1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); 135 static void stmmac_reset_queues_param(struct stmmac_priv *priv); 136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 139 u32 rxmode, u32 chan); 140 141 #ifdef CONFIG_DEBUG_FS 142 static const struct net_device_ops stmmac_netdev_ops; 143 static void stmmac_init_fs(struct net_device *dev); 144 static void stmmac_exit_fs(struct net_device *dev); 145 #endif 146 147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 148 149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 150 { 151 int ret = 0; 152 153 if (enabled) { 154 ret = clk_prepare_enable(priv->plat->stmmac_clk); 155 if (ret) 156 return ret; 157 ret = clk_prepare_enable(priv->plat->pclk); 158 if (ret) { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 return ret; 161 } 162 if (priv->plat->clks_config) { 163 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 164 if (ret) { 165 clk_disable_unprepare(priv->plat->stmmac_clk); 166 clk_disable_unprepare(priv->plat->pclk); 167 return ret; 168 } 169 } 170 } else { 171 clk_disable_unprepare(priv->plat->stmmac_clk); 172 clk_disable_unprepare(priv->plat->pclk); 173 if (priv->plat->clks_config) 174 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 175 } 176 177 return ret; 178 } 179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 180 181 /** 182 * stmmac_verify_args - verify the driver parameters. 183 * Description: it checks the driver parameters and set a default in case of 184 * errors. 185 */ 186 static void stmmac_verify_args(void) 187 { 188 if (unlikely(watchdog < 0)) 189 watchdog = TX_TIMEO; 190 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 191 buf_sz = DEFAULT_BUFSIZE; 192 if (unlikely(flow_ctrl > 1)) 193 flow_ctrl = FLOW_AUTO; 194 else if (likely(flow_ctrl < 0)) 195 flow_ctrl = FLOW_OFF; 196 if (unlikely((pause < 0) || (pause > 0xffff))) 197 pause = PAUSE_TIME; 198 if (eee_timer < 0) 199 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 200 } 201 202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 203 { 204 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 206 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 207 u32 queue; 208 209 for (queue = 0; queue < maxq; queue++) { 210 struct stmmac_channel *ch = &priv->channel[queue]; 211 212 if (stmmac_xdp_is_enabled(priv) && 213 test_bit(queue, priv->af_xdp_zc_qps)) { 214 napi_disable(&ch->rxtx_napi); 215 continue; 216 } 217 218 if (queue < rx_queues_cnt) 219 napi_disable(&ch->rx_napi); 220 if (queue < tx_queues_cnt) 221 napi_disable(&ch->tx_napi); 222 } 223 } 224 225 /** 226 * stmmac_disable_all_queues - Disable all queues 227 * @priv: driver private structure 228 */ 229 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 230 { 231 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 232 struct stmmac_rx_queue *rx_q; 233 u32 queue; 234 235 /* synchronize_rcu() needed for pending XDP buffers to drain */ 236 for (queue = 0; queue < rx_queues_cnt; queue++) { 237 rx_q = &priv->dma_conf.rx_queue[queue]; 238 if (rx_q->xsk_pool) { 239 synchronize_rcu(); 240 break; 241 } 242 } 243 244 __stmmac_disable_all_queues(priv); 245 } 246 247 /** 248 * stmmac_enable_all_queues - Enable all queues 249 * @priv: driver private structure 250 */ 251 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 252 { 253 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 254 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 255 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 256 u32 queue; 257 258 for (queue = 0; queue < maxq; queue++) { 259 struct stmmac_channel *ch = &priv->channel[queue]; 260 261 if (stmmac_xdp_is_enabled(priv) && 262 test_bit(queue, priv->af_xdp_zc_qps)) { 263 napi_enable(&ch->rxtx_napi); 264 continue; 265 } 266 267 if (queue < rx_queues_cnt) 268 napi_enable(&ch->rx_napi); 269 if (queue < tx_queues_cnt) 270 napi_enable(&ch->tx_napi); 271 } 272 } 273 274 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 275 { 276 if (!test_bit(STMMAC_DOWN, &priv->state) && 277 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 278 queue_work(priv->wq, &priv->service_task); 279 } 280 281 static void stmmac_global_err(struct stmmac_priv *priv) 282 { 283 netif_carrier_off(priv->dev); 284 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 285 stmmac_service_event_schedule(priv); 286 } 287 288 /** 289 * stmmac_clk_csr_set - dynamically set the MDC clock 290 * @priv: driver private structure 291 * Description: this is to dynamically set the MDC clock according to the csr 292 * clock input. 