1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_STMMAC_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_STMMAC_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 
56 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
57 
58 /* Module parameters */
59 #define TX_TIMEO	5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76 
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81 
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85 
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89 
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94 
95 #define	DEFAULT_BUFSIZE	1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99 
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103 
104 #define STMMAC_DEFAULT_LPI_TIMER	1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109 
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111  * but passing this value so user can force to use the chain instead of the ring
112  */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116 
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118 
119 #ifdef CONFIG_STMMAC_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123 
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125 
126 /**
127  * stmmac_verify_args - verify the driver parameters.
128  * Description: it verifies if some wrong parameter is passed to the driver.
129  * Note that wrong parameters are replaced with the default values.
130  */
131 static void stmmac_verify_args(void)
132 {
133 	if (unlikely(watchdog < 0))
134 		watchdog = TX_TIMEO;
135 	if (unlikely(dma_rxsize < 0))
136 		dma_rxsize = DMA_RX_SIZE;
137 	if (unlikely(dma_txsize < 0))
138 		dma_txsize = DMA_TX_SIZE;
139 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 		buf_sz = DEFAULT_BUFSIZE;
141 	if (unlikely(flow_ctrl > 1))
142 		flow_ctrl = FLOW_AUTO;
143 	else if (likely(flow_ctrl < 0))
144 		flow_ctrl = FLOW_OFF;
145 	if (unlikely((pause < 0) || (pause > 0xffff)))
146 		pause = PAUSE_TIME;
147 	if (eee_timer < 0)
148 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150 
151 /**
152  * stmmac_clk_csr_set - dynamically set the MDC clock
153  * @priv: driver private structure
154  * Description: this is to dynamically set the MDC clock according to the csr
155  * clock input.
156  * Note:
157  *	If a specific clk_csr value is passed from the platform
158  *	this means that the CSR Clock Range selection cannot be
159  *	changed at run-time and it is fixed (as reported in the driver
160  *	documentation). Viceversa the driver will try to set the MDC
161  *	clock dynamically according to the actual clock input.
162  */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 	u32 clk_rate;
166 
167 	clk_rate = clk_get_rate(priv->stmmac_clk);
168 
169 	/* Platform provided default clk_csr would be assumed valid
170 	 * for all other cases except for the below mentioned ones.
171 	 * For values higher than the IEEE 802.3 specified frequency
172 	 * we can not estimate the proper divider as it is not known
173 	 * the frequency of clk_csr_i. So we do not change the default
174 	 * divider.
175 	 */
176 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 		if (clk_rate < CSR_F_35M)
178 			priv->clk_csr = STMMAC_CSR_20_35M;
179 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 			priv->clk_csr = STMMAC_CSR_35_60M;
181 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 			priv->clk_csr = STMMAC_CSR_60_100M;
183 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 			priv->clk_csr = STMMAC_CSR_100_150M;
185 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 			priv->clk_csr = STMMAC_CSR_150_250M;
187 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 			priv->clk_csr = STMMAC_CSR_250_300M;
189 	}
190 }
191 
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 	int j;
195 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
196 	for (j = 0; j < len; j++) {
197 		if ((j % 16) == 0)
198 			pr_debug("\n %03x:", j);
199 		pr_debug(" %02x", buf[j]);
200 	}
201 	pr_debug("\n");
202 }
203 
204 /* minimum number of free TX descriptors required to wake up TX process */
205 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
206 
207 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208 {
209 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210 }
211 
212 /**
213  * stmmac_hw_fix_mac_speed: callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuraton
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 	struct phy_device *phydev = priv->phydev;
221 
222 	if (likely(priv->plat->fix_mac_speed))
223 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225 
226 /**
227  * stmmac_enable_eee_mode: Check and enter in LPI mode
228  * @priv: driver private structure
229  * Description: this function is to verify and enter in LPI mode for EEE.
230  */
231 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232 {
233 	/* Check and enter in LPI mode */
234 	if ((priv->dirty_tx == priv->cur_tx) &&
235 	    (priv->tx_path_in_lpi_mode == false))
236 		priv->hw->mac->set_eee_mode(priv->ioaddr);
237 }
238 
239 /**
240  * stmmac_disable_eee_mode: disable/exit from EEE
241  * @priv: driver private structure
242  * Description: this function is to exit and disable EEE in case of
243  * LPI state is true. This is called by the xmit.
244  */
245 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246 {
247 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 	del_timer_sync(&priv->eee_ctrl_timer);
249 	priv->tx_path_in_lpi_mode = false;
250 }
251 
252 /**
253  * stmmac_eee_ctrl_timer: EEE TX SW timer.
254  * @arg : data hook
255  * Description:
256  *  if there is no data transfer and if we are not in LPI state,
257  *  then MAC Transmitter can be moved to LPI state.
258  */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263 	stmmac_enable_eee_mode(priv);
264 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
265 }
266 
267 /**
268  * stmmac_eee_init: init EEE
269  * @priv: driver private structure
270  * Description:
271  *  If the EEE support has been enabled while configuring the driver,
272  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
273  *  phy can also manage EEE, so enable the LPI state and start the timer
274  *  to verify if the tx path can enter in LPI state.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 	bool ret = false;
279 
280 	/* Using PCS we cannot dial with the phy registers at this stage
281 	 * so we do not support extra feature like EEE.
282 	 */
283 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
284 	    (priv->pcs == STMMAC_PCS_RTBI))
285 		goto out;
286 
287 	/* MAC core supports the EEE feature. */
288 	if (priv->dma_cap.eee) {
289 		int tx_lpi_timer = priv->tx_lpi_timer;
290 
291 		/* Check if the PHY supports EEE */
292 		if (phy_init_eee(priv->phydev, 1)) {
293 			/* To manage at run-time if the EEE cannot be supported
294 			 * anymore (for example because the lp caps have been
295 			 * changed).
296 			 * In that case the driver disable own timers.
297 			 */
298 			if (priv->eee_active) {
299 				pr_debug("stmmac: disable EEE\n");
300 				del_timer_sync(&priv->eee_ctrl_timer);
301 				priv->hw->mac->set_eee_timer(priv->ioaddr, 0,
302 							     tx_lpi_timer);
303 			}
304 			priv->eee_active = 0;
305 			goto out;
306 		}
307 		/* Activate the EEE and start timers */
308 		if (!priv->eee_active) {
309 			priv->eee_active = 1;
310 			init_timer(&priv->eee_ctrl_timer);
311 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
312 			priv->eee_ctrl_timer.data = (unsigned long)priv;
313 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
314 			add_timer(&priv->eee_ctrl_timer);
315 
316 			priv->hw->mac->set_eee_timer(priv->ioaddr,
317 						     STMMAC_DEFAULT_LIT_LS,
318 						     tx_lpi_timer);
319 		} else
320 			/* Set HW EEE according to the speed */
321 			priv->hw->mac->set_eee_pls(priv->ioaddr,
322 						   priv->phydev->link);
323 
324 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
325 
326 		ret = true;
327 	}
328 out:
329 	return ret;
330 }
331 
332 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
333  * @priv: driver private structure
334  * @entry : descriptor index to be used.
335  * @skb : the socket buffer
336  * Description :
337  * This function will read timestamp from the descriptor & pass it to stack.
338  * and also perform some sanity checks.
339  */
340 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
341 				   unsigned int entry, struct sk_buff *skb)
342 {
343 	struct skb_shared_hwtstamps shhwtstamp;
344 	u64 ns;
345 	void *desc = NULL;
346 
347 	if (!priv->hwts_tx_en)
348 		return;
349 
350 	/* exit if skb doesn't support hw tstamp */
351 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
352 		return;
353 
354 	if (priv->adv_ts)
355 		desc = (priv->dma_etx + entry);
356 	else
357 		desc = (priv->dma_tx + entry);
358 
359 	/* check tx tstamp status */
360 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
361 		return;
362 
363 	/* get the valid tstamp */
364 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
365 
366 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
367 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
368 	/* pass tstamp to stack */
369 	skb_tstamp_tx(skb, &shhwtstamp);
370 
371 	return;
372 }
373 
374 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
375  * @priv: driver private structure
376  * @entry : descriptor index to be used.
377  * @skb : the socket buffer
378  * Description :
379  * This function will read received packet's timestamp from the descriptor
380  * and pass it to stack. It also perform some sanity checks.
381  */
382 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
383 				   unsigned int entry, struct sk_buff *skb)
384 {
385 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
386 	u64 ns;
387 	void *desc = NULL;
388 
389 	if (!priv->hwts_rx_en)
390 		return;
391 
392 	if (priv->adv_ts)
393 		desc = (priv->dma_erx + entry);
394 	else
395 		desc = (priv->dma_rx + entry);
396 
397 	/* exit if rx tstamp is not valid */
398 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
399 		return;
400 
401 	/* get valid tstamp */
402 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
403 	shhwtstamp = skb_hwtstamps(skb);
404 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
405 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
406 }
407 
408 /**
409  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
410  *  @dev: device pointer.
411  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
412  *  a proprietary structure used to pass information to the driver.
413  *  Description:
414  *  This function configures the MAC to enable/disable both outgoing(TX)
415  *  and incoming(RX) packets time stamping based on user input.
416  *  Return Value:
417  *  0 on success and an appropriate -ve integer on failure.
