1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57 
58 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
59 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
60 
61 /* Module parameters */
62 #define TX_TIMEO	5000
63 static int watchdog = TX_TIMEO;
64 module_param(watchdog, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
66 
67 static int debug = -1;
68 module_param(debug, int, S_IRUGO | S_IWUSR);
69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
70 
71 static int phyaddr = -1;
72 module_param(phyaddr, int, S_IRUGO);
73 MODULE_PARM_DESC(phyaddr, "Physical device address");
74 
75 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
76 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
77 
78 static int flow_ctrl = FLOW_OFF;
79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
81 
82 static int pause = PAUSE_TIME;
83 module_param(pause, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
85 
86 #define TC_DEFAULT 64
87 static int tc = TC_DEFAULT;
88 module_param(tc, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(tc, "DMA threshold control value");
90 
91 #define	DEFAULT_BUFSIZE	1536
92 static int buf_sz = DEFAULT_BUFSIZE;
93 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
95 
96 #define	STMMAC_RX_COPYBREAK	256
97 
98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
99 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
100 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
101 
102 #define STMMAC_DEFAULT_LPI_TIMER	1000
103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
104 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
107 
108 /* By default the driver will use the ring mode to manage tx and rx descriptors
109  * but passing this value so user can force to use the chain instead of the ring
110  */
111 static unsigned int chain_mode;
112 module_param(chain_mode, int, S_IRUGO);
113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
114 
115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
116 
117 #ifdef CONFIG_DEBUG_FS
118 static int stmmac_init_fs(struct net_device *dev);
119 static void stmmac_exit_fs(struct net_device *dev);
120 #endif
121 
122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
123 
124 /**
125  * stmmac_verify_args - verify the driver parameters.
126  * Description: it checks the driver parameters and set a default in case of
127  * errors.
128  */
129 static void stmmac_verify_args(void)
130 {
131 	if (unlikely(watchdog < 0))
132 		watchdog = TX_TIMEO;
133 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
134 		buf_sz = DEFAULT_BUFSIZE;
135 	if (unlikely(flow_ctrl > 1))
136 		flow_ctrl = FLOW_AUTO;
137 	else if (likely(flow_ctrl < 0))
138 		flow_ctrl = FLOW_OFF;
139 	if (unlikely((pause < 0) || (pause > 0xffff)))
140 		pause = PAUSE_TIME;
141 	if (eee_timer < 0)
142 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
143 }
144 
145 /**
146  * stmmac_clk_csr_set - dynamically set the MDC clock
147  * @priv: driver private structure
148  * Description: this is to dynamically set the MDC clock according to the csr
149  * clock input.
150  * Note:
151  *	If a specific clk_csr value is passed from the platform
152  *	this means that the CSR Clock Range selection cannot be
153  *	changed at run-time and it is fixed (as reported in the driver
154  *	documentation). Viceversa the driver will try to set the MDC
155  *	clock dynamically according to the actual clock input.
156  */
157 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
158 {
159 	u32 clk_rate;
160 
161 	clk_rate = clk_get_rate(priv->stmmac_clk);
162 
163 	/* Platform provided default clk_csr would be assumed valid
164 	 * for all other cases except for the below mentioned ones.
165 	 * For values higher than the IEEE 802.3 specified frequency
166 	 * we can not estimate the proper divider as it is not known
167 	 * the frequency of clk_csr_i. So we do not change the default
168 	 * divider.
169 	 */
170 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
171 		if (clk_rate < CSR_F_35M)
172 			priv->clk_csr = STMMAC_CSR_20_35M;
173 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
174 			priv->clk_csr = STMMAC_CSR_35_60M;
175 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
176 			priv->clk_csr = STMMAC_CSR_60_100M;
177 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
178 			priv->clk_csr = STMMAC_CSR_100_150M;
179 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
180 			priv->clk_csr = STMMAC_CSR_150_250M;
181 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
182 			priv->clk_csr = STMMAC_CSR_250_300M;
183 	}
184 }
185 
186 static void print_pkt(unsigned char *buf, int len)
187 {
188 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
189 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
190 }
191 
192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
193 {
194 	unsigned avail;
195 
196 	if (priv->dirty_tx > priv->cur_tx)
197 		avail = priv->dirty_tx - priv->cur_tx - 1;
198 	else
199 		avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1;
200 
201 	return avail;
202 }
203 
204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv)
205 {
206 	unsigned dirty;
207 
208 	if (priv->dirty_rx <= priv->cur_rx)
209 		dirty = priv->cur_rx - priv->dirty_rx;
210 	else
211 		dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx;
212 
213 	return dirty;
214 }
215 
216 /**
217  * stmmac_hw_fix_mac_speed - callback for speed selection
218  * @priv: driver private structure
219  * Description: on some platforms (e.g. ST), some HW system configuraton
220  * registers have to be set according to the link speed negotiated.
221  */
222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
223 {
224 	struct phy_device *phydev = priv->phydev;
225 
226 	if (likely(priv->plat->fix_mac_speed))
227 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
228 }
229 
230 /**
231  * stmmac_enable_eee_mode - check and enter in LPI mode
232  * @priv: driver private structure
233  * Description: this function is to verify and enter in LPI mode in case of
234  * EEE.
235  */
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Check and enter in LPI mode */
239 	if ((priv->dirty_tx == priv->cur_tx) &&
240 	    (priv->tx_path_in_lpi_mode == false))
241 		priv->hw->mac->set_eee_mode(priv->hw);
242 }
243 
244 /**
245  * stmmac_disable_eee_mode - disable and exit from LPI mode
246  * @priv: driver private structure
247  * Description: this function is to exit and disable EEE in case of
248  * LPI state is true. This is called by the xmit.
249  */
250 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
251 {
252 	priv->hw->mac->reset_eee_mode(priv->hw);
253 	del_timer_sync(&priv->eee_ctrl_timer);
254 	priv->tx_path_in_lpi_mode = false;
255 }
256 
257 /**
258  * stmmac_eee_ctrl_timer - EEE TX SW timer.
259  * @arg : data hook
260  * Description:
261  *  if there is no data transfer and if we are not in LPI state,
262  *  then MAC Transmitter can be moved to LPI state.
263  */
264 static void stmmac_eee_ctrl_timer(unsigned long arg)
265 {
266 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
267 
268 	stmmac_enable_eee_mode(priv);
269 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
270 }
271 
272 /**
273  * stmmac_eee_init - init EEE
274  * @priv: driver private structure
275  * Description:
276  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
277  *  can also manage EEE, this function enable the LPI state and start related
278  *  timer.
279  */
280 bool stmmac_eee_init(struct stmmac_priv *priv)
281 {
282 	unsigned long flags;
283 	bool ret = false;
284 
285 	/* Using PCS we cannot dial with the phy registers at this stage
286 	 * so we do not support extra feature like EEE.
287 	 */
288 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
289 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
290 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
291 		goto out;
292 
293 	/* MAC core supports the EEE feature. */
294 	if (priv->dma_cap.eee) {
295 		int tx_lpi_timer = priv->tx_lpi_timer;
296 
297 		/* Check if the PHY supports EEE */
298 		if (phy_init_eee(priv->phydev, 1)) {
299 			/* To manage at run-time if the EEE cannot be supported
300 			 * anymore (for example because the lp caps have been
301 			 * changed).
302 			 * In that case the driver disable own timers.
303 			 */
304 			spin_lock_irqsave(&priv->lock, flags);
305 			if (priv->eee_active) {
306 				pr_debug("stmmac: disable EEE\n");
307 				del_timer_sync(&priv->eee_ctrl_timer);
308 				priv->hw->mac->set_eee_timer(priv->hw, 0,
309 							     tx_lpi_timer);
310 			}
311 			priv->eee_active = 0;
312 			spin_unlock_irqrestore(&priv->lock, flags);
313 			goto out;
314 		}
315 		/* Activate the EEE and start timers */
316 		spin_lock_irqsave(&priv->lock, flags);
317 		if (!priv->eee_active) {
318 			priv->eee_active = 1;
319 			setup_timer(&priv->eee_ctrl_timer,
320 				    stmmac_eee_ctrl_timer,
321 				    (unsigned long)priv);
322 			mod_timer(&priv->eee_ctrl_timer,
323 				  STMMAC_LPI_T(eee_timer));
324 
325 			priv->hw->mac->set_eee_timer(priv->hw,
326 						     STMMAC_DEFAULT_LIT_LS,
327 						     tx_lpi_timer);
328 		}
329 		/* Set HW EEE according to the speed */
330 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331 
332 		ret = true;
333 		spin_unlock_irqrestore(&priv->lock, flags);
334 
335 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 	}
337 out:
338 	return ret;
339 }
340 
341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
342  * @priv: driver private structure
343  * @entry : descriptor index to be used.
344  * @skb : the socket buffer
345  * Description :
346  * This function will read timestamp from the descriptor & pass it to stack.
347  * and also perform some sanity checks.
348  */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 				   unsigned int entry, struct sk_buff *skb)
351 {
352 	struct skb_shared_hwtstamps shhwtstamp;
353 	u64 ns;
354 	void *desc = NULL;
355 
356 	if (!priv->hwts_tx_en)
357 		return;
358 
359 	/* exit if skb doesn't support hw tstamp */
360 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 		return;
362 
363 	if (priv->adv_ts)
364 		desc = (priv->dma_etx + entry);
365 	else
366 		desc = (priv->dma_tx + entry);
367 
368 	/* check tx tstamp status */
369 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 		return;
371 
372 	/* get the valid tstamp */
373 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374 
375 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 	/* pass tstamp to stack */
378 	skb_tstamp_tx(skb, &shhwtstamp);
379 
380 	return;
381 }
382 
383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
384  * @priv: driver private structure
385  * @entry : descriptor index to be used.
386  * @skb : the socket buffer
387  * Description :
388  * This function will read received packet's timestamp from the descriptor
389  * and pass it to stack. It also perform some sanity checks.
390  */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 				   unsigned int entry, struct sk_buff *skb)
393 {
394 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 	u64 ns;
396 	void *desc = NULL;
397 
398 	if (!priv->hwts_rx_en)
399 		return;
400 
401 	if (priv->adv_ts)
402 		desc = (priv->dma_erx + entry);
403 	else
404 		desc = (priv->dma_rx + entry);
405 
406 	/* exit if rx tstamp is not valid */
407 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 		return;
409 
410 	/* get valid tstamp */
411 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 	shhwtstamp = skb_hwtstamps(skb);
413 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416 
417 /**
418  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
419  *  @dev: device pointer.
420  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
421  *  a proprietary structure used to pass information to the driver.
422  *  Description:
423  *  This function configures the MAC to enable/disable both outgoing(TX)
424  *  and incoming(RX) packets time stamping based on user input.
425  *  Return Value:
426  *  0 on success and an appropriate -ve integer on failure.
427  */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 	struct stmmac_priv *priv = netdev_priv(dev);
431 	struct hwtstamp_config config;
432 	struct timespec64 now;
433 	u64 temp = 0;
434 	u32 ptp_v2 = 0;
435 	u32 tstamp_all = 0;
436 	u32 ptp_over_ipv4_udp = 0;
437 	u32 ptp_over_ipv6_udp = 0;
438 	u32 ptp_over_ethernet = 0;
439 	u32 snap_type_sel = 0;
440 	u32 ts_master_en = 0;
441 	u32 ts_event_en = 0;
442 	u32 value = 0;
443 	u32 sec_inc;
444 
445 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
446 		netdev_alert(priv->dev, "No support for HW time stamping\n");
447 		priv->hwts_tx_en = 0;
448 		priv->hwts_rx_en = 0;
449 
450 		return -EOPNOTSUPP;
451 	}
452 
453 	if (copy_from_user(&config, ifr->ifr_data,
454 			   sizeof(struct hwtstamp_config)))
455 		return -EFAULT;
456 
457 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
458 		 __func__, config.flags, config.tx_type, config.rx_filter);
459 
460 	/* reserved for future extensions */
461 	if (config.flags)
462 		return -EINVAL;
463 
464 	if (config.tx_type != HWTSTAMP_TX_OFF &&
465 	    config.tx_type != HWTSTAMP_TX_ON)
466 		return -ERANGE;
467 
468 	if (priv->adv_ts) {
469 		switch (config.rx_filter) {
470 		case HWTSTAMP_FILTER_NONE:
471 			/* time stamp no incoming packet at all */
472 			config.rx_filter = HWTSTAMP_FILTER_NONE;
473 			break;
474 
475 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
476 			/* PTP v1, UDP, any kind of event packet */
477 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
478 			/* take time stamp for all event messages */
479 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
480 
481 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
482 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
483 			break;
484 
485 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
486 			/* PTP v1, UDP, Sync packet */
487 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
488 			/* take time stamp for SYNC messages only */
489 			ts_event_en = PTP_TCR_TSEVNTENA;
490 
491 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
492 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
493 			break;
494 
495 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
496 			/* PTP v1, UDP, Delay_req packet */
497 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
498 			/* take time stamp for Delay_Req messages only */
499 			ts_master_en = PTP_TCR_TSMSTRENA;
500 			ts_event_en = PTP_TCR_TSEVNTENA;
501 
502 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
503 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
504 			break;
505 
506 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
507 			/* PTP v2, UDP, any kind of event packet */
508 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
509 			ptp_v2 = PTP_TCR_TSVER2ENA;
510 			/* take time stamp for all event messages */
511 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
512 
513 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
514 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
515 			break;
516 
517 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
518 			/* PTP v2, UDP, Sync packet */
519 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
520 			ptp_v2 = PTP_TCR_TSVER2ENA;
521 			/* take time stamp for SYNC messages only */
522 			ts_event_en = PTP_TCR_TSEVNTENA;
523 
524 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
525 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
526 			break;
527 
528 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
529 			/* PTP v2, UDP, Delay_req packet */
530 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
531 			ptp_v2 = PTP_TCR_TSVER2ENA;
532 			/* take time stamp for Delay_Req messages only */
533 			ts_master_en = PTP_TCR_TSMSTRENA;
534 			ts_event_en = PTP_TCR_TSEVNTENA;
535 
536 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
537 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
538 			break;
539 
540 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
541 			/* PTP v2/802.AS1 any layer, any kind of event packet */
542 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
543 			ptp_v2 = PTP_TCR_TSVER2ENA;
544 			/* take time stamp for all event messages */
545 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
546 
547 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
548 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
549 			ptp_over_ethernet = PTP_TCR_TSIPENA;
550 			break;
551 
552 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
553 			/* PTP v2/802.AS1, any layer, Sync packet */
554 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
555 			ptp_v2 = PTP_TCR_TSVER2ENA;
556 			/* take time stamp for SYNC messages only */
557 			ts_event_en = PTP_TCR_TSEVNTENA;
558 
559 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
560 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
561 			ptp_over_ethernet = PTP_TCR_TSIPENA;
562 			break;
563 
564 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
565 			/* PTP v2/802.AS1, any layer, Delay_req packet */
566 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
567 			ptp_v2 = PTP_TCR_TSVER2ENA;
568 			/* take time stamp for Delay_Req messages only */
569 			ts_master_en = PTP_TCR_TSMSTRENA;
570 			ts_event_en = PTP_TCR_TSEVNTENA;
571 
572 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
573 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
574 			ptp_over_ethernet = PTP_TCR_TSIPENA;
575 			break;
576 
577 		case HWTSTAMP_FILTER_ALL:
578 			/* time stamp any incoming packet */
579 			config.rx_filter = HWTSTAMP_FILTER_ALL;
580 			tstamp_all = PTP_TCR_TSENALL;
581 			break;
582 
583 		default:
584 			return -ERANGE;
585 		}
586 	} else {
587 		switch (config.rx_filter) {
588 		case HWTSTAMP_FILTER_NONE:
589 			config.rx_filter = HWTSTAMP_FILTER_NONE;
590 			break;
591 		default:
592 			/* PTP v1, UDP, any kind of event packet */
593 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 			break;
595 		}
596 	}
597 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
598 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
599 
600 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
601 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
602 	else {
603 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
604 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
605 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
606 			 ts_master_en | snap_type_sel);
607 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608 
609 		/* program Sub Second Increment reg */
610 		sec_inc = priv->hw->ptp->config_sub_second_increment(
611 			priv->ioaddr, priv->clk_ptp_rate);
612 		temp = div_u64(1000000000ULL, sec_inc);
613 
614 		/* calculate default added value:
615 		 * formula is :
616 		 * addend = (2^32)/freq_div_ratio;
617 		 * where, freq_div_ratio = 1e9ns/sec_inc
618 		 */
619 		temp = (u64)(temp << 32);
620 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
621 		priv->hw->ptp->config_addend(priv->ioaddr,
622 					     priv->default_addend);
623 
624 		/* initialize system time */
625 		ktime_get_real_ts64(&now);
626 
627 		/* lower 32 bits of tv_sec are safe until y2106 */
628 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
629 					    now.tv_nsec);
630 	}
631 
632 	return copy_to_user(ifr->ifr_data, &config,
633 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
634 }
635 
636 /**
637  * stmmac_init_ptp - init PTP
638  * @priv: driver private structure
639  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
640  * This is done by looking at the HW cap. register.
