1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 135 136 #ifdef CONFIG_DEBUG_FS 137 static const struct net_device_ops stmmac_netdev_ops; 138 static void stmmac_init_fs(struct net_device *dev); 139 static void stmmac_exit_fs(struct net_device *dev); 140 #endif 141 142 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 143 144 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 145 { 146 int ret = 0; 147 148 if (enabled) { 149 ret = clk_prepare_enable(priv->plat->stmmac_clk); 150 if (ret) 151 return ret; 152 ret = clk_prepare_enable(priv->plat->pclk); 153 if (ret) { 154 clk_disable_unprepare(priv->plat->stmmac_clk); 155 return ret; 156 } 157 if (priv->plat->clks_config) { 158 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 159 if (ret) { 160 clk_disable_unprepare(priv->plat->stmmac_clk); 161 clk_disable_unprepare(priv->plat->pclk); 162 return ret; 163 } 164 } 165 } else { 166 clk_disable_unprepare(priv->plat->stmmac_clk); 167 clk_disable_unprepare(priv->plat->pclk); 168 if (priv->plat->clks_config) 169 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 170 } 171 172 return ret; 173 } 174 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 175 176 /** 177 * stmmac_verify_args - verify the driver parameters. 178 * Description: it checks the driver parameters and set a default in case of 179 * errors. 180 */ 181 static void stmmac_verify_args(void) 182 { 183 if (unlikely(watchdog < 0)) 184 watchdog = TX_TIMEO; 185 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 186 buf_sz = DEFAULT_BUFSIZE; 187 if (unlikely(flow_ctrl > 1)) 188 flow_ctrl = FLOW_AUTO; 189 else if (likely(flow_ctrl < 0)) 190 flow_ctrl = FLOW_OFF; 191 if (unlikely((pause < 0) || (pause > 0xffff))) 192 pause = PAUSE_TIME; 193 if (eee_timer < 0) 194 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 195 } 196 197 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 198 { 199 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 200 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 201 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 202 u32 queue; 203 204 for (queue = 0; queue < maxq; queue++) { 205 struct stmmac_channel *ch = &priv->channel[queue]; 206 207 if (stmmac_xdp_is_enabled(priv) && 208 test_bit(queue, priv->af_xdp_zc_qps)) { 209 napi_disable(&ch->rxtx_napi); 210 continue; 211 } 212 213 if (queue < rx_queues_cnt) 214 napi_disable(&ch->rx_napi); 215 if (queue < tx_queues_cnt) 216 napi_disable(&ch->tx_napi); 217 } 218 } 219 220 /** 221 * stmmac_disable_all_queues - Disable all queues 222 * @priv: driver private structure 223 */ 224 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 225 { 226 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 227 struct stmmac_rx_queue *rx_q; 228 u32 queue; 229 230 /* synchronize_rcu() needed for pending XDP buffers to drain */ 231 for (queue = 0; queue < rx_queues_cnt; queue++) { 232 rx_q = &priv->rx_queue[queue]; 233 if (rx_q->xsk_pool) { 234 synchronize_rcu(); 235 break; 236 } 237 } 238 239 __stmmac_disable_all_queues(priv); 240 } 241 242 /** 243 * stmmac_enable_all_queues - Enable all queues 244 * @priv: driver private structure 245 */ 246 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 247 { 248 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 249 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 250 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 251 u32 queue; 252 253 for (queue = 0; queue < maxq; queue++) { 254 struct stmmac_channel *ch = &priv->channel[queue]; 255 256 if (stmmac_xdp_is_enabled(priv) && 257 test_bit(queue, priv->af_xdp_zc_qps)) { 258 napi_enable(&ch->rxtx_napi); 259 continue; 260 } 261 262 if (queue < rx_queues_cnt) 263 napi_enable(&ch->rx_napi); 264 if (queue < tx_queues_cnt) 265 napi_enable(&ch->tx_napi); 266 } 267 } 268 269 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 270 { 271 if (!test_bit(STMMAC_DOWN, &priv->state) && 272 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 273 queue_work(priv->wq, &priv->service_task); 274 } 275 276 static void stmmac_global_err(struct stmmac_priv *priv) 277 { 278 netif_carrier_off(priv->dev); 279 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 280 stmmac_service_event_schedule(priv); 281 } 282 283 /** 284 * stmmac_clk_csr_set - dynamically set the MDC clock 285 * @priv: driver private structure 286 * Description: this is to dynamically set the MDC clock according to the csr 287 * clock input. 288 * Note: 289 * If a specific clk_csr value is passed from the platform 290 * this means that the CSR Clock Range selection cannot be 291 * changed at run-time and it is fixed (as reported in the driver 292 * documentation). Viceversa the driver will try to set the MDC 293 * clock dynamically according to the actual clock input. 294 */ 295 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 296 { 297 u32 clk_rate; 298 299 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 300 301 /* Platform provided default clk_csr would be assumed valid 302 * for all other cases except for the below mentioned ones. 303 * For values higher than the IEEE 802.3 specified frequency 304 * we can not estimate the proper divider as it is not known 305 * the frequency of clk_csr_i. So we do not change the default 306 * divider. 307 */ 308 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 309 if (clk_rate < CSR_F_35M) 310 priv->clk_csr = STMMAC_CSR_20_35M; 311 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 312 priv->clk_csr = STMMAC_CSR_35_60M; 313 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 314 priv->clk_csr = STMMAC_CSR_60_100M; 315 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 316 priv->clk_csr = STMMAC_CSR_100_150M; 317 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 318 priv->clk_csr = STMMAC_CSR_150_250M; 319 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 320 priv->clk_csr = STMMAC_CSR_250_300M; 321 } 322 323 if (priv->plat->has_sun8i) { 324 if (clk_rate > 160000000) 325 priv->clk_csr = 0x03; 326 else if (clk_rate > 80000000) 327 priv->clk_csr = 0x02; 328 else if (clk_rate > 40000000) 329 priv->clk_csr = 0x01; 330 else 331 priv->clk_csr = 0; 332 } 333 334 if (priv->plat->has_xgmac) { 335 if (clk_rate > 400000000) 336 priv->clk_csr = 0x5; 337 else if (clk_rate > 350000000) 338 priv->clk_csr = 0x4; 339 else if (clk_rate > 300000000) 340 priv->clk_csr = 0x3; 341 else if (clk_rate > 250000000) 342 priv->clk_csr = 0x2; 343 else if (clk_rate > 150000000) 344 priv->clk_csr = 0x1; 345 else 346 priv->clk_csr = 0x0; 347 } 348 } 349 350 static void print_pkt(unsigned char *buf, int len) 351 { 352 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 353 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 354 } 355 356 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 357 { 358 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 359 u32 avail; 360 361 if (tx_q->dirty_tx > tx_q->cur_tx) 362 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 363 else 364 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 365 366 return avail; 367 } 368 369 /** 370 * stmmac_rx_dirty - Get RX queue dirty 371 * @priv: driver private structure 372 * @queue: RX queue index 373 */ 374 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 375 { 376 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 377 u32 dirty; 378 379 if (rx_q->dirty_rx <= rx_q->cur_rx) 380 dirty = rx_q->cur_rx - rx_q->dirty_rx; 381 else 382 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 383 384 return dirty; 385 } 386 387 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 388 { 389 int tx_lpi_timer; 390 391 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 392 priv->eee_sw_timer_en = en ? 0 : 1; 393 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 394 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 395 } 396 397 /** 398 * stmmac_enable_eee_mode - check and enter in LPI mode 399 * @priv: driver private structure 400 * Description: this function is to verify and enter in LPI mode in case of 401 * EEE. 402 */ 403 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 404 { 405 u32 tx_cnt = priv->plat->tx_queues_to_use; 406 u32 queue; 407 408 /* check if all TX queues have the work finished */ 409 for (queue = 0; queue < tx_cnt; queue++) { 410 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 411 412 if (tx_q->dirty_tx != tx_q->cur_tx) 413 return; /* still unfinished work */ 414 } 415 416 /* Check and enter in LPI mode */ 417 if (!priv->tx_path_in_lpi_mode) 418 stmmac_set_eee_mode(priv, priv->hw, 419 priv->plat->en_tx_lpi_clockgating); 420 } 421 422 /** 423 * stmmac_disable_eee_mode - disable and exit from LPI mode 424 * @priv: driver private structure 425 * Description: this function is to exit and disable EEE in case of 426 * LPI state is true. This is called by the xmit. 427 */ 428 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 429 { 430 if (!priv->eee_sw_timer_en) { 431 stmmac_lpi_entry_timer_config(priv, 0); 432 return; 433 } 434 435 stmmac_reset_eee_mode(priv, priv->hw); 436 del_timer_sync(&priv->eee_ctrl_timer); 437 priv->tx_path_in_lpi_mode = false; 438 } 439 440 /** 441 * stmmac_eee_ctrl_timer - EEE TX SW timer. 442 * @t: timer_list struct containing private info 443 * Description: 444 * if there is no data transfer and if we are not in LPI state, 445 * then MAC Transmitter can be moved to LPI state. 446 */ 447 static void stmmac_eee_ctrl_timer(struct timer_list *t) 448 { 449 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 450 451 stmmac_enable_eee_mode(priv); 452 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 453 } 454 455 /** 456 * stmmac_eee_init - init EEE 457 * @priv: driver private structure 458 * Description: 459 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 460 * can also manage EEE, this function enable the LPI state and start related 461 * timer. 462 */ 463 bool stmmac_eee_init(struct stmmac_priv *priv) 464 { 465 int eee_tw_timer = priv->eee_tw_timer; 466 467 /* Using PCS we cannot dial with the phy registers at this stage 468 * so we do not support extra feature like EEE. 469 */ 470 if (priv->hw->pcs == STMMAC_PCS_TBI || 471 priv->hw->pcs == STMMAC_PCS_RTBI) 472 return false; 473 474 /* Check if MAC core supports the EEE feature. */ 475 if (!priv->dma_cap.eee) 476 return false; 477 478 mutex_lock(&priv->lock); 479 480 /* Check if it needs to be deactivated */ 481 if (!priv->eee_active) { 482 if (priv->eee_enabled) { 483 netdev_dbg(priv->dev, "disable EEE\n"); 484 stmmac_lpi_entry_timer_config(priv, 0); 485 del_timer_sync(&priv->eee_ctrl_timer); 486 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 487 if (priv->hw->xpcs) 488 xpcs_config_eee(priv->hw->xpcs, 489 priv->plat->mult_fact_100ns, 490 false); 491 } 492 mutex_unlock(&priv->lock); 493 return false; 494 } 495 496 if (priv->eee_active && !priv->eee_enabled) { 497 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 498 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 499 eee_tw_timer); 500 if (priv->hw->xpcs) 501 xpcs_config_eee(priv->hw->xpcs, 502 priv->plat->mult_fact_100ns, 503 true); 504 } 505 506 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 507 del_timer_sync(&priv->eee_ctrl_timer); 508 priv->tx_path_in_lpi_mode = false; 509 stmmac_lpi_entry_timer_config(priv, 1); 510 } else { 511 stmmac_lpi_entry_timer_config(priv, 0); 512 mod_timer(&priv->eee_ctrl_timer, 513 STMMAC_LPI_T(priv->tx_lpi_timer)); 514 } 515 516 mutex_unlock(&priv->lock); 517 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 518 return true; 519 } 520 521 static inline u32 stmmac_cdc_adjust(struct stmmac_priv *priv) 522 { 523 /* Correct the clk domain crossing(CDC) error */ 524 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) 525 return (2 * NSEC_PER_SEC) / priv->plat->clk_ptp_rate; 526 return 0; 527 } 528 529 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 530 * @priv: driver private structure 531 * @p : descriptor pointer 532 * @skb : the socket buffer 533 * Description : 534 * This function will read timestamp from the descriptor & pass it to stack. 535 * and also perform some sanity checks. 536 */ 537 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 538 struct dma_desc *p, struct sk_buff *skb) 539 { 540 struct skb_shared_hwtstamps shhwtstamp; 541 bool found = false; 542 u64 ns = 0; 543 544 if (!priv->hwts_tx_en) 545 return; 546 547 /* exit if skb doesn't support hw tstamp */ 548 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 549 return; 550 551 /* check tx tstamp status */ 552 if (stmmac_get_tx_timestamp_status(priv, p)) { 553 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 554 found = true; 555 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 556 found = true; 557 } 558 559 if (found) { 560 ns -= stmmac_cdc_adjust(priv); 561 562 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 563 shhwtstamp.hwtstamp = ns_to_ktime(ns); 564 565 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 566 /* pass tstamp to stack */ 567 skb_tstamp_tx(skb, &shhwtstamp); 568 } 569 } 570 571 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 572 * @priv: driver private structure 573 * @p : descriptor pointer 574 * @np : next descriptor pointer 575 * @skb : the socket buffer 576 * Description : 577 * This function will read received packet's timestamp from the descriptor 578 * and pass it to stack. It also perform some sanity checks. 579 */ 580 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 581 struct dma_desc *np, struct sk_buff *skb) 582 { 583 struct skb_shared_hwtstamps *shhwtstamp = NULL; 584 struct dma_desc *desc = p; 585 u64 ns = 0; 586 587 if (!priv->hwts_rx_en) 588 return; 589 /* For GMAC4, the valid timestamp is from CTX next desc. */ 590 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 591 desc = np; 592 593 /* Check if timestamp is available */ 594 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 595 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 596 597 ns -= stmmac_cdc_adjust(priv); 598 599 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 600 shhwtstamp = skb_hwtstamps(skb); 601 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 602 shhwtstamp->hwtstamp = ns_to_ktime(ns); 603 } else { 604 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 605 } 606 } 607 608 /** 609 * stmmac_hwtstamp_set - control hardware timestamping. 610 * @dev: device pointer. 611 * @ifr: An IOCTL specific structure, that can contain a pointer to 612 * a proprietary structure used to pass information to the driver. 613 * Description: 614 * This function configures the MAC to enable/disable both outgoing(TX) 615 * and incoming(RX) packets time stamping based on user input. 616 * Return Value: 617 * 0 on success and an appropriate -ve integer on failure. 618 */ 619 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 620 { 621 struct stmmac_priv *priv = netdev_priv(dev); 622 struct hwtstamp_config config; 623 u32 ptp_v2 = 0; 624 u32 tstamp_all = 0; 625 u32 ptp_over_ipv4_udp = 0; 626 u32 ptp_over_ipv6_udp = 0; 627 u32 ptp_over_ethernet = 0; 628 u32 snap_type_sel = 0; 629 u32 ts_master_en = 0; 630 u32 ts_event_en = 0; 631 632 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 633 netdev_alert(priv->dev, "No support for HW time stamping\n"); 634 priv->hwts_tx_en = 0; 635 priv->hwts_rx_en = 0; 636 637 return -EOPNOTSUPP; 638 } 639 640 if (copy_from_user(&config, ifr->ifr_data, 641 sizeof(config))) 642 return -EFAULT; 643 644 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 645 __func__, config.flags, config.tx_type, config.rx_filter); 646 647 /* reserved for future extensions */ 648 if (config.flags) 649 return -EINVAL; 650 651 if (config.tx_type != HWTSTAMP_TX_OFF && 652 config.tx_type != HWTSTAMP_TX_ON) 653 return -ERANGE; 654 655 if (priv->adv_ts) { 656 switch (config.rx_filter) { 657 case HWTSTAMP_FILTER_NONE: 658 /* time stamp no incoming packet at all */ 659 config.rx_filter = HWTSTAMP_FILTER_NONE; 660 break; 661 662 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 663 /* PTP v1, UDP, any kind of event packet */ 664 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 665 /* 'xmac' hardware can support Sync, Pdelay_Req and 666 * Pdelay_resp by setting bit14 and bits17/16 to 01 667 * This leaves Delay_Req timestamps out. 668 * Enable all events *and* general purpose message 669 * timestamping 670 */ 671 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 672 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 673 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 674 break; 675 676 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 677 /* PTP v1, UDP, Sync packet */ 678 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 679 /* take time stamp for SYNC messages only */ 680 ts_event_en = PTP_TCR_TSEVNTENA; 681 682 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 683 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 684 break; 685 686 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 687 /* PTP v1, UDP, Delay_req packet */ 688 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 689 /* take time stamp for Delay_Req messages only */ 690 ts_master_en = PTP_TCR_TSMSTRENA; 691 ts_event_en = PTP_TCR_TSEVNTENA; 692 693 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 694 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 695 break; 696 697 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 698 /* PTP v2, UDP, any kind of event packet */ 699 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 700 ptp_v2 = PTP_TCR_TSVER2ENA; 701 /* take time stamp for all event messages */ 702 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 703 704 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 705 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 706 break; 707 708 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 709 /* PTP v2, UDP, Sync packet */ 710 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 711 ptp_v2 = PTP_TCR_TSVER2ENA; 712 /* take time stamp for SYNC messages only */ 713 ts_event_en = PTP_TCR_TSEVNTENA; 714 715 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 716 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 717 break; 718 719 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 720 /* PTP v2, UDP, Delay_req packet */ 721 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 722 ptp_v2 = PTP_TCR_TSVER2ENA; 723 /* take time stamp for Delay_Req messages only */ 724 ts_master_en = PTP_TCR_TSMSTRENA; 725 ts_event_en = PTP_TCR_TSEVNTENA; 726 727 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 728 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 729 break; 730 731 case HWTSTAMP_FILTER_PTP_V2_EVENT: 732 /* PTP v2/802.AS1 any layer, any kind of event packet */ 733 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 734 ptp_v2 = PTP_TCR_TSVER2ENA; 735 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 736 if (priv->synopsys_id < DWMAC_CORE_4_10) 737 ts_event_en = PTP_TCR_TSEVNTENA; 738 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 739 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 740 ptp_over_ethernet = PTP_TCR_TSIPENA; 741 break; 742 743 case HWTSTAMP_FILTER_PTP_V2_SYNC: 744 /* PTP v2/802.AS1, any layer, Sync packet */ 745 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 746 ptp_v2 = PTP_TCR_TSVER2ENA; 747 /* take time stamp for SYNC messages only */ 748 ts_event_en = PTP_TCR_TSEVNTENA; 749 750 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 751 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 752 ptp_over_ethernet = PTP_TCR_TSIPENA; 753 break; 754 755 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 756 /* PTP v2/802.AS1, any layer, Delay_req packet */ 757 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 758 ptp_v2 = PTP_TCR_TSVER2ENA; 759 /* take time stamp for Delay_Req messages only */ 760 ts_master_en = PTP_TCR_TSMSTRENA; 761 ts_event_en = PTP_TCR_TSEVNTENA; 762 763 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 764 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 765 ptp_over_ethernet = PTP_TCR_TSIPENA; 766 break; 767 768 case HWTSTAMP_FILTER_NTP_ALL: 769 case HWTSTAMP_FILTER_ALL: 770 /* time stamp any incoming packet */ 771 config.rx_filter = HWTSTAMP_FILTER_ALL; 772 tstamp_all = PTP_TCR_TSENALL; 773 break; 774 775 default: 776 return -ERANGE; 777 } 778 } else { 779 switch (config.rx_filter) { 780 case HWTSTAMP_FILTER_NONE: 781 config.rx_filter = HWTSTAMP_FILTER_NONE; 782 break; 783 default: 784 /* PTP v1, UDP, any kind of event packet */ 785 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 786 break; 787 } 788 } 789 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 790 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 791 792 priv->systime_flags = STMMAC_HWTS_ACTIVE; 793 794 if (priv->hwts_tx_en || priv->hwts_rx_en) { 795 priv->systime_flags |= tstamp_all | ptp_v2 | 796 ptp_over_ethernet | ptp_over_ipv6_udp | 797 ptp_over_ipv4_udp | ts_event_en | 798 ts_master_en | snap_type_sel; 799 } 800 801 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 802 803 memcpy(&priv->tstamp_config, &config, sizeof(config)); 804 805 return copy_to_user(ifr->ifr_data, &config, 806 sizeof(config)) ? -EFAULT : 0; 807 } 808 809 /** 810 * stmmac_hwtstamp_get - read hardware timestamping. 811 * @dev: device pointer. 812 * @ifr: An IOCTL specific structure, that can contain a pointer to 813 * a proprietary structure used to pass information to the driver. 814 * Description: 815 * This function obtain the current hardware timestamping settings 816 * as requested. 817 */ 818 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 819 { 820 struct stmmac_priv *priv = netdev_priv(dev); 821 struct hwtstamp_config *config = &priv->tstamp_config; 822 823 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 824 return -EOPNOTSUPP; 825 826 return copy_to_user(ifr->ifr_data, config, 827 sizeof(*config)) ? -EFAULT : 0; 828 } 829 830 /** 831 * stmmac_init_tstamp_counter - init hardware timestamping counter 832 * @priv: driver private structure 833 * @systime_flags: timestamping flags 834 * Description: 835 * Initialize hardware counter for packet timestamping. 836 * This is valid as long as the interface is open and not suspended. 837 * Will be rerun after resuming from suspend, case in which the timestamping 838 * flags updated by stmmac_hwtstamp_set() also need to be restored. 839 */ 840 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 841 { 842 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 843 struct timespec64 now; 844 u32 sec_inc = 0; 845 u64 temp = 0; 846 int ret; 847 848 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 849 return -EOPNOTSUPP; 850 851 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 852 if (ret < 0) { 853 netdev_warn(priv->dev, 854 "failed to enable PTP reference clock: %pe\n", 855 ERR_PTR(ret)); 856 return ret; 857 } 858 859 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 860 priv->systime_flags = systime_flags; 861 862 /* program Sub Second Increment reg */ 863 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 864 priv->plat->clk_ptp_rate, 865 xmac, &sec_inc); 866 temp = div_u64(1000000000ULL, sec_inc); 867 868 /* Store sub second increment for later use */ 869 priv->sub_second_inc = sec_inc; 870 871 /* calculate default added value: 872 * formula is : 873 * addend = (2^32)/freq_div_ratio; 874 * where, freq_div_ratio = 1e9ns/sec_inc 875 */ 876 temp = (u64)(temp << 32); 877 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 878 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 879 880 /* initialize system time */ 881 ktime_get_real_ts64(&now); 882 883 /* lower 32 bits of tv_sec are safe until y2106 */ 884 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 885 886 return 0; 887 } 888 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 889 890 /** 891 * stmmac_init_ptp - init PTP 892 * @priv: driver private structure 893 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 894 * This is done by looking at the HW cap. register. 895 * This function also registers the ptp driver. 