418  */
419 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
420 {
421 	struct stmmac_priv *priv = netdev_priv(dev);
422 	struct hwtstamp_config config;
423 	struct timespec now;
424 	u64 temp = 0;
425 	u32 ptp_v2 = 0;
426 	u32 tstamp_all = 0;
427 	u32 ptp_over_ipv4_udp = 0;
428 	u32 ptp_over_ipv6_udp = 0;
429 	u32 ptp_over_ethernet = 0;
430 	u32 snap_type_sel = 0;
431 	u32 ts_master_en = 0;
432 	u32 ts_event_en = 0;
433 	u32 value = 0;
434 
435 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
436 		netdev_alert(priv->dev, "No support for HW time stamping\n");
437 		priv->hwts_tx_en = 0;
438 		priv->hwts_rx_en = 0;
439 
440 		return -EOPNOTSUPP;
441 	}
442 
443 	if (copy_from_user(&config, ifr->ifr_data,
444 			   sizeof(struct hwtstamp_config)))
445 		return -EFAULT;
446 
447 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
448 		 __func__, config.flags, config.tx_type, config.rx_filter);
449 
450 	/* reserved for future extensions */
451 	if (config.flags)
452 		return -EINVAL;
453 
454 	if (config.tx_type != HWTSTAMP_TX_OFF &&
455 	    config.tx_type != HWTSTAMP_TX_ON)
456 		return -ERANGE;
457 
458 	if (priv->adv_ts) {
459 		switch (config.rx_filter) {
460 		case HWTSTAMP_FILTER_NONE:
461 			/* time stamp no incoming packet at all */
462 			config.rx_filter = HWTSTAMP_FILTER_NONE;
463 			break;
464 
465 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
466 			/* PTP v1, UDP, any kind of event packet */
467 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
468 			/* take time stamp for all event messages */
469 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
470 
471 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
472 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
473 			break;
474 
475 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
476 			/* PTP v1, UDP, Sync packet */
477 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
478 			/* take time stamp for SYNC messages only */
479 			ts_event_en = PTP_TCR_TSEVNTENA;
480 
481 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 			break;
484 
485 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
486 			/* PTP v1, UDP, Delay_req packet */
487 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
488 			/* take time stamp for Delay_Req messages only */
489 			ts_master_en = PTP_TCR_TSMSTRENA;
490 			ts_event_en = PTP_TCR_TSEVNTENA;
491 
492 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
493 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
494 			break;
495 
496 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
497 			/* PTP v2, UDP, any kind of event packet */
498 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
499 			ptp_v2 = PTP_TCR_TSVER2ENA;
500 			/* take time stamp for all event messages */
501 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
502 
503 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
504 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
505 			break;
506 
507 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
508 			/* PTP v2, UDP, Sync packet */
509 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
510 			ptp_v2 = PTP_TCR_TSVER2ENA;
511 			/* take time stamp for SYNC messages only */
512 			ts_event_en = PTP_TCR_TSEVNTENA;
513 
514 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
515 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
516 			break;
517 
518 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
519 			/* PTP v2, UDP, Delay_req packet */
520 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
521 			ptp_v2 = PTP_TCR_TSVER2ENA;
522 			/* take time stamp for Delay_Req messages only */
523 			ts_master_en = PTP_TCR_TSMSTRENA;
524 			ts_event_en = PTP_TCR_TSEVNTENA;
525 
526 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
527 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
528 			break;
529 
530 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
531 			/* PTP v2/802.AS1 any layer, any kind of event packet */
532 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
533 			ptp_v2 = PTP_TCR_TSVER2ENA;
534 			/* take time stamp for all event messages */
535 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
536 
537 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
538 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
539 			ptp_over_ethernet = PTP_TCR_TSIPENA;
540 			break;
541 
542 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
543 			/* PTP v2/802.AS1, any layer, Sync packet */
544 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
545 			ptp_v2 = PTP_TCR_TSVER2ENA;
546 			/* take time stamp for SYNC messages only */
547 			ts_event_en = PTP_TCR_TSEVNTENA;
548 
549 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
550 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
551 			ptp_over_ethernet = PTP_TCR_TSIPENA;
552 			break;
553 
554 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
555 			/* PTP v2/802.AS1, any layer, Delay_req packet */
556 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
557 			ptp_v2 = PTP_TCR_TSVER2ENA;
558 			/* take time stamp for Delay_Req messages only */
559 			ts_master_en = PTP_TCR_TSMSTRENA;
560 			ts_event_en = PTP_TCR_TSEVNTENA;
561 
562 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
563 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
564 			ptp_over_ethernet = PTP_TCR_TSIPENA;
565 			break;
566 
567 		case HWTSTAMP_FILTER_ALL:
568 			/* time stamp any incoming packet */
569 			config.rx_filter = HWTSTAMP_FILTER_ALL;
570 			tstamp_all = PTP_TCR_TSENALL;
571 			break;
572 
573 		default:
574 			return -ERANGE;
575 		}
576 	} else {
577 		switch (config.rx_filter) {
578 		case HWTSTAMP_FILTER_NONE:
579 			config.rx_filter = HWTSTAMP_FILTER_NONE;
580 			break;
581 		default:
582 			/* PTP v1, UDP, any kind of event packet */
583 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
584 			break;
585 		}
586 	}
587 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
588 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
589 
590 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
591 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
592 	else {
593 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
594 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
595 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
596 			 ts_master_en | snap_type_sel);
597 
598 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
599 
600 		/* program Sub Second Increment reg */
601 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
602 
603 		/* calculate default added value:
604 		 * formula is :
605 		 * addend = (2^32)/freq_div_ratio;
606 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
607 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
608 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
609 		 *       achive 20ns accuracy.
610 		 *
611 		 * 2^x * y == (y << x), hence
612 		 * 2^32 * 50000000 ==> (50000000 << 32)
613 		 */
614 		temp = (u64) (50000000ULL << 32);
615 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
616 		priv->hw->ptp->config_addend(priv->ioaddr,
617 					     priv->default_addend);
618 
619 		/* initialize system time */
620 		getnstimeofday(&now);
621 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
622 					    now.tv_nsec);
623 	}
624 
625 	return copy_to_user(ifr->ifr_data, &config,
626 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
627 }
628 
629 /**
630  * stmmac_init_ptp: init PTP
631  * @priv: driver private structure
632  * Description: this is to verify if the HW supports the PTPv1 or v2.
633  * This is done by looking at the HW cap. register.
634  * Also it registers the ptp driver.
635  */
636 static int stmmac_init_ptp(struct stmmac_priv *priv)
637 {
638 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
639 		return -EOPNOTSUPP;
640 
641 	priv->adv_ts = 0;
642 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
643 		priv->adv_ts = 1;
644 
645 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
646 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
647 
648 	if (netif_msg_hw(priv) && priv->adv_ts)
649 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
650 
651 	priv->hw->ptp = &stmmac_ptp;
652 	priv->hwts_tx_en = 0;
653 	priv->hwts_rx_en = 0;
654 
655 	return stmmac_ptp_register(priv);
656 }
657 
658 static void stmmac_release_ptp(struct stmmac_priv *priv)
659 {
660 	stmmac_ptp_unregister(priv);
661 }
662 
663 /**
664  * stmmac_adjust_link
665  * @dev: net device structure
666  * Description: it adjusts the link parameters.
667  */
668 static void stmmac_adjust_link(struct net_device *dev)
669 {
670 	struct stmmac_priv *priv = netdev_priv(dev);
671 	struct phy_device *phydev = priv->phydev;
672 	unsigned long flags;
673 	int new_state = 0;
674 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
675 
676 	if (phydev == NULL)
677 		return;
678 
679 	spin_lock_irqsave(&priv->lock, flags);
680 
681 	if (phydev->link) {
682 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
683 
684 		/* Now we make sure that we can be in full duplex mode.
685 		 * If not, we operate in half-duplex mode. */
686 		if (phydev->duplex != priv->oldduplex) {
687 			new_state = 1;
688 			if (!(phydev->duplex))
689 				ctrl &= ~priv->hw->link.duplex;
690 			else
691 				ctrl |= priv->hw->link.duplex;
692 			priv->oldduplex = phydev->duplex;
693 		}
694 		/* Flow Control operation */
695 		if (phydev->pause)
696 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
697 						 fc, pause_time);
698 
699 		if (phydev->speed != priv->speed) {
700 			new_state = 1;
701 			switch (phydev->speed) {
702 			case 1000:
703 				if (likely(priv->plat->has_gmac))
704 					ctrl &= ~priv->hw->link.port;
705 				stmmac_hw_fix_mac_speed(priv);
706 				break;
707 			case 100:
708 			case 10:
709 				if (priv->plat->has_gmac) {
710 					ctrl |= priv->hw->link.port;
711 					if (phydev->speed == SPEED_100) {
712 						ctrl |= priv->hw->link.speed;
713 					} else {
714 						ctrl &= ~(priv->hw->link.speed);
715 					}
716 				} else {
717 					ctrl &= ~priv->hw->link.port;
718 				}
719 				stmmac_hw_fix_mac_speed(priv);
720 				break;
721 			default:
722 				if (netif_msg_link(priv))
723 					pr_warn("%s: Speed (%d) not 10/100\n",
724 						dev->name, phydev->speed);
725 				break;
726 			}
727 
728 			priv->speed = phydev->speed;
729 		}
730 
731 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
732 
733 		if (!priv->oldlink) {
734 			new_state = 1;
735 			priv->oldlink = 1;
736 		}
737 	} else if (priv->oldlink) {
738 		new_state = 1;
739 		priv->oldlink = 0;
740 		priv->speed = 0;
741 		priv->oldduplex = -1;
742 	}
743 
744 	if (new_state && netif_msg_link(priv))
745 		phy_print_status(phydev);
746 
747 	/* At this stage, it could be needed to setup the EEE or adjust some
748 	 * MAC related HW registers.
749 	 */
750 	priv->eee_enabled = stmmac_eee_init(priv);
751 
752 	spin_unlock_irqrestore(&priv->lock, flags);
753 }
754 
755 /**
756  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
757  * @priv: driver private structure
758  * Description: this is to verify if the HW supports the PCS.
759  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
760  * configured for the TBI, RTBI, or SGMII PHY interface.
761  */
762 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
763 {
764 	int interface = priv->plat->interface;
765 
766 	if (priv->dma_cap.pcs) {
767 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
768 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
769 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
770 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
771 			pr_debug("STMMAC: PCS RGMII support enable\n");
772 			priv->pcs = STMMAC_PCS_RGMII;
773 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
774 			pr_debug("STMMAC: PCS SGMII support enable\n");
775 			priv->pcs = STMMAC_PCS_SGMII;
776 		}
777 	}
778 }
779 
780 /**
781  * stmmac_init_phy - PHY initialization
782  * @dev: net device structure
783  * Description: it initializes the driver's PHY state, and attaches the PHY
784  * to the mac driver.
785  *  Return value:
786  *  0 on success
787  */
788 static int stmmac_init_phy(struct net_device *dev)
789 {
790 	struct stmmac_priv *priv = netdev_priv(dev);
791 	struct phy_device *phydev;
792 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
793 	char bus_id[MII_BUS_ID_SIZE];
794 	int interface = priv->plat->interface;
795 	int max_speed = priv->plat->max_speed;
796 	priv->oldlink = 0;
797 	priv->speed = 0;
798 	priv->oldduplex = -1;
799 
800 	if (priv->plat->phy_bus_name)
801 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
802 			 priv->plat->phy_bus_name, priv->plat->bus_id);
803 	else
804 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
805 			 priv->plat->bus_id);
806 
807 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
808 		 priv->plat->phy_addr);
809 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
810 
811 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
812 
813 	if (IS_ERR(phydev)) {
814 		pr_err("%s: Could not attach to PHY\n", dev->name);
815 		return PTR_ERR(phydev);
816 	}
817 
818 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
819 	if ((interface == PHY_INTERFACE_MODE_MII) ||
820 	    (interface == PHY_INTERFACE_MODE_RMII) ||
821 		(max_speed < 1000 &&  max_speed > 0))
822 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
823 					 SUPPORTED_1000baseT_Full);
824 
825 	/*
826 	 * Broken HW is sometimes missing the pull-up resistor on the
827 	 * MDIO line, which results in reads to non-existent devices returning
828 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
829 	 * device as well.
830 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
831 	 */
832 	if (phydev->phy_id == 0) {
833 		phy_disconnect(phydev);
834 		return -ENODEV;
835 	}
836 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
837 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
838 
839 	priv->phydev = phydev;
840 
841 	return 0;
842 }
843 
844 /**
845  * stmmac_display_ring: display ring
846  * @head: pointer to the head of the ring passed.
847  * @size: size of the ring.
848  * @extend_desc: to verify if extended descriptors are used.
849  * Description: display the control/status and buffer descriptors.