641  * This function also registers the ptp driver.
642  */
643 static int stmmac_init_ptp(struct stmmac_priv *priv)
644 {
645 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
646 		return -EOPNOTSUPP;
647 
648 	/* Fall-back to main clock in case of no PTP ref is passed */
649 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
650 	if (IS_ERR(priv->clk_ptp_ref)) {
651 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
652 		priv->clk_ptp_ref = NULL;
653 		netdev_dbg(priv->dev, "PTP uses main clock\n");
654 	} else {
655 		clk_prepare_enable(priv->clk_ptp_ref);
656 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
657 		netdev_dbg(priv->dev, "PTP rate %d\n", priv->clk_ptp_rate);
658 	}
659 
660 	priv->adv_ts = 0;
661 	/* Check if adv_ts can be enabled for dwmac 4.x core */
662 	if (priv->plat->has_gmac4 && priv->dma_cap.atime_stamp)
663 		priv->adv_ts = 1;
664 	/* Dwmac 3.x core with extend_desc can support adv_ts */
665 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
666 		priv->adv_ts = 1;
667 
668 	if (priv->dma_cap.time_stamp)
669 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
670 
671 	if (priv->adv_ts)
672 		netdev_info(priv->dev,
673 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
674 
675 	priv->hw->ptp = &stmmac_ptp;
676 	priv->hwts_tx_en = 0;
677 	priv->hwts_rx_en = 0;
678 
679 	return stmmac_ptp_register(priv);
680 }
681 
682 static void stmmac_release_ptp(struct stmmac_priv *priv)
683 {
684 	if (priv->clk_ptp_ref)
685 		clk_disable_unprepare(priv->clk_ptp_ref);
686 	stmmac_ptp_unregister(priv);
687 }
688 
689 /**
690  * stmmac_adjust_link - adjusts the link parameters
691  * @dev: net device structure
692  * Description: this is the helper called by the physical abstraction layer
693  * drivers to communicate the phy link status. According the speed and duplex
694  * this driver can invoke registered glue-logic as well.
695  * It also invoke the eee initialization because it could happen when switch
696  * on different networks (that are eee capable).
697  */
698 static void stmmac_adjust_link(struct net_device *dev)
699 {
700 	struct stmmac_priv *priv = netdev_priv(dev);
701 	struct phy_device *phydev = priv->phydev;
702 	unsigned long flags;
703 	int new_state = 0;
704 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
705 
706 	if (phydev == NULL)
707 		return;
708 
709 	spin_lock_irqsave(&priv->lock, flags);
710 
711 	if (phydev->link) {
712 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
713 
714 		/* Now we make sure that we can be in full duplex mode.
715 		 * If not, we operate in half-duplex mode. */
716 		if (phydev->duplex != priv->oldduplex) {
717 			new_state = 1;
718 			if (!(phydev->duplex))
719 				ctrl &= ~priv->hw->link.duplex;
720 			else
721 				ctrl |= priv->hw->link.duplex;
722 			priv->oldduplex = phydev->duplex;
723 		}
724 		/* Flow Control operation */
725 		if (phydev->pause)
726 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
727 						 fc, pause_time);
728 
729 		if (phydev->speed != priv->speed) {
730 			new_state = 1;
731 			switch (phydev->speed) {
732 			case 1000:
733 				if (likely((priv->plat->has_gmac) ||
734 					   (priv->plat->has_gmac4)))
735 					ctrl &= ~priv->hw->link.port;
736 				stmmac_hw_fix_mac_speed(priv);
737 				break;
738 			case 100:
739 			case 10:
740 				if (likely((priv->plat->has_gmac) ||
741 					   (priv->plat->has_gmac4))) {
742 					ctrl |= priv->hw->link.port;
743 					if (phydev->speed == SPEED_100) {
744 						ctrl |= priv->hw->link.speed;
745 					} else {
746 						ctrl &= ~(priv->hw->link.speed);
747 					}
748 				} else {
749 					ctrl &= ~priv->hw->link.port;
750 				}
751 				stmmac_hw_fix_mac_speed(priv);
752 				break;
753 			default:
754 				if (netif_msg_link(priv))
755 					pr_warn("%s: Speed (%d) not 10/100\n",
756 						dev->name, phydev->speed);
757 				break;
758 			}
759 
760 			priv->speed = phydev->speed;
761 		}
762 
763 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
764 
765 		if (!priv->oldlink) {
766 			new_state = 1;
767 			priv->oldlink = 1;
768 		}
769 	} else if (priv->oldlink) {
770 		new_state = 1;
771 		priv->oldlink = 0;
772 		priv->speed = 0;
773 		priv->oldduplex = -1;
774 	}
775 
776 	if (new_state && netif_msg_link(priv))
777 		phy_print_status(phydev);
778 
779 	spin_unlock_irqrestore(&priv->lock, flags);
780 
781 	if (phydev->is_pseudo_fixed_link)
782 		/* Stop PHY layer to call the hook to adjust the link in case
783 		 * of a switch is attached to the stmmac driver.
784 		 */
785 		phydev->irq = PHY_IGNORE_INTERRUPT;
786 	else
787 		/* At this stage, init the EEE if supported.
788 		 * Never called in case of fixed_link.
789 		 */
790 		priv->eee_enabled = stmmac_eee_init(priv);
791 }
792 
793 /**
794  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
795  * @priv: driver private structure
796  * Description: this is to verify if the HW supports the PCS.
797  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
798  * configured for the TBI, RTBI, or SGMII PHY interface.
799  */
800 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
801 {
802 	int interface = priv->plat->interface;
803 
804 	if (priv->dma_cap.pcs) {
805 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
806 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
807 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
808 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
809 			pr_debug("STMMAC: PCS RGMII support enable\n");
810 			priv->hw->pcs = STMMAC_PCS_RGMII;
811 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
812 			pr_debug("STMMAC: PCS SGMII support enable\n");
813 			priv->hw->pcs = STMMAC_PCS_SGMII;
814 		}
815 	}
816 }
817 
818 /**
819  * stmmac_init_phy - PHY initialization
820  * @dev: net device structure
821  * Description: it initializes the driver's PHY state, and attaches the PHY
822  * to the mac driver.
823  *  Return value:
824  *  0 on success
825  */
826 static int stmmac_init_phy(struct net_device *dev)
827 {
828 	struct stmmac_priv *priv = netdev_priv(dev);
829 	struct phy_device *phydev;
830 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
831 	char bus_id[MII_BUS_ID_SIZE];
832 	int interface = priv->plat->interface;
833 	int max_speed = priv->plat->max_speed;
834 	priv->oldlink = 0;
835 	priv->speed = 0;
836 	priv->oldduplex = -1;
837 
838 	if (priv->plat->phy_node) {
839 		phydev = of_phy_connect(dev, priv->plat->phy_node,
840 					&stmmac_adjust_link, 0, interface);
841 	} else {
842 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
843 			 priv->plat->bus_id);
844 
845 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
846 			 priv->plat->phy_addr);
847 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
848 			 phy_id_fmt);
849 
850 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
851 				     interface);
852 	}
853 
854 	if (IS_ERR_OR_NULL(phydev)) {
855 		pr_err("%s: Could not attach to PHY\n", dev->name);
856 		if (!phydev)
857 			return -ENODEV;
858 
859 		return PTR_ERR(phydev);
860 	}
861 
862 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
863 	if ((interface == PHY_INTERFACE_MODE_MII) ||
864 	    (interface == PHY_INTERFACE_MODE_RMII) ||
865 		(max_speed < 1000 && max_speed > 0))
866 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
867 					 SUPPORTED_1000baseT_Full);
868 
869 	/*
870 	 * Broken HW is sometimes missing the pull-up resistor on the
871 	 * MDIO line, which results in reads to non-existent devices returning
872 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
873 	 * device as well.
874 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
875 	 */
876 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
877 		phy_disconnect(phydev);
878 		return -ENODEV;
879 	}
880 
881 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
882 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
883 
884 	priv->phydev = phydev;
885 
886 	return 0;
887 }
888 
889 static void stmmac_display_rings(struct stmmac_priv *priv)
890 {
891 	void *head_rx, *head_tx;
892 
893 	if (priv->extend_desc) {
894 		head_rx = (void *)priv->dma_erx;
895 		head_tx = (void *)priv->dma_etx;
896 	} else {
897 		head_rx = (void *)priv->dma_rx;
898 		head_tx = (void *)priv->dma_tx;
899 	}
900 
901 	/* Display Rx ring */
902 	priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
903 	/* Display Tx ring */
904 	priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
905 }
906 
907 static int stmmac_set_bfsize(int mtu, int bufsize)
908 {
909 	int ret = bufsize;
910 
911 	if (mtu >= BUF_SIZE_4KiB)
912 		ret = BUF_SIZE_8KiB;
913 	else if (mtu >= BUF_SIZE_2KiB)
914 		ret = BUF_SIZE_4KiB;
915 	else if (mtu > DEFAULT_BUFSIZE)
916 		ret = BUF_SIZE_2KiB;
917 	else
918 		ret = DEFAULT_BUFSIZE;
919 
920 	return ret;
921 }
922 
923 /**
924  * stmmac_clear_descriptors - clear descriptors
925  * @priv: driver private structure
926  * Description: this function is called to clear the tx and rx descriptors
927  * in case of both basic and extended descriptors are used.
928  */
929 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
930 {
931 	int i;
932 
933 	/* Clear the Rx/Tx descriptors */
934 	for (i = 0; i < DMA_RX_SIZE; i++)
935 		if (priv->extend_desc)
936 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
937 						     priv->use_riwt, priv->mode,
938 						     (i == DMA_RX_SIZE - 1));
939 		else
940 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
941 						     priv->use_riwt, priv->mode,
942 						     (i == DMA_RX_SIZE - 1));
943 	for (i = 0; i < DMA_TX_SIZE; i++)
944 		if (priv->extend_desc)
945 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
946 						     priv->mode,
947 						     (i == DMA_TX_SIZE - 1));
948 		else
949 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
950 						     priv->mode,
951 						     (i == DMA_TX_SIZE - 1));
952 }
953 
954 /**
955  * stmmac_init_rx_buffers - init the RX descriptor buffer.
956  * @priv: driver private structure
957  * @p: descriptor pointer
958  * @i: descriptor index
959  * @flags: gfp flag.
960  * Description: this function is called to allocate a receive buffer, perform
961  * the DMA mapping and init the descriptor.
962  */
963 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
964 				  int i, gfp_t flags)
965 {
966 	struct sk_buff *skb;
967 
968 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
969 	if (!skb) {
970 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
971 		return -ENOMEM;
972 	}
973 	priv->rx_skbuff[i] = skb;
974 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
975 						priv->dma_buf_sz,
976 						DMA_FROM_DEVICE);
977 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
978 		pr_err("%s: DMA mapping error\n", __func__);
979 		dev_kfree_skb_any(skb);
980 		return -EINVAL;
981 	}
982 
983 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
984 		p->des0 = priv->rx_skbuff_dma[i];
985 	else
986 		p->des2 = priv->rx_skbuff_dma[i];
987 
988 	if ((priv->hw->mode->init_desc3) &&
989 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
990 		priv->hw->mode->init_desc3(p);
991 
992 	return 0;
993 }
994 
995 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
996 {
997 	if (priv->rx_skbuff[i]) {
998 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
999 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1000 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1001 	}
1002 	priv->rx_skbuff[i] = NULL;
1003 }
1004 
1005 /**
1006  * init_dma_desc_rings - init the RX/TX descriptor rings
1007  * @dev: net device structure
1008  * @flags: gfp flag.
1009  * Description: this function initializes the DMA RX/TX descriptors
1010  * and allocates the socket buffers. It suppors the chained and ring
1011  * modes.
