1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	bool found = false;
436 	u64 ns = 0;
437 
438 	if (!priv->hwts_tx_en)
439 		return;
440 
441 	/* exit if skb doesn't support hw tstamp */
442 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443 		return;
444 
445 	/* check tx tstamp status */
446 	if (stmmac_get_tx_timestamp_status(priv, p)) {
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 		found = true;
449 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450 		found = true;
451 	}
452 
453 	if (found) {
454 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
456 
457 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458 		/* pass tstamp to stack */
459 		skb_tstamp_tx(skb, &shhwtstamp);
460 	}
461 }
462 
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464  * @priv: driver private structure
465  * @p : descriptor pointer
466  * @np : next descriptor pointer
467  * @skb : the socket buffer
468  * Description :
469  * This function will read received packet's timestamp from the descriptor
470  * and pass it to stack. It also perform some sanity checks.
471  */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 				   struct dma_desc *np, struct sk_buff *skb)
474 {
475 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 	struct dma_desc *desc = p;
477 	u64 ns = 0;
478 
479 	if (!priv->hwts_rx_en)
480 		return;
481 	/* For GMAC4, the valid timestamp is from CTX next desc. */
482 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483 		desc = np;
484 
485 	/* Check if timestamp is available */
486 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 		shhwtstamp = skb_hwtstamps(skb);
490 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
492 	} else  {
493 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494 	}
495 }
496 
497 /**
498  *  stmmac_hwtstamp_set - control hardware timestamping.
499  *  @dev: device pointer.
500  *  @ifr: An IOCTL specific structure, that can contain a pointer to
501  *  a proprietary structure used to pass information to the driver.
502  *  Description:
503  *  This function configures the MAC to enable/disable both outgoing(TX)
504  *  and incoming(RX) packets time stamping based on user input.
505  *  Return Value:
506  *  0 on success and an appropriate -ve integer on failure.
507  */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510 	struct stmmac_priv *priv = netdev_priv(dev);
511 	struct hwtstamp_config config;
512 	struct timespec64 now;
513 	u64 temp = 0;
514 	u32 ptp_v2 = 0;
515 	u32 tstamp_all = 0;
516 	u32 ptp_over_ipv4_udp = 0;
517 	u32 ptp_over_ipv6_udp = 0;
518 	u32 ptp_over_ethernet = 0;
519 	u32 snap_type_sel = 0;
520 	u32 ts_master_en = 0;
521 	u32 ts_event_en = 0;
522 	u32 sec_inc = 0;
523 	u32 value = 0;
524 	bool xmac;
525 
526 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527 
528 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529 		netdev_alert(priv->dev, "No support for HW time stamping\n");
530 		priv->hwts_tx_en = 0;
531 		priv->hwts_rx_en = 0;
532 
533 		return -EOPNOTSUPP;
534 	}
535 
536 	if (copy_from_user(&config, ifr->ifr_data,
537 			   sizeof(config)))
538 		return -EFAULT;
539 
540 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541 		   __func__, config.flags, config.tx_type, config.rx_filter);
542 
543 	/* reserved for future extensions */
544 	if (config.flags)
545 		return -EINVAL;
546 
547 	if (config.tx_type != HWTSTAMP_TX_OFF &&
548 	    config.tx_type != HWTSTAMP_TX_ON)
549 		return -ERANGE;
550 
551 	if (priv->adv_ts) {
552 		switch (config.rx_filter) {
553 		case HWTSTAMP_FILTER_NONE:
554 			/* time stamp no incoming packet at all */
555 			config.rx_filter = HWTSTAMP_FILTER_NONE;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559 			/* PTP v1, UDP, any kind of event packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561 			/* 'xmac' hardware can support Sync, Pdelay_Req and
562 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
563 			 * This leaves Delay_Req timestamps out.
564 			 * Enable all events *and* general purpose message
565 			 * timestamping
566 			 */
567 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 			break;
571 
572 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573 			/* PTP v1, UDP, Sync packet */
574 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575 			/* take time stamp for SYNC messages only */
576 			ts_event_en = PTP_TCR_TSEVNTENA;
577 
578 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580 			break;
581 
582 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583 			/* PTP v1, UDP, Delay_req packet */
584 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585 			/* take time stamp for Delay_Req messages only */
586 			ts_master_en = PTP_TCR_TSMSTRENA;
587 			ts_event_en = PTP_TCR_TSEVNTENA;
588 
589 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591 			break;
592 
593 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594 			/* PTP v2, UDP, any kind of event packet */
595 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596 			ptp_v2 = PTP_TCR_TSVER2ENA;
597 			/* take time stamp for all event messages */
598 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599 
600 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602 			break;
603 
604 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605 			/* PTP v2, UDP, Sync packet */
606 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607 			ptp_v2 = PTP_TCR_TSVER2ENA;
608 			/* take time stamp for SYNC messages only */
609 			ts_event_en = PTP_TCR_TSEVNTENA;
610 
611 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 			break;
614 
615 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616 			/* PTP v2, UDP, Delay_req packet */
617 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618 			ptp_v2 = PTP_TCR_TSVER2ENA;
619 			/* take time stamp for Delay_Req messages only */
620 			ts_master_en = PTP_TCR_TSMSTRENA;
621 			ts_event_en = PTP_TCR_TSEVNTENA;
622 
623 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 			break;
626 
627 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
628 			/* PTP v2/802.AS1 any layer, any kind of event packet */
629 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630 			ptp_v2 = PTP_TCR_TSVER2ENA;
631 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
633 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
634 			ptp_over_ethernet = PTP_TCR_TSIPENA;
635 			break;
636 
637 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
638 			/* PTP v2/802.AS1, any layer, Sync packet */
639 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
640 			ptp_v2 = PTP_TCR_TSVER2ENA;
641 			/* take time stamp for SYNC messages only */
642 			ts_event_en = PTP_TCR_TSEVNTENA;
643 
644 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
645 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
646 			ptp_over_ethernet = PTP_TCR_TSIPENA;
647 			break;
648 
649 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
650 			/* PTP v2/802.AS1, any layer, Delay_req packet */
651 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
652 			ptp_v2 = PTP_TCR_TSVER2ENA;
653 			/* take time stamp for Delay_Req messages only */
654 			ts_master_en = PTP_TCR_TSMSTRENA;
655 			ts_event_en = PTP_TCR_TSEVNTENA;
656 
657 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
658 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
659 			ptp_over_ethernet = PTP_TCR_TSIPENA;
660 			break;
661 
662 		case HWTSTAMP_FILTER_NTP_ALL:
663 		case HWTSTAMP_FILTER_ALL:
664 			/* time stamp any incoming packet */
665 			config.rx_filter = HWTSTAMP_FILTER_ALL;
666 			tstamp_all = PTP_TCR_TSENALL;
667 			break;
668 
669 		default:
670 			return -ERANGE;
671 		}
672 	} else {
673 		switch (config.rx_filter) {
674 		case HWTSTAMP_FILTER_NONE:
675 			config.rx_filter = HWTSTAMP_FILTER_NONE;
676 			break;
677 		default:
678 			/* PTP v1, UDP, any kind of event packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
680 			break;
681 		}
682 	}
683 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
684 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
685 
686 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
687 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
688 	else {
689 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
690 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
691 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
692 			 ts_master_en | snap_type_sel);
693 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
694 
695 		/* program Sub Second Increment reg */
696 		stmmac_config_sub_second_increment(priv,
697 				priv->ptpaddr, priv->plat->clk_ptp_rate,
698 				xmac, &sec_inc);
699 		temp = div_u64(1000000000ULL, sec_inc);
700 
701 		/* Store sub second increment and flags for later use */
702 		priv->sub_second_inc = sec_inc;
703 		priv->systime_flags = value;
704 
705 		/* calculate default added value:
706 		 * formula is :
707 		 * addend = (2^32)/freq_div_ratio;
708 		 * where, freq_div_ratio = 1e9ns/sec_inc
709 		 */
710 		temp = (u64)(temp << 32);
711 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
712 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
713 
714 		/* initialize system time */
715 		ktime_get_real_ts64(&now);
716 
717 		/* lower 32 bits of tv_sec are safe until y2106 */
718 		stmmac_init_systime(priv, priv->ptpaddr,
719 				(u32)now.tv_sec, now.tv_nsec);
720 	}
721 
722 	memcpy(&priv->tstamp_config, &config, sizeof(config));
723 
724 	return copy_to_user(ifr->ifr_data, &config,
725 			    sizeof(config)) ? -EFAULT : 0;
726 }
727 
728 /**
729  *  stmmac_hwtstamp_get - read hardware timestamping.
730  *  @dev: device pointer.
731  *  @ifr: An IOCTL specific structure, that can contain a pointer to
732  *  a proprietary structure used to pass information to the driver.
733  *  Description:
734  *  This function obtain the current hardware timestamping settings
735     as requested.
736  */
737 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
738 {
739 	struct stmmac_priv *priv = netdev_priv(dev);
740 	struct hwtstamp_config *config = &priv->tstamp_config;
741 
742 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 		return -EOPNOTSUPP;
744 
745 	return copy_to_user(ifr->ifr_data, config,
746 			    sizeof(*config)) ? -EFAULT : 0;
747 }
748 
749 /**
750  * stmmac_init_ptp - init PTP
751  * @priv: driver private structure
752  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
753  * This is done by looking at the HW cap. register.
754  * This function also registers the ptp driver.
755  */
756 static int stmmac_init_ptp(struct stmmac_priv *priv)
757 {
758 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
759 
760 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
761 		return -EOPNOTSUPP;
762 
763 	priv->adv_ts = 0;
764 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
765 	if (xmac && priv->dma_cap.atime_stamp)
766 		priv->adv_ts = 1;
767 	/* Dwmac 3.x core with extend_desc can support adv_ts */
768 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
769 		priv->adv_ts = 1;
770 
771 	if (priv->dma_cap.time_stamp)
772 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
773 
774 	if (priv->adv_ts)
775 		netdev_info(priv->dev,
776 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
777 
778 	priv->hwts_tx_en = 0;
779 	priv->hwts_rx_en = 0;
780 
781 	stmmac_ptp_register(priv);
782 
783 	return 0;
784 }
785 
786 static void stmmac_release_ptp(struct stmmac_priv *priv)
787 {
788 	if (priv->plat->clk_ptp_ref)
789 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
790 	stmmac_ptp_unregister(priv);
791 }
792 
793 /**
794  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
795  *  @priv: driver private structure
796  *  Description: It is used for configuring the flow control in all queues
797  */
798 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
799 {
800 	u32 tx_cnt = priv->plat->tx_queues_to_use;
801 
802 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
803 			priv->pause, tx_cnt);
804 }
805 
806 static void stmmac_validate(struct phylink_config *config,
807 			    unsigned long *supported,
808 			    struct phylink_link_state *state)
809 {
810 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
811 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
812 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
813 	int tx_cnt = priv->plat->tx_queues_to_use;
814 	int max_speed = priv->plat->max_speed;
815 
816 	phylink_set(mac_supported, 10baseT_Half);
817 	phylink_set(mac_supported, 10baseT_Full);
818 	phylink_set(mac_supported, 100baseT_Half);
819 	phylink_set(mac_supported, 100baseT_Full);
820 	phylink_set(mac_supported, 1000baseT_Half);
821 	phylink_set(mac_supported, 1000baseT_Full);
822 	phylink_set(mac_supported, 1000baseKX_Full);
823 
824 	phylink_set(mac_supported, Autoneg);
825 	phylink_set(mac_supported, Pause);
826 	phylink_set(mac_supported, Asym_Pause);
827 	phylink_set_port_modes(mac_supported);
828 
829 	/* Cut down 1G if asked to */
830 	if ((max_speed > 0) && (max_speed < 1000)) {
831 		phylink_set(mask, 1000baseT_Full);
832 		phylink_set(mask, 1000baseX_Full);
833 	} else if (priv->plat->has_xgmac) {
834 		if (!max_speed || (max_speed >= 2500)) {
835 			phylink_set(mac_supported, 2500baseT_Full);
836 			phylink_set(mac_supported, 2500baseX_Full);
837 		}
838 		if (!max_speed || (max_speed >= 5000)) {
839 			phylink_set(mac_supported, 5000baseT_Full);
840 		}
841 		if (!max_speed || (max_speed >= 10000)) {
842 			phylink_set(mac_supported, 10000baseSR_Full);
843 			phylink_set(mac_supported, 10000baseLR_Full);
844 			phylink_set(mac_supported, 10000baseER_Full);
845 			phylink_set(mac_supported, 10000baseLRM_Full);
846 			phylink_set(mac_supported, 10000baseT_Full);
847 			phylink_set(mac_supported, 10000baseKX4_Full);
848 			phylink_set(mac_supported, 10000baseKR_Full);
849 		}
850 	}
851 
852 	/* Half-Duplex can only work with single queue */
853 	if (tx_cnt > 1) {
854 		phylink_set(mask, 10baseT_Half);
855 		phylink_set(mask, 100baseT_Half);
856 		phylink_set(mask, 1000baseT_Half);
857 	}
858 
859 	bitmap_and(supported, supported, mac_supported,
860 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
861 	bitmap_andnot(supported, supported, mask,
862 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
863 	bitmap_and(state->advertising, state->advertising, mac_supported,
864 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
865 	bitmap_andnot(state->advertising, state->advertising, mask,
866 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
867 }
868 
869 static int stmmac_mac_link_state(struct phylink_config *config,
870 				 struct phylink_link_state *state)
871 {
872 	return -EOPNOTSUPP;
873 }
874 
875 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
876 			      const struct phylink_link_state *state)
877 {
878 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
879 	u32 ctrl;
880 
881 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
882 	ctrl &= ~priv->hw->link.speed_mask;
883 
884 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
885 		switch (state->speed) {
886 		case SPEED_10000:
887 			ctrl |= priv->hw->link.xgmii.speed10000;
888 			break;
889 		case SPEED_5000:
890 			ctrl |= priv->hw->link.xgmii.speed5000;
891 			break;
892 		case SPEED_2500:
893 			ctrl |= priv->hw->link.xgmii.speed2500;
894 			break;
895 		default:
896 			return;
897 		}
898 	} else {
899 		switch (state->speed) {
900 		case SPEED_2500:
901 			ctrl |= priv->hw->link.speed2500;
902 			break;
903 		case SPEED_1000:
904 			ctrl |= priv->hw->link.speed1000;
905 			break;
906 		case SPEED_100:
907 			ctrl |= priv->hw->link.speed100;
908 			break;
909 		case SPEED_10:
910 			ctrl |= priv->hw->link.speed10;
911 			break;
912 		default:
913 			return;
914 		}
915 	}
916 
917 	priv->speed = state->speed;
918 
919 	if (priv->plat->fix_mac_speed)
920 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
921 
922 	if (!state->duplex)
923 		ctrl &= ~priv->hw->link.duplex;
924 	else
925 		ctrl |= priv->hw->link.duplex;
926 
927 	/* Flow Control operation */
928 	if (state->pause)
929 		stmmac_mac_flow_ctrl(priv, state->duplex);
930 
931 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
932 }
933 
934 static void stmmac_mac_an_restart(struct phylink_config *config)
935 {
936 	/* Not Supported */
937 }
938 
939 static void stmmac_mac_link_down(struct phylink_config *config,
940 				 unsigned int mode, phy_interface_t interface)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 
944 	stmmac_mac_set(priv, priv->ioaddr, false);
945 	priv->eee_active = false;
946 	stmmac_eee_init(priv);
947 	stmmac_set_eee_pls(priv, priv->hw, false);
948 }
949 
950 static void stmmac_mac_link_up(struct phylink_config *config,
951 			       unsigned int mode, phy_interface_t interface,
952 			       struct phy_device *phy)
953 {
954 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
955 
956 	stmmac_mac_set(priv, priv->ioaddr, true);
957 	if (phy && priv->dma_cap.eee) {
958 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
959 		priv->eee_enabled = stmmac_eee_init(priv);
960 		stmmac_set_eee_pls(priv, priv->hw, true);
961 	}
962 }
963 
964 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
965 	.validate = stmmac_validate,
966 	.mac_link_state = stmmac_mac_link_state,
967 	.mac_config = stmmac_mac_config,
968 	.mac_an_restart = stmmac_mac_an_restart,
969 	.mac_link_down = stmmac_mac_link_down,
970 	.mac_link_up = stmmac_mac_link_up,
971 };
972 
973 /**
974  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
975  * @priv: driver private structure
976  * Description: this is to verify if the HW supports the PCS.
977  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
978  * configured for the TBI, RTBI, or SGMII PHY interface.
979  */
980 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
981 {
982 	int interface = priv->plat->interface;
983 
984 	if (priv->dma_cap.pcs) {
985 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
986 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
987 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
988 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
989 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
990 			priv->hw->pcs = STMMAC_PCS_RGMII;
991 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
992 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
993 			priv->hw->pcs = STMMAC_PCS_SGMII;
994 		}
995 	}
996 }
997 
998 /**
999  * stmmac_init_phy - PHY initialization
1000  * @dev: net device structure
1001  * Description: it initializes the driver's PHY state, and attaches the PHY
1002  * to the mac driver.
