xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision ac73d4bf2cdaf2cb8a43df8ee4a5c066d2c5d7b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
993 
994 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
995 		switch (speed) {
996 		case SPEED_10000:
997 			ctrl |= priv->hw->link.xgmii.speed10000;
998 			break;
999 		case SPEED_5000:
1000 			ctrl |= priv->hw->link.xgmii.speed5000;
1001 			break;
1002 		case SPEED_2500:
1003 			ctrl |= priv->hw->link.xgmii.speed2500;
1004 			break;
1005 		default:
1006 			return;
1007 		}
1008 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009 		switch (speed) {
1010 		case SPEED_100000:
1011 			ctrl |= priv->hw->link.xlgmii.speed100000;
1012 			break;
1013 		case SPEED_50000:
1014 			ctrl |= priv->hw->link.xlgmii.speed50000;
1015 			break;
1016 		case SPEED_40000:
1017 			ctrl |= priv->hw->link.xlgmii.speed40000;
1018 			break;
1019 		case SPEED_25000:
1020 			ctrl |= priv->hw->link.xlgmii.speed25000;
1021 			break;
1022 		case SPEED_10000:
1023 			ctrl |= priv->hw->link.xgmii.speed10000;
1024 			break;
1025 		case SPEED_2500:
1026 			ctrl |= priv->hw->link.speed2500;
1027 			break;
1028 		case SPEED_1000:
1029 			ctrl |= priv->hw->link.speed1000;
1030 			break;
1031 		default:
1032 			return;
1033 		}
1034 	} else {
1035 		switch (speed) {
1036 		case SPEED_2500:
1037 			ctrl |= priv->hw->link.speed2500;
1038 			break;
1039 		case SPEED_1000:
1040 			ctrl |= priv->hw->link.speed1000;
1041 			break;
1042 		case SPEED_100:
1043 			ctrl |= priv->hw->link.speed100;
1044 			break;
1045 		case SPEED_10:
1046 			ctrl |= priv->hw->link.speed10;
1047 			break;
1048 		default:
1049 			return;
1050 		}
1051 	}
1052 
1053 	priv->speed = speed;
1054 
1055 	if (priv->plat->fix_mac_speed)
1056 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057 
1058 	if (!duplex)
1059 		ctrl &= ~priv->hw->link.duplex;
1060 	else
1061 		ctrl |= priv->hw->link.duplex;
1062 
1063 	/* Flow Control operation */
1064 	if (tx_pause && rx_pause)
1065 		stmmac_mac_flow_ctrl(priv, duplex);
1066 
1067 	if (ctrl != old_ctrl)
1068 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1069 
1070 	stmmac_mac_set(priv, priv->ioaddr, true);
1071 	if (phy && priv->dma_cap.eee) {
1072 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1073 		priv->eee_enabled = stmmac_eee_init(priv);
1074 		priv->tx_lpi_enabled = priv->eee_enabled;
1075 		stmmac_set_eee_pls(priv, priv->hw, true);
1076 	}
1077 
1078 	if (priv->dma_cap.fpesel)
1079 		stmmac_fpe_link_state_handle(priv, true);
1080 }
1081 
1082 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1083 	.validate = phylink_generic_validate,
1084 	.mac_select_pcs = stmmac_mac_select_pcs,
1085 	.mac_config = stmmac_mac_config,
1086 	.mac_link_down = stmmac_mac_link_down,
1087 	.mac_link_up = stmmac_mac_link_up,
1088 };
1089 
1090 /**
1091  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1092  * @priv: driver private structure
1093  * Description: this is to verify if the HW supports the PCS.
1094  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1095  * configured for the TBI, RTBI, or SGMII PHY interface.
1096  */
1097 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1098 {
1099 	int interface = priv->plat->interface;
1100 
1101 	if (priv->dma_cap.pcs) {
1102 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1103 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1104 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1105 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1106 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1107 			priv->hw->pcs = STMMAC_PCS_RGMII;
1108 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1109 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1110 			priv->hw->pcs = STMMAC_PCS_SGMII;
1111 		}
1112 	}
1113 }
1114 
1115 /**
1116  * stmmac_init_phy - PHY initialization
1117  * @dev: net device structure
1118  * Description: it initializes the driver's PHY state, and attaches the PHY
1119  * to the mac driver.
1120  *  Return value:
1121  *  0 on success
1122  */
1123 static int stmmac_init_phy(struct net_device *dev)
1124 {
1125 	struct stmmac_priv *priv = netdev_priv(dev);
1126 	struct fwnode_handle *fwnode;
1127 	int ret;
1128 
1129 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1130 	if (!fwnode)
1131 		fwnode = dev_fwnode(priv->device);
1132 
1133 	if (fwnode)
1134 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1135 
1136 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1137 	 * manually parse it
1138 	 */
1139 	if (!fwnode || ret) {
1140 		int addr = priv->plat->phy_addr;
1141 		struct phy_device *phydev;
1142 
1143 		phydev = mdiobus_get_phy(priv->mii, addr);
1144 		if (!phydev) {
1145 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1146 			return -ENODEV;
1147 		}
1148 
1149 		ret = phylink_connect_phy(priv->phylink, phydev);
1150 	}
1151 
1152 	if (!priv->plat->pmt) {
1153 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1154 
1155 		phylink_ethtool_get_wol(priv->phylink, &wol);
1156 		device_set_wakeup_capable(priv->device, !!wol.supported);
1157 	}
1158 
1159 	return ret;
1160 }
1161 
1162 static int stmmac_phy_setup(struct stmmac_priv *priv)
1163 {
1164 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1165 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1166 	int max_speed = priv->plat->max_speed;
1167 	int mode = priv->plat->phy_interface;
1168 	struct phylink *phylink;
1169 
1170 	priv->phylink_config.dev = &priv->dev->dev;
1171 	priv->phylink_config.type = PHYLINK_NETDEV;
1172 	if (priv->plat->mdio_bus_data)
1173 		priv->phylink_config.ovr_an_inband =
1174 			mdio_bus_data->xpcs_an_inband;
1175 
1176 	if (!fwnode)
1177 		fwnode = dev_fwnode(priv->device);
1178 
1179 	/* Set the platform/firmware specified interface mode */
1180 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1181 
1182 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1183 	if (priv->hw->xpcs)
1184 		xpcs_get_interfaces(priv->hw->xpcs,
1185 				    priv->phylink_config.supported_interfaces);
1186 
1187 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1188 		MAC_10 | MAC_100;
1189 
1190 	if (!max_speed || max_speed >= 1000)
1191 		priv->phylink_config.mac_capabilities |= MAC_1000;
1192 
1193 	if (priv->plat->has_gmac4) {
1194 		if (!max_speed || max_speed >= 2500)
1195 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1196 	} else if (priv->plat->has_xgmac) {
1197 		if (!max_speed || max_speed >= 2500)
1198 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1199 		if (!max_speed || max_speed >= 5000)
1200 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1201 		if (!max_speed || max_speed >= 10000)
1202 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1203 		if (!max_speed || max_speed >= 25000)
1204 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1205 		if (!max_speed || max_speed >= 40000)
1206 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1207 		if (!max_speed || max_speed >= 50000)
1208 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1209 		if (!max_speed || max_speed >= 100000)
1210 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1211 	}
1212 
1213 	/* Half-Duplex can only work with single queue */
1214 	if (priv->plat->tx_queues_to_use > 1)
1215 		priv->phylink_config.mac_capabilities &=
1216 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1217 	priv->phylink_config.mac_managed_pm = true;
1218 
1219 	phylink = phylink_create(&priv->phylink_config, fwnode,
1220 				 mode, &stmmac_phylink_mac_ops);
1221 	if (IS_ERR(phylink))
1222 		return PTR_ERR(phylink);
1223 
1224 	priv->phylink = phylink;
1225 	return 0;
1226 }
1227 
1228 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1229 				    struct stmmac_dma_conf *dma_conf)
1230 {
1231 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1232 	unsigned int desc_size;
1233 	void *head_rx;
1234 	u32 queue;
1235 
1236 	/* Display RX rings */
1237 	for (queue = 0; queue < rx_cnt; queue++) {
1238 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1239 
1240 		pr_info("\tRX Queue %u rings\n", queue);
1241 
1242 		if (priv->extend_desc) {
1243 			head_rx = (void *)rx_q->dma_erx;
1244 			desc_size = sizeof(struct dma_extended_desc);
1245 		} else {
1246 			head_rx = (void *)rx_q->dma_rx;
1247 			desc_size = sizeof(struct dma_desc);
1248 		}
1249 
1250 		/* Display RX ring */
1251 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1252 				    rx_q->dma_rx_phy, desc_size);
1253 	}
1254 }
1255 
1256 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1257 				    struct stmmac_dma_conf *dma_conf)
1258 {
1259 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1260 	unsigned int desc_size;
1261 	void *head_tx;
1262 	u32 queue;
1263 
1264 	/* Display TX rings */
1265 	for (queue = 0; queue < tx_cnt; queue++) {
1266 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1267 
1268 		pr_info("\tTX Queue %d rings\n", queue);
1269 
1270 		if (priv->extend_desc) {
1271 			head_tx = (void *)tx_q->dma_etx;
1272 			desc_size = sizeof(struct dma_extended_desc);
1273 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1274 			head_tx = (void *)tx_q->dma_entx;
1275 			desc_size = sizeof(struct dma_edesc);
1276 		} else {
1277 			head_tx = (void *)tx_q->dma_tx;
1278 			desc_size = sizeof(struct dma_desc);
1279 		}
1280 
1281 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1282 				    tx_q->dma_tx_phy, desc_size);
1283 	}
1284 }
1285 
1286 static void stmmac_display_rings(struct stmmac_priv *priv,
1287 				 struct stmmac_dma_conf *dma_conf)
1288 {
1289 	/* Display RX ring */
1290 	stmmac_display_rx_rings(priv, dma_conf);
1291 
1292 	/* Display TX ring */
1293 	stmmac_display_tx_rings(priv, dma_conf);
1294 }
1295 
1296 static int stmmac_set_bfsize(int mtu, int bufsize)
1297 {
1298 	int ret = bufsize;
1299 
1300 	if (mtu >= BUF_SIZE_8KiB)
1301 		ret = BUF_SIZE_16KiB;
1302 	else if (mtu >= BUF_SIZE_4KiB)
1303 		ret = BUF_SIZE_8KiB;
1304 	else if (mtu >= BUF_SIZE_2KiB)
1305 		ret = BUF_SIZE_4KiB;
1306 	else if (mtu > DEFAULT_BUFSIZE)
1307 		ret = BUF_SIZE_2KiB;
1308 	else
1309 		ret = DEFAULT_BUFSIZE;
1310 
1311 	return ret;
1312 }
1313 
1314 /**
1315  * stmmac_clear_rx_descriptors - clear RX descriptors
1316  * @priv: driver private structure
1317  * @dma_conf: structure to take the dma data
1318  * @queue: RX queue index
1319  * Description: this function is called to clear the RX descriptors
1320  * in case of both basic and extended descriptors are used.
1321  */
1322 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1323 					struct stmmac_dma_conf *dma_conf,
1324 					u32 queue)
1325 {
1326 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1327 	int i;
1328 
1329 	/* Clear the RX descriptors */
1330 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1331 		if (priv->extend_desc)
1332 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1333 					priv->use_riwt, priv->mode,
1334 					(i == dma_conf->dma_rx_size - 1),
1335 					dma_conf->dma_buf_sz);
1336 		else
1337 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1338 					priv->use_riwt, priv->mode,
1339 					(i == dma_conf->dma_rx_size - 1),
1340 					dma_conf->dma_buf_sz);
1341 }
1342 
1343 /**
1344  * stmmac_clear_tx_descriptors - clear tx descriptors
1345  * @priv: driver private structure
1346  * @dma_conf: structure to take the dma data
1347  * @queue: TX queue index.
1348  * Description: this function is called to clear the TX descriptors
1349  * in case of both basic and extended descriptors are used.
1350  */
1351 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1352 					struct stmmac_dma_conf *dma_conf,
1353 					u32 queue)
1354 {
1355 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1356 	int i;
1357 
1358 	/* Clear the TX descriptors */
1359 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1360 		int last = (i == (dma_conf->dma_tx_size - 1));
1361 		struct dma_desc *p;
1362 
1363 		if (priv->extend_desc)
1364 			p = &tx_q->dma_etx[i].basic;
1365 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1366 			p = &tx_q->dma_entx[i].basic;
1367 		else
1368 			p = &tx_q->dma_tx[i];
1369 
1370 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1371 	}
1372 }
1373 
1374 /**
1375  * stmmac_clear_descriptors - clear descriptors
1376  * @priv: driver private structure
1377  * @dma_conf: structure to take the dma data
1378  * Description: this function is called to clear the TX and RX descriptors
1379  * in case of both basic and extended descriptors are used.
1380  */
1381 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1382 				     struct stmmac_dma_conf *dma_conf)
1383 {
1384 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1385 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1386 	u32 queue;
1387 
1388 	/* Clear the RX descriptors */
1389 	for (queue = 0; queue < rx_queue_cnt; queue++)
1390 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1391 
1392 	/* Clear the TX descriptors */
1393 	for (queue = 0; queue < tx_queue_cnt; queue++)
1394 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1395 }
1396 
1397 /**
1398  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1399  * @priv: driver private structure
1400  * @dma_conf: structure to take the dma data
1401  * @p: descriptor pointer
1402  * @i: descriptor index
1403  * @flags: gfp flag
1404  * @queue: RX queue index
1405  * Description: this function is called to allocate a receive buffer, perform
1406  * the DMA mapping and init the descriptor.
1407  */
1408 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1409 				  struct stmmac_dma_conf *dma_conf,
1410 				  struct dma_desc *p,
1411 				  int i, gfp_t flags, u32 queue)
1412 {
1413 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1414 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1415 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1416 
1417 	if (priv->dma_cap.addr64 <= 32)
1418 		gfp |= GFP_DMA32;
1419 
1420 	if (!buf->page) {
1421 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1422 		if (!buf->page)
1423 			return -ENOMEM;
1424 		buf->page_offset = stmmac_rx_offset(priv);
1425 	}
1426 
1427 	if (priv->sph && !buf->sec_page) {
1428 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1429 		if (!buf->sec_page)
1430 			return -ENOMEM;
1431 
1432 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1433 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1434 	} else {
1435 		buf->sec_page = NULL;
1436 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1437 	}
1438 
1439 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1440 
1441 	stmmac_set_desc_addr(priv, p, buf->addr);
1442 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1443 		stmmac_init_desc3(priv, p);
1444 
1445 	return 0;
1446 }
1447 
1448 /**
1449  * stmmac_free_rx_buffer - free RX dma buffers
1450  * @priv: private structure
1451  * @rx_q: RX queue
1452  * @i: buffer index.
1453  */
1454 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1455 				  struct stmmac_rx_queue *rx_q,
1456 				  int i)
1457 {
1458 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1459 
1460 	if (buf->page)
1461 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1462 	buf->page = NULL;
1463 
1464 	if (buf->sec_page)
1465 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1466 	buf->sec_page = NULL;
1467 }
1468 
1469 /**
1470  * stmmac_free_tx_buffer - free RX dma buffers
1471  * @priv: private structure
1472  * @dma_conf: structure to take the dma data
1473  * @queue: RX queue index
1474  * @i: buffer index.
1475  */
1476 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1477 				  struct stmmac_dma_conf *dma_conf,
1478 				  u32 queue, int i)
1479 {
1480 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1481 
1482 	if (tx_q->tx_skbuff_dma[i].buf &&
1483 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1484 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1485 			dma_unmap_page(priv->device,
1486 				       tx_q->tx_skbuff_dma[i].buf,
1487 				       tx_q->tx_skbuff_dma[i].len,
1488 				       DMA_TO_DEVICE);
1489 		else
1490 			dma_unmap_single(priv->device,
1491 					 tx_q->tx_skbuff_dma[i].buf,
1492 					 tx_q->tx_skbuff_dma[i].len,
1493 					 DMA_TO_DEVICE);
1494 	}
1495 
1496 	if (tx_q->xdpf[i] &&
1497 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1498 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1499 		xdp_return_frame(tx_q->xdpf[i]);
1500 		tx_q->xdpf[i] = NULL;
1501 	}
1502 
1503 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1504 		tx_q->xsk_frames_done++;
1505 
1506 	if (tx_q->tx_skbuff[i] &&
1507 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1508 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1509 		tx_q->tx_skbuff[i] = NULL;
1510 	}
1511 
1512 	tx_q->tx_skbuff_dma[i].buf = 0;
1513 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1514 }
1515 
1516 /**
1517  * dma_free_rx_skbufs - free RX dma buffers
1518  * @priv: private structure
1519  * @dma_conf: structure to take the dma data
1520  * @queue: RX queue index
1521  */
1522 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1523 			       struct stmmac_dma_conf *dma_conf,
1524 			       u32 queue)
1525 {
1526 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1527 	int i;
1528 
1529 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1530 		stmmac_free_rx_buffer(priv, rx_q, i);
1531 }
1532 
1533 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1534 				   struct stmmac_dma_conf *dma_conf,
1535 				   u32 queue, gfp_t flags)
1536 {
1537 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1538 	int i;
1539 
1540 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1541 		struct dma_desc *p;
1542 		int ret;
1543 
1544 		if (priv->extend_desc)
1545 			p = &((rx_q->dma_erx + i)->basic);
1546 		else
1547 			p = rx_q->dma_rx + i;
1548 
1549 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1550 					     queue);
1551 		if (ret)
1552 			return ret;
1553 
1554 		rx_q->buf_alloc_num++;
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 /**
1561  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1562  * @priv: private structure
1563  * @dma_conf: structure to take the dma data
1564  * @queue: RX queue index
1565  */
1566 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1567 				struct stmmac_dma_conf *dma_conf,
1568 				u32 queue)
1569 {
1570 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1571 	int i;
1572 
1573 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1574 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1575 
1576 		if (!buf->xdp)
1577 			continue;
1578 
1579 		xsk_buff_free(buf->xdp);
1580 		buf->xdp = NULL;
1581 	}
1582 }
1583 
1584 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1585 				      struct stmmac_dma_conf *dma_conf,
1586 				      u32 queue)
1587 {
1588 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1589 	int i;
1590 
1591 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1592 		struct stmmac_rx_buffer *buf;
1593 		dma_addr_t dma_addr;
1594 		struct dma_desc *p;
1595 
1596 		if (priv->extend_desc)
1597 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1598 		else
1599 			p = rx_q->dma_rx + i;
1600 
1601 		buf = &rx_q->buf_pool[i];
1602 
1603 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1604 		if (!buf->xdp)
1605 			return -ENOMEM;
1606 
1607 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1608 		stmmac_set_desc_addr(priv, p, dma_addr);
1609 		rx_q->buf_alloc_num++;
1610 	}
1611 
1612 	return 0;
1613 }
1614 
1615 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1616 {
1617 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1618 		return NULL;
1619 
1620 	return xsk_get_pool_from_qid(priv->dev, queue);
1621 }
1622 
1623 /**
1624  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1625  * @priv: driver private structure
1626  * @dma_conf: structure to take the dma data
1627  * @queue: RX queue index
1628  * @flags: gfp flag.
1629  * Description: this function initializes the DMA RX descriptors
1630  * and allocates the socket buffers. It supports the chained and ring
1631  * modes.
1632  */
1633 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1634 				    struct stmmac_dma_conf *dma_conf,
1635 				    u32 queue, gfp_t flags)
1636 {
1637 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1638 	int ret;
1639 
1640 	netif_dbg(priv, probe, priv->dev,
1641 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1642 		  (u32)rx_q->dma_rx_phy);
1643 
1644 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1645 
1646 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1647 
1648 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1649 
1650 	if (rx_q->xsk_pool) {
1651 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1652 						   MEM_TYPE_XSK_BUFF_POOL,
1653 						   NULL));
1654 		netdev_info(priv->dev,
1655 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1656 			    rx_q->queue_index);
1657 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1658 	} else {
1659 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1660 						   MEM_TYPE_PAGE_POOL,
1661 						   rx_q->page_pool));
1662 		netdev_info(priv->dev,
1663 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1664 			    rx_q->queue_index);
1665 	}
1666 
1667 	if (rx_q->xsk_pool) {
1668 		/* RX XDP ZC buffer pool may not be populated, e.g.
1669 		 * xdpsock TX-only.
1670 		 */
1671 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1672 	} else {
1673 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1674 		if (ret < 0)
1675 			return -ENOMEM;
1676 	}
1677 
1678 	/* Setup the chained descriptor addresses */
1679 	if (priv->mode == STMMAC_CHAIN_MODE) {
1680 		if (priv->extend_desc)
1681 			stmmac_mode_init(priv, rx_q->dma_erx,
1682 					 rx_q->dma_rx_phy,
1683 					 dma_conf->dma_rx_size, 1);
1684 		else
1685 			stmmac_mode_init(priv, rx_q->dma_rx,
1686 					 rx_q->dma_rx_phy,
1687 					 dma_conf->dma_rx_size, 0);
1688 	}
1689 
1690 	return 0;
1691 }
1692 
1693 static int init_dma_rx_desc_rings(struct net_device *dev,
1694 				  struct stmmac_dma_conf *dma_conf,
1695 				  gfp_t flags)
1696 {
1697 	struct stmmac_priv *priv = netdev_priv(dev);
1698 	u32 rx_count = priv->plat->rx_queues_to_use;
1699 	int queue;
1700 	int ret;
1701 
1702 	/* RX INITIALIZATION */
1703 	netif_dbg(priv, probe, priv->dev,
1704 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1705 
1706 	for (queue = 0; queue < rx_count; queue++) {
1707 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1708 		if (ret)
1709 			goto err_init_rx_buffers;
1710 	}
1711 
1712 	return 0;
1713 
1714 err_init_rx_buffers:
1715 	while (queue >= 0) {
1716 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1717 
1718 		if (rx_q->xsk_pool)
1719 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1720 		else
1721 			dma_free_rx_skbufs(priv, dma_conf, queue);
1722 
1723 		rx_q->buf_alloc_num = 0;
1724 		rx_q->xsk_pool = NULL;
1725 
1726 		queue--;
1727 	}
1728 
1729 	return ret;
1730 }
1731 
1732 /**
1733  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1734  * @priv: driver private structure
1735  * @dma_conf: structure to take the dma data
1736  * @queue: TX queue index
1737  * Description: this function initializes the DMA TX descriptors
1738  * and allocates the socket buffers. It supports the chained and ring
1739  * modes.
1740  */
1741 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1742 				    struct stmmac_dma_conf *dma_conf,
1743 				    u32 queue)
1744 {
1745 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1746 	int i;
1747 
1748 	netif_dbg(priv, probe, priv->dev,
1749 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1750 		  (u32)tx_q->dma_tx_phy);
1751 
1752 	/* Setup the chained descriptor addresses */
1753 	if (priv->mode == STMMAC_CHAIN_MODE) {
1754 		if (priv->extend_desc)
1755 			stmmac_mode_init(priv, tx_q->dma_etx,
1756 					 tx_q->dma_tx_phy,
1757 					 dma_conf->dma_tx_size, 1);
1758 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1759 			stmmac_mode_init(priv, tx_q->dma_tx,
1760 					 tx_q->dma_tx_phy,
1761 					 dma_conf->dma_tx_size, 0);
1762 	}
1763 
1764 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1765 
1766 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1767 		struct dma_desc *p;
1768 
1769 		if (priv->extend_desc)
1770 			p = &((tx_q->dma_etx + i)->basic);
1771 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1772 			p = &((tx_q->dma_entx + i)->basic);
1773 		else
1774 			p = tx_q->dma_tx + i;
1775 
1776 		stmmac_clear_desc(priv, p);
1777 
1778 		tx_q->tx_skbuff_dma[i].buf = 0;
1779 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1780 		tx_q->tx_skbuff_dma[i].len = 0;
1781 		tx_q->tx_skbuff_dma[i].last_segment = false;
1782 		tx_q->tx_skbuff[i] = NULL;
1783 	}
1784 
1785 	return 0;
1786 }
1787 
1788 static int init_dma_tx_desc_rings(struct net_device *dev,
1789 				  struct stmmac_dma_conf *dma_conf)
1790 {
1791 	struct stmmac_priv *priv = netdev_priv(dev);
1792 	u32 tx_queue_cnt;
1793 	u32 queue;
1794 
1795 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1796 
1797 	for (queue = 0; queue < tx_queue_cnt; queue++)
1798 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1799 
1800 	return 0;
1801 }
1802 
1803 /**
1804  * init_dma_desc_rings - init the RX/TX descriptor rings
1805  * @dev: net device structure
1806  * @dma_conf: structure to take the dma data
1807  * @flags: gfp flag.
1808  * Description: this function initializes the DMA RX/TX descriptors
1809  * and allocates the socket buffers. It supports the chained and ring
1810  * modes.
