1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	if (priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup)
992 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
993 
994 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
995 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
996 
997 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
998 		switch (speed) {
999 		case SPEED_10000:
1000 			ctrl |= priv->hw->link.xgmii.speed10000;
1001 			break;
1002 		case SPEED_5000:
1003 			ctrl |= priv->hw->link.xgmii.speed5000;
1004 			break;
1005 		case SPEED_2500:
1006 			ctrl |= priv->hw->link.xgmii.speed2500;
1007 			break;
1008 		default:
1009 			return;
1010 		}
1011 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1012 		switch (speed) {
1013 		case SPEED_100000:
1014 			ctrl |= priv->hw->link.xlgmii.speed100000;
1015 			break;
1016 		case SPEED_50000:
1017 			ctrl |= priv->hw->link.xlgmii.speed50000;
1018 			break;
1019 		case SPEED_40000:
1020 			ctrl |= priv->hw->link.xlgmii.speed40000;
1021 			break;
1022 		case SPEED_25000:
1023 			ctrl |= priv->hw->link.xlgmii.speed25000;
1024 			break;
1025 		case SPEED_10000:
1026 			ctrl |= priv->hw->link.xgmii.speed10000;
1027 			break;
1028 		case SPEED_2500:
1029 			ctrl |= priv->hw->link.speed2500;
1030 			break;
1031 		case SPEED_1000:
1032 			ctrl |= priv->hw->link.speed1000;
1033 			break;
1034 		default:
1035 			return;
1036 		}
1037 	} else {
1038 		switch (speed) {
1039 		case SPEED_2500:
1040 			ctrl |= priv->hw->link.speed2500;
1041 			break;
1042 		case SPEED_1000:
1043 			ctrl |= priv->hw->link.speed1000;
1044 			break;
1045 		case SPEED_100:
1046 			ctrl |= priv->hw->link.speed100;
1047 			break;
1048 		case SPEED_10:
1049 			ctrl |= priv->hw->link.speed10;
1050 			break;
1051 		default:
1052 			return;
1053 		}
1054 	}
1055 
1056 	priv->speed = speed;
1057 
1058 	if (priv->plat->fix_mac_speed)
1059 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1060 
1061 	if (!duplex)
1062 		ctrl &= ~priv->hw->link.duplex;
1063 	else
1064 		ctrl |= priv->hw->link.duplex;
1065 
1066 	/* Flow Control operation */
1067 	if (rx_pause && tx_pause)
1068 		priv->flow_ctrl = FLOW_AUTO;
1069 	else if (rx_pause && !tx_pause)
1070 		priv->flow_ctrl = FLOW_RX;
1071 	else if (!rx_pause && tx_pause)
1072 		priv->flow_ctrl = FLOW_TX;
1073 	else
1074 		priv->flow_ctrl = FLOW_OFF;
1075 
1076 	stmmac_mac_flow_ctrl(priv, duplex);
1077 
1078 	if (ctrl != old_ctrl)
1079 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1080 
1081 	stmmac_mac_set(priv, priv->ioaddr, true);
1082 	if (phy && priv->dma_cap.eee) {
1083 		priv->eee_active =
1084 			phy_init_eee(phy, !priv->plat->rx_clk_runs_in_lpi) >= 0;
1085 		priv->eee_enabled = stmmac_eee_init(priv);
1086 		priv->tx_lpi_enabled = priv->eee_enabled;
1087 		stmmac_set_eee_pls(priv, priv->hw, true);
1088 	}
1089 
1090 	if (priv->dma_cap.fpesel)
1091 		stmmac_fpe_link_state_handle(priv, true);
1092 }
1093 
1094 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1095 	.mac_select_pcs = stmmac_mac_select_pcs,
1096 	.mac_config = stmmac_mac_config,
1097 	.mac_link_down = stmmac_mac_link_down,
1098 	.mac_link_up = stmmac_mac_link_up,
1099 };
1100 
1101 /**
1102  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1103  * @priv: driver private structure
1104  * Description: this is to verify if the HW supports the PCS.
1105  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1106  * configured for the TBI, RTBI, or SGMII PHY interface.
1107  */
1108 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1109 {
1110 	int interface = priv->plat->interface;
1111 
1112 	if (priv->dma_cap.pcs) {
1113 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1114 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1115 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1116 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1117 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1118 			priv->hw->pcs = STMMAC_PCS_RGMII;
1119 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1120 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1121 			priv->hw->pcs = STMMAC_PCS_SGMII;
1122 		}
1123 	}
1124 }
1125 
1126 /**
1127  * stmmac_init_phy - PHY initialization
1128  * @dev: net device structure
1129  * Description: it initializes the driver's PHY state, and attaches the PHY
1130  * to the mac driver.
1131  *  Return value:
1132  *  0 on success
1133  */
1134 static int stmmac_init_phy(struct net_device *dev)
1135 {
1136 	struct stmmac_priv *priv = netdev_priv(dev);
1137 	struct fwnode_handle *fwnode;
1138 	int ret;
1139 
1140 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1141 	if (!fwnode)
1142 		fwnode = dev_fwnode(priv->device);
1143 
1144 	if (fwnode)
1145 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1146 
1147 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1148 	 * manually parse it
1149 	 */
1150 	if (!fwnode || ret) {
1151 		int addr = priv->plat->phy_addr;
1152 		struct phy_device *phydev;
1153 
1154 		if (addr < 0) {
1155 			netdev_err(priv->dev, "no phy found\n");
1156 			return -ENODEV;
1157 		}
1158 
1159 		phydev = mdiobus_get_phy(priv->mii, addr);
1160 		if (!phydev) {
1161 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1162 			return -ENODEV;
1163 		}
1164 
1165 		ret = phylink_connect_phy(priv->phylink, phydev);
1166 	}
1167 
1168 	if (!priv->plat->pmt) {
1169 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1170 
1171 		phylink_ethtool_get_wol(priv->phylink, &wol);
1172 		device_set_wakeup_capable(priv->device, !!wol.supported);
1173 	}
1174 
1175 	return ret;
1176 }
1177 
1178 static int stmmac_phy_setup(struct stmmac_priv *priv)
1179 {
1180 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1181 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1182 	int max_speed = priv->plat->max_speed;
1183 	int mode = priv->plat->phy_interface;
1184 	struct phylink *phylink;
1185 
1186 	priv->phylink_config.dev = &priv->dev->dev;
1187 	priv->phylink_config.type = PHYLINK_NETDEV;
1188 	if (priv->plat->mdio_bus_data)
1189 		priv->phylink_config.ovr_an_inband =
1190 			mdio_bus_data->xpcs_an_inband;
1191 
1192 	if (!fwnode)
1193 		fwnode = dev_fwnode(priv->device);
1194 
1195 	/* Set the platform/firmware specified interface mode */
1196 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1197 
1198 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1199 	if (priv->hw->xpcs)
1200 		xpcs_get_interfaces(priv->hw->xpcs,
1201 				    priv->phylink_config.supported_interfaces);
1202 
1203 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1204 		MAC_10 | MAC_100;
1205 
1206 	if (!max_speed || max_speed >= 1000)
1207 		priv->phylink_config.mac_capabilities |= MAC_1000;
1208 
1209 	if (priv->plat->has_gmac4) {
1210 		if (!max_speed || max_speed >= 2500)
1211 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1212 	} else if (priv->plat->has_xgmac) {
1213 		if (!max_speed || max_speed >= 2500)
1214 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1215 		if (!max_speed || max_speed >= 5000)
1216 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1217 		if (!max_speed || max_speed >= 10000)
1218 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1219 		if (!max_speed || max_speed >= 25000)
1220 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1221 		if (!max_speed || max_speed >= 40000)
1222 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1223 		if (!max_speed || max_speed >= 50000)
1224 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1225 		if (!max_speed || max_speed >= 100000)
1226 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1227 	}
1228 
1229 	/* Half-Duplex can only work with single queue */
1230 	if (priv->plat->tx_queues_to_use > 1)
1231 		priv->phylink_config.mac_capabilities &=
1232 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1233 	priv->phylink_config.mac_managed_pm = true;
1234 
1235 	phylink = phylink_create(&priv->phylink_config, fwnode,
1236 				 mode, &stmmac_phylink_mac_ops);
1237 	if (IS_ERR(phylink))
1238 		return PTR_ERR(phylink);
1239 
1240 	priv->phylink = phylink;
1241 	return 0;
1242 }
1243 
1244 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1245 				    struct stmmac_dma_conf *dma_conf)
1246 {
1247 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1248 	unsigned int desc_size;
1249 	void *head_rx;
1250 	u32 queue;
1251 
1252 	/* Display RX rings */
1253 	for (queue = 0; queue < rx_cnt; queue++) {
1254 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1255 
1256 		pr_info("\tRX Queue %u rings\n", queue);
1257 
1258 		if (priv->extend_desc) {
1259 			head_rx = (void *)rx_q->dma_erx;
1260 			desc_size = sizeof(struct dma_extended_desc);
1261 		} else {
1262 			head_rx = (void *)rx_q->dma_rx;
1263 			desc_size = sizeof(struct dma_desc);
1264 		}
1265 
1266 		/* Display RX ring */
1267 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1268 				    rx_q->dma_rx_phy, desc_size);
1269 	}
1270 }
1271 
1272 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1273 				    struct stmmac_dma_conf *dma_conf)
1274 {
1275 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1276 	unsigned int desc_size;
1277 	void *head_tx;
1278 	u32 queue;
1279 
1280 	/* Display TX rings */
1281 	for (queue = 0; queue < tx_cnt; queue++) {
1282 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1283 
1284 		pr_info("\tTX Queue %d rings\n", queue);
1285 
1286 		if (priv->extend_desc) {
1287 			head_tx = (void *)tx_q->dma_etx;
1288 			desc_size = sizeof(struct dma_extended_desc);
1289 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1290 			head_tx = (void *)tx_q->dma_entx;
1291 			desc_size = sizeof(struct dma_edesc);
1292 		} else {
1293 			head_tx = (void *)tx_q->dma_tx;
1294 			desc_size = sizeof(struct dma_desc);
1295 		}
1296 
1297 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1298 				    tx_q->dma_tx_phy, desc_size);
1299 	}
1300 }
1301 
1302 static void stmmac_display_rings(struct stmmac_priv *priv,
1303 				 struct stmmac_dma_conf *dma_conf)
1304 {
1305 	/* Display RX ring */
1306 	stmmac_display_rx_rings(priv, dma_conf);
1307 
1308 	/* Display TX ring */
1309 	stmmac_display_tx_rings(priv, dma_conf);
1310 }
1311 
1312 static int stmmac_set_bfsize(int mtu, int bufsize)
1313 {
1314 	int ret = bufsize;
1315 
1316 	if (mtu >= BUF_SIZE_8KiB)
1317 		ret = BUF_SIZE_16KiB;
1318 	else if (mtu >= BUF_SIZE_4KiB)
1319 		ret = BUF_SIZE_8KiB;
1320 	else if (mtu >= BUF_SIZE_2KiB)
1321 		ret = BUF_SIZE_4KiB;
1322 	else if (mtu > DEFAULT_BUFSIZE)
1323 		ret = BUF_SIZE_2KiB;
1324 	else
1325 		ret = DEFAULT_BUFSIZE;
1326 
1327 	return ret;
1328 }
1329 
1330 /**
1331  * stmmac_clear_rx_descriptors - clear RX descriptors
1332  * @priv: driver private structure
1333  * @dma_conf: structure to take the dma data
1334  * @queue: RX queue index
1335  * Description: this function is called to clear the RX descriptors
1336  * in case of both basic and extended descriptors are used.
1337  */
1338 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1339 					struct stmmac_dma_conf *dma_conf,
1340 					u32 queue)
1341 {
1342 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1343 	int i;
1344 
1345 	/* Clear the RX descriptors */
1346 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1347 		if (priv->extend_desc)
1348 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1349 					priv->use_riwt, priv->mode,
1350 					(i == dma_conf->dma_rx_size - 1),
1351 					dma_conf->dma_buf_sz);
1352 		else
1353 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1354 					priv->use_riwt, priv->mode,
1355 					(i == dma_conf->dma_rx_size - 1),
1356 					dma_conf->dma_buf_sz);
1357 }
1358 
1359 /**
1360  * stmmac_clear_tx_descriptors - clear tx descriptors
1361  * @priv: driver private structure
1362  * @dma_conf: structure to take the dma data
1363  * @queue: TX queue index.
1364  * Description: this function is called to clear the TX descriptors
1365  * in case of both basic and extended descriptors are used.
1366  */
1367 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1368 					struct stmmac_dma_conf *dma_conf,
1369 					u32 queue)
1370 {
1371 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1372 	int i;
1373 
1374 	/* Clear the TX descriptors */
1375 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1376 		int last = (i == (dma_conf->dma_tx_size - 1));
1377 		struct dma_desc *p;
1378 
1379 		if (priv->extend_desc)
1380 			p = &tx_q->dma_etx[i].basic;
1381 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1382 			p = &tx_q->dma_entx[i].basic;
1383 		else
1384 			p = &tx_q->dma_tx[i];
1385 
1386 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1387 	}
1388 }
1389 
1390 /**
1391  * stmmac_clear_descriptors - clear descriptors
1392  * @priv: driver private structure
1393  * @dma_conf: structure to take the dma data
1394  * Description: this function is called to clear the TX and RX descriptors
1395  * in case of both basic and extended descriptors are used.
1396  */
1397 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1398 				     struct stmmac_dma_conf *dma_conf)
1399 {
1400 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1401 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1402 	u32 queue;
1403 
1404 	/* Clear the RX descriptors */
1405 	for (queue = 0; queue < rx_queue_cnt; queue++)
1406 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1407 
1408 	/* Clear the TX descriptors */
1409 	for (queue = 0; queue < tx_queue_cnt; queue++)
1410 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1411 }
1412 
1413 /**
1414  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1415  * @priv: driver private structure
1416  * @dma_conf: structure to take the dma data
1417  * @p: descriptor pointer
1418  * @i: descriptor index
1419  * @flags: gfp flag
1420  * @queue: RX queue index
1421  * Description: this function is called to allocate a receive buffer, perform
1422  * the DMA mapping and init the descriptor.
1423  */
1424 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1425 				  struct stmmac_dma_conf *dma_conf,
1426 				  struct dma_desc *p,
1427 				  int i, gfp_t flags, u32 queue)
1428 {
1429 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1430 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1431 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1432 
1433 	if (priv->dma_cap.addr64 <= 32)
1434 		gfp |= GFP_DMA32;
1435 
1436 	if (!buf->page) {
1437 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1438 		if (!buf->page)
1439 			return -ENOMEM;
1440 		buf->page_offset = stmmac_rx_offset(priv);
1441 	}
1442 
1443 	if (priv->sph && !buf->sec_page) {
1444 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1445 		if (!buf->sec_page)
1446 			return -ENOMEM;
1447 
1448 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1449 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1450 	} else {
1451 		buf->sec_page = NULL;
1452 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1453 	}
1454 
1455 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1456 
1457 	stmmac_set_desc_addr(priv, p, buf->addr);
1458 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1459 		stmmac_init_desc3(priv, p);
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  * stmmac_free_rx_buffer - free RX dma buffers
1466  * @priv: private structure
1467  * @rx_q: RX queue
1468  * @i: buffer index.
1469  */
1470 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1471 				  struct stmmac_rx_queue *rx_q,
1472 				  int i)
1473 {
1474 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1475 
1476 	if (buf->page)
1477 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1478 	buf->page = NULL;
1479 
1480 	if (buf->sec_page)
1481 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1482 	buf->sec_page = NULL;
1483 }
1484 
1485 /**
1486  * stmmac_free_tx_buffer - free RX dma buffers
1487  * @priv: private structure
1488  * @dma_conf: structure to take the dma data
1489  * @queue: RX queue index
1490  * @i: buffer index.
1491  */
1492 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1493 				  struct stmmac_dma_conf *dma_conf,
1494 				  u32 queue, int i)
1495 {
1496 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1497 
1498 	if (tx_q->tx_skbuff_dma[i].buf &&
1499 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1500 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1501 			dma_unmap_page(priv->device,
1502 				       tx_q->tx_skbuff_dma[i].buf,
1503 				       tx_q->tx_skbuff_dma[i].len,
1504 				       DMA_TO_DEVICE);
1505 		else
1506 			dma_unmap_single(priv->device,
1507 					 tx_q->tx_skbuff_dma[i].buf,
1508 					 tx_q->tx_skbuff_dma[i].len,
1509 					 DMA_TO_DEVICE);
1510 	}
1511 
1512 	if (tx_q->xdpf[i] &&
1513 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1514 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1515 		xdp_return_frame(tx_q->xdpf[i]);
1516 		tx_q->xdpf[i] = NULL;
1517 	}
1518 
1519 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1520 		tx_q->xsk_frames_done++;
1521 
1522 	if (tx_q->tx_skbuff[i] &&
1523 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1524 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1525 		tx_q->tx_skbuff[i] = NULL;
1526 	}
1527 
1528 	tx_q->tx_skbuff_dma[i].buf = 0;
1529 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1530 }
1531 
1532 /**
1533  * dma_free_rx_skbufs - free RX dma buffers
1534  * @priv: private structure
1535  * @dma_conf: structure to take the dma data
1536  * @queue: RX queue index
1537  */
1538 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1539 			       struct stmmac_dma_conf *dma_conf,
1540 			       u32 queue)
1541 {
1542 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1543 	int i;
1544 
1545 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1546 		stmmac_free_rx_buffer(priv, rx_q, i);
1547 }
1548 
1549 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1550 				   struct stmmac_dma_conf *dma_conf,
1551 				   u32 queue, gfp_t flags)
1552 {
1553 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1554 	int i;
1555 
1556 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1557 		struct dma_desc *p;
1558 		int ret;
1559 
1560 		if (priv->extend_desc)
1561 			p = &((rx_q->dma_erx + i)->basic);
1562 		else
1563 			p = rx_q->dma_rx + i;
1564 
1565 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1566 					     queue);
1567 		if (ret)
1568 			return ret;
1569 
1570 		rx_q->buf_alloc_num++;
1571 	}
1572 
1573 	return 0;
1574 }
1575 
1576 /**
1577  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1578  * @priv: private structure
1579  * @dma_conf: structure to take the dma data
1580  * @queue: RX queue index
1581  */
1582 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1583 				struct stmmac_dma_conf *dma_conf,
1584 				u32 queue)
1585 {
1586 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1587 	int i;
1588 
1589 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1590 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1591 
1592 		if (!buf->xdp)
1593 			continue;
1594 
1595 		xsk_buff_free(buf->xdp);
1596 		buf->xdp = NULL;
1597 	}
1598 }
1599 
1600 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1601 				      struct stmmac_dma_conf *dma_conf,
1602 				      u32 queue)
1603 {
1604 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1605 	int i;
1606 
1607 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1608 		struct stmmac_rx_buffer *buf;
1609 		dma_addr_t dma_addr;
1610 		struct dma_desc *p;
1611 
1612 		if (priv->extend_desc)
1613 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1614 		else
1615 			p = rx_q->dma_rx + i;
1616 
1617 		buf = &rx_q->buf_pool[i];
1618 
1619 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1620 		if (!buf->xdp)
1621 			return -ENOMEM;
1622 
1623 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1624 		stmmac_set_desc_addr(priv, p, dma_addr);
1625 		rx_q->buf_alloc_num++;
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1632 {
1633 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1634 		return NULL;
1635 
1636 	return xsk_get_pool_from_qid(priv->dev, queue);
1637 }
1638 
1639 /**
1640  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1641  * @priv: driver private structure
1642  * @dma_conf: structure to take the dma data
1643  * @queue: RX queue index
1644  * @flags: gfp flag.
1645  * Description: this function initializes the DMA RX descriptors
1646  * and allocates the socket buffers. It supports the chained and ring
1647  * modes.
1648  */
1649 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1650 				    struct stmmac_dma_conf *dma_conf,
1651 				    u32 queue, gfp_t flags)
1652 {
1653 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1654 	int ret;
1655 
1656 	netif_dbg(priv, probe, priv->dev,
1657 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1658 		  (u32)rx_q->dma_rx_phy);
1659 
1660 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1661 
1662 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1663 
1664 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1665 
1666 	if (rx_q->xsk_pool) {
1667 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1668 						   MEM_TYPE_XSK_BUFF_POOL,
1669 						   NULL));
1670 		netdev_info(priv->dev,
1671 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1672 			    rx_q->queue_index);
1673 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1674 	} else {
1675 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1676 						   MEM_TYPE_PAGE_POOL,
1677 						   rx_q->page_pool));
1678 		netdev_info(priv->dev,
1679 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1680 			    rx_q->queue_index);
1681 	}
1682 
1683 	if (rx_q->xsk_pool) {
1684 		/* RX XDP ZC buffer pool may not be populated, e.g.
1685 		 * xdpsock TX-only.
1686 		 */
1687 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1688 	} else {
1689 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1690 		if (ret < 0)
1691 			return -ENOMEM;
1692 	}
1693 
1694 	/* Setup the chained descriptor addresses */
1695 	if (priv->mode == STMMAC_CHAIN_MODE) {
1696 		if (priv->extend_desc)
1697 			stmmac_mode_init(priv, rx_q->dma_erx,
1698 					 rx_q->dma_rx_phy,
1699 					 dma_conf->dma_rx_size, 1);
1700 		else
1701 			stmmac_mode_init(priv, rx_q->dma_rx,
1702 					 rx_q->dma_rx_phy,
1703 					 dma_conf->dma_rx_size, 0);
1704 	}
1705 
1706 	return 0;
1707 }
1708 
1709 static int init_dma_rx_desc_rings(struct net_device *dev,
1710 				  struct stmmac_dma_conf *dma_conf,
1711 				  gfp_t flags)
1712 {
1713 	struct stmmac_priv *priv = netdev_priv(dev);
1714 	u32 rx_count = priv->plat->rx_queues_to_use;
1715 	int queue;
1716 	int ret;
1717 
1718 	/* RX INITIALIZATION */
1719 	netif_dbg(priv, probe, priv->dev,
1720 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1721 
1722 	for (queue = 0; queue < rx_count; queue++) {
1723 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1724 		if (ret)
1725 			goto err_init_rx_buffers;
1726 	}
1727 
1728 	return 0;
1729 
1730 err_init_rx_buffers:
1731 	while (queue >= 0) {
1732 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1733 
1734 		if (rx_q->xsk_pool)
1735 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1736 		else
1737 			dma_free_rx_skbufs(priv, dma_conf, queue);
1738 
1739 		rx_q->buf_alloc_num = 0;
1740 		rx_q->xsk_pool = NULL;
1741 
1742 		queue--;
1743 	}
1744 
1745 	return ret;
1746 }
1747 
1748 /**
1749  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1750  * @priv: driver private structure
1751  * @dma_conf: structure to take the dma data
1752  * @queue: TX queue index
1753  * Description: this function initializes the DMA TX descriptors
1754  * and allocates the socket buffers. It supports the chained and ring
1755  * modes.
1756  */
1757 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1758 				    struct stmmac_dma_conf *dma_conf,
1759 				    u32 queue)
1760 {
1761 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1762 	int i;
1763 
1764 	netif_dbg(priv, probe, priv->dev,
1765 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1766 		  (u32)tx_q->dma_tx_phy);
1767 
1768 	/* Setup the chained descriptor addresses */
1769 	if (priv->mode == STMMAC_CHAIN_MODE) {
1770 		if (priv->extend_desc)
1771 			stmmac_mode_init(priv, tx_q->dma_etx,
1772 					 tx_q->dma_tx_phy,
1773 					 dma_conf->dma_tx_size, 1);
1774 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1775 			stmmac_mode_init(priv, tx_q->dma_tx,
1776 					 tx_q->dma_tx_phy,
1777 					 dma_conf->dma_tx_size, 0);
1778 	}
1779 
1780 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1781 
1782 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1783 		struct dma_desc *p;
1784 
1785 		if (priv->extend_desc)
1786 			p = &((tx_q->dma_etx + i)->basic);
1787 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1788 			p = &((tx_q->dma_entx + i)->basic);
1789 		else
1790 			p = tx_q->dma_tx + i;
1791 
1792 		stmmac_clear_desc(priv, p);
1793 
1794 		tx_q->tx_skbuff_dma[i].buf = 0;
1795 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1796 		tx_q->tx_skbuff_dma[i].len = 0;
1797 		tx_q->tx_skbuff_dma[i].last_segment = false;
1798 		tx_q->tx_skbuff[i] = NULL;
1799 	}
1800 
1801 	return 0;
1802 }
1803 
1804 static int init_dma_tx_desc_rings(struct net_device *dev,
1805 				  struct stmmac_dma_conf *dma_conf)
1806 {
1807 	struct stmmac_priv *priv = netdev_priv(dev);
1808 	u32 tx_queue_cnt;
1809 	u32 queue;
1810 
1811 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1812 
1813 	for (queue = 0; queue < tx_queue_cnt; queue++)
1814 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1815 
1816 	return 0;
1817 }
1818 
1819 /**
1820  * init_dma_desc_rings - init the RX/TX descriptor rings
1821  * @dev: net device structure
1822  * @dma_conf: structure to take the dma data
1823  * @flags: gfp flag.