850  */
851 static void stmmac_display_ring(void *head, int size, int extend_desc)
852 {
853 	int i;
854 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
855 	struct dma_desc *p = (struct dma_desc *)head;
856 
857 	for (i = 0; i < size; i++) {
858 		u64 x;
859 		if (extend_desc) {
860 			x = *(u64 *) ep;
861 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
862 				i, (unsigned int)virt_to_phys(ep),
863 				(unsigned int)x, (unsigned int)(x >> 32),
864 				ep->basic.des2, ep->basic.des3);
865 			ep++;
866 		} else {
867 			x = *(u64 *) p;
868 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
869 				i, (unsigned int)virt_to_phys(p),
870 				(unsigned int)x, (unsigned int)(x >> 32),
871 				p->des2, p->des3);
872 			p++;
873 		}
874 		pr_info("\n");
875 	}
876 }
877 
878 static void stmmac_display_rings(struct stmmac_priv *priv)
879 {
880 	unsigned int txsize = priv->dma_tx_size;
881 	unsigned int rxsize = priv->dma_rx_size;
882 
883 	if (priv->extend_desc) {
884 		pr_info("Extended RX descriptor ring:\n");
885 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
886 		pr_info("Extended TX descriptor ring:\n");
887 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
888 	} else {
889 		pr_info("RX descriptor ring:\n");
890 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
891 		pr_info("TX descriptor ring:\n");
892 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
893 	}
894 }
895 
896 static int stmmac_set_bfsize(int mtu, int bufsize)
897 {
898 	int ret = bufsize;
899 
900 	if (mtu >= BUF_SIZE_4KiB)
901 		ret = BUF_SIZE_8KiB;
902 	else if (mtu >= BUF_SIZE_2KiB)
903 		ret = BUF_SIZE_4KiB;
904 	else if (mtu > DEFAULT_BUFSIZE)
905 		ret = BUF_SIZE_2KiB;
906 	else
907 		ret = DEFAULT_BUFSIZE;
908 
909 	return ret;
910 }
911 
912 /**
913  * stmmac_clear_descriptors: clear descriptors
914  * @priv: driver private structure
915  * Description: this function is called to clear the tx and rx descriptors
916  * in case of both basic and extended descriptors are used.
917  */
918 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
919 {
920 	int i;
921 	unsigned int txsize = priv->dma_tx_size;
922 	unsigned int rxsize = priv->dma_rx_size;
923 
924 	/* Clear the Rx/Tx descriptors */
925 	for (i = 0; i < rxsize; i++)
926 		if (priv->extend_desc)
927 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
928 						     priv->use_riwt, priv->mode,
929 						     (i == rxsize - 1));
930 		else
931 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
932 						     priv->use_riwt, priv->mode,
933 						     (i == rxsize - 1));
934 	for (i = 0; i < txsize; i++)
935 		if (priv->extend_desc)
936 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
937 						     priv->mode,
938 						     (i == txsize - 1));
939 		else
940 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
941 						     priv->mode,
942 						     (i == txsize - 1));
943 }
944 
945 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
946 				  int i)
947 {
948 	struct sk_buff *skb;
949 
950 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
951 				 GFP_KERNEL);
952 	if (!skb) {
953 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
954 		return -ENOMEM;
955 	}
956 	skb_reserve(skb, NET_IP_ALIGN);
957 	priv->rx_skbuff[i] = skb;
958 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
959 						priv->dma_buf_sz,
960 						DMA_FROM_DEVICE);
961 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
962 		pr_err("%s: DMA mapping error\n", __func__);
963 		dev_kfree_skb_any(skb);
964 		return -EINVAL;
965 	}
966 
967 	p->des2 = priv->rx_skbuff_dma[i];
968 
969 	if ((priv->hw->mode->init_desc3) &&
970 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
971 		priv->hw->mode->init_desc3(p);
972 
973 	return 0;
974 }
975 
976 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
977 {
978 	if (priv->rx_skbuff[i]) {
979 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
980 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
981 		dev_kfree_skb_any(priv->rx_skbuff[i]);
982 	}
983 	priv->rx_skbuff[i] = NULL;
984 }
985 
986 /**
987  * init_dma_desc_rings - init the RX/TX descriptor rings
988  * @dev: net device structure
989  * Description:  this function initializes the DMA RX/TX descriptors
990  * and allocates the socket buffers. It suppors the chained and ring
991  * modes.
992  */
993 static int init_dma_desc_rings(struct net_device *dev)
994 {
995 	int i;
996 	struct stmmac_priv *priv = netdev_priv(dev);
997 	unsigned int txsize = priv->dma_tx_size;
998 	unsigned int rxsize = priv->dma_rx_size;
999 	unsigned int bfsize = 0;
1000 	int ret = -ENOMEM;
1001 
1002 	if (priv->hw->mode->set_16kib_bfsize)
1003 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1004 
1005 	if (bfsize < BUF_SIZE_16KiB)
1006 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1007 
1008 	priv->dma_buf_sz = bfsize;
1009 
1010 	if (netif_msg_probe(priv))
1011 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1012 			 txsize, rxsize, bfsize);
1013 
1014 	if (netif_msg_probe(priv)) {
1015 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1016 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1017 
1018 		/* RX INITIALIZATION */
1019 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1020 	}
1021 	for (i = 0; i < rxsize; i++) {
1022 		struct dma_desc *p;
1023 		if (priv->extend_desc)
1024 			p = &((priv->dma_erx + i)->basic);
1025 		else
1026 			p = priv->dma_rx + i;
1027 
1028 		ret = stmmac_init_rx_buffers(priv, p, i);
1029 		if (ret)
1030 			goto err_init_rx_buffers;
1031 
1032 		if (netif_msg_probe(priv))
1033 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1034 				 priv->rx_skbuff[i]->data,
1035 				 (unsigned int)priv->rx_skbuff_dma[i]);
1036 	}
1037 	priv->cur_rx = 0;
1038 	priv->dirty_rx = (unsigned int)(i - rxsize);
1039 	buf_sz = bfsize;
1040 
1041 	/* Setup the chained descriptor addresses */
1042 	if (priv->mode == STMMAC_CHAIN_MODE) {
1043 		if (priv->extend_desc) {
1044 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1045 					     rxsize, 1);
1046 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1047 					     txsize, 1);
1048 		} else {
1049 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1050 					     rxsize, 0);
1051 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1052 					     txsize, 0);
1053 		}
1054 	}
1055 
1056 	/* TX INITIALIZATION */
1057 	for (i = 0; i < txsize; i++) {
1058 		struct dma_desc *p;
1059 		if (priv->extend_desc)
1060 			p = &((priv->dma_etx + i)->basic);
1061 		else
1062 			p = priv->dma_tx + i;
1063 		p->des2 = 0;
1064 		priv->tx_skbuff_dma[i] = 0;
1065 		priv->tx_skbuff[i] = NULL;
1066 	}
1067 
1068 	priv->dirty_tx = 0;
1069 	priv->cur_tx = 0;
1070 
1071 	stmmac_clear_descriptors(priv);
1072 
1073 	if (netif_msg_hw(priv))
1074 		stmmac_display_rings(priv);
1075 
1076 	return 0;
1077 err_init_rx_buffers:
1078 	while (--i >= 0)
1079 		stmmac_free_rx_buffers(priv, i);
1080 	return ret;
1081 }
1082 
1083 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1084 {
1085 	int i;
1086 
1087 	for (i = 0; i < priv->dma_rx_size; i++)
1088 		stmmac_free_rx_buffers(priv, i);
1089 }
1090 
1091 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1092 {
1093 	int i;
1094 
1095 	for (i = 0; i < priv->dma_tx_size; i++) {
1096 		struct dma_desc *p;
1097 
1098 		if (priv->extend_desc)
1099 			p = &((priv->dma_etx + i)->basic);
1100 		else
1101 			p = priv->dma_tx + i;
1102 
1103 		if (priv->tx_skbuff_dma[i]) {
1104 			dma_unmap_single(priv->device,
1105 					 priv->tx_skbuff_dma[i],
1106 					 priv->hw->desc->get_tx_len(p),
1107 					 DMA_TO_DEVICE);
1108 			priv->tx_skbuff_dma[i] = 0;
1109 		}
1110 
1111 		if (priv->tx_skbuff[i] != NULL) {
1112 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1113 			priv->tx_skbuff[i] = NULL;
1114 		}
1115 	}
1116 }
1117 
1118 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1119 {
1120 	unsigned int txsize = priv->dma_tx_size;
1121 	unsigned int rxsize = priv->dma_rx_size;
1122 	int ret = -ENOMEM;
1123 
1124 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1125 					    GFP_KERNEL);
1126 	if (!priv->rx_skbuff_dma)
1127 		return -ENOMEM;
1128 
1129 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1130 					GFP_KERNEL);
1131 	if (!priv->rx_skbuff)
1132 		goto err_rx_skbuff;
1133 
1134 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1135 					    GFP_KERNEL);
1136 	if (!priv->tx_skbuff_dma)
1137 		goto err_tx_skbuff_dma;
1138 
1139 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1140 					GFP_KERNEL);
1141 	if (!priv->tx_skbuff)
1142 		goto err_tx_skbuff;
1143 
1144 	if (priv->extend_desc) {
1145 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1146 						   sizeof(struct
1147 							  dma_extended_desc),
1148 						   &priv->dma_rx_phy,
1149 						   GFP_KERNEL);
1150 		if (!priv->dma_erx)
1151 			goto err_dma;
1152 
1153 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1154 						   sizeof(struct
1155 							  dma_extended_desc),
1156 						   &priv->dma_tx_phy,
1157 						   GFP_KERNEL);
1158 		if (!priv->dma_etx) {
1159 			dma_free_coherent(priv->device, priv->dma_rx_size *
1160 					sizeof(struct dma_extended_desc),
1161 					priv->dma_erx, priv->dma_rx_phy);
1162 			goto err_dma;
1163 		}
1164 	} else {
1165 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1166 						  sizeof(struct dma_desc),
1167 						  &priv->dma_rx_phy,
1168 						  GFP_KERNEL);
1169 		if (!priv->dma_rx)
1170 			goto err_dma;
1171 
1172 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1173 						  sizeof(struct dma_desc),
1174 						  &priv->dma_tx_phy,
1175 						  GFP_KERNEL);
1176 		if (!priv->dma_tx) {
1177 			dma_free_coherent(priv->device, priv->dma_rx_size *
1178 					sizeof(struct dma_desc),
1179 					priv->dma_rx, priv->dma_rx_phy);
1180 			goto err_dma;
1181 		}
1182 	}
1183 
1184 	return 0;
1185 
1186 err_dma:
1187 	kfree(priv->tx_skbuff);
1188 err_tx_skbuff:
1189 	kfree(priv->tx_skbuff_dma);
1190 err_tx_skbuff_dma:
1191 	kfree(priv->rx_skbuff);
1192 err_rx_skbuff:
1193 	kfree(priv->rx_skbuff_dma);
1194 	return ret;
1195 }
1196 
1197 static void free_dma_desc_resources(struct stmmac_priv *priv)
1198 {
1199 	/* Release the DMA TX/RX socket buffers */
1200 	dma_free_rx_skbufs(priv);
1201 	dma_free_tx_skbufs(priv);
1202 
1203 	/* Free DMA regions of consistent memory previously allocated */
1204 	if (!priv->extend_desc) {
1205 		dma_free_coherent(priv->device,
1206 				  priv->dma_tx_size * sizeof(struct dma_desc),
1207 				  priv->dma_tx, priv->dma_tx_phy);
1208 		dma_free_coherent(priv->device,
1209 				  priv->dma_rx_size * sizeof(struct dma_desc),
1210 				  priv->dma_rx, priv->dma_rx_phy);
1211 	} else {
1212 		dma_free_coherent(priv->device, priv->dma_tx_size *
1213 				  sizeof(struct dma_extended_desc),
1214 				  priv->dma_etx, priv->dma_tx_phy);
1215 		dma_free_coherent(priv->device, priv->dma_rx_size *
1216 				  sizeof(struct dma_extended_desc),
1217 				  priv->dma_erx, priv->dma_rx_phy);
1218 	}
1219 	kfree(priv->rx_skbuff_dma);
1220 	kfree(priv->rx_skbuff);
1221 	kfree(priv->tx_skbuff_dma);
1222 	kfree(priv->tx_skbuff);
1223 }
1224 
1225 /**
1226  *  stmmac_dma_operation_mode - HW DMA operation mode
1227  *  @priv: driver private structure
1228  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1229  *  or Store-And-Forward capability.
