1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
55 
56 /* Module parameters */
57 #define TX_TIMEO	5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61 
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65 
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69 
70 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
72 
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX	256
75 #define STMMAC_TX_XSK_AVAIL		16
76 #define STMMAC_RX_FILL_BATCH		16
77 
78 #define STMMAC_XDP_PASS		0
79 #define STMMAC_XDP_CONSUMED	BIT(0)
80 #define STMMAC_XDP_TX		BIT(1)
81 #define STMMAC_XDP_REDIRECT	BIT(2)
82 
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86 
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90 
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95 
96 #define	DEFAULT_BUFSIZE	1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100 
101 #define	STMMAC_RX_COPYBREAK	256
102 
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
105 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106 
107 #define STMMAC_DEFAULT_LPI_TIMER	1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112 
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119 
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128 
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134 
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136 
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139 	int ret = 0;
140 
141 	if (enabled) {
142 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
143 		if (ret)
144 			return ret;
145 		ret = clk_prepare_enable(priv->plat->pclk);
146 		if (ret) {
147 			clk_disable_unprepare(priv->plat->stmmac_clk);
148 			return ret;
149 		}
150 		if (priv->plat->clks_config) {
151 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152 			if (ret) {
153 				clk_disable_unprepare(priv->plat->stmmac_clk);
154 				clk_disable_unprepare(priv->plat->pclk);
155 				return ret;
156 			}
157 		}
158 	} else {
159 		clk_disable_unprepare(priv->plat->stmmac_clk);
160 		clk_disable_unprepare(priv->plat->pclk);
161 		if (priv->plat->clks_config)
162 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163 	}
164 
165 	return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168 
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176 	if (unlikely(watchdog < 0))
177 		watchdog = TX_TIMEO;
178 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179 		buf_sz = DEFAULT_BUFSIZE;
180 	if (unlikely(flow_ctrl > 1))
181 		flow_ctrl = FLOW_AUTO;
182 	else if (likely(flow_ctrl < 0))
183 		flow_ctrl = FLOW_OFF;
184 	if (unlikely((pause < 0) || (pause > 0xffff)))
185 		pause = PAUSE_TIME;
186 	if (eee_timer < 0)
187 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189 
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195 	u32 queue;
196 
197 	for (queue = 0; queue < maxq; queue++) {
198 		struct stmmac_channel *ch = &priv->channel[queue];
199 
200 		if (stmmac_xdp_is_enabled(priv) &&
201 		    test_bit(queue, priv->af_xdp_zc_qps)) {
202 			napi_disable(&ch->rxtx_napi);
203 			continue;
204 		}
205 
206 		if (queue < rx_queues_cnt)
207 			napi_disable(&ch->rx_napi);
208 		if (queue < tx_queues_cnt)
209 			napi_disable(&ch->tx_napi);
210 	}
211 }
212 
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220 	struct stmmac_rx_queue *rx_q;
221 	u32 queue;
222 
223 	/* synchronize_rcu() needed for pending XDP buffers to drain */
224 	for (queue = 0; queue < rx_queues_cnt; queue++) {
225 		rx_q = &priv->rx_queue[queue];
226 		if (rx_q->xsk_pool) {
227 			synchronize_rcu();
228 			break;
229 		}
230 	}
231 
232 	__stmmac_disable_all_queues(priv);
233 }
234 
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244 	u32 queue;
245 
246 	for (queue = 0; queue < maxq; queue++) {
247 		struct stmmac_channel *ch = &priv->channel[queue];
248 
249 		if (stmmac_xdp_is_enabled(priv) &&
250 		    test_bit(queue, priv->af_xdp_zc_qps)) {
251 			napi_enable(&ch->rxtx_napi);
252 			continue;
253 		}
254 
255 		if (queue < rx_queues_cnt)
256 			napi_enable(&ch->rx_napi);
257 		if (queue < tx_queues_cnt)
258 			napi_enable(&ch->tx_napi);
259 	}
260 }
261 
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
265 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266 		queue_work(priv->wq, &priv->service_task);
267 }
268 
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271 	netif_carrier_off(priv->dev);
272 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273 	stmmac_service_event_schedule(priv);
274 }
275 
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *	If a specific clk_csr value is passed from the platform
283  *	this means that the CSR Clock Range selection cannot be
284  *	changed at run-time and it is fixed (as reported in the driver
285  *	documentation). Viceversa the driver will try to set the MDC
286  *	clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290 	u32 clk_rate;
291 
292 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293 
294 	/* Platform provided default clk_csr would be assumed valid
295 	 * for all other cases except for the below mentioned ones.
296 	 * For values higher than the IEEE 802.3 specified frequency
297 	 * we can not estimate the proper divider as it is not known
298 	 * the frequency of clk_csr_i. So we do not change the default
299 	 * divider.
300 	 */
301 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302 		if (clk_rate < CSR_F_35M)
303 			priv->clk_csr = STMMAC_CSR_20_35M;
304 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305 			priv->clk_csr = STMMAC_CSR_35_60M;
306 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307 			priv->clk_csr = STMMAC_CSR_60_100M;
308 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309 			priv->clk_csr = STMMAC_CSR_100_150M;
310 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311 			priv->clk_csr = STMMAC_CSR_150_250M;
312 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
313 			priv->clk_csr = STMMAC_CSR_250_300M;
314 	}
315 
316 	if (priv->plat->has_sun8i) {
317 		if (clk_rate > 160000000)
318 			priv->clk_csr = 0x03;
319 		else if (clk_rate > 80000000)
320 			priv->clk_csr = 0x02;
321 		else if (clk_rate > 40000000)
322 			priv->clk_csr = 0x01;
323 		else
324 			priv->clk_csr = 0;
325 	}
326 
327 	if (priv->plat->has_xgmac) {
328 		if (clk_rate > 400000000)
329 			priv->clk_csr = 0x5;
330 		else if (clk_rate > 350000000)
331 			priv->clk_csr = 0x4;
332 		else if (clk_rate > 300000000)
333 			priv->clk_csr = 0x3;
334 		else if (clk_rate > 250000000)
335 			priv->clk_csr = 0x2;
336 		else if (clk_rate > 150000000)
337 			priv->clk_csr = 0x1;
338 		else
339 			priv->clk_csr = 0x0;
340 	}
341 }
342 
343 static void print_pkt(unsigned char *buf, int len)
344 {
345 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348 
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352 	u32 avail;
353 
354 	if (tx_q->dirty_tx > tx_q->cur_tx)
355 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356 	else
357 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358 
359 	return avail;
360 }
361 
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370 	u32 dirty;
371 
372 	if (rx_q->dirty_rx <= rx_q->cur_rx)
373 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
374 	else
375 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376 
377 	return dirty;
378 }
379 
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382 	int tx_lpi_timer;
383 
384 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
385 	priv->eee_sw_timer_en = en ? 0 : 1;
386 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389 
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398 	u32 tx_cnt = priv->plat->tx_queues_to_use;
399 	u32 queue;
400 
401 	/* check if all TX queues have the work finished */
402 	for (queue = 0; queue < tx_cnt; queue++) {
403 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404 
405 		if (tx_q->dirty_tx != tx_q->cur_tx)
406 			return; /* still unfinished work */
407 	}
408 
409 	/* Check and enter in LPI mode */
410 	if (!priv->tx_path_in_lpi_mode)
411 		stmmac_set_eee_mode(priv, priv->hw,
412 				priv->plat->en_tx_lpi_clockgating);
413 }
414 
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423 	if (!priv->eee_sw_timer_en) {
424 		stmmac_lpi_entry_timer_config(priv, 0);
425 		return;
426 	}
427 
428 	stmmac_reset_eee_mode(priv, priv->hw);
429 	del_timer_sync(&priv->eee_ctrl_timer);
430 	priv->tx_path_in_lpi_mode = false;
431 }
432 
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443 
444 	stmmac_enable_eee_mode(priv);
445 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447 
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458 	int eee_tw_timer = priv->eee_tw_timer;
459 
460 	/* Using PCS we cannot dial with the phy registers at this stage
461 	 * so we do not support extra feature like EEE.
462 	 */
463 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
464 	    priv->hw->pcs == STMMAC_PCS_RTBI)
465 		return false;
466 
467 	/* Check if MAC core supports the EEE feature. */
468 	if (!priv->dma_cap.eee)
469 		return false;
470 
471 	mutex_lock(&priv->lock);
472 
473 	/* Check if it needs to be deactivated */
474 	if (!priv->eee_active) {
475 		if (priv->eee_enabled) {
476 			netdev_dbg(priv->dev, "disable EEE\n");
477 			stmmac_lpi_entry_timer_config(priv, 0);
478 			del_timer_sync(&priv->eee_ctrl_timer);
479 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480 			if (priv->hw->xpcs)
481 				xpcs_config_eee(priv->hw->xpcs,
482 						priv->plat->mult_fact_100ns,
483 						false);
484 		}
485 		mutex_unlock(&priv->lock);
486 		return false;
487 	}
488 
489 	if (priv->eee_active && !priv->eee_enabled) {
490 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
491 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
492 				     eee_tw_timer);
493 		if (priv->hw->xpcs)
494 			xpcs_config_eee(priv->hw->xpcs,
495 					priv->plat->mult_fact_100ns,
496 					true);
497 	}
498 
499 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
500 		del_timer_sync(&priv->eee_ctrl_timer);
501 		priv->tx_path_in_lpi_mode = false;
502 		stmmac_lpi_entry_timer_config(priv, 1);
503 	} else {
504 		stmmac_lpi_entry_timer_config(priv, 0);
505 		mod_timer(&priv->eee_ctrl_timer,
506 			  STMMAC_LPI_T(priv->tx_lpi_timer));
507 	}
508 
509 	mutex_unlock(&priv->lock);
510 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
511 	return true;
512 }
513 
514 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
515  * @priv: driver private structure
516  * @p : descriptor pointer
517  * @skb : the socket buffer
518  * Description :
519  * This function will read timestamp from the descriptor & pass it to stack.
520  * and also perform some sanity checks.
521  */
522 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
523 				   struct dma_desc *p, struct sk_buff *skb)
524 {
525 	struct skb_shared_hwtstamps shhwtstamp;
526 	bool found = false;
527 	s64 adjust = 0;
528 	u64 ns = 0;
529 
530 	if (!priv->hwts_tx_en)
531 		return;
532 
533 	/* exit if skb doesn't support hw tstamp */
534 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
535 		return;
536 
537 	/* check tx tstamp status */
538 	if (stmmac_get_tx_timestamp_status(priv, p)) {
539 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
540 		found = true;
541 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
542 		found = true;
543 	}
544 
545 	if (found) {
546 		/* Correct the clk domain crossing(CDC) error */
547 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
548 			adjust += -(2 * (NSEC_PER_SEC /
549 					 priv->plat->clk_ptp_rate));
550 			ns += adjust;
551 		}
552 
553 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
554 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
555 
556 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
557 		/* pass tstamp to stack */
558 		skb_tstamp_tx(skb, &shhwtstamp);
559 	}
560 }
561 
562 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
563  * @priv: driver private structure
564  * @p : descriptor pointer
565  * @np : next descriptor pointer
566  * @skb : the socket buffer
567  * Description :
568  * This function will read received packet's timestamp from the descriptor
569  * and pass it to stack. It also perform some sanity checks.
570  */
571 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
572 				   struct dma_desc *np, struct sk_buff *skb)
573 {
574 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
575 	struct dma_desc *desc = p;
576 	u64 adjust = 0;
577 	u64 ns = 0;
578 
579 	if (!priv->hwts_rx_en)
580 		return;
581 	/* For GMAC4, the valid timestamp is from CTX next desc. */
582 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
583 		desc = np;
584 
585 	/* Check if timestamp is available */
586 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
587 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
588 
589 		/* Correct the clk domain crossing(CDC) error */
590 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
591 			adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
592 			ns -= adjust;
593 		}
594 
595 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
596 		shhwtstamp = skb_hwtstamps(skb);
597 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
598 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
599 	} else  {
600 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
601 	}
602 }
603 
604 /**
605  *  stmmac_hwtstamp_set - control hardware timestamping.
606  *  @dev: device pointer.
607  *  @ifr: An IOCTL specific structure, that can contain a pointer to
608  *  a proprietary structure used to pass information to the driver.
609  *  Description:
610  *  This function configures the MAC to enable/disable both outgoing(TX)
611  *  and incoming(RX) packets time stamping based on user input.
612  *  Return Value:
613  *  0 on success and an appropriate -ve integer on failure.
614  */
615 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
616 {
617 	struct stmmac_priv *priv = netdev_priv(dev);
618 	struct hwtstamp_config config;
619 	struct timespec64 now;
620 	u64 temp = 0;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 	u32 sec_inc = 0;
630 	u32 value = 0;
631 	bool xmac;
632 
633 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
634 
635 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
636 		netdev_alert(priv->dev, "No support for HW time stamping\n");
637 		priv->hwts_tx_en = 0;
638 		priv->hwts_rx_en = 0;
639 
640 		return -EOPNOTSUPP;
641 	}
642 
643 	if (copy_from_user(&config, ifr->ifr_data,
644 			   sizeof(config)))
645 		return -EFAULT;
646 
647 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
648 		   __func__, config.flags, config.tx_type, config.rx_filter);
649 
650 	/* reserved for future extensions */
651 	if (config.flags)
652 		return -EINVAL;
653 
654 	if (config.tx_type != HWTSTAMP_TX_OFF &&
655 	    config.tx_type != HWTSTAMP_TX_ON)
656 		return -ERANGE;
657 
658 	if (priv->adv_ts) {
659 		switch (config.rx_filter) {
660 		case HWTSTAMP_FILTER_NONE:
661 			/* time stamp no incoming packet at all */
662 			config.rx_filter = HWTSTAMP_FILTER_NONE;
663 			break;
664 
665 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
666 			/* PTP v1, UDP, any kind of event packet */
667 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
668 			/* 'xmac' hardware can support Sync, Pdelay_Req and
669 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
670 			 * This leaves Delay_Req timestamps out.
671 			 * Enable all events *and* general purpose message
672 			 * timestamping
673 			 */
674 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
675 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
676 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
677 			break;
678 
679 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
680 			/* PTP v1, UDP, Sync packet */
681 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
682 			/* take time stamp for SYNC messages only */
683 			ts_event_en = PTP_TCR_TSEVNTENA;
684 
685 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
686 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
687 			break;
688 
689 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
690 			/* PTP v1, UDP, Delay_req packet */
691 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
692 			/* take time stamp for Delay_Req messages only */
693 			ts_master_en = PTP_TCR_TSMSTRENA;
694 			ts_event_en = PTP_TCR_TSEVNTENA;
695 
696 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
697 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
698 			break;
699 
700 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
701 			/* PTP v2, UDP, any kind of event packet */
702 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
703 			ptp_v2 = PTP_TCR_TSVER2ENA;
704 			/* take time stamp for all event messages */
705 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
706 
707 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
708 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
709 			break;
710 
711 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
712 			/* PTP v2, UDP, Sync packet */
713 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
714 			ptp_v2 = PTP_TCR_TSVER2ENA;
715 			/* take time stamp for SYNC messages only */
716 			ts_event_en = PTP_TCR_TSEVNTENA;
717 
718 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720 			break;
721 
722 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
723 			/* PTP v2, UDP, Delay_req packet */
724 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
725 			ptp_v2 = PTP_TCR_TSVER2ENA;
726 			/* take time stamp for Delay_Req messages only */
727 			ts_master_en = PTP_TCR_TSMSTRENA;
728 			ts_event_en = PTP_TCR_TSEVNTENA;
729 
730 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
731 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
732 			break;
733 
734 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
735 			/* PTP v2/802.AS1 any layer, any kind of event packet */
736 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
737 			ptp_v2 = PTP_TCR_TSVER2ENA;
738 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
739 			if (priv->synopsys_id != DWMAC_CORE_5_10)
740 				ts_event_en = PTP_TCR_TSEVNTENA;
741 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743 			ptp_over_ethernet = PTP_TCR_TSIPENA;
744 			break;
745 
746 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
747 			/* PTP v2/802.AS1, any layer, Sync packet */
748 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
749 			ptp_v2 = PTP_TCR_TSVER2ENA;
750 			/* take time stamp for SYNC messages only */
751 			ts_event_en = PTP_TCR_TSEVNTENA;
752 
753 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
754 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
755 			ptp_over_ethernet = PTP_TCR_TSIPENA;
756 			break;
757 
758 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
759 			/* PTP v2/802.AS1, any layer, Delay_req packet */
760 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
761 			ptp_v2 = PTP_TCR_TSVER2ENA;
762 			/* take time stamp for Delay_Req messages only */
763 			ts_master_en = PTP_TCR_TSMSTRENA;
764 			ts_event_en = PTP_TCR_TSEVNTENA;
765 
766 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
767 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
768 			ptp_over_ethernet = PTP_TCR_TSIPENA;
769 			break;
770 
771 		case HWTSTAMP_FILTER_NTP_ALL:
772 		case HWTSTAMP_FILTER_ALL:
773 			/* time stamp any incoming packet */
774 			config.rx_filter = HWTSTAMP_FILTER_ALL;
775 			tstamp_all = PTP_TCR_TSENALL;
776 			break;
777 
778 		default:
779 			return -ERANGE;
780 		}
781 	} else {
782 		switch (config.rx_filter) {
783 		case HWTSTAMP_FILTER_NONE:
784 			config.rx_filter = HWTSTAMP_FILTER_NONE;
785 			break;
786 		default:
787 			/* PTP v1, UDP, any kind of event packet */
788 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
789 			break;
790 		}
791 	}
792 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
793 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
794 
795 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
796 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
797 	else {
798 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
799 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
800 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
801 			 ts_master_en | snap_type_sel);
802 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
803 
804 		/* program Sub Second Increment reg */
805 		stmmac_config_sub_second_increment(priv,
806 				priv->ptpaddr, priv->plat->clk_ptp_rate,
807 				xmac, &sec_inc);
808 		temp = div_u64(1000000000ULL, sec_inc);
809 
810 		/* Store sub second increment and flags for later use */
811 		priv->sub_second_inc = sec_inc;
812 		priv->systime_flags = value;
813 
814 		/* calculate default added value:
815 		 * formula is :
816 		 * addend = (2^32)/freq_div_ratio;
817 		 * where, freq_div_ratio = 1e9ns/sec_inc
818 		 */
819 		temp = (u64)(temp << 32);
820 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
821 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
822 
823 		/* initialize system time */
824 		ktime_get_real_ts64(&now);
825 
826 		/* lower 32 bits of tv_sec are safe until y2106 */
827 		stmmac_init_systime(priv, priv->ptpaddr,
828 				(u32)now.tv_sec, now.tv_nsec);
829 	}
830 
831 	memcpy(&priv->tstamp_config, &config, sizeof(config));
832 
833 	return copy_to_user(ifr->ifr_data, &config,
834 			    sizeof(config)) ? -EFAULT : 0;
835 }
836 
837 /**
838  *  stmmac_hwtstamp_get - read hardware timestamping.
839  *  @dev: device pointer.
840  *  @ifr: An IOCTL specific structure, that can contain a pointer to
841  *  a proprietary structure used to pass information to the driver.
842  *  Description:
843  *  This function obtain the current hardware timestamping settings
844  *  as requested.
845  */
846 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
847 {
848 	struct stmmac_priv *priv = netdev_priv(dev);
849 	struct hwtstamp_config *config = &priv->tstamp_config;
850 
851 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
852 		return -EOPNOTSUPP;
853 
854 	return copy_to_user(ifr->ifr_data, config,
855 			    sizeof(*config)) ? -EFAULT : 0;
856 }
857 
858 /**
859  * stmmac_init_ptp - init PTP
860  * @priv: driver private structure
861  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
862  * This is done by looking at the HW cap. register.
863  * This function also registers the ptp driver.
864  */
865 static int stmmac_init_ptp(struct stmmac_priv *priv)
866 {
867 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
868 
869 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
870 		return -EOPNOTSUPP;
871 
872 	priv->adv_ts = 0;
873 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
874 	if (xmac && priv->dma_cap.atime_stamp)
875 		priv->adv_ts = 1;
876 	/* Dwmac 3.x core with extend_desc can support adv_ts */
877 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
878 		priv->adv_ts = 1;
879 
880 	if (priv->dma_cap.time_stamp)
881 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
882 
883 	if (priv->adv_ts)
884 		netdev_info(priv->dev,
885 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
886 
887 	priv->hwts_tx_en = 0;
888 	priv->hwts_rx_en = 0;
889 
890 	stmmac_ptp_register(priv);
891 
892 	return 0;
893 }
894 
895 static void stmmac_release_ptp(struct stmmac_priv *priv)
896 {
897 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
898 	stmmac_ptp_unregister(priv);
899 }
900 
901 /**
902  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
903  *  @priv: driver private structure
904  *  @duplex: duplex passed to the next function
905  *  Description: It is used for configuring the flow control in all queues
906  */
907 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
908 {
909 	u32 tx_cnt = priv->plat->tx_queues_to_use;
910 
911 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
912 			priv->pause, tx_cnt);
913 }
914 
915 static void stmmac_validate(struct phylink_config *config,
916 			    unsigned long *supported,
917 			    struct phylink_link_state *state)
918 {
919 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
920 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
921 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
922 	int tx_cnt = priv->plat->tx_queues_to_use;
923 	int max_speed = priv->plat->max_speed;
924 
925 	phylink_set(mac_supported, 10baseT_Half);
926 	phylink_set(mac_supported, 10baseT_Full);
927 	phylink_set(mac_supported, 100baseT_Half);
928 	phylink_set(mac_supported, 100baseT_Full);
929 	phylink_set(mac_supported, 1000baseT_Half);
930 	phylink_set(mac_supported, 1000baseT_Full);
931 	phylink_set(mac_supported, 1000baseKX_Full);
932 
933 	phylink_set(mac_supported, Autoneg);
934 	phylink_set(mac_supported, Pause);
935 	phylink_set(mac_supported, Asym_Pause);
936 	phylink_set_port_modes(mac_supported);
937 
938 	/* Cut down 1G if asked to */
939 	if ((max_speed > 0) && (max_speed < 1000)) {
940 		phylink_set(mask, 1000baseT_Full);
941 		phylink_set(mask, 1000baseX_Full);
942 	} else if (priv->plat->has_gmac4) {
943 		if (!max_speed || max_speed >= 2500) {
944 			phylink_set(mac_supported, 2500baseT_Full);
945 			phylink_set(mac_supported, 2500baseX_Full);
946 		}
947 	} else if (priv->plat->has_xgmac) {
948 		if (!max_speed || (max_speed >= 2500)) {
949 			phylink_set(mac_supported, 2500baseT_Full);
950 			phylink_set(mac_supported, 2500baseX_Full);
951 		}
952 		if (!max_speed || (max_speed >= 5000)) {
953 			phylink_set(mac_supported, 5000baseT_Full);
954 		}
955 		if (!max_speed || (max_speed >= 10000)) {
956 			phylink_set(mac_supported, 10000baseSR_Full);
957 			phylink_set(mac_supported, 10000baseLR_Full);
958 			phylink_set(mac_supported, 10000baseER_Full);
959 			phylink_set(mac_supported, 10000baseLRM_Full);
960 			phylink_set(mac_supported, 10000baseT_Full);
961 			phylink_set(mac_supported, 10000baseKX4_Full);
962 			phylink_set(mac_supported, 10000baseKR_Full);
963 		}
964 		if (!max_speed || (max_speed >= 25000)) {
965 			phylink_set(mac_supported, 25000baseCR_Full);
966 			phylink_set(mac_supported, 25000baseKR_Full);
967 			phylink_set(mac_supported, 25000baseSR_Full);
968 		}
969 		if (!max_speed || (max_speed >= 40000)) {
970 			phylink_set(mac_supported, 40000baseKR4_Full);
971 			phylink_set(mac_supported, 40000baseCR4_Full);
972 			phylink_set(mac_supported, 40000baseSR4_Full);
973 			phylink_set(mac_supported, 40000baseLR4_Full);
974 		}
975 		if (!max_speed || (max_speed >= 50000)) {
976 			phylink_set(mac_supported, 50000baseCR2_Full);
977 			phylink_set(mac_supported, 50000baseKR2_Full);
978 			phylink_set(mac_supported, 50000baseSR2_Full);
979 			phylink_set(mac_supported, 50000baseKR_Full);
980 			phylink_set(mac_supported, 50000baseSR_Full);
981 			phylink_set(mac_supported, 50000baseCR_Full);
982 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
983 			phylink_set(mac_supported, 50000baseDR_Full);
984 		}
985 		if (!max_speed || (max_speed >= 100000)) {
986 			phylink_set(mac_supported, 100000baseKR4_Full);
987 			phylink_set(mac_supported, 100000baseSR4_Full);
988 			phylink_set(mac_supported, 100000baseCR4_Full);
989 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
990 			phylink_set(mac_supported, 100000baseKR2_Full);
991 			phylink_set(mac_supported, 100000baseSR2_Full);
992 			phylink_set(mac_supported, 100000baseCR2_Full);
993 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
994 			phylink_set(mac_supported, 100000baseDR2_Full);
995 		}
996 	}
997 
998 	/* Half-Duplex can only work with single queue */
999 	if (tx_cnt > 1) {
1000 		phylink_set(mask, 10baseT_Half);
1001 		phylink_set(mask, 100baseT_Half);
1002 		phylink_set(mask, 1000baseT_Half);
1003 	}
1004 
1005 	linkmode_and(supported, supported, mac_supported);
1006 	linkmode_andnot(supported, supported, mask);
1007 
1008 	linkmode_and(state->advertising, state->advertising, mac_supported);
1009 	linkmode_andnot(state->advertising, state->advertising, mask);
1010 
1011 	/* If PCS is supported, check which modes it supports. */
1012 	if (priv->hw->xpcs)
1013 		xpcs_validate(priv->hw->xpcs, supported, state);
1014 }
1015 
1016 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1017 			      const struct phylink_link_state *state)
1018 {
1019 	/* Nothing to do, xpcs_config() handles everything */
1020 }
1021 
1022 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1023 {
1024 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1025 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1026 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1027 	bool *hs_enable = &fpe_cfg->hs_enable;
1028 
1029 	if (is_up && *hs_enable) {
1030 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1031 	} else {
1032 		*lo_state = FPE_STATE_OFF;
1033 		*lp_state = FPE_STATE_OFF;
1034 	}
1035 }
1036 
1037 static void stmmac_mac_link_down(struct phylink_config *config,
1038 				 unsigned int mode, phy_interface_t interface)
1039 {
1040 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1041 
1042 	stmmac_mac_set(priv, priv->ioaddr, false);
1043 	priv->eee_active = false;
1044 	priv->tx_lpi_enabled = false;
1045 	priv->eee_enabled = stmmac_eee_init(priv);
1046 	stmmac_set_eee_pls(priv, priv->hw, false);
1047 
1048 	if (priv->dma_cap.fpesel)
1049 		stmmac_fpe_link_state_handle(priv, false);
1050 }
1051 
1052 static void stmmac_mac_link_up(struct phylink_config *config,
1053 			       struct phy_device *phy,
1054 			       unsigned int mode, phy_interface_t interface,
1055 			       int speed, int duplex,
1056 			       bool tx_pause, bool rx_pause)
1057 {
1058 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1059 	u32 ctrl;
1060 
1061 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1062 	ctrl &= ~priv->hw->link.speed_mask;
1063 
1064 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1065 		switch (speed) {
1066 		case SPEED_10000:
1067 			ctrl |= priv->hw->link.xgmii.speed10000;
1068 			break;
1069 		case SPEED_5000:
1070 			ctrl |= priv->hw->link.xgmii.speed5000;
1071 			break;
1072 		case SPEED_2500:
1073 			ctrl |= priv->hw->link.xgmii.speed2500;
1074 			break;
1075 		default:
1076 			return;
1077 		}
1078 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1079 		switch (speed) {
1080 		case SPEED_100000:
1081 			ctrl |= priv->hw->link.xlgmii.speed100000;
1082 			break;
1083 		case SPEED_50000:
1084 			ctrl |= priv->hw->link.xlgmii.speed50000;
1085 			break;
1086 		case SPEED_40000:
1087 			ctrl |= priv->hw->link.xlgmii.speed40000;
1088 			break;
1089 		case SPEED_25000:
1090 			ctrl |= priv->hw->link.xlgmii.speed25000;
1091 			break;
1092 		case SPEED_10000:
1093 			ctrl |= priv->hw->link.xgmii.speed10000;
1094 			break;
1095 		case SPEED_2500:
1096 			ctrl |= priv->hw->link.speed2500;
1097 			break;
1098 		case SPEED_1000:
1099 			ctrl |= priv->hw->link.speed1000;
1100 			break;
1101 		default:
1102 			return;
1103 		}
1104 	} else {
1105 		switch (speed) {
1106 		case SPEED_2500:
1107 			ctrl |= priv->hw->link.speed2500;
1108 			break;
1109 		case SPEED_1000:
1110 			ctrl |= priv->hw->link.speed1000;
1111 			break;
1112 		case SPEED_100:
1113 			ctrl |= priv->hw->link.speed100;
1114 			break;
1115 		case SPEED_10:
1116 			ctrl |= priv->hw->link.speed10;
1117 			break;
1118 		default:
1119 			return;
1120 		}
1121 	}
1122 
1123 	priv->speed = speed;
1124 
1125 	if (priv->plat->fix_mac_speed)
1126 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1127 
1128 	if (!duplex)
1129 		ctrl &= ~priv->hw->link.duplex;
1130 	else
1131 		ctrl |= priv->hw->link.duplex;
1132 
1133 	/* Flow Control operation */
1134 	if (tx_pause && rx_pause)
1135 		stmmac_mac_flow_ctrl(priv, duplex);
1136 
1137 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1138 
1139 	stmmac_mac_set(priv, priv->ioaddr, true);
1140 	if (phy && priv->dma_cap.eee) {
1141 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1142 		priv->eee_enabled = stmmac_eee_init(priv);
1143 		priv->tx_lpi_enabled = priv->eee_enabled;
1144 		stmmac_set_eee_pls(priv, priv->hw, true);
1145 	}
1146 
1147 	if (priv->dma_cap.fpesel)
1148 		stmmac_fpe_link_state_handle(priv, true);
1149 }
1150 
1151 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1152 	.validate = stmmac_validate,
1153 	.mac_config = stmmac_mac_config,
1154 	.mac_link_down = stmmac_mac_link_down,
1155 	.mac_link_up = stmmac_mac_link_up,
1156 };
1157 
1158 /**
1159  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1160  * @priv: driver private structure
1161  * Description: this is to verify if the HW supports the PCS.