1824  * Description: this function initializes the DMA RX/TX descriptors
1825  * and allocates the socket buffers. It supports the chained and ring
1826  * modes.
1827  */
1828 static int init_dma_desc_rings(struct net_device *dev,
1829 			       struct stmmac_dma_conf *dma_conf,
1830 			       gfp_t flags)
1831 {
1832 	struct stmmac_priv *priv = netdev_priv(dev);
1833 	int ret;
1834 
1835 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1836 	if (ret)
1837 		return ret;
1838 
1839 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1840 
1841 	stmmac_clear_descriptors(priv, dma_conf);
1842 
1843 	if (netif_msg_hw(priv))
1844 		stmmac_display_rings(priv, dma_conf);
1845 
1846 	return ret;
1847 }
1848 
1849 /**
1850  * dma_free_tx_skbufs - free TX dma buffers
1851  * @priv: private structure
1852  * @dma_conf: structure to take the dma data
1853  * @queue: TX queue index
1854  */
1855 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1856 			       struct stmmac_dma_conf *dma_conf,
1857 			       u32 queue)
1858 {
1859 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1860 	int i;
1861 
1862 	tx_q->xsk_frames_done = 0;
1863 
1864 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1865 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1866 
1867 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1868 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1869 		tx_q->xsk_frames_done = 0;
1870 		tx_q->xsk_pool = NULL;
1871 	}
1872 }
1873 
1874 /**
1875  * stmmac_free_tx_skbufs - free TX skb buffers
1876  * @priv: private structure
1877  */
1878 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1879 {
1880 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1881 	u32 queue;
1882 
1883 	for (queue = 0; queue < tx_queue_cnt; queue++)
1884 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1885 }
1886 
1887 /**
1888  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1889  * @priv: private structure
1890  * @dma_conf: structure to take the dma data
1891  * @queue: RX queue index
1892  */
1893 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1894 					 struct stmmac_dma_conf *dma_conf,
1895 					 u32 queue)
1896 {
1897 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1898 
1899 	/* Release the DMA RX socket buffers */
1900 	if (rx_q->xsk_pool)
1901 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1902 	else
1903 		dma_free_rx_skbufs(priv, dma_conf, queue);
1904 
1905 	rx_q->buf_alloc_num = 0;
1906 	rx_q->xsk_pool = NULL;
1907 
1908 	/* Free DMA regions of consistent memory previously allocated */
1909 	if (!priv->extend_desc)
1910 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1911 				  sizeof(struct dma_desc),
1912 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1913 	else
1914 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1915 				  sizeof(struct dma_extended_desc),
1916 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1917 
1918 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1919 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1920 
1921 	kfree(rx_q->buf_pool);
1922 	if (rx_q->page_pool)
1923 		page_pool_destroy(rx_q->page_pool);
1924 }
1925 
1926 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1927 				       struct stmmac_dma_conf *dma_conf)
1928 {
1929 	u32 rx_count = priv->plat->rx_queues_to_use;
1930 	u32 queue;
1931 
1932 	/* Free RX queue resources */
1933 	for (queue = 0; queue < rx_count; queue++)
1934 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1935 }
1936 
1937 /**
1938  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1939  * @priv: private structure
1940  * @dma_conf: structure to take the dma data
1941  * @queue: TX queue index
1942  */
1943 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1944 					 struct stmmac_dma_conf *dma_conf,
1945 					 u32 queue)
1946 {
1947 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1948 	size_t size;
1949 	void *addr;
1950 
1951 	/* Release the DMA TX socket buffers */
1952 	dma_free_tx_skbufs(priv, dma_conf, queue);
1953 
1954 	if (priv->extend_desc) {
1955 		size = sizeof(struct dma_extended_desc);
1956 		addr = tx_q->dma_etx;
1957 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1958 		size = sizeof(struct dma_edesc);
1959 		addr = tx_q->dma_entx;
1960 	} else {
1961 		size = sizeof(struct dma_desc);
1962 		addr = tx_q->dma_tx;
1963 	}
1964 
1965 	size *= dma_conf->dma_tx_size;
1966 
1967 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1968 
1969 	kfree(tx_q->tx_skbuff_dma);
1970 	kfree(tx_q->tx_skbuff);
1971 }
1972 
1973 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1974 				       struct stmmac_dma_conf *dma_conf)
1975 {
1976 	u32 tx_count = priv->plat->tx_queues_to_use;
1977 	u32 queue;
1978 
1979 	/* Free TX queue resources */
1980 	for (queue = 0; queue < tx_count; queue++)
1981 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1982 }
1983 
1984 /**
1985  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1986  * @priv: private structure
1987  * @dma_conf: structure to take the dma data
1988  * @queue: RX queue index
1989  * Description: according to which descriptor can be used (extend or basic)
1990  * this function allocates the resources for TX and RX paths. In case of
1991  * reception, for example, it pre-allocated the RX socket buffer in order to
1992  * allow zero-copy mechanism.
1993  */
1994 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1995 					 struct stmmac_dma_conf *dma_conf,
1996 					 u32 queue)
1997 {
1998 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1999 	struct stmmac_channel *ch = &priv->channel[queue];
2000 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2001 	struct page_pool_params pp_params = { 0 };
2002 	unsigned int num_pages;
2003 	unsigned int napi_id;
2004 	int ret;
2005 
2006 	rx_q->queue_index = queue;
2007 	rx_q->priv_data = priv;
2008 
2009 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2010 	pp_params.pool_size = dma_conf->dma_rx_size;
2011 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2012 	pp_params.order = ilog2(num_pages);
2013 	pp_params.nid = dev_to_node(priv->device);
2014 	pp_params.dev = priv->device;
2015 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2016 	pp_params.offset = stmmac_rx_offset(priv);
2017 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2018 
2019 	rx_q->page_pool = page_pool_create(&pp_params);
2020 	if (IS_ERR(rx_q->page_pool)) {
2021 		ret = PTR_ERR(rx_q->page_pool);
2022 		rx_q->page_pool = NULL;
2023 		return ret;
2024 	}
2025 
2026 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2027 				 sizeof(*rx_q->buf_pool),
2028 				 GFP_KERNEL);
2029 	if (!rx_q->buf_pool)
2030 		return -ENOMEM;
2031 
2032 	if (priv->extend_desc) {
2033 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2034 						   dma_conf->dma_rx_size *
2035 						   sizeof(struct dma_extended_desc),
2036 						   &rx_q->dma_rx_phy,
2037 						   GFP_KERNEL);
2038 		if (!rx_q->dma_erx)
2039 			return -ENOMEM;
2040 
2041 	} else {
2042 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2043 						  dma_conf->dma_rx_size *
2044 						  sizeof(struct dma_desc),
2045 						  &rx_q->dma_rx_phy,
2046 						  GFP_KERNEL);
2047 		if (!rx_q->dma_rx)
2048 			return -ENOMEM;
2049 	}
2050 
2051 	if (stmmac_xdp_is_enabled(priv) &&
2052 	    test_bit(queue, priv->af_xdp_zc_qps))
2053 		napi_id = ch->rxtx_napi.napi_id;
2054 	else
2055 		napi_id = ch->rx_napi.napi_id;
2056 
2057 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2058 			       rx_q->queue_index,
2059 			       napi_id);
2060 	if (ret) {
2061 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2062 		return -EINVAL;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2069 				       struct stmmac_dma_conf *dma_conf)
2070 {
2071 	u32 rx_count = priv->plat->rx_queues_to_use;
2072 	u32 queue;
2073 	int ret;
2074 
2075 	/* RX queues buffers and DMA */
2076 	for (queue = 0; queue < rx_count; queue++) {
2077 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2078 		if (ret)
2079 			goto err_dma;
2080 	}
2081 
2082 	return 0;
2083 
2084 err_dma:
2085 	free_dma_rx_desc_resources(priv, dma_conf);
2086 
2087 	return ret;
2088 }
2089 
2090 /**
2091  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2092  * @priv: private structure
2093  * @dma_conf: structure to take the dma data
2094  * @queue: TX queue index
2095  * Description: according to which descriptor can be used (extend or basic)
2096  * this function allocates the resources for TX and RX paths. In case of
2097  * reception, for example, it pre-allocated the RX socket buffer in order to
2098  * allow zero-copy mechanism.
2099  */
2100 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2101 					 struct stmmac_dma_conf *dma_conf,
2102 					 u32 queue)
2103 {
2104 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2105 	size_t size;
2106 	void *addr;
2107 
2108 	tx_q->queue_index = queue;
2109 	tx_q->priv_data = priv;
2110 
2111 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2112 				      sizeof(*tx_q->tx_skbuff_dma),
2113 				      GFP_KERNEL);
2114 	if (!tx_q->tx_skbuff_dma)
2115 		return -ENOMEM;
2116 
2117 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2118 				  sizeof(struct sk_buff *),
2119 				  GFP_KERNEL);
2120 	if (!tx_q->tx_skbuff)
2121 		return -ENOMEM;
2122 
2123 	if (priv->extend_desc)
2124 		size = sizeof(struct dma_extended_desc);
2125 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2126 		size = sizeof(struct dma_edesc);
2127 	else
2128 		size = sizeof(struct dma_desc);
2129 
2130 	size *= dma_conf->dma_tx_size;
2131 
2132 	addr = dma_alloc_coherent(priv->device, size,
2133 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2134 	if (!addr)
2135 		return -ENOMEM;
2136 
2137 	if (priv->extend_desc)
2138 		tx_q->dma_etx = addr;
2139 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2140 		tx_q->dma_entx = addr;
2141 	else
2142 		tx_q->dma_tx = addr;
2143 
2144 	return 0;
2145 }
2146 
2147 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2148 				       struct stmmac_dma_conf *dma_conf)
2149 {
2150 	u32 tx_count = priv->plat->tx_queues_to_use;
2151 	u32 queue;
2152 	int ret;
2153 
2154 	/* TX queues buffers and DMA */
2155 	for (queue = 0; queue < tx_count; queue++) {
2156 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2157 		if (ret)
2158 			goto err_dma;
2159 	}
2160 
2161 	return 0;
2162 
2163 err_dma:
2164 	free_dma_tx_desc_resources(priv, dma_conf);
2165 	return ret;
2166 }
2167 
2168 /**
2169  * alloc_dma_desc_resources - alloc TX/RX resources.
2170  * @priv: private structure
2171  * @dma_conf: structure to take the dma data
2172  * Description: according to which descriptor can be used (extend or basic)
2173  * this function allocates the resources for TX and RX paths. In case of
2174  * reception, for example, it pre-allocated the RX socket buffer in order to
2175  * allow zero-copy mechanism.
2176  */
2177 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2178 				    struct stmmac_dma_conf *dma_conf)
2179 {
2180 	/* RX Allocation */
2181 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2182 
2183 	if (ret)
2184 		return ret;
2185 
2186 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2187 
2188 	return ret;
2189 }
2190 
2191 /**
2192  * free_dma_desc_resources - free dma desc resources
2193  * @priv: private structure
2194  * @dma_conf: structure to take the dma data
2195  */
2196 static void free_dma_desc_resources(struct stmmac_priv *priv,
2197 				    struct stmmac_dma_conf *dma_conf)
2198 {
2199 	/* Release the DMA TX socket buffers */
2200 	free_dma_tx_desc_resources(priv, dma_conf);
2201 
2202 	/* Release the DMA RX socket buffers later
2203 	 * to ensure all pending XDP_TX buffers are returned.
2204 	 */
2205 	free_dma_rx_desc_resources(priv, dma_conf);
2206 }
2207 
2208 /**
2209  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2210  *  @priv: driver private structure
2211  *  Description: It is used for enabling the rx queues in the MAC
2212  */
2213 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2214 {
2215 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2216 	int queue;
2217 	u8 mode;
2218 
2219 	for (queue = 0; queue < rx_queues_count; queue++) {
2220 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2221 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2222 	}
2223 }
2224 
2225 /**
2226  * stmmac_start_rx_dma - start RX DMA channel
2227  * @priv: driver private structure
2228  * @chan: RX channel index
2229  * Description:
2230  * This starts a RX DMA channel
2231  */
2232 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2233 {
2234 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2235 	stmmac_start_rx(priv, priv->ioaddr, chan);
2236 }
2237 
2238 /**
2239  * stmmac_start_tx_dma - start TX DMA channel
2240  * @priv: driver private structure
2241  * @chan: TX channel index
2242  * Description:
2243  * This starts a TX DMA channel
2244  */
2245 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2246 {
2247 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2248 	stmmac_start_tx(priv, priv->ioaddr, chan);
2249 }
2250 
2251 /**
2252  * stmmac_stop_rx_dma - stop RX DMA channel
2253  * @priv: driver private structure
2254  * @chan: RX channel index
2255  * Description:
2256  * This stops a RX DMA channel
2257  */
2258 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2259 {
2260 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2261 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2262 }
2263 
2264 /**
2265  * stmmac_stop_tx_dma - stop TX DMA channel
2266  * @priv: driver private structure
2267  * @chan: TX channel index
2268  * Description:
2269  * This stops a TX DMA channel
2270  */
2271 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2272 {
2273 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2274 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2275 }
2276 
2277 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2278 {
2279 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2280 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2281 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2282 	u32 chan;
2283 
2284 	for (chan = 0; chan < dma_csr_ch; chan++) {
2285 		struct stmmac_channel *ch = &priv->channel[chan];
2286 		unsigned long flags;
2287 
2288 		spin_lock_irqsave(&ch->lock, flags);
2289 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2290 		spin_unlock_irqrestore(&ch->lock, flags);
2291 	}
2292 }
2293 
2294 /**
2295  * stmmac_start_all_dma - start all RX and TX DMA channels
2296  * @priv: driver private structure
2297  * Description:
2298  * This starts all the RX and TX DMA channels
2299  */
2300 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2301 {
2302 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2303 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2304 	u32 chan = 0;
2305 
2306 	for (chan = 0; chan < rx_channels_count; chan++)
2307 		stmmac_start_rx_dma(priv, chan);
2308 
2309 	for (chan = 0; chan < tx_channels_count; chan++)
2310 		stmmac_start_tx_dma(priv, chan);
2311 }
2312 
2313 /**
2314  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2315  * @priv: driver private structure
2316  * Description:
2317  * This stops the RX and TX DMA channels
2318  */
2319 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2320 {
2321 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2322 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2323 	u32 chan = 0;
2324 
2325 	for (chan = 0; chan < rx_channels_count; chan++)
2326 		stmmac_stop_rx_dma(priv, chan);
2327 
2328 	for (chan = 0; chan < tx_channels_count; chan++)
2329 		stmmac_stop_tx_dma(priv, chan);
2330 }
2331 
2332 /**
2333  *  stmmac_dma_operation_mode - HW DMA operation mode
2334  *  @priv: driver private structure
2335  *  Description: it is used for configuring the DMA operation mode register in
2336  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2337  */
2338 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2339 {
2340 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2341 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2342 	int rxfifosz = priv->plat->rx_fifo_size;
2343 	int txfifosz = priv->plat->tx_fifo_size;
2344 	u32 txmode = 0;
2345 	u32 rxmode = 0;
2346 	u32 chan = 0;
2347 	u8 qmode = 0;
2348 
2349 	if (rxfifosz == 0)
2350 		rxfifosz = priv->dma_cap.rx_fifo_size;
2351 	if (txfifosz == 0)
2352 		txfifosz = priv->dma_cap.tx_fifo_size;
2353 
2354 	/* Adjust for real per queue fifo size */
2355 	rxfifosz /= rx_channels_count;
2356 	txfifosz /= tx_channels_count;
2357 
2358 	if (priv->plat->force_thresh_dma_mode) {
2359 		txmode = tc;
2360 		rxmode = tc;
2361 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2362 		/*
2363 		 * In case of GMAC, SF mode can be enabled
2364 		 * to perform the TX COE in HW. This depends on:
2365 		 * 1) TX COE if actually supported
2366 		 * 2) There is no bugged Jumbo frame support
2367 		 *    that needs to not insert csum in the TDES.
2368 		 */
2369 		txmode = SF_DMA_MODE;
2370 		rxmode = SF_DMA_MODE;
2371 		priv->xstats.threshold = SF_DMA_MODE;
2372 	} else {
2373 		txmode = tc;
2374 		rxmode = SF_DMA_MODE;
2375 	}
2376 
2377 	/* configure all channels */
2378 	for (chan = 0; chan < rx_channels_count; chan++) {
2379 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2380 		u32 buf_size;
2381 
2382 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2383 
2384 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2385 				rxfifosz, qmode);
2386 
2387 		if (rx_q->xsk_pool) {
2388 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2389 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2390 					      buf_size,
2391 					      chan);
2392 		} else {
2393 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2394 					      priv->dma_conf.dma_buf_sz,
2395 					      chan);
2396 		}
2397 	}
2398 
2399 	for (chan = 0; chan < tx_channels_count; chan++) {
2400 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2401 
2402 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2403 				txfifosz, qmode);
2404 	}
2405 }
2406 
2407 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2408 {
2409 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2410 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2411 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2412 	unsigned int entry = tx_q->cur_tx;
2413 	struct dma_desc *tx_desc = NULL;
2414 	struct xdp_desc xdp_desc;
2415 	bool work_done = true;
2416 
2417 	/* Avoids TX time-out as we are sharing with slow path */
2418 	txq_trans_cond_update(nq);
2419 
2420 	budget = min(budget, stmmac_tx_avail(priv, queue));
2421 
2422 	while (budget-- > 0) {
2423 		dma_addr_t dma_addr;
2424 		bool set_ic;
2425 
2426 		/* We are sharing with slow path and stop XSK TX desc submission when
2427 		 * available TX ring is less than threshold.
2428 		 */
2429 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2430 		    !netif_carrier_ok(priv->dev)) {
2431 			work_done = false;
2432 			break;
2433 		}
2434 
2435 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2436 			break;
2437 
2438 		if (likely(priv->extend_desc))
2439 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2440 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2441 			tx_desc = &tx_q->dma_entx[entry].basic;
2442 		else
2443 			tx_desc = tx_q->dma_tx + entry;
2444 
2445 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2446 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2447 
2448 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2449 
2450 		/* To return XDP buffer to XSK pool, we simple call
2451 		 * xsk_tx_completed(), so we don't need to fill up
2452 		 * 'buf' and 'xdpf'.
2453 		 */
2454 		tx_q->tx_skbuff_dma[entry].buf = 0;
2455 		tx_q->xdpf[entry] = NULL;
2456 
2457 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2458 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2459 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2460 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2461 
2462 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2463 
2464 		tx_q->tx_count_frames++;
2465 
2466 		if (!priv->tx_coal_frames[queue])
2467 			set_ic = false;
2468 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2469 			set_ic = true;
2470 		else
2471 			set_ic = false;
2472 
2473 		if (set_ic) {
2474 			tx_q->tx_count_frames = 0;
2475 			stmmac_set_tx_ic(priv, tx_desc);
2476 			priv->xstats.tx_set_ic_bit++;
2477 		}
2478 
2479 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2480 				       true, priv->mode, true, true,
2481 				       xdp_desc.len);
2482 
2483 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2484 
2485 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2486 		entry = tx_q->cur_tx;
2487 	}
2488 
2489 	if (tx_desc) {
2490 		stmmac_flush_tx_descriptors(priv, queue);
2491 		xsk_tx_release(pool);
2492 	}
2493 
2494 	/* Return true if all of the 3 conditions are met
2495 	 *  a) TX Budget is still available
2496 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2497 	 *     pending XSK TX for transmission)
2498 	 */
2499 	return !!budget && work_done;
2500 }
2501 
2502 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2503 {
2504 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2505 		tc += 64;
2506 
2507 		if (priv->plat->force_thresh_dma_mode)
2508 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2509 		else
2510 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2511 						      chan);
2512 
2513 		priv->xstats.threshold = tc;
2514 	}
2515 }
2516 
2517 /**
2518  * stmmac_tx_clean - to manage the transmission completion
2519  * @priv: driver private structure
2520  * @budget: napi budget limiting this functions packet handling
2521  * @queue: TX queue index
2522  * Description: it reclaims the transmit resources after transmission completes.
2523  */
2524 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2525 {
2526 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2527 	unsigned int bytes_compl = 0, pkts_compl = 0;
2528 	unsigned int entry, xmits = 0, count = 0;
2529 
2530 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2531 
2532 	priv->xstats.tx_clean++;
2533 
2534 	tx_q->xsk_frames_done = 0;
2535 
2536 	entry = tx_q->dirty_tx;
2537 
2538 	/* Try to clean all TX complete frame in 1 shot */
2539 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2540 		struct xdp_frame *xdpf;
2541 		struct sk_buff *skb;
2542 		struct dma_desc *p;
2543 		int status;
2544 
2545 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2546 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547 			xdpf = tx_q->xdpf[entry];
2548 			skb = NULL;
2549 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2550 			xdpf = NULL;
2551 			skb = tx_q->tx_skbuff[entry];
2552 		} else {
2553 			xdpf = NULL;
2554 			skb = NULL;
2555 		}
2556 
2557 		if (priv->extend_desc)
2558 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2559 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2560 			p = &tx_q->dma_entx[entry].basic;
2561 		else
2562 			p = tx_q->dma_tx + entry;
2563 
2564 		status = stmmac_tx_status(priv, &priv->dev->stats,
2565 				&priv->xstats, p, priv->ioaddr);
2566 		/* Check if the descriptor is owned by the DMA */
2567 		if (unlikely(status & tx_dma_own))
2568 			break;
2569 
2570 		count++;
2571 
2572 		/* Make sure descriptor fields are read after reading
2573 		 * the own bit.
2574 		 */
2575 		dma_rmb();
2576 
2577 		/* Just consider the last segment and ...*/
2578 		if (likely(!(status & tx_not_ls))) {
2579 			/* ... verify the status error condition */
2580 			if (unlikely(status & tx_err)) {
2581 				priv->dev->stats.tx_errors++;
2582 				if (unlikely(status & tx_err_bump_tc))
2583 					stmmac_bump_dma_threshold(priv, queue);
2584 			} else {
2585 				priv->dev->stats.tx_packets++;
2586 				priv->xstats.tx_pkt_n++;
2587 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2588 			}
2589 			if (skb)
2590 				stmmac_get_tx_hwtstamp(priv, p, skb);
2591 		}
2592 
2593 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2594 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2595 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2596 				dma_unmap_page(priv->device,
2597 					       tx_q->tx_skbuff_dma[entry].buf,
2598 					       tx_q->tx_skbuff_dma[entry].len,
2599 					       DMA_TO_DEVICE);
2600 			else
2601 				dma_unmap_single(priv->device,
2602 						 tx_q->tx_skbuff_dma[entry].buf,
2603 						 tx_q->tx_skbuff_dma[entry].len,
2604 						 DMA_TO_DEVICE);
2605 			tx_q->tx_skbuff_dma[entry].buf = 0;
2606 			tx_q->tx_skbuff_dma[entry].len = 0;
2607 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2608 		}
2609 
2610 		stmmac_clean_desc3(priv, tx_q, p);
2611 
2612 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2613 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2614 
2615 		if (xdpf &&
2616 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2617 			xdp_return_frame_rx_napi(xdpf);
2618 			tx_q->xdpf[entry] = NULL;
2619 		}
2620 
2621 		if (xdpf &&
2622 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2623 			xdp_return_frame(xdpf);
2624 			tx_q->xdpf[entry] = NULL;
2625 		}
2626 
2627 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2628 			tx_q->xsk_frames_done++;
2629 
2630 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2631 			if (likely(skb)) {
2632 				pkts_compl++;
2633 				bytes_compl += skb->len;
2634 				dev_consume_skb_any(skb);
2635 				tx_q->tx_skbuff[entry] = NULL;
2636 			}
2637 		}
2638 
2639 		stmmac_release_tx_desc(priv, p, priv->mode);
2640 
2641 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2642 	}
2643 	tx_q->dirty_tx = entry;
2644 
2645 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2646 				  pkts_compl, bytes_compl);
2647 
2648 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2649 								queue))) &&
2650 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2651 
2652 		netif_dbg(priv, tx_done, priv->dev,
2653 			  "%s: restart transmit\n", __func__);
2654 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2655 	}
2656 
2657 	if (tx_q->xsk_pool) {
2658 		bool work_done;
2659 
2660 		if (tx_q->xsk_frames_done)
2661 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2662 
2663 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2664 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2665 
2666 		/* For XSK TX, we try to send as many as possible.
2667 		 * If XSK work done (XSK TX desc empty and budget still
2668 		 * available), return "budget - 1" to reenable TX IRQ.
2669 		 * Else, return "budget" to make NAPI continue polling.