1003  *  Return value:
1004  *  0 on success
1005  */
1006 static int stmmac_init_phy(struct net_device *dev)
1007 {
1008 	struct stmmac_priv *priv = netdev_priv(dev);
1009 	struct device_node *node;
1010 	int ret;
1011 
1012 	node = priv->plat->phylink_node;
1013 
1014 	if (node)
1015 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1016 
1017 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1018 	 * manually parse it
1019 	 */
1020 	if (!node || ret) {
1021 		int addr = priv->plat->phy_addr;
1022 		struct phy_device *phydev;
1023 
1024 		phydev = mdiobus_get_phy(priv->mii, addr);
1025 		if (!phydev) {
1026 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1027 			return -ENODEV;
1028 		}
1029 
1030 		ret = phylink_connect_phy(priv->phylink, phydev);
1031 	}
1032 
1033 	return ret;
1034 }
1035 
1036 static int stmmac_phy_setup(struct stmmac_priv *priv)
1037 {
1038 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1039 	int mode = priv->plat->phy_interface;
1040 	struct phylink *phylink;
1041 
1042 	priv->phylink_config.dev = &priv->dev->dev;
1043 	priv->phylink_config.type = PHYLINK_NETDEV;
1044 
1045 	phylink = phylink_create(&priv->phylink_config, fwnode,
1046 				 mode, &stmmac_phylink_mac_ops);
1047 	if (IS_ERR(phylink))
1048 		return PTR_ERR(phylink);
1049 
1050 	priv->phylink = phylink;
1051 	return 0;
1052 }
1053 
1054 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1055 {
1056 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1057 	void *head_rx;
1058 	u32 queue;
1059 
1060 	/* Display RX rings */
1061 	for (queue = 0; queue < rx_cnt; queue++) {
1062 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1063 
1064 		pr_info("\tRX Queue %u rings\n", queue);
1065 
1066 		if (priv->extend_desc)
1067 			head_rx = (void *)rx_q->dma_erx;
1068 		else
1069 			head_rx = (void *)rx_q->dma_rx;
1070 
1071 		/* Display RX ring */
1072 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1073 	}
1074 }
1075 
1076 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1077 {
1078 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1079 	void *head_tx;
1080 	u32 queue;
1081 
1082 	/* Display TX rings */
1083 	for (queue = 0; queue < tx_cnt; queue++) {
1084 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1085 
1086 		pr_info("\tTX Queue %d rings\n", queue);
1087 
1088 		if (priv->extend_desc)
1089 			head_tx = (void *)tx_q->dma_etx;
1090 		else
1091 			head_tx = (void *)tx_q->dma_tx;
1092 
1093 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1094 	}
1095 }
1096 
1097 static void stmmac_display_rings(struct stmmac_priv *priv)
1098 {
1099 	/* Display RX ring */
1100 	stmmac_display_rx_rings(priv);
1101 
1102 	/* Display TX ring */
1103 	stmmac_display_tx_rings(priv);
1104 }
1105 
1106 static int stmmac_set_bfsize(int mtu, int bufsize)
1107 {
1108 	int ret = bufsize;
1109 
1110 	if (mtu >= BUF_SIZE_4KiB)
1111 		ret = BUF_SIZE_8KiB;
1112 	else if (mtu >= BUF_SIZE_2KiB)
1113 		ret = BUF_SIZE_4KiB;
1114 	else if (mtu > DEFAULT_BUFSIZE)
1115 		ret = BUF_SIZE_2KiB;
1116 	else
1117 		ret = DEFAULT_BUFSIZE;
1118 
1119 	return ret;
1120 }
1121 
1122 /**
1123  * stmmac_clear_rx_descriptors - clear RX descriptors
1124  * @priv: driver private structure
1125  * @queue: RX queue index
1126  * Description: this function is called to clear the RX descriptors
1127  * in case of both basic and extended descriptors are used.
1128  */
1129 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1130 {
1131 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1132 	int i;
1133 
1134 	/* Clear the RX descriptors */
1135 	for (i = 0; i < DMA_RX_SIZE; i++)
1136 		if (priv->extend_desc)
1137 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1138 					priv->use_riwt, priv->mode,
1139 					(i == DMA_RX_SIZE - 1),
1140 					priv->dma_buf_sz);
1141 		else
1142 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1143 					priv->use_riwt, priv->mode,
1144 					(i == DMA_RX_SIZE - 1),
1145 					priv->dma_buf_sz);
1146 }
1147 
1148 /**
1149  * stmmac_clear_tx_descriptors - clear tx descriptors
1150  * @priv: driver private structure
1151  * @queue: TX queue index.
1152  * Description: this function is called to clear the TX descriptors
1153  * in case of both basic and extended descriptors are used.
1154  */
1155 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1156 {
1157 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1158 	int i;
1159 
1160 	/* Clear the TX descriptors */
1161 	for (i = 0; i < DMA_TX_SIZE; i++)
1162 		if (priv->extend_desc)
1163 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1164 					priv->mode, (i == DMA_TX_SIZE - 1));
1165 		else
1166 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1167 					priv->mode, (i == DMA_TX_SIZE - 1));
1168 }
1169 
1170 /**
1171  * stmmac_clear_descriptors - clear descriptors
1172  * @priv: driver private structure
1173  * Description: this function is called to clear the TX and RX descriptors
1174  * in case of both basic and extended descriptors are used.
1175  */
1176 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1177 {
1178 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1179 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1180 	u32 queue;
1181 
1182 	/* Clear the RX descriptors */
1183 	for (queue = 0; queue < rx_queue_cnt; queue++)
1184 		stmmac_clear_rx_descriptors(priv, queue);
1185 
1186 	/* Clear the TX descriptors */
1187 	for (queue = 0; queue < tx_queue_cnt; queue++)
1188 		stmmac_clear_tx_descriptors(priv, queue);
1189 }
1190 
1191 /**
1192  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1193  * @priv: driver private structure
1194  * @p: descriptor pointer
1195  * @i: descriptor index
1196  * @flags: gfp flag
1197  * @queue: RX queue index
1198  * Description: this function is called to allocate a receive buffer, perform
1199  * the DMA mapping and init the descriptor.
1200  */
1201 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1202 				  int i, gfp_t flags, u32 queue)
1203 {
1204 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1205 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1206 
1207 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1208 	if (!buf->page)
1209 		return -ENOMEM;
1210 
1211 	if (priv->sph) {
1212 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1213 		if (!buf->sec_page)
1214 			return -ENOMEM;
1215 
1216 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1217 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1218 	} else {
1219 		buf->sec_page = NULL;
1220 	}
1221 
1222 	buf->addr = page_pool_get_dma_addr(buf->page);
1223 	stmmac_set_desc_addr(priv, p, buf->addr);
1224 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1225 		stmmac_init_desc3(priv, p);
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * stmmac_free_rx_buffer - free RX dma buffers
1232  * @priv: private structure
1233  * @queue: RX queue index
1234  * @i: buffer index.
1235  */
1236 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1237 {
1238 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1239 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1240 
1241 	if (buf->page)
1242 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1243 	buf->page = NULL;
1244 
1245 	if (buf->sec_page)
1246 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1247 	buf->sec_page = NULL;
1248 }
1249 
1250 /**
1251  * stmmac_free_tx_buffer - free RX dma buffers
1252  * @priv: private structure
1253  * @queue: RX queue index
1254  * @i: buffer index.
1255  */
1256 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1257 {
1258 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1259 
1260 	if (tx_q->tx_skbuff_dma[i].buf) {
1261 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1262 			dma_unmap_page(priv->device,
1263 				       tx_q->tx_skbuff_dma[i].buf,
1264 				       tx_q->tx_skbuff_dma[i].len,
1265 				       DMA_TO_DEVICE);
1266 		else
1267 			dma_unmap_single(priv->device,
1268 					 tx_q->tx_skbuff_dma[i].buf,
1269 					 tx_q->tx_skbuff_dma[i].len,
1270 					 DMA_TO_DEVICE);
1271 	}
1272 
1273 	if (tx_q->tx_skbuff[i]) {
1274 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1275 		tx_q->tx_skbuff[i] = NULL;
1276 		tx_q->tx_skbuff_dma[i].buf = 0;
1277 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1278 	}
1279 }
1280 
1281 /**
1282  * init_dma_rx_desc_rings - init the RX descriptor rings
1283  * @dev: net device structure
1284  * @flags: gfp flag.
1285  * Description: this function initializes the DMA RX descriptors
1286  * and allocates the socket buffers. It supports the chained and ring
1287  * modes.
1288  */
1289 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1290 {
1291 	struct stmmac_priv *priv = netdev_priv(dev);
1292 	u32 rx_count = priv->plat->rx_queues_to_use;
1293 	int ret = -ENOMEM;
1294 	int bfsize = 0;
1295 	int queue;
1296 	int i;
1297 
1298 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1299 	if (bfsize < 0)
1300 		bfsize = 0;
1301 
1302 	if (bfsize < BUF_SIZE_16KiB)
1303 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1304 
1305 	priv->dma_buf_sz = bfsize;
1306 
1307 	/* RX INITIALIZATION */
1308 	netif_dbg(priv, probe, priv->dev,
1309 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1310 
1311 	for (queue = 0; queue < rx_count; queue++) {
1312 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1313 
1314 		netif_dbg(priv, probe, priv->dev,
1315 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1316 			  (u32)rx_q->dma_rx_phy);
1317 
1318 		stmmac_clear_rx_descriptors(priv, queue);
1319 
1320 		for (i = 0; i < DMA_RX_SIZE; i++) {
1321 			struct dma_desc *p;
1322 
1323 			if (priv->extend_desc)
1324 				p = &((rx_q->dma_erx + i)->basic);
1325 			else
1326 				p = rx_q->dma_rx + i;
1327 
1328 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1329 						     queue);
1330 			if (ret)
1331 				goto err_init_rx_buffers;
1332 		}
1333 
1334 		rx_q->cur_rx = 0;
1335 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1336 
1337 		/* Setup the chained descriptor addresses */
1338 		if (priv->mode == STMMAC_CHAIN_MODE) {
1339 			if (priv->extend_desc)
1340 				stmmac_mode_init(priv, rx_q->dma_erx,
1341 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1342 			else
1343 				stmmac_mode_init(priv, rx_q->dma_rx,
1344 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1345 		}
1346 	}
1347 
1348 	buf_sz = bfsize;
1349 
1350 	return 0;
1351 
1352 err_init_rx_buffers:
1353 	while (queue >= 0) {
1354 		while (--i >= 0)
1355 			stmmac_free_rx_buffer(priv, queue, i);
1356 
1357 		if (queue == 0)
1358 			break;
1359 
1360 		i = DMA_RX_SIZE;
1361 		queue--;
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 /**
1368  * init_dma_tx_desc_rings - init the TX descriptor rings
1369  * @dev: net device structure.
1370  * Description: this function initializes the DMA TX descriptors
1371  * and allocates the socket buffers. It supports the chained and ring
1372  * modes.
1373  */
1374 static int init_dma_tx_desc_rings(struct net_device *dev)
1375 {
1376 	struct stmmac_priv *priv = netdev_priv(dev);
1377 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1378 	u32 queue;
1379 	int i;
1380 
1381 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1382 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1383 
1384 		netif_dbg(priv, probe, priv->dev,
1385 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1386 			 (u32)tx_q->dma_tx_phy);
1387 
1388 		/* Setup the chained descriptor addresses */
1389 		if (priv->mode == STMMAC_CHAIN_MODE) {
1390 			if (priv->extend_desc)
1391 				stmmac_mode_init(priv, tx_q->dma_etx,
1392 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1393 			else
1394 				stmmac_mode_init(priv, tx_q->dma_tx,
1395 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1396 		}
1397 
1398 		for (i = 0; i < DMA_TX_SIZE; i++) {
1399 			struct dma_desc *p;
1400 			if (priv->extend_desc)
1401 				p = &((tx_q->dma_etx + i)->basic);
1402 			else
1403 				p = tx_q->dma_tx + i;
1404 
1405 			stmmac_clear_desc(priv, p);
1406 
1407 			tx_q->tx_skbuff_dma[i].buf = 0;
1408 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1409 			tx_q->tx_skbuff_dma[i].len = 0;
1410 			tx_q->tx_skbuff_dma[i].last_segment = false;
1411 			tx_q->tx_skbuff[i] = NULL;
1412 		}
1413 
1414 		tx_q->dirty_tx = 0;
1415 		tx_q->cur_tx = 0;
1416 		tx_q->mss = 0;
1417 
1418 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * init_dma_desc_rings - init the RX/TX descriptor rings
1426  * @dev: net device structure
1427  * @flags: gfp flag.
1428  * Description: this function initializes the DMA RX/TX descriptors
1429  * and allocates the socket buffers. It supports the chained and ring
1430  * modes.
1431  */
1432 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1433 {
1434 	struct stmmac_priv *priv = netdev_priv(dev);
1435 	int ret;
1436 
1437 	ret = init_dma_rx_desc_rings(dev, flags);
1438 	if (ret)
1439 		return ret;
1440 
1441 	ret = init_dma_tx_desc_rings(dev);
1442 
1443 	stmmac_clear_descriptors(priv);
1444 
1445 	if (netif_msg_hw(priv))
1446 		stmmac_display_rings(priv);
1447 
1448 	return ret;
1449 }
1450 
1451 /**
1452  * dma_free_rx_skbufs - free RX dma buffers
1453  * @priv: private structure
1454  * @queue: RX queue index
1455  */
1456 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1457 {
1458 	int i;
1459 
1460 	for (i = 0; i < DMA_RX_SIZE; i++)
1461 		stmmac_free_rx_buffer(priv, queue, i);
1462 }
1463 
1464 /**
1465  * dma_free_tx_skbufs - free TX dma buffers
1466  * @priv: private structure
1467  * @queue: TX queue index
1468  */
1469 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1470 {
1471 	int i;
1472 
1473 	for (i = 0; i < DMA_TX_SIZE; i++)
1474 		stmmac_free_tx_buffer(priv, queue, i);
1475 }
1476 
1477 /**
1478  * free_dma_rx_desc_resources - free RX dma desc resources
1479  * @priv: private structure
1480  */
1481 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1482 {
1483 	u32 rx_count = priv->plat->rx_queues_to_use;
1484 	u32 queue;
1485 
1486 	/* Free RX queue resources */
1487 	for (queue = 0; queue < rx_count; queue++) {
1488 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1489 
1490 		/* Release the DMA RX socket buffers */
1491 		dma_free_rx_skbufs(priv, queue);
1492 
1493 		/* Free DMA regions of consistent memory previously allocated */
1494 		if (!priv->extend_desc)
1495 			dma_free_coherent(priv->device,
1496 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1497 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1498 		else
1499 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1500 					  sizeof(struct dma_extended_desc),
1501 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1502 
1503 		kfree(rx_q->buf_pool);
1504 		if (rx_q->page_pool) {
1505 			page_pool_request_shutdown(rx_q->page_pool);
1506 			page_pool_destroy(rx_q->page_pool);
1507 		}
1508 	}
1509 }
1510 
1511 /**
1512  * free_dma_tx_desc_resources - free TX dma desc resources
1513  * @priv: private structure
1514  */
1515 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1516 {
1517 	u32 tx_count = priv->plat->tx_queues_to_use;
1518 	u32 queue;
1519 
1520 	/* Free TX queue resources */
1521 	for (queue = 0; queue < tx_count; queue++) {
1522 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1523 
1524 		/* Release the DMA TX socket buffers */
1525 		dma_free_tx_skbufs(priv, queue);
1526 
1527 		/* Free DMA regions of consistent memory previously allocated */
1528 		if (!priv->extend_desc)
1529 			dma_free_coherent(priv->device,
1530 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1531 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1532 		else
1533 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1534 					  sizeof(struct dma_extended_desc),
1535 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1536 
1537 		kfree(tx_q->tx_skbuff_dma);
1538 		kfree(tx_q->tx_skbuff);
1539 	}
1540 }
1541 
1542 /**
1543  * alloc_dma_rx_desc_resources - alloc RX resources.
1544  * @priv: private structure
1545  * Description: according to which descriptor can be used (extend or basic)
1546  * this function allocates the resources for TX and RX paths. In case of
1547  * reception, for example, it pre-allocated the RX socket buffer in order to
1548  * allow zero-copy mechanism.