896 */ 897 static int stmmac_init_ptp(struct stmmac_priv *priv) 898 { 899 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 900 int ret; 901 902 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 903 if (ret) 904 return ret; 905 906 priv->adv_ts = 0; 907 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 908 if (xmac && priv->dma_cap.atime_stamp) 909 priv->adv_ts = 1; 910 /* Dwmac 3.x core with extend_desc can support adv_ts */ 911 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 912 priv->adv_ts = 1; 913 914 if (priv->dma_cap.time_stamp) 915 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 916 917 if (priv->adv_ts) 918 netdev_info(priv->dev, 919 "IEEE 1588-2008 Advanced Timestamp supported\n"); 920 921 priv->hwts_tx_en = 0; 922 priv->hwts_rx_en = 0; 923 924 stmmac_ptp_register(priv); 925 926 return 0; 927 } 928 929 static void stmmac_release_ptp(struct stmmac_priv *priv) 930 { 931 clk_disable_unprepare(priv->plat->clk_ptp_ref); 932 stmmac_ptp_unregister(priv); 933 } 934 935 /** 936 * stmmac_mac_flow_ctrl - Configure flow control in all queues 937 * @priv: driver private structure 938 * @duplex: duplex passed to the next function 939 * Description: It is used for configuring the flow control in all queues 940 */ 941 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 942 { 943 u32 tx_cnt = priv->plat->tx_queues_to_use; 944 945 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 946 priv->pause, tx_cnt); 947 } 948 949 static void stmmac_validate(struct phylink_config *config, 950 unsigned long *supported, 951 struct phylink_link_state *state) 952 { 953 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 954 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 955 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 956 int tx_cnt = priv->plat->tx_queues_to_use; 957 int max_speed = priv->plat->max_speed; 958 959 phylink_set(mac_supported, 10baseT_Half); 960 phylink_set(mac_supported, 10baseT_Full); 961 phylink_set(mac_supported, 100baseT_Half); 962 phylink_set(mac_supported, 100baseT_Full); 963 phylink_set(mac_supported, 1000baseT_Half); 964 phylink_set(mac_supported, 1000baseT_Full); 965 phylink_set(mac_supported, 1000baseKX_Full); 966 967 phylink_set(mac_supported, Autoneg); 968 phylink_set(mac_supported, Pause); 969 phylink_set(mac_supported, Asym_Pause); 970 phylink_set_port_modes(mac_supported); 971 972 /* Cut down 1G if asked to */ 973 if ((max_speed > 0) && (max_speed < 1000)) { 974 phylink_set(mask, 1000baseT_Full); 975 phylink_set(mask, 1000baseX_Full); 976 } else if (priv->plat->has_gmac4) { 977 if (!max_speed || max_speed >= 2500) { 978 phylink_set(mac_supported, 2500baseT_Full); 979 phylink_set(mac_supported, 2500baseX_Full); 980 } 981 } else if (priv->plat->has_xgmac) { 982 if (!max_speed || (max_speed >= 2500)) { 983 phylink_set(mac_supported, 2500baseT_Full); 984 phylink_set(mac_supported, 2500baseX_Full); 985 } 986 if (!max_speed || (max_speed >= 5000)) { 987 phylink_set(mac_supported, 5000baseT_Full); 988 } 989 if (!max_speed || (max_speed >= 10000)) { 990 phylink_set(mac_supported, 10000baseSR_Full); 991 phylink_set(mac_supported, 10000baseLR_Full); 992 phylink_set(mac_supported, 10000baseER_Full); 993 phylink_set(mac_supported, 10000baseLRM_Full); 994 phylink_set(mac_supported, 10000baseT_Full); 995 phylink_set(mac_supported, 10000baseKX4_Full); 996 phylink_set(mac_supported, 10000baseKR_Full); 997 } 998 if (!max_speed || (max_speed >= 25000)) { 999 phylink_set(mac_supported, 25000baseCR_Full); 1000 phylink_set(mac_supported, 25000baseKR_Full); 1001 phylink_set(mac_supported, 25000baseSR_Full); 1002 } 1003 if (!max_speed || (max_speed >= 40000)) { 1004 phylink_set(mac_supported, 40000baseKR4_Full); 1005 phylink_set(mac_supported, 40000baseCR4_Full); 1006 phylink_set(mac_supported, 40000baseSR4_Full); 1007 phylink_set(mac_supported, 40000baseLR4_Full); 1008 } 1009 if (!max_speed || (max_speed >= 50000)) { 1010 phylink_set(mac_supported, 50000baseCR2_Full); 1011 phylink_set(mac_supported, 50000baseKR2_Full); 1012 phylink_set(mac_supported, 50000baseSR2_Full); 1013 phylink_set(mac_supported, 50000baseKR_Full); 1014 phylink_set(mac_supported, 50000baseSR_Full); 1015 phylink_set(mac_supported, 50000baseCR_Full); 1016 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 1017 phylink_set(mac_supported, 50000baseDR_Full); 1018 } 1019 if (!max_speed || (max_speed >= 100000)) { 1020 phylink_set(mac_supported, 100000baseKR4_Full); 1021 phylink_set(mac_supported, 100000baseSR4_Full); 1022 phylink_set(mac_supported, 100000baseCR4_Full); 1023 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 1024 phylink_set(mac_supported, 100000baseKR2_Full); 1025 phylink_set(mac_supported, 100000baseSR2_Full); 1026 phylink_set(mac_supported, 100000baseCR2_Full); 1027 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 1028 phylink_set(mac_supported, 100000baseDR2_Full); 1029 } 1030 } 1031 1032 /* Half-Duplex can only work with single queue */ 1033 if (tx_cnt > 1) { 1034 phylink_set(mask, 10baseT_Half); 1035 phylink_set(mask, 100baseT_Half); 1036 phylink_set(mask, 1000baseT_Half); 1037 } 1038 1039 linkmode_and(supported, supported, mac_supported); 1040 linkmode_andnot(supported, supported, mask); 1041 1042 linkmode_and(state->advertising, state->advertising, mac_supported); 1043 linkmode_andnot(state->advertising, state->advertising, mask); 1044 1045 /* If PCS is supported, check which modes it supports. */ 1046 if (priv->hw->xpcs) 1047 xpcs_validate(priv->hw->xpcs, supported, state); 1048 } 1049 1050 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1051 const struct phylink_link_state *state) 1052 { 1053 /* Nothing to do, xpcs_config() handles everything */ 1054 } 1055 1056 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1057 { 1058 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1059 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1060 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1061 bool *hs_enable = &fpe_cfg->hs_enable; 1062 1063 if (is_up && *hs_enable) { 1064 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1065 } else { 1066 *lo_state = FPE_STATE_OFF; 1067 *lp_state = FPE_STATE_OFF; 1068 } 1069 } 1070 1071 static void stmmac_mac_link_down(struct phylink_config *config, 1072 unsigned int mode, phy_interface_t interface) 1073 { 1074 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1075 1076 stmmac_mac_set(priv, priv->ioaddr, false); 1077 priv->eee_active = false; 1078 priv->tx_lpi_enabled = false; 1079 priv->eee_enabled = stmmac_eee_init(priv); 1080 stmmac_set_eee_pls(priv, priv->hw, false); 1081 1082 if (priv->dma_cap.fpesel) 1083 stmmac_fpe_link_state_handle(priv, false); 1084 } 1085 1086 static void stmmac_mac_link_up(struct phylink_config *config, 1087 struct phy_device *phy, 1088 unsigned int mode, phy_interface_t interface, 1089 int speed, int duplex, 1090 bool tx_pause, bool rx_pause) 1091 { 1092 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1093 u32 ctrl; 1094 1095 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1096 ctrl &= ~priv->hw->link.speed_mask; 1097 1098 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1099 switch (speed) { 1100 case SPEED_10000: 1101 ctrl |= priv->hw->link.xgmii.speed10000; 1102 break; 1103 case SPEED_5000: 1104 ctrl |= priv->hw->link.xgmii.speed5000; 1105 break; 1106 case SPEED_2500: 1107 ctrl |= priv->hw->link.xgmii.speed2500; 1108 break; 1109 default: 1110 return; 1111 } 1112 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1113 switch (speed) { 1114 case SPEED_100000: 1115 ctrl |= priv->hw->link.xlgmii.speed100000; 1116 break; 1117 case SPEED_50000: 1118 ctrl |= priv->hw->link.xlgmii.speed50000; 1119 break; 1120 case SPEED_40000: 1121 ctrl |= priv->hw->link.xlgmii.speed40000; 1122 break; 1123 case SPEED_25000: 1124 ctrl |= priv->hw->link.xlgmii.speed25000; 1125 break; 1126 case SPEED_10000: 1127 ctrl |= priv->hw->link.xgmii.speed10000; 1128 break; 1129 case SPEED_2500: 1130 ctrl |= priv->hw->link.speed2500; 1131 break; 1132 case SPEED_1000: 1133 ctrl |= priv->hw->link.speed1000; 1134 break; 1135 default: 1136 return; 1137 } 1138 } else { 1139 switch (speed) { 1140 case SPEED_2500: 1141 ctrl |= priv->hw->link.speed2500; 1142 break; 1143 case SPEED_1000: 1144 ctrl |= priv->hw->link.speed1000; 1145 break; 1146 case SPEED_100: 1147 ctrl |= priv->hw->link.speed100; 1148 break; 1149 case SPEED_10: 1150 ctrl |= priv->hw->link.speed10; 1151 break; 1152 default: 1153 return; 1154 } 1155 } 1156 1157 priv->speed = speed; 1158 1159 if (priv->plat->fix_mac_speed) 1160 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1161 1162 if (!duplex) 1163 ctrl &= ~priv->hw->link.duplex; 1164 else 1165 ctrl |= priv->hw->link.duplex; 1166 1167 /* Flow Control operation */ 1168 if (tx_pause && rx_pause) 1169 stmmac_mac_flow_ctrl(priv, duplex); 1170 1171 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1172 1173 stmmac_mac_set(priv, priv->ioaddr, true); 1174 if (phy && priv->dma_cap.eee) { 1175 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1176 priv->eee_enabled = stmmac_eee_init(priv); 1177 priv->tx_lpi_enabled = priv->eee_enabled; 1178 stmmac_set_eee_pls(priv, priv->hw, true); 1179 } 1180 1181 if (priv->dma_cap.fpesel) 1182 stmmac_fpe_link_state_handle(priv, true); 1183 } 1184 1185 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1186 .validate = stmmac_validate, 1187 .mac_config = stmmac_mac_config, 1188 .mac_link_down = stmmac_mac_link_down, 1189 .mac_link_up = stmmac_mac_link_up, 1190 }; 1191 1192 /** 1193 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1194 * @priv: driver private structure 1195 * Description: this is to verify if the HW supports the PCS. 1196 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1197 * configured for the TBI, RTBI, or SGMII PHY interface. 1198 */ 1199 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1200 { 1201 int interface = priv->plat->interface; 1202 1203 if (priv->dma_cap.pcs) { 1204 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1205 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1206 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1207 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1208 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1209 priv->hw->pcs = STMMAC_PCS_RGMII; 1210 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1211 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1212 priv->hw->pcs = STMMAC_PCS_SGMII; 1213 } 1214 } 1215 } 1216 1217 /** 1218 * stmmac_init_phy - PHY initialization 1219 * @dev: net device structure 1220 * Description: it initializes the driver's PHY state, and attaches the PHY 1221 * to the mac driver. 1222 * Return value: 1223 * 0 on success 1224 */ 1225 static int stmmac_init_phy(struct net_device *dev) 1226 { 1227 struct stmmac_priv *priv = netdev_priv(dev); 1228 struct device_node *node; 1229 int ret; 1230 1231 node = priv->plat->phylink_node; 1232 1233 if (node) 1234 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1235 1236 /* Some DT bindings do not set-up the PHY handle. Let's try to 1237 * manually parse it 1238 */ 1239 if (!node || ret) { 1240 int addr = priv->plat->phy_addr; 1241 struct phy_device *phydev; 1242 1243 phydev = mdiobus_get_phy(priv->mii, addr); 1244 if (!phydev) { 1245 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1246 return -ENODEV; 1247 } 1248 1249 ret = phylink_connect_phy(priv->phylink, phydev); 1250 } 1251 1252 if (!priv->plat->pmt) { 1253 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1254 1255 phylink_ethtool_get_wol(priv->phylink, &wol); 1256 device_set_wakeup_capable(priv->device, !!wol.supported); 1257 } 1258 1259 return ret; 1260 } 1261 1262 static int stmmac_phy_setup(struct stmmac_priv *priv) 1263 { 1264 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1265 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1266 int mode = priv->plat->phy_interface; 1267 struct phylink *phylink; 1268 1269 priv->phylink_config.dev = &priv->dev->dev; 1270 priv->phylink_config.type = PHYLINK_NETDEV; 1271 priv->phylink_config.pcs_poll = true; 1272 if (priv->plat->mdio_bus_data) 1273 priv->phylink_config.ovr_an_inband = 1274 mdio_bus_data->xpcs_an_inband; 1275 1276 if (!fwnode) 1277 fwnode = dev_fwnode(priv->device); 1278 1279 phylink = phylink_create(&priv->phylink_config, fwnode, 1280 mode, &stmmac_phylink_mac_ops); 1281 if (IS_ERR(phylink)) 1282 return PTR_ERR(phylink); 1283 1284 if (priv->hw->xpcs) 1285 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs); 1286 1287 priv->phylink = phylink; 1288 return 0; 1289 } 1290 1291 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1292 { 1293 u32 rx_cnt = priv->plat->rx_queues_to_use; 1294 unsigned int desc_size; 1295 void *head_rx; 1296 u32 queue; 1297 1298 /* Display RX rings */ 1299 for (queue = 0; queue < rx_cnt; queue++) { 1300 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1301 1302 pr_info("\tRX Queue %u rings\n", queue); 1303 1304 if (priv->extend_desc) { 1305 head_rx = (void *)rx_q->dma_erx; 1306 desc_size = sizeof(struct dma_extended_desc); 1307 } else { 1308 head_rx = (void *)rx_q->dma_rx; 1309 desc_size = sizeof(struct dma_desc); 1310 } 1311 1312 /* Display RX ring */ 1313 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1314 rx_q->dma_rx_phy, desc_size); 1315 } 1316 } 1317 1318 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1319 { 1320 u32 tx_cnt = priv->plat->tx_queues_to_use; 1321 unsigned int desc_size; 1322 void *head_tx; 1323 u32 queue; 1324 1325 /* Display TX rings */ 1326 for (queue = 0; queue < tx_cnt; queue++) { 1327 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1328 1329 pr_info("\tTX Queue %d rings\n", queue); 1330 1331 if (priv->extend_desc) { 1332 head_tx = (void *)tx_q->dma_etx; 1333 desc_size = sizeof(struct dma_extended_desc); 1334 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1335 head_tx = (void *)tx_q->dma_entx; 1336 desc_size = sizeof(struct dma_edesc); 1337 } else { 1338 head_tx = (void *)tx_q->dma_tx; 1339 desc_size = sizeof(struct dma_desc); 1340 } 1341 1342 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1343 tx_q->dma_tx_phy, desc_size); 1344 } 1345 } 1346 1347 static void stmmac_display_rings(struct stmmac_priv *priv) 1348 { 1349 /* Display RX ring */ 1350 stmmac_display_rx_rings(priv); 1351 1352 /* Display TX ring */ 1353 stmmac_display_tx_rings(priv); 1354 } 1355 1356 static int stmmac_set_bfsize(int mtu, int bufsize) 1357 { 1358 int ret = bufsize; 1359 1360 if (mtu >= BUF_SIZE_8KiB) 1361 ret = BUF_SIZE_16KiB; 1362 else if (mtu >= BUF_SIZE_4KiB) 1363 ret = BUF_SIZE_8KiB; 1364 else if (mtu >= BUF_SIZE_2KiB) 1365 ret = BUF_SIZE_4KiB; 1366 else if (mtu > DEFAULT_BUFSIZE) 1367 ret = BUF_SIZE_2KiB; 1368 else 1369 ret = DEFAULT_BUFSIZE; 1370 1371 return ret; 1372 } 1373 1374 /** 1375 * stmmac_clear_rx_descriptors - clear RX descriptors 1376 * @priv: driver private structure 1377 * @queue: RX queue index 1378 * Description: this function is called to clear the RX descriptors 1379 * in case of both basic and extended descriptors are used. 1380 */ 1381 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1382 { 1383 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1384 int i; 1385 1386 /* Clear the RX descriptors */ 1387 for (i = 0; i < priv->dma_rx_size; i++) 1388 if (priv->extend_desc) 1389 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1390 priv->use_riwt, priv->mode, 1391 (i == priv->dma_rx_size - 1), 1392 priv->dma_buf_sz); 1393 else 1394 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1395 priv->use_riwt, priv->mode, 1396 (i == priv->dma_rx_size - 1), 1397 priv->dma_buf_sz); 1398 } 1399 1400 /** 1401 * stmmac_clear_tx_descriptors - clear tx descriptors 1402 * @priv: driver private structure 1403 * @queue: TX queue index. 1404 * Description: this function is called to clear the TX descriptors 1405 * in case of both basic and extended descriptors are used. 1406 */ 1407 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1408 { 1409 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1410 int i; 1411 1412 /* Clear the TX descriptors */ 1413 for (i = 0; i < priv->dma_tx_size; i++) { 1414 int last = (i == (priv->dma_tx_size - 1)); 1415 struct dma_desc *p; 1416 1417 if (priv->extend_desc) 1418 p = &tx_q->dma_etx[i].basic; 1419 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1420 p = &tx_q->dma_entx[i].basic; 1421 else 1422 p = &tx_q->dma_tx[i]; 1423 1424 stmmac_init_tx_desc(priv, p, priv->mode, last); 1425 } 1426 } 1427 1428 /** 1429 * stmmac_clear_descriptors - clear descriptors 1430 * @priv: driver private structure 1431 * Description: this function is called to clear the TX and RX descriptors 1432 * in case of both basic and extended descriptors are used. 1433 */ 1434 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1435 { 1436 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1437 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1438 u32 queue; 1439 1440 /* Clear the RX descriptors */ 1441 for (queue = 0; queue < rx_queue_cnt; queue++) 1442 stmmac_clear_rx_descriptors(priv, queue); 1443 1444 /* Clear the TX descriptors */ 1445 for (queue = 0; queue < tx_queue_cnt; queue++) 1446 stmmac_clear_tx_descriptors(priv, queue); 1447 } 1448 1449 /** 1450 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1451 * @priv: driver private structure 1452 * @p: descriptor pointer 1453 * @i: descriptor index 1454 * @flags: gfp flag 1455 * @queue: RX queue index 1456 * Description: this function is called to allocate a receive buffer, perform 1457 * the DMA mapping and init the descriptor. 1458 */ 1459 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1460 int i, gfp_t flags, u32 queue) 1461 { 1462 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1463 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1464 1465 if (!buf->page) { 1466 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1467 if (!buf->page) 1468 return -ENOMEM; 1469 buf->page_offset = stmmac_rx_offset(priv); 1470 } 1471 1472 if (priv->sph && !buf->sec_page) { 1473 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1474 if (!buf->sec_page) 1475 return -ENOMEM; 1476 1477 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1478 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1479 } else { 1480 buf->sec_page = NULL; 1481 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1482 } 1483 1484 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1485 1486 stmmac_set_desc_addr(priv, p, buf->addr); 1487 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1488 stmmac_init_desc3(priv, p); 1489 1490 return 0; 1491 } 1492 1493 /** 1494 * stmmac_free_rx_buffer - free RX dma buffers 1495 * @priv: private structure 1496 * @queue: RX queue index 1497 * @i: buffer index. 1498 */ 1499 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1500 { 1501 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1502 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1503 1504 if (buf->page) 1505 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1506 buf->page = NULL; 1507 1508 if (buf->sec_page) 1509 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1510 buf->sec_page = NULL; 1511 } 1512 1513 /** 1514 * stmmac_free_tx_buffer - free RX dma buffers 1515 * @priv: private structure 1516 * @queue: RX queue index 1517 * @i: buffer index. 1518 */ 1519 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1520 { 1521 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1522 1523 if (tx_q->tx_skbuff_dma[i].buf && 1524 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1525 if (tx_q->tx_skbuff_dma[i].map_as_page) 1526 dma_unmap_page(priv->device, 1527 tx_q->tx_skbuff_dma[i].buf, 1528 tx_q->tx_skbuff_dma[i].len, 1529 DMA_TO_DEVICE); 1530 else 1531 dma_unmap_single(priv->device, 1532 tx_q->tx_skbuff_dma[i].buf, 1533 tx_q->tx_skbuff_dma[i].len, 1534 DMA_TO_DEVICE); 1535 } 1536 1537 if (tx_q->xdpf[i] && 1538 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1539 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1540 xdp_return_frame(tx_q->xdpf[i]); 1541 tx_q->xdpf[i] = NULL; 1542 } 1543 1544 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1545 tx_q->xsk_frames_done++; 1546 1547 if (tx_q->tx_skbuff[i] && 1548 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1549 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1550 tx_q->tx_skbuff[i] = NULL; 1551 } 1552 1553 tx_q->tx_skbuff_dma[i].buf = 0; 1554 tx_q->tx_skbuff_dma[i].map_as_page = false; 1555 } 1556 1557 /** 1558 * dma_free_rx_skbufs - free RX dma buffers 1559 * @priv: private structure 1560 * @queue: RX queue index 1561 */ 1562 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1563 { 1564 int i; 1565 1566 for (i = 0; i < priv->dma_rx_size; i++) 1567 stmmac_free_rx_buffer(priv, queue, i); 1568 } 1569 1570 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1571 gfp_t flags) 1572 { 1573 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1574 int i; 1575 1576 for (i = 0; i < priv->dma_rx_size; i++) { 1577 struct dma_desc *p; 1578 int ret; 1579 1580 if (priv->extend_desc) 1581 p = &((rx_q->dma_erx + i)->basic); 1582 else 1583 p = rx_q->dma_rx + i; 1584 1585 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1586 queue); 1587 if (ret) 1588 return ret; 1589 1590 rx_q->buf_alloc_num++; 1591 } 1592 1593 return 0; 1594 } 1595 1596 /** 1597 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1598 * @priv: private structure 1599 * @queue: RX queue index 1600 */ 1601 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1602 { 1603 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1604 int i; 1605 1606 for (i = 0; i < priv->dma_rx_size; i++) { 1607 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1608 1609 if (!buf->xdp) 1610 continue; 1611 1612 xsk_buff_free(buf->xdp); 1613 buf->xdp = NULL; 1614 } 1615 } 1616 1617 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1618 { 1619 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1620 int i; 1621 1622 for (i = 0; i < priv->dma_rx_size; i++) { 1623 struct stmmac_rx_buffer *buf; 1624 dma_addr_t dma_addr; 1625 struct dma_desc *p; 1626 1627 if (priv->extend_desc) 1628 p = (struct dma_desc *)(rx_q->dma_erx + i); 1629 else 1630 p = rx_q->dma_rx + i; 1631 1632 buf = &rx_q->buf_pool[i]; 1633 1634 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1635 if (!buf->xdp) 1636 return -ENOMEM; 1637 1638 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1639 stmmac_set_desc_addr(priv, p, dma_addr); 1640 rx_q->buf_alloc_num++; 1641 } 1642 1643 return 0; 1644 } 1645 1646 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1647 { 1648 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1649 return NULL; 1650 1651 return xsk_get_pool_from_qid(priv->dev, queue); 1652 } 1653 1654 /** 1655 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1656 * @priv: driver private structure 1657 * @queue: RX queue index 1658 * @flags: gfp flag. 1659 * Description: this function initializes the DMA RX descriptors 1660 * and allocates the socket buffers. It supports the chained and ring 1661 * modes. 1662 */ 1663 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1664 { 1665 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1666 int ret; 1667 1668 netif_dbg(priv, probe, priv->dev, 1669 "(%s) dma_rx_phy=0x%08x\n", __func__, 1670 (u32)rx_q->dma_rx_phy); 1671 1672 stmmac_clear_rx_descriptors(priv, queue); 1673 1674 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1675 1676 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1677 1678 if (rx_q->xsk_pool) { 1679 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1680 MEM_TYPE_XSK_BUFF_POOL, 1681 NULL)); 1682 netdev_info(priv->dev, 1683 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1684 rx_q->queue_index); 1685 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1686 } else { 1687 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1688 MEM_TYPE_PAGE_POOL, 1689 rx_q->page_pool)); 1690 netdev_info(priv->dev, 1691 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1692 rx_q->queue_index); 1693 } 1694 1695 if (rx_q->xsk_pool) { 1696 /* RX XDP ZC buffer pool may not be populated, e.g. 1697 * xdpsock TX-only. 1698 */ 1699 stmmac_alloc_rx_buffers_zc(priv, queue); 1700 } else { 1701 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1702 if (ret < 0) 1703 return -ENOMEM; 1704 } 1705 1706 rx_q->cur_rx = 0; 1707 rx_q->dirty_rx = 0; 1708 1709 /* Setup the chained descriptor addresses */ 1710 if (priv->mode == STMMAC_CHAIN_MODE) { 1711 if (priv->extend_desc) 1712 stmmac_mode_init(priv, rx_q->dma_erx, 1713 rx_q->dma_rx_phy, 1714 priv->dma_rx_size, 1); 1715 else 1716 stmmac_mode_init(priv, rx_q->dma_rx, 1717 rx_q->dma_rx_phy, 1718 priv->dma_rx_size, 0); 1719 } 1720 1721 return 0; 1722 } 1723 1724 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1725 { 1726 struct stmmac_priv *priv = netdev_priv(dev); 1727 u32 rx_count = priv->plat->rx_queues_to_use; 1728 u32 queue; 1729 int ret; 1730 1731 /* RX INITIALIZATION */ 1732 netif_dbg(priv, probe, priv->dev, 1733 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1734 1735 for (queue = 0; queue < rx_count; queue++) { 1736 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1737 if (ret) 1738 goto err_init_rx_buffers; 1739 } 1740 1741 return 0; 1742 1743 err_init_rx_buffers: 1744 while (queue >= 0) { 1745 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1746 1747 if (rx_q->xsk_pool) 1748 dma_free_rx_xskbufs(priv, queue); 1749 else 1750 dma_free_rx_skbufs(priv, queue); 1751 1752 rx_q->buf_alloc_num = 0; 1753 rx_q->xsk_pool = NULL; 1754 1755 if (queue == 0) 1756 break; 1757 1758 queue--; 1759 } 1760 1761 return ret; 1762 } 1763 1764 /** 1765 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1766 * @priv: driver private structure 1767 * @queue : TX queue index 1768 * Description: this function initializes the DMA TX descriptors 1769 * and allocates the socket buffers. It supports the chained and ring 1770 * modes. 1771 */ 1772 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1773 { 1774 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1775 int i; 1776 1777 netif_dbg(priv, probe, priv->dev, 1778 "(%s) dma_tx_phy=0x%08x\n", __func__, 1779 (u32)tx_q->dma_tx_phy); 1780 1781 /* Setup the chained descriptor addresses */ 1782 if (priv->mode == STMMAC_CHAIN_MODE) { 1783 if (priv->extend_desc) 1784 stmmac_mode_init(priv, tx_q->dma_etx, 1785 tx_q->dma_tx_phy, 1786 priv->dma_tx_size, 1); 1787 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1788 stmmac_mode_init(priv, tx_q->dma_tx, 1789 tx_q->dma_tx_phy, 1790 priv->dma_tx_size, 0); 1791 } 1792 1793 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1794 1795 for (i = 0; i < priv->dma_tx_size; i++) { 1796 struct dma_desc *p; 1797 1798 if (priv->extend_desc) 1799 p = &((tx_q->dma_etx + i)->basic); 1800 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1801 p = &((tx_q->dma_entx + i)->basic); 1802 else 1803 p = tx_q->dma_tx + i; 1804 1805 stmmac_clear_desc(priv, p); 1806 1807 tx_q->tx_skbuff_dma[i].buf = 0; 1808 tx_q->tx_skbuff_dma[i].map_as_page = false; 1809 tx_q->tx_skbuff_dma[i].len = 0; 1810 tx_q->tx_skbuff_dma[i].last_segment = false; 1811 tx_q->tx_skbuff[i] = NULL; 1812 } 1813 1814 tx_q->dirty_tx = 0; 1815 tx_q->cur_tx = 0; 1816 tx_q->mss = 0; 1817 1818 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1819 1820 return 0; 1821 } 1822 1823 static int init_dma_tx_desc_rings(struct net_device *dev) 1824 { 1825 struct stmmac_priv *priv = netdev_priv(dev); 1826 u32 tx_queue_cnt; 1827 u32 queue; 1828 1829 tx_queue_cnt = priv->plat->tx_queues_to_use; 1830 1831 for (queue = 0; queue < tx_queue_cnt; queue++) 1832 __init_dma_tx_desc_rings(priv, queue); 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * init_dma_desc_rings - init the RX/TX descriptor rings 1839 * @dev: net device structure 1840 * @flags: gfp flag. 1841 * Description: this function initializes the DMA RX/TX descriptors 1842 * and allocates the socket buffers. It supports the chained and ring 1843 * modes. 1844 */ 1845 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1846 { 1847 struct stmmac_priv *priv = netdev_priv(dev); 1848 int ret; 1849 1850 ret = init_dma_rx_desc_rings(dev, flags); 1851 if (ret) 1852 return ret; 1853 1854 ret = init_dma_tx_desc_rings(dev); 1855 1856 stmmac_clear_descriptors(priv); 1857 1858 if (netif_msg_hw(priv)) 1859 stmmac_display_rings(priv); 1860 1861 return ret; 1862 } 1863 1864 /** 1865 * dma_free_tx_skbufs - free TX dma buffers 1866 * @priv: private structure 1867 * @queue: TX queue index 1868 */ 1869 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1870 { 1871 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1872 int i; 1873 1874 tx_q->xsk_frames_done = 0; 1875 1876 for (i = 0; i < priv->dma_tx_size; i++) 1877 stmmac_free_tx_buffer(priv, queue, i); 1878 1879 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1880 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1881 tx_q->xsk_frames_done = 0; 1882 tx_q->xsk_pool = NULL; 1883 } 1884 } 1885 1886 /** 1887 * stmmac_free_tx_skbufs - free TX skb buffers 1888 * @priv: private structure 1889 */ 1890 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1891 { 1892 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1893 u32 queue; 1894 1895 for (queue = 0; queue < tx_queue_cnt; queue++) 1896 dma_free_tx_skbufs(priv, queue); 1897 } 1898 1899 /** 1900 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1901 * @priv: private structure 1902 * @queue: RX queue index 1903 */ 1904 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1905 { 1906 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1907 1908 /* Release the DMA RX socket buffers */ 1909 if (rx_q->xsk_pool) 1910 dma_free_rx_xskbufs(priv, queue); 1911 else 1912 dma_free_rx_skbufs(priv, queue); 1913 1914 rx_q->buf_alloc_num = 0; 1915 rx_q->xsk_pool = NULL; 1916 1917 /* Free DMA regions of consistent memory previously allocated */ 1918 if (!priv->extend_desc) 1919 dma_free_coherent(priv->device, priv->dma_rx_size * 1920 sizeof(struct dma_desc), 1921 rx_q->dma_rx, rx_q->dma_rx_phy); 1922 else 1923 dma_free_coherent(priv->device, priv->dma_rx_size * 1924 sizeof(struct dma_extended_desc), 1925 rx_q->dma_erx, rx_q->dma_rx_phy); 1926 1927 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1928 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1929 1930 kfree(rx_q->buf_pool); 1931 if (rx_q->page_pool) 1932 page_pool_destroy(rx_q->page_pool); 1933 } 1934 1935 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1936 { 1937 u32 rx_count = priv->plat->rx_queues_to_use; 1938 u32 queue; 1939 1940 /* Free RX queue resources */ 1941 for (queue = 0; queue < rx_count; queue++) 1942 __free_dma_rx_desc_resources(priv, queue); 1943 } 1944 1945 /** 1946 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1947 * @priv: private structure 1948 * @queue: TX queue index 1949 */ 1950 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1951 { 1952 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1953 size_t size; 1954 void *addr; 1955 1956 /* Release the DMA TX socket buffers */ 1957 dma_free_tx_skbufs(priv, queue); 1958 1959 if (priv->extend_desc) { 1960 size = sizeof(struct dma_extended_desc); 1961 addr = tx_q->dma_etx; 1962 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1963 size = sizeof(struct dma_edesc); 1964 addr = tx_q->dma_entx; 1965 } else { 1966 size = sizeof(struct dma_desc); 1967 addr = tx_q->dma_tx; 1968 } 1969 1970 size *= priv->dma_tx_size; 1971 1972 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1973 1974 kfree(tx_q->tx_skbuff_dma); 1975 kfree(tx_q->tx_skbuff); 1976 } 1977 1978 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1979 { 1980 u32 tx_count = priv->plat->tx_queues_to_use; 1981 u32 queue; 1982 1983 /* Free TX queue resources */ 1984 for (queue = 0; queue < tx_count; queue++) 1985 __free_dma_tx_desc_resources(priv, queue); 1986 } 1987 1988 /** 1989 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1990 * @priv: private structure 1991 * @queue: RX queue index 1992 * Description: according to which descriptor can be used (extend or basic) 1993 * this function allocates the resources for TX and RX paths. In case of 1994 * reception, for example, it pre-allocated the RX socket buffer in order to 1995 * allow zero-copy mechanism. 