2670 		 */
2671 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2672 					       STMMAC_XSK_TX_BUDGET_MAX);
2673 		if (work_done)
2674 			xmits = budget - 1;
2675 		else
2676 			xmits = budget;
2677 	}
2678 
2679 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2680 	    priv->eee_sw_timer_en) {
2681 		if (stmmac_enable_eee_mode(priv))
2682 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2683 	}
2684 
2685 	/* We still have pending packets, let's call for a new scheduling */
2686 	if (tx_q->dirty_tx != tx_q->cur_tx)
2687 		hrtimer_start(&tx_q->txtimer,
2688 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2689 			      HRTIMER_MODE_REL);
2690 
2691 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2692 
2693 	/* Combine decisions from TX clean and XSK TX */
2694 	return max(count, xmits);
2695 }
2696 
2697 /**
2698  * stmmac_tx_err - to manage the tx error
2699  * @priv: driver private structure
2700  * @chan: channel index
2701  * Description: it cleans the descriptors and restarts the transmission
2702  * in case of transmission errors.
2703  */
2704 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2705 {
2706 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2707 
2708 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2709 
2710 	stmmac_stop_tx_dma(priv, chan);
2711 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2712 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2713 	stmmac_reset_tx_queue(priv, chan);
2714 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2715 			    tx_q->dma_tx_phy, chan);
2716 	stmmac_start_tx_dma(priv, chan);
2717 
2718 	priv->dev->stats.tx_errors++;
2719 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2720 }
2721 
2722 /**
2723  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2724  *  @priv: driver private structure
2725  *  @txmode: TX operating mode
2726  *  @rxmode: RX operating mode
2727  *  @chan: channel index
2728  *  Description: it is used for configuring of the DMA operation mode in
2729  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2730  *  mode.
2731  */
2732 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2733 					  u32 rxmode, u32 chan)
2734 {
2735 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2736 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2737 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2738 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2739 	int rxfifosz = priv->plat->rx_fifo_size;
2740 	int txfifosz = priv->plat->tx_fifo_size;
2741 
2742 	if (rxfifosz == 0)
2743 		rxfifosz = priv->dma_cap.rx_fifo_size;
2744 	if (txfifosz == 0)
2745 		txfifosz = priv->dma_cap.tx_fifo_size;
2746 
2747 	/* Adjust for real per queue fifo size */
2748 	rxfifosz /= rx_channels_count;
2749 	txfifosz /= tx_channels_count;
2750 
2751 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2752 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2753 }
2754 
2755 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2756 {
2757 	int ret;
2758 
2759 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2760 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2761 	if (ret && (ret != -EINVAL)) {
2762 		stmmac_global_err(priv);
2763 		return true;
2764 	}
2765 
2766 	return false;
2767 }
2768 
2769 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2770 {
2771 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2772 						 &priv->xstats, chan, dir);
2773 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2774 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2775 	struct stmmac_channel *ch = &priv->channel[chan];
2776 	struct napi_struct *rx_napi;
2777 	struct napi_struct *tx_napi;
2778 	unsigned long flags;
2779 
2780 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2781 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2782 
2783 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2784 		if (napi_schedule_prep(rx_napi)) {
2785 			spin_lock_irqsave(&ch->lock, flags);
2786 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2787 			spin_unlock_irqrestore(&ch->lock, flags);
2788 			__napi_schedule(rx_napi);
2789 		}
2790 	}
2791 
2792 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2793 		if (napi_schedule_prep(tx_napi)) {
2794 			spin_lock_irqsave(&ch->lock, flags);
2795 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2796 			spin_unlock_irqrestore(&ch->lock, flags);
2797 			__napi_schedule(tx_napi);
2798 		}
2799 	}
2800 
2801 	return status;
2802 }
2803 
2804 /**
2805  * stmmac_dma_interrupt - DMA ISR
2806  * @priv: driver private structure
2807  * Description: this is the DMA ISR. It is called by the main ISR.
2808  * It calls the dwmac dma routine and schedule poll method in case of some
2809  * work can be done.
2810  */
2811 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2812 {
2813 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2814 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2815 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2816 				tx_channel_count : rx_channel_count;
2817 	u32 chan;
2818 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2819 
2820 	/* Make sure we never check beyond our status buffer. */
2821 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2822 		channels_to_check = ARRAY_SIZE(status);
2823 
2824 	for (chan = 0; chan < channels_to_check; chan++)
2825 		status[chan] = stmmac_napi_check(priv, chan,
2826 						 DMA_DIR_RXTX);
2827 
2828 	for (chan = 0; chan < tx_channel_count; chan++) {
2829 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2830 			/* Try to bump up the dma threshold on this failure */
2831 			stmmac_bump_dma_threshold(priv, chan);
2832 		} else if (unlikely(status[chan] == tx_hard_error)) {
2833 			stmmac_tx_err(priv, chan);
2834 		}
2835 	}
2836 }
2837 
2838 /**
2839  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2840  * @priv: driver private structure
2841  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2842  */
2843 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2844 {
2845 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2846 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2847 
2848 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2849 
2850 	if (priv->dma_cap.rmon) {
2851 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2852 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2853 	} else
2854 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2855 }
2856 
2857 /**
2858  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2859  * @priv: driver private structure
2860  * Description:
2861  *  new GMAC chip generations have a new register to indicate the
2862  *  presence of the optional feature/functions.
2863  *  This can be also used to override the value passed through the
2864  *  platform and necessary for old MAC10/100 and GMAC chips.
2865  */
2866 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2867 {
2868 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2869 }
2870 
2871 /**
2872  * stmmac_check_ether_addr - check if the MAC addr is valid
2873  * @priv: driver private structure
2874  * Description:
2875  * it is to verify if the MAC address is valid, in case of failures it
2876  * generates a random MAC address
2877  */
2878 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2879 {
2880 	u8 addr[ETH_ALEN];
2881 
2882 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2883 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2884 		if (is_valid_ether_addr(addr))
2885 			eth_hw_addr_set(priv->dev, addr);
2886 		else
2887 			eth_hw_addr_random(priv->dev);
2888 		dev_info(priv->device, "device MAC address %pM\n",
2889 			 priv->dev->dev_addr);
2890 	}
2891 }
2892 
2893 /**
2894  * stmmac_init_dma_engine - DMA init.
2895  * @priv: driver private structure
2896  * Description:
2897  * It inits the DMA invoking the specific MAC/GMAC callback.
2898  * Some DMA parameters can be passed from the platform;
2899  * in case of these are not passed a default is kept for the MAC or GMAC.
2900  */
2901 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2902 {
2903 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2904 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2905 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2906 	struct stmmac_rx_queue *rx_q;
2907 	struct stmmac_tx_queue *tx_q;
2908 	u32 chan = 0;
2909 	int atds = 0;
2910 	int ret = 0;
2911 
2912 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2913 		dev_err(priv->device, "Invalid DMA configuration\n");
2914 		return -EINVAL;
2915 	}
2916 
2917 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2918 		atds = 1;
2919 
2920 	ret = stmmac_reset(priv, priv->ioaddr);
2921 	if (ret) {
2922 		dev_err(priv->device, "Failed to reset the dma\n");
2923 		return ret;
2924 	}
2925 
2926 	/* DMA Configuration */
2927 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2928 
2929 	if (priv->plat->axi)
2930 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2931 
2932 	/* DMA CSR Channel configuration */
2933 	for (chan = 0; chan < dma_csr_ch; chan++) {
2934 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2935 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2936 	}
2937 
2938 	/* DMA RX Channel Configuration */
2939 	for (chan = 0; chan < rx_channels_count; chan++) {
2940 		rx_q = &priv->dma_conf.rx_queue[chan];
2941 
2942 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2943 				    rx_q->dma_rx_phy, chan);
2944 
2945 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2946 				     (rx_q->buf_alloc_num *
2947 				      sizeof(struct dma_desc));
2948 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2949 				       rx_q->rx_tail_addr, chan);
2950 	}
2951 
2952 	/* DMA TX Channel Configuration */
2953 	for (chan = 0; chan < tx_channels_count; chan++) {
2954 		tx_q = &priv->dma_conf.tx_queue[chan];
2955 
2956 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2957 				    tx_q->dma_tx_phy, chan);
2958 
2959 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2960 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2961 				       tx_q->tx_tail_addr, chan);
2962 	}
2963 
2964 	return ret;
2965 }
2966 
2967 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2968 {
2969 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2970 
2971 	hrtimer_start(&tx_q->txtimer,
2972 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2973 		      HRTIMER_MODE_REL);
2974 }
2975 
2976 /**
2977  * stmmac_tx_timer - mitigation sw timer for tx.
2978  * @t: data pointer
2979  * Description:
2980  * This is the timer handler to directly invoke the stmmac_tx_clean.
2981  */
2982 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2983 {
2984 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2985 	struct stmmac_priv *priv = tx_q->priv_data;
2986 	struct stmmac_channel *ch;
2987 	struct napi_struct *napi;
2988 
2989 	ch = &priv->channel[tx_q->queue_index];
2990 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2991 
2992 	if (likely(napi_schedule_prep(napi))) {
2993 		unsigned long flags;
2994 
2995 		spin_lock_irqsave(&ch->lock, flags);
2996 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2997 		spin_unlock_irqrestore(&ch->lock, flags);
2998 		__napi_schedule(napi);
2999 	}
3000 
3001 	return HRTIMER_NORESTART;
3002 }
3003 
3004 /**
3005  * stmmac_init_coalesce - init mitigation options.
3006  * @priv: driver private structure
3007  * Description:
3008  * This inits the coalesce parameters: i.e. timer rate,
3009  * timer handler and default threshold used for enabling the
3010  * interrupt on completion bit.
3011  */
3012 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3013 {
3014 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3015 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3016 	u32 chan;
3017 
3018 	for (chan = 0; chan < tx_channel_count; chan++) {
3019 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3020 
3021 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3022 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3023 
3024 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3025 		tx_q->txtimer.function = stmmac_tx_timer;
3026 	}
3027 
3028 	for (chan = 0; chan < rx_channel_count; chan++)
3029 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3030 }
3031 
3032 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3033 {
3034 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3035 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3036 	u32 chan;
3037 
3038 	/* set TX ring length */
3039 	for (chan = 0; chan < tx_channels_count; chan++)
3040 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3041 				       (priv->dma_conf.dma_tx_size - 1), chan);
3042 
3043 	/* set RX ring length */
3044 	for (chan = 0; chan < rx_channels_count; chan++)
3045 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3046 				       (priv->dma_conf.dma_rx_size - 1), chan);
3047 }
3048 
3049 /**
3050  *  stmmac_set_tx_queue_weight - Set TX queue weight
3051  *  @priv: driver private structure
3052  *  Description: It is used for setting TX queues weight
3053  */
3054 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3055 {
3056 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3057 	u32 weight;
3058 	u32 queue;
3059 
3060 	for (queue = 0; queue < tx_queues_count; queue++) {
3061 		weight = priv->plat->tx_queues_cfg[queue].weight;
3062 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3063 	}
3064 }
3065 
3066 /**
3067  *  stmmac_configure_cbs - Configure CBS in TX queue
3068  *  @priv: driver private structure
3069  *  Description: It is used for configuring CBS in AVB TX queues
3070  */
3071 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3072 {
3073 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3074 	u32 mode_to_use;
3075 	u32 queue;
3076 
3077 	/* queue 0 is reserved for legacy traffic */
3078 	for (queue = 1; queue < tx_queues_count; queue++) {
3079 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3080 		if (mode_to_use == MTL_QUEUE_DCB)
3081 			continue;
3082 
3083 		stmmac_config_cbs(priv, priv->hw,
3084 				priv->plat->tx_queues_cfg[queue].send_slope,
3085 				priv->plat->tx_queues_cfg[queue].idle_slope,
3086 				priv->plat->tx_queues_cfg[queue].high_credit,
3087 				priv->plat->tx_queues_cfg[queue].low_credit,
3088 				queue);
3089 	}
3090 }
3091 
3092 /**
3093  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3094  *  @priv: driver private structure
3095  *  Description: It is used for mapping RX queues to RX dma channels
3096  */
3097 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3098 {
3099 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3100 	u32 queue;
3101 	u32 chan;
3102 
3103 	for (queue = 0; queue < rx_queues_count; queue++) {
3104 		chan = priv->plat->rx_queues_cfg[queue].chan;
3105 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3106 	}
3107 }
3108 
3109 /**
3110  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3111  *  @priv: driver private structure
3112  *  Description: It is used for configuring the RX Queue Priority
3113  */
3114 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3115 {
3116 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3117 	u32 queue;
3118 	u32 prio;
3119 
3120 	for (queue = 0; queue < rx_queues_count; queue++) {
3121 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3122 			continue;
3123 
3124 		prio = priv->plat->rx_queues_cfg[queue].prio;
3125 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3126 	}
3127 }
3128 
3129 /**
3130  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3131  *  @priv: driver private structure
3132  *  Description: It is used for configuring the TX Queue Priority
3133  */
3134 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3135 {
3136 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3137 	u32 queue;
3138 	u32 prio;
3139 
3140 	for (queue = 0; queue < tx_queues_count; queue++) {
3141 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3142 			continue;
3143 
3144 		prio = priv->plat->tx_queues_cfg[queue].prio;
3145 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3146 	}
3147 }
3148 
3149 /**
3150  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3151  *  @priv: driver private structure
3152  *  Description: It is used for configuring the RX queue routing
3153  */
3154 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3155 {
3156 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3157 	u32 queue;
3158 	u8 packet;
3159 
3160 	for (queue = 0; queue < rx_queues_count; queue++) {
3161 		/* no specific packet type routing specified for the queue */
3162 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3163 			continue;
3164 
3165 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3166 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3167 	}
3168 }
3169 
3170 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3171 {
3172 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3173 		priv->rss.enable = false;
3174 		return;
3175 	}
3176 
3177 	if (priv->dev->features & NETIF_F_RXHASH)
3178 		priv->rss.enable = true;
3179 	else
3180 		priv->rss.enable = false;
3181 
3182 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3183 			     priv->plat->rx_queues_to_use);
3184 }
3185 
3186 /**
3187  *  stmmac_mtl_configuration - Configure MTL
3188  *  @priv: driver private structure
3189  *  Description: It is used for configurring MTL
3190  */
3191 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3192 {
3193 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3194 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3195 
3196 	if (tx_queues_count > 1)
3197 		stmmac_set_tx_queue_weight(priv);
3198 
3199 	/* Configure MTL RX algorithms */
3200 	if (rx_queues_count > 1)
3201 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3202 				priv->plat->rx_sched_algorithm);
3203 
3204 	/* Configure MTL TX algorithms */
3205 	if (tx_queues_count > 1)
3206 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3207 				priv->plat->tx_sched_algorithm);
3208 
3209 	/* Configure CBS in AVB TX queues */
3210 	if (tx_queues_count > 1)
3211 		stmmac_configure_cbs(priv);
3212 
3213 	/* Map RX MTL to DMA channels */
3214 	stmmac_rx_queue_dma_chan_map(priv);
3215 
3216 	/* Enable MAC RX Queues */
3217 	stmmac_mac_enable_rx_queues(priv);
3218 
3219 	/* Set RX priorities */
3220 	if (rx_queues_count > 1)
3221 		stmmac_mac_config_rx_queues_prio(priv);
3222 
3223 	/* Set TX priorities */
3224 	if (tx_queues_count > 1)
3225 		stmmac_mac_config_tx_queues_prio(priv);
3226 
3227 	/* Set RX routing */
3228 	if (rx_queues_count > 1)
3229 		stmmac_mac_config_rx_queues_routing(priv);
3230 
3231 	/* Receive Side Scaling */
3232 	if (rx_queues_count > 1)
3233 		stmmac_mac_config_rss(priv);
3234 }
3235 
3236 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3237 {
3238 	if (priv->dma_cap.asp) {
3239 		netdev_info(priv->dev, "Enabling Safety Features\n");
3240 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3241 					  priv->plat->safety_feat_cfg);
3242 	} else {
3243 		netdev_info(priv->dev, "No Safety Features support found\n");
3244 	}
3245 }
3246 
3247 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3248 {
3249 	char *name;
3250 
3251 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3252 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3253 
3254 	name = priv->wq_name;
3255 	sprintf(name, "%s-fpe", priv->dev->name);
3256 
3257 	priv->fpe_wq = create_singlethread_workqueue(name);
3258 	if (!priv->fpe_wq) {
3259 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3260 
3261 		return -ENOMEM;
3262 	}
3263 	netdev_info(priv->dev, "FPE workqueue start");
3264 
3265 	return 0;
3266 }
3267 
3268 /**
3269  * stmmac_hw_setup - setup mac in a usable state.
3270  *  @dev : pointer to the device structure.
3271  *  @ptp_register: register PTP if set
3272  *  Description:
3273  *  this is the main function to setup the HW in a usable state because the
3274  *  dma engine is reset, the core registers are configured (e.g. AXI,
3275  *  Checksum features, timers). The DMA is ready to start receiving and
3276  *  transmitting.
3277  *  Return value:
3278  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3279  *  file on failure.
3280  */
3281 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3282 {
3283 	struct stmmac_priv *priv = netdev_priv(dev);
3284 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3285 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3286 	bool sph_en;
3287 	u32 chan;
3288 	int ret;
3289 
3290 	/* DMA initialization and SW reset */
3291 	ret = stmmac_init_dma_engine(priv);
3292 	if (ret < 0) {
3293 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3294 			   __func__);
3295 		return ret;
3296 	}
3297 
3298 	/* Copy the MAC addr into the HW  */
3299 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3300 
3301 	/* PS and related bits will be programmed according to the speed */
3302 	if (priv->hw->pcs) {
3303 		int speed = priv->plat->mac_port_sel_speed;
3304 
3305 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3306 		    (speed == SPEED_1000)) {
3307 			priv->hw->ps = speed;
3308 		} else {
3309 			dev_warn(priv->device, "invalid port speed\n");
3310 			priv->hw->ps = 0;
3311 		}
3312 	}
3313 
3314 	/* Initialize the MAC Core */
3315 	stmmac_core_init(priv, priv->hw, dev);
3316 
3317 	/* Initialize MTL*/
3318 	stmmac_mtl_configuration(priv);
3319 
3320 	/* Initialize Safety Features */
3321 	stmmac_safety_feat_configuration(priv);
3322 
3323 	ret = stmmac_rx_ipc(priv, priv->hw);
3324 	if (!ret) {
3325 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3326 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3327 		priv->hw->rx_csum = 0;
3328 	}
3329 
3330 	/* Enable the MAC Rx/Tx */
3331 	stmmac_mac_set(priv, priv->ioaddr, true);
3332 
3333 	/* Set the HW DMA mode and the COE */
3334 	stmmac_dma_operation_mode(priv);
3335 
3336 	stmmac_mmc_setup(priv);
3337 
3338 	if (ptp_register) {
3339 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3340 		if (ret < 0)
3341 			netdev_warn(priv->dev,
3342 				    "failed to enable PTP reference clock: %pe\n",
3343 				    ERR_PTR(ret));
3344 	}
3345 
3346 	ret = stmmac_init_ptp(priv);
3347 	if (ret == -EOPNOTSUPP)
3348 		netdev_info(priv->dev, "PTP not supported by HW\n");
3349 	else if (ret)
3350 		netdev_warn(priv->dev, "PTP init failed\n");
3351 	else if (ptp_register)
3352 		stmmac_ptp_register(priv);
3353 
3354 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3355 
3356 	/* Convert the timer from msec to usec */
3357 	if (!priv->tx_lpi_timer)
3358 		priv->tx_lpi_timer = eee_timer * 1000;
3359 
3360 	if (priv->use_riwt) {
3361 		u32 queue;
3362 
3363 		for (queue = 0; queue < rx_cnt; queue++) {
3364 			if (!priv->rx_riwt[queue])
3365 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3366 
3367 			stmmac_rx_watchdog(priv, priv->ioaddr,
3368 					   priv->rx_riwt[queue], queue);
3369 		}
3370 	}
3371 
3372 	if (priv->hw->pcs)
3373 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3374 
3375 	/* set TX and RX rings length */
3376 	stmmac_set_rings_length(priv);
3377 
3378 	/* Enable TSO */
3379 	if (priv->tso) {
3380 		for (chan = 0; chan < tx_cnt; chan++) {
3381 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3382 
3383 			/* TSO and TBS cannot co-exist */
3384 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3385 				continue;
3386 
3387 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3388 		}
3389 	}
3390 
3391 	/* Enable Split Header */
3392 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3393 	for (chan = 0; chan < rx_cnt; chan++)
3394 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3395 
3396 
3397 	/* VLAN Tag Insertion */
3398 	if (priv->dma_cap.vlins)
3399 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3400 
3401 	/* TBS */
3402 	for (chan = 0; chan < tx_cnt; chan++) {
3403 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3404 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3405 
3406 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3407 	}
3408 
3409 	/* Configure real RX and TX queues */
3410 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3411 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3412 
3413 	/* Start the ball rolling... */
3414 	stmmac_start_all_dma(priv);
3415 
3416 	if (priv->dma_cap.fpesel) {
3417 		stmmac_fpe_start_wq(priv);
3418 
3419 		if (priv->plat->fpe_cfg->enable)
3420 			stmmac_fpe_handshake(priv, true);
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 static void stmmac_hw_teardown(struct net_device *dev)
3427 {
3428 	struct stmmac_priv *priv = netdev_priv(dev);
3429 
3430 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3431 }
3432 
3433 static void stmmac_free_irq(struct net_device *dev,
3434 			    enum request_irq_err irq_err, int irq_idx)
3435 {
3436 	struct stmmac_priv *priv = netdev_priv(dev);
3437 	int j;
3438 
3439 	switch (irq_err) {
3440 	case REQ_IRQ_ERR_ALL:
3441 		irq_idx = priv->plat->tx_queues_to_use;
3442 		fallthrough;
3443 	case REQ_IRQ_ERR_TX:
3444 		for (j = irq_idx - 1; j >= 0; j--) {
3445 			if (priv->tx_irq[j] > 0) {
3446 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3447 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3448 			}
3449 		}
3450 		irq_idx = priv->plat->rx_queues_to_use;
3451 		fallthrough;
3452 	case REQ_IRQ_ERR_RX:
3453 		for (j = irq_idx - 1; j >= 0; j--) {
3454 			if (priv->rx_irq[j] > 0) {
3455 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3456 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3457 			}
3458 		}
3459 
3460 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3461 			free_irq(priv->sfty_ue_irq, dev);
3462 		fallthrough;
3463 	case REQ_IRQ_ERR_SFTY_UE:
3464 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3465 			free_irq(priv->sfty_ce_irq, dev);
3466 		fallthrough;
3467 	case REQ_IRQ_ERR_SFTY_CE:
3468 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3469 			free_irq(priv->lpi_irq, dev);
3470 		fallthrough;
3471 	case REQ_IRQ_ERR_LPI:
3472 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3473 			free_irq(priv->wol_irq, dev);
3474 		fallthrough;
3475 	case REQ_IRQ_ERR_WOL:
3476 		free_irq(dev->irq, dev);
3477 		fallthrough;
3478 	case REQ_IRQ_ERR_MAC:
3479 	case REQ_IRQ_ERR_NO:
3480 		/* If MAC IRQ request error, no more IRQ to free */
3481 		break;
3482 	}
3483 }
3484 
3485 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3486 {
3487 	struct stmmac_priv *priv = netdev_priv(dev);
3488 	enum request_irq_err irq_err;
3489 	cpumask_t cpu_mask;
3490 	int irq_idx = 0;
3491 	char *int_name;
3492 	int ret;
3493 	int i;
3494 
3495 	/* For common interrupt */
3496 	int_name = priv->int_name_mac;
3497 	sprintf(int_name, "%s:%s", dev->name, "mac");
3498 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3499 			  0, int_name, dev);
3500 	if (unlikely(ret < 0)) {
3501 		netdev_err(priv->dev,
3502 			   "%s: alloc mac MSI %d (error: %d)\n",
3503 			   __func__, dev->irq, ret);
3504 		irq_err = REQ_IRQ_ERR_MAC;
3505 		goto irq_error;
3506 	}
3507 
3508 	/* Request the Wake IRQ in case of another line
3509 	 * is used for WoL
3510 	 */
3511 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3512 		int_name = priv->int_name_wol;
3513 		sprintf(int_name, "%s:%s", dev->name, "wol");
3514 		ret = request_irq(priv->wol_irq,
3515 				  stmmac_mac_interrupt,
3516 				  0, int_name, dev);
3517 		if (unlikely(ret < 0)) {
3518 			netdev_err(priv->dev,
3519 				   "%s: alloc wol MSI %d (error: %d)\n",
3520 				   __func__, priv->wol_irq, ret);
3521 			irq_err = REQ_IRQ_ERR_WOL;
3522 			goto irq_error;
3523 		}
3524 	}
3525 
3526 	/* Request the LPI IRQ in case of another line
3527 	 * is used for LPI
3528 	 */
3529 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3530 		int_name = priv->int_name_lpi;
3531 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3532 		ret = request_irq(priv->lpi_irq,
3533 				  stmmac_mac_interrupt,
3534 				  0, int_name, dev);
3535 		if (unlikely(ret < 0)) {
3536 			netdev_err(priv->dev,
3537 				   "%s: alloc lpi MSI %d (error: %d)\n",
3538 				   __func__, priv->lpi_irq, ret);
3539 			irq_err = REQ_IRQ_ERR_LPI;
3540 			goto irq_error;
3541 		}
3542 	}
3543 
3544 	/* Request the Safety Feature Correctible Error line in
3545 	 * case of another line is used
3546 	 */
3547 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3548 		int_name = priv->int_name_sfty_ce;
3549 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3550 		ret = request_irq(priv->sfty_ce_irq,
3551 				  stmmac_safety_interrupt,
3552 				  0, int_name, dev);
3553 		if (unlikely(ret < 0)) {
3554 			netdev_err(priv->dev,
3555 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3556 				   __func__, priv->sfty_ce_irq, ret);
3557 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3558 			goto irq_error;
3559 		}
3560 	}
3561 
3562 	/* Request the Safety Feature Uncorrectible Error line in
3563 	 * case of another line is used
3564 	 */
3565 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3566 		int_name = priv->int_name_sfty_ue;
3567 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3568 		ret = request_irq(priv->sfty_ue_irq,
3569 				  stmmac_safety_interrupt,
3570 				  0, int_name, dev);
3571 		if (unlikely(ret < 0)) {
3572 			netdev_err(priv->dev,
3573 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3574 				   __func__, priv->sfty_ue_irq, ret);
3575 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3576 			goto irq_error;
3577 		}
3578 	}
3579 
3580 	/* Request Rx MSI irq */
3581 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3582 		if (i >= MTL_MAX_RX_QUEUES)
3583 			break;
3584 		if (priv->rx_irq[i] == 0)
3585 			continue;
3586 
3587 		int_name = priv->int_name_rx_irq[i];
3588 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3589 		ret = request_irq(priv->rx_irq[i],
3590 				  stmmac_msi_intr_rx,
3591 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3592 		if (unlikely(ret < 0)) {
3593 			netdev_err(priv->dev,
3594 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3595 				   __func__, i, priv->rx_irq[i], ret);
3596 			irq_err = REQ_IRQ_ERR_RX;
3597 			irq_idx = i;
3598 			goto irq_error;
3599 		}
3600 		cpumask_clear(&cpu_mask);
3601 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3602 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3603 	}
3604 
3605 	/* Request Tx MSI irq */
3606 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3607 		if (i >= MTL_MAX_TX_QUEUES)
3608 			break;
3609 		if (priv->tx_irq[i] == 0)
3610 			continue;
3611 
3612 		int_name = priv->int_name_tx_irq[i];
3613 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3614 		ret = request_irq(priv->tx_irq[i],
3615 				  stmmac_msi_intr_tx,
3616 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3617 		if (unlikely(ret < 0)) {
3618 			netdev_err(priv->dev,
3619 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3620 				   __func__, i, priv->tx_irq[i], ret);
3621 			irq_err = REQ_IRQ_ERR_TX;
3622 			irq_idx = i;
3623 			goto irq_error;
3624 		}
3625 		cpumask_clear(&cpu_mask);
3626 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3627 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3628 	}
3629 
3630 	return 0;
3631 
3632 irq_error:
3633 	stmmac_free_irq(dev, irq_err, irq_idx);
3634 	return ret;
3635 }
3636 
3637 static int stmmac_request_irq_single(struct net_device *dev)
3638 {
3639 	struct stmmac_priv *priv = netdev_priv(dev);
3640 	enum request_irq_err irq_err;
3641 	int ret;
3642 
3643 	ret = request_irq(dev->irq, stmmac_interrupt,
3644 			  IRQF_SHARED, dev->name, dev);
3645 	if (unlikely(ret < 0)) {
3646 		netdev_err(priv->dev,
3647 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3648 			   __func__, dev->irq, ret);
3649 		irq_err = REQ_IRQ_ERR_MAC;
3650 		goto irq_error;
3651 	}
3652 
3653 	/* Request the Wake IRQ in case of another line
3654 	 * is used for WoL
3655 	 */
3656 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3657 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3658 				  IRQF_SHARED, dev->name, dev);
3659 		if (unlikely(ret < 0)) {
3660 			netdev_err(priv->dev,
3661 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3662 				   __func__, priv->wol_irq, ret);
3663 			irq_err = REQ_IRQ_ERR_WOL;
3664 			goto irq_error;
3665 		}
3666 	}
3667 
3668 	/* Request the IRQ lines */
3669 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3670 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3671 				  IRQF_SHARED, dev->name, dev);
3672 		if (unlikely(ret < 0)) {
3673 			netdev_err(priv->dev,
3674 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3675 				   __func__, priv->lpi_irq, ret);
3676 			irq_err = REQ_IRQ_ERR_LPI;
3677 			goto irq_error;
3678 		}
3679 	}
3680 
3681 	return 0;
3682 
3683 irq_error:
3684 	stmmac_free_irq(dev, irq_err, 0);
3685 	return ret;
3686 }
3687 
3688 static int stmmac_request_irq(struct net_device *dev)
3689 {
3690 	struct stmmac_priv *priv = netdev_priv(dev);
3691 	int ret;
3692 
3693 	/* Request the IRQ lines */
3694 	if (priv->plat->multi_msi_en)
3695 		ret = stmmac_request_irq_multi_msi(dev);
3696 	else
3697 		ret = stmmac_request_irq_single(dev);
3698 
3699 	return ret;
3700 }
3701 
3702 /**
3703  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3704  *  @priv: driver private structure
3705  *  @mtu: MTU to setup the dma queue and buf with
3706  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3707  *  Allocate the Tx/Rx DMA queue and init them.