1230  */
1231 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1232 {
1233 	if (priv->plat->force_thresh_dma_mode)
1234 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1235 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1236 		/*
1237 		 * In case of GMAC, SF mode can be enabled
1238 		 * to perform the TX COE in HW. This depends on:
1239 		 * 1) TX COE if actually supported
1240 		 * 2) There is no bugged Jumbo frame support
1241 		 *    that needs to not insert csum in the TDES.
1242 		 */
1243 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1244 		tc = SF_DMA_MODE;
1245 	} else
1246 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1247 }
1248 
1249 /**
1250  * stmmac_tx_clean:
1251  * @priv: driver private structure
1252  * Description: it reclaims resources after transmission completes.
1253  */
1254 static void stmmac_tx_clean(struct stmmac_priv *priv)
1255 {
1256 	unsigned int txsize = priv->dma_tx_size;
1257 
1258 	spin_lock(&priv->tx_lock);
1259 
1260 	priv->xstats.tx_clean++;
1261 
1262 	while (priv->dirty_tx != priv->cur_tx) {
1263 		int last;
1264 		unsigned int entry = priv->dirty_tx % txsize;
1265 		struct sk_buff *skb = priv->tx_skbuff[entry];
1266 		struct dma_desc *p;
1267 
1268 		if (priv->extend_desc)
1269 			p = (struct dma_desc *)(priv->dma_etx + entry);
1270 		else
1271 			p = priv->dma_tx + entry;
1272 
1273 		/* Check if the descriptor is owned by the DMA. */
1274 		if (priv->hw->desc->get_tx_owner(p))
1275 			break;
1276 
1277 		/* Verify tx error by looking at the last segment. */
1278 		last = priv->hw->desc->get_tx_ls(p);
1279 		if (likely(last)) {
1280 			int tx_error =
1281 			    priv->hw->desc->tx_status(&priv->dev->stats,
1282 						      &priv->xstats, p,
1283 						      priv->ioaddr);
1284 			if (likely(tx_error == 0)) {
1285 				priv->dev->stats.tx_packets++;
1286 				priv->xstats.tx_pkt_n++;
1287 			} else
1288 				priv->dev->stats.tx_errors++;
1289 
1290 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1291 		}
1292 		if (netif_msg_tx_done(priv))
1293 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1294 				 priv->cur_tx, priv->dirty_tx);
1295 
1296 		if (likely(priv->tx_skbuff_dma[entry])) {
1297 			dma_unmap_single(priv->device,
1298 					 priv->tx_skbuff_dma[entry],
1299 					 priv->hw->desc->get_tx_len(p),
1300 					 DMA_TO_DEVICE);
1301 			priv->tx_skbuff_dma[entry] = 0;
1302 		}
1303 		priv->hw->mode->clean_desc3(priv, p);
1304 
1305 		if (likely(skb != NULL)) {
1306 			dev_consume_skb_any(skb);
1307 			priv->tx_skbuff[entry] = NULL;
1308 		}
1309 
1310 		priv->hw->desc->release_tx_desc(p, priv->mode);
1311 
1312 		priv->dirty_tx++;
1313 	}
1314 	if (unlikely(netif_queue_stopped(priv->dev) &&
1315 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1316 		netif_tx_lock(priv->dev);
1317 		if (netif_queue_stopped(priv->dev) &&
1318 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1319 			if (netif_msg_tx_done(priv))
1320 				pr_debug("%s: restart transmit\n", __func__);
1321 			netif_wake_queue(priv->dev);
1322 		}
1323 		netif_tx_unlock(priv->dev);
1324 	}
1325 
1326 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1327 		stmmac_enable_eee_mode(priv);
1328 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1329 	}
1330 	spin_unlock(&priv->tx_lock);
1331 }
1332 
1333 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1334 {
1335 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1336 }
1337 
1338 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1339 {
1340 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1341 }
1342 
1343 /**
1344  * stmmac_tx_err: irq tx error mng function
1345  * @priv: driver private structure
1346  * Description: it cleans the descriptors and restarts the transmission
1347  * in case of errors.
1348  */
1349 static void stmmac_tx_err(struct stmmac_priv *priv)
1350 {
1351 	int i;
1352 	int txsize = priv->dma_tx_size;
1353 	netif_stop_queue(priv->dev);
1354 
1355 	priv->hw->dma->stop_tx(priv->ioaddr);
1356 	dma_free_tx_skbufs(priv);
1357 	for (i = 0; i < txsize; i++)
1358 		if (priv->extend_desc)
1359 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1360 						     priv->mode,
1361 						     (i == txsize - 1));
1362 		else
1363 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1364 						     priv->mode,
1365 						     (i == txsize - 1));
1366 	priv->dirty_tx = 0;
1367 	priv->cur_tx = 0;
1368 	priv->hw->dma->start_tx(priv->ioaddr);
1369 
1370 	priv->dev->stats.tx_errors++;
1371 	netif_wake_queue(priv->dev);
1372 }
1373 
1374 /**
1375  * stmmac_dma_interrupt: DMA ISR
1376  * @priv: driver private structure
1377  * Description: this is the DMA ISR. It is called by the main ISR.
1378  * It calls the dwmac dma routine to understand which type of interrupt
1379  * happened. In case of there is a Normal interrupt and either TX or RX
1380  * interrupt happened so the NAPI is scheduled.
1381  */
1382 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1383 {
1384 	int status;
1385 
1386 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1387 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1388 		if (likely(napi_schedule_prep(&priv->napi))) {
1389 			stmmac_disable_dma_irq(priv);
1390 			__napi_schedule(&priv->napi);
1391 		}
1392 	}
1393 	if (unlikely(status & tx_hard_error_bump_tc)) {
1394 		/* Try to bump up the dma threshold on this failure */
1395 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1396 			tc += 64;
1397 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1398 			priv->xstats.threshold = tc;
1399 		}
1400 	} else if (unlikely(status == tx_hard_error))
1401 		stmmac_tx_err(priv);
1402 }
1403 
1404 /**
1405  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1406  * @priv: driver private structure
1407  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1408  */
1409 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1410 {
1411 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1412 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1413 
1414 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1415 
1416 	if (priv->dma_cap.rmon) {
1417 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1418 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1419 	} else
1420 		pr_info(" No MAC Management Counters available\n");
1421 }
1422 
1423 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1424 {
1425 	u32 hwid = priv->hw->synopsys_uid;
1426 
1427 	/* Check Synopsys Id (not available on old chips) */
1428 	if (likely(hwid)) {
1429 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1430 		u32 synid = (hwid & 0x000000ff);
1431 
1432 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1433 			uid, synid);
1434 
1435 		return synid;
1436 	}
1437 	return 0;
1438 }
1439 
1440 /**
1441  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1442  * @priv: driver private structure
1443  * Description: select the Enhanced/Alternate or Normal descriptors.
1444  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1445  * supported by the HW cap. register.
1446  */
1447 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1448 {
1449 	if (priv->plat->enh_desc) {
1450 		pr_info(" Enhanced/Alternate descriptors\n");
1451 
1452 		/* GMAC older than 3.50 has no extended descriptors */
1453 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1454 			pr_info("\tEnabled extended descriptors\n");
1455 			priv->extend_desc = 1;
1456 		} else
1457 			pr_warn("Extended descriptors not supported\n");
1458 
1459 		priv->hw->desc = &enh_desc_ops;
1460 	} else {
1461 		pr_info(" Normal descriptors\n");
1462 		priv->hw->desc = &ndesc_ops;
1463 	}
1464 }
1465 
1466 /**
1467  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1468  * @priv: driver private structure
1469  * Description:
1470  *  new GMAC chip generations have a new register to indicate the
1471  *  presence of the optional feature/functions.
1472  *  This can be also used to override the value passed through the
1473  *  platform and necessary for old MAC10/100 and GMAC chips.
1474  */
1475 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1476 {
1477 	u32 hw_cap = 0;
1478 
1479 	if (priv->hw->dma->get_hw_feature) {
1480 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1481 
1482 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1483 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1484 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1485 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1486 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1487 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1488 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1489 		priv->dma_cap.pmt_remote_wake_up =
1490 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1491 		priv->dma_cap.pmt_magic_frame =
1492 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1493 		/* MMC */
1494 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1495 		/* IEEE 1588-2002 */
1496 		priv->dma_cap.time_stamp =
1497 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1498 		/* IEEE 1588-2008 */
1499 		priv->dma_cap.atime_stamp =
1500 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1501 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1502 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1503 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1504 		/* TX and RX csum */
1505 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1506 		priv->dma_cap.rx_coe_type1 =
1507 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1508 		priv->dma_cap.rx_coe_type2 =
1509 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1510 		priv->dma_cap.rxfifo_over_2048 =
1511 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1512 		/* TX and RX number of channels */
1513 		priv->dma_cap.number_rx_channel =
1514 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1515 		priv->dma_cap.number_tx_channel =
1516 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1517 		/* Alternate (enhanced) DESC mode */
1518 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1519 	}
1520 
1521 	return hw_cap;
1522 }
1523 
1524 /**
1525  * stmmac_check_ether_addr: check if the MAC addr is valid
1526  * @priv: driver private structure
1527  * Description:
1528  * it is to verify if the MAC address is valid, in case of failures it
1529  * generates a random MAC address
1530  */
1531 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1532 {
1533 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1534 		priv->hw->mac->get_umac_addr((void __iomem *)
1535 					     priv->dev->base_addr,
1536 					     priv->dev->dev_addr, 0);
1537 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1538 			eth_hw_addr_random(priv->dev);
1539 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1540 			priv->dev->dev_addr);
1541 	}
1542 }
1543 
1544 /**
1545  * stmmac_init_dma_engine: DMA init.
1546  * @priv: driver private structure
1547  * Description:
1548  * It inits the DMA invoking the specific MAC/GMAC callback.
1549  * Some DMA parameters can be passed from the platform;
1550  * in case of these are not passed a default is kept for the MAC or GMAC.
1551  */
1552 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1553 {
1554 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1555 	int mixed_burst = 0;
1556 	int atds = 0;
1557 
1558 	if (priv->plat->dma_cfg) {
1559 		pbl = priv->plat->dma_cfg->pbl;
1560 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1561 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1562 		burst_len = priv->plat->dma_cfg->burst_len;
1563 	}
1564 
1565 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1566 		atds = 1;
1567 
1568 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1569 				   burst_len, priv->dma_tx_phy,
1570 				   priv->dma_rx_phy, atds);
1571 }
1572 
1573 /**
1574  * stmmac_tx_timer: mitigation sw timer for tx.
1575  * @data: data pointer
1576  * Description:
1577  * This is the timer handler to directly invoke the stmmac_tx_clean.
1578  */
1579 static void stmmac_tx_timer(unsigned long data)
1580 {
1581 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1582 
1583 	stmmac_tx_clean(priv);
1584 }
1585 
1586 /**
1587  * stmmac_init_tx_coalesce: init tx mitigation options.
1588  * @priv: driver private structure
1589  * Description:
1590  * This inits the transmit coalesce parameters: i.e. timer rate,
1591  * timer handler and default threshold used for enabling the
1592  * interrupt on completion bit.
1593  */
1594 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1595 {
1596 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1597 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1598 	init_timer(&priv->txtimer);
1599 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1600 	priv->txtimer.data = (unsigned long)priv;
1601 	priv->txtimer.function = stmmac_tx_timer;
1602 	add_timer(&priv->txtimer);
1603 }
1604 
1605 /**
1606  * stmmac_hw_setup: setup mac in a usable state.
1607  *  @dev : pointer to the device structure.
1608  *  Description:
1609  *  This function sets up the ip in a usable state.