1549  */
1550 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1551 {
1552 	u32 rx_count = priv->plat->rx_queues_to_use;
1553 	int ret = -ENOMEM;
1554 	u32 queue;
1555 
1556 	/* RX queues buffers and DMA */
1557 	for (queue = 0; queue < rx_count; queue++) {
1558 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1559 		struct page_pool_params pp_params = { 0 };
1560 
1561 		rx_q->queue_index = queue;
1562 		rx_q->priv_data = priv;
1563 
1564 		pp_params.flags = PP_FLAG_DMA_MAP;
1565 		pp_params.pool_size = DMA_RX_SIZE;
1566 		pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1567 		pp_params.nid = dev_to_node(priv->device);
1568 		pp_params.dev = priv->device;
1569 		pp_params.dma_dir = DMA_FROM_DEVICE;
1570 
1571 		rx_q->page_pool = page_pool_create(&pp_params);
1572 		if (IS_ERR(rx_q->page_pool)) {
1573 			ret = PTR_ERR(rx_q->page_pool);
1574 			rx_q->page_pool = NULL;
1575 			goto err_dma;
1576 		}
1577 
1578 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1579 					 GFP_KERNEL);
1580 		if (!rx_q->buf_pool)
1581 			goto err_dma;
1582 
1583 		if (priv->extend_desc) {
1584 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1585 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1586 							   &rx_q->dma_rx_phy,
1587 							   GFP_KERNEL);
1588 			if (!rx_q->dma_erx)
1589 				goto err_dma;
1590 
1591 		} else {
1592 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1593 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1594 							  &rx_q->dma_rx_phy,
1595 							  GFP_KERNEL);
1596 			if (!rx_q->dma_rx)
1597 				goto err_dma;
1598 		}
1599 	}
1600 
1601 	return 0;
1602 
1603 err_dma:
1604 	free_dma_rx_desc_resources(priv);
1605 
1606 	return ret;
1607 }
1608 
1609 /**
1610  * alloc_dma_tx_desc_resources - alloc TX resources.
1611  * @priv: private structure
1612  * Description: according to which descriptor can be used (extend or basic)
1613  * this function allocates the resources for TX and RX paths. In case of
1614  * reception, for example, it pre-allocated the RX socket buffer in order to
1615  * allow zero-copy mechanism.
1616  */
1617 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1618 {
1619 	u32 tx_count = priv->plat->tx_queues_to_use;
1620 	int ret = -ENOMEM;
1621 	u32 queue;
1622 
1623 	/* TX queues buffers and DMA */
1624 	for (queue = 0; queue < tx_count; queue++) {
1625 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1626 
1627 		tx_q->queue_index = queue;
1628 		tx_q->priv_data = priv;
1629 
1630 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1631 					      sizeof(*tx_q->tx_skbuff_dma),
1632 					      GFP_KERNEL);
1633 		if (!tx_q->tx_skbuff_dma)
1634 			goto err_dma;
1635 
1636 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1637 					  sizeof(struct sk_buff *),
1638 					  GFP_KERNEL);
1639 		if (!tx_q->tx_skbuff)
1640 			goto err_dma;
1641 
1642 		if (priv->extend_desc) {
1643 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1644 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1645 							   &tx_q->dma_tx_phy,
1646 							   GFP_KERNEL);
1647 			if (!tx_q->dma_etx)
1648 				goto err_dma;
1649 		} else {
1650 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1651 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1652 							  &tx_q->dma_tx_phy,
1653 							  GFP_KERNEL);
1654 			if (!tx_q->dma_tx)
1655 				goto err_dma;
1656 		}
1657 	}
1658 
1659 	return 0;
1660 
1661 err_dma:
1662 	free_dma_tx_desc_resources(priv);
1663 
1664 	return ret;
1665 }
1666 
1667 /**
1668  * alloc_dma_desc_resources - alloc TX/RX resources.
1669  * @priv: private structure
1670  * Description: according to which descriptor can be used (extend or basic)
1671  * this function allocates the resources for TX and RX paths. In case of
1672  * reception, for example, it pre-allocated the RX socket buffer in order to
1673  * allow zero-copy mechanism.
1674  */
1675 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1676 {
1677 	/* RX Allocation */
1678 	int ret = alloc_dma_rx_desc_resources(priv);
1679 
1680 	if (ret)
1681 		return ret;
1682 
1683 	ret = alloc_dma_tx_desc_resources(priv);
1684 
1685 	return ret;
1686 }
1687 
1688 /**
1689  * free_dma_desc_resources - free dma desc resources
1690  * @priv: private structure
1691  */
1692 static void free_dma_desc_resources(struct stmmac_priv *priv)
1693 {
1694 	/* Release the DMA RX socket buffers */
1695 	free_dma_rx_desc_resources(priv);
1696 
1697 	/* Release the DMA TX socket buffers */
1698 	free_dma_tx_desc_resources(priv);
1699 }
1700 
1701 /**
1702  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1703  *  @priv: driver private structure
1704  *  Description: It is used for enabling the rx queues in the MAC
1705  */
1706 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1707 {
1708 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1709 	int queue;
1710 	u8 mode;
1711 
1712 	for (queue = 0; queue < rx_queues_count; queue++) {
1713 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1714 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1715 	}
1716 }
1717 
1718 /**
1719  * stmmac_start_rx_dma - start RX DMA channel
1720  * @priv: driver private structure
1721  * @chan: RX channel index
1722  * Description:
1723  * This starts a RX DMA channel
1724  */
1725 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1726 {
1727 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1728 	stmmac_start_rx(priv, priv->ioaddr, chan);
1729 }
1730 
1731 /**
1732  * stmmac_start_tx_dma - start TX DMA channel
1733  * @priv: driver private structure
1734  * @chan: TX channel index
1735  * Description:
1736  * This starts a TX DMA channel
1737  */
1738 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1739 {
1740 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1741 	stmmac_start_tx(priv, priv->ioaddr, chan);
1742 }
1743 
1744 /**
1745  * stmmac_stop_rx_dma - stop RX DMA channel
1746  * @priv: driver private structure
1747  * @chan: RX channel index
1748  * Description:
1749  * This stops a RX DMA channel
1750  */
1751 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1752 {
1753 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1754 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1755 }
1756 
1757 /**
1758  * stmmac_stop_tx_dma - stop TX DMA channel
1759  * @priv: driver private structure
1760  * @chan: TX channel index
1761  * Description:
1762  * This stops a TX DMA channel
1763  */
1764 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1765 {
1766 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1767 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1768 }
1769 
1770 /**
1771  * stmmac_start_all_dma - start all RX and TX DMA channels
1772  * @priv: driver private structure
1773  * Description:
1774  * This starts all the RX and TX DMA channels
1775  */
1776 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1777 {
1778 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1779 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1780 	u32 chan = 0;
1781 
1782 	for (chan = 0; chan < rx_channels_count; chan++)
1783 		stmmac_start_rx_dma(priv, chan);
1784 
1785 	for (chan = 0; chan < tx_channels_count; chan++)
1786 		stmmac_start_tx_dma(priv, chan);
1787 }
1788 
1789 /**
1790  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1791  * @priv: driver private structure
1792  * Description:
1793  * This stops the RX and TX DMA channels
1794  */
1795 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1796 {
1797 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1798 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1799 	u32 chan = 0;
1800 
1801 	for (chan = 0; chan < rx_channels_count; chan++)
1802 		stmmac_stop_rx_dma(priv, chan);
1803 
1804 	for (chan = 0; chan < tx_channels_count; chan++)
1805 		stmmac_stop_tx_dma(priv, chan);
1806 }
1807 
1808 /**
1809  *  stmmac_dma_operation_mode - HW DMA operation mode
1810  *  @priv: driver private structure
1811  *  Description: it is used for configuring the DMA operation mode register in
1812  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1813  */
1814 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1815 {
1816 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1817 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1818 	int rxfifosz = priv->plat->rx_fifo_size;
1819 	int txfifosz = priv->plat->tx_fifo_size;
1820 	u32 txmode = 0;
1821 	u32 rxmode = 0;
1822 	u32 chan = 0;
1823 	u8 qmode = 0;
1824 
1825 	if (rxfifosz == 0)
1826 		rxfifosz = priv->dma_cap.rx_fifo_size;
1827 	if (txfifosz == 0)
1828 		txfifosz = priv->dma_cap.tx_fifo_size;
1829 
1830 	/* Adjust for real per queue fifo size */
1831 	rxfifosz /= rx_channels_count;
1832 	txfifosz /= tx_channels_count;
1833 
1834 	if (priv->plat->force_thresh_dma_mode) {
1835 		txmode = tc;
1836 		rxmode = tc;
1837 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1838 		/*
1839 		 * In case of GMAC, SF mode can be enabled
1840 		 * to perform the TX COE in HW. This depends on:
1841 		 * 1) TX COE if actually supported
1842 		 * 2) There is no bugged Jumbo frame support
1843 		 *    that needs to not insert csum in the TDES.
1844 		 */
1845 		txmode = SF_DMA_MODE;
1846 		rxmode = SF_DMA_MODE;
1847 		priv->xstats.threshold = SF_DMA_MODE;
1848 	} else {
1849 		txmode = tc;
1850 		rxmode = SF_DMA_MODE;
1851 	}
1852 
1853 	/* configure all channels */
1854 	for (chan = 0; chan < rx_channels_count; chan++) {
1855 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1856 
1857 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1858 				rxfifosz, qmode);
1859 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1860 				chan);
1861 	}
1862 
1863 	for (chan = 0; chan < tx_channels_count; chan++) {
1864 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1865 
1866 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1867 				txfifosz, qmode);
1868 	}
1869 }
1870 
1871 /**
1872  * stmmac_tx_clean - to manage the transmission completion
1873  * @priv: driver private structure
1874  * @queue: TX queue index
1875  * Description: it reclaims the transmit resources after transmission completes.
1876  */
1877 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1878 {
1879 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1880 	unsigned int bytes_compl = 0, pkts_compl = 0;
1881 	unsigned int entry, count = 0;
1882 
1883 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1884 
1885 	priv->xstats.tx_clean++;
1886 
1887 	entry = tx_q->dirty_tx;
1888 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1889 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1890 		struct dma_desc *p;
1891 		int status;
1892 
1893 		if (priv->extend_desc)
1894 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1895 		else
1896 			p = tx_q->dma_tx + entry;
1897 
1898 		status = stmmac_tx_status(priv, &priv->dev->stats,
1899 				&priv->xstats, p, priv->ioaddr);
1900 		/* Check if the descriptor is owned by the DMA */
1901 		if (unlikely(status & tx_dma_own))
1902 			break;
1903 
1904 		count++;
1905 
1906 		/* Make sure descriptor fields are read after reading
1907 		 * the own bit.
1908 		 */
1909 		dma_rmb();
1910 
1911 		/* Just consider the last segment and ...*/
1912 		if (likely(!(status & tx_not_ls))) {
1913 			/* ... verify the status error condition */
1914 			if (unlikely(status & tx_err)) {
1915 				priv->dev->stats.tx_errors++;
1916 			} else {
1917 				priv->dev->stats.tx_packets++;
1918 				priv->xstats.tx_pkt_n++;
1919 			}
1920 			stmmac_get_tx_hwtstamp(priv, p, skb);
1921 		}
1922 
1923 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1924 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1925 				dma_unmap_page(priv->device,
1926 					       tx_q->tx_skbuff_dma[entry].buf,
1927 					       tx_q->tx_skbuff_dma[entry].len,
1928 					       DMA_TO_DEVICE);
1929 			else
1930 				dma_unmap_single(priv->device,
1931 						 tx_q->tx_skbuff_dma[entry].buf,
1932 						 tx_q->tx_skbuff_dma[entry].len,
1933 						 DMA_TO_DEVICE);
1934 			tx_q->tx_skbuff_dma[entry].buf = 0;
1935 			tx_q->tx_skbuff_dma[entry].len = 0;
1936 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1937 		}
1938 
1939 		stmmac_clean_desc3(priv, tx_q, p);
1940 
1941 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1942 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1943 
1944 		if (likely(skb != NULL)) {
1945 			pkts_compl++;
1946 			bytes_compl += skb->len;
1947 			dev_consume_skb_any(skb);
1948 			tx_q->tx_skbuff[entry] = NULL;
1949 		}
1950 
1951 		stmmac_release_tx_desc(priv, p, priv->mode);
1952 
1953 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1954 	}
1955 	tx_q->dirty_tx = entry;
1956 
1957 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1958 				  pkts_compl, bytes_compl);
1959 
1960 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1961 								queue))) &&
1962 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1963 
1964 		netif_dbg(priv, tx_done, priv->dev,
1965 			  "%s: restart transmit\n", __func__);
1966 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1967 	}
1968 
1969 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1970 		stmmac_enable_eee_mode(priv);
1971 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1972 	}
1973 
1974 	/* We still have pending packets, let's call for a new scheduling */
1975 	if (tx_q->dirty_tx != tx_q->cur_tx)
1976 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1977 
1978 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1979 
1980 	return count;
1981 }
1982 
1983 /**
1984  * stmmac_tx_err - to manage the tx error
1985  * @priv: driver private structure
1986  * @chan: channel index
1987  * Description: it cleans the descriptors and restarts the transmission
1988  * in case of transmission errors.
1989  */
1990 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1991 {
1992 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1993 	int i;
1994 
1995 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1996 
1997 	stmmac_stop_tx_dma(priv, chan);
1998 	dma_free_tx_skbufs(priv, chan);
1999 	for (i = 0; i < DMA_TX_SIZE; i++)
2000 		if (priv->extend_desc)
2001 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
2002 					priv->mode, (i == DMA_TX_SIZE - 1));
2003 		else
2004 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
2005 					priv->mode, (i == DMA_TX_SIZE - 1));
2006 	tx_q->dirty_tx = 0;
2007 	tx_q->cur_tx = 0;
2008 	tx_q->mss = 0;
2009 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2010 	stmmac_start_tx_dma(priv, chan);
2011 
2012 	priv->dev->stats.tx_errors++;
2013 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2014 }
2015 
2016 /**
2017  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2018  *  @priv: driver private structure
2019  *  @txmode: TX operating mode
2020  *  @rxmode: RX operating mode
2021  *  @chan: channel index
2022  *  Description: it is used for configuring of the DMA operation mode in
2023  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2024  *  mode.
2025  */
2026 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2027 					  u32 rxmode, u32 chan)
2028 {
2029 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2030 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2031 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2032 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2033 	int rxfifosz = priv->plat->rx_fifo_size;
2034 	int txfifosz = priv->plat->tx_fifo_size;
2035 
2036 	if (rxfifosz == 0)
2037 		rxfifosz = priv->dma_cap.rx_fifo_size;
2038 	if (txfifosz == 0)
2039 		txfifosz = priv->dma_cap.tx_fifo_size;
2040 
2041 	/* Adjust for real per queue fifo size */
2042 	rxfifosz /= rx_channels_count;
2043 	txfifosz /= tx_channels_count;
2044 
2045 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2046 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2047 }
2048 
2049 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2050 {
2051 	int ret;
2052 
2053 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2054 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2055 	if (ret && (ret != -EINVAL)) {
2056 		stmmac_global_err(priv);
2057 		return true;
2058 	}
2059 
2060 	return false;
2061 }
2062 
2063 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2064 {
2065 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2066 						 &priv->xstats, chan);
2067 	struct stmmac_channel *ch = &priv->channel[chan];
2068 
2069 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2070 		if (napi_schedule_prep(&ch->rx_napi)) {
2071 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2072 			__napi_schedule_irqoff(&ch->rx_napi);
2073 			status |= handle_tx;
2074 		}
2075 	}
2076 
2077 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2078 		napi_schedule_irqoff(&ch->tx_napi);
2079 
2080 	return status;
2081 }
2082 
2083 /**
2084  * stmmac_dma_interrupt - DMA ISR
2085  * @priv: driver private structure
2086  * Description: this is the DMA ISR. It is called by the main ISR.
2087  * It calls the dwmac dma routine and schedule poll method in case of some
2088  * work can be done.
2089  */
2090 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2091 {
2092 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2093 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2094 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2095 				tx_channel_count : rx_channel_count;
2096 	u32 chan;
2097 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2098 
2099 	/* Make sure we never check beyond our status buffer. */
2100 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2101 		channels_to_check = ARRAY_SIZE(status);
2102 
2103 	for (chan = 0; chan < channels_to_check; chan++)
2104 		status[chan] = stmmac_napi_check(priv, chan);
2105 
2106 	for (chan = 0; chan < tx_channel_count; chan++) {
2107 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2108 			/* Try to bump up the dma threshold on this failure */
2109 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2110 			    (tc <= 256)) {
2111 				tc += 64;
2112 				if (priv->plat->force_thresh_dma_mode)
2113 					stmmac_set_dma_operation_mode(priv,
2114 								      tc,
2115 								      tc,
2116 								      chan);
2117 				else
2118 					stmmac_set_dma_operation_mode(priv,
2119 								    tc,
2120 								    SF_DMA_MODE,
2121 								    chan);
2122 				priv->xstats.threshold = tc;
2123 			}
2124 		} else if (unlikely(status[chan] == tx_hard_error)) {
2125 			stmmac_tx_err(priv, chan);
2126 		}
2127 	}
2128 }
2129 
2130 /**
2131  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2132  * @priv: driver private structure
2133  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2134  */
2135 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2136 {
2137 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2138 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2139 
2140 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2141 
2142 	if (priv->dma_cap.rmon) {
2143 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2144 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2145 	} else
2146 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2147 }
2148 
2149 /**
2150  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2151  * @priv: driver private structure
2152  * Description:
2153  *  new GMAC chip generations have a new register to indicate the
2154  *  presence of the optional feature/functions.