293 * Note: 294 * If a specific clk_csr value is passed from the platform 295 * this means that the CSR Clock Range selection cannot be 296 * changed at run-time and it is fixed (as reported in the driver 297 * documentation). Viceversa the driver will try to set the MDC 298 * clock dynamically according to the actual clock input. 299 */ 300 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 301 { 302 u32 clk_rate; 303 304 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 305 306 /* Platform provided default clk_csr would be assumed valid 307 * for all other cases except for the below mentioned ones. 308 * For values higher than the IEEE 802.3 specified frequency 309 * we can not estimate the proper divider as it is not known 310 * the frequency of clk_csr_i. So we do not change the default 311 * divider. 312 */ 313 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 314 if (clk_rate < CSR_F_35M) 315 priv->clk_csr = STMMAC_CSR_20_35M; 316 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 317 priv->clk_csr = STMMAC_CSR_35_60M; 318 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 319 priv->clk_csr = STMMAC_CSR_60_100M; 320 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 321 priv->clk_csr = STMMAC_CSR_100_150M; 322 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 323 priv->clk_csr = STMMAC_CSR_150_250M; 324 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 325 priv->clk_csr = STMMAC_CSR_250_300M; 326 } 327 328 if (priv->plat->has_sun8i) { 329 if (clk_rate > 160000000) 330 priv->clk_csr = 0x03; 331 else if (clk_rate > 80000000) 332 priv->clk_csr = 0x02; 333 else if (clk_rate > 40000000) 334 priv->clk_csr = 0x01; 335 else 336 priv->clk_csr = 0; 337 } 338 339 if (priv->plat->has_xgmac) { 340 if (clk_rate > 400000000) 341 priv->clk_csr = 0x5; 342 else if (clk_rate > 350000000) 343 priv->clk_csr = 0x4; 344 else if (clk_rate > 300000000) 345 priv->clk_csr = 0x3; 346 else if (clk_rate > 250000000) 347 priv->clk_csr = 0x2; 348 else if (clk_rate > 150000000) 349 priv->clk_csr = 0x1; 350 else 351 priv->clk_csr = 0x0; 352 } 353 } 354 355 static void print_pkt(unsigned char *buf, int len) 356 { 357 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 358 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 359 } 360 361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 362 { 363 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 364 u32 avail; 365 366 if (tx_q->dirty_tx > tx_q->cur_tx) 367 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 368 else 369 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 370 371 return avail; 372 } 373 374 /** 375 * stmmac_rx_dirty - Get RX queue dirty 376 * @priv: driver private structure 377 * @queue: RX queue index 378 */ 379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 380 { 381 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 382 u32 dirty; 383 384 if (rx_q->dirty_rx <= rx_q->cur_rx) 385 dirty = rx_q->cur_rx - rx_q->dirty_rx; 386 else 387 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 388 389 return dirty; 390 } 391 392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 393 { 394 int tx_lpi_timer; 395 396 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 397 priv->eee_sw_timer_en = en ? 0 : 1; 398 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 399 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 400 } 401 402 /** 403 * stmmac_enable_eee_mode - check and enter in LPI mode 404 * @priv: driver private structure 405 * Description: this function is to verify and enter in LPI mode in case of 406 * EEE. 407 */ 408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 409 { 410 u32 tx_cnt = priv->plat->tx_queues_to_use; 411 u32 queue; 412 413 /* check if all TX queues have the work finished */ 414 for (queue = 0; queue < tx_cnt; queue++) { 415 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 416 417 if (tx_q->dirty_tx != tx_q->cur_tx) 418 return -EBUSY; /* still unfinished work */ 419 } 420 421 /* Check and enter in LPI mode */ 422 if (!priv->tx_path_in_lpi_mode) 423 stmmac_set_eee_mode(priv, priv->hw, 424 priv->plat->en_tx_lpi_clockgating); 425 return 0; 426 } 427 428 /** 429 * stmmac_disable_eee_mode - disable and exit from LPI mode 430 * @priv: driver private structure 431 * Description: this function is to exit and disable EEE in case of 432 * LPI state is true. This is called by the xmit. 433 */ 434 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 435 { 436 if (!priv->eee_sw_timer_en) { 437 stmmac_lpi_entry_timer_config(priv, 0); 438 return; 439 } 440 441 stmmac_reset_eee_mode(priv, priv->hw); 442 del_timer_sync(&priv->eee_ctrl_timer); 443 priv->tx_path_in_lpi_mode = false; 444 } 445 446 /** 447 * stmmac_eee_ctrl_timer - EEE TX SW timer. 