3708  *  Return value:
3709  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3710  */
3711 static struct stmmac_dma_conf *
3712 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3713 {
3714 	struct stmmac_dma_conf *dma_conf;
3715 	int chan, bfsize, ret;
3716 
3717 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3718 	if (!dma_conf) {
3719 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3720 			   __func__);
3721 		return ERR_PTR(-ENOMEM);
3722 	}
3723 
3724 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3725 	if (bfsize < 0)
3726 		bfsize = 0;
3727 
3728 	if (bfsize < BUF_SIZE_16KiB)
3729 		bfsize = stmmac_set_bfsize(mtu, 0);
3730 
3731 	dma_conf->dma_buf_sz = bfsize;
3732 	/* Chose the tx/rx size from the already defined one in the
3733 	 * priv struct. (if defined)
3734 	 */
3735 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3736 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3737 
3738 	if (!dma_conf->dma_tx_size)
3739 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3740 	if (!dma_conf->dma_rx_size)
3741 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3742 
3743 	/* Earlier check for TBS */
3744 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3745 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3746 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3747 
3748 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3749 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3750 	}
3751 
3752 	ret = alloc_dma_desc_resources(priv, dma_conf);
3753 	if (ret < 0) {
3754 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3755 			   __func__);
3756 		goto alloc_error;
3757 	}
3758 
3759 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3760 	if (ret < 0) {
3761 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3762 			   __func__);
3763 		goto init_error;
3764 	}
3765 
3766 	return dma_conf;
3767 
3768 init_error:
3769 	free_dma_desc_resources(priv, dma_conf);
3770 alloc_error:
3771 	kfree(dma_conf);
3772 	return ERR_PTR(ret);
3773 }
3774 
3775 /**
3776  *  __stmmac_open - open entry point of the driver
3777  *  @dev : pointer to the device structure.
3778  *  @dma_conf :  structure to take the dma data
3779  *  Description:
3780  *  This function is the open entry point of the driver.
3781  *  Return value:
3782  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3783  *  file on failure.
3784  */
3785 static int __stmmac_open(struct net_device *dev,
3786 			 struct stmmac_dma_conf *dma_conf)
3787 {
3788 	struct stmmac_priv *priv = netdev_priv(dev);
3789 	int mode = priv->plat->phy_interface;
3790 	u32 chan;
3791 	int ret;
3792 
3793 	ret = pm_runtime_resume_and_get(priv->device);
3794 	if (ret < 0)
3795 		return ret;
3796 
3797 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3798 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3799 	    (!priv->hw->xpcs ||
3800 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3801 		ret = stmmac_init_phy(dev);
3802 		if (ret) {
3803 			netdev_err(priv->dev,
3804 				   "%s: Cannot attach to PHY (error: %d)\n",
3805 				   __func__, ret);
3806 			goto init_phy_error;
3807 		}
3808 	}
3809 
3810 	/* Extra statistics */
3811 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3812 	priv->xstats.threshold = tc;
3813 
3814 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3815 
3816 	buf_sz = dma_conf->dma_buf_sz;
3817 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3818 
3819 	stmmac_reset_queues_param(priv);
3820 
3821 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
3822 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3823 		if (ret < 0) {
3824 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3825 				   __func__);
3826 			goto init_error;
3827 		}
3828 	}
3829 
3830 	ret = stmmac_hw_setup(dev, true);
3831 	if (ret < 0) {
3832 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3833 		goto init_error;
3834 	}
3835 
3836 	stmmac_init_coalesce(priv);
3837 
3838 	phylink_start(priv->phylink);
3839 	/* We may have called phylink_speed_down before */
3840 	phylink_speed_up(priv->phylink);
3841 
3842 	ret = stmmac_request_irq(dev);
3843 	if (ret)
3844 		goto irq_error;
3845 
3846 	stmmac_enable_all_queues(priv);
3847 	netif_tx_start_all_queues(priv->dev);
3848 	stmmac_enable_all_dma_irq(priv);
3849 
3850 	return 0;
3851 
3852 irq_error:
3853 	phylink_stop(priv->phylink);
3854 
3855 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3856 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3857 
3858 	stmmac_hw_teardown(dev);
3859 init_error:
3860 	free_dma_desc_resources(priv, &priv->dma_conf);
3861 	phylink_disconnect_phy(priv->phylink);
3862 init_phy_error:
3863 	pm_runtime_put(priv->device);
3864 	return ret;
3865 }
3866 
3867 static int stmmac_open(struct net_device *dev)
3868 {
3869 	struct stmmac_priv *priv = netdev_priv(dev);
3870 	struct stmmac_dma_conf *dma_conf;
3871 	int ret;
3872 
3873 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3874 	if (IS_ERR(dma_conf))
3875 		return PTR_ERR(dma_conf);
3876 
3877 	ret = __stmmac_open(dev, dma_conf);
3878 	kfree(dma_conf);
3879 	return ret;
3880 }
3881 
3882 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3883 {
3884 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3885 
3886 	if (priv->fpe_wq)
3887 		destroy_workqueue(priv->fpe_wq);
3888 
3889 	netdev_info(priv->dev, "FPE workqueue stop");
3890 }
3891 
3892 /**
3893  *  stmmac_release - close entry point of the driver
3894  *  @dev : device pointer.
3895  *  Description:
3896  *  This is the stop entry point of the driver.
3897  */
3898 static int stmmac_release(struct net_device *dev)
3899 {
3900 	struct stmmac_priv *priv = netdev_priv(dev);
3901 	u32 chan;
3902 
3903 	if (device_may_wakeup(priv->device))
3904 		phylink_speed_down(priv->phylink, false);
3905 	/* Stop and disconnect the PHY */
3906 	phylink_stop(priv->phylink);
3907 	phylink_disconnect_phy(priv->phylink);
3908 
3909 	stmmac_disable_all_queues(priv);
3910 
3911 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3912 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3913 
3914 	netif_tx_disable(dev);
3915 
3916 	/* Free the IRQ lines */
3917 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3918 
3919 	if (priv->eee_enabled) {
3920 		priv->tx_path_in_lpi_mode = false;
3921 		del_timer_sync(&priv->eee_ctrl_timer);
3922 	}
3923 
3924 	/* Stop TX/RX DMA and clear the descriptors */
3925 	stmmac_stop_all_dma(priv);
3926 
3927 	/* Release and free the Rx/Tx resources */
3928 	free_dma_desc_resources(priv, &priv->dma_conf);
3929 
3930 	/* Disable the MAC Rx/Tx */
3931 	stmmac_mac_set(priv, priv->ioaddr, false);
3932 
3933 	/* Powerdown Serdes if there is */
3934 	if (priv->plat->serdes_powerdown)
3935 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3936 
3937 	netif_carrier_off(dev);
3938 
3939 	stmmac_release_ptp(priv);
3940 
3941 	pm_runtime_put(priv->device);
3942 
3943 	if (priv->dma_cap.fpesel)
3944 		stmmac_fpe_stop_wq(priv);
3945 
3946 	return 0;
3947 }
3948 
3949 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3950 			       struct stmmac_tx_queue *tx_q)
3951 {
3952 	u16 tag = 0x0, inner_tag = 0x0;
3953 	u32 inner_type = 0x0;
3954 	struct dma_desc *p;
3955 
3956 	if (!priv->dma_cap.vlins)
3957 		return false;
3958 	if (!skb_vlan_tag_present(skb))
3959 		return false;
3960 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3961 		inner_tag = skb_vlan_tag_get(skb);
3962 		inner_type = STMMAC_VLAN_INSERT;
3963 	}
3964 
3965 	tag = skb_vlan_tag_get(skb);
3966 
3967 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3968 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3969 	else
3970 		p = &tx_q->dma_tx[tx_q->cur_tx];
3971 
3972 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3973 		return false;
3974 
3975 	stmmac_set_tx_owner(priv, p);
3976 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3977 	return true;
3978 }
3979 
3980 /**
3981  *  stmmac_tso_allocator - close entry point of the driver
3982  *  @priv: driver private structure
3983  *  @des: buffer start address
3984  *  @total_len: total length to fill in descriptors
3985  *  @last_segment: condition for the last descriptor
3986  *  @queue: TX queue index
3987  *  Description:
3988  *  This function fills descriptor and request new descriptors according to
3989  *  buffer length to fill
3990  */
3991 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3992 				 int total_len, bool last_segment, u32 queue)
3993 {
3994 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3995 	struct dma_desc *desc;
3996 	u32 buff_size;
3997 	int tmp_len;
3998 
3999 	tmp_len = total_len;
4000 
4001 	while (tmp_len > 0) {
4002 		dma_addr_t curr_addr;
4003 
4004 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4005 						priv->dma_conf.dma_tx_size);
4006 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4007 
4008 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4009 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4010 		else
4011 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4012 
4013 		curr_addr = des + (total_len - tmp_len);
4014 		if (priv->dma_cap.addr64 <= 32)
4015 			desc->des0 = cpu_to_le32(curr_addr);
4016 		else
4017 			stmmac_set_desc_addr(priv, desc, curr_addr);
4018 
4019 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4020 			    TSO_MAX_BUFF_SIZE : tmp_len;
4021 
4022 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4023 				0, 1,
4024 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4025 				0, 0);
4026 
4027 		tmp_len -= TSO_MAX_BUFF_SIZE;
4028 	}
4029 }
4030 
4031 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4032 {
4033 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4034 	int desc_size;
4035 
4036 	if (likely(priv->extend_desc))
4037 		desc_size = sizeof(struct dma_extended_desc);
4038 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4039 		desc_size = sizeof(struct dma_edesc);
4040 	else
4041 		desc_size = sizeof(struct dma_desc);
4042 
4043 	/* The own bit must be the latest setting done when prepare the
4044 	 * descriptor and then barrier is needed to make sure that
4045 	 * all is coherent before granting the DMA engine.
4046 	 */
4047 	wmb();
4048 
4049 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4050 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4051 }
4052 
4053 /**
4054  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4055  *  @skb : the socket buffer
4056  *  @dev : device pointer
4057  *  Description: this is the transmit function that is called on TSO frames
4058  *  (support available on GMAC4 and newer chips).
4059  *  Diagram below show the ring programming in case of TSO frames:
4060  *
4061  *  First Descriptor
4062  *   --------
4063  *   | DES0 |---> buffer1 = L2/L3/L4 header
4064  *   | DES1 |---> TCP Payload (can continue on next descr...)
4065  *   | DES2 |---> buffer 1 and 2 len
4066  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4067  *   --------
4068  *	|
4069  *     ...
4070  *	|
4071  *   --------
4072  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4073  *   | DES1 | --|
4074  *   | DES2 | --> buffer 1 and 2 len
4075  *   | DES3 |
4076  *   --------
4077  *
4078  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4079  */
4080 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4081 {
4082 	struct dma_desc *desc, *first, *mss_desc = NULL;
4083 	struct stmmac_priv *priv = netdev_priv(dev);
4084 	int nfrags = skb_shinfo(skb)->nr_frags;
4085 	u32 queue = skb_get_queue_mapping(skb);
4086 	unsigned int first_entry, tx_packets;
4087 	int tmp_pay_len = 0, first_tx;
4088 	struct stmmac_tx_queue *tx_q;
4089 	bool has_vlan, set_ic;
4090 	u8 proto_hdr_len, hdr;
4091 	u32 pay_len, mss;
4092 	dma_addr_t des;
4093 	int i;
4094 
4095 	tx_q = &priv->dma_conf.tx_queue[queue];
4096 	first_tx = tx_q->cur_tx;
4097 
4098 	/* Compute header lengths */
4099 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4100 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4101 		hdr = sizeof(struct udphdr);
4102 	} else {
4103 		proto_hdr_len = skb_tcp_all_headers(skb);
4104 		hdr = tcp_hdrlen(skb);
4105 	}
4106 
4107 	/* Desc availability based on threshold should be enough safe */
4108 	if (unlikely(stmmac_tx_avail(priv, queue) <
4109 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4110 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4111 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4112 								queue));
4113 			/* This is a hard error, log it. */
4114 			netdev_err(priv->dev,
4115 				   "%s: Tx Ring full when queue awake\n",
4116 				   __func__);
4117 		}
4118 		return NETDEV_TX_BUSY;
4119 	}
4120 
4121 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4122 
4123 	mss = skb_shinfo(skb)->gso_size;
4124 
4125 	/* set new MSS value if needed */
4126 	if (mss != tx_q->mss) {
4127 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4128 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4129 		else
4130 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4131 
4132 		stmmac_set_mss(priv, mss_desc, mss);
4133 		tx_q->mss = mss;
4134 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4135 						priv->dma_conf.dma_tx_size);
4136 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4137 	}
4138 
4139 	if (netif_msg_tx_queued(priv)) {
4140 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4141 			__func__, hdr, proto_hdr_len, pay_len, mss);
4142 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4143 			skb->data_len);
4144 	}
4145 
4146 	/* Check if VLAN can be inserted by HW */
4147 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4148 
4149 	first_entry = tx_q->cur_tx;
4150 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4151 
4152 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4153 		desc = &tx_q->dma_entx[first_entry].basic;
4154 	else
4155 		desc = &tx_q->dma_tx[first_entry];
4156 	first = desc;
4157 
4158 	if (has_vlan)
4159 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4160 
4161 	/* first descriptor: fill Headers on Buf1 */
4162 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4163 			     DMA_TO_DEVICE);
4164 	if (dma_mapping_error(priv->device, des))
4165 		goto dma_map_err;
4166 
4167 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4168 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4169 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4170 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4171 
4172 	if (priv->dma_cap.addr64 <= 32) {
4173 		first->des0 = cpu_to_le32(des);
4174 
4175 		/* Fill start of payload in buff2 of first descriptor */
4176 		if (pay_len)
4177 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4178 
4179 		/* If needed take extra descriptors to fill the remaining payload */
4180 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4181 	} else {
4182 		stmmac_set_desc_addr(priv, first, des);
4183 		tmp_pay_len = pay_len;
4184 		des += proto_hdr_len;
4185 		pay_len = 0;
4186 	}
4187 
4188 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4189 
4190 	/* Prepare fragments */
4191 	for (i = 0; i < nfrags; i++) {
4192 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4193 
4194 		des = skb_frag_dma_map(priv->device, frag, 0,
4195 				       skb_frag_size(frag),
4196 				       DMA_TO_DEVICE);
4197 		if (dma_mapping_error(priv->device, des))
4198 			goto dma_map_err;
4199 
4200 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4201 				     (i == nfrags - 1), queue);
4202 
4203 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4204 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4205 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4206 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4207 	}
4208 
4209 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4210 
4211 	/* Only the last descriptor gets to point to the skb. */
4212 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4213 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4214 
4215 	/* Manage tx mitigation */
4216 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4217 	tx_q->tx_count_frames += tx_packets;
4218 
4219 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4220 		set_ic = true;
4221 	else if (!priv->tx_coal_frames[queue])
4222 		set_ic = false;
4223 	else if (tx_packets > priv->tx_coal_frames[queue])
4224 		set_ic = true;
4225 	else if ((tx_q->tx_count_frames %
4226 		  priv->tx_coal_frames[queue]) < tx_packets)
4227 		set_ic = true;
4228 	else
4229 		set_ic = false;
4230 
4231 	if (set_ic) {
4232 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4233 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4234 		else
4235 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4236 
4237 		tx_q->tx_count_frames = 0;
4238 		stmmac_set_tx_ic(priv, desc);
4239 		priv->xstats.tx_set_ic_bit++;
4240 	}
4241 
4242 	/* We've used all descriptors we need for this skb, however,
4243 	 * advance cur_tx so that it references a fresh descriptor.
4244 	 * ndo_start_xmit will fill this descriptor the next time it's
4245 	 * called and stmmac_tx_clean may clean up to this descriptor.
4246 	 */
4247 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4248 
4249 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4250 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4251 			  __func__);
4252 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4253 	}
4254 
4255 	dev->stats.tx_bytes += skb->len;
4256 	priv->xstats.tx_tso_frames++;
4257 	priv->xstats.tx_tso_nfrags += nfrags;
4258 
4259 	if (priv->sarc_type)
4260 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4261 
4262 	skb_tx_timestamp(skb);
4263 
4264 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4265 		     priv->hwts_tx_en)) {
4266 		/* declare that device is doing timestamping */
4267 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4268 		stmmac_enable_tx_timestamp(priv, first);
4269 	}
4270 
4271 	/* Complete the first descriptor before granting the DMA */
4272 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4273 			proto_hdr_len,
4274 			pay_len,
4275 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4276 			hdr / 4, (skb->len - proto_hdr_len));
4277 
4278 	/* If context desc is used to change MSS */
4279 	if (mss_desc) {
4280 		/* Make sure that first descriptor has been completely
4281 		 * written, including its own bit. This is because MSS is
4282 		 * actually before first descriptor, so we need to make
4283 		 * sure that MSS's own bit is the last thing written.
4284 		 */
4285 		dma_wmb();
4286 		stmmac_set_tx_owner(priv, mss_desc);
4287 	}
4288 
4289 	if (netif_msg_pktdata(priv)) {
4290 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4291 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4292 			tx_q->cur_tx, first, nfrags);
4293 		pr_info(">>> frame to be transmitted: ");
4294 		print_pkt(skb->data, skb_headlen(skb));
4295 	}
4296 
4297 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4298 
4299 	stmmac_flush_tx_descriptors(priv, queue);
4300 	stmmac_tx_timer_arm(priv, queue);
4301 
4302 	return NETDEV_TX_OK;
4303 
4304 dma_map_err:
4305 	dev_err(priv->device, "Tx dma map failed\n");
4306 	dev_kfree_skb(skb);
4307 	priv->dev->stats.tx_dropped++;
4308 	return NETDEV_TX_OK;
4309 }
4310 
4311 /**
4312  *  stmmac_xmit - Tx entry point of the driver
4313  *  @skb : the socket buffer
4314  *  @dev : device pointer
4315  *  Description : this is the tx entry point of the driver.
4316  *  It programs the chain or the ring and supports oversized frames
4317  *  and SG feature.