2155  *  This can be also used to override the value passed through the
2156  *  platform and necessary for old MAC10/100 and GMAC chips.
2157  */
2158 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2159 {
2160 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2161 }
2162 
2163 /**
2164  * stmmac_check_ether_addr - check if the MAC addr is valid
2165  * @priv: driver private structure
2166  * Description:
2167  * it is to verify if the MAC address is valid, in case of failures it
2168  * generates a random MAC address
2169  */
2170 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2171 {
2172 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2173 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2174 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2175 			eth_hw_addr_random(priv->dev);
2176 		dev_info(priv->device, "device MAC address %pM\n",
2177 			 priv->dev->dev_addr);
2178 	}
2179 }
2180 
2181 /**
2182  * stmmac_init_dma_engine - DMA init.
2183  * @priv: driver private structure
2184  * Description:
2185  * It inits the DMA invoking the specific MAC/GMAC callback.
2186  * Some DMA parameters can be passed from the platform;
2187  * in case of these are not passed a default is kept for the MAC or GMAC.
2188  */
2189 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2190 {
2191 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2192 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2193 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2194 	struct stmmac_rx_queue *rx_q;
2195 	struct stmmac_tx_queue *tx_q;
2196 	u32 chan = 0;
2197 	int atds = 0;
2198 	int ret = 0;
2199 
2200 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2201 		dev_err(priv->device, "Invalid DMA configuration\n");
2202 		return -EINVAL;
2203 	}
2204 
2205 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2206 		atds = 1;
2207 
2208 	ret = stmmac_reset(priv, priv->ioaddr);
2209 	if (ret) {
2210 		dev_err(priv->device, "Failed to reset the dma\n");
2211 		return ret;
2212 	}
2213 
2214 	/* DMA Configuration */
2215 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2216 
2217 	if (priv->plat->axi)
2218 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2219 
2220 	/* DMA CSR Channel configuration */
2221 	for (chan = 0; chan < dma_csr_ch; chan++)
2222 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2223 
2224 	/* DMA RX Channel Configuration */
2225 	for (chan = 0; chan < rx_channels_count; chan++) {
2226 		rx_q = &priv->rx_queue[chan];
2227 
2228 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2229 				    rx_q->dma_rx_phy, chan);
2230 
2231 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2232 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2233 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2234 				       rx_q->rx_tail_addr, chan);
2235 	}
2236 
2237 	/* DMA TX Channel Configuration */
2238 	for (chan = 0; chan < tx_channels_count; chan++) {
2239 		tx_q = &priv->tx_queue[chan];
2240 
2241 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2242 				    tx_q->dma_tx_phy, chan);
2243 
2244 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2245 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2246 				       tx_q->tx_tail_addr, chan);
2247 	}
2248 
2249 	return ret;
2250 }
2251 
2252 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2253 {
2254 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2255 
2256 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2257 }
2258 
2259 /**
2260  * stmmac_tx_timer - mitigation sw timer for tx.
2261  * @data: data pointer
2262  * Description:
2263  * This is the timer handler to directly invoke the stmmac_tx_clean.
2264  */
2265 static void stmmac_tx_timer(struct timer_list *t)
2266 {
2267 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2268 	struct stmmac_priv *priv = tx_q->priv_data;
2269 	struct stmmac_channel *ch;
2270 
2271 	ch = &priv->channel[tx_q->queue_index];
2272 
2273 	/*
2274 	 * If NAPI is already running we can miss some events. Let's rearm
2275 	 * the timer and try again.
2276 	 */
2277 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2278 		__napi_schedule(&ch->tx_napi);
2279 	else
2280 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2281 }
2282 
2283 /**
2284  * stmmac_init_coalesce - init mitigation options.
2285  * @priv: driver private structure
2286  * Description:
2287  * This inits the coalesce parameters: i.e. timer rate,
2288  * timer handler and default threshold used for enabling the
2289  * interrupt on completion bit.
2290  */
2291 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2292 {
2293 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2294 	u32 chan;
2295 
2296 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2297 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2298 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2299 
2300 	for (chan = 0; chan < tx_channel_count; chan++) {
2301 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2302 
2303 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2304 	}
2305 }
2306 
2307 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2308 {
2309 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2310 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2311 	u32 chan;
2312 
2313 	/* set TX ring length */
2314 	for (chan = 0; chan < tx_channels_count; chan++)
2315 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2316 				(DMA_TX_SIZE - 1), chan);
2317 
2318 	/* set RX ring length */
2319 	for (chan = 0; chan < rx_channels_count; chan++)
2320 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2321 				(DMA_RX_SIZE - 1), chan);
2322 }
2323 
2324 /**
2325  *  stmmac_set_tx_queue_weight - Set TX queue weight
2326  *  @priv: driver private structure
2327  *  Description: It is used for setting TX queues weight
2328  */
2329 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2330 {
2331 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2332 	u32 weight;
2333 	u32 queue;
2334 
2335 	for (queue = 0; queue < tx_queues_count; queue++) {
2336 		weight = priv->plat->tx_queues_cfg[queue].weight;
2337 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2338 	}
2339 }
2340 
2341 /**
2342  *  stmmac_configure_cbs - Configure CBS in TX queue
2343  *  @priv: driver private structure
2344  *  Description: It is used for configuring CBS in AVB TX queues
2345  */
2346 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2347 {
2348 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2349 	u32 mode_to_use;
2350 	u32 queue;
2351 
2352 	/* queue 0 is reserved for legacy traffic */
2353 	for (queue = 1; queue < tx_queues_count; queue++) {
2354 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2355 		if (mode_to_use == MTL_QUEUE_DCB)
2356 			continue;
2357 
2358 		stmmac_config_cbs(priv, priv->hw,
2359 				priv->plat->tx_queues_cfg[queue].send_slope,
2360 				priv->plat->tx_queues_cfg[queue].idle_slope,
2361 				priv->plat->tx_queues_cfg[queue].high_credit,
2362 				priv->plat->tx_queues_cfg[queue].low_credit,
2363 				queue);
2364 	}
2365 }
2366 
2367 /**
2368  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2369  *  @priv: driver private structure
2370  *  Description: It is used for mapping RX queues to RX dma channels
2371  */
2372 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2373 {
2374 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2375 	u32 queue;
2376 	u32 chan;
2377 
2378 	for (queue = 0; queue < rx_queues_count; queue++) {
2379 		chan = priv->plat->rx_queues_cfg[queue].chan;
2380 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2381 	}
2382 }
2383 
2384 /**
2385  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2386  *  @priv: driver private structure
2387  *  Description: It is used for configuring the RX Queue Priority
2388  */
2389 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2390 {
2391 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2392 	u32 queue;
2393 	u32 prio;
2394 
2395 	for (queue = 0; queue < rx_queues_count; queue++) {
2396 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2397 			continue;
2398 
2399 		prio = priv->plat->rx_queues_cfg[queue].prio;
2400 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2401 	}
2402 }
2403 
2404 /**
2405  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2406  *  @priv: driver private structure
2407  *  Description: It is used for configuring the TX Queue Priority
2408  */
2409 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2410 {
2411 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2412 	u32 queue;
2413 	u32 prio;
2414 
2415 	for (queue = 0; queue < tx_queues_count; queue++) {
2416 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2417 			continue;
2418 
2419 		prio = priv->plat->tx_queues_cfg[queue].prio;
2420 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2421 	}
2422 }
2423 
2424 /**
2425  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2426  *  @priv: driver private structure
2427  *  Description: It is used for configuring the RX queue routing
2428  */
2429 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2430 {
2431 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2432 	u32 queue;
2433 	u8 packet;
2434 
2435 	for (queue = 0; queue < rx_queues_count; queue++) {
2436 		/* no specific packet type routing specified for the queue */
2437 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2438 			continue;
2439 
2440 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2441 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2442 	}
2443 }
2444 
2445 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2446 {
2447 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2448 		priv->rss.enable = false;
2449 		return;
2450 	}
2451 
2452 	if (priv->dev->features & NETIF_F_RXHASH)
2453 		priv->rss.enable = true;
2454 	else
2455 		priv->rss.enable = false;
2456 
2457 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2458 			     priv->plat->rx_queues_to_use);
2459 }
2460 
2461 /**
2462  *  stmmac_mtl_configuration - Configure MTL
2463  *  @priv: driver private structure
2464  *  Description: It is used for configurring MTL
2465  */
2466 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2467 {
2468 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2469 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2470 
2471 	if (tx_queues_count > 1)
2472 		stmmac_set_tx_queue_weight(priv);
2473 
2474 	/* Configure MTL RX algorithms */
2475 	if (rx_queues_count > 1)
2476 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2477 				priv->plat->rx_sched_algorithm);
2478 
2479 	/* Configure MTL TX algorithms */
2480 	if (tx_queues_count > 1)
2481 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2482 				priv->plat->tx_sched_algorithm);
2483 
2484 	/* Configure CBS in AVB TX queues */
2485 	if (tx_queues_count > 1)
2486 		stmmac_configure_cbs(priv);
2487 
2488 	/* Map RX MTL to DMA channels */
2489 	stmmac_rx_queue_dma_chan_map(priv);
2490 
2491 	/* Enable MAC RX Queues */
2492 	stmmac_mac_enable_rx_queues(priv);
2493 
2494 	/* Set RX priorities */
2495 	if (rx_queues_count > 1)
2496 		stmmac_mac_config_rx_queues_prio(priv);
2497 
2498 	/* Set TX priorities */
2499 	if (tx_queues_count > 1)
2500 		stmmac_mac_config_tx_queues_prio(priv);
2501 
2502 	/* Set RX routing */
2503 	if (rx_queues_count > 1)
2504 		stmmac_mac_config_rx_queues_routing(priv);
2505 
2506 	/* Receive Side Scaling */
2507 	if (rx_queues_count > 1)
2508 		stmmac_mac_config_rss(priv);
2509 }
2510 
2511 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2512 {
2513 	if (priv->dma_cap.asp) {
2514 		netdev_info(priv->dev, "Enabling Safety Features\n");
2515 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2516 	} else {
2517 		netdev_info(priv->dev, "No Safety Features support found\n");
2518 	}
2519 }
2520 
2521 /**
2522  * stmmac_hw_setup - setup mac in a usable state.
2523  *  @dev : pointer to the device structure.
2524  *  Description:
2525  *  this is the main function to setup the HW in a usable state because the
2526  *  dma engine is reset, the core registers are configured (e.g. AXI,
2527  *  Checksum features, timers). The DMA is ready to start receiving and
2528  *  transmitting.
2529  *  Return value:
2530  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2531  *  file on failure.
2532  */
2533 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2534 {
2535 	struct stmmac_priv *priv = netdev_priv(dev);
2536 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2537 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2538 	u32 chan;
2539 	int ret;
2540 
2541 	/* DMA initialization and SW reset */
2542 	ret = stmmac_init_dma_engine(priv);
2543 	if (ret < 0) {
2544 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2545 			   __func__);
2546 		return ret;
2547 	}
2548 
2549 	/* Copy the MAC addr into the HW  */
2550 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2551 
2552 	/* PS and related bits will be programmed according to the speed */
2553 	if (priv->hw->pcs) {
2554 		int speed = priv->plat->mac_port_sel_speed;
2555 
2556 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2557 		    (speed == SPEED_1000)) {
2558 			priv->hw->ps = speed;
2559 		} else {
2560 			dev_warn(priv->device, "invalid port speed\n");
2561 			priv->hw->ps = 0;
2562 		}
2563 	}
2564 
2565 	/* Initialize the MAC Core */
2566 	stmmac_core_init(priv, priv->hw, dev);
2567 
2568 	/* Initialize MTL*/
2569 	stmmac_mtl_configuration(priv);
2570 
2571 	/* Initialize Safety Features */
2572 	stmmac_safety_feat_configuration(priv);
2573 
2574 	ret = stmmac_rx_ipc(priv, priv->hw);
2575 	if (!ret) {
2576 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2577 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2578 		priv->hw->rx_csum = 0;
2579 	}
2580 
2581 	/* Enable the MAC Rx/Tx */
2582 	stmmac_mac_set(priv, priv->ioaddr, true);
2583 
2584 	/* Set the HW DMA mode and the COE */
2585 	stmmac_dma_operation_mode(priv);
2586 
2587 	stmmac_mmc_setup(priv);
2588 
2589 	if (init_ptp) {
2590 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2591 		if (ret < 0)
2592 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2593 
2594 		ret = stmmac_init_ptp(priv);
2595 		if (ret == -EOPNOTSUPP)
2596 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2597 		else if (ret)
2598 			netdev_warn(priv->dev, "PTP init failed\n");
2599 	}
2600 
2601 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2602 
2603 	if (priv->use_riwt) {
2604 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2605 		if (!ret)
2606 			priv->rx_riwt = MIN_DMA_RIWT;
2607 	}
2608 
2609 	if (priv->hw->pcs)
2610 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2611 
2612 	/* set TX and RX rings length */
2613 	stmmac_set_rings_length(priv);
2614 
2615 	/* Enable TSO */
2616 	if (priv->tso) {
2617 		for (chan = 0; chan < tx_cnt; chan++)
2618 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2619 	}
2620 
2621 	/* Enable Split Header */
2622 	if (priv->sph && priv->hw->rx_csum) {
2623 		for (chan = 0; chan < rx_cnt; chan++)
2624 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2625 	}
2626 
2627 	/* VLAN Tag Insertion */
2628 	if (priv->dma_cap.vlins)
2629 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2630 
2631 	/* Start the ball rolling... */
2632 	stmmac_start_all_dma(priv);
2633 
2634 	return 0;
2635 }
2636 
2637 static void stmmac_hw_teardown(struct net_device *dev)
2638 {
2639 	struct stmmac_priv *priv = netdev_priv(dev);
2640 
2641 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2642 }
2643 
2644 /**
2645  *  stmmac_open - open entry point of the driver
2646  *  @dev : pointer to the device structure.
2647  *  Description:
2648  *  This function is the open entry point of the driver.
2649  *  Return value:
2650  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2651  *  file on failure.
2652  */
2653 static int stmmac_open(struct net_device *dev)
2654 {
2655 	struct stmmac_priv *priv = netdev_priv(dev);
2656 	u32 chan;
2657 	int ret;
2658 
2659 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2660 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2661 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2662 		ret = stmmac_init_phy(dev);
2663 		if (ret) {
2664 			netdev_err(priv->dev,
2665 				   "%s: Cannot attach to PHY (error: %d)\n",
2666 				   __func__, ret);
2667 			return ret;
2668 		}
2669 	}
2670 
2671 	/* Extra statistics */
2672 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2673 	priv->xstats.threshold = tc;
2674 
2675 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2676 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2677 
2678 	ret = alloc_dma_desc_resources(priv);
2679 	if (ret < 0) {
2680 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2681 			   __func__);
2682 		goto dma_desc_error;
2683 	}
2684 
2685 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2686 	if (ret < 0) {
2687 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2688 			   __func__);
2689 		goto init_error;
2690 	}
2691 
2692 	ret = stmmac_hw_setup(dev, true);
2693 	if (ret < 0) {
2694 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2695 		goto init_error;
2696 	}
2697 
2698 	stmmac_init_coalesce(priv);
2699 
2700 	phylink_start(priv->phylink);
2701 
2702 	/* Request the IRQ lines */
2703 	ret = request_irq(dev->irq, stmmac_interrupt,
2704 			  IRQF_SHARED, dev->name, dev);
2705 	if (unlikely(ret < 0)) {
2706 		netdev_err(priv->dev,
2707 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2708 			   __func__, dev->irq, ret);
2709 		goto irq_error;
2710 	}
2711 
2712 	/* Request the Wake IRQ in case of another line is used for WoL */
2713 	if (priv->wol_irq != dev->irq) {
2714 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2715 				  IRQF_SHARED, dev->name, dev);
2716 		if (unlikely(ret < 0)) {
2717 			netdev_err(priv->dev,
2718 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2719 				   __func__, priv->wol_irq, ret);
2720 			goto wolirq_error;
2721 		}
2722 	}
2723 
2724 	/* Request the IRQ lines */
2725 	if (priv->lpi_irq > 0) {
2726 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2727 				  dev->name, dev);
2728 		if (unlikely(ret < 0)) {
2729 			netdev_err(priv->dev,
2730 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2731 				   __func__, priv->lpi_irq, ret);
2732 			goto lpiirq_error;
2733 		}
2734 	}
2735 
2736 	stmmac_enable_all_queues(priv);
2737 	stmmac_start_all_queues(priv);
2738 
2739 	return 0;
2740 
2741 lpiirq_error:
2742 	if (priv->wol_irq != dev->irq)
2743 		free_irq(priv->wol_irq, dev);
2744 wolirq_error:
2745 	free_irq(dev->irq, dev);
2746 irq_error:
2747 	phylink_stop(priv->phylink);
2748 
2749 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2750 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2751 
2752 	stmmac_hw_teardown(dev);
2753 init_error:
2754 	free_dma_desc_resources(priv);
2755 dma_desc_error:
2756 	phylink_disconnect_phy(priv->phylink);
2757 	return ret;
2758 }
2759 
2760 /**
2761  *  stmmac_release - close entry point of the driver
2762  *  @dev : device pointer.