1162  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1163  * configured for the TBI, RTBI, or SGMII PHY interface.
1164  */
1165 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1166 {
1167 	int interface = priv->plat->interface;
1168 
1169 	if (priv->dma_cap.pcs) {
1170 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1171 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1172 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1173 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1174 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1175 			priv->hw->pcs = STMMAC_PCS_RGMII;
1176 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1177 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1178 			priv->hw->pcs = STMMAC_PCS_SGMII;
1179 		}
1180 	}
1181 }
1182 
1183 /**
1184  * stmmac_init_phy - PHY initialization
1185  * @dev: net device structure
1186  * Description: it initializes the driver's PHY state, and attaches the PHY
1187  * to the mac driver.
1188  *  Return value:
1189  *  0 on success
1190  */
1191 static int stmmac_init_phy(struct net_device *dev)
1192 {
1193 	struct stmmac_priv *priv = netdev_priv(dev);
1194 	struct device_node *node;
1195 	int ret;
1196 
1197 	node = priv->plat->phylink_node;
1198 
1199 	if (node)
1200 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1201 
1202 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1203 	 * manually parse it
1204 	 */
1205 	if (!node || ret) {
1206 		int addr = priv->plat->phy_addr;
1207 		struct phy_device *phydev;
1208 
1209 		phydev = mdiobus_get_phy(priv->mii, addr);
1210 		if (!phydev) {
1211 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1212 			return -ENODEV;
1213 		}
1214 
1215 		ret = phylink_connect_phy(priv->phylink, phydev);
1216 	}
1217 
1218 	if (!priv->plat->pmt) {
1219 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1220 
1221 		phylink_ethtool_get_wol(priv->phylink, &wol);
1222 		device_set_wakeup_capable(priv->device, !!wol.supported);
1223 	}
1224 
1225 	return ret;
1226 }
1227 
1228 static int stmmac_phy_setup(struct stmmac_priv *priv)
1229 {
1230 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1231 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1232 	int mode = priv->plat->phy_interface;
1233 	struct phylink *phylink;
1234 
1235 	priv->phylink_config.dev = &priv->dev->dev;
1236 	priv->phylink_config.type = PHYLINK_NETDEV;
1237 	priv->phylink_config.pcs_poll = true;
1238 	if (priv->plat->mdio_bus_data)
1239 		priv->phylink_config.ovr_an_inband =
1240 			mdio_bus_data->xpcs_an_inband;
1241 
1242 	if (!fwnode)
1243 		fwnode = dev_fwnode(priv->device);
1244 
1245 	phylink = phylink_create(&priv->phylink_config, fwnode,
1246 				 mode, &stmmac_phylink_mac_ops);
1247 	if (IS_ERR(phylink))
1248 		return PTR_ERR(phylink);
1249 
1250 	if (priv->hw->xpcs)
1251 		phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1252 
1253 	priv->phylink = phylink;
1254 	return 0;
1255 }
1256 
1257 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1258 {
1259 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1260 	unsigned int desc_size;
1261 	void *head_rx;
1262 	u32 queue;
1263 
1264 	/* Display RX rings */
1265 	for (queue = 0; queue < rx_cnt; queue++) {
1266 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1267 
1268 		pr_info("\tRX Queue %u rings\n", queue);
1269 
1270 		if (priv->extend_desc) {
1271 			head_rx = (void *)rx_q->dma_erx;
1272 			desc_size = sizeof(struct dma_extended_desc);
1273 		} else {
1274 			head_rx = (void *)rx_q->dma_rx;
1275 			desc_size = sizeof(struct dma_desc);
1276 		}
1277 
1278 		/* Display RX ring */
1279 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1280 				    rx_q->dma_rx_phy, desc_size);
1281 	}
1282 }
1283 
1284 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1285 {
1286 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1287 	unsigned int desc_size;
1288 	void *head_tx;
1289 	u32 queue;
1290 
1291 	/* Display TX rings */
1292 	for (queue = 0; queue < tx_cnt; queue++) {
1293 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1294 
1295 		pr_info("\tTX Queue %d rings\n", queue);
1296 
1297 		if (priv->extend_desc) {
1298 			head_tx = (void *)tx_q->dma_etx;
1299 			desc_size = sizeof(struct dma_extended_desc);
1300 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1301 			head_tx = (void *)tx_q->dma_entx;
1302 			desc_size = sizeof(struct dma_edesc);
1303 		} else {
1304 			head_tx = (void *)tx_q->dma_tx;
1305 			desc_size = sizeof(struct dma_desc);
1306 		}
1307 
1308 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1309 				    tx_q->dma_tx_phy, desc_size);
1310 	}
1311 }
1312 
1313 static void stmmac_display_rings(struct stmmac_priv *priv)
1314 {
1315 	/* Display RX ring */
1316 	stmmac_display_rx_rings(priv);
1317 
1318 	/* Display TX ring */
1319 	stmmac_display_tx_rings(priv);
1320 }
1321 
1322 static int stmmac_set_bfsize(int mtu, int bufsize)
1323 {
1324 	int ret = bufsize;
1325 
1326 	if (mtu >= BUF_SIZE_8KiB)
1327 		ret = BUF_SIZE_16KiB;
1328 	else if (mtu >= BUF_SIZE_4KiB)
1329 		ret = BUF_SIZE_8KiB;
1330 	else if (mtu >= BUF_SIZE_2KiB)
1331 		ret = BUF_SIZE_4KiB;
1332 	else if (mtu > DEFAULT_BUFSIZE)
1333 		ret = BUF_SIZE_2KiB;
1334 	else
1335 		ret = DEFAULT_BUFSIZE;
1336 
1337 	return ret;
1338 }
1339 
1340 /**
1341  * stmmac_clear_rx_descriptors - clear RX descriptors
1342  * @priv: driver private structure
1343  * @queue: RX queue index
1344  * Description: this function is called to clear the RX descriptors
1345  * in case of both basic and extended descriptors are used.
1346  */
1347 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1348 {
1349 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1350 	int i;
1351 
1352 	/* Clear the RX descriptors */
1353 	for (i = 0; i < priv->dma_rx_size; i++)
1354 		if (priv->extend_desc)
1355 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1356 					priv->use_riwt, priv->mode,
1357 					(i == priv->dma_rx_size - 1),
1358 					priv->dma_buf_sz);
1359 		else
1360 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1361 					priv->use_riwt, priv->mode,
1362 					(i == priv->dma_rx_size - 1),
1363 					priv->dma_buf_sz);
1364 }
1365 
1366 /**
1367  * stmmac_clear_tx_descriptors - clear tx descriptors
1368  * @priv: driver private structure
1369  * @queue: TX queue index.
1370  * Description: this function is called to clear the TX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1374 {
1375 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376 	int i;
1377 
1378 	/* Clear the TX descriptors */
1379 	for (i = 0; i < priv->dma_tx_size; i++) {
1380 		int last = (i == (priv->dma_tx_size - 1));
1381 		struct dma_desc *p;
1382 
1383 		if (priv->extend_desc)
1384 			p = &tx_q->dma_etx[i].basic;
1385 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1386 			p = &tx_q->dma_entx[i].basic;
1387 		else
1388 			p = &tx_q->dma_tx[i];
1389 
1390 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1391 	}
1392 }
1393 
1394 /**
1395  * stmmac_clear_descriptors - clear descriptors
1396  * @priv: driver private structure
1397  * Description: this function is called to clear the TX and RX descriptors
1398  * in case of both basic and extended descriptors are used.
1399  */
1400 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1401 {
1402 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1403 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1404 	u32 queue;
1405 
1406 	/* Clear the RX descriptors */
1407 	for (queue = 0; queue < rx_queue_cnt; queue++)
1408 		stmmac_clear_rx_descriptors(priv, queue);
1409 
1410 	/* Clear the TX descriptors */
1411 	for (queue = 0; queue < tx_queue_cnt; queue++)
1412 		stmmac_clear_tx_descriptors(priv, queue);
1413 }
1414 
1415 /**
1416  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1417  * @priv: driver private structure
1418  * @p: descriptor pointer
1419  * @i: descriptor index
1420  * @flags: gfp flag
1421  * @queue: RX queue index
1422  * Description: this function is called to allocate a receive buffer, perform
1423  * the DMA mapping and init the descriptor.
1424  */
1425 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1426 				  int i, gfp_t flags, u32 queue)
1427 {
1428 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1429 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1430 
1431 	if (!buf->page) {
1432 		buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1433 		if (!buf->page)
1434 			return -ENOMEM;
1435 		buf->page_offset = stmmac_rx_offset(priv);
1436 	}
1437 
1438 	if (priv->sph && !buf->sec_page) {
1439 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1440 		if (!buf->sec_page)
1441 			return -ENOMEM;
1442 
1443 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1444 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1445 	} else {
1446 		buf->sec_page = NULL;
1447 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1448 	}
1449 
1450 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1451 
1452 	stmmac_set_desc_addr(priv, p, buf->addr);
1453 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1454 		stmmac_init_desc3(priv, p);
1455 
1456 	return 0;
1457 }
1458 
1459 /**
1460  * stmmac_free_rx_buffer - free RX dma buffers
1461  * @priv: private structure
1462  * @queue: RX queue index
1463  * @i: buffer index.
1464  */
1465 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1466 {
1467 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1468 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1469 
1470 	if (buf->page)
1471 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1472 	buf->page = NULL;
1473 
1474 	if (buf->sec_page)
1475 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1476 	buf->sec_page = NULL;
1477 }
1478 
1479 /**
1480  * stmmac_free_tx_buffer - free RX dma buffers
1481  * @priv: private structure
1482  * @queue: RX queue index
1483  * @i: buffer index.
1484  */
1485 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1486 {
1487 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1488 
1489 	if (tx_q->tx_skbuff_dma[i].buf &&
1490 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1491 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1492 			dma_unmap_page(priv->device,
1493 				       tx_q->tx_skbuff_dma[i].buf,
1494 				       tx_q->tx_skbuff_dma[i].len,
1495 				       DMA_TO_DEVICE);
1496 		else
1497 			dma_unmap_single(priv->device,
1498 					 tx_q->tx_skbuff_dma[i].buf,
1499 					 tx_q->tx_skbuff_dma[i].len,
1500 					 DMA_TO_DEVICE);
1501 	}
1502 
1503 	if (tx_q->xdpf[i] &&
1504 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1505 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1506 		xdp_return_frame(tx_q->xdpf[i]);
1507 		tx_q->xdpf[i] = NULL;
1508 	}
1509 
1510 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1511 		tx_q->xsk_frames_done++;
1512 
1513 	if (tx_q->tx_skbuff[i] &&
1514 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1515 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1516 		tx_q->tx_skbuff[i] = NULL;
1517 	}
1518 
1519 	tx_q->tx_skbuff_dma[i].buf = 0;
1520 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1521 }
1522 
1523 /**
1524  * dma_free_rx_skbufs - free RX dma buffers
1525  * @priv: private structure
1526  * @queue: RX queue index
1527  */
1528 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1529 {
1530 	int i;
1531 
1532 	for (i = 0; i < priv->dma_rx_size; i++)
1533 		stmmac_free_rx_buffer(priv, queue, i);
1534 }
1535 
1536 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1537 				   gfp_t flags)
1538 {
1539 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1540 	int i;
1541 
1542 	for (i = 0; i < priv->dma_rx_size; i++) {
1543 		struct dma_desc *p;
1544 		int ret;
1545 
1546 		if (priv->extend_desc)
1547 			p = &((rx_q->dma_erx + i)->basic);
1548 		else
1549 			p = rx_q->dma_rx + i;
1550 
1551 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1552 					     queue);
1553 		if (ret)
1554 			return ret;
1555 
1556 		rx_q->buf_alloc_num++;
1557 	}
1558 
1559 	return 0;
1560 }
1561 
1562 /**
1563  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1564  * @priv: private structure
1565  * @queue: RX queue index
1566  */
1567 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1568 {
1569 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1570 	int i;
1571 
1572 	for (i = 0; i < priv->dma_rx_size; i++) {
1573 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1574 
1575 		if (!buf->xdp)
1576 			continue;
1577 
1578 		xsk_buff_free(buf->xdp);
1579 		buf->xdp = NULL;
1580 	}
1581 }
1582 
1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1584 {
1585 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1586 	int i;
1587 
1588 	for (i = 0; i < priv->dma_rx_size; i++) {
1589 		struct stmmac_rx_buffer *buf;
1590 		dma_addr_t dma_addr;
1591 		struct dma_desc *p;
1592 
1593 		if (priv->extend_desc)
1594 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1595 		else
1596 			p = rx_q->dma_rx + i;
1597 
1598 		buf = &rx_q->buf_pool[i];
1599 
1600 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1601 		if (!buf->xdp)
1602 			return -ENOMEM;
1603 
1604 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1605 		stmmac_set_desc_addr(priv, p, dma_addr);
1606 		rx_q->buf_alloc_num++;
1607 	}
1608 
1609 	return 0;
1610 }
1611 
1612 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1613 {
1614 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1615 		return NULL;
1616 
1617 	return xsk_get_pool_from_qid(priv->dev, queue);
1618 }
1619 
1620 /**
1621  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1622  * @priv: driver private structure
1623  * @queue: RX queue index
1624  * @flags: gfp flag.
1625  * Description: this function initializes the DMA RX descriptors
1626  * and allocates the socket buffers. It supports the chained and ring
1627  * modes.
1628  */
1629 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1630 {
1631 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1632 	int ret;
1633 
1634 	netif_dbg(priv, probe, priv->dev,
1635 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1636 		  (u32)rx_q->dma_rx_phy);
1637 
1638 	stmmac_clear_rx_descriptors(priv, queue);
1639 
1640 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1641 
1642 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1643 
1644 	if (rx_q->xsk_pool) {
1645 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1646 						   MEM_TYPE_XSK_BUFF_POOL,
1647 						   NULL));
1648 		netdev_info(priv->dev,
1649 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1650 			    rx_q->queue_index);
1651 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1652 	} else {
1653 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1654 						   MEM_TYPE_PAGE_POOL,
1655 						   rx_q->page_pool));
1656 		netdev_info(priv->dev,
1657 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1658 			    rx_q->queue_index);
1659 	}
1660 
1661 	if (rx_q->xsk_pool) {
1662 		/* RX XDP ZC buffer pool may not be populated, e.g.
1663 		 * xdpsock TX-only.
1664 		 */
1665 		stmmac_alloc_rx_buffers_zc(priv, queue);
1666 	} else {
1667 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1668 		if (ret < 0)
1669 			return -ENOMEM;
1670 	}
1671 
1672 	rx_q->cur_rx = 0;
1673 	rx_q->dirty_rx = 0;
1674 
1675 	/* Setup the chained descriptor addresses */
1676 	if (priv->mode == STMMAC_CHAIN_MODE) {
1677 		if (priv->extend_desc)
1678 			stmmac_mode_init(priv, rx_q->dma_erx,
1679 					 rx_q->dma_rx_phy,
1680 					 priv->dma_rx_size, 1);
1681 		else
1682 			stmmac_mode_init(priv, rx_q->dma_rx,
1683 					 rx_q->dma_rx_phy,
1684 					 priv->dma_rx_size, 0);
1685 	}
1686 
1687 	return 0;
1688 }
1689 
1690 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1691 {
1692 	struct stmmac_priv *priv = netdev_priv(dev);
1693 	u32 rx_count = priv->plat->rx_queues_to_use;
1694 	u32 queue;
1695 	int ret;
1696 
1697 	/* RX INITIALIZATION */
1698 	netif_dbg(priv, probe, priv->dev,
1699 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1700 
1701 	for (queue = 0; queue < rx_count; queue++) {
1702 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1703 		if (ret)
1704 			goto err_init_rx_buffers;
1705 	}
1706 
1707 	return 0;
1708 
1709 err_init_rx_buffers:
1710 	while (queue >= 0) {
1711 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1712 
1713 		if (rx_q->xsk_pool)
1714 			dma_free_rx_xskbufs(priv, queue);
1715 		else
1716 			dma_free_rx_skbufs(priv, queue);
1717 
1718 		rx_q->buf_alloc_num = 0;
1719 		rx_q->xsk_pool = NULL;
1720 
1721 		if (queue == 0)
1722 			break;
1723 
1724 		queue--;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 /**
1731  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1732  * @priv: driver private structure
1733  * @queue : TX queue index
1734  * Description: this function initializes the DMA TX descriptors
1735  * and allocates the socket buffers. It supports the chained and ring
1736  * modes.
1737  */
1738 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1739 {
1740 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1741 	int i;
1742 
1743 	netif_dbg(priv, probe, priv->dev,
1744 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1745 		  (u32)tx_q->dma_tx_phy);
1746 
1747 	/* Setup the chained descriptor addresses */
1748 	if (priv->mode == STMMAC_CHAIN_MODE) {
1749 		if (priv->extend_desc)
1750 			stmmac_mode_init(priv, tx_q->dma_etx,
1751 					 tx_q->dma_tx_phy,
1752 					 priv->dma_tx_size, 1);
1753 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1754 			stmmac_mode_init(priv, tx_q->dma_tx,
1755 					 tx_q->dma_tx_phy,
1756 					 priv->dma_tx_size, 0);
1757 	}
1758 
1759 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1760 
1761 	for (i = 0; i < priv->dma_tx_size; i++) {
1762 		struct dma_desc *p;
1763 
1764 		if (priv->extend_desc)
1765 			p = &((tx_q->dma_etx + i)->basic);
1766 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1767 			p = &((tx_q->dma_entx + i)->basic);
1768 		else
1769 			p = tx_q->dma_tx + i;
1770 
1771 		stmmac_clear_desc(priv, p);
1772 
1773 		tx_q->tx_skbuff_dma[i].buf = 0;
1774 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1775 		tx_q->tx_skbuff_dma[i].len = 0;
1776 		tx_q->tx_skbuff_dma[i].last_segment = false;
1777 		tx_q->tx_skbuff[i] = NULL;
1778 	}
1779 
1780 	tx_q->dirty_tx = 0;
1781 	tx_q->cur_tx = 0;
1782 	tx_q->mss = 0;
1783 
1784 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1785 
1786 	return 0;
1787 }
1788 
1789 static int init_dma_tx_desc_rings(struct net_device *dev)
1790 {
1791 	struct stmmac_priv *priv = netdev_priv(dev);
1792 	u32 tx_queue_cnt;
1793 	u32 queue;
1794 
1795 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1796 
1797 	for (queue = 0; queue < tx_queue_cnt; queue++)
1798 		__init_dma_tx_desc_rings(priv, queue);
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * init_dma_desc_rings - init the RX/TX descriptor rings
1805  * @dev: net device structure
1806  * @flags: gfp flag.
1807  * Description: this function initializes the DMA RX/TX descriptors
1808  * and allocates the socket buffers. It supports the chained and ring
1809  * modes.
1810  */
1811 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1812 {
1813 	struct stmmac_priv *priv = netdev_priv(dev);
1814 	int ret;
1815 
1816 	ret = init_dma_rx_desc_rings(dev, flags);
1817 	if (ret)
1818 		return ret;
1819 
1820 	ret = init_dma_tx_desc_rings(dev);
1821 
1822 	stmmac_clear_descriptors(priv);
1823 
1824 	if (netif_msg_hw(priv))
1825 		stmmac_display_rings(priv);
1826 
1827 	return ret;
1828 }
1829 
1830 /**
1831  * dma_free_tx_skbufs - free TX dma buffers
1832  * @priv: private structure
1833  * @queue: TX queue index
1834  */
1835 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1836 {
1837 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1838 	int i;
1839 
1840 	tx_q->xsk_frames_done = 0;
1841 
1842 	for (i = 0; i < priv->dma_tx_size; i++)
1843 		stmmac_free_tx_buffer(priv, queue, i);
1844 
1845 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1846 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1847 		tx_q->xsk_frames_done = 0;
1848 		tx_q->xsk_pool = NULL;
1849 	}
1850 }
1851 
1852 /**
1853  * stmmac_free_tx_skbufs - free TX skb buffers
1854  * @priv: private structure
1855  */
1856 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1857 {
1858 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1859 	u32 queue;
1860 
1861 	for (queue = 0; queue < tx_queue_cnt; queue++)
1862 		dma_free_tx_skbufs(priv, queue);
1863 }
1864 
1865 /**
1866  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1867  * @priv: private structure
1868  * @queue: RX queue index
1869  */
1870 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1871 {
1872 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1873 
1874 	/* Release the DMA RX socket buffers */
1875 	if (rx_q->xsk_pool)
1876 		dma_free_rx_xskbufs(priv, queue);
1877 	else
1878 		dma_free_rx_skbufs(priv, queue);
1879 
1880 	rx_q->buf_alloc_num = 0;
1881 	rx_q->xsk_pool = NULL;
1882 
1883 	/* Free DMA regions of consistent memory previously allocated */
1884 	if (!priv->extend_desc)
1885 		dma_free_coherent(priv->device, priv->dma_rx_size *
1886 				  sizeof(struct dma_desc),
1887 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1888 	else
1889 		dma_free_coherent(priv->device, priv->dma_rx_size *
1890 				  sizeof(struct dma_extended_desc),
1891 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1892 
1893 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1894 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1895 
1896 	kfree(rx_q->buf_pool);
1897 	if (rx_q->page_pool)
1898 		page_pool_destroy(rx_q->page_pool);
1899 }
1900 
1901 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1902 {
1903 	u32 rx_count = priv->plat->rx_queues_to_use;
1904 	u32 queue;
1905 
1906 	/* Free RX queue resources */
1907 	for (queue = 0; queue < rx_count; queue++)
1908 		__free_dma_rx_desc_resources(priv, queue);
1909 }
1910 
1911 /**
1912  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1913  * @priv: private structure
1914  * @queue: TX queue index
1915  */
1916 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1917 {
1918 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1919 	size_t size;
1920 	void *addr;
1921 
1922 	/* Release the DMA TX socket buffers */
1923 	dma_free_tx_skbufs(priv, queue);
1924 
1925 	if (priv->extend_desc) {
1926 		size = sizeof(struct dma_extended_desc);
1927 		addr = tx_q->dma_etx;
1928 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1929 		size = sizeof(struct dma_edesc);
1930 		addr = tx_q->dma_entx;
1931 	} else {
1932 		size = sizeof(struct dma_desc);
1933 		addr = tx_q->dma_tx;
1934 	}
1935 
1936 	size *= priv->dma_tx_size;
1937 
1938 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1939 
1940 	kfree(tx_q->tx_skbuff_dma);
1941 	kfree(tx_q->tx_skbuff);
1942 }
1943 
1944 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1945 {
1946 	u32 tx_count = priv->plat->tx_queues_to_use;
1947 	u32 queue;
1948 
1949 	/* Free TX queue resources */
1950 	for (queue = 0; queue < tx_count; queue++)
1951 		__free_dma_tx_desc_resources(priv, queue);
1952 }
1953 
1954 /**
1955  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1956  * @priv: private structure
1957  * @queue: RX queue index
1958  * Description: according to which descriptor can be used (extend or basic)
1959  * this function allocates the resources for TX and RX paths. In case of
1960  * reception, for example, it pre-allocated the RX socket buffer in order to
1961  * allow zero-copy mechanism.