448 * @t: timer_list struct containing private info 449 * Description: 450 * if there is no data transfer and if we are not in LPI state, 451 * then MAC Transmitter can be moved to LPI state. 452 */ 453 static void stmmac_eee_ctrl_timer(struct timer_list *t) 454 { 455 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 456 457 if (stmmac_enable_eee_mode(priv)) 458 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 459 } 460 461 /** 462 * stmmac_eee_init - init EEE 463 * @priv: driver private structure 464 * Description: 465 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 466 * can also manage EEE, this function enable the LPI state and start related 467 * timer. 468 */ 469 bool stmmac_eee_init(struct stmmac_priv *priv) 470 { 471 int eee_tw_timer = priv->eee_tw_timer; 472 473 /* Using PCS we cannot dial with the phy registers at this stage 474 * so we do not support extra feature like EEE. 475 */ 476 if (priv->hw->pcs == STMMAC_PCS_TBI || 477 priv->hw->pcs == STMMAC_PCS_RTBI) 478 return false; 479 480 /* Check if MAC core supports the EEE feature. */ 481 if (!priv->dma_cap.eee) 482 return false; 483 484 mutex_lock(&priv->lock); 485 486 /* Check if it needs to be deactivated */ 487 if (!priv->eee_active) { 488 if (priv->eee_enabled) { 489 netdev_dbg(priv->dev, "disable EEE\n"); 490 stmmac_lpi_entry_timer_config(priv, 0); 491 del_timer_sync(&priv->eee_ctrl_timer); 492 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 493 if (priv->hw->xpcs) 494 xpcs_config_eee(priv->hw->xpcs, 495 priv->plat->mult_fact_100ns, 496 false); 497 } 498 mutex_unlock(&priv->lock); 499 return false; 500 } 501 502 if (priv->eee_active && !priv->eee_enabled) { 503 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 504 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 505 eee_tw_timer); 506 if (priv->hw->xpcs) 507 xpcs_config_eee(priv->hw->xpcs, 508 priv->plat->mult_fact_100ns, 509 true); 510 } 511 512 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 513 del_timer_sync(&priv->eee_ctrl_timer); 514 priv->tx_path_in_lpi_mode = false; 515 stmmac_lpi_entry_timer_config(priv, 1); 516 } else { 517 stmmac_lpi_entry_timer_config(priv, 0); 518 mod_timer(&priv->eee_ctrl_timer, 519 STMMAC_LPI_T(priv->tx_lpi_timer)); 520 } 521 522 mutex_unlock(&priv->lock); 523 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 524 return true; 525 } 526 527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 528 * @priv: driver private structure 529 * @p : descriptor pointer 530 * @skb : the socket buffer 531 * Description : 532 * This function will read timestamp from the descriptor & pass it to stack. 533 * and also perform some sanity checks. 534 */ 535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 536 struct dma_desc *p, struct sk_buff *skb) 537 { 538 struct skb_shared_hwtstamps shhwtstamp; 539 bool found = false; 540 u64 ns = 0; 541 542 if (!priv->hwts_tx_en) 543 return; 544 545 /* exit if skb doesn't support hw tstamp */ 546 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 547 return; 548 549 /* check tx tstamp status */ 550 if (stmmac_get_tx_timestamp_status(priv, p)) { 551 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 552 found = true; 553 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 554 found = true; 555 } 556 557 if (found) { 558 ns -= priv->plat->cdc_error_adj; 559 560 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 561 shhwtstamp.hwtstamp = ns_to_ktime(ns); 562 563 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 564 /* pass tstamp to stack */ 565 skb_tstamp_tx(skb, &shhwtstamp); 566 } 567 } 568 569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 570 * @priv: driver private structure 571 * @p : descriptor pointer 572 * @np : next descriptor pointer 573 * @skb : the socket buffer 574 * Description : 575 * This function will read received packet's timestamp from the descriptor 576 * and pass it to stack. It also perform some sanity checks. 