1811  */
1812 static int init_dma_desc_rings(struct net_device *dev,
1813 			       struct stmmac_dma_conf *dma_conf,
1814 			       gfp_t flags)
1815 {
1816 	struct stmmac_priv *priv = netdev_priv(dev);
1817 	int ret;
1818 
1819 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1820 	if (ret)
1821 		return ret;
1822 
1823 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1824 
1825 	stmmac_clear_descriptors(priv, dma_conf);
1826 
1827 	if (netif_msg_hw(priv))
1828 		stmmac_display_rings(priv, dma_conf);
1829 
1830 	return ret;
1831 }
1832 
1833 /**
1834  * dma_free_tx_skbufs - free TX dma buffers
1835  * @priv: private structure
1836  * @dma_conf: structure to take the dma data
1837  * @queue: TX queue index
1838  */
1839 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1840 			       struct stmmac_dma_conf *dma_conf,
1841 			       u32 queue)
1842 {
1843 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1844 	int i;
1845 
1846 	tx_q->xsk_frames_done = 0;
1847 
1848 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1849 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1850 
1851 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1852 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1853 		tx_q->xsk_frames_done = 0;
1854 		tx_q->xsk_pool = NULL;
1855 	}
1856 }
1857 
1858 /**
1859  * stmmac_free_tx_skbufs - free TX skb buffers
1860  * @priv: private structure
1861  */
1862 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1863 {
1864 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1865 	u32 queue;
1866 
1867 	for (queue = 0; queue < tx_queue_cnt; queue++)
1868 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1869 }
1870 
1871 /**
1872  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1873  * @priv: private structure
1874  * @dma_conf: structure to take the dma data
1875  * @queue: RX queue index
1876  */
1877 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1878 					 struct stmmac_dma_conf *dma_conf,
1879 					 u32 queue)
1880 {
1881 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1882 
1883 	/* Release the DMA RX socket buffers */
1884 	if (rx_q->xsk_pool)
1885 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1886 	else
1887 		dma_free_rx_skbufs(priv, dma_conf, queue);
1888 
1889 	rx_q->buf_alloc_num = 0;
1890 	rx_q->xsk_pool = NULL;
1891 
1892 	/* Free DMA regions of consistent memory previously allocated */
1893 	if (!priv->extend_desc)
1894 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1895 				  sizeof(struct dma_desc),
1896 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1897 	else
1898 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1899 				  sizeof(struct dma_extended_desc),
1900 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1901 
1902 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1903 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1904 
1905 	kfree(rx_q->buf_pool);
1906 	if (rx_q->page_pool)
1907 		page_pool_destroy(rx_q->page_pool);
1908 }
1909 
1910 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1911 				       struct stmmac_dma_conf *dma_conf)
1912 {
1913 	u32 rx_count = priv->plat->rx_queues_to_use;
1914 	u32 queue;
1915 
1916 	/* Free RX queue resources */
1917 	for (queue = 0; queue < rx_count; queue++)
1918 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1919 }
1920 
1921 /**
1922  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1923  * @priv: private structure
1924  * @dma_conf: structure to take the dma data
1925  * @queue: TX queue index
1926  */
1927 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1928 					 struct stmmac_dma_conf *dma_conf,
1929 					 u32 queue)
1930 {
1931 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1932 	size_t size;
1933 	void *addr;
1934 
1935 	/* Release the DMA TX socket buffers */
1936 	dma_free_tx_skbufs(priv, dma_conf, queue);
1937 
1938 	if (priv->extend_desc) {
1939 		size = sizeof(struct dma_extended_desc);
1940 		addr = tx_q->dma_etx;
1941 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1942 		size = sizeof(struct dma_edesc);
1943 		addr = tx_q->dma_entx;
1944 	} else {
1945 		size = sizeof(struct dma_desc);
1946 		addr = tx_q->dma_tx;
1947 	}
1948 
1949 	size *= dma_conf->dma_tx_size;
1950 
1951 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1952 
1953 	kfree(tx_q->tx_skbuff_dma);
1954 	kfree(tx_q->tx_skbuff);
1955 }
1956 
1957 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1958 				       struct stmmac_dma_conf *dma_conf)
1959 {
1960 	u32 tx_count = priv->plat->tx_queues_to_use;
1961 	u32 queue;
1962 
1963 	/* Free TX queue resources */
1964 	for (queue = 0; queue < tx_count; queue++)
1965 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1966 }
1967 
1968 /**
1969  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1970  * @priv: private structure
1971  * @dma_conf: structure to take the dma data
1972  * @queue: RX queue index
1973  * Description: according to which descriptor can be used (extend or basic)
1974  * this function allocates the resources for TX and RX paths. In case of
1975  * reception, for example, it pre-allocated the RX socket buffer in order to
1976  * allow zero-copy mechanism.
1977  */
1978 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1979 					 struct stmmac_dma_conf *dma_conf,
1980 					 u32 queue)
1981 {
1982 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1983 	struct stmmac_channel *ch = &priv->channel[queue];
1984 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1985 	struct page_pool_params pp_params = { 0 };
1986 	unsigned int num_pages;
1987 	unsigned int napi_id;
1988 	int ret;
1989 
1990 	rx_q->queue_index = queue;
1991 	rx_q->priv_data = priv;
1992 
1993 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1994 	pp_params.pool_size = dma_conf->dma_rx_size;
1995 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
1996 	pp_params.order = ilog2(num_pages);
1997 	pp_params.nid = dev_to_node(priv->device);
1998 	pp_params.dev = priv->device;
1999 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2000 	pp_params.offset = stmmac_rx_offset(priv);
2001 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2002 
2003 	rx_q->page_pool = page_pool_create(&pp_params);
2004 	if (IS_ERR(rx_q->page_pool)) {
2005 		ret = PTR_ERR(rx_q->page_pool);
2006 		rx_q->page_pool = NULL;
2007 		return ret;
2008 	}
2009 
2010 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2011 				 sizeof(*rx_q->buf_pool),
2012 				 GFP_KERNEL);
2013 	if (!rx_q->buf_pool)
2014 		return -ENOMEM;
2015 
2016 	if (priv->extend_desc) {
2017 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2018 						   dma_conf->dma_rx_size *
2019 						   sizeof(struct dma_extended_desc),
2020 						   &rx_q->dma_rx_phy,
2021 						   GFP_KERNEL);
2022 		if (!rx_q->dma_erx)
2023 			return -ENOMEM;
2024 
2025 	} else {
2026 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2027 						  dma_conf->dma_rx_size *
2028 						  sizeof(struct dma_desc),
2029 						  &rx_q->dma_rx_phy,
2030 						  GFP_KERNEL);
2031 		if (!rx_q->dma_rx)
2032 			return -ENOMEM;
2033 	}
2034 
2035 	if (stmmac_xdp_is_enabled(priv) &&
2036 	    test_bit(queue, priv->af_xdp_zc_qps))
2037 		napi_id = ch->rxtx_napi.napi_id;
2038 	else
2039 		napi_id = ch->rx_napi.napi_id;
2040 
2041 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2042 			       rx_q->queue_index,
2043 			       napi_id);
2044 	if (ret) {
2045 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2046 		return -EINVAL;
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2053 				       struct stmmac_dma_conf *dma_conf)
2054 {
2055 	u32 rx_count = priv->plat->rx_queues_to_use;
2056 	u32 queue;
2057 	int ret;
2058 
2059 	/* RX queues buffers and DMA */
2060 	for (queue = 0; queue < rx_count; queue++) {
2061 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2062 		if (ret)
2063 			goto err_dma;
2064 	}
2065 
2066 	return 0;
2067 
2068 err_dma:
2069 	free_dma_rx_desc_resources(priv, dma_conf);
2070 
2071 	return ret;
2072 }
2073 
2074 /**
2075  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2076  * @priv: private structure
2077  * @dma_conf: structure to take the dma data
2078  * @queue: TX queue index
2079  * Description: according to which descriptor can be used (extend or basic)
2080  * this function allocates the resources for TX and RX paths. In case of
2081  * reception, for example, it pre-allocated the RX socket buffer in order to
2082  * allow zero-copy mechanism.
2083  */
2084 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2085 					 struct stmmac_dma_conf *dma_conf,
2086 					 u32 queue)
2087 {
2088 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2089 	size_t size;
2090 	void *addr;
2091 
2092 	tx_q->queue_index = queue;
2093 	tx_q->priv_data = priv;
2094 
2095 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2096 				      sizeof(*tx_q->tx_skbuff_dma),
2097 				      GFP_KERNEL);
2098 	if (!tx_q->tx_skbuff_dma)
2099 		return -ENOMEM;
2100 
2101 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2102 				  sizeof(struct sk_buff *),
2103 				  GFP_KERNEL);
2104 	if (!tx_q->tx_skbuff)
2105 		return -ENOMEM;
2106 
2107 	if (priv->extend_desc)
2108 		size = sizeof(struct dma_extended_desc);
2109 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2110 		size = sizeof(struct dma_edesc);
2111 	else
2112 		size = sizeof(struct dma_desc);
2113 
2114 	size *= dma_conf->dma_tx_size;
2115 
2116 	addr = dma_alloc_coherent(priv->device, size,
2117 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2118 	if (!addr)
2119 		return -ENOMEM;
2120 
2121 	if (priv->extend_desc)
2122 		tx_q->dma_etx = addr;
2123 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2124 		tx_q->dma_entx = addr;
2125 	else
2126 		tx_q->dma_tx = addr;
2127 
2128 	return 0;
2129 }
2130 
2131 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2132 				       struct stmmac_dma_conf *dma_conf)
2133 {
2134 	u32 tx_count = priv->plat->tx_queues_to_use;
2135 	u32 queue;
2136 	int ret;
2137 
2138 	/* TX queues buffers and DMA */
2139 	for (queue = 0; queue < tx_count; queue++) {
2140 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2141 		if (ret)
2142 			goto err_dma;
2143 	}
2144 
2145 	return 0;
2146 
2147 err_dma:
2148 	free_dma_tx_desc_resources(priv, dma_conf);
2149 	return ret;
2150 }
2151 
2152 /**
2153  * alloc_dma_desc_resources - alloc TX/RX resources.
2154  * @priv: private structure
2155  * @dma_conf: structure to take the dma data
2156  * Description: according to which descriptor can be used (extend or basic)
2157  * this function allocates the resources for TX and RX paths. In case of
2158  * reception, for example, it pre-allocated the RX socket buffer in order to
2159  * allow zero-copy mechanism.
2160  */
2161 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2162 				    struct stmmac_dma_conf *dma_conf)
2163 {
2164 	/* RX Allocation */
2165 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2166 
2167 	if (ret)
2168 		return ret;
2169 
2170 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2171 
2172 	return ret;
2173 }
2174 
2175 /**
2176  * free_dma_desc_resources - free dma desc resources
2177  * @priv: private structure
2178  * @dma_conf: structure to take the dma data
2179  */
2180 static void free_dma_desc_resources(struct stmmac_priv *priv,
2181 				    struct stmmac_dma_conf *dma_conf)
2182 {
2183 	/* Release the DMA TX socket buffers */
2184 	free_dma_tx_desc_resources(priv, dma_conf);
2185 
2186 	/* Release the DMA RX socket buffers later
2187 	 * to ensure all pending XDP_TX buffers are returned.
2188 	 */
2189 	free_dma_rx_desc_resources(priv, dma_conf);
2190 }
2191 
2192 /**
2193  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2194  *  @priv: driver private structure
2195  *  Description: It is used for enabling the rx queues in the MAC
2196  */
2197 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2198 {
2199 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2200 	int queue;
2201 	u8 mode;
2202 
2203 	for (queue = 0; queue < rx_queues_count; queue++) {
2204 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2205 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2206 	}
2207 }
2208 
2209 /**
2210  * stmmac_start_rx_dma - start RX DMA channel
2211  * @priv: driver private structure
2212  * @chan: RX channel index
2213  * Description:
2214  * This starts a RX DMA channel
2215  */
2216 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2217 {
2218 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2219 	stmmac_start_rx(priv, priv->ioaddr, chan);
2220 }
2221 
2222 /**
2223  * stmmac_start_tx_dma - start TX DMA channel
2224  * @priv: driver private structure
2225  * @chan: TX channel index
2226  * Description:
2227  * This starts a TX DMA channel
2228  */
2229 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2230 {
2231 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2232 	stmmac_start_tx(priv, priv->ioaddr, chan);
2233 }
2234 
2235 /**
2236  * stmmac_stop_rx_dma - stop RX DMA channel
2237  * @priv: driver private structure
2238  * @chan: RX channel index
2239  * Description:
2240  * This stops a RX DMA channel
2241  */
2242 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2243 {
2244 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2245 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2246 }
2247 
2248 /**
2249  * stmmac_stop_tx_dma - stop TX DMA channel
2250  * @priv: driver private structure
2251  * @chan: TX channel index
2252  * Description:
2253  * This stops a TX DMA channel
2254  */
2255 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2256 {
2257 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2258 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2259 }
2260 
2261 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2262 {
2263 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2264 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2265 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2266 	u32 chan;
2267 
2268 	for (chan = 0; chan < dma_csr_ch; chan++) {
2269 		struct stmmac_channel *ch = &priv->channel[chan];
2270 		unsigned long flags;
2271 
2272 		spin_lock_irqsave(&ch->lock, flags);
2273 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2274 		spin_unlock_irqrestore(&ch->lock, flags);
2275 	}
2276 }
2277 
2278 /**
2279  * stmmac_start_all_dma - start all RX and TX DMA channels
2280  * @priv: driver private structure
2281  * Description:
2282  * This starts all the RX and TX DMA channels
2283  */
2284 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2285 {
2286 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2287 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2288 	u32 chan = 0;
2289 
2290 	for (chan = 0; chan < rx_channels_count; chan++)
2291 		stmmac_start_rx_dma(priv, chan);
2292 
2293 	for (chan = 0; chan < tx_channels_count; chan++)
2294 		stmmac_start_tx_dma(priv, chan);
2295 }
2296 
2297 /**
2298  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2299  * @priv: driver private structure
2300  * Description:
2301  * This stops the RX and TX DMA channels
2302  */
2303 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2304 {
2305 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2306 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2307 	u32 chan = 0;
2308 
2309 	for (chan = 0; chan < rx_channels_count; chan++)
2310 		stmmac_stop_rx_dma(priv, chan);
2311 
2312 	for (chan = 0; chan < tx_channels_count; chan++)
2313 		stmmac_stop_tx_dma(priv, chan);
2314 }
2315 
2316 /**
2317  *  stmmac_dma_operation_mode - HW DMA operation mode
2318  *  @priv: driver private structure
2319  *  Description: it is used for configuring the DMA operation mode register in
2320  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2321  */
2322 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2323 {
2324 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2325 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2326 	int rxfifosz = priv->plat->rx_fifo_size;
2327 	int txfifosz = priv->plat->tx_fifo_size;
2328 	u32 txmode = 0;
2329 	u32 rxmode = 0;
2330 	u32 chan = 0;
2331 	u8 qmode = 0;
2332 
2333 	if (rxfifosz == 0)
2334 		rxfifosz = priv->dma_cap.rx_fifo_size;
2335 	if (txfifosz == 0)
2336 		txfifosz = priv->dma_cap.tx_fifo_size;
2337 
2338 	/* Adjust for real per queue fifo size */
2339 	rxfifosz /= rx_channels_count;
2340 	txfifosz /= tx_channels_count;
2341 
2342 	if (priv->plat->force_thresh_dma_mode) {
2343 		txmode = tc;
2344 		rxmode = tc;
2345 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2346 		/*
2347 		 * In case of GMAC, SF mode can be enabled
2348 		 * to perform the TX COE in HW. This depends on:
2349 		 * 1) TX COE if actually supported
2350 		 * 2) There is no bugged Jumbo frame support
2351 		 *    that needs to not insert csum in the TDES.
2352 		 */
2353 		txmode = SF_DMA_MODE;
2354 		rxmode = SF_DMA_MODE;
2355 		priv->xstats.threshold = SF_DMA_MODE;
2356 	} else {
2357 		txmode = tc;
2358 		rxmode = SF_DMA_MODE;
2359 	}
2360 
2361 	/* configure all channels */
2362 	for (chan = 0; chan < rx_channels_count; chan++) {
2363 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2364 		u32 buf_size;
2365 
2366 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2367 
2368 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2369 				rxfifosz, qmode);
2370 
2371 		if (rx_q->xsk_pool) {
2372 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2373 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2374 					      buf_size,
2375 					      chan);
2376 		} else {
2377 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2378 					      priv->dma_conf.dma_buf_sz,
2379 					      chan);
2380 		}
2381 	}
2382 
2383 	for (chan = 0; chan < tx_channels_count; chan++) {
2384 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2385 
2386 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2387 				txfifosz, qmode);
2388 	}
2389 }
2390 
2391 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2392 {
2393 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2394 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2395 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2396 	unsigned int entry = tx_q->cur_tx;
2397 	struct dma_desc *tx_desc = NULL;
2398 	struct xdp_desc xdp_desc;
2399 	bool work_done = true;
2400 
2401 	/* Avoids TX time-out as we are sharing with slow path */
2402 	txq_trans_cond_update(nq);
2403 
2404 	budget = min(budget, stmmac_tx_avail(priv, queue));
2405 
2406 	while (budget-- > 0) {
2407 		dma_addr_t dma_addr;
2408 		bool set_ic;
2409 
2410 		/* We are sharing with slow path and stop XSK TX desc submission when
2411 		 * available TX ring is less than threshold.
2412 		 */
2413 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2414 		    !netif_carrier_ok(priv->dev)) {
2415 			work_done = false;
2416 			break;
2417 		}
2418 
2419 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2420 			break;
2421 
2422 		if (likely(priv->extend_desc))
2423 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2424 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2425 			tx_desc = &tx_q->dma_entx[entry].basic;
2426 		else
2427 			tx_desc = tx_q->dma_tx + entry;
2428 
2429 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2430 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2431 
2432 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2433 
2434 		/* To return XDP buffer to XSK pool, we simple call
2435 		 * xsk_tx_completed(), so we don't need to fill up
2436 		 * 'buf' and 'xdpf'.
2437 		 */
2438 		tx_q->tx_skbuff_dma[entry].buf = 0;
2439 		tx_q->xdpf[entry] = NULL;
2440 
2441 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2442 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2443 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2444 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2445 
2446 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2447 
2448 		tx_q->tx_count_frames++;
2449 
2450 		if (!priv->tx_coal_frames[queue])
2451 			set_ic = false;
2452 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2453 			set_ic = true;
2454 		else
2455 			set_ic = false;
2456 
2457 		if (set_ic) {
2458 			tx_q->tx_count_frames = 0;
2459 			stmmac_set_tx_ic(priv, tx_desc);
2460 			priv->xstats.tx_set_ic_bit++;
2461 		}
2462 
2463 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2464 				       true, priv->mode, true, true,
2465 				       xdp_desc.len);
2466 
2467 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2468 
2469 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2470 		entry = tx_q->cur_tx;
2471 	}
2472 
2473 	if (tx_desc) {
2474 		stmmac_flush_tx_descriptors(priv, queue);
2475 		xsk_tx_release(pool);
2476 	}
2477 
2478 	/* Return true if all of the 3 conditions are met
2479 	 *  a) TX Budget is still available
2480 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2481 	 *     pending XSK TX for transmission)
2482 	 */
2483 	return !!budget && work_done;
2484 }
2485 
2486 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2487 {
2488 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2489 		tc += 64;
2490 
2491 		if (priv->plat->force_thresh_dma_mode)
2492 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2493 		else
2494 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2495 						      chan);
2496 
2497 		priv->xstats.threshold = tc;
2498 	}
2499 }
2500 
2501 /**
2502  * stmmac_tx_clean - to manage the transmission completion
2503  * @priv: driver private structure
2504  * @budget: napi budget limiting this functions packet handling
2505  * @queue: TX queue index
2506  * Description: it reclaims the transmit resources after transmission completes.
2507  */
2508 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2509 {
2510 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2511 	unsigned int bytes_compl = 0, pkts_compl = 0;
2512 	unsigned int entry, xmits = 0, count = 0;
2513 
2514 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2515 
2516 	priv->xstats.tx_clean++;
2517 
2518 	tx_q->xsk_frames_done = 0;
2519 
2520 	entry = tx_q->dirty_tx;
2521 
2522 	/* Try to clean all TX complete frame in 1 shot */
2523 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2524 		struct xdp_frame *xdpf;
2525 		struct sk_buff *skb;
2526 		struct dma_desc *p;
2527 		int status;
2528 
2529 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2530 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2531 			xdpf = tx_q->xdpf[entry];
2532 			skb = NULL;
2533 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2534 			xdpf = NULL;
2535 			skb = tx_q->tx_skbuff[entry];
2536 		} else {
2537 			xdpf = NULL;
2538 			skb = NULL;
2539 		}
2540 
2541 		if (priv->extend_desc)
2542 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2543 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2544 			p = &tx_q->dma_entx[entry].basic;
2545 		else
2546 			p = tx_q->dma_tx + entry;
2547 
2548 		status = stmmac_tx_status(priv, &priv->dev->stats,
2549 				&priv->xstats, p, priv->ioaddr);
2550 		/* Check if the descriptor is owned by the DMA */
2551 		if (unlikely(status & tx_dma_own))
2552 			break;
2553 
2554 		count++;
2555 
2556 		/* Make sure descriptor fields are read after reading
2557 		 * the own bit.
2558 		 */
2559 		dma_rmb();
2560 
2561 		/* Just consider the last segment and ...*/
2562 		if (likely(!(status & tx_not_ls))) {
2563 			/* ... verify the status error condition */
2564 			if (unlikely(status & tx_err)) {
2565 				priv->dev->stats.tx_errors++;
2566 				if (unlikely(status & tx_err_bump_tc))
2567 					stmmac_bump_dma_threshold(priv, queue);
2568 			} else {
2569 				priv->dev->stats.tx_packets++;
2570 				priv->xstats.tx_pkt_n++;
2571 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2572 			}
2573 			if (skb)
2574 				stmmac_get_tx_hwtstamp(priv, p, skb);
2575 		}
2576 
2577 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2578 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2579 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2580 				dma_unmap_page(priv->device,
2581 					       tx_q->tx_skbuff_dma[entry].buf,
2582 					       tx_q->tx_skbuff_dma[entry].len,
2583 					       DMA_TO_DEVICE);
2584 			else
2585 				dma_unmap_single(priv->device,
2586 						 tx_q->tx_skbuff_dma[entry].buf,
2587 						 tx_q->tx_skbuff_dma[entry].len,
2588 						 DMA_TO_DEVICE);
2589 			tx_q->tx_skbuff_dma[entry].buf = 0;
2590 			tx_q->tx_skbuff_dma[entry].len = 0;
2591 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2592 		}
2593 
2594 		stmmac_clean_desc3(priv, tx_q, p);
2595 
2596 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2597 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2598 
2599 		if (xdpf &&
2600 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2601 			xdp_return_frame_rx_napi(xdpf);
2602 			tx_q->xdpf[entry] = NULL;
2603 		}
2604 
2605 		if (xdpf &&
2606 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2607 			xdp_return_frame(xdpf);
2608 			tx_q->xdpf[entry] = NULL;
2609 		}
2610 
2611 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2612 			tx_q->xsk_frames_done++;
2613 
2614 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2615 			if (likely(skb)) {
2616 				pkts_compl++;
2617 				bytes_compl += skb->len;
2618 				dev_consume_skb_any(skb);
2619 				tx_q->tx_skbuff[entry] = NULL;
2620 			}
2621 		}
2622 
2623 		stmmac_release_tx_desc(priv, p, priv->mode);
2624 
2625 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2626 	}
2627 	tx_q->dirty_tx = entry;
2628 
2629 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2630 				  pkts_compl, bytes_compl);
2631 
2632 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2633 								queue))) &&
2634 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2635 
2636 		netif_dbg(priv, tx_done, priv->dev,
2637 			  "%s: restart transmit\n", __func__);
2638 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2639 	}
2640 
2641 	if (tx_q->xsk_pool) {
2642 		bool work_done;
2643 
2644 		if (tx_q->xsk_frames_done)
2645 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2646 
2647 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2648 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2649 
2650 		/* For XSK TX, we try to send as many as possible.
2651 		 * If XSK work done (XSK TX desc empty and budget still
2652 		 * available), return "budget - 1" to reenable TX IRQ.
2653 		 * Else, return "budget" to make NAPI continue polling.