1962  */
1963 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1964 {
1965 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1966 	struct stmmac_channel *ch = &priv->channel[queue];
1967 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1968 	struct page_pool_params pp_params = { 0 };
1969 	unsigned int num_pages;
1970 	unsigned int napi_id;
1971 	int ret;
1972 
1973 	rx_q->queue_index = queue;
1974 	rx_q->priv_data = priv;
1975 
1976 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1977 	pp_params.pool_size = priv->dma_rx_size;
1978 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1979 	pp_params.order = ilog2(num_pages);
1980 	pp_params.nid = dev_to_node(priv->device);
1981 	pp_params.dev = priv->device;
1982 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1983 	pp_params.offset = stmmac_rx_offset(priv);
1984 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1985 
1986 	rx_q->page_pool = page_pool_create(&pp_params);
1987 	if (IS_ERR(rx_q->page_pool)) {
1988 		ret = PTR_ERR(rx_q->page_pool);
1989 		rx_q->page_pool = NULL;
1990 		return ret;
1991 	}
1992 
1993 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1994 				 sizeof(*rx_q->buf_pool),
1995 				 GFP_KERNEL);
1996 	if (!rx_q->buf_pool)
1997 		return -ENOMEM;
1998 
1999 	if (priv->extend_desc) {
2000 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2001 						   priv->dma_rx_size *
2002 						   sizeof(struct dma_extended_desc),
2003 						   &rx_q->dma_rx_phy,
2004 						   GFP_KERNEL);
2005 		if (!rx_q->dma_erx)
2006 			return -ENOMEM;
2007 
2008 	} else {
2009 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2010 						  priv->dma_rx_size *
2011 						  sizeof(struct dma_desc),
2012 						  &rx_q->dma_rx_phy,
2013 						  GFP_KERNEL);
2014 		if (!rx_q->dma_rx)
2015 			return -ENOMEM;
2016 	}
2017 
2018 	if (stmmac_xdp_is_enabled(priv) &&
2019 	    test_bit(queue, priv->af_xdp_zc_qps))
2020 		napi_id = ch->rxtx_napi.napi_id;
2021 	else
2022 		napi_id = ch->rx_napi.napi_id;
2023 
2024 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2025 			       rx_q->queue_index,
2026 			       napi_id);
2027 	if (ret) {
2028 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2029 		return -EINVAL;
2030 	}
2031 
2032 	return 0;
2033 }
2034 
2035 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2036 {
2037 	u32 rx_count = priv->plat->rx_queues_to_use;
2038 	u32 queue;
2039 	int ret;
2040 
2041 	/* RX queues buffers and DMA */
2042 	for (queue = 0; queue < rx_count; queue++) {
2043 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2044 		if (ret)
2045 			goto err_dma;
2046 	}
2047 
2048 	return 0;
2049 
2050 err_dma:
2051 	free_dma_rx_desc_resources(priv);
2052 
2053 	return ret;
2054 }
2055 
2056 /**
2057  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2058  * @priv: private structure
2059  * @queue: TX queue index
2060  * Description: according to which descriptor can be used (extend or basic)
2061  * this function allocates the resources for TX and RX paths. In case of
2062  * reception, for example, it pre-allocated the RX socket buffer in order to
2063  * allow zero-copy mechanism.
2064  */
2065 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2066 {
2067 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2068 	size_t size;
2069 	void *addr;
2070 
2071 	tx_q->queue_index = queue;
2072 	tx_q->priv_data = priv;
2073 
2074 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2075 				      sizeof(*tx_q->tx_skbuff_dma),
2076 				      GFP_KERNEL);
2077 	if (!tx_q->tx_skbuff_dma)
2078 		return -ENOMEM;
2079 
2080 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2081 				  sizeof(struct sk_buff *),
2082 				  GFP_KERNEL);
2083 	if (!tx_q->tx_skbuff)
2084 		return -ENOMEM;
2085 
2086 	if (priv->extend_desc)
2087 		size = sizeof(struct dma_extended_desc);
2088 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2089 		size = sizeof(struct dma_edesc);
2090 	else
2091 		size = sizeof(struct dma_desc);
2092 
2093 	size *= priv->dma_tx_size;
2094 
2095 	addr = dma_alloc_coherent(priv->device, size,
2096 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2097 	if (!addr)
2098 		return -ENOMEM;
2099 
2100 	if (priv->extend_desc)
2101 		tx_q->dma_etx = addr;
2102 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2103 		tx_q->dma_entx = addr;
2104 	else
2105 		tx_q->dma_tx = addr;
2106 
2107 	return 0;
2108 }
2109 
2110 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2111 {
2112 	u32 tx_count = priv->plat->tx_queues_to_use;
2113 	u32 queue;
2114 	int ret;
2115 
2116 	/* TX queues buffers and DMA */
2117 	for (queue = 0; queue < tx_count; queue++) {
2118 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2119 		if (ret)
2120 			goto err_dma;
2121 	}
2122 
2123 	return 0;
2124 
2125 err_dma:
2126 	free_dma_tx_desc_resources(priv);
2127 	return ret;
2128 }
2129 
2130 /**
2131  * alloc_dma_desc_resources - alloc TX/RX resources.
2132  * @priv: private structure
2133  * Description: according to which descriptor can be used (extend or basic)
2134  * this function allocates the resources for TX and RX paths. In case of
2135  * reception, for example, it pre-allocated the RX socket buffer in order to
2136  * allow zero-copy mechanism.
2137  */
2138 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2139 {
2140 	/* RX Allocation */
2141 	int ret = alloc_dma_rx_desc_resources(priv);
2142 
2143 	if (ret)
2144 		return ret;
2145 
2146 	ret = alloc_dma_tx_desc_resources(priv);
2147 
2148 	return ret;
2149 }
2150 
2151 /**
2152  * free_dma_desc_resources - free dma desc resources
2153  * @priv: private structure
2154  */
2155 static void free_dma_desc_resources(struct stmmac_priv *priv)
2156 {
2157 	/* Release the DMA TX socket buffers */
2158 	free_dma_tx_desc_resources(priv);
2159 
2160 	/* Release the DMA RX socket buffers later
2161 	 * to ensure all pending XDP_TX buffers are returned.
2162 	 */
2163 	free_dma_rx_desc_resources(priv);
2164 }
2165 
2166 /**
2167  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2168  *  @priv: driver private structure
2169  *  Description: It is used for enabling the rx queues in the MAC
2170  */
2171 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2172 {
2173 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2174 	int queue;
2175 	u8 mode;
2176 
2177 	for (queue = 0; queue < rx_queues_count; queue++) {
2178 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2179 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2180 	}
2181 }
2182 
2183 /**
2184  * stmmac_start_rx_dma - start RX DMA channel
2185  * @priv: driver private structure
2186  * @chan: RX channel index
2187  * Description:
2188  * This starts a RX DMA channel
2189  */
2190 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2191 {
2192 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2193 	stmmac_start_rx(priv, priv->ioaddr, chan);
2194 }
2195 
2196 /**
2197  * stmmac_start_tx_dma - start TX DMA channel
2198  * @priv: driver private structure
2199  * @chan: TX channel index
2200  * Description:
2201  * This starts a TX DMA channel
2202  */
2203 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2204 {
2205 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2206 	stmmac_start_tx(priv, priv->ioaddr, chan);
2207 }
2208 
2209 /**
2210  * stmmac_stop_rx_dma - stop RX DMA channel
2211  * @priv: driver private structure
2212  * @chan: RX channel index
2213  * Description:
2214  * This stops a RX DMA channel
2215  */
2216 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2217 {
2218 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2219 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2220 }
2221 
2222 /**
2223  * stmmac_stop_tx_dma - stop TX DMA channel
2224  * @priv: driver private structure
2225  * @chan: TX channel index
2226  * Description:
2227  * This stops a TX DMA channel
2228  */
2229 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2230 {
2231 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2232 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2233 }
2234 
2235 /**
2236  * stmmac_start_all_dma - start all RX and TX DMA channels
2237  * @priv: driver private structure
2238  * Description:
2239  * This starts all the RX and TX DMA channels
2240  */
2241 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2242 {
2243 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2244 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2245 	u32 chan = 0;
2246 
2247 	for (chan = 0; chan < rx_channels_count; chan++)
2248 		stmmac_start_rx_dma(priv, chan);
2249 
2250 	for (chan = 0; chan < tx_channels_count; chan++)
2251 		stmmac_start_tx_dma(priv, chan);
2252 }
2253 
2254 /**
2255  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2256  * @priv: driver private structure
2257  * Description:
2258  * This stops the RX and TX DMA channels
2259  */
2260 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2261 {
2262 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2263 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2264 	u32 chan = 0;
2265 
2266 	for (chan = 0; chan < rx_channels_count; chan++)
2267 		stmmac_stop_rx_dma(priv, chan);
2268 
2269 	for (chan = 0; chan < tx_channels_count; chan++)
2270 		stmmac_stop_tx_dma(priv, chan);
2271 }
2272 
2273 /**
2274  *  stmmac_dma_operation_mode - HW DMA operation mode
2275  *  @priv: driver private structure
2276  *  Description: it is used for configuring the DMA operation mode register in
2277  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2278  */
2279 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2280 {
2281 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2282 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2283 	int rxfifosz = priv->plat->rx_fifo_size;
2284 	int txfifosz = priv->plat->tx_fifo_size;
2285 	u32 txmode = 0;
2286 	u32 rxmode = 0;
2287 	u32 chan = 0;
2288 	u8 qmode = 0;
2289 
2290 	if (rxfifosz == 0)
2291 		rxfifosz = priv->dma_cap.rx_fifo_size;
2292 	if (txfifosz == 0)
2293 		txfifosz = priv->dma_cap.tx_fifo_size;
2294 
2295 	/* Adjust for real per queue fifo size */
2296 	rxfifosz /= rx_channels_count;
2297 	txfifosz /= tx_channels_count;
2298 
2299 	if (priv->plat->force_thresh_dma_mode) {
2300 		txmode = tc;
2301 		rxmode = tc;
2302 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2303 		/*
2304 		 * In case of GMAC, SF mode can be enabled
2305 		 * to perform the TX COE in HW. This depends on:
2306 		 * 1) TX COE if actually supported
2307 		 * 2) There is no bugged Jumbo frame support
2308 		 *    that needs to not insert csum in the TDES.
2309 		 */
2310 		txmode = SF_DMA_MODE;
2311 		rxmode = SF_DMA_MODE;
2312 		priv->xstats.threshold = SF_DMA_MODE;
2313 	} else {
2314 		txmode = tc;
2315 		rxmode = SF_DMA_MODE;
2316 	}
2317 
2318 	/* configure all channels */
2319 	for (chan = 0; chan < rx_channels_count; chan++) {
2320 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2321 		u32 buf_size;
2322 
2323 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2324 
2325 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2326 				rxfifosz, qmode);
2327 
2328 		if (rx_q->xsk_pool) {
2329 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2330 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2331 					      buf_size,
2332 					      chan);
2333 		} else {
2334 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2335 					      priv->dma_buf_sz,
2336 					      chan);
2337 		}
2338 	}
2339 
2340 	for (chan = 0; chan < tx_channels_count; chan++) {
2341 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2342 
2343 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2344 				txfifosz, qmode);
2345 	}
2346 }
2347 
2348 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2349 {
2350 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2351 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2352 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2353 	unsigned int entry = tx_q->cur_tx;
2354 	struct dma_desc *tx_desc = NULL;
2355 	struct xdp_desc xdp_desc;
2356 	bool work_done = true;
2357 
2358 	/* Avoids TX time-out as we are sharing with slow path */
2359 	nq->trans_start = jiffies;
2360 
2361 	budget = min(budget, stmmac_tx_avail(priv, queue));
2362 
2363 	while (budget-- > 0) {
2364 		dma_addr_t dma_addr;
2365 		bool set_ic;
2366 
2367 		/* We are sharing with slow path and stop XSK TX desc submission when
2368 		 * available TX ring is less than threshold.
2369 		 */
2370 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2371 		    !netif_carrier_ok(priv->dev)) {
2372 			work_done = false;
2373 			break;
2374 		}
2375 
2376 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2377 			break;
2378 
2379 		if (likely(priv->extend_desc))
2380 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2381 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2382 			tx_desc = &tx_q->dma_entx[entry].basic;
2383 		else
2384 			tx_desc = tx_q->dma_tx + entry;
2385 
2386 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2387 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2388 
2389 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2390 
2391 		/* To return XDP buffer to XSK pool, we simple call
2392 		 * xsk_tx_completed(), so we don't need to fill up
2393 		 * 'buf' and 'xdpf'.
2394 		 */
2395 		tx_q->tx_skbuff_dma[entry].buf = 0;
2396 		tx_q->xdpf[entry] = NULL;
2397 
2398 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2399 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2400 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2401 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2402 
2403 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2404 
2405 		tx_q->tx_count_frames++;
2406 
2407 		if (!priv->tx_coal_frames[queue])
2408 			set_ic = false;
2409 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2410 			set_ic = true;
2411 		else
2412 			set_ic = false;
2413 
2414 		if (set_ic) {
2415 			tx_q->tx_count_frames = 0;
2416 			stmmac_set_tx_ic(priv, tx_desc);
2417 			priv->xstats.tx_set_ic_bit++;
2418 		}
2419 
2420 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2421 				       true, priv->mode, true, true,
2422 				       xdp_desc.len);
2423 
2424 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2425 
2426 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2427 		entry = tx_q->cur_tx;
2428 	}
2429 
2430 	if (tx_desc) {
2431 		stmmac_flush_tx_descriptors(priv, queue);
2432 		xsk_tx_release(pool);
2433 	}
2434 
2435 	/* Return true if all of the 3 conditions are met
2436 	 *  a) TX Budget is still available
2437 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2438 	 *     pending XSK TX for transmission)
2439 	 */
2440 	return !!budget && work_done;
2441 }
2442 
2443 /**
2444  * stmmac_tx_clean - to manage the transmission completion
2445  * @priv: driver private structure
2446  * @budget: napi budget limiting this functions packet handling
2447  * @queue: TX queue index
2448  * Description: it reclaims the transmit resources after transmission completes.
2449  */
2450 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2451 {
2452 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2453 	unsigned int bytes_compl = 0, pkts_compl = 0;
2454 	unsigned int entry, xmits = 0, count = 0;
2455 
2456 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2457 
2458 	priv->xstats.tx_clean++;
2459 
2460 	tx_q->xsk_frames_done = 0;
2461 
2462 	entry = tx_q->dirty_tx;
2463 
2464 	/* Try to clean all TX complete frame in 1 shot */
2465 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2466 		struct xdp_frame *xdpf;
2467 		struct sk_buff *skb;
2468 		struct dma_desc *p;
2469 		int status;
2470 
2471 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2472 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2473 			xdpf = tx_q->xdpf[entry];
2474 			skb = NULL;
2475 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2476 			xdpf = NULL;
2477 			skb = tx_q->tx_skbuff[entry];
2478 		} else {
2479 			xdpf = NULL;
2480 			skb = NULL;
2481 		}
2482 
2483 		if (priv->extend_desc)
2484 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2485 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2486 			p = &tx_q->dma_entx[entry].basic;
2487 		else
2488 			p = tx_q->dma_tx + entry;
2489 
2490 		status = stmmac_tx_status(priv, &priv->dev->stats,
2491 				&priv->xstats, p, priv->ioaddr);
2492 		/* Check if the descriptor is owned by the DMA */
2493 		if (unlikely(status & tx_dma_own))
2494 			break;
2495 
2496 		count++;
2497 
2498 		/* Make sure descriptor fields are read after reading
2499 		 * the own bit.
2500 		 */
2501 		dma_rmb();
2502 
2503 		/* Just consider the last segment and ...*/
2504 		if (likely(!(status & tx_not_ls))) {
2505 			/* ... verify the status error condition */
2506 			if (unlikely(status & tx_err)) {
2507 				priv->dev->stats.tx_errors++;
2508 			} else {
2509 				priv->dev->stats.tx_packets++;
2510 				priv->xstats.tx_pkt_n++;
2511 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2512 			}
2513 			if (skb)
2514 				stmmac_get_tx_hwtstamp(priv, p, skb);
2515 		}
2516 
2517 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2518 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2519 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2520 				dma_unmap_page(priv->device,
2521 					       tx_q->tx_skbuff_dma[entry].buf,
2522 					       tx_q->tx_skbuff_dma[entry].len,
2523 					       DMA_TO_DEVICE);
2524 			else
2525 				dma_unmap_single(priv->device,
2526 						 tx_q->tx_skbuff_dma[entry].buf,
2527 						 tx_q->tx_skbuff_dma[entry].len,
2528 						 DMA_TO_DEVICE);
2529 			tx_q->tx_skbuff_dma[entry].buf = 0;
2530 			tx_q->tx_skbuff_dma[entry].len = 0;
2531 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2532 		}
2533 
2534 		stmmac_clean_desc3(priv, tx_q, p);
2535 
2536 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2537 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2538 
2539 		if (xdpf &&
2540 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2541 			xdp_return_frame_rx_napi(xdpf);
2542 			tx_q->xdpf[entry] = NULL;
2543 		}
2544 
2545 		if (xdpf &&
2546 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2547 			xdp_return_frame(xdpf);
2548 			tx_q->xdpf[entry] = NULL;
2549 		}
2550 
2551 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2552 			tx_q->xsk_frames_done++;
2553 
2554 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2555 			if (likely(skb)) {
2556 				pkts_compl++;
2557 				bytes_compl += skb->len;
2558 				dev_consume_skb_any(skb);
2559 				tx_q->tx_skbuff[entry] = NULL;
2560 			}
2561 		}
2562 
2563 		stmmac_release_tx_desc(priv, p, priv->mode);
2564 
2565 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2566 	}
2567 	tx_q->dirty_tx = entry;
2568 
2569 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2570 				  pkts_compl, bytes_compl);
2571 
2572 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2573 								queue))) &&
2574 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2575 
2576 		netif_dbg(priv, tx_done, priv->dev,
2577 			  "%s: restart transmit\n", __func__);
2578 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2579 	}
2580 
2581 	if (tx_q->xsk_pool) {
2582 		bool work_done;
2583 
2584 		if (tx_q->xsk_frames_done)
2585 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2586 
2587 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2588 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2589 
2590 		/* For XSK TX, we try to send as many as possible.
2591 		 * If XSK work done (XSK TX desc empty and budget still
2592 		 * available), return "budget - 1" to reenable TX IRQ.
2593 		 * Else, return "budget" to make NAPI continue polling.
2594 		 */
2595 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2596 					       STMMAC_XSK_TX_BUDGET_MAX);
2597 		if (work_done)
2598 			xmits = budget - 1;
2599 		else
2600 			xmits = budget;
2601 	}
2602 
2603 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2604 	    priv->eee_sw_timer_en) {
2605 		stmmac_enable_eee_mode(priv);
2606 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2607 	}
2608 
2609 	/* We still have pending packets, let's call for a new scheduling */
2610 	if (tx_q->dirty_tx != tx_q->cur_tx)
2611 		hrtimer_start(&tx_q->txtimer,
2612 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2613 			      HRTIMER_MODE_REL);
2614 
2615 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2616 
2617 	/* Combine decisions from TX clean and XSK TX */
2618 	return max(count, xmits);
2619 }
2620 
2621 /**
2622  * stmmac_tx_err - to manage the tx error
2623  * @priv: driver private structure
2624  * @chan: channel index
2625  * Description: it cleans the descriptors and restarts the transmission
2626  * in case of transmission errors.
2627  */
2628 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2629 {
2630 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2631 
2632 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2633 
2634 	stmmac_stop_tx_dma(priv, chan);
2635 	dma_free_tx_skbufs(priv, chan);
2636 	stmmac_clear_tx_descriptors(priv, chan);
2637 	tx_q->dirty_tx = 0;
2638 	tx_q->cur_tx = 0;
2639 	tx_q->mss = 0;
2640 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2641 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2642 			    tx_q->dma_tx_phy, chan);
2643 	stmmac_start_tx_dma(priv, chan);
2644 
2645 	priv->dev->stats.tx_errors++;
2646 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2647 }
2648 
2649 /**
2650  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2651  *  @priv: driver private structure
2652  *  @txmode: TX operating mode
2653  *  @rxmode: RX operating mode
2654  *  @chan: channel index
2655  *  Description: it is used for configuring of the DMA operation mode in
2656  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2657  *  mode.
2658  */
2659 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2660 					  u32 rxmode, u32 chan)
2661 {
2662 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2663 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2664 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2665 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2666 	int rxfifosz = priv->plat->rx_fifo_size;
2667 	int txfifosz = priv->plat->tx_fifo_size;
2668 
2669 	if (rxfifosz == 0)
2670 		rxfifosz = priv->dma_cap.rx_fifo_size;
2671 	if (txfifosz == 0)
2672 		txfifosz = priv->dma_cap.tx_fifo_size;
2673 
2674 	/* Adjust for real per queue fifo size */
2675 	rxfifosz /= rx_channels_count;
2676 	txfifosz /= tx_channels_count;
2677 
2678 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2679 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2680 }
2681 
2682 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2683 {
2684 	int ret;
2685 
2686 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2687 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2688 	if (ret && (ret != -EINVAL)) {
2689 		stmmac_global_err(priv);
2690 		return true;
2691 	}
2692 
2693 	return false;
2694 }
2695 
2696 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2697 {
2698 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2699 						 &priv->xstats, chan, dir);
2700 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2701 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2702 	struct stmmac_channel *ch = &priv->channel[chan];
2703 	struct napi_struct *rx_napi;
2704 	struct napi_struct *tx_napi;
2705 	unsigned long flags;
2706 
2707 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2708 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2709 
2710 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2711 		if (napi_schedule_prep(rx_napi)) {
2712 			spin_lock_irqsave(&ch->lock, flags);
2713 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2714 			spin_unlock_irqrestore(&ch->lock, flags);
2715 			__napi_schedule(rx_napi);
2716 		}
2717 	}
2718 
2719 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2720 		if (napi_schedule_prep(tx_napi)) {
2721 			spin_lock_irqsave(&ch->lock, flags);
2722 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2723 			spin_unlock_irqrestore(&ch->lock, flags);
2724 			__napi_schedule(tx_napi);
2725 		}
2726 	}
2727 
2728 	return status;
2729 }
2730 
2731 /**
2732  * stmmac_dma_interrupt - DMA ISR
2733  * @priv: driver private structure
2734  * Description: this is the DMA ISR. It is called by the main ISR.
2735  * It calls the dwmac dma routine and schedule poll method in case of some
2736  * work can be done.
2737  */
2738 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2739 {
2740 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2741 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2742 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2743 				tx_channel_count : rx_channel_count;
2744 	u32 chan;
2745 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2746 
2747 	/* Make sure we never check beyond our status buffer. */
2748 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2749 		channels_to_check = ARRAY_SIZE(status);
2750 
2751 	for (chan = 0; chan < channels_to_check; chan++)
2752 		status[chan] = stmmac_napi_check(priv, chan,
2753 						 DMA_DIR_RXTX);
2754 
2755 	for (chan = 0; chan < tx_channel_count; chan++) {
2756 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2757 			/* Try to bump up the dma threshold on this failure */
2758 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2759 			    (tc <= 256)) {
2760 				tc += 64;
2761 				if (priv->plat->force_thresh_dma_mode)
2762 					stmmac_set_dma_operation_mode(priv,
2763 								      tc,
2764 								      tc,
2765 								      chan);
2766 				else
2767 					stmmac_set_dma_operation_mode(priv,
2768 								    tc,
2769 								    SF_DMA_MODE,
2770 								    chan);
2771 				priv->xstats.threshold = tc;
2772 			}
2773 		} else if (unlikely(status[chan] == tx_hard_error)) {
2774 			stmmac_tx_err(priv, chan);
2775 		}
2776 	}
2777 }
2778 
2779 /**
2780  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2781  * @priv: driver private structure
2782  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2783  */
2784 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2785 {
2786 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2787 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2788 
2789 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2790 
2791 	if (priv->dma_cap.rmon) {
2792 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2793 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2794 	} else
2795 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2796 }
2797 
2798 /**
2799  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2800  * @priv: driver private structure
2801  * Description:
2802  *  new GMAC chip generations have a new register to indicate the
2803  *  presence of the optional feature/functions.
2804  *  This can be also used to override the value passed through the
2805  *  platform and necessary for old MAC10/100 and GMAC chips.
2806  */
2807 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2808 {
2809 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2810 }
2811 
2812 /**
2813  * stmmac_check_ether_addr - check if the MAC addr is valid
2814  * @priv: driver private structure
2815  * Description:
2816  * it is to verify if the MAC address is valid, in case of failures it
2817  * generates a random MAC address
2818  */
2819 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2820 {
2821 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2822 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2823 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2824 			eth_hw_addr_random(priv->dev);
2825 		dev_info(priv->device, "device MAC address %pM\n",
2826 			 priv->dev->dev_addr);
2827 	}
2828 }
2829 
2830 /**
2831  * stmmac_init_dma_engine - DMA init.
2832  * @priv: driver private structure
2833  * Description:
2834  * It inits the DMA invoking the specific MAC/GMAC callback.
2835  * Some DMA parameters can be passed from the platform;
2836  * in case of these are not passed a default is kept for the MAC or GMAC.
2837  */
2838 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2839 {
2840 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2841 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843 	struct stmmac_rx_queue *rx_q;
2844 	struct stmmac_tx_queue *tx_q;
2845 	u32 chan = 0;
2846 	int atds = 0;
2847 	int ret = 0;
2848 
2849 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2850 		dev_err(priv->device, "Invalid DMA configuration\n");
2851 		return -EINVAL;
2852 	}
2853 
2854 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2855 		atds = 1;
2856 
2857 	ret = stmmac_reset(priv, priv->ioaddr);
2858 	if (ret) {
2859 		dev_err(priv->device, "Failed to reset the dma\n");
2860 		return ret;
2861 	}
2862 
2863 	/* DMA Configuration */
2864 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2865 
2866 	if (priv->plat->axi)
2867 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2868 
2869 	/* DMA CSR Channel configuration */
2870 	for (chan = 0; chan < dma_csr_ch; chan++)
2871 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2872 
2873 	/* DMA RX Channel Configuration */
2874 	for (chan = 0; chan < rx_channels_count; chan++) {
2875 		rx_q = &priv->rx_queue[chan];
2876 
2877 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2878 				    rx_q->dma_rx_phy, chan);
2879 
2880 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2881 				     (rx_q->buf_alloc_num *
2882 				      sizeof(struct dma_desc));
2883 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2884 				       rx_q->rx_tail_addr, chan);
2885 	}
2886 
2887 	/* DMA TX Channel Configuration */
2888 	for (chan = 0; chan < tx_channels_count; chan++) {
2889 		tx_q = &priv->tx_queue[chan];
2890 
2891 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2892 				    tx_q->dma_tx_phy, chan);
2893 
2894 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2895 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2896 				       tx_q->tx_tail_addr, chan);
2897 	}
2898 
2899 	return ret;
2900 }
2901 
2902 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2903 {
2904 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2905 
2906 	hrtimer_start(&tx_q->txtimer,
2907 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2908 		      HRTIMER_MODE_REL);
2909 }
2910 
2911 /**
2912  * stmmac_tx_timer - mitigation sw timer for tx.
