4305 	 */
4306 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4307 	    (priv->plat->maxmtu >= ndev->min_mtu))
4308 		ndev->max_mtu = priv->plat->maxmtu;
4309 	else if (priv->plat->maxmtu < ndev->min_mtu)
4310 		dev_warn(priv->device,
4311 			 "%s: warning: maxmtu having invalid value (%d)\n",
4312 			 __func__, priv->plat->maxmtu);
4313 
4314 	if (flow_ctrl)
4315 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4316 
4317 	/* Setup channels NAPI */
4318 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4319 
4320 	for (queue = 0; queue < maxq; queue++) {
4321 		struct stmmac_channel *ch = &priv->channel[queue];
4322 
4323 		ch->priv_data = priv;
4324 		ch->index = queue;
4325 
4326 		if (queue < priv->plat->rx_queues_to_use)
4327 			ch->has_rx = true;
4328 		if (queue < priv->plat->tx_queues_to_use)
4329 			ch->has_tx = true;
4330 
4331 		netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4332 			       NAPI_POLL_WEIGHT);
4333 	}
4334 
4335 	mutex_init(&priv->lock);
4336 
4337 	/* If a specific clk_csr value is passed from the platform
4338 	 * this means that the CSR Clock Range selection cannot be
4339 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4340 	 * set the MDC clock dynamically according to the csr actual
4341 	 * clock input.
4342 	 */
4343 	if (!priv->plat->clk_csr)
4344 		stmmac_clk_csr_set(priv);
4345 	else
4346 		priv->clk_csr = priv->plat->clk_csr;
4347 
4348 	stmmac_check_pcs_mode(priv);
4349 
4350 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4351 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4352 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4353 		/* MDIO bus Registration */
4354 		ret = stmmac_mdio_register(ndev);
4355 		if (ret < 0) {
4356 			dev_err(priv->device,
4357 				"%s: MDIO bus (id: %d) registration failed",
4358 				__func__, priv->plat->bus_id);
4359 			goto error_mdio_register;
4360 		}
4361 	}
4362 
4363 	ret = register_netdev(ndev);
4364 	if (ret) {
4365 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4366 			__func__, ret);
4367 		goto error_netdev_register;
4368 	}
4369 
4370 #ifdef CONFIG_DEBUG_FS
4371 	ret = stmmac_init_fs(ndev);
4372 	if (ret < 0)
4373 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4374 			    __func__);
4375 #endif
4376 
4377 	return ret;
4378 
4379 error_netdev_register:
4380 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4381 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4382 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4383 		stmmac_mdio_unregister(ndev);
4384 error_mdio_register:
4385 	for (queue = 0; queue < maxq; queue++) {
4386 		struct stmmac_channel *ch = &priv->channel[queue];
4387 
4388 		netif_napi_del(&ch->napi);
4389 	}
4390 error_hw_init:
4391 	destroy_workqueue(priv->wq);
4392 error_wq:
4393 	free_netdev(ndev);
4394 
4395 	return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4398 
4399 /**
4400  * stmmac_dvr_remove
4401  * @dev: device pointer
4402  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4403  * changes the link status, releases the DMA descriptor rings.
4404  */
4405 int stmmac_dvr_remove(struct device *dev)
4406 {
4407 	struct net_device *ndev = dev_get_drvdata(dev);
4408 	struct stmmac_priv *priv = netdev_priv(ndev);
4409 
4410 	netdev_info(priv->dev, "%s: removing driver", __func__);
4411 
4412 #ifdef CONFIG_DEBUG_FS
4413 	stmmac_exit_fs(ndev);
4414 #endif
4415 	stmmac_stop_all_dma(priv);
4416 
4417 	stmmac_mac_set(priv, priv->ioaddr, false);
4418 	netif_carrier_off(ndev);
4419 	unregister_netdev(ndev);
4420 	if (priv->plat->stmmac_rst)
4421 		reset_control_assert(priv->plat->stmmac_rst);
4422 	clk_disable_unprepare(priv->plat->pclk);
4423 	clk_disable_unprepare(priv->plat->stmmac_clk);
4424 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4425 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4426 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4427 		stmmac_mdio_unregister(ndev);
4428 	destroy_workqueue(priv->wq);
4429 	mutex_destroy(&priv->lock);
4430 	free_netdev(ndev);
4431 
4432 	return 0;
4433 }
4434 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4435 
4436 /**
4437  * stmmac_suspend - suspend callback
4438  * @dev: device pointer
4439  * Description: this is the function to suspend the device and it is called
4440  * by the platform driver to stop the network queue, release the resources,
4441  * program the PMT register (for WoL), clean and release driver resources.