577 */ 578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 579 struct dma_desc *np, struct sk_buff *skb) 580 { 581 struct skb_shared_hwtstamps *shhwtstamp = NULL; 582 struct dma_desc *desc = p; 583 u64 ns = 0; 584 585 if (!priv->hwts_rx_en) 586 return; 587 /* For GMAC4, the valid timestamp is from CTX next desc. */ 588 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 589 desc = np; 590 591 /* Check if timestamp is available */ 592 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 593 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 594 595 ns -= priv->plat->cdc_error_adj; 596 597 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 598 shhwtstamp = skb_hwtstamps(skb); 599 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 600 shhwtstamp->hwtstamp = ns_to_ktime(ns); 601 } else { 602 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 603 } 604 } 605 606 /** 607 * stmmac_hwtstamp_set - control hardware timestamping. 608 * @dev: device pointer. 609 * @ifr: An IOCTL specific structure, that can contain a pointer to 610 * a proprietary structure used to pass information to the driver. 611 * Description: 612 * This function configures the MAC to enable/disable both outgoing(TX) 613 * and incoming(RX) packets time stamping based on user input. 614 * Return Value: 615 * 0 on success and an appropriate -ve integer on failure. 616 */ 617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 618 { 619 struct stmmac_priv *priv = netdev_priv(dev); 620 struct hwtstamp_config config; 621 u32 ptp_v2 = 0; 622 u32 tstamp_all = 0; 623 u32 ptp_over_ipv4_udp = 0; 624 u32 ptp_over_ipv6_udp = 0; 625 u32 ptp_over_ethernet = 0; 626 u32 snap_type_sel = 0; 627 u32 ts_master_en = 0; 628 u32 ts_event_en = 0; 629 630 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 631 netdev_alert(priv->dev, "No support for HW time stamping\n"); 632 priv->hwts_tx_en = 0; 633 priv->hwts_rx_en = 0; 634 635 return -EOPNOTSUPP; 636 } 637 638 if (copy_from_user(&config, ifr->ifr_data, 639 sizeof(config))) 640 return -EFAULT; 641 642 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 643 __func__, config.flags, config.tx_type, config.rx_filter); 644 645 if (config.tx_type != HWTSTAMP_TX_OFF && 646 config.tx_type != HWTSTAMP_TX_ON) 647 return -ERANGE; 648 649 if (priv->adv_ts) { 650 switch (config.rx_filter) { 651 case HWTSTAMP_FILTER_NONE: 652 /* time stamp no incoming packet at all */ 653 config.rx_filter = HWTSTAMP_FILTER_NONE; 654 break; 655 656 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 657 /* PTP v1, UDP, any kind of event packet */ 658 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 659 /* 'xmac' hardware can support Sync, Pdelay_Req and 660 * Pdelay_resp by setting bit14 and bits17/16 to 01 661 * This leaves Delay_Req timestamps out. 662 * Enable all events *and* general purpose message 663 * timestamping 664 */ 665 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 666 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 667 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 668 break; 669 670 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 671 /* PTP v1, UDP, Sync packet */ 672 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 673 /* take time stamp for SYNC messages only */ 674 ts_event_en = PTP_TCR_TSEVNTENA; 675 676 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 677 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 678 break; 679 680 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 681 /* PTP v1, UDP, Delay_req packet */ 682 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 683 /* take time stamp for Delay_Req messages only */ 684 ts_master_en = PTP_TCR_TSMSTRENA; 685 ts_event_en = PTP_TCR_TSEVNTENA; 686 687 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 688 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 689 break; 690 691 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 692 /* PTP v2, UDP, any kind of event packet */ 693 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 694 ptp_v2 = PTP_TCR_TSVER2ENA; 695 /* take time stamp for all event messages */ 696 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 697 698 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 699 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 700 break; 701 702 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 703 /* PTP v2, UDP, Sync packet */ 704 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 705 ptp_v2 = PTP_TCR_TSVER2ENA; 706 /* take time stamp for SYNC messages only */ 707 ts_event_en = PTP_TCR_TSEVNTENA; 708 709 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 710 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 711 break; 712 713 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 714 /* PTP