2913  * @t: data pointer
2914  * Description:
2915  * This is the timer handler to directly invoke the stmmac_tx_clean.
2916  */
2917 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2918 {
2919 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2920 	struct stmmac_priv *priv = tx_q->priv_data;
2921 	struct stmmac_channel *ch;
2922 	struct napi_struct *napi;
2923 
2924 	ch = &priv->channel[tx_q->queue_index];
2925 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2926 
2927 	if (likely(napi_schedule_prep(napi))) {
2928 		unsigned long flags;
2929 
2930 		spin_lock_irqsave(&ch->lock, flags);
2931 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2932 		spin_unlock_irqrestore(&ch->lock, flags);
2933 		__napi_schedule(napi);
2934 	}
2935 
2936 	return HRTIMER_NORESTART;
2937 }
2938 
2939 /**
2940  * stmmac_init_coalesce - init mitigation options.
2941  * @priv: driver private structure
2942  * Description:
2943  * This inits the coalesce parameters: i.e. timer rate,
2944  * timer handler and default threshold used for enabling the
2945  * interrupt on completion bit.
2946  */
2947 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2948 {
2949 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2950 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2951 	u32 chan;
2952 
2953 	for (chan = 0; chan < tx_channel_count; chan++) {
2954 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2955 
2956 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2957 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2958 
2959 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2960 		tx_q->txtimer.function = stmmac_tx_timer;
2961 	}
2962 
2963 	for (chan = 0; chan < rx_channel_count; chan++)
2964 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2965 }
2966 
2967 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2968 {
2969 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2970 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2971 	u32 chan;
2972 
2973 	/* set TX ring length */
2974 	for (chan = 0; chan < tx_channels_count; chan++)
2975 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2976 				       (priv->dma_tx_size - 1), chan);
2977 
2978 	/* set RX ring length */
2979 	for (chan = 0; chan < rx_channels_count; chan++)
2980 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2981 				       (priv->dma_rx_size - 1), chan);
2982 }
2983 
2984 /**
2985  *  stmmac_set_tx_queue_weight - Set TX queue weight
2986  *  @priv: driver private structure
2987  *  Description: It is used for setting TX queues weight
2988  */
2989 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2990 {
2991 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2992 	u32 weight;
2993 	u32 queue;
2994 
2995 	for (queue = 0; queue < tx_queues_count; queue++) {
2996 		weight = priv->plat->tx_queues_cfg[queue].weight;
2997 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2998 	}
2999 }
3000 
3001 /**
3002  *  stmmac_configure_cbs - Configure CBS in TX queue
3003  *  @priv: driver private structure
3004  *  Description: It is used for configuring CBS in AVB TX queues
3005  */
3006 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3007 {
3008 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3009 	u32 mode_to_use;
3010 	u32 queue;
3011 
3012 	/* queue 0 is reserved for legacy traffic */
3013 	for (queue = 1; queue < tx_queues_count; queue++) {
3014 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3015 		if (mode_to_use == MTL_QUEUE_DCB)
3016 			continue;
3017 
3018 		stmmac_config_cbs(priv, priv->hw,
3019 				priv->plat->tx_queues_cfg[queue].send_slope,
3020 				priv->plat->tx_queues_cfg[queue].idle_slope,
3021 				priv->plat->tx_queues_cfg[queue].high_credit,
3022 				priv->plat->tx_queues_cfg[queue].low_credit,
3023 				queue);
3024 	}
3025 }
3026 
3027 /**
3028  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3029  *  @priv: driver private structure
3030  *  Description: It is used for mapping RX queues to RX dma channels
3031  */
3032 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3033 {
3034 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3035 	u32 queue;
3036 	u32 chan;
3037 
3038 	for (queue = 0; queue < rx_queues_count; queue++) {
3039 		chan = priv->plat->rx_queues_cfg[queue].chan;
3040 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3041 	}
3042 }
3043 
3044 /**
3045  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3046  *  @priv: driver private structure
3047  *  Description: It is used for configuring the RX Queue Priority
3048  */
3049 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3050 {
3051 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3052 	u32 queue;
3053 	u32 prio;
3054 
3055 	for (queue = 0; queue < rx_queues_count; queue++) {
3056 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3057 			continue;
3058 
3059 		prio = priv->plat->rx_queues_cfg[queue].prio;
3060 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3061 	}
3062 }
3063 
3064 /**
3065  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3066  *  @priv: driver private structure
3067  *  Description: It is used for configuring the TX Queue Priority
3068  */
3069 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3070 {
3071 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3072 	u32 queue;
3073 	u32 prio;
3074 
3075 	for (queue = 0; queue < tx_queues_count; queue++) {
3076 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3077 			continue;
3078 
3079 		prio = priv->plat->tx_queues_cfg[queue].prio;
3080 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3081 	}
3082 }
3083 
3084 /**
3085  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3086  *  @priv: driver private structure
3087  *  Description: It is used for configuring the RX queue routing
3088  */
3089 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3090 {
3091 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3092 	u32 queue;
3093 	u8 packet;
3094 
3095 	for (queue = 0; queue < rx_queues_count; queue++) {
3096 		/* no specific packet type routing specified for the queue */
3097 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3098 			continue;
3099 
3100 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3101 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3102 	}
3103 }
3104 
3105 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3106 {
3107 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3108 		priv->rss.enable = false;
3109 		return;
3110 	}
3111 
3112 	if (priv->dev->features & NETIF_F_RXHASH)
3113 		priv->rss.enable = true;
3114 	else
3115 		priv->rss.enable = false;
3116 
3117 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3118 			     priv->plat->rx_queues_to_use);
3119 }
3120 
3121 /**
3122  *  stmmac_mtl_configuration - Configure MTL
3123  *  @priv: driver private structure
3124  *  Description: It is used for configurring MTL
3125  */
3126 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3127 {
3128 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3129 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3130 
3131 	if (tx_queues_count > 1)
3132 		stmmac_set_tx_queue_weight(priv);
3133 
3134 	/* Configure MTL RX algorithms */
3135 	if (rx_queues_count > 1)
3136 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3137 				priv->plat->rx_sched_algorithm);
3138 
3139 	/* Configure MTL TX algorithms */
3140 	if (tx_queues_count > 1)
3141 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3142 				priv->plat->tx_sched_algorithm);
3143 
3144 	/* Configure CBS in AVB TX queues */
3145 	if (tx_queues_count > 1)
3146 		stmmac_configure_cbs(priv);
3147 
3148 	/* Map RX MTL to DMA channels */
3149 	stmmac_rx_queue_dma_chan_map(priv);
3150 
3151 	/* Enable MAC RX Queues */
3152 	stmmac_mac_enable_rx_queues(priv);
3153 
3154 	/* Set RX priorities */
3155 	if (rx_queues_count > 1)
3156 		stmmac_mac_config_rx_queues_prio(priv);
3157 
3158 	/* Set TX priorities */
3159 	if (tx_queues_count > 1)
3160 		stmmac_mac_config_tx_queues_prio(priv);
3161 
3162 	/* Set RX routing */
3163 	if (rx_queues_count > 1)
3164 		stmmac_mac_config_rx_queues_routing(priv);
3165 
3166 	/* Receive Side Scaling */
3167 	if (rx_queues_count > 1)
3168 		stmmac_mac_config_rss(priv);
3169 }
3170 
3171 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3172 {
3173 	if (priv->dma_cap.asp) {
3174 		netdev_info(priv->dev, "Enabling Safety Features\n");
3175 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3176 					  priv->plat->safety_feat_cfg);
3177 	} else {
3178 		netdev_info(priv->dev, "No Safety Features support found\n");
3179 	}
3180 }
3181 
3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3183 {
3184 	char *name;
3185 
3186 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3187 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3188 
3189 	name = priv->wq_name;
3190 	sprintf(name, "%s-fpe", priv->dev->name);
3191 
3192 	priv->fpe_wq = create_singlethread_workqueue(name);
3193 	if (!priv->fpe_wq) {
3194 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3195 
3196 		return -ENOMEM;
3197 	}
3198 	netdev_info(priv->dev, "FPE workqueue start");
3199 
3200 	return 0;
3201 }
3202 
3203 /**
3204  * stmmac_hw_setup - setup mac in a usable state.
3205  *  @dev : pointer to the device structure.
3206  *  @init_ptp: initialize PTP if set
3207  *  Description:
3208  *  this is the main function to setup the HW in a usable state because the
3209  *  dma engine is reset, the core registers are configured (e.g. AXI,
3210  *  Checksum features, timers). The DMA is ready to start receiving and
3211  *  transmitting.
3212  *  Return value:
3213  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3214  *  file on failure.
3215  */
3216 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3217 {
3218 	struct stmmac_priv *priv = netdev_priv(dev);
3219 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3220 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3221 	bool sph_en;
3222 	u32 chan;
3223 	int ret;
3224 
3225 	/* DMA initialization and SW reset */
3226 	ret = stmmac_init_dma_engine(priv);
3227 	if (ret < 0) {
3228 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3229 			   __func__);
3230 		return ret;
3231 	}
3232 
3233 	/* Copy the MAC addr into the HW  */
3234 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3235 
3236 	/* PS and related bits will be programmed according to the speed */
3237 	if (priv->hw->pcs) {
3238 		int speed = priv->plat->mac_port_sel_speed;
3239 
3240 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3241 		    (speed == SPEED_1000)) {
3242 			priv->hw->ps = speed;
3243 		} else {
3244 			dev_warn(priv->device, "invalid port speed\n");
3245 			priv->hw->ps = 0;
3246 		}
3247 	}
3248 
3249 	/* Initialize the MAC Core */
3250 	stmmac_core_init(priv, priv->hw, dev);
3251 
3252 	/* Initialize MTL*/
3253 	stmmac_mtl_configuration(priv);
3254 
3255 	/* Initialize Safety Features */
3256 	stmmac_safety_feat_configuration(priv);
3257 
3258 	ret = stmmac_rx_ipc(priv, priv->hw);
3259 	if (!ret) {
3260 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3261 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3262 		priv->hw->rx_csum = 0;
3263 	}
3264 
3265 	/* Enable the MAC Rx/Tx */
3266 	stmmac_mac_set(priv, priv->ioaddr, true);
3267 
3268 	/* Set the HW DMA mode and the COE */
3269 	stmmac_dma_operation_mode(priv);
3270 
3271 	stmmac_mmc_setup(priv);
3272 
3273 	if (init_ptp) {
3274 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3275 		if (ret < 0)
3276 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3277 
3278 		ret = stmmac_init_ptp(priv);
3279 		if (ret == -EOPNOTSUPP)
3280 			netdev_warn(priv->dev, "PTP not supported by HW\n");
3281 		else if (ret)
3282 			netdev_warn(priv->dev, "PTP init failed\n");
3283 	}
3284 
3285 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3286 
3287 	/* Convert the timer from msec to usec */
3288 	if (!priv->tx_lpi_timer)
3289 		priv->tx_lpi_timer = eee_timer * 1000;
3290 
3291 	if (priv->use_riwt) {
3292 		u32 queue;
3293 
3294 		for (queue = 0; queue < rx_cnt; queue++) {
3295 			if (!priv->rx_riwt[queue])
3296 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3297 
3298 			stmmac_rx_watchdog(priv, priv->ioaddr,
3299 					   priv->rx_riwt[queue], queue);
3300 		}
3301 	}
3302 
3303 	if (priv->hw->pcs)
3304 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3305 
3306 	/* set TX and RX rings length */
3307 	stmmac_set_rings_length(priv);
3308 
3309 	/* Enable TSO */
3310 	if (priv->tso) {
3311 		for (chan = 0; chan < tx_cnt; chan++) {
3312 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3313 
3314 			/* TSO and TBS cannot co-exist */
3315 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3316 				continue;
3317 
3318 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3319 		}
3320 	}
3321 
3322 	/* Enable Split Header */
3323 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3324 	for (chan = 0; chan < rx_cnt; chan++)
3325 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3326 
3327 
3328 	/* VLAN Tag Insertion */
3329 	if (priv->dma_cap.vlins)
3330 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3331 
3332 	/* TBS */
3333 	for (chan = 0; chan < tx_cnt; chan++) {
3334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3335 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3336 
3337 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3338 	}
3339 
3340 	/* Configure real RX and TX queues */
3341 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3342 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3343 
3344 	/* Start the ball rolling... */
3345 	stmmac_start_all_dma(priv);
3346 
3347 	if (priv->dma_cap.fpesel) {
3348 		stmmac_fpe_start_wq(priv);
3349 
3350 		if (priv->plat->fpe_cfg->enable)
3351 			stmmac_fpe_handshake(priv, true);
3352 	}
3353 
3354 	return 0;
3355 }
3356 
3357 static void stmmac_hw_teardown(struct net_device *dev)
3358 {
3359 	struct stmmac_priv *priv = netdev_priv(dev);
3360 
3361 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3362 }
3363 
3364 static void stmmac_free_irq(struct net_device *dev,
3365 			    enum request_irq_err irq_err, int irq_idx)
3366 {
3367 	struct stmmac_priv *priv = netdev_priv(dev);
3368 	int j;
3369 
3370 	switch (irq_err) {
3371 	case REQ_IRQ_ERR_ALL:
3372 		irq_idx = priv->plat->tx_queues_to_use;
3373 		fallthrough;
3374 	case REQ_IRQ_ERR_TX:
3375 		for (j = irq_idx - 1; j >= 0; j--) {
3376 			if (priv->tx_irq[j] > 0) {
3377 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3378 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3379 			}
3380 		}
3381 		irq_idx = priv->plat->rx_queues_to_use;
3382 		fallthrough;
3383 	case REQ_IRQ_ERR_RX:
3384 		for (j = irq_idx - 1; j >= 0; j--) {
3385 			if (priv->rx_irq[j] > 0) {
3386 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3387 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3388 			}
3389 		}
3390 
3391 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3392 			free_irq(priv->sfty_ue_irq, dev);
3393 		fallthrough;
3394 	case REQ_IRQ_ERR_SFTY_UE:
3395 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3396 			free_irq(priv->sfty_ce_irq, dev);
3397 		fallthrough;
3398 	case REQ_IRQ_ERR_SFTY_CE:
3399 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3400 			free_irq(priv->lpi_irq, dev);
3401 		fallthrough;
3402 	case REQ_IRQ_ERR_LPI:
3403 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3404 			free_irq(priv->wol_irq, dev);
3405 		fallthrough;
3406 	case REQ_IRQ_ERR_WOL:
3407 		free_irq(dev->irq, dev);
3408 		fallthrough;
3409 	case REQ_IRQ_ERR_MAC:
3410 	case REQ_IRQ_ERR_NO:
3411 		/* If MAC IRQ request error, no more IRQ to free */
3412 		break;
3413 	}
3414 }
3415 
3416 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3417 {
3418 	struct stmmac_priv *priv = netdev_priv(dev);
3419 	enum request_irq_err irq_err;
3420 	cpumask_t cpu_mask;
3421 	int irq_idx = 0;
3422 	char *int_name;
3423 	int ret;
3424 	int i;
3425 
3426 	/* For common interrupt */
3427 	int_name = priv->int_name_mac;
3428 	sprintf(int_name, "%s:%s", dev->name, "mac");
3429 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3430 			  0, int_name, dev);
3431 	if (unlikely(ret < 0)) {
3432 		netdev_err(priv->dev,
3433 			   "%s: alloc mac MSI %d (error: %d)\n",
3434 			   __func__, dev->irq, ret);
3435 		irq_err = REQ_IRQ_ERR_MAC;
3436 		goto irq_error;
3437 	}
3438 
3439 	/* Request the Wake IRQ in case of another line
3440 	 * is used for WoL
3441 	 */
3442 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3443 		int_name = priv->int_name_wol;
3444 		sprintf(int_name, "%s:%s", dev->name, "wol");
3445 		ret = request_irq(priv->wol_irq,
3446 				  stmmac_mac_interrupt,
3447 				  0, int_name, dev);
3448 		if (unlikely(ret < 0)) {
3449 			netdev_err(priv->dev,
3450 				   "%s: alloc wol MSI %d (error: %d)\n",
3451 				   __func__, priv->wol_irq, ret);
3452 			irq_err = REQ_IRQ_ERR_WOL;
3453 			goto irq_error;
3454 		}
3455 	}
3456 
3457 	/* Request the LPI IRQ in case of another line
3458 	 * is used for LPI
3459 	 */
3460 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3461 		int_name = priv->int_name_lpi;
3462 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3463 		ret = request_irq(priv->lpi_irq,
3464 				  stmmac_mac_interrupt,
3465 				  0, int_name, dev);
3466 		if (unlikely(ret < 0)) {
3467 			netdev_err(priv->dev,
3468 				   "%s: alloc lpi MSI %d (error: %d)\n",
3469 				   __func__, priv->lpi_irq, ret);
3470 			irq_err = REQ_IRQ_ERR_LPI;
3471 			goto irq_error;
3472 		}
3473 	}
3474 
3475 	/* Request the Safety Feature Correctible Error line in
3476 	 * case of another line is used
3477 	 */
3478 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3479 		int_name = priv->int_name_sfty_ce;
3480 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3481 		ret = request_irq(priv->sfty_ce_irq,
3482 				  stmmac_safety_interrupt,
3483 				  0, int_name, dev);
3484 		if (unlikely(ret < 0)) {
3485 			netdev_err(priv->dev,
3486 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3487 				   __func__, priv->sfty_ce_irq, ret);
3488 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3489 			goto irq_error;
3490 		}
3491 	}
3492 
3493 	/* Request the Safety Feature Uncorrectible Error line in
3494 	 * case of another line is used
3495 	 */
3496 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3497 		int_name = priv->int_name_sfty_ue;
3498 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3499 		ret = request_irq(priv->sfty_ue_irq,
3500 				  stmmac_safety_interrupt,
3501 				  0, int_name, dev);
3502 		if (unlikely(ret < 0)) {
3503 			netdev_err(priv->dev,
3504 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3505 				   __func__, priv->sfty_ue_irq, ret);
3506 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3507 			goto irq_error;
3508 		}
3509 	}
3510 
3511 	/* Request Rx MSI irq */
3512 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3513 		if (priv->rx_irq[i] == 0)
3514 			continue;
3515 
3516 		int_name = priv->int_name_rx_irq[i];
3517 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3518 		ret = request_irq(priv->rx_irq[i],
3519 				  stmmac_msi_intr_rx,
3520 				  0, int_name, &priv->rx_queue[i]);
3521 		if (unlikely(ret < 0)) {
3522 			netdev_err(priv->dev,
3523 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3524 				   __func__, i, priv->rx_irq[i], ret);
3525 			irq_err = REQ_IRQ_ERR_RX;
3526 			irq_idx = i;
3527 			goto irq_error;
3528 		}
3529 		cpumask_clear(&cpu_mask);
3530 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3531 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3532 	}
3533 
3534 	/* Request Tx MSI irq */
3535 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3536 		if (priv->tx_irq[i] == 0)
3537 			continue;
3538 
3539 		int_name = priv->int_name_tx_irq[i];
3540 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3541 		ret = request_irq(priv->tx_irq[i],
3542 				  stmmac_msi_intr_tx,
3543 				  0, int_name, &priv->tx_queue[i]);
3544 		if (unlikely(ret < 0)) {
3545 			netdev_err(priv->dev,
3546 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3547 				   __func__, i, priv->tx_irq[i], ret);
3548 			irq_err = REQ_IRQ_ERR_TX;
3549 			irq_idx = i;
3550 			goto irq_error;
3551 		}
3552 		cpumask_clear(&cpu_mask);
3553 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3554 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555 	}
3556 
3557 	return 0;
3558 
3559 irq_error:
3560 	stmmac_free_irq(dev, irq_err, irq_idx);
3561 	return ret;
3562 }
3563 
3564 static int stmmac_request_irq_single(struct net_device *dev)
3565 {
3566 	struct stmmac_priv *priv = netdev_priv(dev);
3567 	enum request_irq_err irq_err;
3568 	int ret;
3569 
3570 	ret = request_irq(dev->irq, stmmac_interrupt,
3571 			  IRQF_SHARED, dev->name, dev);
3572 	if (unlikely(ret < 0)) {
3573 		netdev_err(priv->dev,
3574 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3575 			   __func__, dev->irq, ret);
3576 		irq_err = REQ_IRQ_ERR_MAC;
3577 		goto irq_error;
3578 	}
3579 
3580 	/* Request the Wake IRQ in case of another line
3581 	 * is used for WoL
3582 	 */
3583 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3584 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3585 				  IRQF_SHARED, dev->name, dev);
3586 		if (unlikely(ret < 0)) {
3587 			netdev_err(priv->dev,
3588 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3589 				   __func__, priv->wol_irq, ret);
3590 			irq_err = REQ_IRQ_ERR_WOL;
3591 			goto irq_error;
3592 		}
3593 	}
3594 
3595 	/* Request the IRQ lines */
3596 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3597 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3598 				  IRQF_SHARED, dev->name, dev);
3599 		if (unlikely(ret < 0)) {
3600 			netdev_err(priv->dev,
3601 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3602 				   __func__, priv->lpi_irq, ret);
3603 			irq_err = REQ_IRQ_ERR_LPI;
3604 			goto irq_error;
3605 		}
3606 	}
3607 
3608 	return 0;
3609 
3610 irq_error:
3611 	stmmac_free_irq(dev, irq_err, 0);
3612 	return ret;
3613 }
3614 
3615 static int stmmac_request_irq(struct net_device *dev)
3616 {
3617 	struct stmmac_priv *priv = netdev_priv(dev);
3618 	int ret;
3619 
3620 	/* Request the IRQ lines */
3621 	if (priv->plat->multi_msi_en)
3622 		ret = stmmac_request_irq_multi_msi(dev);
3623 	else
3624 		ret = stmmac_request_irq_single(dev);
3625 
3626 	return ret;
3627 }
3628 
3629 /**
3630  *  stmmac_open - open entry point of the driver
3631  *  @dev : pointer to the device structure.
3632  *  Description:
3633  *  This function is the open entry point of the driver.
3634  *  Return value:
3635  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3636  *  file on failure.
3637  */
3638 int stmmac_open(struct net_device *dev)
3639 {
3640 	struct stmmac_priv *priv = netdev_priv(dev);
3641 	int mode = priv->plat->phy_interface;
3642 	int bfsize = 0;
3643 	u32 chan;
3644 	int ret;
3645 
3646 	ret = pm_runtime_get_sync(priv->device);
3647 	if (ret < 0) {
3648 		pm_runtime_put_noidle(priv->device);
3649 		return ret;
3650 	}
3651 
3652 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3653 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3654 	    (!priv->hw->xpcs ||
3655 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3656 		ret = stmmac_init_phy(dev);
3657 		if (ret) {
3658 			netdev_err(priv->dev,
3659 				   "%s: Cannot attach to PHY (error: %d)\n",
3660 				   __func__, ret);
3661 			goto init_phy_error;
3662 		}
3663 	}
3664 
3665 	/* Extra statistics */
3666 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3667 	priv->xstats.threshold = tc;
3668 
3669 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3670 	if (bfsize < 0)
3671 		bfsize = 0;
3672 
3673 	if (bfsize < BUF_SIZE_16KiB)
3674 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3675 
3676 	priv->dma_buf_sz = bfsize;
3677 	buf_sz = bfsize;
3678 
3679 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3680 
3681 	if (!priv->dma_tx_size)
3682 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3683 	if (!priv->dma_rx_size)
3684 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3685 
3686 	/* Earlier check for TBS */
3687 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3688 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3689 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3690 
3691 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3692 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3693 	}
3694 
3695 	ret = alloc_dma_desc_resources(priv);
3696 	if (ret < 0) {
3697 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3698 			   __func__);
3699 		goto dma_desc_error;
3700 	}
3701 
3702 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3703 	if (ret < 0) {
3704 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3705 			   __func__);
3706 		goto init_error;
3707 	}
3708 
3709 	ret = stmmac_hw_setup(dev, true);
3710 	if (ret < 0) {
3711 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3712 		goto init_error;
3713 	}
3714 
3715 	stmmac_init_coalesce(priv);
3716 
3717 	phylink_start(priv->phylink);
3718 	/* We may have called phylink_speed_down before */
3719 	phylink_speed_up(priv->phylink);
3720 
3721 	ret = stmmac_request_irq(dev);
3722 	if (ret)
3723 		goto irq_error;
3724 
3725 	stmmac_enable_all_queues(priv);
3726 	netif_tx_start_all_queues(priv->dev);
3727 
3728 	return 0;
3729 
3730 irq_error:
3731 	phylink_stop(priv->phylink);
3732 
3733 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3734 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3735 
3736 	stmmac_hw_teardown(dev);
3737 init_error:
3738 	free_dma_desc_resources(priv);
3739 dma_desc_error:
3740 	phylink_disconnect_phy(priv->phylink);
3741 init_phy_error:
3742 	pm_runtime_put(priv->device);
3743 	return ret;
3744 }
3745 
3746 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3747 {
3748 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3749 
3750 	if (priv->fpe_wq)
3751 		destroy_workqueue(priv->fpe_wq);
3752 
3753 	netdev_info(priv->dev, "FPE workqueue stop");
3754 }
3755 
3756 /**
3757  *  stmmac_release - close entry point of the driver
3758  *  @dev : device pointer.
3759  *  Description:
3760  *  This is the stop entry point of the driver.