1996 */ 1997 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1998 { 1999 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 2000 struct stmmac_channel *ch = &priv->channel[queue]; 2001 bool xdp_prog = stmmac_xdp_is_enabled(priv); 2002 struct page_pool_params pp_params = { 0 }; 2003 unsigned int num_pages; 2004 unsigned int napi_id; 2005 int ret; 2006 2007 rx_q->queue_index = queue; 2008 rx_q->priv_data = priv; 2009 2010 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 2011 pp_params.pool_size = priv->dma_rx_size; 2012 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 2013 pp_params.order = ilog2(num_pages); 2014 pp_params.nid = dev_to_node(priv->device); 2015 pp_params.dev = priv->device; 2016 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2017 pp_params.offset = stmmac_rx_offset(priv); 2018 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2019 2020 rx_q->page_pool = page_pool_create(&pp_params); 2021 if (IS_ERR(rx_q->page_pool)) { 2022 ret = PTR_ERR(rx_q->page_pool); 2023 rx_q->page_pool = NULL; 2024 return ret; 2025 } 2026 2027 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 2028 sizeof(*rx_q->buf_pool), 2029 GFP_KERNEL); 2030 if (!rx_q->buf_pool) 2031 return -ENOMEM; 2032 2033 if (priv->extend_desc) { 2034 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2035 priv->dma_rx_size * 2036 sizeof(struct dma_extended_desc), 2037 &rx_q->dma_rx_phy, 2038 GFP_KERNEL); 2039 if (!rx_q->dma_erx) 2040 return -ENOMEM; 2041 2042 } else { 2043 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2044 priv->dma_rx_size * 2045 sizeof(struct dma_desc), 2046 &rx_q->dma_rx_phy, 2047 GFP_KERNEL); 2048 if (!rx_q->dma_rx) 2049 return -ENOMEM; 2050 } 2051 2052 if (stmmac_xdp_is_enabled(priv) && 2053 test_bit(queue, priv->af_xdp_zc_qps)) 2054 napi_id = ch->rxtx_napi.napi_id; 2055 else 2056 napi_id = ch->rx_napi.napi_id; 2057 2058 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2059 rx_q->queue_index, 2060 napi_id); 2061 if (ret) { 2062 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2063 return -EINVAL; 2064 } 2065 2066 return 0; 2067 } 2068 2069 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2070 { 2071 u32 rx_count = priv->plat->rx_queues_to_use; 2072 u32 queue; 2073 int ret; 2074 2075 /* RX queues buffers and DMA */ 2076 for (queue = 0; queue < rx_count; queue++) { 2077 ret = __alloc_dma_rx_desc_resources(priv, queue); 2078 if (ret) 2079 goto err_dma; 2080 } 2081 2082 return 0; 2083 2084 err_dma: 2085 free_dma_rx_desc_resources(priv); 2086 2087 return ret; 2088 } 2089 2090 /** 2091 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2092 * @priv: private structure 2093 * @queue: TX queue index 2094 * Description: according to which descriptor can be used (extend or basic) 2095 * this function allocates the resources for TX and RX paths. In case of 2096 * reception, for example, it pre-allocated the RX socket buffer in order to 2097 * allow zero-copy mechanism. 2098 */ 2099 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2100 { 2101 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2102 size_t size; 2103 void *addr; 2104 2105 tx_q->queue_index = queue; 2106 tx_q->priv_data = priv; 2107 2108 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2109 sizeof(*tx_q->tx_skbuff_dma), 2110 GFP_KERNEL); 2111 if (!tx_q->tx_skbuff_dma) 2112 return -ENOMEM; 2113 2114 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2115 sizeof(struct sk_buff *), 2116 GFP_KERNEL); 2117 if (!tx_q->tx_skbuff) 2118 return -ENOMEM; 2119 2120 if (priv->extend_desc) 2121 size = sizeof(struct dma_extended_desc); 2122 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2123 size = sizeof(struct dma_edesc); 2124 else 2125 size = sizeof(struct dma_desc); 2126 2127 size *= priv->dma_tx_size; 2128 2129 addr = dma_alloc_coherent(priv->device, size, 2130 &tx_q->dma_tx_phy, GFP_KERNEL); 2131 if (!addr) 2132 return -ENOMEM; 2133 2134 if (priv->extend_desc) 2135 tx_q->dma_etx = addr; 2136 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2137 tx_q->dma_entx = addr; 2138 else 2139 tx_q->dma_tx = addr; 2140 2141 return 0; 2142 } 2143 2144 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2145 { 2146 u32 tx_count = priv->plat->tx_queues_to_use; 2147 u32 queue; 2148 int ret; 2149 2150 /* TX queues buffers and DMA */ 2151 for (queue = 0; queue < tx_count; queue++) { 2152 ret = __alloc_dma_tx_desc_resources(priv, queue); 2153 if (ret) 2154 goto err_dma; 2155 } 2156 2157 return 0; 2158 2159 err_dma: 2160 free_dma_tx_desc_resources(priv); 2161 return ret; 2162 } 2163 2164 /** 2165 * alloc_dma_desc_resources - alloc TX/RX resources. 2166 * @priv: private structure 2167 * Description: according to which descriptor can be used (extend or basic) 2168 * this function allocates the resources for TX and RX paths. In case of 2169 * reception, for example, it pre-allocated the RX socket buffer in order to 2170 * allow zero-copy mechanism. 2171 */ 2172 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2173 { 2174 /* RX Allocation */ 2175 int ret = alloc_dma_rx_desc_resources(priv); 2176 2177 if (ret) 2178 return ret; 2179 2180 ret = alloc_dma_tx_desc_resources(priv); 2181 2182 return ret; 2183 } 2184 2185 /** 2186 * free_dma_desc_resources - free dma desc resources 2187 * @priv: private structure 2188 */ 2189 static void free_dma_desc_resources(struct stmmac_priv *priv) 2190 { 2191 /* Release the DMA TX socket buffers */ 2192 free_dma_tx_desc_resources(priv); 2193 2194 /* Release the DMA RX socket buffers later 2195 * to ensure all pending XDP_TX buffers are returned. 2196 */ 2197 free_dma_rx_desc_resources(priv); 2198 } 2199 2200 /** 2201 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2202 * @priv: driver private structure 2203 * Description: It is used for enabling the rx queues in the MAC 2204 */ 2205 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2206 { 2207 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2208 int queue; 2209 u8 mode; 2210 2211 for (queue = 0; queue < rx_queues_count; queue++) { 2212 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2213 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2214 } 2215 } 2216 2217 /** 2218 * stmmac_start_rx_dma - start RX DMA channel 2219 * @priv: driver private structure 2220 * @chan: RX channel index 2221 * Description: 2222 * This starts a RX DMA channel 2223 */ 2224 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2225 { 2226 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2227 stmmac_start_rx(priv, priv->ioaddr, chan); 2228 } 2229 2230 /** 2231 * stmmac_start_tx_dma - start TX DMA channel 2232 * @priv: driver private structure 2233 * @chan: TX channel index 2234 * Description: 2235 * This starts a TX DMA channel 2236 */ 2237 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2238 { 2239 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2240 stmmac_start_tx(priv, priv->ioaddr, chan); 2241 } 2242 2243 /** 2244 * stmmac_stop_rx_dma - stop RX DMA channel 2245 * @priv: driver private structure 2246 * @chan: RX channel index 2247 * Description: 2248 * This stops a RX DMA channel 2249 */ 2250 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2251 { 2252 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2253 stmmac_stop_rx(priv, priv->ioaddr, chan); 2254 } 2255 2256 /** 2257 * stmmac_stop_tx_dma - stop TX DMA channel 2258 * @priv: driver private structure 2259 * @chan: TX channel index 2260 * Description: 2261 * This stops a TX DMA channel 2262 */ 2263 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2264 { 2265 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2266 stmmac_stop_tx(priv, priv->ioaddr, chan); 2267 } 2268 2269 /** 2270 * stmmac_start_all_dma - start all RX and TX DMA channels 2271 * @priv: driver private structure 2272 * Description: 2273 * This starts all the RX and TX DMA channels 2274 */ 2275 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2276 { 2277 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2278 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2279 u32 chan = 0; 2280 2281 for (chan = 0; chan < rx_channels_count; chan++) 2282 stmmac_start_rx_dma(priv, chan); 2283 2284 for (chan = 0; chan < tx_channels_count; chan++) 2285 stmmac_start_tx_dma(priv, chan); 2286 } 2287 2288 /** 2289 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2290 * @priv: driver private structure 2291 * Description: 2292 * This stops the RX and TX DMA channels 2293 */ 2294 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2295 { 2296 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2297 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2298 u32 chan = 0; 2299 2300 for (chan = 0; chan < rx_channels_count; chan++) 2301 stmmac_stop_rx_dma(priv, chan); 2302 2303 for (chan = 0; chan < tx_channels_count; chan++) 2304 stmmac_stop_tx_dma(priv, chan); 2305 } 2306 2307 /** 2308 * stmmac_dma_operation_mode - HW DMA operation mode 2309 * @priv: driver private structure 2310 * Description: it is used for configuring the DMA operation mode register in 2311 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2312 */ 2313 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2314 { 2315 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2316 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2317 int rxfifosz = priv->plat->rx_fifo_size; 2318 int txfifosz = priv->plat->tx_fifo_size; 2319 u32 txmode = 0; 2320 u32 rxmode = 0; 2321 u32 chan = 0; 2322 u8 qmode = 0; 2323 2324 if (rxfifosz == 0) 2325 rxfifosz = priv->dma_cap.rx_fifo_size; 2326 if (txfifosz == 0) 2327 txfifosz = priv->dma_cap.tx_fifo_size; 2328 2329 /* Adjust for real per queue fifo size */ 2330 rxfifosz /= rx_channels_count; 2331 txfifosz /= tx_channels_count; 2332 2333 if (priv->plat->force_thresh_dma_mode) { 2334 txmode = tc; 2335 rxmode = tc; 2336 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2337 /* 2338 * In case of GMAC, SF mode can be enabled 2339 * to perform the TX COE in HW. This depends on: 2340 * 1) TX COE if actually supported 2341 * 2) There is no bugged Jumbo frame support 2342 * that needs to not insert csum in the TDES. 2343 */ 2344 txmode = SF_DMA_MODE; 2345 rxmode = SF_DMA_MODE; 2346 priv->xstats.threshold = SF_DMA_MODE; 2347 } else { 2348 txmode = tc; 2349 rxmode = SF_DMA_MODE; 2350 } 2351 2352 /* configure all channels */ 2353 for (chan = 0; chan < rx_channels_count; chan++) { 2354 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2355 u32 buf_size; 2356 2357 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2358 2359 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2360 rxfifosz, qmode); 2361 2362 if (rx_q->xsk_pool) { 2363 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2364 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2365 buf_size, 2366 chan); 2367 } else { 2368 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2369 priv->dma_buf_sz, 2370 chan); 2371 } 2372 } 2373 2374 for (chan = 0; chan < tx_channels_count; chan++) { 2375 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2376 2377 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2378 txfifosz, qmode); 2379 } 2380 } 2381 2382 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2383 { 2384 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2385 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2386 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2387 unsigned int entry = tx_q->cur_tx; 2388 struct dma_desc *tx_desc = NULL; 2389 struct xdp_desc xdp_desc; 2390 bool work_done = true; 2391 2392 /* Avoids TX time-out as we are sharing with slow path */ 2393 nq->trans_start = jiffies; 2394 2395 budget = min(budget, stmmac_tx_avail(priv, queue)); 2396 2397 while (budget-- > 0) { 2398 dma_addr_t dma_addr; 2399 bool set_ic; 2400 2401 /* We are sharing with slow path and stop XSK TX desc submission when 2402 * available TX ring is less than threshold. 2403 */ 2404 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2405 !netif_carrier_ok(priv->dev)) { 2406 work_done = false; 2407 break; 2408 } 2409 2410 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2411 break; 2412 2413 if (likely(priv->extend_desc)) 2414 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2415 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2416 tx_desc = &tx_q->dma_entx[entry].basic; 2417 else 2418 tx_desc = tx_q->dma_tx + entry; 2419 2420 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2421 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2422 2423 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2424 2425 /* To return XDP buffer to XSK pool, we simple call 2426 * xsk_tx_completed(), so we don't need to fill up 2427 * 'buf' and 'xdpf'. 2428 */ 2429 tx_q->tx_skbuff_dma[entry].buf = 0; 2430 tx_q->xdpf[entry] = NULL; 2431 2432 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2433 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2434 tx_q->tx_skbuff_dma[entry].last_segment = true; 2435 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2436 2437 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2438 2439 tx_q->tx_count_frames++; 2440 2441 if (!priv->tx_coal_frames[queue]) 2442 set_ic = false; 2443 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2444 set_ic = true; 2445 else 2446 set_ic = false; 2447 2448 if (set_ic) { 2449 tx_q->tx_count_frames = 0; 2450 stmmac_set_tx_ic(priv, tx_desc); 2451 priv->xstats.tx_set_ic_bit++; 2452 } 2453 2454 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2455 true, priv->mode, true, true, 2456 xdp_desc.len); 2457 2458 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2459 2460 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2461 entry = tx_q->cur_tx; 2462 } 2463 2464 if (tx_desc) { 2465 stmmac_flush_tx_descriptors(priv, queue); 2466 xsk_tx_release(pool); 2467 } 2468 2469 /* Return true if all of the 3 conditions are met 2470 * a) TX Budget is still available 2471 * b) work_done = true when XSK TX desc peek is empty (no more 2472 * pending XSK TX for transmission) 2473 */ 2474 return !!budget && work_done; 2475 } 2476 2477 /** 2478 * stmmac_tx_clean - to manage the transmission completion 2479 * @priv: driver private structure 2480 * @budget: napi budget limiting this functions packet handling 2481 * @queue: TX queue index 2482 * Description: it reclaims the transmit resources after transmission completes. 2483 */ 2484 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2485 { 2486 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2487 unsigned int bytes_compl = 0, pkts_compl = 0; 2488 unsigned int entry, xmits = 0, count = 0; 2489 2490 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2491 2492 priv->xstats.tx_clean++; 2493 2494 tx_q->xsk_frames_done = 0; 2495 2496 entry = tx_q->dirty_tx; 2497 2498 /* Try to clean all TX complete frame in 1 shot */ 2499 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2500 struct xdp_frame *xdpf; 2501 struct sk_buff *skb; 2502 struct dma_desc *p; 2503 int status; 2504 2505 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2506 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2507 xdpf = tx_q->xdpf[entry]; 2508 skb = NULL; 2509 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2510 xdpf = NULL; 2511 skb = tx_q->tx_skbuff[entry]; 2512 } else { 2513 xdpf = NULL; 2514 skb = NULL; 2515 } 2516 2517 if (priv->extend_desc) 2518 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2519 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2520 p = &tx_q->dma_entx[entry].basic; 2521 else 2522 p = tx_q->dma_tx + entry; 2523 2524 status = stmmac_tx_status(priv, &priv->dev->stats, 2525 &priv->xstats, p, priv->ioaddr); 2526 /* Check if the descriptor is owned by the DMA */ 2527 if (unlikely(status & tx_dma_own)) 2528 break; 2529 2530 count++; 2531 2532 /* Make sure descriptor fields are read after reading 2533 * the own bit. 2534 */ 2535 dma_rmb(); 2536 2537 /* Just consider the last segment and ...*/ 2538 if (likely(!(status & tx_not_ls))) { 2539 /* ... verify the status error condition */ 2540 if (unlikely(status & tx_err)) { 2541 priv->dev->stats.tx_errors++; 2542 } else { 2543 priv->dev->stats.tx_packets++; 2544 priv->xstats.tx_pkt_n++; 2545 priv->xstats.txq_stats[queue].tx_pkt_n++; 2546 } 2547 if (skb) 2548 stmmac_get_tx_hwtstamp(priv, p, skb); 2549 } 2550 2551 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2552 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2553 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2554 dma_unmap_page(priv->device, 2555 tx_q->tx_skbuff_dma[entry].buf, 2556 tx_q->tx_skbuff_dma[entry].len, 2557 DMA_TO_DEVICE); 2558 else 2559 dma_unmap_single(priv->device, 2560 tx_q->tx_skbuff_dma[entry].buf, 2561 tx_q->tx_skbuff_dma[entry].len, 2562 DMA_TO_DEVICE); 2563 tx_q->tx_skbuff_dma[entry].buf = 0; 2564 tx_q->tx_skbuff_dma[entry].len = 0; 2565 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2566 } 2567 2568 stmmac_clean_desc3(priv, tx_q, p); 2569 2570 tx_q->tx_skbuff_dma[entry].last_segment = false; 2571 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2572 2573 if (xdpf && 2574 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2575 xdp_return_frame_rx_napi(xdpf); 2576 tx_q->xdpf[entry] = NULL; 2577 } 2578 2579 if (xdpf && 2580 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2581 xdp_return_frame(xdpf); 2582 tx_q->xdpf[entry] = NULL; 2583 } 2584 2585 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2586 tx_q->xsk_frames_done++; 2587 2588 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2589 if (likely(skb)) { 2590 pkts_compl++; 2591 bytes_compl += skb->len; 2592 dev_consume_skb_any(skb); 2593 tx_q->tx_skbuff[entry] = NULL; 2594 } 2595 } 2596 2597 stmmac_release_tx_desc(priv, p, priv->mode); 2598 2599 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2600 } 2601 tx_q->dirty_tx = entry; 2602 2603 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2604 pkts_compl, bytes_compl); 2605 2606 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2607 queue))) && 2608 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2609 2610 netif_dbg(priv, tx_done, priv->dev, 2611 "%s: restart transmit\n", __func__); 2612 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2613 } 2614 2615 if (tx_q->xsk_pool) { 2616 bool work_done; 2617 2618 if (tx_q->xsk_frames_done) 2619 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2620 2621 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2622 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2623 2624 /* For XSK TX, we try to send as many as possible. 2625 * If XSK work done (XSK TX desc empty and budget still 2626 * available), return "budget - 1" to reenable TX IRQ. 2627 * Else, return "budget" to make NAPI continue polling. 2628 */ 2629 work_done = stmmac_xdp_xmit_zc(priv, queue, 2630 STMMAC_XSK_TX_BUDGET_MAX); 2631 if (work_done) 2632 xmits = budget - 1; 2633 else 2634 xmits = budget; 2635 } 2636 2637 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2638 priv->eee_sw_timer_en) { 2639 stmmac_enable_eee_mode(priv); 2640 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2641 } 2642 2643 /* We still have pending packets, let's call for a new scheduling */ 2644 if (tx_q->dirty_tx != tx_q->cur_tx) 2645 hrtimer_start(&tx_q->txtimer, 2646 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2647 HRTIMER_MODE_REL); 2648 2649 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2650 2651 /* Combine decisions from TX clean and XSK TX */ 2652 return max(count, xmits); 2653 } 2654 2655 /** 2656 * stmmac_tx_err - to manage the tx error 2657 * @priv: driver private structure 2658 * @chan: channel index 2659 * Description: it cleans the descriptors and restarts the transmission 2660 * in case of transmission errors. 2661 */ 2662 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2663 { 2664 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2665 2666 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2667 2668 stmmac_stop_tx_dma(priv, chan); 2669 dma_free_tx_skbufs(priv, chan); 2670 stmmac_clear_tx_descriptors(priv, chan); 2671 tx_q->dirty_tx = 0; 2672 tx_q->cur_tx = 0; 2673 tx_q->mss = 0; 2674 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2675 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2676 tx_q->dma_tx_phy, chan); 2677 stmmac_start_tx_dma(priv, chan); 2678 2679 priv->dev->stats.tx_errors++; 2680 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2681 } 2682 2683 /** 2684 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2685 * @priv: driver private structure 2686 * @txmode: TX operating mode 2687 * @rxmode: RX operating mode 2688 * @chan: channel index 2689 * Description: it is used for configuring of the DMA operation mode in 2690 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2691 * mode. 2692 */ 2693 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2694 u32 rxmode, u32 chan) 2695 { 2696 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2697 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2698 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2699 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2700 int rxfifosz = priv->plat->rx_fifo_size; 2701 int txfifosz = priv->plat->tx_fifo_size; 2702 2703 if (rxfifosz == 0) 2704 rxfifosz = priv->dma_cap.rx_fifo_size; 2705 if (txfifosz == 0) 2706 txfifosz = priv->dma_cap.tx_fifo_size; 2707 2708 /* Adjust for real per queue fifo size */ 2709 rxfifosz /= rx_channels_count; 2710 txfifosz /= tx_channels_count; 2711 2712 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2713 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2714 } 2715 2716 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2717 { 2718 int ret; 2719 2720 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2721 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2722 if (ret && (ret != -EINVAL)) { 2723 stmmac_global_err(priv); 2724 return true; 2725 } 2726 2727 return false; 2728 } 2729 2730 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2731 { 2732 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2733 &priv->xstats, chan, dir); 2734 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2735 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2736 struct stmmac_channel *ch = &priv->channel[chan]; 2737 struct napi_struct *rx_napi; 2738 struct napi_struct *tx_napi; 2739 unsigned long flags; 2740 2741 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2742 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2743 2744 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2745 if (napi_schedule_prep(rx_napi)) { 2746 spin_lock_irqsave(&ch->lock, flags); 2747 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2748 spin_unlock_irqrestore(&ch->lock, flags); 2749 __napi_schedule(rx_napi); 2750 } 2751 } 2752 2753 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2754 if (napi_schedule_prep(tx_napi)) { 2755 spin_lock_irqsave(&ch->lock, flags); 2756 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2757 spin_unlock_irqrestore(&ch->lock, flags); 2758 __napi_schedule(tx_napi); 2759 } 2760 } 2761 2762 return status; 2763 } 2764 2765 /** 2766 * stmmac_dma_interrupt - DMA ISR 2767 * @priv: driver private structure 2768 * Description: this is the DMA ISR. It is called by the main ISR. 2769 * It calls the dwmac dma routine and schedule poll method in case of some 2770 * work can be done. 2771 */ 2772 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2773 { 2774 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2775 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2776 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2777 tx_channel_count : rx_channel_count; 2778 u32 chan; 2779 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2780 2781 /* Make sure we never check beyond our status buffer. */ 2782 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2783 channels_to_check = ARRAY_SIZE(status); 2784 2785 for (chan = 0; chan < channels_to_check; chan++) 2786 status[chan] = stmmac_napi_check(priv, chan, 2787 DMA_DIR_RXTX); 2788 2789 for (chan = 0; chan < tx_channel_count; chan++) { 2790 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2791 /* Try to bump up the dma threshold on this failure */ 2792 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2793 (tc <= 256)) { 2794 tc += 64; 2795 if (priv->plat->force_thresh_dma_mode) 2796 stmmac_set_dma_operation_mode(priv, 2797 tc, 2798 tc, 2799 chan); 2800 else 2801 stmmac_set_dma_operation_mode(priv, 2802 tc, 2803 SF_DMA_MODE, 2804 chan); 2805 priv->xstats.threshold = tc; 2806 } 2807 } else if (unlikely(status[chan] == tx_hard_error)) { 2808 stmmac_tx_err(priv, chan); 2809 } 2810 } 2811 } 2812 2813 /** 2814 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2815 * @priv: driver private structure 2816 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2817 */ 2818 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2819 { 2820 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2821 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2822 2823 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2824 2825 if (priv->dma_cap.rmon) { 2826 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2827 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2828 } else 2829 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2830 } 2831 2832 /** 2833 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2834 * @priv: driver private structure 2835 * Description: 2836 * new GMAC chip generations have a new register to indicate the 2837 * presence of the optional feature/functions. 