1012  */
1013 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1014 {
1015 	int i;
1016 	struct stmmac_priv *priv = netdev_priv(dev);
1017 	unsigned int bfsize = 0;
1018 	int ret = -ENOMEM;
1019 
1020 	if (priv->hw->mode->set_16kib_bfsize)
1021 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1022 
1023 	if (bfsize < BUF_SIZE_16KiB)
1024 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1025 
1026 	priv->dma_buf_sz = bfsize;
1027 
1028 	if (netif_msg_probe(priv)) {
1029 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1030 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1031 
1032 		/* RX INITIALIZATION */
1033 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1034 	}
1035 	for (i = 0; i < DMA_RX_SIZE; i++) {
1036 		struct dma_desc *p;
1037 		if (priv->extend_desc)
1038 			p = &((priv->dma_erx + i)->basic);
1039 		else
1040 			p = priv->dma_rx + i;
1041 
1042 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1043 		if (ret)
1044 			goto err_init_rx_buffers;
1045 
1046 		if (netif_msg_probe(priv))
1047 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1048 				 priv->rx_skbuff[i]->data,
1049 				 (unsigned int)priv->rx_skbuff_dma[i]);
1050 	}
1051 	priv->cur_rx = 0;
1052 	priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1053 	buf_sz = bfsize;
1054 
1055 	/* Setup the chained descriptor addresses */
1056 	if (priv->mode == STMMAC_CHAIN_MODE) {
1057 		if (priv->extend_desc) {
1058 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1059 					     DMA_RX_SIZE, 1);
1060 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1061 					     DMA_TX_SIZE, 1);
1062 		} else {
1063 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1064 					     DMA_RX_SIZE, 0);
1065 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1066 					     DMA_TX_SIZE, 0);
1067 		}
1068 	}
1069 
1070 	/* TX INITIALIZATION */
1071 	for (i = 0; i < DMA_TX_SIZE; i++) {
1072 		struct dma_desc *p;
1073 		if (priv->extend_desc)
1074 			p = &((priv->dma_etx + i)->basic);
1075 		else
1076 			p = priv->dma_tx + i;
1077 
1078 		if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1079 			p->des0 = 0;
1080 			p->des1 = 0;
1081 			p->des2 = 0;
1082 			p->des3 = 0;
1083 		} else {
1084 			p->des2 = 0;
1085 		}
1086 
1087 		priv->tx_skbuff_dma[i].buf = 0;
1088 		priv->tx_skbuff_dma[i].map_as_page = false;
1089 		priv->tx_skbuff_dma[i].len = 0;
1090 		priv->tx_skbuff_dma[i].last_segment = false;
1091 		priv->tx_skbuff[i] = NULL;
1092 	}
1093 
1094 	priv->dirty_tx = 0;
1095 	priv->cur_tx = 0;
1096 	netdev_reset_queue(priv->dev);
1097 
1098 	stmmac_clear_descriptors(priv);
1099 
1100 	if (netif_msg_hw(priv))
1101 		stmmac_display_rings(priv);
1102 
1103 	return 0;
1104 err_init_rx_buffers:
1105 	while (--i >= 0)
1106 		stmmac_free_rx_buffers(priv, i);
1107 	return ret;
1108 }
1109 
1110 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1111 {
1112 	int i;
1113 
1114 	for (i = 0; i < DMA_RX_SIZE; i++)
1115 		stmmac_free_rx_buffers(priv, i);
1116 }
1117 
1118 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1119 {
1120 	int i;
1121 
1122 	for (i = 0; i < DMA_TX_SIZE; i++) {
1123 		struct dma_desc *p;
1124 
1125 		if (priv->extend_desc)
1126 			p = &((priv->dma_etx + i)->basic);
1127 		else
1128 			p = priv->dma_tx + i;
1129 
1130 		if (priv->tx_skbuff_dma[i].buf) {
1131 			if (priv->tx_skbuff_dma[i].map_as_page)
1132 				dma_unmap_page(priv->device,
1133 					       priv->tx_skbuff_dma[i].buf,
1134 					       priv->tx_skbuff_dma[i].len,
1135 					       DMA_TO_DEVICE);
1136 			else
1137 				dma_unmap_single(priv->device,
1138 						 priv->tx_skbuff_dma[i].buf,
1139 						 priv->tx_skbuff_dma[i].len,
1140 						 DMA_TO_DEVICE);
1141 		}
1142 
1143 		if (priv->tx_skbuff[i] != NULL) {
1144 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1145 			priv->tx_skbuff[i] = NULL;
1146 			priv->tx_skbuff_dma[i].buf = 0;
1147 			priv->tx_skbuff_dma[i].map_as_page = false;
1148 		}
1149 	}
1150 }
1151 
1152 /**
1153  * alloc_dma_desc_resources - alloc TX/RX resources.
1154  * @priv: private structure
1155  * Description: according to which descriptor can be used (extend or basic)
1156  * this function allocates the resources for TX and RX paths. In case of
1157  * reception, for example, it pre-allocated the RX socket buffer in order to
1158  * allow zero-copy mechanism.
1159  */
1160 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1161 {
1162 	int ret = -ENOMEM;
1163 
1164 	priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t),
1165 					    GFP_KERNEL);
1166 	if (!priv->rx_skbuff_dma)
1167 		return -ENOMEM;
1168 
1169 	priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *),
1170 					GFP_KERNEL);
1171 	if (!priv->rx_skbuff)
1172 		goto err_rx_skbuff;
1173 
1174 	priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1175 					    sizeof(*priv->tx_skbuff_dma),
1176 					    GFP_KERNEL);
1177 	if (!priv->tx_skbuff_dma)
1178 		goto err_tx_skbuff_dma;
1179 
1180 	priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
1181 					GFP_KERNEL);
1182 	if (!priv->tx_skbuff)
1183 		goto err_tx_skbuff;
1184 
1185 	if (priv->extend_desc) {
1186 		priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1187 						    sizeof(struct
1188 							   dma_extended_desc),
1189 						    &priv->dma_rx_phy,
1190 						    GFP_KERNEL);
1191 		if (!priv->dma_erx)
1192 			goto err_dma;
1193 
1194 		priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1195 						    sizeof(struct
1196 							   dma_extended_desc),
1197 						    &priv->dma_tx_phy,
1198 						    GFP_KERNEL);
1199 		if (!priv->dma_etx) {
1200 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1201 					  sizeof(struct dma_extended_desc),
1202 					  priv->dma_erx, priv->dma_rx_phy);
1203 			goto err_dma;
1204 		}
1205 	} else {
1206 		priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
1207 						   sizeof(struct dma_desc),
1208 						   &priv->dma_rx_phy,
1209 						   GFP_KERNEL);
1210 		if (!priv->dma_rx)
1211 			goto err_dma;
1212 
1213 		priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE *
1214 						   sizeof(struct dma_desc),
1215 						   &priv->dma_tx_phy,
1216 						   GFP_KERNEL);
1217 		if (!priv->dma_tx) {
1218 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1219 					  sizeof(struct dma_desc),
1220 					  priv->dma_rx, priv->dma_rx_phy);
1221 			goto err_dma;
1222 		}
1223 	}
1224 
1225 	return 0;
1226 
1227 err_dma:
1228 	kfree(priv->tx_skbuff);
1229 err_tx_skbuff:
1230 	kfree(priv->tx_skbuff_dma);
1231 err_tx_skbuff_dma:
1232 	kfree(priv->rx_skbuff);
1233 err_rx_skbuff:
1234 	kfree(priv->rx_skbuff_dma);
1235 	return ret;
1236 }
1237 
1238 static void free_dma_desc_resources(struct stmmac_priv *priv)
1239 {
1240 	/* Release the DMA TX/RX socket buffers */
1241 	dma_free_rx_skbufs(priv);
1242 	dma_free_tx_skbufs(priv);
1243 
1244 	/* Free DMA regions of consistent memory previously allocated */
1245 	if (!priv->extend_desc) {
1246 		dma_free_coherent(priv->device,
1247 				  DMA_TX_SIZE * sizeof(struct dma_desc),
1248 				  priv->dma_tx, priv->dma_tx_phy);
1249 		dma_free_coherent(priv->device,
1250 				  DMA_RX_SIZE * sizeof(struct dma_desc),
1251 				  priv->dma_rx, priv->dma_rx_phy);
1252 	} else {
1253 		dma_free_coherent(priv->device, DMA_TX_SIZE *
1254 				  sizeof(struct dma_extended_desc),
1255 				  priv->dma_etx, priv->dma_tx_phy);
1256 		dma_free_coherent(priv->device, DMA_RX_SIZE *
1257 				  sizeof(struct dma_extended_desc),
1258 				  priv->dma_erx, priv->dma_rx_phy);
1259 	}
1260 	kfree(priv->rx_skbuff_dma);
1261 	kfree(priv->rx_skbuff);
1262 	kfree(priv->tx_skbuff_dma);
1263 	kfree(priv->tx_skbuff);
1264 }
1265 
1266 /**
1267  *  stmmac_dma_operation_mode - HW DMA operation mode
1268  *  @priv: driver private structure
1269  *  Description: it is used for configuring the DMA operation mode register in
1270  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1271  */
1272 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1273 {
1274 	int rxfifosz = priv->plat->rx_fifo_size;
1275 
1276 	if (priv->plat->force_thresh_dma_mode)
1277 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1278 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1279 		/*
1280 		 * In case of GMAC, SF mode can be enabled
1281 		 * to perform the TX COE in HW. This depends on:
1282 		 * 1) TX COE if actually supported
1283 		 * 2) There is no bugged Jumbo frame support
1284 		 *    that needs to not insert csum in the TDES.
1285 		 */
1286 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1287 					rxfifosz);
1288 		priv->xstats.threshold = SF_DMA_MODE;
1289 	} else
1290 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1291 					rxfifosz);
1292 }
1293 
1294 /**
1295  * stmmac_tx_clean - to manage the transmission completion
1296  * @priv: driver private structure
1297  * Description: it reclaims the transmit resources after transmission completes.
1298  */
1299 static void stmmac_tx_clean(struct stmmac_priv *priv)
1300 {
1301 	unsigned int bytes_compl = 0, pkts_compl = 0;
1302 	unsigned int entry = priv->dirty_tx;
1303 
1304 	spin_lock(&priv->tx_lock);
1305 
1306 	priv->xstats.tx_clean++;
1307 
1308 	while (entry != priv->cur_tx) {
1309 		struct sk_buff *skb = priv->tx_skbuff[entry];
1310 		struct dma_desc *p;
1311 		int status;
1312 
1313 		if (priv->extend_desc)
1314 			p = (struct dma_desc *)(priv->dma_etx + entry);
1315 		else
1316 			p = priv->dma_tx + entry;
1317 
1318 		status = priv->hw->desc->tx_status(&priv->dev->stats,
1319 						      &priv->xstats, p,
1320 						      priv->ioaddr);
1321 		/* Check if the descriptor is owned by the DMA */
1322 		if (unlikely(status & tx_dma_own))
1323 			break;
1324 
1325 		/* Just consider the last segment and ...*/
1326 		if (likely(!(status & tx_not_ls))) {
1327 			/* ... verify the status error condition */
1328 			if (unlikely(status & tx_err)) {
1329 				priv->dev->stats.tx_errors++;
1330 			} else {
1331 				priv->dev->stats.tx_packets++;
1332 				priv->xstats.tx_pkt_n++;
1333 			}
1334 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1335 		}
1336 
1337 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1338 			if (priv->tx_skbuff_dma[entry].map_as_page)
1339 				dma_unmap_page(priv->device,
1340 					       priv->tx_skbuff_dma[entry].buf,
1341 					       priv->tx_skbuff_dma[entry].len,
1342 					       DMA_TO_DEVICE);
1343 			else
1344 				dma_unmap_single(priv->device,
1345 						 priv->tx_skbuff_dma[entry].buf,
1346 						 priv->tx_skbuff_dma[entry].len,
1347 						 DMA_TO_DEVICE);
1348 			priv->tx_skbuff_dma[entry].buf = 0;
1349 			priv->tx_skbuff_dma[entry].len = 0;
1350 			priv->tx_skbuff_dma[entry].map_as_page = false;
1351 		}
1352 
1353 		if (priv->hw->mode->clean_desc3)
1354 			priv->hw->mode->clean_desc3(priv, p);
1355 
1356 		priv->tx_skbuff_dma[entry].last_segment = false;
1357 		priv->tx_skbuff_dma[entry].is_jumbo = false;
1358 
1359 		if (likely(skb != NULL)) {
1360 			pkts_compl++;
1361 			bytes_compl += skb->len;
1362 			dev_consume_skb_any(skb);
1363 			priv->tx_skbuff[entry] = NULL;
1364 		}
1365 
1366 		priv->hw->desc->release_tx_desc(p, priv->mode);
1367 
1368 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1369 	}
1370 	priv->dirty_tx = entry;
1371 
1372 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1373 
1374 	if (unlikely(netif_queue_stopped(priv->dev) &&
1375 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) {
1376 		netif_tx_lock(priv->dev);
1377 		if (netif_queue_stopped(priv->dev) &&
1378 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH) {
1379 			if (netif_msg_tx_done(priv))
1380 				pr_debug("%s: restart transmit\n", __func__);
1381 			netif_wake_queue(priv->dev);
1382 		}
1383 		netif_tx_unlock(priv->dev);
1384 	}
1385 
1386 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1387 		stmmac_enable_eee_mode(priv);
1388 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1389 	}
1390 	spin_unlock(&priv->tx_lock);
1391 }
1392 
1393 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1394 {
1395 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1396 }
1397 
1398 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1399 {
1400 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1401 }
1402 
1403 /**
1404  * stmmac_tx_err - to manage the tx error
1405  * @priv: driver private structure
1406  * Description: it cleans the descriptors and restarts the transmission
1407  * in case of transmission errors.
1408  */
1409 static void stmmac_tx_err(struct stmmac_priv *priv)
1410 {
1411 	int i;
1412 	netif_stop_queue(priv->dev);
1413 
1414 	priv->hw->dma->stop_tx(priv->ioaddr);
1415 	dma_free_tx_skbufs(priv);
1416 	for (i = 0; i < DMA_TX_SIZE; i++)
1417 		if (priv->extend_desc)
1418 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1419 						     priv->mode,
1420 						     (i == DMA_TX_SIZE - 1));
1421 		else
1422 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1423 						     priv->mode,
1424 						     (i == DMA_TX_SIZE - 1));
1425 	priv->dirty_tx = 0;
1426 	priv->cur_tx = 0;
1427 	netdev_reset_queue(priv->dev);
1428 	priv->hw->dma->start_tx(priv->ioaddr);
1429 
1430 	priv->dev->stats.tx_errors++;
1431 	netif_wake_queue(priv->dev);
1432 }
1433 
1434 /**
1435  * stmmac_dma_interrupt - DMA ISR
1436  * @priv: driver private structure
1437  * Description: this is the DMA ISR. It is called by the main ISR.
