1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/prefetch.h> 32 #include <linux/pinctrl/consumer.h> 33 #ifdef CONFIG_DEBUG_FS 34 #include <linux/debugfs.h> 35 #include <linux/seq_file.h> 36 #endif /* CONFIG_DEBUG_FS */ 37 #include <linux/net_tstamp.h> 38 #include <linux/phylink.h> 39 #include <net/pkt_cls.h> 40 #include "stmmac_ptp.h" 41 #include "stmmac.h" 42 #include <linux/reset.h> 43 #include <linux/of_mdio.h> 44 #include "dwmac1000.h" 45 #include "dwxgmac2.h" 46 #include "hwif.h" 47 48 #define STMMAC_ALIGN(x) __ALIGN_KERNEL(x, SMP_CACHE_BYTES) 49 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 50 51 /* Module parameters */ 52 #define TX_TIMEO 5000 53 static int watchdog = TX_TIMEO; 54 module_param(watchdog, int, 0644); 55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 56 57 static int debug = -1; 58 module_param(debug, int, 0644); 59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 60 61 static int phyaddr = -1; 62 module_param(phyaddr, int, 0444); 63 MODULE_PARM_DESC(phyaddr, "Physical device address"); 64 65 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 66 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 67 68 static int flow_ctrl = FLOW_AUTO; 69 module_param(flow_ctrl, int, 0644); 70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 71 72 static int pause = PAUSE_TIME; 73 module_param(pause, int, 0644); 74 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 75 76 #define TC_DEFAULT 64 77 static int tc = TC_DEFAULT; 78 module_param(tc, int, 0644); 79 MODULE_PARM_DESC(tc, "DMA threshold control value"); 80 81 #define DEFAULT_BUFSIZE 1536 82 static int buf_sz = DEFAULT_BUFSIZE; 83 module_param(buf_sz, int, 0644); 84 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 85 86 #define STMMAC_RX_COPYBREAK 256 87 88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 89 NETIF_MSG_LINK | NETIF_MSG_IFUP | 90 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 91 92 #define STMMAC_DEFAULT_LPI_TIMER 1000 93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 94 module_param(eee_timer, int, 0644); 95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 97 98 /* By default the driver will use the ring mode to manage tx and rx descriptors, 99 * but allow user to force to use the chain instead of the ring 100 */ 101 static unsigned int chain_mode; 102 module_param(chain_mode, int, 0444); 103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 104 105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 106 107 #ifdef CONFIG_DEBUG_FS 108 static void stmmac_init_fs(struct net_device *dev); 109 static void stmmac_exit_fs(struct net_device *dev); 110 #endif 111 112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 113 114 /** 115 * stmmac_verify_args - verify the driver parameters. 116 * Description: it checks the driver parameters and set a default in case of 117 * errors. 118 */ 119 static void stmmac_verify_args(void) 120 { 121 if (unlikely(watchdog < 0)) 122 watchdog = TX_TIMEO; 123 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 124 buf_sz = DEFAULT_BUFSIZE; 125 if (unlikely(flow_ctrl > 1)) 126 flow_ctrl = FLOW_AUTO; 127 else if (likely(flow_ctrl < 0)) 128 flow_ctrl = FLOW_OFF; 129 if (unlikely((pause < 0) || (pause > 0xffff))) 130 pause = PAUSE_TIME; 131 if (eee_timer < 0) 132 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 133 } 134 135 /** 136 * stmmac_disable_all_queues - Disable all queues 137 * @priv: driver private structure 138 */ 139 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 140 { 141 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 142 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 143 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 144 u32 queue; 145 146 for (queue = 0; queue < maxq; queue++) { 147 struct stmmac_channel *ch = &priv->channel[queue]; 148 149 if (queue < rx_queues_cnt) 150 napi_disable(&ch->rx_napi); 151 if (queue < tx_queues_cnt) 152 napi_disable(&ch->tx_napi); 153 } 154 } 155 156 /** 157 * stmmac_enable_all_queues - Enable all queues 158 * @priv: driver private structure 159 */ 160 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 161 { 162 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 163 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 164 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 165 u32 queue; 166 167 for (queue = 0; queue < maxq; queue++) { 168 struct stmmac_channel *ch = &priv->channel[queue]; 169 170 if (queue < rx_queues_cnt) 171 napi_enable(&ch->rx_napi); 172 if (queue < tx_queues_cnt) 173 napi_enable(&ch->tx_napi); 174 } 175 } 176 177 /** 178 * stmmac_stop_all_queues - Stop all queues 179 * @priv: driver private structure 180 */ 181 static void stmmac_stop_all_queues(struct stmmac_priv *priv) 182 { 183 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 184 u32 queue; 185 186 for (queue = 0; queue < tx_queues_cnt; queue++) 187 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 188 } 189 190 /** 191 * stmmac_start_all_queues - Start all queues 192 * @priv: driver private structure 193 */ 194 static void stmmac_start_all_queues(struct stmmac_priv *priv) 195 { 196 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 197 u32 queue; 198 199 for (queue = 0; queue < tx_queues_cnt; queue++) 200 netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue)); 201 } 202 203 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 204 { 205 if (!test_bit(STMMAC_DOWN, &priv->state) && 206 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 207 queue_work(priv->wq, &priv->service_task); 208 } 209 210 static void stmmac_global_err(struct stmmac_priv *priv) 211 { 212 netif_carrier_off(priv->dev); 213 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 214 stmmac_service_event_schedule(priv); 215 } 216 217 /** 218 * stmmac_clk_csr_set - dynamically set the MDC clock 219 * @priv: driver private structure 220 * Description: this is to dynamically set the MDC clock according to the csr 221 * clock input. 222 * Note: 223 * If a specific clk_csr value is passed from the platform 224 * this means that the CSR Clock Range selection cannot be 225 * changed at run-time and it is fixed (as reported in the driver 226 * documentation). Viceversa the driver will try to set the MDC 227 * clock dynamically according to the actual clock input. 228 */ 229 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 230 { 231 u32 clk_rate; 232 233 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 234 235 /* Platform provided default clk_csr would be assumed valid 236 * for all other cases except for the below mentioned ones. 237 * For values higher than the IEEE 802.3 specified frequency 238 * we can not estimate the proper divider as it is not known 239 * the frequency of clk_csr_i. So we do not change the default 240 * divider. 241 */ 242 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 243 if (clk_rate < CSR_F_35M) 244 priv->clk_csr = STMMAC_CSR_20_35M; 245 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 246 priv->clk_csr = STMMAC_CSR_35_60M; 247 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 248 priv->clk_csr = STMMAC_CSR_60_100M; 249 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 250 priv->clk_csr = STMMAC_CSR_100_150M; 251 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 252 priv->clk_csr = STMMAC_CSR_150_250M; 253 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 254 priv->clk_csr = STMMAC_CSR_250_300M; 255 } 256 257 if (priv->plat->has_sun8i) { 258 if (clk_rate > 160000000) 259 priv->clk_csr = 0x03; 260 else if (clk_rate > 80000000) 261 priv->clk_csr = 0x02; 262 else if (clk_rate > 40000000) 263 priv->clk_csr = 0x01; 264 else 265 priv->clk_csr = 0; 266 } 267 268 if (priv->plat->has_xgmac) { 269 if (clk_rate > 400000000) 270 priv->clk_csr = 0x5; 271 else if (clk_rate > 350000000) 272 priv->clk_csr = 0x4; 273 else if (clk_rate > 300000000) 274 priv->clk_csr = 0x3; 275 else if (clk_rate > 250000000) 276 priv->clk_csr = 0x2; 277 else if (clk_rate > 150000000) 278 priv->clk_csr = 0x1; 279 else 280 priv->clk_csr = 0x0; 281 } 282 } 283 284 static void print_pkt(unsigned char *buf, int len) 285 { 286 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 287 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 288 } 289 290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 291 { 292 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 293 u32 avail; 294 295 if (tx_q->dirty_tx > tx_q->cur_tx) 296 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 297 else 298 avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1; 299 300 return avail; 301 } 302 303 /** 304 * stmmac_rx_dirty - Get RX queue dirty 305 * @priv: driver private structure 306 * @queue: RX queue index 307 */ 308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 309 { 310 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 311 u32 dirty; 312 313 if (rx_q->dirty_rx <= rx_q->cur_rx) 314 dirty = rx_q->cur_rx - rx_q->dirty_rx; 315 else 316 dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx; 317 318 return dirty; 319 } 320 321 /** 322 * stmmac_enable_eee_mode - check and enter in LPI mode 323 * @priv: driver private structure 324 * Description: this function is to verify and enter in LPI mode in case of 325 * EEE. 326 */ 327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 328 { 329 u32 tx_cnt = priv->plat->tx_queues_to_use; 330 u32 queue; 331 332 /* check if all TX queues have the work finished */ 333 for (queue = 0; queue < tx_cnt; queue++) { 334 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 335 336 if (tx_q->dirty_tx != tx_q->cur_tx) 337 return; /* still unfinished work */ 338 } 339 340 /* Check and enter in LPI mode */ 341 if (!priv->tx_path_in_lpi_mode) 342 stmmac_set_eee_mode(priv, priv->hw, 343 priv->plat->en_tx_lpi_clockgating); 344 } 345 346 /** 347 * stmmac_disable_eee_mode - disable and exit from LPI mode 348 * @priv: driver private structure 349 * Description: this function is to exit and disable EEE in case of 350 * LPI state is true. This is called by the xmit. 351 */ 352 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 353 { 354 stmmac_reset_eee_mode(priv, priv->hw); 355 del_timer_sync(&priv->eee_ctrl_timer); 356 priv->tx_path_in_lpi_mode = false; 357 } 358 359 /** 360 * stmmac_eee_ctrl_timer - EEE TX SW timer. 361 * @arg : data hook 362 * Description: 363 * if there is no data transfer and if we are not in LPI state, 364 * then MAC Transmitter can be moved to LPI state. 365 */ 366 static void stmmac_eee_ctrl_timer(struct timer_list *t) 367 { 368 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 369 370 stmmac_enable_eee_mode(priv); 371 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 372 } 373 374 /** 375 * stmmac_eee_init - init EEE 376 * @priv: driver private structure 377 * Description: 378 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 379 * can also manage EEE, this function enable the LPI state and start related 380 * timer. 381 */ 382 bool stmmac_eee_init(struct stmmac_priv *priv) 383 { 384 int tx_lpi_timer = priv->tx_lpi_timer; 385 386 /* Using PCS we cannot dial with the phy registers at this stage 387 * so we do not support extra feature like EEE. 388 */ 389 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 390 (priv->hw->pcs == STMMAC_PCS_TBI) || 391 (priv->hw->pcs == STMMAC_PCS_RTBI)) 392 return false; 393 394 /* Check if MAC core supports the EEE feature. */ 395 if (!priv->dma_cap.eee) 396 return false; 397 398 mutex_lock(&priv->lock); 399 400 /* Check if it needs to be deactivated */ 401 if (!priv->eee_active) { 402 if (priv->eee_enabled) { 403 netdev_dbg(priv->dev, "disable EEE\n"); 404 del_timer_sync(&priv->eee_ctrl_timer); 405 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer); 406 } 407 mutex_unlock(&priv->lock); 408 return false; 409 } 410 411 if (priv->eee_active && !priv->eee_enabled) { 412 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 413 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 414 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 415 tx_lpi_timer); 416 } 417 418 mutex_unlock(&priv->lock); 419 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 420 return true; 421 } 422 423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 424 * @priv: driver private structure 425 * @p : descriptor pointer 426 * @skb : the socket buffer 427 * Description : 428 * This function will read timestamp from the descriptor & pass it to stack. 429 * and also perform some sanity checks. 430 */ 431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 432 struct dma_desc *p, struct sk_buff *skb) 433 { 434 struct skb_shared_hwtstamps shhwtstamp; 435 bool found = false; 436 u64 ns = 0; 437 438 if (!priv->hwts_tx_en) 439 return; 440 441 /* exit if skb doesn't support hw tstamp */ 442 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 443 return; 444 445 /* check tx tstamp status */ 446 if (stmmac_get_tx_timestamp_status(priv, p)) { 447 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 448 found = true; 449 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 450 found = true; 451 } 452 453 if (found) { 454 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 455 shhwtstamp.hwtstamp = ns_to_ktime(ns); 456 457 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 458 /* pass tstamp to stack */ 459 skb_tstamp_tx(skb, &shhwtstamp); 460 } 461 } 462 463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 464 * @priv: driver private structure 465 * @p : descriptor pointer 466 * @np : next descriptor pointer 467 * @skb : the socket buffer 468 * Description : 469 * This function will read received packet's timestamp from the descriptor 470 * and pass it to stack. It also perform some sanity checks. 471 */ 472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 473 struct dma_desc *np, struct sk_buff *skb) 474 { 475 struct skb_shared_hwtstamps *shhwtstamp = NULL; 476 struct dma_desc *desc = p; 477 u64 ns = 0; 478 479 if (!priv->hwts_rx_en) 480 return; 481 /* For GMAC4, the valid timestamp is from CTX next desc. */ 482 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 483 desc = np; 484 485 /* Check if timestamp is available */ 486 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 487 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 488 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 489 shhwtstamp = skb_hwtstamps(skb); 490 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 491 shhwtstamp->hwtstamp = ns_to_ktime(ns); 492 } else { 493 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 494 } 495 } 496 497 /** 498 * stmmac_hwtstamp_set - control hardware timestamping. 499 * @dev: device pointer. 500 * @ifr: An IOCTL specific structure, that can contain a pointer to 501 * a proprietary structure used to pass information to the driver. 502 * Description: 503 * This function configures the MAC to enable/disable both outgoing(TX) 504 * and incoming(RX) packets time stamping based on user input. 505 * Return Value: 506 * 0 on success and an appropriate -ve integer on failure. 507 */ 508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 509 { 510 struct stmmac_priv *priv = netdev_priv(dev); 511 struct hwtstamp_config config; 512 struct timespec64 now; 513 u64 temp = 0; 514 u32 ptp_v2 = 0; 515 u32 tstamp_all = 0; 516 u32 ptp_over_ipv4_udp = 0; 517 u32 ptp_over_ipv6_udp = 0; 518 u32 ptp_over_ethernet = 0; 519 u32 snap_type_sel = 0; 520 u32 ts_master_en = 0; 521 u32 ts_event_en = 0; 522 u32 sec_inc = 0; 523 u32 value = 0; 524 bool xmac; 525 526 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 527 528 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 529 netdev_alert(priv->dev, "No support for HW time stamping\n"); 530 priv->hwts_tx_en = 0; 531 priv->hwts_rx_en = 0; 532 533 return -EOPNOTSUPP; 534 } 535 536 if (copy_from_user(&config, ifr->ifr_data, 537 sizeof(config))) 538 return -EFAULT; 539 540 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 541 __func__, config.flags, config.tx_type, config.rx_filter); 542 543 /* reserved for future extensions */ 544 if (config.flags) 545 return -EINVAL; 546 547 if (config.tx_type != HWTSTAMP_TX_OFF && 548 config.tx_type != HWTSTAMP_TX_ON) 549 return -ERANGE; 550 551 if (priv->adv_ts) { 552 switch (config.rx_filter) { 553 case HWTSTAMP_FILTER_NONE: 554 /* time stamp no incoming packet at all */ 555 config.rx_filter = HWTSTAMP_FILTER_NONE; 556 break; 557 558 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 559 /* PTP v1, UDP, any kind of event packet */ 560 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 561 /* 'xmac' hardware can support Sync, Pdelay_Req and 562 * Pdelay_resp by setting bit14 and bits17/16 to 01 563 * This leaves Delay_Req timestamps out. 564 * Enable all events *and* general purpose message 565 * timestamping 566 */ 567 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 568 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 569 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 570 break; 571 572 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 573 /* PTP v1, UDP, Sync packet */ 574 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 575 /* take time stamp for SYNC messages only */ 576 ts_event_en = PTP_TCR_TSEVNTENA; 577 578 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 579 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 580 break; 581 582 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 583 /* PTP v1, UDP, Delay_req packet */ 584 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 585 /* take time stamp for Delay_Req messages only */ 586 ts_master_en = PTP_TCR_TSMSTRENA; 587 ts_event_en = PTP_TCR_TSEVNTENA; 588 589 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 590 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 591 break; 592 593 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 594 /* PTP v2, UDP, any kind of event packet */ 595 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 596 ptp_v2 = PTP_TCR_TSVER2ENA; 597 /* take time stamp for all event messages */ 598 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 599 600 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 601 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 602 break; 603 604 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 605 /* PTP v2, UDP, Sync packet */ 606 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 607 ptp_v2 = PTP_TCR_TSVER2ENA; 608 /* take time stamp for SYNC messages only */ 609 ts_event_en = PTP_TCR_TSEVNTENA; 610 611 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 612 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 