2763  *  Description:
2764  *  This is the stop entry point of the driver.
2765  */
2766 static int stmmac_release(struct net_device *dev)
2767 {
2768 	struct stmmac_priv *priv = netdev_priv(dev);
2769 	u32 chan;
2770 
2771 	if (priv->eee_enabled)
2772 		del_timer_sync(&priv->eee_ctrl_timer);
2773 
2774 	/* Stop and disconnect the PHY */
2775 	phylink_stop(priv->phylink);
2776 	phylink_disconnect_phy(priv->phylink);
2777 
2778 	stmmac_stop_all_queues(priv);
2779 
2780 	stmmac_disable_all_queues(priv);
2781 
2782 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2783 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2784 
2785 	/* Free the IRQ lines */
2786 	free_irq(dev->irq, dev);
2787 	if (priv->wol_irq != dev->irq)
2788 		free_irq(priv->wol_irq, dev);
2789 	if (priv->lpi_irq > 0)
2790 		free_irq(priv->lpi_irq, dev);
2791 
2792 	/* Stop TX/RX DMA and clear the descriptors */
2793 	stmmac_stop_all_dma(priv);
2794 
2795 	/* Release and free the Rx/Tx resources */
2796 	free_dma_desc_resources(priv);
2797 
2798 	/* Disable the MAC Rx/Tx */
2799 	stmmac_mac_set(priv, priv->ioaddr, false);
2800 
2801 	netif_carrier_off(dev);
2802 
2803 	stmmac_release_ptp(priv);
2804 
2805 	return 0;
2806 }
2807 
2808 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2809 			       struct stmmac_tx_queue *tx_q)
2810 {
2811 	u16 tag = 0x0, inner_tag = 0x0;
2812 	u32 inner_type = 0x0;
2813 	struct dma_desc *p;
2814 
2815 	if (!priv->dma_cap.vlins)
2816 		return false;
2817 	if (!skb_vlan_tag_present(skb))
2818 		return false;
2819 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2820 		inner_tag = skb_vlan_tag_get(skb);
2821 		inner_type = STMMAC_VLAN_INSERT;
2822 	}
2823 
2824 	tag = skb_vlan_tag_get(skb);
2825 
2826 	p = tx_q->dma_tx + tx_q->cur_tx;
2827 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2828 		return false;
2829 
2830 	stmmac_set_tx_owner(priv, p);
2831 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2832 	return true;
2833 }
2834 
2835 /**
2836  *  stmmac_tso_allocator - close entry point of the driver
2837  *  @priv: driver private structure
2838  *  @des: buffer start address
2839  *  @total_len: total length to fill in descriptors
2840  *  @last_segmant: condition for the last descriptor
2841  *  @queue: TX queue index
2842  *  Description:
2843  *  This function fills descriptor and request new descriptors according to
2844  *  buffer length to fill
2845  */
2846 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2847 				 int total_len, bool last_segment, u32 queue)
2848 {
2849 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2850 	struct dma_desc *desc;
2851 	u32 buff_size;
2852 	int tmp_len;
2853 
2854 	tmp_len = total_len;
2855 
2856 	while (tmp_len > 0) {
2857 		dma_addr_t curr_addr;
2858 
2859 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2860 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2861 		desc = tx_q->dma_tx + tx_q->cur_tx;
2862 
2863 		curr_addr = des + (total_len - tmp_len);
2864 		if (priv->dma_cap.addr64 <= 32)
2865 			desc->des0 = cpu_to_le32(curr_addr);
2866 		else
2867 			stmmac_set_desc_addr(priv, desc, curr_addr);
2868 
2869 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2870 			    TSO_MAX_BUFF_SIZE : tmp_len;
2871 
2872 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2873 				0, 1,
2874 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2875 				0, 0);
2876 
2877 		tmp_len -= TSO_MAX_BUFF_SIZE;
2878 	}
2879 }
2880 
2881 /**
2882  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2883  *  @skb : the socket buffer
2884  *  @dev : device pointer
2885  *  Description: this is the transmit function that is called on TSO frames
2886  *  (support available on GMAC4 and newer chips).
2887  *  Diagram below show the ring programming in case of TSO frames:
2888  *
2889  *  First Descriptor
2890  *   --------
2891  *   | DES0 |---> buffer1 = L2/L3/L4 header
2892  *   | DES1 |---> TCP Payload (can continue on next descr...)
2893  *   | DES2 |---> buffer 1 and 2 len
2894  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2895  *   --------
2896  *	|
2897  *     ...
2898  *	|
2899  *   --------
2900  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2901  *   | DES1 | --|
2902  *   | DES2 | --> buffer 1 and 2 len
2903  *   | DES3 |
2904  *   --------
2905  *
2906  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2907  */
2908 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2909 {
2910 	struct dma_desc *desc, *first, *mss_desc = NULL;
2911 	struct stmmac_priv *priv = netdev_priv(dev);
2912 	int nfrags = skb_shinfo(skb)->nr_frags;
2913 	u32 queue = skb_get_queue_mapping(skb);
2914 	struct stmmac_tx_queue *tx_q;
2915 	unsigned int first_entry;
2916 	int tmp_pay_len = 0;
2917 	u32 pay_len, mss;
2918 	u8 proto_hdr_len;
2919 	dma_addr_t des;
2920 	bool has_vlan;
2921 	int i;
2922 
2923 	tx_q = &priv->tx_queue[queue];
2924 
2925 	/* Compute header lengths */
2926 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2927 
2928 	/* Desc availability based on threshold should be enough safe */
2929 	if (unlikely(stmmac_tx_avail(priv, queue) <
2930 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2931 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2932 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2933 								queue));
2934 			/* This is a hard error, log it. */
2935 			netdev_err(priv->dev,
2936 				   "%s: Tx Ring full when queue awake\n",
2937 				   __func__);
2938 		}
2939 		return NETDEV_TX_BUSY;
2940 	}
2941 
2942 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2943 
2944 	mss = skb_shinfo(skb)->gso_size;
2945 
2946 	/* set new MSS value if needed */
2947 	if (mss != tx_q->mss) {
2948 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2949 		stmmac_set_mss(priv, mss_desc, mss);
2950 		tx_q->mss = mss;
2951 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2952 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2953 	}
2954 
2955 	if (netif_msg_tx_queued(priv)) {
2956 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2957 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2958 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2959 			skb->data_len);
2960 	}
2961 
2962 	/* Check if VLAN can be inserted by HW */
2963 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2964 
2965 	first_entry = tx_q->cur_tx;
2966 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2967 
2968 	desc = tx_q->dma_tx + first_entry;
2969 	first = desc;
2970 
2971 	if (has_vlan)
2972 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2973 
2974 	/* first descriptor: fill Headers on Buf1 */
2975 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2976 			     DMA_TO_DEVICE);
2977 	if (dma_mapping_error(priv->device, des))
2978 		goto dma_map_err;
2979 
2980 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2981 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2982 
2983 	if (priv->dma_cap.addr64 <= 32) {
2984 		first->des0 = cpu_to_le32(des);
2985 
2986 		/* Fill start of payload in buff2 of first descriptor */
2987 		if (pay_len)
2988 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2989 
2990 		/* If needed take extra descriptors to fill the remaining payload */
2991 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2992 	} else {
2993 		stmmac_set_desc_addr(priv, first, des);
2994 		tmp_pay_len = pay_len;
2995 	}
2996 
2997 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2998 
2999 	/* Prepare fragments */
3000 	for (i = 0; i < nfrags; i++) {
3001 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3002 
3003 		des = skb_frag_dma_map(priv->device, frag, 0,
3004 				       skb_frag_size(frag),
3005 				       DMA_TO_DEVICE);
3006 		if (dma_mapping_error(priv->device, des))
3007 			goto dma_map_err;
3008 
3009 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3010 				     (i == nfrags - 1), queue);
3011 
3012 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3013 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3014 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3015 	}
3016 
3017 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3018 
3019 	/* Only the last descriptor gets to point to the skb. */
3020 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3021 
3022 	/* We've used all descriptors we need for this skb, however,
3023 	 * advance cur_tx so that it references a fresh descriptor.
3024 	 * ndo_start_xmit will fill this descriptor the next time it's
3025 	 * called and stmmac_tx_clean may clean up to this descriptor.
3026 	 */
3027 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3028 
3029 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3030 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3031 			  __func__);
3032 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3033 	}
3034 
3035 	dev->stats.tx_bytes += skb->len;
3036 	priv->xstats.tx_tso_frames++;
3037 	priv->xstats.tx_tso_nfrags += nfrags;
3038 
3039 	/* Manage tx mitigation */
3040 	tx_q->tx_count_frames += nfrags + 1;
3041 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3042 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3043 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3044 	    priv->hwts_tx_en)) {
3045 		stmmac_tx_timer_arm(priv, queue);
3046 	} else {
3047 		tx_q->tx_count_frames = 0;
3048 		stmmac_set_tx_ic(priv, desc);
3049 		priv->xstats.tx_set_ic_bit++;
3050 	}
3051 
3052 	if (priv->sarc_type)
3053 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3054 
3055 	skb_tx_timestamp(skb);
3056 
3057 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3058 		     priv->hwts_tx_en)) {
3059 		/* declare that device is doing timestamping */
3060 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3061 		stmmac_enable_tx_timestamp(priv, first);
3062 	}
3063 
3064 	/* Complete the first descriptor before granting the DMA */
3065 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3066 			proto_hdr_len,
3067 			pay_len,
3068 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3069 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3070 
3071 	/* If context desc is used to change MSS */
3072 	if (mss_desc) {
3073 		/* Make sure that first descriptor has been completely
3074 		 * written, including its own bit. This is because MSS is
3075 		 * actually before first descriptor, so we need to make
3076 		 * sure that MSS's own bit is the last thing written.
3077 		 */
3078 		dma_wmb();
3079 		stmmac_set_tx_owner(priv, mss_desc);
3080 	}
3081 
3082 	/* The own bit must be the latest setting done when prepare the
3083 	 * descriptor and then barrier is needed to make sure that
3084 	 * all is coherent before granting the DMA engine.
3085 	 */
3086 	wmb();
3087 
3088 	if (netif_msg_pktdata(priv)) {
3089 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3090 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3091 			tx_q->cur_tx, first, nfrags);
3092 
3093 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3094 
3095 		pr_info(">>> frame to be transmitted: ");
3096 		print_pkt(skb->data, skb_headlen(skb));
3097 	}
3098 
3099 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3100 
3101 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3102 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3103 
3104 	return NETDEV_TX_OK;
3105 
3106 dma_map_err:
3107 	dev_err(priv->device, "Tx dma map failed\n");
3108 	dev_kfree_skb(skb);
3109 	priv->dev->stats.tx_dropped++;
3110 	return NETDEV_TX_OK;
3111 }
3112 
3113 /**
3114  *  stmmac_xmit - Tx entry point of the driver
3115  *  @skb : the socket buffer
3116  *  @dev : device pointer
3117  *  Description : this is the tx entry point of the driver.
3118  *  It programs the chain or the ring and supports oversized frames
3119  *  and SG feature.
3120  */
3121 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3122 {
3123 	struct stmmac_priv *priv = netdev_priv(dev);
3124 	unsigned int nopaged_len = skb_headlen(skb);
3125 	int i, csum_insertion = 0, is_jumbo = 0;
3126 	u32 queue = skb_get_queue_mapping(skb);
3127 	int nfrags = skb_shinfo(skb)->nr_frags;
3128 	struct dma_desc *desc, *first;
3129 	struct stmmac_tx_queue *tx_q;
3130 	unsigned int first_entry;
3131 	unsigned int enh_desc;
3132 	dma_addr_t des;
3133 	bool has_vlan;
3134 	int entry;
3135 
3136 	tx_q = &priv->tx_queue[queue];
3137 
3138 	if (priv->tx_path_in_lpi_mode)
3139 		stmmac_disable_eee_mode(priv);
3140 
3141 	/* Manage oversized TCP frames for GMAC4 device */
3142 	if (skb_is_gso(skb) && priv->tso) {
3143 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3144 			return stmmac_tso_xmit(skb, dev);
3145 	}
3146 
3147 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3148 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3149 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3150 								queue));
3151 			/* This is a hard error, log it. */
3152 			netdev_err(priv->dev,
3153 				   "%s: Tx Ring full when queue awake\n",
3154 				   __func__);
3155 		}
3156 		return NETDEV_TX_BUSY;
3157 	}
3158 
3159 	/* Check if VLAN can be inserted by HW */
3160 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3161 
3162 	entry = tx_q->cur_tx;
3163 	first_entry = entry;
3164 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3165 
3166 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3167 
3168 	if (likely(priv->extend_desc))
3169 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3170 	else
3171 		desc = tx_q->dma_tx + entry;
3172 
3173 	first = desc;
3174 
3175 	if (has_vlan)
3176 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3177 
3178 	enh_desc = priv->plat->enh_desc;
3179 	/* To program the descriptors according to the size of the frame */
3180 	if (enh_desc)
3181 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3182 
3183 	if (unlikely(is_jumbo)) {
3184 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3185 		if (unlikely(entry < 0) && (entry != -EINVAL))
3186 			goto dma_map_err;
3187 	}
3188 
3189 	for (i = 0; i < nfrags; i++) {
3190 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3191 		int len = skb_frag_size(frag);
3192 		bool last_segment = (i == (nfrags - 1));
3193 
3194 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3195 		WARN_ON(tx_q->tx_skbuff[entry]);
3196 
3197 		if (likely(priv->extend_desc))
3198 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3199 		else
3200 			desc = tx_q->dma_tx + entry;
3201 
3202 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3203 				       DMA_TO_DEVICE);
3204 		if (dma_mapping_error(priv->device, des))
3205 			goto dma_map_err; /* should reuse desc w/o issues */
3206 
3207 		tx_q->tx_skbuff_dma[entry].buf = des;
3208 
3209 		stmmac_set_desc_addr(priv, desc, des);
3210 
3211 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3212 		tx_q->tx_skbuff_dma[entry].len = len;
3213 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3214 
3215 		/* Prepare the descriptor and set the own bit too */
3216 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3217 				priv->mode, 1, last_segment, skb->len);
3218 	}
3219 
3220 	/* Only the last descriptor gets to point to the skb. */
3221 	tx_q->tx_skbuff[entry] = skb;
3222 
3223 	/* We've used all descriptors we need for this skb, however,
3224 	 * advance cur_tx so that it references a fresh descriptor.
3225 	 * ndo_start_xmit will fill this descriptor the next time it's
3226 	 * called and stmmac_tx_clean may clean up to this descriptor.
3227 	 */
3228 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3229 	tx_q->cur_tx = entry;
3230 
3231 	if (netif_msg_pktdata(priv)) {
3232 		void *tx_head;
3233 
3234 		netdev_dbg(priv->dev,
3235 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3236 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3237 			   entry, first, nfrags);
3238 
3239 		if (priv->extend_desc)
3240 			tx_head = (void *)tx_q->dma_etx;
3241 		else
3242 			tx_head = (void *)tx_q->dma_tx;
3243 
3244 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3245 
3246 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3247 		print_pkt(skb->data, skb->len);
3248 	}
3249 
3250 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3251 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3252 			  __func__);
3253 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3254 	}
3255 
3256 	dev->stats.tx_bytes += skb->len;
3257 
3258 	/* According to the coalesce parameter the IC bit for the latest
3259 	 * segment is reset and the timer re-started to clean the tx status.
3260 	 * This approach takes care about the fragments: desc is the first
3261 	 * element in case of no SG.
3262 	 */
3263 	tx_q->tx_count_frames += nfrags + 1;
3264 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3265 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3266 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3267 	    priv->hwts_tx_en)) {
3268 		stmmac_tx_timer_arm(priv, queue);
3269 	} else {
3270 		tx_q->tx_count_frames = 0;
3271 		stmmac_set_tx_ic(priv, desc);
3272 		priv->xstats.tx_set_ic_bit++;
3273 	}
3274 
3275 	if (priv->sarc_type)
3276 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3277 
3278 	skb_tx_timestamp(skb);
3279 
3280 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3281 	 * problems because all the descriptors are actually ready to be
3282 	 * passed to the DMA engine.
