1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 The full GNU General Public License is included in this distribution in 17 the file called "COPYING". 18 19 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 20 21 Documentation available at: 22 http://www.stlinux.com 23 Support available at: 24 https://bugzilla.stlinux.com/ 25 *******************************************************************************/ 26 27 #include <linux/clk.h> 28 #include <linux/kernel.h> 29 #include <linux/interrupt.h> 30 #include <linux/ip.h> 31 #include <linux/tcp.h> 32 #include <linux/skbuff.h> 33 #include <linux/ethtool.h> 34 #include <linux/if_ether.h> 35 #include <linux/crc32.h> 36 #include <linux/mii.h> 37 #include <linux/if.h> 38 #include <linux/if_vlan.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/slab.h> 41 #include <linux/prefetch.h> 42 #include <linux/pinctrl/consumer.h> 43 #ifdef CONFIG_DEBUG_FS 44 #include <linux/debugfs.h> 45 #include <linux/seq_file.h> 46 #endif /* CONFIG_DEBUG_FS */ 47 #include <linux/net_tstamp.h> 48 #include <net/pkt_cls.h> 49 #include "stmmac_ptp.h" 50 #include "stmmac.h" 51 #include <linux/reset.h> 52 #include <linux/of_mdio.h> 53 #include "dwmac1000.h" 54 #include "dwxgmac2.h" 55 #include "hwif.h" 56 57 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES) 58 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 59 60 /* Module parameters */ 61 #define TX_TIMEO 5000 62 static int watchdog = TX_TIMEO; 63 module_param(watchdog, int, 0644); 64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 65 66 static int debug = -1; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 69 70 static int phyaddr = -1; 71 module_param(phyaddr, int, 0444); 72 MODULE_PARM_DESC(phyaddr, "Physical device address"); 73 74 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 75 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 76 77 static int flow_ctrl = FLOW_OFF; 78 module_param(flow_ctrl, int, 0644); 79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 80 81 static int pause = PAUSE_TIME; 82 module_param(pause, int, 0644); 83 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 84 85 #define TC_DEFAULT 64 86 static int tc = TC_DEFAULT; 87 module_param(tc, int, 0644); 88 MODULE_PARM_DESC(tc, "DMA threshold control value"); 89 90 #define DEFAULT_BUFSIZE 1536 91 static int buf_sz = DEFAULT_BUFSIZE; 92 module_param(buf_sz, int, 0644); 93 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 94 95 #define STMMAC_RX_COPYBREAK 256 96 97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 98 NETIF_MSG_LINK | NETIF_MSG_IFUP | 99 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 100 101 #define STMMAC_DEFAULT_LPI_TIMER 1000 102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 103 module_param(eee_timer, int, 0644); 104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 106 107 /* By default the driver will use the ring mode to manage tx and rx descriptors, 108 * but allow user to force to use the chain instead of the ring 109 */ 110 static unsigned int chain_mode; 111 module_param(chain_mode, int, 0444); 112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 113 114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 115 116 #ifdef CONFIG_DEBUG_FS 117 static int stmmac_init_fs(struct net_device *dev); 118 static void stmmac_exit_fs(struct net_device *dev); 119 #endif 120 121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 122 123 /** 124 * stmmac_verify_args - verify the driver parameters. 125 * Description: it checks the driver parameters and set a default in case of 126 * errors. 127 */ 128 static void stmmac_verify_args(void) 129 { 130 if (unlikely(watchdog < 0)) 131 watchdog = TX_TIMEO; 132 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 133 buf_sz = DEFAULT_BUFSIZE; 134 if (unlikely(flow_ctrl > 1)) 135 flow_ctrl = FLOW_AUTO; 136 else if (likely(flow_ctrl < 0)) 137 flow_ctrl = FLOW_OFF; 138 if (unlikely((pause < 0) || (pause > 0xffff))) 139 pause = PAUSE_TIME; 140 if (eee_timer < 0) 141 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 142 } 143 144 /** 145 * stmmac_disable_all_queues - Disable all queues 146 * @priv: driver private structure 147 */ 148 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 149 { 150 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 151 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 152 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 153 u32 queue; 154 155 for (queue = 0; queue < maxq; queue++) { 156 struct stmmac_channel *ch = &priv->channel[queue]; 157 158 if (queue < rx_queues_cnt) 159 napi_disable(&ch->rx_napi); 160 if (queue < tx_queues_cnt) 161 napi_disable(&ch->tx_napi); 162 } 163 } 164 165 /** 166 * stmmac_enable_all_queues - Enable all queues 167 * @priv: driver private structure 168 */ 169 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 170 { 171 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 172 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 173 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 174 u32 queue; 175 176 for (queue = 0; queue < maxq; queue++) { 177 struct stmmac_channel *ch = &priv->channel[queue]; 178 179 if (queue < rx_queues_cnt) 180 napi_enable(&ch->rx_napi); 181 if (queue < tx_queues_cnt) 182 napi_enable(&ch->tx_napi); 183 } 184 } 185 186 /** 187 * stmmac_stop_all_queues - Stop all queues 188 * @priv: driver private structure 189 */ 190 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 191 { 192 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 193 u32 queue; 194 195 for (queue = 0; queue < tx_queues_cnt; queue++) 196 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 197 } 198 199 /** 200 * stmmac_start_all_queues - Start all queues 201 * @priv: driver private structure 202 */ 203 static void stmmac_start_all_queues(struct stmmac_priv *priv) 204 { 205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 206 u32 queue; 207 208 for (queue = 0; queue < tx_queues_cnt; queue++) 209 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 210 } 211 212 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 213 { 214 if (!test_bit(STMMAC_DOWN, &priv->state) && 215 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 216 queue_work(priv->wq, &priv->service_task); 217 } 218 219 static void stmmac_global_err(struct stmmac_priv *priv) 220 { 221 netif_carrier_off(priv->dev); 222 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 223 stmmac_service_event_schedule(priv); 224 } 225 226 /** 227 * stmmac_clk_csr_set - dynamically set the MDC clock 228 * @priv: driver private structure 229 * Description: this is to dynamically set the MDC clock according to the csr 230 * clock input. 231 * Note: 232 * If a specific clk_csr value is passed from the platform 233 * this means that the CSR Clock Range selection cannot be 234 * changed at run-time and it is fixed (as reported in the driver 235 * documentation). Viceversa the driver will try to set the MDC 236 * clock dynamically according to the actual clock input. 237 */ 238 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 239 { 240 u32 clk_rate; 241 242 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 243 244 /* Platform provided default clk_csr would be assumed valid 245 * for all other cases except for the below mentioned ones. 246 * For values higher than the IEEE 802.3 specified frequency 247 * we can not estimate the proper divider as it is not known 248 * the frequency of clk_csr_i. So we do not change the default 249 * divider. 250 */ 251 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 252 if (clk_rate < CSR_F_35M) 253 priv->clk_csr = STMMAC_CSR_20_35M; 254 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 255 priv->clk_csr = STMMAC_CSR_35_60M; 256 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 257 priv->clk_csr = STMMAC_CSR_60_100M; 258 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 259 priv->clk_csr = STMMAC_CSR_100_150M; 260 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 261 priv->clk_csr = STMMAC_CSR_150_250M; 262 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 263 priv->clk_csr = STMMAC_CSR_250_300M; 264 } 265 266 if (priv->plat->has_sun8i) { 267 if (clk_rate > 160000000) 268 priv->clk_csr = 0x03; 269 else if (clk_rate > 80000000) 270 priv->clk_csr = 0x02; 271 else if (clk_rate > 40000000) 272 priv->clk_csr = 0x01; 273 else 274 priv->clk_csr = 0; 275 } 276 277 if (priv->plat->has_xgmac) { 278 if (clk_rate > 400000000) 279 priv->clk_csr = 0x5; 280 else if (clk_rate > 350000000) 281 priv->clk_csr = 0x4; 282 else if (clk_rate > 300000000) 283 priv->clk_csr = 0x3; 284 else if (clk_rate > 250000000) 285 priv->clk_csr = 0x2; 286 else if (clk_rate > 150000000) 287 priv->clk_csr = 0x1; 288 else 289 priv->clk_csr = 0x0; 290 } 291 } 292 293 static void print_pkt(unsigned char *buf, int len) 294 { 295 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 296 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 297 } 298 299 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 300 { 301 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 302 u32 avail; 303 304 if (tx_q->dirty_tx > tx_q->cur_tx) 305 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 306 else 307 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 308 309 return avail; 310 } 311 312 /** 313 * stmmac_rx_dirty - Get RX queue dirty 314 * @priv: driver private structure 315 * @queue: RX queue index 316 */ 317 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 318 { 319 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 320 u32 dirty; 321 322 if (rx_q->dirty_rx <= rx_q->cur_rx) 323 dirty = rx_q->cur_rx - rx_q->dirty_rx; 324 else 325 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 326 327 return dirty; 328 } 329 330 /** 331 * stmmac_hw_fix_mac_speed - callback for speed selection 332 * @priv: driver private structure 333 * Description: on some platforms (e.g. ST), some HW system configuration 334 * registers have to be set according to the link speed negotiated. 335 */ 336 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 337 { 338 struct net_device *ndev = priv->dev; 339 struct phy_device *phydev = ndev->phydev; 340 341 if (likely(priv->plat->fix_mac_speed)) 342 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 343 } 344 345 /** 346 * stmmac_enable_eee_mode - check and enter in LPI mode 347 * @priv: driver private structure 348 * Description: this function is to verify and enter in LPI mode in case of 349 * EEE. 350 */ 351 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 352 { 353 u32 tx_cnt = priv->plat->tx_queues_to_use; 354 u32 queue; 355 356 /* check if all TX queues have the work finished */ 357 for (queue = 0; queue < tx_cnt; queue++) { 358 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 359 360 if (tx_q->dirty_tx != tx_q->cur_tx) 361 return; /* still unfinished work */ 362 } 363 364 /* Check and enter in LPI mode */ 365 if (!priv->tx_path_in_lpi_mode) 366 stmmac_set_eee_mode(priv, priv->hw, 367 priv->plat->en_tx_lpi_clockgating); 368 } 369 370 /** 371 * stmmac_disable_eee_mode - disable and exit from LPI mode 372 * @priv: driver private structure 373 * Description: this function is to exit and disable EEE in case of 374 * LPI state is true. This is called by the xmit. 375 */ 376 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 377 { 378 stmmac_reset_eee_mode(priv, priv->hw); 379 del_timer_sync(&priv->eee_ctrl_timer); 380 priv->tx_path_in_lpi_mode = false; 381 } 382 383 /** 384 * stmmac_eee_ctrl_timer - EEE TX SW timer. 385 * @arg : data hook 386 * Description: 387 * if there is no data transfer and if we are not in LPI state, 388 * then MAC Transmitter can be moved to LPI state. 389 */ 390 static void stmmac_eee_ctrl_timer(struct timer_list *t) 391 { 392 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 393 394 stmmac_enable_eee_mode(priv); 395 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 396 } 397 398 /** 399 * stmmac_eee_init - init EEE 400 * @priv: driver private structure 401 * Description: 402 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 403 * can also manage EEE, this function enable the LPI state and start related 404 * timer. 405 */ 406 bool stmmac_eee_init(struct stmmac_priv *priv) 407 { 408 struct net_device *ndev = priv->dev; 409 int interface = priv->plat->interface; 410 bool ret = false; 411 412 if ((interface != PHY_INTERFACE_MODE_MII) && 413 (interface != PHY_INTERFACE_MODE_GMII) && 414 !phy_interface_mode_is_rgmii(interface)) 415 goto out; 416 417 /* Using PCS we cannot dial with the phy registers at this stage 418 * so we do not support extra feature like EEE. 419 */ 420 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 421 (priv->hw->pcs == STMMAC_PCS_TBI) || 422 (priv->hw->pcs == STMMAC_PCS_RTBI)) 423 goto out; 424 425 /* MAC core supports the EEE feature. */ 426 if (priv->dma_cap.eee) { 427 int tx_lpi_timer = priv->tx_lpi_timer; 428 429 /* Check if the PHY supports EEE */ 430 if (phy_init_eee(ndev->phydev, 1)) { 431 /* To manage at run-time if the EEE cannot be supported 432 * anymore (for example because the lp caps have been 433 * changed). 434 * In that case the driver disable own timers. 435 */ 436 mutex_lock(&priv->lock); 437 if (priv->eee_active) { 438 netdev_dbg(priv->dev, "disable EEE\n"); 439 del_timer_sync(&priv->eee_ctrl_timer); 440 stmmac_set_eee_timer(priv, priv->hw, 0, 441 tx_lpi_timer); 442 } 443 priv->eee_active = 0; 444 mutex_unlock(&priv->lock); 445 goto out; 446 } 447 /* Activate the EEE and start timers */ 448 mutex_lock(&priv->lock); 449 if (!priv->eee_active) { 450 priv->eee_active = 1; 451 timer_setup(&priv->eee_ctrl_timer, 452 stmmac_eee_ctrl_timer, 0); 453 mod_timer(&priv->eee_ctrl_timer, 454 STMMAC_LPI_T(eee_timer)); 455 456 stmmac_set_eee_timer(priv, priv->hw, 457 STMMAC_DEFAULT_LIT_LS, tx_lpi_timer); 458 } 459 /* Set HW EEE according to the speed */ 460 stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link); 461 462 ret = true; 463 mutex_unlock(&priv->lock); 464 465 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 466 } 467 out: 468 return ret; 469 } 470 471 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 472 * @priv: driver private structure 473 * @p : descriptor pointer 474 * @skb : the socket buffer 475 * Description : 476 * This function will read timestamp from the descriptor & pass it to stack. 477 * and also perform some sanity checks. 478 */ 479 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 480 struct dma_desc *p, struct sk_buff *skb) 481 { 482 struct skb_shared_hwtstamps shhwtstamp; 483 u64 ns = 0; 484 485 if (!priv->hwts_tx_en) 486 return; 487 488 /* exit if skb doesn't support hw tstamp */ 489 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 490 return; 491 492 /* check tx tstamp status */ 493 if (stmmac_get_tx_timestamp_status(priv, p)) { 494 /* get the valid tstamp */ 495 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 496 497 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 498 shhwtstamp.hwtstamp = ns_to_ktime(ns); 499 500 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 501 /* pass tstamp to stack */ 502 skb_tstamp_tx(skb, &shhwtstamp); 503 } 504 505 return; 506 } 507 508 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 509 * @priv: driver private structure 510 * @p : descriptor pointer 511 * @np : next descriptor pointer 512 * @skb : the socket buffer 513 * Description : 514 * This function will read received packet's timestamp from the descriptor 515 * and pass it to stack. It also perform some sanity checks. 516 */ 517 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 518 struct dma_desc *np, struct sk_buff *skb) 519 { 520 struct skb_shared_hwtstamps *shhwtstamp = NULL; 521 struct dma_desc *desc = p; 522 u64 ns = 0; 523 524 if (!priv->hwts_rx_en) 525 return; 526 /* For GMAC4, the valid timestamp is from CTX next desc. */ 527 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 528 desc = np; 529 530 /* Check if timestamp is available */ 531 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 532 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 533 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 534 shhwtstamp = skb_hwtstamps(skb); 535 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 536 shhwtstamp->hwtstamp = ns_to_ktime(ns); 537 } else { 538 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 539 } 540 } 541 542 /** 543 * stmmac_hwtstamp_set - control hardware timestamping. 544 * @dev: device pointer. 545 * @ifr: An IOCTL specific structure, that can contain a pointer to 546 * a proprietary structure used to pass information to the driver. 547 * Description: 548 * This function configures the MAC to enable/disable both outgoing(TX) 549 * and incoming(RX) packets time stamping based on user input. 550 * Return Value: 551 * 0 on success and an appropriate -ve integer on failure. 