613 break; 614 615 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 616 /* PTP v2, UDP, Delay_req packet */ 617 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 618 ptp_v2 = PTP_TCR_TSVER2ENA; 619 /* take time stamp for Delay_Req messages only */ 620 ts_master_en = PTP_TCR_TSMSTRENA; 621 ts_event_en = PTP_TCR_TSEVNTENA; 622 623 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 624 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 625 break; 626 627 case HWTSTAMP_FILTER_PTP_V2_EVENT: 628 /* PTP v2/802.AS1 any layer, any kind of event packet */ 629 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 630 ptp_v2 = PTP_TCR_TSVER2ENA; 631 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 632 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 633 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 634 ptp_over_ethernet = PTP_TCR_TSIPENA; 635 break; 636 637 case HWTSTAMP_FILTER_PTP_V2_SYNC: 638 /* PTP v2/802.AS1, any layer, Sync packet */ 639 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 640 ptp_v2 = PTP_TCR_TSVER2ENA; 641 /* take time stamp for SYNC messages only */ 642 ts_event_en = PTP_TCR_TSEVNTENA; 643 644 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 645 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 646 ptp_over_ethernet = PTP_TCR_TSIPENA; 647 break; 648 649 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 650 /* PTP v2/802.AS1, any layer, Delay_req packet */ 651 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 652 ptp_v2 = PTP_TCR_TSVER2ENA; 653 /* take time stamp for Delay_Req messages only */ 654 ts_master_en = PTP_TCR_TSMSTRENA; 655 ts_event_en = PTP_TCR_TSEVNTENA; 656 657 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 658 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 659 ptp_over_ethernet = PTP_TCR_TSIPENA; 660 break; 661 662 case HWTSTAMP_FILTER_NTP_ALL: 663 case HWTSTAMP_FILTER_ALL: 664 /* time stamp any incoming packet */ 665 config.rx_filter = HWTSTAMP_FILTER_ALL; 666 tstamp_all = PTP_TCR_TSENALL; 667 break; 668 669 default: 670 return -ERANGE; 671 } 672 } else { 673 switch (config.rx_filter) { 674 case HWTSTAMP_FILTER_NONE: 675 config.rx_filter = HWTSTAMP_FILTER_NONE; 676 break; 677 default: 678 /* PTP v1, UDP, any kind of event packet */ 679 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 680 break; 681 } 682 } 683 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 684 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 685 686 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 687 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 688 else { 689 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 690 tstamp_all | ptp_v2 | ptp_over_ethernet | 691 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 692 ts_master_en | snap_type_sel); 693 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 694 695 /* program Sub Second Increment reg */ 696 stmmac_config_sub_second_increment(priv, 697 priv->ptpaddr, priv->plat->clk_ptp_rate, 698 xmac, &sec_inc); 699 temp = div_u64(1000000000ULL, sec_inc); 700 701 /* Store sub second increment and flags for later use */ 702 priv->sub_second_inc = sec_inc; 703 priv->systime_flags = value; 704 705 /* calculate default added value: 706 * formula is : 707 * addend = (2^32)/freq_div_ratio; 708 * where, freq_div_ratio = 1e9ns/sec_inc 709 */ 710 temp = (u64)(temp << 32); 711 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 712 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 713 714 /* initialize system time */ 715 ktime_get_real_ts64(&now); 716 717 /* lower 32 bits of tv_sec are safe until y2106 */ 718 stmmac_init_systime(priv, priv->ptpaddr, 719 (u32)now.tv_sec, now.tv_nsec); 720 } 721 722 memcpy(&priv->tstamp_config, &config, sizeof(config)); 723 724 return copy_to_user(ifr->ifr_data, &config, 725 sizeof(config)) ? -EFAULT : 0; 726 } 727 728 /** 729 * stmmac_hwtstamp_get - read hardware timestamping. 730 * @dev: device pointer. 731 * @ifr: An IOCTL specific structure, that can contain a pointer to 732 * a proprietary structure used to pass information to the driver. 733 * Description: 734 * This function obtain the current hardware timestamping settings 735 as requested. 736 */ 737 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 738 { 739 struct stmmac_priv *priv = netdev_priv(dev); 740 struct hwtstamp_config *config = &priv->tstamp_config; 741 742 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 743 return -EOPNOTSUPP; 744 745 return copy_to_user(ifr->ifr_data, config, 746 sizeof(*config)) ? -EFAULT : 0; 747 } 748 749 /** 750 * stmmac_init_ptp - init PTP 751 * @priv: driver private structure 752 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 753 * This is done by looking at the HW cap. register. 754 * This function also registers the ptp driver. 755 */ 756 static int stmmac_init_ptp(struct stmmac_priv *priv) 757 { 758 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 759 760 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 761 return -EOPNOTSUPP; 762 763 priv->adv_ts = 0; 764 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 765 if (xmac && priv->dma_cap.atime_stamp) 766 priv->adv_ts = 1; 767 /* Dwmac 3.x core with extend_desc can support adv_ts */ 768 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 769 priv->adv_ts = 1; 770 771 if (priv->dma_cap.time_stamp) 772 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 773 774 if (priv->adv_ts) 775 netdev_info(priv->dev, 776 "IEEE 1588-2008 Advanced Timestamp supported\n"); 777 778 priv->hwts_tx_en = 0; 779 priv->hwts_rx_en = 0; 780 781 stmmac_ptp_register(priv); 782 783 return 0; 784 } 785 786 static void stmmac_release_ptp(struct stmmac_priv *priv) 787 { 788 if (priv->plat->clk_ptp_ref) 789 clk_disable_unprepare(priv->plat->clk_ptp_ref); 790 stmmac_ptp_unregister(priv); 791 } 792 793 /** 794 * stmmac_mac_flow_ctrl - Configure flow control in all queues 795 * @priv: driver private structure 796 * Description: It is used for configuring the flow control in all queues 797 */ 798 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 799 { 800 u32 tx_cnt = priv->plat->tx_queues_to_use; 801 802 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 803 priv->pause, tx_cnt); 804 } 805 806 static void stmmac_validate(struct phylink_config *config, 807 unsigned long *supported, 808 struct phylink_link_state *state) 809 { 810 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 811 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 812 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 813 int tx_cnt = priv->plat->tx_queues_to_use; 814 int max_speed = priv->plat->max_speed; 815 816 phylink_set(mac_supported, 10baseT_Half); 817 phylink_set(mac_supported, 10baseT_Full); 818 phylink_set(mac_supported, 100baseT_Half); 819 phylink_set(mac_supported, 100baseT_Full); 820 phylink_set(mac_supported, 1000baseT_Half); 821 phylink_set(mac_supported, 1000baseT_Full); 822 phylink_set(mac_supported, 1000baseKX_Full); 823 824 phylink_set(mac_supported, Autoneg); 825 phylink_set(mac_supported, Pause); 826 phylink_set(mac_supported, Asym_Pause); 827 phylink_set_port_modes(mac_supported); 828 829 /* Cut down 1G if asked to */ 830 if ((max_speed > 0) && (max_speed < 1000)) { 831 phylink_set(mask, 1000baseT_Full); 832 phylink_set(mask, 1000baseX_Full); 833 } else if (priv->plat->has_xgmac) { 834 if (!max_speed || (max_speed >= 2500)) { 835 phylink_set(mac_supported, 2500baseT_Full); 836 phylink_set(mac_supported, 2500baseX_Full); 837 } 838 if (!max_speed || (max_speed >= 5000)) { 839 phylink_set(mac_supported, 5000baseT_Full); 840 } 841 if (!max_speed || (max_speed >= 10000)) { 842 phylink_set(mac_supported, 10000baseSR_Full); 843 phylink_set(mac_supported, 10000baseLR_Full); 844 phylink_set(mac_supported, 10000baseER_Full); 845 phylink_set(mac_supported, 10000baseLRM_Full); 846 phylink_set(mac_supported, 10000baseT_Full); 847 phylink_set(mac_supported, 10000baseKX4_Full); 848 phylink_set(mac_supported, 10000baseKR_Full); 849 } 850 } 851 852 /* Half-Duplex can only work with single queue */ 853 if (tx_cnt > 1) { 854 phylink_set(mask, 10baseT_Half); 855 phylink_set(mask, 100baseT_Half); 856 phylink_set(mask, 1000baseT_Half); 857 } 858 859 bitmap_and(supported, supported, mac_supported, 860 __ETHTOOL_LINK_MODE_MASK_NBITS); 861 bitmap_andnot(supported, supported, mask, 862 __ETHTOOL_LINK_MODE_MASK_NBITS); 863 bitmap_and(state->advertising, state->advertising, mac_supported, 864 __ETHTOOL_LINK_MODE_MASK_NBITS); 865 bitmap_andnot(state->advertising, state->advertising, mask, 866 __ETHTOOL_LINK_MODE_MASK_NBITS); 867 } 868 869 static int stmmac_mac_link_state(struct phylink_config *config, 870 struct phylink_link_state *state) 871 { 872 return -EOPNOTSUPP; 873 } 874 875 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 876 const struct phylink_link_state *state) 877 { 878 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 879 u32 ctrl; 880 881 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 882 ctrl &= ~priv->hw->link.speed_mask; 883 884 if (state->interface == PHY_INTERFACE_MODE_USXGMII) { 885 switch (state->speed) { 886 case SPEED_10000: 887 ctrl |= priv->hw->link.xgmii.speed10000; 888 break; 889 case SPEED_5000: 890 ctrl |= priv->hw->link.xgmii.speed5000; 891 break; 892 case SPEED_2500: 893 ctrl |= priv->hw->link.xgmii.speed2500; 894 break; 895 default: 896 return; 897 } 898 } else { 899 switch (state->speed) { 900 case SPEED_2500: 901 ctrl |= priv->hw->link.speed2500; 902 break; 903 case SPEED_1000: 904 ctrl |= priv->hw->link.speed1000; 905 break; 906 case SPEED_100: 907 ctrl |= priv->hw->link.speed100; 908 break; 909 case SPEED_10: 910 ctrl |= priv->hw->link.speed10; 911 break; 912 default: 913 return; 914 } 915 } 916 917 priv->speed = state->speed; 918 919 if (priv->plat->fix_mac_speed) 920 priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed); 921 922 if (!state->duplex) 923 ctrl &= ~priv->hw->link.duplex; 924 else 925 ctrl |= priv->hw->link.duplex; 926 927 /* Flow Control operation */ 928 if (state->pause) 929 stmmac_mac_flow_ctrl(priv, state->duplex); 930 931 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 932 } 933 934 static void stmmac_mac_an_restart(struct phylink_config *config) 935 { 936 /* Not Supported */ 937 } 938 939 static void stmmac_mac_link_down(struct phylink_config *config, 940 unsigned int mode, phy_interface_t interface) 941 { 942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 943 944 stmmac_mac_set(priv, priv->ioaddr, false); 945 priv->eee_active = false; 946 stmmac_eee_init(priv); 947 stmmac_set_eee_pls(priv, priv->hw, false); 948 } 949 950 static void stmmac_mac_link_up(struct phylink_config *config, 951 unsigned int mode, phy_interface_t interface, 952 struct phy_device *phy) 953 { 954 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 955 956 stmmac_mac_set(priv, priv->ioaddr, true); 957 if (phy && priv->dma_cap.eee) { 958 priv->eee_active = phy_init_eee(phy, 1) >= 0; 959 priv->eee_enabled = stmmac_eee_init(priv); 960 stmmac_set_eee_pls(priv, priv->hw, true); 961 } 962 } 963 964 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 965 .validate = stmmac_validate, 966 .mac_link_state = stmmac_mac_link_state, 967 .mac_config = stmmac_mac_config, 968 .mac_an_restart = stmmac_mac_an_restart, 969 .mac_link_down = stmmac_mac_link_down, 970 .mac_link_up = stmmac_mac_link_up, 971 }; 972 973 /** 974 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 975 * @priv: driver private structure 976 * Description: this is to verify if the HW supports the PCS. 977 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 978 * configured for the TBI, RTBI, or SGMII PHY interface. 979 */ 980 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 981 { 982 int interface = priv->plat->interface; 983 984 if (priv->dma_cap.pcs) { 985 if ((interface == PHY_INTERFACE_MODE_RGMII) || 986 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 987 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 988 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 989 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 990 priv->hw->pcs = STMMAC_PCS_RGMII; 991 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 992 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 993 priv->hw->pcs = STMMAC_PCS_SGMII; 994 } 995 } 996 } 997 998 /** 999 * stmmac_init_phy - PHY initialization 1000 * @dev: net device structure 1001 * Description: it initializes the driver's PHY state, and attaches the PHY 1002 * to the mac driver. 1003 * Return value: 1004 * 0 on success 1005 */ 1006 static int stmmac_init_phy(struct net_device *dev) 1007 { 1008 struct stmmac_priv *priv = netdev_priv(dev); 1009 struct device_node *node; 1010 int ret; 1011 1012 node = priv->plat->phylink_node; 1013 1014 if (node) 1015 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1016 1017 /* Some DT bindings do not set-up the PHY handle. Let's try to 1018 * manually parse it 1019 */ 1020 if (!node || ret) { 1021 int addr = priv->plat->phy_addr; 1022 struct phy_device *phydev; 1023 1024 phydev = mdiobus_get_phy(priv->mii, addr); 1025 if (!phydev) { 1026 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1027 return -ENODEV; 1028 } 1029 1030 ret = phylink_connect_phy(priv->phylink, phydev); 1031 } 1032 1033 return ret; 1034 } 1035 1036 static int stmmac_phy_setup(struct stmmac_priv *priv) 1037 { 1038 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1039 int mode = priv->plat->phy_interface; 1040 struct phylink *phylink; 1041 1042 priv->phylink_config.dev = &priv->dev->dev; 1043 priv->phylink_config.type = PHYLINK_NETDEV; 1044 1045 phylink = phylink_create(&priv->phylink_config, fwnode, 1046 mode, &stmmac_phylink_mac_ops); 1047 if (IS_ERR(phylink)) 1048 return PTR_ERR(phylink); 1049 1050 priv->phylink = phylink; 1051 return 0; 1052 } 1053 1054 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1055 { 1056 u32 rx_cnt = priv->plat->rx_queues_to_use; 1057 void *head_rx; 1058 u32 queue; 1059 1060 /* Display RX rings */ 1061 for (queue = 0; queue < rx_cnt; queue++) { 1062 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1063 1064 pr_info("\tRX Queue %u rings\n", queue); 1065 1066 if (priv->extend_desc) 1067 head_rx = (void *)rx_q->dma_erx; 1068 else 1069 head_rx = (void *)rx_q->dma_rx; 1070 1071 /* Display RX ring */ 1072 stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true); 1073 } 1074 } 1075 1076 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1077 { 1078 u32 tx_cnt = priv->plat->tx_queues_to_use; 1079 void *head_tx; 1080 u32 queue; 1081 1082 /* Display TX rings */ 1083 for (queue = 0; queue < tx_cnt; queue++) { 1084 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1085 1086 pr_info("\tTX Queue %d rings\n", queue); 1087 1088 if (priv->extend_desc) 1089 head_tx = (void *)tx_q->dma_etx; 1090 else 1091 head_tx = (void *)tx_q->dma_tx; 1092 1093 stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false); 1094 } 1095 } 1096 1097 static void stmmac_display_rings(struct stmmac_priv *priv) 1098 { 1099 /* Display RX ring */ 1100 stmmac_display_rx_rings(priv); 1101 1102 /* Display TX ring */ 1103 stmmac_display_tx_rings(priv); 1104 } 1105 1106 static int stmmac_set_bfsize(int mtu, int bufsize) 1107 { 1108 int ret = bufsize; 1109 1110 if (mtu >= BUF_SIZE_4KiB) 1111 ret = BUF_SIZE_8KiB; 1112 else if (mtu >= BUF_SIZE_2KiB) 1113 ret = BUF_SIZE_4KiB; 1114 else if (mtu > DEFAULT_BUFSIZE) 1115 ret = BUF_SIZE_2KiB; 1116 else 1117 ret = DEFAULT_BUFSIZE; 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * stmmac_clear_rx_descriptors - clear RX descriptors 1124 * @priv: driver private structure 1125 * @queue: RX queue index 1126 * Description: this function is called to clear the RX descriptors 1127 * in case of both basic and extended descriptors are used. 1128 */ 1129 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1130 { 1131 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1132 int i; 1133 1134 /* Clear the RX descriptors */ 1135 for (i = 0; i < DMA_RX_SIZE; i++) 1136 if (priv->extend_desc) 1137 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1138 priv->use_riwt, priv->mode, 1139 (i == DMA_RX_SIZE - 1), 1140 priv->dma_buf_sz); 1141 else 1142 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1143 priv->use_riwt, priv->mode, 1144 (i == DMA_RX_SIZE - 1), 1145 priv->dma_buf_sz); 1146 } 1147 1148 /** 1149 * stmmac_clear_tx_descriptors - clear tx descriptors 1150 * @priv: driver private structure 1151 * @queue: TX queue index. 1152 * Description: this function is called to clear the TX descriptors 1153 * in case of both basic and extended descriptors are used. 1154 */ 1155 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1156 { 1157 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1158 int i; 1159 1160 /* Clear the TX descriptors */ 1161 for (i = 0; i < DMA_TX_SIZE; i++) 1162 if (priv->extend_desc) 1163 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 1164 priv->mode, (i == DMA_TX_SIZE - 1)); 1165 else 1166 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 1167 priv->mode, (i == DMA_TX_SIZE - 1)); 1168 } 1169 1170 /** 1171 * stmmac_clear_descriptors - clear descriptors 1172 * @priv: driver private structure 1173 * Description: this function is called to clear the TX and RX descriptors 1174 * in case of both basic and extended descriptors are used. 1175 */ 1176 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1177 { 1178 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1179 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1180 u32 queue; 1181 1182 /* Clear the RX descriptors */ 1183 for (queue = 0; queue < rx_queue_cnt; queue++) 1184 stmmac_clear_rx_descriptors(priv, queue); 1185 1186 /* Clear the TX descriptors */ 1187 for (queue = 0; queue < tx_queue_cnt; queue++) 1188 stmmac_clear_tx_descriptors(priv, queue); 1189 } 1190 1191 /** 1192 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1193 * @priv: driver private structure 1194 * @p: descriptor pointer 1195 * @i: descriptor index 1196 * @flags: gfp flag 1197 * @queue: RX queue index 1198 * Description: this function is called to allocate a receive buffer, perform 1199 * the DMA mapping and init the descriptor. 