2838 * This can be also used to override the value passed through the 2839 * platform and necessary for old MAC10/100 and GMAC chips. 2840 */ 2841 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2842 { 2843 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2844 } 2845 2846 /** 2847 * stmmac_check_ether_addr - check if the MAC addr is valid 2848 * @priv: driver private structure 2849 * Description: 2850 * it is to verify if the MAC address is valid, in case of failures it 2851 * generates a random MAC address 2852 */ 2853 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2854 { 2855 u8 addr[ETH_ALEN]; 2856 2857 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2858 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2859 if (is_valid_ether_addr(addr)) 2860 eth_hw_addr_set(priv->dev, addr); 2861 else 2862 eth_hw_addr_random(priv->dev); 2863 dev_info(priv->device, "device MAC address %pM\n", 2864 priv->dev->dev_addr); 2865 } 2866 } 2867 2868 /** 2869 * stmmac_init_dma_engine - DMA init. 2870 * @priv: driver private structure 2871 * Description: 2872 * It inits the DMA invoking the specific MAC/GMAC callback. 2873 * Some DMA parameters can be passed from the platform; 2874 * in case of these are not passed a default is kept for the MAC or GMAC. 2875 */ 2876 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2877 { 2878 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2879 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2880 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2881 struct stmmac_rx_queue *rx_q; 2882 struct stmmac_tx_queue *tx_q; 2883 u32 chan = 0; 2884 int atds = 0; 2885 int ret = 0; 2886 2887 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2888 dev_err(priv->device, "Invalid DMA configuration\n"); 2889 return -EINVAL; 2890 } 2891 2892 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2893 atds = 1; 2894 2895 ret = stmmac_reset(priv, priv->ioaddr); 2896 if (ret) { 2897 dev_err(priv->device, "Failed to reset the dma\n"); 2898 return ret; 2899 } 2900 2901 /* DMA Configuration */ 2902 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2903 2904 if (priv->plat->axi) 2905 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2906 2907 /* DMA CSR Channel configuration */ 2908 for (chan = 0; chan < dma_csr_ch; chan++) 2909 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2910 2911 /* DMA RX Channel Configuration */ 2912 for (chan = 0; chan < rx_channels_count; chan++) { 2913 rx_q = &priv->rx_queue[chan]; 2914 2915 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2916 rx_q->dma_rx_phy, chan); 2917 2918 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2919 (rx_q->buf_alloc_num * 2920 sizeof(struct dma_desc)); 2921 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2922 rx_q->rx_tail_addr, chan); 2923 } 2924 2925 /* DMA TX Channel Configuration */ 2926 for (chan = 0; chan < tx_channels_count; chan++) { 2927 tx_q = &priv->tx_queue[chan]; 2928 2929 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2930 tx_q->dma_tx_phy, chan); 2931 2932 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2933 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2934 tx_q->tx_tail_addr, chan); 2935 } 2936 2937 return ret; 2938 } 2939 2940 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2941 { 2942 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2943 2944 hrtimer_start(&tx_q->txtimer, 2945 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2946 HRTIMER_MODE_REL); 2947 } 2948 2949 /** 2950 * stmmac_tx_timer - mitigation sw timer for tx. 2951 * @t: data pointer 2952 * Description: 2953 * This is the timer handler to directly invoke the stmmac_tx_clean. 2954 */ 2955 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2956 { 2957 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2958 struct stmmac_priv *priv = tx_q->priv_data; 2959 struct stmmac_channel *ch; 2960 struct napi_struct *napi; 2961 2962 ch = &priv->channel[tx_q->queue_index]; 2963 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2964 2965 if (likely(napi_schedule_prep(napi))) { 2966 unsigned long flags; 2967 2968 spin_lock_irqsave(&ch->lock, flags); 2969 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2970 spin_unlock_irqrestore(&ch->lock, flags); 2971 __napi_schedule(napi); 2972 } 2973 2974 return HRTIMER_NORESTART; 2975 } 2976 2977 /** 2978 * stmmac_init_coalesce - init mitigation options. 2979 * @priv: driver private structure 2980 * Description: 2981 * This inits the coalesce parameters: i.e. timer rate, 2982 * timer handler and default threshold used for enabling the 2983 * interrupt on completion bit. 2984 */ 2985 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2986 { 2987 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2988 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2989 u32 chan; 2990 2991 for (chan = 0; chan < tx_channel_count; chan++) { 2992 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2993 2994 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2995 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2996 2997 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2998 tx_q->txtimer.function = stmmac_tx_timer; 2999 } 3000 3001 for (chan = 0; chan < rx_channel_count; chan++) 3002 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3003 } 3004 3005 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3006 { 3007 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3008 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3009 u32 chan; 3010 3011 /* set TX ring length */ 3012 for (chan = 0; chan < tx_channels_count; chan++) 3013 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3014 (priv->dma_tx_size - 1), chan); 3015 3016 /* set RX ring length */ 3017 for (chan = 0; chan < rx_channels_count; chan++) 3018 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3019 (priv->dma_rx_size - 1), chan); 3020 } 3021 3022 /** 3023 * stmmac_set_tx_queue_weight - Set TX queue weight 3024 * @priv: driver private structure 3025 * Description: It is used for setting TX queues weight 3026 */ 3027 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3028 { 3029 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3030 u32 weight; 3031 u32 queue; 3032 3033 for (queue = 0; queue < tx_queues_count; queue++) { 3034 weight = priv->plat->tx_queues_cfg[queue].weight; 3035 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3036 } 3037 } 3038 3039 /** 3040 * stmmac_configure_cbs - Configure CBS in TX queue 3041 * @priv: driver private structure 3042 * Description: It is used for configuring CBS in AVB TX queues 3043 */ 3044 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3045 { 3046 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3047 u32 mode_to_use; 3048 u32 queue; 3049 3050 /* queue 0 is reserved for legacy traffic */ 3051 for (queue = 1; queue < tx_queues_count; queue++) { 3052 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3053 if (mode_to_use == MTL_QUEUE_DCB) 3054 continue; 3055 3056 stmmac_config_cbs(priv, priv->hw, 3057 priv->plat->tx_queues_cfg[queue].send_slope, 3058 priv->plat->tx_queues_cfg[queue].idle_slope, 3059 priv->plat->tx_queues_cfg[queue].high_credit, 3060 priv->plat->tx_queues_cfg[queue].low_credit, 3061 queue); 3062 } 3063 } 3064 3065 /** 3066 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3067 * @priv: driver private structure 3068 * Description: It is used for mapping RX queues to RX dma channels 3069 */ 3070 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3071 { 3072 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3073 u32 queue; 3074 u32 chan; 3075 3076 for (queue = 0; queue < rx_queues_count; queue++) { 3077 chan = priv->plat->rx_queues_cfg[queue].chan; 3078 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3079 } 3080 } 3081 3082 /** 3083 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3084 * @priv: driver private structure 3085 * Description: It is used for configuring the RX Queue Priority 3086 */ 3087 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3088 { 3089 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3090 u32 queue; 3091 u32 prio; 3092 3093 for (queue = 0; queue < rx_queues_count; queue++) { 3094 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3095 continue; 3096 3097 prio = priv->plat->rx_queues_cfg[queue].prio; 3098 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3099 } 3100 } 3101 3102 /** 3103 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3104 * @priv: driver private structure 3105 * Description: It is used for configuring the TX Queue Priority 3106 */ 3107 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3108 { 3109 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3110 u32 queue; 3111 u32 prio; 3112 3113 for (queue = 0; queue < tx_queues_count; queue++) { 3114 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3115 continue; 3116 3117 prio = priv->plat->tx_queues_cfg[queue].prio; 3118 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3119 } 3120 } 3121 3122 /** 3123 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3124 * @priv: driver private structure 3125 * Description: It is used for configuring the RX queue routing 3126 */ 3127 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3128 { 3129 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3130 u32 queue; 3131 u8 packet; 3132 3133 for (queue = 0; queue < rx_queues_count; queue++) { 3134 /* no specific packet type routing specified for the queue */ 3135 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3136 continue; 3137 3138 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3139 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3140 } 3141 } 3142 3143 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3144 { 3145 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3146 priv->rss.enable = false; 3147 return; 3148 } 3149 3150 if (priv->dev->features & NETIF_F_RXHASH) 3151 priv->rss.enable = true; 3152 else 3153 priv->rss.enable = false; 3154 3155 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3156 priv->plat->rx_queues_to_use); 3157 } 3158 3159 /** 3160 * stmmac_mtl_configuration - Configure MTL 3161 * @priv: driver private structure 3162 * Description: It is used for configurring MTL 3163 */ 3164 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3165 { 3166 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3167 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3168 3169 if (tx_queues_count > 1) 3170 stmmac_set_tx_queue_weight(priv); 3171 3172 /* Configure MTL RX algorithms */ 3173 if (rx_queues_count > 1) 3174 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3175 priv->plat->rx_sched_algorithm); 3176 3177 /* Configure MTL TX algorithms */ 3178 if (tx_queues_count > 1) 3179 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3180 priv->plat->tx_sched_algorithm); 3181 3182 /* Configure CBS in AVB TX queues */ 3183 if (tx_queues_count > 1) 3184 stmmac_configure_cbs(priv); 3185 3186 /* Map RX MTL to DMA channels */ 3187 stmmac_rx_queue_dma_chan_map(priv); 3188 3189 /* Enable MAC RX Queues */ 3190 stmmac_mac_enable_rx_queues(priv); 3191 3192 /* Set RX priorities */ 3193 if (rx_queues_count > 1) 3194 stmmac_mac_config_rx_queues_prio(priv); 3195 3196 /* Set TX priorities */ 3197 if (tx_queues_count > 1) 3198 stmmac_mac_config_tx_queues_prio(priv); 3199 3200 /* Set RX routing */ 3201 if (rx_queues_count > 1) 3202 stmmac_mac_config_rx_queues_routing(priv); 3203 3204 /* Receive Side Scaling */ 3205 if (rx_queues_count > 1) 3206 stmmac_mac_config_rss(priv); 3207 } 3208 3209 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3210 { 3211 if (priv->dma_cap.asp) { 3212 netdev_info(priv->dev, "Enabling Safety Features\n"); 3213 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3214 priv->plat->safety_feat_cfg); 3215 } else { 3216 netdev_info(priv->dev, "No Safety Features support found\n"); 3217 } 3218 } 3219 3220 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3221 { 3222 char *name; 3223 3224 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3225 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3226 3227 name = priv->wq_name; 3228 sprintf(name, "%s-fpe", priv->dev->name); 3229 3230 priv->fpe_wq = create_singlethread_workqueue(name); 3231 if (!priv->fpe_wq) { 3232 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3233 3234 return -ENOMEM; 3235 } 3236 netdev_info(priv->dev, "FPE workqueue start"); 3237 3238 return 0; 3239 } 3240 3241 /** 3242 * stmmac_hw_setup - setup mac in a usable state. 3243 * @dev : pointer to the device structure. 3244 * @init_ptp: initialize PTP if set 3245 * Description: 3246 * this is the main function to setup the HW in a usable state because the 3247 * dma engine is reset, the core registers are configured (e.g. AXI, 3248 * Checksum features, timers). The DMA is ready to start receiving and 3249 * transmitting. 3250 * Return value: 3251 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3252 * file on failure. 3253 */ 3254 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 3255 { 3256 struct stmmac_priv *priv = netdev_priv(dev); 3257 u32 rx_cnt = priv->plat->rx_queues_to_use; 3258 u32 tx_cnt = priv->plat->tx_queues_to_use; 3259 bool sph_en; 3260 u32 chan; 3261 int ret; 3262 3263 /* DMA initialization and SW reset */ 3264 ret = stmmac_init_dma_engine(priv); 3265 if (ret < 0) { 3266 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3267 __func__); 3268 return ret; 3269 } 3270 3271 /* Copy the MAC addr into the HW */ 3272 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3273 3274 /* PS and related bits will be programmed according to the speed */ 3275 if (priv->hw->pcs) { 3276 int speed = priv->plat->mac_port_sel_speed; 3277 3278 if ((speed == SPEED_10) || (speed == SPEED_100) || 3279 (speed == SPEED_1000)) { 3280 priv->hw->ps = speed; 3281 } else { 3282 dev_warn(priv->device, "invalid port speed\n"); 3283 priv->hw->ps = 0; 3284 } 3285 } 3286 3287 /* Initialize the MAC Core */ 3288 stmmac_core_init(priv, priv->hw, dev); 3289 3290 /* Initialize MTL*/ 3291 stmmac_mtl_configuration(priv); 3292 3293 /* Initialize Safety Features */ 3294 stmmac_safety_feat_configuration(priv); 3295 3296 ret = stmmac_rx_ipc(priv, priv->hw); 3297 if (!ret) { 3298 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3299 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3300 priv->hw->rx_csum = 0; 3301 } 3302 3303 /* Enable the MAC Rx/Tx */ 3304 stmmac_mac_set(priv, priv->ioaddr, true); 3305 3306 /* Set the HW DMA mode and the COE */ 3307 stmmac_dma_operation_mode(priv); 3308 3309 stmmac_mmc_setup(priv); 3310 3311 if (init_ptp) { 3312 ret = stmmac_init_ptp(priv); 3313 if (ret == -EOPNOTSUPP) 3314 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3315 else if (ret) 3316 netdev_warn(priv->dev, "PTP init failed\n"); 3317 } 3318 3319 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3320 3321 /* Convert the timer from msec to usec */ 3322 if (!priv->tx_lpi_timer) 3323 priv->tx_lpi_timer = eee_timer * 1000; 3324 3325 if (priv->use_riwt) { 3326 u32 queue; 3327 3328 for (queue = 0; queue < rx_cnt; queue++) { 3329 if (!priv->rx_riwt[queue]) 3330 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3331 3332 stmmac_rx_watchdog(priv, priv->ioaddr, 3333 priv->rx_riwt[queue], queue); 3334 } 3335 } 3336 3337 if (priv->hw->pcs) 3338 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3339 3340 /* set TX and RX rings length */ 3341 stmmac_set_rings_length(priv); 3342 3343 /* Enable TSO */ 3344 if (priv->tso) { 3345 for (chan = 0; chan < tx_cnt; chan++) { 3346 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3347 3348 /* TSO and TBS cannot co-exist */ 3349 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3350 continue; 3351 3352 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3353 } 3354 } 3355 3356 /* Enable Split Header */ 3357 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3358 for (chan = 0; chan < rx_cnt; chan++) 3359 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3360 3361 3362 /* VLAN Tag Insertion */ 3363 if (priv->dma_cap.vlins) 3364 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3365 3366 /* TBS */ 3367 for (chan = 0; chan < tx_cnt; chan++) { 3368 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3369 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3370 3371 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3372 } 3373 3374 /* Configure real RX and TX queues */ 3375 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3376 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3377 3378 /* Start the ball rolling... */ 3379 stmmac_start_all_dma(priv); 3380 3381 if (priv->dma_cap.fpesel) { 3382 stmmac_fpe_start_wq(priv); 3383 3384 if (priv->plat->fpe_cfg->enable) 3385 stmmac_fpe_handshake(priv, true); 3386 } 3387 3388 return 0; 3389 } 3390 3391 static void stmmac_hw_teardown(struct net_device *dev) 3392 { 3393 struct stmmac_priv *priv = netdev_priv(dev); 3394 3395 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3396 } 3397 3398 static void stmmac_free_irq(struct net_device *dev, 3399 enum request_irq_err irq_err, int irq_idx) 3400 { 3401 struct stmmac_priv *priv = netdev_priv(dev); 3402 int j; 3403 3404 switch (irq_err) { 3405 case REQ_IRQ_ERR_ALL: 3406 irq_idx = priv->plat->tx_queues_to_use; 3407 fallthrough; 3408 case REQ_IRQ_ERR_TX: 3409 for (j = irq_idx - 1; j >= 0; j--) { 3410 if (priv->tx_irq[j] > 0) { 3411 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3412 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3413 } 3414 } 3415 irq_idx = priv->plat->rx_queues_to_use; 3416 fallthrough; 3417 case REQ_IRQ_ERR_RX: 3418 for (j = irq_idx - 1; j >= 0; j--) { 3419 if (priv->rx_irq[j] > 0) { 3420 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3421 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3422 } 3423 } 3424 3425 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3426 free_irq(priv->sfty_ue_irq, dev); 3427 fallthrough; 3428 case REQ_IRQ_ERR_SFTY_UE: 3429 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3430 free_irq(priv->sfty_ce_irq, dev); 3431 fallthrough; 3432 case REQ_IRQ_ERR_SFTY_CE: 3433 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3434 free_irq(priv->lpi_irq, dev); 3435 fallthrough; 3436 case REQ_IRQ_ERR_LPI: 3437 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3438 free_irq(priv->wol_irq, dev); 3439 fallthrough; 3440 case REQ_IRQ_ERR_WOL: 3441 free_irq(dev->irq, dev); 3442 fallthrough; 3443 case REQ_IRQ_ERR_MAC: 3444 case REQ_IRQ_ERR_NO: 3445 /* If MAC IRQ request error, no more IRQ to free */ 3446 break; 3447 } 3448 } 3449 3450 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3451 { 3452 struct stmmac_priv *priv = netdev_priv(dev); 3453 enum request_irq_err irq_err; 3454 cpumask_t cpu_mask; 3455 int irq_idx = 0; 3456 char *int_name; 3457 int ret; 3458 int i; 3459 3460 /* For common interrupt */ 3461 int_name = priv->int_name_mac; 3462 sprintf(int_name, "%s:%s", dev->name, "mac"); 3463 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3464 0, int_name, dev); 3465 if (unlikely(ret < 0)) { 3466 netdev_err(priv->dev, 3467 "%s: alloc mac MSI %d (error: %d)\n", 3468 __func__, dev->irq, ret); 3469 irq_err = REQ_IRQ_ERR_MAC; 3470 goto irq_error; 3471 } 3472 3473 /* Request the Wake IRQ in case of another line 3474 * is used for WoL 3475 */ 3476 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3477 int_name = priv->int_name_wol; 3478 sprintf(int_name, "%s:%s", dev->name, "wol"); 3479 ret = request_irq(priv->wol_irq, 3480 stmmac_mac_interrupt, 3481 0, int_name, dev); 3482 if (unlikely(ret < 0)) { 3483 netdev_err(priv->dev, 3484 "%s: alloc wol MSI %d (error: %d)\n", 3485 __func__, priv->wol_irq, ret); 3486 irq_err = REQ_IRQ_ERR_WOL; 3487 goto irq_error; 3488 } 3489 } 3490 3491 /* Request the LPI IRQ in case of another line 3492 * is used for LPI 3493 */ 3494 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3495 int_name = priv->int_name_lpi; 3496 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3497 ret = request_irq(priv->lpi_irq, 3498 stmmac_mac_interrupt, 3499 0, int_name, dev); 3500 if (unlikely(ret < 0)) { 3501 netdev_err(priv->dev, 3502 "%s: alloc lpi MSI %d (error: %d)\n", 3503 __func__, priv->lpi_irq, ret); 3504 irq_err = REQ_IRQ_ERR_LPI; 3505 goto irq_error; 3506 } 3507 } 3508 3509 /* Request the Safety Feature Correctible Error line in 3510 * case of another line is used 3511 */ 3512 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3513 int_name = priv->int_name_sfty_ce; 3514 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3515 ret = request_irq(priv->sfty_ce_irq, 3516 stmmac_safety_interrupt, 3517 0, int_name, dev); 3518 if (unlikely(ret < 0)) { 3519 netdev_err(priv->dev, 3520 "%s: alloc sfty ce MSI %d (error: %d)\n", 3521 __func__, priv->sfty_ce_irq, ret); 3522 irq_err = REQ_IRQ_ERR_SFTY_CE; 3523 goto irq_error; 3524 } 3525 } 3526 3527 /* Request the Safety Feature Uncorrectible Error line in 3528 * case of another line is used 3529 */ 3530 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3531 int_name = priv->int_name_sfty_ue; 3532 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3533 ret = request_irq(priv->sfty_ue_irq, 3534 stmmac_safety_interrupt, 3535 0, int_name, dev); 3536 if (unlikely(ret < 0)) { 3537 netdev_err(priv->dev, 3538 "%s: alloc sfty ue MSI %d (error: %d)\n", 3539 __func__, priv->sfty_ue_irq, ret); 3540 irq_err = REQ_IRQ_ERR_SFTY_UE; 3541 goto irq_error; 3542 } 3543 } 3544 3545 /* Request Rx MSI irq */ 3546 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3547 if (i >= MTL_MAX_RX_QUEUES) 3548 break; 3549 if (priv->rx_irq[i] == 0) 3550 continue; 3551 3552 int_name = priv->int_name_rx_irq[i]; 3553 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3554 ret = request_irq(priv->rx_irq[i], 3555 stmmac_msi_intr_rx, 3556 0, int_name, &priv->rx_queue[i]); 3557 if (unlikely(ret < 0)) { 3558 netdev_err(priv->dev, 3559 "%s: alloc rx-%d MSI %d (error: %d)\n", 3560 __func__, i, priv->rx_irq[i], ret); 3561 irq_err = REQ_IRQ_ERR_RX; 3562 irq_idx = i; 3563 goto irq_error; 3564 } 3565 cpumask_clear(&cpu_mask); 3566 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3567 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3568 } 3569 3570 /* Request Tx MSI irq */ 3571 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3572 if (i >= MTL_MAX_TX_QUEUES) 3573 break; 3574 if (priv->tx_irq[i] == 0) 3575 continue; 3576 3577 int_name = priv->int_name_tx_irq[i]; 3578 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3579 ret = request_irq(priv->tx_irq[i], 3580 stmmac_msi_intr_tx, 3581 0, int_name, &priv->tx_queue[i]); 3582 if (unlikely(ret < 0)) { 3583 netdev_err(priv->dev, 3584 "%s: alloc tx-%d MSI %d (error: %d)\n", 3585 __func__, i, priv->tx_irq[i], ret); 3586 irq_err = REQ_IRQ_ERR_TX; 3587 irq_idx = i; 3588 goto irq_error; 3589 } 3590 cpumask_clear(&cpu_mask); 3591 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3592 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3593 } 3594 3595 return 0; 3596 3597 irq_error: 3598 stmmac_free_irq(dev, irq_err, irq_idx); 3599 return ret; 3600 } 3601 3602 static int stmmac_request_irq_single(struct net_device *dev) 3603 { 3604 struct stmmac_priv *priv = netdev_priv(dev); 3605 enum request_irq_err irq_err; 3606 int ret; 3607 3608 ret = request_irq(dev->irq, stmmac_interrupt, 3609 IRQF_SHARED, dev->name, dev); 3610 if (unlikely(ret < 0)) { 3611 netdev_err(priv->dev, 3612 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3613 __func__, dev->irq, ret); 3614 irq_err = REQ_IRQ_ERR_MAC; 3615 goto irq_error; 3616 } 3617 3618 /* Request the Wake IRQ in case of another line 3619 * is used for WoL 3620 */ 3621 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3622 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3623 IRQF_SHARED, dev->name, dev); 3624 if (unlikely(ret < 0)) { 3625 netdev_err(priv->dev, 3626 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3627 __func__, priv->wol_irq, ret); 3628 irq_err = REQ_IRQ_ERR_WOL; 3629 goto irq_error; 3630 } 3631 } 3632 3633 /* Request the IRQ lines */ 3634 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3635 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3636 IRQF_SHARED, dev->name, dev); 3637 if (unlikely(ret < 0)) { 3638 netdev_err(priv->dev, 3639 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3640 __func__, priv->lpi_irq, ret); 3641 irq_err = REQ_IRQ_ERR_LPI; 3642 goto irq_error; 3643 } 3644 } 3645 3646 return 0; 3647 3648 irq_error: 3649 stmmac_free_irq(dev, irq_err, 0); 3650 return ret; 3651 } 3652 3653 static int stmmac_request_irq(struct net_device *dev) 3654 { 3655 struct stmmac_priv *priv = netdev_priv(dev); 3656 int ret; 3657 3658 /* Request the IRQ lines */ 3659 if (priv->plat->multi_msi_en) 3660 ret = stmmac_request_irq_multi_msi(dev); 3661 else 3662 ret = stmmac_request_irq_single(dev); 3663 3664 return ret; 3665 } 3666 3667 /** 3668 * stmmac_open - open entry point of the driver 3669 * @dev : pointer to the device structure. 3670 * Description: 3671 * This function is the open entry point of the driver. 3672 * Return value: 3673 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3674 * file on failure. 3675 */ 3676 int stmmac_open(struct net_device *dev) 3677 { 3678 struct stmmac_priv *priv = netdev_priv(dev); 3679 int mode = priv->plat->phy_interface; 3680 int bfsize = 0; 3681 u32 chan; 3682 int ret; 3683 3684 ret = pm_runtime_get_sync(priv->device); 3685 if (ret < 0) { 3686 pm_runtime_put_noidle(priv->device); 3687 return ret; 3688 } 3689 3690 if (priv->hw->pcs != STMMAC_PCS_TBI && 3691 priv->hw->pcs != STMMAC_PCS_RTBI && 3692 (!priv->hw->xpcs || 3693 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3694 ret = stmmac_init_phy(dev); 3695 if (ret) { 3696 netdev_err(priv->dev, 3697 "%s: Cannot attach to PHY (error: %d)\n", 3698 __func__, ret); 3699 goto init_phy_error; 3700 } 3701 } 3702 3703 /* Extra statistics */ 3704 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3705 priv->xstats.threshold = tc; 3706 3707 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3708 if (bfsize < 0) 3709 bfsize = 0; 3710 3711 if (bfsize < BUF_SIZE_16KiB) 3712 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3713 3714 priv->dma_buf_sz = bfsize; 3715 buf_sz = bfsize; 3716 3717 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3718 3719 if (!priv->dma_tx_size) 3720 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3721 if (!priv->dma_rx_size) 3722 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3723 3724 /* Earlier check for TBS */ 3725 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3726 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3727 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3728 3729 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3730 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3731 } 3732 3733 ret = alloc_dma_desc_resources(priv); 3734 if (ret < 0) { 3735 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3736 __func__); 3737 goto dma_desc_error; 3738 } 3739 3740 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3741 if (ret < 0) { 3742 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3743 __func__); 3744 goto init_error; 3745 } 3746 3747 ret = stmmac_hw_setup(dev, true); 3748 if (ret < 0) { 3749 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3750 goto init_error; 3751 } 3752 3753 stmmac_init_coalesce(priv); 3754 3755 phylink_start(priv->phylink); 3756 /* We may have called phylink_speed_down before */ 3757 phylink_speed_up(priv->phylink); 3758 3759 ret = stmmac_request_irq(dev); 3760 if (ret) 3761 goto irq_error; 3762 3763 stmmac_enable_all_queues(priv); 3764 netif_tx_start_all_queues(priv->dev); 3765 3766 return 0; 3767 3768 irq_error: 3769 phylink_stop(priv->phylink); 3770 3771 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3772 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3773 3774 stmmac_hw_teardown(dev); 3775 init_error: 3776 free_dma_desc_resources(priv); 3777 dma_desc_error: 3778 phylink_disconnect_phy(priv->phylink); 3779 init_phy_error: 3780 pm_runtime_put(priv->device); 3781 return ret; 3782 } 3783 3784 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3785 { 3786 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3787 3788 if (priv->fpe_wq) 3789 destroy_workqueue(priv->fpe_wq); 3790 3791 netdev_info(priv->dev, "FPE workqueue stop"); 3792 } 3793 3794 /** 3795 * stmmac_release - close entry point of the driver 3796 * @dev : device pointer. 