552 */ 553 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 554 { 555 struct stmmac_priv *priv = netdev_priv(dev); 556 struct hwtstamp_config config; 557 struct timespec64 now; 558 u64 temp = 0; 559 u32 ptp_v2 = 0; 560 u32 tstamp_all = 0; 561 u32 ptp_over_ipv4_udp = 0; 562 u32 ptp_over_ipv6_udp = 0; 563 u32 ptp_over_ethernet = 0; 564 u32 snap_type_sel = 0; 565 u32 ts_master_en = 0; 566 u32 ts_event_en = 0; 567 u32 sec_inc = 0; 568 u32 value = 0; 569 bool xmac; 570 571 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 572 573 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 574 netdev_alert(priv->dev, "No support for HW time stamping\n"); 575 priv->hwts_tx_en = 0; 576 priv->hwts_rx_en = 0; 577 578 return -EOPNOTSUPP; 579 } 580 581 if (copy_from_user(&config, ifr->ifr_data, 582 sizeof(config))) 583 return -EFAULT; 584 585 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 586 __func__, config.flags, config.tx_type, config.rx_filter); 587 588 /* reserved for future extensions */ 589 if (config.flags) 590 return -EINVAL; 591 592 if (config.tx_type != HWTSTAMP_TX_OFF && 593 config.tx_type != HWTSTAMP_TX_ON) 594 return -ERANGE; 595 596 if (priv->adv_ts) { 597 switch (config.rx_filter) { 598 case HWTSTAMP_FILTER_NONE: 599 /* time stamp no incoming packet at all */ 600 config.rx_filter = HWTSTAMP_FILTER_NONE; 601 break; 602 603 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 604 /* PTP v1, UDP, any kind of event packet */ 605 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 606 /* 'xmac' hardware can support Sync, Pdelay_Req and 607 * Pdelay_resp by setting bit14 and bits17/16 to 01 608 * This leaves Delay_Req timestamps out. 609 * Enable all events *and* general purpose message 610 * timestamping 611 */ 612 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 613 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 614 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 615 break; 616 617 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 618 /* PTP v1, UDP, Sync packet */ 619 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 620 /* take time stamp for SYNC messages only */ 621 ts_event_en = PTP_TCR_TSEVNTENA; 622 623 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 624 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 625 break; 626 627 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 628 /* PTP v1, UDP, Delay_req packet */ 629 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 630 /* take time stamp for Delay_Req messages only */ 631 ts_master_en = PTP_TCR_TSMSTRENA; 632 ts_event_en = PTP_TCR_TSEVNTENA; 633 634 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 635 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 636 break; 637 638 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 639 /* PTP v2, UDP, any kind of event packet */ 640 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 641 ptp_v2 = PTP_TCR_TSVER2ENA; 642 /* take time stamp for all event messages */ 643 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 644 645 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 646 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 647 break; 648 649 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 650 /* PTP v2, UDP, Sync packet */ 651 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 652 ptp_v2 = PTP_TCR_TSVER2ENA; 653 /* take time stamp for SYNC messages only */ 654 ts_event_en = PTP_TCR_TSEVNTENA; 655 656 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 657 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 658 break; 659 660 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 661 /* PTP v2, UDP, Delay_req packet */ 662 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 663 ptp_v2 = PTP_TCR_TSVER2ENA; 664 /* take time stamp for Delay_Req messages only */ 665 ts_master_en = PTP_TCR_TSMSTRENA; 666 ts_event_en = PTP_TCR_TSEVNTENA; 667 668 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 669 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 670 break; 671 672 case HWTSTAMP_FILTER_PTP_V2_EVENT: 673 /* PTP v2/802.AS1 any layer, any kind of event packet */ 674 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 675 ptp_v2 = PTP_TCR_TSVER2ENA; 676 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 ptp_over_ethernet = PTP_TCR_TSIPENA; 680 break; 681 682 case HWTSTAMP_FILTER_PTP_V2_SYNC: 683 /* PTP v2/802.AS1, any layer, Sync packet */ 684 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 685 ptp_v2 = PTP_TCR_TSVER2ENA; 686 /* take time stamp for SYNC messages only */ 687 ts_event_en = PTP_TCR_TSEVNTENA; 688 689 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 690 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 691 ptp_over_ethernet = PTP_TCR_TSIPENA; 692 break; 693 694 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 695 /* PTP v2/802.AS1, any layer, Delay_req packet */ 696 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 697 ptp_v2 = PTP_TCR_TSVER2ENA; 698 /* take time stamp for Delay_Req messages only */ 699 ts_master_en = PTP_TCR_TSMSTRENA; 700 ts_event_en = PTP_TCR_TSEVNTENA; 701 702 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 703 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 704 ptp_over_ethernet = PTP_TCR_TSIPENA; 705 break; 706 707 case HWTSTAMP_FILTER_NTP_ALL: 708 case HWTSTAMP_FILTER_ALL: 709 /* time stamp any incoming packet */ 710 config.rx_filter = HWTSTAMP_FILTER_ALL; 711 tstamp_all = PTP_TCR_TSENALL; 712 break; 713 714 default: 715 return -ERANGE; 716 } 717 } else { 718 switch (config.rx_filter) { 719 case HWTSTAMP_FILTER_NONE: 720 config.rx_filter = HWTSTAMP_FILTER_NONE; 721 break; 722 default: 723 /* PTP v1, UDP, any kind of event packet */ 724 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 725 break; 726 } 727 } 728 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 729 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 730 731 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 732 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 733 else { 734 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 735 tstamp_all | ptp_v2 | ptp_over_ethernet | 736 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 737 ts_master_en | snap_type_sel); 738 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 739 740 /* program Sub Second Increment reg */ 741 stmmac_config_sub_second_increment(priv, 742 priv->ptpaddr, priv->plat->clk_ptp_rate, 743 xmac, &sec_inc); 744 temp = div_u64(1000000000ULL, sec_inc); 745 746 /* Store sub second increment and flags for later use */ 747 priv->sub_second_inc = sec_inc; 748 priv->systime_flags = value; 749 750 /* calculate default added value: 751 * formula is : 752 * addend = (2^32)/freq_div_ratio; 753 * where, freq_div_ratio = 1e9ns/sec_inc 754 */ 755 temp = (u64)(temp << 32); 756 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 757 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 758 759 /* initialize system time */ 760 ktime_get_real_ts64(&now); 761 762 /* lower 32 bits of tv_sec are safe until y2106 */ 763 stmmac_init_systime(priv, priv->ptpaddr, 764 (u32)now.tv_sec, now.tv_nsec); 765 } 766 767 memcpy(&priv->tstamp_config, &config, sizeof(config)); 768 769 return copy_to_user(ifr->ifr_data, &config, 770 sizeof(config)) ? -EFAULT : 0; 771 } 772 773 /** 774 * stmmac_hwtstamp_get - read hardware timestamping. 775 * @dev: device pointer. 776 * @ifr: An IOCTL specific structure, that can contain a pointer to 777 * a proprietary structure used to pass information to the driver. 778 * Description: 779 * This function obtain the current hardware timestamping settings 780 as requested. 781 */ 782 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 783 { 784 struct stmmac_priv *priv = netdev_priv(dev); 785 struct hwtstamp_config *config = &priv->tstamp_config; 786 787 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 788 return -EOPNOTSUPP; 789 790 return copy_to_user(ifr->ifr_data, config, 791 sizeof(*config)) ? -EFAULT : 0; 792 } 793 794 /** 795 * stmmac_init_ptp - init PTP 796 * @priv: driver private structure 797 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 798 * This is done by looking at the HW cap. register. 799 * This function also registers the ptp driver. 800 */ 801 static int stmmac_init_ptp(struct stmmac_priv *priv) 802 { 803 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 804 805 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 806 return -EOPNOTSUPP; 807 808 priv->adv_ts = 0; 809 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 810 if (xmac && priv->dma_cap.atime_stamp) 811 priv->adv_ts = 1; 812 /* Dwmac 3.x core with extend_desc can support adv_ts */ 813 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 814 priv->adv_ts = 1; 815 816 if (priv->dma_cap.time_stamp) 817 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 818 819 if (priv->adv_ts) 820 netdev_info(priv->dev, 821 "IEEE 1588-2008 Advanced Timestamp supported\n"); 822 823 priv->hwts_tx_en = 0; 824 priv->hwts_rx_en = 0; 825 826 stmmac_ptp_register(priv); 827 828 return 0; 829 } 830 831 static void stmmac_release_ptp(struct stmmac_priv *priv) 832 { 833 if (priv->plat->clk_ptp_ref) 834 clk_disable_unprepare(priv->plat->clk_ptp_ref); 835 stmmac_ptp_unregister(priv); 836 } 837 838 /** 839 * stmmac_mac_flow_ctrl - Configure flow control in all queues 840 * @priv: driver private structure 841 * Description: It is used for configuring the flow control in all queues 842 */ 843 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 844 { 845 u32 tx_cnt = priv->plat->tx_queues_to_use; 846 847 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 848 priv->pause, tx_cnt); 849 } 850 851 /** 852 * stmmac_adjust_link - adjusts the link parameters 853 * @dev: net device structure 854 * Description: this is the helper called by the physical abstraction layer 855 * drivers to communicate the phy link status. According the speed and duplex 856 * this driver can invoke registered glue-logic as well. 857 * It also invoke the eee initialization because it could happen when switch 858 * on different networks (that are eee capable). 859 */ 860 static void stmmac_adjust_link(struct net_device *dev) 861 { 862 struct stmmac_priv *priv = netdev_priv(dev); 863 struct phy_device *phydev = dev->phydev; 864 bool new_state = false; 865 866 if (!phydev) 867 return; 868 869 mutex_lock(&priv->lock); 870 871 if (phydev->link) { 872 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 873 874 /* Now we make sure that we can be in full duplex mode. 875 * If not, we operate in half-duplex mode. */ 876 if (phydev->duplex != priv->oldduplex) { 877 new_state = true; 878 if (!phydev->duplex) 879 ctrl &= ~priv->hw->link.duplex; 880 else 881 ctrl |= priv->hw->link.duplex; 882 priv->oldduplex = phydev->duplex; 883 } 884 /* Flow Control operation */ 885 if (phydev->pause) 886 stmmac_mac_flow_ctrl(priv, phydev->duplex); 887 888 if (phydev->speed != priv->speed) { 889 new_state = true; 890 ctrl &= ~priv->hw->link.speed_mask; 891 switch (phydev->speed) { 892 case SPEED_1000: 893 ctrl |= priv->hw->link.speed1000; 894 break; 895 case SPEED_100: 896 ctrl |= priv->hw->link.speed100; 897 break; 898 case SPEED_10: 899 ctrl |= priv->hw->link.speed10; 900 break; 901 default: 902 netif_warn(priv, link, priv->dev, 903 "broken speed: %d\n", phydev->speed); 904 phydev->speed = SPEED_UNKNOWN; 905 break; 906 } 907 if (phydev->speed != SPEED_UNKNOWN) 908 stmmac_hw_fix_mac_speed(priv); 909 priv->speed = phydev->speed; 910 } 911 912 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 913 914 if (!priv->oldlink) { 915 new_state = true; 916 priv->oldlink = true; 917 } 918 } else if (priv->oldlink) { 919 new_state = true; 920 priv->oldlink = false; 921 priv->speed = SPEED_UNKNOWN; 922 priv->oldduplex = DUPLEX_UNKNOWN; 923 } 924 925 if (new_state && netif_msg_link(priv)) 926 phy_print_status(phydev); 927 928 mutex_unlock(&priv->lock); 929 930 if (phydev->is_pseudo_fixed_link) 931 /* Stop PHY layer to call the hook to adjust the link in case 932 * of a switch is attached to the stmmac driver. 933 */ 934 phydev->irq = PHY_IGNORE_INTERRUPT; 935 else 936 /* At this stage, init the EEE if supported. 937 * Never called in case of fixed_link. 938 */ 939 priv->eee_enabled = stmmac_eee_init(priv); 940 } 941 942 /** 943 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 944 * @priv: driver private structure 945 * Description: this is to verify if the HW supports the PCS. 946 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 947 * configured for the TBI, RTBI, or SGMII PHY interface. 948 */ 949 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 950 { 951 int interface = priv->plat->interface; 952 953 if (priv->dma_cap.pcs) { 954 if ((interface == PHY_INTERFACE_MODE_RGMII) || 955 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 956 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 957 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 958 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 959 priv->hw->pcs = STMMAC_PCS_RGMII; 960 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 961 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 962 priv->hw->pcs = STMMAC_PCS_SGMII; 963 } 964 } 965 } 966 967 /** 968 * stmmac_init_phy - PHY initialization 969 * @dev: net device structure 970 * Description: it initializes the driver's PHY state, and attaches the PHY 971 * to the mac driver. 972 * Return value: 973 * 0 on success 974 */ 975 static int stmmac_init_phy(struct net_device *dev) 976 { 977 struct stmmac_priv *priv = netdev_priv(dev); 978 u32 tx_cnt = priv->plat->tx_queues_to_use; 979 struct phy_device *phydev; 980 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 981 char bus_id[MII_BUS_ID_SIZE]; 982 int interface = priv->plat->interface; 983 int max_speed = priv->plat->max_speed; 984 priv->oldlink = false; 985 priv->speed = SPEED_UNKNOWN; 986 priv->oldduplex = DUPLEX_UNKNOWN; 987 988 if (priv->plat->phy_node) { 989 phydev = of_phy_connect(dev, priv->plat->phy_node, 990 &stmmac_adjust_link, 0, interface); 991 } else { 992 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 993 priv->plat->bus_id); 994 995 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 996 priv->plat->phy_addr); 997 netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__, 998 phy_id_fmt); 999 1000 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 1001 interface); 1002 } 1003 1004 if (IS_ERR_OR_NULL(phydev)) { 1005 netdev_err(priv->dev, "Could not attach to PHY\n"); 1006 if (!phydev) 1007 return -ENODEV; 1008 1009 return PTR_ERR(phydev); 1010 } 1011 1012 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 1013 if ((interface == PHY_INTERFACE_MODE_MII) || 1014 (interface == PHY_INTERFACE_MODE_RMII) || 1015 (max_speed < 1000 && max_speed > 0)) 1016 phy_set_max_speed(phydev, SPEED_100); 1017 1018 /* 1019 * Half-duplex mode not supported with multiqueue 1020 * half-duplex can only works with single queue 1021 */ 1022 if (tx_cnt > 1) { 1023 phy_remove_link_mode(phydev, 1024 ETHTOOL_LINK_MODE_10baseT_Half_BIT); 1025 phy_remove_link_mode(phydev, 1026 ETHTOOL_LINK_MODE_100baseT_Half_BIT); 1027 phy_remove_link_mode(phydev, 1028 ETHTOOL_LINK_MODE_1000baseT_Half_BIT); 1029 } 1030 1031 /* 1032 * Broken HW is sometimes missing the pull-up resistor on the 1033 * MDIO line, which results in reads to non-existent devices returning 1034 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 1035 * device as well. 1036 * Note: phydev->phy_id is the result of reading the UID PHY registers. 1037 */ 1038 if (!priv->plat->phy_node && phydev->phy_id == 0) { 1039 phy_disconnect(phydev); 1040 return -ENODEV; 1041 } 1042 1043 /* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid 1044 * subsequent PHY polling, make sure we force a link transition if 1045 * we have a UP/DOWN/UP transition 1046 */ 1047 if (phydev->is_pseudo_fixed_link) 1048 phydev->irq = PHY_POLL; 1049 1050 phy_attached_info(phydev); 1051 return 0; 1052 } 1053 1054 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1055 { 1056 u32 rx_cnt = priv->plat->rx_queues_to_use; 1057 void *head_rx; 1058 u32 queue; 1059 1060 /* Display RX rings */ 1061 for (queue = 0; queue < rx_cnt; queue++) { 1062 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1063 1064 pr_info("\tRX Queue %u rings\n", queue); 1065 1066 if (priv->extend_desc) 1067 head_rx = (void *)rx_q->dma_erx; 1068 else 1069 head_rx = (void *)rx_q->dma_rx; 1070 1071 /* Display RX ring */ 1072 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1073 } 1074 } 1075 1076 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1077 { 1078 u32 tx_cnt = priv->plat->tx_queues_to_use; 1079 void *head_tx; 1080 u32 queue; 1081 1082 /* Display TX rings */ 1083 for (queue = 0; queue < tx_cnt; queue++) { 1084 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1085 1086 pr_info("\tTX Queue %d rings\n", queue); 1087 1088 if (priv->extend_desc) 1089 head_tx = (void *)tx_q->dma_etx; 1090 else 1091 head_tx = (void *)tx_q->dma_tx; 1092 1093 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1094 } 1095 } 1096 1097 static void stmmac_display_rings(struct stmmac_priv *priv) 1098 { 1099 /* Display RX ring */ 1100 stmmac_display_rx_rings(priv); 1101 1102 /* Display TX ring */ 1103 stmmac_display_tx_rings(priv); 1104 } 1105 1106 static int stmmac_set_bfsize(int mtu, int bufsize) 1107 { 1108 int ret = bufsize; 1109 1110 if (mtu >= BUF_SIZE_4KiB) 1111 ret = BUF_SIZE_8KiB; 1112 else if (mtu >= BUF_SIZE_2KiB) 1113 ret = BUF_SIZE_4KiB; 1114 else if (mtu > DEFAULT_BUFSIZE) 1115 ret = BUF_SIZE_2KiB; 1116 else 1117 ret = DEFAULT_BUFSIZE; 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * stmmac_clear_rx_descriptors - clear RX descriptors 1124 * @priv: driver private structure 1125 * @queue: RX queue index 1126 * Description: this function is called to clear the RX descriptors 1127 * in case of both basic and extended descriptors are used. 1128 */ 1129 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1130 { 1131 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1132 int i; 1133 1134 /* Clear the RX descriptors */ 1135 for (i = 0; i < DMA_RX_SIZE; i++) 1136 if (priv->extend_desc) 1137 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1138 priv->use_riwt, priv->mode, 1139 (i == DMA_RX_SIZE - 1), 1140 priv->dma_buf_sz); 1141 else 1142 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1143 priv->use_riwt, priv->mode, 1144 (i == DMA_RX_SIZE - 1), 1145 priv->dma_buf_sz); 1146 } 1147 1148 /** 1149 * stmmac_clear_tx_descriptors - clear tx descriptors 1150 * @priv: driver private structure 1151 * @queue: TX queue index. 