1438  * It calls the dwmac dma routine and schedule poll method in case of some
1439  * work can be done.
1440  */
1441 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1442 {
1443 	int status;
1444 	int rxfifosz = priv->plat->rx_fifo_size;
1445 
1446 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1447 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1448 		if (likely(napi_schedule_prep(&priv->napi))) {
1449 			stmmac_disable_dma_irq(priv);
1450 			__napi_schedule(&priv->napi);
1451 		}
1452 	}
1453 	if (unlikely(status & tx_hard_error_bump_tc)) {
1454 		/* Try to bump up the dma threshold on this failure */
1455 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1456 		    (tc <= 256)) {
1457 			tc += 64;
1458 			if (priv->plat->force_thresh_dma_mode)
1459 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1460 							rxfifosz);
1461 			else
1462 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1463 							SF_DMA_MODE, rxfifosz);
1464 			priv->xstats.threshold = tc;
1465 		}
1466 	} else if (unlikely(status == tx_hard_error))
1467 		stmmac_tx_err(priv);
1468 }
1469 
1470 /**
1471  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1472  * @priv: driver private structure
1473  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1474  */
1475 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1476 {
1477 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1478 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1479 
1480 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1481 		priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET;
1482 	else
1483 		priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET;
1484 
1485 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
1486 
1487 	if (priv->dma_cap.rmon) {
1488 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
1489 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1490 	} else
1491 		pr_info(" No MAC Management Counters available\n");
1492 }
1493 
1494 /**
1495  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1496  * @priv: driver private structure
1497  * Description: select the Enhanced/Alternate or Normal descriptors.
1498  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1499  * supported by the HW capability register.
1500  */
1501 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1502 {
1503 	if (priv->plat->enh_desc) {
1504 		pr_info(" Enhanced/Alternate descriptors\n");
1505 
1506 		/* GMAC older than 3.50 has no extended descriptors */
1507 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1508 			pr_info("\tEnabled extended descriptors\n");
1509 			priv->extend_desc = 1;
1510 		} else
1511 			pr_warn("Extended descriptors not supported\n");
1512 
1513 		priv->hw->desc = &enh_desc_ops;
1514 	} else {
1515 		pr_info(" Normal descriptors\n");
1516 		priv->hw->desc = &ndesc_ops;
1517 	}
1518 }
1519 
1520 /**
1521  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1522  * @priv: driver private structure
1523  * Description:
1524  *  new GMAC chip generations have a new register to indicate the
1525  *  presence of the optional feature/functions.
1526  *  This can be also used to override the value passed through the
1527  *  platform and necessary for old MAC10/100 and GMAC chips.
1528  */
1529 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1530 {
1531 	u32 ret = 0;
1532 
1533 	if (priv->hw->dma->get_hw_feature) {
1534 		priv->hw->dma->get_hw_feature(priv->ioaddr,
1535 					      &priv->dma_cap);
1536 		ret = 1;
1537 	}
1538 
1539 	return ret;
1540 }
1541 
1542 /**
1543  * stmmac_check_ether_addr - check if the MAC addr is valid
1544  * @priv: driver private structure
1545  * Description:
1546  * it is to verify if the MAC address is valid, in case of failures it
1547  * generates a random MAC address
1548  */
1549 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1550 {
1551 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1552 		priv->hw->mac->get_umac_addr(priv->hw,
1553 					     priv->dev->dev_addr, 0);
1554 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1555 			eth_hw_addr_random(priv->dev);
1556 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1557 			priv->dev->dev_addr);
1558 	}
1559 }
1560 
1561 /**
1562  * stmmac_init_dma_engine - DMA init.
1563  * @priv: driver private structure
1564  * Description:
1565  * It inits the DMA invoking the specific MAC/GMAC callback.
1566  * Some DMA parameters can be passed from the platform;
1567  * in case of these are not passed a default is kept for the MAC or GMAC.
1568  */
1569 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1570 {
1571 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0;
1572 	int mixed_burst = 0;
1573 	int atds = 0;
1574 	int ret = 0;
1575 
1576 	if (priv->plat->dma_cfg) {
1577 		pbl = priv->plat->dma_cfg->pbl;
1578 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1579 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1580 		aal = priv->plat->dma_cfg->aal;
1581 	}
1582 
1583 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1584 		atds = 1;
1585 
1586 	ret = priv->hw->dma->reset(priv->ioaddr);
1587 	if (ret) {
1588 		dev_err(priv->device, "Failed to reset the dma\n");
1589 		return ret;
1590 	}
1591 
1592 	priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1593 			    aal, priv->dma_tx_phy, priv->dma_rx_phy, atds);
1594 
1595 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
1596 		priv->rx_tail_addr = priv->dma_rx_phy +
1597 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
1598 		priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr,
1599 					       STMMAC_CHAN0);
1600 
1601 		priv->tx_tail_addr = priv->dma_tx_phy +
1602 			    (DMA_TX_SIZE * sizeof(struct dma_desc));
1603 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
1604 					       STMMAC_CHAN0);
1605 	}
1606 
1607 	if (priv->plat->axi && priv->hw->dma->axi)
1608 		priv->hw->dma->axi(priv->ioaddr, priv->plat->axi);
1609 
1610 	return ret;
1611 }
1612 
1613 /**
1614  * stmmac_tx_timer - mitigation sw timer for tx.
1615  * @data: data pointer
1616  * Description:
1617  * This is the timer handler to directly invoke the stmmac_tx_clean.
1618  */
1619 static void stmmac_tx_timer(unsigned long data)
1620 {
1621 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1622 
1623 	stmmac_tx_clean(priv);
1624 }
1625 
1626 /**
1627  * stmmac_init_tx_coalesce - init tx mitigation options.
1628  * @priv: driver private structure
1629  * Description:
1630  * This inits the transmit coalesce parameters: i.e. timer rate,
1631  * timer handler and default threshold used for enabling the
1632  * interrupt on completion bit.
1633  */
1634 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1635 {
1636 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1637 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1638 	init_timer(&priv->txtimer);
1639 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1640 	priv->txtimer.data = (unsigned long)priv;
1641 	priv->txtimer.function = stmmac_tx_timer;
1642 	add_timer(&priv->txtimer);
1643 }
1644 
1645 /**
1646  * stmmac_hw_setup - setup mac in a usable state.
1647  *  @dev : pointer to the device structure.
1648  *  Description:
1649  *  this is the main function to setup the HW in a usable state because the
1650  *  dma engine is reset, the core registers are configured (e.g. AXI,
1651  *  Checksum features, timers). The DMA is ready to start receiving and
1652  *  transmitting.
1653  *  Return value:
1654  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1655  *  file on failure.
1656  */
1657 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1658 {
1659 	struct stmmac_priv *priv = netdev_priv(dev);
1660 	int ret;
1661 
1662 	/* DMA initialization and SW reset */
1663 	ret = stmmac_init_dma_engine(priv);
1664 	if (ret < 0) {
1665 		pr_err("%s: DMA engine initialization failed\n", __func__);
1666 		return ret;
1667 	}
1668 
1669 	/* Copy the MAC addr into the HW  */
1670 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1671 
1672 	/* If required, perform hw setup of the bus. */
1673 	if (priv->plat->bus_setup)
1674 		priv->plat->bus_setup(priv->ioaddr);
1675 
1676 	/* PS and related bits will be programmed according to the speed */
1677 	if (priv->hw->pcs) {
1678 		int speed = priv->plat->mac_port_sel_speed;
1679 
1680 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
1681 		    (speed == SPEED_1000)) {
1682 			priv->hw->ps = speed;
1683 		} else {
1684 			dev_warn(priv->device, "invalid port speed\n");
1685 			priv->hw->ps = 0;
1686 		}
1687 	}
1688 
1689 	/* Initialize the MAC Core */
1690 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1691 
1692 	ret = priv->hw->mac->rx_ipc(priv->hw);
1693 	if (!ret) {
1694 		pr_warn(" RX IPC Checksum Offload disabled\n");
1695 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1696 		priv->hw->rx_csum = 0;
1697 	}
1698 
1699 	/* Enable the MAC Rx/Tx */
1700 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
1701 		stmmac_dwmac4_set_mac(priv->ioaddr, true);
1702 	else
1703 		stmmac_set_mac(priv->ioaddr, true);
1704 
1705 	/* Set the HW DMA mode and the COE */
1706 	stmmac_dma_operation_mode(priv);
1707 
1708 	stmmac_mmc_setup(priv);
1709 
1710 	if (init_ptp) {
1711 		ret = stmmac_init_ptp(priv);
1712 		if (ret)
1713 			netdev_warn(priv->dev, "PTP support cannot init.\n");
1714 	}
1715 
1716 #ifdef CONFIG_DEBUG_FS
1717 	ret = stmmac_init_fs(dev);
1718 	if (ret < 0)
1719 		pr_warn("%s: failed debugFS registration\n", __func__);
1720 #endif
1721 	/* Start the ball rolling... */
1722 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1723 	priv->hw->dma->start_tx(priv->ioaddr);
1724 	priv->hw->dma->start_rx(priv->ioaddr);
1725 
1726 	/* Dump DMA/MAC registers */
1727 	if (netif_msg_hw(priv)) {
1728 		priv->hw->mac->dump_regs(priv->hw);
1729 		priv->hw->dma->dump_regs(priv->ioaddr);
1730 	}
1731 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1732 
1733 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1734 		priv->rx_riwt = MAX_DMA_RIWT;
1735 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1736 	}
1737 
1738 	if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane)
1739 		priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0);
1740 
1741 	/*  set TX ring length */
1742 	if (priv->hw->dma->set_tx_ring_len)
1743 		priv->hw->dma->set_tx_ring_len(priv->ioaddr,
1744 					       (DMA_TX_SIZE - 1));
1745 	/*  set RX ring length */
1746 	if (priv->hw->dma->set_rx_ring_len)
1747 		priv->hw->dma->set_rx_ring_len(priv->ioaddr,
1748 					       (DMA_RX_SIZE - 1));
1749 	/* Enable TSO */
1750 	if (priv->tso)
1751 		priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0);
1752 
1753 	return 0;
1754 }
1755 
1756 /**
1757  *  stmmac_open - open entry point of the driver
1758  *  @dev : pointer to the device structure.
1759  *  Description:
1760  *  This function is the open entry point of the driver.
1761  *  Return value:
1762  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1763  *  file on failure.
1764  */
1765 static int stmmac_open(struct net_device *dev)
1766 {
1767 	struct stmmac_priv *priv = netdev_priv(dev);
1768 	int ret;
1769 
1770 	stmmac_check_ether_addr(priv);
1771 
1772 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
1773 	    priv->hw->pcs != STMMAC_PCS_TBI &&
1774 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
1775 		ret = stmmac_init_phy(dev);
1776 		if (ret) {
1777 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1778 			       __func__, ret);
1779 			return ret;
1780 		}
1781 	}
1782 
1783 	/* Extra statistics */
1784 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1785 	priv->xstats.threshold = tc;
1786 
1787 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1788 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
1789 
1790 	ret = alloc_dma_desc_resources(priv);
1791 	if (ret < 0) {
1792 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1793 		goto dma_desc_error;
1794 	}
1795 
1796 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1797 	if (ret < 0) {
1798 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1799 		goto init_error;
1800 	}
1801 
1802 	ret = stmmac_hw_setup(dev, true);
1803 	if (ret < 0) {
1804 		pr_err("%s: Hw setup failed\n", __func__);
1805 		goto init_error;
1806 	}
1807 
1808 	stmmac_init_tx_coalesce(priv);
1809 
1810 	if (priv->phydev)
1811 		phy_start(priv->phydev);
1812 
1813 	/* Request the IRQ lines */
1814 	ret = request_irq(dev->irq, stmmac_interrupt,
1815 			  IRQF_SHARED, dev->name, dev);
1816 	if (unlikely(ret < 0)) {
1817 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1818 		       __func__, dev->irq, ret);
1819 		goto init_error;
1820 	}
1821 
1822 	/* Request the Wake IRQ in case of another line is used for WoL */
1823 	if (priv->wol_irq != dev->irq) {
1824 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1825 				  IRQF_SHARED, dev->name, dev);
1826 		if (unlikely(ret < 0)) {
1827 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1828 			       __func__, priv->wol_irq, ret);
1829 			goto wolirq_error;
1830 		}
1831 	}
1832 
1833 	/* Request the IRQ lines */
1834 	if (priv->lpi_irq > 0) {
1835 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1836 				  dev->name, dev);
1837 		if (unlikely(ret < 0)) {
1838 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1839 			       __func__, priv->lpi_irq, ret);
1840 			goto lpiirq_error;
1841 		}
1842 	}
1843 
1844 	napi_enable(&priv->napi);
1845 	netif_start_queue(dev);
1846 
1847 	return 0;
1848 
1849 lpiirq_error:
1850 	if (priv->wol_irq != dev->irq)
1851 		free_irq(priv->wol_irq, dev);
1852 wolirq_error:
1853 	free_irq(dev->irq, dev);
1854 
1855 init_error:
1856 	free_dma_desc_resources(priv);
1857 dma_desc_error:
1858 	if (priv->phydev)
1859 		phy_disconnect(priv->phydev);
1860 
1861 	return ret;
1862 }
1863 
1864 /**
1865  *  stmmac_release - close entry point of the driver
1866  *  @dev : device pointer.
1867  *  Description:
1868  *  This is the stop entry point of the driver.