3797 * Description: 3798 * This is the stop entry point of the driver. 3799 */ 3800 int stmmac_release(struct net_device *dev) 3801 { 3802 struct stmmac_priv *priv = netdev_priv(dev); 3803 u32 chan; 3804 3805 netif_tx_disable(dev); 3806 3807 if (device_may_wakeup(priv->device)) 3808 phylink_speed_down(priv->phylink, false); 3809 /* Stop and disconnect the PHY */ 3810 phylink_stop(priv->phylink); 3811 phylink_disconnect_phy(priv->phylink); 3812 3813 stmmac_disable_all_queues(priv); 3814 3815 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3816 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3817 3818 /* Free the IRQ lines */ 3819 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3820 3821 if (priv->eee_enabled) { 3822 priv->tx_path_in_lpi_mode = false; 3823 del_timer_sync(&priv->eee_ctrl_timer); 3824 } 3825 3826 /* Stop TX/RX DMA and clear the descriptors */ 3827 stmmac_stop_all_dma(priv); 3828 3829 /* Release and free the Rx/Tx resources */ 3830 free_dma_desc_resources(priv); 3831 3832 /* Disable the MAC Rx/Tx */ 3833 stmmac_mac_set(priv, priv->ioaddr, false); 3834 3835 netif_carrier_off(dev); 3836 3837 stmmac_release_ptp(priv); 3838 3839 pm_runtime_put(priv->device); 3840 3841 if (priv->dma_cap.fpesel) 3842 stmmac_fpe_stop_wq(priv); 3843 3844 return 0; 3845 } 3846 3847 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3848 struct stmmac_tx_queue *tx_q) 3849 { 3850 u16 tag = 0x0, inner_tag = 0x0; 3851 u32 inner_type = 0x0; 3852 struct dma_desc *p; 3853 3854 if (!priv->dma_cap.vlins) 3855 return false; 3856 if (!skb_vlan_tag_present(skb)) 3857 return false; 3858 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3859 inner_tag = skb_vlan_tag_get(skb); 3860 inner_type = STMMAC_VLAN_INSERT; 3861 } 3862 3863 tag = skb_vlan_tag_get(skb); 3864 3865 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3866 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3867 else 3868 p = &tx_q->dma_tx[tx_q->cur_tx]; 3869 3870 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3871 return false; 3872 3873 stmmac_set_tx_owner(priv, p); 3874 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3875 return true; 3876 } 3877 3878 /** 3879 * stmmac_tso_allocator - close entry point of the driver 3880 * @priv: driver private structure 3881 * @des: buffer start address 3882 * @total_len: total length to fill in descriptors 3883 * @last_segment: condition for the last descriptor 3884 * @queue: TX queue index 3885 * Description: 3886 * This function fills descriptor and request new descriptors according to 3887 * buffer length to fill 3888 */ 3889 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3890 int total_len, bool last_segment, u32 queue) 3891 { 3892 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3893 struct dma_desc *desc; 3894 u32 buff_size; 3895 int tmp_len; 3896 3897 tmp_len = total_len; 3898 3899 while (tmp_len > 0) { 3900 dma_addr_t curr_addr; 3901 3902 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3903 priv->dma_tx_size); 3904 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3905 3906 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3907 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3908 else 3909 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3910 3911 curr_addr = des + (total_len - tmp_len); 3912 if (priv->dma_cap.addr64 <= 32) 3913 desc->des0 = cpu_to_le32(curr_addr); 3914 else 3915 stmmac_set_desc_addr(priv, desc, curr_addr); 3916 3917 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3918 TSO_MAX_BUFF_SIZE : tmp_len; 3919 3920 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3921 0, 1, 3922 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3923 0, 0); 3924 3925 tmp_len -= TSO_MAX_BUFF_SIZE; 3926 } 3927 } 3928 3929 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3930 { 3931 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3932 int desc_size; 3933 3934 if (likely(priv->extend_desc)) 3935 desc_size = sizeof(struct dma_extended_desc); 3936 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3937 desc_size = sizeof(struct dma_edesc); 3938 else 3939 desc_size = sizeof(struct dma_desc); 3940 3941 /* The own bit must be the latest setting done when prepare the 3942 * descriptor and then barrier is needed to make sure that 3943 * all is coherent before granting the DMA engine. 3944 */ 3945 wmb(); 3946 3947 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3948 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3949 } 3950 3951 /** 3952 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3953 * @skb : the socket buffer 3954 * @dev : device pointer 3955 * Description: this is the transmit function that is called on TSO frames 3956 * (support available on GMAC4 and newer chips). 3957 * Diagram below show the ring programming in case of TSO frames: 3958 * 3959 * First Descriptor 3960 * -------- 3961 * | DES0 |---> buffer1 = L2/L3/L4 header 3962 * | DES1 |---> TCP Payload (can continue on next descr...) 3963 * | DES2 |---> buffer 1 and 2 len 3964 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3965 * -------- 3966 * | 3967 * ... 3968 * | 3969 * -------- 3970 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3971 * | DES1 | --| 3972 * | DES2 | --> buffer 1 and 2 len 3973 * | DES3 | 3974 * -------- 3975 * 3976 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3977 */ 3978 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3979 { 3980 struct dma_desc *desc, *first, *mss_desc = NULL; 3981 struct stmmac_priv *priv = netdev_priv(dev); 3982 int nfrags = skb_shinfo(skb)->nr_frags; 3983 u32 queue = skb_get_queue_mapping(skb); 3984 unsigned int first_entry, tx_packets; 3985 int tmp_pay_len = 0, first_tx; 3986 struct stmmac_tx_queue *tx_q; 3987 bool has_vlan, set_ic; 3988 u8 proto_hdr_len, hdr; 3989 u32 pay_len, mss; 3990 dma_addr_t des; 3991 int i; 3992 3993 tx_q = &priv->tx_queue[queue]; 3994 first_tx = tx_q->cur_tx; 3995 3996 /* Compute header lengths */ 3997 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3998 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3999 hdr = sizeof(struct udphdr); 4000 } else { 4001 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4002 hdr = tcp_hdrlen(skb); 4003 } 4004 4005 /* Desc availability based on threshold should be enough safe */ 4006 if (unlikely(stmmac_tx_avail(priv, queue) < 4007 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4008 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4009 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4010 queue)); 4011 /* This is a hard error, log it. */ 4012 netdev_err(priv->dev, 4013 "%s: Tx Ring full when queue awake\n", 4014 __func__); 4015 } 4016 return NETDEV_TX_BUSY; 4017 } 4018 4019 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4020 4021 mss = skb_shinfo(skb)->gso_size; 4022 4023 /* set new MSS value if needed */ 4024 if (mss != tx_q->mss) { 4025 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4026 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4027 else 4028 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4029 4030 stmmac_set_mss(priv, mss_desc, mss); 4031 tx_q->mss = mss; 4032 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4033 priv->dma_tx_size); 4034 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4035 } 4036 4037 if (netif_msg_tx_queued(priv)) { 4038 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4039 __func__, hdr, proto_hdr_len, pay_len, mss); 4040 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4041 skb->data_len); 4042 } 4043 4044 /* Check if VLAN can be inserted by HW */ 4045 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4046 4047 first_entry = tx_q->cur_tx; 4048 WARN_ON(tx_q->tx_skbuff[first_entry]); 4049 4050 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4051 desc = &tx_q->dma_entx[first_entry].basic; 4052 else 4053 desc = &tx_q->dma_tx[first_entry]; 4054 first = desc; 4055 4056 if (has_vlan) 4057 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4058 4059 /* first descriptor: fill Headers on Buf1 */ 4060 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4061 DMA_TO_DEVICE); 4062 if (dma_mapping_error(priv->device, des)) 4063 goto dma_map_err; 4064 4065 tx_q->tx_skbuff_dma[first_entry].buf = des; 4066 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4067 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4068 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4069 4070 if (priv->dma_cap.addr64 <= 32) { 4071 first->des0 = cpu_to_le32(des); 4072 4073 /* Fill start of payload in buff2 of first descriptor */ 4074 if (pay_len) 4075 first->des1 = cpu_to_le32(des + proto_hdr_len); 4076 4077 /* If needed take extra descriptors to fill the remaining payload */ 4078 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4079 } else { 4080 stmmac_set_desc_addr(priv, first, des); 4081 tmp_pay_len = pay_len; 4082 des += proto_hdr_len; 4083 pay_len = 0; 4084 } 4085 4086 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4087 4088 /* Prepare fragments */ 4089 for (i = 0; i < nfrags; i++) { 4090 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4091 4092 des = skb_frag_dma_map(priv->device, frag, 0, 4093 skb_frag_size(frag), 4094 DMA_TO_DEVICE); 4095 if (dma_mapping_error(priv->device, des)) 4096 goto dma_map_err; 4097 4098 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4099 (i == nfrags - 1), queue); 4100 4101 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4102 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4103 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4104 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4105 } 4106 4107 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4108 4109 /* Only the last descriptor gets to point to the skb. */ 4110 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4111 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4112 4113 /* Manage tx mitigation */ 4114 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4115 tx_q->tx_count_frames += tx_packets; 4116 4117 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4118 set_ic = true; 4119 else if (!priv->tx_coal_frames[queue]) 4120 set_ic = false; 4121 else if (tx_packets > priv->tx_coal_frames[queue]) 4122 set_ic = true; 4123 else if ((tx_q->tx_count_frames % 4124 priv->tx_coal_frames[queue]) < tx_packets) 4125 set_ic = true; 4126 else 4127 set_ic = false; 4128 4129 if (set_ic) { 4130 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4131 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4132 else 4133 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4134 4135 tx_q->tx_count_frames = 0; 4136 stmmac_set_tx_ic(priv, desc); 4137 priv->xstats.tx_set_ic_bit++; 4138 } 4139 4140 /* We've used all descriptors we need for this skb, however, 4141 * advance cur_tx so that it references a fresh descriptor. 4142 * ndo_start_xmit will fill this descriptor the next time it's 4143 * called and stmmac_tx_clean may clean up to this descriptor. 4144 */ 4145 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4146 4147 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4148 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4149 __func__); 4150 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4151 } 4152 4153 dev->stats.tx_bytes += skb->len; 4154 priv->xstats.tx_tso_frames++; 4155 priv->xstats.tx_tso_nfrags += nfrags; 4156 4157 if (priv->sarc_type) 4158 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4159 4160 skb_tx_timestamp(skb); 4161 4162 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4163 priv->hwts_tx_en)) { 4164 /* declare that device is doing timestamping */ 4165 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4166 stmmac_enable_tx_timestamp(priv, first); 4167 } 4168 4169 /* Complete the first descriptor before granting the DMA */ 4170 stmmac_prepare_tso_tx_desc(priv, first, 1, 4171 proto_hdr_len, 4172 pay_len, 4173 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4174 hdr / 4, (skb->len - proto_hdr_len)); 4175 4176 /* If context desc is used to change MSS */ 4177 if (mss_desc) { 4178 /* Make sure that first descriptor has been completely 4179 * written, including its own bit. This is because MSS is 4180 * actually before first descriptor, so we need to make 4181 * sure that MSS's own bit is the last thing written. 4182 */ 4183 dma_wmb(); 4184 stmmac_set_tx_owner(priv, mss_desc); 4185 } 4186 4187 if (netif_msg_pktdata(priv)) { 4188 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4189 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4190 tx_q->cur_tx, first, nfrags); 4191 pr_info(">>> frame to be transmitted: "); 4192 print_pkt(skb->data, skb_headlen(skb)); 4193 } 4194 4195 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4196 4197 stmmac_flush_tx_descriptors(priv, queue); 4198 stmmac_tx_timer_arm(priv, queue); 4199 4200 return NETDEV_TX_OK; 4201 4202 dma_map_err: 4203 dev_err(priv->device, "Tx dma map failed\n"); 4204 dev_kfree_skb(skb); 4205 priv->dev->stats.tx_dropped++; 4206 return NETDEV_TX_OK; 4207 } 4208 4209 /** 4210 * stmmac_xmit - Tx entry point of the driver 4211 * @skb : the socket buffer 4212 * @dev : device pointer 4213 * Description : this is the tx entry point of the driver. 4214 * It programs the chain or the ring and supports oversized frames 4215 * and SG feature. 4216 */ 4217 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4218 { 4219 unsigned int first_entry, tx_packets, enh_desc; 4220 struct stmmac_priv *priv = netdev_priv(dev); 4221 unsigned int nopaged_len = skb_headlen(skb); 4222 int i, csum_insertion = 0, is_jumbo = 0; 4223 u32 queue = skb_get_queue_mapping(skb); 4224 int nfrags = skb_shinfo(skb)->nr_frags; 4225 int gso = skb_shinfo(skb)->gso_type; 4226 struct dma_edesc *tbs_desc = NULL; 4227 struct dma_desc *desc, *first; 4228 struct stmmac_tx_queue *tx_q; 4229 bool has_vlan, set_ic; 4230 int entry, first_tx; 4231 dma_addr_t des; 4232 4233 tx_q = &priv->tx_queue[queue]; 4234 first_tx = tx_q->cur_tx; 4235 4236 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4237 stmmac_disable_eee_mode(priv); 4238 4239 /* Manage oversized TCP frames for GMAC4 device */ 4240 if (skb_is_gso(skb) && priv->tso) { 4241 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4242 return stmmac_tso_xmit(skb, dev); 4243 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4244 return stmmac_tso_xmit(skb, dev); 4245 } 4246 4247 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4248 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4249 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4250 queue)); 4251 /* This is a hard error, log it. */ 4252 netdev_err(priv->dev, 4253 "%s: Tx Ring full when queue awake\n", 4254 __func__); 4255 } 4256 return NETDEV_TX_BUSY; 4257 } 4258 4259 /* Check if VLAN can be inserted by HW */ 4260 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4261 4262 entry = tx_q->cur_tx; 4263 first_entry = entry; 4264 WARN_ON(tx_q->tx_skbuff[first_entry]); 4265 4266 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4267 4268 if (likely(priv->extend_desc)) 4269 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4270 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4271 desc = &tx_q->dma_entx[entry].basic; 4272 else 4273 desc = tx_q->dma_tx + entry; 4274 4275 first = desc; 4276 4277 if (has_vlan) 4278 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4279 4280 enh_desc = priv->plat->enh_desc; 4281 /* To program the descriptors according to the size of the frame */ 4282 if (enh_desc) 4283 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4284 4285 if (unlikely(is_jumbo)) { 4286 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4287 if (unlikely(entry < 0) && (entry != -EINVAL)) 4288 goto dma_map_err; 4289 } 4290 4291 for (i = 0; i < nfrags; i++) { 4292 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4293 int len = skb_frag_size(frag); 4294 bool last_segment = (i == (nfrags - 1)); 4295 4296 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4297 WARN_ON(tx_q->tx_skbuff[entry]); 4298 4299 if (likely(priv->extend_desc)) 4300 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4301 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4302 desc = &tx_q->dma_entx[entry].basic; 4303 else 4304 desc = tx_q->dma_tx + entry; 4305 4306 des = skb_frag_dma_map(priv->device, frag, 0, len, 4307 DMA_TO_DEVICE); 4308 if (dma_mapping_error(priv->device, des)) 4309 goto dma_map_err; /* should reuse desc w/o issues */ 4310 4311 tx_q->tx_skbuff_dma[entry].buf = des; 4312 4313 stmmac_set_desc_addr(priv, desc, des); 4314 4315 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4316 tx_q->tx_skbuff_dma[entry].len = len; 4317 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4318 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4319 4320 /* Prepare the descriptor and set the own bit too */ 4321 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4322 priv->mode, 1, last_segment, skb->len); 4323 } 4324 4325 /* Only the last descriptor gets to point to the skb. */ 4326 tx_q->tx_skbuff[entry] = skb; 4327 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4328 4329 /* According to the coalesce parameter the IC bit for the latest 4330 * segment is reset and the timer re-started to clean the tx status. 4331 * This approach takes care about the fragments: desc is the first 4332 * element in case of no SG. 4333 */ 4334 tx_packets = (entry + 1) - first_tx; 4335 tx_q->tx_count_frames += tx_packets; 4336 4337 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4338 set_ic = true; 4339 else if (!priv->tx_coal_frames[queue]) 4340 set_ic = false; 4341 else if (tx_packets > priv->tx_coal_frames[queue]) 4342 set_ic = true; 4343 else if ((tx_q->tx_count_frames % 4344 priv->tx_coal_frames[queue]) < tx_packets) 4345 set_ic = true; 4346 else 4347 set_ic = false; 4348 4349 if (set_ic) { 4350 if (likely(priv->extend_desc)) 4351 desc = &tx_q->dma_etx[entry].basic; 4352 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4353 desc = &tx_q->dma_entx[entry].basic; 4354 else 4355 desc = &tx_q->dma_tx[entry]; 4356 4357 tx_q->tx_count_frames = 0; 4358 stmmac_set_tx_ic(priv, desc); 4359 priv->xstats.tx_set_ic_bit++; 4360 } 4361 4362 /* We've used all descriptors we need for this skb, however, 4363 * advance cur_tx so that it references a fresh descriptor. 4364 * ndo_start_xmit will fill this descriptor the next time it's 4365 * called and stmmac_tx_clean may clean up to this descriptor. 4366 */ 4367 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4368 tx_q->cur_tx = entry; 4369 4370 if (netif_msg_pktdata(priv)) { 4371 netdev_dbg(priv->dev, 4372 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4373 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4374 entry, first, nfrags); 4375 4376 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4377 print_pkt(skb->data, skb->len); 4378 } 4379 4380 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4381 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4382 __func__); 4383 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4384 } 4385 4386 dev->stats.tx_bytes += skb->len; 4387 4388 if (priv->sarc_type) 4389 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4390 4391 skb_tx_timestamp(skb); 4392 4393 /* Ready to fill the first descriptor and set the OWN bit w/o any 4394 * problems because all the descriptors are actually ready to be 4395 * passed to the DMA engine. 4396 */ 4397 if (likely(!is_jumbo)) { 4398 bool last_segment = (nfrags == 0); 4399 4400 des = dma_map_single(priv->device, skb->data, 4401 nopaged_len, DMA_TO_DEVICE); 4402 if (dma_mapping_error(priv->device, des)) 4403 goto dma_map_err; 4404 4405 tx_q->tx_skbuff_dma[first_entry].buf = des; 4406 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4407 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4408 4409 stmmac_set_desc_addr(priv, first, des); 4410 4411 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4412 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4413 4414 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4415 priv->hwts_tx_en)) { 4416 /* declare that device is doing timestamping */ 4417 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4418 stmmac_enable_tx_timestamp(priv, first); 4419 } 4420 4421 /* Prepare the first descriptor setting the OWN bit too */ 4422 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4423 csum_insertion, priv->mode, 0, last_segment, 4424 skb->len); 4425 } 4426 4427 if (tx_q->tbs & STMMAC_TBS_EN) { 4428 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4429 4430 tbs_desc = &tx_q->dma_entx[first_entry]; 4431 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4432 } 4433 4434 stmmac_set_tx_owner(priv, first); 4435 4436 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4437 4438 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4439 4440 stmmac_flush_tx_descriptors(priv, queue); 4441 stmmac_tx_timer_arm(priv, queue); 4442 4443 return NETDEV_TX_OK; 4444 4445 dma_map_err: 4446 netdev_err(priv->dev, "Tx DMA map failed\n"); 4447 dev_kfree_skb(skb); 4448 priv->dev->stats.tx_dropped++; 4449 return NETDEV_TX_OK; 4450 } 4451 4452 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4453 { 4454 struct vlan_ethhdr *veth; 4455 __be16 vlan_proto; 4456 u16 vlanid; 4457 4458 veth = (struct vlan_ethhdr *)skb->data; 4459 vlan_proto = veth->h_vlan_proto; 4460 4461 if ((vlan_proto == htons(ETH_P_8021Q) && 4462 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4463 (vlan_proto == htons(ETH_P_8021AD) && 4464 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4465 /* pop the vlan tag */ 4466 vlanid = ntohs(veth->h_vlan_TCI); 4467 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4468 skb_pull(skb, VLAN_HLEN); 4469 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4470 } 4471 } 4472 4473 /** 4474 * stmmac_rx_refill - refill used skb preallocated buffers 4475 * @priv: driver private structure 4476 * @queue: RX queue index 4477 * Description : this is to reallocate the skb for the reception process 4478 * that is based on zero-copy. 4479 */ 4480 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4481 { 4482 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4483 int dirty = stmmac_rx_dirty(priv, queue); 4484 unsigned int entry = rx_q->dirty_rx; 4485 4486 while (dirty-- > 0) { 4487 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4488 struct dma_desc *p; 4489 bool use_rx_wd; 4490 4491 if (priv->extend_desc) 4492 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4493 else 4494 p = rx_q->dma_rx + entry; 4495 4496 if (!buf->page) { 4497 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 4498 if (!buf->page) 4499 break; 4500 } 4501 4502 if (priv->sph && !buf->sec_page) { 4503 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 4504 if (!buf->sec_page) 4505 break; 4506 4507 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4508 } 4509 4510 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4511 4512 stmmac_set_desc_addr(priv, p, buf->addr); 4513 if (priv->sph) 4514 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4515 else 4516 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4517 stmmac_refill_desc3(priv, rx_q, p); 4518 4519 rx_q->rx_count_frames++; 4520 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4521 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4522 rx_q->rx_count_frames = 0; 4523 4524 use_rx_wd = !priv->rx_coal_frames[queue]; 4525 use_rx_wd |= rx_q->rx_count_frames > 0; 4526 if (!priv->use_riwt) 4527 use_rx_wd = false; 4528 4529 dma_wmb(); 4530 stmmac_set_rx_owner(priv, p, use_rx_wd); 4531 4532 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4533 } 4534 rx_q->dirty_rx = entry; 4535 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4536 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4537 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4538 } 4539 4540 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4541 struct dma_desc *p, 4542 int status, unsigned int len) 4543 { 4544 unsigned int plen = 0, hlen = 0; 4545 int coe = priv->hw->rx_csum; 4546 4547 /* Not first descriptor, buffer is always zero */ 4548 if (priv->sph && len) 4549 return 0; 4550 4551 /* First descriptor, get split header length */ 4552 stmmac_get_rx_header_len(priv, p, &hlen); 4553 if (priv->sph && hlen) { 4554 priv->xstats.rx_split_hdr_pkt_n++; 4555 return hlen; 4556 } 4557 4558 /* First descriptor, not last descriptor and not split header */ 4559 if (status & rx_not_ls) 4560 return priv->dma_buf_sz; 4561 4562 plen = stmmac_get_rx_frame_len(priv, p, coe); 4563 4564 /* First descriptor and last descriptor and not split header */ 4565 return min_t(unsigned int, priv->dma_buf_sz, plen); 4566 } 4567 4568 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4569 struct dma_desc *p, 4570 int status, unsigned int len) 4571 { 4572 int coe = priv->hw->rx_csum; 4573 unsigned int plen = 0; 4574 4575 /* Not split header, buffer is not available */ 4576 if (!priv->sph) 4577 return 0; 4578 4579 /* Not last descriptor */ 4580 if (status & rx_not_ls) 4581 return priv->dma_buf_sz; 4582 4583 plen = stmmac_get_rx_frame_len(priv, p, coe); 4584 4585 /* Last descriptor */ 4586 return plen - len; 4587 } 4588 4589 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4590 struct xdp_frame *xdpf, bool dma_map) 4591 { 4592 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4593 unsigned int entry = tx_q->cur_tx; 4594 struct dma_desc *tx_desc; 4595 dma_addr_t dma_addr; 4596 bool set_ic; 4597 4598 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4599 return STMMAC_XDP_CONSUMED; 4600 4601 if (likely(priv->extend_desc)) 4602 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4603 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4604 tx_desc = &tx_q->dma_entx[entry].basic; 4605 else 4606 tx_desc = tx_q->dma_tx + entry; 4607 4608 if (dma_map) { 4609 dma_addr = dma_map_single(priv->device, xdpf->data, 4610 xdpf->len, DMA_TO_DEVICE); 4611 if (dma_mapping_error(priv->device, dma_addr)) 4612 return STMMAC_XDP_CONSUMED; 4613 4614 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4615 } else { 4616 struct page *page = virt_to_page(xdpf->data); 