v2, UDP, Delay_req packet */ 715 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 716 ptp_v2 = PTP_TCR_TSVER2ENA; 717 /* take time stamp for Delay_Req messages only */ 718 ts_master_en = PTP_TCR_TSMSTRENA; 719 ts_event_en = PTP_TCR_TSEVNTENA; 720 721 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 722 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 723 break; 724 725 case HWTSTAMP_FILTER_PTP_V2_EVENT: 726 /* PTP v2/802.AS1 any layer, any kind of event packet */ 727 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 728 ptp_v2 = PTP_TCR_TSVER2ENA; 729 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 730 if (priv->synopsys_id < DWMAC_CORE_4_10) 731 ts_event_en = PTP_TCR_TSEVNTENA; 732 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 733 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 734 ptp_over_ethernet = PTP_TCR_TSIPENA; 735 break; 736 737 case HWTSTAMP_FILTER_PTP_V2_SYNC: 738 /* PTP v2/802.AS1, any layer, Sync packet */ 739 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 740 ptp_v2 = PTP_TCR_TSVER2ENA; 741 /* take time stamp for SYNC messages only */ 742 ts_event_en = PTP_TCR_TSEVNTENA; 743 744 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 745 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 746 ptp_over_ethernet = PTP_TCR_TSIPENA; 747 break; 748 749 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 750 /* PTP v2/802.AS1, any layer, Delay_req packet */ 751 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 752 ptp_v2 = PTP_TCR_TSVER2ENA; 753 /* take time stamp for Delay_Req messages only */ 754 ts_master_en = PTP_TCR_TSMSTRENA; 755 ts_event_en = PTP_TCR_TSEVNTENA; 756 757 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 758 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 759 ptp_over_ethernet = PTP_TCR_TSIPENA; 760 break; 761 762 case HWTSTAMP_FILTER_NTP_ALL: 763 case HWTSTAMP_FILTER_ALL: 764 /* time stamp any incoming packet */ 765 config.rx_filter = HWTSTAMP_FILTER_ALL; 766 tstamp_all = PTP_TCR_TSENALL; 767 break; 768 769 default: 770 return -ERANGE; 771 } 772 } else { 773 switch (config.rx_filter) { 774 case HWTSTAMP_FILTER_NONE: 775 config.rx_filter = HWTSTAMP_FILTER_NONE; 776 break; 777 default: 778 /* PTP v1, UDP, any kind of event packet */ 779 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 780 break; 781 } 782 } 783 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 784 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 785 786 priv->systime_flags = STMMAC_HWTS_ACTIVE; 787 788 if (priv->hwts_tx_en || priv->hwts_rx_en) { 789 priv->systime_flags |= tstamp_all | ptp_v2 | 790 ptp_over_ethernet | ptp_over_ipv6_udp | 791 ptp_over_ipv4_udp | ts_event_en | 792 ts_master_en | snap_type_sel; 793 } 794 795 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 796 797 memcpy(&priv->tstamp_config, &config, sizeof(config)); 798 799 return copy_to_user(ifr->ifr_data, &config, 800 sizeof(config)) ? -EFAULT : 0; 801 } 802 803 /** 804 * stmmac_hwtstamp_get - read hardware timestamping. 805 * @dev: device pointer. 806 * @ifr: An IOCTL specific structure, that can contain a pointer to 807 * a proprietary structure used to pass information to the driver. 808 * Description: 809 * This function obtain the current hardware timestamping settings 810 * as requested. 811 */ 812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 813 { 814 struct stmmac_priv *priv = netdev_priv(dev); 815 struct hwtstamp_config *config = &priv->tstamp_config; 816 817 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 818 return -EOPNOTSUPP; 819 820 return copy_to_user(ifr->ifr_data, config, 821 sizeof(*config)) ? -EFAULT : 0; 822 } 823 824 /** 825 * stmmac_init_tstamp_counter - init hardware timestamping counter 826 * @priv: driver private structure 827 * @systime_flags: timestamping flags 828 * Description: 829 * Initialize hardware counter for packet timestamping. 830 * This is valid as long as the interface is open and not suspended. 831 * Will be rerun after resuming from suspend, case in which the timestamping 832 * flags updated by stmmac_hwtstamp_set() also need to be restored. 