1869  */
1870 static int stmmac_release(struct net_device *dev)
1871 {
1872 	struct stmmac_priv *priv = netdev_priv(dev);
1873 
1874 	if (priv->eee_enabled)
1875 		del_timer_sync(&priv->eee_ctrl_timer);
1876 
1877 	/* Stop and disconnect the PHY */
1878 	if (priv->phydev) {
1879 		phy_stop(priv->phydev);
1880 		phy_disconnect(priv->phydev);
1881 		priv->phydev = NULL;
1882 	}
1883 
1884 	netif_stop_queue(dev);
1885 
1886 	napi_disable(&priv->napi);
1887 
1888 	del_timer_sync(&priv->txtimer);
1889 
1890 	/* Free the IRQ lines */
1891 	free_irq(dev->irq, dev);
1892 	if (priv->wol_irq != dev->irq)
1893 		free_irq(priv->wol_irq, dev);
1894 	if (priv->lpi_irq > 0)
1895 		free_irq(priv->lpi_irq, dev);
1896 
1897 	/* Stop TX/RX DMA and clear the descriptors */
1898 	priv->hw->dma->stop_tx(priv->ioaddr);
1899 	priv->hw->dma->stop_rx(priv->ioaddr);
1900 
1901 	/* Release and free the Rx/Tx resources */
1902 	free_dma_desc_resources(priv);
1903 
1904 	/* Disable the MAC Rx/Tx */
1905 	stmmac_set_mac(priv->ioaddr, false);
1906 
1907 	netif_carrier_off(dev);
1908 
1909 #ifdef CONFIG_DEBUG_FS
1910 	stmmac_exit_fs(dev);
1911 #endif
1912 
1913 	stmmac_release_ptp(priv);
1914 
1915 	return 0;
1916 }
1917 
1918 /**
1919  *  stmmac_tso_allocator - close entry point of the driver
1920  *  @priv: driver private structure
1921  *  @des: buffer start address
1922  *  @total_len: total length to fill in descriptors
1923  *  @last_segmant: condition for the last descriptor
1924  *  Description:
1925  *  This function fills descriptor and request new descriptors according to
1926  *  buffer length to fill
1927  */
1928 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
1929 				 int total_len, bool last_segment)
1930 {
1931 	struct dma_desc *desc;
1932 	int tmp_len;
1933 	u32 buff_size;
1934 
1935 	tmp_len = total_len;
1936 
1937 	while (tmp_len > 0) {
1938 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
1939 		desc = priv->dma_tx + priv->cur_tx;
1940 
1941 		desc->des0 = des + (total_len - tmp_len);
1942 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
1943 			    TSO_MAX_BUFF_SIZE : tmp_len;
1944 
1945 		priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size,
1946 			0, 1,
1947 			(last_segment) && (buff_size < TSO_MAX_BUFF_SIZE),
1948 			0, 0);
1949 
1950 		tmp_len -= TSO_MAX_BUFF_SIZE;
1951 	}
1952 }
1953 
1954 /**
1955  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
1956  *  @skb : the socket buffer
1957  *  @dev : device pointer
1958  *  Description: this is the transmit function that is called on TSO frames
1959  *  (support available on GMAC4 and newer chips).
1960  *  Diagram below show the ring programming in case of TSO frames:
1961  *
1962  *  First Descriptor
1963  *   --------
1964  *   | DES0 |---> buffer1 = L2/L3/L4 header
1965  *   | DES1 |---> TCP Payload (can continue on next descr...)
1966  *   | DES2 |---> buffer 1 and 2 len
1967  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
1968  *   --------
1969  *	|
1970  *     ...
1971  *	|
1972  *   --------
1973  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
1974  *   | DES1 | --|
1975  *   | DES2 | --> buffer 1 and 2 len
1976  *   | DES3 |
1977  *   --------
1978  *
1979  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
1980  */
1981 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
1982 {
1983 	u32 pay_len, mss;
1984 	int tmp_pay_len = 0;
1985 	struct stmmac_priv *priv = netdev_priv(dev);
1986 	int nfrags = skb_shinfo(skb)->nr_frags;
1987 	unsigned int first_entry, des;
1988 	struct dma_desc *desc, *first, *mss_desc = NULL;
1989 	u8 proto_hdr_len;
1990 	int i;
1991 
1992 	spin_lock(&priv->tx_lock);
1993 
1994 	/* Compute header lengths */
1995 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1996 
1997 	/* Desc availability based on threshold should be enough safe */
1998 	if (unlikely(stmmac_tx_avail(priv) <
1999 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2000 		if (!netif_queue_stopped(dev)) {
2001 			netif_stop_queue(dev);
2002 			/* This is a hard error, log it. */
2003 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
2004 		}
2005 		spin_unlock(&priv->tx_lock);
2006 		return NETDEV_TX_BUSY;
2007 	}
2008 
2009 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2010 
2011 	mss = skb_shinfo(skb)->gso_size;
2012 
2013 	/* set new MSS value if needed */
2014 	if (mss != priv->mss) {
2015 		mss_desc = priv->dma_tx + priv->cur_tx;
2016 		priv->hw->desc->set_mss(mss_desc, mss);
2017 		priv->mss = mss;
2018 		priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2019 	}
2020 
2021 	if (netif_msg_tx_queued(priv)) {
2022 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2023 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2024 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2025 			skb->data_len);
2026 	}
2027 
2028 	first_entry = priv->cur_tx;
2029 
2030 	desc = priv->dma_tx + first_entry;
2031 	first = desc;
2032 
2033 	/* first descriptor: fill Headers on Buf1 */
2034 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2035 			     DMA_TO_DEVICE);
2036 	if (dma_mapping_error(priv->device, des))
2037 		goto dma_map_err;
2038 
2039 	priv->tx_skbuff_dma[first_entry].buf = des;
2040 	priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2041 	priv->tx_skbuff[first_entry] = skb;
2042 
2043 	first->des0 = des;
2044 
2045 	/* Fill start of payload in buff2 of first descriptor */
2046 	if (pay_len)
2047 		first->des1 =  des + proto_hdr_len;
2048 
2049 	/* If needed take extra descriptors to fill the remaining payload */
2050 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2051 
2052 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0));
2053 
2054 	/* Prepare fragments */
2055 	for (i = 0; i < nfrags; i++) {
2056 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2057 
2058 		des = skb_frag_dma_map(priv->device, frag, 0,
2059 				       skb_frag_size(frag),
2060 				       DMA_TO_DEVICE);
2061 
2062 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2063 				     (i == nfrags - 1));
2064 
2065 		priv->tx_skbuff_dma[priv->cur_tx].buf = des;
2066 		priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag);
2067 		priv->tx_skbuff[priv->cur_tx] = NULL;
2068 		priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true;
2069 	}
2070 
2071 	priv->tx_skbuff_dma[priv->cur_tx].last_segment = true;
2072 
2073 	priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE);
2074 
2075 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2076 		if (netif_msg_hw(priv))
2077 			pr_debug("%s: stop transmitted packets\n", __func__);
2078 		netif_stop_queue(dev);
2079 	}
2080 
2081 	dev->stats.tx_bytes += skb->len;
2082 	priv->xstats.tx_tso_frames++;
2083 	priv->xstats.tx_tso_nfrags += nfrags;
2084 
2085 	/* Manage tx mitigation */
2086 	priv->tx_count_frames += nfrags + 1;
2087 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2088 		mod_timer(&priv->txtimer,
2089 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2090 	} else {
2091 		priv->tx_count_frames = 0;
2092 		priv->hw->desc->set_tx_ic(desc);
2093 		priv->xstats.tx_set_ic_bit++;
2094 	}
2095 
2096 	if (!priv->hwts_tx_en)
2097 		skb_tx_timestamp(skb);
2098 
2099 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2100 		     priv->hwts_tx_en)) {
2101 		/* declare that device is doing timestamping */
2102 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2103 		priv->hw->desc->enable_tx_timestamp(first);
2104 	}
2105 
2106 	/* Complete the first descriptor before granting the DMA */
2107 	priv->hw->desc->prepare_tso_tx_desc(first, 1,
2108 			proto_hdr_len,
2109 			pay_len,
2110 			1, priv->tx_skbuff_dma[first_entry].last_segment,
2111 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2112 
2113 	/* If context desc is used to change MSS */
2114 	if (mss_desc)
2115 		priv->hw->desc->set_tx_owner(mss_desc);
2116 
2117 	/* The own bit must be the latest setting done when prepare the
2118 	 * descriptor and then barrier is needed to make sure that
2119 	 * all is coherent before granting the DMA engine.
2120 	 */
2121 	smp_wmb();
2122 
2123 	if (netif_msg_pktdata(priv)) {
2124 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2125 			__func__, priv->cur_tx, priv->dirty_tx, first_entry,
2126 			priv->cur_tx, first, nfrags);
2127 
2128 		priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE,
2129 					     0);
2130 
2131 		pr_info(">>> frame to be transmitted: ");
2132 		print_pkt(skb->data, skb_headlen(skb));
2133 	}
2134 
2135 	netdev_sent_queue(dev, skb->len);
2136 
2137 	priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2138 				       STMMAC_CHAN0);
2139 
2140 	spin_unlock(&priv->tx_lock);
2141 	return NETDEV_TX_OK;
2142 
2143 dma_map_err:
2144 	spin_unlock(&priv->tx_lock);
2145 	dev_err(priv->device, "Tx dma map failed\n");
2146 	dev_kfree_skb(skb);
2147 	priv->dev->stats.tx_dropped++;
2148 	return NETDEV_TX_OK;
2149 }
2150 
2151 /**
2152  *  stmmac_xmit - Tx entry point of the driver
2153  *  @skb : the socket buffer
2154  *  @dev : device pointer
2155  *  Description : this is the tx entry point of the driver.
2156  *  It programs the chain or the ring and supports oversized frames
2157  *  and SG feature.
2158  */
2159 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
2160 {
2161 	struct stmmac_priv *priv = netdev_priv(dev);
2162 	unsigned int nopaged_len = skb_headlen(skb);
2163 	int i, csum_insertion = 0, is_jumbo = 0;
2164 	int nfrags = skb_shinfo(skb)->nr_frags;
2165 	unsigned int entry, first_entry;
2166 	struct dma_desc *desc, *first;
2167 	unsigned int enh_desc;
2168 	unsigned int des;
2169 
2170 	/* Manage oversized TCP frames for GMAC4 device */
2171 	if (skb_is_gso(skb) && priv->tso) {
2172 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2173 			return stmmac_tso_xmit(skb, dev);
2174 	}
2175 
2176 	spin_lock(&priv->tx_lock);
2177 
2178 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
2179 		spin_unlock(&priv->tx_lock);
2180 		if (!netif_queue_stopped(dev)) {
2181 			netif_stop_queue(dev);
2182 			/* This is a hard error, log it. */
2183 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
2184 		}
2185 		return NETDEV_TX_BUSY;
2186 	}
2187 
2188 	if (priv->tx_path_in_lpi_mode)
2189 		stmmac_disable_eee_mode(priv);
2190 
2191 	entry = priv->cur_tx;
2192 	first_entry = entry;
2193 
2194 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
2195 
2196 	if (likely(priv->extend_desc))
2197 		desc = (struct dma_desc *)(priv->dma_etx + entry);
2198 	else
2199 		desc = priv->dma_tx + entry;
2200 
2201 	first = desc;
2202 
2203 	priv->tx_skbuff[first_entry] = skb;
2204 
2205 	enh_desc = priv->plat->enh_desc;
2206 	/* To program the descriptors according to the size of the frame */
2207 	if (enh_desc)
2208 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
2209 
2210 	if (unlikely(is_jumbo) && likely(priv->synopsys_id <
2211 					 DWMAC_CORE_4_00)) {
2212 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
2213 		if (unlikely(entry < 0))
2214 			goto dma_map_err;
2215 	}
2216 
2217 	for (i = 0; i < nfrags; i++) {
2218 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2219 		int len = skb_frag_size(frag);
2220 		bool last_segment = (i == (nfrags - 1));
2221 
2222 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2223 
2224 		if (likely(priv->extend_desc))
2225 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2226 		else
2227 			desc = priv->dma_tx + entry;
2228 
2229 		des = skb_frag_dma_map(priv->device, frag, 0, len,
2230 				       DMA_TO_DEVICE);
2231 		if (dma_mapping_error(priv->device, des))
2232 			goto dma_map_err; /* should reuse desc w/o issues */
2233 
2234 		priv->tx_skbuff[entry] = NULL;
2235 
2236 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2237 			desc->des0 = des;
2238 			priv->tx_skbuff_dma[entry].buf = desc->des0;
2239 		} else {
2240 			desc->des2 = des;
2241 			priv->tx_skbuff_dma[entry].buf = desc->des2;
2242 		}
2243 
2244 		priv->tx_skbuff_dma[entry].map_as_page = true;
2245 		priv->tx_skbuff_dma[entry].len = len;
2246 		priv->tx_skbuff_dma[entry].last_segment = last_segment;
2247 
2248 		/* Prepare the descriptor and set the own bit too */
2249 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2250 						priv->mode, 1, last_segment);
2251 	}
2252 
2253 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
2254 
2255 	priv->cur_tx = entry;
2256 
2257 	if (netif_msg_pktdata(priv)) {
2258 		void *tx_head;
2259 
2260 		pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
2261 			 __func__, priv->cur_tx, priv->dirty_tx, first_entry,
2262 			 entry, first, nfrags);
2263 
2264 		if (priv->extend_desc)
2265 			tx_head = (void *)priv->dma_etx;
2266 		else
2267 			tx_head = (void *)priv->dma_tx;
2268 
2269 		priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
2270 
2271 		pr_debug(">>> frame to be transmitted: ");
2272 		print_pkt(skb->data, skb->len);
2273 	}
2274 
2275 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2276 		if (netif_msg_hw(priv))
2277 			pr_debug("%s: stop transmitted packets\n", __func__);
2278 		netif_stop_queue(dev);
2279 	}
2280 
2281 	dev->stats.tx_bytes += skb->len;
2282 
2283 	/* According to the coalesce parameter the IC bit for the latest
2284 	 * segment is reset and the timer re-started to clean the tx status.
2285 	 * This approach takes care about the fragments: desc is the first
2286 	 * element in case of no SG.
2287 	 */
2288 	priv->tx_count_frames += nfrags + 1;
2289 	if (likely(priv->tx_coal_frames > priv->tx_count_frames)) {
2290 		mod_timer(&priv->txtimer,
2291 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2292 	} else {
2293 		priv->tx_count_frames = 0;
2294 		priv->hw->desc->set_tx_ic(desc);
2295 		priv->xstats.tx_set_ic_bit++;
2296 	}
2297 
2298 	if (!priv->hwts_tx_en)
2299 		skb_tx_timestamp(skb);
2300 
2301 	/* Ready to fill the first descriptor and set the OWN bit w/o any
2302 	 * problems because all the descriptors are actually ready to be
2303 	 * passed to the DMA engine.
2304 	 */
2305 	if (likely(!is_jumbo)) {
2306 		bool last_segment = (nfrags == 0);
2307 
2308 		des = dma_map_single(priv->device, skb->data,
2309 				     nopaged_len, DMA_TO_DEVICE);
2310 		if (dma_mapping_error(priv->device, des))
2311 			goto dma_map_err;
2312 
2313 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2314 			first->des0 = des;
2315 			priv->tx_skbuff_dma[first_entry].buf = first->des0;
2316 		} else {
2317 			first->des2 = des;
2318 			priv->tx_skbuff_dma[first_entry].buf = first->des2;
2319 		}
2320 
2321 		priv->tx_skbuff_dma[first_entry].len = nopaged_len;
2322 		priv->tx_skbuff_dma[first_entry].last_segment = last_segment;
2323 
2324 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2325 			     priv->hwts_tx_en)) {
2326 			/* declare that device is doing timestamping */
2327 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2328 			priv->hw->desc->enable_tx_timestamp(first);
2329 		}
2330 
2331 		/* Prepare the first descriptor setting the OWN bit too */
2332 		priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len,
2333 						csum_insertion, priv->mode, 1,
2334 						last_segment);
2335 
2336 		/* The own bit must be the latest setting done when prepare the
2337 		 * descriptor and then barrier is needed to make sure that
2338 		 * all is coherent before granting the DMA engine.