1200 */ 1201 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1202 int i, gfp_t flags, u32 queue) 1203 { 1204 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1205 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1206 1207 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1208 if (!buf->page) 1209 return -ENOMEM; 1210 1211 if (priv->sph) { 1212 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1213 if (!buf->sec_page) 1214 return -ENOMEM; 1215 1216 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1217 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); 1218 } else { 1219 buf->sec_page = NULL; 1220 } 1221 1222 buf->addr = page_pool_get_dma_addr(buf->page); 1223 stmmac_set_desc_addr(priv, p, buf->addr); 1224 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1225 stmmac_init_desc3(priv, p); 1226 1227 return 0; 1228 } 1229 1230 /** 1231 * stmmac_free_rx_buffer - free RX dma buffers 1232 * @priv: private structure 1233 * @queue: RX queue index 1234 * @i: buffer index. 1235 */ 1236 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1237 { 1238 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1239 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1240 1241 if (buf->page) 1242 page_pool_put_page(rx_q->page_pool, buf->page, false); 1243 buf->page = NULL; 1244 1245 if (buf->sec_page) 1246 page_pool_put_page(rx_q->page_pool, buf->sec_page, false); 1247 buf->sec_page = NULL; 1248 } 1249 1250 /** 1251 * stmmac_free_tx_buffer - free RX dma buffers 1252 * @priv: private structure 1253 * @queue: RX queue index 1254 * @i: buffer index. 1255 */ 1256 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1257 { 1258 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1259 1260 if (tx_q->tx_skbuff_dma[i].buf) { 1261 if (tx_q->tx_skbuff_dma[i].map_as_page) 1262 dma_unmap_page(priv->device, 1263 tx_q->tx_skbuff_dma[i].buf, 1264 tx_q->tx_skbuff_dma[i].len, 1265 DMA_TO_DEVICE); 1266 else 1267 dma_unmap_single(priv->device, 1268 tx_q->tx_skbuff_dma[i].buf, 1269 tx_q->tx_skbuff_dma[i].len, 1270 DMA_TO_DEVICE); 1271 } 1272 1273 if (tx_q->tx_skbuff[i]) { 1274 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1275 tx_q->tx_skbuff[i] = NULL; 1276 tx_q->tx_skbuff_dma[i].buf = 0; 1277 tx_q->tx_skbuff_dma[i].map_as_page = false; 1278 } 1279 } 1280 1281 /** 1282 * init_dma_rx_desc_rings - init the RX descriptor rings 1283 * @dev: net device structure 1284 * @flags: gfp flag. 1285 * Description: this function initializes the DMA RX descriptors 1286 * and allocates the socket buffers. It supports the chained and ring 1287 * modes. 1288 */ 1289 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1290 { 1291 struct stmmac_priv *priv = netdev_priv(dev); 1292 u32 rx_count = priv->plat->rx_queues_to_use; 1293 int ret = -ENOMEM; 1294 int bfsize = 0; 1295 int queue; 1296 int i; 1297 1298 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 1299 if (bfsize < 0) 1300 bfsize = 0; 1301 1302 if (bfsize < BUF_SIZE_16KiB) 1303 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1304 1305 priv->dma_buf_sz = bfsize; 1306 1307 /* RX INITIALIZATION */ 1308 netif_dbg(priv, probe, priv->dev, 1309 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1310 1311 for (queue = 0; queue < rx_count; queue++) { 1312 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1313 1314 netif_dbg(priv, probe, priv->dev, 1315 "(%s) dma_rx_phy=0x%08x\n", __func__, 1316 (u32)rx_q->dma_rx_phy); 1317 1318 stmmac_clear_rx_descriptors(priv, queue); 1319 1320 for (i = 0; i < DMA_RX_SIZE; i++) { 1321 struct dma_desc *p; 1322 1323 if (priv->extend_desc) 1324 p = &((rx_q->dma_erx + i)->basic); 1325 else 1326 p = rx_q->dma_rx + i; 1327 1328 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1329 queue); 1330 if (ret) 1331 goto err_init_rx_buffers; 1332 } 1333 1334 rx_q->cur_rx = 0; 1335 rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1336 1337 /* Setup the chained descriptor addresses */ 1338 if (priv->mode == STMMAC_CHAIN_MODE) { 1339 if (priv->extend_desc) 1340 stmmac_mode_init(priv, rx_q->dma_erx, 1341 rx_q->dma_rx_phy, DMA_RX_SIZE, 1); 1342 else 1343 stmmac_mode_init(priv, rx_q->dma_rx, 1344 rx_q->dma_rx_phy, DMA_RX_SIZE, 0); 1345 } 1346 } 1347 1348 buf_sz = bfsize; 1349 1350 return 0; 1351 1352 err_init_rx_buffers: 1353 while (queue >= 0) { 1354 while (--i >= 0) 1355 stmmac_free_rx_buffer(priv, queue, i); 1356 1357 if (queue == 0) 1358 break; 1359 1360 i = DMA_RX_SIZE; 1361 queue--; 1362 } 1363 1364 return ret; 1365 } 1366 1367 /** 1368 * init_dma_tx_desc_rings - init the TX descriptor rings 1369 * @dev: net device structure. 1370 * Description: this function initializes the DMA TX descriptors 1371 * and allocates the socket buffers. It supports the chained and ring 1372 * modes. 1373 */ 1374 static int init_dma_tx_desc_rings(struct net_device *dev) 1375 { 1376 struct stmmac_priv *priv = netdev_priv(dev); 1377 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1378 u32 queue; 1379 int i; 1380 1381 for (queue = 0; queue < tx_queue_cnt; queue++) { 1382 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1383 1384 netif_dbg(priv, probe, priv->dev, 1385 "(%s) dma_tx_phy=0x%08x\n", __func__, 1386 (u32)tx_q->dma_tx_phy); 1387 1388 /* Setup the chained descriptor addresses */ 1389 if (priv->mode == STMMAC_CHAIN_MODE) { 1390 if (priv->extend_desc) 1391 stmmac_mode_init(priv, tx_q->dma_etx, 1392 tx_q->dma_tx_phy, DMA_TX_SIZE, 1); 1393 else 1394 stmmac_mode_init(priv, tx_q->dma_tx, 1395 tx_q->dma_tx_phy, DMA_TX_SIZE, 0); 1396 } 1397 1398 for (i = 0; i < DMA_TX_SIZE; i++) { 1399 struct dma_desc *p; 1400 if (priv->extend_desc) 1401 p = &((tx_q->dma_etx + i)->basic); 1402 else 1403 p = tx_q->dma_tx + i; 1404 1405 stmmac_clear_desc(priv, p); 1406 1407 tx_q->tx_skbuff_dma[i].buf = 0; 1408 tx_q->tx_skbuff_dma[i].map_as_page = false; 1409 tx_q->tx_skbuff_dma[i].len = 0; 1410 tx_q->tx_skbuff_dma[i].last_segment = false; 1411 tx_q->tx_skbuff[i] = NULL; 1412 } 1413 1414 tx_q->dirty_tx = 0; 1415 tx_q->cur_tx = 0; 1416 tx_q->mss = 0; 1417 1418 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1419 } 1420 1421 return 0; 1422 } 1423 1424 /** 1425 * init_dma_desc_rings - init the RX/TX descriptor rings 1426 * @dev: net device structure 1427 * @flags: gfp flag. 1428 * Description: this function initializes the DMA RX/TX descriptors 1429 * and allocates the socket buffers. It supports the chained and ring 1430 * modes. 1431 */ 1432 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1433 { 1434 struct stmmac_priv *priv = netdev_priv(dev); 1435 int ret; 1436 1437 ret = init_dma_rx_desc_rings(dev, flags); 1438 if (ret) 1439 return ret; 1440 1441 ret = init_dma_tx_desc_rings(dev); 1442 1443 stmmac_clear_descriptors(priv); 1444 1445 if (netif_msg_hw(priv)) 1446 stmmac_display_rings(priv); 1447 1448 return ret; 1449 } 1450 1451 /** 1452 * dma_free_rx_skbufs - free RX dma buffers 1453 * @priv: private structure 1454 * @queue: RX queue index 1455 */ 1456 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1457 { 1458 int i; 1459 1460 for (i = 0; i < DMA_RX_SIZE; i++) 1461 stmmac_free_rx_buffer(priv, queue, i); 1462 } 1463 1464 /** 1465 * dma_free_tx_skbufs - free TX dma buffers 1466 * @priv: private structure 1467 * @queue: TX queue index 1468 */ 1469 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1470 { 1471 int i; 1472 1473 for (i = 0; i < DMA_TX_SIZE; i++) 1474 stmmac_free_tx_buffer(priv, queue, i); 1475 } 1476 1477 /** 1478 * free_dma_rx_desc_resources - free RX dma desc resources 1479 * @priv: private structure 1480 */ 1481 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1482 { 1483 u32 rx_count = priv->plat->rx_queues_to_use; 1484 u32 queue; 1485 1486 /* Free RX queue resources */ 1487 for (queue = 0; queue < rx_count; queue++) { 1488 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1489 1490 /* Release the DMA RX socket buffers */ 1491 dma_free_rx_skbufs(priv, queue); 1492 1493 /* Free DMA regions of consistent memory previously allocated */ 1494 if (!priv->extend_desc) 1495 dma_free_coherent(priv->device, 1496 DMA_RX_SIZE * sizeof(struct dma_desc), 1497 rx_q->dma_rx, rx_q->dma_rx_phy); 1498 else 1499 dma_free_coherent(priv->device, DMA_RX_SIZE * 1500 sizeof(struct dma_extended_desc), 1501 rx_q->dma_erx, rx_q->dma_rx_phy); 1502 1503 kfree(rx_q->buf_pool); 1504 if (rx_q->page_pool) { 1505 page_pool_request_shutdown(rx_q->page_pool); 1506 page_pool_destroy(rx_q->page_pool); 1507 } 1508 } 1509 } 1510 1511 /** 1512 * free_dma_tx_desc_resources - free TX dma desc resources 1513 * @priv: private structure 1514 */ 1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1516 { 1517 u32 tx_count = priv->plat->tx_queues_to_use; 1518 u32 queue; 1519 1520 /* Free TX queue resources */ 1521 for (queue = 0; queue < tx_count; queue++) { 1522 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1523 1524 /* Release the DMA TX socket buffers */ 1525 dma_free_tx_skbufs(priv, queue); 1526 1527 /* Free DMA regions of consistent memory previously allocated */ 1528 if (!priv->extend_desc) 1529 dma_free_coherent(priv->device, 1530 DMA_TX_SIZE * sizeof(struct dma_desc), 1531 tx_q->dma_tx, tx_q->dma_tx_phy); 1532 else 1533 dma_free_coherent(priv->device, DMA_TX_SIZE * 1534 sizeof(struct dma_extended_desc), 1535 tx_q->dma_etx, tx_q->dma_tx_phy); 1536 1537 kfree(tx_q->tx_skbuff_dma); 1538 kfree(tx_q->tx_skbuff); 1539 } 1540 } 1541 1542 /** 1543 * alloc_dma_rx_desc_resources - alloc RX resources. 1544 * @priv: private structure 1545 * Description: according to which descriptor can be used (extend or basic) 1546 * this function allocates the resources for TX and RX paths. In case of 1547 * reception, for example, it pre-allocated the RX socket buffer in order to 1548 * allow zero-copy mechanism. 1549 */ 1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1551 { 1552 u32 rx_count = priv->plat->rx_queues_to_use; 1553 int ret = -ENOMEM; 1554 u32 queue; 1555 1556 /* RX queues buffers and DMA */ 1557 for (queue = 0; queue < rx_count; queue++) { 1558 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1559 struct page_pool_params pp_params = { 0 }; 1560 1561 rx_q->queue_index = queue; 1562 rx_q->priv_data = priv; 1563 1564 pp_params.flags = PP_FLAG_DMA_MAP; 1565 pp_params.pool_size = DMA_RX_SIZE; 1566 pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1567 pp_params.nid = dev_to_node(priv->device); 1568 pp_params.dev = priv->device; 1569 pp_params.dma_dir = DMA_FROM_DEVICE; 1570 1571 rx_q->page_pool = page_pool_create(&pp_params); 1572 if (IS_ERR(rx_q->page_pool)) { 1573 ret = PTR_ERR(rx_q->page_pool); 1574 rx_q->page_pool = NULL; 1575 goto err_dma; 1576 } 1577 1578 rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool), 1579 GFP_KERNEL); 1580 if (!rx_q->buf_pool) 1581 goto err_dma; 1582 1583 if (priv->extend_desc) { 1584 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1585 DMA_RX_SIZE * sizeof(struct dma_extended_desc), 1586 &rx_q->dma_rx_phy, 1587 GFP_KERNEL); 1588 if (!rx_q->dma_erx) 1589 goto err_dma; 1590 1591 } else { 1592 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1593 DMA_RX_SIZE * sizeof(struct dma_desc), 1594 &rx_q->dma_rx_phy, 1595 GFP_KERNEL); 1596 if (!rx_q->dma_rx) 1597 goto err_dma; 1598 } 1599 } 1600 1601 return 0; 1602 1603 err_dma: 1604 free_dma_rx_desc_resources(priv); 1605 1606 return ret; 1607 } 1608 1609 /** 1610 * alloc_dma_tx_desc_resources - alloc TX resources. 1611 * @priv: private structure 1612 * Description: according to which descriptor can be used (extend or basic) 1613 * this function allocates the resources for TX and RX paths. In case of 1614 * reception, for example, it pre-allocated the RX socket buffer in order to 1615 * allow zero-copy mechanism. 1616 */ 1617 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1618 { 1619 u32 tx_count = priv->plat->tx_queues_to_use; 1620 int ret = -ENOMEM; 1621 u32 queue; 1622 1623 /* TX queues buffers and DMA */ 1624 for (queue = 0; queue < tx_count; queue++) { 1625 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1626 1627 tx_q->queue_index = queue; 1628 tx_q->priv_data = priv; 1629 1630 tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE, 1631 sizeof(*tx_q->tx_skbuff_dma), 1632 GFP_KERNEL); 1633 if (!tx_q->tx_skbuff_dma) 1634 goto err_dma; 1635 1636 tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE, 1637 sizeof(struct sk_buff *), 1638 GFP_KERNEL); 1639 if (!tx_q->tx_skbuff) 1640 goto err_dma; 1641 1642 if (priv->extend_desc) { 1643 tx_q->dma_etx = dma_alloc_coherent(priv->device, 1644 DMA_TX_SIZE * sizeof(struct dma_extended_desc), 1645 &tx_q->dma_tx_phy, 1646 GFP_KERNEL); 1647 if (!tx_q->dma_etx) 1648 goto err_dma; 1649 } else { 1650 tx_q->dma_tx = dma_alloc_coherent(priv->device, 1651 DMA_TX_SIZE * sizeof(struct dma_desc), 1652 &tx_q->dma_tx_phy, 1653 GFP_KERNEL); 1654 if (!tx_q->dma_tx) 1655 goto err_dma; 1656 } 1657 } 1658 1659 return 0; 1660 1661 err_dma: 1662 free_dma_tx_desc_resources(priv); 1663 1664 return ret; 1665 } 1666 1667 /** 1668 * alloc_dma_desc_resources - alloc TX/RX resources. 1669 * @priv: private structure 1670 * Description: according to which descriptor can be used (extend or basic) 1671 * this function allocates the resources for TX and RX paths. In case of 1672 * reception, for example, it pre-allocated the RX socket buffer in order to 1673 * allow zero-copy mechanism. 1674 */ 1675 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1676 { 1677 /* RX Allocation */ 1678 int ret = alloc_dma_rx_desc_resources(priv); 1679 1680 if (ret) 1681 return ret; 1682 1683 ret = alloc_dma_tx_desc_resources(priv); 1684 1685 return ret; 1686 } 1687 1688 /** 1689 * free_dma_desc_resources - free dma desc resources 1690 * @priv: private structure 1691 */ 1692 static void free_dma_desc_resources(struct stmmac_priv *priv) 1693 { 1694 /* Release the DMA RX socket buffers */ 1695 free_dma_rx_desc_resources(priv); 1696 1697 /* Release the DMA TX socket buffers */ 1698 free_dma_tx_desc_resources(priv); 1699 } 1700 1701 /** 1702 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1703 * @priv: driver private structure 1704 * Description: It is used for enabling the rx queues in the MAC 1705 */ 1706 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1707 { 1708 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1709 int queue; 1710 u8 mode; 1711 1712 for (queue = 0; queue < rx_queues_count; queue++) { 1713 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1714 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1715 } 1716 } 1717 1718 /** 1719 * stmmac_start_rx_dma - start RX DMA channel 1720 * @priv: driver private structure 1721 * @chan: RX channel index 1722 * Description: 1723 * This starts a RX DMA channel 1724 */ 1725 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1726 { 1727 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1728 stmmac_start_rx(priv, priv->ioaddr, chan); 1729 } 1730 1731 /** 1732 * stmmac_start_tx_dma - start TX DMA channel 1733 * @priv: driver private structure 1734 * @chan: TX channel index 1735 * Description: 1736 * This starts a TX DMA channel 1737 */ 1738 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1739 { 1740 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1741 stmmac_start_tx(priv, priv->ioaddr, chan); 1742 } 1743 1744 /** 1745 * stmmac_stop_rx_dma - stop RX DMA channel 1746 * @priv: driver private structure 1747 * @chan: RX channel index 1748 * Description: 1749 * This stops a RX DMA channel 1750 */ 1751 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1752 { 1753 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1754 stmmac_stop_rx(priv, priv->ioaddr, chan); 1755 } 1756 1757 /** 1758 * stmmac_stop_tx_dma - stop TX DMA channel 1759 * @priv: driver private structure 1760 * @chan: TX channel index 1761 * Description: 1762 * This stops a TX DMA channel 1763 */ 1764 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1765 { 1766 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1767 stmmac_stop_tx(priv, priv->ioaddr, chan); 1768 } 1769 1770 /** 1771 * stmmac_start_all_dma - start all RX and TX DMA channels 1772 * @priv: driver private structure 1773 * Description: 1774 * This starts all the RX and TX DMA channels 1775 */ 1776 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1777 { 1778 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1779 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1780 u32 chan = 0; 1781 1782 for (chan = 0; chan < rx_channels_count; chan++) 1783 stmmac_start_rx_dma(priv, chan); 1784 1785 for (chan = 0; chan < tx_channels_count; chan++) 1786 stmmac_start_tx_dma(priv, chan); 1787 } 1788 1789 /** 1790 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1791 * @priv: driver private structure 1792 * Description: 1793 * This stops the RX and TX DMA channels 1794 */ 1795 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1796 { 1797 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1798 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1799 u32 chan = 0; 1800 1801 for (chan = 0; chan < rx_channels_count; chan++) 1802 stmmac_stop_rx_dma(priv, chan); 1803 1804 for (chan = 0; chan < tx_channels_count; chan++) 1805 stmmac_stop_tx_dma(priv, chan); 1806 } 1807 1808 /** 1809 * stmmac_dma_operation_mode - HW DMA operation mode 1810 * @priv: driver private structure 1811 * Description: it is used for configuring the DMA operation mode register in 1812 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1813 */ 1814 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1815 { 1816 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1817 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1818 int rxfifosz = priv->plat->rx_fifo_size; 1819 int txfifosz = priv->plat->tx_fifo_size; 1820 u32 txmode = 0; 1821 u32 rxmode = 0; 1822 u32 chan = 0; 1823 u8 qmode = 0; 1824 1825 if (rxfifosz == 0) 1826 rxfifosz = priv->dma_cap.rx_fifo_size; 1827 if (txfifosz == 0) 1828 txfifosz = priv->dma_cap.tx_fifo_size; 1829 1830 /* Adjust for real per queue fifo size */ 1831 rxfifosz /= rx_channels_count; 1832 txfifosz /= tx_channels_count; 1833 1834 if (priv->plat->force_thresh_dma_mode) { 1835 txmode = tc; 1836 rxmode = tc; 1837 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1838 /* 1839 * In case of GMAC, SF mode can be enabled 1840 * to perform the TX COE in HW. This depends on: 1841 * 1) TX COE if actually supported 1842 * 2) There is no bugged Jumbo frame support 1843 * that needs to not insert csum in the TDES. 1844 */ 1845 txmode = SF_DMA_MODE; 1846 rxmode = SF_DMA_MODE; 1847 priv->xstats.threshold = SF_DMA_MODE; 1848 } else { 1849 txmode = tc; 1850 rxmode = SF_DMA_MODE; 1851 } 1852 1853 /* configure all channels */ 1854 for (chan = 0; chan < rx_channels_count; chan++) { 1855 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1856 1857 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1858 rxfifosz, qmode); 1859 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1860 chan); 1861 } 1862 1863 for (chan = 0; chan < tx_channels_count; chan++) { 1864 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1865 1866 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1867 txfifosz, qmode); 1868 } 1869 } 1870 1871 /** 1872 * stmmac_tx_clean - to manage the transmission completion 1873 * @priv: driver private structure 1874 * @queue: TX queue index 1875 * Description: it reclaims the transmit resources after transmission completes. 