1610  *  Return value:
1611  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1612  *  file on failure.
1613  */
1614 static int stmmac_hw_setup(struct net_device *dev)
1615 {
1616 	struct stmmac_priv *priv = netdev_priv(dev);
1617 	int ret;
1618 
1619 	ret = init_dma_desc_rings(dev);
1620 	if (ret < 0) {
1621 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1622 		return ret;
1623 	}
1624 	/* DMA initialization and SW reset */
1625 	ret = stmmac_init_dma_engine(priv);
1626 	if (ret < 0) {
1627 		pr_err("%s: DMA engine initialization failed\n", __func__);
1628 		return ret;
1629 	}
1630 
1631 	/* Copy the MAC addr into the HW  */
1632 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1633 
1634 	/* If required, perform hw setup of the bus. */
1635 	if (priv->plat->bus_setup)
1636 		priv->plat->bus_setup(priv->ioaddr);
1637 
1638 	/* Initialize the MAC Core */
1639 	priv->hw->mac->core_init(priv->ioaddr, dev->mtu);
1640 
1641 	/* Enable the MAC Rx/Tx */
1642 	stmmac_set_mac(priv->ioaddr, true);
1643 
1644 	/* Set the HW DMA mode and the COE */
1645 	stmmac_dma_operation_mode(priv);
1646 
1647 	stmmac_mmc_setup(priv);
1648 
1649 	ret = stmmac_init_ptp(priv);
1650 	if (ret && ret != -EOPNOTSUPP)
1651 		pr_warn("%s: failed PTP initialisation\n", __func__);
1652 
1653 #ifdef CONFIG_STMMAC_DEBUG_FS
1654 	ret = stmmac_init_fs(dev);
1655 	if (ret < 0)
1656 		pr_warn("%s: failed debugFS registration\n", __func__);
1657 #endif
1658 	/* Start the ball rolling... */
1659 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1660 	priv->hw->dma->start_tx(priv->ioaddr);
1661 	priv->hw->dma->start_rx(priv->ioaddr);
1662 
1663 	/* Dump DMA/MAC registers */
1664 	if (netif_msg_hw(priv)) {
1665 		priv->hw->mac->dump_regs(priv->ioaddr);
1666 		priv->hw->dma->dump_regs(priv->ioaddr);
1667 	}
1668 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1669 
1670 	priv->eee_enabled = stmmac_eee_init(priv);
1671 
1672 	stmmac_init_tx_coalesce(priv);
1673 
1674 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1675 		priv->rx_riwt = MAX_DMA_RIWT;
1676 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1677 	}
1678 
1679 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1680 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  *  stmmac_open - open entry point of the driver
1687  *  @dev : pointer to the device structure.
1688  *  Description:
1689  *  This function is the open entry point of the driver.
1690  *  Return value:
1691  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1692  *  file on failure.
1693  */
1694 static int stmmac_open(struct net_device *dev)
1695 {
1696 	struct stmmac_priv *priv = netdev_priv(dev);
1697 	int ret;
1698 
1699 	stmmac_check_ether_addr(priv);
1700 
1701 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1702 	    priv->pcs != STMMAC_PCS_RTBI) {
1703 		ret = stmmac_init_phy(dev);
1704 		if (ret) {
1705 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1706 			       __func__, ret);
1707 			goto phy_error;
1708 		}
1709 	}
1710 
1711 	/* Extra statistics */
1712 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1713 	priv->xstats.threshold = tc;
1714 
1715 	/* Create and initialize the TX/RX descriptors chains. */
1716 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1717 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1718 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1719 
1720 	ret = alloc_dma_desc_resources(priv);
1721 	if (ret < 0) {
1722 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1723 		goto dma_desc_error;
1724 	}
1725 
1726 	ret = stmmac_hw_setup(dev);
1727 	if (ret < 0) {
1728 		pr_err("%s: Hw setup failed\n", __func__);
1729 		goto init_error;
1730 	}
1731 
1732 	if (priv->phydev)
1733 		phy_start(priv->phydev);
1734 
1735 	/* Request the IRQ lines */
1736 	ret = request_irq(dev->irq, stmmac_interrupt,
1737 			  IRQF_SHARED, dev->name, dev);
1738 	if (unlikely(ret < 0)) {
1739 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1740 		       __func__, dev->irq, ret);
1741 		goto init_error;
1742 	}
1743 
1744 	/* Request the Wake IRQ in case of another line is used for WoL */
1745 	if (priv->wol_irq != dev->irq) {
1746 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1747 				  IRQF_SHARED, dev->name, dev);
1748 		if (unlikely(ret < 0)) {
1749 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1750 			       __func__, priv->wol_irq, ret);
1751 			goto wolirq_error;
1752 		}
1753 	}
1754 
1755 	/* Request the IRQ lines */
1756 	if (priv->lpi_irq != -ENXIO) {
1757 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1758 				  dev->name, dev);
1759 		if (unlikely(ret < 0)) {
1760 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1761 			       __func__, priv->lpi_irq, ret);
1762 			goto lpiirq_error;
1763 		}
1764 	}
1765 
1766 	napi_enable(&priv->napi);
1767 	netif_start_queue(dev);
1768 
1769 	return 0;
1770 
1771 lpiirq_error:
1772 	if (priv->wol_irq != dev->irq)
1773 		free_irq(priv->wol_irq, dev);
1774 wolirq_error:
1775 	free_irq(dev->irq, dev);
1776 
1777 init_error:
1778 	free_dma_desc_resources(priv);
1779 dma_desc_error:
1780 	if (priv->phydev)
1781 		phy_disconnect(priv->phydev);
1782 phy_error:
1783 	clk_disable_unprepare(priv->stmmac_clk);
1784 
1785 	return ret;
1786 }
1787 
1788 /**
1789  *  stmmac_release - close entry point of the driver
1790  *  @dev : device pointer.
1791  *  Description:
1792  *  This is the stop entry point of the driver.
1793  */
1794 static int stmmac_release(struct net_device *dev)
1795 {
1796 	struct stmmac_priv *priv = netdev_priv(dev);
1797 
1798 	if (priv->eee_enabled)
1799 		del_timer_sync(&priv->eee_ctrl_timer);
1800 
1801 	/* Stop and disconnect the PHY */
1802 	if (priv->phydev) {
1803 		phy_stop(priv->phydev);
1804 		phy_disconnect(priv->phydev);
1805 		priv->phydev = NULL;
1806 	}
1807 
1808 	netif_stop_queue(dev);
1809 
1810 	napi_disable(&priv->napi);
1811 
1812 	del_timer_sync(&priv->txtimer);
1813 
1814 	/* Free the IRQ lines */
1815 	free_irq(dev->irq, dev);
1816 	if (priv->wol_irq != dev->irq)
1817 		free_irq(priv->wol_irq, dev);
1818 	if (priv->lpi_irq != -ENXIO)
1819 		free_irq(priv->lpi_irq, dev);
1820 
1821 	/* Stop TX/RX DMA and clear the descriptors */
1822 	priv->hw->dma->stop_tx(priv->ioaddr);
1823 	priv->hw->dma->stop_rx(priv->ioaddr);
1824 
1825 	/* Release and free the Rx/Tx resources */
1826 	free_dma_desc_resources(priv);
1827 
1828 	/* Disable the MAC Rx/Tx */
1829 	stmmac_set_mac(priv->ioaddr, false);
1830 
1831 	netif_carrier_off(dev);
1832 
1833 #ifdef CONFIG_STMMAC_DEBUG_FS
1834 	stmmac_exit_fs();
1835 #endif
1836 
1837 	stmmac_release_ptp(priv);
1838 
1839 	return 0;
1840 }
1841 
1842 /**
1843  *  stmmac_xmit: Tx entry point of the driver
1844  *  @skb : the socket buffer
1845  *  @dev : device pointer
1846  *  Description : this is the tx entry point of the driver.
1847  *  It programs the chain or the ring and supports oversized frames
1848  *  and SG feature.
1849  */
1850 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1851 {
1852 	struct stmmac_priv *priv = netdev_priv(dev);
1853 	unsigned int txsize = priv->dma_tx_size;
1854 	unsigned int entry;
1855 	int i, csum_insertion = 0, is_jumbo = 0;
1856 	int nfrags = skb_shinfo(skb)->nr_frags;
1857 	struct dma_desc *desc, *first;
1858 	unsigned int nopaged_len = skb_headlen(skb);
1859 	unsigned int enh_desc = priv->plat->enh_desc;
1860 
1861 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1862 		if (!netif_queue_stopped(dev)) {
1863 			netif_stop_queue(dev);
1864 			/* This is a hard error, log it. */
1865 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1866 		}
1867 		return NETDEV_TX_BUSY;
1868 	}
1869 
1870 	spin_lock(&priv->tx_lock);
1871 
1872 	if (priv->tx_path_in_lpi_mode)
1873 		stmmac_disable_eee_mode(priv);
1874 
1875 	entry = priv->cur_tx % txsize;
1876 
1877 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1878 
1879 	if (priv->extend_desc)
1880 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1881 	else
1882 		desc = priv->dma_tx + entry;
1883 
1884 	first = desc;
1885 
1886 	/* To program the descriptors according to the size of the frame */
1887 	if (enh_desc)
1888 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1889 
1890 	if (likely(!is_jumbo)) {
1891 		desc->des2 = dma_map_single(priv->device, skb->data,
1892 					    nopaged_len, DMA_TO_DEVICE);
1893 		priv->tx_skbuff_dma[entry] = desc->des2;
1894 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1895 						csum_insertion, priv->mode);
1896 	} else {
1897 		desc = first;
1898 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1899 	}
1900 
1901 	for (i = 0; i < nfrags; i++) {
1902 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1903 		int len = skb_frag_size(frag);
1904 
1905 		priv->tx_skbuff[entry] = NULL;
1906 		entry = (++priv->cur_tx) % txsize;
1907 		if (priv->extend_desc)
1908 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1909 		else
1910 			desc = priv->dma_tx + entry;
1911 
1912 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1913 					      DMA_TO_DEVICE);
1914 		priv->tx_skbuff_dma[entry] = desc->des2;
1915 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1916 						priv->mode);
1917 		wmb();
1918 		priv->hw->desc->set_tx_owner(desc);
1919 		wmb();
1920 	}
1921 
1922 	priv->tx_skbuff[entry] = skb;
1923 
1924 	/* Finalize the latest segment. */
1925 	priv->hw->desc->close_tx_desc(desc);
1926 
1927 	wmb();
1928 	/* According to the coalesce parameter the IC bit for the latest
1929 	 * segment could be reset and the timer re-started to invoke the
1930 	 * stmmac_tx function. This approach takes care about the fragments.