833 */ 834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 835 { 836 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 837 struct timespec64 now; 838 u32 sec_inc = 0; 839 u64 temp = 0; 840 841 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 842 return -EOPNOTSUPP; 843 844 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 845 priv->systime_flags = systime_flags; 846 847 /* program Sub Second Increment reg */ 848 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 849 priv->plat->clk_ptp_rate, 850 xmac, &sec_inc); 851 temp = div_u64(1000000000ULL, sec_inc); 852 853 /* Store sub second increment for later use */ 854 priv->sub_second_inc = sec_inc; 855 856 /* calculate default added value: 857 * formula is : 858 * addend = (2^32)/freq_div_ratio; 859 * where, freq_div_ratio = 1e9ns/sec_inc 860 */ 861 temp = (u64)(temp << 32); 862 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 863 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 864 865 /* initialize system time */ 866 ktime_get_real_ts64(&now); 867 868 /* lower 32 bits of tv_sec are safe until y2106 */ 869 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 870 871 return 0; 872 } 873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 874 875 /** 876 * stmmac_init_ptp - init PTP 877 * @priv: driver private structure 878 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 879 * This is done by looking at the HW cap. register. 880 * This function also registers the ptp driver. 881 */ 882 static int stmmac_init_ptp(struct stmmac_priv *priv) 883 { 884 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 885 int ret; 886 887 if (priv->plat->ptp_clk_freq_config) 888 priv->plat->ptp_clk_freq_config(priv); 889 890 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 891 if (ret) 892 return ret; 893 894 priv->adv_ts = 0; 895 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 896 if (xmac && priv->dma_cap.atime_stamp) 897 priv->adv_ts = 1; 898 /* Dwmac 3.x core with extend_desc can support adv_ts */ 899 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 900 priv->adv_ts = 1; 901 902 if (priv->dma_cap.time_stamp) 903 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 904 905 if (priv->adv_ts) 906 netdev_info(priv->dev, 907 "IEEE 1588-2008 Advanced Timestamp supported\n"); 908 909 priv->hwts_tx_en = 0; 910 priv->hwts_rx_en = 0; 911 912 return 0; 913 } 914 915 static void stmmac_release_ptp(struct stmmac_priv *priv) 916 { 917 clk_disable_unprepare(priv->plat->clk_ptp_ref); 918 stmmac_ptp_unregister(priv); 919 } 920 921 /** 922 * stmmac_mac_flow_ctrl - Configure flow control in all queues 923 * @priv: driver private structure 924 * @duplex: duplex passed to the next function 925 * Description: It is used for configuring the flow control in all queues 926 */ 927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 928 { 929 u32 tx_cnt = priv->plat->tx_queues_to_use; 930 931 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 932 priv->pause, tx_cnt); 933 } 934 935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 936 phy_interface_t interface) 937 { 938 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 939 940 if (!priv->hw->xpcs) 941 return NULL; 942 943 return &priv->hw->xpcs->pcs; 944 } 945 946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 947 const struct phylink_link_state *state) 948 { 949 /* Nothing to do, xpcs_config() handles everything */ 950 } 951 952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 953 { 954 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 955 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 956 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 957 bool *hs_enable = &fpe_cfg->hs_enable; 958 959 if (is_up && *hs_enable) { 960 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 961 } else { 962 *lo_state = FPE_STATE_OFF; 963 *lp_state = FPE_STATE_OFF; 964 } 965 } 966 967 static void stmmac_mac_link_down(struct phylink_config *config, 968 unsigned int mode, phy_interface_t interface) 969 { 970 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 971 972 stmmac_mac_set(priv, priv->ioaddr, false); 973 priv->eee_active = false; 974 priv->tx_lpi_enabled = false; 975 priv->eee_enabled = stmmac_eee_init(priv); 976 stmmac_set_eee_pls(priv, priv->hw, false); 977 978 if (priv->dma_cap.fpesel) 979 stmmac_fpe_link_state_handle(priv, false); 980 } 981 982 static void stmmac_mac_link_up(struct phylink_config *config, 983 struct phy_device *phy, 984 unsigned int mode, phy_interface_t interface, 985 int speed, int duplex, 986 bool tx_pause, bool rx_pause) 987 { 988 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 989 u32 old_ctrl, ctrl; 990 991 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 992 ctrl = old_ctrl & ~priv->hw->link.speed_mask; 993 994 if (interface == PHY_INTERFACE_MODE_USXGMII) { 995 switch (speed) { 996 case SPEED_10000: 