3283 	 */
3284 	if (likely(!is_jumbo)) {
3285 		bool last_segment = (nfrags == 0);
3286 
3287 		des = dma_map_single(priv->device, skb->data,
3288 				     nopaged_len, DMA_TO_DEVICE);
3289 		if (dma_mapping_error(priv->device, des))
3290 			goto dma_map_err;
3291 
3292 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3293 
3294 		stmmac_set_desc_addr(priv, first, des);
3295 
3296 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3297 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3298 
3299 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3300 			     priv->hwts_tx_en)) {
3301 			/* declare that device is doing timestamping */
3302 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3303 			stmmac_enable_tx_timestamp(priv, first);
3304 		}
3305 
3306 		/* Prepare the first descriptor setting the OWN bit too */
3307 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3308 				csum_insertion, priv->mode, 1, last_segment,
3309 				skb->len);
3310 	} else {
3311 		stmmac_set_tx_owner(priv, first);
3312 	}
3313 
3314 	/* The own bit must be the latest setting done when prepare the
3315 	 * descriptor and then barrier is needed to make sure that
3316 	 * all is coherent before granting the DMA engine.
3317 	 */
3318 	wmb();
3319 
3320 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3321 
3322 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3323 
3324 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3325 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3326 
3327 	return NETDEV_TX_OK;
3328 
3329 dma_map_err:
3330 	netdev_err(priv->dev, "Tx DMA map failed\n");
3331 	dev_kfree_skb(skb);
3332 	priv->dev->stats.tx_dropped++;
3333 	return NETDEV_TX_OK;
3334 }
3335 
3336 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3337 {
3338 	struct vlan_ethhdr *veth;
3339 	__be16 vlan_proto;
3340 	u16 vlanid;
3341 
3342 	veth = (struct vlan_ethhdr *)skb->data;
3343 	vlan_proto = veth->h_vlan_proto;
3344 
3345 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3346 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3347 	    (vlan_proto == htons(ETH_P_8021AD) &&
3348 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3349 		/* pop the vlan tag */
3350 		vlanid = ntohs(veth->h_vlan_TCI);
3351 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3352 		skb_pull(skb, VLAN_HLEN);
3353 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3354 	}
3355 }
3356 
3357 
3358 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3359 {
3360 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3361 		return 0;
3362 
3363 	return 1;
3364 }
3365 
3366 /**
3367  * stmmac_rx_refill - refill used skb preallocated buffers
3368  * @priv: driver private structure
3369  * @queue: RX queue index
3370  * Description : this is to reallocate the skb for the reception process
3371  * that is based on zero-copy.
3372  */
3373 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3374 {
3375 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3376 	int len, dirty = stmmac_rx_dirty(priv, queue);
3377 	unsigned int entry = rx_q->dirty_rx;
3378 
3379 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3380 
3381 	while (dirty-- > 0) {
3382 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3383 		struct dma_desc *p;
3384 		bool use_rx_wd;
3385 
3386 		if (priv->extend_desc)
3387 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3388 		else
3389 			p = rx_q->dma_rx + entry;
3390 
3391 		if (!buf->page) {
3392 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3393 			if (!buf->page)
3394 				break;
3395 		}
3396 
3397 		if (priv->sph && !buf->sec_page) {
3398 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3399 			if (!buf->sec_page)
3400 				break;
3401 
3402 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3403 
3404 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3405 						   len, DMA_FROM_DEVICE);
3406 		}
3407 
3408 		buf->addr = page_pool_get_dma_addr(buf->page);
3409 
3410 		/* Sync whole allocation to device. This will invalidate old
3411 		 * data.
3412 		 */
3413 		dma_sync_single_for_device(priv->device, buf->addr, len,
3414 					   DMA_FROM_DEVICE);
3415 
3416 		stmmac_set_desc_addr(priv, p, buf->addr);
3417 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3418 		stmmac_refill_desc3(priv, rx_q, p);
3419 
3420 		rx_q->rx_count_frames++;
3421 		rx_q->rx_count_frames += priv->rx_coal_frames;
3422 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3423 			rx_q->rx_count_frames = 0;
3424 		use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3425 
3426 		dma_wmb();
3427 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3428 
3429 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3430 	}
3431 	rx_q->dirty_rx = entry;
3432 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3433 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3434 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3435 }
3436 
3437 /**
3438  * stmmac_rx - manage the receive process
3439  * @priv: driver private structure
3440  * @limit: napi bugget
3441  * @queue: RX queue index.
3442  * Description :  this the function called by the napi poll method.
3443  * It gets all the frames inside the ring.
3444  */
3445 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3446 {
3447 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3448 	struct stmmac_channel *ch = &priv->channel[queue];
3449 	unsigned int count = 0, error = 0, len = 0;
3450 	int status = 0, coe = priv->hw->rx_csum;
3451 	unsigned int next_entry = rx_q->cur_rx;
3452 	struct sk_buff *skb = NULL;
3453 
3454 	if (netif_msg_rx_status(priv)) {
3455 		void *rx_head;
3456 
3457 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3458 		if (priv->extend_desc)
3459 			rx_head = (void *)rx_q->dma_erx;
3460 		else
3461 			rx_head = (void *)rx_q->dma_rx;
3462 
3463 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3464 	}
3465 	while (count < limit) {
3466 		unsigned int hlen = 0, prev_len = 0;
3467 		enum pkt_hash_types hash_type;
3468 		struct stmmac_rx_buffer *buf;
3469 		struct dma_desc *np, *p;
3470 		unsigned int sec_len;
3471 		int entry;
3472 		u32 hash;
3473 
3474 		if (!count && rx_q->state_saved) {
3475 			skb = rx_q->state.skb;
3476 			error = rx_q->state.error;
3477 			len = rx_q->state.len;
3478 		} else {
3479 			rx_q->state_saved = false;
3480 			skb = NULL;
3481 			error = 0;
3482 			len = 0;
3483 		}
3484 
3485 		if (count >= limit)
3486 			break;
3487 
3488 read_again:
3489 		sec_len = 0;
3490 		entry = next_entry;
3491 		buf = &rx_q->buf_pool[entry];
3492 
3493 		if (priv->extend_desc)
3494 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3495 		else
3496 			p = rx_q->dma_rx + entry;
3497 
3498 		/* read the status of the incoming frame */
3499 		status = stmmac_rx_status(priv, &priv->dev->stats,
3500 				&priv->xstats, p);
3501 		/* check if managed by the DMA otherwise go ahead */
3502 		if (unlikely(status & dma_own))
3503 			break;
3504 
3505 		count++;
3506 
3507 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3508 		next_entry = rx_q->cur_rx;
3509 
3510 		if (priv->extend_desc)
3511 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3512 		else
3513 			np = rx_q->dma_rx + next_entry;
3514 
3515 		prefetch(np);
3516 		prefetch(page_address(buf->page));
3517 
3518 		if (priv->extend_desc)
3519 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3520 					&priv->xstats, rx_q->dma_erx + entry);
3521 		if (unlikely(status == discard_frame)) {
3522 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3523 			buf->page = NULL;
3524 			error = 1;
3525 			if (!priv->hwts_rx_en)
3526 				priv->dev->stats.rx_errors++;
3527 		}
3528 
3529 		if (unlikely(error && (status & rx_not_ls)))
3530 			goto read_again;
3531 		if (unlikely(error)) {
3532 			dev_kfree_skb(skb);
3533 			continue;
3534 		}
3535 
3536 		/* Buffer is good. Go on. */
3537 
3538 		if (likely(status & rx_not_ls)) {
3539 			len += priv->dma_buf_sz;
3540 		} else {
3541 			prev_len = len;
3542 			len = stmmac_get_rx_frame_len(priv, p, coe);
3543 
3544 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3545 			 * Type frames (LLC/LLC-SNAP)
3546 			 *
3547 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3548 			 * feature is always disabled and packets need to be
3549 			 * stripped manually.
3550 			 */
3551 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3552 			    unlikely(status != llc_snap))
3553 				len -= ETH_FCS_LEN;
3554 		}
3555 
3556 		if (!skb) {
3557 			int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3558 
3559 			if (priv->sph && !ret && (hlen > 0)) {
3560 				sec_len = len;
3561 				if (!(status & rx_not_ls))
3562 					sec_len = sec_len - hlen;
3563 				len = hlen;
3564 
3565 				prefetch(page_address(buf->sec_page));
3566 				priv->xstats.rx_split_hdr_pkt_n++;
3567 			}
3568 
3569 			skb = napi_alloc_skb(&ch->rx_napi, len);
3570 			if (!skb) {
3571 				priv->dev->stats.rx_dropped++;
3572 				continue;
3573 			}
3574 
3575 			dma_sync_single_for_cpu(priv->device, buf->addr, len,
3576 						DMA_FROM_DEVICE);
3577 			skb_copy_to_linear_data(skb, page_address(buf->page),
3578 						len);
3579 			skb_put(skb, len);
3580 
3581 			/* Data payload copied into SKB, page ready for recycle */
3582 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3583 			buf->page = NULL;
3584 		} else {
3585 			unsigned int buf_len = len - prev_len;
3586 
3587 			if (likely(status & rx_not_ls))
3588 				buf_len = priv->dma_buf_sz;
3589 
3590 			dma_sync_single_for_cpu(priv->device, buf->addr,
3591 						buf_len, DMA_FROM_DEVICE);
3592 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3593 					buf->page, 0, buf_len,
3594 					priv->dma_buf_sz);
3595 
3596 			/* Data payload appended into SKB */
3597 			page_pool_release_page(rx_q->page_pool, buf->page);
3598 			buf->page = NULL;
3599 		}
3600 
3601 		if (sec_len > 0) {
3602 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3603 						sec_len, DMA_FROM_DEVICE);
3604 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3605 					buf->sec_page, 0, sec_len,
3606 					priv->dma_buf_sz);
3607 
3608 			len += sec_len;
3609 
3610 			/* Data payload appended into SKB */
3611 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3612 			buf->sec_page = NULL;
3613 		}
3614 
3615 		if (likely(status & rx_not_ls))
3616 			goto read_again;
3617 
3618 		/* Got entire packet into SKB. Finish it. */
3619 
3620 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3621 		stmmac_rx_vlan(priv->dev, skb);
3622 		skb->protocol = eth_type_trans(skb, priv->dev);
3623 
3624 		if (unlikely(!coe))
3625 			skb_checksum_none_assert(skb);
3626 		else
3627 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3628 
3629 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3630 			skb_set_hash(skb, hash, hash_type);
3631 
3632 		skb_record_rx_queue(skb, queue);
3633 		napi_gro_receive(&ch->rx_napi, skb);
3634 
3635 		priv->dev->stats.rx_packets++;
3636 		priv->dev->stats.rx_bytes += len;
3637 	}
3638 
3639 	if (status & rx_not_ls) {
3640 		rx_q->state_saved = true;
3641 		rx_q->state.skb = skb;
3642 		rx_q->state.error = error;
3643 		rx_q->state.len = len;
3644 	}
3645 
3646 	stmmac_rx_refill(priv, queue);
3647 
3648 	priv->xstats.rx_pkt_n += count;
3649 
3650 	return count;
3651 }
3652 
3653 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3654 {
3655 	struct stmmac_channel *ch =
3656 		container_of(napi, struct stmmac_channel, rx_napi);
3657 	struct stmmac_priv *priv = ch->priv_data;
3658 	u32 chan = ch->index;
3659 	int work_done;
3660 
3661 	priv->xstats.napi_poll++;
3662 
3663 	work_done = stmmac_rx(priv, budget, chan);
3664 	if (work_done < budget && napi_complete_done(napi, work_done))
3665 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3666 	return work_done;
3667 }
3668 
3669 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3670 {
3671 	struct stmmac_channel *ch =
3672 		container_of(napi, struct stmmac_channel, tx_napi);
3673 	struct stmmac_priv *priv = ch->priv_data;
3674 	struct stmmac_tx_queue *tx_q;
3675 	u32 chan = ch->index;
3676 	int work_done;
3677 
3678 	priv->xstats.napi_poll++;
3679 
3680 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3681 	work_done = min(work_done, budget);
3682 
3683 	if (work_done < budget)
3684 		napi_complete_done(napi, work_done);
3685 
3686 	/* Force transmission restart */
3687 	tx_q = &priv->tx_queue[chan];
3688 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3689 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3690 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3691 				       chan);
3692 	}
3693 
3694 	return work_done;
3695 }
3696 
3697 /**
3698  *  stmmac_tx_timeout
3699  *  @dev : Pointer to net device structure
3700  *  Description: this function is called when a packet transmission fails to
3701  *   complete within a reasonable time. The driver will mark the error in the
3702  *   netdev structure and arrange for the device to be reset to a sane state
3703  *   in order to transmit a new packet.
3704  */
3705 static void stmmac_tx_timeout(struct net_device *dev)
3706 {
3707 	struct stmmac_priv *priv = netdev_priv(dev);
3708 
3709 	stmmac_global_err(priv);
3710 }
3711 
3712 /**
3713  *  stmmac_set_rx_mode - entry point for multicast addressing
3714  *  @dev : pointer to the device structure
3715  *  Description:
3716  *  This function is a driver entry point which gets called by the kernel
3717  *  whenever multicast addresses must be enabled/disabled.
3718  *  Return value:
3719  *  void.
3720  */
3721 static void stmmac_set_rx_mode(struct net_device *dev)
3722 {
3723 	struct stmmac_priv *priv = netdev_priv(dev);
3724 
3725 	stmmac_set_filter(priv, priv->hw, dev);
3726 }
3727 
3728 /**
3729  *  stmmac_change_mtu - entry point to change MTU size for the device.
3730  *  @dev : device pointer.
3731  *  @new_mtu : the new MTU size for the device.
3732  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3733  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3734  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3735  *  Return value:
3736  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3737  *  file on failure.
3738  */
3739 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3740 {
3741 	struct stmmac_priv *priv = netdev_priv(dev);
3742 
3743 	if (netif_running(dev)) {
3744 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3745 		return -EBUSY;
3746 	}
3747 
3748 	dev->mtu = new_mtu;
3749 
3750 	netdev_update_features(dev);
3751 
3752 	return 0;
3753 }
3754 
3755 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3756 					     netdev_features_t features)
3757 {
3758 	struct stmmac_priv *priv = netdev_priv(dev);
3759 
3760 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3761 		features &= ~NETIF_F_RXCSUM;
3762 
3763 	if (!priv->plat->tx_coe)
3764 		features &= ~NETIF_F_CSUM_MASK;
3765 
3766 	/* Some GMAC devices have a bugged Jumbo frame support that
3767 	 * needs to have the Tx COE disabled for oversized frames
3768 	 * (due to limited buffer sizes). In this case we disable
3769 	 * the TX csum insertion in the TDES and not use SF.
3770 	 */
3771 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3772 		features &= ~NETIF_F_CSUM_MASK;
3773 
3774 	/* Disable tso if asked by ethtool */
3775 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3776 		if (features & NETIF_F_TSO)
3777 			priv->tso = true;
3778 		else
3779 			priv->tso = false;
3780 	}
3781 
3782 	return features;
3783 }
3784 
3785 static int stmmac_set_features(struct net_device *netdev,
3786 			       netdev_features_t features)
3787 {
3788 	struct stmmac_priv *priv = netdev_priv(netdev);
3789 	bool sph_en;
3790 	u32 chan;
3791 
3792 	/* Keep the COE Type in case of csum is supporting */
3793 	if (features & NETIF_F_RXCSUM)
3794 		priv->hw->rx_csum = priv->plat->rx_coe;
3795 	else
3796 		priv->hw->rx_csum = 0;
3797 	/* No check needed because rx_coe has been set before and it will be
3798 	 * fixed in case of issue.
3799 	 */
3800 	stmmac_rx_ipc(priv, priv->hw);
3801 
3802 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3803 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3804 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3805 
3806 	return 0;
3807 }
3808 
3809 /**
3810  *  stmmac_interrupt - main ISR
3811  *  @irq: interrupt number.
3812  *  @dev_id: to pass the net device pointer.
3813  *  Description: this is the main driver interrupt service routine.
3814  *  It can call:
3815  *  o DMA service routine (to manage incoming frame reception and transmission
3816  *    status)
3817  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3818  *    interrupts.