2339 		 */
2340 		smp_wmb();
2341 	}
2342 
2343 	netdev_sent_queue(dev, skb->len);
2344 
2345 	if (priv->synopsys_id < DWMAC_CORE_4_00)
2346 		priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2347 	else
2348 		priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr,
2349 					       STMMAC_CHAN0);
2350 
2351 	spin_unlock(&priv->tx_lock);
2352 	return NETDEV_TX_OK;
2353 
2354 dma_map_err:
2355 	spin_unlock(&priv->tx_lock);
2356 	dev_err(priv->device, "Tx dma map failed\n");
2357 	dev_kfree_skb(skb);
2358 	priv->dev->stats.tx_dropped++;
2359 	return NETDEV_TX_OK;
2360 }
2361 
2362 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2363 {
2364 	struct ethhdr *ehdr;
2365 	u16 vlanid;
2366 
2367 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2368 	    NETIF_F_HW_VLAN_CTAG_RX &&
2369 	    !__vlan_get_tag(skb, &vlanid)) {
2370 		/* pop the vlan tag */
2371 		ehdr = (struct ethhdr *)skb->data;
2372 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2373 		skb_pull(skb, VLAN_HLEN);
2374 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2375 	}
2376 }
2377 
2378 
2379 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
2380 {
2381 	if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH)
2382 		return 0;
2383 
2384 	return 1;
2385 }
2386 
2387 /**
2388  * stmmac_rx_refill - refill used skb preallocated buffers
2389  * @priv: driver private structure
2390  * Description : this is to reallocate the skb for the reception process
2391  * that is based on zero-copy.
2392  */
2393 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2394 {
2395 	int bfsize = priv->dma_buf_sz;
2396 	unsigned int entry = priv->dirty_rx;
2397 	int dirty = stmmac_rx_dirty(priv);
2398 
2399 	while (dirty-- > 0) {
2400 		struct dma_desc *p;
2401 
2402 		if (priv->extend_desc)
2403 			p = (struct dma_desc *)(priv->dma_erx + entry);
2404 		else
2405 			p = priv->dma_rx + entry;
2406 
2407 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2408 			struct sk_buff *skb;
2409 
2410 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2411 			if (unlikely(!skb)) {
2412 				/* so for a while no zero-copy! */
2413 				priv->rx_zeroc_thresh = STMMAC_RX_THRESH;
2414 				if (unlikely(net_ratelimit()))
2415 					dev_err(priv->device,
2416 						"fail to alloc skb entry %d\n",
2417 						entry);
2418 				break;
2419 			}
2420 
2421 			priv->rx_skbuff[entry] = skb;
2422 			priv->rx_skbuff_dma[entry] =
2423 			    dma_map_single(priv->device, skb->data, bfsize,
2424 					   DMA_FROM_DEVICE);
2425 			if (dma_mapping_error(priv->device,
2426 					      priv->rx_skbuff_dma[entry])) {
2427 				dev_err(priv->device, "Rx dma map failed\n");
2428 				dev_kfree_skb(skb);
2429 				break;
2430 			}
2431 
2432 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
2433 				p->des0 = priv->rx_skbuff_dma[entry];
2434 				p->des1 = 0;
2435 			} else {
2436 				p->des2 = priv->rx_skbuff_dma[entry];
2437 			}
2438 			if (priv->hw->mode->refill_desc3)
2439 				priv->hw->mode->refill_desc3(priv, p);
2440 
2441 			if (priv->rx_zeroc_thresh > 0)
2442 				priv->rx_zeroc_thresh--;
2443 
2444 			if (netif_msg_rx_status(priv))
2445 				pr_debug("\trefill entry #%d\n", entry);
2446 		}
2447 		wmb();
2448 
2449 		if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2450 			priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0);
2451 		else
2452 			priv->hw->desc->set_rx_owner(p);
2453 
2454 		wmb();
2455 
2456 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
2457 	}
2458 	priv->dirty_rx = entry;
2459 }
2460 
2461 /**
2462  * stmmac_rx - manage the receive process
2463  * @priv: driver private structure
2464  * @limit: napi bugget.
2465  * Description :  this the function called by the napi poll method.
2466  * It gets all the frames inside the ring.
2467  */
2468 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2469 {
2470 	unsigned int entry = priv->cur_rx;
2471 	unsigned int next_entry;
2472 	unsigned int count = 0;
2473 	int coe = priv->hw->rx_csum;
2474 
2475 	if (netif_msg_rx_status(priv)) {
2476 		void *rx_head;
2477 
2478 		pr_debug("%s: descriptor ring:\n", __func__);
2479 		if (priv->extend_desc)
2480 			rx_head = (void *)priv->dma_erx;
2481 		else
2482 			rx_head = (void *)priv->dma_rx;
2483 
2484 		priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
2485 	}
2486 	while (count < limit) {
2487 		int status;
2488 		struct dma_desc *p;
2489 
2490 		if (priv->extend_desc)
2491 			p = (struct dma_desc *)(priv->dma_erx + entry);
2492 		else
2493 			p = priv->dma_rx + entry;
2494 
2495 		/* read the status of the incoming frame */
2496 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2497 						   &priv->xstats, p);
2498 		/* check if managed by the DMA otherwise go ahead */
2499 		if (unlikely(status & dma_own))
2500 			break;
2501 
2502 		count++;
2503 
2504 		priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE);
2505 		next_entry = priv->cur_rx;
2506 
2507 		if (priv->extend_desc)
2508 			prefetch(priv->dma_erx + next_entry);
2509 		else
2510 			prefetch(priv->dma_rx + next_entry);
2511 
2512 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2513 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2514 							   &priv->xstats,
2515 							   priv->dma_erx +
2516 							   entry);
2517 		if (unlikely(status == discard_frame)) {
2518 			priv->dev->stats.rx_errors++;
2519 			if (priv->hwts_rx_en && !priv->extend_desc) {
2520 				/* DESC2 & DESC3 will be overwitten by device
2521 				 * with timestamp value, hence reinitialize
2522 				 * them in stmmac_rx_refill() function so that
2523 				 * device can reuse it.
2524 				 */
2525 				priv->rx_skbuff[entry] = NULL;
2526 				dma_unmap_single(priv->device,
2527 						 priv->rx_skbuff_dma[entry],
2528 						 priv->dma_buf_sz,
2529 						 DMA_FROM_DEVICE);
2530 			}
2531 		} else {
2532 			struct sk_buff *skb;
2533 			int frame_len;
2534 			unsigned int des;
2535 
2536 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
2537 				des = p->des0;
2538 			else
2539 				des = p->des2;
2540 
2541 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2542 
2543 			/*  If frame length is greather than skb buffer size
2544 			 *  (preallocated during init) then the packet is
2545 			 *  ignored
2546 			 */
2547 			if (frame_len > priv->dma_buf_sz) {
2548 				pr_err("%s: len %d larger than size (%d)\n",
2549 				       priv->dev->name, frame_len,
2550 				       priv->dma_buf_sz);
2551 				priv->dev->stats.rx_length_errors++;
2552 				break;
2553 			}
2554 
2555 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2556 			 * Type frames (LLC/LLC-SNAP)
2557 			 */
2558 			if (unlikely(status != llc_snap))
2559 				frame_len -= ETH_FCS_LEN;
2560 
2561 			if (netif_msg_rx_status(priv)) {
2562 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2563 					p, entry, des);
2564 				if (frame_len > ETH_FRAME_LEN)
2565 					pr_debug("\tframe size %d, COE: %d\n",
2566 						 frame_len, status);
2567 			}
2568 
2569 			/* The zero-copy is always used for all the sizes
2570 			 * in case of GMAC4 because it needs
2571 			 * to refill the used descriptors, always.
2572 			 */
2573 			if (unlikely(!priv->plat->has_gmac4 &&
2574 				     ((frame_len < priv->rx_copybreak) ||
2575 				     stmmac_rx_threshold_count(priv)))) {
2576 				skb = netdev_alloc_skb_ip_align(priv->dev,
2577 								frame_len);
2578 				if (unlikely(!skb)) {
2579 					if (net_ratelimit())
2580 						dev_warn(priv->device,
2581 							 "packet dropped\n");
2582 					priv->dev->stats.rx_dropped++;
2583 					break;
2584 				}
2585 
2586 				dma_sync_single_for_cpu(priv->device,
2587 							priv->rx_skbuff_dma
2588 							[entry], frame_len,
2589 							DMA_FROM_DEVICE);
2590 				skb_copy_to_linear_data(skb,
2591 							priv->
2592 							rx_skbuff[entry]->data,
2593 							frame_len);
2594 
2595 				skb_put(skb, frame_len);
2596 				dma_sync_single_for_device(priv->device,
2597 							   priv->rx_skbuff_dma
2598 							   [entry], frame_len,
2599 							   DMA_FROM_DEVICE);
2600 			} else {
2601 				skb = priv->rx_skbuff[entry];
2602 				if (unlikely(!skb)) {
2603 					pr_err("%s: Inconsistent Rx chain\n",
2604 					       priv->dev->name);
2605 					priv->dev->stats.rx_dropped++;
2606 					break;
2607 				}
2608 				prefetch(skb->data - NET_IP_ALIGN);
2609 				priv->rx_skbuff[entry] = NULL;
2610 				priv->rx_zeroc_thresh++;
2611 
2612 				skb_put(skb, frame_len);
2613 				dma_unmap_single(priv->device,
2614 						 priv->rx_skbuff_dma[entry],
2615 						 priv->dma_buf_sz,
2616 						 DMA_FROM_DEVICE);
2617 			}
2618 
2619 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2620 
2621 			if (netif_msg_pktdata(priv)) {
2622 				pr_debug("frame received (%dbytes)", frame_len);
2623 				print_pkt(skb->data, frame_len);
2624 			}
2625 
2626 			stmmac_rx_vlan(priv->dev, skb);
2627 
2628 			skb->protocol = eth_type_trans(skb, priv->dev);
2629 
2630 			if (unlikely(!coe))
2631 				skb_checksum_none_assert(skb);
2632 			else
2633 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2634 
2635 			napi_gro_receive(&priv->napi, skb);
2636 
2637 			priv->dev->stats.rx_packets++;
2638 			priv->dev->stats.rx_bytes += frame_len;
2639 		}
2640 		entry = next_entry;
2641 	}
2642 
2643 	stmmac_rx_refill(priv);
2644 
2645 	priv->xstats.rx_pkt_n += count;
2646 
2647 	return count;
2648 }
2649 
2650 /**
2651  *  stmmac_poll - stmmac poll method (NAPI)
2652  *  @napi : pointer to the napi structure.
2653  *  @budget : maximum number of packets that the current CPU can receive from
2654  *	      all interfaces.
2655  *  Description :
2656  *  To look at the incoming frames and clear the tx resources.
2657  */
2658 static int stmmac_poll(struct napi_struct *napi, int budget)
2659 {
2660 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2661 	int work_done = 0;
2662 
2663 	priv->xstats.napi_poll++;
2664 	stmmac_tx_clean(priv);
2665 
2666 	work_done = stmmac_rx(priv, budget);
2667 	if (work_done < budget) {
2668 		napi_complete(napi);
2669 		stmmac_enable_dma_irq(priv);
2670 	}
2671 	return work_done;
2672 }
2673 
2674 /**
2675  *  stmmac_tx_timeout
2676  *  @dev : Pointer to net device structure
2677  *  Description: this function is called when a packet transmission fails to
2678  *   complete within a reasonable time. The driver will mark the error in the
2679  *   netdev structure and arrange for the device to be reset to a sane state
2680  *   in order to transmit a new packet.
2681  */
2682 static void stmmac_tx_timeout(struct net_device *dev)
2683 {
2684 	struct stmmac_priv *priv = netdev_priv(dev);
2685 
2686 	/* Clear Tx resources and restart transmitting again */
2687 	stmmac_tx_err(priv);
2688 }
2689 
2690 /**
2691  *  stmmac_set_rx_mode - entry point for multicast addressing
2692  *  @dev : pointer to the device structure
2693  *  Description:
2694  *  This function is a driver entry point which gets called by the kernel
2695  *  whenever multicast addresses must be enabled/disabled.
2696  *  Return value:
2697  *  void.
2698  */
2699 static void stmmac_set_rx_mode(struct net_device *dev)
2700 {
2701 	struct stmmac_priv *priv = netdev_priv(dev);
2702 
2703 	priv->hw->mac->set_filter(priv->hw, dev);
2704 }
2705 
2706 /**
2707  *  stmmac_change_mtu - entry point to change MTU size for the device.
2708  *  @dev : device pointer.
2709  *  @new_mtu : the new MTU size for the device.
2710  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2711  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2712  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2713  *  Return value:
2714  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2715  *  file on failure.
2716  */
2717 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2718 {
2719 	struct stmmac_priv *priv = netdev_priv(dev);
2720 	int max_mtu;
2721 
2722 	if (netif_running(dev)) {
2723 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2724 		return -EBUSY;
2725 	}
2726 
2727 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
2728 		max_mtu = JUMBO_LEN;
2729 	else
2730 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2731 
2732 	if (priv->plat->maxmtu < max_mtu)
2733 		max_mtu = priv->plat->maxmtu;
2734 
2735 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2736 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2737 		return -EINVAL;
2738 	}
2739 
2740 	dev->mtu = new_mtu;
2741 
2742 	netdev_update_features(dev);
2743 
2744 	return 0;
2745 }
2746 
2747 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2748 					     netdev_features_t features)
2749 {
2750 	struct stmmac_priv *priv = netdev_priv(dev);
2751 
2752 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2753 		features &= ~NETIF_F_RXCSUM;
2754 
2755 	if (!priv->plat->tx_coe)
2756 		features &= ~NETIF_F_CSUM_MASK;
2757 
2758 	/* Some GMAC devices have a bugged Jumbo frame support that
2759 	 * needs to have the Tx COE disabled for oversized frames
2760 	 * (due to limited buffer sizes). In this case we disable
2761 	 * the TX csum insertionin the TDES and not use SF.