1152 * Description: this function is called to clear the TX descriptors 1153 * in case of both basic and extended descriptors are used. 1154 */ 1155 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1156 { 1157 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1158 int i; 1159 1160 /* Clear the TX descriptors */ 1161 for (i = 0; i < DMA_TX_SIZE; i++) 1162 if (priv->extend_desc) 1163 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1164 priv->mode, (i == DMA_TX_SIZE - 1)); 1165 else 1166 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1167 priv->mode, (i == DMA_TX_SIZE - 1)); 1168 } 1169 1170 /** 1171 * stmmac_clear_descriptors - clear descriptors 1172 * @priv: driver private structure 1173 * Description: this function is called to clear the TX and RX descriptors 1174 * in case of both basic and extended descriptors are used. 1175 */ 1176 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1177 { 1178 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1179 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1180 u32 queue; 1181 1182 /* Clear the RX descriptors */ 1183 for (queue = 0; queue < rx_queue_cnt; queue++) 1184 stmmac_clear_rx_descriptors(priv, queue); 1185 1186 /* Clear the TX descriptors */ 1187 for (queue = 0; queue < tx_queue_cnt; queue++) 1188 stmmac_clear_tx_descriptors(priv, queue); 1189 } 1190 1191 /** 1192 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1193 * @priv: driver private structure 1194 * @p: descriptor pointer 1195 * @i: descriptor index 1196 * @flags: gfp flag 1197 * @queue: RX queue index 1198 * Description: this function is called to allocate a receive buffer, perform 1199 * the DMA mapping and init the descriptor. 1200 */ 1201 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1202 int i, gfp_t flags, u32 queue) 1203 { 1204 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1205 struct sk_buff *skb; 1206 1207 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 1208 if (!skb) { 1209 netdev_err(priv->dev, 1210 "%s: Rx init fails; skb is NULL\n", __func__); 1211 return -ENOMEM; 1212 } 1213 rx_q->rx_skbuff[i] = skb; 1214 rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 1215 priv->dma_buf_sz, 1216 DMA_FROM_DEVICE); 1217 if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) { 1218 netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); 1219 dev_kfree_skb_any(skb); 1220 return -EINVAL; 1221 } 1222 1223 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]); 1224 1225 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1226 stmmac_init_desc3(priv, p); 1227 1228 return 0; 1229 } 1230 1231 /** 1232 * stmmac_free_rx_buffer - free RX dma buffers 1233 * @priv: private structure 1234 * @queue: RX queue index 1235 * @i: buffer index. 1236 */ 1237 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1238 { 1239 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1240 1241 if (rx_q->rx_skbuff[i]) { 1242 dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i], 1243 priv->dma_buf_sz, DMA_FROM_DEVICE); 1244 dev_kfree_skb_any(rx_q->rx_skbuff[i]); 1245 } 1246 rx_q->rx_skbuff[i] = NULL; 1247 } 1248 1249 /** 1250 * stmmac_free_tx_buffer - free RX dma buffers 1251 * @priv: private structure 1252 * @queue: RX queue index 1253 * @i: buffer index. 1254 */ 1255 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1256 { 1257 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1258 1259 if (tx_q->tx_skbuff_dma[i].buf) { 1260 if (tx_q->tx_skbuff_dma[i].map_as_page) 1261 dma_unmap_page(priv->device, 1262 tx_q->tx_skbuff_dma[i].buf, 1263 tx_q->tx_skbuff_dma[i].len, 1264 DMA_TO_DEVICE); 1265 else 1266 dma_unmap_single(priv->device, 1267 tx_q->tx_skbuff_dma[i].buf, 1268 tx_q->tx_skbuff_dma[i].len, 1269 DMA_TO_DEVICE); 1270 } 1271 1272 if (tx_q->tx_skbuff[i]) { 1273 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1274 tx_q->tx_skbuff[i] = NULL; 1275 tx_q->tx_skbuff_dma[i].buf = 0; 1276 tx_q->tx_skbuff_dma[i].map_as_page = false; 1277 } 1278 } 1279 1280 /** 1281 * init_dma_rx_desc_rings - init the RX descriptor rings 1282 * @dev: net device structure 1283 * @flags: gfp flag. 1284 * Description: this function initializes the DMA RX descriptors 1285 * and allocates the socket buffers. It supports the chained and ring 1286 * modes. 1287 */ 1288 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1289 { 1290 struct stmmac_priv *priv = netdev_priv(dev); 1291 u32 rx_count = priv->plat->rx_queues_to_use; 1292 int ret = -ENOMEM; 1293 int bfsize = 0; 1294 int queue; 1295 int i; 1296 1297 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 1298 if (bfsize < 0) 1299 bfsize = 0; 1300 1301 if (bfsize < BUF_SIZE_16KiB) 1302 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1303 1304 priv->dma_buf_sz = bfsize; 1305 1306 /* RX INITIALIZATION */ 1307 netif_dbg(priv, probe, priv->dev, 1308 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1309 1310 for (queue = 0; queue < rx_count; queue++) { 1311 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1312 1313 netif_dbg(priv, probe, priv->dev, 1314 "(%s) dma_rx_phy=0x%08x\n", __func__, 1315 (u32)rx_q->dma_rx_phy); 1316 1317 for (i = 0; i < DMA_RX_SIZE; i++) { 1318 struct dma_desc *p; 1319 1320 if (priv->extend_desc) 1321 p = &((rx_q->dma_erx + i)->basic); 1322 else 1323 p = rx_q->dma_rx + i; 1324 1325 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1326 queue); 1327 if (ret) 1328 goto err_init_rx_buffers; 1329 1330 netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n", 1331 rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data, 1332 (unsigned int)rx_q->rx_skbuff_dma[i]); 1333 } 1334 1335 rx_q->cur_rx = 0; 1336 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1337 1338 stmmac_clear_rx_descriptors(priv, queue); 1339 1340 /* Setup the chained descriptor addresses */ 1341 if (priv->mode == STMMAC_CHAIN_MODE) { 1342 if (priv->extend_desc) 1343 stmmac_mode_init(priv, rx_q->dma_erx, 1344 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1345 else 1346 stmmac_mode_init(priv, rx_q->dma_rx, 1347 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1348 } 1349 } 1350 1351 buf_sz = bfsize; 1352 1353 return 0; 1354 1355 err_init_rx_buffers: 1356 while (queue >= 0) { 1357 while (--i >= 0) 1358 stmmac_free_rx_buffer(priv, queue, i); 1359 1360 if (queue == 0) 1361 break; 1362 1363 i = DMA_RX_SIZE; 1364 queue--; 1365 } 1366 1367 return ret; 1368 } 1369 1370 /** 1371 * init_dma_tx_desc_rings - init the TX descriptor rings 1372 * @dev: net device structure. 1373 * Description: this function initializes the DMA TX descriptors 1374 * and allocates the socket buffers. It supports the chained and ring 1375 * modes. 1376 */ 1377 static int init_dma_tx_desc_rings(struct net_device *dev) 1378 { 1379 struct stmmac_priv *priv = netdev_priv(dev); 1380 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1381 u32 queue; 1382 int i; 1383 1384 for (queue = 0; queue < tx_queue_cnt; queue++) { 1385 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1386 1387 netif_dbg(priv, probe, priv->dev, 1388 "(%s) dma_tx_phy=0x%08x\n", __func__, 1389 (u32)tx_q->dma_tx_phy); 1390 1391 /* Setup the chained descriptor addresses */ 1392 if (priv->mode == STMMAC_CHAIN_MODE) { 1393 if (priv->extend_desc) 1394 stmmac_mode_init(priv, tx_q->dma_etx, 1395 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1396 else 1397 stmmac_mode_init(priv, tx_q->dma_tx, 1398 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1399 } 1400 1401 for (i = 0; i < DMA_TX_SIZE; i++) { 1402 struct dma_desc *p; 1403 if (priv->extend_desc) 1404 p = &((tx_q->dma_etx + i)->basic); 1405 else 1406 p = tx_q->dma_tx + i; 1407 1408 stmmac_clear_desc(priv, p); 1409 1410 tx_q->tx_skbuff_dma[i].buf = 0; 1411 tx_q->tx_skbuff_dma[i].map_as_page = false; 1412 tx_q->tx_skbuff_dma[i].len = 0; 1413 tx_q->tx_skbuff_dma[i].last_segment = false; 1414 tx_q->tx_skbuff[i] = NULL; 1415 } 1416 1417 tx_q->dirty_tx = 0; 1418 tx_q->cur_tx = 0; 1419 tx_q->mss = 0; 1420 1421 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1422 } 1423 1424 return 0; 1425 } 1426 1427 /** 1428 * init_dma_desc_rings - init the RX/TX descriptor rings 1429 * @dev: net device structure 1430 * @flags: gfp flag. 1431 * Description: this function initializes the DMA RX/TX descriptors 1432 * and allocates the socket buffers. It supports the chained and ring 1433 * modes. 1434 */ 1435 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1436 { 1437 struct stmmac_priv *priv = netdev_priv(dev); 1438 int ret; 1439 1440 ret = init_dma_rx_desc_rings(dev, flags); 1441 if (ret) 1442 return ret; 1443 1444 ret = init_dma_tx_desc_rings(dev); 1445 1446 stmmac_clear_descriptors(priv); 1447 1448 if (netif_msg_hw(priv)) 1449 stmmac_display_rings(priv); 1450 1451 return ret; 1452 } 1453 1454 /** 1455 * dma_free_rx_skbufs - free RX dma buffers 1456 * @priv: private structure 1457 * @queue: RX queue index 1458 */ 1459 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1460 { 1461 int i; 1462 1463 for (i = 0; i < DMA_RX_SIZE; i++) 1464 stmmac_free_rx_buffer(priv, queue, i); 1465 } 1466 1467 /** 1468 * dma_free_tx_skbufs - free TX dma buffers 1469 * @priv: private structure 1470 * @queue: TX queue index 1471 */ 1472 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1473 { 1474 int i; 1475 1476 for (i = 0; i < DMA_TX_SIZE; i++) 1477 stmmac_free_tx_buffer(priv, queue, i); 1478 } 1479 1480 /** 1481 * free_dma_rx_desc_resources - free RX dma desc resources 1482 * @priv: private structure 1483 */ 1484 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1485 { 1486 u32 rx_count = priv->plat->rx_queues_to_use; 1487 u32 queue; 1488 1489 /* Free RX queue resources */ 1490 for (queue = 0; queue < rx_count; queue++) { 1491 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1492 1493 /* Release the DMA RX socket buffers */ 1494 dma_free_rx_skbufs(priv, queue); 1495 1496 /* Free DMA regions of consistent memory previously allocated */ 1497 if (!priv->extend_desc) 1498 dma_free_coherent(priv->device, 1499 DMA_RX_SIZE * sizeof(struct dma_desc), 1500 rx_q->dma_rx, rx_q->dma_rx_phy); 1501 else 1502 dma_free_coherent(priv->device, DMA_RX_SIZE * 1503 sizeof(struct dma_extended_desc), 1504 rx_q->dma_erx, rx_q->dma_rx_phy); 1505 1506 kfree(rx_q->rx_skbuff_dma); 1507 kfree(rx_q->rx_skbuff); 1508 } 1509 } 1510 1511 /** 1512 * free_dma_tx_desc_resources - free TX dma desc resources 1513 * @priv: private structure 1514 */ 1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1516 { 1517 u32 tx_count = priv->plat->tx_queues_to_use; 1518 u32 queue; 1519 1520 /* Free TX queue resources */ 1521 for (queue = 0; queue < tx_count; queue++) { 1522 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1523 1524 /* Release the DMA TX socket buffers */ 1525 dma_free_tx_skbufs(priv, queue); 1526 1527 /* Free DMA regions of consistent memory previously allocated */ 1528 if (!priv->extend_desc) 1529 dma_free_coherent(priv->device, 1530 DMA_TX_SIZE * sizeof(struct dma_desc), 1531 tx_q->dma_tx, tx_q->dma_tx_phy); 1532 else 1533 dma_free_coherent(priv->device, DMA_TX_SIZE * 1534 sizeof(struct dma_extended_desc), 1535 tx_q->dma_etx, tx_q->dma_tx_phy); 1536 1537 kfree(tx_q->tx_skbuff_dma); 1538 kfree(tx_q->tx_skbuff); 1539 } 1540 } 1541 1542 /** 1543 * alloc_dma_rx_desc_resources - alloc RX resources. 1544 * @priv: private structure 1545 * Description: according to which descriptor can be used (extend or basic) 1546 * this function allocates the resources for TX and RX paths. In case of 1547 * reception, for example, it pre-allocated the RX socket buffer in order to 1548 * allow zero-copy mechanism. 1549 */ 1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1551 { 1552 u32 rx_count = priv->plat->rx_queues_to_use; 1553 int ret = -ENOMEM; 1554 u32 queue; 1555 1556 /* RX queues buffers and DMA */ 1557 for (queue = 0; queue < rx_count; queue++) { 1558 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1559 1560 rx_q->queue_index = queue; 1561 rx_q->priv_data = priv; 1562 1563 rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, 1564 sizeof(dma_addr_t), 1565 GFP_KERNEL); 1566 if (!rx_q->rx_skbuff_dma) 1567 goto err_dma; 1568 1569 rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE, 1570 sizeof(struct sk_buff *), 1571 GFP_KERNEL); 1572 if (!rx_q->rx_skbuff) 1573 goto err_dma; 1574 1575 if (priv->extend_desc) { 1576 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1577 DMA_RX_SIZE * sizeof(struct dma_extended_desc), 1578 &rx_q->dma_rx_phy, 1579 GFP_KERNEL); 1580 if (!rx_q->dma_erx) 1581 goto err_dma; 1582 1583 } else { 1584 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1585 DMA_RX_SIZE * sizeof(struct dma_desc), 1586 &rx_q->dma_rx_phy, 1587 GFP_KERNEL); 1588 if (!rx_q->dma_rx) 1589 goto err_dma; 1590 } 1591 } 1592 1593 return 0; 1594 1595 err_dma: 1596 free_dma_rx_desc_resources(priv); 1597 1598 return ret; 1599 } 1600 1601 /** 1602 * alloc_dma_tx_desc_resources - alloc TX resources. 1603 * @priv: private structure 1604 * Description: according to which descriptor can be used (extend or basic) 1605 * this function allocates the resources for TX and RX paths. In case of 1606 * reception, for example, it pre-allocated the RX socket buffer in order to 1607 * allow zero-copy mechanism. 1608 */ 1609 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1610 { 1611 u32 tx_count = priv->plat->tx_queues_to_use; 1612 int ret = -ENOMEM; 1613 u32 queue; 1614 1615 /* TX queues buffers and DMA */ 1616 for (queue = 0; queue < tx_count; queue++) { 1617 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1618 1619 tx_q->queue_index = queue; 1620 tx_q->priv_data = priv; 1621 1622 tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE, 1623 sizeof(*tx_q->tx_skbuff_dma), 1624 GFP_KERNEL); 1625 if (!tx_q->tx_skbuff_dma) 1626 goto err_dma; 1627 1628 tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE, 1629 sizeof(struct sk_buff *), 1630 GFP_KERNEL); 1631 if (!tx_q->tx_skbuff) 1632 goto err_dma; 1633 1634 if (priv->extend_desc) { 1635 tx_q->dma_etx = dma_alloc_coherent(priv->device, 1636 DMA_TX_SIZE * sizeof(struct dma_extended_desc), 1637 &tx_q->dma_tx_phy, 1638 GFP_KERNEL); 1639 if (!tx_q->dma_etx) 1640 goto err_dma; 1641 } else { 1642 tx_q->dma_tx = dma_alloc_coherent(priv->device, 1643 DMA_TX_SIZE * sizeof(struct dma_desc), 1644 &tx_q->dma_tx_phy, 1645 GFP_KERNEL); 1646 if (!tx_q->dma_tx) 1647 goto err_dma; 1648 } 1649 } 1650 1651 return 0; 1652 1653 err_dma: 1654 free_dma_tx_desc_resources(priv); 1655 1656 return ret; 1657 } 1658 1659 /** 1660 * alloc_dma_desc_resources - alloc TX/RX resources. 1661 * @priv: private structure 1662 * Description: according to which descriptor can be used (extend or basic) 1663 * this function allocates the resources for TX and RX paths. In case of 1664 * reception, for example, it pre-allocated the RX socket buffer in order to 1665 * allow zero-copy mechanism. 1666 */ 1667 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1668 { 1669 /* RX Allocation */ 1670 int ret = alloc_dma_rx_desc_resources(priv); 1671 1672 if (ret) 1673 return ret; 1674 1675 ret = alloc_dma_tx_desc_resources(priv); 1676 1677 return ret; 1678 } 1679 1680 /** 1681 * free_dma_desc_resources - free dma desc resources 1682 * @priv: private structure 1683 */ 1684 static void free_dma_desc_resources(struct stmmac_priv *priv) 1685 { 1686 /* Release the DMA RX socket buffers */ 1687 free_dma_rx_desc_resources(priv); 1688 1689 /* Release the DMA TX socket buffers */ 1690 free_dma_tx_desc_resources(priv); 1691 } 1692 1693 /** 1694 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1695 * @priv: driver private structure 1696 * Description: It is used for enabling the rx queues in the MAC 1697 */ 1698 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1699 { 1700 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1701 int queue; 1702 u8 mode; 1703 1704 for (queue = 0; queue < rx_queues_count; queue++) { 1705 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1706 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1707 } 1708 } 1709 1710 /** 1711 * stmmac_start_rx_dma - start RX DMA channel 1712 * @priv: driver private structure 1713 * @chan: RX channel index 1714 * Description: 1715 * This starts a RX DMA channel 1716 */ 1717 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1718 { 1719 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1720 stmmac_start_rx(priv, priv->ioaddr, chan); 1721 } 1722 1723 /** 1724 * stmmac_start_tx_dma - start TX DMA channel 1725 * @priv: driver private structure 1726 * @chan: TX channel index 1727 * Description: 1728 * This starts a TX DMA channel 1729 */ 1730 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1731 { 1732 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1733 stmmac_start_tx(priv, priv->ioaddr, chan); 1734 } 1735 1736 /** 1737 * stmmac_stop_rx_dma - stop RX DMA channel 1738 * @priv: driver private structure 1739 * @chan: RX channel index 1740 * Description: 1741 * This stops a RX DMA channel 1742 */ 1743 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1744 { 1745 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1746 stmmac_stop_rx(priv, priv->ioaddr, chan); 1747 } 1748 1749 /** 1750 * stmmac_stop_tx_dma - stop TX DMA channel 1751 * @priv: driver private structure 1752 * @chan: TX channel index 1753 * Description: 1754 * This stops a TX DMA channel 1755 */ 1756 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1757 { 1758 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1759 stmmac_stop_tx(priv, priv->ioaddr, chan); 1760 } 1761 1762 /** 1763 * stmmac_start_all_dma - start all RX and TX DMA channels 1764 * @priv: driver private structure 1765 * Description: 1766 * This starts all the RX and TX DMA channels 1767 */ 1768 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1769 { 1770 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1771 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1772 u32 chan = 0; 1773 1774 for (chan = 0; chan < rx_channels_count; chan++) 1775 stmmac_start_rx_dma(priv, chan); 1776 1777 for (chan = 