1876 */ 1877 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1878 { 1879 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1880 unsigned int bytes_compl = 0, pkts_compl = 0; 1881 unsigned int entry, count = 0; 1882 1883 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1884 1885 priv->xstats.tx_clean++; 1886 1887 entry = tx_q->dirty_tx; 1888 while ((entry != tx_q->cur_tx) && (count < budget)) { 1889 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1890 struct dma_desc *p; 1891 int status; 1892 1893 if (priv->extend_desc) 1894 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1895 else 1896 p = tx_q->dma_tx + entry; 1897 1898 status = stmmac_tx_status(priv, &priv->dev->stats, 1899 &priv->xstats, p, priv->ioaddr); 1900 /* Check if the descriptor is owned by the DMA */ 1901 if (unlikely(status & tx_dma_own)) 1902 break; 1903 1904 count++; 1905 1906 /* Make sure descriptor fields are read after reading 1907 * the own bit. 1908 */ 1909 dma_rmb(); 1910 1911 /* Just consider the last segment and ...*/ 1912 if (likely(!(status & tx_not_ls))) { 1913 /* ... verify the status error condition */ 1914 if (unlikely(status & tx_err)) { 1915 priv->dev->stats.tx_errors++; 1916 } else { 1917 priv->dev->stats.tx_packets++; 1918 priv->xstats.tx_pkt_n++; 1919 } 1920 stmmac_get_tx_hwtstamp(priv, p, skb); 1921 } 1922 1923 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1924 if (tx_q->tx_skbuff_dma[entry].map_as_page) 1925 dma_unmap_page(priv->device, 1926 tx_q->tx_skbuff_dma[entry].buf, 1927 tx_q->tx_skbuff_dma[entry].len, 1928 DMA_TO_DEVICE); 1929 else 1930 dma_unmap_single(priv->device, 1931 tx_q->tx_skbuff_dma[entry].buf, 1932 tx_q->tx_skbuff_dma[entry].len, 1933 DMA_TO_DEVICE); 1934 tx_q->tx_skbuff_dma[entry].buf = 0; 1935 tx_q->tx_skbuff_dma[entry].len = 0; 1936 tx_q->tx_skbuff_dma[entry].map_as_page = false; 1937 } 1938 1939 stmmac_clean_desc3(priv, tx_q, p); 1940 1941 tx_q->tx_skbuff_dma[entry].last_segment = false; 1942 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 1943 1944 if (likely(skb != NULL)) { 1945 pkts_compl++; 1946 bytes_compl += skb->len; 1947 dev_consume_skb_any(skb); 1948 tx_q->tx_skbuff[entry] = NULL; 1949 } 1950 1951 stmmac_release_tx_desc(priv, p, priv->mode); 1952 1953 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1954 } 1955 tx_q->dirty_tx = entry; 1956 1957 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 1958 pkts_compl, bytes_compl); 1959 1960 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 1961 queue))) && 1962 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) { 1963 1964 netif_dbg(priv, tx_done, priv->dev, 1965 "%s: restart transmit\n", __func__); 1966 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 1967 } 1968 1969 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1970 stmmac_enable_eee_mode(priv); 1971 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1972 } 1973 1974 /* We still have pending packets, let's call for a new scheduling */ 1975 if (tx_q->dirty_tx != tx_q->cur_tx) 1976 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 1977 1978 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 1979 1980 return count; 1981 } 1982 1983 /** 1984 * stmmac_tx_err - to manage the tx error 1985 * @priv: driver private structure 1986 * @chan: channel index 1987 * Description: it cleans the descriptors and restarts the transmission 1988 * in case of transmission errors. 1989 */ 1990 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 1991 { 1992 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 1993 int i; 1994 1995 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 1996 1997 stmmac_stop_tx_dma(priv, chan); 1998 dma_free_tx_skbufs(priv, chan); 1999 for (i = 0; i < DMA_TX_SIZE; i++) 2000 if (priv->extend_desc) 2001 stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic, 2002 priv->mode, (i == DMA_TX_SIZE - 1)); 2003 else 2004 stmmac_init_tx_desc(priv, &tx_q->dma_tx[i], 2005 priv->mode, (i == DMA_TX_SIZE - 1)); 2006 tx_q->dirty_tx = 0; 2007 tx_q->cur_tx = 0; 2008 tx_q->mss = 0; 2009 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2010 stmmac_start_tx_dma(priv, chan); 2011 2012 priv->dev->stats.tx_errors++; 2013 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2014 } 2015 2016 /** 2017 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2018 * @priv: driver private structure 2019 * @txmode: TX operating mode 2020 * @rxmode: RX operating mode 2021 * @chan: channel index 2022 * Description: it is used for configuring of the DMA operation mode in 2023 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2024 * mode. 2025 */ 2026 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2027 u32 rxmode, u32 chan) 2028 { 2029 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2030 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2031 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2032 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2033 int rxfifosz = priv->plat->rx_fifo_size; 2034 int txfifosz = priv->plat->tx_fifo_size; 2035 2036 if (rxfifosz == 0) 2037 rxfifosz = priv->dma_cap.rx_fifo_size; 2038 if (txfifosz == 0) 2039 txfifosz = priv->dma_cap.tx_fifo_size; 2040 2041 /* Adjust for real per queue fifo size */ 2042 rxfifosz /= rx_channels_count; 2043 txfifosz /= tx_channels_count; 2044 2045 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2046 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2047 } 2048 2049 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2050 { 2051 int ret; 2052 2053 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2054 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2055 if (ret && (ret != -EINVAL)) { 2056 stmmac_global_err(priv); 2057 return true; 2058 } 2059 2060 return false; 2061 } 2062 2063 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2064 { 2065 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2066 &priv->xstats, chan); 2067 struct stmmac_channel *ch = &priv->channel[chan]; 2068 2069 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2070 if (napi_schedule_prep(&ch->rx_napi)) { 2071 stmmac_disable_dma_irq(priv, priv->ioaddr, chan); 2072 __napi_schedule_irqoff(&ch->rx_napi); 2073 status |= handle_tx; 2074 } 2075 } 2076 2077 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) 2078 napi_schedule_irqoff(&ch->tx_napi); 2079 2080 return status; 2081 } 2082 2083 /** 2084 * stmmac_dma_interrupt - DMA ISR 2085 * @priv: driver private structure 2086 * Description: this is the DMA ISR. It is called by the main ISR. 2087 * It calls the dwmac dma routine and schedule poll method in case of some 2088 * work can be done. 2089 */ 2090 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2091 { 2092 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2093 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2094 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2095 tx_channel_count : rx_channel_count; 2096 u32 chan; 2097 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2098 2099 /* Make sure we never check beyond our status buffer. */ 2100 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2101 channels_to_check = ARRAY_SIZE(status); 2102 2103 for (chan = 0; chan < channels_to_check; chan++) 2104 status[chan] = stmmac_napi_check(priv, chan); 2105 2106 for (chan = 0; chan < tx_channel_count; chan++) { 2107 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2108 /* Try to bump up the dma threshold on this failure */ 2109 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2110 (tc <= 256)) { 2111 tc += 64; 2112 if (priv->plat->force_thresh_dma_mode) 2113 stmmac_set_dma_operation_mode(priv, 2114 tc, 2115 tc, 2116 chan); 2117 else 2118 stmmac_set_dma_operation_mode(priv, 2119 tc, 2120 SF_DMA_MODE, 2121 chan); 2122 priv->xstats.threshold = tc; 2123 } 2124 } else if (unlikely(status[chan] == tx_hard_error)) { 2125 stmmac_tx_err(priv, chan); 2126 } 2127 } 2128 } 2129 2130 /** 2131 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2132 * @priv: driver private structure 2133 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2134 */ 2135 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2136 { 2137 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2138 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2139 2140 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2141 2142 if (priv->dma_cap.rmon) { 2143 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2144 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2145 } else 2146 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2147 } 2148 2149 /** 2150 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2151 * @priv: driver private structure 2152 * Description: 2153 * new GMAC chip generations have a new register to indicate the 2154 * presence of the optional feature/functions. 2155 * This can be also used to override the value passed through the 2156 * platform and necessary for old MAC10/100 and GMAC chips. 2157 */ 2158 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2159 { 2160 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2161 } 2162 2163 /** 2164 * stmmac_check_ether_addr - check if the MAC addr is valid 2165 * @priv: driver private structure 2166 * Description: 2167 * it is to verify if the MAC address is valid, in case of failures it 2168 * generates a random MAC address 2169 */ 2170 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2171 { 2172 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2173 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2174 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2175 eth_hw_addr_random(priv->dev); 2176 dev_info(priv->device, "device MAC address %pM\n", 2177 priv->dev->dev_addr); 2178 } 2179 } 2180 2181 /** 2182 * stmmac_init_dma_engine - DMA init. 2183 * @priv: driver private structure 2184 * Description: 2185 * It inits the DMA invoking the specific MAC/GMAC callback. 2186 * Some DMA parameters can be passed from the platform; 2187 * in case of these are not passed a default is kept for the MAC or GMAC. 2188 */ 2189 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2190 { 2191 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2192 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2193 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2194 struct stmmac_rx_queue *rx_q; 2195 struct stmmac_tx_queue *tx_q; 2196 u32 chan = 0; 2197 int atds = 0; 2198 int ret = 0; 2199 2200 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2201 dev_err(priv->device, "Invalid DMA configuration\n"); 2202 return -EINVAL; 2203 } 2204 2205 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2206 atds = 1; 2207 2208 ret = stmmac_reset(priv, priv->ioaddr); 2209 if (ret) { 2210 dev_err(priv->device, "Failed to reset the dma\n"); 2211 return ret; 2212 } 2213 2214 /* DMA Configuration */ 2215 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2216 2217 if (priv->plat->axi) 2218 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2219 2220 /* DMA CSR Channel configuration */ 2221 for (chan = 0; chan < dma_csr_ch; chan++) 2222 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2223 2224 /* DMA RX Channel Configuration */ 2225 for (chan = 0; chan < rx_channels_count; chan++) { 2226 rx_q = &priv->rx_queue[chan]; 2227 2228 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2229 rx_q->dma_rx_phy, chan); 2230 2231 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2232 (DMA_RX_SIZE * sizeof(struct dma_desc)); 2233 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2234 rx_q->rx_tail_addr, chan); 2235 } 2236 2237 /* DMA TX Channel Configuration */ 2238 for (chan = 0; chan < tx_channels_count; chan++) { 2239 tx_q = &priv->tx_queue[chan]; 2240 2241 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2242 tx_q->dma_tx_phy, chan); 2243 2244 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2245 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2246 tx_q->tx_tail_addr, chan); 2247 } 2248 2249 return ret; 2250 } 2251 2252 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2253 { 2254 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2255 2256 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2257 } 2258 2259 /** 2260 * stmmac_tx_timer - mitigation sw timer for tx. 2261 * @data: data pointer 2262 * Description: 2263 * This is the timer handler to directly invoke the stmmac_tx_clean. 2264 */ 2265 static void stmmac_tx_timer(struct timer_list *t) 2266 { 2267 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2268 struct stmmac_priv *priv = tx_q->priv_data; 2269 struct stmmac_channel *ch; 2270 2271 ch = &priv->channel[tx_q->queue_index]; 2272 2273 /* 2274 * If NAPI is already running we can miss some events. Let's rearm 2275 * the timer and try again. 2276 */ 2277 if (likely(napi_schedule_prep(&ch->tx_napi))) 2278 __napi_schedule(&ch->tx_napi); 2279 else 2280 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10)); 2281 } 2282 2283 /** 2284 * stmmac_init_coalesce - init mitigation options. 2285 * @priv: driver private structure 2286 * Description: 2287 * This inits the coalesce parameters: i.e. timer rate, 2288 * timer handler and default threshold used for enabling the 2289 * interrupt on completion bit. 2290 */ 2291 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2292 { 2293 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2294 u32 chan; 2295 2296 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2297 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2298 priv->rx_coal_frames = STMMAC_RX_FRAMES; 2299 2300 for (chan = 0; chan < tx_channel_count; chan++) { 2301 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2302 2303 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2304 } 2305 } 2306 2307 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2308 { 2309 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2310 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2311 u32 chan; 2312 2313 /* set TX ring length */ 2314 for (chan = 0; chan < tx_channels_count; chan++) 2315 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2316 (DMA_TX_SIZE - 1), chan); 2317 2318 /* set RX ring length */ 2319 for (chan = 0; chan < rx_channels_count; chan++) 2320 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2321 (DMA_RX_SIZE - 1), chan); 2322 } 2323 2324 /** 2325 * stmmac_set_tx_queue_weight - Set TX queue weight 2326 * @priv: driver private structure 2327 * Description: It is used for setting TX queues weight 2328 */ 2329 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2330 { 2331 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2332 u32 weight; 2333 u32 queue; 2334 2335 for (queue = 0; queue < tx_queues_count; queue++) { 2336 weight = priv->plat->tx_queues_cfg[queue].weight; 2337 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2338 } 2339 } 2340 2341 /** 2342 * stmmac_configure_cbs - Configure CBS in TX queue 2343 * @priv: driver private structure 2344 * Description: It is used for configuring CBS in AVB TX queues 2345 */ 2346 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2347 { 2348 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2349 u32 mode_to_use; 2350 u32 queue; 2351 2352 /* queue 0 is reserved for legacy traffic */ 2353 for (queue = 1; queue < tx_queues_count; queue++) { 2354 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2355 if (mode_to_use == MTL_QUEUE_DCB) 2356 continue; 2357 2358 stmmac_config_cbs(priv, priv->hw, 2359 priv->plat->tx_queues_cfg[queue].send_slope, 2360 priv->plat->tx_queues_cfg[queue].idle_slope, 2361 priv->plat->tx_queues_cfg[queue].high_credit, 2362 priv->plat->tx_queues_cfg[queue].low_credit, 2363 queue); 2364 } 2365 } 2366 2367 /** 2368 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2369 * @priv: driver private structure 2370 * Description: It is used for mapping RX queues to RX dma channels 2371 */ 2372 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2373 { 2374 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2375 u32 queue; 2376 u32 chan; 2377 2378 for (queue = 0; queue < rx_queues_count; queue++) { 2379 chan = priv->plat->rx_queues_cfg[queue].chan; 2380 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2381 } 2382 } 2383 2384 /** 2385 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2386 * @priv: driver private structure 2387 * Description: It is used for configuring the RX Queue Priority 2388 */ 2389 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2390 { 2391 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2392 u32 queue; 2393 u32 prio; 2394 2395 for (queue = 0; queue < rx_queues_count; queue++) { 2396 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2397 continue; 2398 2399 prio = priv->plat->rx_queues_cfg[queue].prio; 2400 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2401 } 2402 } 2403 2404 /** 2405 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2406 * @priv: driver private structure 2407 * Description: It is used for configuring the TX Queue Priority 2408 */ 2409 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2410 { 2411 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2412 u32 queue; 2413 u32 prio; 2414 2415 for (queue = 0; queue < tx_queues_count; queue++) { 2416 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2417 continue; 2418 2419 prio = priv->plat->tx_queues_cfg[queue].prio; 2420 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2421 } 2422 } 2423 2424 /** 2425 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2426 * @priv: driver private structure 2427 * Description: It is used for configuring the RX queue routing 2428 */ 2429 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2430 { 2431 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2432 u32 queue; 2433 u8 packet; 2434 2435 for (queue = 0; queue < rx_queues_count; queue++) { 2436 /* no specific packet type routing specified for the queue */ 2437 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2438 continue; 2439 2440 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2441 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2442 } 2443 } 2444 2445 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 2446 { 2447 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 2448 priv->rss.enable = false; 2449 return; 2450 } 2451 2452 if (priv->dev->features & NETIF_F_RXHASH) 2453 priv->rss.enable = true; 2454 else 2455 priv->rss.enable = false; 2456 2457 stmmac_rss_configure(priv, priv->hw, &priv->rss, 2458 priv->plat->rx_queues_to_use); 2459 } 2460 2461 /** 2462 * stmmac_mtl_configuration - Configure MTL 2463 * @priv: driver private structure 2464 * Description: It is used for configurring MTL 2465 */ 2466 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2467 { 2468 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2469 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2470 2471 if (tx_queues_count > 1) 2472 stmmac_set_tx_queue_weight(priv); 2473 2474 /* Configure MTL RX algorithms */ 2475 if (rx_queues_count > 1) 2476 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2477 priv->plat->rx_sched_algorithm); 2478 2479 /* Configure MTL TX algorithms */ 2480 if (tx_queues_count > 1) 2481 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2482 priv->plat->tx_sched_algorithm); 2483 2484 /* Configure CBS in AVB TX queues */ 2485 if (tx_queues_count > 1) 2486 stmmac_configure_cbs(priv); 2487 2488 /* Map RX MTL to DMA channels */ 2489 stmmac_rx_queue_dma_chan_map(priv); 2490 2491 /* Enable MAC RX Queues */ 2492 stmmac_mac_enable_rx_queues(priv); 2493 2494 /* Set RX priorities */ 2495 if (rx_queues_count > 1) 2496 stmmac_mac_config_rx_queues_prio(priv); 2497 2498 /* Set TX priorities */ 2499 if (tx_queues_count > 1) 2500 stmmac_mac_config_tx_queues_prio(priv); 2501 2502 /* Set RX routing */ 2503 if (rx_queues_count > 1) 2504 stmmac_mac_config_rx_queues_routing(priv); 2505 2506 /* Receive Side Scaling */ 2507 if (rx_queues_count > 1) 2508 stmmac_mac_config_rss(priv); 2509 } 2510 2511 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2512 { 2513 if (priv->dma_cap.asp) { 2514 netdev_info(priv->dev, "Enabling Safety Features\n"); 2515 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2516 } else { 2517 netdev_info(priv->dev, "No Safety Features support found\n"); 2518 } 2519 } 2520 2521 /** 2522 * stmmac_hw_setup - setup mac in a usable state. 