2762 	 */
2763 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2764 		features &= ~NETIF_F_CSUM_MASK;
2765 
2766 	/* Disable tso if asked by ethtool */
2767 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
2768 		if (features & NETIF_F_TSO)
2769 			priv->tso = true;
2770 		else
2771 			priv->tso = false;
2772 	}
2773 
2774 	return features;
2775 }
2776 
2777 static int stmmac_set_features(struct net_device *netdev,
2778 			       netdev_features_t features)
2779 {
2780 	struct stmmac_priv *priv = netdev_priv(netdev);
2781 
2782 	/* Keep the COE Type in case of csum is supporting */
2783 	if (features & NETIF_F_RXCSUM)
2784 		priv->hw->rx_csum = priv->plat->rx_coe;
2785 	else
2786 		priv->hw->rx_csum = 0;
2787 	/* No check needed because rx_coe has been set before and it will be
2788 	 * fixed in case of issue.
2789 	 */
2790 	priv->hw->mac->rx_ipc(priv->hw);
2791 
2792 	return 0;
2793 }
2794 
2795 /**
2796  *  stmmac_interrupt - main ISR
2797  *  @irq: interrupt number.
2798  *  @dev_id: to pass the net device pointer.
2799  *  Description: this is the main driver interrupt service routine.
2800  *  It can call:
2801  *  o DMA service routine (to manage incoming frame reception and transmission
2802  *    status)
2803  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2804  *    interrupts.
2805  */
2806 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2807 {
2808 	struct net_device *dev = (struct net_device *)dev_id;
2809 	struct stmmac_priv *priv = netdev_priv(dev);
2810 
2811 	if (priv->irq_wake)
2812 		pm_wakeup_event(priv->device, 0);
2813 
2814 	if (unlikely(!dev)) {
2815 		pr_err("%s: invalid dev pointer\n", __func__);
2816 		return IRQ_NONE;
2817 	}
2818 
2819 	/* To handle GMAC own interrupts */
2820 	if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) {
2821 		int status = priv->hw->mac->host_irq_status(priv->hw,
2822 							    &priv->xstats);
2823 		if (unlikely(status)) {
2824 			/* For LPI we need to save the tx status */
2825 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2826 				priv->tx_path_in_lpi_mode = true;
2827 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2828 				priv->tx_path_in_lpi_mode = false;
2829 			if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr)
2830 				priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
2831 							priv->rx_tail_addr,
2832 							STMMAC_CHAN0);
2833 		}
2834 
2835 		/* PCS link status */
2836 		if (priv->hw->pcs) {
2837 			if (priv->xstats.pcs_link)
2838 				netif_carrier_on(dev);
2839 			else
2840 				netif_carrier_off(dev);
2841 		}
2842 	}
2843 
2844 	/* To handle DMA interrupts */
2845 	stmmac_dma_interrupt(priv);
2846 
2847 	return IRQ_HANDLED;
2848 }
2849 
2850 #ifdef CONFIG_NET_POLL_CONTROLLER
2851 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2852  * to allow network I/O with interrupts disabled.
2853  */
2854 static void stmmac_poll_controller(struct net_device *dev)
2855 {
2856 	disable_irq(dev->irq);
2857 	stmmac_interrupt(dev->irq, dev);
2858 	enable_irq(dev->irq);
2859 }
2860 #endif
2861 
2862 /**
2863  *  stmmac_ioctl - Entry point for the Ioctl
2864  *  @dev: Device pointer.
2865  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2866  *  a proprietary structure used to pass information to the driver.
2867  *  @cmd: IOCTL command
2868  *  Description:
2869  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2870  */
2871 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2872 {
2873 	struct stmmac_priv *priv = netdev_priv(dev);
2874 	int ret = -EOPNOTSUPP;
2875 
2876 	if (!netif_running(dev))
2877 		return -EINVAL;
2878 
2879 	switch (cmd) {
2880 	case SIOCGMIIPHY:
2881 	case SIOCGMIIREG:
2882 	case SIOCSMIIREG:
2883 		if (!priv->phydev)
2884 			return -EINVAL;
2885 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2886 		break;
2887 	case SIOCSHWTSTAMP:
2888 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2889 		break;
2890 	default:
2891 		break;
2892 	}
2893 
2894 	return ret;
2895 }
2896 
2897 #ifdef CONFIG_DEBUG_FS
2898 static struct dentry *stmmac_fs_dir;
2899 
2900 static void sysfs_display_ring(void *head, int size, int extend_desc,
2901 			       struct seq_file *seq)
2902 {
2903 	int i;
2904 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2905 	struct dma_desc *p = (struct dma_desc *)head;
2906 
2907 	for (i = 0; i < size; i++) {
2908 		u64 x;
2909 		if (extend_desc) {
2910 			x = *(u64 *) ep;
2911 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2912 				   i, (unsigned int)virt_to_phys(ep),
2913 				   ep->basic.des0, ep->basic.des1,
2914 				   ep->basic.des2, ep->basic.des3);
2915 			ep++;
2916 		} else {
2917 			x = *(u64 *) p;
2918 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2919 				   i, (unsigned int)virt_to_phys(ep),
2920 				   p->des0, p->des1, p->des2, p->des3);
2921 			p++;
2922 		}
2923 		seq_printf(seq, "\n");
2924 	}
2925 }
2926 
2927 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2928 {
2929 	struct net_device *dev = seq->private;
2930 	struct stmmac_priv *priv = netdev_priv(dev);
2931 
2932 	if (priv->extend_desc) {
2933 		seq_printf(seq, "Extended RX descriptor ring:\n");
2934 		sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
2935 		seq_printf(seq, "Extended TX descriptor ring:\n");
2936 		sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
2937 	} else {
2938 		seq_printf(seq, "RX descriptor ring:\n");
2939 		sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq);
2940 		seq_printf(seq, "TX descriptor ring:\n");
2941 		sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq);
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2948 {
2949 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2950 }
2951 
2952 static const struct file_operations stmmac_rings_status_fops = {
2953 	.owner = THIS_MODULE,
2954 	.open = stmmac_sysfs_ring_open,
2955 	.read = seq_read,
2956 	.llseek = seq_lseek,
2957 	.release = single_release,
2958 };
2959 
2960 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2961 {
2962 	struct net_device *dev = seq->private;
2963 	struct stmmac_priv *priv = netdev_priv(dev);
2964 
2965 	if (!priv->hw_cap_support) {
2966 		seq_printf(seq, "DMA HW features not supported\n");
2967 		return 0;
2968 	}
2969 
2970 	seq_printf(seq, "==============================\n");
2971 	seq_printf(seq, "\tDMA HW features\n");
2972 	seq_printf(seq, "==============================\n");
2973 
2974 	seq_printf(seq, "\t10/100 Mbps %s\n",
2975 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2976 	seq_printf(seq, "\t1000 Mbps %s\n",
2977 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2978 	seq_printf(seq, "\tHalf duple %s\n",
2979 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2980 	seq_printf(seq, "\tHash Filter: %s\n",
2981 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2982 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2983 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2984 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2985 		   (priv->dma_cap.pcs) ? "Y" : "N");
2986 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2987 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2988 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2989 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2990 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2991 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2992 	seq_printf(seq, "\tRMON module: %s\n",
2993 		   (priv->dma_cap.rmon) ? "Y" : "N");
2994 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2995 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2996 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2997 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2998 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2999 		   (priv->dma_cap.eee) ? "Y" : "N");
3000 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3001 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3002 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3003 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3004 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3005 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3006 	} else {
3007 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3008 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3009 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3010 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3011 	}
3012 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3013 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3014 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3015 		   priv->dma_cap.number_rx_channel);
3016 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3017 		   priv->dma_cap.number_tx_channel);
3018 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3019 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3020 
3021 	return 0;
3022 }
3023 
3024 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
3025 {
3026 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
3027 }
3028 
3029 static const struct file_operations stmmac_dma_cap_fops = {
3030 	.owner = THIS_MODULE,
3031 	.open = stmmac_sysfs_dma_cap_open,
3032 	.read = seq_read,
3033 	.llseek = seq_lseek,
3034 	.release = single_release,
3035 };
3036 
3037 static int stmmac_init_fs(struct net_device *dev)
3038 {
3039 	struct stmmac_priv *priv = netdev_priv(dev);
3040 
3041 	/* Create per netdev entries */
3042 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3043 
3044 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3045 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
3046 		       STMMAC_RESOURCE_NAME, dev->name);
3047 
3048 		return -ENOMEM;
3049 	}
3050 
3051 	/* Entry to report DMA RX/TX rings */
3052 	priv->dbgfs_rings_status =
3053 		debugfs_create_file("descriptors_status", S_IRUGO,
3054 				    priv->dbgfs_dir, dev,
3055 				    &stmmac_rings_status_fops);
3056 
3057 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3058 		pr_info("ERROR creating stmmac ring debugfs file\n");
3059 		debugfs_remove_recursive(priv->dbgfs_dir);
3060 
3061 		return -ENOMEM;
3062 	}
3063 
3064 	/* Entry to report the DMA HW features */
3065 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
3066 					    priv->dbgfs_dir,
3067 					    dev, &stmmac_dma_cap_fops);
3068 
3069 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3070 		pr_info("ERROR creating stmmac MMC debugfs file\n");
3071 		debugfs_remove_recursive(priv->dbgfs_dir);
3072 
3073 		return -ENOMEM;
3074 	}
3075 
3076 	return 0;
3077 }
3078 
3079 static void stmmac_exit_fs(struct net_device *dev)
3080 {
3081 	struct stmmac_priv *priv = netdev_priv(dev);
3082 
3083 	debugfs_remove_recursive(priv->dbgfs_dir);
3084 }
3085 #endif /* CONFIG_DEBUG_FS */
3086 
3087 static const struct net_device_ops stmmac_netdev_ops = {
3088 	.ndo_open = stmmac_open,
3089 	.ndo_start_xmit = stmmac_xmit,
3090 	.ndo_stop = stmmac_release,
3091 	.ndo_change_mtu = stmmac_change_mtu,
3092 	.ndo_fix_features = stmmac_fix_features,
3093 	.ndo_set_features = stmmac_set_features,
3094 	.ndo_set_rx_mode = stmmac_set_rx_mode,
3095 	.ndo_tx_timeout = stmmac_tx_timeout,
3096 	.ndo_do_ioctl = stmmac_ioctl,
3097 #ifdef CONFIG_NET_POLL_CONTROLLER
3098 	.ndo_poll_controller = stmmac_poll_controller,
3099 #endif
3100 	.ndo_set_mac_address = eth_mac_addr,
3101 };
3102 
3103 /**
3104  *  stmmac_hw_init - Init the MAC device
3105  *  @priv: driver private structure
3106  *  Description: this function is to configure the MAC device according to
3107  *  some platform parameters or the HW capability register. It prepares the
3108  *  driver to use either ring or chain modes and to setup either enhanced or
3109  *  normal descriptors.
3110  */
3111 static int stmmac_hw_init(struct stmmac_priv *priv)
3112 {
3113 	struct mac_device_info *mac;
3114 
3115 	/* Identify the MAC HW device */
3116 	if (priv->plat->has_gmac) {
3117 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3118 		mac = dwmac1000_setup(priv->ioaddr,
3119 				      priv->plat->multicast_filter_bins,
3120 				      priv->plat->unicast_filter_entries,
3121 				      &priv->synopsys_id);
3122 	} else if (priv->plat->has_gmac4) {
3123 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
3124 		mac = dwmac4_setup(priv->ioaddr,
3125 				   priv->plat->multicast_filter_bins,
3126 				   priv->plat->unicast_filter_entries,
3127 				   &priv->synopsys_id);
3128 	} else {
3129 		mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id);
3130 	}
3131 	if (!mac)
3132 		return -ENOMEM;
3133 
3134 	priv->hw = mac;
3135 
3136 	/* To use the chained or ring mode */
3137 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3138 		priv->hw->mode = &dwmac4_ring_mode_ops;
3139 	} else {
3140 		if (chain_mode) {
3141 			priv->hw->mode = &chain_mode_ops;
3142 			pr_info(" Chain mode enabled\n");
3143 			priv->mode = STMMAC_CHAIN_MODE;
3144 		} else {
3145 			priv->hw->mode = &ring_mode_ops;
3146 			pr_info(" Ring mode enabled\n");
3147 			priv->mode = STMMAC_RING_MODE;
3148 		}
3149 	}
3150 
3151 	/* Get the HW capability (new GMAC newer than 3.50a) */
3152 	priv->hw_cap_support = stmmac_get_hw_features(priv);
3153 	if (priv->hw_cap_support) {
3154 		pr_info(" DMA HW capability register supported");
3155 
3156 		/* We can override some gmac/dma configuration fields: e.g.
3157 		 * enh_desc, tx_coe (e.g. that are passed through the
3158 		 * platform) with the values from the HW capability
3159 		 * register (if supported).
3160 		 */
3161 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
3162 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
3163 		priv->hw->pmt = priv->plat->pmt;
3164 
3165 		/* TXCOE doesn't work in thresh DMA mode */
3166 		if (priv->plat->force_thresh_dma_mode)
3167 			priv->plat->tx_coe = 0;
3168 		else
3169 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
3170 
3171 		/* In case of GMAC4 rx_coe is from HW cap register. */
3172 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
3173 
3174 		if (priv->dma_cap.rx_coe_type2)
3175 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
3176 		else if (priv->dma_cap.rx_coe_type1)
3177 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
3178 
3179 	} else
3180 		pr_info(" No HW DMA feature register supported");
3181 
3182 	/* To use alternate (extended), normal or GMAC4 descriptor structures */
3183 	if (priv->synopsys_id >= DWMAC_CORE_4_00)
3184 		priv->hw->desc = &dwmac4_desc_ops;
3185 	else
3186 		stmmac_selec_desc_mode(priv);
3187 
3188 	if (priv->plat->rx_coe) {
3189 		priv->hw->rx_csum = priv->plat->rx_coe;
3190 		pr_info(" RX Checksum Offload Engine supported\n");
3191 		if (priv->synopsys_id < DWMAC_CORE_4_00)
3192 			pr_info("\tCOE Type %d\n", priv->hw->rx_csum);
3193 	}
3194 	if (priv->plat->tx_coe)
3195 		pr_info(" TX Checksum insertion supported\n");
3196 
3197 	if (priv->plat->pmt) {
3198 		pr_info(" Wake-Up On Lan supported\n");
3199 		device_set_wakeup_capable(priv->device, 1);
3200 	}
3201 
3202 	if (priv->dma_cap.tsoen)
3203 		pr_info(" TSO supported\n");
3204 
3205 	return 0;
3206 }
3207 
3208 /**
3209  * stmmac_dvr_probe
3210  * @device: device pointer
3211  * @plat_dat: platform data pointer
3212  * @res: stmmac resource pointer
3213  * Description: this is the main probe function used to
3214  * call the alloc_etherdev, allocate the priv structure.