0; chan < tx_channels_count; chan++) 1778 stmmac_start_tx_dma(priv, chan); 1779 } 1780 1781 /** 1782 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1783 * @priv: driver private structure 1784 * Description: 1785 * This stops the RX and TX DMA channels 1786 */ 1787 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1788 { 1789 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1790 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1791 u32 chan = 0; 1792 1793 for (chan = 0; chan < rx_channels_count; chan++) 1794 stmmac_stop_rx_dma(priv, chan); 1795 1796 for (chan = 0; chan < tx_channels_count; chan++) 1797 stmmac_stop_tx_dma(priv, chan); 1798 } 1799 1800 /** 1801 * stmmac_dma_operation_mode - HW DMA operation mode 1802 * @priv: driver private structure 1803 * Description: it is used for configuring the DMA operation mode register in 1804 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1805 */ 1806 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1807 { 1808 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1809 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1810 int rxfifosz = priv->plat->rx_fifo_size; 1811 int txfifosz = priv->plat->tx_fifo_size; 1812 u32 txmode = 0; 1813 u32 rxmode = 0; 1814 u32 chan = 0; 1815 u8 qmode = 0; 1816 1817 if (rxfifosz == 0) 1818 rxfifosz = priv->dma_cap.rx_fifo_size; 1819 if (txfifosz == 0) 1820 txfifosz = priv->dma_cap.tx_fifo_size; 1821 1822 /* Adjust for real per queue fifo size */ 1823 rxfifosz /= rx_channels_count; 1824 txfifosz /= tx_channels_count; 1825 1826 if (priv->plat->force_thresh_dma_mode) { 1827 txmode = tc; 1828 rxmode = tc; 1829 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1830 /* 1831 * In case of GMAC, SF mode can be enabled 1832 * to perform the TX COE in HW. This depends on: 1833 * 1) TX COE if actually supported 1834 * 2) There is no bugged Jumbo frame support 1835 * that needs to not insert csum in the TDES. 1836 */ 1837 txmode = SF_DMA_MODE; 1838 rxmode = SF_DMA_MODE; 1839 priv->xstats.threshold = SF_DMA_MODE; 1840 } else { 1841 txmode = tc; 1842 rxmode = SF_DMA_MODE; 1843 } 1844 1845 /* configure all channels */ 1846 for (chan = 0; chan < rx_channels_count; chan++) { 1847 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1848 1849 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1850 rxfifosz, qmode); 1851 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1852 chan); 1853 } 1854 1855 for (chan = 0; chan < tx_channels_count; chan++) { 1856 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1857 1858 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1859 txfifosz, qmode); 1860 } 1861 } 1862 1863 /** 1864 * stmmac_tx_clean - to manage the transmission completion 1865 * @priv: driver private structure 1866 * @queue: TX queue index 1867 * Description: it reclaims the transmit resources after transmission completes. 1868 */ 1869 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1870 { 1871 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1872 unsigned int bytes_compl = 0, pkts_compl = 0; 1873 unsigned int entry, count = 0; 1874 1875 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1876 1877 priv->xstats.tx_clean++; 1878 1879 entry = tx_q->dirty_tx; 1880 while ((entry != tx_q->cur_tx) && (count < budget)) { 1881 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1882 struct dma_desc *p; 1883 int status; 1884 1885 if (priv->extend_desc) 1886 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1887 else 1888 p = tx_q->dma_tx + entry; 1889 1890 status = stmmac_tx_status(priv, &priv->dev->stats, 1891 &priv->xstats, p, priv->ioaddr); 1892 /* Check if the descriptor is owned by the DMA */ 1893 if (unlikely(status & tx_dma_own)) 1894 break; 1895 1896 count++; 1897 1898 /* Make sure descriptor fields are read after reading 1899 * the own bit. 1900 */ 1901 dma_rmb(); 1902 1903 /* Just consider the last segment and ...*/ 1904 if (likely(!(status & tx_not_ls))) { 1905 /* ... verify the status error condition */ 1906 if (unlikely(status & tx_err)) { 1907 priv->dev->stats.tx_errors++; 1908 } else { 1909 priv->dev->stats.tx_packets++; 1910 priv->xstats.tx_pkt_n++; 1911 } 1912 stmmac_get_tx_hwtstamp(priv, p, skb); 1913 } 1914 1915 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1916 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1917 dma_unmap_page(priv->device, 1918 tx_q->tx_skbuff_dma[entry].buf, 1919 tx_q->tx_skbuff_dma[entry].len, 1920 DMA_TO_DEVICE); 1921 else 1922 dma_unmap_single(priv->device, 1923 tx_q->tx_skbuff_dma[entry].buf, 1924 tx_q->tx_skbuff_dma[entry].len, 1925 DMA_TO_DEVICE); 1926 tx_q->tx_skbuff_dma[entry].buf = 0; 1927 tx_q->tx_skbuff_dma[entry].len = 0; 1928 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1929 } 1930 1931 stmmac_clean_desc3(priv, tx_q, p); 1932 1933 tx_q->tx_skbuff_dma[entry].last_segment = false; 1934 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1935 1936 if (likely(skb != NULL)) { 1937 pkts_compl++; 1938 bytes_compl += skb->len; 1939 dev_consume_skb_any(skb); 1940 tx_q->tx_skbuff[entry] = NULL; 1941 } 1942 1943 stmmac_release_tx_desc(priv, p, priv->mode); 1944 1945 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1946 } 1947 tx_q->dirty_tx = entry; 1948 1949 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1950 pkts_compl, bytes_compl); 1951 1952 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1953 queue))) && 1954 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1955 1956 netif_dbg(priv, tx_done, priv->dev, 1957 "%s: restart transmit\n", __func__); 1958 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1959 } 1960 1961 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1962 stmmac_enable_eee_mode(priv); 1963 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1964 } 1965 1966 /* We still have pending packets, let's call for a new scheduling */ 1967 if (tx_q->dirty_tx != tx_q->cur_tx) 1968 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 1969 1970 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 1971 1972 return count; 1973 } 1974 1975 /** 1976 * stmmac_tx_err - to manage the tx error 1977 * @priv: driver private structure 1978 * @chan: channel index 1979 * Description: it cleans the descriptors and restarts the transmission 1980 * in case of transmission errors. 1981 */ 1982 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 1983 { 1984 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 1985 int i; 1986 1987 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 1988 1989 stmmac_stop_tx_dma(priv, chan); 1990 dma_free_tx_skbufs(priv, chan); 1991 for (i = 0; i < DMA_TX_SIZE; i++) 1992 if (priv->extend_desc) 1993 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1994 priv->mode, (i == DMA_TX_SIZE - 1)); 1995 else 1996 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1997 priv->mode, (i == DMA_TX_SIZE - 1)); 1998 tx_q->dirty_tx = 0; 1999 tx_q->cur_tx = 0; 2000 tx_q->mss = 0; 2001 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2002 stmmac_start_tx_dma(priv, chan); 2003 2004 priv->dev->stats.tx_errors++; 2005 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2006 } 2007 2008 /** 2009 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2010 * @priv: driver private structure 2011 * @txmode: TX operating mode 2012 * @rxmode: RX operating mode 2013 * @chan: channel index 2014 * Description: it is used for configuring of the DMA operation mode in 2015 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2016 * mode. 2017 */ 2018 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2019 u32 rxmode, u32 chan) 2020 { 2021 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2022 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2023 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2024 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2025 int rxfifosz = priv->plat->rx_fifo_size; 2026 int txfifosz = priv->plat->tx_fifo_size; 2027 2028 if (rxfifosz == 0) 2029 rxfifosz = priv->dma_cap.rx_fifo_size; 2030 if (txfifosz == 0) 2031 txfifosz = priv->dma_cap.tx_fifo_size; 2032 2033 /* Adjust for real per queue fifo size */ 2034 rxfifosz /= rx_channels_count; 2035 txfifosz /= tx_channels_count; 2036 2037 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2038 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2039 } 2040 2041 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2042 { 2043 int ret; 2044 2045 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2046 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2047 if (ret && (ret != -EINVAL)) { 2048 stmmac_global_err(priv); 2049 return true; 2050 } 2051 2052 return false; 2053 } 2054 2055 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2056 { 2057 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2058 &priv->xstats, chan); 2059 struct stmmac_channel *ch = &priv->channel[chan]; 2060 2061 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2062 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2063 napi_schedule_irqoff(&ch->rx_napi); 2064 } 2065 2066 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2067 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2068 napi_schedule_irqoff(&ch->tx_napi); 2069 } 2070 2071 return status; 2072 } 2073 2074 /** 2075 * stmmac_dma_interrupt - DMA ISR 2076 * @priv: driver private structure 2077 * Description: this is the DMA ISR. It is called by the main ISR. 2078 * It calls the dwmac dma routine and schedule poll method in case of some 2079 * work can be done. 2080 */ 2081 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2082 { 2083 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2084 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2085 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2086 tx_channel_count : rx_channel_count; 2087 u32 chan; 2088 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2089 2090 /* Make sure we never check beyond our status buffer. */ 2091 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2092 channels_to_check = ARRAY_SIZE(status); 2093 2094 for (chan = 0; chan < channels_to_check; chan++) 2095 status[chan] = stmmac_napi_check(priv, chan); 2096 2097 for (chan = 0; chan < tx_channel_count; chan++) { 2098 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2099 /* Try to bump up the dma threshold on this failure */ 2100 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2101 (tc <= 256)) { 2102 tc += 64; 2103 if (priv->plat->force_thresh_dma_mode) 2104 stmmac_set_dma_operation_mode(priv, 2105 tc, 2106 tc, 2107 chan); 2108 else 2109 stmmac_set_dma_operation_mode(priv, 2110 tc, 2111 SF_DMA_MODE, 2112 chan); 2113 priv->xstats.threshold = tc; 2114 } 2115 } else if (unlikely(status[chan] == tx_hard_error)) { 2116 stmmac_tx_err(priv, chan); 2117 } 2118 } 2119 } 2120 2121 /** 2122 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2123 * @priv: driver private structure 2124 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2125 */ 2126 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2127 { 2128 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2129 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2130 2131 dwmac_mmc_intr_all_mask(priv->mmcaddr); 2132 2133 if (priv->dma_cap.rmon) { 2134 dwmac_mmc_ctrl(priv->mmcaddr, mode); 2135 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2136 } else 2137 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2138 } 2139 2140 /** 2141 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2142 * @priv: driver private structure 2143 * Description: 2144 * new GMAC chip generations have a new register to indicate the 2145 * presence of the optional feature/functions. 2146 * This can be also used to override the value passed through the 2147 * platform and necessary for old MAC10/100 and GMAC chips. 2148 */ 2149 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2150 { 2151 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2152 } 2153 2154 /** 2155 * stmmac_check_ether_addr - check if the MAC addr is valid 2156 * @priv: driver private structure 2157 * Description: 2158 * it is to verify if the MAC address is valid, in case of failures it 2159 * generates a random MAC address 2160 */ 2161 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2162 { 2163 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2164 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2165 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2166 eth_hw_addr_random(priv->dev); 2167 netdev_info(priv->dev, "device MAC address %pM\n", 2168 priv->dev->dev_addr); 2169 } 2170 } 2171 2172 /** 2173 * stmmac_init_dma_engine - DMA init. 2174 * @priv: driver private structure 2175 * Description: 2176 * It inits the DMA invoking the specific MAC/GMAC callback. 2177 * Some DMA parameters can be passed from the platform; 2178 * in case of these are not passed a default is kept for the MAC or GMAC. 2179 */ 2180 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2181 { 2182 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2183 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2184 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2185 struct stmmac_rx_queue *rx_q; 2186 struct stmmac_tx_queue *tx_q; 2187 u32 chan = 0; 2188 int atds = 0; 2189 int ret = 0; 2190 2191 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2192 dev_err(priv->device, "Invalid DMA configuration\n"); 2193 return -EINVAL; 2194 } 2195 2196 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2197 atds = 1; 2198 2199 ret = stmmac_reset(priv, priv->ioaddr); 2200 if (ret) { 2201 dev_err(priv->device, "Failed to reset the dma\n"); 2202 return ret; 2203 } 2204 2205 /* DMA Configuration */ 2206 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2207 2208 if (priv->plat->axi) 2209 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2210 2211 /* DMA RX Channel Configuration */ 2212 for (chan = 0; chan < rx_channels_count; chan++) { 2213 rx_q = &priv->rx_queue[chan]; 2214 2215 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2216 rx_q->dma_rx_phy, chan); 2217 2218 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2219 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2220 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2221 rx_q->rx_tail_addr, chan); 2222 } 2223 2224 /* DMA TX Channel Configuration */ 2225 for (chan = 0; chan < tx_channels_count; chan++) { 2226 tx_q = &priv->tx_queue[chan]; 2227 2228 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2229 tx_q->dma_tx_phy, chan); 2230 2231 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2232 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2233 tx_q->tx_tail_addr, chan); 2234 } 2235 2236 /* DMA CSR Channel configuration */ 2237 for (chan = 0; chan < dma_csr_ch; chan++) 2238 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2239 2240 return ret; 2241 } 2242 2243 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2244 { 2245 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2246 2247 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2248 } 2249 2250 /** 2251 * stmmac_tx_timer - mitigation sw timer for tx. 2252 * @data: data pointer 2253 * Description: 2254 * This is the timer handler to directly invoke the stmmac_tx_clean. 2255 */ 2256 static void stmmac_tx_timer(struct timer_list *t) 2257 { 2258 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2259 struct stmmac_priv *priv = tx_q->priv_data; 2260 struct stmmac_channel *ch; 2261 2262 ch = &priv->channel[tx_q->queue_index]; 2263 2264 /* 2265 * If NAPI is already running we can miss some events. Let's rearm 2266 * the timer and try again. 2267 */ 2268 if (likely(napi_schedule_prep(&ch->tx_napi))) 2269 __napi_schedule(&ch->tx_napi); 2270 else 2271 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 2272 } 2273 2274 /** 2275 * stmmac_init_tx_coalesce - init tx mitigation options. 