2523 * @dev : pointer to the device structure. 2524 * Description: 2525 * this is the main function to setup the HW in a usable state because the 2526 * dma engine is reset, the core registers are configured (e.g. AXI, 2527 * Checksum features, timers). The DMA is ready to start receiving and 2528 * transmitting. 2529 * Return value: 2530 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2531 * file on failure. 2532 */ 2533 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2534 { 2535 struct stmmac_priv *priv = netdev_priv(dev); 2536 u32 rx_cnt = priv->plat->rx_queues_to_use; 2537 u32 tx_cnt = priv->plat->tx_queues_to_use; 2538 u32 chan; 2539 int ret; 2540 2541 /* DMA initialization and SW reset */ 2542 ret = stmmac_init_dma_engine(priv); 2543 if (ret < 0) { 2544 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2545 __func__); 2546 return ret; 2547 } 2548 2549 /* Copy the MAC addr into the HW */ 2550 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2551 2552 /* PS and related bits will be programmed according to the speed */ 2553 if (priv->hw->pcs) { 2554 int speed = priv->plat->mac_port_sel_speed; 2555 2556 if ((speed == SPEED_10) || (speed == SPEED_100) || 2557 (speed == SPEED_1000)) { 2558 priv->hw->ps = speed; 2559 } else { 2560 dev_warn(priv->device, "invalid port speed\n"); 2561 priv->hw->ps = 0; 2562 } 2563 } 2564 2565 /* Initialize the MAC Core */ 2566 stmmac_core_init(priv, priv->hw, dev); 2567 2568 /* Initialize MTL*/ 2569 stmmac_mtl_configuration(priv); 2570 2571 /* Initialize Safety Features */ 2572 stmmac_safety_feat_configuration(priv); 2573 2574 ret = stmmac_rx_ipc(priv, priv->hw); 2575 if (!ret) { 2576 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2577 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2578 priv->hw->rx_csum = 0; 2579 } 2580 2581 /* Enable the MAC Rx/Tx */ 2582 stmmac_mac_set(priv, priv->ioaddr, true); 2583 2584 /* Set the HW DMA mode and the COE */ 2585 stmmac_dma_operation_mode(priv); 2586 2587 stmmac_mmc_setup(priv); 2588 2589 if (init_ptp) { 2590 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2591 if (ret < 0) 2592 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2593 2594 ret = stmmac_init_ptp(priv); 2595 if (ret == -EOPNOTSUPP) 2596 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2597 else if (ret) 2598 netdev_warn(priv->dev, "PTP init failed\n"); 2599 } 2600 2601 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2602 2603 if (priv->use_riwt) { 2604 ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt); 2605 if (!ret) 2606 priv->rx_riwt = MIN_DMA_RIWT; 2607 } 2608 2609 if (priv->hw->pcs) 2610 stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0); 2611 2612 /* set TX and RX rings length */ 2613 stmmac_set_rings_length(priv); 2614 2615 /* Enable TSO */ 2616 if (priv->tso) { 2617 for (chan = 0; chan < tx_cnt; chan++) 2618 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2619 } 2620 2621 /* Enable Split Header */ 2622 if (priv->sph && priv->hw->rx_csum) { 2623 for (chan = 0; chan < rx_cnt; chan++) 2624 stmmac_enable_sph(priv, priv->ioaddr, 1, chan); 2625 } 2626 2627 /* VLAN Tag Insertion */ 2628 if (priv->dma_cap.vlins) 2629 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 2630 2631 /* Start the ball rolling... */ 2632 stmmac_start_all_dma(priv); 2633 2634 return 0; 2635 } 2636 2637 static void stmmac_hw_teardown(struct net_device *dev) 2638 { 2639 struct stmmac_priv *priv = netdev_priv(dev); 2640 2641 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2642 } 2643 2644 /** 2645 * stmmac_open - open entry point of the driver 2646 * @dev : pointer to the device structure. 2647 * Description: 2648 * This function is the open entry point of the driver. 2649 * Return value: 2650 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2651 * file on failure. 2652 */ 2653 static int stmmac_open(struct net_device *dev) 2654 { 2655 struct stmmac_priv *priv = netdev_priv(dev); 2656 u32 chan; 2657 int ret; 2658 2659 if (priv->hw->pcs != STMMAC_PCS_RGMII && 2660 priv->hw->pcs != STMMAC_PCS_TBI && 2661 priv->hw->pcs != STMMAC_PCS_RTBI) { 2662 ret = stmmac_init_phy(dev); 2663 if (ret) { 2664 netdev_err(priv->dev, 2665 "%s: Cannot attach to PHY (error: %d)\n", 2666 __func__, ret); 2667 return ret; 2668 } 2669 } 2670 2671 /* Extra statistics */ 2672 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2673 priv->xstats.threshold = tc; 2674 2675 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 2676 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2677 2678 ret = alloc_dma_desc_resources(priv); 2679 if (ret < 0) { 2680 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2681 __func__); 2682 goto dma_desc_error; 2683 } 2684 2685 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2686 if (ret < 0) { 2687 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2688 __func__); 2689 goto init_error; 2690 } 2691 2692 ret = stmmac_hw_setup(dev, true); 2693 if (ret < 0) { 2694 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2695 goto init_error; 2696 } 2697 2698 stmmac_init_coalesce(priv); 2699 2700 phylink_start(priv->phylink); 2701 2702 /* Request the IRQ lines */ 2703 ret = request_irq(dev->irq, stmmac_interrupt, 2704 IRQF_SHARED, dev->name, dev); 2705 if (unlikely(ret < 0)) { 2706 netdev_err(priv->dev, 2707 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2708 __func__, dev->irq, ret); 2709 goto irq_error; 2710 } 2711 2712 /* Request the Wake IRQ in case of another line is used for WoL */ 2713 if (priv->wol_irq != dev->irq) { 2714 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2715 IRQF_SHARED, dev->name, dev); 2716 if (unlikely(ret < 0)) { 2717 netdev_err(priv->dev, 2718 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2719 __func__, priv->wol_irq, ret); 2720 goto wolirq_error; 2721 } 2722 } 2723 2724 /* Request the IRQ lines */ 2725 if (priv->lpi_irq > 0) { 2726 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2727 dev->name, dev); 2728 if (unlikely(ret < 0)) { 2729 netdev_err(priv->dev, 2730 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2731 __func__, priv->lpi_irq, ret); 2732 goto lpiirq_error; 2733 } 2734 } 2735 2736 stmmac_enable_all_queues(priv); 2737 stmmac_start_all_queues(priv); 2738 2739 return 0; 2740 2741 lpiirq_error: 2742 if (priv->wol_irq != dev->irq) 2743 free_irq(priv->wol_irq, dev); 2744 wolirq_error: 2745 free_irq(dev->irq, dev); 2746 irq_error: 2747 phylink_stop(priv->phylink); 2748 2749 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2750 del_timer_sync(&priv->tx_queue[chan].txtimer); 2751 2752 stmmac_hw_teardown(dev); 2753 init_error: 2754 free_dma_desc_resources(priv); 2755 dma_desc_error: 2756 phylink_disconnect_phy(priv->phylink); 2757 return ret; 2758 } 2759 2760 /** 2761 * stmmac_release - close entry point of the driver 2762 * @dev : device pointer. 2763 * Description: 2764 * This is the stop entry point of the driver. 2765 */ 2766 static int stmmac_release(struct net_device *dev) 2767 { 2768 struct stmmac_priv *priv = netdev_priv(dev); 2769 u32 chan; 2770 2771 if (priv->eee_enabled) 2772 del_timer_sync(&priv->eee_ctrl_timer); 2773 2774 /* Stop and disconnect the PHY */ 2775 phylink_stop(priv->phylink); 2776 phylink_disconnect_phy(priv->phylink); 2777 2778 stmmac_stop_all_queues(priv); 2779 2780 stmmac_disable_all_queues(priv); 2781 2782 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2783 del_timer_sync(&priv->tx_queue[chan].txtimer); 2784 2785 /* Free the IRQ lines */ 2786 free_irq(dev->irq, dev); 2787 if (priv->wol_irq != dev->irq) 2788 free_irq(priv->wol_irq, dev); 2789 if (priv->lpi_irq > 0) 2790 free_irq(priv->lpi_irq, dev); 2791 2792 /* Stop TX/RX DMA and clear the descriptors */ 2793 stmmac_stop_all_dma(priv); 2794 2795 /* Release and free the Rx/Tx resources */ 2796 free_dma_desc_resources(priv); 2797 2798 /* Disable the MAC Rx/Tx */ 2799 stmmac_mac_set(priv, priv->ioaddr, false); 2800 2801 netif_carrier_off(dev); 2802 2803 stmmac_release_ptp(priv); 2804 2805 return 0; 2806 } 2807 2808 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 2809 struct stmmac_tx_queue *tx_q) 2810 { 2811 u16 tag = 0x0, inner_tag = 0x0; 2812 u32 inner_type = 0x0; 2813 struct dma_desc *p; 2814 2815 if (!priv->dma_cap.vlins) 2816 return false; 2817 if (!skb_vlan_tag_present(skb)) 2818 return false; 2819 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 2820 inner_tag = skb_vlan_tag_get(skb); 2821 inner_type = STMMAC_VLAN_INSERT; 2822 } 2823 2824 tag = skb_vlan_tag_get(skb); 2825 2826 p = tx_q->dma_tx + tx_q->cur_tx; 2827 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 2828 return false; 2829 2830 stmmac_set_tx_owner(priv, p); 2831 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2832 return true; 2833 } 2834 2835 /** 2836 * stmmac_tso_allocator - close entry point of the driver 2837 * @priv: driver private structure 2838 * @des: buffer start address 2839 * @total_len: total length to fill in descriptors 2840 * @last_segmant: condition for the last descriptor 2841 * @queue: TX queue index 2842 * Description: 2843 * This function fills descriptor and request new descriptors according to 2844 * buffer length to fill 2845 */ 2846 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 2847 int total_len, bool last_segment, u32 queue) 2848 { 2849 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2850 struct dma_desc *desc; 2851 u32 buff_size; 2852 int tmp_len; 2853 2854 tmp_len = total_len; 2855 2856 while (tmp_len > 0) { 2857 dma_addr_t curr_addr; 2858 2859 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2860 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2861 desc = tx_q->dma_tx + tx_q->cur_tx; 2862 2863 curr_addr = des + (total_len - tmp_len); 2864 if (priv->dma_cap.addr64 <= 32) 2865 desc->des0 = cpu_to_le32(curr_addr); 2866 else 2867 stmmac_set_desc_addr(priv, desc, curr_addr); 2868 2869 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2870 TSO_MAX_BUFF_SIZE : tmp_len; 2871 2872 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 2873 0, 1, 2874 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 2875 0, 0); 2876 2877 tmp_len -= TSO_MAX_BUFF_SIZE; 2878 } 2879 } 2880 2881 /** 2882 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 2883 * @skb : the socket buffer 2884 * @dev : device pointer 2885 * Description: this is the transmit function that is called on TSO frames 2886 * (support available on GMAC4 and newer chips). 2887 * Diagram below show the ring programming in case of TSO frames: 2888 * 2889 * First Descriptor 2890 * -------- 2891 * | DES0 |---> buffer1 = L2/L3/L4 header 2892 * | DES1 |---> TCP Payload (can continue on next descr...) 2893 * | DES2 |---> buffer 1 and 2 len 2894 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 2895 * -------- 2896 * | 2897 * ... 2898 * | 2899 * -------- 2900 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 2901 * | DES1 | --| 2902 * | DES2 | --> buffer 1 and 2 len 2903 * | DES3 | 2904 * -------- 2905 * 2906 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 2907 */ 2908 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 2909 { 2910 struct dma_desc *desc, *first, *mss_desc = NULL; 2911 struct stmmac_priv *priv = netdev_priv(dev); 2912 int nfrags = skb_shinfo(skb)->nr_frags; 2913 u32 queue = skb_get_queue_mapping(skb); 2914 struct stmmac_tx_queue *tx_q; 2915 unsigned int first_entry; 2916 int tmp_pay_len = 0; 2917 u32 pay_len, mss; 2918 u8 proto_hdr_len; 2919 dma_addr_t des; 2920 bool has_vlan; 2921 int i; 2922 2923 tx_q = &priv->tx_queue[queue]; 2924 2925 /* Compute header lengths */ 2926 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 2927 2928 /* Desc availability based on threshold should be enough safe */ 2929 if (unlikely(stmmac_tx_avail(priv, queue) < 2930 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 2931 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 2932 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 2933 queue)); 2934 /* This is a hard error, log it. */ 2935 netdev_err(priv->dev, 2936 "%s: Tx Ring full when queue awake\n", 2937 __func__); 2938 } 2939 return NETDEV_TX_BUSY; 2940 } 2941 2942 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2943 2944 mss = skb_shinfo(skb)->gso_size; 2945 2946 /* set new MSS value if needed */ 2947 if (mss != tx_q->mss) { 2948 mss_desc = tx_q->dma_tx + tx_q->cur_tx; 2949 stmmac_set_mss(priv, mss_desc, mss); 2950 tx_q->mss = mss; 2951 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 2952 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2953 } 2954 2955 if (netif_msg_tx_queued(priv)) { 2956 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2957 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2958 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2959 skb->data_len); 2960 } 2961 2962 /* Check if VLAN can be inserted by HW */ 2963 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 2964 2965 first_entry = tx_q->cur_tx; 2966 WARN_ON(tx_q->tx_skbuff[first_entry]); 2967 2968 desc = tx_q->dma_tx + first_entry; 2969 first = desc; 2970 2971 if (has_vlan) 2972 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 2973 2974 /* first descriptor: fill Headers on Buf1 */ 2975 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2976 DMA_TO_DEVICE); 2977 if (dma_mapping_error(priv->device, des)) 2978 goto dma_map_err; 2979 2980 tx_q->tx_skbuff_dma[first_entry].buf = des; 2981 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2982 2983 if (priv->dma_cap.addr64 <= 32) { 2984 first->des0 = cpu_to_le32(des); 2985 2986 /* Fill start of payload in buff2 of first descriptor */ 2987 if (pay_len) 2988 first->des1 = cpu_to_le32(des + proto_hdr_len); 2989 2990 /* If needed take extra descriptors to fill the remaining payload */ 2991 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2992 } else { 2993 stmmac_set_desc_addr(priv, first, des); 2994 tmp_pay_len = pay_len; 2995 } 2996 2997 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 2998 2999 /* Prepare fragments */ 3000 for (i = 0; i < nfrags; i++) { 3001 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3002 3003 des = skb_frag_dma_map(priv->device, frag, 0, 3004 skb_frag_size(frag), 3005 DMA_TO_DEVICE); 3006 if (dma_mapping_error(priv->device, des)) 3007 goto dma_map_err; 3008 3009 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 3010 (i == nfrags - 1), queue); 3011 3012 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 3013 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 3014 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 3015 } 3016 3017 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 3018 3019 /* Only the last descriptor gets to point to the skb. */ 3020 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 3021 3022 /* We've used all descriptors we need for this skb, however, 3023 * advance cur_tx so that it references a fresh descriptor. 3024 * ndo_start_xmit will fill this descriptor the next time it's 3025 * called and stmmac_tx_clean may clean up to this descriptor. 3026 */ 3027 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE); 3028 3029 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3030 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3031 __func__); 3032 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3033 } 3034 3035 dev->stats.tx_bytes += skb->len; 3036 priv->xstats.tx_tso_frames++; 3037 priv->xstats.tx_tso_nfrags += nfrags; 3038 3039 /* Manage tx mitigation */ 3040 tx_q->tx_count_frames += nfrags + 1; 3041 if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) && 3042 !(priv->synopsys_id >= DWMAC_CORE_4_00 && 3043 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3044 priv->hwts_tx_en)) { 3045 stmmac_tx_timer_arm(priv, queue); 3046 } else { 3047 tx_q->tx_count_frames = 0; 3048 stmmac_set_tx_ic(priv, desc); 3049 priv->xstats.tx_set_ic_bit++; 3050 } 3051 3052 if (priv->sarc_type) 3053 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 3054 3055 skb_tx_timestamp(skb); 3056 3057 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3058 priv->hwts_tx_en)) { 3059 /* declare that device is doing timestamping */ 3060 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3061 stmmac_enable_tx_timestamp(priv, first); 3062 } 3063 3064 /* Complete the first descriptor before granting the DMA */ 3065 stmmac_prepare_tso_tx_desc(priv, first, 1, 3066 proto_hdr_len, 3067 pay_len, 3068 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 3069 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 3070 3071 /* If context desc is used to change MSS */ 3072 if (mss_desc) { 3073 /* Make sure that first descriptor has been completely 3074 * written, including its own bit. This is because MSS is 3075 * actually before first descriptor, so we need to make 3076 * sure that MSS's own bit is the last thing written. 