2654 		 */
2655 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2656 					       STMMAC_XSK_TX_BUDGET_MAX);
2657 		if (work_done)
2658 			xmits = budget - 1;
2659 		else
2660 			xmits = budget;
2661 	}
2662 
2663 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2664 	    priv->eee_sw_timer_en) {
2665 		if (stmmac_enable_eee_mode(priv))
2666 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2667 	}
2668 
2669 	/* We still have pending packets, let's call for a new scheduling */
2670 	if (tx_q->dirty_tx != tx_q->cur_tx)
2671 		hrtimer_start(&tx_q->txtimer,
2672 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2673 			      HRTIMER_MODE_REL);
2674 
2675 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2676 
2677 	/* Combine decisions from TX clean and XSK TX */
2678 	return max(count, xmits);
2679 }
2680 
2681 /**
2682  * stmmac_tx_err - to manage the tx error
2683  * @priv: driver private structure
2684  * @chan: channel index
2685  * Description: it cleans the descriptors and restarts the transmission
2686  * in case of transmission errors.
2687  */
2688 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2689 {
2690 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2691 
2692 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2693 
2694 	stmmac_stop_tx_dma(priv, chan);
2695 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2696 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2697 	stmmac_reset_tx_queue(priv, chan);
2698 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2699 			    tx_q->dma_tx_phy, chan);
2700 	stmmac_start_tx_dma(priv, chan);
2701 
2702 	priv->dev->stats.tx_errors++;
2703 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2704 }
2705 
2706 /**
2707  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2708  *  @priv: driver private structure
2709  *  @txmode: TX operating mode
2710  *  @rxmode: RX operating mode
2711  *  @chan: channel index
2712  *  Description: it is used for configuring of the DMA operation mode in
2713  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2714  *  mode.
2715  */
2716 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2717 					  u32 rxmode, u32 chan)
2718 {
2719 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2720 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2721 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2722 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2723 	int rxfifosz = priv->plat->rx_fifo_size;
2724 	int txfifosz = priv->plat->tx_fifo_size;
2725 
2726 	if (rxfifosz == 0)
2727 		rxfifosz = priv->dma_cap.rx_fifo_size;
2728 	if (txfifosz == 0)
2729 		txfifosz = priv->dma_cap.tx_fifo_size;
2730 
2731 	/* Adjust for real per queue fifo size */
2732 	rxfifosz /= rx_channels_count;
2733 	txfifosz /= tx_channels_count;
2734 
2735 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2736 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2737 }
2738 
2739 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2740 {
2741 	int ret;
2742 
2743 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2744 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2745 	if (ret && (ret != -EINVAL)) {
2746 		stmmac_global_err(priv);
2747 		return true;
2748 	}
2749 
2750 	return false;
2751 }
2752 
2753 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2754 {
2755 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2756 						 &priv->xstats, chan, dir);
2757 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2758 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2759 	struct stmmac_channel *ch = &priv->channel[chan];
2760 	struct napi_struct *rx_napi;
2761 	struct napi_struct *tx_napi;
2762 	unsigned long flags;
2763 
2764 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2765 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2766 
2767 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2768 		if (napi_schedule_prep(rx_napi)) {
2769 			spin_lock_irqsave(&ch->lock, flags);
2770 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2771 			spin_unlock_irqrestore(&ch->lock, flags);
2772 			__napi_schedule(rx_napi);
2773 		}
2774 	}
2775 
2776 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2777 		if (napi_schedule_prep(tx_napi)) {
2778 			spin_lock_irqsave(&ch->lock, flags);
2779 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2780 			spin_unlock_irqrestore(&ch->lock, flags);
2781 			__napi_schedule(tx_napi);
2782 		}
2783 	}
2784 
2785 	return status;
2786 }
2787 
2788 /**
2789  * stmmac_dma_interrupt - DMA ISR
2790  * @priv: driver private structure
2791  * Description: this is the DMA ISR. It is called by the main ISR.
2792  * It calls the dwmac dma routine and schedule poll method in case of some
2793  * work can be done.
2794  */
2795 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2796 {
2797 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2798 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2799 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2800 				tx_channel_count : rx_channel_count;
2801 	u32 chan;
2802 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2803 
2804 	/* Make sure we never check beyond our status buffer. */
2805 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2806 		channels_to_check = ARRAY_SIZE(status);
2807 
2808 	for (chan = 0; chan < channels_to_check; chan++)
2809 		status[chan] = stmmac_napi_check(priv, chan,
2810 						 DMA_DIR_RXTX);
2811 
2812 	for (chan = 0; chan < tx_channel_count; chan++) {
2813 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2814 			/* Try to bump up the dma threshold on this failure */
2815 			stmmac_bump_dma_threshold(priv, chan);
2816 		} else if (unlikely(status[chan] == tx_hard_error)) {
2817 			stmmac_tx_err(priv, chan);
2818 		}
2819 	}
2820 }
2821 
2822 /**
2823  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2824  * @priv: driver private structure
2825  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2826  */
2827 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2828 {
2829 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2830 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2831 
2832 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2833 
2834 	if (priv->dma_cap.rmon) {
2835 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2836 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2837 	} else
2838 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2839 }
2840 
2841 /**
2842  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2843  * @priv: driver private structure
2844  * Description:
2845  *  new GMAC chip generations have a new register to indicate the
2846  *  presence of the optional feature/functions.
2847  *  This can be also used to override the value passed through the
2848  *  platform and necessary for old MAC10/100 and GMAC chips.
2849  */
2850 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2851 {
2852 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2853 }
2854 
2855 /**
2856  * stmmac_check_ether_addr - check if the MAC addr is valid
2857  * @priv: driver private structure
2858  * Description:
2859  * it is to verify if the MAC address is valid, in case of failures it
2860  * generates a random MAC address
2861  */
2862 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2863 {
2864 	u8 addr[ETH_ALEN];
2865 
2866 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2867 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2868 		if (is_valid_ether_addr(addr))
2869 			eth_hw_addr_set(priv->dev, addr);
2870 		else
2871 			eth_hw_addr_random(priv->dev);
2872 		dev_info(priv->device, "device MAC address %pM\n",
2873 			 priv->dev->dev_addr);
2874 	}
2875 }
2876 
2877 /**
2878  * stmmac_init_dma_engine - DMA init.
2879  * @priv: driver private structure
2880  * Description:
2881  * It inits the DMA invoking the specific MAC/GMAC callback.
2882  * Some DMA parameters can be passed from the platform;
2883  * in case of these are not passed a default is kept for the MAC or GMAC.
2884  */
2885 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2886 {
2887 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2888 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2889 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2890 	struct stmmac_rx_queue *rx_q;
2891 	struct stmmac_tx_queue *tx_q;
2892 	u32 chan = 0;
2893 	int atds = 0;
2894 	int ret = 0;
2895 
2896 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2897 		dev_err(priv->device, "Invalid DMA configuration\n");
2898 		return -EINVAL;
2899 	}
2900 
2901 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2902 		atds = 1;
2903 
2904 	ret = stmmac_reset(priv, priv->ioaddr);
2905 	if (ret) {
2906 		dev_err(priv->device, "Failed to reset the dma\n");
2907 		return ret;
2908 	}
2909 
2910 	/* DMA Configuration */
2911 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2912 
2913 	if (priv->plat->axi)
2914 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2915 
2916 	/* DMA CSR Channel configuration */
2917 	for (chan = 0; chan < dma_csr_ch; chan++) {
2918 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2919 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2920 	}
2921 
2922 	/* DMA RX Channel Configuration */
2923 	for (chan = 0; chan < rx_channels_count; chan++) {
2924 		rx_q = &priv->dma_conf.rx_queue[chan];
2925 
2926 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2927 				    rx_q->dma_rx_phy, chan);
2928 
2929 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2930 				     (rx_q->buf_alloc_num *
2931 				      sizeof(struct dma_desc));
2932 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2933 				       rx_q->rx_tail_addr, chan);
2934 	}
2935 
2936 	/* DMA TX Channel Configuration */
2937 	for (chan = 0; chan < tx_channels_count; chan++) {
2938 		tx_q = &priv->dma_conf.tx_queue[chan];
2939 
2940 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2941 				    tx_q->dma_tx_phy, chan);
2942 
2943 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2944 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2945 				       tx_q->tx_tail_addr, chan);
2946 	}
2947 
2948 	return ret;
2949 }
2950 
2951 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2952 {
2953 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2954 
2955 	hrtimer_start(&tx_q->txtimer,
2956 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2957 		      HRTIMER_MODE_REL);
2958 }
2959 
2960 /**
2961  * stmmac_tx_timer - mitigation sw timer for tx.
2962  * @t: data pointer
2963  * Description:
2964  * This is the timer handler to directly invoke the stmmac_tx_clean.
2965  */
2966 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2967 {
2968 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2969 	struct stmmac_priv *priv = tx_q->priv_data;
2970 	struct stmmac_channel *ch;
2971 	struct napi_struct *napi;
2972 
2973 	ch = &priv->channel[tx_q->queue_index];
2974 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2975 
2976 	if (likely(napi_schedule_prep(napi))) {
2977 		unsigned long flags;
2978 
2979 		spin_lock_irqsave(&ch->lock, flags);
2980 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2981 		spin_unlock_irqrestore(&ch->lock, flags);
2982 		__napi_schedule(napi);
2983 	}
2984 
2985 	return HRTIMER_NORESTART;
2986 }
2987 
2988 /**
2989  * stmmac_init_coalesce - init mitigation options.
2990  * @priv: driver private structure
2991  * Description:
2992  * This inits the coalesce parameters: i.e. timer rate,
2993  * timer handler and default threshold used for enabling the
2994  * interrupt on completion bit.
2995  */
2996 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2997 {
2998 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2999 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3000 	u32 chan;
3001 
3002 	for (chan = 0; chan < tx_channel_count; chan++) {
3003 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3004 
3005 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3006 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3007 
3008 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3009 		tx_q->txtimer.function = stmmac_tx_timer;
3010 	}
3011 
3012 	for (chan = 0; chan < rx_channel_count; chan++)
3013 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3014 }
3015 
3016 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3017 {
3018 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3019 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3020 	u32 chan;
3021 
3022 	/* set TX ring length */
3023 	for (chan = 0; chan < tx_channels_count; chan++)
3024 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3025 				       (priv->dma_conf.dma_tx_size - 1), chan);
3026 
3027 	/* set RX ring length */
3028 	for (chan = 0; chan < rx_channels_count; chan++)
3029 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3030 				       (priv->dma_conf.dma_rx_size - 1), chan);
3031 }
3032 
3033 /**
3034  *  stmmac_set_tx_queue_weight - Set TX queue weight
3035  *  @priv: driver private structure
3036  *  Description: It is used for setting TX queues weight
3037  */
3038 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3039 {
3040 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3041 	u32 weight;
3042 	u32 queue;
3043 
3044 	for (queue = 0; queue < tx_queues_count; queue++) {
3045 		weight = priv->plat->tx_queues_cfg[queue].weight;
3046 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3047 	}
3048 }
3049 
3050 /**
3051  *  stmmac_configure_cbs - Configure CBS in TX queue
3052  *  @priv: driver private structure
3053  *  Description: It is used for configuring CBS in AVB TX queues
3054  */
3055 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3056 {
3057 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3058 	u32 mode_to_use;
3059 	u32 queue;
3060 
3061 	/* queue 0 is reserved for legacy traffic */
3062 	for (queue = 1; queue < tx_queues_count; queue++) {
3063 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3064 		if (mode_to_use == MTL_QUEUE_DCB)
3065 			continue;
3066 
3067 		stmmac_config_cbs(priv, priv->hw,
3068 				priv->plat->tx_queues_cfg[queue].send_slope,
3069 				priv->plat->tx_queues_cfg[queue].idle_slope,
3070 				priv->plat->tx_queues_cfg[queue].high_credit,
3071 				priv->plat->tx_queues_cfg[queue].low_credit,
3072 				queue);
3073 	}
3074 }
3075 
3076 /**
3077  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3078  *  @priv: driver private structure
3079  *  Description: It is used for mapping RX queues to RX dma channels
3080  */
3081 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3082 {
3083 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3084 	u32 queue;
3085 	u32 chan;
3086 
3087 	for (queue = 0; queue < rx_queues_count; queue++) {
3088 		chan = priv->plat->rx_queues_cfg[queue].chan;
3089 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3090 	}
3091 }
3092 
3093 /**
3094  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3095  *  @priv: driver private structure
3096  *  Description: It is used for configuring the RX Queue Priority
3097  */
3098 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3099 {
3100 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3101 	u32 queue;
3102 	u32 prio;
3103 
3104 	for (queue = 0; queue < rx_queues_count; queue++) {
3105 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3106 			continue;
3107 
3108 		prio = priv->plat->rx_queues_cfg[queue].prio;
3109 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3110 	}
3111 }
3112 
3113 /**
3114  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3115  *  @priv: driver private structure
3116  *  Description: It is used for configuring the TX Queue Priority
3117  */
3118 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3119 {
3120 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3121 	u32 queue;
3122 	u32 prio;
3123 
3124 	for (queue = 0; queue < tx_queues_count; queue++) {
3125 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3126 			continue;
3127 
3128 		prio = priv->plat->tx_queues_cfg[queue].prio;
3129 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3130 	}
3131 }
3132 
3133 /**
3134  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3135  *  @priv: driver private structure
3136  *  Description: It is used for configuring the RX queue routing
3137  */
3138 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3139 {
3140 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3141 	u32 queue;
3142 	u8 packet;
3143 
3144 	for (queue = 0; queue < rx_queues_count; queue++) {
3145 		/* no specific packet type routing specified for the queue */
3146 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3147 			continue;
3148 
3149 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3150 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3151 	}
3152 }
3153 
3154 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3155 {
3156 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3157 		priv->rss.enable = false;
3158 		return;
3159 	}
3160 
3161 	if (priv->dev->features & NETIF_F_RXHASH)
3162 		priv->rss.enable = true;
3163 	else
3164 		priv->rss.enable = false;
3165 
3166 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3167 			     priv->plat->rx_queues_to_use);
3168 }
3169 
3170 /**
3171  *  stmmac_mtl_configuration - Configure MTL
3172  *  @priv: driver private structure
3173  *  Description: It is used for configurring MTL
3174  */
3175 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3176 {
3177 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3178 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3179 
3180 	if (tx_queues_count > 1)
3181 		stmmac_set_tx_queue_weight(priv);
3182 
3183 	/* Configure MTL RX algorithms */
3184 	if (rx_queues_count > 1)
3185 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3186 				priv->plat->rx_sched_algorithm);
3187 
3188 	/* Configure MTL TX algorithms */
3189 	if (tx_queues_count > 1)
3190 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3191 				priv->plat->tx_sched_algorithm);
3192 
3193 	/* Configure CBS in AVB TX queues */
3194 	if (tx_queues_count > 1)
3195 		stmmac_configure_cbs(priv);
3196 
3197 	/* Map RX MTL to DMA channels */
3198 	stmmac_rx_queue_dma_chan_map(priv);
3199 
3200 	/* Enable MAC RX Queues */
3201 	stmmac_mac_enable_rx_queues(priv);
3202 
3203 	/* Set RX priorities */
3204 	if (rx_queues_count > 1)
3205 		stmmac_mac_config_rx_queues_prio(priv);
3206 
3207 	/* Set TX priorities */
3208 	if (tx_queues_count > 1)
3209 		stmmac_mac_config_tx_queues_prio(priv);
3210 
3211 	/* Set RX routing */
3212 	if (rx_queues_count > 1)
3213 		stmmac_mac_config_rx_queues_routing(priv);
3214 
3215 	/* Receive Side Scaling */
3216 	if (rx_queues_count > 1)
3217 		stmmac_mac_config_rss(priv);
3218 }
3219 
3220 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3221 {
3222 	if (priv->dma_cap.asp) {
3223 		netdev_info(priv->dev, "Enabling Safety Features\n");
3224 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3225 					  priv->plat->safety_feat_cfg);
3226 	} else {
3227 		netdev_info(priv->dev, "No Safety Features support found\n");
3228 	}
3229 }
3230 
3231 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3232 {
3233 	char *name;
3234 
3235 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3236 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3237 
3238 	name = priv->wq_name;
3239 	sprintf(name, "%s-fpe", priv->dev->name);
3240 
3241 	priv->fpe_wq = create_singlethread_workqueue(name);
3242 	if (!priv->fpe_wq) {
3243 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3244 
3245 		return -ENOMEM;
3246 	}
3247 	netdev_info(priv->dev, "FPE workqueue start");
3248 
3249 	return 0;
3250 }
3251 
3252 /**
3253  * stmmac_hw_setup - setup mac in a usable state.
3254  *  @dev : pointer to the device structure.
3255  *  @ptp_register: register PTP if set
3256  *  Description:
3257  *  this is the main function to setup the HW in a usable state because the
3258  *  dma engine is reset, the core registers are configured (e.g. AXI,
3259  *  Checksum features, timers). The DMA is ready to start receiving and
3260  *  transmitting.
3261  *  Return value:
3262  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3263  *  file on failure.
3264  */
3265 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3266 {
3267 	struct stmmac_priv *priv = netdev_priv(dev);
3268 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3269 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3270 	bool sph_en;
3271 	u32 chan;
3272 	int ret;
3273 
3274 	/* DMA initialization and SW reset */
3275 	ret = stmmac_init_dma_engine(priv);
3276 	if (ret < 0) {
3277 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3278 			   __func__);
3279 		return ret;
3280 	}
3281 
3282 	/* Copy the MAC addr into the HW  */
3283 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3284 
3285 	/* PS and related bits will be programmed according to the speed */
3286 	if (priv->hw->pcs) {
3287 		int speed = priv->plat->mac_port_sel_speed;
3288 
3289 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3290 		    (speed == SPEED_1000)) {
3291 			priv->hw->ps = speed;
3292 		} else {
3293 			dev_warn(priv->device, "invalid port speed\n");
3294 			priv->hw->ps = 0;
3295 		}
3296 	}
3297 
3298 	/* Initialize the MAC Core */
3299 	stmmac_core_init(priv, priv->hw, dev);
3300 
3301 	/* Initialize MTL*/
3302 	stmmac_mtl_configuration(priv);
3303 
3304 	/* Initialize Safety Features */
3305 	stmmac_safety_feat_configuration(priv);
3306 
3307 	ret = stmmac_rx_ipc(priv, priv->hw);
3308 	if (!ret) {
3309 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3310 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3311 		priv->hw->rx_csum = 0;
3312 	}
3313 
3314 	/* Enable the MAC Rx/Tx */
3315 	stmmac_mac_set(priv, priv->ioaddr, true);
3316 
3317 	/* Set the HW DMA mode and the COE */
3318 	stmmac_dma_operation_mode(priv);
3319 
3320 	stmmac_mmc_setup(priv);
3321 
3322 	if (ptp_register) {
3323 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3324 		if (ret < 0)
3325 			netdev_warn(priv->dev,
3326 				    "failed to enable PTP reference clock: %pe\n",
3327 				    ERR_PTR(ret));
3328 	}
3329 
3330 	ret = stmmac_init_ptp(priv);
3331 	if (ret == -EOPNOTSUPP)
3332 		netdev_info(priv->dev, "PTP not supported by HW\n");
3333 	else if (ret)
3334 		netdev_warn(priv->dev, "PTP init failed\n");
3335 	else if (ptp_register)
3336 		stmmac_ptp_register(priv);
3337 
3338 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3339 
3340 	/* Convert the timer from msec to usec */
3341 	if (!priv->tx_lpi_timer)
3342 		priv->tx_lpi_timer = eee_timer * 1000;
3343 
3344 	if (priv->use_riwt) {
3345 		u32 queue;
3346 
3347 		for (queue = 0; queue < rx_cnt; queue++) {
3348 			if (!priv->rx_riwt[queue])
3349 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3350 
3351 			stmmac_rx_watchdog(priv, priv->ioaddr,
3352 					   priv->rx_riwt[queue], queue);
3353 		}
3354 	}
3355 
3356 	if (priv->hw->pcs)
3357 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3358 
3359 	/* set TX and RX rings length */
3360 	stmmac_set_rings_length(priv);
3361 
3362 	/* Enable TSO */
3363 	if (priv->tso) {
3364 		for (chan = 0; chan < tx_cnt; chan++) {
3365 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3366 
3367 			/* TSO and TBS cannot co-exist */
3368 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3369 				continue;
3370 
3371 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3372 		}
3373 	}
3374 
3375 	/* Enable Split Header */
3376 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3377 	for (chan = 0; chan < rx_cnt; chan++)
3378 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3379 
3380 
3381 	/* VLAN Tag Insertion */
3382 	if (priv->dma_cap.vlins)
3383 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3384 
3385 	/* TBS */
3386 	for (chan = 0; chan < tx_cnt; chan++) {
3387 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3388 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3389 
3390 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3391 	}
3392 
3393 	/* Configure real RX and TX queues */
3394 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3395 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3396 
3397 	/* Start the ball rolling... */
3398 	stmmac_start_all_dma(priv);
3399 
3400 	if (priv->dma_cap.fpesel) {
3401 		stmmac_fpe_start_wq(priv);
3402 
3403 		if (priv->plat->fpe_cfg->enable)
3404 			stmmac_fpe_handshake(priv, true);
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 static void stmmac_hw_teardown(struct net_device *dev)
3411 {
3412 	struct stmmac_priv *priv = netdev_priv(dev);
3413 
3414 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3415 }
3416 
3417 static void stmmac_free_irq(struct net_device *dev,
3418 			    enum request_irq_err irq_err, int irq_idx)
3419 {
3420 	struct stmmac_priv *priv = netdev_priv(dev);
3421 	int j;
3422 
3423 	switch (irq_err) {
3424 	case REQ_IRQ_ERR_ALL:
3425 		irq_idx = priv->plat->tx_queues_to_use;
3426 		fallthrough;
3427 	case REQ_IRQ_ERR_TX:
3428 		for (j = irq_idx - 1; j >= 0; j--) {
3429 			if (priv->tx_irq[j] > 0) {
3430 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3431 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3432 			}
3433 		}
3434 		irq_idx = priv->plat->rx_queues_to_use;
3435 		fallthrough;
3436 	case REQ_IRQ_ERR_RX:
3437 		for (j = irq_idx - 1; j >= 0; j--) {
3438 			if (priv->rx_irq[j] > 0) {
3439 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3440 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3441 			}
3442 		}
3443 
3444 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3445 			free_irq(priv->sfty_ue_irq, dev);
3446 		fallthrough;
3447 	case REQ_IRQ_ERR_SFTY_UE:
3448 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3449 			free_irq(priv->sfty_ce_irq, dev);
3450 		fallthrough;
3451 	case REQ_IRQ_ERR_SFTY_CE:
3452 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3453 			free_irq(priv->lpi_irq, dev);
3454 		fallthrough;
3455 	case REQ_IRQ_ERR_LPI:
3456 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3457 			free_irq(priv->wol_irq, dev);
3458 		fallthrough;
3459 	case REQ_IRQ_ERR_WOL:
3460 		free_irq(dev->irq, dev);
3461 		fallthrough;
3462 	case REQ_IRQ_ERR_MAC:
3463 	case REQ_IRQ_ERR_NO:
3464 		/* If MAC IRQ request error, no more IRQ to free */
3465 		break;
3466 	}
3467 }
3468 
3469 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3470 {
3471 	struct stmmac_priv *priv = netdev_priv(dev);
3472 	enum request_irq_err irq_err;
3473 	cpumask_t cpu_mask;
3474 	int irq_idx = 0;
3475 	char *int_name;
3476 	int ret;
3477 	int i;
3478 
3479 	/* For common interrupt */
3480 	int_name = priv->int_name_mac;
3481 	sprintf(int_name, "%s:%s", dev->name, "mac");
3482 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3483 			  0, int_name, dev);
3484 	if (unlikely(ret < 0)) {
3485 		netdev_err(priv->dev,
3486 			   "%s: alloc mac MSI %d (error: %d)\n",
3487 			   __func__, dev->irq, ret);
3488 		irq_err = REQ_IRQ_ERR_MAC;
3489 		goto irq_error;
3490 	}
3491 
3492 	/* Request the Wake IRQ in case of another line
3493 	 * is used for WoL
3494 	 */
3495 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3496 		int_name = priv->int_name_wol;
3497 		sprintf(int_name, "%s:%s", dev->name, "wol");
3498 		ret = request_irq(priv->wol_irq,
3499 				  stmmac_mac_interrupt,
3500 				  0, int_name, dev);
3501 		if (unlikely(ret < 0)) {
3502 			netdev_err(priv->dev,
3503 				   "%s: alloc wol MSI %d (error: %d)\n",
3504 				   __func__, priv->wol_irq, ret);
3505 			irq_err = REQ_IRQ_ERR_WOL;
3506 			goto irq_error;
3507 		}
3508 	}
3509 
3510 	/* Request the LPI IRQ in case of another line
3511 	 * is used for LPI
3512 	 */
3513 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3514 		int_name = priv->int_name_lpi;
3515 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3516 		ret = request_irq(priv->lpi_irq,
3517 				  stmmac_mac_interrupt,
3518 				  0, int_name, dev);
3519 		if (unlikely(ret < 0)) {
3520 			netdev_err(priv->dev,
3521 				   "%s: alloc lpi MSI %d (error: %d)\n",
3522 				   __func__, priv->lpi_irq, ret);
3523 			irq_err = REQ_IRQ_ERR_LPI;
3524 			goto irq_error;
3525 		}
3526 	}
3527 
3528 	/* Request the Safety Feature Correctible Error line in
3529 	 * case of another line is used
3530 	 */
3531 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3532 		int_name = priv->int_name_sfty_ce;
3533 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3534 		ret = request_irq(priv->sfty_ce_irq,
3535 				  stmmac_safety_interrupt,
3536 				  0, int_name, dev);
3537 		if (unlikely(ret < 0)) {
3538 			netdev_err(priv->dev,
3539 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3540 				   __func__, priv->sfty_ce_irq, ret);
3541 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3542 			goto irq_error;
3543 		}
3544 	}
3545 
3546 	/* Request the Safety Feature Uncorrectible Error line in
3547 	 * case of another line is used
3548 	 */
3549 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3550 		int_name = priv->int_name_sfty_ue;
3551 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3552 		ret = request_irq(priv->sfty_ue_irq,
3553 				  stmmac_safety_interrupt,
3554 				  0, int_name, dev);
3555 		if (unlikely(ret < 0)) {
3556 			netdev_err(priv->dev,
3557 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3558 				   __func__, priv->sfty_ue_irq, ret);
3559 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3560 			goto irq_error;
3561 		}
3562 	}
3563 
3564 	/* Request Rx MSI irq */
3565 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3566 		if (i >= MTL_MAX_RX_QUEUES)
3567 			break;
3568 		if (priv->rx_irq[i] == 0)
3569 			continue;
3570 
3571 		int_name = priv->int_name_rx_irq[i];
3572 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3573 		ret = request_irq(priv->rx_irq[i],
3574 				  stmmac_msi_intr_rx,
3575 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3576 		if (unlikely(ret < 0)) {
3577 			netdev_err(priv->dev,
3578 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3579 				   __func__, i, priv->rx_irq[i], ret);
3580 			irq_err = REQ_IRQ_ERR_RX;
3581 			irq_idx = i;
3582 			goto irq_error;
3583 		}
3584 		cpumask_clear(&cpu_mask);
3585 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3586 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3587 	}
3588 
3589 	/* Request Tx MSI irq */
3590 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3591 		if (i >= MTL_MAX_TX_QUEUES)
3592 			break;
3593 		if (priv->tx_irq[i] == 0)
3594 			continue;
3595 
3596 		int_name = priv->int_name_tx_irq[i];
3597 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3598 		ret = request_irq(priv->tx_irq[i],
3599 				  stmmac_msi_intr_tx,
3600 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3601 		if (unlikely(ret < 0)) {
3602 			netdev_err(priv->dev,
3603 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3604 				   __func__, i, priv->tx_irq[i], ret);
3605 			irq_err = REQ_IRQ_ERR_TX;
3606 			irq_idx = i;
3607 			goto irq_error;
3608 		}
3609 		cpumask_clear(&cpu_mask);
3610 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3611 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3612 	}
3613 
3614 	return 0;
3615 
3616 irq_error:
3617 	stmmac_free_irq(dev, irq_err, irq_idx);
3618 	return ret;
3619 }
3620 
3621 static int stmmac_request_irq_single(struct net_device *dev)
3622 {
3623 	struct stmmac_priv *priv = netdev_priv(dev);
3624 	enum request_irq_err irq_err;
3625 	int ret;
3626 
3627 	ret = request_irq(dev->irq, stmmac_interrupt,
3628 			  IRQF_SHARED, dev->name, dev);
3629 	if (unlikely(ret < 0)) {
3630 		netdev_err(priv->dev,
3631 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3632 			   __func__, dev->irq, ret);
3633 		irq_err = REQ_IRQ_ERR_MAC;
3634 		goto irq_error;
3635 	}
3636 
3637 	/* Request the Wake IRQ in case of another line
3638 	 * is used for WoL
3639 	 */
3640 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3641 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3642 				  IRQF_SHARED, dev->name, dev);
3643 		if (unlikely(ret < 0)) {
3644 			netdev_err(priv->dev,
3645 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3646 				   __func__, priv->wol_irq, ret);
3647 			irq_err = REQ_IRQ_ERR_WOL;
3648 			goto irq_error;
3649 		}
3650 	}
3651 
3652 	/* Request the IRQ lines */
3653 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3654 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3655 				  IRQF_SHARED, dev->name, dev);
3656 		if (unlikely(ret < 0)) {
3657 			netdev_err(priv->dev,
3658 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3659 				   __func__, priv->lpi_irq, ret);
3660 			irq_err = REQ_IRQ_ERR_LPI;
3661 			goto irq_error;
3662 		}
3663 	}
3664 
3665 	return 0;
3666 
3667 irq_error:
3668 	stmmac_free_irq(dev, irq_err, 0);
3669 	return ret;
3670 }
3671 
3672 static int stmmac_request_irq(struct net_device *dev)
3673 {
3674 	struct stmmac_priv *priv = netdev_priv(dev);
3675 	int ret;
3676 
3677 	/* Request the IRQ lines */
3678 	if (priv->plat->multi_msi_en)
3679 		ret = stmmac_request_irq_multi_msi(dev);
3680 	else
3681 		ret = stmmac_request_irq_single(dev);
3682 
3683 	return ret;
3684 }
3685 
3686 /**
3687  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3688  *  @priv: driver private structure
3689  *  @mtu: MTU to setup the dma queue and buf with
3690  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3691  *  Allocate the Tx/Rx DMA queue and init them.