3215  * Return:
3216  * returns 0 on success, otherwise errno.
3217  */
3218 int stmmac_dvr_probe(struct device *device,
3219 		     struct plat_stmmacenet_data *plat_dat,
3220 		     struct stmmac_resources *res)
3221 {
3222 	int ret = 0;
3223 	struct net_device *ndev = NULL;
3224 	struct stmmac_priv *priv;
3225 
3226 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
3227 	if (!ndev)
3228 		return -ENOMEM;
3229 
3230 	SET_NETDEV_DEV(ndev, device);
3231 
3232 	priv = netdev_priv(ndev);
3233 	priv->device = device;
3234 	priv->dev = ndev;
3235 
3236 	stmmac_set_ethtool_ops(ndev);
3237 	priv->pause = pause;
3238 	priv->plat = plat_dat;
3239 	priv->ioaddr = res->addr;
3240 	priv->dev->base_addr = (unsigned long)res->addr;
3241 
3242 	priv->dev->irq = res->irq;
3243 	priv->wol_irq = res->wol_irq;
3244 	priv->lpi_irq = res->lpi_irq;
3245 
3246 	if (res->mac)
3247 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
3248 
3249 	dev_set_drvdata(device, priv->dev);
3250 
3251 	/* Verify driver arguments */
3252 	stmmac_verify_args();
3253 
3254 	/* Override with kernel parameters if supplied XXX CRS XXX
3255 	 * this needs to have multiple instances
3256 	 */
3257 	if ((phyaddr >= 0) && (phyaddr <= 31))
3258 		priv->plat->phy_addr = phyaddr;
3259 
3260 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
3261 	if (IS_ERR(priv->stmmac_clk)) {
3262 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
3263 			 __func__);
3264 		/* If failed to obtain stmmac_clk and specific clk_csr value
3265 		 * is NOT passed from the platform, probe fail.
3266 		 */
3267 		if (!priv->plat->clk_csr) {
3268 			ret = PTR_ERR(priv->stmmac_clk);
3269 			goto error_clk_get;
3270 		} else {
3271 			priv->stmmac_clk = NULL;
3272 		}
3273 	}
3274 	clk_prepare_enable(priv->stmmac_clk);
3275 
3276 	priv->pclk = devm_clk_get(priv->device, "pclk");
3277 	if (IS_ERR(priv->pclk)) {
3278 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
3279 			ret = -EPROBE_DEFER;
3280 			goto error_pclk_get;
3281 		}
3282 		priv->pclk = NULL;
3283 	}
3284 	clk_prepare_enable(priv->pclk);
3285 
3286 	priv->stmmac_rst = devm_reset_control_get(priv->device,
3287 						  STMMAC_RESOURCE_NAME);
3288 	if (IS_ERR(priv->stmmac_rst)) {
3289 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
3290 			ret = -EPROBE_DEFER;
3291 			goto error_hw_init;
3292 		}
3293 		dev_info(priv->device, "no reset control found\n");
3294 		priv->stmmac_rst = NULL;
3295 	}
3296 	if (priv->stmmac_rst)
3297 		reset_control_deassert(priv->stmmac_rst);
3298 
3299 	/* Init MAC and get the capabilities */
3300 	ret = stmmac_hw_init(priv);
3301 	if (ret)
3302 		goto error_hw_init;
3303 
3304 	ndev->netdev_ops = &stmmac_netdev_ops;
3305 
3306 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3307 			    NETIF_F_RXCSUM;
3308 
3309 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3310 		ndev->hw_features |= NETIF_F_TSO;
3311 		priv->tso = true;
3312 		pr_info(" TSO feature enabled\n");
3313 	}
3314 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
3315 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
3316 #ifdef STMMAC_VLAN_TAG_USED
3317 	/* Both mac100 and gmac support receive VLAN tag detection */
3318 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3319 #endif
3320 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
3321 
3322 	if (flow_ctrl)
3323 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
3324 
3325 	/* Rx Watchdog is available in the COREs newer than the 3.40.
3326 	 * In some case, for example on bugged HW this feature
3327 	 * has to be disable and this can be done by passing the
3328 	 * riwt_off field from the platform.
3329 	 */
3330 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
3331 		priv->use_riwt = 1;
3332 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
3333 	}
3334 
3335 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
3336 
3337 	spin_lock_init(&priv->lock);
3338 	spin_lock_init(&priv->tx_lock);
3339 
3340 	ret = register_netdev(ndev);
3341 	if (ret) {
3342 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
3343 		goto error_netdev_register;
3344 	}
3345 
3346 	/* If a specific clk_csr value is passed from the platform
3347 	 * this means that the CSR Clock Range selection cannot be
3348 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
3349 	 * set the MDC clock dynamically according to the csr actual
3350 	 * clock input.
3351 	 */
3352 	if (!priv->plat->clk_csr)
3353 		stmmac_clk_csr_set(priv);
3354 	else
3355 		priv->clk_csr = priv->plat->clk_csr;
3356 
3357 	stmmac_check_pcs_mode(priv);
3358 
3359 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
3360 	    priv->hw->pcs != STMMAC_PCS_TBI &&
3361 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
3362 		/* MDIO bus Registration */
3363 		ret = stmmac_mdio_register(ndev);
3364 		if (ret < 0) {
3365 			pr_debug("%s: MDIO bus (id: %d) registration failed",
3366 				 __func__, priv->plat->bus_id);
3367 			goto error_mdio_register;
3368 		}
3369 	}
3370 
3371 	return 0;
3372 
3373 error_mdio_register:
3374 	unregister_netdev(ndev);
3375 error_netdev_register:
3376 	netif_napi_del(&priv->napi);
3377 error_hw_init:
3378 	clk_disable_unprepare(priv->pclk);
3379 error_pclk_get:
3380 	clk_disable_unprepare(priv->stmmac_clk);
3381 error_clk_get:
3382 	free_netdev(ndev);
3383 
3384 	return ret;
3385 }
3386 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
3387 
3388 /**
3389  * stmmac_dvr_remove
3390  * @dev: device pointer
3391  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
3392  * changes the link status, releases the DMA descriptor rings.
3393  */
3394 int stmmac_dvr_remove(struct device *dev)
3395 {
3396 	struct net_device *ndev = dev_get_drvdata(dev);
3397 	struct stmmac_priv *priv = netdev_priv(ndev);
3398 
3399 	pr_info("%s:\n\tremoving driver", __func__);
3400 
3401 	priv->hw->dma->stop_rx(priv->ioaddr);
3402 	priv->hw->dma->stop_tx(priv->ioaddr);
3403 
3404 	stmmac_set_mac(priv->ioaddr, false);
3405 	netif_carrier_off(ndev);
3406 	unregister_netdev(ndev);
3407 	of_node_put(priv->plat->phy_node);
3408 	if (priv->stmmac_rst)
3409 		reset_control_assert(priv->stmmac_rst);
3410 	clk_disable_unprepare(priv->pclk);
3411 	clk_disable_unprepare(priv->stmmac_clk);
3412 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
3413 	    priv->hw->pcs != STMMAC_PCS_TBI &&
3414 	    priv->hw->pcs != STMMAC_PCS_RTBI)
3415 		stmmac_mdio_unregister(ndev);
3416 	free_netdev(ndev);
3417 
3418 	return 0;
3419 }
3420 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3421 
3422 /**
3423  * stmmac_suspend - suspend callback
3424  * @dev: device pointer
3425  * Description: this is the function to suspend the device and it is called
3426  * by the platform driver to stop the network queue, release the resources,
3427  * program the PMT register (for WoL), clean and release driver resources.
3428  */
3429 int stmmac_suspend(struct device *dev)
3430 {
3431 	struct net_device *ndev = dev_get_drvdata(dev);
3432 	struct stmmac_priv *priv = netdev_priv(ndev);
3433 	unsigned long flags;
3434 
3435 	if (!ndev || !netif_running(ndev))
3436 		return 0;
3437 
3438 	if (priv->phydev)
3439 		phy_stop(priv->phydev);
3440 
3441 	spin_lock_irqsave(&priv->lock, flags);
3442 
3443 	netif_device_detach(ndev);
3444 	netif_stop_queue(ndev);
3445 
3446 	napi_disable(&priv->napi);
3447 
3448 	/* Stop TX/RX DMA */
3449 	priv->hw->dma->stop_tx(priv->ioaddr);
3450 	priv->hw->dma->stop_rx(priv->ioaddr);
3451 
3452 	/* Enable Power down mode by programming the PMT regs */
3453 	if (device_may_wakeup(priv->device)) {
3454 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3455 		priv->irq_wake = 1;
3456 	} else {
3457 		stmmac_set_mac(priv->ioaddr, false);
3458 		pinctrl_pm_select_sleep_state(priv->device);
3459 		/* Disable clock in case of PWM is off */
3460 		clk_disable(priv->pclk);
3461 		clk_disable(priv->stmmac_clk);
3462 	}
3463 	spin_unlock_irqrestore(&priv->lock, flags);
3464 
3465 	priv->oldlink = 0;
3466 	priv->speed = 0;
3467 	priv->oldduplex = -1;
3468 	return 0;
3469 }
3470 EXPORT_SYMBOL_GPL(stmmac_suspend);
3471 
3472 /**
3473  * stmmac_resume - resume callback
3474  * @dev: device pointer
3475  * Description: when resume this function is invoked to setup the DMA and CORE
3476  * in a usable state.
3477  */
3478 int stmmac_resume(struct device *dev)
3479 {
3480 	struct net_device *ndev = dev_get_drvdata(dev);
3481 	struct stmmac_priv *priv = netdev_priv(ndev);
3482 	unsigned long flags;
3483 
3484 	if (!netif_running(ndev))
3485 		return 0;
3486 
3487 	/* Power Down bit, into the PM register, is cleared
3488 	 * automatically as soon as a magic packet or a Wake-up frame
3489 	 * is received. Anyway, it's better to manually clear
3490 	 * this bit because it can generate problems while resuming
3491 	 * from another devices (e.g. serial console).
3492 	 */
3493 	if (device_may_wakeup(priv->device)) {
3494 		spin_lock_irqsave(&priv->lock, flags);
3495 		priv->hw->mac->pmt(priv->hw, 0);
3496 		spin_unlock_irqrestore(&priv->lock, flags);
3497 		priv->irq_wake = 0;
3498 	} else {
3499 		pinctrl_pm_select_default_state(priv->device);
3500 		/* enable the clk prevously disabled */
3501 		clk_enable(priv->stmmac_clk);
3502 		clk_enable(priv->pclk);
3503 		/* reset the phy so that it's ready */
3504 		if (priv->mii)
3505 			stmmac_mdio_reset(priv->mii);
3506 	}
3507 
3508 	netif_device_attach(ndev);
3509 
3510 	spin_lock_irqsave(&priv->lock, flags);
3511 
3512 	priv->cur_rx = 0;
3513 	priv->dirty_rx = 0;
3514 	priv->dirty_tx = 0;
3515 	priv->cur_tx = 0;
3516 	/* reset private mss value to force mss context settings at
3517 	 * next tso xmit (only used for gmac4).
3518 	 */
3519 	priv->mss = 0;
3520 
3521 	stmmac_clear_descriptors(priv);
3522 
3523 	stmmac_hw_setup(ndev, false);
3524 	stmmac_init_tx_coalesce(priv);
3525 	stmmac_set_rx_mode(ndev);
3526 
3527 	napi_enable(&priv->napi);
3528 
3529 	netif_start_queue(ndev);
3530 
3531 	spin_unlock_irqrestore(&priv->lock, flags);
3532 
3533 	if (priv->phydev)
3534 		phy_start(priv->phydev);
3535 
3536 	return 0;
3537 }
3538 EXPORT_SYMBOL_GPL(stmmac_resume);
3539 
3540 #ifndef MODULE
3541 static int __init stmmac_cmdline_opt(char *str)
3542 {
3543 	char *opt;
3544 
3545 	if (!str || !*str)
3546 		return -EINVAL;
3547 	while ((opt = strsep(&str, ",")) != NULL) {
3548 		if (!strncmp(opt, "debug:", 6)) {
3549 			if (kstrtoint(opt + 6, 0, &debug))
3550 				goto err;
3551 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3552 			if (kstrtoint(opt + 8, 0, &phyaddr))
3553 				goto err;
3554 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3555 			if (kstrtoint(opt + 7, 0, &buf_sz))
3556 				goto err;
3557 		} else if (!strncmp(opt, "tc:", 3)) {
3558 			if (kstrtoint(opt + 3, 0, &tc))
3559 				goto err;
3560 		} else if (!strncmp(opt, "watchdog:", 9)) {
3561 			if (kstrtoint(opt + 9, 0, &watchdog))
3562 				goto err;
3563 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3564 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3565 				goto err;
3566 		} else if (!strncmp(opt, "pause:", 6)) {
3567 			if (kstrtoint(opt + 6, 0, &pause))
3568 				goto err;
3569 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3570 			if (kstrtoint(opt + 10, 0, &eee_timer))
3571 				goto err;
3572 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3573 			if (kstrtoint(opt + 11, 0, &chain_mode))
3574 				goto err;
3575 		}
3576 	}
3577 	return 0;
3578 
3579 err:
3580 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3581 	return -EINVAL;
3582 }
3583 
3584 __setup("stmmaceth=", stmmac_cmdline_opt);
3585 #endif /* MODULE */
3586 
3587 static int __init stmmac_init(void)
3588 {
3589 #ifdef CONFIG_DEBUG_FS
3590 	/* Create debugfs main directory if it doesn't exist yet */
3591 	if (!stmmac_fs_dir) {
3592 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3593 
3594 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3595 			pr_err("ERROR %s, debugfs create directory failed\n",
3596 			       STMMAC_RESOURCE_NAME);
3597 
3598 			return -ENOMEM;
3599 		}
3600 	}
3601 #endif
3602 
3603 	return 0;
3604 }
3605 
3606 static void __exit stmmac_exit(void)
3607 {
3608 #ifdef CONFIG_DEBUG_FS
3609 	debugfs_remove_recursive(stmmac_fs_dir);
3610 #endif
3611 }
3612 
3613 module_init(stmmac_init)
3614 module_exit(stmmac_exit)
3615 
3616 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3617 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3618 MODULE_LICENSE("GPL");
3619