4442  */
4443 int stmmac_suspend(struct device *dev)
4444 {
4445 	struct net_device *ndev = dev_get_drvdata(dev);
4446 	struct stmmac_priv *priv = netdev_priv(ndev);
4447 
4448 	if (!ndev || !netif_running(ndev))
4449 		return 0;
4450 
4451 	if (ndev->phydev)
4452 		phy_stop(ndev->phydev);
4453 
4454 	mutex_lock(&priv->lock);
4455 
4456 	netif_device_detach(ndev);
4457 	stmmac_stop_all_queues(priv);
4458 
4459 	stmmac_disable_all_queues(priv);
4460 
4461 	/* Stop TX/RX DMA */
4462 	stmmac_stop_all_dma(priv);
4463 
4464 	/* Enable Power down mode by programming the PMT regs */
4465 	if (device_may_wakeup(priv->device)) {
4466 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4467 		priv->irq_wake = 1;
4468 	} else {
4469 		stmmac_mac_set(priv, priv->ioaddr, false);
4470 		pinctrl_pm_select_sleep_state(priv->device);
4471 		/* Disable clock in case of PWM is off */
4472 		clk_disable(priv->plat->pclk);
4473 		clk_disable(priv->plat->stmmac_clk);
4474 	}
4475 	mutex_unlock(&priv->lock);
4476 
4477 	priv->oldlink = false;
4478 	priv->speed = SPEED_UNKNOWN;
4479 	priv->oldduplex = DUPLEX_UNKNOWN;
4480 	return 0;
4481 }
4482 EXPORT_SYMBOL_GPL(stmmac_suspend);
4483 
4484 /**
4485  * stmmac_reset_queues_param - reset queue parameters
4486  * @dev: device pointer
4487  */
4488 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4489 {
4490 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4491 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4492 	u32 queue;
4493 
4494 	for (queue = 0; queue < rx_cnt; queue++) {
4495 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4496 
4497 		rx_q->cur_rx = 0;
4498 		rx_q->dirty_rx = 0;
4499 	}
4500 
4501 	for (queue = 0; queue < tx_cnt; queue++) {
4502 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4503 
4504 		tx_q->cur_tx = 0;
4505 		tx_q->dirty_tx = 0;
4506 		tx_q->mss = 0;
4507 	}
4508 }
4509 
4510 /**
4511  * stmmac_resume - resume callback
4512  * @dev: device pointer
4513  * Description: when resume this function is invoked to setup the DMA and CORE
4514  * in a usable state.
4515  */
4516 int stmmac_resume(struct device *dev)
4517 {
4518 	struct net_device *ndev = dev_get_drvdata(dev);
4519 	struct stmmac_priv *priv = netdev_priv(ndev);
4520 
4521 	if (!netif_running(ndev))
4522 		return 0;
4523 
4524 	/* Power Down bit, into the PM register, is cleared
4525 	 * automatically as soon as a magic packet or a Wake-up frame
4526 	 * is received. Anyway, it's better to manually clear
4527 	 * this bit because it can generate problems while resuming
4528 	 * from another devices (e.g. serial console).