3692  *  Return value:
3693  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3694  */
3695 static struct stmmac_dma_conf *
3696 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3697 {
3698 	struct stmmac_dma_conf *dma_conf;
3699 	int chan, bfsize, ret;
3700 
3701 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3702 	if (!dma_conf) {
3703 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3704 			   __func__);
3705 		return ERR_PTR(-ENOMEM);
3706 	}
3707 
3708 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3709 	if (bfsize < 0)
3710 		bfsize = 0;
3711 
3712 	if (bfsize < BUF_SIZE_16KiB)
3713 		bfsize = stmmac_set_bfsize(mtu, 0);
3714 
3715 	dma_conf->dma_buf_sz = bfsize;
3716 	/* Chose the tx/rx size from the already defined one in the
3717 	 * priv struct. (if defined)
3718 	 */
3719 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3720 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3721 
3722 	if (!dma_conf->dma_tx_size)
3723 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3724 	if (!dma_conf->dma_rx_size)
3725 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3726 
3727 	/* Earlier check for TBS */
3728 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3729 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3730 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3731 
3732 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3733 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3734 	}
3735 
3736 	ret = alloc_dma_desc_resources(priv, dma_conf);
3737 	if (ret < 0) {
3738 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3739 			   __func__);
3740 		goto alloc_error;
3741 	}
3742 
3743 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3744 	if (ret < 0) {
3745 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3746 			   __func__);
3747 		goto init_error;
3748 	}
3749 
3750 	return dma_conf;
3751 
3752 init_error:
3753 	free_dma_desc_resources(priv, dma_conf);
3754 alloc_error:
3755 	kfree(dma_conf);
3756 	return ERR_PTR(ret);
3757 }
3758 
3759 /**
3760  *  __stmmac_open - open entry point of the driver
3761  *  @dev : pointer to the device structure.
3762  *  @dma_conf :  structure to take the dma data
3763  *  Description:
3764  *  This function is the open entry point of the driver.
3765  *  Return value:
3766  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3767  *  file on failure.
3768  */
3769 static int __stmmac_open(struct net_device *dev,
3770 			 struct stmmac_dma_conf *dma_conf)
3771 {
3772 	struct stmmac_priv *priv = netdev_priv(dev);
3773 	int mode = priv->plat->phy_interface;
3774 	u32 chan;
3775 	int ret;
3776 
3777 	ret = pm_runtime_resume_and_get(priv->device);
3778 	if (ret < 0)
3779 		return ret;
3780 
3781 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3782 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3783 	    (!priv->hw->xpcs ||
3784 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3785 		ret = stmmac_init_phy(dev);
3786 		if (ret) {
3787 			netdev_err(priv->dev,
3788 				   "%s: Cannot attach to PHY (error: %d)\n",
3789 				   __func__, ret);
3790 			goto init_phy_error;
3791 		}
3792 	}
3793 
3794 	/* Extra statistics */
3795 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3796 	priv->xstats.threshold = tc;
3797 
3798 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3799 
3800 	buf_sz = dma_conf->dma_buf_sz;
3801 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3802 
3803 	stmmac_reset_queues_param(priv);
3804 
3805 	if (priv->plat->serdes_powerup) {
3806 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3807 		if (ret < 0) {
3808 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3809 				   __func__);
3810 			goto init_error;
3811 		}
3812 	}
3813 
3814 	ret = stmmac_hw_setup(dev, true);
3815 	if (ret < 0) {
3816 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3817 		goto init_error;
3818 	}
3819 
3820 	stmmac_init_coalesce(priv);
3821 
3822 	phylink_start(priv->phylink);
3823 	/* We may have called phylink_speed_down before */
3824 	phylink_speed_up(priv->phylink);
3825 
3826 	ret = stmmac_request_irq(dev);
3827 	if (ret)
3828 		goto irq_error;
3829 
3830 	stmmac_enable_all_queues(priv);
3831 	netif_tx_start_all_queues(priv->dev);
3832 	stmmac_enable_all_dma_irq(priv);
3833 
3834 	return 0;
3835 
3836 irq_error:
3837 	phylink_stop(priv->phylink);
3838 
3839 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3840 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3841 
3842 	stmmac_hw_teardown(dev);
3843 init_error:
3844 	free_dma_desc_resources(priv, &priv->dma_conf);
3845 	phylink_disconnect_phy(priv->phylink);
3846 init_phy_error:
3847 	pm_runtime_put(priv->device);
3848 	return ret;
3849 }
3850 
3851 static int stmmac_open(struct net_device *dev)
3852 {
3853 	struct stmmac_priv *priv = netdev_priv(dev);
3854 	struct stmmac_dma_conf *dma_conf;
3855 	int ret;
3856 
3857 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3858 	if (IS_ERR(dma_conf))
3859 		return PTR_ERR(dma_conf);
3860 
3861 	ret = __stmmac_open(dev, dma_conf);
3862 	kfree(dma_conf);
3863 	return ret;
3864 }
3865 
3866 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3867 {
3868 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3869 
3870 	if (priv->fpe_wq)
3871 		destroy_workqueue(priv->fpe_wq);
3872 
3873 	netdev_info(priv->dev, "FPE workqueue stop");
3874 }
3875 
3876 /**
3877  *  stmmac_release - close entry point of the driver
3878  *  @dev : device pointer.
3879  *  Description:
3880  *  This is the stop entry point of the driver.
3881  */
3882 static int stmmac_release(struct net_device *dev)
3883 {
3884 	struct stmmac_priv *priv = netdev_priv(dev);
3885 	u32 chan;
3886 
3887 	if (device_may_wakeup(priv->device))
3888 		phylink_speed_down(priv->phylink, false);
3889 	/* Stop and disconnect the PHY */
3890 	phylink_stop(priv->phylink);
3891 	phylink_disconnect_phy(priv->phylink);
3892 
3893 	stmmac_disable_all_queues(priv);
3894 
3895 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3896 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3897 
3898 	netif_tx_disable(dev);
3899 
3900 	/* Free the IRQ lines */
3901 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3902 
3903 	if (priv->eee_enabled) {
3904 		priv->tx_path_in_lpi_mode = false;
3905 		del_timer_sync(&priv->eee_ctrl_timer);
3906 	}
3907 
3908 	/* Stop TX/RX DMA and clear the descriptors */
3909 	stmmac_stop_all_dma(priv);
3910 
3911 	/* Release and free the Rx/Tx resources */
3912 	free_dma_desc_resources(priv, &priv->dma_conf);
3913 
3914 	/* Disable the MAC Rx/Tx */
3915 	stmmac_mac_set(priv, priv->ioaddr, false);
3916 
3917 	/* Powerdown Serdes if there is */
3918 	if (priv->plat->serdes_powerdown)
3919 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3920 
3921 	netif_carrier_off(dev);
3922 
3923 	stmmac_release_ptp(priv);
3924 
3925 	pm_runtime_put(priv->device);
3926 
3927 	if (priv->dma_cap.fpesel)
3928 		stmmac_fpe_stop_wq(priv);
3929 
3930 	return 0;
3931 }
3932 
3933 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3934 			       struct stmmac_tx_queue *tx_q)
3935 {
3936 	u16 tag = 0x0, inner_tag = 0x0;
3937 	u32 inner_type = 0x0;
3938 	struct dma_desc *p;
3939 
3940 	if (!priv->dma_cap.vlins)
3941 		return false;
3942 	if (!skb_vlan_tag_present(skb))
3943 		return false;
3944 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3945 		inner_tag = skb_vlan_tag_get(skb);
3946 		inner_type = STMMAC_VLAN_INSERT;
3947 	}
3948 
3949 	tag = skb_vlan_tag_get(skb);
3950 
3951 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3952 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3953 	else
3954 		p = &tx_q->dma_tx[tx_q->cur_tx];
3955 
3956 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3957 		return false;
3958 
3959 	stmmac_set_tx_owner(priv, p);
3960 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3961 	return true;
3962 }
3963 
3964 /**
3965  *  stmmac_tso_allocator - close entry point of the driver
3966  *  @priv: driver private structure
3967  *  @des: buffer start address
3968  *  @total_len: total length to fill in descriptors
3969  *  @last_segment: condition for the last descriptor
3970  *  @queue: TX queue index
3971  *  Description:
3972  *  This function fills descriptor and request new descriptors according to
3973  *  buffer length to fill
3974  */
3975 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3976 				 int total_len, bool last_segment, u32 queue)
3977 {
3978 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3979 	struct dma_desc *desc;
3980 	u32 buff_size;
3981 	int tmp_len;
3982 
3983 	tmp_len = total_len;
3984 
3985 	while (tmp_len > 0) {
3986 		dma_addr_t curr_addr;
3987 
3988 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3989 						priv->dma_conf.dma_tx_size);
3990 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3991 
3992 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3993 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3994 		else
3995 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3996 
3997 		curr_addr = des + (total_len - tmp_len);
3998 		if (priv->dma_cap.addr64 <= 32)
3999 			desc->des0 = cpu_to_le32(curr_addr);
4000 		else
4001 			stmmac_set_desc_addr(priv, desc, curr_addr);
4002 
4003 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4004 			    TSO_MAX_BUFF_SIZE : tmp_len;
4005 
4006 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4007 				0, 1,
4008 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4009 				0, 0);
4010 
4011 		tmp_len -= TSO_MAX_BUFF_SIZE;
4012 	}
4013 }
4014 
4015 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4016 {
4017 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4018 	int desc_size;
4019 
4020 	if (likely(priv->extend_desc))
4021 		desc_size = sizeof(struct dma_extended_desc);
4022 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4023 		desc_size = sizeof(struct dma_edesc);
4024 	else
4025 		desc_size = sizeof(struct dma_desc);
4026 
4027 	/* The own bit must be the latest setting done when prepare the
4028 	 * descriptor and then barrier is needed to make sure that
4029 	 * all is coherent before granting the DMA engine.
4030 	 */
4031 	wmb();
4032 
4033 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4034 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4035 }
4036 
4037 /**
4038  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4039  *  @skb : the socket buffer
4040  *  @dev : device pointer
4041  *  Description: this is the transmit function that is called on TSO frames
4042  *  (support available on GMAC4 and newer chips).
4043  *  Diagram below show the ring programming in case of TSO frames:
4044  *
4045  *  First Descriptor
4046  *   --------
4047  *   | DES0 |---> buffer1 = L2/L3/L4 header
4048  *   | DES1 |---> TCP Payload (can continue on next descr...)
4049  *   | DES2 |---> buffer 1 and 2 len
4050  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4051  *   --------
4052  *	|
4053  *     ...
4054  *	|
4055  *   --------
4056  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4057  *   | DES1 | --|
4058  *   | DES2 | --> buffer 1 and 2 len
4059  *   | DES3 |
4060  *   --------
4061  *
4062  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4063  */
4064 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4065 {
4066 	struct dma_desc *desc, *first, *mss_desc = NULL;
4067 	struct stmmac_priv *priv = netdev_priv(dev);
4068 	int nfrags = skb_shinfo(skb)->nr_frags;
4069 	u32 queue = skb_get_queue_mapping(skb);
4070 	unsigned int first_entry, tx_packets;
4071 	int tmp_pay_len = 0, first_tx;
4072 	struct stmmac_tx_queue *tx_q;
4073 	bool has_vlan, set_ic;
4074 	u8 proto_hdr_len, hdr;
4075 	u32 pay_len, mss;
4076 	dma_addr_t des;
4077 	int i;
4078 
4079 	tx_q = &priv->dma_conf.tx_queue[queue];
4080 	first_tx = tx_q->cur_tx;
4081 
4082 	/* Compute header lengths */
4083 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4084 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4085 		hdr = sizeof(struct udphdr);
4086 	} else {
4087 		proto_hdr_len = skb_tcp_all_headers(skb);
4088 		hdr = tcp_hdrlen(skb);
4089 	}
4090 
4091 	/* Desc availability based on threshold should be enough safe */
4092 	if (unlikely(stmmac_tx_avail(priv, queue) <
4093 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4094 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4095 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4096 								queue));
4097 			/* This is a hard error, log it. */
4098 			netdev_err(priv->dev,
4099 				   "%s: Tx Ring full when queue awake\n",
4100 				   __func__);
4101 		}
4102 		return NETDEV_TX_BUSY;
4103 	}
4104 
4105 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4106 
4107 	mss = skb_shinfo(skb)->gso_size;
4108 
4109 	/* set new MSS value if needed */
4110 	if (mss != tx_q->mss) {
4111 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4112 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4113 		else
4114 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4115 
4116 		stmmac_set_mss(priv, mss_desc, mss);
4117 		tx_q->mss = mss;
4118 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4119 						priv->dma_conf.dma_tx_size);
4120 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4121 	}
4122 
4123 	if (netif_msg_tx_queued(priv)) {
4124 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4125 			__func__, hdr, proto_hdr_len, pay_len, mss);
4126 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4127 			skb->data_len);
4128 	}
4129 
4130 	/* Check if VLAN can be inserted by HW */
4131 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4132 
4133 	first_entry = tx_q->cur_tx;
4134 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4135 
4136 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4137 		desc = &tx_q->dma_entx[first_entry].basic;
4138 	else
4139 		desc = &tx_q->dma_tx[first_entry];
4140 	first = desc;
4141 
4142 	if (has_vlan)
4143 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4144 
4145 	/* first descriptor: fill Headers on Buf1 */
4146 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4147 			     DMA_TO_DEVICE);
4148 	if (dma_mapping_error(priv->device, des))
4149 		goto dma_map_err;
4150 
4151 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4152 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4153 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4154 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4155 
4156 	if (priv->dma_cap.addr64 <= 32) {
4157 		first->des0 = cpu_to_le32(des);
4158 
4159 		/* Fill start of payload in buff2 of first descriptor */
4160 		if (pay_len)
4161 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4162 
4163 		/* If needed take extra descriptors to fill the remaining payload */
4164 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4165 	} else {
4166 		stmmac_set_desc_addr(priv, first, des);
4167 		tmp_pay_len = pay_len;
4168 		des += proto_hdr_len;
4169 		pay_len = 0;
4170 	}
4171 
4172 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4173 
4174 	/* Prepare fragments */
4175 	for (i = 0; i < nfrags; i++) {
4176 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4177 
4178 		des = skb_frag_dma_map(priv->device, frag, 0,
4179 				       skb_frag_size(frag),
4180 				       DMA_TO_DEVICE);
4181 		if (dma_mapping_error(priv->device, des))
4182 			goto dma_map_err;
4183 
4184 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4185 				     (i == nfrags - 1), queue);
4186 
4187 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4188 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4189 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4190 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4191 	}
4192 
4193 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4194 
4195 	/* Only the last descriptor gets to point to the skb. */
4196 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4197 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4198 
4199 	/* Manage tx mitigation */
4200 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4201 	tx_q->tx_count_frames += tx_packets;
4202 
4203 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4204 		set_ic = true;
4205 	else if (!priv->tx_coal_frames[queue])
4206 		set_ic = false;
4207 	else if (tx_packets > priv->tx_coal_frames[queue])
4208 		set_ic = true;
4209 	else if ((tx_q->tx_count_frames %
4210 		  priv->tx_coal_frames[queue]) < tx_packets)
4211 		set_ic = true;
4212 	else
4213 		set_ic = false;
4214 
4215 	if (set_ic) {
4216 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4217 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4218 		else
4219 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4220 
4221 		tx_q->tx_count_frames = 0;
4222 		stmmac_set_tx_ic(priv, desc);
4223 		priv->xstats.tx_set_ic_bit++;
4224 	}
4225 
4226 	/* We've used all descriptors we need for this skb, however,
4227 	 * advance cur_tx so that it references a fresh descriptor.
4228 	 * ndo_start_xmit will fill this descriptor the next time it's
4229 	 * called and stmmac_tx_clean may clean up to this descriptor.
4230 	 */
4231 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4232 
4233 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4234 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4235 			  __func__);
4236 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4237 	}
4238 
4239 	dev->stats.tx_bytes += skb->len;
4240 	priv->xstats.tx_tso_frames++;
4241 	priv->xstats.tx_tso_nfrags += nfrags;
4242 
4243 	if (priv->sarc_type)
4244 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4245 
4246 	skb_tx_timestamp(skb);
4247 
4248 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4249 		     priv->hwts_tx_en)) {
4250 		/* declare that device is doing timestamping */
4251 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4252 		stmmac_enable_tx_timestamp(priv, first);
4253 	}
4254 
4255 	/* Complete the first descriptor before granting the DMA */
4256 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4257 			proto_hdr_len,
4258 			pay_len,
4259 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4260 			hdr / 4, (skb->len - proto_hdr_len));
4261 
4262 	/* If context desc is used to change MSS */
4263 	if (mss_desc) {
4264 		/* Make sure that first descriptor has been completely
4265 		 * written, including its own bit. This is because MSS is
4266 		 * actually before first descriptor, so we need to make
4267 		 * sure that MSS's own bit is the last thing written.
4268 		 */
4269 		dma_wmb();
4270 		stmmac_set_tx_owner(priv, mss_desc);
4271 	}
4272 
4273 	if (netif_msg_pktdata(priv)) {
4274 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4275 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4276 			tx_q->cur_tx, first, nfrags);
4277 		pr_info(">>> frame to be transmitted: ");
4278 		print_pkt(skb->data, skb_headlen(skb));
4279 	}
4280 
4281 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4282 
4283 	stmmac_flush_tx_descriptors(priv, queue);
4284 	stmmac_tx_timer_arm(priv, queue);
4285 
4286 	return NETDEV_TX_OK;
4287 
4288 dma_map_err:
4289 	dev_err(priv->device, "Tx dma map failed\n");
4290 	dev_kfree_skb(skb);
4291 	priv->dev->stats.tx_dropped++;
4292 	return NETDEV_TX_OK;
4293 }
4294 
4295 /**
4296  *  stmmac_xmit - Tx entry point of the driver
4297  *  @skb : the socket buffer
4298  *  @dev : device pointer
4299  *  Description : this is the tx entry point of the driver.
4300  *  It programs the chain or the ring and supports oversized frames
4301  *  and SG feature.