4318  */
4319 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4320 {
4321 	unsigned int first_entry, tx_packets, enh_desc;
4322 	struct stmmac_priv *priv = netdev_priv(dev);
4323 	unsigned int nopaged_len = skb_headlen(skb);
4324 	int i, csum_insertion = 0, is_jumbo = 0;
4325 	u32 queue = skb_get_queue_mapping(skb);
4326 	int nfrags = skb_shinfo(skb)->nr_frags;
4327 	int gso = skb_shinfo(skb)->gso_type;
4328 	struct dma_edesc *tbs_desc = NULL;
4329 	struct dma_desc *desc, *first;
4330 	struct stmmac_tx_queue *tx_q;
4331 	bool has_vlan, set_ic;
4332 	int entry, first_tx;
4333 	dma_addr_t des;
4334 
4335 	tx_q = &priv->dma_conf.tx_queue[queue];
4336 	first_tx = tx_q->cur_tx;
4337 
4338 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4339 		stmmac_disable_eee_mode(priv);
4340 
4341 	/* Manage oversized TCP frames for GMAC4 device */
4342 	if (skb_is_gso(skb) && priv->tso) {
4343 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4344 			return stmmac_tso_xmit(skb, dev);
4345 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4346 			return stmmac_tso_xmit(skb, dev);
4347 	}
4348 
4349 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4350 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4351 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4352 								queue));
4353 			/* This is a hard error, log it. */
4354 			netdev_err(priv->dev,
4355 				   "%s: Tx Ring full when queue awake\n",
4356 				   __func__);
4357 		}
4358 		return NETDEV_TX_BUSY;
4359 	}
4360 
4361 	/* Check if VLAN can be inserted by HW */
4362 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4363 
4364 	entry = tx_q->cur_tx;
4365 	first_entry = entry;
4366 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4367 
4368 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4369 
4370 	if (likely(priv->extend_desc))
4371 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4372 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4373 		desc = &tx_q->dma_entx[entry].basic;
4374 	else
4375 		desc = tx_q->dma_tx + entry;
4376 
4377 	first = desc;
4378 
4379 	if (has_vlan)
4380 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4381 
4382 	enh_desc = priv->plat->enh_desc;
4383 	/* To program the descriptors according to the size of the frame */
4384 	if (enh_desc)
4385 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4386 
4387 	if (unlikely(is_jumbo)) {
4388 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4389 		if (unlikely(entry < 0) && (entry != -EINVAL))
4390 			goto dma_map_err;
4391 	}
4392 
4393 	for (i = 0; i < nfrags; i++) {
4394 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4395 		int len = skb_frag_size(frag);
4396 		bool last_segment = (i == (nfrags - 1));
4397 
4398 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4399 		WARN_ON(tx_q->tx_skbuff[entry]);
4400 
4401 		if (likely(priv->extend_desc))
4402 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4403 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4404 			desc = &tx_q->dma_entx[entry].basic;
4405 		else
4406 			desc = tx_q->dma_tx + entry;
4407 
4408 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4409 				       DMA_TO_DEVICE);
4410 		if (dma_mapping_error(priv->device, des))
4411 			goto dma_map_err; /* should reuse desc w/o issues */
4412 
4413 		tx_q->tx_skbuff_dma[entry].buf = des;
4414 
4415 		stmmac_set_desc_addr(priv, desc, des);
4416 
4417 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4418 		tx_q->tx_skbuff_dma[entry].len = len;
4419 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4420 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4421 
4422 		/* Prepare the descriptor and set the own bit too */
4423 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4424 				priv->mode, 1, last_segment, skb->len);
4425 	}
4426 
4427 	/* Only the last descriptor gets to point to the skb. */
4428 	tx_q->tx_skbuff[entry] = skb;
4429 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4430 
4431 	/* According to the coalesce parameter the IC bit for the latest
4432 	 * segment is reset and the timer re-started to clean the tx status.
4433 	 * This approach takes care about the fragments: desc is the first
4434 	 * element in case of no SG.
4435 	 */
4436 	tx_packets = (entry + 1) - first_tx;
4437 	tx_q->tx_count_frames += tx_packets;
4438 
4439 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4440 		set_ic = true;
4441 	else if (!priv->tx_coal_frames[queue])
4442 		set_ic = false;
4443 	else if (tx_packets > priv->tx_coal_frames[queue])
4444 		set_ic = true;
4445 	else if ((tx_q->tx_count_frames %
4446 		  priv->tx_coal_frames[queue]) < tx_packets)
4447 		set_ic = true;
4448 	else
4449 		set_ic = false;
4450 
4451 	if (set_ic) {
4452 		if (likely(priv->extend_desc))
4453 			desc = &tx_q->dma_etx[entry].basic;
4454 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4455 			desc = &tx_q->dma_entx[entry].basic;
4456 		else
4457 			desc = &tx_q->dma_tx[entry];
4458 
4459 		tx_q->tx_count_frames = 0;
4460 		stmmac_set_tx_ic(priv, desc);
4461 		priv->xstats.tx_set_ic_bit++;
4462 	}
4463 
4464 	/* We've used all descriptors we need for this skb, however,
4465 	 * advance cur_tx so that it references a fresh descriptor.
4466 	 * ndo_start_xmit will fill this descriptor the next time it's
4467 	 * called and stmmac_tx_clean may clean up to this descriptor.
4468 	 */
4469 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4470 	tx_q->cur_tx = entry;
4471 
4472 	if (netif_msg_pktdata(priv)) {
4473 		netdev_dbg(priv->dev,
4474 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4475 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4476 			   entry, first, nfrags);
4477 
4478 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4479 		print_pkt(skb->data, skb->len);
4480 	}
4481 
4482 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4483 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4484 			  __func__);
4485 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4486 	}
4487 
4488 	dev->stats.tx_bytes += skb->len;
4489 
4490 	if (priv->sarc_type)
4491 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4492 
4493 	skb_tx_timestamp(skb);
4494 
4495 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4496 	 * problems because all the descriptors are actually ready to be
4497 	 * passed to the DMA engine.
4498 	 */
4499 	if (likely(!is_jumbo)) {
4500 		bool last_segment = (nfrags == 0);
4501 
4502 		des = dma_map_single(priv->device, skb->data,
4503 				     nopaged_len, DMA_TO_DEVICE);
4504 		if (dma_mapping_error(priv->device, des))
4505 			goto dma_map_err;
4506 
4507 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4508 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4509 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4510 
4511 		stmmac_set_desc_addr(priv, first, des);
4512 
4513 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4514 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4515 
4516 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4517 			     priv->hwts_tx_en)) {
4518 			/* declare that device is doing timestamping */
4519 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4520 			stmmac_enable_tx_timestamp(priv, first);
4521 		}
4522 
4523 		/* Prepare the first descriptor setting the OWN bit too */
4524 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4525 				csum_insertion, priv->mode, 0, last_segment,
4526 				skb->len);
4527 	}
4528 
4529 	if (tx_q->tbs & STMMAC_TBS_EN) {
4530 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4531 
4532 		tbs_desc = &tx_q->dma_entx[first_entry];
4533 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4534 	}
4535 
4536 	stmmac_set_tx_owner(priv, first);
4537 
4538 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4539 
4540 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4541 
4542 	stmmac_flush_tx_descriptors(priv, queue);
4543 	stmmac_tx_timer_arm(priv, queue);
4544 
4545 	return NETDEV_TX_OK;
4546 
4547 dma_map_err:
4548 	netdev_err(priv->dev, "Tx DMA map failed\n");
4549 	dev_kfree_skb(skb);
4550 	priv->dev->stats.tx_dropped++;
4551 	return NETDEV_TX_OK;
4552 }
4553 
4554 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4555 {
4556 	struct vlan_ethhdr *veth;
4557 	__be16 vlan_proto;
4558 	u16 vlanid;
4559 
4560 	veth = (struct vlan_ethhdr *)skb->data;
4561 	vlan_proto = veth->h_vlan_proto;
4562 
4563 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4564 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4565 	    (vlan_proto == htons(ETH_P_8021AD) &&
4566 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4567 		/* pop the vlan tag */
4568 		vlanid = ntohs(veth->h_vlan_TCI);
4569 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4570 		skb_pull(skb, VLAN_HLEN);
4571 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4572 	}
4573 }
4574 
4575 /**
4576  * stmmac_rx_refill - refill used skb preallocated buffers
4577  * @priv: driver private structure
4578  * @queue: RX queue index
4579  * Description : this is to reallocate the skb for the reception process
4580  * that is based on zero-copy.
4581  */
4582 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4583 {
4584 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4585 	int dirty = stmmac_rx_dirty(priv, queue);
4586 	unsigned int entry = rx_q->dirty_rx;
4587 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4588 
4589 	if (priv->dma_cap.addr64 <= 32)
4590 		gfp |= GFP_DMA32;
4591 
4592 	while (dirty-- > 0) {
4593 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4594 		struct dma_desc *p;
4595 		bool use_rx_wd;
4596 
4597 		if (priv->extend_desc)
4598 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4599 		else
4600 			p = rx_q->dma_rx + entry;
4601 
4602 		if (!buf->page) {
4603 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4604 			if (!buf->page)
4605 				break;
4606 		}
4607 
4608 		if (priv->sph && !buf->sec_page) {
4609 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4610 			if (!buf->sec_page)
4611 				break;
4612 
4613 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4614 		}
4615 
4616 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4617 
4618 		stmmac_set_desc_addr(priv, p, buf->addr);
4619 		if (priv->sph)
4620 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4621 		else
4622 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4623 		stmmac_refill_desc3(priv, rx_q, p);
4624 
4625 		rx_q->rx_count_frames++;
4626 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4627 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4628 			rx_q->rx_count_frames = 0;
4629 
4630 		use_rx_wd = !priv->rx_coal_frames[queue];
4631 		use_rx_wd |= rx_q->rx_count_frames > 0;
4632 		if (!priv->use_riwt)
4633 			use_rx_wd = false;
4634 
4635 		dma_wmb();
4636 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4637 
4638 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4639 	}
4640 	rx_q->dirty_rx = entry;
4641 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4642 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4643 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4644 }
4645 
4646 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4647 				       struct dma_desc *p,
4648 				       int status, unsigned int len)
4649 {
4650 	unsigned int plen = 0, hlen = 0;
4651 	int coe = priv->hw->rx_csum;
4652 
4653 	/* Not first descriptor, buffer is always zero */
4654 	if (priv->sph && len)
4655 		return 0;
4656 
4657 	/* First descriptor, get split header length */
4658 	stmmac_get_rx_header_len(priv, p, &hlen);
4659 	if (priv->sph && hlen) {
4660 		priv->xstats.rx_split_hdr_pkt_n++;
4661 		return hlen;
4662 	}
4663 
4664 	/* First descriptor, not last descriptor and not split header */
4665 	if (status & rx_not_ls)
4666 		return priv->dma_conf.dma_buf_sz;
4667 
4668 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4669 
4670 	/* First descriptor and last descriptor and not split header */
4671 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4672 }
4673 
4674 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4675 				       struct dma_desc *p,
4676 				       int status, unsigned int len)
4677 {
4678 	int coe = priv->hw->rx_csum;
4679 	unsigned int plen = 0;
4680 
4681 	/* Not split header, buffer is not available */
4682 	if (!priv->sph)
4683 		return 0;
4684 
4685 	/* Not last descriptor */
4686 	if (status & rx_not_ls)
4687 		return priv->dma_conf.dma_buf_sz;
4688 
4689 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4690 
4691 	/* Last descriptor */
4692 	return plen - len;
4693 }
4694 
4695 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4696 				struct xdp_frame *xdpf, bool dma_map)
4697 {
4698 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4699 	unsigned int entry = tx_q->cur_tx;
4700 	struct dma_desc *tx_desc;
4701 	dma_addr_t dma_addr;
4702 	bool set_ic;
4703 
4704 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4705 		return STMMAC_XDP_CONSUMED;
4706 
4707 	if (likely(priv->extend_desc))
4708 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4709 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4710 		tx_desc = &tx_q->dma_entx[entry].basic;
4711 	else
4712 		tx_desc = tx_q->dma_tx + entry;
4713 
4714 	if (dma_map) {
4715 		dma_addr = dma_map_single(priv->device, xdpf->data,
4716 					  xdpf->len, DMA_TO_DEVICE);
4717 		if (dma_mapping_error(priv->device, dma_addr))
4718 			return STMMAC_XDP_CONSUMED;
4719 
4720 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4721 	} else {
4722 		struct page *page = virt_to_page(xdpf->data);
4723 
4724 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4725 			   xdpf->headroom;
4726 		dma_sync_single_for_device(priv->device, dma_addr,
4727 					   xdpf->len, DMA_BIDIRECTIONAL);
4728 
4729 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4730 	}
4731 
4732 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4733 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4734 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4735 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4736 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4737 
4738 	tx_q->xdpf[entry] = xdpf;
4739 
4740 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4741 
4742 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4743 			       true, priv->mode, true, true,
4744 			       xdpf->len);
4745 
4746 	tx_q->tx_count_frames++;
4747 
4748 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4749 		set_ic = true;
4750 	else
4751 		set_ic = false;
4752 
4753 	if (set_ic) {
4754 		tx_q->tx_count_frames = 0;
4755 		stmmac_set_tx_ic(priv, tx_desc);
4756 		priv->xstats.tx_set_ic_bit++;
4757 	}
4758 
4759 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4760 
4761 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4762 	tx_q->cur_tx = entry;
4763 
4764 	return STMMAC_XDP_TX;
4765 }
4766 
4767 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4768 				   int cpu)
4769 {
4770 	int index = cpu;
4771 
4772 	if (unlikely(index < 0))
4773 		index = 0;
4774 
4775 	while (index >= priv->plat->tx_queues_to_use)
4776 		index -= priv->plat->tx_queues_to_use;
4777 
4778 	return index;
4779 }
4780 
4781 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4782 				struct xdp_buff *xdp)
4783 {
4784 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4785 	int cpu = smp_processor_id();
4786 	struct netdev_queue *nq;
4787 	int queue;
4788 	int res;
4789 
4790 	if (unlikely(!xdpf))
4791 		return STMMAC_XDP_CONSUMED;
4792 
4793 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4794 	nq = netdev_get_tx_queue(priv->dev, queue);
4795 
4796 	__netif_tx_lock(nq, cpu);
4797 	/* Avoids TX time-out as we are sharing with slow path */
4798 	txq_trans_cond_update(nq);
4799 
4800 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4801 	if (res == STMMAC_XDP_TX)
4802 		stmmac_flush_tx_descriptors(priv, queue);
4803 
4804 	__netif_tx_unlock(nq);
4805 
4806 	return res;
4807 }
4808 
4809 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4810 				 struct bpf_prog *prog,
4811 				 struct xdp_buff *xdp)
4812 {
4813 	u32 act;
4814 	int res;
4815 
4816 	act = bpf_prog_run_xdp(prog, xdp);
4817 	switch (act) {
4818 	case XDP_PASS:
4819 		res = STMMAC_XDP_PASS;
4820 		break;
4821 	case XDP_TX:
4822 		res = stmmac_xdp_xmit_back(priv, xdp);
4823 		break;
4824 	case XDP_REDIRECT:
4825 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4826 			res = STMMAC_XDP_CONSUMED;
4827 		else
4828 			res = STMMAC_XDP_REDIRECT;
4829 		break;
4830 	default:
4831 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4832 		fallthrough;
4833 	case XDP_ABORTED:
4834 		trace_xdp_exception(priv->dev, prog, act);
4835 		fallthrough;
4836 	case XDP_DROP:
4837 		res = STMMAC_XDP_CONSUMED;
4838 		break;
4839 	}
4840 
4841 	return res;
4842 }
4843 
4844 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4845 					   struct xdp_buff *xdp)
4846 {
4847 	struct bpf_prog *prog;
4848 	int res;
4849 
4850 	prog = READ_ONCE(priv->xdp_prog);
4851 	if (!prog) {
4852 		res = STMMAC_XDP_PASS;
4853 		goto out;
4854 	}
4855 
4856 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4857 out:
4858 	return ERR_PTR(-res);
4859 }
4860 
4861 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4862 				   int xdp_status)
4863 {
4864 	int cpu = smp_processor_id();
4865 	int queue;
4866 
4867 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4868 
4869 	if (xdp_status & STMMAC_XDP_TX)
4870 		stmmac_tx_timer_arm(priv, queue);
4871 
4872 	if (xdp_status & STMMAC_XDP_REDIRECT)
4873 		xdp_do_flush();
4874 }
4875 
4876 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4877 					       struct xdp_buff *xdp)
4878 {
4879 	unsigned int metasize = xdp->data - xdp->data_meta;
4880 	unsigned int datasize = xdp->data_end - xdp->data;
4881 	struct sk_buff *skb;
4882 
4883 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4884 			       xdp->data_end - xdp->data_hard_start,
4885 			       GFP_ATOMIC | __GFP_NOWARN);
4886 	if (unlikely(!skb))
4887 		return NULL;
4888 
4889 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4890 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4891 	if (metasize)
4892 		skb_metadata_set(skb, metasize);
4893 
4894 	return skb;
4895 }
4896 
4897 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4898 				   struct dma_desc *p, struct dma_desc *np,
4899 				   struct xdp_buff *xdp)
4900 {
4901 	struct stmmac_channel *ch = &priv->channel[queue];
4902 	unsigned int len = xdp->data_end - xdp->data;
4903 	enum pkt_hash_types hash_type;
4904 	int coe = priv->hw->rx_csum;
4905 	struct sk_buff *skb;
4906 	u32 hash;
4907 
4908 	skb = stmmac_construct_skb_zc(ch, xdp);
4909 	if (!skb) {
4910 		priv->dev->stats.rx_dropped++;
4911 		return;
4912 	}
4913 
4914 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4915 	stmmac_rx_vlan(priv->dev, skb);
4916 	skb->protocol = eth_type_trans(skb, priv->dev);
4917 
4918 	if (unlikely(!coe))
4919 		skb_checksum_none_assert(skb);
4920 	else
4921 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4922 
4923 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4924 		skb_set_hash(skb, hash, hash_type);
4925 
4926 	skb_record_rx_queue(skb, queue);
4927 	napi_gro_receive(&ch->rxtx_napi, skb);
4928 
4929 	priv->dev->stats.rx_packets++;
4930 	priv->dev->stats.rx_bytes += len;
4931 }
4932 
4933 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4934 {
4935 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4936 	unsigned int entry = rx_q->dirty_rx;
4937 	struct dma_desc *rx_desc = NULL;
4938 	bool ret = true;
4939 
4940 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4941 
4942 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4943 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4944 		dma_addr_t dma_addr;
4945 		bool use_rx_wd;
4946 
4947 		if (!buf->xdp) {
4948 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4949 			if (!buf->xdp) {
4950 				ret = false;
4951 				break;
4952 			}
4953 		}
4954 
4955 		if (priv->extend_desc)
4956 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4957 		else
4958 			rx_desc = rx_q->dma_rx + entry;
4959 
4960 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4961 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4962 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4963 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4964 
4965 		rx_q->rx_count_frames++;
4966 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4967 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4968 			rx_q->rx_count_frames = 0;
4969 
4970 		use_rx_wd = !priv->rx_coal_frames[queue];
4971 		use_rx_wd |= rx_q->rx_count_frames > 0;
4972 		if (!priv->use_riwt)
4973 			use_rx_wd = false;
4974 
4975 		dma_wmb();
4976 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4977 
4978 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4979 	}
4980 
4981 	if (rx_desc) {
4982 		rx_q->dirty_rx = entry;
4983 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4984 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4985 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4986 	}
4987 
4988 	return ret;
4989 }
4990 
4991 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4992 {
4993 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4994 	unsigned int count = 0, error = 0, len = 0;
4995 	int dirty = stmmac_rx_dirty(priv, queue);
4996 	unsigned int next_entry = rx_q->cur_rx;
4997 	unsigned int desc_size;
4998 	struct bpf_prog *prog;
4999 	bool failure = false;
5000 	int xdp_status = 0;
5001 	int status = 0;
5002 
5003 	if (netif_msg_rx_status(priv)) {
5004 		void *rx_head;
5005 
5006 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5007 		if (priv->extend_desc) {
5008 			rx_head = (void *)rx_q->dma_erx;
5009 			desc_size = sizeof(struct dma_extended_desc);
5010 		} else {
5011 			rx_head = (void *)rx_q->dma_rx;
5012 			desc_size = sizeof(struct dma_desc);
5013 		}
5014 
5015 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5016 				    rx_q->dma_rx_phy, desc_size);
5017 	}
5018 	while (count < limit) {
5019 		struct stmmac_rx_buffer *buf;
5020 		unsigned int buf1_len = 0;
5021 		struct dma_desc *np, *p;
5022 		int entry;
5023 		int res;
5024 
5025 		if (!count && rx_q->state_saved) {
5026 			error = rx_q->state.error;
5027 			len = rx_q->state.len;
5028 		} else {
5029 			rx_q->state_saved = false;
5030 			error = 0;
5031 			len = 0;
5032 		}
5033 
5034 		if (count >= limit)
5035 			break;
5036 
5037 read_again:
5038 		buf1_len = 0;
5039 		entry = next_entry;
5040 		buf = &rx_q->buf_pool[entry];
5041 
5042 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5043 			failure = failure ||
5044 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5045 			dirty = 0;
5046 		}
5047 
5048 		if (priv->extend_desc)
5049 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5050 		else
5051 			p = rx_q->dma_rx + entry;
5052 
5053 		/* read the status of the incoming frame */
5054 		status = stmmac_rx_status(priv, &priv->dev->stats,
5055 					  &priv->xstats, p);
5056 		/* check if managed by the DMA otherwise go ahead */
5057 		if (unlikely(status & dma_own))
5058 			break;
5059 
5060 		/* Prefetch the next RX descriptor */
5061 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5062 						priv->dma_conf.dma_rx_size);
5063 		next_entry = rx_q->cur_rx;
5064 
5065 		if (priv->extend_desc)
5066 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5067 		else
5068 			np = rx_q->dma_rx + next_entry;
5069 
5070 		prefetch(np);
5071 
5072 		/* Ensure a valid XSK buffer before proceed */
5073 		if (!buf->xdp)
5074 			break;
5075 
5076 		if (priv->extend_desc)
5077 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5078 						  &priv->xstats,
5079 						  rx_q->dma_erx + entry);
5080 		if (unlikely(status == discard_frame)) {
5081 			xsk_buff_free(buf->xdp);
5082 			buf->xdp = NULL;
5083 			dirty++;
5084 			error = 1;
5085 			if (!priv->hwts_rx_en)
5086 				priv->dev->stats.rx_errors++;
5087 		}
5088 
5089 		if (unlikely(error && (status & rx_not_ls)))
5090 			goto read_again;
5091 		if (unlikely(error)) {
5092 			count++;
5093 			continue;
5094 		}
5095 
5096 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5097 		if (likely(status & rx_not_ls)) {
5098 			xsk_buff_free(buf->xdp);
5099 			buf->xdp = NULL;
5100 			dirty++;
5101 			count++;
5102 			goto read_again;
5103 		}
5104 
5105 		/* XDP ZC Frame only support primary buffers for now */
5106 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5107 		len += buf1_len;
5108 
5109 		/* ACS is disabled; strip manually. */
5110 		if (likely(!(status & rx_not_ls))) {
5111 			buf1_len -= ETH_FCS_LEN;
5112 			len -= ETH_FCS_LEN;
5113 		}
5114 
5115 		/* RX buffer is good and fit into a XSK pool buffer */
5116 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5117 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5118 
5119 		prog = READ_ONCE(priv->xdp_prog);
5120 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5121 
5122 		switch (res) {
5123 		case STMMAC_XDP_PASS:
5124 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5125 			xsk_buff_free(buf->xdp);
5126 			break;
5127 		case STMMAC_XDP_CONSUMED:
5128 			xsk_buff_free(buf->xdp);
5129 			priv->dev->stats.rx_dropped++;
5130 			break;
5131 		case STMMAC_XDP_TX:
5132 		case STMMAC_XDP_REDIRECT:
5133 			xdp_status |= res;
5134 			break;
5135 		}
5136 
5137 		buf->xdp = NULL;
5138 		dirty++;
5139 		count++;
5140 	}
5141 
5142 	if (status & rx_not_ls) {
5143 		rx_q->state_saved = true;
5144 		rx_q->state.error = error;
5145 		rx_q->state.len = len;
5146 	}
5147 
5148 	stmmac_finalize_xdp_rx(priv, xdp_status);
5149 
5150 	priv->xstats.rx_pkt_n += count;
5151 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5152 
5153 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5154 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5155 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5156 		else
5157 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5158 
5159 		return (int)count;
5160 	}
5161 
5162 	return failure ? limit : (int)count;
5163 }
5164 
5165 /**
5166  * stmmac_rx - manage the receive process
5167  * @priv: driver private structure
5168  * @limit: napi bugget
5169  * @queue: RX queue index.
5170  * Description :  this the function called by the napi poll method.
5171  * It gets all the frames inside the ring.