2276 * @priv: driver private structure 2277 * Description: 2278 * This inits the transmit coalesce parameters: i.e. timer rate, 2279 * timer handler and default threshold used for enabling the 2280 * interrupt on completion bit. 2281 */ 2282 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 2283 { 2284 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2285 u32 chan; 2286 2287 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2288 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2289 2290 for (chan = 0; chan < tx_channel_count; chan++) { 2291 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2292 2293 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2294 } 2295 } 2296 2297 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2298 { 2299 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2300 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2301 u32 chan; 2302 2303 /* set TX ring length */ 2304 for (chan = 0; chan < tx_channels_count; chan++) 2305 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2306 (DMA_TX_SIZE - 1), chan); 2307 2308 /* set RX ring length */ 2309 for (chan = 0; chan < rx_channels_count; chan++) 2310 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2311 (DMA_RX_SIZE - 1), chan); 2312 } 2313 2314 /** 2315 * stmmac_set_tx_queue_weight - Set TX queue weight 2316 * @priv: driver private structure 2317 * Description: It is used for setting TX queues weight 2318 */ 2319 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2320 { 2321 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2322 u32 weight; 2323 u32 queue; 2324 2325 for (queue = 0; queue < tx_queues_count; queue++) { 2326 weight = priv->plat->tx_queues_cfg[queue].weight; 2327 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2328 } 2329 } 2330 2331 /** 2332 * stmmac_configure_cbs - Configure CBS in TX queue 2333 * @priv: driver private structure 2334 * Description: It is used for configuring CBS in AVB TX queues 2335 */ 2336 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2337 { 2338 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2339 u32 mode_to_use; 2340 u32 queue; 2341 2342 /* queue 0 is reserved for legacy traffic */ 2343 for (queue = 1; queue < tx_queues_count; queue++) { 2344 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2345 if (mode_to_use == MTL_QUEUE_DCB) 2346 continue; 2347 2348 stmmac_config_cbs(priv, priv->hw, 2349 priv->plat->tx_queues_cfg[queue].send_slope, 2350 priv->plat->tx_queues_cfg[queue].idle_slope, 2351 priv->plat->tx_queues_cfg[queue].high_credit, 2352 priv->plat->tx_queues_cfg[queue].low_credit, 2353 queue); 2354 } 2355 } 2356 2357 /** 2358 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2359 * @priv: driver private structure 2360 * Description: It is used for mapping RX queues to RX dma channels 2361 */ 2362 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2363 { 2364 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2365 u32 queue; 2366 u32 chan; 2367 2368 for (queue = 0; queue < rx_queues_count; queue++) { 2369 chan = priv->plat->rx_queues_cfg[queue].chan; 2370 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2371 } 2372 } 2373 2374 /** 2375 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2376 * @priv: driver private structure 2377 * Description: It is used for configuring the RX Queue Priority 2378 */ 2379 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2380 { 2381 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2382 u32 queue; 2383 u32 prio; 2384 2385 for (queue = 0; queue < rx_queues_count; queue++) { 2386 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2387 continue; 2388 2389 prio = priv->plat->rx_queues_cfg[queue].prio; 2390 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2391 } 2392 } 2393 2394 /** 2395 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2396 * @priv: driver private structure 2397 * Description: It is used for configuring the TX Queue Priority 2398 */ 2399 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2400 { 2401 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2402 u32 queue; 2403 u32 prio; 2404 2405 for (queue = 0; queue < tx_queues_count; queue++) { 2406 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2407 continue; 2408 2409 prio = priv->plat->tx_queues_cfg[queue].prio; 2410 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2411 } 2412 } 2413 2414 /** 2415 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2416 * @priv: driver private structure 2417 * Description: It is used for configuring the RX queue routing 2418 */ 2419 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2420 { 2421 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2422 u32 queue; 2423 u8 packet; 2424 2425 for (queue = 0; queue < rx_queues_count; queue++) { 2426 /* no specific packet type routing specified for the queue */ 2427 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2428 continue; 2429 2430 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2431 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2432 } 2433 } 2434 2435 /** 2436 * stmmac_mtl_configuration - Configure MTL 2437 * @priv: driver private structure 2438 * Description: It is used for configurring MTL 2439 */ 2440 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2441 { 2442 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2443 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2444 2445 if (tx_queues_count > 1) 2446 stmmac_set_tx_queue_weight(priv); 2447 2448 /* Configure MTL RX algorithms */ 2449 if (rx_queues_count > 1) 2450 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2451 priv->plat->rx_sched_algorithm); 2452 2453 /* Configure MTL TX algorithms */ 2454 if (tx_queues_count > 1) 2455 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2456 priv->plat->tx_sched_algorithm); 2457 2458 /* Configure CBS in AVB TX queues */ 2459 if (tx_queues_count > 1) 2460 stmmac_configure_cbs(priv); 2461 2462 /* Map RX MTL to DMA channels */ 2463 stmmac_rx_queue_dma_chan_map(priv); 2464 2465 /* Enable MAC RX Queues */ 2466 stmmac_mac_enable_rx_queues(priv); 2467 2468 /* Set RX priorities */ 2469 if (rx_queues_count > 1) 2470 stmmac_mac_config_rx_queues_prio(priv); 2471 2472 /* Set TX priorities */ 2473 if (tx_queues_count > 1) 2474 stmmac_mac_config_tx_queues_prio(priv); 2475 2476 /* Set RX routing */ 2477 if (rx_queues_count > 1) 2478 stmmac_mac_config_rx_queues_routing(priv); 2479 } 2480 2481 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2482 { 2483 if (priv->dma_cap.asp) { 2484 netdev_info(priv->dev, "Enabling Safety Features\n"); 2485 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2486 } else { 2487 netdev_info(priv->dev, "No Safety Features support found\n"); 2488 } 2489 } 2490 2491 /** 2492 * stmmac_hw_setup - setup mac in a usable state. 2493 * @dev : pointer to the device structure. 2494 * Description: 2495 * this is the main function to setup the HW in a usable state because the 2496 * dma engine is reset, the core registers are configured (e.g. AXI, 2497 * Checksum features, timers). The DMA is ready to start receiving and 2498 * transmitting. 2499 * Return value: 2500 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2501 * file on failure. 2502 */ 2503 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2504 { 2505 struct stmmac_priv *priv = netdev_priv(dev); 2506 u32 rx_cnt = priv->plat->rx_queues_to_use; 2507 u32 tx_cnt = priv->plat->tx_queues_to_use; 2508 u32 chan; 2509 int ret; 2510 2511 /* DMA initialization and SW reset */ 2512 ret = stmmac_init_dma_engine(priv); 2513 if (ret < 0) { 2514 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2515 __func__); 2516 return ret; 2517 } 2518 2519 /* Copy the MAC addr into the HW */ 2520 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2521 2522 /* PS and related bits will be programmed according to the speed */ 2523 if (priv->hw->pcs) { 2524 int speed = priv->plat->mac_port_sel_speed; 2525 2526 if ((speed == SPEED_10) || (speed == SPEED_100) || 2527 (speed == SPEED_1000)) { 2528 priv->hw->ps = speed; 2529 } else { 2530 dev_warn(priv->device, "invalid port speed\n"); 2531 priv->hw->ps = 0; 2532 } 2533 } 2534 2535 /* Initialize the MAC Core */ 2536 stmmac_core_init(priv, priv->hw, dev); 2537 2538 /* Initialize MTL*/ 2539 stmmac_mtl_configuration(priv); 2540 2541 /* Initialize Safety Features */ 2542 stmmac_safety_feat_configuration(priv); 2543 2544 ret = stmmac_rx_ipc(priv, priv->hw); 2545 if (!ret) { 2546 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2547 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2548 priv->hw->rx_csum = 0; 2549 } 2550 2551 /* Enable the MAC Rx/Tx */ 2552 stmmac_mac_set(priv, priv->ioaddr, true); 2553 2554 /* Set the HW DMA mode and the COE */ 2555 stmmac_dma_operation_mode(priv); 2556 2557 stmmac_mmc_setup(priv); 2558 2559 if (init_ptp) { 2560 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2561 if (ret < 0) 2562 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2563 2564 ret = stmmac_init_ptp(priv); 2565 if (ret == -EOPNOTSUPP) 2566 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2567 else if (ret) 2568 netdev_warn(priv->dev, "PTP init failed\n"); 2569 } 2570 2571 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2572 2573 if (priv->use_riwt) { 2574 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt); 2575 if (!ret) 2576 priv->rx_riwt = MAX_DMA_RIWT; 2577 } 2578 2579 if (priv->hw->pcs) 2580 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0); 2581 2582 /* set TX and RX rings length */ 2583 stmmac_set_rings_length(priv); 2584 2585 /* Enable TSO */ 2586 if (priv->tso) { 2587 for (chan = 0; chan < tx_cnt; chan++) 2588 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2589 } 2590 2591 /* Start the ball rolling... */ 2592 stmmac_start_all_dma(priv); 2593 2594 return 0; 2595 } 2596 2597 static void stmmac_hw_teardown(struct net_device *dev) 2598 { 2599 struct stmmac_priv *priv = netdev_priv(dev); 2600 2601 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2602 } 2603 2604 /** 2605 * stmmac_open - open entry point of the driver 2606 * @dev : pointer to the device structure. 2607 * Description: 2608 * This function is the open entry point of the driver. 2609 * Return value: 2610 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2611 * file on failure. 2612 */ 2613 static int stmmac_open(struct net_device *dev) 2614 { 2615 struct stmmac_priv *priv = netdev_priv(dev); 2616 u32 chan; 2617 int ret; 2618 2619 stmmac_check_ether_addr(priv); 2620 2621 if (priv->hw->pcs != STMMAC_PCS_RGMII && 2622 priv->hw->pcs != STMMAC_PCS_TBI && 2623 priv->hw->pcs != STMMAC_PCS_RTBI) { 2624 ret = stmmac_init_phy(dev); 2625 if (ret) { 2626 netdev_err(priv->dev, 2627 "%s: Cannot attach to PHY (error: %d)\n", 2628 __func__, ret); 2629 return ret; 2630 } 2631 } 2632 2633 /* Extra statistics */ 2634 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2635 priv->xstats.threshold = tc; 2636 2637 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 2638 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2639 2640 ret = alloc_dma_desc_resources(priv); 2641 if (ret < 0) { 2642 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2643 __func__); 2644 goto dma_desc_error; 2645 } 2646 2647 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2648 if (ret < 0) { 2649 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2650 __func__); 2651 goto init_error; 2652 } 2653 2654 ret = stmmac_hw_setup(dev, true); 2655 if (ret < 0) { 2656 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2657 goto init_error; 2658 } 2659 2660 stmmac_init_tx_coalesce(priv); 2661 2662 if (dev->phydev) 2663 phy_start(dev->phydev); 2664 2665 /* Request the IRQ lines */ 2666 ret = request_irq(dev->irq, stmmac_interrupt, 2667 IRQF_SHARED, dev->name, dev); 2668 if (unlikely(ret < 0)) { 2669 netdev_err(priv->dev, 2670 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2671 __func__, dev->irq, ret); 2672 goto irq_error; 2673 } 2674 2675 /* Request the Wake IRQ in case of another line is used for WoL */ 2676 if (priv->wol_irq != dev->irq) { 2677 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2678 IRQF_SHARED, dev->name, dev); 2679 if (unlikely(ret < 0)) { 2680 netdev_err(priv->dev, 2681 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2682 __func__, priv->wol_irq, ret); 2683 goto wolirq_error; 2684 } 2685 } 2686 2687 /* Request the IRQ lines */ 2688 if (priv->lpi_irq > 0) { 2689 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2690 dev->name, dev); 2691 if (unlikely(ret < 0)) { 2692 netdev_err(priv->dev, 2693 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2694 __func__, priv->lpi_irq, ret); 2695 goto lpiirq_error; 2696 } 2697 } 2698 2699 stmmac_enable_all_queues(priv); 2700 stmmac_start_all_queues(priv); 2701 2702 return 0; 2703 2704 lpiirq_error: 2705 if (priv->wol_irq != dev->irq) 2706 free_irq(priv->wol_irq, dev); 2707 wolirq_error: 2708 free_irq(dev->irq, dev); 2709 irq_error: 2710 if (dev->phydev) 2711 phy_stop(dev->phydev); 2712 2713 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2714 del_timer_sync(&priv->tx_queue[chan].txtimer); 2715 2716 stmmac_hw_teardown(dev); 2717 init_error: 2718 free_dma_desc_resources(priv); 2719 dma_desc_error: 2720 if (dev->phydev) 2721 phy_disconnect(dev->phydev); 2722 2723 return ret; 2724 } 2725 2726 /** 2727 * stmmac_release - close entry point of the driver 2728 * @dev : device pointer. 2729 * Description: 2730 * This is the stop entry point of the driver. 2731 */ 2732 static int stmmac_release(struct net_device *dev) 2733 { 2734 struct stmmac_priv *priv = netdev_priv(dev); 2735 u32 chan; 2736 2737 if (priv->eee_enabled) 2738 del_timer_sync(&priv->eee_ctrl_timer); 2739 2740 /* Stop and disconnect the PHY */ 2741 if (dev->phydev) { 2742 phy_stop(dev->phydev); 2743 phy_disconnect(dev->phydev); 2744 } 2745 2746 stmmac_stop_all_queues(priv); 2747 2748 stmmac_disable_all_queues(priv); 2749 2750 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2751 del_timer_sync(&priv->tx_queue[chan].txtimer); 2752 2753 /* Free the IRQ lines */ 2754 free_irq(dev->irq, dev); 2755 if (priv->wol_irq != dev->irq) 2756 free_irq(priv->wol_irq, dev); 2757 if (priv->lpi_irq > 0) 2758 free_irq(priv->lpi_irq, dev); 2759 2760 /* Stop TX/RX DMA and clear the descriptors */ 2761 stmmac_stop_all_dma(priv); 2762 2763 /* Release and free the Rx/Tx resources */ 2764 free_dma_desc_resources(priv); 2765 2766 /* Disable the MAC Rx/Tx */ 2767 stmmac_mac_set(priv, priv->ioaddr, false); 2768 2769 netif_carrier_off(dev); 2770 2771 stmmac_release_ptp(priv); 2772 2773 return 0; 2774 } 2775 2776 /** 2777 * stmmac_tso_allocator - close entry point of the driver 2778 * @priv: driver private structure 2779 * @des: buffer start address 2780 * @total_len: total length to fill in descriptors 2781 * @last_segmant: condition for the last descriptor 2782 * @queue: TX queue index 2783 * Description: 2784 * This function fills descriptor and request new descriptors according to 2785 * buffer length to fill 2786 */ 2787 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, 2788 int total_len, bool last_segment, u32 queue) 2789 { 2790 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2791 struct dma_desc *desc; 2792 u32 buff_size; 2793 int tmp_len; 2794 2795 tmp_len = total_len; 2796 2797 while (tmp_len > 0) { 2798 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2799 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2800 desc = tx_q->dma_tx + tx_q->cur_tx; 2801 2802 desc->des0 = cpu_to_le32(des + (total_len - tmp_len)); 2803 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2804 TSO_MAX_BUFF_SIZE : tmp_len; 2805 2806 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2807 0, 1, 2808 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2809 0, 0); 2810 2811 tmp_len -= TSO_MAX_BUFF_SIZE; 2812 } 2813 } 2814 2815 /** 2816 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2817 * @skb : the socket buffer 2818 * @dev : device pointer 2819 * Description: this is the transmit function that is called on TSO frames 2820 * (support available on GMAC4 and newer chips). 2821 * Diagram below show the ring programming in case of TSO frames: 2822 * 2823 * First Descriptor 2824 * -------- 2825 * | DES0 |---> buffer1 = L2/L3/L4 header 2826 * | DES1 |---> TCP Payload (can continue on next descr...) 2827 * | DES2 |---> buffer 1 and 2 len 2828 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2829 * -------- 2830 * | 2831 * ... 2832 * | 2833 * -------- 2834 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2835 * | DES1 | --| 2836 * | DES2 | --> buffer 1 and 2 len 2837 * | DES3 | 2838 * -------- 2839 * 2840 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2841 */ 2842 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2843 { 2844 struct dma_desc *desc, *first, *mss_desc = NULL; 2845 struct stmmac_priv *priv = netdev_priv(dev); 2846 int nfrags = skb_shinfo(skb)->nr_frags; 2847 u32 queue = skb_get_queue_mapping(skb); 2848 unsigned int first_entry, des; 2849 struct stmmac_tx_queue *tx_q; 2850 int tmp_pay_len = 0; 2851 u32 pay_len, mss; 2852 u8 proto_hdr_len; 2853 int i; 2854 2855 tx_q = &priv->tx_queue[queue]; 2856 2857 /* Compute header lengths */ 2858 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2859 2860 /* Desc availability based on threshold should be enough safe */ 2861 if (unlikely(stmmac_tx_avail(priv, queue) < 2862 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2863 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2864 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2865 queue)); 2866 /* This is a hard error, log it. */ 2867 netdev_err(priv->dev, 2868 "%s: Tx Ring full when queue awake\n", 2869 __func__); 2870 } 2871 return NETDEV_TX_BUSY; 2872 } 2873 2874 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2875 2876 mss = skb_shinfo(skb)->gso_size; 2877 2878 /* set new MSS value if needed */ 2879 if (mss != tx_q->mss) { 2880 mss_desc = tx_q->dma_tx + tx_q->cur_tx; 2881 stmmac_set_mss(priv, mss_desc, mss); 2882 tx_q->mss = mss; 2883 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2884 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2885 } 2886 2887 if (netif_msg_tx_queued(priv)) { 2888 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2889 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2890 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2891 skb->data_len); 2892 } 2893 2894 first_entry = tx_q->cur_tx; 2895 WARN_ON(tx_q->tx_skbuff[first_entry]); 2896 2897 desc = tx_q->dma_tx + first_entry; 2898 first = desc; 2899 2900 /* first descriptor: fill Headers on Buf1 */ 2901 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2902 DMA_TO_DEVICE); 2903 if (dma_mapping_error(priv->device, des)) 2904 goto dma_map_err; 2905 2906 tx_q->tx_skbuff_dma[first_entry].buf = des; 2907 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2908 2909 first->des0 = cpu_to_le32(des); 2910 2911 /* Fill start of payload in buff2 of first descriptor */ 2912 if (pay_len) 2913 first->des1 = cpu_to_le32(des + proto_hdr_len); 2914 2915 /* If needed take extra descriptors to fill the remaining payload */ 2916 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2917 2918 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 2919 2920 /* Prepare fragments */ 2921 for (i = 0; i < nfrags; i++) { 2922 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2923 2924 des = skb_frag_dma_map(priv->device, frag, 0, 2925 skb_frag_size(frag), 2926 DMA_TO_DEVICE); 2927 if (dma_mapping_error(priv->device, des)) 2928 goto dma_map_err; 2929 2930 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 2931 (i == nfrags - 1), queue); 2932 2933 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 2934 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 2935 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 2936 } 2937 2938 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 2939 2940 /* Only the last descriptor gets to point to the skb. */ 2941 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 2942 2943 /* We've used all descriptors we need for this skb, however, 2944 * advance cur_tx so that it references a fresh descriptor. 