4302  */
4303 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4304 {
4305 	unsigned int first_entry, tx_packets, enh_desc;
4306 	struct stmmac_priv *priv = netdev_priv(dev);
4307 	unsigned int nopaged_len = skb_headlen(skb);
4308 	int i, csum_insertion = 0, is_jumbo = 0;
4309 	u32 queue = skb_get_queue_mapping(skb);
4310 	int nfrags = skb_shinfo(skb)->nr_frags;
4311 	int gso = skb_shinfo(skb)->gso_type;
4312 	struct dma_edesc *tbs_desc = NULL;
4313 	struct dma_desc *desc, *first;
4314 	struct stmmac_tx_queue *tx_q;
4315 	bool has_vlan, set_ic;
4316 	int entry, first_tx;
4317 	dma_addr_t des;
4318 
4319 	tx_q = &priv->dma_conf.tx_queue[queue];
4320 	first_tx = tx_q->cur_tx;
4321 
4322 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4323 		stmmac_disable_eee_mode(priv);
4324 
4325 	/* Manage oversized TCP frames for GMAC4 device */
4326 	if (skb_is_gso(skb) && priv->tso) {
4327 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4328 			return stmmac_tso_xmit(skb, dev);
4329 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4330 			return stmmac_tso_xmit(skb, dev);
4331 	}
4332 
4333 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4334 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4335 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4336 								queue));
4337 			/* This is a hard error, log it. */
4338 			netdev_err(priv->dev,
4339 				   "%s: Tx Ring full when queue awake\n",
4340 				   __func__);
4341 		}
4342 		return NETDEV_TX_BUSY;
4343 	}
4344 
4345 	/* Check if VLAN can be inserted by HW */
4346 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4347 
4348 	entry = tx_q->cur_tx;
4349 	first_entry = entry;
4350 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4351 
4352 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4353 
4354 	if (likely(priv->extend_desc))
4355 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4356 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4357 		desc = &tx_q->dma_entx[entry].basic;
4358 	else
4359 		desc = tx_q->dma_tx + entry;
4360 
4361 	first = desc;
4362 
4363 	if (has_vlan)
4364 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4365 
4366 	enh_desc = priv->plat->enh_desc;
4367 	/* To program the descriptors according to the size of the frame */
4368 	if (enh_desc)
4369 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4370 
4371 	if (unlikely(is_jumbo)) {
4372 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4373 		if (unlikely(entry < 0) && (entry != -EINVAL))
4374 			goto dma_map_err;
4375 	}
4376 
4377 	for (i = 0; i < nfrags; i++) {
4378 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4379 		int len = skb_frag_size(frag);
4380 		bool last_segment = (i == (nfrags - 1));
4381 
4382 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4383 		WARN_ON(tx_q->tx_skbuff[entry]);
4384 
4385 		if (likely(priv->extend_desc))
4386 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4387 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4388 			desc = &tx_q->dma_entx[entry].basic;
4389 		else
4390 			desc = tx_q->dma_tx + entry;
4391 
4392 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4393 				       DMA_TO_DEVICE);
4394 		if (dma_mapping_error(priv->device, des))
4395 			goto dma_map_err; /* should reuse desc w/o issues */
4396 
4397 		tx_q->tx_skbuff_dma[entry].buf = des;
4398 
4399 		stmmac_set_desc_addr(priv, desc, des);
4400 
4401 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4402 		tx_q->tx_skbuff_dma[entry].len = len;
4403 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4404 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4405 
4406 		/* Prepare the descriptor and set the own bit too */
4407 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4408 				priv->mode, 1, last_segment, skb->len);
4409 	}
4410 
4411 	/* Only the last descriptor gets to point to the skb. */
4412 	tx_q->tx_skbuff[entry] = skb;
4413 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4414 
4415 	/* According to the coalesce parameter the IC bit for the latest
4416 	 * segment is reset and the timer re-started to clean the tx status.
4417 	 * This approach takes care about the fragments: desc is the first
4418 	 * element in case of no SG.
4419 	 */
4420 	tx_packets = (entry + 1) - first_tx;
4421 	tx_q->tx_count_frames += tx_packets;
4422 
4423 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4424 		set_ic = true;
4425 	else if (!priv->tx_coal_frames[queue])
4426 		set_ic = false;
4427 	else if (tx_packets > priv->tx_coal_frames[queue])
4428 		set_ic = true;
4429 	else if ((tx_q->tx_count_frames %
4430 		  priv->tx_coal_frames[queue]) < tx_packets)
4431 		set_ic = true;
4432 	else
4433 		set_ic = false;
4434 
4435 	if (set_ic) {
4436 		if (likely(priv->extend_desc))
4437 			desc = &tx_q->dma_etx[entry].basic;
4438 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4439 			desc = &tx_q->dma_entx[entry].basic;
4440 		else
4441 			desc = &tx_q->dma_tx[entry];
4442 
4443 		tx_q->tx_count_frames = 0;
4444 		stmmac_set_tx_ic(priv, desc);
4445 		priv->xstats.tx_set_ic_bit++;
4446 	}
4447 
4448 	/* We've used all descriptors we need for this skb, however,
4449 	 * advance cur_tx so that it references a fresh descriptor.
4450 	 * ndo_start_xmit will fill this descriptor the next time it's
4451 	 * called and stmmac_tx_clean may clean up to this descriptor.
4452 	 */
4453 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4454 	tx_q->cur_tx = entry;
4455 
4456 	if (netif_msg_pktdata(priv)) {
4457 		netdev_dbg(priv->dev,
4458 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4459 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4460 			   entry, first, nfrags);
4461 
4462 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4463 		print_pkt(skb->data, skb->len);
4464 	}
4465 
4466 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4467 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4468 			  __func__);
4469 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4470 	}
4471 
4472 	dev->stats.tx_bytes += skb->len;
4473 
4474 	if (priv->sarc_type)
4475 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4476 
4477 	skb_tx_timestamp(skb);
4478 
4479 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4480 	 * problems because all the descriptors are actually ready to be
4481 	 * passed to the DMA engine.
4482 	 */
4483 	if (likely(!is_jumbo)) {
4484 		bool last_segment = (nfrags == 0);
4485 
4486 		des = dma_map_single(priv->device, skb->data,
4487 				     nopaged_len, DMA_TO_DEVICE);
4488 		if (dma_mapping_error(priv->device, des))
4489 			goto dma_map_err;
4490 
4491 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4492 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4493 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4494 
4495 		stmmac_set_desc_addr(priv, first, des);
4496 
4497 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4498 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4499 
4500 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4501 			     priv->hwts_tx_en)) {
4502 			/* declare that device is doing timestamping */
4503 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4504 			stmmac_enable_tx_timestamp(priv, first);
4505 		}
4506 
4507 		/* Prepare the first descriptor setting the OWN bit too */
4508 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4509 				csum_insertion, priv->mode, 0, last_segment,
4510 				skb->len);
4511 	}
4512 
4513 	if (tx_q->tbs & STMMAC_TBS_EN) {
4514 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4515 
4516 		tbs_desc = &tx_q->dma_entx[first_entry];
4517 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4518 	}
4519 
4520 	stmmac_set_tx_owner(priv, first);
4521 
4522 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4523 
4524 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4525 
4526 	stmmac_flush_tx_descriptors(priv, queue);
4527 	stmmac_tx_timer_arm(priv, queue);
4528 
4529 	return NETDEV_TX_OK;
4530 
4531 dma_map_err:
4532 	netdev_err(priv->dev, "Tx DMA map failed\n");
4533 	dev_kfree_skb(skb);
4534 	priv->dev->stats.tx_dropped++;
4535 	return NETDEV_TX_OK;
4536 }
4537 
4538 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4539 {
4540 	struct vlan_ethhdr *veth;
4541 	__be16 vlan_proto;
4542 	u16 vlanid;
4543 
4544 	veth = (struct vlan_ethhdr *)skb->data;
4545 	vlan_proto = veth->h_vlan_proto;
4546 
4547 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4548 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4549 	    (vlan_proto == htons(ETH_P_8021AD) &&
4550 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4551 		/* pop the vlan tag */
4552 		vlanid = ntohs(veth->h_vlan_TCI);
4553 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4554 		skb_pull(skb, VLAN_HLEN);
4555 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4556 	}
4557 }
4558 
4559 /**
4560  * stmmac_rx_refill - refill used skb preallocated buffers
4561  * @priv: driver private structure
4562  * @queue: RX queue index
4563  * Description : this is to reallocate the skb for the reception process
4564  * that is based on zero-copy.
4565  */
4566 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4567 {
4568 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4569 	int dirty = stmmac_rx_dirty(priv, queue);
4570 	unsigned int entry = rx_q->dirty_rx;
4571 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4572 
4573 	if (priv->dma_cap.addr64 <= 32)
4574 		gfp |= GFP_DMA32;
4575 
4576 	while (dirty-- > 0) {
4577 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4578 		struct dma_desc *p;
4579 		bool use_rx_wd;
4580 
4581 		if (priv->extend_desc)
4582 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4583 		else
4584 			p = rx_q->dma_rx + entry;
4585 
4586 		if (!buf->page) {
4587 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4588 			if (!buf->page)
4589 				break;
4590 		}
4591 
4592 		if (priv->sph && !buf->sec_page) {
4593 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4594 			if (!buf->sec_page)
4595 				break;
4596 
4597 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4598 		}
4599 
4600 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4601 
4602 		stmmac_set_desc_addr(priv, p, buf->addr);
4603 		if (priv->sph)
4604 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4605 		else
4606 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4607 		stmmac_refill_desc3(priv, rx_q, p);
4608 
4609 		rx_q->rx_count_frames++;
4610 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4611 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4612 			rx_q->rx_count_frames = 0;
4613 
4614 		use_rx_wd = !priv->rx_coal_frames[queue];
4615 		use_rx_wd |= rx_q->rx_count_frames > 0;
4616 		if (!priv->use_riwt)
4617 			use_rx_wd = false;
4618 
4619 		dma_wmb();
4620 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4621 
4622 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4623 	}
4624 	rx_q->dirty_rx = entry;
4625 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4626 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4627 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4628 }
4629 
4630 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4631 				       struct dma_desc *p,
4632 				       int status, unsigned int len)
4633 {
4634 	unsigned int plen = 0, hlen = 0;
4635 	int coe = priv->hw->rx_csum;
4636 
4637 	/* Not first descriptor, buffer is always zero */
4638 	if (priv->sph && len)
4639 		return 0;
4640 
4641 	/* First descriptor, get split header length */
4642 	stmmac_get_rx_header_len(priv, p, &hlen);
4643 	if (priv->sph && hlen) {
4644 		priv->xstats.rx_split_hdr_pkt_n++;
4645 		return hlen;
4646 	}
4647 
4648 	/* First descriptor, not last descriptor and not split header */
4649 	if (status & rx_not_ls)
4650 		return priv->dma_conf.dma_buf_sz;
4651 
4652 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4653 
4654 	/* First descriptor and last descriptor and not split header */
4655 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4656 }
4657 
4658 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4659 				       struct dma_desc *p,
4660 				       int status, unsigned int len)
4661 {
4662 	int coe = priv->hw->rx_csum;
4663 	unsigned int plen = 0;
4664 
4665 	/* Not split header, buffer is not available */
4666 	if (!priv->sph)
4667 		return 0;
4668 
4669 	/* Not last descriptor */
4670 	if (status & rx_not_ls)
4671 		return priv->dma_conf.dma_buf_sz;
4672 
4673 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4674 
4675 	/* Last descriptor */
4676 	return plen - len;
4677 }
4678 
4679 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4680 				struct xdp_frame *xdpf, bool dma_map)
4681 {
4682 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4683 	unsigned int entry = tx_q->cur_tx;
4684 	struct dma_desc *tx_desc;
4685 	dma_addr_t dma_addr;
4686 	bool set_ic;
4687 
4688 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4689 		return STMMAC_XDP_CONSUMED;
4690 
4691 	if (likely(priv->extend_desc))
4692 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4693 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4694 		tx_desc = &tx_q->dma_entx[entry].basic;
4695 	else
4696 		tx_desc = tx_q->dma_tx + entry;
4697 
4698 	if (dma_map) {
4699 		dma_addr = dma_map_single(priv->device, xdpf->data,
4700 					  xdpf->len, DMA_TO_DEVICE);
4701 		if (dma_mapping_error(priv->device, dma_addr))
4702 			return STMMAC_XDP_CONSUMED;
4703 
4704 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4705 	} else {
4706 		struct page *page = virt_to_page(xdpf->data);
4707 
4708 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4709 			   xdpf->headroom;
4710 		dma_sync_single_for_device(priv->device, dma_addr,
4711 					   xdpf->len, DMA_BIDIRECTIONAL);
4712 
4713 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4714 	}
4715 
4716 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4717 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4718 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4719 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4720 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4721 
4722 	tx_q->xdpf[entry] = xdpf;
4723 
4724 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4725 
4726 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4727 			       true, priv->mode, true, true,
4728 			       xdpf->len);
4729 
4730 	tx_q->tx_count_frames++;
4731 
4732 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4733 		set_ic = true;
4734 	else
4735 		set_ic = false;
4736 
4737 	if (set_ic) {
4738 		tx_q->tx_count_frames = 0;
4739 		stmmac_set_tx_ic(priv, tx_desc);
4740 		priv->xstats.tx_set_ic_bit++;
4741 	}
4742 
4743 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4744 
4745 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4746 	tx_q->cur_tx = entry;
4747 
4748 	return STMMAC_XDP_TX;
4749 }
4750 
4751 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4752 				   int cpu)
4753 {
4754 	int index = cpu;
4755 
4756 	if (unlikely(index < 0))
4757 		index = 0;
4758 
4759 	while (index >= priv->plat->tx_queues_to_use)
4760 		index -= priv->plat->tx_queues_to_use;
4761 
4762 	return index;
4763 }
4764 
4765 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4766 				struct xdp_buff *xdp)
4767 {
4768 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4769 	int cpu = smp_processor_id();
4770 	struct netdev_queue *nq;
4771 	int queue;
4772 	int res;
4773 
4774 	if (unlikely(!xdpf))
4775 		return STMMAC_XDP_CONSUMED;
4776 
4777 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4778 	nq = netdev_get_tx_queue(priv->dev, queue);
4779 
4780 	__netif_tx_lock(nq, cpu);
4781 	/* Avoids TX time-out as we are sharing with slow path */
4782 	txq_trans_cond_update(nq);
4783 
4784 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4785 	if (res == STMMAC_XDP_TX)
4786 		stmmac_flush_tx_descriptors(priv, queue);
4787 
4788 	__netif_tx_unlock(nq);
4789 
4790 	return res;
4791 }
4792 
4793 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4794 				 struct bpf_prog *prog,
4795 				 struct xdp_buff *xdp)
4796 {
4797 	u32 act;
4798 	int res;
4799 
4800 	act = bpf_prog_run_xdp(prog, xdp);
4801 	switch (act) {
4802 	case XDP_PASS:
4803 		res = STMMAC_XDP_PASS;
4804 		break;
4805 	case XDP_TX:
4806 		res = stmmac_xdp_xmit_back(priv, xdp);
4807 		break;
4808 	case XDP_REDIRECT:
4809 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4810 			res = STMMAC_XDP_CONSUMED;
4811 		else
4812 			res = STMMAC_XDP_REDIRECT;
4813 		break;
4814 	default:
4815 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4816 		fallthrough;
4817 	case XDP_ABORTED:
4818 		trace_xdp_exception(priv->dev, prog, act);
4819 		fallthrough;
4820 	case XDP_DROP:
4821 		res = STMMAC_XDP_CONSUMED;
4822 		break;
4823 	}
4824 
4825 	return res;
4826 }
4827 
4828 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4829 					   struct xdp_buff *xdp)
4830 {
4831 	struct bpf_prog *prog;
4832 	int res;
4833 
4834 	prog = READ_ONCE(priv->xdp_prog);
4835 	if (!prog) {
4836 		res = STMMAC_XDP_PASS;
4837 		goto out;
4838 	}
4839 
4840 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4841 out:
4842 	return ERR_PTR(-res);
4843 }
4844 
4845 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4846 				   int xdp_status)
4847 {
4848 	int cpu = smp_processor_id();
4849 	int queue;
4850 
4851 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4852 
4853 	if (xdp_status & STMMAC_XDP_TX)
4854 		stmmac_tx_timer_arm(priv, queue);
4855 
4856 	if (xdp_status & STMMAC_XDP_REDIRECT)
4857 		xdp_do_flush();
4858 }
4859 
4860 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4861 					       struct xdp_buff *xdp)
4862 {
4863 	unsigned int metasize = xdp->data - xdp->data_meta;
4864 	unsigned int datasize = xdp->data_end - xdp->data;
4865 	struct sk_buff *skb;
4866 
4867 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4868 			       xdp->data_end - xdp->data_hard_start,
4869 			       GFP_ATOMIC | __GFP_NOWARN);
4870 	if (unlikely(!skb))
4871 		return NULL;
4872 
4873 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4874 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4875 	if (metasize)
4876 		skb_metadata_set(skb, metasize);
4877 
4878 	return skb;
4879 }
4880 
4881 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4882 				   struct dma_desc *p, struct dma_desc *np,
4883 				   struct xdp_buff *xdp)
4884 {
4885 	struct stmmac_channel *ch = &priv->channel[queue];
4886 	unsigned int len = xdp->data_end - xdp->data;
4887 	enum pkt_hash_types hash_type;
4888 	int coe = priv->hw->rx_csum;
4889 	struct sk_buff *skb;
4890 	u32 hash;
4891 
4892 	skb = stmmac_construct_skb_zc(ch, xdp);
4893 	if (!skb) {
4894 		priv->dev->stats.rx_dropped++;
4895 		return;
4896 	}
4897 
4898 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4899 	stmmac_rx_vlan(priv->dev, skb);
4900 	skb->protocol = eth_type_trans(skb, priv->dev);
4901 
4902 	if (unlikely(!coe))
4903 		skb_checksum_none_assert(skb);
4904 	else
4905 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4906 
4907 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4908 		skb_set_hash(skb, hash, hash_type);
4909 
4910 	skb_record_rx_queue(skb, queue);
4911 	napi_gro_receive(&ch->rxtx_napi, skb);
4912 
4913 	priv->dev->stats.rx_packets++;
4914 	priv->dev->stats.rx_bytes += len;
4915 }
4916 
4917 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4918 {
4919 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4920 	unsigned int entry = rx_q->dirty_rx;
4921 	struct dma_desc *rx_desc = NULL;
4922 	bool ret = true;
4923 
4924 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4925 
4926 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4927 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4928 		dma_addr_t dma_addr;
4929 		bool use_rx_wd;
4930 
4931 		if (!buf->xdp) {
4932 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4933 			if (!buf->xdp) {
4934 				ret = false;
4935 				break;
4936 			}
4937 		}
4938 
4939 		if (priv->extend_desc)
4940 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4941 		else
4942 			rx_desc = rx_q->dma_rx + entry;
4943 
4944 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4945 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4946 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4947 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4948 
4949 		rx_q->rx_count_frames++;
4950 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4951 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4952 			rx_q->rx_count_frames = 0;
4953 
4954 		use_rx_wd = !priv->rx_coal_frames[queue];
4955 		use_rx_wd |= rx_q->rx_count_frames > 0;
4956 		if (!priv->use_riwt)
4957 			use_rx_wd = false;
4958 
4959 		dma_wmb();
4960 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4961 
4962 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4963 	}
4964 
4965 	if (rx_desc) {
4966 		rx_q->dirty_rx = entry;
4967 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4968 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4969 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4970 	}
4971 
4972 	return ret;
4973 }
4974 
4975 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4976 {
4977 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4978 	unsigned int count = 0, error = 0, len = 0;
4979 	int dirty = stmmac_rx_dirty(priv, queue);
4980 	unsigned int next_entry = rx_q->cur_rx;
4981 	unsigned int desc_size;
4982 	struct bpf_prog *prog;
4983 	bool failure = false;
4984 	int xdp_status = 0;
4985 	int status = 0;
4986 
4987 	if (netif_msg_rx_status(priv)) {
4988 		void *rx_head;
4989 
4990 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4991 		if (priv->extend_desc) {
4992 			rx_head = (void *)rx_q->dma_erx;
4993 			desc_size = sizeof(struct dma_extended_desc);
4994 		} else {
4995 			rx_head = (void *)rx_q->dma_rx;
4996 			desc_size = sizeof(struct dma_desc);
4997 		}
4998 
4999 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5000 				    rx_q->dma_rx_phy, desc_size);
5001 	}
5002 	while (count < limit) {
5003 		struct stmmac_rx_buffer *buf;
5004 		unsigned int buf1_len = 0;
5005 		struct dma_desc *np, *p;
5006 		int entry;
5007 		int res;
5008 
5009 		if (!count && rx_q->state_saved) {
5010 			error = rx_q->state.error;
5011 			len = rx_q->state.len;
5012 		} else {
5013 			rx_q->state_saved = false;
5014 			error = 0;
5015 			len = 0;
5016 		}
5017 
5018 		if (count >= limit)
5019 			break;
5020 
5021 read_again:
5022 		buf1_len = 0;
5023 		entry = next_entry;
5024 		buf = &rx_q->buf_pool[entry];
5025 
5026 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5027 			failure = failure ||
5028 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5029 			dirty = 0;
5030 		}
5031 
5032 		if (priv->extend_desc)
5033 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5034 		else
5035 			p = rx_q->dma_rx + entry;
5036 
5037 		/* read the status of the incoming frame */
5038 		status = stmmac_rx_status(priv, &priv->dev->stats,
5039 					  &priv->xstats, p);
5040 		/* check if managed by the DMA otherwise go ahead */
5041 		if (unlikely(status & dma_own))
5042 			break;
5043 
5044 		/* Prefetch the next RX descriptor */
5045 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5046 						priv->dma_conf.dma_rx_size);
5047 		next_entry = rx_q->cur_rx;
5048 
5049 		if (priv->extend_desc)
5050 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5051 		else
5052 			np = rx_q->dma_rx + next_entry;
5053 
5054 		prefetch(np);
5055 
5056 		/* Ensure a valid XSK buffer before proceed */
5057 		if (!buf->xdp)
5058 			break;
5059 
5060 		if (priv->extend_desc)
5061 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5062 						  &priv->xstats,
5063 						  rx_q->dma_erx + entry);
5064 		if (unlikely(status == discard_frame)) {
5065 			xsk_buff_free(buf->xdp);
5066 			buf->xdp = NULL;
5067 			dirty++;
5068 			error = 1;
5069 			if (!priv->hwts_rx_en)
5070 				priv->dev->stats.rx_errors++;
5071 		}
5072 
5073 		if (unlikely(error && (status & rx_not_ls)))
5074 			goto read_again;
5075 		if (unlikely(error)) {
5076 			count++;
5077 			continue;
5078 		}
5079 
5080 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5081 		if (likely(status & rx_not_ls)) {
5082 			xsk_buff_free(buf->xdp);
5083 			buf->xdp = NULL;
5084 			dirty++;
5085 			count++;
5086 			goto read_again;
5087 		}
5088 
5089 		/* XDP ZC Frame only support primary buffers for now */
5090 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5091 		len += buf1_len;
5092 
5093 		/* ACS is disabled; strip manually. */
5094 		if (likely(!(status & rx_not_ls))) {
5095 			buf1_len -= ETH_FCS_LEN;
5096 			len -= ETH_FCS_LEN;
5097 		}
5098 
5099 		/* RX buffer is good and fit into a XSK pool buffer */
5100 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5101 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5102 
5103 		prog = READ_ONCE(priv->xdp_prog);
5104 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5105 
5106 		switch (res) {
5107 		case STMMAC_XDP_PASS:
5108 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5109 			xsk_buff_free(buf->xdp);
5110 			break;
5111 		case STMMAC_XDP_CONSUMED:
5112 			xsk_buff_free(buf->xdp);
5113 			priv->dev->stats.rx_dropped++;
5114 			break;
5115 		case STMMAC_XDP_TX:
5116 		case STMMAC_XDP_REDIRECT:
5117 			xdp_status |= res;
5118 			break;
5119 		}
5120 
5121 		buf->xdp = NULL;
5122 		dirty++;
5123 		count++;
5124 	}
5125 
5126 	if (status & rx_not_ls) {
5127 		rx_q->state_saved = true;
5128 		rx_q->state.error = error;
5129 		rx_q->state.len = len;
5130 	}
5131 
5132 	stmmac_finalize_xdp_rx(priv, xdp_status);
5133 
5134 	priv->xstats.rx_pkt_n += count;
5135 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5136 
5137 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5138 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5139 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5140 		else
5141 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5142 
5143 		return (int)count;
5144 	}
5145 
5146 	return failure ? limit : (int)count;
5147 }
5148 
5149 /**
5150  * stmmac_rx - manage the receive process
5151  * @priv: driver private structure
5152  * @limit: napi bugget
5153  * @queue: RX queue index.
5154  * Description :  this the function called by the napi poll method.
5155  * It gets all the frames inside the ring.