3077 */ 3078 dma_wmb(); 3079 stmmac_set_tx_owner(priv, mss_desc); 3080 } 3081 3082 /* The own bit must be the latest setting done when prepare the 3083 * descriptor and then barrier is needed to make sure that 3084 * all is coherent before granting the DMA engine. 3085 */ 3086 wmb(); 3087 3088 if (netif_msg_pktdata(priv)) { 3089 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 3090 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3091 tx_q->cur_tx, first, nfrags); 3092 3093 stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0); 3094 3095 pr_info(">>> frame to be transmitted: "); 3096 print_pkt(skb->data, skb_headlen(skb)); 3097 } 3098 3099 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3100 3101 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3102 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3103 3104 return NETDEV_TX_OK; 3105 3106 dma_map_err: 3107 dev_err(priv->device, "Tx dma map failed\n"); 3108 dev_kfree_skb(skb); 3109 priv->dev->stats.tx_dropped++; 3110 return NETDEV_TX_OK; 3111 } 3112 3113 /** 3114 * stmmac_xmit - Tx entry point of the driver 3115 * @skb : the socket buffer 3116 * @dev : device pointer 3117 * Description : this is the tx entry point of the driver. 3118 * It programs the chain or the ring and supports oversized frames 3119 * and SG feature. 3120 */ 3121 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3122 { 3123 struct stmmac_priv *priv = netdev_priv(dev); 3124 unsigned int nopaged_len = skb_headlen(skb); 3125 int i, csum_insertion = 0, is_jumbo = 0; 3126 u32 queue = skb_get_queue_mapping(skb); 3127 int nfrags = skb_shinfo(skb)->nr_frags; 3128 struct dma_desc *desc, *first; 3129 struct stmmac_tx_queue *tx_q; 3130 unsigned int first_entry; 3131 unsigned int enh_desc; 3132 dma_addr_t des; 3133 bool has_vlan; 3134 int entry; 3135 3136 tx_q = &priv->tx_queue[queue]; 3137 3138 if (priv->tx_path_in_lpi_mode) 3139 stmmac_disable_eee_mode(priv); 3140 3141 /* Manage oversized TCP frames for GMAC4 device */ 3142 if (skb_is_gso(skb) && priv->tso) { 3143 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 3144 return stmmac_tso_xmit(skb, dev); 3145 } 3146 3147 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3148 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3149 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3150 queue)); 3151 /* This is a hard error, log it. */ 3152 netdev_err(priv->dev, 3153 "%s: Tx Ring full when queue awake\n", 3154 __func__); 3155 } 3156 return NETDEV_TX_BUSY; 3157 } 3158 3159 /* Check if VLAN can be inserted by HW */ 3160 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3161 3162 entry = tx_q->cur_tx; 3163 first_entry = entry; 3164 WARN_ON(tx_q->tx_skbuff[first_entry]); 3165 3166 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3167 3168 if (likely(priv->extend_desc)) 3169 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3170 else 3171 desc = tx_q->dma_tx + entry; 3172 3173 first = desc; 3174 3175 if (has_vlan) 3176 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 3177 3178 enh_desc = priv->plat->enh_desc; 3179 /* To program the descriptors according to the size of the frame */ 3180 if (enh_desc) 3181 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3182 3183 if (unlikely(is_jumbo)) { 3184 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3185 if (unlikely(entry < 0) && (entry != -EINVAL)) 3186 goto dma_map_err; 3187 } 3188 3189 for (i = 0; i < nfrags; i++) { 3190 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3191 int len = skb_frag_size(frag); 3192 bool last_segment = (i == (nfrags - 1)); 3193 3194 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3195 WARN_ON(tx_q->tx_skbuff[entry]); 3196 3197 if (likely(priv->extend_desc)) 3198 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3199 else 3200 desc = tx_q->dma_tx + entry; 3201 3202 des = skb_frag_dma_map(priv->device, frag, 0, len, 3203 DMA_TO_DEVICE); 3204 if (dma_mapping_error(priv->device, des)) 3205 goto dma_map_err; /* should reuse desc w/o issues */ 3206 3207 tx_q->tx_skbuff_dma[entry].buf = des; 3208 3209 stmmac_set_desc_addr(priv, desc, des); 3210 3211 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3212 tx_q->tx_skbuff_dma[entry].len = len; 3213 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3214 3215 /* Prepare the descriptor and set the own bit too */ 3216 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3217 priv->mode, 1, last_segment, skb->len); 3218 } 3219 3220 /* Only the last descriptor gets to point to the skb. */ 3221 tx_q->tx_skbuff[entry] = skb; 3222 3223 /* We've used all descriptors we need for this skb, however, 3224 * advance cur_tx so that it references a fresh descriptor. 3225 * ndo_start_xmit will fill this descriptor the next time it's 3226 * called and stmmac_tx_clean may clean up to this descriptor. 3227 */ 3228 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 3229 tx_q->cur_tx = entry; 3230 3231 if (netif_msg_pktdata(priv)) { 3232 void *tx_head; 3233 3234 netdev_dbg(priv->dev, 3235 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3236 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3237 entry, first, nfrags); 3238 3239 if (priv->extend_desc) 3240 tx_head = (void *)tx_q->dma_etx; 3241 else 3242 tx_head = (void *)tx_q->dma_tx; 3243 3244 stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false); 3245 3246 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3247 print_pkt(skb->data, skb->len); 3248 } 3249 3250 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3251 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3252 __func__); 3253 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3254 } 3255 3256 dev->stats.tx_bytes += skb->len; 3257 3258 /* According to the coalesce parameter the IC bit for the latest 3259 * segment is reset and the timer re-started to clean the tx status. 3260 * This approach takes care about the fragments: desc is the first 3261 * element in case of no SG. 3262 */ 3263 tx_q->tx_count_frames += nfrags + 1; 3264 if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) && 3265 !(priv->synopsys_id >= DWMAC_CORE_4_00 && 3266 (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3267 priv->hwts_tx_en)) { 3268 stmmac_tx_timer_arm(priv, queue); 3269 } else { 3270 tx_q->tx_count_frames = 0; 3271 stmmac_set_tx_ic(priv, desc); 3272 priv->xstats.tx_set_ic_bit++; 3273 } 3274 3275 if (priv->sarc_type) 3276 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 3277 3278 skb_tx_timestamp(skb); 3279 3280 /* Ready to fill the first descriptor and set the OWN bit w/o any 3281 * problems because all the descriptors are actually ready to be 3282 * passed to the DMA engine. 3283 */ 3284 if (likely(!is_jumbo)) { 3285 bool last_segment = (nfrags == 0); 3286 3287 des = dma_map_single(priv->device, skb->data, 3288 nopaged_len, DMA_TO_DEVICE); 3289 if (dma_mapping_error(priv->device, des)) 3290 goto dma_map_err; 3291 3292 tx_q->tx_skbuff_dma[first_entry].buf = des; 3293 3294 stmmac_set_desc_addr(priv, first, des); 3295 3296 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3297 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3298 3299 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3300 priv->hwts_tx_en)) { 3301 /* declare that device is doing timestamping */ 3302 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3303 stmmac_enable_tx_timestamp(priv, first); 3304 } 3305 3306 /* Prepare the first descriptor setting the OWN bit too */ 3307 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3308 csum_insertion, priv->mode, 1, last_segment, 3309 skb->len); 3310 } else { 3311 stmmac_set_tx_owner(priv, first); 3312 } 3313 3314 /* The own bit must be the latest setting done when prepare the 3315 * descriptor and then barrier is needed to make sure that 3316 * all is coherent before granting the DMA engine. 3317 */ 3318 wmb(); 3319 3320 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3321 3322 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3323 3324 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc)); 3325 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3326 3327 return NETDEV_TX_OK; 3328 3329 dma_map_err: 3330 netdev_err(priv->dev, "Tx DMA map failed\n"); 3331 dev_kfree_skb(skb); 3332 priv->dev->stats.tx_dropped++; 3333 return NETDEV_TX_OK; 3334 } 3335 3336 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3337 { 3338 struct vlan_ethhdr *veth; 3339 __be16 vlan_proto; 3340 u16 vlanid; 3341 3342 veth = (struct vlan_ethhdr *)skb->data; 3343 vlan_proto = veth->h_vlan_proto; 3344 3345 if ((vlan_proto == htons(ETH_P_8021Q) && 3346 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3347 (vlan_proto == htons(ETH_P_8021AD) && 3348 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3349 /* pop the vlan tag */ 3350 vlanid = ntohs(veth->h_vlan_TCI); 3351 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3352 skb_pull(skb, VLAN_HLEN); 3353 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3354 } 3355 } 3356 3357 3358 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q) 3359 { 3360 if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH) 3361 return 0; 3362 3363 return 1; 3364 } 3365 3366 /** 3367 * stmmac_rx_refill - refill used skb preallocated buffers 3368 * @priv: driver private structure 3369 * @queue: RX queue index 3370 * Description : this is to reallocate the skb for the reception process 3371 * that is based on zero-copy. 3372 */ 3373 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3374 { 3375 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3376 int len, dirty = stmmac_rx_dirty(priv, queue); 3377 unsigned int entry = rx_q->dirty_rx; 3378 3379 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 3380 3381 while (dirty-- > 0) { 3382 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 3383 struct dma_desc *p; 3384 bool use_rx_wd; 3385 3386 if (priv->extend_desc) 3387 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3388 else 3389 p = rx_q->dma_rx + entry; 3390 3391 if (!buf->page) { 3392 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 3393 if (!buf->page) 3394 break; 3395 } 3396 3397 if (priv->sph && !buf->sec_page) { 3398 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 3399 if (!buf->sec_page) 3400 break; 3401 3402 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 3403 3404 dma_sync_single_for_device(priv->device, buf->sec_addr, 3405 len, DMA_FROM_DEVICE); 3406 } 3407 3408 buf->addr = page_pool_get_dma_addr(buf->page); 3409 3410 /* Sync whole allocation to device. This will invalidate old 3411 * data. 3412 */ 3413 dma_sync_single_for_device(priv->device, buf->addr, len, 3414 DMA_FROM_DEVICE); 3415 3416 stmmac_set_desc_addr(priv, p, buf->addr); 3417 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); 3418 stmmac_refill_desc3(priv, rx_q, p); 3419 3420 rx_q->rx_count_frames++; 3421 rx_q->rx_count_frames += priv->rx_coal_frames; 3422 if (rx_q->rx_count_frames > priv->rx_coal_frames) 3423 rx_q->rx_count_frames = 0; 3424 use_rx_wd = priv->use_riwt && rx_q->rx_count_frames; 3425 3426 dma_wmb(); 3427 stmmac_set_rx_owner(priv, p, use_rx_wd); 3428 3429 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 3430 } 3431 rx_q->dirty_rx = entry; 3432 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 3433 (rx_q->dirty_rx * sizeof(struct dma_desc)); 3434 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 3435 } 3436 3437 /** 3438 * stmmac_rx - manage the receive process 3439 * @priv: driver private structure 3440 * @limit: napi bugget 3441 * @queue: RX queue index. 3442 * Description : this the function called by the napi poll method. 3443 * It gets all the frames inside the ring. 3444 */ 3445 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3446 { 3447 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3448 struct stmmac_channel *ch = &priv->channel[queue]; 3449 unsigned int count = 0, error = 0, len = 0; 3450 int status = 0, coe = priv->hw->rx_csum; 3451 unsigned int next_entry = rx_q->cur_rx; 3452 struct sk_buff *skb = NULL; 3453 3454 if (netif_msg_rx_status(priv)) { 3455 void *rx_head; 3456 3457 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3458 if (priv->extend_desc) 3459 rx_head = (void *)rx_q->dma_erx; 3460 else 3461 rx_head = (void *)rx_q->dma_rx; 3462 3463 stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true); 3464 } 3465 while (count < limit) { 3466 unsigned int hlen = 0, prev_len = 0; 3467 enum pkt_hash_types hash_type; 3468 struct stmmac_rx_buffer *buf; 3469 struct dma_desc *np, *p; 3470 unsigned int sec_len; 3471 int entry; 3472 u32 hash; 3473 3474 if (!count && rx_q->state_saved) { 3475 skb = rx_q->state.skb; 3476 error = rx_q->state.error; 3477 len = rx_q->state.len; 3478 } else { 3479 rx_q->state_saved = false; 3480 skb = NULL; 3481 error = 0; 3482 len = 0; 3483 } 3484 3485 if (count >= limit) 3486 break; 3487 3488 read_again: 3489 sec_len = 0; 3490 entry = next_entry; 3491 buf = &rx_q->buf_pool[entry]; 3492 3493 if (priv->extend_desc) 3494 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3495 else 3496 p = rx_q->dma_rx + entry; 3497 3498 /* read the status of the incoming frame */ 3499 status = stmmac_rx_status(priv, &priv->dev->stats, 3500 &priv->xstats, p); 3501 /* check if managed by the DMA otherwise go ahead */ 3502 if (unlikely(status & dma_own)) 3503 break; 3504 3505 count++; 3506 3507 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE); 3508 next_entry = rx_q->cur_rx; 3509 3510 if (priv->extend_desc) 3511 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3512 else 3513 np = rx_q->dma_rx + next_entry; 3514 3515 prefetch(np); 3516 prefetch(page_address(buf->page)); 3517 3518 if (priv->extend_desc) 3519 stmmac_rx_extended_status(priv, &priv->dev->stats, 3520 &priv->xstats, rx_q->dma_erx + entry); 3521 if (unlikely(status == discard_frame)) { 3522 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3523 buf->page = NULL; 3524 error = 1; 3525 if (!priv->hwts_rx_en) 3526 priv->dev->stats.rx_errors++; 3527 } 3528 3529 if (unlikely(error && (status & rx_not_ls))) 3530 goto read_again; 3531 if (unlikely(error)) { 3532 dev_kfree_skb(skb); 3533 continue; 3534 } 3535 3536 /* Buffer is good. Go on. */ 3537 3538 if (likely(status & rx_not_ls)) { 3539 len += priv->dma_buf_sz; 3540 } else { 3541 prev_len = len; 3542 len = stmmac_get_rx_frame_len(priv, p, coe); 3543 3544 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3545 * Type frames (LLC/LLC-SNAP) 3546 * 3547 * llc_snap is never checked in GMAC >= 4, so this ACS 3548 * feature is always disabled and packets need to be 3549 * stripped manually. 3550 */ 3551 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3552 unlikely(status != llc_snap)) 3553 len -= ETH_FCS_LEN; 3554 } 3555 3556 if (!skb) { 3557 int ret = stmmac_get_rx_header_len(priv, p, &hlen); 3558 3559 if (priv->sph && !ret && (hlen > 0)) { 3560 sec_len = len; 3561 if (!(status & rx_not_ls)) 3562 sec_len = sec_len - hlen; 3563 len = hlen; 3564 3565 prefetch(page_address(buf->sec_page)); 3566 priv->xstats.rx_split_hdr_pkt_n++; 3567 } 3568 3569 skb = napi_alloc_skb(&ch->rx_napi, len); 3570 if (!skb) { 3571 priv->dev->stats.rx_dropped++; 3572 continue; 3573 } 3574 3575 dma_sync_single_for_cpu(priv->device, buf->addr, len, 3576 DMA_FROM_DEVICE); 3577 skb_copy_to_linear_data(skb, page_address(buf->page), 3578 len); 3579 skb_put(skb, len); 3580 3581 /* Data payload copied into SKB, page ready for recycle */ 3582 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3583 buf->page = NULL; 3584 } else { 3585 unsigned int buf_len = len - prev_len; 3586 3587 if (likely(status & rx_not_ls)) 3588 buf_len = priv->dma_buf_sz; 3589 3590 dma_sync_single_for_cpu(priv->device, buf->addr, 3591 buf_len, DMA_FROM_DEVICE); 3592 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 3593 buf->page, 0, buf_len, 3594 priv->dma_buf_sz); 3595 3596 /* Data payload appended into SKB */ 3597 page_pool_release_page(rx_q->page_pool, buf->page); 3598 buf->page = NULL; 3599 } 3600 3601 if (sec_len > 0) { 3602 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 3603 sec_len, DMA_FROM_DEVICE); 3604 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 3605 buf->sec_page, 0, sec_len, 3606 priv->dma_buf_sz); 3607 3608 len += sec_len; 3609 3610 /* Data payload appended into SKB */ 3611 page_pool_release_page(rx_q->page_pool, buf->sec_page); 3612 buf->sec_page = NULL; 3613 } 3614 3615 if (likely(status & rx_not_ls)) 3616 goto read_again; 3617 3618 /* Got entire packet into SKB. Finish it. */ 3619 3620 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3621 stmmac_rx_vlan(priv->dev, skb); 3622 skb->protocol = eth_type_trans(skb, priv->dev); 3623 3624 if (unlikely(!coe)) 3625 skb_checksum_none_assert(skb); 3626 else 3627 skb->ip_summed = CHECKSUM_UNNECESSARY; 3628 3629 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 3630 skb_set_hash(skb, hash, hash_type); 3631 3632 skb_record_rx_queue(skb, queue); 3633 napi_gro_receive(&ch->rx_napi, skb); 3634 3635 priv->dev->stats.rx_packets++; 3636 priv->dev->stats.rx_bytes += len; 3637 } 3638 3639 if (status & rx_not_ls) { 3640 rx_q->state_saved = true; 3641 rx_q->state.skb = skb; 3642 rx_q->state.error = error; 3643 rx_q->state.len = len; 3644 } 3645 3646 stmmac_rx_refill(priv, queue); 3647 3648 priv->xstats.rx_pkt_n += count; 3649 3650 return count; 3651 } 3652 3653 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 3654 { 3655 struct stmmac_channel *ch = 3656 container_of(napi, struct stmmac_channel, rx_napi); 3657 struct stmmac_priv *priv = ch->priv_data; 3658 u32 chan = ch->index; 3659 int work_done; 3660 3661 priv->xstats.napi_poll++; 3662 3663 work_done = stmmac_rx(priv, budget, chan); 3664 if (work_done < budget && napi_complete_done(napi, work_done)) 3665 stmmac_enable_dma_irq(priv, priv->ioaddr, chan); 3666 return work_done; 3667 } 3668 3669 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 3670 { 3671 struct stmmac_channel *ch = 3672 container_of(napi, struct stmmac_channel, tx_napi); 3673 struct stmmac_priv *priv = ch->priv_data; 3674 struct stmmac_tx_queue *tx_q; 3675 u32 chan = ch->index; 3676 int work_done; 3677 3678 priv->xstats.napi_poll++; 3679 3680 work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan); 3681 work_done = min(work_done, budget); 3682 3683 if (work_done < budget) 3684 napi_complete_done(napi, work_done); 3685 3686 /* Force transmission restart */ 3687 tx_q = &priv->tx_queue[chan]; 3688 if (tx_q->cur_tx != tx_q->dirty_tx) { 3689 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3690 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, 3691 chan); 3692 } 3693 3694 return work_done; 3695 } 3696 3697 /** 3698 * stmmac_tx_timeout 3699 * @dev : Pointer to net device structure 3700 * Description: this function is called when a packet transmission fails to 3701 * complete within a reasonable time. The driver will mark the error in the 3702 * netdev structure and arrange for the device to be reset to a sane state 3703 * in order to transmit a new packet. 