2945 * ndo_start_xmit will fill this descriptor the next time it's 2946 * called and stmmac_tx_clean may clean up to this descriptor. 2947 */ 2948 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2949 2950 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 2951 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 2952 __func__); 2953 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 2954 } 2955 2956 dev->stats.tx_bytes += skb->len; 2957 priv->xstats.tx_tso_frames++; 2958 priv->xstats.tx_tso_nfrags += nfrags; 2959 2960 /* Manage tx mitigation */ 2961 tx_q->tx_count_frames += nfrags + 1; 2962 if (priv->tx_coal_frames <= tx_q->tx_count_frames) { 2963 stmmac_set_tx_ic(priv, desc); 2964 priv->xstats.tx_set_ic_bit++; 2965 tx_q->tx_count_frames = 0; 2966 } else { 2967 stmmac_tx_timer_arm(priv, queue); 2968 } 2969 2970 skb_tx_timestamp(skb); 2971 2972 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2973 priv->hwts_tx_en)) { 2974 /* declare that device is doing timestamping */ 2975 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2976 stmmac_enable_tx_timestamp(priv, first); 2977 } 2978 2979 /* Complete the first descriptor before granting the DMA */ 2980 stmmac_prepare_tso_tx_desc(priv, first, 1, 2981 proto_hdr_len, 2982 pay_len, 2983 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 2984 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 2985 2986 /* If context desc is used to change MSS */ 2987 if (mss_desc) { 2988 /* Make sure that first descriptor has been completely 2989 * written, including its own bit. This is because MSS is 2990 * actually before first descriptor, so we need to make 2991 * sure that MSS's own bit is the last thing written. 2992 */ 2993 dma_wmb(); 2994 stmmac_set_tx_owner(priv, mss_desc); 2995 } 2996 2997 /* The own bit must be the latest setting done when prepare the 2998 * descriptor and then barrier is needed to make sure that 2999 * all is coherent before granting the DMA engine. 3000 */ 3001 wmb(); 3002 3003 if (netif_msg_pktdata(priv)) { 3004 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 3005 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3006 tx_q->cur_tx, first, nfrags); 3007 3008 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0); 3009 3010 pr_info(">>> frame to be transmitted: "); 3011 print_pkt(skb->data, skb_headlen(skb)); 3012 } 3013 3014 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3015 3016 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3017 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3018 3019 return NETDEV_TX_OK; 3020 3021 dma_map_err: 3022 dev_err(priv->device, "Tx dma map failed\n"); 3023 dev_kfree_skb(skb); 3024 priv->dev->stats.tx_dropped++; 3025 return NETDEV_TX_OK; 3026 } 3027 3028 /** 3029 * stmmac_xmit - Tx entry point of the driver 3030 * @skb : the socket buffer 3031 * @dev : device pointer 3032 * Description : this is the tx entry point of the driver. 3033 * It programs the chain or the ring and supports oversized frames 3034 * and SG feature. 3035 */ 3036 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3037 { 3038 struct stmmac_priv *priv = netdev_priv(dev); 3039 unsigned int nopaged_len = skb_headlen(skb); 3040 int i, csum_insertion = 0, is_jumbo = 0; 3041 u32 queue = skb_get_queue_mapping(skb); 3042 int nfrags = skb_shinfo(skb)->nr_frags; 3043 int entry; 3044 unsigned int first_entry; 3045 struct dma_desc *desc, *first; 3046 struct stmmac_tx_queue *tx_q; 3047 unsigned int enh_desc; 3048 unsigned int des; 3049 3050 tx_q = &priv->tx_queue[queue]; 3051 3052 if (priv->tx_path_in_lpi_mode) 3053 stmmac_disable_eee_mode(priv); 3054 3055 /* Manage oversized TCP frames for GMAC4 device */ 3056 if (skb_is_gso(skb) && priv->tso) { 3057 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 3058 /* 3059 * There is no way to determine the number of TSO 3060 * capable Queues. Let's use always the Queue 0 3061 * because if TSO is supported then at least this 3062 * one will be capable. 3063 */ 3064 skb_set_queue_mapping(skb, 0); 3065 3066 return stmmac_tso_xmit(skb, dev); 3067 } 3068 } 3069 3070 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3071 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3072 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3073 queue)); 3074 /* This is a hard error, log it. */ 3075 netdev_err(priv->dev, 3076 "%s: Tx Ring full when queue awake\n", 3077 __func__); 3078 } 3079 return NETDEV_TX_BUSY; 3080 } 3081 3082 entry = tx_q->cur_tx; 3083 first_entry = entry; 3084 WARN_ON(tx_q->tx_skbuff[first_entry]); 3085 3086 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3087 3088 if (likely(priv->extend_desc)) 3089 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3090 else 3091 desc = tx_q->dma_tx + entry; 3092 3093 first = desc; 3094 3095 enh_desc = priv->plat->enh_desc; 3096 /* To program the descriptors according to the size of the frame */ 3097 if (enh_desc) 3098 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3099 3100 if (unlikely(is_jumbo)) { 3101 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3102 if (unlikely(entry < 0) && (entry != -EINVAL)) 3103 goto dma_map_err; 3104 } 3105 3106 for (i = 0; i < nfrags; i++) { 3107 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3108 int len = skb_frag_size(frag); 3109 bool last_segment = (i == (nfrags - 1)); 3110 3111 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3112 WARN_ON(tx_q->tx_skbuff[entry]); 3113 3114 if (likely(priv->extend_desc)) 3115 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3116 else 3117 desc = tx_q->dma_tx + entry; 3118 3119 des = skb_frag_dma_map(priv->device, frag, 0, len, 3120 DMA_TO_DEVICE); 3121 if (dma_mapping_error(priv->device, des)) 3122 goto dma_map_err; /* should reuse desc w/o issues */ 3123 3124 tx_q->tx_skbuff_dma[entry].buf = des; 3125 3126 stmmac_set_desc_addr(priv, desc, des); 3127 3128 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3129 tx_q->tx_skbuff_dma[entry].len = len; 3130 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3131 3132 /* Prepare the descriptor and set the own bit too */ 3133 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3134 priv->mode, 1, last_segment, skb->len); 3135 } 3136 3137 /* Only the last descriptor gets to point to the skb. */ 3138 tx_q->tx_skbuff[entry] = skb; 3139 3140 /* We've used all descriptors we need for this skb, however, 3141 * advance cur_tx so that it references a fresh descriptor. 3142 * ndo_start_xmit will fill this descriptor the next time it's 3143 * called and stmmac_tx_clean may clean up to this descriptor. 3144 */ 3145 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3146 tx_q->cur_tx = entry; 3147 3148 if (netif_msg_pktdata(priv)) { 3149 void *tx_head; 3150 3151 netdev_dbg(priv->dev, 3152 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3153 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3154 entry, first, nfrags); 3155 3156 if (priv->extend_desc) 3157 tx_head = (void *)tx_q->dma_etx; 3158 else 3159 tx_head = (void *)tx_q->dma_tx; 3160 3161 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false); 3162 3163 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3164 print_pkt(skb->data, skb->len); 3165 } 3166 3167 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3168 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3169 __func__); 3170 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3171 } 3172 3173 dev->stats.tx_bytes += skb->len; 3174 3175 /* According to the coalesce parameter the IC bit for the latest 3176 * segment is reset and the timer re-started to clean the tx status. 3177 * This approach takes care about the fragments: desc is the first 3178 * element in case of no SG. 3179 */ 3180 tx_q->tx_count_frames += nfrags + 1; 3181 if (priv->tx_coal_frames <= tx_q->tx_count_frames) { 3182 stmmac_set_tx_ic(priv, desc); 3183 priv->xstats.tx_set_ic_bit++; 3184 tx_q->tx_count_frames = 0; 3185 } else { 3186 stmmac_tx_timer_arm(priv, queue); 3187 } 3188 3189 skb_tx_timestamp(skb); 3190 3191 /* Ready to fill the first descriptor and set the OWN bit w/o any 3192 * problems because all the descriptors are actually ready to be 3193 * passed to the DMA engine. 3194 */ 3195 if (likely(!is_jumbo)) { 3196 bool last_segment = (nfrags == 0); 3197 3198 des = dma_map_single(priv->device, skb->data, 3199 nopaged_len, DMA_TO_DEVICE); 3200 if (dma_mapping_error(priv->device, des)) 3201 goto dma_map_err; 3202 3203 tx_q->tx_skbuff_dma[first_entry].buf = des; 3204 3205 stmmac_set_desc_addr(priv, first, des); 3206 3207 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3208 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3209 3210 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3211 priv->hwts_tx_en)) { 3212 /* declare that device is doing timestamping */ 3213 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3214 stmmac_enable_tx_timestamp(priv, first); 3215 } 3216 3217 /* Prepare the first descriptor setting the OWN bit too */ 3218 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3219 csum_insertion, priv->mode, 1, last_segment, 3220 skb->len); 3221 } else { 3222 stmmac_set_tx_owner(priv, first); 3223 } 3224 3225 /* The own bit must be the latest setting done when prepare the 3226 * descriptor and then barrier is needed to make sure that 3227 * all is coherent before granting the DMA engine. 3228 */ 3229 wmb(); 3230 3231 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3232 3233 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3234 3235 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3236 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3237 3238 return NETDEV_TX_OK; 3239 3240 dma_map_err: 3241 netdev_err(priv->dev, "Tx DMA map failed\n"); 3242 dev_kfree_skb(skb); 3243 priv->dev->stats.tx_dropped++; 3244 return NETDEV_TX_OK; 3245 } 3246 3247 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3248 { 3249 struct vlan_ethhdr *veth; 3250 __be16 vlan_proto; 3251 u16 vlanid; 3252 3253 veth = (struct vlan_ethhdr *)skb->data; 3254 vlan_proto = veth->h_vlan_proto; 3255 3256 if ((vlan_proto == htons(ETH_P_8021Q) && 3257 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3258 (vlan_proto == htons(ETH_P_8021AD) && 3259 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3260 /* pop the vlan tag */ 3261 vlanid = ntohs(veth->h_vlan_TCI); 3262 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3263 skb_pull(skb, VLAN_HLEN); 3264 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3265 } 3266 } 3267 3268 3269 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3270 { 3271 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3272 return 0; 3273 3274 return 1; 3275 } 3276 3277 /** 3278 * stmmac_rx_refill - refill used skb preallocated buffers 3279 * @priv: driver private structure 3280 * @queue: RX queue index 3281 * Description : this is to reallocate the skb for the reception process 3282 * that is based on zero-copy. 3283 */ 3284 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3285 { 3286 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3287 int dirty = stmmac_rx_dirty(priv, queue); 3288 unsigned int entry = rx_q->dirty_rx; 3289 3290 int bfsize = priv->dma_buf_sz; 3291 3292 while (dirty-- > 0) { 3293 struct dma_desc *p; 3294 3295 if (priv->extend_desc) 3296 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3297 else 3298 p = rx_q->dma_rx + entry; 3299 3300 if (likely(!rx_q->rx_skbuff[entry])) { 3301 struct sk_buff *skb; 3302 3303 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 3304 if (unlikely(!skb)) { 3305 /* so for a while no zero-copy! */ 3306 rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH; 3307 if (unlikely(net_ratelimit())) 3308 dev_err(priv->device, 3309 "fail to alloc skb entry %d\n", 3310 entry); 3311 break; 3312 } 3313 3314 rx_q->rx_skbuff[entry] = skb; 3315 rx_q->rx_skbuff_dma[entry] = 3316 dma_map_single(priv->device, skb->data, bfsize, 3317 DMA_FROM_DEVICE); 3318 if (dma_mapping_error(priv->device, 3319 rx_q->rx_skbuff_dma[entry])) { 3320 netdev_err(priv->dev, "Rx DMA map failed\n"); 3321 dev_kfree_skb(skb); 3322 break; 3323 } 3324 3325 stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]); 3326 stmmac_refill_desc3(priv, rx_q, p); 3327 3328 if (rx_q->rx_zeroc_thresh > 0) 3329 rx_q->rx_zeroc_thresh--; 3330 3331 netif_dbg(priv, rx_status, priv->dev, 3332 "refill entry #%d\n", entry); 3333 } 3334 dma_wmb(); 3335 3336 stmmac_set_rx_owner(priv, p, priv->use_riwt); 3337 3338 dma_wmb(); 3339 3340 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3341 } 3342 rx_q->dirty_rx = entry; 3343 } 3344 3345 /** 3346 * stmmac_rx - manage the receive process 3347 * @priv: driver private structure 3348 * @limit: napi bugget 3349 * @queue: RX queue index. 3350 * Description : this the function called by the napi poll method. 3351 * It gets all the frames inside the ring. 3352 */ 3353 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3354 { 3355 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3356 struct stmmac_channel *ch = &priv->channel[queue]; 3357 unsigned int next_entry = rx_q->cur_rx; 3358 int coe = priv->hw->rx_csum; 3359 unsigned int count = 0; 3360 bool xmac; 3361 3362 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3363 3364 if (netif_msg_rx_status(priv)) { 3365 void *rx_head; 3366 3367 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3368 if (priv->extend_desc) 3369 rx_head = (void *)rx_q->dma_erx; 3370 else 3371 rx_head = (void *)rx_q->dma_rx; 3372 3373 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3374 } 3375 while (count < limit) { 3376 int entry, status; 3377 struct dma_desc *p; 3378 struct dma_desc *np; 3379 3380 entry = next_entry; 3381 3382 if (priv->extend_desc) 3383 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3384 else 3385 p = rx_q->dma_rx + entry; 3386 3387 /* read the status of the incoming frame */ 3388 status = stmmac_rx_status(priv, &priv->dev->stats, 3389 &priv->xstats, p); 3390 /* check if managed by the DMA otherwise go ahead */ 3391 if (unlikely(status & dma_own)) 3392 break; 3393 3394 count++; 3395 3396 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3397 next_entry = rx_q->cur_rx; 3398 3399 if (priv->extend_desc) 3400 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3401 else 3402 np = rx_q->dma_rx + next_entry; 3403 3404 prefetch(np); 3405 3406 if (priv->extend_desc) 3407 stmmac_rx_extended_status(priv, &priv->dev->stats, 3408 &priv->xstats, rx_q->dma_erx + entry); 3409 if (unlikely(status == discard_frame)) { 3410 priv->dev->stats.rx_errors++; 3411 if (priv->hwts_rx_en && !priv->extend_desc) { 3412 /* DESC2 & DESC3 will be overwritten by device 3413 * with timestamp value, hence reinitialize 3414 * them in stmmac_rx_refill() function so that 3415 * device can reuse it. 3416 */ 3417 dev_kfree_skb_any(rx_q->rx_skbuff[entry]); 3418 rx_q->rx_skbuff[entry] = NULL; 3419 dma_unmap_single(priv->device, 3420 rx_q->rx_skbuff_dma[entry], 3421 priv->dma_buf_sz, 3422 DMA_FROM_DEVICE); 3423 } 3424 } else { 3425 struct sk_buff *skb; 3426 int frame_len; 3427 unsigned int des; 3428 3429 stmmac_get_desc_addr(priv, p, &des); 3430 frame_len = stmmac_get_rx_frame_len(priv, p, coe); 3431 3432 /* If frame length is greater than skb buffer size 3433 * (preallocated during init) then the packet is 3434 * ignored 3435 */ 3436 if (frame_len > priv->dma_buf_sz) { 3437 if (net_ratelimit()) 3438 netdev_err(priv->dev, 3439 "len %d larger than size (%d)\n", 3440 frame_len, priv->dma_buf_sz); 3441 priv->dev->stats.rx_length_errors++; 3442 continue; 3443 } 3444 3445 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3446 * Type frames (LLC/LLC-SNAP) 3447 * 3448 * llc_snap is never checked in GMAC >= 4, so this ACS 3449 * feature is always disabled and packets need to be 3450 * stripped manually. 3451 */ 3452 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3453 unlikely(status != llc_snap)) 3454 frame_len -= ETH_FCS_LEN; 3455 3456 if (netif_msg_rx_status(priv)) { 3457 netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n", 3458 p, entry, des); 3459 netdev_dbg(priv->dev, "frame size %d, COE: %d\n", 3460 frame_len, status); 3461 } 3462 3463 /* The zero-copy is always used for all the sizes 3464 * in case of GMAC4 because it needs 3465 * to refill the used descriptors, always. 