5156  */
5157 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5158 {
5159 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5160 	struct stmmac_channel *ch = &priv->channel[queue];
5161 	unsigned int count = 0, error = 0, len = 0;
5162 	int status = 0, coe = priv->hw->rx_csum;
5163 	unsigned int next_entry = rx_q->cur_rx;
5164 	enum dma_data_direction dma_dir;
5165 	unsigned int desc_size;
5166 	struct sk_buff *skb = NULL;
5167 	struct xdp_buff xdp;
5168 	int xdp_status = 0;
5169 	int buf_sz;
5170 
5171 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5172 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5173 
5174 	if (netif_msg_rx_status(priv)) {
5175 		void *rx_head;
5176 
5177 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5178 		if (priv->extend_desc) {
5179 			rx_head = (void *)rx_q->dma_erx;
5180 			desc_size = sizeof(struct dma_extended_desc);
5181 		} else {
5182 			rx_head = (void *)rx_q->dma_rx;
5183 			desc_size = sizeof(struct dma_desc);
5184 		}
5185 
5186 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5187 				    rx_q->dma_rx_phy, desc_size);
5188 	}
5189 	while (count < limit) {
5190 		unsigned int buf1_len = 0, buf2_len = 0;
5191 		enum pkt_hash_types hash_type;
5192 		struct stmmac_rx_buffer *buf;
5193 		struct dma_desc *np, *p;
5194 		int entry;
5195 		u32 hash;
5196 
5197 		if (!count && rx_q->state_saved) {
5198 			skb = rx_q->state.skb;
5199 			error = rx_q->state.error;
5200 			len = rx_q->state.len;
5201 		} else {
5202 			rx_q->state_saved = false;
5203 			skb = NULL;
5204 			error = 0;
5205 			len = 0;
5206 		}
5207 
5208 		if (count >= limit)
5209 			break;
5210 
5211 read_again:
5212 		buf1_len = 0;
5213 		buf2_len = 0;
5214 		entry = next_entry;
5215 		buf = &rx_q->buf_pool[entry];
5216 
5217 		if (priv->extend_desc)
5218 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5219 		else
5220 			p = rx_q->dma_rx + entry;
5221 
5222 		/* read the status of the incoming frame */
5223 		status = stmmac_rx_status(priv, &priv->dev->stats,
5224 				&priv->xstats, p);
5225 		/* check if managed by the DMA otherwise go ahead */
5226 		if (unlikely(status & dma_own))
5227 			break;
5228 
5229 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5230 						priv->dma_conf.dma_rx_size);
5231 		next_entry = rx_q->cur_rx;
5232 
5233 		if (priv->extend_desc)
5234 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5235 		else
5236 			np = rx_q->dma_rx + next_entry;
5237 
5238 		prefetch(np);
5239 
5240 		if (priv->extend_desc)
5241 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5242 					&priv->xstats, rx_q->dma_erx + entry);
5243 		if (unlikely(status == discard_frame)) {
5244 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5245 			buf->page = NULL;
5246 			error = 1;
5247 			if (!priv->hwts_rx_en)
5248 				priv->dev->stats.rx_errors++;
5249 		}
5250 
5251 		if (unlikely(error && (status & rx_not_ls)))
5252 			goto read_again;
5253 		if (unlikely(error)) {
5254 			dev_kfree_skb(skb);
5255 			skb = NULL;
5256 			count++;
5257 			continue;
5258 		}
5259 
5260 		/* Buffer is good. Go on. */
5261 
5262 		prefetch(page_address(buf->page) + buf->page_offset);
5263 		if (buf->sec_page)
5264 			prefetch(page_address(buf->sec_page));
5265 
5266 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5267 		len += buf1_len;
5268 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5269 		len += buf2_len;
5270 
5271 		/* ACS is disabled; strip manually. */
5272 		if (likely(!(status & rx_not_ls))) {
5273 			if (buf2_len) {
5274 				buf2_len -= ETH_FCS_LEN;
5275 				len -= ETH_FCS_LEN;
5276 			} else if (buf1_len) {
5277 				buf1_len -= ETH_FCS_LEN;
5278 				len -= ETH_FCS_LEN;
5279 			}
5280 		}
5281 
5282 		if (!skb) {
5283 			unsigned int pre_len, sync_len;
5284 
5285 			dma_sync_single_for_cpu(priv->device, buf->addr,
5286 						buf1_len, dma_dir);
5287 
5288 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5289 			xdp_prepare_buff(&xdp, page_address(buf->page),
5290 					 buf->page_offset, buf1_len, false);
5291 
5292 			pre_len = xdp.data_end - xdp.data_hard_start -
5293 				  buf->page_offset;
5294 			skb = stmmac_xdp_run_prog(priv, &xdp);
5295 			/* Due xdp_adjust_tail: DMA sync for_device
5296 			 * cover max len CPU touch
5297 			 */
5298 			sync_len = xdp.data_end - xdp.data_hard_start -
5299 				   buf->page_offset;
5300 			sync_len = max(sync_len, pre_len);
5301 
5302 			/* For Not XDP_PASS verdict */
5303 			if (IS_ERR(skb)) {
5304 				unsigned int xdp_res = -PTR_ERR(skb);
5305 
5306 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5307 					page_pool_put_page(rx_q->page_pool,
5308 							   virt_to_head_page(xdp.data),
5309 							   sync_len, true);
5310 					buf->page = NULL;
5311 					priv->dev->stats.rx_dropped++;
5312 
5313 					/* Clear skb as it was set as
5314 					 * status by XDP program.
5315 					 */
5316 					skb = NULL;
5317 
5318 					if (unlikely((status & rx_not_ls)))
5319 						goto read_again;
5320 
5321 					count++;
5322 					continue;
5323 				} else if (xdp_res & (STMMAC_XDP_TX |
5324 						      STMMAC_XDP_REDIRECT)) {
5325 					xdp_status |= xdp_res;
5326 					buf->page = NULL;
5327 					skb = NULL;
5328 					count++;
5329 					continue;
5330 				}
5331 			}
5332 		}
5333 
5334 		if (!skb) {
5335 			/* XDP program may expand or reduce tail */
5336 			buf1_len = xdp.data_end - xdp.data;
5337 
5338 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5339 			if (!skb) {
5340 				priv->dev->stats.rx_dropped++;
5341 				count++;
5342 				goto drain_data;
5343 			}
5344 
5345 			/* XDP program may adjust header */
5346 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5347 			skb_put(skb, buf1_len);
5348 
5349 			/* Data payload copied into SKB, page ready for recycle */
5350 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5351 			buf->page = NULL;
5352 		} else if (buf1_len) {
5353 			dma_sync_single_for_cpu(priv->device, buf->addr,
5354 						buf1_len, dma_dir);
5355 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5356 					buf->page, buf->page_offset, buf1_len,
5357 					priv->dma_conf.dma_buf_sz);
5358 
5359 			/* Data payload appended into SKB */
5360 			page_pool_release_page(rx_q->page_pool, buf->page);
5361 			buf->page = NULL;
5362 		}
5363 
5364 		if (buf2_len) {
5365 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5366 						buf2_len, dma_dir);
5367 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5368 					buf->sec_page, 0, buf2_len,
5369 					priv->dma_conf.dma_buf_sz);
5370 
5371 			/* Data payload appended into SKB */
5372 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5373 			buf->sec_page = NULL;
5374 		}
5375 
5376 drain_data:
5377 		if (likely(status & rx_not_ls))
5378 			goto read_again;
5379 		if (!skb)
5380 			continue;
5381 
5382 		/* Got entire packet into SKB. Finish it. */
5383 
5384 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5385 		stmmac_rx_vlan(priv->dev, skb);
5386 		skb->protocol = eth_type_trans(skb, priv->dev);
5387 
5388 		if (unlikely(!coe))
5389 			skb_checksum_none_assert(skb);
5390 		else
5391 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5392 
5393 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5394 			skb_set_hash(skb, hash, hash_type);
5395 
5396 		skb_record_rx_queue(skb, queue);
5397 		napi_gro_receive(&ch->rx_napi, skb);
5398 		skb = NULL;
5399 
5400 		priv->dev->stats.rx_packets++;
5401 		priv->dev->stats.rx_bytes += len;
5402 		count++;
5403 	}
5404 
5405 	if (status & rx_not_ls || skb) {
5406 		rx_q->state_saved = true;
5407 		rx_q->state.skb = skb;
5408 		rx_q->state.error = error;
5409 		rx_q->state.len = len;
5410 	}
5411 
5412 	stmmac_finalize_xdp_rx(priv, xdp_status);
5413 
5414 	stmmac_rx_refill(priv, queue);
5415 
5416 	priv->xstats.rx_pkt_n += count;
5417 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5418 
5419 	return count;
5420 }
5421 
5422 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5423 {
5424 	struct stmmac_channel *ch =
5425 		container_of(napi, struct stmmac_channel, rx_napi);
5426 	struct stmmac_priv *priv = ch->priv_data;
5427 	u32 chan = ch->index;
5428 	int work_done;
5429 
5430 	priv->xstats.napi_poll++;
5431 
5432 	work_done = stmmac_rx(priv, budget, chan);
5433 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5434 		unsigned long flags;
5435 
5436 		spin_lock_irqsave(&ch->lock, flags);
5437 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5438 		spin_unlock_irqrestore(&ch->lock, flags);
5439 	}
5440 
5441 	return work_done;
5442 }
5443 
5444 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5445 {
5446 	struct stmmac_channel *ch =
5447 		container_of(napi, struct stmmac_channel, tx_napi);
5448 	struct stmmac_priv *priv = ch->priv_data;
5449 	u32 chan = ch->index;
5450 	int work_done;
5451 
5452 	priv->xstats.napi_poll++;
5453 
5454 	work_done = stmmac_tx_clean(priv, budget, chan);
5455 	work_done = min(work_done, budget);
5456 
5457 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5458 		unsigned long flags;
5459 
5460 		spin_lock_irqsave(&ch->lock, flags);
5461 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5462 		spin_unlock_irqrestore(&ch->lock, flags);
5463 	}
5464 
5465 	return work_done;
5466 }
5467 
5468 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5469 {
5470 	struct stmmac_channel *ch =
5471 		container_of(napi, struct stmmac_channel, rxtx_napi);
5472 	struct stmmac_priv *priv = ch->priv_data;
5473 	int rx_done, tx_done, rxtx_done;
5474 	u32 chan = ch->index;
5475 
5476 	priv->xstats.napi_poll++;
5477 
5478 	tx_done = stmmac_tx_clean(priv, budget, chan);
5479 	tx_done = min(tx_done, budget);
5480 
5481 	rx_done = stmmac_rx_zc(priv, budget, chan);
5482 
5483 	rxtx_done = max(tx_done, rx_done);
5484 
5485 	/* If either TX or RX work is not complete, return budget
5486 	 * and keep pooling
5487 	 */
5488 	if (rxtx_done >= budget)
5489 		return budget;
5490 
5491 	/* all work done, exit the polling mode */
5492 	if (napi_complete_done(napi, rxtx_done)) {
5493 		unsigned long flags;
5494 
5495 		spin_lock_irqsave(&ch->lock, flags);
5496 		/* Both RX and TX work done are compelte,
5497 		 * so enable both RX & TX IRQs.
5498 		 */
5499 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5500 		spin_unlock_irqrestore(&ch->lock, flags);
5501 	}
5502 
5503 	return min(rxtx_done, budget - 1);
5504 }
5505 
5506 /**
5507  *  stmmac_tx_timeout
5508  *  @dev : Pointer to net device structure
5509  *  @txqueue: the index of the hanging transmit queue
5510  *  Description: this function is called when a packet transmission fails to
5511  *   complete within a reasonable time. The driver will mark the error in the
5512  *   netdev structure and arrange for the device to be reset to a sane state
5513  *   in order to transmit a new packet.
5514  */
5515 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5516 {
5517 	struct stmmac_priv *priv = netdev_priv(dev);
5518 
5519 	stmmac_global_err(priv);
5520 }
5521 
5522 /**
5523  *  stmmac_set_rx_mode - entry point for multicast addressing
5524  *  @dev : pointer to the device structure
5525  *  Description:
5526  *  This function is a driver entry point which gets called by the kernel
5527  *  whenever multicast addresses must be enabled/disabled.
5528  *  Return value:
5529  *  void.
5530  */
5531 static void stmmac_set_rx_mode(struct net_device *dev)
5532 {
5533 	struct stmmac_priv *priv = netdev_priv(dev);
5534 
5535 	stmmac_set_filter(priv, priv->hw, dev);
5536 }
5537 
5538 /**
5539  *  stmmac_change_mtu - entry point to change MTU size for the device.
5540  *  @dev : device pointer.
5541  *  @new_mtu : the new MTU size for the device.
5542  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5543  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5544  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5545  *  Return value:
5546  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5547  *  file on failure.
5548  */
5549 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5550 {
5551 	struct stmmac_priv *priv = netdev_priv(dev);
5552 	int txfifosz = priv->plat->tx_fifo_size;
5553 	struct stmmac_dma_conf *dma_conf;
5554 	const int mtu = new_mtu;
5555 	int ret;
5556 
5557 	if (txfifosz == 0)
5558 		txfifosz = priv->dma_cap.tx_fifo_size;
5559 
5560 	txfifosz /= priv->plat->tx_queues_to_use;
5561 
5562 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5563 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5564 		return -EINVAL;
5565 	}
5566 
5567 	new_mtu = STMMAC_ALIGN(new_mtu);
5568 
5569 	/* If condition true, FIFO is too small or MTU too large */
5570 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5571 		return -EINVAL;
5572 
5573 	if (netif_running(dev)) {
5574 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5575 		/* Try to allocate the new DMA conf with the new mtu */
5576 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5577 		if (IS_ERR(dma_conf)) {
5578 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5579 				   mtu);
5580 			return PTR_ERR(dma_conf);
5581 		}
5582 
5583 		stmmac_release(dev);
5584 
5585 		ret = __stmmac_open(dev, dma_conf);
5586 		kfree(dma_conf);
5587 		if (ret) {
5588 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5589 			return ret;
5590 		}
5591 
5592 		stmmac_set_rx_mode(dev);
5593 	}
5594 
5595 	dev->mtu = mtu;
5596 	netdev_update_features(dev);
5597 
5598 	return 0;
5599 }
5600 
5601 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5602 					     netdev_features_t features)
5603 {
5604 	struct stmmac_priv *priv = netdev_priv(dev);
5605 
5606 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5607 		features &= ~NETIF_F_RXCSUM;
5608 
5609 	if (!priv->plat->tx_coe)
5610 		features &= ~NETIF_F_CSUM_MASK;
5611 
5612 	/* Some GMAC devices have a bugged Jumbo frame support that
5613 	 * needs to have the Tx COE disabled for oversized frames
5614 	 * (due to limited buffer sizes). In this case we disable
5615 	 * the TX csum insertion in the TDES and not use SF.
5616 	 */
5617 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5618 		features &= ~NETIF_F_CSUM_MASK;
5619 
5620 	/* Disable tso if asked by ethtool */
5621 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5622 		if (features & NETIF_F_TSO)
5623 			priv->tso = true;
5624 		else
5625 			priv->tso = false;
5626 	}
5627 
5628 	return features;
5629 }
5630 
5631 static int stmmac_set_features(struct net_device *netdev,
5632 			       netdev_features_t features)
5633 {
5634 	struct stmmac_priv *priv = netdev_priv(netdev);
5635 
5636 	/* Keep the COE Type in case of csum is supporting */
5637 	if (features & NETIF_F_RXCSUM)
5638 		priv->hw->rx_csum = priv->plat->rx_coe;
5639 	else
5640 		priv->hw->rx_csum = 0;
5641 	/* No check needed because rx_coe has been set before and it will be
5642 	 * fixed in case of issue.
5643 	 */
5644 	stmmac_rx_ipc(priv, priv->hw);
5645 
5646 	if (priv->sph_cap) {
5647 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5648 		u32 chan;
5649 
5650 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5651 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5652 	}
5653 
5654 	return 0;
5655 }
5656 
5657 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5658 {
5659 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5660 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5661 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5662 	bool *hs_enable = &fpe_cfg->hs_enable;
5663 
5664 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5665 		return;
5666 
5667 	/* If LP has sent verify mPacket, LP is FPE capable */
5668 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5669 		if (*lp_state < FPE_STATE_CAPABLE)
5670 			*lp_state = FPE_STATE_CAPABLE;
5671 
5672 		/* If user has requested FPE enable, quickly response */
5673 		if (*hs_enable)
5674 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5675 						MPACKET_RESPONSE);
5676 	}
5677 
5678 	/* If Local has sent verify mPacket, Local is FPE capable */
5679 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5680 		if (*lo_state < FPE_STATE_CAPABLE)
5681 			*lo_state = FPE_STATE_CAPABLE;
5682 	}
5683 
5684 	/* If LP has sent response mPacket, LP is entering FPE ON */
5685 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5686 		*lp_state = FPE_STATE_ENTERING_ON;
5687 
5688 	/* If Local has sent response mPacket, Local is entering FPE ON */
5689 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5690 		*lo_state = FPE_STATE_ENTERING_ON;
5691 
5692 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5693 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5694 	    priv->fpe_wq) {
5695 		queue_work(priv->fpe_wq, &priv->fpe_task);
5696 	}
5697 }
5698 
5699 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5700 {
5701 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5702 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5703 	u32 queues_count;
5704 	u32 queue;
5705 	bool xmac;
5706 
5707 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5708 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5709 
5710 	if (priv->irq_wake)
5711 		pm_wakeup_event(priv->device, 0);
5712 
5713 	if (priv->dma_cap.estsel)
5714 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5715 				      &priv->xstats, tx_cnt);
5716 
5717 	if (priv->dma_cap.fpesel) {
5718 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5719 						   priv->dev);
5720 
5721 		stmmac_fpe_event_status(priv, status);
5722 	}
5723 
5724 	/* To handle GMAC own interrupts */
5725 	if ((priv->plat->has_gmac) || xmac) {
5726 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5727 
5728 		if (unlikely(status)) {
5729 			/* For LPI we need to save the tx status */
5730 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5731 				priv->tx_path_in_lpi_mode = true;
5732 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5733 				priv->tx_path_in_lpi_mode = false;
5734 		}
5735 
5736 		for (queue = 0; queue < queues_count; queue++) {
5737 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5738 							    queue);
5739 		}
5740 
5741 		/* PCS link status */
5742 		if (priv->hw->pcs) {
5743 			if (priv->xstats.pcs_link)
5744 				netif_carrier_on(priv->dev);
5745 			else
5746 				netif_carrier_off(priv->dev);
5747 		}
5748 
5749 		stmmac_timestamp_interrupt(priv, priv);
5750 	}
5751 }
5752 
5753 /**
5754  *  stmmac_interrupt - main ISR
5755  *  @irq: interrupt number.
5756  *  @dev_id: to pass the net device pointer.
5757  *  Description: this is the main driver interrupt service routine.
5758  *  It can call:
5759  *  o DMA service routine (to manage incoming frame reception and transmission
5760  *    status)
5761  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5762  *    interrupts.
5763  */
5764 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5765 {
5766 	struct net_device *dev = (struct net_device *)dev_id;
5767 	struct stmmac_priv *priv = netdev_priv(dev);
5768 
5769 	/* Check if adapter is up */
5770 	if (test_bit(STMMAC_DOWN, &priv->state))
5771 		return IRQ_HANDLED;
5772 
5773 	/* Check if a fatal error happened */
5774 	if (stmmac_safety_feat_interrupt(priv))
5775 		return IRQ_HANDLED;
5776 
5777 	/* To handle Common interrupts */
5778 	stmmac_common_interrupt(priv);
5779 
5780 	/* To handle DMA interrupts */
5781 	stmmac_dma_interrupt(priv);
5782 
5783 	return IRQ_HANDLED;
5784 }
5785 
5786 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5787 {
5788 	struct net_device *dev = (struct net_device *)dev_id;
5789 	struct stmmac_priv *priv = netdev_priv(dev);
5790 
5791 	if (unlikely(!dev)) {
5792 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5793 		return IRQ_NONE;
5794 	}
5795 
5796 	/* Check if adapter is up */
5797 	if (test_bit(STMMAC_DOWN, &priv->state))
5798 		return IRQ_HANDLED;
5799 
5800 	/* To handle Common interrupts */
5801 	stmmac_common_interrupt(priv);
5802 
5803 	return IRQ_HANDLED;
5804 }
5805 
5806 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5807 {
5808 	struct net_device *dev = (struct net_device *)dev_id;
5809 	struct stmmac_priv *priv = netdev_priv(dev);
5810 
5811 	if (unlikely(!dev)) {
5812 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5813 		return IRQ_NONE;
5814 	}
5815 
5816 	/* Check if adapter is up */
5817 	if (test_bit(STMMAC_DOWN, &priv->state))
5818 		return IRQ_HANDLED;
5819 
5820 	/* Check if a fatal error happened */
5821 	stmmac_safety_feat_interrupt(priv);
5822 
5823 	return IRQ_HANDLED;
5824 }
5825 
5826 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5827 {
5828 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5829 	struct stmmac_dma_conf *dma_conf;
5830 	int chan = tx_q->queue_index;
5831 	struct stmmac_priv *priv;
5832 	int status;
5833 
5834 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5835 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5836 
5837 	if (unlikely(!data)) {
5838 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5839 		return IRQ_NONE;
5840 	}
5841 
5842 	/* Check if adapter is up */
5843 	if (test_bit(STMMAC_DOWN, &priv->state))
5844 		return IRQ_HANDLED;
5845 
5846 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5847 
5848 	if (unlikely(status & tx_hard_error_bump_tc)) {
5849 		/* Try to bump up the dma threshold on this failure */
5850 		stmmac_bump_dma_threshold(priv, chan);
5851 	} else if (unlikely(status == tx_hard_error)) {
5852 		stmmac_tx_err(priv, chan);
5853 	}
5854 
5855 	return IRQ_HANDLED;
5856 }
5857 
5858 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5859 {
5860 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5861 	struct stmmac_dma_conf *dma_conf;
5862 	int chan = rx_q->queue_index;
5863 	struct stmmac_priv *priv;
5864 
5865 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5866 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5867 
5868 	if (unlikely(!data)) {
5869 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5870 		return IRQ_NONE;
5871 	}
5872 
5873 	/* Check if adapter is up */
5874 	if (test_bit(STMMAC_DOWN, &priv->state))
5875 		return IRQ_HANDLED;
5876 
5877 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5878 
5879 	return IRQ_HANDLED;
5880 }
5881 
5882 #ifdef CONFIG_NET_POLL_CONTROLLER
5883 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5884  * to allow network I/O with interrupts disabled.
5885  */
5886 static void stmmac_poll_controller(struct net_device *dev)
5887 {
5888 	struct stmmac_priv *priv = netdev_priv(dev);
5889 	int i;
5890 
5891 	/* If adapter is down, do nothing */
5892 	if (test_bit(STMMAC_DOWN, &priv->state))
5893 		return;
5894 
5895 	if (priv->plat->multi_msi_en) {
5896 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5897 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5898 
5899 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5900 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5901 	} else {
5902 		disable_irq(dev->irq);
5903 		stmmac_interrupt(dev->irq, dev);
5904 		enable_irq(dev->irq);
5905 	}
5906 }
5907 #endif
5908 
5909 /**
5910  *  stmmac_ioctl - Entry point for the Ioctl
5911  *  @dev: Device pointer.
5912  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5913  *  a proprietary structure used to pass information to the driver.
5914  *  @cmd: IOCTL command
5915  *  Description:
5916  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5917  */
5918 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5919 {
5920 	struct stmmac_priv *priv = netdev_priv (dev);
5921 	int ret = -EOPNOTSUPP;
5922 
5923 	if (!netif_running(dev))
5924 		return -EINVAL;
5925 
5926 	switch (cmd) {
5927 	case SIOCGMIIPHY:
5928 	case SIOCGMIIREG:
5929 	case SIOCSMIIREG:
5930 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5931 		break;
5932 	case SIOCSHWTSTAMP:
5933 		ret = stmmac_hwtstamp_set(dev, rq);
5934 		break;
5935 	case SIOCGHWTSTAMP:
5936 		ret = stmmac_hwtstamp_get(dev, rq);
5937 		break;
5938 	default:
5939 		break;
5940 	}
5941 
5942 	return ret;
5943 }
5944 
5945 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5946 				    void *cb_priv)
5947 {
5948 	struct stmmac_priv *priv = cb_priv;
5949 	int ret = -EOPNOTSUPP;
5950 
5951 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5952 		return ret;
5953 
5954 	__stmmac_disable_all_queues(priv);
5955 
5956 	switch (type) {
5957 	case TC_SETUP_CLSU32:
5958 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5959 		break;
5960 	case TC_SETUP_CLSFLOWER:
5961 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5962 		break;
5963 	default:
5964 		break;
5965 	}
5966 
5967 	stmmac_enable_all_queues(priv);
5968 	return ret;
5969 }
5970 
5971 static LIST_HEAD(stmmac_block_cb_list);
5972 
5973 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5974 			   void *type_data)
5975 {
5976 	struct stmmac_priv *priv = netdev_priv(ndev);
5977 
5978 	switch (type) {
5979 	case TC_SETUP_BLOCK:
5980 		return flow_block_cb_setup_simple(type_data,
5981 						  &stmmac_block_cb_list,
5982 						  stmmac_setup_tc_block_cb,
5983 						  priv, priv, true);
5984 	case TC_SETUP_QDISC_CBS:
5985 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5986 	case TC_SETUP_QDISC_TAPRIO:
5987 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5988 	case TC_SETUP_QDISC_ETF:
5989 		return stmmac_tc_setup_etf(priv, priv, type_data);
5990 	default:
5991 		return -EOPNOTSUPP;
5992 	}
5993 }
5994 
5995 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5996 			       struct net_device *sb_dev)
5997 {
5998 	int gso = skb_shinfo(skb)->gso_type;
5999 
6000 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6001 		/*
6002 		 * There is no way to determine the number of TSO/USO
6003 		 * capable Queues. Let's use always the Queue 0
6004 		 * because if TSO/USO is supported then at least this
6005 		 * one will be capable.