1931 	 */
1932 	priv->tx_count_frames += nfrags + 1;
1933 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1934 		priv->hw->desc->clear_tx_ic(desc);
1935 		priv->xstats.tx_reset_ic_bit++;
1936 		mod_timer(&priv->txtimer,
1937 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1938 	} else
1939 		priv->tx_count_frames = 0;
1940 
1941 	/* To avoid raise condition */
1942 	priv->hw->desc->set_tx_owner(first);
1943 	wmb();
1944 
1945 	priv->cur_tx++;
1946 
1947 	if (netif_msg_pktdata(priv)) {
1948 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1949 			__func__, (priv->cur_tx % txsize),
1950 			(priv->dirty_tx % txsize), entry, first, nfrags);
1951 
1952 		if (priv->extend_desc)
1953 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1954 		else
1955 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1956 
1957 		pr_debug(">>> frame to be transmitted: ");
1958 		print_pkt(skb->data, skb->len);
1959 	}
1960 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1961 		if (netif_msg_hw(priv))
1962 			pr_debug("%s: stop transmitted packets\n", __func__);
1963 		netif_stop_queue(dev);
1964 	}
1965 
1966 	dev->stats.tx_bytes += skb->len;
1967 
1968 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1969 		     priv->hwts_tx_en)) {
1970 		/* declare that device is doing timestamping */
1971 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1972 		priv->hw->desc->enable_tx_timestamp(first);
1973 	}
1974 
1975 	if (!priv->hwts_tx_en)
1976 		skb_tx_timestamp(skb);
1977 
1978 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1979 
1980 	spin_unlock(&priv->tx_lock);
1981 
1982 	return NETDEV_TX_OK;
1983 }
1984 
1985 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
1986 {
1987 	struct ethhdr *ehdr;
1988 	u16 vlanid;
1989 
1990 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
1991 	    NETIF_F_HW_VLAN_CTAG_RX &&
1992 	    !__vlan_get_tag(skb, &vlanid)) {
1993 		/* pop the vlan tag */
1994 		ehdr = (struct ethhdr *)skb->data;
1995 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
1996 		skb_pull(skb, VLAN_HLEN);
1997 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
1998 	}
1999 }
2000 
2001 
2002 /**
2003  * stmmac_rx_refill: refill used skb preallocated buffers
2004  * @priv: driver private structure
2005  * Description : this is to reallocate the skb for the reception process
2006  * that is based on zero-copy.
2007  */
2008 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2009 {
2010 	unsigned int rxsize = priv->dma_rx_size;
2011 	int bfsize = priv->dma_buf_sz;
2012 
2013 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2014 		unsigned int entry = priv->dirty_rx % rxsize;
2015 		struct dma_desc *p;
2016 
2017 		if (priv->extend_desc)
2018 			p = (struct dma_desc *)(priv->dma_erx + entry);
2019 		else
2020 			p = priv->dma_rx + entry;
2021 
2022 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2023 			struct sk_buff *skb;
2024 
2025 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2026 
2027 			if (unlikely(skb == NULL))
2028 				break;
2029 
2030 			priv->rx_skbuff[entry] = skb;
2031 			priv->rx_skbuff_dma[entry] =
2032 			    dma_map_single(priv->device, skb->data, bfsize,
2033 					   DMA_FROM_DEVICE);
2034 
2035 			p->des2 = priv->rx_skbuff_dma[entry];
2036 
2037 			priv->hw->mode->refill_desc3(priv, p);
2038 
2039 			if (netif_msg_rx_status(priv))
2040 				pr_debug("\trefill entry #%d\n", entry);
2041 		}
2042 		wmb();
2043 		priv->hw->desc->set_rx_owner(p);
2044 		wmb();
2045 	}
2046 }
2047 
2048 /**
2049  * stmmac_rx_refill: refill used skb preallocated buffers
2050  * @priv: driver private structure
2051  * @limit: napi bugget.
2052  * Description :  this the function called by the napi poll method.
2053  * It gets all the frames inside the ring.
2054  */
2055 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2056 {
2057 	unsigned int rxsize = priv->dma_rx_size;
2058 	unsigned int entry = priv->cur_rx % rxsize;
2059 	unsigned int next_entry;
2060 	unsigned int count = 0;
2061 	int coe = priv->plat->rx_coe;
2062 
2063 	if (netif_msg_rx_status(priv)) {
2064 		pr_debug("%s: descriptor ring:\n", __func__);
2065 		if (priv->extend_desc)
2066 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2067 		else
2068 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2069 	}
2070 	while (count < limit) {
2071 		int status;
2072 		struct dma_desc *p;
2073 
2074 		if (priv->extend_desc)
2075 			p = (struct dma_desc *)(priv->dma_erx + entry);
2076 		else
2077 			p = priv->dma_rx + entry;
2078 
2079 		if (priv->hw->desc->get_rx_owner(p))
2080 			break;
2081 
2082 		count++;
2083 
2084 		next_entry = (++priv->cur_rx) % rxsize;
2085 		if (priv->extend_desc)
2086 			prefetch(priv->dma_erx + next_entry);
2087 		else
2088 			prefetch(priv->dma_rx + next_entry);
2089 
2090 		/* read the status of the incoming frame */
2091 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2092 						   &priv->xstats, p);
2093 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2094 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2095 							   &priv->xstats,
2096 							   priv->dma_erx +
2097 							   entry);
2098 		if (unlikely(status == discard_frame)) {
2099 			priv->dev->stats.rx_errors++;
2100 			if (priv->hwts_rx_en && !priv->extend_desc) {
2101 				/* DESC2 & DESC3 will be overwitten by device
2102 				 * with timestamp value, hence reinitialize
2103 				 * them in stmmac_rx_refill() function so that
2104 				 * device can reuse it.
2105 				 */
2106 				priv->rx_skbuff[entry] = NULL;
2107 				dma_unmap_single(priv->device,
2108 						 priv->rx_skbuff_dma[entry],
2109 						 priv->dma_buf_sz,
2110 						 DMA_FROM_DEVICE);
2111 			}
2112 		} else {
2113 			struct sk_buff *skb;
2114 			int frame_len;
2115 
2116 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2117 
2118 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2119 			 * Type frames (LLC/LLC-SNAP)
2120 			 */
2121 			if (unlikely(status != llc_snap))
2122 				frame_len -= ETH_FCS_LEN;
2123 
2124 			if (netif_msg_rx_status(priv)) {
2125 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2126 					 p, entry, p->des2);
2127 				if (frame_len > ETH_FRAME_LEN)
2128 					pr_debug("\tframe size %d, COE: %d\n",
2129 						 frame_len, status);
2130 			}
2131 			skb = priv->rx_skbuff[entry];
2132 			if (unlikely(!skb)) {
2133 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2134 				       priv->dev->name);
2135 				priv->dev->stats.rx_dropped++;
2136 				break;
2137 			}
2138 			prefetch(skb->data - NET_IP_ALIGN);
2139 			priv->rx_skbuff[entry] = NULL;
2140 
2141 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2142 
2143 			skb_put(skb, frame_len);
2144 			dma_unmap_single(priv->device,
2145 					 priv->rx_skbuff_dma[entry],
2146 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2147 
2148 			if (netif_msg_pktdata(priv)) {
2149 				pr_debug("frame received (%dbytes)", frame_len);
2150 				print_pkt(skb->data, frame_len);
2151 			}
2152 
2153 			stmmac_rx_vlan(priv->dev, skb);
2154 
2155 			skb->protocol = eth_type_trans(skb, priv->dev);
2156 
2157 			if (unlikely(!coe))
2158 				skb_checksum_none_assert(skb);
2159 			else
2160 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2161 
2162 			napi_gro_receive(&priv->napi, skb);
2163 
2164 			priv->dev->stats.rx_packets++;
2165 			priv->dev->stats.rx_bytes += frame_len;
2166 		}
2167 		entry = next_entry;
2168 	}
2169 
2170 	stmmac_rx_refill(priv);
2171 
2172 	priv->xstats.rx_pkt_n += count;
2173 
2174 	return count;
2175 }
2176 
2177 /**
2178  *  stmmac_poll - stmmac poll method (NAPI)
2179  *  @napi : pointer to the napi structure.
2180  *  @budget : maximum number of packets that the current CPU can receive from
2181  *	      all interfaces.
2182  *  Description :
2183  *  To look at the incoming frames and clear the tx resources.
2184  */
2185 static int stmmac_poll(struct napi_struct *napi, int budget)
2186 {
2187 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2188 	int work_done = 0;
2189 
2190 	priv->xstats.napi_poll++;
2191 	stmmac_tx_clean(priv);
2192 
2193 	work_done = stmmac_rx(priv, budget);
2194 	if (work_done < budget) {
2195 		napi_complete(napi);
2196 		stmmac_enable_dma_irq(priv);
2197 	}
2198 	return work_done;
2199 }
2200 
2201 /**
2202  *  stmmac_tx_timeout
2203  *  @dev : Pointer to net device structure
2204  *  Description: this function is called when a packet transmission fails to
2205  *   complete within a reasonable time. The driver will mark the error in the
2206  *   netdev structure and arrange for the device to be reset to a sane state
2207  *   in order to transmit a new packet.
2208  */
2209 static void stmmac_tx_timeout(struct net_device *dev)
2210 {
2211 	struct stmmac_priv *priv = netdev_priv(dev);
2212 
2213 	/* Clear Tx resources and restart transmitting again */
2214 	stmmac_tx_err(priv);
2215 }
2216 
2217 /* Configuration changes (passed on by ifconfig) */
2218 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2219 {
2220 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2221 		return -EBUSY;
2222 
2223 	/* Don't allow changing the I/O address */
2224 	if (map->base_addr != dev->base_addr) {
2225 		pr_warn("%s: can't change I/O address\n", dev->name);
2226 		return -EOPNOTSUPP;
2227 	}
2228 
2229 	/* Don't allow changing the IRQ */
2230 	if (map->irq != dev->irq) {
2231 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2232 		return -EOPNOTSUPP;
2233 	}
2234 
2235 	return 0;
2236 }
2237 
2238 /**
2239  *  stmmac_set_rx_mode - entry point for multicast addressing
2240  *  @dev : pointer to the device structure
2241  *  Description:
2242  *  This function is a driver entry point which gets called by the kernel
2243  *  whenever multicast addresses must be enabled/disabled.
2244  *  Return value:
2245  *  void.
2246  */
2247 static void stmmac_set_rx_mode(struct net_device *dev)
2248 {
2249 	struct stmmac_priv *priv = netdev_priv(dev);
2250 
2251 	spin_lock(&priv->lock);
2252 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2253 	spin_unlock(&priv->lock);
2254 }
2255 
2256 /**
2257  *  stmmac_change_mtu - entry point to change MTU size for the device.
2258  *  @dev : device pointer.
2259  *  @new_mtu : the new MTU size for the device.
2260  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2261  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2262  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2263  *  Return value:
2264  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2265  *  file on failure.
2266  */
2267 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2268 {
2269 	struct stmmac_priv *priv = netdev_priv(dev);
2270 	int max_mtu;
2271 
2272 	if (netif_running(dev)) {
2273 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2274 		return -EBUSY;
2275 	}
2276 
2277 	if (priv->plat->enh_desc)
2278 		max_mtu = JUMBO_LEN;
2279 	else
2280 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2281 
2282 	if (priv->plat->maxmtu < max_mtu)
2283 		max_mtu = priv->plat->maxmtu;
2284 
2285 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2286 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2287 		return -EINVAL;
2288 	}
2289 
2290 	dev->mtu = new_mtu;
2291 	netdev_update_features(dev);
2292 
2293 	return 0;
2294 }
2295 
2296 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2297 					     netdev_features_t features)
2298 {
2299 	struct stmmac_priv *priv = netdev_priv(dev);
2300 
2301 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2302 		features &= ~NETIF_F_RXCSUM;
2303 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2304 		features &= ~NETIF_F_IPV6_CSUM;
2305 	if (!priv->plat->tx_coe)
2306 		features &= ~NETIF_F_ALL_CSUM;
2307 
2308 	/* Some GMAC devices have a bugged Jumbo frame support that
2309 	 * needs to have the Tx COE disabled for oversized frames
2310 	 * (due to limited buffer sizes). In this case we disable
2311 	 * the TX csum insertionin the TDES and not use SF.
2312 	 */
2313 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2314 		features &= ~NETIF_F_ALL_CSUM;
2315 
2316 	return features;
2317 }
2318 
2319 /**
2320  *  stmmac_interrupt - main ISR
2321  *  @irq: interrupt number.