5172  */
5173 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5174 {
5175 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5176 	struct stmmac_channel *ch = &priv->channel[queue];
5177 	unsigned int count = 0, error = 0, len = 0;
5178 	int status = 0, coe = priv->hw->rx_csum;
5179 	unsigned int next_entry = rx_q->cur_rx;
5180 	enum dma_data_direction dma_dir;
5181 	unsigned int desc_size;
5182 	struct sk_buff *skb = NULL;
5183 	struct xdp_buff xdp;
5184 	int xdp_status = 0;
5185 	int buf_sz;
5186 
5187 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5188 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5189 
5190 	if (netif_msg_rx_status(priv)) {
5191 		void *rx_head;
5192 
5193 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5194 		if (priv->extend_desc) {
5195 			rx_head = (void *)rx_q->dma_erx;
5196 			desc_size = sizeof(struct dma_extended_desc);
5197 		} else {
5198 			rx_head = (void *)rx_q->dma_rx;
5199 			desc_size = sizeof(struct dma_desc);
5200 		}
5201 
5202 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5203 				    rx_q->dma_rx_phy, desc_size);
5204 	}
5205 	while (count < limit) {
5206 		unsigned int buf1_len = 0, buf2_len = 0;
5207 		enum pkt_hash_types hash_type;
5208 		struct stmmac_rx_buffer *buf;
5209 		struct dma_desc *np, *p;
5210 		int entry;
5211 		u32 hash;
5212 
5213 		if (!count && rx_q->state_saved) {
5214 			skb = rx_q->state.skb;
5215 			error = rx_q->state.error;
5216 			len = rx_q->state.len;
5217 		} else {
5218 			rx_q->state_saved = false;
5219 			skb = NULL;
5220 			error = 0;
5221 			len = 0;
5222 		}
5223 
5224 		if (count >= limit)
5225 			break;
5226 
5227 read_again:
5228 		buf1_len = 0;
5229 		buf2_len = 0;
5230 		entry = next_entry;
5231 		buf = &rx_q->buf_pool[entry];
5232 
5233 		if (priv->extend_desc)
5234 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5235 		else
5236 			p = rx_q->dma_rx + entry;
5237 
5238 		/* read the status of the incoming frame */
5239 		status = stmmac_rx_status(priv, &priv->dev->stats,
5240 				&priv->xstats, p);
5241 		/* check if managed by the DMA otherwise go ahead */
5242 		if (unlikely(status & dma_own))
5243 			break;
5244 
5245 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5246 						priv->dma_conf.dma_rx_size);
5247 		next_entry = rx_q->cur_rx;
5248 
5249 		if (priv->extend_desc)
5250 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5251 		else
5252 			np = rx_q->dma_rx + next_entry;
5253 
5254 		prefetch(np);
5255 
5256 		if (priv->extend_desc)
5257 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5258 					&priv->xstats, rx_q->dma_erx + entry);
5259 		if (unlikely(status == discard_frame)) {
5260 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5261 			buf->page = NULL;
5262 			error = 1;
5263 			if (!priv->hwts_rx_en)
5264 				priv->dev->stats.rx_errors++;
5265 		}
5266 
5267 		if (unlikely(error && (status & rx_not_ls)))
5268 			goto read_again;
5269 		if (unlikely(error)) {
5270 			dev_kfree_skb(skb);
5271 			skb = NULL;
5272 			count++;
5273 			continue;
5274 		}
5275 
5276 		/* Buffer is good. Go on. */
5277 
5278 		prefetch(page_address(buf->page) + buf->page_offset);
5279 		if (buf->sec_page)
5280 			prefetch(page_address(buf->sec_page));
5281 
5282 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5283 		len += buf1_len;
5284 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5285 		len += buf2_len;
5286 
5287 		/* ACS is disabled; strip manually. */
5288 		if (likely(!(status & rx_not_ls))) {
5289 			if (buf2_len) {
5290 				buf2_len -= ETH_FCS_LEN;
5291 				len -= ETH_FCS_LEN;
5292 			} else if (buf1_len) {
5293 				buf1_len -= ETH_FCS_LEN;
5294 				len -= ETH_FCS_LEN;
5295 			}
5296 		}
5297 
5298 		if (!skb) {
5299 			unsigned int pre_len, sync_len;
5300 
5301 			dma_sync_single_for_cpu(priv->device, buf->addr,
5302 						buf1_len, dma_dir);
5303 
5304 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5305 			xdp_prepare_buff(&xdp, page_address(buf->page),
5306 					 buf->page_offset, buf1_len, false);
5307 
5308 			pre_len = xdp.data_end - xdp.data_hard_start -
5309 				  buf->page_offset;
5310 			skb = stmmac_xdp_run_prog(priv, &xdp);
5311 			/* Due xdp_adjust_tail: DMA sync for_device
5312 			 * cover max len CPU touch
5313 			 */
5314 			sync_len = xdp.data_end - xdp.data_hard_start -
5315 				   buf->page_offset;
5316 			sync_len = max(sync_len, pre_len);
5317 
5318 			/* For Not XDP_PASS verdict */
5319 			if (IS_ERR(skb)) {
5320 				unsigned int xdp_res = -PTR_ERR(skb);
5321 
5322 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5323 					page_pool_put_page(rx_q->page_pool,
5324 							   virt_to_head_page(xdp.data),
5325 							   sync_len, true);
5326 					buf->page = NULL;
5327 					priv->dev->stats.rx_dropped++;
5328 
5329 					/* Clear skb as it was set as
5330 					 * status by XDP program.
5331 					 */
5332 					skb = NULL;
5333 
5334 					if (unlikely((status & rx_not_ls)))
5335 						goto read_again;
5336 
5337 					count++;
5338 					continue;
5339 				} else if (xdp_res & (STMMAC_XDP_TX |
5340 						      STMMAC_XDP_REDIRECT)) {
5341 					xdp_status |= xdp_res;
5342 					buf->page = NULL;
5343 					skb = NULL;
5344 					count++;
5345 					continue;
5346 				}
5347 			}
5348 		}
5349 
5350 		if (!skb) {
5351 			/* XDP program may expand or reduce tail */
5352 			buf1_len = xdp.data_end - xdp.data;
5353 
5354 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5355 			if (!skb) {
5356 				priv->dev->stats.rx_dropped++;
5357 				count++;
5358 				goto drain_data;
5359 			}
5360 
5361 			/* XDP program may adjust header */
5362 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5363 			skb_put(skb, buf1_len);
5364 
5365 			/* Data payload copied into SKB, page ready for recycle */
5366 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5367 			buf->page = NULL;
5368 		} else if (buf1_len) {
5369 			dma_sync_single_for_cpu(priv->device, buf->addr,
5370 						buf1_len, dma_dir);
5371 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5372 					buf->page, buf->page_offset, buf1_len,
5373 					priv->dma_conf.dma_buf_sz);
5374 
5375 			/* Data payload appended into SKB */
5376 			page_pool_release_page(rx_q->page_pool, buf->page);
5377 			buf->page = NULL;
5378 		}
5379 
5380 		if (buf2_len) {
5381 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5382 						buf2_len, dma_dir);
5383 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5384 					buf->sec_page, 0, buf2_len,
5385 					priv->dma_conf.dma_buf_sz);
5386 
5387 			/* Data payload appended into SKB */
5388 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5389 			buf->sec_page = NULL;
5390 		}
5391 
5392 drain_data:
5393 		if (likely(status & rx_not_ls))
5394 			goto read_again;
5395 		if (!skb)
5396 			continue;
5397 
5398 		/* Got entire packet into SKB. Finish it. */
5399 
5400 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5401 		stmmac_rx_vlan(priv->dev, skb);
5402 		skb->protocol = eth_type_trans(skb, priv->dev);
5403 
5404 		if (unlikely(!coe))
5405 			skb_checksum_none_assert(skb);
5406 		else
5407 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5408 
5409 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5410 			skb_set_hash(skb, hash, hash_type);
5411 
5412 		skb_record_rx_queue(skb, queue);
5413 		napi_gro_receive(&ch->rx_napi, skb);
5414 		skb = NULL;
5415 
5416 		priv->dev->stats.rx_packets++;
5417 		priv->dev->stats.rx_bytes += len;
5418 		count++;
5419 	}
5420 
5421 	if (status & rx_not_ls || skb) {
5422 		rx_q->state_saved = true;
5423 		rx_q->state.skb = skb;
5424 		rx_q->state.error = error;
5425 		rx_q->state.len = len;
5426 	}
5427 
5428 	stmmac_finalize_xdp_rx(priv, xdp_status);
5429 
5430 	stmmac_rx_refill(priv, queue);
5431 
5432 	priv->xstats.rx_pkt_n += count;
5433 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5434 
5435 	return count;
5436 }
5437 
5438 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5439 {
5440 	struct stmmac_channel *ch =
5441 		container_of(napi, struct stmmac_channel, rx_napi);
5442 	struct stmmac_priv *priv = ch->priv_data;
5443 	u32 chan = ch->index;
5444 	int work_done;
5445 
5446 	priv->xstats.napi_poll++;
5447 
5448 	work_done = stmmac_rx(priv, budget, chan);
5449 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5450 		unsigned long flags;
5451 
5452 		spin_lock_irqsave(&ch->lock, flags);
5453 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5454 		spin_unlock_irqrestore(&ch->lock, flags);
5455 	}
5456 
5457 	return work_done;
5458 }
5459 
5460 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5461 {
5462 	struct stmmac_channel *ch =
5463 		container_of(napi, struct stmmac_channel, tx_napi);
5464 	struct stmmac_priv *priv = ch->priv_data;
5465 	u32 chan = ch->index;
5466 	int work_done;
5467 
5468 	priv->xstats.napi_poll++;
5469 
5470 	work_done = stmmac_tx_clean(priv, budget, chan);
5471 	work_done = min(work_done, budget);
5472 
5473 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5474 		unsigned long flags;
5475 
5476 		spin_lock_irqsave(&ch->lock, flags);
5477 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5478 		spin_unlock_irqrestore(&ch->lock, flags);
5479 	}
5480 
5481 	return work_done;
5482 }
5483 
5484 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5485 {
5486 	struct stmmac_channel *ch =
5487 		container_of(napi, struct stmmac_channel, rxtx_napi);
5488 	struct stmmac_priv *priv = ch->priv_data;
5489 	int rx_done, tx_done, rxtx_done;
5490 	u32 chan = ch->index;
5491 
5492 	priv->xstats.napi_poll++;
5493 
5494 	tx_done = stmmac_tx_clean(priv, budget, chan);
5495 	tx_done = min(tx_done, budget);
5496 
5497 	rx_done = stmmac_rx_zc(priv, budget, chan);
5498 
5499 	rxtx_done = max(tx_done, rx_done);
5500 
5501 	/* If either TX or RX work is not complete, return budget
5502 	 * and keep pooling
5503 	 */
5504 	if (rxtx_done >= budget)
5505 		return budget;
5506 
5507 	/* all work done, exit the polling mode */
5508 	if (napi_complete_done(napi, rxtx_done)) {
5509 		unsigned long flags;
5510 
5511 		spin_lock_irqsave(&ch->lock, flags);
5512 		/* Both RX and TX work done are compelte,
5513 		 * so enable both RX & TX IRQs.
5514 		 */
5515 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5516 		spin_unlock_irqrestore(&ch->lock, flags);
5517 	}
5518 
5519 	return min(rxtx_done, budget - 1);
5520 }
5521 
5522 /**
5523  *  stmmac_tx_timeout
5524  *  @dev : Pointer to net device structure
5525  *  @txqueue: the index of the hanging transmit queue
5526  *  Description: this function is called when a packet transmission fails to
5527  *   complete within a reasonable time. The driver will mark the error in the
5528  *   netdev structure and arrange for the device to be reset to a sane state
5529  *   in order to transmit a new packet.
5530  */
5531 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5532 {
5533 	struct stmmac_priv *priv = netdev_priv(dev);
5534 
5535 	stmmac_global_err(priv);
5536 }
5537 
5538 /**
5539  *  stmmac_set_rx_mode - entry point for multicast addressing
5540  *  @dev : pointer to the device structure
5541  *  Description:
5542  *  This function is a driver entry point which gets called by the kernel
5543  *  whenever multicast addresses must be enabled/disabled.
5544  *  Return value:
5545  *  void.
5546  */
5547 static void stmmac_set_rx_mode(struct net_device *dev)
5548 {
5549 	struct stmmac_priv *priv = netdev_priv(dev);
5550 
5551 	stmmac_set_filter(priv, priv->hw, dev);
5552 }
5553 
5554 /**
5555  *  stmmac_change_mtu - entry point to change MTU size for the device.
5556  *  @dev : device pointer.
5557  *  @new_mtu : the new MTU size for the device.
5558  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5559  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5560  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5561  *  Return value:
5562  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5563  *  file on failure.
5564  */
5565 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5566 {
5567 	struct stmmac_priv *priv = netdev_priv(dev);
5568 	int txfifosz = priv->plat->tx_fifo_size;
5569 	struct stmmac_dma_conf *dma_conf;
5570 	const int mtu = new_mtu;
5571 	int ret;
5572 
5573 	if (txfifosz == 0)
5574 		txfifosz = priv->dma_cap.tx_fifo_size;
5575 
5576 	txfifosz /= priv->plat->tx_queues_to_use;
5577 
5578 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5579 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5580 		return -EINVAL;
5581 	}
5582 
5583 	new_mtu = STMMAC_ALIGN(new_mtu);
5584 
5585 	/* If condition true, FIFO is too small or MTU too large */
5586 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5587 		return -EINVAL;
5588 
5589 	if (netif_running(dev)) {
5590 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5591 		/* Try to allocate the new DMA conf with the new mtu */
5592 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5593 		if (IS_ERR(dma_conf)) {
5594 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5595 				   mtu);
5596 			return PTR_ERR(dma_conf);
5597 		}
5598 
5599 		stmmac_release(dev);
5600 
5601 		ret = __stmmac_open(dev, dma_conf);
5602 		kfree(dma_conf);
5603 		if (ret) {
5604 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5605 			return ret;
5606 		}
5607 
5608 		stmmac_set_rx_mode(dev);
5609 	}
5610 
5611 	dev->mtu = mtu;
5612 	netdev_update_features(dev);
5613 
5614 	return 0;
5615 }
5616 
5617 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5618 					     netdev_features_t features)
5619 {
5620 	struct stmmac_priv *priv = netdev_priv(dev);
5621 
5622 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5623 		features &= ~NETIF_F_RXCSUM;
5624 
5625 	if (!priv->plat->tx_coe)
5626 		features &= ~NETIF_F_CSUM_MASK;
5627 
5628 	/* Some GMAC devices have a bugged Jumbo frame support that
5629 	 * needs to have the Tx COE disabled for oversized frames
5630 	 * (due to limited buffer sizes). In this case we disable
5631 	 * the TX csum insertion in the TDES and not use SF.
5632 	 */
5633 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5634 		features &= ~NETIF_F_CSUM_MASK;
5635 
5636 	/* Disable tso if asked by ethtool */
5637 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5638 		if (features & NETIF_F_TSO)
5639 			priv->tso = true;
5640 		else
5641 			priv->tso = false;
5642 	}
5643 
5644 	return features;
5645 }
5646 
5647 static int stmmac_set_features(struct net_device *netdev,
5648 			       netdev_features_t features)
5649 {
5650 	struct stmmac_priv *priv = netdev_priv(netdev);
5651 
5652 	/* Keep the COE Type in case of csum is supporting */
5653 	if (features & NETIF_F_RXCSUM)
5654 		priv->hw->rx_csum = priv->plat->rx_coe;
5655 	else
5656 		priv->hw->rx_csum = 0;
5657 	/* No check needed because rx_coe has been set before and it will be
5658 	 * fixed in case of issue.
5659 	 */
5660 	stmmac_rx_ipc(priv, priv->hw);
5661 
5662 	if (priv->sph_cap) {
5663 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5664 		u32 chan;
5665 
5666 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5667 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5668 	}
5669 
5670 	return 0;
5671 }
5672 
5673 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5674 {
5675 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5676 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5677 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5678 	bool *hs_enable = &fpe_cfg->hs_enable;
5679 
5680 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5681 		return;
5682 
5683 	/* If LP has sent verify mPacket, LP is FPE capable */
5684 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5685 		if (*lp_state < FPE_STATE_CAPABLE)
5686 			*lp_state = FPE_STATE_CAPABLE;
5687 
5688 		/* If user has requested FPE enable, quickly response */
5689 		if (*hs_enable)
5690 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5691 						MPACKET_RESPONSE);
5692 	}
5693 
5694 	/* If Local has sent verify mPacket, Local is FPE capable */
5695 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5696 		if (*lo_state < FPE_STATE_CAPABLE)
5697 			*lo_state = FPE_STATE_CAPABLE;
5698 	}
5699 
5700 	/* If LP has sent response mPacket, LP is entering FPE ON */
5701 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5702 		*lp_state = FPE_STATE_ENTERING_ON;
5703 
5704 	/* If Local has sent response mPacket, Local is entering FPE ON */
5705 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5706 		*lo_state = FPE_STATE_ENTERING_ON;
5707 
5708 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5709 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5710 	    priv->fpe_wq) {
5711 		queue_work(priv->fpe_wq, &priv->fpe_task);
5712 	}
5713 }
5714 
5715 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5716 {
5717 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5718 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5719 	u32 queues_count;
5720 	u32 queue;
5721 	bool xmac;
5722 
5723 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5724 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5725 
5726 	if (priv->irq_wake)
5727 		pm_wakeup_event(priv->device, 0);
5728 
5729 	if (priv->dma_cap.estsel)
5730 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5731 				      &priv->xstats, tx_cnt);
5732 
5733 	if (priv->dma_cap.fpesel) {
5734 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5735 						   priv->dev);
5736 
5737 		stmmac_fpe_event_status(priv, status);
5738 	}
5739 
5740 	/* To handle GMAC own interrupts */
5741 	if ((priv->plat->has_gmac) || xmac) {
5742 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5743 
5744 		if (unlikely(status)) {
5745 			/* For LPI we need to save the tx status */
5746 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5747 				priv->tx_path_in_lpi_mode = true;
5748 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5749 				priv->tx_path_in_lpi_mode = false;
5750 		}
5751 
5752 		for (queue = 0; queue < queues_count; queue++) {
5753 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5754 							    queue);
5755 		}
5756 
5757 		/* PCS link status */
5758 		if (priv->hw->pcs) {
5759 			if (priv->xstats.pcs_link)
5760 				netif_carrier_on(priv->dev);
5761 			else
5762 				netif_carrier_off(priv->dev);
5763 		}
5764 
5765 		stmmac_timestamp_interrupt(priv, priv);
5766 	}
5767 }
5768 
5769 /**
5770  *  stmmac_interrupt - main ISR
5771  *  @irq: interrupt number.
5772  *  @dev_id: to pass the net device pointer.
5773  *  Description: this is the main driver interrupt service routine.
5774  *  It can call:
5775  *  o DMA service routine (to manage incoming frame reception and transmission
5776  *    status)
5777  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5778  *    interrupts.
5779  */
5780 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5781 {
5782 	struct net_device *dev = (struct net_device *)dev_id;
5783 	struct stmmac_priv *priv = netdev_priv(dev);
5784 
5785 	/* Check if adapter is up */
5786 	if (test_bit(STMMAC_DOWN, &priv->state))
5787 		return IRQ_HANDLED;
5788 
5789 	/* Check if a fatal error happened */
5790 	if (stmmac_safety_feat_interrupt(priv))
5791 		return IRQ_HANDLED;
5792 
5793 	/* To handle Common interrupts */
5794 	stmmac_common_interrupt(priv);
5795 
5796 	/* To handle DMA interrupts */
5797 	stmmac_dma_interrupt(priv);
5798 
5799 	return IRQ_HANDLED;
5800 }
5801 
5802 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5803 {
5804 	struct net_device *dev = (struct net_device *)dev_id;
5805 	struct stmmac_priv *priv = netdev_priv(dev);
5806 
5807 	if (unlikely(!dev)) {
5808 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5809 		return IRQ_NONE;
5810 	}
5811 
5812 	/* Check if adapter is up */
5813 	if (test_bit(STMMAC_DOWN, &priv->state))
5814 		return IRQ_HANDLED;
5815 
5816 	/* To handle Common interrupts */
5817 	stmmac_common_interrupt(priv);
5818 
5819 	return IRQ_HANDLED;
5820 }
5821 
5822 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5823 {
5824 	struct net_device *dev = (struct net_device *)dev_id;
5825 	struct stmmac_priv *priv = netdev_priv(dev);
5826 
5827 	if (unlikely(!dev)) {
5828 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5829 		return IRQ_NONE;
5830 	}
5831 
5832 	/* Check if adapter is up */
5833 	if (test_bit(STMMAC_DOWN, &priv->state))
5834 		return IRQ_HANDLED;
5835 
5836 	/* Check if a fatal error happened */
5837 	stmmac_safety_feat_interrupt(priv);
5838 
5839 	return IRQ_HANDLED;
5840 }
5841 
5842 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5843 {
5844 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5845 	struct stmmac_dma_conf *dma_conf;
5846 	int chan = tx_q->queue_index;
5847 	struct stmmac_priv *priv;
5848 	int status;
5849 
5850 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5851 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5852 
5853 	if (unlikely(!data)) {
5854 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5855 		return IRQ_NONE;
5856 	}
5857 
5858 	/* Check if adapter is up */
5859 	if (test_bit(STMMAC_DOWN, &priv->state))
5860 		return IRQ_HANDLED;
5861 
5862 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5863 
5864 	if (unlikely(status & tx_hard_error_bump_tc)) {
5865 		/* Try to bump up the dma threshold on this failure */
5866 		stmmac_bump_dma_threshold(priv, chan);
5867 	} else if (unlikely(status == tx_hard_error)) {
5868 		stmmac_tx_err(priv, chan);
5869 	}
5870 
5871 	return IRQ_HANDLED;
5872 }
5873 
5874 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5875 {
5876 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5877 	struct stmmac_dma_conf *dma_conf;
5878 	int chan = rx_q->queue_index;
5879 	struct stmmac_priv *priv;
5880 
5881 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5882 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5883 
5884 	if (unlikely(!data)) {
5885 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5886 		return IRQ_NONE;
5887 	}
5888 
5889 	/* Check if adapter is up */
5890 	if (test_bit(STMMAC_DOWN, &priv->state))
5891 		return IRQ_HANDLED;
5892 
5893 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5894 
5895 	return IRQ_HANDLED;
5896 }
5897 
5898 #ifdef CONFIG_NET_POLL_CONTROLLER
5899 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5900  * to allow network I/O with interrupts disabled.
5901  */
5902 static void stmmac_poll_controller(struct net_device *dev)
5903 {
5904 	struct stmmac_priv *priv = netdev_priv(dev);
5905 	int i;
5906 
5907 	/* If adapter is down, do nothing */
5908 	if (test_bit(STMMAC_DOWN, &priv->state))
5909 		return;
5910 
5911 	if (priv->plat->multi_msi_en) {
5912 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5913 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5914 
5915 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5916 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5917 	} else {
5918 		disable_irq(dev->irq);
5919 		stmmac_interrupt(dev->irq, dev);
5920 		enable_irq(dev->irq);
5921 	}
5922 }
5923 #endif
5924 
5925 /**
5926  *  stmmac_ioctl - Entry point for the Ioctl
5927  *  @dev: Device pointer.
5928  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5929  *  a proprietary structure used to pass information to the driver.
5930  *  @cmd: IOCTL command
5931  *  Description:
5932  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5933  */
5934 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5935 {
5936 	struct stmmac_priv *priv = netdev_priv (dev);
5937 	int ret = -EOPNOTSUPP;
5938 
5939 	if (!netif_running(dev))
5940 		return -EINVAL;
5941 
5942 	switch (cmd) {
5943 	case SIOCGMIIPHY:
5944 	case SIOCGMIIREG:
5945 	case SIOCSMIIREG:
5946 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5947 		break;
5948 	case SIOCSHWTSTAMP:
5949 		ret = stmmac_hwtstamp_set(dev, rq);
5950 		break;
5951 	case SIOCGHWTSTAMP:
5952 		ret = stmmac_hwtstamp_get(dev, rq);
5953 		break;
5954 	default:
5955 		break;
5956 	}
5957 
5958 	return ret;
5959 }
5960 
5961 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5962 				    void *cb_priv)
5963 {
5964 	struct stmmac_priv *priv = cb_priv;
5965 	int ret = -EOPNOTSUPP;
5966 
5967 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5968 		return ret;
5969 
5970 	__stmmac_disable_all_queues(priv);
5971 
5972 	switch (type) {
5973 	case TC_SETUP_CLSU32:
5974 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5975 		break;
5976 	case TC_SETUP_CLSFLOWER:
5977 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5978 		break;
5979 	default:
5980 		break;
5981 	}
5982 
5983 	stmmac_enable_all_queues(priv);
5984 	return ret;
5985 }
5986 
5987 static LIST_HEAD(stmmac_block_cb_list);
5988 
5989 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5990 			   void *type_data)
5991 {
5992 	struct stmmac_priv *priv = netdev_priv(ndev);
5993 
5994 	switch (type) {
5995 	case TC_QUERY_CAPS:
5996 		return stmmac_tc_query_caps(priv, priv, type_data);
5997 	case TC_SETUP_BLOCK:
5998 		return flow_block_cb_setup_simple(type_data,
5999 						  &stmmac_block_cb_list,
6000 						  stmmac_setup_tc_block_cb,
6001 						  priv, priv, true);
6002 	case TC_SETUP_QDISC_CBS:
6003 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6004 	case TC_SETUP_QDISC_TAPRIO:
6005 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6006 	case TC_SETUP_QDISC_ETF:
6007 		return stmmac_tc_setup_etf(priv, priv, type_data);
6008 	default:
6009 		return -EOPNOTSUPP;
6010 	}
6011 }
6012 
6013 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6014 			       struct net_device *sb_dev)
6015 {
6016 	int gso = skb_shinfo(skb)->gso_type;
6017 
6018 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6019 		/*
6020 		 * There is no way to determine the number of TSO/USO
6021 		 * capable Queues. Let's use always the Queue 0
6022 		 * because if TSO/USO is supported then at least this
6023 		 * one will be capable.