3761  */
3762 int stmmac_release(struct net_device *dev)
3763 {
3764 	struct stmmac_priv *priv = netdev_priv(dev);
3765 	u32 chan;
3766 
3767 	if (device_may_wakeup(priv->device))
3768 		phylink_speed_down(priv->phylink, false);
3769 	/* Stop and disconnect the PHY */
3770 	phylink_stop(priv->phylink);
3771 	phylink_disconnect_phy(priv->phylink);
3772 
3773 	stmmac_disable_all_queues(priv);
3774 
3775 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3776 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3777 
3778 	/* Free the IRQ lines */
3779 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3780 
3781 	if (priv->eee_enabled) {
3782 		priv->tx_path_in_lpi_mode = false;
3783 		del_timer_sync(&priv->eee_ctrl_timer);
3784 	}
3785 
3786 	/* Stop TX/RX DMA and clear the descriptors */
3787 	stmmac_stop_all_dma(priv);
3788 
3789 	/* Release and free the Rx/Tx resources */
3790 	free_dma_desc_resources(priv);
3791 
3792 	/* Disable the MAC Rx/Tx */
3793 	stmmac_mac_set(priv, priv->ioaddr, false);
3794 
3795 	netif_carrier_off(dev);
3796 
3797 	stmmac_release_ptp(priv);
3798 
3799 	pm_runtime_put(priv->device);
3800 
3801 	if (priv->dma_cap.fpesel)
3802 		stmmac_fpe_stop_wq(priv);
3803 
3804 	return 0;
3805 }
3806 
3807 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3808 			       struct stmmac_tx_queue *tx_q)
3809 {
3810 	u16 tag = 0x0, inner_tag = 0x0;
3811 	u32 inner_type = 0x0;
3812 	struct dma_desc *p;
3813 
3814 	if (!priv->dma_cap.vlins)
3815 		return false;
3816 	if (!skb_vlan_tag_present(skb))
3817 		return false;
3818 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3819 		inner_tag = skb_vlan_tag_get(skb);
3820 		inner_type = STMMAC_VLAN_INSERT;
3821 	}
3822 
3823 	tag = skb_vlan_tag_get(skb);
3824 
3825 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3826 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3827 	else
3828 		p = &tx_q->dma_tx[tx_q->cur_tx];
3829 
3830 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3831 		return false;
3832 
3833 	stmmac_set_tx_owner(priv, p);
3834 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3835 	return true;
3836 }
3837 
3838 /**
3839  *  stmmac_tso_allocator - close entry point of the driver
3840  *  @priv: driver private structure
3841  *  @des: buffer start address
3842  *  @total_len: total length to fill in descriptors
3843  *  @last_segment: condition for the last descriptor
3844  *  @queue: TX queue index
3845  *  Description:
3846  *  This function fills descriptor and request new descriptors according to
3847  *  buffer length to fill
3848  */
3849 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3850 				 int total_len, bool last_segment, u32 queue)
3851 {
3852 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3853 	struct dma_desc *desc;
3854 	u32 buff_size;
3855 	int tmp_len;
3856 
3857 	tmp_len = total_len;
3858 
3859 	while (tmp_len > 0) {
3860 		dma_addr_t curr_addr;
3861 
3862 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3863 						priv->dma_tx_size);
3864 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3865 
3866 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3867 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3868 		else
3869 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3870 
3871 		curr_addr = des + (total_len - tmp_len);
3872 		if (priv->dma_cap.addr64 <= 32)
3873 			desc->des0 = cpu_to_le32(curr_addr);
3874 		else
3875 			stmmac_set_desc_addr(priv, desc, curr_addr);
3876 
3877 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3878 			    TSO_MAX_BUFF_SIZE : tmp_len;
3879 
3880 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3881 				0, 1,
3882 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3883 				0, 0);
3884 
3885 		tmp_len -= TSO_MAX_BUFF_SIZE;
3886 	}
3887 }
3888 
3889 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3890 {
3891 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3892 	int desc_size;
3893 
3894 	if (likely(priv->extend_desc))
3895 		desc_size = sizeof(struct dma_extended_desc);
3896 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3897 		desc_size = sizeof(struct dma_edesc);
3898 	else
3899 		desc_size = sizeof(struct dma_desc);
3900 
3901 	/* The own bit must be the latest setting done when prepare the
3902 	 * descriptor and then barrier is needed to make sure that
3903 	 * all is coherent before granting the DMA engine.
3904 	 */
3905 	wmb();
3906 
3907 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3908 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3909 }
3910 
3911 /**
3912  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3913  *  @skb : the socket buffer
3914  *  @dev : device pointer
3915  *  Description: this is the transmit function that is called on TSO frames
3916  *  (support available on GMAC4 and newer chips).
3917  *  Diagram below show the ring programming in case of TSO frames:
3918  *
3919  *  First Descriptor
3920  *   --------
3921  *   | DES0 |---> buffer1 = L2/L3/L4 header
3922  *   | DES1 |---> TCP Payload (can continue on next descr...)
3923  *   | DES2 |---> buffer 1 and 2 len
3924  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3925  *   --------
3926  *	|
3927  *     ...
3928  *	|
3929  *   --------
3930  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3931  *   | DES1 | --|
3932  *   | DES2 | --> buffer 1 and 2 len
3933  *   | DES3 |
3934  *   --------
3935  *
3936  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3937  */
3938 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3939 {
3940 	struct dma_desc *desc, *first, *mss_desc = NULL;
3941 	struct stmmac_priv *priv = netdev_priv(dev);
3942 	int nfrags = skb_shinfo(skb)->nr_frags;
3943 	u32 queue = skb_get_queue_mapping(skb);
3944 	unsigned int first_entry, tx_packets;
3945 	int tmp_pay_len = 0, first_tx;
3946 	struct stmmac_tx_queue *tx_q;
3947 	bool has_vlan, set_ic;
3948 	u8 proto_hdr_len, hdr;
3949 	u32 pay_len, mss;
3950 	dma_addr_t des;
3951 	int i;
3952 
3953 	tx_q = &priv->tx_queue[queue];
3954 	first_tx = tx_q->cur_tx;
3955 
3956 	/* Compute header lengths */
3957 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3958 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3959 		hdr = sizeof(struct udphdr);
3960 	} else {
3961 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3962 		hdr = tcp_hdrlen(skb);
3963 	}
3964 
3965 	/* Desc availability based on threshold should be enough safe */
3966 	if (unlikely(stmmac_tx_avail(priv, queue) <
3967 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3968 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3969 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3970 								queue));
3971 			/* This is a hard error, log it. */
3972 			netdev_err(priv->dev,
3973 				   "%s: Tx Ring full when queue awake\n",
3974 				   __func__);
3975 		}
3976 		return NETDEV_TX_BUSY;
3977 	}
3978 
3979 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3980 
3981 	mss = skb_shinfo(skb)->gso_size;
3982 
3983 	/* set new MSS value if needed */
3984 	if (mss != tx_q->mss) {
3985 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3986 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3987 		else
3988 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3989 
3990 		stmmac_set_mss(priv, mss_desc, mss);
3991 		tx_q->mss = mss;
3992 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3993 						priv->dma_tx_size);
3994 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3995 	}
3996 
3997 	if (netif_msg_tx_queued(priv)) {
3998 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3999 			__func__, hdr, proto_hdr_len, pay_len, mss);
4000 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4001 			skb->data_len);
4002 	}
4003 
4004 	/* Check if VLAN can be inserted by HW */
4005 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4006 
4007 	first_entry = tx_q->cur_tx;
4008 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4009 
4010 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4011 		desc = &tx_q->dma_entx[first_entry].basic;
4012 	else
4013 		desc = &tx_q->dma_tx[first_entry];
4014 	first = desc;
4015 
4016 	if (has_vlan)
4017 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4018 
4019 	/* first descriptor: fill Headers on Buf1 */
4020 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4021 			     DMA_TO_DEVICE);
4022 	if (dma_mapping_error(priv->device, des))
4023 		goto dma_map_err;
4024 
4025 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4026 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4027 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4028 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4029 
4030 	if (priv->dma_cap.addr64 <= 32) {
4031 		first->des0 = cpu_to_le32(des);
4032 
4033 		/* Fill start of payload in buff2 of first descriptor */
4034 		if (pay_len)
4035 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4036 
4037 		/* If needed take extra descriptors to fill the remaining payload */
4038 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4039 	} else {
4040 		stmmac_set_desc_addr(priv, first, des);
4041 		tmp_pay_len = pay_len;
4042 		des += proto_hdr_len;
4043 		pay_len = 0;
4044 	}
4045 
4046 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4047 
4048 	/* Prepare fragments */
4049 	for (i = 0; i < nfrags; i++) {
4050 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4051 
4052 		des = skb_frag_dma_map(priv->device, frag, 0,
4053 				       skb_frag_size(frag),
4054 				       DMA_TO_DEVICE);
4055 		if (dma_mapping_error(priv->device, des))
4056 			goto dma_map_err;
4057 
4058 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4059 				     (i == nfrags - 1), queue);
4060 
4061 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4062 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4063 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4064 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4065 	}
4066 
4067 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4068 
4069 	/* Only the last descriptor gets to point to the skb. */
4070 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4071 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4072 
4073 	/* Manage tx mitigation */
4074 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4075 	tx_q->tx_count_frames += tx_packets;
4076 
4077 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4078 		set_ic = true;
4079 	else if (!priv->tx_coal_frames[queue])
4080 		set_ic = false;
4081 	else if (tx_packets > priv->tx_coal_frames[queue])
4082 		set_ic = true;
4083 	else if ((tx_q->tx_count_frames %
4084 		  priv->tx_coal_frames[queue]) < tx_packets)
4085 		set_ic = true;
4086 	else
4087 		set_ic = false;
4088 
4089 	if (set_ic) {
4090 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4091 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4092 		else
4093 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4094 
4095 		tx_q->tx_count_frames = 0;
4096 		stmmac_set_tx_ic(priv, desc);
4097 		priv->xstats.tx_set_ic_bit++;
4098 	}
4099 
4100 	/* We've used all descriptors we need for this skb, however,
4101 	 * advance cur_tx so that it references a fresh descriptor.
4102 	 * ndo_start_xmit will fill this descriptor the next time it's
4103 	 * called and stmmac_tx_clean may clean up to this descriptor.
4104 	 */
4105 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4106 
4107 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4108 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4109 			  __func__);
4110 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4111 	}
4112 
4113 	dev->stats.tx_bytes += skb->len;
4114 	priv->xstats.tx_tso_frames++;
4115 	priv->xstats.tx_tso_nfrags += nfrags;
4116 
4117 	if (priv->sarc_type)
4118 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4119 
4120 	skb_tx_timestamp(skb);
4121 
4122 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4123 		     priv->hwts_tx_en)) {
4124 		/* declare that device is doing timestamping */
4125 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4126 		stmmac_enable_tx_timestamp(priv, first);
4127 	}
4128 
4129 	/* Complete the first descriptor before granting the DMA */
4130 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4131 			proto_hdr_len,
4132 			pay_len,
4133 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4134 			hdr / 4, (skb->len - proto_hdr_len));
4135 
4136 	/* If context desc is used to change MSS */
4137 	if (mss_desc) {
4138 		/* Make sure that first descriptor has been completely
4139 		 * written, including its own bit. This is because MSS is
4140 		 * actually before first descriptor, so we need to make
4141 		 * sure that MSS's own bit is the last thing written.
4142 		 */
4143 		dma_wmb();
4144 		stmmac_set_tx_owner(priv, mss_desc);
4145 	}
4146 
4147 	if (netif_msg_pktdata(priv)) {
4148 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4149 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4150 			tx_q->cur_tx, first, nfrags);
4151 		pr_info(">>> frame to be transmitted: ");
4152 		print_pkt(skb->data, skb_headlen(skb));
4153 	}
4154 
4155 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4156 
4157 	stmmac_flush_tx_descriptors(priv, queue);
4158 	stmmac_tx_timer_arm(priv, queue);
4159 
4160 	return NETDEV_TX_OK;
4161 
4162 dma_map_err:
4163 	dev_err(priv->device, "Tx dma map failed\n");
4164 	dev_kfree_skb(skb);
4165 	priv->dev->stats.tx_dropped++;
4166 	return NETDEV_TX_OK;
4167 }
4168 
4169 /**
4170  *  stmmac_xmit - Tx entry point of the driver
4171  *  @skb : the socket buffer
4172  *  @dev : device pointer
4173  *  Description : this is the tx entry point of the driver.
4174  *  It programs the chain or the ring and supports oversized frames
4175  *  and SG feature.
4176  */
4177 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4178 {
4179 	unsigned int first_entry, tx_packets, enh_desc;
4180 	struct stmmac_priv *priv = netdev_priv(dev);
4181 	unsigned int nopaged_len = skb_headlen(skb);
4182 	int i, csum_insertion = 0, is_jumbo = 0;
4183 	u32 queue = skb_get_queue_mapping(skb);
4184 	int nfrags = skb_shinfo(skb)->nr_frags;
4185 	int gso = skb_shinfo(skb)->gso_type;
4186 	struct dma_edesc *tbs_desc = NULL;
4187 	struct dma_desc *desc, *first;
4188 	struct stmmac_tx_queue *tx_q;
4189 	bool has_vlan, set_ic;
4190 	int entry, first_tx;
4191 	dma_addr_t des;
4192 
4193 	tx_q = &priv->tx_queue[queue];
4194 	first_tx = tx_q->cur_tx;
4195 
4196 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4197 		stmmac_disable_eee_mode(priv);
4198 
4199 	/* Manage oversized TCP frames for GMAC4 device */
4200 	if (skb_is_gso(skb) && priv->tso) {
4201 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4202 			return stmmac_tso_xmit(skb, dev);
4203 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4204 			return stmmac_tso_xmit(skb, dev);
4205 	}
4206 
4207 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4208 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4209 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4210 								queue));
4211 			/* This is a hard error, log it. */
4212 			netdev_err(priv->dev,
4213 				   "%s: Tx Ring full when queue awake\n",
4214 				   __func__);
4215 		}
4216 		return NETDEV_TX_BUSY;
4217 	}
4218 
4219 	/* Check if VLAN can be inserted by HW */
4220 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4221 
4222 	entry = tx_q->cur_tx;
4223 	first_entry = entry;
4224 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4225 
4226 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4227 
4228 	if (likely(priv->extend_desc))
4229 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4230 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4231 		desc = &tx_q->dma_entx[entry].basic;
4232 	else
4233 		desc = tx_q->dma_tx + entry;
4234 
4235 	first = desc;
4236 
4237 	if (has_vlan)
4238 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4239 
4240 	enh_desc = priv->plat->enh_desc;
4241 	/* To program the descriptors according to the size of the frame */
4242 	if (enh_desc)
4243 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4244 
4245 	if (unlikely(is_jumbo)) {
4246 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4247 		if (unlikely(entry < 0) && (entry != -EINVAL))
4248 			goto dma_map_err;
4249 	}
4250 
4251 	for (i = 0; i < nfrags; i++) {
4252 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4253 		int len = skb_frag_size(frag);
4254 		bool last_segment = (i == (nfrags - 1));
4255 
4256 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4257 		WARN_ON(tx_q->tx_skbuff[entry]);
4258 
4259 		if (likely(priv->extend_desc))
4260 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4261 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4262 			desc = &tx_q->dma_entx[entry].basic;
4263 		else
4264 			desc = tx_q->dma_tx + entry;
4265 
4266 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4267 				       DMA_TO_DEVICE);
4268 		if (dma_mapping_error(priv->device, des))
4269 			goto dma_map_err; /* should reuse desc w/o issues */
4270 
4271 		tx_q->tx_skbuff_dma[entry].buf = des;
4272 
4273 		stmmac_set_desc_addr(priv, desc, des);
4274 
4275 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4276 		tx_q->tx_skbuff_dma[entry].len = len;
4277 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4278 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4279 
4280 		/* Prepare the descriptor and set the own bit too */
4281 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4282 				priv->mode, 1, last_segment, skb->len);
4283 	}
4284 
4285 	/* Only the last descriptor gets to point to the skb. */
4286 	tx_q->tx_skbuff[entry] = skb;
4287 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4288 
4289 	/* According to the coalesce parameter the IC bit for the latest
4290 	 * segment is reset and the timer re-started to clean the tx status.
4291 	 * This approach takes care about the fragments: desc is the first
4292 	 * element in case of no SG.
4293 	 */
4294 	tx_packets = (entry + 1) - first_tx;
4295 	tx_q->tx_count_frames += tx_packets;
4296 
4297 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4298 		set_ic = true;
4299 	else if (!priv->tx_coal_frames[queue])
4300 		set_ic = false;
4301 	else if (tx_packets > priv->tx_coal_frames[queue])
4302 		set_ic = true;
4303 	else if ((tx_q->tx_count_frames %
4304 		  priv->tx_coal_frames[queue]) < tx_packets)
4305 		set_ic = true;
4306 	else
4307 		set_ic = false;
4308 
4309 	if (set_ic) {
4310 		if (likely(priv->extend_desc))
4311 			desc = &tx_q->dma_etx[entry].basic;
4312 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4313 			desc = &tx_q->dma_entx[entry].basic;
4314 		else
4315 			desc = &tx_q->dma_tx[entry];
4316 
4317 		tx_q->tx_count_frames = 0;
4318 		stmmac_set_tx_ic(priv, desc);
4319 		priv->xstats.tx_set_ic_bit++;
4320 	}
4321 
4322 	/* We've used all descriptors we need for this skb, however,
4323 	 * advance cur_tx so that it references a fresh descriptor.
4324 	 * ndo_start_xmit will fill this descriptor the next time it's
4325 	 * called and stmmac_tx_clean may clean up to this descriptor.
4326 	 */
4327 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4328 	tx_q->cur_tx = entry;
4329 
4330 	if (netif_msg_pktdata(priv)) {
4331 		netdev_dbg(priv->dev,
4332 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4333 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4334 			   entry, first, nfrags);
4335 
4336 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4337 		print_pkt(skb->data, skb->len);
4338 	}
4339 
4340 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4341 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4342 			  __func__);
4343 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4344 	}
4345 
4346 	dev->stats.tx_bytes += skb->len;
4347 
4348 	if (priv->sarc_type)
4349 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4350 
4351 	skb_tx_timestamp(skb);
4352 
4353 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4354 	 * problems because all the descriptors are actually ready to be
4355 	 * passed to the DMA engine.
4356 	 */
4357 	if (likely(!is_jumbo)) {
4358 		bool last_segment = (nfrags == 0);
4359 
4360 		des = dma_map_single(priv->device, skb->data,
4361 				     nopaged_len, DMA_TO_DEVICE);
4362 		if (dma_mapping_error(priv->device, des))
4363 			goto dma_map_err;
4364 
4365 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4366 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4367 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4368 
4369 		stmmac_set_desc_addr(priv, first, des);
4370 
4371 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4372 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4373 
4374 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4375 			     priv->hwts_tx_en)) {
4376 			/* declare that device is doing timestamping */
4377 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4378 			stmmac_enable_tx_timestamp(priv, first);
4379 		}
4380 
4381 		/* Prepare the first descriptor setting the OWN bit too */
4382 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4383 				csum_insertion, priv->mode, 0, last_segment,
4384 				skb->len);
4385 	}
4386 
4387 	if (tx_q->tbs & STMMAC_TBS_EN) {
4388 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4389 
4390 		tbs_desc = &tx_q->dma_entx[first_entry];
4391 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4392 	}
4393 
4394 	stmmac_set_tx_owner(priv, first);
4395 
4396 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4397 
4398 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4399 
4400 	stmmac_flush_tx_descriptors(priv, queue);
4401 	stmmac_tx_timer_arm(priv, queue);
4402 
4403 	return NETDEV_TX_OK;
4404 
4405 dma_map_err:
4406 	netdev_err(priv->dev, "Tx DMA map failed\n");
4407 	dev_kfree_skb(skb);
4408 	priv->dev->stats.tx_dropped++;
4409 	return NETDEV_TX_OK;
4410 }
4411 
4412 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4413 {
4414 	struct vlan_ethhdr *veth;
4415 	__be16 vlan_proto;
4416 	u16 vlanid;
4417 
4418 	veth = (struct vlan_ethhdr *)skb->data;
4419 	vlan_proto = veth->h_vlan_proto;
4420 
4421 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4422 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4423 	    (vlan_proto == htons(ETH_P_8021AD) &&
4424 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4425 		/* pop the vlan tag */
4426 		vlanid = ntohs(veth->h_vlan_TCI);
4427 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4428 		skb_pull(skb, VLAN_HLEN);
4429 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4430 	}
4431 }
4432 
4433 /**
4434  * stmmac_rx_refill - refill used skb preallocated buffers
4435  * @priv: driver private structure
4436  * @queue: RX queue index
4437  * Description : this is to reallocate the skb for the reception process
4438  * that is based on zero-copy.
4439  */
4440 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4441 {
4442 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4443 	int dirty = stmmac_rx_dirty(priv, queue);
4444 	unsigned int entry = rx_q->dirty_rx;
4445 
4446 	while (dirty-- > 0) {
4447 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4448 		struct dma_desc *p;
4449 		bool use_rx_wd;
4450 
4451 		if (priv->extend_desc)
4452 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4453 		else
4454 			p = rx_q->dma_rx + entry;
4455 
4456 		if (!buf->page) {
4457 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4458 			if (!buf->page)
4459 				break;
4460 		}
4461 
4462 		if (priv->sph && !buf->sec_page) {
4463 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4464 			if (!buf->sec_page)
4465 				break;
4466 
4467 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4468 		}
4469 
4470 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4471 
4472 		stmmac_set_desc_addr(priv, p, buf->addr);
4473 		if (priv->sph)
4474 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4475 		else
4476 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4477 		stmmac_refill_desc3(priv, rx_q, p);
4478 
4479 		rx_q->rx_count_frames++;
4480 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4481 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4482 			rx_q->rx_count_frames = 0;
4483 
4484 		use_rx_wd = !priv->rx_coal_frames[queue];
4485 		use_rx_wd |= rx_q->rx_count_frames > 0;
4486 		if (!priv->use_riwt)
4487 			use_rx_wd = false;
4488 
4489 		dma_wmb();
4490 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4491 
4492 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4493 	}
4494 	rx_q->dirty_rx = entry;
4495 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4496 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4497 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4498 }
4499 
4500 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4501 				       struct dma_desc *p,
4502 				       int status, unsigned int len)
4503 {
4504 	unsigned int plen = 0, hlen = 0;
4505 	int coe = priv->hw->rx_csum;
4506 
4507 	/* Not first descriptor, buffer is always zero */
4508 	if (priv->sph && len)
4509 		return 0;
4510 
4511 	/* First descriptor, get split header length */
4512 	stmmac_get_rx_header_len(priv, p, &hlen);
4513 	if (priv->sph && hlen) {
4514 		priv->xstats.rx_split_hdr_pkt_n++;
4515 		return hlen;
4516 	}
4517 
4518 	/* First descriptor, not last descriptor and not split header */
4519 	if (status & rx_not_ls)
4520 		return priv->dma_buf_sz;
4521 
4522 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4523 
4524 	/* First descriptor and last descriptor and not split header */
4525 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4526 }
4527 
4528 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4529 				       struct dma_desc *p,
4530 				       int status, unsigned int len)
4531 {
4532 	int coe = priv->hw->rx_csum;
4533 	unsigned int plen = 0;
4534 
4535 	/* Not split header, buffer is not available */
4536 	if (!priv->sph)
4537 		return 0;
4538 
4539 	/* Not last descriptor */
4540 	if (status & rx_not_ls)
4541 		return priv->dma_buf_sz;
4542 
4543 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4544 
4545 	/* Last descriptor */
4546 	return plen - len;
4547 }
4548 
4549 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4550 				struct xdp_frame *xdpf, bool dma_map)
4551 {
4552 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4553 	unsigned int entry = tx_q->cur_tx;
4554 	struct dma_desc *tx_desc;
4555 	dma_addr_t dma_addr;
4556 	bool set_ic;
4557 
4558 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4559 		return STMMAC_XDP_CONSUMED;
4560 
4561 	if (likely(priv->extend_desc))
4562 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4563 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4564 		tx_desc = &tx_q->dma_entx[entry].basic;
4565 	else
4566 		tx_desc = tx_q->dma_tx + entry;
4567 
4568 	if (dma_map) {
4569 		dma_addr = dma_map_single(priv->device, xdpf->data,
4570 					  xdpf->len, DMA_TO_DEVICE);
4571 		if (dma_mapping_error(priv->device, dma_addr))
4572 			return STMMAC_XDP_CONSUMED;
4573 
4574 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4575 	} else {
4576 		struct page *page = virt_to_page(xdpf->data);
4577 
4578 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4579 			   xdpf->headroom;
4580 		dma_sync_single_for_device(priv->device, dma_addr,
4581 					   xdpf->len, DMA_BIDIRECTIONAL);
4582 
4583 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4584 	}
4585 
4586 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4587 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4588 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4589 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4590 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4591 
4592 	tx_q->xdpf[entry] = xdpf;
4593 
4594 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4595 
4596 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4597 			       true, priv->mode, true, true,
4598 			       xdpf->len);
4599 
4600 	tx_q->tx_count_frames++;
4601 
4602 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4603 		set_ic = true;
4604 	else
4605 		set_ic = false;
4606 
4607 	if (set_ic) {
4608 		tx_q->tx_count_frames = 0;
4609 		stmmac_set_tx_ic(priv, tx_desc);
4610 		priv->xstats.tx_set_ic_bit++;
4611 	}
4612 
4613 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4614 
4615 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4616 	tx_q->cur_tx = entry;
4617 
4618 	return STMMAC_XDP_TX;
4619 }
4620 
4621 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4622 				   int cpu)
4623 {
4624 	int index = cpu;
4625 
4626 	if (unlikely(index < 0))
4627 		index = 0;
4628 
4629 	while (index >= priv->plat->tx_queues_to_use)
4630 		index -= priv->plat->tx_queues_to_use;
4631 
4632 	return index;
4633 }
4634 
4635 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4636 				struct xdp_buff *xdp)
4637 {
4638 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4639 	int cpu = smp_processor_id();
4640 	struct netdev_queue *nq;
4641 	int queue;
4642 	int res;
4643 
4644 	if (unlikely(!xdpf))
4645 		return STMMAC_XDP_CONSUMED;
4646 
4647 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4648 	nq = netdev_get_tx_queue(priv->dev, queue);
4649 
4650 	__netif_tx_lock(nq, cpu);
4651 	/* Avoids TX time-out as we are sharing with slow path */
4652 	nq->trans_start = jiffies;
4653 
4654 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4655 	if (res == STMMAC_XDP_TX)
4656 		stmmac_flush_tx_descriptors(priv, queue);
4657 
4658 	__netif_tx_unlock(nq);
4659 
4660 	return res;
4661 }
4662 
4663 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4664 				 struct bpf_prog *prog,
4665 				 struct xdp_buff *xdp)
4666 {
4667 	u32 act;
4668 	int res;
4669 
4670 	act = bpf_prog_run_xdp(prog, xdp);
4671 	switch (act) {
4672 	case XDP_PASS:
4673 		res = STMMAC_XDP_PASS;
4674 		break;
4675 	case XDP_TX:
4676 		res = stmmac_xdp_xmit_back(priv, xdp);
4677 		break;
4678 	case XDP_REDIRECT:
4679 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4680 			res = STMMAC_XDP_CONSUMED;
4681 		else
4682 			res = STMMAC_XDP_REDIRECT;
4683 		break;
4684 	default:
4685 		bpf_warn_invalid_xdp_action(act);
4686 		fallthrough;
4687 	case XDP_ABORTED:
4688 		trace_xdp_exception(priv->dev, prog, act);
4689 		fallthrough;
4690 	case XDP_DROP:
4691 		res = STMMAC_XDP_CONSUMED;
4692 		break;
4693 	}
4694 
4695 	return res;
4696 }
4697 
4698 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4699 					   struct xdp_buff *xdp)
4700 {
4701 	struct bpf_prog *prog;
4702 	int res;
4703 
4704 	prog = READ_ONCE(priv->xdp_prog);
4705 	if (!prog) {
4706 		res = STMMAC_XDP_PASS;
4707 		goto out;
4708 	}
4709 
4710 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4711 out:
4712 	return ERR_PTR(-res);
4713 }
4714 
4715 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4716 				   int xdp_status)
4717 {
4718 	int cpu = smp_processor_id();
4719 	int queue;
4720 
4721 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4722 
4723 	if (xdp_status & STMMAC_XDP_TX)
4724 		stmmac_tx_timer_arm(priv, queue);
4725 
4726 	if (xdp_status & STMMAC_XDP_REDIRECT)
4727 		xdp_do_flush();
4728 }
4729 
4730 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4731 					       struct xdp_buff *xdp)
4732 {
4733 	unsigned int metasize = xdp->data - xdp->data_meta;
4734 	unsigned int datasize = xdp->data_end - xdp->data;
4735 	struct sk_buff *skb;
4736 
4737 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4738 			       xdp->data_end - xdp->data_hard_start,
4739 			       GFP_ATOMIC | __GFP_NOWARN);
4740 	if (unlikely(!skb))
4741 		return NULL;
4742 
4743 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4744 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4745 	if (metasize)
4746 		skb_metadata_set(skb, metasize);
4747 
4748 	return skb;
4749 }
4750 
4751 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4752 				   struct dma_desc *p, struct dma_desc *np,
4753 				   struct xdp_buff *xdp)
4754 {
4755 	struct stmmac_channel *ch = &priv->channel[queue];
4756 	unsigned int len = xdp->data_end - xdp->data;
4757 	enum pkt_hash_types hash_type;
4758 	int coe = priv->hw->rx_csum;
4759 	struct sk_buff *skb;
4760 	u32 hash;
4761 
4762 	skb = stmmac_construct_skb_zc(ch, xdp);
4763 	if (!skb) {
4764 		priv->dev->stats.rx_dropped++;
4765 		return;
4766 	}
4767 
4768 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4769 	stmmac_rx_vlan(priv->dev, skb);
4770 	skb->protocol = eth_type_trans(skb, priv->dev);
4771 
4772 	if (unlikely(!coe))
4773 		skb_checksum_none_assert(skb);
4774 	else
4775 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4776 
4777 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4778 		skb_set_hash(skb, hash, hash_type);
4779 
4780 	skb_record_rx_queue(skb, queue);
4781 	napi_gro_receive(&ch->rxtx_napi, skb);
4782 
4783 	priv->dev->stats.rx_packets++;
4784 	priv->dev->stats.rx_bytes += len;
4785 }
4786 
4787 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4788 {
4789 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4790 	unsigned int entry = rx_q->dirty_rx;
4791 	struct dma_desc *rx_desc = NULL;
4792 	bool ret = true;
4793 
4794 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4795 
4796 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4797 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4798 		dma_addr_t dma_addr;
4799 		bool use_rx_wd;
4800 
4801 		if (!buf->xdp) {
4802 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4803 			if (!buf->xdp) {
4804 				ret = false;
4805 				break;
4806 			}
4807 		}
4808 
4809 		if (priv->extend_desc)
4810 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4811 		else
4812 			rx_desc = rx_q->dma_rx + entry;
4813 
4814 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4815 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4816 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4817 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4818 
4819 		rx_q->rx_count_frames++;
4820 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4821 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4822 			rx_q->rx_count_frames = 0;
4823 
4824 		use_rx_wd = !priv->rx_coal_frames[queue];
4825 		use_rx_wd |= rx_q->rx_count_frames > 0;
4826 		if (!priv->use_riwt)
4827 			use_rx_wd = false;
4828 
4829 		dma_wmb();
4830 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4831 
4832 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4833 	}
4834 
4835 	if (rx_desc) {
4836 		rx_q->dirty_rx = entry;
4837 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4838 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4839 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4840 	}
4841 
4842 	return ret;
4843 }
4844 
4845 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4846 {
4847 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4848 	unsigned int count = 0, error = 0, len = 0;
4849 	int dirty = stmmac_rx_dirty(priv, queue);
4850 	unsigned int next_entry = rx_q->cur_rx;
4851 	unsigned int desc_size;
4852 	struct bpf_prog *prog;
4853 	bool failure = false;
4854 	int xdp_status = 0;
4855 	int status = 0;
4856 
4857 	if (netif_msg_rx_status(priv)) {
4858 		void *rx_head;
4859 
4860 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4861 		if (priv->extend_desc) {
4862 			rx_head = (void *)rx_q->dma_erx;
4863 			desc_size = sizeof(struct dma_extended_desc);
4864 		} else {
4865 			rx_head = (void *)rx_q->dma_rx;
4866 			desc_size = sizeof(struct dma_desc);
4867 		}
4868 
4869 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4870 				    rx_q->dma_rx_phy, desc_size);
4871 	}
4872 	while (count < limit) {
4873 		struct stmmac_rx_buffer *buf;
4874 		unsigned int buf1_len = 0;
4875 		struct dma_desc *np, *p;
4876 		int entry;
4877 		int res;
4878 
4879 		if (!count && rx_q->state_saved) {
4880 			error = rx_q->state.error;
4881 			len = rx_q->state.len;
4882 		} else {
4883 			rx_q->state_saved = false;
4884 			error = 0;
4885 			len = 0;
4886 		}
4887 
4888 		if (count >= limit)
4889 			break;
4890 
4891 read_again:
4892 		buf1_len = 0;
4893 		entry = next_entry;
4894 		buf = &rx_q->buf_pool[entry];
4895 
4896 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4897 			failure = failure ||
4898 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4899 			dirty = 0;
4900 		}
4901 
4902 		if (priv->extend_desc)
4903 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4904 		else
4905 			p = rx_q->dma_rx + entry;
4906 
4907 		/* read the status of the incoming frame */
4908 		status = stmmac_rx_status(priv, &priv->dev->stats,
4909 					  &priv->xstats, p);
4910 		/* check if managed by the DMA otherwise go ahead */
4911 		if (unlikely(status & dma_own))
4912 			break;
4913 
4914 		/* Prefetch the next RX descriptor */
4915 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4916 						priv->dma_rx_size);
4917 		next_entry = rx_q->cur_rx;
4918 
4919 		if (priv->extend_desc)
4920 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4921 		else
4922 			np = rx_q->dma_rx + next_entry;
4923 
4924 		prefetch(np);
4925 
4926 		/* Ensure a valid XSK buffer before proceed */
4927 		if (!buf->xdp)
4928 			break;
4929 
4930 		if (priv->extend_desc)
4931 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4932 						  &priv->xstats,
4933 						  rx_q->dma_erx + entry);
4934 		if (unlikely(status == discard_frame)) {
4935 			xsk_buff_free(buf->xdp);
4936 			buf->xdp = NULL;
4937 			dirty++;
4938 			error = 1;
4939 			if (!priv->hwts_rx_en)
4940 				priv->dev->stats.rx_errors++;
4941 		}
4942 
4943 		if (unlikely(error && (status & rx_not_ls)))
4944 			goto read_again;
4945 		if (unlikely(error)) {
4946 			count++;
4947 			continue;
4948 		}
4949 
4950 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4951 		if (likely(status & rx_not_ls)) {
4952 			xsk_buff_free(buf->xdp);
4953 			buf->xdp = NULL;
4954 			dirty++;
4955 			count++;
4956 			goto read_again;
4957 		}
4958 
4959 		/* XDP ZC Frame only support primary buffers for now */
4960 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4961 		len += buf1_len;
4962 
4963 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4964 		 * Type frames (LLC/LLC-SNAP)
4965 		 *
4966 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4967 		 * feature is always disabled and packets need to be
4968 		 * stripped manually.