6006 		 */
6007 		return 0;
6008 	}
6009 
6010 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6011 }
6012 
6013 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6014 {
6015 	struct stmmac_priv *priv = netdev_priv(ndev);
6016 	int ret = 0;
6017 
6018 	ret = pm_runtime_resume_and_get(priv->device);
6019 	if (ret < 0)
6020 		return ret;
6021 
6022 	ret = eth_mac_addr(ndev, addr);
6023 	if (ret)
6024 		goto set_mac_error;
6025 
6026 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6027 
6028 set_mac_error:
6029 	pm_runtime_put(priv->device);
6030 
6031 	return ret;
6032 }
6033 
6034 #ifdef CONFIG_DEBUG_FS
6035 static struct dentry *stmmac_fs_dir;
6036 
6037 static void sysfs_display_ring(void *head, int size, int extend_desc,
6038 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6039 {
6040 	int i;
6041 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6042 	struct dma_desc *p = (struct dma_desc *)head;
6043 	dma_addr_t dma_addr;
6044 
6045 	for (i = 0; i < size; i++) {
6046 		if (extend_desc) {
6047 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6048 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6049 				   i, &dma_addr,
6050 				   le32_to_cpu(ep->basic.des0),
6051 				   le32_to_cpu(ep->basic.des1),
6052 				   le32_to_cpu(ep->basic.des2),
6053 				   le32_to_cpu(ep->basic.des3));
6054 			ep++;
6055 		} else {
6056 			dma_addr = dma_phy_addr + i * sizeof(*p);
6057 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6058 				   i, &dma_addr,
6059 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6060 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6061 			p++;
6062 		}
6063 		seq_printf(seq, "\n");
6064 	}
6065 }
6066 
6067 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6068 {
6069 	struct net_device *dev = seq->private;
6070 	struct stmmac_priv *priv = netdev_priv(dev);
6071 	u32 rx_count = priv->plat->rx_queues_to_use;
6072 	u32 tx_count = priv->plat->tx_queues_to_use;
6073 	u32 queue;
6074 
6075 	if ((dev->flags & IFF_UP) == 0)
6076 		return 0;
6077 
6078 	for (queue = 0; queue < rx_count; queue++) {
6079 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6080 
6081 		seq_printf(seq, "RX Queue %d:\n", queue);
6082 
6083 		if (priv->extend_desc) {
6084 			seq_printf(seq, "Extended descriptor ring:\n");
6085 			sysfs_display_ring((void *)rx_q->dma_erx,
6086 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6087 		} else {
6088 			seq_printf(seq, "Descriptor ring:\n");
6089 			sysfs_display_ring((void *)rx_q->dma_rx,
6090 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6091 		}
6092 	}
6093 
6094 	for (queue = 0; queue < tx_count; queue++) {
6095 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6096 
6097 		seq_printf(seq, "TX Queue %d:\n", queue);
6098 
6099 		if (priv->extend_desc) {
6100 			seq_printf(seq, "Extended descriptor ring:\n");
6101 			sysfs_display_ring((void *)tx_q->dma_etx,
6102 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6103 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6104 			seq_printf(seq, "Descriptor ring:\n");
6105 			sysfs_display_ring((void *)tx_q->dma_tx,
6106 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6107 		}
6108 	}
6109 
6110 	return 0;
6111 }
6112 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6113 
6114 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6115 {
6116 	struct net_device *dev = seq->private;
6117 	struct stmmac_priv *priv = netdev_priv(dev);
6118 
6119 	if (!priv->hw_cap_support) {
6120 		seq_printf(seq, "DMA HW features not supported\n");
6121 		return 0;
6122 	}
6123 
6124 	seq_printf(seq, "==============================\n");
6125 	seq_printf(seq, "\tDMA HW features\n");
6126 	seq_printf(seq, "==============================\n");
6127 
6128 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6129 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6130 	seq_printf(seq, "\t1000 Mbps: %s\n",
6131 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6132 	seq_printf(seq, "\tHalf duplex: %s\n",
6133 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6134 	seq_printf(seq, "\tHash Filter: %s\n",
6135 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6136 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6137 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6138 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6139 		   (priv->dma_cap.pcs) ? "Y" : "N");
6140 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6141 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6142 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6143 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6144 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6145 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6146 	seq_printf(seq, "\tRMON module: %s\n",
6147 		   (priv->dma_cap.rmon) ? "Y" : "N");
6148 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6149 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6150 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6151 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6152 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6153 		   (priv->dma_cap.eee) ? "Y" : "N");
6154 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6155 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6156 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6157 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6158 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6159 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6160 	} else {
6161 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6162 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6163 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6164 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6165 	}
6166 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6167 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6168 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6169 		   priv->dma_cap.number_rx_channel);
6170 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6171 		   priv->dma_cap.number_tx_channel);
6172 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6173 		   priv->dma_cap.number_rx_queues);
6174 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6175 		   priv->dma_cap.number_tx_queues);
6176 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6177 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6178 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6179 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6180 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6181 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6182 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6183 		   priv->dma_cap.pps_out_num);
6184 	seq_printf(seq, "\tSafety Features: %s\n",
6185 		   priv->dma_cap.asp ? "Y" : "N");
6186 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6187 		   priv->dma_cap.frpsel ? "Y" : "N");
6188 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6189 		   priv->dma_cap.addr64);
6190 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6191 		   priv->dma_cap.rssen ? "Y" : "N");
6192 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6193 		   priv->dma_cap.vlhash ? "Y" : "N");
6194 	seq_printf(seq, "\tSplit Header: %s\n",
6195 		   priv->dma_cap.sphen ? "Y" : "N");
6196 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6197 		   priv->dma_cap.vlins ? "Y" : "N");
6198 	seq_printf(seq, "\tDouble VLAN: %s\n",
6199 		   priv->dma_cap.dvlan ? "Y" : "N");
6200 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6201 		   priv->dma_cap.l3l4fnum);
6202 	seq_printf(seq, "\tARP Offloading: %s\n",
6203 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6204 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6205 		   priv->dma_cap.estsel ? "Y" : "N");
6206 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6207 		   priv->dma_cap.fpesel ? "Y" : "N");
6208 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6209 		   priv->dma_cap.tbssel ? "Y" : "N");
6210 	return 0;
6211 }
6212 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6213 
6214 /* Use network device events to rename debugfs file entries.
6215  */
6216 static int stmmac_device_event(struct notifier_block *unused,
6217 			       unsigned long event, void *ptr)
6218 {
6219 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6220 	struct stmmac_priv *priv = netdev_priv(dev);
6221 
6222 	if (dev->netdev_ops != &stmmac_netdev_ops)
6223 		goto done;
6224 
6225 	switch (event) {
6226 	case NETDEV_CHANGENAME:
6227 		if (priv->dbgfs_dir)
6228 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6229 							 priv->dbgfs_dir,
6230 							 stmmac_fs_dir,
6231 							 dev->name);
6232 		break;
6233 	}
6234 done:
6235 	return NOTIFY_DONE;
6236 }
6237 
6238 static struct notifier_block stmmac_notifier = {
6239 	.notifier_call = stmmac_device_event,
6240 };
6241 
6242 static void stmmac_init_fs(struct net_device *dev)
6243 {
6244 	struct stmmac_priv *priv = netdev_priv(dev);
6245 
6246 	rtnl_lock();
6247 
6248 	/* Create per netdev entries */
6249 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6250 
6251 	/* Entry to report DMA RX/TX rings */
6252 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6253 			    &stmmac_rings_status_fops);
6254 
6255 	/* Entry to report the DMA HW features */
6256 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6257 			    &stmmac_dma_cap_fops);
6258 
6259 	rtnl_unlock();
6260 }
6261 
6262 static void stmmac_exit_fs(struct net_device *dev)
6263 {
6264 	struct stmmac_priv *priv = netdev_priv(dev);
6265 
6266 	debugfs_remove_recursive(priv->dbgfs_dir);
6267 }
6268 #endif /* CONFIG_DEBUG_FS */
6269 
6270 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6271 {
6272 	unsigned char *data = (unsigned char *)&vid_le;
6273 	unsigned char data_byte = 0;
6274 	u32 crc = ~0x0;
6275 	u32 temp = 0;
6276 	int i, bits;
6277 
6278 	bits = get_bitmask_order(VLAN_VID_MASK);
6279 	for (i = 0; i < bits; i++) {
6280 		if ((i % 8) == 0)
6281 			data_byte = data[i / 8];
6282 
6283 		temp = ((crc & 1) ^ data_byte) & 1;
6284 		crc >>= 1;
6285 		data_byte >>= 1;
6286 
6287 		if (temp)
6288 			crc ^= 0xedb88320;
6289 	}
6290 
6291 	return crc;
6292 }
6293 
6294 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6295 {
6296 	u32 crc, hash = 0;
6297 	__le16 pmatch = 0;
6298 	int count = 0;
6299 	u16 vid = 0;
6300 
6301 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6302 		__le16 vid_le = cpu_to_le16(vid);
6303 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6304 		hash |= (1 << crc);
6305 		count++;
6306 	}
6307 
6308 	if (!priv->dma_cap.vlhash) {
6309 		if (count > 2) /* VID = 0 always passes filter */
6310 			return -EOPNOTSUPP;
6311 
6312 		pmatch = cpu_to_le16(vid);
6313 		hash = 0;
6314 	}
6315 
6316 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6317 }
6318 
6319 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6320 {
6321 	struct stmmac_priv *priv = netdev_priv(ndev);
6322 	bool is_double = false;
6323 	int ret;
6324 
6325 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6326 		is_double = true;
6327 
6328 	set_bit(vid, priv->active_vlans);
6329 	ret = stmmac_vlan_update(priv, is_double);
6330 	if (ret) {
6331 		clear_bit(vid, priv->active_vlans);
6332 		return ret;
6333 	}
6334 
6335 	if (priv->hw->num_vlan) {
6336 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6337 		if (ret)
6338 			return ret;
6339 	}
6340 
6341 	return 0;
6342 }
6343 
6344 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6345 {
6346 	struct stmmac_priv *priv = netdev_priv(ndev);
6347 	bool is_double = false;
6348 	int ret;
6349 
6350 	ret = pm_runtime_resume_and_get(priv->device);
6351 	if (ret < 0)
6352 		return ret;
6353 
6354 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6355 		is_double = true;
6356 
6357 	clear_bit(vid, priv->active_vlans);
6358 
6359 	if (priv->hw->num_vlan) {
6360 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6361 		if (ret)
6362 			goto del_vlan_error;
6363 	}
6364 
6365 	ret = stmmac_vlan_update(priv, is_double);
6366 
6367 del_vlan_error:
6368 	pm_runtime_put(priv->device);
6369 
6370 	return ret;
6371 }
6372 
6373 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6374 {
6375 	struct stmmac_priv *priv = netdev_priv(dev);
6376 
6377 	switch (bpf->command) {
6378 	case XDP_SETUP_PROG:
6379 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6380 	case XDP_SETUP_XSK_POOL:
6381 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6382 					     bpf->xsk.queue_id);
6383 	default:
6384 		return -EOPNOTSUPP;
6385 	}
6386 }
6387 
6388 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6389 			   struct xdp_frame **frames, u32 flags)
6390 {
6391 	struct stmmac_priv *priv = netdev_priv(dev);
6392 	int cpu = smp_processor_id();
6393 	struct netdev_queue *nq;
6394 	int i, nxmit = 0;
6395 	int queue;
6396 
6397 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6398 		return -ENETDOWN;
6399 
6400 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6401 		return -EINVAL;
6402 
6403 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6404 	nq = netdev_get_tx_queue(priv->dev, queue);
6405 
6406 	__netif_tx_lock(nq, cpu);
6407 	/* Avoids TX time-out as we are sharing with slow path */
6408 	txq_trans_cond_update(nq);
6409 
6410 	for (i = 0; i < num_frames; i++) {
6411 		int res;
6412 
6413 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6414 		if (res == STMMAC_XDP_CONSUMED)
6415 			break;
6416 
6417 		nxmit++;
6418 	}
6419 
6420 	if (flags & XDP_XMIT_FLUSH) {
6421 		stmmac_flush_tx_descriptors(priv, queue);
6422 		stmmac_tx_timer_arm(priv, queue);
6423 	}
6424 
6425 	__netif_tx_unlock(nq);
6426 
6427 	return nxmit;
6428 }
6429 
6430 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6431 {
6432 	struct stmmac_channel *ch = &priv->channel[queue];
6433 	unsigned long flags;
6434 
6435 	spin_lock_irqsave(&ch->lock, flags);
6436 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6437 	spin_unlock_irqrestore(&ch->lock, flags);
6438 
6439 	stmmac_stop_rx_dma(priv, queue);
6440 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6441 }
6442 
6443 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6444 {
6445 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6446 	struct stmmac_channel *ch = &priv->channel[queue];
6447 	unsigned long flags;
6448 	u32 buf_size;
6449 	int ret;
6450 
6451 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6452 	if (ret) {
6453 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6454 		return;
6455 	}
6456 
6457 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6458 	if (ret) {
6459 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6460 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6461 		return;
6462 	}
6463 
6464 	stmmac_reset_rx_queue(priv, queue);
6465 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6466 
6467 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6468 			    rx_q->dma_rx_phy, rx_q->queue_index);
6469 
6470 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6471 			     sizeof(struct dma_desc));
6472 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6473 			       rx_q->rx_tail_addr, rx_q->queue_index);
6474 
6475 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6476 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6477 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6478 				      buf_size,
6479 				      rx_q->queue_index);
6480 	} else {
6481 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6482 				      priv->dma_conf.dma_buf_sz,
6483 				      rx_q->queue_index);
6484 	}
6485 
6486 	stmmac_start_rx_dma(priv, queue);
6487 
6488 	spin_lock_irqsave(&ch->lock, flags);
6489 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6490 	spin_unlock_irqrestore(&ch->lock, flags);
6491 }
6492 
6493 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6494 {
6495 	struct stmmac_channel *ch = &priv->channel[queue];
6496 	unsigned long flags;
6497 
6498 	spin_lock_irqsave(&ch->lock, flags);
6499 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6500 	spin_unlock_irqrestore(&ch->lock, flags);
6501 
6502 	stmmac_stop_tx_dma(priv, queue);
6503 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6504 }
6505 
6506 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6507 {
6508 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6509 	struct stmmac_channel *ch = &priv->channel[queue];
6510 	unsigned long flags;
6511 	int ret;
6512 
6513 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6514 	if (ret) {
6515 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6516 		return;
6517 	}
6518 
6519 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6520 	if (ret) {
6521 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6522 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6523 		return;
6524 	}
6525 
6526 	stmmac_reset_tx_queue(priv, queue);
6527 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6528 
6529 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6530 			    tx_q->dma_tx_phy, tx_q->queue_index);
6531 
6532 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6533 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6534 
6535 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6536 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6537 			       tx_q->tx_tail_addr, tx_q->queue_index);
6538 
6539 	stmmac_start_tx_dma(priv, queue);
6540 
6541 	spin_lock_irqsave(&ch->lock, flags);
6542 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6543 	spin_unlock_irqrestore(&ch->lock, flags);
6544 }
6545 
6546 void stmmac_xdp_release(struct net_device *dev)
6547 {
6548 	struct stmmac_priv *priv = netdev_priv(dev);
6549 	u32 chan;
6550 
6551 	/* Disable NAPI process */
6552 	stmmac_disable_all_queues(priv);
6553 
6554 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6555 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6556 
6557 	/* Free the IRQ lines */
6558 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6559 
6560 	/* Stop TX/RX DMA channels */
6561 	stmmac_stop_all_dma(priv);
6562 
6563 	/* Release and free the Rx/Tx resources */
6564 	free_dma_desc_resources(priv, &priv->dma_conf);
6565 
6566 	/* Disable the MAC Rx/Tx */
6567 	stmmac_mac_set(priv, priv->ioaddr, false);
6568 
6569 	/* set trans_start so we don't get spurious
6570 	 * watchdogs during reset
6571 	 */
6572 	netif_trans_update(dev);
6573 	netif_carrier_off(dev);
6574 }
6575 
6576 int stmmac_xdp_open(struct net_device *dev)
6577 {
6578 	struct stmmac_priv *priv = netdev_priv(dev);
6579 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6580 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6581 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6582 	struct stmmac_rx_queue *rx_q;
6583 	struct stmmac_tx_queue *tx_q;
6584 	u32 buf_size;
6585 	bool sph_en;
6586 	u32 chan;
6587 	int ret;
6588 
6589 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6590 	if (ret < 0) {
6591 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6592 			   __func__);
6593 		goto dma_desc_error;
6594 	}
6595 
6596 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6597 	if (ret < 0) {
6598 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6599 			   __func__);
6600 		goto init_error;
6601 	}
6602 
6603 	/* DMA CSR Channel configuration */
6604 	for (chan = 0; chan < dma_csr_ch; chan++) {
6605 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6606 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6607 	}
6608 
6609 	/* Adjust Split header */
6610 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6611 
6612 	/* DMA RX Channel Configuration */
6613 	for (chan = 0; chan < rx_cnt; chan++) {
6614 		rx_q = &priv->dma_conf.rx_queue[chan];
6615 
6616 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6617 				    rx_q->dma_rx_phy, chan);
6618 
6619 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6620 				     (rx_q->buf_alloc_num *
6621 				      sizeof(struct dma_desc));
6622 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6623 				       rx_q->rx_tail_addr, chan);
6624 
6625 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6626 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6627 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6628 					      buf_size,
6629 					      rx_q->queue_index);
6630 		} else {
6631 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6632 					      priv->dma_conf.dma_buf_sz,
6633 					      rx_q->queue_index);
6634 		}
6635 
6636 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6637 	}
6638 
6639 	/* DMA TX Channel Configuration */
6640 	for (chan = 0; chan < tx_cnt; chan++) {
6641 		tx_q = &priv->dma_conf.tx_queue[chan];
6642 
6643 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6644 				    tx_q->dma_tx_phy, chan);
6645 
6646 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6647 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6648 				       tx_q->tx_tail_addr, chan);
6649 
6650 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6651 		tx_q->txtimer.function = stmmac_tx_timer;
6652 	}
6653 
6654 	/* Enable the MAC Rx/Tx */
6655 	stmmac_mac_set(priv, priv->ioaddr, true);
6656 
6657 	/* Start Rx & Tx DMA Channels */
6658 	stmmac_start_all_dma(priv);
6659 
6660 	ret = stmmac_request_irq(dev);
6661 	if (ret)
6662 		goto irq_error;
6663 
6664 	/* Enable NAPI process*/
6665 	stmmac_enable_all_queues(priv);
6666 	netif_carrier_on(dev);
6667 	netif_tx_start_all_queues(dev);
6668 	stmmac_enable_all_dma_irq(priv);
6669 
6670 	return 0;
6671 
6672 irq_error:
6673 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6674 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6675 
6676 	stmmac_hw_teardown(dev);
6677 init_error:
6678 	free_dma_desc_resources(priv, &priv->dma_conf);
6679 dma_desc_error:
6680 	return ret;
6681 }
6682 
6683 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6684 {
6685 	struct stmmac_priv *priv = netdev_priv(dev);
6686 	struct stmmac_rx_queue *rx_q;
6687 	struct stmmac_tx_queue *tx_q;
6688 	struct stmmac_channel *ch;
6689 
6690 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6691 	    !netif_carrier_ok(priv->dev))
6692 		return -ENETDOWN;
6693 
6694 	if (!stmmac_xdp_is_enabled(priv))
6695 		return -EINVAL;
6696 
6697 	if (queue >= priv->plat->rx_queues_to_use ||
6698 	    queue >= priv->plat->tx_queues_to_use)
6699 		return -EINVAL;
6700 
6701 	rx_q = &priv->dma_conf.rx_queue[queue];
6702 	tx_q = &priv->dma_conf.tx_queue[queue];
6703 	ch = &priv->channel[queue];
6704 
6705 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6706 		return -EINVAL;
6707 
6708 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6709 		/* EQoS does not have per-DMA channel SW interrupt,
6710 		 * so we schedule RX Napi straight-away.
6711 		 */
6712 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6713 			__napi_schedule(&ch->rxtx_napi);
6714 	}
6715 
6716 	return 0;
6717 }
6718 
6719 static const struct net_device_ops stmmac_netdev_ops = {
6720 	.ndo_open = stmmac_open,
6721 	.ndo_start_xmit = stmmac_xmit,
6722 	.ndo_stop = stmmac_release,
6723 	.ndo_change_mtu = stmmac_change_mtu,
6724 	.ndo_fix_features = stmmac_fix_features,
6725 	.ndo_set_features = stmmac_set_features,
6726 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6727 	.ndo_tx_timeout = stmmac_tx_timeout,
6728 	.ndo_eth_ioctl = stmmac_ioctl,
6729 	.ndo_setup_tc = stmmac_setup_tc,
6730 	.ndo_select_queue = stmmac_select_queue,
6731 #ifdef CONFIG_NET_POLL_CONTROLLER
6732 	.ndo_poll_controller = stmmac_poll_controller,
6733 #endif
6734 	.ndo_set_mac_address = stmmac_set_mac_address,
6735 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6736 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6737 	.ndo_bpf = stmmac_bpf,
6738 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6739 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6740 };
6741 
6742 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6743 {
6744 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6745 		return;
6746 	if (test_bit(STMMAC_DOWN, &priv->state))
6747 		return;
6748 
6749 	netdev_err(priv->dev, "Reset adapter.\n");
6750 
6751 	rtnl_lock();
6752 	netif_trans_update(priv->dev);
6753 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6754 		usleep_range(1000, 2000);
6755 
6756 	set_bit(STMMAC_DOWN, &priv->state);
6757 	dev_close(priv->dev);
6758 	dev_open(priv->dev, NULL);
6759 	clear_bit(STMMAC_DOWN, &priv->state);
6760 	clear_bit(STMMAC_RESETING, &priv->state);
6761 	rtnl_unlock();
6762 }
6763 
6764 static void stmmac_service_task(struct work_struct *work)
6765 {
6766 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6767 			service_task);
6768 
6769 	stmmac_reset_subtask(priv);
6770 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6771 }
6772 
6773 /**
6774  *  stmmac_hw_init - Init the MAC device
6775  *  @priv: driver private structure
6776  *  Description: this function is to configure the MAC device according to
6777  *  some platform parameters or the HW capability register. It prepares the
6778  *  driver to use either ring or chain modes and to setup either enhanced or
6779  *  normal descriptors.
6780  */
6781 static int stmmac_hw_init(struct stmmac_priv *priv)
6782 {
6783 	int ret;
6784 
6785 	/* dwmac-sun8i only work in chain mode */
6786 	if (priv->plat->has_sun8i)
6787 		chain_mode = 1;
6788 	priv->chain_mode = chain_mode;
6789 
6790 	/* Initialize HW Interface */
6791 	ret = stmmac_hwif_init(priv);
6792 	if (ret)
6793 		return ret;
6794 
6795 	/* Get the HW capability (new GMAC newer than 3.50a) */
6796 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6797 	if (priv->hw_cap_support) {
6798 		dev_info(priv->device, "DMA HW capability register supported\n");
6799 
6800 		/* We can override some gmac/dma configuration fields: e.g.
6801 		 * enh_desc, tx_coe (e.g. that are passed through the
6802 		 * platform) with the values from the HW capability
6803 		 * register (if supported).
6804 		 */
6805 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6806 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6807 				!priv->plat->use_phy_wol;
6808 		priv->hw->pmt = priv->plat->pmt;
6809 		if (priv->dma_cap.hash_tb_sz) {
6810 			priv->hw->multicast_filter_bins =
6811 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6812 			priv->hw->mcast_bits_log2 =
6813 					ilog2(priv->hw->multicast_filter_bins);
6814 		}
6815 
6816 		/* TXCOE doesn't work in thresh DMA mode */
6817 		if (priv->plat->force_thresh_dma_mode)
6818 			priv->plat->tx_coe = 0;
6819 		else
6820 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6821 
6822 		/* In case of GMAC4 rx_coe is from HW cap register. */
6823 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6824 
6825 		if (priv->dma_cap.rx_coe_type2)
6826 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6827 		else if (priv->dma_cap.rx_coe_type1)
6828 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6829 
6830 	} else {
6831 		dev_info(priv->device, "No HW DMA feature register supported\n");
6832 	}
6833 
6834 	if (priv->plat->rx_coe) {
6835 		priv->hw->rx_csum = priv->plat->rx_coe;
6836 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6837 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6838 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6839 	}
6840 	if (priv->plat->tx_coe)
6841 		dev_info(priv->device, "TX Checksum insertion supported\n");
6842 
6843 	if (priv->plat->pmt) {
6844 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6845 		device_set_wakeup_capable(priv->device, 1);
6846 	}
6847 
6848 	if (priv->dma_cap.tsoen)
6849 		dev_info(priv->device, "TSO supported\n");
6850 
6851 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6852 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6853 
6854 	/* Run HW quirks, if any */
6855 	if (priv->hwif_quirks) {
6856 		ret = priv->hwif_quirks(priv);
6857 		if (ret)
6858 			return ret;
6859 	}
6860 
6861 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6862 	 * In some case, for example on bugged HW this feature
6863 	 * has to be disable and this can be done by passing the
6864 	 * riwt_off field from the platform.