3466 */ 3467 if (unlikely(!xmac && 3468 ((frame_len < priv->rx_copybreak) || 3469 stmmac_rx_threshold_count(rx_q)))) { 3470 skb = netdev_alloc_skb_ip_align(priv->dev, 3471 frame_len); 3472 if (unlikely(!skb)) { 3473 if (net_ratelimit()) 3474 dev_warn(priv->device, 3475 "packet dropped\n"); 3476 priv->dev->stats.rx_dropped++; 3477 continue; 3478 } 3479 3480 dma_sync_single_for_cpu(priv->device, 3481 rx_q->rx_skbuff_dma 3482 [entry], frame_len, 3483 DMA_FROM_DEVICE); 3484 skb_copy_to_linear_data(skb, 3485 rx_q-> 3486 rx_skbuff[entry]->data, 3487 frame_len); 3488 3489 skb_put(skb, frame_len); 3490 dma_sync_single_for_device(priv->device, 3491 rx_q->rx_skbuff_dma 3492 [entry], frame_len, 3493 DMA_FROM_DEVICE); 3494 } else { 3495 skb = rx_q->rx_skbuff[entry]; 3496 if (unlikely(!skb)) { 3497 if (net_ratelimit()) 3498 netdev_err(priv->dev, 3499 "%s: Inconsistent Rx chain\n", 3500 priv->dev->name); 3501 priv->dev->stats.rx_dropped++; 3502 continue; 3503 } 3504 prefetch(skb->data - NET_IP_ALIGN); 3505 rx_q->rx_skbuff[entry] = NULL; 3506 rx_q->rx_zeroc_thresh++; 3507 3508 skb_put(skb, frame_len); 3509 dma_unmap_single(priv->device, 3510 rx_q->rx_skbuff_dma[entry], 3511 priv->dma_buf_sz, 3512 DMA_FROM_DEVICE); 3513 } 3514 3515 if (netif_msg_pktdata(priv)) { 3516 netdev_dbg(priv->dev, "frame received (%dbytes)", 3517 frame_len); 3518 print_pkt(skb->data, frame_len); 3519 } 3520 3521 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3522 3523 stmmac_rx_vlan(priv->dev, skb); 3524 3525 skb->protocol = eth_type_trans(skb, priv->dev); 3526 3527 if (unlikely(!coe)) 3528 skb_checksum_none_assert(skb); 3529 else 3530 skb->ip_summed = CHECKSUM_UNNECESSARY; 3531 3532 napi_gro_receive(&ch->rx_napi, skb); 3533 3534 priv->dev->stats.rx_packets++; 3535 priv->dev->stats.rx_bytes += frame_len; 3536 } 3537 } 3538 3539 stmmac_rx_refill(priv, queue); 3540 3541 priv->xstats.rx_pkt_n += count; 3542 3543 return count; 3544 } 3545 3546 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 3547 { 3548 struct stmmac_channel *ch = 3549 container_of(napi, struct stmmac_channel, rx_napi); 3550 struct stmmac_priv *priv = ch->priv_data; 3551 u32 chan = ch->index; 3552 int work_done; 3553 3554 priv->xstats.napi_poll++; 3555 3556 work_done = stmmac_rx(priv, budget, chan); 3557 if (work_done < budget && napi_complete_done(napi, work_done)) 3558 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3559 return work_done; 3560 } 3561 3562 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 3563 { 3564 struct stmmac_channel *ch = 3565 container_of(napi, struct stmmac_channel, tx_napi); 3566 struct stmmac_priv *priv = ch->priv_data; 3567 struct stmmac_tx_queue *tx_q; 3568 u32 chan = ch->index; 3569 int work_done; 3570 3571 priv->xstats.napi_poll++; 3572 3573 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan); 3574 work_done = min(work_done, budget); 3575 3576 if (work_done < budget && napi_complete_done(napi, work_done)) 3577 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3578 3579 /* Force transmission restart */ 3580 tx_q = &priv->tx_queue[chan]; 3581 if (tx_q->cur_tx != tx_q->dirty_tx) { 3582 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3583 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, 3584 chan); 3585 } 3586 3587 return work_done; 3588 } 3589 3590 /** 3591 * stmmac_tx_timeout 3592 * @dev : Pointer to net device structure 3593 * Description: this function is called when a packet transmission fails to 3594 * complete within a reasonable time. The driver will mark the error in the 3595 * netdev structure and arrange for the device to be reset to a sane state 3596 * in order to transmit a new packet. 3597 */ 3598 static void stmmac_tx_timeout(struct net_device *dev) 3599 { 3600 struct stmmac_priv *priv = netdev_priv(dev); 3601 3602 stmmac_global_err(priv); 3603 } 3604 3605 /** 3606 * stmmac_set_rx_mode - entry point for multicast addressing 3607 * @dev : pointer to the device structure 3608 * Description: 3609 * This function is a driver entry point which gets called by the kernel 3610 * whenever multicast addresses must be enabled/disabled. 3611 * Return value: 3612 * void. 3613 */ 3614 static void stmmac_set_rx_mode(struct net_device *dev) 3615 { 3616 struct stmmac_priv *priv = netdev_priv(dev); 3617 3618 stmmac_set_filter(priv, priv->hw, dev); 3619 } 3620 3621 /** 3622 * stmmac_change_mtu - entry point to change MTU size for the device. 3623 * @dev : device pointer. 3624 * @new_mtu : the new MTU size for the device. 3625 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3626 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3627 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3628 * Return value: 3629 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3630 * file on failure. 3631 */ 3632 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3633 { 3634 struct stmmac_priv *priv = netdev_priv(dev); 3635 3636 if (netif_running(dev)) { 3637 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3638 return -EBUSY; 3639 } 3640 3641 dev->mtu = new_mtu; 3642 3643 netdev_update_features(dev); 3644 3645 return 0; 3646 } 3647 3648 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3649 netdev_features_t features) 3650 { 3651 struct stmmac_priv *priv = netdev_priv(dev); 3652 3653 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3654 features &= ~NETIF_F_RXCSUM; 3655 3656 if (!priv->plat->tx_coe) 3657 features &= ~NETIF_F_CSUM_MASK; 3658 3659 /* Some GMAC devices have a bugged Jumbo frame support that 3660 * needs to have the Tx COE disabled for oversized frames 3661 * (due to limited buffer sizes). In this case we disable 3662 * the TX csum insertion in the TDES and not use SF. 3663 */ 3664 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3665 features &= ~NETIF_F_CSUM_MASK; 3666 3667 /* Disable tso if asked by ethtool */ 3668 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3669 if (features & NETIF_F_TSO) 3670 priv->tso = true; 3671 else 3672 priv->tso = false; 3673 } 3674 3675 return features; 3676 } 3677 3678 static int stmmac_set_features(struct net_device *netdev, 3679 netdev_features_t features) 3680 { 3681 struct stmmac_priv *priv = netdev_priv(netdev); 3682 3683 /* Keep the COE Type in case of csum is supporting */ 3684 if (features & NETIF_F_RXCSUM) 3685 priv->hw->rx_csum = priv->plat->rx_coe; 3686 else 3687 priv->hw->rx_csum = 0; 3688 /* No check needed because rx_coe has been set before and it will be 3689 * fixed in case of issue. 3690 */ 3691 stmmac_rx_ipc(priv, priv->hw); 3692 3693 return 0; 3694 } 3695 3696 /** 3697 * stmmac_interrupt - main ISR 3698 * @irq: interrupt number. 3699 * @dev_id: to pass the net device pointer. 3700 * Description: this is the main driver interrupt service routine. 3701 * It can call: 3702 * o DMA service routine (to manage incoming frame reception and transmission 3703 * status) 3704 * o Core interrupts to manage: remote wake-up, management counter, LPI 3705 * interrupts. 3706 */ 3707 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 3708 { 3709 struct net_device *dev = (struct net_device *)dev_id; 3710 struct stmmac_priv *priv = netdev_priv(dev); 3711 u32 rx_cnt = priv->plat->rx_queues_to_use; 3712 u32 tx_cnt = priv->plat->tx_queues_to_use; 3713 u32 queues_count; 3714 u32 queue; 3715 bool xmac; 3716 3717 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3718 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 3719 3720 if (priv->irq_wake) 3721 pm_wakeup_event(priv->device, 0); 3722 3723 if (unlikely(!dev)) { 3724 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 3725 return IRQ_NONE; 3726 } 3727 3728 /* Check if adapter is up */ 3729 if (test_bit(STMMAC_DOWN, &priv->state)) 3730 return IRQ_HANDLED; 3731 /* Check if a fatal error happened */ 3732 if (stmmac_safety_feat_interrupt(priv)) 3733 return IRQ_HANDLED; 3734 3735 /* To handle GMAC own interrupts */ 3736 if ((priv->plat->has_gmac) || xmac) { 3737 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 3738 int mtl_status; 3739 3740 if (unlikely(status)) { 3741 /* For LPI we need to save the tx status */ 3742 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 3743 priv->tx_path_in_lpi_mode = true; 3744 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 3745 priv->tx_path_in_lpi_mode = false; 3746 } 3747 3748 for (queue = 0; queue < queues_count; queue++) { 3749 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3750 3751 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 3752 queue); 3753 if (mtl_status != -EINVAL) 3754 status |= mtl_status; 3755 3756 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 3757 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3758 rx_q->rx_tail_addr, 3759 queue); 3760 } 3761 3762 /* PCS link status */ 3763 if (priv->hw->pcs) { 3764 if (priv->xstats.pcs_link) 3765 netif_carrier_on(dev); 3766 else 3767 netif_carrier_off(dev); 3768 } 3769 } 3770 3771 /* To handle DMA interrupts */ 3772 stmmac_dma_interrupt(priv); 3773 3774 return IRQ_HANDLED; 3775 } 3776 3777 #ifdef CONFIG_NET_POLL_CONTROLLER 3778 /* Polling receive - used by NETCONSOLE and other diagnostic tools 3779 * to allow network I/O with interrupts disabled. 3780 */ 3781 static void stmmac_poll_controller(struct net_device *dev) 3782 { 3783 disable_irq(dev->irq); 3784 stmmac_interrupt(dev->irq, dev); 3785 enable_irq(dev->irq); 3786 } 3787 #endif 3788 3789 /** 3790 * stmmac_ioctl - Entry point for the Ioctl 3791 * @dev: Device pointer. 3792 * @rq: An IOCTL specefic structure, that can contain a pointer to 3793 * a proprietary structure used to pass information to the driver. 3794 * @cmd: IOCTL command 3795 * Description: 3796 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 3797 */ 3798 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3799 { 3800 int ret = -EOPNOTSUPP; 3801 3802 if (!netif_running(dev)) 3803 return -EINVAL; 3804 3805 switch (cmd) { 3806 case SIOCGMIIPHY: 3807 case SIOCGMIIREG: 3808 case SIOCSMIIREG: 3809 if (!dev->phydev) 3810 return -EINVAL; 3811 ret = phy_mii_ioctl(dev->phydev, rq, cmd); 3812 break; 3813 case SIOCSHWTSTAMP: 3814 ret = stmmac_hwtstamp_set(dev, rq); 3815 break; 3816 case SIOCGHWTSTAMP: 3817 ret = stmmac_hwtstamp_get(dev, rq); 3818 break; 3819 default: 3820 break; 3821 } 3822 3823 return ret; 3824 } 3825 3826 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3827 void *cb_priv) 3828 { 3829 struct stmmac_priv *priv = cb_priv; 3830 int ret = -EOPNOTSUPP; 3831 3832 stmmac_disable_all_queues(priv); 3833 3834 switch (type) { 3835 case TC_SETUP_CLSU32: 3836 if (tc_cls_can_offload_and_chain0(priv->dev, type_data)) 3837 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 3838 break; 3839 default: 3840 break; 3841 } 3842 3843 stmmac_enable_all_queues(priv); 3844 return ret; 3845 } 3846 3847 static int stmmac_setup_tc_block(struct stmmac_priv *priv, 3848 struct tc_block_offload *f) 3849 { 3850 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS) 3851 return -EOPNOTSUPP; 3852 3853 switch (f->command) { 3854 case TC_BLOCK_BIND: 3855 return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb, 3856 priv, priv, f->extack); 3857 case TC_BLOCK_UNBIND: 3858 tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv); 3859 return 0; 3860 default: 3861 return -EOPNOTSUPP; 3862 } 3863 } 3864 3865 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 3866 void *type_data) 3867 { 3868 struct stmmac_priv *priv = netdev_priv(ndev); 3869 3870 switch (type) { 3871 case TC_SETUP_BLOCK: 3872 return stmmac_setup_tc_block(priv, type_data); 3873 case TC_SETUP_QDISC_CBS: 3874 return stmmac_tc_setup_cbs(priv, priv, type_data); 3875 default: 3876 return -EOPNOTSUPP; 3877 } 3878 } 3879 3880 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 3881 { 3882 struct stmmac_priv *priv = netdev_priv(ndev); 3883 int ret = 0; 3884 3885 ret = eth_mac_addr(ndev, addr); 3886 if (ret) 3887 return ret; 3888 3889 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 3890 3891 return ret; 3892 } 3893 3894 #ifdef CONFIG_DEBUG_FS 3895 static struct dentry *stmmac_fs_dir; 3896 3897 static void sysfs_display_ring(void *head, int size, int extend_desc, 3898 struct seq_file *seq) 3899 { 3900 int i; 3901 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 3902 struct dma_desc *p = (struct dma_desc *)head; 3903 3904 for (i = 0; i < size; i++) { 3905 if (extend_desc) { 3906 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3907 i, (unsigned int)virt_to_phys(ep), 3908 le32_to_cpu(ep->basic.des0), 3909 le32_to_cpu(ep->basic.des1), 3910 le32_to_cpu(ep->basic.des2), 3911 le32_to_cpu(ep->basic.des3)); 3912 ep++; 3913 } else { 3914 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 3915 i, (unsigned int)virt_to_phys(p), 3916 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 3917 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 3918 p++; 3919 } 3920 seq_printf(seq, "\n"); 3921 } 3922 } 3923 3924 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 3925 { 3926 struct net_device *dev = seq->private; 3927 struct stmmac_priv *priv = netdev_priv(dev); 3928 u32 rx_count = priv->plat->rx_queues_to_use; 3929 u32 tx_count = priv->plat->tx_queues_to_use; 3930 u32 queue; 3931 3932 if ((dev->flags & IFF_UP) == 0) 3933 return 0; 3934 3935 for (queue = 0; queue < rx_count; queue++) { 3936 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3937 3938 seq_printf(seq, "RX Queue %d:\n", queue); 3939 3940 if (priv->extend_desc) { 3941 seq_printf(seq, "Extended descriptor ring:\n"); 3942 sysfs_display_ring((void *)rx_q->dma_erx, 3943 DMA_RX_SIZE, 1, seq); 3944 } else { 3945 seq_printf(seq, "Descriptor ring:\n"); 3946 sysfs_display_ring((void *)rx_q->dma_rx, 3947 DMA_RX_SIZE, 0, seq); 3948 } 3949 } 3950 3951 for (queue = 0; queue < tx_count; queue++) { 3952 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3953 3954 seq_printf(seq, "TX Queue %d:\n", queue); 3955 3956 if (priv->extend_desc) { 3957 seq_printf(seq, "Extended descriptor ring:\n"); 3958 sysfs_display_ring((void *)tx_q->dma_etx, 3959 DMA_TX_SIZE, 1, seq); 3960 } else { 3961 seq_printf(seq, "Descriptor ring:\n"); 3962 sysfs_display_ring((void *)tx_q->dma_tx, 3963 DMA_TX_SIZE, 0, seq); 3964 } 3965 } 3966 3967 return 0; 3968 } 3969 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 3970 3971 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 3972 { 3973 struct net_device *dev = seq->private; 3974 struct stmmac_priv *priv = netdev_priv(dev); 3975 3976 if (!priv->hw_cap_support) { 3977 seq_printf(seq, "DMA HW features not supported\n"); 3978 return 0; 3979 } 3980 3981 seq_printf(seq, "==============================\n"); 3982 seq_printf(seq, "\tDMA HW features\n"); 3983 seq_printf(seq, "==============================\n"); 3984 3985 seq_printf(seq, "\t10/100 Mbps: %s\n", 3986 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 3987 seq_printf(seq, "\t1000 Mbps: %s\n", 3988 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 3989 seq_printf(seq, "\tHalf duplex: %s\n", 3990 (priv->dma_cap.half_duplex) ? "Y" : "N"); 3991 seq_printf(seq, "\tHash Filter: %s\n", 3992 (priv->dma_cap.hash_filter) ? "Y" : "N"); 3993 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 3994 (priv->dma_cap.multi_addr) ? "Y" : "N"); 3995 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 3996 (priv->dma_cap.pcs) ? "Y" : "N"); 3997 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 3998 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 3999 seq_printf(seq, "\tPMT Remote wake up: %s\n", 4000 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 4001 seq_printf(seq, "\tPMT Magic Frame: %s\n", 4002 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 4003 seq_printf(seq, "\tRMON module: %s\n", 4004 (priv->dma_cap.rmon) ? "Y" : "N"); 4005 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 4006 (priv->dma_cap.time_stamp) ? "Y" : "N"); 4007 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 4008 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 4009 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 4010 (priv->dma_cap.eee) ? "Y" : "N"); 4011 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 4012 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 4013 (priv->dma_cap.tx_coe) ? "Y" : "N"); 4014 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 4015 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 4016 (priv->dma_cap.rx_coe) ? "Y" : "N"); 4017 } else { 4018 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 4019 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 4020 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 4021 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 4022 } 4023 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 4024 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 4025 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 4026 priv->dma_cap.number_rx_channel); 4027 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 4028 priv->dma_cap.number_tx_channel); 4029 seq_printf(seq, "\tEnhanced descriptors: %s\n", 4030 (priv->dma_cap.enh_desc) ? "Y" : "N"); 4031 4032 return 0; 4033 } 4034 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 4035 4036 static int stmmac_init_fs(struct net_device *dev) 4037 { 4038 struct stmmac_priv *priv = netdev_priv(dev); 4039 4040 /* Create per netdev entries */ 4041 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 4042 4043 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 4044 netdev_err(priv->dev, "ERROR failed to create debugfs directory\n"); 4045 4046 return -ENOMEM; 4047 } 4048 4049 /* Entry to report DMA RX/TX rings */ 4050 priv->dbgfs_rings_status = 4051 debugfs_create_file("descriptors_status", 0444, 4052 priv->dbgfs_dir, dev, 4053 &stmmac_rings_status_fops); 4054 4055 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 4056 netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n"); 4057 debugfs_remove_recursive(priv->dbgfs_dir); 4058 4059 return -ENOMEM; 4060 } 4061 4062 /* Entry to report the DMA HW features */ 4063 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444, 4064 priv->dbgfs_dir, 4065 dev, &stmmac_dma_cap_fops); 4066 4067 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 4068 netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n"); 4069 debugfs_remove_recursive(priv->dbgfs_dir); 4070 4071 return -ENOMEM; 4072 } 4073 4074 return 0; 4075 } 4076 4077 static void stmmac_exit_fs(struct net_device *dev) 4078 { 4079 struct stmmac_priv *priv = netdev_priv(dev); 4080 4081 debugfs_remove_recursive(priv->dbgfs_dir); 4082 } 4083 #endif /* CONFIG_DEBUG_FS */ 4084 4085 static const struct net_device_ops stmmac_netdev_ops = { 4086 .ndo_open = stmmac_open, 4087 .ndo_start_xmit = stmmac_xmit, 4088 .ndo_stop = stmmac_release, 4089 .ndo_change_mtu = stmmac_change_mtu, 4090 .ndo_fix_features = stmmac_fix_features, 4091 .ndo_set_features = stmmac_set_features, 4092 .ndo_set_rx_mode = stmmac_set_rx_mode, 4093 .ndo_tx_timeout = stmmac_tx_timeout, 4094 .ndo_do_ioctl = stmmac_ioctl, 4095 .ndo_setup_tc = stmmac_setup_tc, 4096 #ifdef CONFIG_NET_POLL_CONTROLLER 4097 .ndo_poll_controller = stmmac_poll_controller, 4098 #endif 4099 .ndo_set_mac_address = stmmac_set_mac_address, 4100 }; 4101 4102 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4103 { 4104 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4105 return; 4106 if (test_bit(STMMAC_DOWN, &priv->state)) 4107 return; 4108 4109 netdev_err(priv->dev, "Reset adapter.