4617 4618 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4619 xdpf->headroom; 4620 dma_sync_single_for_device(priv->device, dma_addr, 4621 xdpf->len, DMA_BIDIRECTIONAL); 4622 4623 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4624 } 4625 4626 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4627 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4628 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4629 tx_q->tx_skbuff_dma[entry].last_segment = true; 4630 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4631 4632 tx_q->xdpf[entry] = xdpf; 4633 4634 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4635 4636 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4637 true, priv->mode, true, true, 4638 xdpf->len); 4639 4640 tx_q->tx_count_frames++; 4641 4642 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4643 set_ic = true; 4644 else 4645 set_ic = false; 4646 4647 if (set_ic) { 4648 tx_q->tx_count_frames = 0; 4649 stmmac_set_tx_ic(priv, tx_desc); 4650 priv->xstats.tx_set_ic_bit++; 4651 } 4652 4653 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4654 4655 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4656 tx_q->cur_tx = entry; 4657 4658 return STMMAC_XDP_TX; 4659 } 4660 4661 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4662 int cpu) 4663 { 4664 int index = cpu; 4665 4666 if (unlikely(index < 0)) 4667 index = 0; 4668 4669 while (index >= priv->plat->tx_queues_to_use) 4670 index -= priv->plat->tx_queues_to_use; 4671 4672 return index; 4673 } 4674 4675 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4676 struct xdp_buff *xdp) 4677 { 4678 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4679 int cpu = smp_processor_id(); 4680 struct netdev_queue *nq; 4681 int queue; 4682 int res; 4683 4684 if (unlikely(!xdpf)) 4685 return STMMAC_XDP_CONSUMED; 4686 4687 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4688 nq = netdev_get_tx_queue(priv->dev, queue); 4689 4690 __netif_tx_lock(nq, cpu); 4691 /* Avoids TX time-out as we are sharing with slow path */ 4692 nq->trans_start = jiffies; 4693 4694 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4695 if (res == STMMAC_XDP_TX) 4696 stmmac_flush_tx_descriptors(priv, queue); 4697 4698 __netif_tx_unlock(nq); 4699 4700 return res; 4701 } 4702 4703 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4704 struct bpf_prog *prog, 4705 struct xdp_buff *xdp) 4706 { 4707 u32 act; 4708 int res; 4709 4710 act = bpf_prog_run_xdp(prog, xdp); 4711 switch (act) { 4712 case XDP_PASS: 4713 res = STMMAC_XDP_PASS; 4714 break; 4715 case XDP_TX: 4716 res = stmmac_xdp_xmit_back(priv, xdp); 4717 break; 4718 case XDP_REDIRECT: 4719 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4720 res = STMMAC_XDP_CONSUMED; 4721 else 4722 res = STMMAC_XDP_REDIRECT; 4723 break; 4724 default: 4725 bpf_warn_invalid_xdp_action(act); 4726 fallthrough; 4727 case XDP_ABORTED: 4728 trace_xdp_exception(priv->dev, prog, act); 4729 fallthrough; 4730 case XDP_DROP: 4731 res = STMMAC_XDP_CONSUMED; 4732 break; 4733 } 4734 4735 return res; 4736 } 4737 4738 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4739 struct xdp_buff *xdp) 4740 { 4741 struct bpf_prog *prog; 4742 int res; 4743 4744 prog = READ_ONCE(priv->xdp_prog); 4745 if (!prog) { 4746 res = STMMAC_XDP_PASS; 4747 goto out; 4748 } 4749 4750 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4751 out: 4752 return ERR_PTR(-res); 4753 } 4754 4755 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4756 int xdp_status) 4757 { 4758 int cpu = smp_processor_id(); 4759 int queue; 4760 4761 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4762 4763 if (xdp_status & STMMAC_XDP_TX) 4764 stmmac_tx_timer_arm(priv, queue); 4765 4766 if (xdp_status & STMMAC_XDP_REDIRECT) 4767 xdp_do_flush(); 4768 } 4769 4770 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4771 struct xdp_buff *xdp) 4772 { 4773 unsigned int metasize = xdp->data - xdp->data_meta; 4774 unsigned int datasize = xdp->data_end - xdp->data; 4775 struct sk_buff *skb; 4776 4777 skb = __napi_alloc_skb(&ch->rxtx_napi, 4778 xdp->data_end - xdp->data_hard_start, 4779 GFP_ATOMIC | __GFP_NOWARN); 4780 if (unlikely(!skb)) 4781 return NULL; 4782 4783 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4784 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4785 if (metasize) 4786 skb_metadata_set(skb, metasize); 4787 4788 return skb; 4789 } 4790 4791 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4792 struct dma_desc *p, struct dma_desc *np, 4793 struct xdp_buff *xdp) 4794 { 4795 struct stmmac_channel *ch = &priv->channel[queue]; 4796 unsigned int len = xdp->data_end - xdp->data; 4797 enum pkt_hash_types hash_type; 4798 int coe = priv->hw->rx_csum; 4799 struct sk_buff *skb; 4800 u32 hash; 4801 4802 skb = stmmac_construct_skb_zc(ch, xdp); 4803 if (!skb) { 4804 priv->dev->stats.rx_dropped++; 4805 return; 4806 } 4807 4808 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4809 stmmac_rx_vlan(priv->dev, skb); 4810 skb->protocol = eth_type_trans(skb, priv->dev); 4811 4812 if (unlikely(!coe)) 4813 skb_checksum_none_assert(skb); 4814 else 4815 skb->ip_summed = CHECKSUM_UNNECESSARY; 4816 4817 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4818 skb_set_hash(skb, hash, hash_type); 4819 4820 skb_record_rx_queue(skb, queue); 4821 napi_gro_receive(&ch->rxtx_napi, skb); 4822 4823 priv->dev->stats.rx_packets++; 4824 priv->dev->stats.rx_bytes += len; 4825 } 4826 4827 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4828 { 4829 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4830 unsigned int entry = rx_q->dirty_rx; 4831 struct dma_desc *rx_desc = NULL; 4832 bool ret = true; 4833 4834 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4835 4836 while (budget-- > 0 && entry != rx_q->cur_rx) { 4837 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4838 dma_addr_t dma_addr; 4839 bool use_rx_wd; 4840 4841 if (!buf->xdp) { 4842 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4843 if (!buf->xdp) { 4844 ret = false; 4845 break; 4846 } 4847 } 4848 4849 if (priv->extend_desc) 4850 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4851 else 4852 rx_desc = rx_q->dma_rx + entry; 4853 4854 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4855 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4856 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4857 stmmac_refill_desc3(priv, rx_q, rx_desc); 4858 4859 rx_q->rx_count_frames++; 4860 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4861 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4862 rx_q->rx_count_frames = 0; 4863 4864 use_rx_wd = !priv->rx_coal_frames[queue]; 4865 use_rx_wd |= rx_q->rx_count_frames > 0; 4866 if (!priv->use_riwt) 4867 use_rx_wd = false; 4868 4869 dma_wmb(); 4870 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4871 4872 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4873 } 4874 4875 if (rx_desc) { 4876 rx_q->dirty_rx = entry; 4877 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4878 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4879 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4880 } 4881 4882 return ret; 4883 } 4884 4885 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4886 { 4887 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4888 unsigned int count = 0, error = 0, len = 0; 4889 int dirty = stmmac_rx_dirty(priv, queue); 4890 unsigned int next_entry = rx_q->cur_rx; 4891 unsigned int desc_size; 4892 struct bpf_prog *prog; 4893 bool failure = false; 4894 int xdp_status = 0; 4895 int status = 0; 4896 4897 if (netif_msg_rx_status(priv)) { 4898 void *rx_head; 4899 4900 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4901 if (priv->extend_desc) { 4902 rx_head = (void *)rx_q->dma_erx; 4903 desc_size = sizeof(struct dma_extended_desc); 4904 } else { 4905 rx_head = (void *)rx_q->dma_rx; 4906 desc_size = sizeof(struct dma_desc); 4907 } 4908 4909 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4910 rx_q->dma_rx_phy, desc_size); 4911 } 4912 while (count < limit) { 4913 struct stmmac_rx_buffer *buf; 4914 unsigned int buf1_len = 0; 4915 struct dma_desc *np, *p; 4916 int entry; 4917 int res; 4918 4919 if (!count && rx_q->state_saved) { 4920 error = rx_q->state.error; 4921 len = rx_q->state.len; 4922 } else { 4923 rx_q->state_saved = false; 4924 error = 0; 4925 len = 0; 4926 } 4927 4928 if (count >= limit) 4929 break; 4930 4931 read_again: 4932 buf1_len = 0; 4933 entry = next_entry; 4934 buf = &rx_q->buf_pool[entry]; 4935 4936 if (dirty >= STMMAC_RX_FILL_BATCH) { 4937 failure = failure || 4938 !stmmac_rx_refill_zc(priv, queue, dirty); 4939 dirty = 0; 4940 } 4941 4942 if (priv->extend_desc) 4943 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4944 else 4945 p = rx_q->dma_rx + entry; 4946 4947 /* read the status of the incoming frame */ 4948 status = stmmac_rx_status(priv, &priv->dev->stats, 4949 &priv->xstats, p); 4950 /* check if managed by the DMA otherwise go ahead */ 4951 if (unlikely(status & dma_own)) 4952 break; 4953 4954 /* Prefetch the next RX descriptor */ 4955 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4956 priv->dma_rx_size); 4957 next_entry = rx_q->cur_rx; 4958 4959 if (priv->extend_desc) 4960 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4961 else 4962 np = rx_q->dma_rx + next_entry; 4963 4964 prefetch(np); 4965 4966 /* Ensure a valid XSK buffer before proceed */ 4967 if (!buf->xdp) 4968 break; 4969 4970 if (priv->extend_desc) 4971 stmmac_rx_extended_status(priv, &priv->dev->stats, 4972 &priv->xstats, 4973 rx_q->dma_erx + entry); 4974 if (unlikely(status == discard_frame)) { 4975 xsk_buff_free(buf->xdp); 4976 buf->xdp = NULL; 4977 dirty++; 4978 error = 1; 4979 if (!priv->hwts_rx_en) 4980 priv->dev->stats.rx_errors++; 4981 } 4982 4983 if (unlikely(error && (status & rx_not_ls))) 4984 goto read_again; 4985 if (unlikely(error)) { 4986 count++; 4987 continue; 4988 } 4989 4990 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4991 if (likely(status & rx_not_ls)) { 4992 xsk_buff_free(buf->xdp); 4993 buf->xdp = NULL; 4994 dirty++; 4995 count++; 4996 goto read_again; 4997 } 4998 4999 /* XDP ZC Frame only support primary buffers for now */ 5000 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5001 len += buf1_len; 5002 5003 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5004 * Type frames (LLC/LLC-SNAP) 5005 * 5006 * llc_snap is never checked in GMAC >= 4, so this ACS 5007 * feature is always disabled and packets need to be 5008 * stripped manually. 5009 */ 5010 if (likely(!(status & rx_not_ls)) && 5011 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5012 unlikely(status != llc_snap))) { 5013 buf1_len -= ETH_FCS_LEN; 5014 len -= ETH_FCS_LEN; 5015 } 5016 5017 /* RX buffer is good and fit into a XSK pool buffer */ 5018 buf->xdp->data_end = buf->xdp->data + buf1_len; 5019 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5020 5021 prog = READ_ONCE(priv->xdp_prog); 5022 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5023 5024 switch (res) { 5025 case STMMAC_XDP_PASS: 5026 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5027 xsk_buff_free(buf->xdp); 5028 break; 5029 case STMMAC_XDP_CONSUMED: 5030 xsk_buff_free(buf->xdp); 5031 priv->dev->stats.rx_dropped++; 5032 break; 5033 case STMMAC_XDP_TX: 5034 case STMMAC_XDP_REDIRECT: 5035 xdp_status |= res; 5036 break; 5037 } 5038 5039 buf->xdp = NULL; 5040 dirty++; 5041 count++; 5042 } 5043 5044 if (status & rx_not_ls) { 5045 rx_q->state_saved = true; 5046 rx_q->state.error = error; 5047 rx_q->state.len = len; 5048 } 5049 5050 stmmac_finalize_xdp_rx(priv, xdp_status); 5051 5052 priv->xstats.rx_pkt_n += count; 5053 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5054 5055 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5056 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5057 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5058 else 5059 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5060 5061 return (int)count; 5062 } 5063 5064 return failure ? limit : (int)count; 5065 } 5066 5067 /** 5068 * stmmac_rx - manage the receive process 5069 * @priv: driver private structure 5070 * @limit: napi bugget 5071 * @queue: RX queue index. 5072 * Description : this the function called by the napi poll method. 5073 * It gets all the frames inside the ring. 5074 */ 5075 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5076 { 5077 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5078 struct stmmac_channel *ch = &priv->channel[queue]; 5079 unsigned int count = 0, error = 0, len = 0; 5080 int status = 0, coe = priv->hw->rx_csum; 5081 unsigned int next_entry = rx_q->cur_rx; 5082 enum dma_data_direction dma_dir; 5083 unsigned int desc_size; 5084 struct sk_buff *skb = NULL; 5085 struct xdp_buff xdp; 5086 int xdp_status = 0; 5087 int buf_sz; 5088 5089 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5090 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5091 5092 if (netif_msg_rx_status(priv)) { 5093 void *rx_head; 5094 5095 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5096 if (priv->extend_desc) { 5097 rx_head = (void *)rx_q->dma_erx; 5098 desc_size = sizeof(struct dma_extended_desc); 5099 } else { 5100 rx_head = (void *)rx_q->dma_rx; 5101 desc_size = sizeof(struct dma_desc); 5102 } 5103 5104 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5105 rx_q->dma_rx_phy, desc_size); 5106 } 5107 while (count < limit) { 5108 unsigned int buf1_len = 0, buf2_len = 0; 5109 enum pkt_hash_types hash_type; 5110 struct stmmac_rx_buffer *buf; 5111 struct dma_desc *np, *p; 5112 int entry; 5113 u32 hash; 5114 5115 if (!count && rx_q->state_saved) { 5116 skb = rx_q->state.skb; 5117 error = rx_q->state.error; 5118 len = rx_q->state.len; 5119 } else { 5120 rx_q->state_saved = false; 5121 skb = NULL; 5122 error = 0; 5123 len = 0; 5124 } 5125 5126 if (count >= limit) 5127 break; 5128 5129 read_again: 5130 buf1_len = 0; 5131 buf2_len = 0; 5132 entry = next_entry; 5133 buf = &rx_q->buf_pool[entry]; 5134 5135 if (priv->extend_desc) 5136 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5137 else 5138 p = rx_q->dma_rx + entry; 5139 5140 /* read the status of the incoming frame */ 5141 status = stmmac_rx_status(priv, &priv->dev->stats, 5142 &priv->xstats, p); 5143 /* check if managed by the DMA otherwise go ahead */ 5144 if (unlikely(status & dma_own)) 5145 break; 5146 5147 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5148 priv->dma_rx_size); 5149 next_entry = rx_q->cur_rx; 5150 5151 if (priv->extend_desc) 5152 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5153 else 5154 np = rx_q->dma_rx + next_entry; 5155 5156 prefetch(np); 5157 5158 if (priv->extend_desc) 5159 stmmac_rx_extended_status(priv, &priv->dev->stats, 5160 &priv->xstats, rx_q->dma_erx + entry); 5161 if (unlikely(status == discard_frame)) { 5162 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5163 buf->page = NULL; 5164 error = 1; 5165 if (!priv->hwts_rx_en) 5166 priv->dev->stats.rx_errors++; 5167 } 5168 5169 if (unlikely(error && (status & rx_not_ls))) 5170 goto read_again; 5171 if (unlikely(error)) { 5172 dev_kfree_skb(skb); 5173 skb = NULL; 5174 count++; 5175 continue; 5176 } 5177 5178 /* Buffer is good. Go on. */ 5179 5180 prefetch(page_address(buf->page) + buf->page_offset); 5181 if (buf->sec_page) 5182 prefetch(page_address(buf->sec_page)); 5183 5184 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5185 len += buf1_len; 5186 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5187 len += buf2_len; 5188 5189 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5190 * Type frames (LLC/LLC-SNAP) 5191 * 5192 * llc_snap is never checked in GMAC >= 4, so this ACS 5193 * feature is always disabled and packets need to be 5194 * stripped manually. 5195 */ 5196 if (likely(!(status & rx_not_ls)) && 5197 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5198 unlikely(status != llc_snap))) { 5199 if (buf2_len) { 5200 buf2_len -= ETH_FCS_LEN; 5201 len -= ETH_FCS_LEN; 5202 } else if (buf1_len) { 5203 buf1_len -= ETH_FCS_LEN; 5204 len -= ETH_FCS_LEN; 5205 } 5206 } 5207 5208 if (!skb) { 5209 unsigned int pre_len, sync_len; 5210 5211 dma_sync_single_for_cpu(priv->device, buf->addr, 5212 buf1_len, dma_dir); 5213 5214 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5215 xdp_prepare_buff(&xdp, page_address(buf->page), 5216 buf->page_offset, buf1_len, false); 5217 5218 pre_len = xdp.data_end - xdp.data_hard_start - 5219 buf->page_offset; 5220 skb = stmmac_xdp_run_prog(priv, &xdp); 5221 /* Due xdp_adjust_tail: DMA sync for_device 5222 * cover max len CPU touch 5223 */ 5224 sync_len = xdp.data_end - xdp.data_hard_start - 5225 buf->page_offset; 5226 sync_len = max(sync_len, pre_len); 5227 5228 /* For Not XDP_PASS verdict */ 5229 if (IS_ERR(skb)) { 5230 unsigned int xdp_res = -PTR_ERR(skb); 5231 5232 if (xdp_res & STMMAC_XDP_CONSUMED) { 5233 page_pool_put_page(rx_q->page_pool, 5234 virt_to_head_page(xdp.data), 5235 sync_len, true); 5236 buf->page = NULL; 5237 priv->dev->stats.rx_dropped++; 5238 5239 /* Clear skb as it was set as 5240 * status by XDP program. 5241 */ 5242 skb = NULL; 5243 5244 if (unlikely((status & rx_not_ls))) 5245 goto read_again; 5246 5247 count++; 5248 continue; 5249 } else if (xdp_res & (STMMAC_XDP_TX | 5250 STMMAC_XDP_REDIRECT)) { 5251 xdp_status |= xdp_res; 5252 buf->page = NULL; 5253 skb = NULL; 5254 count++; 5255 continue; 5256 } 5257 } 5258 } 5259 5260 if (!skb) { 5261 /* XDP program may expand or reduce tail */ 5262 buf1_len = xdp.data_end - xdp.data; 5263 5264 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5265 if (!skb) { 5266 priv->dev->stats.rx_dropped++; 5267 count++; 5268 goto drain_data; 5269 } 5270 5271 /* XDP program may adjust header */ 5272 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5273 skb_put(skb, buf1_len); 5274 5275 /* Data payload copied into SKB, page ready for recycle */ 5276 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5277 buf->page = NULL; 5278 } else if (buf1_len) { 5279 dma_sync_single_for_cpu(priv->device, buf->addr, 5280 buf1_len, dma_dir); 5281 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5282 buf->page, buf->page_offset, buf1_len, 5283 priv->dma_buf_sz); 5284 5285 /* Data payload appended into SKB */ 5286 page_pool_release_page(rx_q->page_pool, buf->page); 5287 buf->page = NULL; 5288 } 5289 5290 if (buf2_len) { 5291 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5292 buf2_len, dma_dir); 5293 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5294 buf->sec_page, 0, buf2_len, 5295 priv->dma_buf_sz); 5296 5297 /* Data payload appended into SKB */ 5298 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5299 buf->sec_page = NULL; 5300 } 5301 5302 drain_data: 5303 if (likely(status & rx_not_ls)) 5304 goto read_again; 5305 if (!skb) 5306 continue; 5307 5308 /* Got entire packet into SKB. Finish it. */ 5309 5310 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5311 stmmac_rx_vlan(priv->dev, skb); 5312 skb->protocol = eth_type_trans(skb, priv->dev); 5313 5314 if (unlikely(!coe)) 5315 skb_checksum_none_assert(skb); 5316 else 5317 skb->ip_summed = CHECKSUM_UNNECESSARY; 5318 5319 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5320 skb_set_hash(skb, hash, hash_type); 5321 5322 skb_record_rx_queue(skb, queue); 5323 napi_gro_receive(&ch->rx_napi, skb); 5324 skb = NULL; 5325 5326 priv->dev->stats.rx_packets++; 5327 priv->dev->stats.rx_bytes += len; 5328 count++; 5329 } 5330 5331 if (status & rx_not_ls || skb) { 5332 rx_q->state_saved = true; 5333 rx_q->state.skb = skb; 5334 rx_q->state.error = error; 5335 rx_q->state.len = len; 5336 } 5337 5338 stmmac_finalize_xdp_rx(priv, xdp_status); 5339 5340 stmmac_rx_refill(priv, queue); 5341 5342 priv->xstats.rx_pkt_n += count; 5343 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5344 5345 return count; 5346 } 5347 5348 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5349 { 5350 struct stmmac_channel *ch = 5351 container_of(napi, struct stmmac_channel, rx_napi); 5352 struct stmmac_priv *priv = ch->priv_data; 5353 u32 chan = ch->index; 5354 int work_done; 5355 5356 priv->xstats.napi_poll++; 5357 5358 work_done = stmmac_rx(priv, budget, chan); 5359 if (work_done < budget && napi_complete_done(napi, work_done)) { 5360 unsigned long flags; 5361 5362 spin_lock_irqsave(&ch->lock, flags); 5363 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5364 spin_unlock_irqrestore(&ch->lock, flags); 5365 } 5366 5367 return work_done; 5368 } 5369 5370 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5371 { 5372 struct stmmac_channel *ch = 5373 container_of(napi, struct stmmac_channel, tx_napi); 5374 struct stmmac_priv *priv = ch->priv_data; 5375 u32 chan = ch->index; 5376 int work_done; 5377 5378 priv->xstats.napi_poll++; 5379 5380 work_done = stmmac_tx_clean(priv, budget, chan); 5381 work_done = min(work_done, budget); 5382 5383 if (work_done < budget && napi_complete_done(napi, work_done)) { 5384 unsigned long flags; 5385 5386 spin_lock_irqsave(&ch->lock, flags); 5387 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5388 spin_unlock_irqrestore(&ch->lock, flags); 5389 } 5390 5391 return work_done; 5392 } 5393 5394 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5395 { 5396 struct stmmac_channel *ch = 5397 container_of(napi, struct stmmac_channel, rxtx_napi); 5398 struct stmmac_priv *priv = ch->priv_data; 5399 int rx_done, tx_done, rxtx_done; 5400 u32 chan = ch->index; 5401 5402 priv->xstats.napi_poll++; 5403 5404 tx_done = stmmac_tx_clean(priv, budget, chan); 5405 tx_done = min(tx_done, budget); 5406 5407 rx_done = stmmac_rx_zc(priv, budget, chan); 5408 5409 rxtx_done = max(tx_done, rx_done); 5410 5411 /* If either TX or RX work is not complete, return budget 5412 * and keep pooling 5413 */ 5414 if (rxtx_done >= budget) 5415 return budget; 5416 5417 /* all work done, exit the polling mode */ 5418 if (napi_complete_done(napi, rxtx_done)) { 5419 unsigned long flags; 5420 5421 spin_lock_irqsave(&ch->lock, flags); 5422 /* Both RX and TX work done are compelte, 5423 * so enable both RX & TX IRQs. 5424 */ 5425 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5426 spin_unlock_irqrestore(&ch->lock, flags); 5427 } 5428 5429 return min(rxtx_done, budget - 1); 5430 } 5431 5432 /** 5433 * stmmac_tx_timeout 5434 * @dev : Pointer to net device structure 5435 * @txqueue: the index of the hanging transmit queue 5436 * Description: this function is called when a packet transmission fails to 5437 * complete within a reasonable time. The driver will mark the error in the 5438 * netdev structure and arrange for the device to be reset to a sane state 5439 * in order to transmit a new packet. 5440 */ 5441 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5442 { 5443 struct stmmac_priv *priv = netdev_priv(dev); 5444 5445 stmmac_global_err(priv); 5446 } 5447 5448 /** 5449 * stmmac_set_rx_mode - entry point for multicast addressing 5450 * @dev : pointer to the device structure 5451 * Description: 5452 * This function is a driver entry point which gets called by the kernel 5453 * whenever multicast addresses must be enabled/disabled. 5454 * Return value: 5455 * void. 5456 */ 5457 static void stmmac_set_rx_mode(struct net_device *dev) 5458 { 5459 struct stmmac_priv *priv = netdev_priv(dev); 5460 5461 stmmac_set_filter(priv, priv->hw, dev); 5462 } 5463 5464 /** 5465 * stmmac_change_mtu - entry point to change MTU size for the device. 5466 * @dev : device pointer. 5467 * @new_mtu : the new MTU size for the device. 5468 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5469 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5470 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5471 * Return value: 5472 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5473 * file on failure. 5474 */ 5475 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5476 { 5477 struct stmmac_priv *priv = netdev_priv(dev); 5478 int txfifosz = priv->plat->tx_fifo_size; 5479 const int mtu = new_mtu; 5480 5481 if (txfifosz == 0) 5482 txfifosz = priv->dma_cap.tx_fifo_size; 5483 5484 txfifosz /= priv->plat->tx_queues_to_use; 5485 5486 if (netif_running(dev)) { 5487 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5488 return -EBUSY; 5489 } 5490 5491 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5492 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5493 return -EINVAL; 5494 } 5495 5496 new_mtu = STMMAC_ALIGN(new_mtu); 5497 5498 /* If condition true, FIFO is too small or MTU too large */ 5499 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5500 return -EINVAL; 5501 5502 dev->mtu = mtu; 5503 5504 netdev_update_features(dev); 5505 5506 return 0; 5507 } 5508 5509 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5510 netdev_features_t features) 5511 { 5512 struct stmmac_priv *priv = netdev_priv(dev); 5513 5514 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5515 features &= ~NETIF_F_RXCSUM; 5516 5517 if (!priv->plat->tx_coe) 5518 features &= ~NETIF_F_CSUM_MASK; 5519 5520 /* Some GMAC devices have a bugged Jumbo frame support that 5521 * needs to have the Tx COE disabled for oversized frames 5522 * (due to limited buffer sizes). In this case we disable 5523 * the TX csum insertion in the TDES and not use SF. 5524 */ 5525 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5526 features &= ~NETIF_F_CSUM_MASK; 5527 5528 /* Disable tso if asked by ethtool */ 5529 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5530 if (features & NETIF_F_TSO) 5531 priv->tso = true; 5532 else 5533 priv->tso = false; 5534 } 5535 5536 return features; 5537 } 5538 5539 static int stmmac_set_features(struct net_device *netdev, 5540 netdev_features_t features) 5541 { 5542 struct stmmac_priv *priv = netdev_priv(netdev); 5543 5544 /* Keep the COE Type in case of csum is supporting */ 5545 if (features & NETIF_F_RXCSUM) 5546 priv->hw->rx_csum = priv->plat->rx_coe; 5547 else 5548 priv->hw->rx_csum = 0; 5549 /* No check needed because rx_coe has been set before and it will be 5550 * fixed in case of issue. 