4969 		 */
4970 		if (likely(!(status & rx_not_ls)) &&
4971 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4972 		     unlikely(status != llc_snap))) {
4973 			buf1_len -= ETH_FCS_LEN;
4974 			len -= ETH_FCS_LEN;
4975 		}
4976 
4977 		/* RX buffer is good and fit into a XSK pool buffer */
4978 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4979 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4980 
4981 		prog = READ_ONCE(priv->xdp_prog);
4982 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4983 
4984 		switch (res) {
4985 		case STMMAC_XDP_PASS:
4986 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4987 			xsk_buff_free(buf->xdp);
4988 			break;
4989 		case STMMAC_XDP_CONSUMED:
4990 			xsk_buff_free(buf->xdp);
4991 			priv->dev->stats.rx_dropped++;
4992 			break;
4993 		case STMMAC_XDP_TX:
4994 		case STMMAC_XDP_REDIRECT:
4995 			xdp_status |= res;
4996 			break;
4997 		}
4998 
4999 		buf->xdp = NULL;
5000 		dirty++;
5001 		count++;
5002 	}
5003 
5004 	if (status & rx_not_ls) {
5005 		rx_q->state_saved = true;
5006 		rx_q->state.error = error;
5007 		rx_q->state.len = len;
5008 	}
5009 
5010 	stmmac_finalize_xdp_rx(priv, xdp_status);
5011 
5012 	priv->xstats.rx_pkt_n += count;
5013 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5014 
5015 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5016 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5017 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5018 		else
5019 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5020 
5021 		return (int)count;
5022 	}
5023 
5024 	return failure ? limit : (int)count;
5025 }
5026 
5027 /**
5028  * stmmac_rx - manage the receive process
5029  * @priv: driver private structure
5030  * @limit: napi bugget
5031  * @queue: RX queue index.
5032  * Description :  this the function called by the napi poll method.
5033  * It gets all the frames inside the ring.
5034  */
5035 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5036 {
5037 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5038 	struct stmmac_channel *ch = &priv->channel[queue];
5039 	unsigned int count = 0, error = 0, len = 0;
5040 	int status = 0, coe = priv->hw->rx_csum;
5041 	unsigned int next_entry = rx_q->cur_rx;
5042 	enum dma_data_direction dma_dir;
5043 	unsigned int desc_size;
5044 	struct sk_buff *skb = NULL;
5045 	struct xdp_buff xdp;
5046 	int xdp_status = 0;
5047 	int buf_sz;
5048 
5049 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5050 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5051 
5052 	if (netif_msg_rx_status(priv)) {
5053 		void *rx_head;
5054 
5055 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5056 		if (priv->extend_desc) {
5057 			rx_head = (void *)rx_q->dma_erx;
5058 			desc_size = sizeof(struct dma_extended_desc);
5059 		} else {
5060 			rx_head = (void *)rx_q->dma_rx;
5061 			desc_size = sizeof(struct dma_desc);
5062 		}
5063 
5064 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5065 				    rx_q->dma_rx_phy, desc_size);
5066 	}
5067 	while (count < limit) {
5068 		unsigned int buf1_len = 0, buf2_len = 0;
5069 		enum pkt_hash_types hash_type;
5070 		struct stmmac_rx_buffer *buf;
5071 		struct dma_desc *np, *p;
5072 		int entry;
5073 		u32 hash;
5074 
5075 		if (!count && rx_q->state_saved) {
5076 			skb = rx_q->state.skb;
5077 			error = rx_q->state.error;
5078 			len = rx_q->state.len;
5079 		} else {
5080 			rx_q->state_saved = false;
5081 			skb = NULL;
5082 			error = 0;
5083 			len = 0;
5084 		}
5085 
5086 		if (count >= limit)
5087 			break;
5088 
5089 read_again:
5090 		buf1_len = 0;
5091 		buf2_len = 0;
5092 		entry = next_entry;
5093 		buf = &rx_q->buf_pool[entry];
5094 
5095 		if (priv->extend_desc)
5096 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5097 		else
5098 			p = rx_q->dma_rx + entry;
5099 
5100 		/* read the status of the incoming frame */
5101 		status = stmmac_rx_status(priv, &priv->dev->stats,
5102 				&priv->xstats, p);
5103 		/* check if managed by the DMA otherwise go ahead */
5104 		if (unlikely(status & dma_own))
5105 			break;
5106 
5107 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5108 						priv->dma_rx_size);
5109 		next_entry = rx_q->cur_rx;
5110 
5111 		if (priv->extend_desc)
5112 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5113 		else
5114 			np = rx_q->dma_rx + next_entry;
5115 
5116 		prefetch(np);
5117 
5118 		if (priv->extend_desc)
5119 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5120 					&priv->xstats, rx_q->dma_erx + entry);
5121 		if (unlikely(status == discard_frame)) {
5122 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5123 			buf->page = NULL;
5124 			error = 1;
5125 			if (!priv->hwts_rx_en)
5126 				priv->dev->stats.rx_errors++;
5127 		}
5128 
5129 		if (unlikely(error && (status & rx_not_ls)))
5130 			goto read_again;
5131 		if (unlikely(error)) {
5132 			dev_kfree_skb(skb);
5133 			skb = NULL;
5134 			count++;
5135 			continue;
5136 		}
5137 
5138 		/* Buffer is good. Go on. */
5139 
5140 		prefetch(page_address(buf->page) + buf->page_offset);
5141 		if (buf->sec_page)
5142 			prefetch(page_address(buf->sec_page));
5143 
5144 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5145 		len += buf1_len;
5146 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5147 		len += buf2_len;
5148 
5149 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5150 		 * Type frames (LLC/LLC-SNAP)
5151 		 *
5152 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5153 		 * feature is always disabled and packets need to be
5154 		 * stripped manually.
5155 		 */
5156 		if (likely(!(status & rx_not_ls)) &&
5157 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5158 		     unlikely(status != llc_snap))) {
5159 			if (buf2_len)
5160 				buf2_len -= ETH_FCS_LEN;
5161 			else
5162 				buf1_len -= ETH_FCS_LEN;
5163 
5164 			len -= ETH_FCS_LEN;
5165 		}
5166 
5167 		if (!skb) {
5168 			unsigned int pre_len, sync_len;
5169 
5170 			dma_sync_single_for_cpu(priv->device, buf->addr,
5171 						buf1_len, dma_dir);
5172 
5173 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5174 			xdp_prepare_buff(&xdp, page_address(buf->page),
5175 					 buf->page_offset, buf1_len, false);
5176 
5177 			pre_len = xdp.data_end - xdp.data_hard_start -
5178 				  buf->page_offset;
5179 			skb = stmmac_xdp_run_prog(priv, &xdp);
5180 			/* Due xdp_adjust_tail: DMA sync for_device
5181 			 * cover max len CPU touch
5182 			 */
5183 			sync_len = xdp.data_end - xdp.data_hard_start -
5184 				   buf->page_offset;
5185 			sync_len = max(sync_len, pre_len);
5186 
5187 			/* For Not XDP_PASS verdict */
5188 			if (IS_ERR(skb)) {
5189 				unsigned int xdp_res = -PTR_ERR(skb);
5190 
5191 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5192 					page_pool_put_page(rx_q->page_pool,
5193 							   virt_to_head_page(xdp.data),
5194 							   sync_len, true);
5195 					buf->page = NULL;
5196 					priv->dev->stats.rx_dropped++;
5197 
5198 					/* Clear skb as it was set as
5199 					 * status by XDP program.
5200 					 */
5201 					skb = NULL;
5202 
5203 					if (unlikely((status & rx_not_ls)))
5204 						goto read_again;
5205 
5206 					count++;
5207 					continue;
5208 				} else if (xdp_res & (STMMAC_XDP_TX |
5209 						      STMMAC_XDP_REDIRECT)) {
5210 					xdp_status |= xdp_res;
5211 					buf->page = NULL;
5212 					skb = NULL;
5213 					count++;
5214 					continue;
5215 				}
5216 			}
5217 		}
5218 
5219 		if (!skb) {
5220 			/* XDP program may expand or reduce tail */
5221 			buf1_len = xdp.data_end - xdp.data;
5222 
5223 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5224 			if (!skb) {
5225 				priv->dev->stats.rx_dropped++;
5226 				count++;
5227 				goto drain_data;
5228 			}
5229 
5230 			/* XDP program may adjust header */
5231 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5232 			skb_put(skb, buf1_len);
5233 
5234 			/* Data payload copied into SKB, page ready for recycle */
5235 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5236 			buf->page = NULL;
5237 		} else if (buf1_len) {
5238 			dma_sync_single_for_cpu(priv->device, buf->addr,
5239 						buf1_len, dma_dir);
5240 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5241 					buf->page, buf->page_offset, buf1_len,
5242 					priv->dma_buf_sz);
5243 
5244 			/* Data payload appended into SKB */
5245 			page_pool_release_page(rx_q->page_pool, buf->page);
5246 			buf->page = NULL;
5247 		}
5248 
5249 		if (buf2_len) {
5250 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5251 						buf2_len, dma_dir);
5252 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5253 					buf->sec_page, 0, buf2_len,
5254 					priv->dma_buf_sz);
5255 
5256 			/* Data payload appended into SKB */
5257 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5258 			buf->sec_page = NULL;
5259 		}
5260 
5261 drain_data:
5262 		if (likely(status & rx_not_ls))
5263 			goto read_again;
5264 		if (!skb)
5265 			continue;
5266 
5267 		/* Got entire packet into SKB. Finish it. */
5268 
5269 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5270 		stmmac_rx_vlan(priv->dev, skb);
5271 		skb->protocol = eth_type_trans(skb, priv->dev);
5272 
5273 		if (unlikely(!coe))
5274 			skb_checksum_none_assert(skb);
5275 		else
5276 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5277 
5278 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5279 			skb_set_hash(skb, hash, hash_type);
5280 
5281 		skb_record_rx_queue(skb, queue);
5282 		napi_gro_receive(&ch->rx_napi, skb);
5283 		skb = NULL;
5284 
5285 		priv->dev->stats.rx_packets++;
5286 		priv->dev->stats.rx_bytes += len;
5287 		count++;
5288 	}
5289 
5290 	if (status & rx_not_ls || skb) {
5291 		rx_q->state_saved = true;
5292 		rx_q->state.skb = skb;
5293 		rx_q->state.error = error;
5294 		rx_q->state.len = len;
5295 	}
5296 
5297 	stmmac_finalize_xdp_rx(priv, xdp_status);
5298 
5299 	stmmac_rx_refill(priv, queue);
5300 
5301 	priv->xstats.rx_pkt_n += count;
5302 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5303 
5304 	return count;
5305 }
5306 
5307 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5308 {
5309 	struct stmmac_channel *ch =
5310 		container_of(napi, struct stmmac_channel, rx_napi);
5311 	struct stmmac_priv *priv = ch->priv_data;
5312 	u32 chan = ch->index;
5313 	int work_done;
5314 
5315 	priv->xstats.napi_poll++;
5316 
5317 	work_done = stmmac_rx(priv, budget, chan);
5318 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5319 		unsigned long flags;
5320 
5321 		spin_lock_irqsave(&ch->lock, flags);
5322 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5323 		spin_unlock_irqrestore(&ch->lock, flags);
5324 	}
5325 
5326 	return work_done;
5327 }
5328 
5329 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5330 {
5331 	struct stmmac_channel *ch =
5332 		container_of(napi, struct stmmac_channel, tx_napi);
5333 	struct stmmac_priv *priv = ch->priv_data;
5334 	u32 chan = ch->index;
5335 	int work_done;
5336 
5337 	priv->xstats.napi_poll++;
5338 
5339 	work_done = stmmac_tx_clean(priv, budget, chan);
5340 	work_done = min(work_done, budget);
5341 
5342 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5343 		unsigned long flags;
5344 
5345 		spin_lock_irqsave(&ch->lock, flags);
5346 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5347 		spin_unlock_irqrestore(&ch->lock, flags);
5348 	}
5349 
5350 	return work_done;
5351 }
5352 
5353 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5354 {
5355 	struct stmmac_channel *ch =
5356 		container_of(napi, struct stmmac_channel, rxtx_napi);
5357 	struct stmmac_priv *priv = ch->priv_data;
5358 	int rx_done, tx_done, rxtx_done;
5359 	u32 chan = ch->index;
5360 
5361 	priv->xstats.napi_poll++;
5362 
5363 	tx_done = stmmac_tx_clean(priv, budget, chan);
5364 	tx_done = min(tx_done, budget);
5365 
5366 	rx_done = stmmac_rx_zc(priv, budget, chan);
5367 
5368 	rxtx_done = max(tx_done, rx_done);
5369 
5370 	/* If either TX or RX work is not complete, return budget
5371 	 * and keep pooling
5372 	 */
5373 	if (rxtx_done >= budget)
5374 		return budget;
5375 
5376 	/* all work done, exit the polling mode */
5377 	if (napi_complete_done(napi, rxtx_done)) {
5378 		unsigned long flags;
5379 
5380 		spin_lock_irqsave(&ch->lock, flags);
5381 		/* Both RX and TX work done are compelte,
5382 		 * so enable both RX & TX IRQs.
5383 		 */
5384 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5385 		spin_unlock_irqrestore(&ch->lock, flags);
5386 	}
5387 
5388 	return min(rxtx_done, budget - 1);
5389 }
5390 
5391 /**
5392  *  stmmac_tx_timeout
5393  *  @dev : Pointer to net device structure
5394  *  @txqueue: the index of the hanging transmit queue
5395  *  Description: this function is called when a packet transmission fails to
5396  *   complete within a reasonable time. The driver will mark the error in the
5397  *   netdev structure and arrange for the device to be reset to a sane state
5398  *   in order to transmit a new packet.
5399  */
5400 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5401 {
5402 	struct stmmac_priv *priv = netdev_priv(dev);
5403 
5404 	stmmac_global_err(priv);
5405 }
5406 
5407 /**
5408  *  stmmac_set_rx_mode - entry point for multicast addressing
5409  *  @dev : pointer to the device structure
5410  *  Description:
5411  *  This function is a driver entry point which gets called by the kernel
5412  *  whenever multicast addresses must be enabled/disabled.
5413  *  Return value:
5414  *  void.
5415  */
5416 static void stmmac_set_rx_mode(struct net_device *dev)
5417 {
5418 	struct stmmac_priv *priv = netdev_priv(dev);
5419 
5420 	stmmac_set_filter(priv, priv->hw, dev);
5421 }
5422 
5423 /**
5424  *  stmmac_change_mtu - entry point to change MTU size for the device.
5425  *  @dev : device pointer.
5426  *  @new_mtu : the new MTU size for the device.
5427  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5428  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5429  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5430  *  Return value:
5431  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5432  *  file on failure.
5433  */
5434 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5435 {
5436 	struct stmmac_priv *priv = netdev_priv(dev);
5437 	int txfifosz = priv->plat->tx_fifo_size;
5438 	const int mtu = new_mtu;
5439 
5440 	if (txfifosz == 0)
5441 		txfifosz = priv->dma_cap.tx_fifo_size;
5442 
5443 	txfifosz /= priv->plat->tx_queues_to_use;
5444 
5445 	if (netif_running(dev)) {
5446 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5447 		return -EBUSY;
5448 	}
5449 
5450 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5451 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5452 		return -EINVAL;
5453 	}
5454 
5455 	new_mtu = STMMAC_ALIGN(new_mtu);
5456 
5457 	/* If condition true, FIFO is too small or MTU too large */
5458 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5459 		return -EINVAL;
5460 
5461 	dev->mtu = mtu;
5462 
5463 	netdev_update_features(dev);
5464 
5465 	return 0;
5466 }
5467 
5468 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5469 					     netdev_features_t features)
5470 {
5471 	struct stmmac_priv *priv = netdev_priv(dev);
5472 
5473 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5474 		features &= ~NETIF_F_RXCSUM;
5475 
5476 	if (!priv->plat->tx_coe)
5477 		features &= ~NETIF_F_CSUM_MASK;
5478 
5479 	/* Some GMAC devices have a bugged Jumbo frame support that
5480 	 * needs to have the Tx COE disabled for oversized frames
5481 	 * (due to limited buffer sizes). In this case we disable
5482 	 * the TX csum insertion in the TDES and not use SF.
5483 	 */
5484 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5485 		features &= ~NETIF_F_CSUM_MASK;
5486 
5487 	/* Disable tso if asked by ethtool */
5488 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5489 		if (features & NETIF_F_TSO)
5490 			priv->tso = true;
5491 		else
5492 			priv->tso = false;
5493 	}
5494 
5495 	return features;
5496 }
5497 
5498 static int stmmac_set_features(struct net_device *netdev,
5499 			       netdev_features_t features)
5500 {
5501 	struct stmmac_priv *priv = netdev_priv(netdev);
5502 	bool sph_en;
5503 	u32 chan;
5504 
5505 	/* Keep the COE Type in case of csum is supporting */
5506 	if (features & NETIF_F_RXCSUM)
5507 		priv->hw->rx_csum = priv->plat->rx_coe;
5508 	else
5509 		priv->hw->rx_csum = 0;
5510 	/* No check needed because rx_coe has been set before and it will be
5511 	 * fixed in case of issue.
5512 	 */
5513 	stmmac_rx_ipc(priv, priv->hw);
5514 
5515 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5516 
5517 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5518 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5519 
5520 	return 0;
5521 }
5522 
5523 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5524 {
5525 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5526 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5527 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5528 	bool *hs_enable = &fpe_cfg->hs_enable;
5529 
5530 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5531 		return;
5532 
5533 	/* If LP has sent verify mPacket, LP is FPE capable */
5534 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5535 		if (*lp_state < FPE_STATE_CAPABLE)
5536 			*lp_state = FPE_STATE_CAPABLE;
5537 
5538 		/* If user has requested FPE enable, quickly response */
5539 		if (*hs_enable)
5540 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5541 						MPACKET_RESPONSE);
5542 	}
5543 
5544 	/* If Local has sent verify mPacket, Local is FPE capable */
5545 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5546 		if (*lo_state < FPE_STATE_CAPABLE)
5547 			*lo_state = FPE_STATE_CAPABLE;
5548 	}
5549 
5550 	/* If LP has sent response mPacket, LP is entering FPE ON */
5551 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5552 		*lp_state = FPE_STATE_ENTERING_ON;
5553 
5554 	/* If Local has sent response mPacket, Local is entering FPE ON */
5555 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5556 		*lo_state = FPE_STATE_ENTERING_ON;
5557 
5558 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5559 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5560 	    priv->fpe_wq) {
5561 		queue_work(priv->fpe_wq, &priv->fpe_task);
5562 	}
5563 }
5564 
5565 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5566 {
5567 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5568 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5569 	u32 queues_count;
5570 	u32 queue;
5571 	bool xmac;
5572 
5573 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5574 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5575 
5576 	if (priv->irq_wake)
5577 		pm_wakeup_event(priv->device, 0);
5578 
5579 	if (priv->dma_cap.estsel)
5580 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5581 				      &priv->xstats, tx_cnt);
5582 
5583 	if (priv->dma_cap.fpesel) {
5584 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5585 						   priv->dev);
5586 
5587 		stmmac_fpe_event_status(priv, status);
5588 	}
5589 
5590 	/* To handle GMAC own interrupts */
5591 	if ((priv->plat->has_gmac) || xmac) {
5592 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5593 
5594 		if (unlikely(status)) {
5595 			/* For LPI we need to save the tx status */
5596 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5597 				priv->tx_path_in_lpi_mode = true;
5598 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5599 				priv->tx_path_in_lpi_mode = false;
5600 		}
5601 
5602 		for (queue = 0; queue < queues_count; queue++) {
5603 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5604 							    queue);
5605 		}
5606 
5607 		/* PCS link status */
5608 		if (priv->hw->pcs) {
5609 			if (priv->xstats.pcs_link)
5610 				netif_carrier_on(priv->dev);
5611 			else
5612 				netif_carrier_off(priv->dev);
5613 		}
5614 
5615 		stmmac_timestamp_interrupt(priv, priv);
5616 	}
5617 }
5618 
5619 /**
5620  *  stmmac_interrupt - main ISR
5621  *  @irq: interrupt number.