3704 */ 3705 static void stmmac_tx_timeout(struct net_device *dev) 3706 { 3707 struct stmmac_priv *priv = netdev_priv(dev); 3708 3709 stmmac_global_err(priv); 3710 } 3711 3712 /** 3713 * stmmac_set_rx_mode - entry point for multicast addressing 3714 * @dev : pointer to the device structure 3715 * Description: 3716 * This function is a driver entry point which gets called by the kernel 3717 * whenever multicast addresses must be enabled/disabled. 3718 * Return value: 3719 * void. 3720 */ 3721 static void stmmac_set_rx_mode(struct net_device *dev) 3722 { 3723 struct stmmac_priv *priv = netdev_priv(dev); 3724 3725 stmmac_set_filter(priv, priv->hw, dev); 3726 } 3727 3728 /** 3729 * stmmac_change_mtu - entry point to change MTU size for the device. 3730 * @dev : device pointer. 3731 * @new_mtu : the new MTU size for the device. 3732 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3733 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3734 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3735 * Return value: 3736 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3737 * file on failure. 3738 */ 3739 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3740 { 3741 struct stmmac_priv *priv = netdev_priv(dev); 3742 3743 if (netif_running(dev)) { 3744 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3745 return -EBUSY; 3746 } 3747 3748 dev->mtu = new_mtu; 3749 3750 netdev_update_features(dev); 3751 3752 return 0; 3753 } 3754 3755 static netdev_features_t stmmac_fix_features(struct net_device *dev, 3756 netdev_features_t features) 3757 { 3758 struct stmmac_priv *priv = netdev_priv(dev); 3759 3760 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 3761 features &= ~NETIF_F_RXCSUM; 3762 3763 if (!priv->plat->tx_coe) 3764 features &= ~NETIF_F_CSUM_MASK; 3765 3766 /* Some GMAC devices have a bugged Jumbo frame support that 3767 * needs to have the Tx COE disabled for oversized frames 3768 * (due to limited buffer sizes). In this case we disable 3769 * the TX csum insertion in the TDES and not use SF. 3770 */ 3771 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 3772 features &= ~NETIF_F_CSUM_MASK; 3773 3774 /* Disable tso if asked by ethtool */ 3775 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3776 if (features & NETIF_F_TSO) 3777 priv->tso = true; 3778 else 3779 priv->tso = false; 3780 } 3781 3782 return features; 3783 } 3784 3785 static int stmmac_set_features(struct net_device *netdev, 3786 netdev_features_t features) 3787 { 3788 struct stmmac_priv *priv = netdev_priv(netdev); 3789 bool sph_en; 3790 u32 chan; 3791 3792 /* Keep the COE Type in case of csum is supporting */ 3793 if (features & NETIF_F_RXCSUM) 3794 priv->hw->rx_csum = priv->plat->rx_coe; 3795 else 3796 priv->hw->rx_csum = 0; 3797 /* No check needed because rx_coe has been set before and it will be 3798 * fixed in case of issue. 3799 */ 3800 stmmac_rx_ipc(priv, priv->hw); 3801 3802 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3803 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 3804 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3805 3806 return 0; 3807 } 3808 3809 /** 3810 * stmmac_interrupt - main ISR 3811 * @irq: interrupt number. 3812 * @dev_id: to pass the net device pointer. 3813 * Description: this is the main driver interrupt service routine. 3814 * It can call: 3815 * o DMA service routine (to manage incoming frame reception and transmission 3816 * status) 3817 * o Core interrupts to manage: remote wake-up, management counter, LPI 3818 * interrupts. 3819 */ 3820 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 3821 { 3822 struct net_device *dev = (struct net_device *)dev_id; 3823 struct stmmac_priv *priv = netdev_priv(dev); 3824 u32 rx_cnt = priv->plat->rx_queues_to_use; 3825 u32 tx_cnt = priv->plat->tx_queues_to_use; 3826 u32 queues_count; 3827 u32 queue; 3828 bool xmac; 3829 3830 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 3831 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 3832 3833 if (priv->irq_wake) 3834 pm_wakeup_event(priv->device, 0); 3835 3836 if (unlikely(!dev)) { 3837 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 3838 return IRQ_NONE; 3839 } 3840 3841 /* Check if adapter is up */ 3842 if (test_bit(STMMAC_DOWN, &priv->state)) 3843 return IRQ_HANDLED; 3844 /* Check if a fatal error happened */ 3845 if (stmmac_safety_feat_interrupt(priv)) 3846 return IRQ_HANDLED; 3847 3848 /* To handle GMAC own interrupts */ 3849 if ((priv->plat->has_gmac) || xmac) { 3850 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 3851 int mtl_status; 3852 3853 if (unlikely(status)) { 3854 /* For LPI we need to save the tx status */ 3855 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 3856 priv->tx_path_in_lpi_mode = true; 3857 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 3858 priv->tx_path_in_lpi_mode = false; 3859 } 3860 3861 for (queue = 0; queue < queues_count; queue++) { 3862 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3863 3864 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 3865 queue); 3866 if (mtl_status != -EINVAL) 3867 status |= mtl_status; 3868 3869 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 3870 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 3871 rx_q->rx_tail_addr, 3872 queue); 3873 } 3874 3875 /* PCS link status */ 3876 if (priv->hw->pcs) { 3877 if (priv->xstats.pcs_link) 3878 netif_carrier_on(dev); 3879 else 3880 netif_carrier_off(dev); 3881 } 3882 } 3883 3884 /* To handle DMA interrupts */ 3885 stmmac_dma_interrupt(priv); 3886 3887 return IRQ_HANDLED; 3888 } 3889 3890 #ifdef CONFIG_NET_POLL_CONTROLLER 3891 /* Polling receive - used by NETCONSOLE and other diagnostic tools 3892 * to allow network I/O with interrupts disabled. 3893 */ 3894 static void stmmac_poll_controller(struct net_device *dev) 3895 { 3896 disable_irq(dev->irq); 3897 stmmac_interrupt(dev->irq, dev); 3898 enable_irq(dev->irq); 3899 } 3900 #endif 3901 3902 /** 3903 * stmmac_ioctl - Entry point for the Ioctl 3904 * @dev: Device pointer. 3905 * @rq: An IOCTL specefic structure, that can contain a pointer to 3906 * a proprietary structure used to pass information to the driver. 3907 * @cmd: IOCTL command 3908 * Description: 3909 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 3910 */ 3911 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3912 { 3913 struct stmmac_priv *priv = netdev_priv (dev); 3914 int ret = -EOPNOTSUPP; 3915 3916 if (!netif_running(dev)) 3917 return -EINVAL; 3918 3919 switch (cmd) { 3920 case SIOCGMIIPHY: 3921 case SIOCGMIIREG: 3922 case SIOCSMIIREG: 3923 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 3924 break; 3925 case SIOCSHWTSTAMP: 3926 ret = stmmac_hwtstamp_set(dev, rq); 3927 break; 3928 case SIOCGHWTSTAMP: 3929 ret = stmmac_hwtstamp_get(dev, rq); 3930 break; 3931 default: 3932 break; 3933 } 3934 3935 return ret; 3936 } 3937 3938 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 3939 void *cb_priv) 3940 { 3941 struct stmmac_priv *priv = cb_priv; 3942 int ret = -EOPNOTSUPP; 3943 3944 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 3945 return ret; 3946 3947 stmmac_disable_all_queues(priv); 3948 3949 switch (type) { 3950 case TC_SETUP_CLSU32: 3951 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 3952 break; 3953 case TC_SETUP_CLSFLOWER: 3954 ret = stmmac_tc_setup_cls(priv, priv, type_data); 3955 break; 3956 default: 3957 break; 3958 } 3959 3960 stmmac_enable_all_queues(priv); 3961 return ret; 3962 } 3963 3964 static LIST_HEAD(stmmac_block_cb_list); 3965 3966 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 3967 void *type_data) 3968 { 3969 struct stmmac_priv *priv = netdev_priv(ndev); 3970 3971 switch (type) { 3972 case TC_SETUP_BLOCK: 3973 return flow_block_cb_setup_simple(type_data, 3974 &stmmac_block_cb_list, 3975 stmmac_setup_tc_block_cb, 3976 priv, priv, true); 3977 case TC_SETUP_QDISC_CBS: 3978 return stmmac_tc_setup_cbs(priv, priv, type_data); 3979 default: 3980 return -EOPNOTSUPP; 3981 } 3982 } 3983 3984 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 3985 struct net_device *sb_dev) 3986 { 3987 if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { 3988 /* 3989 * There is no way to determine the number of TSO 3990 * capable Queues. Let's use always the Queue 0 3991 * because if TSO is supported then at least this 3992 * one will be capable. 3993 */ 3994 return 0; 3995 } 3996 3997 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 3998 } 3999 4000 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 4001 { 4002 struct stmmac_priv *priv = netdev_priv(ndev); 4003 int ret = 0; 4004 4005 ret = eth_mac_addr(ndev, addr); 4006 if (ret) 4007 return ret; 4008 4009 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 4010 4011 return ret; 4012 } 4013 4014 #ifdef CONFIG_DEBUG_FS 4015 static struct dentry *stmmac_fs_dir; 4016 4017 static void sysfs_display_ring(void *head, int size, int extend_desc, 4018 struct seq_file *seq) 4019 { 4020 int i; 4021 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 4022 struct dma_desc *p = (struct dma_desc *)head; 4023 4024 for (i = 0; i < size; i++) { 4025 if (extend_desc) { 4026 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 4027 i, (unsigned int)virt_to_phys(ep), 4028 le32_to_cpu(ep->basic.des0), 4029 le32_to_cpu(ep->basic.des1), 4030 le32_to_cpu(ep->basic.des2), 4031 le32_to_cpu(ep->basic.des3)); 4032 ep++; 4033 } else { 4034 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 4035 i, (unsigned int)virt_to_phys(p), 4036 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 4037 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 4038 p++; 4039 } 4040 seq_printf(seq, "\n"); 4041 } 4042 } 4043 4044 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 4045 { 4046 struct net_device *dev = seq->private; 4047 struct stmmac_priv *priv = netdev_priv(dev); 4048 u32 rx_count = priv->plat->rx_queues_to_use; 4049 u32 tx_count = priv->plat->tx_queues_to_use; 4050 u32 queue; 4051 4052 if ((dev->flags & IFF_UP) == 0) 4053 return 0; 4054 4055 for (queue = 0; queue < rx_count; queue++) { 4056 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4057 4058 seq_printf(seq, "RX Queue %d:\n", queue); 4059 4060 if (priv->extend_desc) { 4061 seq_printf(seq, "Extended descriptor ring:\n"); 4062 sysfs_display_ring((void *)rx_q->dma_erx, 4063 DMA_RX_SIZE, 1, seq); 4064 } else { 4065 seq_printf(seq, "Descriptor ring:\n"); 4066 sysfs_display_ring((void *)rx_q->dma_rx, 4067 DMA_RX_SIZE, 0, seq); 4068 } 4069 } 4070 4071 for (queue = 0; queue < tx_count; queue++) { 4072 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4073 4074 seq_printf(seq, "TX Queue %d:\n", queue); 4075 4076 if (priv->extend_desc) { 4077 seq_printf(seq, "Extended descriptor ring:\n"); 4078 sysfs_display_ring((void *)tx_q->dma_etx, 4079 DMA_TX_SIZE, 1, seq); 4080 } else { 4081 seq_printf(seq, "Descriptor ring:\n"); 4082 sysfs_display_ring((void *)tx_q->dma_tx, 4083 DMA_TX_SIZE, 0, seq); 4084 } 4085 } 4086 4087 return 0; 4088 } 4089 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 4090 4091 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 4092 { 4093 struct net_device *dev = seq->private; 4094 struct stmmac_priv *priv = netdev_priv(dev); 4095 4096 if (!priv->hw_cap_support) { 4097 seq_printf(seq, "DMA HW features not supported\n"); 4098 return 0; 4099 } 4100 4101 seq_printf(seq, "==============================\n"); 4102 seq_printf(seq, "\tDMA HW features\n"); 4103 seq_printf(seq, "==============================\n"); 4104 4105 seq_printf(seq, "\t10/100 Mbps: %s\n", 4106 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 4107 seq_printf(seq, "\t1000 Mbps: %s\n", 4108 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 4109 seq_printf(seq, "\tHalf duplex: %s\n", 4110 (priv->dma_cap.half_duplex) ? "Y" : "N"); 4111 seq_printf(seq, "\tHash Filter: %s\n", 4112 (priv->dma_cap.hash_filter) ? "Y" : "N"); 4113 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 4114 (priv->dma_cap.multi_addr) ? "Y" : "N"); 4115 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 4116 (priv->dma_cap.pcs) ? "Y" : "N"); 4117 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 4118 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 4119 seq_printf(seq, "\tPMT Remote wake up: %s\n", 4120 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 4121 seq_printf(seq, "\tPMT Magic Frame: %s\n", 4122 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 4123 seq_printf(seq, "\tRMON module: %s\n", 4124 (priv->dma_cap.rmon) ? "Y" : "N"); 4125 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 4126 (priv->dma_cap.time_stamp) ? "Y" : "N"); 4127 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 4128 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 4129 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 4130 (priv->dma_cap.eee) ? "Y" : "N"); 4131 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 4132 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 4133 (priv->dma_cap.tx_coe) ? "Y" : "N"); 4134 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 4135 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 4136 (priv->dma_cap.rx_coe) ? "Y" : "N"); 4137 } else { 4138 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 4139 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 4140 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 4141 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 4142 } 4143 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 4144 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 4145 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 4146 priv->dma_cap.number_rx_channel); 4147 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 4148 priv->dma_cap.number_tx_channel); 4149 seq_printf(seq, "\tEnhanced descriptors: %s\n", 4150 (priv->dma_cap.enh_desc) ? "Y" : "N"); 4151 4152 return 0; 4153 } 4154 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 4155 4156 static void stmmac_init_fs(struct net_device *dev) 4157 { 4158 struct stmmac_priv *priv = netdev_priv(dev); 4159 4160 /* Create per netdev entries */ 4161 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 4162 4163 /* Entry to report DMA RX/TX rings */ 4164 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 4165 &stmmac_rings_status_fops); 4166 4167 /* Entry to report the DMA HW features */ 4168 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 4169 &stmmac_dma_cap_fops); 4170 } 4171 4172 static void stmmac_exit_fs(struct net_device *dev) 4173 { 4174 struct stmmac_priv *priv = netdev_priv(dev); 4175 4176 debugfs_remove_recursive(priv->dbgfs_dir); 4177 } 4178 #endif /* CONFIG_DEBUG_FS */ 4179 4180 static u32 stmmac_vid_crc32_le(__le16 vid_le) 4181 { 4182 unsigned char *data = (unsigned char *)&vid_le; 4183 unsigned char data_byte = 0; 4184 u32 crc = ~0x0; 4185 u32 temp = 0; 4186 int i, bits; 4187 4188 bits = get_bitmask_order(VLAN_VID_MASK); 4189 for (i = 0; i < bits; i++) { 4190 if ((i % 8) == 0) 4191 data_byte = data[i / 8]; 4192 4193 temp = ((crc & 1) ^ data_byte) & 1; 4194 crc >>= 1; 4195 data_byte >>= 1; 4196 4197 if (temp) 4198 crc ^= 0xedb88320; 4199 } 4200 4201 return crc; 4202 } 4203 4204 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 4205 { 4206 u32 crc, hash = 0; 4207 u16 vid; 4208 4209 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 4210 __le16 vid_le = cpu_to_le16(vid); 4211 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 4212 hash |= (1 << crc); 4213 } 4214 4215 return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double); 4216 } 4217 4218 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 4219 { 4220 struct stmmac_priv *priv = netdev_priv(ndev); 4221 bool is_double = false; 4222 int ret; 4223 4224 if (!priv->dma_cap.vlhash) 4225 return -EOPNOTSUPP; 4226 if (be16_to_cpu(proto) == ETH_P_8021AD) 4227 is_double = true; 4228 4229 set_bit(vid, priv->active_vlans); 4230 ret = stmmac_vlan_update(priv, is_double); 4231 if (ret) { 4232 clear_bit(vid, priv->active_vlans); 4233 return ret; 4234 } 4235 4236 return ret; 4237 } 4238 4239 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 4240 { 4241 struct stmmac_priv *priv = netdev_priv(ndev); 4242 bool is_double = false; 4243 4244 if (!priv->dma_cap.vlhash) 4245 return -EOPNOTSUPP; 4246 if (be16_to_cpu(proto) == ETH_P_8021AD) 4247 is_double = true; 4248 4249 clear_bit(vid, priv->active_vlans); 4250 return stmmac_vlan_update(priv, is_double); 4251 } 4252 4253 static const struct net_device_ops stmmac_netdev_ops = { 4254 .ndo_open = stmmac_open, 4255 .ndo_start_xmit = stmmac_xmit, 4256 .ndo_stop = stmmac_release, 4257 .ndo_change_mtu = stmmac_change_mtu, 4258 .ndo_fix_features = stmmac_fix_features, 4259 .ndo_set_features = stmmac_set_features, 4260 .ndo_set_rx_mode = stmmac_set_rx_mode, 4261 .ndo_tx_timeout = stmmac_tx_timeout, 4262 .ndo_do_ioctl = stmmac_ioctl, 4263 .ndo_setup_tc = stmmac_setup_tc, 4264 .ndo_select_queue = stmmac_select_queue, 4265 #ifdef CONFIG_NET_POLL_CONTROLLER 4266 .ndo_poll_controller = stmmac_poll_controller, 4267 #endif 4268 .ndo_set_mac_address = stmmac_set_mac_address, 4269 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 4270 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 4271 }; 4272 4273 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4274 { 4275 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4276 return; 4277 if (test_bit(STMMAC_DOWN, &priv->state)) 4278 return; 4279 4280 netdev_err(priv->dev, "Reset adapter.