3819  */
3820 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3821 {
3822 	struct net_device *dev = (struct net_device *)dev_id;
3823 	struct stmmac_priv *priv = netdev_priv(dev);
3824 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3825 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3826 	u32 queues_count;
3827 	u32 queue;
3828 	bool xmac;
3829 
3830 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3831 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3832 
3833 	if (priv->irq_wake)
3834 		pm_wakeup_event(priv->device, 0);
3835 
3836 	if (unlikely(!dev)) {
3837 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3838 		return IRQ_NONE;
3839 	}
3840 
3841 	/* Check if adapter is up */
3842 	if (test_bit(STMMAC_DOWN, &priv->state))
3843 		return IRQ_HANDLED;
3844 	/* Check if a fatal error happened */
3845 	if (stmmac_safety_feat_interrupt(priv))
3846 		return IRQ_HANDLED;
3847 
3848 	/* To handle GMAC own interrupts */
3849 	if ((priv->plat->has_gmac) || xmac) {
3850 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3851 		int mtl_status;
3852 
3853 		if (unlikely(status)) {
3854 			/* For LPI we need to save the tx status */
3855 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3856 				priv->tx_path_in_lpi_mode = true;
3857 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3858 				priv->tx_path_in_lpi_mode = false;
3859 		}
3860 
3861 		for (queue = 0; queue < queues_count; queue++) {
3862 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3863 
3864 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3865 								queue);
3866 			if (mtl_status != -EINVAL)
3867 				status |= mtl_status;
3868 
3869 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3870 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3871 						       rx_q->rx_tail_addr,
3872 						       queue);
3873 		}
3874 
3875 		/* PCS link status */
3876 		if (priv->hw->pcs) {
3877 			if (priv->xstats.pcs_link)
3878 				netif_carrier_on(dev);
3879 			else
3880 				netif_carrier_off(dev);
3881 		}
3882 	}
3883 
3884 	/* To handle DMA interrupts */
3885 	stmmac_dma_interrupt(priv);
3886 
3887 	return IRQ_HANDLED;
3888 }
3889 
3890 #ifdef CONFIG_NET_POLL_CONTROLLER
3891 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3892  * to allow network I/O with interrupts disabled.
3893  */
3894 static void stmmac_poll_controller(struct net_device *dev)
3895 {
3896 	disable_irq(dev->irq);
3897 	stmmac_interrupt(dev->irq, dev);
3898 	enable_irq(dev->irq);
3899 }
3900 #endif
3901 
3902 /**
3903  *  stmmac_ioctl - Entry point for the Ioctl
3904  *  @dev: Device pointer.
3905  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3906  *  a proprietary structure used to pass information to the driver.
3907  *  @cmd: IOCTL command
3908  *  Description:
3909  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3910  */
3911 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3912 {
3913 	struct stmmac_priv *priv = netdev_priv (dev);
3914 	int ret = -EOPNOTSUPP;
3915 
3916 	if (!netif_running(dev))
3917 		return -EINVAL;
3918 
3919 	switch (cmd) {
3920 	case SIOCGMIIPHY:
3921 	case SIOCGMIIREG:
3922 	case SIOCSMIIREG:
3923 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3924 		break;
3925 	case SIOCSHWTSTAMP:
3926 		ret = stmmac_hwtstamp_set(dev, rq);
3927 		break;
3928 	case SIOCGHWTSTAMP:
3929 		ret = stmmac_hwtstamp_get(dev, rq);
3930 		break;
3931 	default:
3932 		break;
3933 	}
3934 
3935 	return ret;
3936 }
3937 
3938 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3939 				    void *cb_priv)
3940 {
3941 	struct stmmac_priv *priv = cb_priv;
3942 	int ret = -EOPNOTSUPP;
3943 
3944 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
3945 		return ret;
3946 
3947 	stmmac_disable_all_queues(priv);
3948 
3949 	switch (type) {
3950 	case TC_SETUP_CLSU32:
3951 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3952 		break;
3953 	case TC_SETUP_CLSFLOWER:
3954 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
3955 		break;
3956 	default:
3957 		break;
3958 	}
3959 
3960 	stmmac_enable_all_queues(priv);
3961 	return ret;
3962 }
3963 
3964 static LIST_HEAD(stmmac_block_cb_list);
3965 
3966 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3967 			   void *type_data)
3968 {
3969 	struct stmmac_priv *priv = netdev_priv(ndev);
3970 
3971 	switch (type) {
3972 	case TC_SETUP_BLOCK:
3973 		return flow_block_cb_setup_simple(type_data,
3974 						  &stmmac_block_cb_list,
3975 						  stmmac_setup_tc_block_cb,
3976 						  priv, priv, true);
3977 	case TC_SETUP_QDISC_CBS:
3978 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3979 	default:
3980 		return -EOPNOTSUPP;
3981 	}
3982 }
3983 
3984 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3985 			       struct net_device *sb_dev)
3986 {
3987 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3988 		/*
3989 		 * There is no way to determine the number of TSO
3990 		 * capable Queues. Let's use always the Queue 0
3991 		 * because if TSO is supported then at least this
3992 		 * one will be capable.
3993 		 */
3994 		return 0;
3995 	}
3996 
3997 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
3998 }
3999 
4000 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4001 {
4002 	struct stmmac_priv *priv = netdev_priv(ndev);
4003 	int ret = 0;
4004 
4005 	ret = eth_mac_addr(ndev, addr);
4006 	if (ret)
4007 		return ret;
4008 
4009 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4010 
4011 	return ret;
4012 }
4013 
4014 #ifdef CONFIG_DEBUG_FS
4015 static struct dentry *stmmac_fs_dir;
4016 
4017 static void sysfs_display_ring(void *head, int size, int extend_desc,
4018 			       struct seq_file *seq)
4019 {
4020 	int i;
4021 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4022 	struct dma_desc *p = (struct dma_desc *)head;
4023 
4024 	for (i = 0; i < size; i++) {
4025 		if (extend_desc) {
4026 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4027 				   i, (unsigned int)virt_to_phys(ep),
4028 				   le32_to_cpu(ep->basic.des0),
4029 				   le32_to_cpu(ep->basic.des1),
4030 				   le32_to_cpu(ep->basic.des2),
4031 				   le32_to_cpu(ep->basic.des3));
4032 			ep++;
4033 		} else {
4034 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4035 				   i, (unsigned int)virt_to_phys(p),
4036 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4037 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4038 			p++;
4039 		}
4040 		seq_printf(seq, "\n");
4041 	}
4042 }
4043 
4044 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4045 {
4046 	struct net_device *dev = seq->private;
4047 	struct stmmac_priv *priv = netdev_priv(dev);
4048 	u32 rx_count = priv->plat->rx_queues_to_use;
4049 	u32 tx_count = priv->plat->tx_queues_to_use;
4050 	u32 queue;
4051 
4052 	if ((dev->flags & IFF_UP) == 0)
4053 		return 0;
4054 
4055 	for (queue = 0; queue < rx_count; queue++) {
4056 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4057 
4058 		seq_printf(seq, "RX Queue %d:\n", queue);
4059 
4060 		if (priv->extend_desc) {
4061 			seq_printf(seq, "Extended descriptor ring:\n");
4062 			sysfs_display_ring((void *)rx_q->dma_erx,
4063 					   DMA_RX_SIZE, 1, seq);
4064 		} else {
4065 			seq_printf(seq, "Descriptor ring:\n");
4066 			sysfs_display_ring((void *)rx_q->dma_rx,
4067 					   DMA_RX_SIZE, 0, seq);
4068 		}
4069 	}
4070 
4071 	for (queue = 0; queue < tx_count; queue++) {
4072 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4073 
4074 		seq_printf(seq, "TX Queue %d:\n", queue);
4075 
4076 		if (priv->extend_desc) {
4077 			seq_printf(seq, "Extended descriptor ring:\n");
4078 			sysfs_display_ring((void *)tx_q->dma_etx,
4079 					   DMA_TX_SIZE, 1, seq);
4080 		} else {
4081 			seq_printf(seq, "Descriptor ring:\n");
4082 			sysfs_display_ring((void *)tx_q->dma_tx,
4083 					   DMA_TX_SIZE, 0, seq);
4084 		}
4085 	}
4086 
4087 	return 0;
4088 }
4089 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4090 
4091 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4092 {
4093 	struct net_device *dev = seq->private;
4094 	struct stmmac_priv *priv = netdev_priv(dev);
4095 
4096 	if (!priv->hw_cap_support) {
4097 		seq_printf(seq, "DMA HW features not supported\n");
4098 		return 0;
4099 	}
4100 
4101 	seq_printf(seq, "==============================\n");
4102 	seq_printf(seq, "\tDMA HW features\n");
4103 	seq_printf(seq, "==============================\n");
4104 
4105 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4106 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4107 	seq_printf(seq, "\t1000 Mbps: %s\n",
4108 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4109 	seq_printf(seq, "\tHalf duplex: %s\n",
4110 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4111 	seq_printf(seq, "\tHash Filter: %s\n",
4112 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4113 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4114 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4115 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4116 		   (priv->dma_cap.pcs) ? "Y" : "N");
4117 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4118 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4119 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4120 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4121 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4122 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4123 	seq_printf(seq, "\tRMON module: %s\n",
4124 		   (priv->dma_cap.rmon) ? "Y" : "N");
4125 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4126 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4127 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4128 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4129 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4130 		   (priv->dma_cap.eee) ? "Y" : "N");
4131 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4132 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4133 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4134 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4135 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4136 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4137 	} else {
4138 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4139 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4140 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4141 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4142 	}
4143 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4144 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4145 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4146 		   priv->dma_cap.number_rx_channel);
4147 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4148 		   priv->dma_cap.number_tx_channel);
4149 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4150 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4151 
4152 	return 0;
4153 }
4154 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4155 
4156 static void stmmac_init_fs(struct net_device *dev)
4157 {
4158 	struct stmmac_priv *priv = netdev_priv(dev);
4159 
4160 	/* Create per netdev entries */
4161 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4162 
4163 	/* Entry to report DMA RX/TX rings */
4164 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4165 			    &stmmac_rings_status_fops);
4166 
4167 	/* Entry to report the DMA HW features */
4168 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4169 			    &stmmac_dma_cap_fops);
4170 }
4171 
4172 static void stmmac_exit_fs(struct net_device *dev)
4173 {
4174 	struct stmmac_priv *priv = netdev_priv(dev);
4175 
4176 	debugfs_remove_recursive(priv->dbgfs_dir);
4177 }
4178 #endif /* CONFIG_DEBUG_FS */
4179 
4180 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4181 {
4182 	unsigned char *data = (unsigned char *)&vid_le;
4183 	unsigned char data_byte = 0;
4184 	u32 crc = ~0x0;
4185 	u32 temp = 0;
4186 	int i, bits;
4187 
4188 	bits = get_bitmask_order(VLAN_VID_MASK);
4189 	for (i = 0; i < bits; i++) {
4190 		if ((i % 8) == 0)
4191 			data_byte = data[i / 8];
4192 
4193 		temp = ((crc & 1) ^ data_byte) & 1;
4194 		crc >>= 1;
4195 		data_byte >>= 1;
4196 
4197 		if (temp)
4198 			crc ^= 0xedb88320;
4199 	}
4200 
4201 	return crc;
4202 }
4203 
4204 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4205 {
4206 	u32 crc, hash = 0;
4207 	u16 vid;
4208 
4209 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4210 		__le16 vid_le = cpu_to_le16(vid);
4211 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4212 		hash |= (1 << crc);
4213 	}
4214 
4215 	return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4216 }
4217 
4218 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4219 {
4220 	struct stmmac_priv *priv = netdev_priv(ndev);
4221 	bool is_double = false;
4222 	int ret;
4223 
4224 	if (!priv->dma_cap.vlhash)
4225 		return -EOPNOTSUPP;
4226 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4227 		is_double = true;
4228 
4229 	set_bit(vid, priv->active_vlans);
4230 	ret = stmmac_vlan_update(priv, is_double);
4231 	if (ret) {
4232 		clear_bit(vid, priv->active_vlans);
4233 		return ret;
4234 	}
4235 
4236 	return ret;
4237 }
4238 
4239 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4240 {
4241 	struct stmmac_priv *priv = netdev_priv(ndev);
4242 	bool is_double = false;
4243 
4244 	if (!priv->dma_cap.vlhash)
4245 		return -EOPNOTSUPP;
4246 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4247 		is_double = true;
4248 
4249 	clear_bit(vid, priv->active_vlans);
4250 	return stmmac_vlan_update(priv, is_double);
4251 }
4252 
4253 static const struct net_device_ops stmmac_netdev_ops = {
4254 	.ndo_open = stmmac_open,
4255 	.ndo_start_xmit = stmmac_xmit,
4256 	.ndo_stop = stmmac_release,
4257 	.ndo_change_mtu = stmmac_change_mtu,
4258 	.ndo_fix_features = stmmac_fix_features,
4259 	.ndo_set_features = stmmac_set_features,
4260 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4261 	.ndo_tx_timeout = stmmac_tx_timeout,
4262 	.ndo_do_ioctl = stmmac_ioctl,
4263 	.ndo_setup_tc = stmmac_setup_tc,
4264 	.ndo_select_queue = stmmac_select_queue,
4265 #ifdef CONFIG_NET_POLL_CONTROLLER
4266 	.ndo_poll_controller = stmmac_poll_controller,
4267 #endif
4268 	.ndo_set_mac_address = stmmac_set_mac_address,
4269 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4270 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4271 };
4272 
4273 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4274 {
4275 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4276 		return;
4277 	if (test_bit(STMMAC_DOWN, &priv->state))
4278 		return;
4279 
4280 	netdev_err(priv->dev, "Reset adapter.\n");
4281 
4282 	rtnl_lock();
4283 	netif_trans_update(priv->dev);
4284 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4285 		usleep_range(1000, 2000);
4286 
4287 	set_bit(STMMAC_DOWN, &priv->state);
4288 	dev_close(priv->dev);
4289 	dev_open(priv->dev, NULL);
4290 	clear_bit(STMMAC_DOWN, &priv->state);
4291 	clear_bit(STMMAC_RESETING, &priv->state);
4292 	rtnl_unlock();
4293 }
4294 
4295 static void stmmac_service_task(struct work_struct *work)
4296 {
4297 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4298 			service_task);
4299 
4300 	stmmac_reset_subtask(priv);
4301 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4302 }
4303 
4304 /**
4305  *  stmmac_hw_init - Init the MAC device
4306  *  @priv: driver private structure
4307  *  Description: this function is to configure the MAC device according to
4308  *  some platform parameters or the HW capability register. It prepares the
4309  *  driver to use either ring or chain modes and to setup either enhanced or
4310  *  normal descriptors.
4311  */
4312 static int stmmac_hw_init(struct stmmac_priv *priv)
4313 {
4314 	int ret;
4315 
4316 	/* dwmac-sun8i only work in chain mode */
4317 	if (priv->plat->has_sun8i)
4318 		chain_mode = 1;
4319 	priv->chain_mode = chain_mode;
4320 
4321 	/* Initialize HW Interface */
4322 	ret = stmmac_hwif_init(priv);
4323 	if (ret)
4324 		return ret;
4325 
4326 	/* Get the HW capability (new GMAC newer than 3.50a) */
4327 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4328 	if (priv->hw_cap_support) {
4329 		dev_info(priv->device, "DMA HW capability register supported\n");
4330 
4331 		/* We can override some gmac/dma configuration fields: e.g.
4332 		 * enh_desc, tx_coe (e.g. that are passed through the
4333 		 * platform) with the values from the HW capability
4334 		 * register (if supported).
4335 		 */
4336 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4337 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4338 		priv->hw->pmt = priv->plat->pmt;
4339 		if (priv->dma_cap.hash_tb_sz) {
4340 			priv->hw->multicast_filter_bins =
4341 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4342 			priv->hw->mcast_bits_log2 =
4343 					ilog2(priv->hw->multicast_filter_bins);
4344 		}
4345 
4346 		/* TXCOE doesn't work in thresh DMA mode */
4347 		if (priv->plat->force_thresh_dma_mode)
4348 			priv->plat->tx_coe = 0;
4349 		else
4350 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4351 
4352 		/* In case of GMAC4 rx_coe is from HW cap register. */
4353 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4354 
4355 		if (priv->dma_cap.rx_coe_type2)
4356 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4357 		else if (priv->dma_cap.rx_coe_type1)
4358 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4359 
4360 	} else {
4361 		dev_info(priv->device, "No HW DMA feature register supported\n");
4362 	}
4363 
4364 	if (priv->plat->rx_coe) {
4365 		priv->hw->rx_csum = priv->plat->rx_coe;
4366 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4367 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4368 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4369 	}
4370 	if (priv->plat->tx_coe)
4371 		dev_info(priv->device, "TX Checksum insertion supported\n");
4372 
4373 	if (priv->plat->pmt) {
4374 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4375 		device_set_wakeup_capable(priv->device, 1);
4376 	}
4377 
4378 	if (priv->dma_cap.tsoen)
4379 		dev_info(priv->device, "TSO supported\n");
4380 
4381 	/* Run HW quirks, if any */
4382 	if (priv->hwif_quirks) {
4383 		ret = priv->hwif_quirks(priv);
4384 		if (ret)
4385 			return ret;
4386 	}
4387 
4388 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4389 	 * In some case, for example on bugged HW this feature
4390 	 * has to be disable and this can be done by passing the
4391 	 * riwt_off field from the platform.