6024 		 */
6025 		return 0;
6026 	}
6027 
6028 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6029 }
6030 
6031 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6032 {
6033 	struct stmmac_priv *priv = netdev_priv(ndev);
6034 	int ret = 0;
6035 
6036 	ret = pm_runtime_resume_and_get(priv->device);
6037 	if (ret < 0)
6038 		return ret;
6039 
6040 	ret = eth_mac_addr(ndev, addr);
6041 	if (ret)
6042 		goto set_mac_error;
6043 
6044 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6045 
6046 set_mac_error:
6047 	pm_runtime_put(priv->device);
6048 
6049 	return ret;
6050 }
6051 
6052 #ifdef CONFIG_DEBUG_FS
6053 static struct dentry *stmmac_fs_dir;
6054 
6055 static void sysfs_display_ring(void *head, int size, int extend_desc,
6056 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6057 {
6058 	int i;
6059 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6060 	struct dma_desc *p = (struct dma_desc *)head;
6061 	dma_addr_t dma_addr;
6062 
6063 	for (i = 0; i < size; i++) {
6064 		if (extend_desc) {
6065 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6066 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6067 				   i, &dma_addr,
6068 				   le32_to_cpu(ep->basic.des0),
6069 				   le32_to_cpu(ep->basic.des1),
6070 				   le32_to_cpu(ep->basic.des2),
6071 				   le32_to_cpu(ep->basic.des3));
6072 			ep++;
6073 		} else {
6074 			dma_addr = dma_phy_addr + i * sizeof(*p);
6075 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6076 				   i, &dma_addr,
6077 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6078 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6079 			p++;
6080 		}
6081 		seq_printf(seq, "\n");
6082 	}
6083 }
6084 
6085 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6086 {
6087 	struct net_device *dev = seq->private;
6088 	struct stmmac_priv *priv = netdev_priv(dev);
6089 	u32 rx_count = priv->plat->rx_queues_to_use;
6090 	u32 tx_count = priv->plat->tx_queues_to_use;
6091 	u32 queue;
6092 
6093 	if ((dev->flags & IFF_UP) == 0)
6094 		return 0;
6095 
6096 	for (queue = 0; queue < rx_count; queue++) {
6097 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6098 
6099 		seq_printf(seq, "RX Queue %d:\n", queue);
6100 
6101 		if (priv->extend_desc) {
6102 			seq_printf(seq, "Extended descriptor ring:\n");
6103 			sysfs_display_ring((void *)rx_q->dma_erx,
6104 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6105 		} else {
6106 			seq_printf(seq, "Descriptor ring:\n");
6107 			sysfs_display_ring((void *)rx_q->dma_rx,
6108 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6109 		}
6110 	}
6111 
6112 	for (queue = 0; queue < tx_count; queue++) {
6113 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6114 
6115 		seq_printf(seq, "TX Queue %d:\n", queue);
6116 
6117 		if (priv->extend_desc) {
6118 			seq_printf(seq, "Extended descriptor ring:\n");
6119 			sysfs_display_ring((void *)tx_q->dma_etx,
6120 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6121 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6122 			seq_printf(seq, "Descriptor ring:\n");
6123 			sysfs_display_ring((void *)tx_q->dma_tx,
6124 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6125 		}
6126 	}
6127 
6128 	return 0;
6129 }
6130 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6131 
6132 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6133 {
6134 	struct net_device *dev = seq->private;
6135 	struct stmmac_priv *priv = netdev_priv(dev);
6136 
6137 	if (!priv->hw_cap_support) {
6138 		seq_printf(seq, "DMA HW features not supported\n");
6139 		return 0;
6140 	}
6141 
6142 	seq_printf(seq, "==============================\n");
6143 	seq_printf(seq, "\tDMA HW features\n");
6144 	seq_printf(seq, "==============================\n");
6145 
6146 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6147 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6148 	seq_printf(seq, "\t1000 Mbps: %s\n",
6149 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6150 	seq_printf(seq, "\tHalf duplex: %s\n",
6151 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6152 	seq_printf(seq, "\tHash Filter: %s\n",
6153 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6154 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6155 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6156 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6157 		   (priv->dma_cap.pcs) ? "Y" : "N");
6158 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6159 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6160 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6161 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6162 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6163 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6164 	seq_printf(seq, "\tRMON module: %s\n",
6165 		   (priv->dma_cap.rmon) ? "Y" : "N");
6166 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6167 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6168 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6169 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6170 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6171 		   (priv->dma_cap.eee) ? "Y" : "N");
6172 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6173 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6174 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6175 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6176 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6177 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6178 	} else {
6179 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6180 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6181 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6182 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6183 	}
6184 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6185 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6186 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6187 		   priv->dma_cap.number_rx_channel);
6188 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6189 		   priv->dma_cap.number_tx_channel);
6190 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6191 		   priv->dma_cap.number_rx_queues);
6192 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6193 		   priv->dma_cap.number_tx_queues);
6194 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6195 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6196 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6197 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6198 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6199 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6200 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6201 		   priv->dma_cap.pps_out_num);
6202 	seq_printf(seq, "\tSafety Features: %s\n",
6203 		   priv->dma_cap.asp ? "Y" : "N");
6204 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6205 		   priv->dma_cap.frpsel ? "Y" : "N");
6206 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6207 		   priv->dma_cap.addr64);
6208 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6209 		   priv->dma_cap.rssen ? "Y" : "N");
6210 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6211 		   priv->dma_cap.vlhash ? "Y" : "N");
6212 	seq_printf(seq, "\tSplit Header: %s\n",
6213 		   priv->dma_cap.sphen ? "Y" : "N");
6214 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6215 		   priv->dma_cap.vlins ? "Y" : "N");
6216 	seq_printf(seq, "\tDouble VLAN: %s\n",
6217 		   priv->dma_cap.dvlan ? "Y" : "N");
6218 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6219 		   priv->dma_cap.l3l4fnum);
6220 	seq_printf(seq, "\tARP Offloading: %s\n",
6221 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6222 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6223 		   priv->dma_cap.estsel ? "Y" : "N");
6224 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6225 		   priv->dma_cap.fpesel ? "Y" : "N");
6226 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6227 		   priv->dma_cap.tbssel ? "Y" : "N");
6228 	return 0;
6229 }
6230 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6231 
6232 /* Use network device events to rename debugfs file entries.
6233  */
6234 static int stmmac_device_event(struct notifier_block *unused,
6235 			       unsigned long event, void *ptr)
6236 {
6237 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6238 	struct stmmac_priv *priv = netdev_priv(dev);
6239 
6240 	if (dev->netdev_ops != &stmmac_netdev_ops)
6241 		goto done;
6242 
6243 	switch (event) {
6244 	case NETDEV_CHANGENAME:
6245 		if (priv->dbgfs_dir)
6246 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6247 							 priv->dbgfs_dir,
6248 							 stmmac_fs_dir,
6249 							 dev->name);
6250 		break;
6251 	}
6252 done:
6253 	return NOTIFY_DONE;
6254 }
6255 
6256 static struct notifier_block stmmac_notifier = {
6257 	.notifier_call = stmmac_device_event,
6258 };
6259 
6260 static void stmmac_init_fs(struct net_device *dev)
6261 {
6262 	struct stmmac_priv *priv = netdev_priv(dev);
6263 
6264 	rtnl_lock();
6265 
6266 	/* Create per netdev entries */
6267 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6268 
6269 	/* Entry to report DMA RX/TX rings */
6270 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6271 			    &stmmac_rings_status_fops);
6272 
6273 	/* Entry to report the DMA HW features */
6274 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6275 			    &stmmac_dma_cap_fops);
6276 
6277 	rtnl_unlock();
6278 }
6279 
6280 static void stmmac_exit_fs(struct net_device *dev)
6281 {
6282 	struct stmmac_priv *priv = netdev_priv(dev);
6283 
6284 	debugfs_remove_recursive(priv->dbgfs_dir);
6285 }
6286 #endif /* CONFIG_DEBUG_FS */
6287 
6288 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6289 {
6290 	unsigned char *data = (unsigned char *)&vid_le;
6291 	unsigned char data_byte = 0;
6292 	u32 crc = ~0x0;
6293 	u32 temp = 0;
6294 	int i, bits;
6295 
6296 	bits = get_bitmask_order(VLAN_VID_MASK);
6297 	for (i = 0; i < bits; i++) {
6298 		if ((i % 8) == 0)
6299 			data_byte = data[i / 8];
6300 
6301 		temp = ((crc & 1) ^ data_byte) & 1;
6302 		crc >>= 1;
6303 		data_byte >>= 1;
6304 
6305 		if (temp)
6306 			crc ^= 0xedb88320;
6307 	}
6308 
6309 	return crc;
6310 }
6311 
6312 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6313 {
6314 	u32 crc, hash = 0;
6315 	__le16 pmatch = 0;
6316 	int count = 0;
6317 	u16 vid = 0;
6318 
6319 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6320 		__le16 vid_le = cpu_to_le16(vid);
6321 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6322 		hash |= (1 << crc);
6323 		count++;
6324 	}
6325 
6326 	if (!priv->dma_cap.vlhash) {
6327 		if (count > 2) /* VID = 0 always passes filter */
6328 			return -EOPNOTSUPP;
6329 
6330 		pmatch = cpu_to_le16(vid);
6331 		hash = 0;
6332 	}
6333 
6334 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6335 }
6336 
6337 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6338 {
6339 	struct stmmac_priv *priv = netdev_priv(ndev);
6340 	bool is_double = false;
6341 	int ret;
6342 
6343 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6344 		is_double = true;
6345 
6346 	set_bit(vid, priv->active_vlans);
6347 	ret = stmmac_vlan_update(priv, is_double);
6348 	if (ret) {
6349 		clear_bit(vid, priv->active_vlans);
6350 		return ret;
6351 	}
6352 
6353 	if (priv->hw->num_vlan) {
6354 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6355 		if (ret)
6356 			return ret;
6357 	}
6358 
6359 	return 0;
6360 }
6361 
6362 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6363 {
6364 	struct stmmac_priv *priv = netdev_priv(ndev);
6365 	bool is_double = false;
6366 	int ret;
6367 
6368 	ret = pm_runtime_resume_and_get(priv->device);
6369 	if (ret < 0)
6370 		return ret;
6371 
6372 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6373 		is_double = true;
6374 
6375 	clear_bit(vid, priv->active_vlans);
6376 
6377 	if (priv->hw->num_vlan) {
6378 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6379 		if (ret)
6380 			goto del_vlan_error;
6381 	}
6382 
6383 	ret = stmmac_vlan_update(priv, is_double);
6384 
6385 del_vlan_error:
6386 	pm_runtime_put(priv->device);
6387 
6388 	return ret;
6389 }
6390 
6391 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6392 {
6393 	struct stmmac_priv *priv = netdev_priv(dev);
6394 
6395 	switch (bpf->command) {
6396 	case XDP_SETUP_PROG:
6397 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6398 	case XDP_SETUP_XSK_POOL:
6399 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6400 					     bpf->xsk.queue_id);
6401 	default:
6402 		return -EOPNOTSUPP;
6403 	}
6404 }
6405 
6406 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6407 			   struct xdp_frame **frames, u32 flags)
6408 {
6409 	struct stmmac_priv *priv = netdev_priv(dev);
6410 	int cpu = smp_processor_id();
6411 	struct netdev_queue *nq;
6412 	int i, nxmit = 0;
6413 	int queue;
6414 
6415 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6416 		return -ENETDOWN;
6417 
6418 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6419 		return -EINVAL;
6420 
6421 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6422 	nq = netdev_get_tx_queue(priv->dev, queue);
6423 
6424 	__netif_tx_lock(nq, cpu);
6425 	/* Avoids TX time-out as we are sharing with slow path */
6426 	txq_trans_cond_update(nq);
6427 
6428 	for (i = 0; i < num_frames; i++) {
6429 		int res;
6430 
6431 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6432 		if (res == STMMAC_XDP_CONSUMED)
6433 			break;
6434 
6435 		nxmit++;
6436 	}
6437 
6438 	if (flags & XDP_XMIT_FLUSH) {
6439 		stmmac_flush_tx_descriptors(priv, queue);
6440 		stmmac_tx_timer_arm(priv, queue);
6441 	}
6442 
6443 	__netif_tx_unlock(nq);
6444 
6445 	return nxmit;
6446 }
6447 
6448 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6449 {
6450 	struct stmmac_channel *ch = &priv->channel[queue];
6451 	unsigned long flags;
6452 
6453 	spin_lock_irqsave(&ch->lock, flags);
6454 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6455 	spin_unlock_irqrestore(&ch->lock, flags);
6456 
6457 	stmmac_stop_rx_dma(priv, queue);
6458 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6459 }
6460 
6461 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6462 {
6463 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6464 	struct stmmac_channel *ch = &priv->channel[queue];
6465 	unsigned long flags;
6466 	u32 buf_size;
6467 	int ret;
6468 
6469 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6470 	if (ret) {
6471 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6472 		return;
6473 	}
6474 
6475 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6476 	if (ret) {
6477 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6478 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6479 		return;
6480 	}
6481 
6482 	stmmac_reset_rx_queue(priv, queue);
6483 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6484 
6485 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6486 			    rx_q->dma_rx_phy, rx_q->queue_index);
6487 
6488 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6489 			     sizeof(struct dma_desc));
6490 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6491 			       rx_q->rx_tail_addr, rx_q->queue_index);
6492 
6493 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6494 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6495 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6496 				      buf_size,
6497 				      rx_q->queue_index);
6498 	} else {
6499 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6500 				      priv->dma_conf.dma_buf_sz,
6501 				      rx_q->queue_index);
6502 	}
6503 
6504 	stmmac_start_rx_dma(priv, queue);
6505 
6506 	spin_lock_irqsave(&ch->lock, flags);
6507 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6508 	spin_unlock_irqrestore(&ch->lock, flags);
6509 }
6510 
6511 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6512 {
6513 	struct stmmac_channel *ch = &priv->channel[queue];
6514 	unsigned long flags;
6515 
6516 	spin_lock_irqsave(&ch->lock, flags);
6517 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6518 	spin_unlock_irqrestore(&ch->lock, flags);
6519 
6520 	stmmac_stop_tx_dma(priv, queue);
6521 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6522 }
6523 
6524 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6525 {
6526 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6527 	struct stmmac_channel *ch = &priv->channel[queue];
6528 	unsigned long flags;
6529 	int ret;
6530 
6531 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6532 	if (ret) {
6533 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6534 		return;
6535 	}
6536 
6537 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6538 	if (ret) {
6539 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6540 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6541 		return;
6542 	}
6543 
6544 	stmmac_reset_tx_queue(priv, queue);
6545 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6546 
6547 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6548 			    tx_q->dma_tx_phy, tx_q->queue_index);
6549 
6550 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6551 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6552 
6553 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6554 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6555 			       tx_q->tx_tail_addr, tx_q->queue_index);
6556 
6557 	stmmac_start_tx_dma(priv, queue);
6558 
6559 	spin_lock_irqsave(&ch->lock, flags);
6560 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6561 	spin_unlock_irqrestore(&ch->lock, flags);
6562 }
6563 
6564 void stmmac_xdp_release(struct net_device *dev)
6565 {
6566 	struct stmmac_priv *priv = netdev_priv(dev);
6567 	u32 chan;
6568 
6569 	/* Ensure tx function is not running */
6570 	netif_tx_disable(dev);
6571 
6572 	/* Disable NAPI process */
6573 	stmmac_disable_all_queues(priv);
6574 
6575 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6576 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6577 
6578 	/* Free the IRQ lines */
6579 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6580 
6581 	/* Stop TX/RX DMA channels */
6582 	stmmac_stop_all_dma(priv);
6583 
6584 	/* Release and free the Rx/Tx resources */
6585 	free_dma_desc_resources(priv, &priv->dma_conf);
6586 
6587 	/* Disable the MAC Rx/Tx */
6588 	stmmac_mac_set(priv, priv->ioaddr, false);
6589 
6590 	/* set trans_start so we don't get spurious
6591 	 * watchdogs during reset
6592 	 */
6593 	netif_trans_update(dev);
6594 	netif_carrier_off(dev);
6595 }
6596 
6597 int stmmac_xdp_open(struct net_device *dev)
6598 {
6599 	struct stmmac_priv *priv = netdev_priv(dev);
6600 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6601 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6602 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6603 	struct stmmac_rx_queue *rx_q;
6604 	struct stmmac_tx_queue *tx_q;
6605 	u32 buf_size;
6606 	bool sph_en;
6607 	u32 chan;
6608 	int ret;
6609 
6610 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6611 	if (ret < 0) {
6612 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6613 			   __func__);
6614 		goto dma_desc_error;
6615 	}
6616 
6617 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6618 	if (ret < 0) {
6619 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6620 			   __func__);
6621 		goto init_error;
6622 	}
6623 
6624 	/* DMA CSR Channel configuration */
6625 	for (chan = 0; chan < dma_csr_ch; chan++) {
6626 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6627 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6628 	}
6629 
6630 	/* Adjust Split header */
6631 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6632 
6633 	/* DMA RX Channel Configuration */
6634 	for (chan = 0; chan < rx_cnt; chan++) {
6635 		rx_q = &priv->dma_conf.rx_queue[chan];
6636 
6637 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6638 				    rx_q->dma_rx_phy, chan);
6639 
6640 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6641 				     (rx_q->buf_alloc_num *
6642 				      sizeof(struct dma_desc));
6643 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6644 				       rx_q->rx_tail_addr, chan);
6645 
6646 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6647 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6648 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6649 					      buf_size,
6650 					      rx_q->queue_index);
6651 		} else {
6652 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6653 					      priv->dma_conf.dma_buf_sz,
6654 					      rx_q->queue_index);
6655 		}
6656 
6657 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6658 	}
6659 
6660 	/* DMA TX Channel Configuration */
6661 	for (chan = 0; chan < tx_cnt; chan++) {
6662 		tx_q = &priv->dma_conf.tx_queue[chan];
6663 
6664 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6665 				    tx_q->dma_tx_phy, chan);
6666 
6667 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6668 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6669 				       tx_q->tx_tail_addr, chan);
6670 
6671 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6672 		tx_q->txtimer.function = stmmac_tx_timer;
6673 	}
6674 
6675 	/* Enable the MAC Rx/Tx */
6676 	stmmac_mac_set(priv, priv->ioaddr, true);
6677 
6678 	/* Start Rx & Tx DMA Channels */
6679 	stmmac_start_all_dma(priv);
6680 
6681 	ret = stmmac_request_irq(dev);
6682 	if (ret)
6683 		goto irq_error;
6684 
6685 	/* Enable NAPI process*/
6686 	stmmac_enable_all_queues(priv);
6687 	netif_carrier_on(dev);
6688 	netif_tx_start_all_queues(dev);
6689 	stmmac_enable_all_dma_irq(priv);
6690 
6691 	return 0;
6692 
6693 irq_error:
6694 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6695 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6696 
6697 	stmmac_hw_teardown(dev);
6698 init_error:
6699 	free_dma_desc_resources(priv, &priv->dma_conf);
6700 dma_desc_error:
6701 	return ret;
6702 }
6703 
6704 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6705 {
6706 	struct stmmac_priv *priv = netdev_priv(dev);
6707 	struct stmmac_rx_queue *rx_q;
6708 	struct stmmac_tx_queue *tx_q;
6709 	struct stmmac_channel *ch;
6710 
6711 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6712 	    !netif_carrier_ok(priv->dev))
6713 		return -ENETDOWN;
6714 
6715 	if (!stmmac_xdp_is_enabled(priv))
6716 		return -EINVAL;
6717 
6718 	if (queue >= priv->plat->rx_queues_to_use ||
6719 	    queue >= priv->plat->tx_queues_to_use)
6720 		return -EINVAL;
6721 
6722 	rx_q = &priv->dma_conf.rx_queue[queue];
6723 	tx_q = &priv->dma_conf.tx_queue[queue];
6724 	ch = &priv->channel[queue];
6725 
6726 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6727 		return -EINVAL;
6728 
6729 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6730 		/* EQoS does not have per-DMA channel SW interrupt,
6731 		 * so we schedule RX Napi straight-away.
6732 		 */
6733 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6734 			__napi_schedule(&ch->rxtx_napi);
6735 	}
6736 
6737 	return 0;
6738 }
6739 
6740 static const struct net_device_ops stmmac_netdev_ops = {
6741 	.ndo_open = stmmac_open,
6742 	.ndo_start_xmit = stmmac_xmit,
6743 	.ndo_stop = stmmac_release,
6744 	.ndo_change_mtu = stmmac_change_mtu,
6745 	.ndo_fix_features = stmmac_fix_features,
6746 	.ndo_set_features = stmmac_set_features,
6747 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6748 	.ndo_tx_timeout = stmmac_tx_timeout,
6749 	.ndo_eth_ioctl = stmmac_ioctl,
6750 	.ndo_setup_tc = stmmac_setup_tc,
6751 	.ndo_select_queue = stmmac_select_queue,
6752 #ifdef CONFIG_NET_POLL_CONTROLLER
6753 	.ndo_poll_controller = stmmac_poll_controller,
6754 #endif
6755 	.ndo_set_mac_address = stmmac_set_mac_address,
6756 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6757 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6758 	.ndo_bpf = stmmac_bpf,
6759 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6760 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6761 };
6762 
6763 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6764 {
6765 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6766 		return;
6767 	if (test_bit(STMMAC_DOWN, &priv->state))
6768 		return;
6769 
6770 	netdev_err(priv->dev, "Reset adapter.\n");
6771 
6772 	rtnl_lock();
6773 	netif_trans_update(priv->dev);
6774 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6775 		usleep_range(1000, 2000);
6776 
6777 	set_bit(STMMAC_DOWN, &priv->state);
6778 	dev_close(priv->dev);
6779 	dev_open(priv->dev, NULL);
6780 	clear_bit(STMMAC_DOWN, &priv->state);
6781 	clear_bit(STMMAC_RESETING, &priv->state);
6782 	rtnl_unlock();
6783 }
6784 
6785 static void stmmac_service_task(struct work_struct *work)
6786 {
6787 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6788 			service_task);
6789 
6790 	stmmac_reset_subtask(priv);
6791 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6792 }
6793 
6794 /**
6795  *  stmmac_hw_init - Init the MAC device
6796  *  @priv: driver private structure
6797  *  Description: this function is to configure the MAC device according to
6798  *  some platform parameters or the HW capability register. It prepares the
6799  *  driver to use either ring or chain modes and to setup either enhanced or
6800  *  normal descriptors.
6801  */
6802 static int stmmac_hw_init(struct stmmac_priv *priv)
6803 {
6804 	int ret;
6805 
6806 	/* dwmac-sun8i only work in chain mode */
6807 	if (priv->plat->has_sun8i)
6808 		chain_mode = 1;
6809 	priv->chain_mode = chain_mode;
6810 
6811 	/* Initialize HW Interface */
6812 	ret = stmmac_hwif_init(priv);
6813 	if (ret)
6814 		return ret;
6815 
6816 	/* Get the HW capability (new GMAC newer than 3.50a) */
6817 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6818 	if (priv->hw_cap_support) {
6819 		dev_info(priv->device, "DMA HW capability register supported\n");
6820 
6821 		/* We can override some gmac/dma configuration fields: e.g.
6822 		 * enh_desc, tx_coe (e.g. that are passed through the
6823 		 * platform) with the values from the HW capability
6824 		 * register (if supported).
6825 		 */
6826 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6827 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6828 				!priv->plat->use_phy_wol;
6829 		priv->hw->pmt = priv->plat->pmt;
6830 		if (priv->dma_cap.hash_tb_sz) {
6831 			priv->hw->multicast_filter_bins =
6832 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6833 			priv->hw->mcast_bits_log2 =
6834 					ilog2(priv->hw->multicast_filter_bins);
6835 		}
6836 
6837 		/* TXCOE doesn't work in thresh DMA mode */
6838 		if (priv->plat->force_thresh_dma_mode)
6839 			priv->plat->tx_coe = 0;
6840 		else
6841 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6842 
6843 		/* In case of GMAC4 rx_coe is from HW cap register. */
6844 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6845 
6846 		if (priv->dma_cap.rx_coe_type2)
6847 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6848 		else if (priv->dma_cap.rx_coe_type1)
6849 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6850 
6851 	} else {
6852 		dev_info(priv->device, "No HW DMA feature register supported\n");
6853 	}
6854 
6855 	if (priv->plat->rx_coe) {
6856 		priv->hw->rx_csum = priv->plat->rx_coe;
6857 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6858 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6859 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6860 	}
6861 	if (priv->plat->tx_coe)
6862 		dev_info(priv->device, "TX Checksum insertion supported\n");
6863 
6864 	if (priv->plat->pmt) {
6865 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6866 		device_set_wakeup_capable(priv->device, 1);
6867 	}
6868 
6869 	if (priv->dma_cap.tsoen)
6870 		dev_info(priv->device, "TSO supported\n");
6871 
6872 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6873 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6874 
6875 	/* Run HW quirks, if any */
6876 	if (priv->hwif_quirks) {
6877 		ret = priv->hwif_quirks(priv);
6878 		if (ret)
6879 			return ret;
6880 	}
6881 
6882 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6883 	 * In some case, for example on bugged HW this feature
6884 	 * has to be disable and this can be done by passing the
6885 	 * riwt_off field from the platform.