\n"); 4110 4111 rtnl_lock(); 4112 netif_trans_update(priv->dev); 4113 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4114 usleep_range(1000, 2000); 4115 4116 set_bit(STMMAC_DOWN, &priv->state); 4117 dev_close(priv->dev); 4118 dev_open(priv->dev, NULL); 4119 clear_bit(STMMAC_DOWN, &priv->state); 4120 clear_bit(STMMAC_RESETING, &priv->state); 4121 rtnl_unlock(); 4122 } 4123 4124 static void stmmac_service_task(struct work_struct *work) 4125 { 4126 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4127 service_task); 4128 4129 stmmac_reset_subtask(priv); 4130 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4131 } 4132 4133 /** 4134 * stmmac_hw_init - Init the MAC device 4135 * @priv: driver private structure 4136 * Description: this function is to configure the MAC device according to 4137 * some platform parameters or the HW capability register. It prepares the 4138 * driver to use either ring or chain modes and to setup either enhanced or 4139 * normal descriptors. 4140 */ 4141 static int stmmac_hw_init(struct stmmac_priv *priv) 4142 { 4143 int ret; 4144 4145 /* dwmac-sun8i only work in chain mode */ 4146 if (priv->plat->has_sun8i) 4147 chain_mode = 1; 4148 priv->chain_mode = chain_mode; 4149 4150 /* Initialize HW Interface */ 4151 ret = stmmac_hwif_init(priv); 4152 if (ret) 4153 return ret; 4154 4155 /* Get the HW capability (new GMAC newer than 3.50a) */ 4156 priv->hw_cap_support = stmmac_get_hw_features(priv); 4157 if (priv->hw_cap_support) { 4158 dev_info(priv->device, "DMA HW capability register supported\n"); 4159 4160 /* We can override some gmac/dma configuration fields: e.g. 4161 * enh_desc, tx_coe (e.g. that are passed through the 4162 * platform) with the values from the HW capability 4163 * register (if supported). 4164 */ 4165 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4166 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4167 priv->hw->pmt = priv->plat->pmt; 4168 4169 /* TXCOE doesn't work in thresh DMA mode */ 4170 if (priv->plat->force_thresh_dma_mode) 4171 priv->plat->tx_coe = 0; 4172 else 4173 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4174 4175 /* In case of GMAC4 rx_coe is from HW cap register. */ 4176 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4177 4178 if (priv->dma_cap.rx_coe_type2) 4179 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4180 else if (priv->dma_cap.rx_coe_type1) 4181 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4182 4183 } else { 4184 dev_info(priv->device, "No HW DMA feature register supported\n"); 4185 } 4186 4187 if (priv->plat->rx_coe) { 4188 priv->hw->rx_csum = priv->plat->rx_coe; 4189 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4190 if (priv->synopsys_id < DWMAC_CORE_4_00) 4191 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4192 } 4193 if (priv->plat->tx_coe) 4194 dev_info(priv->device, "TX Checksum insertion supported\n"); 4195 4196 if (priv->plat->pmt) { 4197 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4198 device_set_wakeup_capable(priv->device, 1); 4199 } 4200 4201 if (priv->dma_cap.tsoen) 4202 dev_info(priv->device, "TSO supported\n"); 4203 4204 /* Run HW quirks, if any */ 4205 if (priv->hwif_quirks) { 4206 ret = priv->hwif_quirks(priv); 4207 if (ret) 4208 return ret; 4209 } 4210 4211 /* Rx Watchdog is available in the COREs newer than the 3.40. 4212 * In some case, for example on bugged HW this feature 4213 * has to be disable and this can be done by passing the 4214 * riwt_off field from the platform. 4215 */ 4216 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4217 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4218 priv->use_riwt = 1; 4219 dev_info(priv->device, 4220 "Enable RX Mitigation via HW Watchdog Timer\n"); 4221 } 4222 4223 return 0; 4224 } 4225 4226 /** 4227 * stmmac_dvr_probe 4228 * @device: device pointer 4229 * @plat_dat: platform data pointer 4230 * @res: stmmac resource pointer 4231 * Description: this is the main probe function used to 4232 * call the alloc_etherdev, allocate the priv structure. 4233 * Return: 4234 * returns 0 on success, otherwise errno. 4235 */ 4236 int stmmac_dvr_probe(struct device *device, 4237 struct plat_stmmacenet_data *plat_dat, 4238 struct stmmac_resources *res) 4239 { 4240 struct net_device *ndev = NULL; 4241 struct stmmac_priv *priv; 4242 u32 queue, maxq; 4243 int ret = 0; 4244 4245 ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv), 4246 MTL_MAX_TX_QUEUES, 4247 MTL_MAX_RX_QUEUES); 4248 if (!ndev) 4249 return -ENOMEM; 4250 4251 SET_NETDEV_DEV(ndev, device); 4252 4253 priv = netdev_priv(ndev); 4254 priv->device = device; 4255 priv->dev = ndev; 4256 4257 stmmac_set_ethtool_ops(ndev); 4258 priv->pause = pause; 4259 priv->plat = plat_dat; 4260 priv->ioaddr = res->addr; 4261 priv->dev->base_addr = (unsigned long)res->addr; 4262 4263 priv->dev->irq = res->irq; 4264 priv->wol_irq = res->wol_irq; 4265 priv->lpi_irq = res->lpi_irq; 4266 4267 if (res->mac) 4268 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4269 4270 dev_set_drvdata(device, priv->dev); 4271 4272 /* Verify driver arguments */ 4273 stmmac_verify_args(); 4274 4275 /* Allocate workqueue */ 4276 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4277 if (!priv->wq) { 4278 dev_err(priv->device, "failed to create workqueue\n"); 4279 ret = -ENOMEM; 4280 goto error_wq; 4281 } 4282 4283 INIT_WORK(&priv->service_task, stmmac_service_task); 4284 4285 /* Override with kernel parameters if supplied XXX CRS XXX 4286 * this needs to have multiple instances 4287 */ 4288 if ((phyaddr >= 0) && (phyaddr <= 31)) 4289 priv->plat->phy_addr = phyaddr; 4290 4291 if (priv->plat->stmmac_rst) { 4292 ret = reset_control_assert(priv->plat->stmmac_rst); 4293 reset_control_deassert(priv->plat->stmmac_rst); 4294 /* Some reset controllers have only reset callback instead of 4295 * assert + deassert callbacks pair. 4296 */ 4297 if (ret == -ENOTSUPP) 4298 reset_control_reset(priv->plat->stmmac_rst); 4299 } 4300 4301 /* Init MAC and get the capabilities */ 4302 ret = stmmac_hw_init(priv); 4303 if (ret) 4304 goto error_hw_init; 4305 4306 /* Configure real RX and TX queues */ 4307 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4308 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4309 4310 ndev->netdev_ops = &stmmac_netdev_ops; 4311 4312 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4313 NETIF_F_RXCSUM; 4314 4315 ret = stmmac_tc_init(priv, priv); 4316 if (!ret) { 4317 ndev->hw_features |= NETIF_F_HW_TC; 4318 } 4319 4320 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4321 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4322 priv->tso = true; 4323 dev_info(priv->device, "TSO feature enabled\n"); 4324 } 4325 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4326 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4327 #ifdef STMMAC_VLAN_TAG_USED 4328 /* Both mac100 and gmac support receive VLAN tag detection */ 4329 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4330 #endif 4331 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4332 4333 /* MTU range: 46 - hw-specific max */ 4334 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4335 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4336 ndev->max_mtu = JUMBO_LEN; 4337 else if (priv->plat->has_xgmac) 4338 ndev->max_mtu = XGMAC_JUMBO_LEN; 4339 else 4340 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4341 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4342 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4343 */ 4344 if ((priv->plat->maxmtu < ndev->max_mtu) && 4345 (priv->plat->maxmtu >= ndev->min_mtu)) 4346 ndev->max_mtu = priv->plat->maxmtu; 4347 else if (priv->plat->maxmtu < ndev->min_mtu) 4348 dev_warn(priv->device, 4349 "%s: warning: maxmtu having invalid value (%d)\n", 4350 __func__, priv->plat->maxmtu); 4351 4352 if (flow_ctrl) 4353 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4354 4355 /* Setup channels NAPI */ 4356 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4357 4358 for (queue = 0; queue < maxq; queue++) { 4359 struct stmmac_channel *ch = &priv->channel[queue]; 4360 4361 ch->priv_data = priv; 4362 ch->index = queue; 4363 4364 if (queue < priv->plat->rx_queues_to_use) { 4365 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx, 4366 NAPI_POLL_WEIGHT); 4367 } 4368 if (queue < priv->plat->tx_queues_to_use) { 4369 netif_napi_add(ndev, &ch->tx_napi, stmmac_napi_poll_tx, 4370 NAPI_POLL_WEIGHT); 4371 } 4372 } 4373 4374 mutex_init(&priv->lock); 4375 4376 /* If a specific clk_csr value is passed from the platform 4377 * this means that the CSR Clock Range selection cannot be 4378 * changed at run-time and it is fixed. Viceversa the driver'll try to 4379 * set the MDC clock dynamically according to the csr actual 4380 * clock input. 4381 */ 4382 if (!priv->plat->clk_csr) 4383 stmmac_clk_csr_set(priv); 4384 else 4385 priv->clk_csr = priv->plat->clk_csr; 4386 4387 stmmac_check_pcs_mode(priv); 4388 4389 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4390 priv->hw->pcs != STMMAC_PCS_TBI && 4391 priv->hw->pcs != STMMAC_PCS_RTBI) { 4392 /* MDIO bus Registration */ 4393 ret = stmmac_mdio_register(ndev); 4394 if (ret < 0) { 4395 dev_err(priv->device, 4396 "%s: MDIO bus (id: %d) registration failed", 4397 __func__, priv->plat->bus_id); 4398 goto error_mdio_register; 4399 } 4400 } 4401 4402 ret = register_netdev(ndev); 4403 if (ret) { 4404 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4405 __func__, ret); 4406 goto error_netdev_register; 4407 } 4408 4409 #ifdef CONFIG_DEBUG_FS 4410 ret = stmmac_init_fs(ndev); 4411 if (ret < 0) 4412 netdev_warn(priv->dev, "%s: failed debugFS registration\n", 4413 __func__); 4414 #endif 4415 4416 return ret; 4417 4418 error_netdev_register: 4419 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4420 priv->hw->pcs != STMMAC_PCS_TBI && 4421 priv->hw->pcs != STMMAC_PCS_RTBI) 4422 stmmac_mdio_unregister(ndev); 4423 error_mdio_register: 4424 for (queue = 0; queue < maxq; queue++) { 4425 struct stmmac_channel *ch = &priv->channel[queue]; 4426 4427 if (queue < priv->plat->rx_queues_to_use) 4428 netif_napi_del(&ch->rx_napi); 4429 if (queue < priv->plat->tx_queues_to_use) 4430 netif_napi_del(&ch->tx_napi); 4431 } 4432 error_hw_init: 4433 destroy_workqueue(priv->wq); 4434 error_wq: 4435 free_netdev(ndev); 4436 4437 return ret; 4438 } 4439 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4440 4441 /** 4442 * stmmac_dvr_remove 4443 * @dev: device pointer 4444 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4445 * changes the link status, releases the DMA descriptor rings. 4446 */ 4447 int stmmac_dvr_remove(struct device *dev) 4448 { 4449 struct net_device *ndev = dev_get_drvdata(dev); 4450 struct stmmac_priv *priv = netdev_priv(ndev); 4451 4452 netdev_info(priv->dev, "%s: removing driver", __func__); 4453 4454 #ifdef CONFIG_DEBUG_FS 4455 stmmac_exit_fs(ndev); 4456 #endif 4457 stmmac_stop_all_dma(priv); 4458 4459 stmmac_mac_set(priv, priv->ioaddr, false); 4460 netif_carrier_off(ndev); 4461 unregister_netdev(ndev); 4462 if (priv->plat->stmmac_rst) 4463 reset_control_assert(priv->plat->stmmac_rst); 4464 clk_disable_unprepare(priv->plat->pclk); 4465 clk_disable_unprepare(priv->plat->stmmac_clk); 4466 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4467 priv->hw->pcs != STMMAC_PCS_TBI && 4468 priv->hw->pcs != STMMAC_PCS_RTBI) 4469 stmmac_mdio_unregister(ndev); 4470 destroy_workqueue(priv->wq); 4471 mutex_destroy(&priv->lock); 4472 free_netdev(ndev); 4473 4474 return 0; 4475 } 4476 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4477 4478 /** 4479 * stmmac_suspend - suspend callback 4480 * @dev: device pointer 4481 * Description: this is the function to suspend the device and it is called 4482 * by the platform driver to stop the network queue, release the resources, 4483 * program the PMT register (for WoL), clean and release driver resources. 4484 */ 4485 int stmmac_suspend(struct device *dev) 4486 { 4487 struct net_device *ndev = dev_get_drvdata(dev); 4488 struct stmmac_priv *priv = netdev_priv(ndev); 4489 4490 if (!ndev || !netif_running(ndev)) 4491 return 0; 4492 4493 if (ndev->phydev) 4494 phy_stop(ndev->phydev); 4495 4496 mutex_lock(&priv->lock); 4497 4498 netif_device_detach(ndev); 4499 stmmac_stop_all_queues(priv); 4500 4501 stmmac_disable_all_queues(priv); 4502 4503 /* Stop TX/RX DMA */ 4504 stmmac_stop_all_dma(priv); 4505 4506 /* Enable Power down mode by programming the PMT regs */ 4507 if (device_may_wakeup(priv->device)) { 4508 stmmac_pmt(priv, priv->hw, priv->wolopts); 4509 priv->irq_wake = 1; 4510 } else { 4511 stmmac_mac_set(priv, priv->ioaddr, false); 4512 pinctrl_pm_select_sleep_state(priv->device); 4513 /* Disable clock in case of PWM is off */ 4514 clk_disable(priv->plat->pclk); 4515 clk_disable(priv->plat->stmmac_clk); 4516 } 4517 mutex_unlock(&priv->lock); 4518 4519 priv->oldlink = false; 4520 priv->speed = SPEED_UNKNOWN; 4521 priv->oldduplex = DUPLEX_UNKNOWN; 4522 return 0; 4523 } 4524 EXPORT_SYMBOL_GPL(stmmac_suspend); 4525 4526 /** 4527 * stmmac_reset_queues_param - reset queue parameters 4528 * @dev: device pointer 4529 */ 4530 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 4531 { 4532 u32 rx_cnt = priv->plat->rx_queues_to_use; 4533 u32 tx_cnt = priv->plat->tx_queues_to_use; 4534 u32 queue; 4535 4536 for (queue = 0; queue < rx_cnt; queue++) { 4537 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4538 4539 rx_q->cur_rx = 0; 4540 rx_q->dirty_rx = 0; 4541 } 4542 4543 for (queue = 0; queue < tx_cnt; queue++) { 4544 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4545 4546 tx_q->cur_tx = 0; 4547 tx_q->dirty_tx = 0; 4548 tx_q->mss = 0; 4549 } 4550 } 4551 4552 /** 4553 * stmmac_resume - resume callback 4554 * @dev: device pointer 4555 * Description: when resume this function is invoked to setup the DMA and CORE 4556 * in a usable state. 4557 */ 4558 int stmmac_resume(struct device *dev) 4559 { 4560 struct net_device *ndev = dev_get_drvdata(dev); 4561 struct stmmac_priv *priv = netdev_priv(ndev); 4562 4563 if (!netif_running(ndev)) 4564 return 0; 4565 4566 /* Power Down bit, into the PM register, is cleared 4567 * automatically as soon as a magic packet or a Wake-up frame 4568 * is received. Anyway, it's better to manually clear 4569 * this bit because it can generate problems while resuming 4570 * from another devices (e.g. serial console). 4571 */ 4572 if (device_may_wakeup(priv->device)) { 4573 mutex_lock(&priv->lock); 4574 stmmac_pmt(priv, priv->hw, 0); 4575 mutex_unlock(&priv->lock); 4576 priv->irq_wake = 0; 4577 } else { 4578 pinctrl_pm_select_default_state(priv->device); 4579 /* enable the clk previously disabled */ 4580 clk_enable(priv->plat->stmmac_clk); 4581 clk_enable(priv->plat->pclk); 4582 /* reset the phy so that it's ready */ 4583 if (priv->mii) 4584 stmmac_mdio_reset(priv->mii); 4585 } 4586 4587 netif_device_attach(ndev); 4588 4589 mutex_lock(&priv->lock); 4590 4591 stmmac_reset_queues_param(priv); 4592 4593 stmmac_clear_descriptors(priv); 4594 4595 stmmac_hw_setup(ndev, false); 4596 stmmac_init_tx_coalesce(priv); 4597 stmmac_set_rx_mode(ndev); 4598 4599 stmmac_enable_all_queues(priv); 4600 4601 stmmac_start_all_queues(priv); 4602 4603 mutex_unlock(&priv->lock); 4604 4605 if (ndev->phydev) 4606 phy_start(ndev->phydev); 4607 4608 return 0; 4609 } 4610 EXPORT_SYMBOL_GPL(stmmac_resume); 4611 4612 #ifndef MODULE 4613 static int __init stmmac_cmdline_opt(char *str) 4614 { 4615 char *opt; 4616 4617 if (!str || !*str) 4618 return -EINVAL; 4619 while ((opt = strsep(&str, ",")) != NULL) { 4620 if (!strncmp(opt, "debug:", 6)) { 4621 if (kstrtoint(opt + 6, 0, &debug)) 4622 goto err; 4623 } else if (!strncmp(opt, "phyaddr:", 8)) { 4624 if (kstrtoint(opt + 8, 0, &phyaddr)) 4625 goto err; 4626 } else if (!strncmp(opt, "buf_sz:", 7)) { 4627 if (kstrtoint(opt + 7, 0, &buf_sz)) 4628 goto err; 4629 } else if (!strncmp(opt, "tc:", 3)) { 4630 if (kstrtoint(opt + 3, 0, &tc)) 4631 goto err; 4632 } else if (!strncmp(opt, "watchdog:", 9)) { 4633 if (kstrtoint(opt + 9, 0, &watchdog)) 4634 goto err; 4635 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 4636 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 4637 goto err; 4638 } else if (!strncmp(opt, "pause:", 6)) { 4639 if (kstrtoint(opt + 6, 0, &pause)) 4640 goto err; 4641 } else if (!strncmp(opt, "eee_timer:", 10)) { 4642 if (kstrtoint(opt + 10, 0, &eee_timer)) 4643 goto err; 4644 } else if (!strncmp(opt, "chain_mode:", 11)) { 4645 if (kstrtoint(opt + 11, 0, &chain_mode)) 4646 goto err; 4647 } 4648 } 4649 return 0; 4650 4651 err: 4652 pr_err("%s: ERROR broken module parameter conversion", __func__); 4653 return -EINVAL; 4654 } 4655 4656 __setup("stmmaceth=", stmmac_cmdline_opt); 4657 #endif /* MODULE */ 4658 4659 static int __init stmmac_init(void) 4660 { 4661 #ifdef CONFIG_DEBUG_FS 4662 /* Create debugfs main directory if it doesn't exist yet */ 4663 if (!stmmac_fs_dir) { 4664 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 4665 4666 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 4667 pr_err("ERROR %s, debugfs create directory failed\n", 4668 STMMAC_RESOURCE_NAME); 4669 4670 return -ENOMEM; 4671 } 4672 } 4673 #endif 4674 4675 return 0; 4676 } 4677 4678 static void __exit stmmac_exit(void) 4679 { 4680 #ifdef CONFIG_DEBUG_FS 4681 debugfs_remove_recursive(stmmac_fs_dir); 4682 #endif 4683 } 4684 4685 module_init(stmmac_init) 4686 module_exit(stmmac_exit) 4687 4688 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 4689 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 4690 MODULE_LICENSE("GPL"); 4691