6865 	 */
6866 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6867 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6868 		priv->use_riwt = 1;
6869 		dev_info(priv->device,
6870 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6871 	}
6872 
6873 	return 0;
6874 }
6875 
6876 static void stmmac_napi_add(struct net_device *dev)
6877 {
6878 	struct stmmac_priv *priv = netdev_priv(dev);
6879 	u32 queue, maxq;
6880 
6881 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6882 
6883 	for (queue = 0; queue < maxq; queue++) {
6884 		struct stmmac_channel *ch = &priv->channel[queue];
6885 
6886 		ch->priv_data = priv;
6887 		ch->index = queue;
6888 		spin_lock_init(&ch->lock);
6889 
6890 		if (queue < priv->plat->rx_queues_to_use) {
6891 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6892 		}
6893 		if (queue < priv->plat->tx_queues_to_use) {
6894 			netif_napi_add_tx(dev, &ch->tx_napi,
6895 					  stmmac_napi_poll_tx);
6896 		}
6897 		if (queue < priv->plat->rx_queues_to_use &&
6898 		    queue < priv->plat->tx_queues_to_use) {
6899 			netif_napi_add(dev, &ch->rxtx_napi,
6900 				       stmmac_napi_poll_rxtx);
6901 		}
6902 	}
6903 }
6904 
6905 static void stmmac_napi_del(struct net_device *dev)
6906 {
6907 	struct stmmac_priv *priv = netdev_priv(dev);
6908 	u32 queue, maxq;
6909 
6910 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6911 
6912 	for (queue = 0; queue < maxq; queue++) {
6913 		struct stmmac_channel *ch = &priv->channel[queue];
6914 
6915 		if (queue < priv->plat->rx_queues_to_use)
6916 			netif_napi_del(&ch->rx_napi);
6917 		if (queue < priv->plat->tx_queues_to_use)
6918 			netif_napi_del(&ch->tx_napi);
6919 		if (queue < priv->plat->rx_queues_to_use &&
6920 		    queue < priv->plat->tx_queues_to_use) {
6921 			netif_napi_del(&ch->rxtx_napi);
6922 		}
6923 	}
6924 }
6925 
6926 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6927 {
6928 	struct stmmac_priv *priv = netdev_priv(dev);
6929 	int ret = 0;
6930 
6931 	if (netif_running(dev))
6932 		stmmac_release(dev);
6933 
6934 	stmmac_napi_del(dev);
6935 
6936 	priv->plat->rx_queues_to_use = rx_cnt;
6937 	priv->plat->tx_queues_to_use = tx_cnt;
6938 
6939 	stmmac_napi_add(dev);
6940 
6941 	if (netif_running(dev))
6942 		ret = stmmac_open(dev);
6943 
6944 	return ret;
6945 }
6946 
6947 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6948 {
6949 	struct stmmac_priv *priv = netdev_priv(dev);
6950 	int ret = 0;
6951 
6952 	if (netif_running(dev))
6953 		stmmac_release(dev);
6954 
6955 	priv->dma_conf.dma_rx_size = rx_size;
6956 	priv->dma_conf.dma_tx_size = tx_size;
6957 
6958 	if (netif_running(dev))
6959 		ret = stmmac_open(dev);
6960 
6961 	return ret;
6962 }
6963 
6964 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6965 static void stmmac_fpe_lp_task(struct work_struct *work)
6966 {
6967 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6968 						fpe_task);
6969 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6970 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6971 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6972 	bool *hs_enable = &fpe_cfg->hs_enable;
6973 	bool *enable = &fpe_cfg->enable;
6974 	int retries = 20;
6975 
6976 	while (retries-- > 0) {
6977 		/* Bail out immediately if FPE handshake is OFF */
6978 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6979 			break;
6980 
6981 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6982 		    *lp_state == FPE_STATE_ENTERING_ON) {
6983 			stmmac_fpe_configure(priv, priv->ioaddr,
6984 					     priv->plat->tx_queues_to_use,
6985 					     priv->plat->rx_queues_to_use,
6986 					     *enable);
6987 
6988 			netdev_info(priv->dev, "configured FPE\n");
6989 
6990 			*lo_state = FPE_STATE_ON;
6991 			*lp_state = FPE_STATE_ON;
6992 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6993 			break;
6994 		}
6995 
6996 		if ((*lo_state == FPE_STATE_CAPABLE ||
6997 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6998 		     *lp_state != FPE_STATE_ON) {
6999 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7000 				    *lo_state, *lp_state);
7001 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7002 						MPACKET_VERIFY);
7003 		}
7004 		/* Sleep then retry */
7005 		msleep(500);
7006 	}
7007 
7008 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7009 }
7010 
7011 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7012 {
7013 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7014 		if (enable) {
7015 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7016 						MPACKET_VERIFY);
7017 		} else {
7018 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7019 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7020 		}
7021 
7022 		priv->plat->fpe_cfg->hs_enable = enable;
7023 	}
7024 }
7025 
7026 /**
7027  * stmmac_dvr_probe
7028  * @device: device pointer
7029  * @plat_dat: platform data pointer
7030  * @res: stmmac resource pointer
7031  * Description: this is the main probe function used to
7032  * call the alloc_etherdev, allocate the priv structure.
7033  * Return:
7034  * returns 0 on success, otherwise errno.
7035  */
7036 int stmmac_dvr_probe(struct device *device,
7037 		     struct plat_stmmacenet_data *plat_dat,
7038 		     struct stmmac_resources *res)
7039 {
7040 	struct net_device *ndev = NULL;
7041 	struct stmmac_priv *priv;
7042 	u32 rxq;
7043 	int i, ret = 0;
7044 
7045 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7046 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7047 	if (!ndev)
7048 		return -ENOMEM;
7049 
7050 	SET_NETDEV_DEV(ndev, device);
7051 
7052 	priv = netdev_priv(ndev);
7053 	priv->device = device;
7054 	priv->dev = ndev;
7055 
7056 	stmmac_set_ethtool_ops(ndev);
7057 	priv->pause = pause;
7058 	priv->plat = plat_dat;
7059 	priv->ioaddr = res->addr;
7060 	priv->dev->base_addr = (unsigned long)res->addr;
7061 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7062 
7063 	priv->dev->irq = res->irq;
7064 	priv->wol_irq = res->wol_irq;
7065 	priv->lpi_irq = res->lpi_irq;
7066 	priv->sfty_ce_irq = res->sfty_ce_irq;
7067 	priv->sfty_ue_irq = res->sfty_ue_irq;
7068 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7069 		priv->rx_irq[i] = res->rx_irq[i];
7070 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7071 		priv->tx_irq[i] = res->tx_irq[i];
7072 
7073 	if (!is_zero_ether_addr(res->mac))
7074 		eth_hw_addr_set(priv->dev, res->mac);
7075 
7076 	dev_set_drvdata(device, priv->dev);
7077 
7078 	/* Verify driver arguments */
7079 	stmmac_verify_args();
7080 
7081 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7082 	if (!priv->af_xdp_zc_qps)
7083 		return -ENOMEM;
7084 
7085 	/* Allocate workqueue */
7086 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7087 	if (!priv->wq) {
7088 		dev_err(priv->device, "failed to create workqueue\n");
7089 		return -ENOMEM;
7090 	}
7091 
7092 	INIT_WORK(&priv->service_task, stmmac_service_task);
7093 
7094 	/* Initialize Link Partner FPE workqueue */
7095 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7096 
7097 	/* Override with kernel parameters if supplied XXX CRS XXX
7098 	 * this needs to have multiple instances
7099 	 */
7100 	if ((phyaddr >= 0) && (phyaddr <= 31))
7101 		priv->plat->phy_addr = phyaddr;
7102 
7103 	if (priv->plat->stmmac_rst) {
7104 		ret = reset_control_assert(priv->plat->stmmac_rst);
7105 		reset_control_deassert(priv->plat->stmmac_rst);
7106 		/* Some reset controllers have only reset callback instead of
7107 		 * assert + deassert callbacks pair.
7108 		 */
7109 		if (ret == -ENOTSUPP)
7110 			reset_control_reset(priv->plat->stmmac_rst);
7111 	}
7112 
7113 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7114 	if (ret == -ENOTSUPP)
7115 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7116 			ERR_PTR(ret));
7117 
7118 	/* Init MAC and get the capabilities */
7119 	ret = stmmac_hw_init(priv);
7120 	if (ret)
7121 		goto error_hw_init;
7122 
7123 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7124 	 */
7125 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7126 		priv->plat->dma_cfg->dche = false;
7127 
7128 	stmmac_check_ether_addr(priv);
7129 
7130 	ndev->netdev_ops = &stmmac_netdev_ops;
7131 
7132 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7133 			    NETIF_F_RXCSUM;
7134 
7135 	ret = stmmac_tc_init(priv, priv);
7136 	if (!ret) {
7137 		ndev->hw_features |= NETIF_F_HW_TC;
7138 	}
7139 
7140 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7141 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7142 		if (priv->plat->has_gmac4)
7143 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7144 		priv->tso = true;
7145 		dev_info(priv->device, "TSO feature enabled\n");
7146 	}
7147 
7148 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7149 		ndev->hw_features |= NETIF_F_GRO;
7150 		priv->sph_cap = true;
7151 		priv->sph = priv->sph_cap;
7152 		dev_info(priv->device, "SPH feature enabled\n");
7153 	}
7154 
7155 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7156 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7157 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7158 	 * So overwrite dma_cap.addr64 according to HW real design.
7159 	 */
7160 	if (priv->plat->addr64)
7161 		priv->dma_cap.addr64 = priv->plat->addr64;
7162 
7163 	if (priv->dma_cap.addr64) {
7164 		ret = dma_set_mask_and_coherent(device,
7165 				DMA_BIT_MASK(priv->dma_cap.addr64));
7166 		if (!ret) {
7167 			dev_info(priv->device, "Using %d bits DMA width\n",
7168 				 priv->dma_cap.addr64);
7169 
7170 			/*
7171 			 * If more than 32 bits can be addressed, make sure to
7172 			 * enable enhanced addressing mode.
7173 			 */
7174 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7175 				priv->plat->dma_cfg->eame = true;
7176 		} else {
7177 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7178 			if (ret) {
7179 				dev_err(priv->device, "Failed to set DMA Mask\n");
7180 				goto error_hw_init;
7181 			}
7182 
7183 			priv->dma_cap.addr64 = 32;
7184 		}
7185 	}
7186 
7187 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7188 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7189 #ifdef STMMAC_VLAN_TAG_USED
7190 	/* Both mac100 and gmac support receive VLAN tag detection */
7191 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7192 	if (priv->dma_cap.vlhash) {
7193 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7194 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7195 	}
7196 	if (priv->dma_cap.vlins) {
7197 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7198 		if (priv->dma_cap.dvlan)
7199 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7200 	}
7201 #endif
7202 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7203 
7204 	/* Initialize RSS */
7205 	rxq = priv->plat->rx_queues_to_use;
7206 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7207 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7208 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7209 
7210 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7211 		ndev->features |= NETIF_F_RXHASH;
7212 
7213 	/* MTU range: 46 - hw-specific max */
7214 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7215 	if (priv->plat->has_xgmac)
7216 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7217 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7218 		ndev->max_mtu = JUMBO_LEN;
7219 	else
7220 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7221 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7222 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7223 	 */
7224 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7225 	    (priv->plat->maxmtu >= ndev->min_mtu))
7226 		ndev->max_mtu = priv->plat->maxmtu;
7227 	else if (priv->plat->maxmtu < ndev->min_mtu)
7228 		dev_warn(priv->device,
7229 			 "%s: warning: maxmtu having invalid value (%d)\n",
7230 			 __func__, priv->plat->maxmtu);
7231 
7232 	if (flow_ctrl)
7233 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7234 
7235 	/* Setup channels NAPI */
7236 	stmmac_napi_add(ndev);
7237 
7238 	mutex_init(&priv->lock);
7239 
7240 	/* If a specific clk_csr value is passed from the platform
7241 	 * this means that the CSR Clock Range selection cannot be
7242 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7243 	 * set the MDC clock dynamically according to the csr actual
7244 	 * clock input.
7245 	 */
7246 	if (priv->plat->clk_csr >= 0)
7247 		priv->clk_csr = priv->plat->clk_csr;
7248 	else
7249 		stmmac_clk_csr_set(priv);
7250 
7251 	stmmac_check_pcs_mode(priv);
7252 
7253 	pm_runtime_get_noresume(device);
7254 	pm_runtime_set_active(device);
7255 	if (!pm_runtime_enabled(device))
7256 		pm_runtime_enable(device);
7257 
7258 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7259 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7260 		/* MDIO bus Registration */
7261 		ret = stmmac_mdio_register(ndev);
7262 		if (ret < 0) {
7263 			dev_err_probe(priv->device, ret,
7264 				      "%s: MDIO bus (id: %d) registration failed\n",
7265 				      __func__, priv->plat->bus_id);
7266 			goto error_mdio_register;
7267 		}
7268 	}
7269 
7270 	if (priv->plat->speed_mode_2500)
7271 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7272 
7273 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7274 		ret = stmmac_xpcs_setup(priv->mii);
7275 		if (ret)
7276 			goto error_xpcs_setup;
7277 	}
7278 
7279 	ret = stmmac_phy_setup(priv);
7280 	if (ret) {
7281 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7282 		goto error_phy_setup;
7283 	}
7284 
7285 	ret = register_netdev(ndev);
7286 	if (ret) {
7287 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7288 			__func__, ret);
7289 		goto error_netdev_register;
7290 	}
7291 
7292 #ifdef CONFIG_DEBUG_FS
7293 	stmmac_init_fs(ndev);
7294 #endif
7295 
7296 	if (priv->plat->dump_debug_regs)
7297 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7298 
7299 	/* Let pm_runtime_put() disable the clocks.
7300 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7301 	 */
7302 	pm_runtime_put(device);
7303 
7304 	return ret;
7305 
7306 error_netdev_register:
7307 	phylink_destroy(priv->phylink);
7308 error_xpcs_setup:
7309 error_phy_setup:
7310 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7311 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7312 		stmmac_mdio_unregister(ndev);
7313 error_mdio_register:
7314 	stmmac_napi_del(ndev);
7315 error_hw_init:
7316 	destroy_workqueue(priv->wq);
7317 	bitmap_free(priv->af_xdp_zc_qps);
7318 
7319 	return ret;
7320 }
7321 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7322 
7323 /**
7324  * stmmac_dvr_remove
7325  * @dev: device pointer
7326  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7327  * changes the link status, releases the DMA descriptor rings.
7328  */
7329 int stmmac_dvr_remove(struct device *dev)
7330 {
7331 	struct net_device *ndev = dev_get_drvdata(dev);
7332 	struct stmmac_priv *priv = netdev_priv(ndev);
7333 
7334 	netdev_info(priv->dev, "%s: removing driver", __func__);
7335 
7336 	pm_runtime_get_sync(dev);
7337 
7338 	stmmac_stop_all_dma(priv);
7339 	stmmac_mac_set(priv, priv->ioaddr, false);
7340 	netif_carrier_off(ndev);
7341 	unregister_netdev(ndev);
7342 
7343 	/* Serdes power down needs to happen after VLAN filter
7344 	 * is deleted that is triggered by unregister_netdev().
7345 	 */
7346 	if (priv->plat->serdes_powerdown)
7347 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7348 
7349 #ifdef CONFIG_DEBUG_FS
7350 	stmmac_exit_fs(ndev);
7351 #endif
7352 	phylink_destroy(priv->phylink);
7353 	if (priv->plat->stmmac_rst)
7354 		reset_control_assert(priv->plat->stmmac_rst);
7355 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7356 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7357 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7358 		stmmac_mdio_unregister(ndev);
7359 	destroy_workqueue(priv->wq);
7360 	mutex_destroy(&priv->lock);
7361 	bitmap_free(priv->af_xdp_zc_qps);
7362 
7363 	pm_runtime_disable(dev);
7364 	pm_runtime_put_noidle(dev);
7365 
7366 	return 0;
7367 }
7368 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7369 
7370 /**
7371  * stmmac_suspend - suspend callback
7372  * @dev: device pointer
7373  * Description: this is the function to suspend the device and it is called
7374  * by the platform driver to stop the network queue, release the resources,
7375  * program the PMT register (for WoL), clean and release driver resources.
7376  */
7377 int stmmac_suspend(struct device *dev)
7378 {
7379 	struct net_device *ndev = dev_get_drvdata(dev);
7380 	struct stmmac_priv *priv = netdev_priv(ndev);
7381 	u32 chan;
7382 
7383 	if (!ndev || !netif_running(ndev))
7384 		return 0;
7385 
7386 	mutex_lock(&priv->lock);
7387 
7388 	netif_device_detach(ndev);
7389 
7390 	stmmac_disable_all_queues(priv);
7391 
7392 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7393 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7394 
7395 	if (priv->eee_enabled) {
7396 		priv->tx_path_in_lpi_mode = false;
7397 		del_timer_sync(&priv->eee_ctrl_timer);
7398 	}
7399 
7400 	/* Stop TX/RX DMA */
7401 	stmmac_stop_all_dma(priv);
7402 
7403 	if (priv->plat->serdes_powerdown)
7404 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7405 
7406 	/* Enable Power down mode by programming the PMT regs */
7407 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7408 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7409 		priv->irq_wake = 1;
7410 	} else {
7411 		stmmac_mac_set(priv, priv->ioaddr, false);
7412 		pinctrl_pm_select_sleep_state(priv->device);
7413 	}
7414 
7415 	mutex_unlock(&priv->lock);
7416 
7417 	rtnl_lock();
7418 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7419 		phylink_suspend(priv->phylink, true);
7420 	} else {
7421 		if (device_may_wakeup(priv->device))
7422 			phylink_speed_down(priv->phylink, false);
7423 		phylink_suspend(priv->phylink, false);
7424 	}
7425 	rtnl_unlock();
7426 
7427 	if (priv->dma_cap.fpesel) {
7428 		/* Disable FPE */
7429 		stmmac_fpe_configure(priv, priv->ioaddr,
7430 				     priv->plat->tx_queues_to_use,
7431 				     priv->plat->rx_queues_to_use, false);
7432 
7433 		stmmac_fpe_handshake(priv, false);
7434 		stmmac_fpe_stop_wq(priv);
7435 	}
7436 
7437 	priv->speed = SPEED_UNKNOWN;
7438 	return 0;
7439 }
7440 EXPORT_SYMBOL_GPL(stmmac_suspend);
7441 
7442 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7443 {
7444 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7445 
7446 	rx_q->cur_rx = 0;
7447 	rx_q->dirty_rx = 0;
7448 }
7449 
7450 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7451 {
7452 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7453 
7454 	tx_q->cur_tx = 0;
7455 	tx_q->dirty_tx = 0;
7456 	tx_q->mss = 0;
7457 
7458 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7459 }
7460 
7461 /**
7462  * stmmac_reset_queues_param - reset queue parameters
7463  * @priv: device pointer
7464  */
7465 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7466 {
7467 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7468 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7469 	u32 queue;
7470 
7471 	for (queue = 0; queue < rx_cnt; queue++)
7472 		stmmac_reset_rx_queue(priv, queue);
7473 
7474 	for (queue = 0; queue < tx_cnt; queue++)
7475 		stmmac_reset_tx_queue(priv, queue);
7476 }
7477 
7478 /**
7479  * stmmac_resume - resume callback
7480  * @dev: device pointer
7481  * Description: when resume this function is invoked to setup the DMA and CORE
7482  * in a usable state.
7483  */
7484 int stmmac_resume(struct device *dev)
7485 {
7486 	struct net_device *ndev = dev_get_drvdata(dev);
7487 	struct stmmac_priv *priv = netdev_priv(ndev);
7488 	int ret;
7489 
7490 	if (!netif_running(ndev))
7491 		return 0;
7492 
7493 	/* Power Down bit, into the PM register, is cleared
7494 	 * automatically as soon as a magic packet or a Wake-up frame
7495 	 * is received. Anyway, it's better to manually clear
7496 	 * this bit because it can generate problems while resuming
7497 	 * from another devices (e.g. serial console).
7498 	 */
7499 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7500 		mutex_lock(&priv->lock);
7501 		stmmac_pmt(priv, priv->hw, 0);
7502 		mutex_unlock(&priv->lock);
7503 		priv->irq_wake = 0;
7504 	} else {
7505 		pinctrl_pm_select_default_state(priv->device);
7506 		/* reset the phy so that it's ready */
7507 		if (priv->mii)
7508 			stmmac_mdio_reset(priv->mii);
7509 	}
7510 
7511 	if (priv->plat->serdes_powerup) {
7512 		ret = priv->plat->serdes_powerup(ndev,
7513 						 priv->plat->bsp_priv);
7514 
7515 		if (ret < 0)
7516 			return ret;
7517 	}
7518 
7519 	rtnl_lock();
7520 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7521 		phylink_resume(priv->phylink);
7522 	} else {
7523 		phylink_resume(priv->phylink);
7524 		if (device_may_wakeup(priv->device))
7525 			phylink_speed_up(priv->phylink);
7526 	}
7527 	rtnl_unlock();
7528 
7529 	rtnl_lock();
7530 	mutex_lock(&priv->lock);
7531 
7532 	stmmac_reset_queues_param(priv);
7533 
7534 	stmmac_free_tx_skbufs(priv);
7535 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7536 
7537 	stmmac_hw_setup(ndev, false);
7538 	stmmac_init_coalesce(priv);
7539 	stmmac_set_rx_mode(ndev);
7540 
7541 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7542 
7543 	stmmac_enable_all_queues(priv);
7544 	stmmac_enable_all_dma_irq(priv);
7545 
7546 	mutex_unlock(&priv->lock);
7547 	rtnl_unlock();
7548 
7549 	netif_device_attach(ndev);
7550 
7551 	return 0;
7552 }
7553 EXPORT_SYMBOL_GPL(stmmac_resume);
7554 
7555 #ifndef MODULE
7556 static int __init stmmac_cmdline_opt(char *str)
7557 {
7558 	char *opt;
7559 
7560 	if (!str || !*str)
7561 		return 1;
7562 	while ((opt = strsep(&str, ",")) != NULL) {
7563 		if (!strncmp(opt, "debug:", 6)) {
7564 			if (kstrtoint(opt + 6, 0, &debug))
7565 				goto err;
7566 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7567 			if (kstrtoint(opt + 8, 0, &phyaddr))
7568 				goto err;
7569 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7570 			if (kstrtoint(opt + 7, 0, &buf_sz))
7571 				goto err;
7572 		} else if (!strncmp(opt, "tc:", 3)) {
7573 			if (kstrtoint(opt + 3, 0, &tc))
7574 				goto err;
7575 		} else if (!strncmp(opt, "watchdog:", 9)) {
7576 			if (kstrtoint(opt + 9, 0, &watchdog))
7577 				goto err;
7578 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7579 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7580 				goto err;
7581 		} else if (!strncmp(opt, "pause:", 6)) {
7582 			if (kstrtoint(opt + 6, 0, &pause))
7583 				goto err;
7584 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7585 			if (kstrtoint(opt + 10, 0, &eee_timer))
7586 				goto err;
7587 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7588 			if (kstrtoint(opt + 11, 0, &chain_mode))
7589 				goto err;
7590 		}
7591 	}
7592 	return 1;
7593 
7594 err:
7595 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7596 	return 1;
7597 }
7598 
7599 __setup("stmmaceth=", stmmac_cmdline_opt);
7600 #endif /* MODULE */
7601 
7602 static int __init stmmac_init(void)
7603 {
7604 #ifdef CONFIG_DEBUG_FS
7605 	/* Create debugfs main directory if it doesn't exist yet */
7606 	if (!stmmac_fs_dir)
7607 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7608 	register_netdevice_notifier(&stmmac_notifier);
7609 #endif
7610 
7611 	return 0;
7612 }
7613 
7614 static void __exit stmmac_exit(void)
7615 {
7616 #ifdef CONFIG_DEBUG_FS
7617 	unregister_netdevice_notifier(&stmmac_notifier);
7618 	debugfs_remove_recursive(stmmac_fs_dir);
7619 #endif
7620 }
7621 
7622 module_init(stmmac_init)
7623 module_exit(stmmac_exit)
7624 
7625 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7626 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7627 MODULE_LICENSE("GPL");
7628