5622  *  @dev_id: to pass the net device pointer.
5623  *  Description: this is the main driver interrupt service routine.
5624  *  It can call:
5625  *  o DMA service routine (to manage incoming frame reception and transmission
5626  *    status)
5627  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5628  *    interrupts.
5629  */
5630 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5631 {
5632 	struct net_device *dev = (struct net_device *)dev_id;
5633 	struct stmmac_priv *priv = netdev_priv(dev);
5634 
5635 	/* Check if adapter is up */
5636 	if (test_bit(STMMAC_DOWN, &priv->state))
5637 		return IRQ_HANDLED;
5638 
5639 	/* Check if a fatal error happened */
5640 	if (stmmac_safety_feat_interrupt(priv))
5641 		return IRQ_HANDLED;
5642 
5643 	/* To handle Common interrupts */
5644 	stmmac_common_interrupt(priv);
5645 
5646 	/* To handle DMA interrupts */
5647 	stmmac_dma_interrupt(priv);
5648 
5649 	return IRQ_HANDLED;
5650 }
5651 
5652 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5653 {
5654 	struct net_device *dev = (struct net_device *)dev_id;
5655 	struct stmmac_priv *priv = netdev_priv(dev);
5656 
5657 	if (unlikely(!dev)) {
5658 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5659 		return IRQ_NONE;
5660 	}
5661 
5662 	/* Check if adapter is up */
5663 	if (test_bit(STMMAC_DOWN, &priv->state))
5664 		return IRQ_HANDLED;
5665 
5666 	/* To handle Common interrupts */
5667 	stmmac_common_interrupt(priv);
5668 
5669 	return IRQ_HANDLED;
5670 }
5671 
5672 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5673 {
5674 	struct net_device *dev = (struct net_device *)dev_id;
5675 	struct stmmac_priv *priv = netdev_priv(dev);
5676 
5677 	if (unlikely(!dev)) {
5678 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5679 		return IRQ_NONE;
5680 	}
5681 
5682 	/* Check if adapter is up */
5683 	if (test_bit(STMMAC_DOWN, &priv->state))
5684 		return IRQ_HANDLED;
5685 
5686 	/* Check if a fatal error happened */
5687 	stmmac_safety_feat_interrupt(priv);
5688 
5689 	return IRQ_HANDLED;
5690 }
5691 
5692 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5693 {
5694 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5695 	int chan = tx_q->queue_index;
5696 	struct stmmac_priv *priv;
5697 	int status;
5698 
5699 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5700 
5701 	if (unlikely(!data)) {
5702 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5703 		return IRQ_NONE;
5704 	}
5705 
5706 	/* Check if adapter is up */
5707 	if (test_bit(STMMAC_DOWN, &priv->state))
5708 		return IRQ_HANDLED;
5709 
5710 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5711 
5712 	if (unlikely(status & tx_hard_error_bump_tc)) {
5713 		/* Try to bump up the dma threshold on this failure */
5714 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5715 		    tc <= 256) {
5716 			tc += 64;
5717 			if (priv->plat->force_thresh_dma_mode)
5718 				stmmac_set_dma_operation_mode(priv,
5719 							      tc,
5720 							      tc,
5721 							      chan);
5722 			else
5723 				stmmac_set_dma_operation_mode(priv,
5724 							      tc,
5725 							      SF_DMA_MODE,
5726 							      chan);
5727 			priv->xstats.threshold = tc;
5728 		}
5729 	} else if (unlikely(status == tx_hard_error)) {
5730 		stmmac_tx_err(priv, chan);
5731 	}
5732 
5733 	return IRQ_HANDLED;
5734 }
5735 
5736 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5737 {
5738 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5739 	int chan = rx_q->queue_index;
5740 	struct stmmac_priv *priv;
5741 
5742 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5743 
5744 	if (unlikely(!data)) {
5745 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5746 		return IRQ_NONE;
5747 	}
5748 
5749 	/* Check if adapter is up */
5750 	if (test_bit(STMMAC_DOWN, &priv->state))
5751 		return IRQ_HANDLED;
5752 
5753 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5754 
5755 	return IRQ_HANDLED;
5756 }
5757 
5758 #ifdef CONFIG_NET_POLL_CONTROLLER
5759 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5760  * to allow network I/O with interrupts disabled.
5761  */
5762 static void stmmac_poll_controller(struct net_device *dev)
5763 {
5764 	struct stmmac_priv *priv = netdev_priv(dev);
5765 	int i;
5766 
5767 	/* If adapter is down, do nothing */
5768 	if (test_bit(STMMAC_DOWN, &priv->state))
5769 		return;
5770 
5771 	if (priv->plat->multi_msi_en) {
5772 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5773 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5774 
5775 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5776 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5777 	} else {
5778 		disable_irq(dev->irq);
5779 		stmmac_interrupt(dev->irq, dev);
5780 		enable_irq(dev->irq);
5781 	}
5782 }
5783 #endif
5784 
5785 /**
5786  *  stmmac_ioctl - Entry point for the Ioctl
5787  *  @dev: Device pointer.
5788  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5789  *  a proprietary structure used to pass information to the driver.
5790  *  @cmd: IOCTL command
5791  *  Description:
5792  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5793  */
5794 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5795 {
5796 	struct stmmac_priv *priv = netdev_priv (dev);
5797 	int ret = -EOPNOTSUPP;
5798 
5799 	if (!netif_running(dev))
5800 		return -EINVAL;
5801 
5802 	switch (cmd) {
5803 	case SIOCGMIIPHY:
5804 	case SIOCGMIIREG:
5805 	case SIOCSMIIREG:
5806 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5807 		break;
5808 	case SIOCSHWTSTAMP:
5809 		ret = stmmac_hwtstamp_set(dev, rq);
5810 		break;
5811 	case SIOCGHWTSTAMP:
5812 		ret = stmmac_hwtstamp_get(dev, rq);
5813 		break;
5814 	default:
5815 		break;
5816 	}
5817 
5818 	return ret;
5819 }
5820 
5821 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5822 				    void *cb_priv)
5823 {
5824 	struct stmmac_priv *priv = cb_priv;
5825 	int ret = -EOPNOTSUPP;
5826 
5827 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5828 		return ret;
5829 
5830 	__stmmac_disable_all_queues(priv);
5831 
5832 	switch (type) {
5833 	case TC_SETUP_CLSU32:
5834 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5835 		break;
5836 	case TC_SETUP_CLSFLOWER:
5837 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5838 		break;
5839 	default:
5840 		break;
5841 	}
5842 
5843 	stmmac_enable_all_queues(priv);
5844 	return ret;
5845 }
5846 
5847 static LIST_HEAD(stmmac_block_cb_list);
5848 
5849 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5850 			   void *type_data)
5851 {
5852 	struct stmmac_priv *priv = netdev_priv(ndev);
5853 
5854 	switch (type) {
5855 	case TC_SETUP_BLOCK:
5856 		return flow_block_cb_setup_simple(type_data,
5857 						  &stmmac_block_cb_list,
5858 						  stmmac_setup_tc_block_cb,
5859 						  priv, priv, true);
5860 	case TC_SETUP_QDISC_CBS:
5861 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5862 	case TC_SETUP_QDISC_TAPRIO:
5863 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5864 	case TC_SETUP_QDISC_ETF:
5865 		return stmmac_tc_setup_etf(priv, priv, type_data);
5866 	default:
5867 		return -EOPNOTSUPP;
5868 	}
5869 }
5870 
5871 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5872 			       struct net_device *sb_dev)
5873 {
5874 	int gso = skb_shinfo(skb)->gso_type;
5875 
5876 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5877 		/*
5878 		 * There is no way to determine the number of TSO/USO
5879 		 * capable Queues. Let's use always the Queue 0
5880 		 * because if TSO/USO is supported then at least this
5881 		 * one will be capable.
5882 		 */
5883 		return 0;
5884 	}
5885 
5886 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5887 }
5888 
5889 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5890 {
5891 	struct stmmac_priv *priv = netdev_priv(ndev);
5892 	int ret = 0;
5893 
5894 	ret = pm_runtime_get_sync(priv->device);
5895 	if (ret < 0) {
5896 		pm_runtime_put_noidle(priv->device);
5897 		return ret;
5898 	}
5899 
5900 	ret = eth_mac_addr(ndev, addr);
5901 	if (ret)
5902 		goto set_mac_error;
5903 
5904 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5905 
5906 set_mac_error:
5907 	pm_runtime_put(priv->device);
5908 
5909 	return ret;
5910 }
5911 
5912 #ifdef CONFIG_DEBUG_FS
5913 static struct dentry *stmmac_fs_dir;
5914 
5915 static void sysfs_display_ring(void *head, int size, int extend_desc,
5916 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5917 {
5918 	int i;
5919 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5920 	struct dma_desc *p = (struct dma_desc *)head;
5921 	dma_addr_t dma_addr;
5922 
5923 	for (i = 0; i < size; i++) {
5924 		if (extend_desc) {
5925 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5926 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5927 				   i, &dma_addr,
5928 				   le32_to_cpu(ep->basic.des0),
5929 				   le32_to_cpu(ep->basic.des1),
5930 				   le32_to_cpu(ep->basic.des2),
5931 				   le32_to_cpu(ep->basic.des3));
5932 			ep++;
5933 		} else {
5934 			dma_addr = dma_phy_addr + i * sizeof(*p);
5935 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5936 				   i, &dma_addr,
5937 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5938 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5939 			p++;
5940 		}
5941 		seq_printf(seq, "\n");
5942 	}
5943 }
5944 
5945 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5946 {
5947 	struct net_device *dev = seq->private;
5948 	struct stmmac_priv *priv = netdev_priv(dev);
5949 	u32 rx_count = priv->plat->rx_queues_to_use;
5950 	u32 tx_count = priv->plat->tx_queues_to_use;
5951 	u32 queue;
5952 
5953 	if ((dev->flags & IFF_UP) == 0)
5954 		return 0;
5955 
5956 	for (queue = 0; queue < rx_count; queue++) {
5957 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5958 
5959 		seq_printf(seq, "RX Queue %d:\n", queue);
5960 
5961 		if (priv->extend_desc) {
5962 			seq_printf(seq, "Extended descriptor ring:\n");
5963 			sysfs_display_ring((void *)rx_q->dma_erx,
5964 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5965 		} else {
5966 			seq_printf(seq, "Descriptor ring:\n");
5967 			sysfs_display_ring((void *)rx_q->dma_rx,
5968 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5969 		}
5970 	}
5971 
5972 	for (queue = 0; queue < tx_count; queue++) {
5973 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5974 
5975 		seq_printf(seq, "TX Queue %d:\n", queue);
5976 
5977 		if (priv->extend_desc) {
5978 			seq_printf(seq, "Extended descriptor ring:\n");
5979 			sysfs_display_ring((void *)tx_q->dma_etx,
5980 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5981 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5982 			seq_printf(seq, "Descriptor ring:\n");
5983 			sysfs_display_ring((void *)tx_q->dma_tx,
5984 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5985 		}
5986 	}
5987 
5988 	return 0;
5989 }
5990 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5991 
5992 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5993 {
5994 	struct net_device *dev = seq->private;
5995 	struct stmmac_priv *priv = netdev_priv(dev);
5996 
5997 	if (!priv->hw_cap_support) {
5998 		seq_printf(seq, "DMA HW features not supported\n");
5999 		return 0;
6000 	}
6001 
6002 	seq_printf(seq, "==============================\n");
6003 	seq_printf(seq, "\tDMA HW features\n");
6004 	seq_printf(seq, "==============================\n");
6005 
6006 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6007 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6008 	seq_printf(seq, "\t1000 Mbps: %s\n",
6009 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6010 	seq_printf(seq, "\tHalf duplex: %s\n",
6011 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6012 	seq_printf(seq, "\tHash Filter: %s\n",
6013 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6014 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6015 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6016 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6017 		   (priv->dma_cap.pcs) ? "Y" : "N");
6018 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6019 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6020 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6021 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6022 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6023 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6024 	seq_printf(seq, "\tRMON module: %s\n",
6025 		   (priv->dma_cap.rmon) ? "Y" : "N");
6026 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6027 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6028 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6029 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6030 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6031 		   (priv->dma_cap.eee) ? "Y" : "N");
6032 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6033 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6034 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6035 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6036 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6037 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6038 	} else {
6039 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6040 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6041 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6042 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6043 	}
6044 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6045 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6046 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6047 		   priv->dma_cap.number_rx_channel);
6048 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6049 		   priv->dma_cap.number_tx_channel);
6050 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6051 		   priv->dma_cap.number_rx_queues);
6052 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6053 		   priv->dma_cap.number_tx_queues);
6054 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6055 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6056 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6057 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6058 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6059 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6060 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6061 		   priv->dma_cap.pps_out_num);
6062 	seq_printf(seq, "\tSafety Features: %s\n",
6063 		   priv->dma_cap.asp ? "Y" : "N");
6064 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6065 		   priv->dma_cap.frpsel ? "Y" : "N");
6066 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6067 		   priv->dma_cap.addr64);
6068 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6069 		   priv->dma_cap.rssen ? "Y" : "N");
6070 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6071 		   priv->dma_cap.vlhash ? "Y" : "N");
6072 	seq_printf(seq, "\tSplit Header: %s\n",
6073 		   priv->dma_cap.sphen ? "Y" : "N");
6074 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6075 		   priv->dma_cap.vlins ? "Y" : "N");
6076 	seq_printf(seq, "\tDouble VLAN: %s\n",
6077 		   priv->dma_cap.dvlan ? "Y" : "N");
6078 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6079 		   priv->dma_cap.l3l4fnum);
6080 	seq_printf(seq, "\tARP Offloading: %s\n",
6081 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6082 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6083 		   priv->dma_cap.estsel ? "Y" : "N");
6084 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6085 		   priv->dma_cap.fpesel ? "Y" : "N");
6086 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6087 		   priv->dma_cap.tbssel ? "Y" : "N");
6088 	return 0;
6089 }
6090 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6091 
6092 /* Use network device events to rename debugfs file entries.
6093  */
6094 static int stmmac_device_event(struct notifier_block *unused,
6095 			       unsigned long event, void *ptr)
6096 {
6097 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6098 	struct stmmac_priv *priv = netdev_priv(dev);
6099 
6100 	if (dev->netdev_ops != &stmmac_netdev_ops)
6101 		goto done;
6102 
6103 	switch (event) {
6104 	case NETDEV_CHANGENAME:
6105 		if (priv->dbgfs_dir)
6106 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6107 							 priv->dbgfs_dir,
6108 							 stmmac_fs_dir,
6109 							 dev->name);
6110 		break;
6111 	}
6112 done:
6113 	return NOTIFY_DONE;
6114 }
6115 
6116 static struct notifier_block stmmac_notifier = {
6117 	.notifier_call = stmmac_device_event,
6118 };
6119 
6120 static void stmmac_init_fs(struct net_device *dev)
6121 {
6122 	struct stmmac_priv *priv = netdev_priv(dev);
6123 
6124 	rtnl_lock();
6125 
6126 	/* Create per netdev entries */
6127 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6128 
6129 	/* Entry to report DMA RX/TX rings */
6130 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6131 			    &stmmac_rings_status_fops);
6132 
6133 	/* Entry to report the DMA HW features */
6134 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6135 			    &stmmac_dma_cap_fops);
6136 
6137 	rtnl_unlock();
6138 }
6139 
6140 static void stmmac_exit_fs(struct net_device *dev)
6141 {
6142 	struct stmmac_priv *priv = netdev_priv(dev);
6143 
6144 	debugfs_remove_recursive(priv->dbgfs_dir);
6145 }
6146 #endif /* CONFIG_DEBUG_FS */
6147 
6148 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6149 {
6150 	unsigned char *data = (unsigned char *)&vid_le;
6151 	unsigned char data_byte = 0;
6152 	u32 crc = ~0x0;
6153 	u32 temp = 0;
6154 	int i, bits;
6155 
6156 	bits = get_bitmask_order(VLAN_VID_MASK);
6157 	for (i = 0; i < bits; i++) {
6158 		if ((i % 8) == 0)
6159 			data_byte = data[i / 8];
6160 
6161 		temp = ((crc & 1) ^ data_byte) & 1;
6162 		crc >>= 1;
6163 		data_byte >>= 1;
6164 
6165 		if (temp)
6166 			crc ^= 0xedb88320;
6167 	}
6168 
6169 	return crc;
6170 }
6171 
6172 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6173 {
6174 	u32 crc, hash = 0;
6175 	__le16 pmatch = 0;
6176 	int count = 0;
6177 	u16 vid = 0;
6178 
6179 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6180 		__le16 vid_le = cpu_to_le16(vid);
6181 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6182 		hash |= (1 << crc);
6183 		count++;
6184 	}
6185 
6186 	if (!priv->dma_cap.vlhash) {
6187 		if (count > 2) /* VID = 0 always passes filter */
6188 			return -EOPNOTSUPP;
6189 
6190 		pmatch = cpu_to_le16(vid);
6191 		hash = 0;
6192 	}
6193 
6194 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6195 }
6196 
6197 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6198 {
6199 	struct stmmac_priv *priv = netdev_priv(ndev);
6200 	bool is_double = false;
6201 	int ret;
6202 
6203 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6204 		is_double = true;
6205 
6206 	set_bit(vid, priv->active_vlans);
6207 	ret = stmmac_vlan_update(priv, is_double);
6208 	if (ret) {
6209 		clear_bit(vid, priv->active_vlans);
6210 		return ret;
6211 	}
6212 
6213 	if (priv->hw->num_vlan) {
6214 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6215 		if (ret)
6216 			return ret;
6217 	}
6218 
6219 	return 0;
6220 }
6221 
6222 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6223 {
6224 	struct stmmac_priv *priv = netdev_priv(ndev);
6225 	bool is_double = false;
6226 	int ret;
6227 
6228 	ret = pm_runtime_get_sync(priv->device);
6229 	if (ret < 0) {
6230 		pm_runtime_put_noidle(priv->device);
6231 		return ret;
6232 	}
6233 
6234 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6235 		is_double = true;
6236 
6237 	clear_bit(vid, priv->active_vlans);
6238 
6239 	if (priv->hw->num_vlan) {
6240 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6241 		if (ret)
6242 			goto del_vlan_error;
6243 	}
6244 
6245 	ret = stmmac_vlan_update(priv, is_double);
6246 
6247 del_vlan_error:
6248 	pm_runtime_put(priv->device);
6249 
6250 	return ret;
6251 }
6252 
6253 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6254 {
6255 	struct stmmac_priv *priv = netdev_priv(dev);
6256 
6257 	switch (bpf->command) {
6258 	case XDP_SETUP_PROG:
6259 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6260 	case XDP_SETUP_XSK_POOL:
6261 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6262 					     bpf->xsk.queue_id);
6263 	default:
6264 		return -EOPNOTSUPP;
6265 	}
6266 }
6267 
6268 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6269 			   struct xdp_frame **frames, u32 flags)
6270 {
6271 	struct stmmac_priv *priv = netdev_priv(dev);
6272 	int cpu = smp_processor_id();
6273 	struct netdev_queue *nq;
6274 	int i, nxmit = 0;
6275 	int queue;
6276 
6277 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6278 		return -ENETDOWN;
6279 
6280 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6281 		return -EINVAL;
6282 
6283 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6284 	nq = netdev_get_tx_queue(priv->dev, queue);
6285 
6286 	__netif_tx_lock(nq, cpu);
6287 	/* Avoids TX time-out as we are sharing with slow path */
6288 	nq->trans_start = jiffies;
6289 
6290 	for (i = 0; i < num_frames; i++) {
6291 		int res;
6292 
6293 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6294 		if (res == STMMAC_XDP_CONSUMED)
6295 			break;
6296 
6297 		nxmit++;
6298 	}
6299 
6300 	if (flags & XDP_XMIT_FLUSH) {
6301 		stmmac_flush_tx_descriptors(priv, queue);
6302 		stmmac_tx_timer_arm(priv, queue);
6303 	}
6304 
6305 	__netif_tx_unlock(nq);
6306 
6307 	return nxmit;
6308 }
6309 
6310 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6311 {
6312 	struct stmmac_channel *ch = &priv->channel[queue];
6313 	unsigned long flags;
6314 
6315 	spin_lock_irqsave(&ch->lock, flags);
6316 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6317 	spin_unlock_irqrestore(&ch->lock, flags);
6318 
6319 	stmmac_stop_rx_dma(priv, queue);
6320 	__free_dma_rx_desc_resources(priv, queue);
6321 }
6322 
6323 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6324 {
6325 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6326 	struct stmmac_channel *ch = &priv->channel[queue];
6327 	unsigned long flags;
6328 	u32 buf_size;
6329 	int ret;
6330 
6331 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6332 	if (ret) {
6333 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6334 		return;
6335 	}
6336 
6337 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6338 	if (ret) {
6339 		__free_dma_rx_desc_resources(priv, queue);
6340 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6341 		return;
6342 	}
6343 
6344 	stmmac_clear_rx_descriptors(priv, queue);
6345 
6346 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6347 			    rx_q->dma_rx_phy, rx_q->queue_index);
6348 
6349 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6350 			     sizeof(struct dma_desc));
6351 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6352 			       rx_q->rx_tail_addr, rx_q->queue_index);
6353 
6354 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6355 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6356 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6357 				      buf_size,
6358 				      rx_q->queue_index);
6359 	} else {
6360 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6361 				      priv->dma_buf_sz,
6362 				      rx_q->queue_index);
6363 	}
6364 
6365 	stmmac_start_rx_dma(priv, queue);
6366 
6367 	spin_lock_irqsave(&ch->lock, flags);
6368 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6369 	spin_unlock_irqrestore(&ch->lock, flags);
6370 }
6371 
6372 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6373 {
6374 	struct stmmac_channel *ch = &priv->channel[queue];
6375 	unsigned long flags;
6376 
6377 	spin_lock_irqsave(&ch->lock, flags);
6378 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6379 	spin_unlock_irqrestore(&ch->lock, flags);
6380 
6381 	stmmac_stop_tx_dma(priv, queue);
6382 	__free_dma_tx_desc_resources(priv, queue);
6383 }
6384 
6385 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6386 {
6387 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6388 	struct stmmac_channel *ch = &priv->channel[queue];
6389 	unsigned long flags;
6390 	int ret;
6391 
6392 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6393 	if (ret) {
6394 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6395 		return;
6396 	}
6397 
6398 	ret = __init_dma_tx_desc_rings(priv, queue);
6399 	if (ret) {
6400 		__free_dma_tx_desc_resources(priv, queue);
6401 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6402 		return;
6403 	}
6404 
6405 	stmmac_clear_tx_descriptors(priv, queue);
6406 
6407 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6408 			    tx_q->dma_tx_phy, tx_q->queue_index);
6409 
6410 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6411 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6412 
6413 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6414 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6415 			       tx_q->tx_tail_addr, tx_q->queue_index);
6416 
6417 	stmmac_start_tx_dma(priv, queue);
6418 
6419 	spin_lock_irqsave(&ch->lock, flags);
6420 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6421 	spin_unlock_irqrestore(&ch->lock, flags);
6422 }
6423 
6424 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6425 {
6426 	struct stmmac_priv *priv = netdev_priv(dev);
6427 	struct stmmac_rx_queue *rx_q;
6428 	struct stmmac_tx_queue *tx_q;
6429 	struct stmmac_channel *ch;
6430 
6431 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6432 	    !netif_carrier_ok(priv->dev))
6433 		return -ENETDOWN;
6434 
6435 	if (!stmmac_xdp_is_enabled(priv))
6436 		return -ENXIO;
6437 
6438 	if (queue >= priv->plat->rx_queues_to_use ||
6439 	    queue >= priv->plat->tx_queues_to_use)
6440 		return -EINVAL;
6441 
6442 	rx_q = &priv->rx_queue[queue];
6443 	tx_q = &priv->tx_queue[queue];
6444 	ch = &priv->channel[queue];
6445 
6446 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6447 		return -ENXIO;
6448 
6449 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6450 		/* EQoS does not have per-DMA channel SW interrupt,
6451 		 * so we schedule RX Napi straight-away.
6452 		 */
6453 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6454 			__napi_schedule(&ch->rxtx_napi);
6455 	}
6456 
6457 	return 0;
6458 }
6459 
6460 static const struct net_device_ops stmmac_netdev_ops = {
6461 	.ndo_open = stmmac_open,
6462 	.ndo_start_xmit = stmmac_xmit,
6463 	.ndo_stop = stmmac_release,
6464 	.ndo_change_mtu = stmmac_change_mtu,
6465 	.ndo_fix_features = stmmac_fix_features,
6466 	.ndo_set_features = stmmac_set_features,
6467 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6468 	.ndo_tx_timeout = stmmac_tx_timeout,
6469 	.ndo_eth_ioctl = stmmac_ioctl,
6470 	.ndo_setup_tc = stmmac_setup_tc,
6471 	.ndo_select_queue = stmmac_select_queue,
6472 #ifdef CONFIG_NET_POLL_CONTROLLER
6473 	.ndo_poll_controller = stmmac_poll_controller,
6474 #endif
6475 	.ndo_set_mac_address = stmmac_set_mac_address,
6476 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6477 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6478 	.ndo_bpf = stmmac_bpf,
6479 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6480 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6481 };
6482 
6483 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6484 {
6485 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6486 		return;
6487 	if (test_bit(STMMAC_DOWN, &priv->state))
6488 		return;
6489 
6490 	netdev_err(priv->dev, "Reset adapter.\n");
6491 
6492 	rtnl_lock();
6493 	netif_trans_update(priv->dev);
6494 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6495 		usleep_range(1000, 2000);
6496 
6497 	set_bit(STMMAC_DOWN, &priv->state);
6498 	dev_close(priv->dev);
6499 	dev_open(priv->dev, NULL);
6500 	clear_bit(STMMAC_DOWN, &priv->state);
6501 	clear_bit(STMMAC_RESETING, &priv->state);
6502 	rtnl_unlock();
6503 }
6504 
6505 static void stmmac_service_task(struct work_struct *work)
6506 {
6507 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6508 			service_task);
6509 
6510 	stmmac_reset_subtask(priv);
6511 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6512 }
6513 
6514 /**
6515  *  stmmac_hw_init - Init the MAC device
6516  *  @priv: driver private structure
6517  *  Description: this function is to configure the MAC device according to
6518  *  some platform parameters or the HW capability register. It prepares the
6519  *  driver to use either ring or chain modes and to setup either enhanced or
6520  *  normal descriptors.