4529 	 */
4530 	if (device_may_wakeup(priv->device)) {
4531 		mutex_lock(&priv->lock);
4532 		stmmac_pmt(priv, priv->hw, 0);
4533 		mutex_unlock(&priv->lock);
4534 		priv->irq_wake = 0;
4535 	} else {
4536 		pinctrl_pm_select_default_state(priv->device);
4537 		/* enable the clk previously disabled */
4538 		clk_enable(priv->plat->stmmac_clk);
4539 		clk_enable(priv->plat->pclk);
4540 		/* reset the phy so that it's ready */
4541 		if (priv->mii)
4542 			stmmac_mdio_reset(priv->mii);
4543 	}
4544 
4545 	netif_device_attach(ndev);
4546 
4547 	mutex_lock(&priv->lock);
4548 
4549 	stmmac_reset_queues_param(priv);
4550 
4551 	stmmac_clear_descriptors(priv);
4552 
4553 	stmmac_hw_setup(ndev, false);
4554 	stmmac_init_tx_coalesce(priv);
4555 	stmmac_set_rx_mode(ndev);
4556 
4557 	stmmac_enable_all_queues(priv);
4558 
4559 	stmmac_start_all_queues(priv);
4560 
4561 	mutex_unlock(&priv->lock);
4562 
4563 	if (ndev->phydev)
4564 		phy_start(ndev->phydev);
4565 
4566 	return 0;
4567 }
4568 EXPORT_SYMBOL_GPL(stmmac_resume);
4569 
4570 #ifndef MODULE
4571 static int __init stmmac_cmdline_opt(char *str)
4572 {
4573 	char *opt;
4574 
4575 	if (!str || !*str)
4576 		return -EINVAL;
4577 	while ((opt = strsep(&str, ",")) != NULL) {
4578 		if (!strncmp(opt, "debug:", 6)) {
4579 			if (kstrtoint(opt + 6, 0, &debug))
4580 				goto err;
4581 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4582 			if (kstrtoint(opt + 8, 0, &phyaddr))
4583 				goto err;
4584 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4585 			if (kstrtoint(opt + 7, 0, &buf_sz))
4586 				goto err;
4587 		} else if (!strncmp(opt, "tc:", 3)) {
4588 			if (kstrtoint(opt + 3, 0, &tc))
4589 				goto err;
4590 		} else if (!strncmp(opt, "watchdog:", 9)) {
4591 			if (kstrtoint(opt + 9, 0, &watchdog))
4592 				goto err;
4593 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4594 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4595 				goto err;
4596 		} else if (!strncmp(opt, "pause:", 6)) {
4597 			if (kstrtoint(opt + 6, 0, &pause))
4598 				goto err;
4599 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4600 			if (kstrtoint(opt + 10, 0, &eee_timer))
4601 				goto err;
4602 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4603 			if (kstrtoint(opt + 11, 0, &chain_mode))
4604 				goto err;
4605 		}
4606 	}
4607 	return 0;
4608 
4609 err:
4610 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4611 	return -EINVAL;
4612 }
4613 
4614 __setup("stmmaceth=", stmmac_cmdline_opt);
4615 #endif /* MODULE */
4616 
4617 static int __init stmmac_init(void)
4618 {
4619 #ifdef CONFIG_DEBUG_FS
4620 	/* Create debugfs main directory if it doesn't exist yet */
4621 	if (!stmmac_fs_dir) {
4622 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4623 
4624 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4625 			pr_err("ERROR %s, debugfs create directory failed\n",
4626 			       STMMAC_RESOURCE_NAME);
4627 
4628 			return -ENOMEM;
4629 		}
4630 	}
4631 #endif
4632 
4633 	return 0;
4634 }
4635 
4636 static void __exit stmmac_exit(void)
4637 {
4638 #ifdef CONFIG_DEBUG_FS
4639 	debugfs_remove_recursive(stmmac_fs_dir);
4640 #endif
4641 }
4642 
4643 module_init(stmmac_init)
4644 module_exit(stmmac_exit)
4645 
4646 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4647 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4648 MODULE_LICENSE("GPL");
4649