5551 */ 5552 stmmac_rx_ipc(priv, priv->hw); 5553 5554 if (priv->sph_cap) { 5555 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5556 u32 chan; 5557 5558 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5559 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5560 } 5561 5562 return 0; 5563 } 5564 5565 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5566 { 5567 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5568 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5569 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5570 bool *hs_enable = &fpe_cfg->hs_enable; 5571 5572 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5573 return; 5574 5575 /* If LP has sent verify mPacket, LP is FPE capable */ 5576 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5577 if (*lp_state < FPE_STATE_CAPABLE) 5578 *lp_state = FPE_STATE_CAPABLE; 5579 5580 /* If user has requested FPE enable, quickly response */ 5581 if (*hs_enable) 5582 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5583 MPACKET_RESPONSE); 5584 } 5585 5586 /* If Local has sent verify mPacket, Local is FPE capable */ 5587 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5588 if (*lo_state < FPE_STATE_CAPABLE) 5589 *lo_state = FPE_STATE_CAPABLE; 5590 } 5591 5592 /* If LP has sent response mPacket, LP is entering FPE ON */ 5593 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5594 *lp_state = FPE_STATE_ENTERING_ON; 5595 5596 /* If Local has sent response mPacket, Local is entering FPE ON */ 5597 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5598 *lo_state = FPE_STATE_ENTERING_ON; 5599 5600 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5601 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5602 priv->fpe_wq) { 5603 queue_work(priv->fpe_wq, &priv->fpe_task); 5604 } 5605 } 5606 5607 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5608 { 5609 u32 rx_cnt = priv->plat->rx_queues_to_use; 5610 u32 tx_cnt = priv->plat->tx_queues_to_use; 5611 u32 queues_count; 5612 u32 queue; 5613 bool xmac; 5614 5615 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5616 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5617 5618 if (priv->irq_wake) 5619 pm_wakeup_event(priv->device, 0); 5620 5621 if (priv->dma_cap.estsel) 5622 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5623 &priv->xstats, tx_cnt); 5624 5625 if (priv->dma_cap.fpesel) { 5626 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5627 priv->dev); 5628 5629 stmmac_fpe_event_status(priv, status); 5630 } 5631 5632 /* To handle GMAC own interrupts */ 5633 if ((priv->plat->has_gmac) || xmac) { 5634 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5635 5636 if (unlikely(status)) { 5637 /* For LPI we need to save the tx status */ 5638 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5639 priv->tx_path_in_lpi_mode = true; 5640 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5641 priv->tx_path_in_lpi_mode = false; 5642 } 5643 5644 for (queue = 0; queue < queues_count; queue++) { 5645 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5646 queue); 5647 } 5648 5649 /* PCS link status */ 5650 if (priv->hw->pcs) { 5651 if (priv->xstats.pcs_link) 5652 netif_carrier_on(priv->dev); 5653 else 5654 netif_carrier_off(priv->dev); 5655 } 5656 5657 stmmac_timestamp_interrupt(priv, priv); 5658 } 5659 } 5660 5661 /** 5662 * stmmac_interrupt - main ISR 5663 * @irq: interrupt number. 5664 * @dev_id: to pass the net device pointer. 5665 * Description: this is the main driver interrupt service routine. 5666 * It can call: 5667 * o DMA service routine (to manage incoming frame reception and transmission 5668 * status) 5669 * o Core interrupts to manage: remote wake-up, management counter, LPI 5670 * interrupts. 5671 */ 5672 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5673 { 5674 struct net_device *dev = (struct net_device *)dev_id; 5675 struct stmmac_priv *priv = netdev_priv(dev); 5676 5677 /* Check if adapter is up */ 5678 if (test_bit(STMMAC_DOWN, &priv->state)) 5679 return IRQ_HANDLED; 5680 5681 /* Check if a fatal error happened */ 5682 if (stmmac_safety_feat_interrupt(priv)) 5683 return IRQ_HANDLED; 5684 5685 /* To handle Common interrupts */ 5686 stmmac_common_interrupt(priv); 5687 5688 /* To handle DMA interrupts */ 5689 stmmac_dma_interrupt(priv); 5690 5691 return IRQ_HANDLED; 5692 } 5693 5694 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5695 { 5696 struct net_device *dev = (struct net_device *)dev_id; 5697 struct stmmac_priv *priv = netdev_priv(dev); 5698 5699 if (unlikely(!dev)) { 5700 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5701 return IRQ_NONE; 5702 } 5703 5704 /* Check if adapter is up */ 5705 if (test_bit(STMMAC_DOWN, &priv->state)) 5706 return IRQ_HANDLED; 5707 5708 /* To handle Common interrupts */ 5709 stmmac_common_interrupt(priv); 5710 5711 return IRQ_HANDLED; 5712 } 5713 5714 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5715 { 5716 struct net_device *dev = (struct net_device *)dev_id; 5717 struct stmmac_priv *priv = netdev_priv(dev); 5718 5719 if (unlikely(!dev)) { 5720 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5721 return IRQ_NONE; 5722 } 5723 5724 /* Check if adapter is up */ 5725 if (test_bit(STMMAC_DOWN, &priv->state)) 5726 return IRQ_HANDLED; 5727 5728 /* Check if a fatal error happened */ 5729 stmmac_safety_feat_interrupt(priv); 5730 5731 return IRQ_HANDLED; 5732 } 5733 5734 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5735 { 5736 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5737 int chan = tx_q->queue_index; 5738 struct stmmac_priv *priv; 5739 int status; 5740 5741 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5742 5743 if (unlikely(!data)) { 5744 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5745 return IRQ_NONE; 5746 } 5747 5748 /* Check if adapter is up */ 5749 if (test_bit(STMMAC_DOWN, &priv->state)) 5750 return IRQ_HANDLED; 5751 5752 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5753 5754 if (unlikely(status & tx_hard_error_bump_tc)) { 5755 /* Try to bump up the dma threshold on this failure */ 5756 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 5757 tc <= 256) { 5758 tc += 64; 5759 if (priv->plat->force_thresh_dma_mode) 5760 stmmac_set_dma_operation_mode(priv, 5761 tc, 5762 tc, 5763 chan); 5764 else 5765 stmmac_set_dma_operation_mode(priv, 5766 tc, 5767 SF_DMA_MODE, 5768 chan); 5769 priv->xstats.threshold = tc; 5770 } 5771 } else if (unlikely(status == tx_hard_error)) { 5772 stmmac_tx_err(priv, chan); 5773 } 5774 5775 return IRQ_HANDLED; 5776 } 5777 5778 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5779 { 5780 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5781 int chan = rx_q->queue_index; 5782 struct stmmac_priv *priv; 5783 5784 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5785 5786 if (unlikely(!data)) { 5787 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5788 return IRQ_NONE; 5789 } 5790 5791 /* Check if adapter is up */ 5792 if (test_bit(STMMAC_DOWN, &priv->state)) 5793 return IRQ_HANDLED; 5794 5795 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5796 5797 return IRQ_HANDLED; 5798 } 5799 5800 #ifdef CONFIG_NET_POLL_CONTROLLER 5801 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5802 * to allow network I/O with interrupts disabled. 5803 */ 5804 static void stmmac_poll_controller(struct net_device *dev) 5805 { 5806 struct stmmac_priv *priv = netdev_priv(dev); 5807 int i; 5808 5809 /* If adapter is down, do nothing */ 5810 if (test_bit(STMMAC_DOWN, &priv->state)) 5811 return; 5812 5813 if (priv->plat->multi_msi_en) { 5814 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5815 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5816 5817 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5818 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5819 } else { 5820 disable_irq(dev->irq); 5821 stmmac_interrupt(dev->irq, dev); 5822 enable_irq(dev->irq); 5823 } 5824 } 5825 #endif 5826 5827 /** 5828 * stmmac_ioctl - Entry point for the Ioctl 5829 * @dev: Device pointer. 5830 * @rq: An IOCTL specefic structure, that can contain a pointer to 5831 * a proprietary structure used to pass information to the driver. 5832 * @cmd: IOCTL command 5833 * Description: 5834 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5835 */ 5836 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5837 { 5838 struct stmmac_priv *priv = netdev_priv (dev); 5839 int ret = -EOPNOTSUPP; 5840 5841 if (!netif_running(dev)) 5842 return -EINVAL; 5843 5844 switch (cmd) { 5845 case SIOCGMIIPHY: 5846 case SIOCGMIIREG: 5847 case SIOCSMIIREG: 5848 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5849 break; 5850 case SIOCSHWTSTAMP: 5851 ret = stmmac_hwtstamp_set(dev, rq); 5852 break; 5853 case SIOCGHWTSTAMP: 5854 ret = stmmac_hwtstamp_get(dev, rq); 5855 break; 5856 default: 5857 break; 5858 } 5859 5860 return ret; 5861 } 5862 5863 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5864 void *cb_priv) 5865 { 5866 struct stmmac_priv *priv = cb_priv; 5867 int ret = -EOPNOTSUPP; 5868 5869 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5870 return ret; 5871 5872 __stmmac_disable_all_queues(priv); 5873 5874 switch (type) { 5875 case TC_SETUP_CLSU32: 5876 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5877 break; 5878 case TC_SETUP_CLSFLOWER: 5879 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5880 break; 5881 default: 5882 break; 5883 } 5884 5885 stmmac_enable_all_queues(priv); 5886 return ret; 5887 } 5888 5889 static LIST_HEAD(stmmac_block_cb_list); 5890 5891 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5892 void *type_data) 5893 { 5894 struct stmmac_priv *priv = netdev_priv(ndev); 5895 5896 switch (type) { 5897 case TC_SETUP_BLOCK: 5898 return flow_block_cb_setup_simple(type_data, 5899 &stmmac_block_cb_list, 5900 stmmac_setup_tc_block_cb, 5901 priv, priv, true); 5902 case TC_SETUP_QDISC_CBS: 5903 return stmmac_tc_setup_cbs(priv, priv, type_data); 5904 case TC_SETUP_QDISC_TAPRIO: 5905 return stmmac_tc_setup_taprio(priv, priv, type_data); 5906 case TC_SETUP_QDISC_ETF: 5907 return stmmac_tc_setup_etf(priv, priv, type_data); 5908 default: 5909 return -EOPNOTSUPP; 5910 } 5911 } 5912 5913 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5914 struct net_device *sb_dev) 5915 { 5916 int gso = skb_shinfo(skb)->gso_type; 5917 5918 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5919 /* 5920 * There is no way to determine the number of TSO/USO 5921 * capable Queues. Let's use always the Queue 0 5922 * because if TSO/USO is supported then at least this 5923 * one will be capable. 5924 */ 5925 return 0; 5926 } 5927 5928 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5929 } 5930 5931 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5932 { 5933 struct stmmac_priv *priv = netdev_priv(ndev); 5934 int ret = 0; 5935 5936 ret = pm_runtime_get_sync(priv->device); 5937 if (ret < 0) { 5938 pm_runtime_put_noidle(priv->device); 5939 return ret; 5940 } 5941 5942 ret = eth_mac_addr(ndev, addr); 5943 if (ret) 5944 goto set_mac_error; 5945 5946 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5947 5948 set_mac_error: 5949 pm_runtime_put(priv->device); 5950 5951 return ret; 5952 } 5953 5954 #ifdef CONFIG_DEBUG_FS 5955 static struct dentry *stmmac_fs_dir; 5956 5957 static void sysfs_display_ring(void *head, int size, int extend_desc, 5958 struct seq_file *seq, dma_addr_t dma_phy_addr) 5959 { 5960 int i; 5961 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5962 struct dma_desc *p = (struct dma_desc *)head; 5963 dma_addr_t dma_addr; 5964 5965 for (i = 0; i < size; i++) { 5966 if (extend_desc) { 5967 dma_addr = dma_phy_addr + i * sizeof(*ep); 5968 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5969 i, &dma_addr, 5970 le32_to_cpu(ep->basic.des0), 5971 le32_to_cpu(ep->basic.des1), 5972 le32_to_cpu(ep->basic.des2), 5973 le32_to_cpu(ep->basic.des3)); 5974 ep++; 5975 } else { 5976 dma_addr = dma_phy_addr + i * sizeof(*p); 5977 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5978 i, &dma_addr, 5979 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5980 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5981 p++; 5982 } 5983 seq_printf(seq, "\n"); 5984 } 5985 } 5986 5987 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5988 { 5989 struct net_device *dev = seq->private; 5990 struct stmmac_priv *priv = netdev_priv(dev); 5991 u32 rx_count = priv->plat->rx_queues_to_use; 5992 u32 tx_count = priv->plat->tx_queues_to_use; 5993 u32 queue; 5994 5995 if ((dev->flags & IFF_UP) == 0) 5996 return 0; 5997 5998 for (queue = 0; queue < rx_count; queue++) { 5999 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6000 6001 seq_printf(seq, "RX Queue %d:\n", queue); 6002 6003 if (priv->extend_desc) { 6004 seq_printf(seq, "Extended descriptor ring:\n"); 6005 sysfs_display_ring((void *)rx_q->dma_erx, 6006 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6007 } else { 6008 seq_printf(seq, "Descriptor ring:\n"); 6009 sysfs_display_ring((void *)rx_q->dma_rx, 6010 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6011 } 6012 } 6013 6014 for (queue = 0; queue < tx_count; queue++) { 6015 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6016 6017 seq_printf(seq, "TX Queue %d:\n", queue); 6018 6019 if (priv->extend_desc) { 6020 seq_printf(seq, "Extended descriptor ring:\n"); 6021 sysfs_display_ring((void *)tx_q->dma_etx, 6022 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6023 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6024 seq_printf(seq, "Descriptor ring:\n"); 6025 sysfs_display_ring((void *)tx_q->dma_tx, 6026 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6027 } 6028 } 6029 6030 return 0; 6031 } 6032 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6033 6034 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6035 { 6036 struct net_device *dev = seq->private; 6037 struct stmmac_priv *priv = netdev_priv(dev); 6038 6039 if (!priv->hw_cap_support) { 6040 seq_printf(seq, "DMA HW features not supported\n"); 6041 return 0; 6042 } 6043 6044 seq_printf(seq, "==============================\n"); 6045 seq_printf(seq, "\tDMA HW features\n"); 6046 seq_printf(seq, "==============================\n"); 6047 6048 seq_printf(seq, "\t10/100 Mbps: %s\n", 6049 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6050 seq_printf(seq, "\t1000 Mbps: %s\n", 6051 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6052 seq_printf(seq, "\tHalf duplex: %s\n", 6053 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6054 seq_printf(seq, "\tHash Filter: %s\n", 6055 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6056 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6057 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6058 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6059 (priv->dma_cap.pcs) ? "Y" : "N"); 6060 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6061 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6062 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6063 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6064 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6065 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6066 seq_printf(seq, "\tRMON module: %s\n", 6067 (priv->dma_cap.rmon) ? "Y" : "N"); 6068 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6069 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6070 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6071 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6072 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6073 (priv->dma_cap.eee) ? "Y" : "N"); 6074 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6075 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6076 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6077 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6078 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6079 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6080 } else { 6081 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6082 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6083 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6084 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6085 } 6086 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6087 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6088 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6089 priv->dma_cap.number_rx_channel); 6090 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6091 priv->dma_cap.number_tx_channel); 6092 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6093 priv->dma_cap.number_rx_queues); 6094 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6095 priv->dma_cap.number_tx_queues); 6096 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6097 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6098 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6099 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6100 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6101 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6102 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6103 priv->dma_cap.pps_out_num); 6104 seq_printf(seq, "\tSafety Features: %s\n", 6105 priv->dma_cap.asp ? "Y" : "N"); 6106 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6107 priv->dma_cap.frpsel ? "Y" : "N"); 6108 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6109 priv->dma_cap.addr64); 6110 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6111 priv->dma_cap.rssen ? "Y" : "N"); 6112 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6113 priv->dma_cap.vlhash ? "Y" : "N"); 6114 seq_printf(seq, "\tSplit Header: %s\n", 6115 priv->dma_cap.sphen ? "Y" : "N"); 6116 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6117 priv->dma_cap.vlins ? "Y" : "N"); 6118 seq_printf(seq, "\tDouble VLAN: %s\n", 6119 priv->dma_cap.dvlan ? "Y" : "N"); 6120 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6121 priv->dma_cap.l3l4fnum); 6122 seq_printf(seq, "\tARP Offloading: %s\n", 6123 priv->dma_cap.arpoffsel ? "Y" : "N"); 6124 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6125 priv->dma_cap.estsel ? "Y" : "N"); 6126 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6127 priv->dma_cap.fpesel ? "Y" : "N"); 6128 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6129 priv->dma_cap.tbssel ? "Y" : "N"); 6130 return 0; 6131 } 6132 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6133 6134 /* Use network device events to rename debugfs file entries. 6135 */ 6136 static int stmmac_device_event(struct notifier_block *unused, 6137 unsigned long event, void *ptr) 6138 { 6139 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6140 struct stmmac_priv *priv = netdev_priv(dev); 6141 6142 if (dev->netdev_ops != &stmmac_netdev_ops) 6143 goto done; 6144 6145 switch (event) { 6146 case NETDEV_CHANGENAME: 6147 if (priv->dbgfs_dir) 6148 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6149 priv->dbgfs_dir, 6150 stmmac_fs_dir, 6151 dev->name); 6152 break; 6153 } 6154 done: 6155 return NOTIFY_DONE; 6156 } 6157 6158 static struct notifier_block stmmac_notifier = { 6159 .notifier_call = stmmac_device_event, 6160 }; 6161 6162 static void stmmac_init_fs(struct net_device *dev) 6163 { 6164 struct stmmac_priv *priv = netdev_priv(dev); 6165 6166 rtnl_lock(); 6167 6168 /* Create per netdev entries */ 6169 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6170 6171 /* Entry to report DMA RX/TX rings */ 6172 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6173 &stmmac_rings_status_fops); 6174 6175 /* Entry to report the DMA HW features */ 6176 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6177 &stmmac_dma_cap_fops); 6178 6179 rtnl_unlock(); 6180 } 6181 6182 static void stmmac_exit_fs(struct net_device *dev) 6183 { 6184 struct stmmac_priv *priv = netdev_priv(dev); 6185 6186 debugfs_remove_recursive(priv->dbgfs_dir); 6187 } 6188 #endif /* CONFIG_DEBUG_FS */ 6189 6190 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6191 { 6192 unsigned char *data = (unsigned char *)&vid_le; 6193 unsigned char data_byte = 0; 6194 u32 crc = ~0x0; 6195 u32 temp = 0; 6196 int i, bits; 6197 6198 bits = get_bitmask_order(VLAN_VID_MASK); 6199 for (i = 0; i < bits; i++) { 6200 if ((i % 8) == 0) 6201 data_byte = data[i / 8]; 6202 6203 temp = ((crc & 1) ^ data_byte) & 1; 6204 crc >>= 1; 6205 data_byte >>= 1; 6206 6207 if (temp) 6208 crc ^= 0xedb88320; 6209 } 6210 6211 return crc; 6212 } 6213 6214 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6215 { 6216 u32 crc, hash = 0; 6217 __le16 pmatch = 0; 6218 int count = 0; 6219 u16 vid = 0; 6220 6221 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6222 __le16 vid_le = cpu_to_le16(vid); 6223 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6224 hash |= (1 << crc); 6225 count++; 6226 } 6227 6228 if (!priv->dma_cap.vlhash) { 6229 if (count > 2) /* VID = 0 always passes filter */ 6230 return -EOPNOTSUPP; 6231 6232 pmatch = cpu_to_le16(vid); 6233 hash = 0; 6234 } 6235 6236 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6237 } 6238 6239 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6240 { 6241 struct stmmac_priv *priv = netdev_priv(ndev); 6242 bool is_double = false; 6243 int ret; 6244 6245 if (be16_to_cpu(proto) == ETH_P_8021AD) 6246 is_double = true; 6247 6248 set_bit(vid, priv->active_vlans); 6249 ret = stmmac_vlan_update(priv, is_double); 6250 if (ret) { 6251 clear_bit(vid, priv->active_vlans); 6252 return ret; 6253 } 6254 6255 if (priv->hw->num_vlan) { 6256 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6257 if (ret) 6258 return ret; 6259 } 6260 6261 return 0; 6262 } 6263 6264 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6265 { 6266 struct stmmac_priv *priv = netdev_priv(ndev); 6267 bool is_double = false; 6268 int ret; 6269 6270 ret = pm_runtime_get_sync(priv->device); 6271 if (ret < 0) { 6272 pm_runtime_put_noidle(priv->device); 6273 return ret; 6274 } 6275 6276 if (be16_to_cpu(proto) == ETH_P_8021AD) 6277 is_double = true; 6278 6279 clear_bit(vid, priv->active_vlans); 6280 6281 if (priv->hw->num_vlan) { 6282 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6283 if (ret) 6284 goto del_vlan_error; 6285 } 6286 6287 ret = stmmac_vlan_update(priv, is_double); 6288 6289 del_vlan_error: 6290 pm_runtime_put(priv->device); 6291 6292 return ret; 6293 } 6294 6295 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6296 { 6297 struct stmmac_priv *priv = netdev_priv(dev); 6298 6299 switch (bpf->command) { 6300 case XDP_SETUP_PROG: 6301 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6302 case XDP_SETUP_XSK_POOL: 6303 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6304 bpf->xsk.queue_id); 6305 default: 6306 return -EOPNOTSUPP; 6307 } 6308 } 6309 6310 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6311 struct xdp_frame **frames, u32 flags) 6312 { 6313 struct stmmac_priv *priv = netdev_priv(dev); 6314 int cpu = smp_processor_id(); 6315 struct netdev_queue *nq; 6316 int i, nxmit = 0; 6317 int queue; 6318 6319 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6320 return -ENETDOWN; 6321 6322 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6323 return -EINVAL; 6324 6325 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6326 nq = netdev_get_tx_queue(priv->dev, queue); 6327 6328 __netif_tx_lock(nq, cpu); 6329 /* Avoids TX time-out as we are sharing with slow path */ 6330 nq->trans_start = jiffies; 6331 6332 for (i = 0; i < num_frames; i++) { 6333 int res; 6334 6335 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6336 if (res == STMMAC_XDP_CONSUMED) 6337 break; 6338 6339 nxmit++; 6340 } 6341 6342 if (flags & XDP_XMIT_FLUSH) { 6343 stmmac_flush_tx_descriptors(priv, queue); 6344 stmmac_tx_timer_arm(priv, queue); 6345 } 6346 6347 __netif_tx_unlock(nq); 6348 6349 return nxmit; 6350 } 6351 6352 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6353 { 6354 struct stmmac_channel *ch = &priv->channel[queue]; 6355 unsigned long flags; 6356 6357 spin_lock_irqsave(&ch->lock, flags); 6358 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6359 spin_unlock_irqrestore(&ch->lock, flags); 6360 6361 stmmac_stop_rx_dma(priv, queue); 6362 __free_dma_rx_desc_resources(priv, queue); 6363 } 6364 6365 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6366 { 6367 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6368 struct stmmac_channel *ch = &priv->channel[queue]; 6369 unsigned long flags; 6370 u32 buf_size; 6371 int ret; 6372 6373 ret = __alloc_dma_rx_desc_resources(priv, queue); 6374 if (ret) { 6375 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6376 return; 6377 } 6378 6379 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6380 if (ret) { 6381 __free_dma_rx_desc_resources(priv, queue); 6382 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6383 return; 6384 } 6385 6386 stmmac_clear_rx_descriptors(priv, queue); 6387 6388 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6389 rx_q->dma_rx_phy, rx_q->queue_index); 6390 6391 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6392 sizeof(struct dma_desc)); 6393 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6394 rx_q->rx_tail_addr, rx_q->queue_index); 6395 6396 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6397 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6398 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6399 buf_size, 6400 rx_q->queue_index); 6401 } else { 6402 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6403 priv->dma_buf_sz, 6404 rx_q->queue_index); 6405 } 6406 6407 stmmac_start_rx_dma(priv, queue); 6408 6409 spin_lock_irqsave(&ch->lock, flags); 6410 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6411 spin_unlock_irqrestore(&ch->lock, flags); 6412 } 6413 6414 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6415 { 6416 struct stmmac_channel *ch = &priv->channel[queue]; 6417 unsigned long flags; 6418 6419 spin_lock_irqsave(&ch->lock, flags); 6420 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6421 spin_unlock_irqrestore(&ch->lock, flags); 6422 6423 stmmac_stop_tx_dma(priv, queue); 6424 __free_dma_tx_desc_resources(priv, queue); 6425 } 6426 6427 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6428 { 6429 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6430 struct stmmac_channel *ch = &priv->channel[queue]; 6431 unsigned long flags; 6432 int ret; 6433 6434 ret = __alloc_dma_tx_desc_resources(priv, queue); 6435 if (ret) { 6436 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6437 return; 6438 } 6439 6440 ret = __init_dma_tx_desc_rings(priv, queue); 6441 if (ret) { 6442 __free_dma_tx_desc_resources(priv, queue); 6443 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6444 return; 6445 } 6446 6447 stmmac_clear_tx_descriptors(priv, queue); 6448 6449 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6450 tx_q->dma_tx_phy, tx_q->queue_index); 6451 6452 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6453 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6454 6455 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6456 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6457 tx_q->tx_tail_addr, tx_q->queue_index); 6458 6459 stmmac_start_tx_dma(priv, queue); 6460 6461 spin_lock_irqsave(&ch->lock, flags); 6462 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6463 spin_unlock_irqrestore(&ch->lock, flags); 6464 } 6465 6466 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6467 { 6468 struct stmmac_priv *priv = netdev_priv(dev); 6469 struct stmmac_rx_queue *rx_q; 6470 struct stmmac_tx_queue *tx_q; 6471 struct stmmac_channel *ch; 6472 6473 if (test_bit(STMMAC_DOWN, &priv->state) || 6474 !netif_carrier_ok(priv->dev)) 6475 return -ENETDOWN; 6476 6477 if (!stmmac_xdp_is_enabled(priv)) 6478 return -ENXIO; 6479 6480 if (queue >= priv->plat->rx_queues_to_use || 6481 queue >= priv->plat->tx_queues_to_use) 6482 return -EINVAL; 6483 6484 rx_q = &priv->rx_queue[queue]; 6485 tx_q = &priv->tx_queue[queue]; 6486 ch = &priv->channel[queue]; 6487 6488 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6489 return -ENXIO; 6490 6491 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6492 /* EQoS does not have per-DMA channel SW interrupt, 6493 * so we schedule RX Napi straight-away. 6494 */ 6495 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6496 __napi_schedule(&ch->rxtx_napi); 6497 } 6498 6499 return 0; 6500 } 6501 6502 static const struct net_device_ops stmmac_netdev_ops = { 6503 .ndo_open = stmmac_open, 6504 .ndo_start_xmit = stmmac_xmit, 6505 .ndo_stop = stmmac_release, 6506 .ndo_change_mtu = stmmac_change_mtu, 6507 .ndo_fix_features = stmmac_fix_features, 6508 .ndo_set_features = stmmac_set_features, 6509 .ndo_set_rx_mode = stmmac_set_rx_mode, 6510 .ndo_tx_timeout = stmmac_tx_timeout, 6511 .ndo_eth_ioctl = stmmac_ioctl, 6512 .ndo_setup_tc = stmmac_setup_tc, 6513 .ndo_select_queue = stmmac_select_queue, 6514 #ifdef CONFIG_NET_POLL_CONTROLLER 6515 .ndo_poll_controller = stmmac_poll_controller, 6516 #endif 6517 .ndo_set_mac_address = stmmac_set_mac_address, 6518 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6519 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6520 .ndo_bpf = stmmac_bpf, 6521 .ndo_xdp_xmit = stmmac_xdp_xmit, 6522 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6523 }; 6524 6525 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6526 { 6527 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6528 return; 6529 if (test_bit(STMMAC_DOWN, &priv->state)) 6530 return; 6531 6532 netdev_err(priv->dev, "Reset adapter.