2322  *  @dev_id: to pass the net device pointer.
2323  *  Description: this is the main driver interrupt service routine.
2324  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2325  *  interrupts.
2326  */
2327 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2328 {
2329 	struct net_device *dev = (struct net_device *)dev_id;
2330 	struct stmmac_priv *priv = netdev_priv(dev);
2331 
2332 	if (priv->irq_wake)
2333 		pm_wakeup_event(priv->device, 0);
2334 
2335 	if (unlikely(!dev)) {
2336 		pr_err("%s: invalid dev pointer\n", __func__);
2337 		return IRQ_NONE;
2338 	}
2339 
2340 	/* To handle GMAC own interrupts */
2341 	if (priv->plat->has_gmac) {
2342 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2343 							    dev->base_addr,
2344 							    &priv->xstats);
2345 		if (unlikely(status)) {
2346 			/* For LPI we need to save the tx status */
2347 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2348 				priv->tx_path_in_lpi_mode = true;
2349 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2350 				priv->tx_path_in_lpi_mode = false;
2351 		}
2352 	}
2353 
2354 	/* To handle DMA interrupts */
2355 	stmmac_dma_interrupt(priv);
2356 
2357 	return IRQ_HANDLED;
2358 }
2359 
2360 #ifdef CONFIG_NET_POLL_CONTROLLER
2361 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2362  * to allow network I/O with interrupts disabled.
2363  */
2364 static void stmmac_poll_controller(struct net_device *dev)
2365 {
2366 	disable_irq(dev->irq);
2367 	stmmac_interrupt(dev->irq, dev);
2368 	enable_irq(dev->irq);
2369 }
2370 #endif
2371 
2372 /**
2373  *  stmmac_ioctl - Entry point for the Ioctl
2374  *  @dev: Device pointer.
2375  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2376  *  a proprietary structure used to pass information to the driver.
2377  *  @cmd: IOCTL command
2378  *  Description:
2379  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2380  */
2381 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2382 {
2383 	struct stmmac_priv *priv = netdev_priv(dev);
2384 	int ret = -EOPNOTSUPP;
2385 
2386 	if (!netif_running(dev))
2387 		return -EINVAL;
2388 
2389 	switch (cmd) {
2390 	case SIOCGMIIPHY:
2391 	case SIOCGMIIREG:
2392 	case SIOCSMIIREG:
2393 		if (!priv->phydev)
2394 			return -EINVAL;
2395 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2396 		break;
2397 	case SIOCSHWTSTAMP:
2398 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2399 		break;
2400 	default:
2401 		break;
2402 	}
2403 
2404 	return ret;
2405 }
2406 
2407 #ifdef CONFIG_STMMAC_DEBUG_FS
2408 static struct dentry *stmmac_fs_dir;
2409 static struct dentry *stmmac_rings_status;
2410 static struct dentry *stmmac_dma_cap;
2411 
2412 static void sysfs_display_ring(void *head, int size, int extend_desc,
2413 			       struct seq_file *seq)
2414 {
2415 	int i;
2416 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2417 	struct dma_desc *p = (struct dma_desc *)head;
2418 
2419 	for (i = 0; i < size; i++) {
2420 		u64 x;
2421 		if (extend_desc) {
2422 			x = *(u64 *) ep;
2423 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2424 				   i, (unsigned int)virt_to_phys(ep),
2425 				   (unsigned int)x, (unsigned int)(x >> 32),
2426 				   ep->basic.des2, ep->basic.des3);
2427 			ep++;
2428 		} else {
2429 			x = *(u64 *) p;
2430 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2431 				   i, (unsigned int)virt_to_phys(ep),
2432 				   (unsigned int)x, (unsigned int)(x >> 32),
2433 				   p->des2, p->des3);
2434 			p++;
2435 		}
2436 		seq_printf(seq, "\n");
2437 	}
2438 }
2439 
2440 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2441 {
2442 	struct net_device *dev = seq->private;
2443 	struct stmmac_priv *priv = netdev_priv(dev);
2444 	unsigned int txsize = priv->dma_tx_size;
2445 	unsigned int rxsize = priv->dma_rx_size;
2446 
2447 	if (priv->extend_desc) {
2448 		seq_printf(seq, "Extended RX descriptor ring:\n");
2449 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2450 		seq_printf(seq, "Extended TX descriptor ring:\n");
2451 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2452 	} else {
2453 		seq_printf(seq, "RX descriptor ring:\n");
2454 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2455 		seq_printf(seq, "TX descriptor ring:\n");
2456 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2463 {
2464 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2465 }
2466 
2467 static const struct file_operations stmmac_rings_status_fops = {
2468 	.owner = THIS_MODULE,
2469 	.open = stmmac_sysfs_ring_open,
2470 	.read = seq_read,
2471 	.llseek = seq_lseek,
2472 	.release = single_release,
2473 };
2474 
2475 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2476 {
2477 	struct net_device *dev = seq->private;
2478 	struct stmmac_priv *priv = netdev_priv(dev);
2479 
2480 	if (!priv->hw_cap_support) {
2481 		seq_printf(seq, "DMA HW features not supported\n");
2482 		return 0;
2483 	}
2484 
2485 	seq_printf(seq, "==============================\n");
2486 	seq_printf(seq, "\tDMA HW features\n");
2487 	seq_printf(seq, "==============================\n");
2488 
2489 	seq_printf(seq, "\t10/100 Mbps %s\n",
2490 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2491 	seq_printf(seq, "\t1000 Mbps %s\n",
2492 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2493 	seq_printf(seq, "\tHalf duple %s\n",
2494 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2495 	seq_printf(seq, "\tHash Filter: %s\n",
2496 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2497 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2498 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2499 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2500 		   (priv->dma_cap.pcs) ? "Y" : "N");
2501 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2502 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2503 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2504 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2505 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2506 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2507 	seq_printf(seq, "\tRMON module: %s\n",
2508 		   (priv->dma_cap.rmon) ? "Y" : "N");
2509 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2510 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2511 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2512 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2513 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2514 		   (priv->dma_cap.eee) ? "Y" : "N");
2515 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2516 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2517 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2518 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2519 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2520 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2521 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2522 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2523 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2524 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2525 		   priv->dma_cap.number_rx_channel);
2526 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2527 		   priv->dma_cap.number_tx_channel);
2528 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2529 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2530 
2531 	return 0;
2532 }
2533 
2534 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2535 {
2536 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2537 }
2538 
2539 static const struct file_operations stmmac_dma_cap_fops = {
2540 	.owner = THIS_MODULE,
2541 	.open = stmmac_sysfs_dma_cap_open,
2542 	.read = seq_read,
2543 	.llseek = seq_lseek,
2544 	.release = single_release,
2545 };
2546 
2547 static int stmmac_init_fs(struct net_device *dev)
2548 {
2549 	/* Create debugfs entries */
2550 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2551 
2552 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2553 		pr_err("ERROR %s, debugfs create directory failed\n",
2554 		       STMMAC_RESOURCE_NAME);
2555 
2556 		return -ENOMEM;
2557 	}
2558 
2559 	/* Entry to report DMA RX/TX rings */
2560 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2561 						  S_IRUGO, stmmac_fs_dir, dev,
2562 						  &stmmac_rings_status_fops);
2563 
2564 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2565 		pr_info("ERROR creating stmmac ring debugfs file\n");
2566 		debugfs_remove(stmmac_fs_dir);
2567 
2568 		return -ENOMEM;
2569 	}
2570 
2571 	/* Entry to report the DMA HW features */
2572 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2573 					     dev, &stmmac_dma_cap_fops);
2574 
2575 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2576 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2577 		debugfs_remove(stmmac_rings_status);
2578 		debugfs_remove(stmmac_fs_dir);
2579 
2580 		return -ENOMEM;
2581 	}
2582 
2583 	return 0;
2584 }
2585 
2586 static void stmmac_exit_fs(void)
2587 {
2588 	debugfs_remove(stmmac_rings_status);
2589 	debugfs_remove(stmmac_dma_cap);
2590 	debugfs_remove(stmmac_fs_dir);
2591 }
2592 #endif /* CONFIG_STMMAC_DEBUG_FS */
2593 
2594 static const struct net_device_ops stmmac_netdev_ops = {
2595 	.ndo_open = stmmac_open,
2596 	.ndo_start_xmit = stmmac_xmit,
2597 	.ndo_stop = stmmac_release,
2598 	.ndo_change_mtu = stmmac_change_mtu,
2599 	.ndo_fix_features = stmmac_fix_features,
2600 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2601 	.ndo_tx_timeout = stmmac_tx_timeout,
2602 	.ndo_do_ioctl = stmmac_ioctl,
2603 	.ndo_set_config = stmmac_config,
2604 #ifdef CONFIG_NET_POLL_CONTROLLER
2605 	.ndo_poll_controller = stmmac_poll_controller,
2606 #endif
2607 	.ndo_set_mac_address = eth_mac_addr,
2608 };
2609 
2610 /**
2611  *  stmmac_hw_init - Init the MAC device
2612  *  @priv: driver private structure
2613  *  Description: this function detects which MAC device
2614  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2615  *  (if supported) and sets the driver's features (for example
2616  *  to use the ring or chaine mode or support the normal/enh
2617  *  descriptor structure).
2618  */
2619 static int stmmac_hw_init(struct stmmac_priv *priv)
2620 {
2621 	int ret;
2622 	struct mac_device_info *mac;
2623 
2624 	/* Identify the MAC HW device */
2625 	if (priv->plat->has_gmac) {
2626 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2627 		mac = dwmac1000_setup(priv->ioaddr);
2628 	} else {
2629 		mac = dwmac100_setup(priv->ioaddr);
2630 	}
2631 	if (!mac)
2632 		return -ENOMEM;
2633 
2634 	priv->hw = mac;
2635 
2636 	/* Get and dump the chip ID */
2637 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2638 
2639 	/* To use the chained or ring mode */
2640 	if (chain_mode) {
2641 		priv->hw->mode = &chain_mode_ops;
2642 		pr_info(" Chain mode enabled\n");
2643 		priv->mode = STMMAC_CHAIN_MODE;
2644 	} else {
2645 		priv->hw->mode = &ring_mode_ops;
2646 		pr_info(" Ring mode enabled\n");
2647 		priv->mode = STMMAC_RING_MODE;
2648 	}
2649 
2650 	/* Get the HW capability (new GMAC newer than 3.50a) */
2651 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2652 	if (priv->hw_cap_support) {
2653 		pr_info(" DMA HW capability register supported");
2654 
2655 		/* We can override some gmac/dma configuration fields: e.g.
2656 		 * enh_desc, tx_coe (e.g. that are passed through the
2657 		 * platform) with the values from the HW capability
2658 		 * register (if supported).
2659 		 */
2660 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2661 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2662 
2663 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2664 
2665 		if (priv->dma_cap.rx_coe_type2)
2666 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2667 		else if (priv->dma_cap.rx_coe_type1)
2668 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2669 
2670 	} else
2671 		pr_info(" No HW DMA feature register supported");
2672 
2673 	/* To use alternate (extended) or normal descriptor structures */
2674 	stmmac_selec_desc_mode(priv);
2675 
2676 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2677 	if (!ret) {
2678 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2679 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2680 	}
2681 
2682 	if (priv->plat->rx_coe)
2683 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2684 			priv->plat->rx_coe);
2685 	if (priv->plat->tx_coe)
2686 		pr_info(" TX Checksum insertion supported\n");
2687 
2688 	if (priv->plat->pmt) {
2689 		pr_info(" Wake-Up On Lan supported\n");
2690 		device_set_wakeup_capable(priv->device, 1);
2691 	}
2692 
2693 	return 0;
2694 }
2695 
2696 /**
2697  * stmmac_dvr_probe
2698  * @device: device pointer
2699  * @plat_dat: platform data pointer
2700  * @addr: iobase memory address
2701  * Description: this is the main probe function used to
2702  * call the alloc_etherdev, allocate the priv structure.