6886 	 */
6887 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6888 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6889 		priv->use_riwt = 1;
6890 		dev_info(priv->device,
6891 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6892 	}
6893 
6894 	return 0;
6895 }
6896 
6897 static void stmmac_napi_add(struct net_device *dev)
6898 {
6899 	struct stmmac_priv *priv = netdev_priv(dev);
6900 	u32 queue, maxq;
6901 
6902 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6903 
6904 	for (queue = 0; queue < maxq; queue++) {
6905 		struct stmmac_channel *ch = &priv->channel[queue];
6906 
6907 		ch->priv_data = priv;
6908 		ch->index = queue;
6909 		spin_lock_init(&ch->lock);
6910 
6911 		if (queue < priv->plat->rx_queues_to_use) {
6912 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6913 		}
6914 		if (queue < priv->plat->tx_queues_to_use) {
6915 			netif_napi_add_tx(dev, &ch->tx_napi,
6916 					  stmmac_napi_poll_tx);
6917 		}
6918 		if (queue < priv->plat->rx_queues_to_use &&
6919 		    queue < priv->plat->tx_queues_to_use) {
6920 			netif_napi_add(dev, &ch->rxtx_napi,
6921 				       stmmac_napi_poll_rxtx);
6922 		}
6923 	}
6924 }
6925 
6926 static void stmmac_napi_del(struct net_device *dev)
6927 {
6928 	struct stmmac_priv *priv = netdev_priv(dev);
6929 	u32 queue, maxq;
6930 
6931 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6932 
6933 	for (queue = 0; queue < maxq; queue++) {
6934 		struct stmmac_channel *ch = &priv->channel[queue];
6935 
6936 		if (queue < priv->plat->rx_queues_to_use)
6937 			netif_napi_del(&ch->rx_napi);
6938 		if (queue < priv->plat->tx_queues_to_use)
6939 			netif_napi_del(&ch->tx_napi);
6940 		if (queue < priv->plat->rx_queues_to_use &&
6941 		    queue < priv->plat->tx_queues_to_use) {
6942 			netif_napi_del(&ch->rxtx_napi);
6943 		}
6944 	}
6945 }
6946 
6947 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6948 {
6949 	struct stmmac_priv *priv = netdev_priv(dev);
6950 	int ret = 0;
6951 
6952 	if (netif_running(dev))
6953 		stmmac_release(dev);
6954 
6955 	stmmac_napi_del(dev);
6956 
6957 	priv->plat->rx_queues_to_use = rx_cnt;
6958 	priv->plat->tx_queues_to_use = tx_cnt;
6959 
6960 	stmmac_napi_add(dev);
6961 
6962 	if (netif_running(dev))
6963 		ret = stmmac_open(dev);
6964 
6965 	return ret;
6966 }
6967 
6968 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6969 {
6970 	struct stmmac_priv *priv = netdev_priv(dev);
6971 	int ret = 0;
6972 
6973 	if (netif_running(dev))
6974 		stmmac_release(dev);
6975 
6976 	priv->dma_conf.dma_rx_size = rx_size;
6977 	priv->dma_conf.dma_tx_size = tx_size;
6978 
6979 	if (netif_running(dev))
6980 		ret = stmmac_open(dev);
6981 
6982 	return ret;
6983 }
6984 
6985 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6986 static void stmmac_fpe_lp_task(struct work_struct *work)
6987 {
6988 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6989 						fpe_task);
6990 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6991 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6992 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6993 	bool *hs_enable = &fpe_cfg->hs_enable;
6994 	bool *enable = &fpe_cfg->enable;
6995 	int retries = 20;
6996 
6997 	while (retries-- > 0) {
6998 		/* Bail out immediately if FPE handshake is OFF */
6999 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7000 			break;
7001 
7002 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7003 		    *lp_state == FPE_STATE_ENTERING_ON) {
7004 			stmmac_fpe_configure(priv, priv->ioaddr,
7005 					     priv->plat->tx_queues_to_use,
7006 					     priv->plat->rx_queues_to_use,
7007 					     *enable);
7008 
7009 			netdev_info(priv->dev, "configured FPE\n");
7010 
7011 			*lo_state = FPE_STATE_ON;
7012 			*lp_state = FPE_STATE_ON;
7013 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7014 			break;
7015 		}
7016 
7017 		if ((*lo_state == FPE_STATE_CAPABLE ||
7018 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7019 		     *lp_state != FPE_STATE_ON) {
7020 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7021 				    *lo_state, *lp_state);
7022 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7023 						MPACKET_VERIFY);
7024 		}
7025 		/* Sleep then retry */
7026 		msleep(500);
7027 	}
7028 
7029 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7030 }
7031 
7032 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7033 {
7034 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7035 		if (enable) {
7036 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7037 						MPACKET_VERIFY);
7038 		} else {
7039 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7040 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7041 		}
7042 
7043 		priv->plat->fpe_cfg->hs_enable = enable;
7044 	}
7045 }
7046 
7047 /**
7048  * stmmac_dvr_probe
7049  * @device: device pointer
7050  * @plat_dat: platform data pointer
7051  * @res: stmmac resource pointer
7052  * Description: this is the main probe function used to
7053  * call the alloc_etherdev, allocate the priv structure.
7054  * Return:
7055  * returns 0 on success, otherwise errno.
7056  */
7057 int stmmac_dvr_probe(struct device *device,
7058 		     struct plat_stmmacenet_data *plat_dat,
7059 		     struct stmmac_resources *res)
7060 {
7061 	struct net_device *ndev = NULL;
7062 	struct stmmac_priv *priv;
7063 	u32 rxq;
7064 	int i, ret = 0;
7065 
7066 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7067 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7068 	if (!ndev)
7069 		return -ENOMEM;
7070 
7071 	SET_NETDEV_DEV(ndev, device);
7072 
7073 	priv = netdev_priv(ndev);
7074 	priv->device = device;
7075 	priv->dev = ndev;
7076 
7077 	stmmac_set_ethtool_ops(ndev);
7078 	priv->pause = pause;
7079 	priv->plat = plat_dat;
7080 	priv->ioaddr = res->addr;
7081 	priv->dev->base_addr = (unsigned long)res->addr;
7082 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7083 
7084 	priv->dev->irq = res->irq;
7085 	priv->wol_irq = res->wol_irq;
7086 	priv->lpi_irq = res->lpi_irq;
7087 	priv->sfty_ce_irq = res->sfty_ce_irq;
7088 	priv->sfty_ue_irq = res->sfty_ue_irq;
7089 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7090 		priv->rx_irq[i] = res->rx_irq[i];
7091 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7092 		priv->tx_irq[i] = res->tx_irq[i];
7093 
7094 	if (!is_zero_ether_addr(res->mac))
7095 		eth_hw_addr_set(priv->dev, res->mac);
7096 
7097 	dev_set_drvdata(device, priv->dev);
7098 
7099 	/* Verify driver arguments */
7100 	stmmac_verify_args();
7101 
7102 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7103 	if (!priv->af_xdp_zc_qps)
7104 		return -ENOMEM;
7105 
7106 	/* Allocate workqueue */
7107 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7108 	if (!priv->wq) {
7109 		dev_err(priv->device, "failed to create workqueue\n");
7110 		ret = -ENOMEM;
7111 		goto error_wq_init;
7112 	}
7113 
7114 	INIT_WORK(&priv->service_task, stmmac_service_task);
7115 
7116 	/* Initialize Link Partner FPE workqueue */
7117 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7118 
7119 	/* Override with kernel parameters if supplied XXX CRS XXX
7120 	 * this needs to have multiple instances
7121 	 */
7122 	if ((phyaddr >= 0) && (phyaddr <= 31))
7123 		priv->plat->phy_addr = phyaddr;
7124 
7125 	if (priv->plat->stmmac_rst) {
7126 		ret = reset_control_assert(priv->plat->stmmac_rst);
7127 		reset_control_deassert(priv->plat->stmmac_rst);
7128 		/* Some reset controllers have only reset callback instead of
7129 		 * assert + deassert callbacks pair.
7130 		 */
7131 		if (ret == -ENOTSUPP)
7132 			reset_control_reset(priv->plat->stmmac_rst);
7133 	}
7134 
7135 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7136 	if (ret == -ENOTSUPP)
7137 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7138 			ERR_PTR(ret));
7139 
7140 	/* Init MAC and get the capabilities */
7141 	ret = stmmac_hw_init(priv);
7142 	if (ret)
7143 		goto error_hw_init;
7144 
7145 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7146 	 */
7147 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7148 		priv->plat->dma_cfg->dche = false;
7149 
7150 	stmmac_check_ether_addr(priv);
7151 
7152 	ndev->netdev_ops = &stmmac_netdev_ops;
7153 
7154 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7155 			    NETIF_F_RXCSUM;
7156 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7157 			     NETDEV_XDP_ACT_XSK_ZEROCOPY |
7158 			     NETDEV_XDP_ACT_NDO_XMIT;
7159 
7160 	ret = stmmac_tc_init(priv, priv);
7161 	if (!ret) {
7162 		ndev->hw_features |= NETIF_F_HW_TC;
7163 	}
7164 
7165 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7166 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7167 		if (priv->plat->has_gmac4)
7168 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7169 		priv->tso = true;
7170 		dev_info(priv->device, "TSO feature enabled\n");
7171 	}
7172 
7173 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7174 		ndev->hw_features |= NETIF_F_GRO;
7175 		priv->sph_cap = true;
7176 		priv->sph = priv->sph_cap;
7177 		dev_info(priv->device, "SPH feature enabled\n");
7178 	}
7179 
7180 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7181 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7182 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7183 	 * So overwrite dma_cap.addr64 according to HW real design.
7184 	 */
7185 	if (priv->plat->addr64)
7186 		priv->dma_cap.addr64 = priv->plat->addr64;
7187 
7188 	if (priv->dma_cap.addr64) {
7189 		ret = dma_set_mask_and_coherent(device,
7190 				DMA_BIT_MASK(priv->dma_cap.addr64));
7191 		if (!ret) {
7192 			dev_info(priv->device, "Using %d bits DMA width\n",
7193 				 priv->dma_cap.addr64);
7194 
7195 			/*
7196 			 * If more than 32 bits can be addressed, make sure to
7197 			 * enable enhanced addressing mode.
7198 			 */
7199 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7200 				priv->plat->dma_cfg->eame = true;
7201 		} else {
7202 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7203 			if (ret) {
7204 				dev_err(priv->device, "Failed to set DMA Mask\n");
7205 				goto error_hw_init;
7206 			}
7207 
7208 			priv->dma_cap.addr64 = 32;
7209 		}
7210 	}
7211 
7212 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7213 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7214 #ifdef STMMAC_VLAN_TAG_USED
7215 	/* Both mac100 and gmac support receive VLAN tag detection */
7216 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7217 	if (priv->dma_cap.vlhash) {
7218 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7219 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7220 	}
7221 	if (priv->dma_cap.vlins) {
7222 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7223 		if (priv->dma_cap.dvlan)
7224 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7225 	}
7226 #endif
7227 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7228 
7229 	/* Initialize RSS */
7230 	rxq = priv->plat->rx_queues_to_use;
7231 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7232 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7233 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7234 
7235 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7236 		ndev->features |= NETIF_F_RXHASH;
7237 
7238 	/* MTU range: 46 - hw-specific max */
7239 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7240 	if (priv->plat->has_xgmac)
7241 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7242 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7243 		ndev->max_mtu = JUMBO_LEN;
7244 	else
7245 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7246 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7247 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7248 	 */
7249 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7250 	    (priv->plat->maxmtu >= ndev->min_mtu))
7251 		ndev->max_mtu = priv->plat->maxmtu;
7252 	else if (priv->plat->maxmtu < ndev->min_mtu)
7253 		dev_warn(priv->device,
7254 			 "%s: warning: maxmtu having invalid value (%d)\n",
7255 			 __func__, priv->plat->maxmtu);
7256 
7257 	if (flow_ctrl)
7258 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7259 
7260 	/* Setup channels NAPI */
7261 	stmmac_napi_add(ndev);
7262 
7263 	mutex_init(&priv->lock);
7264 
7265 	/* If a specific clk_csr value is passed from the platform
7266 	 * this means that the CSR Clock Range selection cannot be
7267 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7268 	 * set the MDC clock dynamically according to the csr actual
7269 	 * clock input.
7270 	 */
7271 	if (priv->plat->clk_csr >= 0)
7272 		priv->clk_csr = priv->plat->clk_csr;
7273 	else
7274 		stmmac_clk_csr_set(priv);
7275 
7276 	stmmac_check_pcs_mode(priv);
7277 
7278 	pm_runtime_get_noresume(device);
7279 	pm_runtime_set_active(device);
7280 	if (!pm_runtime_enabled(device))
7281 		pm_runtime_enable(device);
7282 
7283 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7284 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7285 		/* MDIO bus Registration */
7286 		ret = stmmac_mdio_register(ndev);
7287 		if (ret < 0) {
7288 			dev_err_probe(priv->device, ret,
7289 				      "%s: MDIO bus (id: %d) registration failed\n",
7290 				      __func__, priv->plat->bus_id);
7291 			goto error_mdio_register;
7292 		}
7293 	}
7294 
7295 	if (priv->plat->speed_mode_2500)
7296 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7297 
7298 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7299 		ret = stmmac_xpcs_setup(priv->mii);
7300 		if (ret)
7301 			goto error_xpcs_setup;
7302 	}
7303 
7304 	ret = stmmac_phy_setup(priv);
7305 	if (ret) {
7306 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7307 		goto error_phy_setup;
7308 	}
7309 
7310 	ret = register_netdev(ndev);
7311 	if (ret) {
7312 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7313 			__func__, ret);
7314 		goto error_netdev_register;
7315 	}
7316 
7317 #ifdef CONFIG_DEBUG_FS
7318 	stmmac_init_fs(ndev);
7319 #endif
7320 
7321 	if (priv->plat->dump_debug_regs)
7322 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7323 
7324 	/* Let pm_runtime_put() disable the clocks.
7325 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7326 	 */
7327 	pm_runtime_put(device);
7328 
7329 	return ret;
7330 
7331 error_netdev_register:
7332 	phylink_destroy(priv->phylink);
7333 error_xpcs_setup:
7334 error_phy_setup:
7335 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7336 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7337 		stmmac_mdio_unregister(ndev);
7338 error_mdio_register:
7339 	stmmac_napi_del(ndev);
7340 error_hw_init:
7341 	destroy_workqueue(priv->wq);
7342 error_wq_init:
7343 	bitmap_free(priv->af_xdp_zc_qps);
7344 
7345 	return ret;
7346 }
7347 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7348 
7349 /**
7350  * stmmac_dvr_remove
7351  * @dev: device pointer
7352  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7353  * changes the link status, releases the DMA descriptor rings.
7354  */
7355 void stmmac_dvr_remove(struct device *dev)
7356 {
7357 	struct net_device *ndev = dev_get_drvdata(dev);
7358 	struct stmmac_priv *priv = netdev_priv(ndev);
7359 
7360 	netdev_info(priv->dev, "%s: removing driver", __func__);
7361 
7362 	pm_runtime_get_sync(dev);
7363 
7364 	stmmac_stop_all_dma(priv);
7365 	stmmac_mac_set(priv, priv->ioaddr, false);
7366 	netif_carrier_off(ndev);
7367 	unregister_netdev(ndev);
7368 
7369 	/* Serdes power down needs to happen after VLAN filter
7370 	 * is deleted that is triggered by unregister_netdev().
7371 	 */
7372 	if (priv->plat->serdes_powerdown)
7373 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7374 
7375 #ifdef CONFIG_DEBUG_FS
7376 	stmmac_exit_fs(ndev);
7377 #endif
7378 	phylink_destroy(priv->phylink);
7379 	if (priv->plat->stmmac_rst)
7380 		reset_control_assert(priv->plat->stmmac_rst);
7381 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7382 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7383 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7384 		stmmac_mdio_unregister(ndev);
7385 	destroy_workqueue(priv->wq);
7386 	mutex_destroy(&priv->lock);
7387 	bitmap_free(priv->af_xdp_zc_qps);
7388 
7389 	pm_runtime_disable(dev);
7390 	pm_runtime_put_noidle(dev);
7391 }
7392 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7393 
7394 /**
7395  * stmmac_suspend - suspend callback
7396  * @dev: device pointer
7397  * Description: this is the function to suspend the device and it is called
7398  * by the platform driver to stop the network queue, release the resources,
7399  * program the PMT register (for WoL), clean and release driver resources.
7400  */
7401 int stmmac_suspend(struct device *dev)
7402 {
7403 	struct net_device *ndev = dev_get_drvdata(dev);
7404 	struct stmmac_priv *priv = netdev_priv(ndev);
7405 	u32 chan;
7406 
7407 	if (!ndev || !netif_running(ndev))
7408 		return 0;
7409 
7410 	mutex_lock(&priv->lock);
7411 
7412 	netif_device_detach(ndev);
7413 
7414 	stmmac_disable_all_queues(priv);
7415 
7416 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7417 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7418 
7419 	if (priv->eee_enabled) {
7420 		priv->tx_path_in_lpi_mode = false;
7421 		del_timer_sync(&priv->eee_ctrl_timer);
7422 	}
7423 
7424 	/* Stop TX/RX DMA */
7425 	stmmac_stop_all_dma(priv);
7426 
7427 	if (priv->plat->serdes_powerdown)
7428 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7429 
7430 	/* Enable Power down mode by programming the PMT regs */
7431 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7432 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7433 		priv->irq_wake = 1;
7434 	} else {
7435 		stmmac_mac_set(priv, priv->ioaddr, false);
7436 		pinctrl_pm_select_sleep_state(priv->device);
7437 	}
7438 
7439 	mutex_unlock(&priv->lock);
7440 
7441 	rtnl_lock();
7442 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7443 		phylink_suspend(priv->phylink, true);
7444 	} else {
7445 		if (device_may_wakeup(priv->device))
7446 			phylink_speed_down(priv->phylink, false);
7447 		phylink_suspend(priv->phylink, false);
7448 	}
7449 	rtnl_unlock();
7450 
7451 	if (priv->dma_cap.fpesel) {
7452 		/* Disable FPE */
7453 		stmmac_fpe_configure(priv, priv->ioaddr,
7454 				     priv->plat->tx_queues_to_use,
7455 				     priv->plat->rx_queues_to_use, false);
7456 
7457 		stmmac_fpe_handshake(priv, false);
7458 		stmmac_fpe_stop_wq(priv);
7459 	}
7460 
7461 	priv->speed = SPEED_UNKNOWN;
7462 	return 0;
7463 }
7464 EXPORT_SYMBOL_GPL(stmmac_suspend);
7465 
7466 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7467 {
7468 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7469 
7470 	rx_q->cur_rx = 0;
7471 	rx_q->dirty_rx = 0;
7472 }
7473 
7474 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7475 {
7476 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7477 
7478 	tx_q->cur_tx = 0;
7479 	tx_q->dirty_tx = 0;
7480 	tx_q->mss = 0;
7481 
7482 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7483 }
7484 
7485 /**
7486  * stmmac_reset_queues_param - reset queue parameters
7487  * @priv: device pointer
7488  */
7489 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7490 {
7491 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7492 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7493 	u32 queue;
7494 
7495 	for (queue = 0; queue < rx_cnt; queue++)
7496 		stmmac_reset_rx_queue(priv, queue);
7497 
7498 	for (queue = 0; queue < tx_cnt; queue++)
7499 		stmmac_reset_tx_queue(priv, queue);
7500 }
7501 
7502 /**
7503  * stmmac_resume - resume callback
7504  * @dev: device pointer
7505  * Description: when resume this function is invoked to setup the DMA and CORE
7506  * in a usable state.
7507  */
7508 int stmmac_resume(struct device *dev)
7509 {
7510 	struct net_device *ndev = dev_get_drvdata(dev);
7511 	struct stmmac_priv *priv = netdev_priv(ndev);
7512 	int ret;
7513 
7514 	if (!netif_running(ndev))
7515 		return 0;
7516 
7517 	/* Power Down bit, into the PM register, is cleared
7518 	 * automatically as soon as a magic packet or a Wake-up frame
7519 	 * is received. Anyway, it's better to manually clear
7520 	 * this bit because it can generate problems while resuming
7521 	 * from another devices (e.g. serial console).
7522 	 */
7523 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7524 		mutex_lock(&priv->lock);
7525 		stmmac_pmt(priv, priv->hw, 0);
7526 		mutex_unlock(&priv->lock);
7527 		priv->irq_wake = 0;
7528 	} else {
7529 		pinctrl_pm_select_default_state(priv->device);
7530 		/* reset the phy so that it's ready */
7531 		if (priv->mii)
7532 			stmmac_mdio_reset(priv->mii);
7533 	}
7534 
7535 	if (!priv->plat->serdes_up_after_phy_linkup && priv->plat->serdes_powerup) {
7536 		ret = priv->plat->serdes_powerup(ndev,
7537 						 priv->plat->bsp_priv);
7538 
7539 		if (ret < 0)
7540 			return ret;
7541 	}
7542 
7543 	rtnl_lock();
7544 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7545 		phylink_resume(priv->phylink);
7546 	} else {
7547 		phylink_resume(priv->phylink);
7548 		if (device_may_wakeup(priv->device))
7549 			phylink_speed_up(priv->phylink);
7550 	}
7551 	rtnl_unlock();
7552 
7553 	rtnl_lock();
7554 	mutex_lock(&priv->lock);
7555 
7556 	stmmac_reset_queues_param(priv);
7557 
7558 	stmmac_free_tx_skbufs(priv);
7559 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7560 
7561 	stmmac_hw_setup(ndev, false);
7562 	stmmac_init_coalesce(priv);
7563 	stmmac_set_rx_mode(ndev);
7564 
7565 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7566 
7567 	stmmac_enable_all_queues(priv);
7568 	stmmac_enable_all_dma_irq(priv);
7569 
7570 	mutex_unlock(&priv->lock);
7571 	rtnl_unlock();
7572 
7573 	netif_device_attach(ndev);
7574 
7575 	return 0;
7576 }
7577 EXPORT_SYMBOL_GPL(stmmac_resume);
7578 
7579 #ifndef MODULE
7580 static int __init stmmac_cmdline_opt(char *str)
7581 {
7582 	char *opt;
7583 
7584 	if (!str || !*str)
7585 		return 1;
7586 	while ((opt = strsep(&str, ",")) != NULL) {
7587 		if (!strncmp(opt, "debug:", 6)) {
7588 			if (kstrtoint(opt + 6, 0, &debug))
7589 				goto err;
7590 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7591 			if (kstrtoint(opt + 8, 0, &phyaddr))
7592 				goto err;
7593 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7594 			if (kstrtoint(opt + 7, 0, &buf_sz))
7595 				goto err;
7596 		} else if (!strncmp(opt, "tc:", 3)) {
7597 			if (kstrtoint(opt + 3, 0, &tc))
7598 				goto err;
7599 		} else if (!strncmp(opt, "watchdog:", 9)) {
7600 			if (kstrtoint(opt + 9, 0, &watchdog))
7601 				goto err;
7602 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7603 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7604 				goto err;
7605 		} else if (!strncmp(opt, "pause:", 6)) {
7606 			if (kstrtoint(opt + 6, 0, &pause))
7607 				goto err;
7608 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7609 			if (kstrtoint(opt + 10, 0, &eee_timer))
7610 				goto err;
7611 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7612 			if (kstrtoint(opt + 11, 0, &chain_mode))
7613 				goto err;
7614 		}
7615 	}
7616 	return 1;
7617 
7618 err:
7619 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7620 	return 1;
7621 }
7622 
7623 __setup("stmmaceth=", stmmac_cmdline_opt);
7624 #endif /* MODULE */
7625 
7626 static int __init stmmac_init(void)
7627 {
7628 #ifdef CONFIG_DEBUG_FS
7629 	/* Create debugfs main directory if it doesn't exist yet */
7630 	if (!stmmac_fs_dir)
7631 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7632 	register_netdevice_notifier(&stmmac_notifier);
7633 #endif
7634 
7635 	return 0;
7636 }
7637 
7638 static void __exit stmmac_exit(void)
7639 {
7640 #ifdef CONFIG_DEBUG_FS
7641 	unregister_netdevice_notifier(&stmmac_notifier);
7642 	debugfs_remove_recursive(stmmac_fs_dir);
7643 #endif
7644 }
7645 
7646 module_init(stmmac_init)
7647 module_exit(stmmac_exit)
7648 
7649 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7650 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7651 MODULE_LICENSE("GPL");
7652