4392 	 */
4393 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4394 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4395 		priv->use_riwt = 1;
4396 		dev_info(priv->device,
4397 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4398 	}
4399 
4400 	return 0;
4401 }
4402 
4403 /**
4404  * stmmac_dvr_probe
4405  * @device: device pointer
4406  * @plat_dat: platform data pointer
4407  * @res: stmmac resource pointer
4408  * Description: this is the main probe function used to
4409  * call the alloc_etherdev, allocate the priv structure.
4410  * Return:
4411  * returns 0 on success, otherwise errno.
4412  */
4413 int stmmac_dvr_probe(struct device *device,
4414 		     struct plat_stmmacenet_data *plat_dat,
4415 		     struct stmmac_resources *res)
4416 {
4417 	struct net_device *ndev = NULL;
4418 	struct stmmac_priv *priv;
4419 	u32 queue, rxq, maxq;
4420 	int i, ret = 0;
4421 
4422 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4423 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4424 	if (!ndev)
4425 		return -ENOMEM;
4426 
4427 	SET_NETDEV_DEV(ndev, device);
4428 
4429 	priv = netdev_priv(ndev);
4430 	priv->device = device;
4431 	priv->dev = ndev;
4432 
4433 	stmmac_set_ethtool_ops(ndev);
4434 	priv->pause = pause;
4435 	priv->plat = plat_dat;
4436 	priv->ioaddr = res->addr;
4437 	priv->dev->base_addr = (unsigned long)res->addr;
4438 
4439 	priv->dev->irq = res->irq;
4440 	priv->wol_irq = res->wol_irq;
4441 	priv->lpi_irq = res->lpi_irq;
4442 
4443 	if (!IS_ERR_OR_NULL(res->mac))
4444 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4445 
4446 	dev_set_drvdata(device, priv->dev);
4447 
4448 	/* Verify driver arguments */
4449 	stmmac_verify_args();
4450 
4451 	/* Allocate workqueue */
4452 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4453 	if (!priv->wq) {
4454 		dev_err(priv->device, "failed to create workqueue\n");
4455 		return -ENOMEM;
4456 	}
4457 
4458 	INIT_WORK(&priv->service_task, stmmac_service_task);
4459 
4460 	/* Override with kernel parameters if supplied XXX CRS XXX
4461 	 * this needs to have multiple instances
4462 	 */
4463 	if ((phyaddr >= 0) && (phyaddr <= 31))
4464 		priv->plat->phy_addr = phyaddr;
4465 
4466 	if (priv->plat->stmmac_rst) {
4467 		ret = reset_control_assert(priv->plat->stmmac_rst);
4468 		reset_control_deassert(priv->plat->stmmac_rst);
4469 		/* Some reset controllers have only reset callback instead of
4470 		 * assert + deassert callbacks pair.
4471 		 */
4472 		if (ret == -ENOTSUPP)
4473 			reset_control_reset(priv->plat->stmmac_rst);
4474 	}
4475 
4476 	/* Init MAC and get the capabilities */
4477 	ret = stmmac_hw_init(priv);
4478 	if (ret)
4479 		goto error_hw_init;
4480 
4481 	stmmac_check_ether_addr(priv);
4482 
4483 	/* Configure real RX and TX queues */
4484 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4485 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4486 
4487 	ndev->netdev_ops = &stmmac_netdev_ops;
4488 
4489 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4490 			    NETIF_F_RXCSUM;
4491 
4492 	ret = stmmac_tc_init(priv, priv);
4493 	if (!ret) {
4494 		ndev->hw_features |= NETIF_F_HW_TC;
4495 	}
4496 
4497 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4498 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4499 		priv->tso = true;
4500 		dev_info(priv->device, "TSO feature enabled\n");
4501 	}
4502 
4503 	if (priv->dma_cap.sphen) {
4504 		ndev->hw_features |= NETIF_F_GRO;
4505 		priv->sph = true;
4506 		dev_info(priv->device, "SPH feature enabled\n");
4507 	}
4508 
4509 	if (priv->dma_cap.addr64) {
4510 		ret = dma_set_mask_and_coherent(device,
4511 				DMA_BIT_MASK(priv->dma_cap.addr64));
4512 		if (!ret) {
4513 			dev_info(priv->device, "Using %d bits DMA width\n",
4514 				 priv->dma_cap.addr64);
4515 		} else {
4516 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4517 			if (ret) {
4518 				dev_err(priv->device, "Failed to set DMA Mask\n");
4519 				goto error_hw_init;
4520 			}
4521 
4522 			priv->dma_cap.addr64 = 32;
4523 		}
4524 	}
4525 
4526 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4527 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4528 #ifdef STMMAC_VLAN_TAG_USED
4529 	/* Both mac100 and gmac support receive VLAN tag detection */
4530 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4531 	if (priv->dma_cap.vlhash) {
4532 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4533 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4534 	}
4535 	if (priv->dma_cap.vlins) {
4536 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4537 		if (priv->dma_cap.dvlan)
4538 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4539 	}
4540 #endif
4541 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4542 
4543 	/* Initialize RSS */
4544 	rxq = priv->plat->rx_queues_to_use;
4545 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4546 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4547 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4548 
4549 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4550 		ndev->features |= NETIF_F_RXHASH;
4551 
4552 	/* MTU range: 46 - hw-specific max */
4553 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4554 	if (priv->plat->has_xgmac)
4555 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4556 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4557 		ndev->max_mtu = JUMBO_LEN;
4558 	else
4559 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4560 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4561 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4562 	 */
4563 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4564 	    (priv->plat->maxmtu >= ndev->min_mtu))
4565 		ndev->max_mtu = priv->plat->maxmtu;
4566 	else if (priv->plat->maxmtu < ndev->min_mtu)
4567 		dev_warn(priv->device,
4568 			 "%s: warning: maxmtu having invalid value (%d)\n",
4569 			 __func__, priv->plat->maxmtu);
4570 
4571 	if (flow_ctrl)
4572 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4573 
4574 	/* Setup channels NAPI */
4575 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4576 
4577 	for (queue = 0; queue < maxq; queue++) {
4578 		struct stmmac_channel *ch = &priv->channel[queue];
4579 
4580 		ch->priv_data = priv;
4581 		ch->index = queue;
4582 
4583 		if (queue < priv->plat->rx_queues_to_use) {
4584 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4585 				       NAPI_POLL_WEIGHT);
4586 		}
4587 		if (queue < priv->plat->tx_queues_to_use) {
4588 			netif_tx_napi_add(ndev, &ch->tx_napi,
4589 					  stmmac_napi_poll_tx,
4590 					  NAPI_POLL_WEIGHT);
4591 		}
4592 	}
4593 
4594 	mutex_init(&priv->lock);
4595 
4596 	/* If a specific clk_csr value is passed from the platform
4597 	 * this means that the CSR Clock Range selection cannot be
4598 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4599 	 * set the MDC clock dynamically according to the csr actual
4600 	 * clock input.
4601 	 */
4602 	if (priv->plat->clk_csr >= 0)
4603 		priv->clk_csr = priv->plat->clk_csr;
4604 	else
4605 		stmmac_clk_csr_set(priv);
4606 
4607 	stmmac_check_pcs_mode(priv);
4608 
4609 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4610 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4611 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4612 		/* MDIO bus Registration */
4613 		ret = stmmac_mdio_register(ndev);
4614 		if (ret < 0) {
4615 			dev_err(priv->device,
4616 				"%s: MDIO bus (id: %d) registration failed",
4617 				__func__, priv->plat->bus_id);
4618 			goto error_mdio_register;
4619 		}
4620 	}
4621 
4622 	ret = stmmac_phy_setup(priv);
4623 	if (ret) {
4624 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4625 		goto error_phy_setup;
4626 	}
4627 
4628 	ret = register_netdev(ndev);
4629 	if (ret) {
4630 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4631 			__func__, ret);
4632 		goto error_netdev_register;
4633 	}
4634 
4635 #ifdef CONFIG_DEBUG_FS
4636 	stmmac_init_fs(ndev);
4637 #endif
4638 
4639 	return ret;
4640 
4641 error_netdev_register:
4642 	phylink_destroy(priv->phylink);
4643 error_phy_setup:
4644 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4645 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4646 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4647 		stmmac_mdio_unregister(ndev);
4648 error_mdio_register:
4649 	for (queue = 0; queue < maxq; queue++) {
4650 		struct stmmac_channel *ch = &priv->channel[queue];
4651 
4652 		if (queue < priv->plat->rx_queues_to_use)
4653 			netif_napi_del(&ch->rx_napi);
4654 		if (queue < priv->plat->tx_queues_to_use)
4655 			netif_napi_del(&ch->tx_napi);
4656 	}
4657 error_hw_init:
4658 	destroy_workqueue(priv->wq);
4659 
4660 	return ret;
4661 }
4662 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4663 
4664 /**
4665  * stmmac_dvr_remove
4666  * @dev: device pointer
4667  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4668  * changes the link status, releases the DMA descriptor rings.
4669  */
4670 int stmmac_dvr_remove(struct device *dev)
4671 {
4672 	struct net_device *ndev = dev_get_drvdata(dev);
4673 	struct stmmac_priv *priv = netdev_priv(ndev);
4674 
4675 	netdev_info(priv->dev, "%s: removing driver", __func__);
4676 
4677 #ifdef CONFIG_DEBUG_FS
4678 	stmmac_exit_fs(ndev);
4679 #endif
4680 	stmmac_stop_all_dma(priv);
4681 
4682 	stmmac_mac_set(priv, priv->ioaddr, false);
4683 	netif_carrier_off(ndev);
4684 	unregister_netdev(ndev);
4685 	phylink_destroy(priv->phylink);
4686 	if (priv->plat->stmmac_rst)
4687 		reset_control_assert(priv->plat->stmmac_rst);
4688 	clk_disable_unprepare(priv->plat->pclk);
4689 	clk_disable_unprepare(priv->plat->stmmac_clk);
4690 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4691 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4692 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4693 		stmmac_mdio_unregister(ndev);
4694 	destroy_workqueue(priv->wq);
4695 	mutex_destroy(&priv->lock);
4696 
4697 	return 0;
4698 }
4699 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4700 
4701 /**
4702  * stmmac_suspend - suspend callback
4703  * @dev: device pointer
4704  * Description: this is the function to suspend the device and it is called
4705  * by the platform driver to stop the network queue, release the resources,
4706  * program the PMT register (for WoL), clean and release driver resources.
4707  */
4708 int stmmac_suspend(struct device *dev)
4709 {
4710 	struct net_device *ndev = dev_get_drvdata(dev);
4711 	struct stmmac_priv *priv = netdev_priv(ndev);
4712 
4713 	if (!ndev || !netif_running(ndev))
4714 		return 0;
4715 
4716 	mutex_lock(&priv->lock);
4717 
4718 	rtnl_lock();
4719 	phylink_stop(priv->phylink);
4720 	rtnl_unlock();
4721 
4722 	netif_device_detach(ndev);
4723 	stmmac_stop_all_queues(priv);
4724 
4725 	stmmac_disable_all_queues(priv);
4726 
4727 	/* Stop TX/RX DMA */
4728 	stmmac_stop_all_dma(priv);
4729 
4730 	/* Enable Power down mode by programming the PMT regs */
4731 	if (device_may_wakeup(priv->device)) {
4732 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4733 		priv->irq_wake = 1;
4734 	} else {
4735 		stmmac_mac_set(priv, priv->ioaddr, false);
4736 		pinctrl_pm_select_sleep_state(priv->device);
4737 		/* Disable clock in case of PWM is off */
4738 		clk_disable(priv->plat->pclk);
4739 		clk_disable(priv->plat->stmmac_clk);
4740 	}
4741 	mutex_unlock(&priv->lock);
4742 
4743 	priv->speed = SPEED_UNKNOWN;
4744 	return 0;
4745 }
4746 EXPORT_SYMBOL_GPL(stmmac_suspend);
4747 
4748 /**
4749  * stmmac_reset_queues_param - reset queue parameters
4750  * @dev: device pointer
4751  */
4752 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4753 {
4754 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4755 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4756 	u32 queue;
4757 
4758 	for (queue = 0; queue < rx_cnt; queue++) {
4759 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4760 
4761 		rx_q->cur_rx = 0;
4762 		rx_q->dirty_rx = 0;
4763 	}
4764 
4765 	for (queue = 0; queue < tx_cnt; queue++) {
4766 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4767 
4768 		tx_q->cur_tx = 0;
4769 		tx_q->dirty_tx = 0;
4770 		tx_q->mss = 0;
4771 	}
4772 }
4773 
4774 /**
4775  * stmmac_resume - resume callback
4776  * @dev: device pointer
4777  * Description: when resume this function is invoked to setup the DMA and CORE
4778  * in a usable state.
4779  */
4780 int stmmac_resume(struct device *dev)
4781 {
4782 	struct net_device *ndev = dev_get_drvdata(dev);
4783 	struct stmmac_priv *priv = netdev_priv(ndev);
4784 
4785 	if (!netif_running(ndev))
4786 		return 0;
4787 
4788 	/* Power Down bit, into the PM register, is cleared
4789 	 * automatically as soon as a magic packet or a Wake-up frame
4790 	 * is received. Anyway, it's better to manually clear
4791 	 * this bit because it can generate problems while resuming
4792 	 * from another devices (e.g. serial console).
4793 	 */
4794 	if (device_may_wakeup(priv->device)) {
4795 		mutex_lock(&priv->lock);
4796 		stmmac_pmt(priv, priv->hw, 0);
4797 		mutex_unlock(&priv->lock);
4798 		priv->irq_wake = 0;
4799 	} else {
4800 		pinctrl_pm_select_default_state(priv->device);
4801 		/* enable the clk previously disabled */
4802 		clk_enable(priv->plat->stmmac_clk);
4803 		clk_enable(priv->plat->pclk);
4804 		/* reset the phy so that it's ready */
4805 		if (priv->mii)
4806 			stmmac_mdio_reset(priv->mii);
4807 	}
4808 
4809 	netif_device_attach(ndev);
4810 
4811 	mutex_lock(&priv->lock);
4812 
4813 	stmmac_reset_queues_param(priv);
4814 
4815 	stmmac_clear_descriptors(priv);
4816 
4817 	stmmac_hw_setup(ndev, false);
4818 	stmmac_init_coalesce(priv);
4819 	stmmac_set_rx_mode(ndev);
4820 
4821 	stmmac_enable_all_queues(priv);
4822 
4823 	stmmac_start_all_queues(priv);
4824 
4825 	rtnl_lock();
4826 	phylink_start(priv->phylink);
4827 	rtnl_unlock();
4828 
4829 	mutex_unlock(&priv->lock);
4830 
4831 	return 0;
4832 }
4833 EXPORT_SYMBOL_GPL(stmmac_resume);
4834 
4835 #ifndef MODULE
4836 static int __init stmmac_cmdline_opt(char *str)
4837 {
4838 	char *opt;
4839 
4840 	if (!str || !*str)
4841 		return -EINVAL;
4842 	while ((opt = strsep(&str, ",")) != NULL) {
4843 		if (!strncmp(opt, "debug:", 6)) {
4844 			if (kstrtoint(opt + 6, 0, &debug))
4845 				goto err;
4846 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4847 			if (kstrtoint(opt + 8, 0, &phyaddr))
4848 				goto err;
4849 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4850 			if (kstrtoint(opt + 7, 0, &buf_sz))
4851 				goto err;
4852 		} else if (!strncmp(opt, "tc:", 3)) {
4853 			if (kstrtoint(opt + 3, 0, &tc))
4854 				goto err;
4855 		} else if (!strncmp(opt, "watchdog:", 9)) {
4856 			if (kstrtoint(opt + 9, 0, &watchdog))
4857 				goto err;
4858 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4859 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4860 				goto err;
4861 		} else if (!strncmp(opt, "pause:", 6)) {
4862 			if (kstrtoint(opt + 6, 0, &pause))
4863 				goto err;
4864 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4865 			if (kstrtoint(opt + 10, 0, &eee_timer))
4866 				goto err;
4867 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4868 			if (kstrtoint(opt + 11, 0, &chain_mode))
4869 				goto err;
4870 		}
4871 	}
4872 	return 0;
4873 
4874 err:
4875 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4876 	return -EINVAL;
4877 }
4878 
4879 __setup("stmmaceth=", stmmac_cmdline_opt);
4880 #endif /* MODULE */
4881 
4882 static int __init stmmac_init(void)
4883 {
4884 #ifdef CONFIG_DEBUG_FS
4885 	/* Create debugfs main directory if it doesn't exist yet */
4886 	if (!stmmac_fs_dir)
4887 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4888 #endif
4889 
4890 	return 0;
4891 }
4892 
4893 static void __exit stmmac_exit(void)
4894 {
4895 #ifdef CONFIG_DEBUG_FS
4896 	debugfs_remove_recursive(stmmac_fs_dir);
4897 #endif
4898 }
4899 
4900 module_init(stmmac_init)
4901 module_exit(stmmac_exit)
4902 
4903 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4904 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4905 MODULE_LICENSE("GPL");
4906