6521  */
6522 static int stmmac_hw_init(struct stmmac_priv *priv)
6523 {
6524 	int ret;
6525 
6526 	/* dwmac-sun8i only work in chain mode */
6527 	if (priv->plat->has_sun8i)
6528 		chain_mode = 1;
6529 	priv->chain_mode = chain_mode;
6530 
6531 	/* Initialize HW Interface */
6532 	ret = stmmac_hwif_init(priv);
6533 	if (ret)
6534 		return ret;
6535 
6536 	/* Get the HW capability (new GMAC newer than 3.50a) */
6537 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6538 	if (priv->hw_cap_support) {
6539 		dev_info(priv->device, "DMA HW capability register supported\n");
6540 
6541 		/* We can override some gmac/dma configuration fields: e.g.
6542 		 * enh_desc, tx_coe (e.g. that are passed through the
6543 		 * platform) with the values from the HW capability
6544 		 * register (if supported).
6545 		 */
6546 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6547 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6548 				!priv->plat->use_phy_wol;
6549 		priv->hw->pmt = priv->plat->pmt;
6550 		if (priv->dma_cap.hash_tb_sz) {
6551 			priv->hw->multicast_filter_bins =
6552 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6553 			priv->hw->mcast_bits_log2 =
6554 					ilog2(priv->hw->multicast_filter_bins);
6555 		}
6556 
6557 		/* TXCOE doesn't work in thresh DMA mode */
6558 		if (priv->plat->force_thresh_dma_mode)
6559 			priv->plat->tx_coe = 0;
6560 		else
6561 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6562 
6563 		/* In case of GMAC4 rx_coe is from HW cap register. */
6564 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6565 
6566 		if (priv->dma_cap.rx_coe_type2)
6567 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6568 		else if (priv->dma_cap.rx_coe_type1)
6569 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6570 
6571 	} else {
6572 		dev_info(priv->device, "No HW DMA feature register supported\n");
6573 	}
6574 
6575 	if (priv->plat->rx_coe) {
6576 		priv->hw->rx_csum = priv->plat->rx_coe;
6577 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6578 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6579 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6580 	}
6581 	if (priv->plat->tx_coe)
6582 		dev_info(priv->device, "TX Checksum insertion supported\n");
6583 
6584 	if (priv->plat->pmt) {
6585 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6586 		device_set_wakeup_capable(priv->device, 1);
6587 	}
6588 
6589 	if (priv->dma_cap.tsoen)
6590 		dev_info(priv->device, "TSO supported\n");
6591 
6592 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6593 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6594 
6595 	/* Run HW quirks, if any */
6596 	if (priv->hwif_quirks) {
6597 		ret = priv->hwif_quirks(priv);
6598 		if (ret)
6599 			return ret;
6600 	}
6601 
6602 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6603 	 * In some case, for example on bugged HW this feature
6604 	 * has to be disable and this can be done by passing the
6605 	 * riwt_off field from the platform.
6606 	 */
6607 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6608 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6609 		priv->use_riwt = 1;
6610 		dev_info(priv->device,
6611 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6612 	}
6613 
6614 	return 0;
6615 }
6616 
6617 static void stmmac_napi_add(struct net_device *dev)
6618 {
6619 	struct stmmac_priv *priv = netdev_priv(dev);
6620 	u32 queue, maxq;
6621 
6622 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6623 
6624 	for (queue = 0; queue < maxq; queue++) {
6625 		struct stmmac_channel *ch = &priv->channel[queue];
6626 
6627 		ch->priv_data = priv;
6628 		ch->index = queue;
6629 		spin_lock_init(&ch->lock);
6630 
6631 		if (queue < priv->plat->rx_queues_to_use) {
6632 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6633 				       NAPI_POLL_WEIGHT);
6634 		}
6635 		if (queue < priv->plat->tx_queues_to_use) {
6636 			netif_tx_napi_add(dev, &ch->tx_napi,
6637 					  stmmac_napi_poll_tx,
6638 					  NAPI_POLL_WEIGHT);
6639 		}
6640 		if (queue < priv->plat->rx_queues_to_use &&
6641 		    queue < priv->plat->tx_queues_to_use) {
6642 			netif_napi_add(dev, &ch->rxtx_napi,
6643 				       stmmac_napi_poll_rxtx,
6644 				       NAPI_POLL_WEIGHT);
6645 		}
6646 	}
6647 }
6648 
6649 static void stmmac_napi_del(struct net_device *dev)
6650 {
6651 	struct stmmac_priv *priv = netdev_priv(dev);
6652 	u32 queue, maxq;
6653 
6654 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6655 
6656 	for (queue = 0; queue < maxq; queue++) {
6657 		struct stmmac_channel *ch = &priv->channel[queue];
6658 
6659 		if (queue < priv->plat->rx_queues_to_use)
6660 			netif_napi_del(&ch->rx_napi);
6661 		if (queue < priv->plat->tx_queues_to_use)
6662 			netif_napi_del(&ch->tx_napi);
6663 		if (queue < priv->plat->rx_queues_to_use &&
6664 		    queue < priv->plat->tx_queues_to_use) {
6665 			netif_napi_del(&ch->rxtx_napi);
6666 		}
6667 	}
6668 }
6669 
6670 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6671 {
6672 	struct stmmac_priv *priv = netdev_priv(dev);
6673 	int ret = 0;
6674 
6675 	if (netif_running(dev))
6676 		stmmac_release(dev);
6677 
6678 	stmmac_napi_del(dev);
6679 
6680 	priv->plat->rx_queues_to_use = rx_cnt;
6681 	priv->plat->tx_queues_to_use = tx_cnt;
6682 
6683 	stmmac_napi_add(dev);
6684 
6685 	if (netif_running(dev))
6686 		ret = stmmac_open(dev);
6687 
6688 	return ret;
6689 }
6690 
6691 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6692 {
6693 	struct stmmac_priv *priv = netdev_priv(dev);
6694 	int ret = 0;
6695 
6696 	if (netif_running(dev))
6697 		stmmac_release(dev);
6698 
6699 	priv->dma_rx_size = rx_size;
6700 	priv->dma_tx_size = tx_size;
6701 
6702 	if (netif_running(dev))
6703 		ret = stmmac_open(dev);
6704 
6705 	return ret;
6706 }
6707 
6708 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6709 static void stmmac_fpe_lp_task(struct work_struct *work)
6710 {
6711 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6712 						fpe_task);
6713 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6714 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6715 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6716 	bool *hs_enable = &fpe_cfg->hs_enable;
6717 	bool *enable = &fpe_cfg->enable;
6718 	int retries = 20;
6719 
6720 	while (retries-- > 0) {
6721 		/* Bail out immediately if FPE handshake is OFF */
6722 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6723 			break;
6724 
6725 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6726 		    *lp_state == FPE_STATE_ENTERING_ON) {
6727 			stmmac_fpe_configure(priv, priv->ioaddr,
6728 					     priv->plat->tx_queues_to_use,
6729 					     priv->plat->rx_queues_to_use,
6730 					     *enable);
6731 
6732 			netdev_info(priv->dev, "configured FPE\n");
6733 
6734 			*lo_state = FPE_STATE_ON;
6735 			*lp_state = FPE_STATE_ON;
6736 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6737 			break;
6738 		}
6739 
6740 		if ((*lo_state == FPE_STATE_CAPABLE ||
6741 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6742 		     *lp_state != FPE_STATE_ON) {
6743 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6744 				    *lo_state, *lp_state);
6745 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6746 						MPACKET_VERIFY);
6747 		}
6748 		/* Sleep then retry */
6749 		msleep(500);
6750 	}
6751 
6752 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6753 }
6754 
6755 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6756 {
6757 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6758 		if (enable) {
6759 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6760 						MPACKET_VERIFY);
6761 		} else {
6762 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6763 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6764 		}
6765 
6766 		priv->plat->fpe_cfg->hs_enable = enable;
6767 	}
6768 }
6769 
6770 /**
6771  * stmmac_dvr_probe
6772  * @device: device pointer
6773  * @plat_dat: platform data pointer
6774  * @res: stmmac resource pointer
6775  * Description: this is the main probe function used to
6776  * call the alloc_etherdev, allocate the priv structure.
6777  * Return:
6778  * returns 0 on success, otherwise errno.
6779  */
6780 int stmmac_dvr_probe(struct device *device,
6781 		     struct plat_stmmacenet_data *plat_dat,
6782 		     struct stmmac_resources *res)
6783 {
6784 	struct net_device *ndev = NULL;
6785 	struct stmmac_priv *priv;
6786 	u32 rxq;
6787 	int i, ret = 0;
6788 
6789 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6790 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6791 	if (!ndev)
6792 		return -ENOMEM;
6793 
6794 	SET_NETDEV_DEV(ndev, device);
6795 
6796 	priv = netdev_priv(ndev);
6797 	priv->device = device;
6798 	priv->dev = ndev;
6799 
6800 	stmmac_set_ethtool_ops(ndev);
6801 	priv->pause = pause;
6802 	priv->plat = plat_dat;
6803 	priv->ioaddr = res->addr;
6804 	priv->dev->base_addr = (unsigned long)res->addr;
6805 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6806 
6807 	priv->dev->irq = res->irq;
6808 	priv->wol_irq = res->wol_irq;
6809 	priv->lpi_irq = res->lpi_irq;
6810 	priv->sfty_ce_irq = res->sfty_ce_irq;
6811 	priv->sfty_ue_irq = res->sfty_ue_irq;
6812 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6813 		priv->rx_irq[i] = res->rx_irq[i];
6814 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6815 		priv->tx_irq[i] = res->tx_irq[i];
6816 
6817 	if (!is_zero_ether_addr(res->mac))
6818 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6819 
6820 	dev_set_drvdata(device, priv->dev);
6821 
6822 	/* Verify driver arguments */
6823 	stmmac_verify_args();
6824 
6825 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6826 	if (!priv->af_xdp_zc_qps)
6827 		return -ENOMEM;
6828 
6829 	/* Allocate workqueue */
6830 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6831 	if (!priv->wq) {
6832 		dev_err(priv->device, "failed to create workqueue\n");
6833 		return -ENOMEM;
6834 	}
6835 
6836 	INIT_WORK(&priv->service_task, stmmac_service_task);
6837 
6838 	/* Initialize Link Partner FPE workqueue */
6839 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6840 
6841 	/* Override with kernel parameters if supplied XXX CRS XXX
6842 	 * this needs to have multiple instances
6843 	 */
6844 	if ((phyaddr >= 0) && (phyaddr <= 31))
6845 		priv->plat->phy_addr = phyaddr;
6846 
6847 	if (priv->plat->stmmac_rst) {
6848 		ret = reset_control_assert(priv->plat->stmmac_rst);
6849 		reset_control_deassert(priv->plat->stmmac_rst);
6850 		/* Some reset controllers have only reset callback instead of
6851 		 * assert + deassert callbacks pair.
6852 		 */
6853 		if (ret == -ENOTSUPP)
6854 			reset_control_reset(priv->plat->stmmac_rst);
6855 	}
6856 
6857 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6858 	if (ret == -ENOTSUPP)
6859 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6860 			ERR_PTR(ret));
6861 
6862 	/* Init MAC and get the capabilities */
6863 	ret = stmmac_hw_init(priv);
6864 	if (ret)
6865 		goto error_hw_init;
6866 
6867 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6868 	 */
6869 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6870 		priv->plat->dma_cfg->dche = false;
6871 
6872 	stmmac_check_ether_addr(priv);
6873 
6874 	ndev->netdev_ops = &stmmac_netdev_ops;
6875 
6876 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6877 			    NETIF_F_RXCSUM;
6878 
6879 	ret = stmmac_tc_init(priv, priv);
6880 	if (!ret) {
6881 		ndev->hw_features |= NETIF_F_HW_TC;
6882 	}
6883 
6884 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6885 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6886 		if (priv->plat->has_gmac4)
6887 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6888 		priv->tso = true;
6889 		dev_info(priv->device, "TSO feature enabled\n");
6890 	}
6891 
6892 	if (priv->dma_cap.sphen) {
6893 		ndev->hw_features |= NETIF_F_GRO;
6894 		priv->sph_cap = true;
6895 		priv->sph = priv->sph_cap;
6896 		dev_info(priv->device, "SPH feature enabled\n");
6897 	}
6898 
6899 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
6900 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
6901 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6902 	 * So overwrite dma_cap.addr64 according to HW real design.
6903 	 */
6904 	if (priv->plat->addr64)
6905 		priv->dma_cap.addr64 = priv->plat->addr64;
6906 
6907 	if (priv->dma_cap.addr64) {
6908 		ret = dma_set_mask_and_coherent(device,
6909 				DMA_BIT_MASK(priv->dma_cap.addr64));
6910 		if (!ret) {
6911 			dev_info(priv->device, "Using %d bits DMA width\n",
6912 				 priv->dma_cap.addr64);
6913 
6914 			/*
6915 			 * If more than 32 bits can be addressed, make sure to
6916 			 * enable enhanced addressing mode.
6917 			 */
6918 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6919 				priv->plat->dma_cfg->eame = true;
6920 		} else {
6921 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6922 			if (ret) {
6923 				dev_err(priv->device, "Failed to set DMA Mask\n");
6924 				goto error_hw_init;
6925 			}
6926 
6927 			priv->dma_cap.addr64 = 32;
6928 		}
6929 	}
6930 
6931 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6932 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6933 #ifdef STMMAC_VLAN_TAG_USED
6934 	/* Both mac100 and gmac support receive VLAN tag detection */
6935 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6936 	if (priv->dma_cap.vlhash) {
6937 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6938 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6939 	}
6940 	if (priv->dma_cap.vlins) {
6941 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6942 		if (priv->dma_cap.dvlan)
6943 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6944 	}
6945 #endif
6946 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
6947 
6948 	/* Initialize RSS */
6949 	rxq = priv->plat->rx_queues_to_use;
6950 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6951 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6952 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6953 
6954 	if (priv->dma_cap.rssen && priv->plat->rss_en)
6955 		ndev->features |= NETIF_F_RXHASH;
6956 
6957 	/* MTU range: 46 - hw-specific max */
6958 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6959 	if (priv->plat->has_xgmac)
6960 		ndev->max_mtu = XGMAC_JUMBO_LEN;
6961 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6962 		ndev->max_mtu = JUMBO_LEN;
6963 	else
6964 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6965 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6966 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6967 	 */
6968 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
6969 	    (priv->plat->maxmtu >= ndev->min_mtu))
6970 		ndev->max_mtu = priv->plat->maxmtu;
6971 	else if (priv->plat->maxmtu < ndev->min_mtu)
6972 		dev_warn(priv->device,
6973 			 "%s: warning: maxmtu having invalid value (%d)\n",
6974 			 __func__, priv->plat->maxmtu);
6975 
6976 	if (flow_ctrl)
6977 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
6978 
6979 	/* Setup channels NAPI */
6980 	stmmac_napi_add(ndev);
6981 
6982 	mutex_init(&priv->lock);
6983 
6984 	/* If a specific clk_csr value is passed from the platform
6985 	 * this means that the CSR Clock Range selection cannot be
6986 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
6987 	 * set the MDC clock dynamically according to the csr actual
6988 	 * clock input.
6989 	 */
6990 	if (priv->plat->clk_csr >= 0)
6991 		priv->clk_csr = priv->plat->clk_csr;
6992 	else
6993 		stmmac_clk_csr_set(priv);
6994 
6995 	stmmac_check_pcs_mode(priv);
6996 
6997 	pm_runtime_get_noresume(device);
6998 	pm_runtime_set_active(device);
6999 	pm_runtime_enable(device);
7000 
7001 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7002 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7003 		/* MDIO bus Registration */
7004 		ret = stmmac_mdio_register(ndev);
7005 		if (ret < 0) {
7006 			dev_err(priv->device,
7007 				"%s: MDIO bus (id: %d) registration failed",
7008 				__func__, priv->plat->bus_id);
7009 			goto error_mdio_register;
7010 		}
7011 	}
7012 
7013 	if (priv->plat->speed_mode_2500)
7014 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7015 
7016 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7017 		ret = stmmac_xpcs_setup(priv->mii);
7018 		if (ret)
7019 			goto error_xpcs_setup;
7020 	}
7021 
7022 	ret = stmmac_phy_setup(priv);
7023 	if (ret) {
7024 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7025 		goto error_phy_setup;
7026 	}
7027 
7028 	ret = register_netdev(ndev);
7029 	if (ret) {
7030 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7031 			__func__, ret);
7032 		goto error_netdev_register;
7033 	}
7034 
7035 	if (priv->plat->serdes_powerup) {
7036 		ret = priv->plat->serdes_powerup(ndev,
7037 						 priv->plat->bsp_priv);
7038 
7039 		if (ret < 0)
7040 			goto error_serdes_powerup;
7041 	}
7042 
7043 #ifdef CONFIG_DEBUG_FS
7044 	stmmac_init_fs(ndev);
7045 #endif
7046 
7047 	/* Let pm_runtime_put() disable the clocks.
7048 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7049 	 */
7050 	pm_runtime_put(device);
7051 
7052 	return ret;
7053 
7054 error_serdes_powerup:
7055 	unregister_netdev(ndev);
7056 error_netdev_register:
7057 	phylink_destroy(priv->phylink);
7058 error_xpcs_setup:
7059 error_phy_setup:
7060 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7061 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7062 		stmmac_mdio_unregister(ndev);
7063 error_mdio_register:
7064 	stmmac_napi_del(ndev);
7065 error_hw_init:
7066 	destroy_workqueue(priv->wq);
7067 	bitmap_free(priv->af_xdp_zc_qps);
7068 
7069 	return ret;
7070 }
7071 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7072 
7073 /**
7074  * stmmac_dvr_remove
7075  * @dev: device pointer
7076  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7077  * changes the link status, releases the DMA descriptor rings.
7078  */
7079 int stmmac_dvr_remove(struct device *dev)
7080 {
7081 	struct net_device *ndev = dev_get_drvdata(dev);
7082 	struct stmmac_priv *priv = netdev_priv(ndev);
7083 
7084 	netdev_info(priv->dev, "%s: removing driver", __func__);
7085 
7086 	stmmac_stop_all_dma(priv);
7087 	stmmac_mac_set(priv, priv->ioaddr, false);
7088 	netif_carrier_off(ndev);
7089 	unregister_netdev(ndev);
7090 
7091 	/* Serdes power down needs to happen after VLAN filter
7092 	 * is deleted that is triggered by unregister_netdev().
7093 	 */
7094 	if (priv->plat->serdes_powerdown)
7095 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7096 
7097 #ifdef CONFIG_DEBUG_FS
7098 	stmmac_exit_fs(ndev);
7099 #endif
7100 	phylink_destroy(priv->phylink);
7101 	if (priv->plat->stmmac_rst)
7102 		reset_control_assert(priv->plat->stmmac_rst);
7103 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7104 	pm_runtime_put(dev);
7105 	pm_runtime_disable(dev);
7106 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7107 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7108 		stmmac_mdio_unregister(ndev);
7109 	destroy_workqueue(priv->wq);
7110 	mutex_destroy(&priv->lock);
7111 	bitmap_free(priv->af_xdp_zc_qps);
7112 
7113 	return 0;
7114 }
7115 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7116 
7117 /**
7118  * stmmac_suspend - suspend callback
7119  * @dev: device pointer
7120  * Description: this is the function to suspend the device and it is called
7121  * by the platform driver to stop the network queue, release the resources,
7122  * program the PMT register (for WoL), clean and release driver resources.
7123  */
7124 int stmmac_suspend(struct device *dev)
7125 {
7126 	struct net_device *ndev = dev_get_drvdata(dev);
7127 	struct stmmac_priv *priv = netdev_priv(ndev);
7128 	u32 chan;
7129 
7130 	if (!ndev || !netif_running(ndev))
7131 		return 0;
7132 
7133 	mutex_lock(&priv->lock);
7134 
7135 	netif_device_detach(ndev);
7136 
7137 	stmmac_disable_all_queues(priv);
7138 
7139 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7140 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7141 
7142 	if (priv->eee_enabled) {
7143 		priv->tx_path_in_lpi_mode = false;
7144 		del_timer_sync(&priv->eee_ctrl_timer);
7145 	}
7146 
7147 	/* Stop TX/RX DMA */
7148 	stmmac_stop_all_dma(priv);
7149 
7150 	if (priv->plat->serdes_powerdown)
7151 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7152 
7153 	/* Enable Power down mode by programming the PMT regs */
7154 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7155 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7156 		priv->irq_wake = 1;
7157 	} else {
7158 		stmmac_mac_set(priv, priv->ioaddr, false);
7159 		pinctrl_pm_select_sleep_state(priv->device);
7160 	}
7161 
7162 	mutex_unlock(&priv->lock);
7163 
7164 	rtnl_lock();
7165 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7166 		phylink_suspend(priv->phylink, true);
7167 	} else {
7168 		if (device_may_wakeup(priv->device))
7169 			phylink_speed_down(priv->phylink, false);
7170 		phylink_suspend(priv->phylink, false);
7171 	}
7172 	rtnl_unlock();
7173 
7174 	if (priv->dma_cap.fpesel) {
7175 		/* Disable FPE */
7176 		stmmac_fpe_configure(priv, priv->ioaddr,
7177 				     priv->plat->tx_queues_to_use,
7178 				     priv->plat->rx_queues_to_use, false);
7179 
7180 		stmmac_fpe_handshake(priv, false);
7181 		stmmac_fpe_stop_wq(priv);
7182 	}
7183 
7184 	priv->speed = SPEED_UNKNOWN;
7185 	return 0;
7186 }
7187 EXPORT_SYMBOL_GPL(stmmac_suspend);
7188 
7189 /**
7190  * stmmac_reset_queues_param - reset queue parameters
7191  * @priv: device pointer
7192  */
7193 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7194 {
7195 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7196 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7197 	u32 queue;
7198 
7199 	for (queue = 0; queue < rx_cnt; queue++) {
7200 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7201 
7202 		rx_q->cur_rx = 0;
7203 		rx_q->dirty_rx = 0;
7204 	}
7205 
7206 	for (queue = 0; queue < tx_cnt; queue++) {
7207 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7208 
7209 		tx_q->cur_tx = 0;
7210 		tx_q->dirty_tx = 0;
7211 		tx_q->mss = 0;
7212 
7213 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7214 	}
7215 }
7216 
7217 /**
7218  * stmmac_resume - resume callback
7219  * @dev: device pointer
7220  * Description: when resume this function is invoked to setup the DMA and CORE
7221  * in a usable state.
7222  */
7223 int stmmac_resume(struct device *dev)
7224 {
7225 	struct net_device *ndev = dev_get_drvdata(dev);
7226 	struct stmmac_priv *priv = netdev_priv(ndev);
7227 	int ret;
7228 
7229 	if (!netif_running(ndev))
7230 		return 0;
7231 
7232 	/* Power Down bit, into the PM register, is cleared
7233 	 * automatically as soon as a magic packet or a Wake-up frame
7234 	 * is received. Anyway, it's better to manually clear
7235 	 * this bit because it can generate problems while resuming
7236 	 * from another devices (e.g. serial console).
7237 	 */
7238 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7239 		mutex_lock(&priv->lock);
7240 		stmmac_pmt(priv, priv->hw, 0);
7241 		mutex_unlock(&priv->lock);
7242 		priv->irq_wake = 0;
7243 	} else {
7244 		pinctrl_pm_select_default_state(priv->device);
7245 		/* reset the phy so that it's ready */
7246 		if (priv->mii)
7247 			stmmac_mdio_reset(priv->mii);
7248 	}
7249 
7250 	if (priv->plat->serdes_powerup) {
7251 		ret = priv->plat->serdes_powerup(ndev,
7252 						 priv->plat->bsp_priv);
7253 
7254 		if (ret < 0)
7255 			return ret;
7256 	}
7257 
7258 	rtnl_lock();
7259 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7260 		phylink_resume(priv->phylink);
7261 	} else {
7262 		phylink_resume(priv->phylink);
7263 		if (device_may_wakeup(priv->device))
7264 			phylink_speed_up(priv->phylink);
7265 	}
7266 	rtnl_unlock();
7267 
7268 	rtnl_lock();
7269 	mutex_lock(&priv->lock);
7270 
7271 	stmmac_reset_queues_param(priv);
7272 
7273 	stmmac_free_tx_skbufs(priv);
7274 	stmmac_clear_descriptors(priv);
7275 
7276 	stmmac_hw_setup(ndev, false);
7277 	stmmac_init_coalesce(priv);
7278 	stmmac_set_rx_mode(ndev);
7279 
7280 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7281 
7282 	stmmac_enable_all_queues(priv);
7283 
7284 	mutex_unlock(&priv->lock);
7285 	rtnl_unlock();
7286 
7287 	netif_device_attach(ndev);
7288 
7289 	return 0;
7290 }
7291 EXPORT_SYMBOL_GPL(stmmac_resume);
7292 
7293 #ifndef MODULE
7294 static int __init stmmac_cmdline_opt(char *str)
7295 {
7296 	char *opt;
7297 
7298 	if (!str || !*str)
7299 		return -EINVAL;
7300 	while ((opt = strsep(&str, ",")) != NULL) {
7301 		if (!strncmp(opt, "debug:", 6)) {
7302 			if (kstrtoint(opt + 6, 0, &debug))
7303 				goto err;
7304 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7305 			if (kstrtoint(opt + 8, 0, &phyaddr))
7306 				goto err;
7307 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7308 			if (kstrtoint(opt + 7, 0, &buf_sz))
7309 				goto err;
7310 		} else if (!strncmp(opt, "tc:", 3)) {
7311 			if (kstrtoint(opt + 3, 0, &tc))
7312 				goto err;
7313 		} else if (!strncmp(opt, "watchdog:", 9)) {
7314 			if (kstrtoint(opt + 9, 0, &watchdog))
7315 				goto err;
7316 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7317 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7318 				goto err;
7319 		} else if (!strncmp(opt, "pause:", 6)) {
7320 			if (kstrtoint(opt + 6, 0, &pause))
7321 				goto err;
7322 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7323 			if (kstrtoint(opt + 10, 0, &eee_timer))
7324 				goto err;
7325 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7326 			if (kstrtoint(opt + 11, 0, &chain_mode))
7327 				goto err;
7328 		}
7329 	}
7330 	return 0;
7331 
7332 err:
7333 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7334 	return -EINVAL;
7335 }
7336 
7337 __setup("stmmaceth=", stmmac_cmdline_opt);
7338 #endif /* MODULE */
7339 
7340 static int __init stmmac_init(void)
7341 {
7342 #ifdef CONFIG_DEBUG_FS
7343 	/* Create debugfs main directory if it doesn't exist yet */
7344 	if (!stmmac_fs_dir)
7345 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7346 	register_netdevice_notifier(&stmmac_notifier);
7347 #endif
7348 
7349 	return 0;
7350 }
7351 
7352 static void __exit stmmac_exit(void)
7353 {
7354 #ifdef CONFIG_DEBUG_FS
7355 	unregister_netdevice_notifier(&stmmac_notifier);
7356 	debugfs_remove_recursive(stmmac_fs_dir);
7357 #endif
7358 }
7359 
7360 module_init(stmmac_init)
7361 module_exit(stmmac_exit)
7362 
7363 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7364 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7365 MODULE_LICENSE("GPL");
7366