2703  */
2704 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2705 				     struct plat_stmmacenet_data *plat_dat,
2706 				     void __iomem *addr)
2707 {
2708 	int ret = 0;
2709 	struct net_device *ndev = NULL;
2710 	struct stmmac_priv *priv;
2711 
2712 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2713 	if (!ndev)
2714 		return NULL;
2715 
2716 	SET_NETDEV_DEV(ndev, device);
2717 
2718 	priv = netdev_priv(ndev);
2719 	priv->device = device;
2720 	priv->dev = ndev;
2721 
2722 	ether_setup(ndev);
2723 
2724 	stmmac_set_ethtool_ops(ndev);
2725 	priv->pause = pause;
2726 	priv->plat = plat_dat;
2727 	priv->ioaddr = addr;
2728 	priv->dev->base_addr = (unsigned long)addr;
2729 
2730 	/* Verify driver arguments */
2731 	stmmac_verify_args();
2732 
2733 	/* Override with kernel parameters if supplied XXX CRS XXX
2734 	 * this needs to have multiple instances
2735 	 */
2736 	if ((phyaddr >= 0) && (phyaddr <= 31))
2737 		priv->plat->phy_addr = phyaddr;
2738 
2739 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2740 	if (IS_ERR(priv->stmmac_clk)) {
2741 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2742 			 __func__);
2743 		ret = PTR_ERR(priv->stmmac_clk);
2744 		goto error_clk_get;
2745 	}
2746 	clk_prepare_enable(priv->stmmac_clk);
2747 
2748 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2749 						  STMMAC_RESOURCE_NAME);
2750 	if (IS_ERR(priv->stmmac_rst)) {
2751 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2752 			ret = -EPROBE_DEFER;
2753 			goto error_hw_init;
2754 		}
2755 		dev_info(priv->device, "no reset control found\n");
2756 		priv->stmmac_rst = NULL;
2757 	}
2758 	if (priv->stmmac_rst)
2759 		reset_control_deassert(priv->stmmac_rst);
2760 
2761 	/* Init MAC and get the capabilities */
2762 	ret = stmmac_hw_init(priv);
2763 	if (ret)
2764 		goto error_hw_init;
2765 
2766 	ndev->netdev_ops = &stmmac_netdev_ops;
2767 
2768 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2769 			    NETIF_F_RXCSUM;
2770 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2771 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2772 #ifdef STMMAC_VLAN_TAG_USED
2773 	/* Both mac100 and gmac support receive VLAN tag detection */
2774 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2775 #endif
2776 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2777 
2778 	if (flow_ctrl)
2779 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2780 
2781 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2782 	 * In some case, for example on bugged HW this feature
2783 	 * has to be disable and this can be done by passing the
2784 	 * riwt_off field from the platform.
2785 	 */
2786 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2787 		priv->use_riwt = 1;
2788 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2789 	}
2790 
2791 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2792 
2793 	spin_lock_init(&priv->lock);
2794 	spin_lock_init(&priv->tx_lock);
2795 
2796 	ret = register_netdev(ndev);
2797 	if (ret) {
2798 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2799 		goto error_netdev_register;
2800 	}
2801 
2802 	/* If a specific clk_csr value is passed from the platform
2803 	 * this means that the CSR Clock Range selection cannot be
2804 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2805 	 * set the MDC clock dynamically according to the csr actual
2806 	 * clock input.
2807 	 */
2808 	if (!priv->plat->clk_csr)
2809 		stmmac_clk_csr_set(priv);
2810 	else
2811 		priv->clk_csr = priv->plat->clk_csr;
2812 
2813 	stmmac_check_pcs_mode(priv);
2814 
2815 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2816 	    priv->pcs != STMMAC_PCS_RTBI) {
2817 		/* MDIO bus Registration */
2818 		ret = stmmac_mdio_register(ndev);
2819 		if (ret < 0) {
2820 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2821 				 __func__, priv->plat->bus_id);
2822 			goto error_mdio_register;
2823 		}
2824 	}
2825 
2826 	return priv;
2827 
2828 error_mdio_register:
2829 	unregister_netdev(ndev);
2830 error_netdev_register:
2831 	netif_napi_del(&priv->napi);
2832 error_hw_init:
2833 	clk_disable_unprepare(priv->stmmac_clk);
2834 error_clk_get:
2835 	free_netdev(ndev);
2836 
2837 	return ERR_PTR(ret);
2838 }
2839 
2840 /**
2841  * stmmac_dvr_remove
2842  * @ndev: net device pointer
2843  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2844  * changes the link status, releases the DMA descriptor rings.
2845  */
2846 int stmmac_dvr_remove(struct net_device *ndev)
2847 {
2848 	struct stmmac_priv *priv = netdev_priv(ndev);
2849 
2850 	pr_info("%s:\n\tremoving driver", __func__);
2851 
2852 	priv->hw->dma->stop_rx(priv->ioaddr);
2853 	priv->hw->dma->stop_tx(priv->ioaddr);
2854 
2855 	stmmac_set_mac(priv->ioaddr, false);
2856 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2857 	    priv->pcs != STMMAC_PCS_RTBI)
2858 		stmmac_mdio_unregister(ndev);
2859 	netif_carrier_off(ndev);
2860 	unregister_netdev(ndev);
2861 	if (priv->stmmac_rst)
2862 		reset_control_assert(priv->stmmac_rst);
2863 	clk_disable_unprepare(priv->stmmac_clk);
2864 	free_netdev(ndev);
2865 
2866 	return 0;
2867 }
2868 
2869 #ifdef CONFIG_PM
2870 int stmmac_suspend(struct net_device *ndev)
2871 {
2872 	struct stmmac_priv *priv = netdev_priv(ndev);
2873 	unsigned long flags;
2874 
2875 	if (!ndev || !netif_running(ndev))
2876 		return 0;
2877 
2878 	if (priv->phydev)
2879 		phy_stop(priv->phydev);
2880 
2881 	spin_lock_irqsave(&priv->lock, flags);
2882 
2883 	netif_device_detach(ndev);
2884 	netif_stop_queue(ndev);
2885 
2886 	napi_disable(&priv->napi);
2887 
2888 	/* Stop TX/RX DMA */
2889 	priv->hw->dma->stop_tx(priv->ioaddr);
2890 	priv->hw->dma->stop_rx(priv->ioaddr);
2891 
2892 	stmmac_clear_descriptors(priv);
2893 
2894 	/* Enable Power down mode by programming the PMT regs */
2895 	if (device_may_wakeup(priv->device)) {
2896 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2897 		priv->irq_wake = 1;
2898 	} else {
2899 		stmmac_set_mac(priv->ioaddr, false);
2900 		pinctrl_pm_select_sleep_state(priv->device);
2901 		/* Disable clock in case of PWM is off */
2902 		clk_disable_unprepare(priv->stmmac_clk);
2903 	}
2904 	spin_unlock_irqrestore(&priv->lock, flags);
2905 	return 0;
2906 }
2907 
2908 int stmmac_resume(struct net_device *ndev)
2909 {
2910 	struct stmmac_priv *priv = netdev_priv(ndev);
2911 	unsigned long flags;
2912 
2913 	if (!netif_running(ndev))
2914 		return 0;
2915 
2916 	spin_lock_irqsave(&priv->lock, flags);
2917 
2918 	/* Power Down bit, into the PM register, is cleared
2919 	 * automatically as soon as a magic packet or a Wake-up frame
2920 	 * is received. Anyway, it's better to manually clear
2921 	 * this bit because it can generate problems while resuming
2922 	 * from another devices (e.g. serial console).
2923 	 */
2924 	if (device_may_wakeup(priv->device)) {
2925 		priv->hw->mac->pmt(priv->ioaddr, 0);
2926 		priv->irq_wake = 0;
2927 	} else {
2928 		pinctrl_pm_select_default_state(priv->device);
2929 		/* enable the clk prevously disabled */
2930 		clk_prepare_enable(priv->stmmac_clk);
2931 		/* reset the phy so that it's ready */
2932 		if (priv->mii)
2933 			stmmac_mdio_reset(priv->mii);
2934 	}
2935 
2936 	netif_device_attach(ndev);
2937 
2938 	stmmac_hw_setup(ndev);
2939 
2940 	napi_enable(&priv->napi);
2941 
2942 	netif_start_queue(ndev);
2943 
2944 	spin_unlock_irqrestore(&priv->lock, flags);
2945 
2946 	if (priv->phydev)
2947 		phy_start(priv->phydev);
2948 
2949 	return 0;
2950 }
2951 #endif /* CONFIG_PM */
2952 
2953 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2954  * depending on the configuration selected.
2955  */
2956 static int __init stmmac_init(void)
2957 {
2958 	int ret;
2959 
2960 	ret = stmmac_register_platform();
2961 	if (ret)
2962 		goto err;
2963 	ret = stmmac_register_pci();
2964 	if (ret)
2965 		goto err_pci;
2966 	return 0;
2967 err_pci:
2968 	stmmac_unregister_platform();
2969 err:
2970 	pr_err("stmmac: driver registration failed\n");
2971 	return ret;
2972 }
2973 
2974 static void __exit stmmac_exit(void)
2975 {
2976 	stmmac_unregister_platform();
2977 	stmmac_unregister_pci();
2978 }
2979 
2980 module_init(stmmac_init);
2981 module_exit(stmmac_exit);
2982 
2983 #ifndef MODULE
2984 static int __init stmmac_cmdline_opt(char *str)
2985 {
2986 	char *opt;
2987 
2988 	if (!str || !*str)
2989 		return -EINVAL;
2990 	while ((opt = strsep(&str, ",")) != NULL) {
2991 		if (!strncmp(opt, "debug:", 6)) {
2992 			if (kstrtoint(opt + 6, 0, &debug))
2993 				goto err;
2994 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2995 			if (kstrtoint(opt + 8, 0, &phyaddr))
2996 				goto err;
2997 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2998 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2999 				goto err;
3000 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3001 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3002 				goto err;
3003 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3004 			if (kstrtoint(opt + 7, 0, &buf_sz))
3005 				goto err;
3006 		} else if (!strncmp(opt, "tc:", 3)) {
3007 			if (kstrtoint(opt + 3, 0, &tc))
3008 				goto err;
3009 		} else if (!strncmp(opt, "watchdog:", 9)) {
3010 			if (kstrtoint(opt + 9, 0, &watchdog))
3011 				goto err;
3012 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3013 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3014 				goto err;
3015 		} else if (!strncmp(opt, "pause:", 6)) {
3016 			if (kstrtoint(opt + 6, 0, &pause))
3017 				goto err;
3018 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3019 			if (kstrtoint(opt + 10, 0, &eee_timer))
3020 				goto err;
3021 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3022 			if (kstrtoint(opt + 11, 0, &chain_mode))
3023 				goto err;
3024 		}
3025 	}
3026 	return 0;
3027 
3028 err:
3029 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3030 	return -EINVAL;
3031 }
3032 
3033 __setup("stmmaceth=", stmmac_cmdline_opt);
3034 #endif /* MODULE */
3035 
3036 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3037 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3038 MODULE_LICENSE("GPL");
3039