\n"); 6533 6534 rtnl_lock(); 6535 netif_trans_update(priv->dev); 6536 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6537 usleep_range(1000, 2000); 6538 6539 set_bit(STMMAC_DOWN, &priv->state); 6540 dev_close(priv->dev); 6541 dev_open(priv->dev, NULL); 6542 clear_bit(STMMAC_DOWN, &priv->state); 6543 clear_bit(STMMAC_RESETING, &priv->state); 6544 rtnl_unlock(); 6545 } 6546 6547 static void stmmac_service_task(struct work_struct *work) 6548 { 6549 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6550 service_task); 6551 6552 stmmac_reset_subtask(priv); 6553 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6554 } 6555 6556 /** 6557 * stmmac_hw_init - Init the MAC device 6558 * @priv: driver private structure 6559 * Description: this function is to configure the MAC device according to 6560 * some platform parameters or the HW capability register. It prepares the 6561 * driver to use either ring or chain modes and to setup either enhanced or 6562 * normal descriptors. 6563 */ 6564 static int stmmac_hw_init(struct stmmac_priv *priv) 6565 { 6566 int ret; 6567 6568 /* dwmac-sun8i only work in chain mode */ 6569 if (priv->plat->has_sun8i) 6570 chain_mode = 1; 6571 priv->chain_mode = chain_mode; 6572 6573 /* Initialize HW Interface */ 6574 ret = stmmac_hwif_init(priv); 6575 if (ret) 6576 return ret; 6577 6578 /* Get the HW capability (new GMAC newer than 3.50a) */ 6579 priv->hw_cap_support = stmmac_get_hw_features(priv); 6580 if (priv->hw_cap_support) { 6581 dev_info(priv->device, "DMA HW capability register supported\n"); 6582 6583 /* We can override some gmac/dma configuration fields: e.g. 6584 * enh_desc, tx_coe (e.g. that are passed through the 6585 * platform) with the values from the HW capability 6586 * register (if supported). 6587 */ 6588 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6589 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6590 !priv->plat->use_phy_wol; 6591 priv->hw->pmt = priv->plat->pmt; 6592 if (priv->dma_cap.hash_tb_sz) { 6593 priv->hw->multicast_filter_bins = 6594 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6595 priv->hw->mcast_bits_log2 = 6596 ilog2(priv->hw->multicast_filter_bins); 6597 } 6598 6599 /* TXCOE doesn't work in thresh DMA mode */ 6600 if (priv->plat->force_thresh_dma_mode) 6601 priv->plat->tx_coe = 0; 6602 else 6603 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6604 6605 /* In case of GMAC4 rx_coe is from HW cap register. */ 6606 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6607 6608 if (priv->dma_cap.rx_coe_type2) 6609 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6610 else if (priv->dma_cap.rx_coe_type1) 6611 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6612 6613 } else { 6614 dev_info(priv->device, "No HW DMA feature register supported\n"); 6615 } 6616 6617 if (priv->plat->rx_coe) { 6618 priv->hw->rx_csum = priv->plat->rx_coe; 6619 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6620 if (priv->synopsys_id < DWMAC_CORE_4_00) 6621 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6622 } 6623 if (priv->plat->tx_coe) 6624 dev_info(priv->device, "TX Checksum insertion supported\n"); 6625 6626 if (priv->plat->pmt) { 6627 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6628 device_set_wakeup_capable(priv->device, 1); 6629 } 6630 6631 if (priv->dma_cap.tsoen) 6632 dev_info(priv->device, "TSO supported\n"); 6633 6634 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6635 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6636 6637 /* Run HW quirks, if any */ 6638 if (priv->hwif_quirks) { 6639 ret = priv->hwif_quirks(priv); 6640 if (ret) 6641 return ret; 6642 } 6643 6644 /* Rx Watchdog is available in the COREs newer than the 3.40. 6645 * In some case, for example on bugged HW this feature 6646 * has to be disable and this can be done by passing the 6647 * riwt_off field from the platform. 6648 */ 6649 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6650 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6651 priv->use_riwt = 1; 6652 dev_info(priv->device, 6653 "Enable RX Mitigation via HW Watchdog Timer\n"); 6654 } 6655 6656 return 0; 6657 } 6658 6659 static void stmmac_napi_add(struct net_device *dev) 6660 { 6661 struct stmmac_priv *priv = netdev_priv(dev); 6662 u32 queue, maxq; 6663 6664 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6665 6666 for (queue = 0; queue < maxq; queue++) { 6667 struct stmmac_channel *ch = &priv->channel[queue]; 6668 6669 ch->priv_data = priv; 6670 ch->index = queue; 6671 spin_lock_init(&ch->lock); 6672 6673 if (queue < priv->plat->rx_queues_to_use) { 6674 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6675 NAPI_POLL_WEIGHT); 6676 } 6677 if (queue < priv->plat->tx_queues_to_use) { 6678 netif_tx_napi_add(dev, &ch->tx_napi, 6679 stmmac_napi_poll_tx, 6680 NAPI_POLL_WEIGHT); 6681 } 6682 if (queue < priv->plat->rx_queues_to_use && 6683 queue < priv->plat->tx_queues_to_use) { 6684 netif_napi_add(dev, &ch->rxtx_napi, 6685 stmmac_napi_poll_rxtx, 6686 NAPI_POLL_WEIGHT); 6687 } 6688 } 6689 } 6690 6691 static void stmmac_napi_del(struct net_device *dev) 6692 { 6693 struct stmmac_priv *priv = netdev_priv(dev); 6694 u32 queue, maxq; 6695 6696 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6697 6698 for (queue = 0; queue < maxq; queue++) { 6699 struct stmmac_channel *ch = &priv->channel[queue]; 6700 6701 if (queue < priv->plat->rx_queues_to_use) 6702 netif_napi_del(&ch->rx_napi); 6703 if (queue < priv->plat->tx_queues_to_use) 6704 netif_napi_del(&ch->tx_napi); 6705 if (queue < priv->plat->rx_queues_to_use && 6706 queue < priv->plat->tx_queues_to_use) { 6707 netif_napi_del(&ch->rxtx_napi); 6708 } 6709 } 6710 } 6711 6712 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6713 { 6714 struct stmmac_priv *priv = netdev_priv(dev); 6715 int ret = 0; 6716 6717 if (netif_running(dev)) 6718 stmmac_release(dev); 6719 6720 stmmac_napi_del(dev); 6721 6722 priv->plat->rx_queues_to_use = rx_cnt; 6723 priv->plat->tx_queues_to_use = tx_cnt; 6724 6725 stmmac_napi_add(dev); 6726 6727 if (netif_running(dev)) 6728 ret = stmmac_open(dev); 6729 6730 return ret; 6731 } 6732 6733 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6734 { 6735 struct stmmac_priv *priv = netdev_priv(dev); 6736 int ret = 0; 6737 6738 if (netif_running(dev)) 6739 stmmac_release(dev); 6740 6741 priv->dma_rx_size = rx_size; 6742 priv->dma_tx_size = tx_size; 6743 6744 if (netif_running(dev)) 6745 ret = stmmac_open(dev); 6746 6747 return ret; 6748 } 6749 6750 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6751 static void stmmac_fpe_lp_task(struct work_struct *work) 6752 { 6753 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6754 fpe_task); 6755 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6756 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6757 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6758 bool *hs_enable = &fpe_cfg->hs_enable; 6759 bool *enable = &fpe_cfg->enable; 6760 int retries = 20; 6761 6762 while (retries-- > 0) { 6763 /* Bail out immediately if FPE handshake is OFF */ 6764 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6765 break; 6766 6767 if (*lo_state == FPE_STATE_ENTERING_ON && 6768 *lp_state == FPE_STATE_ENTERING_ON) { 6769 stmmac_fpe_configure(priv, priv->ioaddr, 6770 priv->plat->tx_queues_to_use, 6771 priv->plat->rx_queues_to_use, 6772 *enable); 6773 6774 netdev_info(priv->dev, "configured FPE\n"); 6775 6776 *lo_state = FPE_STATE_ON; 6777 *lp_state = FPE_STATE_ON; 6778 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6779 break; 6780 } 6781 6782 if ((*lo_state == FPE_STATE_CAPABLE || 6783 *lo_state == FPE_STATE_ENTERING_ON) && 6784 *lp_state != FPE_STATE_ON) { 6785 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6786 *lo_state, *lp_state); 6787 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6788 MPACKET_VERIFY); 6789 } 6790 /* Sleep then retry */ 6791 msleep(500); 6792 } 6793 6794 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6795 } 6796 6797 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6798 { 6799 if (priv->plat->fpe_cfg->hs_enable != enable) { 6800 if (enable) { 6801 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6802 MPACKET_VERIFY); 6803 } else { 6804 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6805 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6806 } 6807 6808 priv->plat->fpe_cfg->hs_enable = enable; 6809 } 6810 } 6811 6812 /** 6813 * stmmac_dvr_probe 6814 * @device: device pointer 6815 * @plat_dat: platform data pointer 6816 * @res: stmmac resource pointer 6817 * Description: this is the main probe function used to 6818 * call the alloc_etherdev, allocate the priv structure. 6819 * Return: 6820 * returns 0 on success, otherwise errno. 6821 */ 6822 int stmmac_dvr_probe(struct device *device, 6823 struct plat_stmmacenet_data *plat_dat, 6824 struct stmmac_resources *res) 6825 { 6826 struct net_device *ndev = NULL; 6827 struct stmmac_priv *priv; 6828 u32 rxq; 6829 int i, ret = 0; 6830 6831 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6832 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6833 if (!ndev) 6834 return -ENOMEM; 6835 6836 SET_NETDEV_DEV(ndev, device); 6837 6838 priv = netdev_priv(ndev); 6839 priv->device = device; 6840 priv->dev = ndev; 6841 6842 stmmac_set_ethtool_ops(ndev); 6843 priv->pause = pause; 6844 priv->plat = plat_dat; 6845 priv->ioaddr = res->addr; 6846 priv->dev->base_addr = (unsigned long)res->addr; 6847 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6848 6849 priv->dev->irq = res->irq; 6850 priv->wol_irq = res->wol_irq; 6851 priv->lpi_irq = res->lpi_irq; 6852 priv->sfty_ce_irq = res->sfty_ce_irq; 6853 priv->sfty_ue_irq = res->sfty_ue_irq; 6854 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6855 priv->rx_irq[i] = res->rx_irq[i]; 6856 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6857 priv->tx_irq[i] = res->tx_irq[i]; 6858 6859 if (!is_zero_ether_addr(res->mac)) 6860 eth_hw_addr_set(priv->dev, res->mac); 6861 6862 dev_set_drvdata(device, priv->dev); 6863 6864 /* Verify driver arguments */ 6865 stmmac_verify_args(); 6866 6867 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6868 if (!priv->af_xdp_zc_qps) 6869 return -ENOMEM; 6870 6871 /* Allocate workqueue */ 6872 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6873 if (!priv->wq) { 6874 dev_err(priv->device, "failed to create workqueue\n"); 6875 return -ENOMEM; 6876 } 6877 6878 INIT_WORK(&priv->service_task, stmmac_service_task); 6879 6880 /* Initialize Link Partner FPE workqueue */ 6881 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6882 6883 /* Override with kernel parameters if supplied XXX CRS XXX 6884 * this needs to have multiple instances 6885 */ 6886 if ((phyaddr >= 0) && (phyaddr <= 31)) 6887 priv->plat->phy_addr = phyaddr; 6888 6889 if (priv->plat->stmmac_rst) { 6890 ret = reset_control_assert(priv->plat->stmmac_rst); 6891 reset_control_deassert(priv->plat->stmmac_rst); 6892 /* Some reset controllers have only reset callback instead of 6893 * assert + deassert callbacks pair. 6894 */ 6895 if (ret == -ENOTSUPP) 6896 reset_control_reset(priv->plat->stmmac_rst); 6897 } 6898 6899 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 6900 if (ret == -ENOTSUPP) 6901 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 6902 ERR_PTR(ret)); 6903 6904 /* Init MAC and get the capabilities */ 6905 ret = stmmac_hw_init(priv); 6906 if (ret) 6907 goto error_hw_init; 6908 6909 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 6910 */ 6911 if (priv->synopsys_id < DWMAC_CORE_5_20) 6912 priv->plat->dma_cfg->dche = false; 6913 6914 stmmac_check_ether_addr(priv); 6915 6916 ndev->netdev_ops = &stmmac_netdev_ops; 6917 6918 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6919 NETIF_F_RXCSUM; 6920 6921 ret = stmmac_tc_init(priv, priv); 6922 if (!ret) { 6923 ndev->hw_features |= NETIF_F_HW_TC; 6924 } 6925 6926 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 6927 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 6928 if (priv->plat->has_gmac4) 6929 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 6930 priv->tso = true; 6931 dev_info(priv->device, "TSO feature enabled\n"); 6932 } 6933 6934 if (priv->dma_cap.sphen) { 6935 ndev->hw_features |= NETIF_F_GRO; 6936 priv->sph_cap = true; 6937 priv->sph = priv->sph_cap; 6938 dev_info(priv->device, "SPH feature enabled\n"); 6939 } 6940 6941 /* The current IP register MAC_HW_Feature1[ADDR64] only define 6942 * 32/40/64 bit width, but some SOC support others like i.MX8MP 6943 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 6944 * So overwrite dma_cap.addr64 according to HW real design. 6945 */ 6946 if (priv->plat->addr64) 6947 priv->dma_cap.addr64 = priv->plat->addr64; 6948 6949 if (priv->dma_cap.addr64) { 6950 ret = dma_set_mask_and_coherent(device, 6951 DMA_BIT_MASK(priv->dma_cap.addr64)); 6952 if (!ret) { 6953 dev_info(priv->device, "Using %d bits DMA width\n", 6954 priv->dma_cap.addr64); 6955 6956 /* 6957 * If more than 32 bits can be addressed, make sure to 6958 * enable enhanced addressing mode. 6959 */ 6960 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 6961 priv->plat->dma_cfg->eame = true; 6962 } else { 6963 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 6964 if (ret) { 6965 dev_err(priv->device, "Failed to set DMA Mask\n"); 6966 goto error_hw_init; 6967 } 6968 6969 priv->dma_cap.addr64 = 32; 6970 } 6971 } 6972 6973 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 6974 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 6975 #ifdef STMMAC_VLAN_TAG_USED 6976 /* Both mac100 and gmac support receive VLAN tag detection */ 6977 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 6978 if (priv->dma_cap.vlhash) { 6979 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6980 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 6981 } 6982 if (priv->dma_cap.vlins) { 6983 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 6984 if (priv->dma_cap.dvlan) 6985 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 6986 } 6987 #endif 6988 priv->msg_enable = netif_msg_init(debug, default_msg_level); 6989 6990 /* Initialize RSS */ 6991 rxq = priv->plat->rx_queues_to_use; 6992 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 6993 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 6994 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 6995 6996 if (priv->dma_cap.rssen && priv->plat->rss_en) 6997 ndev->features |= NETIF_F_RXHASH; 6998 6999 /* MTU range: 46 - hw-specific max */ 7000 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7001 if (priv->plat->has_xgmac) 7002 ndev->max_mtu = XGMAC_JUMBO_LEN; 7003 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7004 ndev->max_mtu = JUMBO_LEN; 7005 else 7006 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7007 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7008 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7009 */ 7010 if ((priv->plat->maxmtu < ndev->max_mtu) && 7011 (priv->plat->maxmtu >= ndev->min_mtu)) 7012 ndev->max_mtu = priv->plat->maxmtu; 7013 else if (priv->plat->maxmtu < ndev->min_mtu) 7014 dev_warn(priv->device, 7015 "%s: warning: maxmtu having invalid value (%d)\n", 7016 __func__, priv->plat->maxmtu); 7017 7018 if (flow_ctrl) 7019 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7020 7021 /* Setup channels NAPI */ 7022 stmmac_napi_add(ndev); 7023 7024 mutex_init(&priv->lock); 7025 7026 /* If a specific clk_csr value is passed from the platform 7027 * this means that the CSR Clock Range selection cannot be 7028 * changed at run-time and it is fixed. Viceversa the driver'll try to 7029 * set the MDC clock dynamically according to the csr actual 7030 * clock input. 7031 */ 7032 if (priv->plat->clk_csr >= 0) 7033 priv->clk_csr = priv->plat->clk_csr; 7034 else 7035 stmmac_clk_csr_set(priv); 7036 7037 stmmac_check_pcs_mode(priv); 7038 7039 pm_runtime_get_noresume(device); 7040 pm_runtime_set_active(device); 7041 pm_runtime_enable(device); 7042 7043 if (priv->hw->pcs != STMMAC_PCS_TBI && 7044 priv->hw->pcs != STMMAC_PCS_RTBI) { 7045 /* MDIO bus Registration */ 7046 ret = stmmac_mdio_register(ndev); 7047 if (ret < 0) { 7048 dev_err(priv->device, 7049 "%s: MDIO bus (id: %d) registration failed", 7050 __func__, priv->plat->bus_id); 7051 goto error_mdio_register; 7052 } 7053 } 7054 7055 if (priv->plat->speed_mode_2500) 7056 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7057 7058 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7059 ret = stmmac_xpcs_setup(priv->mii); 7060 if (ret) 7061 goto error_xpcs_setup; 7062 } 7063 7064 ret = stmmac_phy_setup(priv); 7065 if (ret) { 7066 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7067 goto error_phy_setup; 7068 } 7069 7070 ret = register_netdev(ndev); 7071 if (ret) { 7072 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7073 __func__, ret); 7074 goto error_netdev_register; 7075 } 7076 7077 if (priv->plat->serdes_powerup) { 7078 ret = priv->plat->serdes_powerup(ndev, 7079 priv->plat->bsp_priv); 7080 7081 if (ret < 0) 7082 goto error_serdes_powerup; 7083 } 7084 7085 #ifdef CONFIG_DEBUG_FS 7086 stmmac_init_fs(ndev); 7087 #endif 7088 7089 /* Let pm_runtime_put() disable the clocks. 7090 * If CONFIG_PM is not enabled, the clocks will stay powered. 7091 */ 7092 pm_runtime_put(device); 7093 7094 return ret; 7095 7096 error_serdes_powerup: 7097 unregister_netdev(ndev); 7098 error_netdev_register: 7099 phylink_destroy(priv->phylink); 7100 error_xpcs_setup: 7101 error_phy_setup: 7102 if (priv->hw->pcs != STMMAC_PCS_TBI && 7103 priv->hw->pcs != STMMAC_PCS_RTBI) 7104 stmmac_mdio_unregister(ndev); 7105 error_mdio_register: 7106 stmmac_napi_del(ndev); 7107 error_hw_init: 7108 destroy_workqueue(priv->wq); 7109 bitmap_free(priv->af_xdp_zc_qps); 7110 7111 return ret; 7112 } 7113 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7114 7115 /** 7116 * stmmac_dvr_remove 7117 * @dev: device pointer 7118 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7119 * changes the link status, releases the DMA descriptor rings. 7120 */ 7121 int stmmac_dvr_remove(struct device *dev) 7122 { 7123 struct net_device *ndev = dev_get_drvdata(dev); 7124 struct stmmac_priv *priv = netdev_priv(ndev); 7125 7126 netdev_info(priv->dev, "%s: removing driver", __func__); 7127 7128 stmmac_stop_all_dma(priv); 7129 stmmac_mac_set(priv, priv->ioaddr, false); 7130 netif_carrier_off(ndev); 7131 unregister_netdev(ndev); 7132 7133 /* Serdes power down needs to happen after VLAN filter 7134 * is deleted that is triggered by unregister_netdev(). 7135 */ 7136 if (priv->plat->serdes_powerdown) 7137 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7138 7139 #ifdef CONFIG_DEBUG_FS 7140 stmmac_exit_fs(ndev); 7141 #endif 7142 phylink_destroy(priv->phylink); 7143 if (priv->plat->stmmac_rst) 7144 reset_control_assert(priv->plat->stmmac_rst); 7145 reset_control_assert(priv->plat->stmmac_ahb_rst); 7146 pm_runtime_put(dev); 7147 pm_runtime_disable(dev); 7148 if (priv->hw->pcs != STMMAC_PCS_TBI && 7149 priv->hw->pcs != STMMAC_PCS_RTBI) 7150 stmmac_mdio_unregister(ndev); 7151 destroy_workqueue(priv->wq); 7152 mutex_destroy(&priv->lock); 7153 bitmap_free(priv->af_xdp_zc_qps); 7154 7155 return 0; 7156 } 7157 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7158 7159 /** 7160 * stmmac_suspend - suspend callback 7161 * @dev: device pointer 7162 * Description: this is the function to suspend the device and it is called 7163 * by the platform driver to stop the network queue, release the resources, 7164 * program the PMT register (for WoL), clean and release driver resources. 7165 */ 7166 int stmmac_suspend(struct device *dev) 7167 { 7168 struct net_device *ndev = dev_get_drvdata(dev); 7169 struct stmmac_priv *priv = netdev_priv(ndev); 7170 u32 chan; 7171 7172 if (!ndev || !netif_running(ndev)) 7173 return 0; 7174 7175 mutex_lock(&priv->lock); 7176 7177 netif_device_detach(ndev); 7178 7179 stmmac_disable_all_queues(priv); 7180 7181 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7182 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7183 7184 if (priv->eee_enabled) { 7185 priv->tx_path_in_lpi_mode = false; 7186 del_timer_sync(&priv->eee_ctrl_timer); 7187 } 7188 7189 /* Stop TX/RX DMA */ 7190 stmmac_stop_all_dma(priv); 7191 7192 if (priv->plat->serdes_powerdown) 7193 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7194 7195 /* Enable Power down mode by programming the PMT regs */ 7196 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7197 stmmac_pmt(priv, priv->hw, priv->wolopts); 7198 priv->irq_wake = 1; 7199 } else { 7200 stmmac_mac_set(priv, priv->ioaddr, false); 7201 pinctrl_pm_select_sleep_state(priv->device); 7202 } 7203 7204 mutex_unlock(&priv->lock); 7205 7206 rtnl_lock(); 7207 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7208 phylink_suspend(priv->phylink, true); 7209 } else { 7210 if (device_may_wakeup(priv->device)) 7211 phylink_speed_down(priv->phylink, false); 7212 phylink_suspend(priv->phylink, false); 7213 } 7214 rtnl_unlock(); 7215 7216 if (priv->dma_cap.fpesel) { 7217 /* Disable FPE */ 7218 stmmac_fpe_configure(priv, priv->ioaddr, 7219 priv->plat->tx_queues_to_use, 7220 priv->plat->rx_queues_to_use, false); 7221 7222 stmmac_fpe_handshake(priv, false); 7223 stmmac_fpe_stop_wq(priv); 7224 } 7225 7226 priv->speed = SPEED_UNKNOWN; 7227 return 0; 7228 } 7229 EXPORT_SYMBOL_GPL(stmmac_suspend); 7230 7231 /** 7232 * stmmac_reset_queues_param - reset queue parameters 7233 * @priv: device pointer 7234 */ 7235 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7236 { 7237 u32 rx_cnt = priv->plat->rx_queues_to_use; 7238 u32 tx_cnt = priv->plat->tx_queues_to_use; 7239 u32 queue; 7240 7241 for (queue = 0; queue < rx_cnt; queue++) { 7242 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7243 7244 rx_q->cur_rx = 0; 7245 rx_q->dirty_rx = 0; 7246 } 7247 7248 for (queue = 0; queue < tx_cnt; queue++) { 7249 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7250 7251 tx_q->cur_tx = 0; 7252 tx_q->dirty_tx = 0; 7253 tx_q->mss = 0; 7254 7255 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7256 } 7257 } 7258 7259 /** 7260 * stmmac_resume - resume callback 7261 * @dev: device pointer 7262 * Description: when resume this function is invoked to setup the DMA and CORE 7263 * in a usable state. 7264 */ 7265 int stmmac_resume(struct device *dev) 7266 { 7267 struct net_device *ndev = dev_get_drvdata(dev); 7268 struct stmmac_priv *priv = netdev_priv(ndev); 7269 int ret; 7270 7271 if (!netif_running(ndev)) 7272 return 0; 7273 7274 /* Power Down bit, into the PM register, is cleared 7275 * automatically as soon as a magic packet or a Wake-up frame 7276 * is received. Anyway, it's better to manually clear 7277 * this bit because it can generate problems while resuming 7278 * from another devices (e.g. serial console). 7279 */ 7280 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7281 mutex_lock(&priv->lock); 7282 stmmac_pmt(priv, priv->hw, 0); 7283 mutex_unlock(&priv->lock); 7284 priv->irq_wake = 0; 7285 } else { 7286 pinctrl_pm_select_default_state(priv->device); 7287 /* reset the phy so that it's ready */ 7288 if (priv->mii) 7289 stmmac_mdio_reset(priv->mii); 7290 } 7291 7292 if (priv->plat->serdes_powerup) { 7293 ret = priv->plat->serdes_powerup(ndev, 7294 priv->plat->bsp_priv); 7295 7296 if (ret < 0) 7297 return ret; 7298 } 7299 7300 rtnl_lock(); 7301 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7302 phylink_resume(priv->phylink); 7303 } else { 7304 phylink_resume(priv->phylink); 7305 if (device_may_wakeup(priv->device)) 7306 phylink_speed_up(priv->phylink); 7307 } 7308 rtnl_unlock(); 7309 7310 rtnl_lock(); 7311 mutex_lock(&priv->lock); 7312 7313 stmmac_reset_queues_param(priv); 7314 7315 stmmac_free_tx_skbufs(priv); 7316 stmmac_clear_descriptors(priv); 7317 7318 stmmac_hw_setup(ndev, false); 7319 stmmac_init_coalesce(priv); 7320 stmmac_set_rx_mode(ndev); 7321 7322 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7323 7324 stmmac_enable_all_queues(priv); 7325 7326 mutex_unlock(&priv->lock); 7327 rtnl_unlock(); 7328 7329 netif_device_attach(ndev); 7330 7331 return 0; 7332 } 7333 EXPORT_SYMBOL_GPL(stmmac_resume); 7334 7335 #ifndef MODULE 7336 static int __init stmmac_cmdline_opt(char *str) 7337 { 7338 char *opt; 7339 7340 if (!str || !*str) 7341 return -EINVAL; 7342 while ((opt = strsep(&str, ",")) != NULL) { 7343 if (!strncmp(opt, "debug:", 6)) { 7344 if (kstrtoint(opt + 6, 0, &debug)) 7345 goto err; 7346 } else if (!strncmp(opt, "phyaddr:", 8)) { 7347 if (kstrtoint(opt + 8, 0, &phyaddr)) 7348 goto err; 7349 } else if (!strncmp(opt, "buf_sz:", 7)) { 7350 if (kstrtoint(opt + 7, 0, &buf_sz)) 7351 goto err; 7352 } else if (!strncmp(opt, "tc:", 3)) { 7353 if (kstrtoint(opt + 3, 0, &tc)) 7354 goto err; 7355 } else if (!strncmp(opt, "watchdog:", 9)) { 7356 if (kstrtoint(opt + 9, 0, &watchdog)) 7357 goto err; 7358 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7359 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7360 goto err; 7361 } else if (!strncmp(opt, "pause:", 6)) { 7362 if (kstrtoint(opt + 6, 0, &pause)) 7363 goto err; 7364 } else if (!strncmp(opt, "eee_timer:", 10)) { 7365 if (kstrtoint(opt + 10, 0, &eee_timer)) 7366 goto err; 7367 } else if (!strncmp(opt, "chain_mode:", 11)) { 7368 if (kstrtoint(opt + 11, 0, &chain_mode)) 7369 goto err; 7370 } 7371 } 7372 return 0; 7373 7374 err: 7375 pr_err("%s: ERROR broken module parameter conversion", __func__); 7376 return -EINVAL; 7377 } 7378 7379 __setup("stmmaceth=", stmmac_cmdline_opt); 7380 #endif /* MODULE */ 7381 7382 static int __init stmmac_init(void) 7383 { 7384 #ifdef CONFIG_DEBUG_FS 7385 /* Create debugfs main directory if it doesn't exist yet */ 7386 if (!stmmac_fs_dir) 7387 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7388 register_netdevice_notifier(&stmmac_notifier); 7389 #endif 7390 7391 return 0; 7392 } 7393 7394 static void __exit stmmac_exit(void) 7395 { 7396 #ifdef CONFIG_DEBUG_FS 7397 unregister_netdevice_notifier(&stmmac_notifier); 7398 debugfs_remove_recursive(stmmac_fs_dir); 7399 #endif 7400 } 7401 7402 module_init(stmmac_init) 7403 module_exit(stmmac_exit) 7404 7405 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7406 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7407 MODULE_LICENSE("GPL"); 7408