\n"); 4281 4282 rtnl_lock(); 4283 netif_trans_update(priv->dev); 4284 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4285 usleep_range(1000, 2000); 4286 4287 set_bit(STMMAC_DOWN, &priv->state); 4288 dev_close(priv->dev); 4289 dev_open(priv->dev, NULL); 4290 clear_bit(STMMAC_DOWN, &priv->state); 4291 clear_bit(STMMAC_RESETING, &priv->state); 4292 rtnl_unlock(); 4293 } 4294 4295 static void stmmac_service_task(struct work_struct *work) 4296 { 4297 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4298 service_task); 4299 4300 stmmac_reset_subtask(priv); 4301 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4302 } 4303 4304 /** 4305 * stmmac_hw_init - Init the MAC device 4306 * @priv: driver private structure 4307 * Description: this function is to configure the MAC device according to 4308 * some platform parameters or the HW capability register. It prepares the 4309 * driver to use either ring or chain modes and to setup either enhanced or 4310 * normal descriptors. 4311 */ 4312 static int stmmac_hw_init(struct stmmac_priv *priv) 4313 { 4314 int ret; 4315 4316 /* dwmac-sun8i only work in chain mode */ 4317 if (priv->plat->has_sun8i) 4318 chain_mode = 1; 4319 priv->chain_mode = chain_mode; 4320 4321 /* Initialize HW Interface */ 4322 ret = stmmac_hwif_init(priv); 4323 if (ret) 4324 return ret; 4325 4326 /* Get the HW capability (new GMAC newer than 3.50a) */ 4327 priv->hw_cap_support = stmmac_get_hw_features(priv); 4328 if (priv->hw_cap_support) { 4329 dev_info(priv->device, "DMA HW capability register supported\n"); 4330 4331 /* We can override some gmac/dma configuration fields: e.g. 4332 * enh_desc, tx_coe (e.g. that are passed through the 4333 * platform) with the values from the HW capability 4334 * register (if supported). 4335 */ 4336 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4337 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4338 priv->hw->pmt = priv->plat->pmt; 4339 if (priv->dma_cap.hash_tb_sz) { 4340 priv->hw->multicast_filter_bins = 4341 (BIT(priv->dma_cap.hash_tb_sz) << 5); 4342 priv->hw->mcast_bits_log2 = 4343 ilog2(priv->hw->multicast_filter_bins); 4344 } 4345 4346 /* TXCOE doesn't work in thresh DMA mode */ 4347 if (priv->plat->force_thresh_dma_mode) 4348 priv->plat->tx_coe = 0; 4349 else 4350 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4351 4352 /* In case of GMAC4 rx_coe is from HW cap register. */ 4353 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4354 4355 if (priv->dma_cap.rx_coe_type2) 4356 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4357 else if (priv->dma_cap.rx_coe_type1) 4358 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4359 4360 } else { 4361 dev_info(priv->device, "No HW DMA feature register supported\n"); 4362 } 4363 4364 if (priv->plat->rx_coe) { 4365 priv->hw->rx_csum = priv->plat->rx_coe; 4366 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4367 if (priv->synopsys_id < DWMAC_CORE_4_00) 4368 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4369 } 4370 if (priv->plat->tx_coe) 4371 dev_info(priv->device, "TX Checksum insertion supported\n"); 4372 4373 if (priv->plat->pmt) { 4374 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4375 device_set_wakeup_capable(priv->device, 1); 4376 } 4377 4378 if (priv->dma_cap.tsoen) 4379 dev_info(priv->device, "TSO supported\n"); 4380 4381 /* Run HW quirks, if any */ 4382 if (priv->hwif_quirks) { 4383 ret = priv->hwif_quirks(priv); 4384 if (ret) 4385 return ret; 4386 } 4387 4388 /* Rx Watchdog is available in the COREs newer than the 3.40. 4389 * In some case, for example on bugged HW this feature 4390 * has to be disable and this can be done by passing the 4391 * riwt_off field from the platform. 4392 */ 4393 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4394 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4395 priv->use_riwt = 1; 4396 dev_info(priv->device, 4397 "Enable RX Mitigation via HW Watchdog Timer\n"); 4398 } 4399 4400 return 0; 4401 } 4402 4403 /** 4404 * stmmac_dvr_probe 4405 * @device: device pointer 4406 * @plat_dat: platform data pointer 4407 * @res: stmmac resource pointer 4408 * Description: this is the main probe function used to 4409 * call the alloc_etherdev, allocate the priv structure. 4410 * Return: 4411 * returns 0 on success, otherwise errno. 4412 */ 4413 int stmmac_dvr_probe(struct device *device, 4414 struct plat_stmmacenet_data *plat_dat, 4415 struct stmmac_resources *res) 4416 { 4417 struct net_device *ndev = NULL; 4418 struct stmmac_priv *priv; 4419 u32 queue, rxq, maxq; 4420 int i, ret = 0; 4421 4422 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 4423 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 4424 if (!ndev) 4425 return -ENOMEM; 4426 4427 SET_NETDEV_DEV(ndev, device); 4428 4429 priv = netdev_priv(ndev); 4430 priv->device = device; 4431 priv->dev = ndev; 4432 4433 stmmac_set_ethtool_ops(ndev); 4434 priv->pause = pause; 4435 priv->plat = plat_dat; 4436 priv->ioaddr = res->addr; 4437 priv->dev->base_addr = (unsigned long)res->addr; 4438 4439 priv->dev->irq = res->irq; 4440 priv->wol_irq = res->wol_irq; 4441 priv->lpi_irq = res->lpi_irq; 4442 4443 if (!IS_ERR_OR_NULL(res->mac)) 4444 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4445 4446 dev_set_drvdata(device, priv->dev); 4447 4448 /* Verify driver arguments */ 4449 stmmac_verify_args(); 4450 4451 /* Allocate workqueue */ 4452 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4453 if (!priv->wq) { 4454 dev_err(priv->device, "failed to create workqueue\n"); 4455 return -ENOMEM; 4456 } 4457 4458 INIT_WORK(&priv->service_task, stmmac_service_task); 4459 4460 /* Override with kernel parameters if supplied XXX CRS XXX 4461 * this needs to have multiple instances 4462 */ 4463 if ((phyaddr >= 0) && (phyaddr <= 31)) 4464 priv->plat->phy_addr = phyaddr; 4465 4466 if (priv->plat->stmmac_rst) { 4467 ret = reset_control_assert(priv->plat->stmmac_rst); 4468 reset_control_deassert(priv->plat->stmmac_rst); 4469 /* Some reset controllers have only reset callback instead of 4470 * assert + deassert callbacks pair. 4471 */ 4472 if (ret == -ENOTSUPP) 4473 reset_control_reset(priv->plat->stmmac_rst); 4474 } 4475 4476 /* Init MAC and get the capabilities */ 4477 ret = stmmac_hw_init(priv); 4478 if (ret) 4479 goto error_hw_init; 4480 4481 stmmac_check_ether_addr(priv); 4482 4483 /* Configure real RX and TX queues */ 4484 netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use); 4485 netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use); 4486 4487 ndev->netdev_ops = &stmmac_netdev_ops; 4488 4489 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4490 NETIF_F_RXCSUM; 4491 4492 ret = stmmac_tc_init(priv, priv); 4493 if (!ret) { 4494 ndev->hw_features |= NETIF_F_HW_TC; 4495 } 4496 4497 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4498 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4499 priv->tso = true; 4500 dev_info(priv->device, "TSO feature enabled\n"); 4501 } 4502 4503 if (priv->dma_cap.sphen) { 4504 ndev->hw_features |= NETIF_F_GRO; 4505 priv->sph = true; 4506 dev_info(priv->device, "SPH feature enabled\n"); 4507 } 4508 4509 if (priv->dma_cap.addr64) { 4510 ret = dma_set_mask_and_coherent(device, 4511 DMA_BIT_MASK(priv->dma_cap.addr64)); 4512 if (!ret) { 4513 dev_info(priv->device, "Using %d bits DMA width\n", 4514 priv->dma_cap.addr64); 4515 } else { 4516 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 4517 if (ret) { 4518 dev_err(priv->device, "Failed to set DMA Mask\n"); 4519 goto error_hw_init; 4520 } 4521 4522 priv->dma_cap.addr64 = 32; 4523 } 4524 } 4525 4526 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4527 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4528 #ifdef STMMAC_VLAN_TAG_USED 4529 /* Both mac100 and gmac support receive VLAN tag detection */ 4530 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4531 if (priv->dma_cap.vlhash) { 4532 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4533 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 4534 } 4535 if (priv->dma_cap.vlins) { 4536 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 4537 if (priv->dma_cap.dvlan) 4538 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 4539 } 4540 #endif 4541 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4542 4543 /* Initialize RSS */ 4544 rxq = priv->plat->rx_queues_to_use; 4545 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 4546 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 4547 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 4548 4549 if (priv->dma_cap.rssen && priv->plat->rss_en) 4550 ndev->features |= NETIF_F_RXHASH; 4551 4552 /* MTU range: 46 - hw-specific max */ 4553 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4554 if (priv->plat->has_xgmac) 4555 ndev->max_mtu = XGMAC_JUMBO_LEN; 4556 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4557 ndev->max_mtu = JUMBO_LEN; 4558 else 4559 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4560 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4561 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4562 */ 4563 if ((priv->plat->maxmtu < ndev->max_mtu) && 4564 (priv->plat->maxmtu >= ndev->min_mtu)) 4565 ndev->max_mtu = priv->plat->maxmtu; 4566 else if (priv->plat->maxmtu < ndev->min_mtu) 4567 dev_warn(priv->device, 4568 "%s: warning: maxmtu having invalid value (%d)\n", 4569 __func__, priv->plat->maxmtu); 4570 4571 if (flow_ctrl) 4572 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4573 4574 /* Setup channels NAPI */ 4575 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4576 4577 for (queue = 0; queue < maxq; queue++) { 4578 struct stmmac_channel *ch = &priv->channel[queue]; 4579 4580 ch->priv_data = priv; 4581 ch->index = queue; 4582 4583 if (queue < priv->plat->rx_queues_to_use) { 4584 netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx, 4585 NAPI_POLL_WEIGHT); 4586 } 4587 if (queue < priv->plat->tx_queues_to_use) { 4588 netif_tx_napi_add(ndev, &ch->tx_napi, 4589 stmmac_napi_poll_tx, 4590 NAPI_POLL_WEIGHT); 4591 } 4592 } 4593 4594 mutex_init(&priv->lock); 4595 4596 /* If a specific clk_csr value is passed from the platform 4597 * this means that the CSR Clock Range selection cannot be 4598 * changed at run-time and it is fixed. Viceversa the driver'll try to 4599 * set the MDC clock dynamically according to the csr actual 4600 * clock input. 4601 */ 4602 if (priv->plat->clk_csr >= 0) 4603 priv->clk_csr = priv->plat->clk_csr; 4604 else 4605 stmmac_clk_csr_set(priv); 4606 4607 stmmac_check_pcs_mode(priv); 4608 4609 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4610 priv->hw->pcs != STMMAC_PCS_TBI && 4611 priv->hw->pcs != STMMAC_PCS_RTBI) { 4612 /* MDIO bus Registration */ 4613 ret = stmmac_mdio_register(ndev); 4614 if (ret < 0) { 4615 dev_err(priv->device, 4616 "%s: MDIO bus (id: %d) registration failed", 4617 __func__, priv->plat->bus_id); 4618 goto error_mdio_register; 4619 } 4620 } 4621 4622 ret = stmmac_phy_setup(priv); 4623 if (ret) { 4624 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 4625 goto error_phy_setup; 4626 } 4627 4628 ret = register_netdev(ndev); 4629 if (ret) { 4630 dev_err(priv->device, "%s: ERROR %i registering the device\n", 4631 __func__, ret); 4632 goto error_netdev_register; 4633 } 4634 4635 #ifdef CONFIG_DEBUG_FS 4636 stmmac_init_fs(ndev); 4637 #endif 4638 4639 return ret; 4640 4641 error_netdev_register: 4642 phylink_destroy(priv->phylink); 4643 error_phy_setup: 4644 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4645 priv->hw->pcs != STMMAC_PCS_TBI && 4646 priv->hw->pcs != STMMAC_PCS_RTBI) 4647 stmmac_mdio_unregister(ndev); 4648 error_mdio_register: 4649 for (queue = 0; queue < maxq; queue++) { 4650 struct stmmac_channel *ch = &priv->channel[queue]; 4651 4652 if (queue < priv->plat->rx_queues_to_use) 4653 netif_napi_del(&ch->rx_napi); 4654 if (queue < priv->plat->tx_queues_to_use) 4655 netif_napi_del(&ch->tx_napi); 4656 } 4657 error_hw_init: 4658 destroy_workqueue(priv->wq); 4659 4660 return ret; 4661 } 4662 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 4663 4664 /** 4665 * stmmac_dvr_remove 4666 * @dev: device pointer 4667 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 4668 * changes the link status, releases the DMA descriptor rings. 4669 */ 4670 int stmmac_dvr_remove(struct device *dev) 4671 { 4672 struct net_device *ndev = dev_get_drvdata(dev); 4673 struct stmmac_priv *priv = netdev_priv(ndev); 4674 4675 netdev_info(priv->dev, "%s: removing driver", __func__); 4676 4677 #ifdef CONFIG_DEBUG_FS 4678 stmmac_exit_fs(ndev); 4679 #endif 4680 stmmac_stop_all_dma(priv); 4681 4682 stmmac_mac_set(priv, priv->ioaddr, false); 4683 netif_carrier_off(ndev); 4684 unregister_netdev(ndev); 4685 phylink_destroy(priv->phylink); 4686 if (priv->plat->stmmac_rst) 4687 reset_control_assert(priv->plat->stmmac_rst); 4688 clk_disable_unprepare(priv->plat->pclk); 4689 clk_disable_unprepare(priv->plat->stmmac_clk); 4690 if (priv->hw->pcs != STMMAC_PCS_RGMII && 4691 priv->hw->pcs != STMMAC_PCS_TBI && 4692 priv->hw->pcs != STMMAC_PCS_RTBI) 4693 stmmac_mdio_unregister(ndev); 4694 destroy_workqueue(priv->wq); 4695 mutex_destroy(&priv->lock); 4696 4697 return 0; 4698 } 4699 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 4700 4701 /** 4702 * stmmac_suspend - suspend callback 4703 * @dev: device pointer 4704 * Description: this is the function to suspend the device and it is called 4705 * by the platform driver to stop the network queue, release the resources, 4706 * program the PMT register (for WoL), clean and release driver resources. 4707 */ 4708 int stmmac_suspend(struct device *dev) 4709 { 4710 struct net_device *ndev = dev_get_drvdata(dev); 4711 struct stmmac_priv *priv = netdev_priv(ndev); 4712 4713 if (!ndev || !netif_running(ndev)) 4714 return 0; 4715 4716 mutex_lock(&priv->lock); 4717 4718 rtnl_lock(); 4719 phylink_stop(priv->phylink); 4720 rtnl_unlock(); 4721 4722 netif_device_detach(ndev); 4723 stmmac_stop_all_queues(priv); 4724 4725 stmmac_disable_all_queues(priv); 4726 4727 /* Stop TX/RX DMA */ 4728 stmmac_stop_all_dma(priv); 4729 4730 /* Enable Power down mode by programming the PMT regs */ 4731 if (device_may_wakeup(priv->device)) { 4732 stmmac_pmt(priv, priv->hw, priv->wolopts); 4733 priv->irq_wake = 1; 4734 } else { 4735 stmmac_mac_set(priv, priv->ioaddr, false); 4736 pinctrl_pm_select_sleep_state(priv->device); 4737 /* Disable clock in case of PWM is off */ 4738 clk_disable(priv->plat->pclk); 4739 clk_disable(priv->plat->stmmac_clk); 4740 } 4741 mutex_unlock(&priv->lock); 4742 4743 priv->speed = SPEED_UNKNOWN; 4744 return 0; 4745 } 4746 EXPORT_SYMBOL_GPL(stmmac_suspend); 4747 4748 /** 4749 * stmmac_reset_queues_param - reset queue parameters 4750 * @dev: device pointer 4751 */ 4752 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 4753 { 4754 u32 rx_cnt = priv->plat->rx_queues_to_use; 4755 u32 tx_cnt = priv->plat->tx_queues_to_use; 4756 u32 queue; 4757 4758 for (queue = 0; queue < rx_cnt; queue++) { 4759 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4760 4761 rx_q->cur_rx = 0; 4762 rx_q->dirty_rx = 0; 4763 } 4764 4765 for (queue = 0; queue < tx_cnt; queue++) { 4766 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4767 4768 tx_q->cur_tx = 0; 4769 tx_q->dirty_tx = 0; 4770 tx_q->mss = 0; 4771 } 4772 } 4773 4774 /** 4775 * stmmac_resume - resume callback 4776 * @dev: device pointer 4777 * Description: when resume this function is invoked to setup the DMA and CORE 4778 * in a usable state. 4779 */ 4780 int stmmac_resume(struct device *dev) 4781 { 4782 struct net_device *ndev = dev_get_drvdata(dev); 4783 struct stmmac_priv *priv = netdev_priv(ndev); 4784 4785 if (!netif_running(ndev)) 4786 return 0; 4787 4788 /* Power Down bit, into the PM register, is cleared 4789 * automatically as soon as a magic packet or a Wake-up frame 4790 * is received. Anyway, it's better to manually clear 4791 * this bit because it can generate problems while resuming 4792 * from another devices (e.g. serial console). 4793 */ 4794 if (device_may_wakeup(priv->device)) { 4795 mutex_lock(&priv->lock); 4796 stmmac_pmt(priv, priv->hw, 0); 4797 mutex_unlock(&priv->lock); 4798 priv->irq_wake = 0; 4799 } else { 4800 pinctrl_pm_select_default_state(priv->device); 4801 /* enable the clk previously disabled */ 4802 clk_enable(priv->plat->stmmac_clk); 4803 clk_enable(priv->plat->pclk); 4804 /* reset the phy so that it's ready */ 4805 if (priv->mii) 4806 stmmac_mdio_reset(priv->mii); 4807 } 4808 4809 netif_device_attach(ndev); 4810 4811 mutex_lock(&priv->lock); 4812 4813 stmmac_reset_queues_param(priv); 4814 4815 stmmac_clear_descriptors(priv); 4816 4817 stmmac_hw_setup(ndev, false); 4818 stmmac_init_coalesce(priv); 4819 stmmac_set_rx_mode(ndev); 4820 4821 stmmac_enable_all_queues(priv); 4822 4823 stmmac_start_all_queues(priv); 4824 4825 rtnl_lock(); 4826 phylink_start(priv->phylink); 4827 rtnl_unlock(); 4828 4829 mutex_unlock(&priv->lock); 4830 4831 return 0; 4832 } 4833 EXPORT_SYMBOL_GPL(stmmac_resume); 4834 4835 #ifndef MODULE 4836 static int __init stmmac_cmdline_opt(char *str) 4837 { 4838 char *opt; 4839 4840 if (!str || !*str) 4841 return -EINVAL; 4842 while ((opt = strsep(&str, ",")) != NULL) { 4843 if (!strncmp(opt, "debug:", 6)) { 4844 if (kstrtoint(opt + 6, 0, &debug)) 4845 goto err; 4846 } else if (!strncmp(opt, "phyaddr:", 8)) { 4847 if (kstrtoint(opt + 8, 0, &phyaddr)) 4848 goto err; 4849 } else if (!strncmp(opt, "buf_sz:", 7)) { 4850 if (kstrtoint(opt + 7, 0, &buf_sz)) 4851 goto err; 4852 } else if (!strncmp(opt, "tc:", 3)) { 4853 if (kstrtoint(opt + 3, 0, &tc)) 4854 goto err; 4855 } else if (!strncmp(opt, "watchdog:", 9)) { 4856 if (kstrtoint(opt + 9, 0, &watchdog)) 4857 goto err; 4858 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 4859 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 4860 goto err; 4861 } else if (!strncmp(opt, "pause:", 6)) { 4862 if (kstrtoint(opt + 6, 0, &pause)) 4863 goto err; 4864 } else if (!strncmp(opt, "eee_timer:", 10)) { 4865 if (kstrtoint(opt + 10, 0, &eee_timer)) 4866 goto err; 4867 } else if (!strncmp(opt, "chain_mode:", 11)) { 4868 if (kstrtoint(opt + 11, 0, &chain_mode)) 4869 goto err; 4870 } 4871 } 4872 return 0; 4873 4874 err: 4875 pr_err("%s: ERROR broken module parameter conversion", __func__); 4876 return -EINVAL; 4877 } 4878 4879 __setup("stmmaceth=", stmmac_cmdline_opt); 4880 #endif /* MODULE */ 4881 4882 static int __init stmmac_init(void) 4883 { 4884 #ifdef CONFIG_DEBUG_FS 4885 /* Create debugfs main directory if it doesn't exist yet */ 4886 if (!stmmac_fs_dir) 4887 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 4888 #endif 4889 4890 return 0; 4891 } 4892 4893 static void __exit stmmac_exit(void) 4894 { 4895 #ifdef CONFIG_DEBUG_FS 4896 debugfs_remove_recursive(stmmac_fs_dir); 4897 #endif 4898 } 4899 4900 module_init(stmmac_init) 4901 module_exit(stmmac_exit) 4902 4903 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 4904 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 4905 MODULE_LICENSE("GPL"); 4906