997 ctrl |= priv->hw->link.xgmii.speed10000; 998 break; 999 case SPEED_5000: 1000 ctrl |= priv->hw->link.xgmii.speed5000; 1001 break; 1002 case SPEED_2500: 1003 ctrl |= priv->hw->link.xgmii.speed2500; 1004 break; 1005 default: 1006 return; 1007 } 1008 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1009 switch (speed) { 1010 case SPEED_100000: 1011 ctrl |= priv->hw->link.xlgmii.speed100000; 1012 break; 1013 case SPEED_50000: 1014 ctrl |= priv->hw->link.xlgmii.speed50000; 1015 break; 1016 case SPEED_40000: 1017 ctrl |= priv->hw->link.xlgmii.speed40000; 1018 break; 1019 case SPEED_25000: 1020 ctrl |= priv->hw->link.xlgmii.speed25000; 1021 break; 1022 case SPEED_10000: 1023 ctrl |= priv->hw->link.xgmii.speed10000; 1024 break; 1025 case SPEED_2500: 1026 ctrl |= priv->hw->link.speed2500; 1027 break; 1028 case SPEED_1000: 1029 ctrl |= priv->hw->link.speed1000; 1030 break; 1031 default: 1032 return; 1033 } 1034 } else { 1035 switch (speed) { 1036 case SPEED_2500: 1037 ctrl |= priv->hw->link.speed2500; 1038 break; 1039 case SPEED_1000: 1040 ctrl |= priv->hw->link.speed1000; 1041 break; 1042 case SPEED_100: 1043 ctrl |= priv->hw->link.speed100; 1044 break; 1045 case SPEED_10: 1046 ctrl |= priv->hw->link.speed10; 1047 break; 1048 default: 1049 return; 1050 } 1051 } 1052 1053 priv->speed = speed; 1054 1055 if (priv->plat->fix_mac_speed) 1056 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1057 1058 if (!duplex) 1059 ctrl &= ~priv->hw->link.duplex; 1060 else 1061 ctrl |= priv->hw->link.duplex; 1062 1063 /* Flow Control operation */ 1064 if (tx_pause && rx_pause) 1065 stmmac_mac_flow_ctrl(priv, duplex); 1066 1067 if (ctrl != old_ctrl) 1068 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1069 1070 stmmac_mac_set(priv, priv->ioaddr, true); 1071 if (phy && priv->dma_cap.eee) { 1072 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1073 priv->eee_enabled = stmmac_eee_init(priv); 1074 priv->tx_lpi_enabled = priv->eee_enabled; 1075 stmmac_set_eee_pls(priv, priv->hw, true); 1076 } 1077 1078 if (priv->dma_cap.fpesel) 1079 stmmac_fpe_link_state_handle(priv, true); 1080 } 1081 1082 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1083 .mac_select_pcs = stmmac_mac_select_pcs, 1084 .mac_config = stmmac_mac_config, 1085 .mac_link_down = stmmac_mac_link_down, 1086 .mac_link_up = stmmac_mac_link_up, 1087 }; 1088 1089 /** 1090 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1091 * @priv: driver private structure 1092 * Description: this is to verify if the HW supports the PCS. 1093 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1094 * configured for the TBI, RTBI, or SGMII PHY interface. 1095 */ 1096 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1097 { 1098 int interface = priv->plat->interface; 1099 1100 if (priv->dma_cap.pcs) { 1101 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1102 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1103 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1104 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1105 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1106 priv->hw->pcs = STMMAC_PCS_RGMII; 1107 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1108 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1109 priv->hw->pcs = STMMAC_PCS_SGMII; 1110 } 1111 } 1112 } 1113 1114 /** 1115 * stmmac_init_phy - PHY initialization 1116 * @dev: net device structure 1117 * Description: it initializes the driver's PHY state, and attaches the PHY 1118 * to the mac driver. 1119 * Return value: 1120 * 0 on success 1121 */ 1122 static int stmmac_init_phy(struct net_device *dev) 1123 { 1124 struct stmmac_priv *priv = netdev_priv(dev); 1125 struct fwnode_handle *fwnode; 1126 int ret; 1127 1128 fwnode = of_fwnode_handle(priv->plat->phylink_node); 1129 if (!fwnode) 1130 fwnode = dev_fwnode(priv->device); 1131 1132 if (fwnode) 1133 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); 1134 1135 /* Some DT bindings do not set-up the PHY handle. Let's try to 1136 * manually parse it 1137 */ 1138 if (!fwnode || ret) { 1139 int addr = priv->plat->phy_addr; 1140 struct phy_device *phydev; 1141 1142 phydev = mdiobus_get_phy(priv->mii, addr); 1143 if (!phydev) { 1144 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1145 return -ENODEV; 1146 } 1147 1148 ret = phylink_connect_phy(priv->phylink, phydev); 1149 } 1150 1151 if (!priv->plat->pmt) { 1152 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1153 1154 phylink_ethtool_get_wol(priv->phylink, &wol); 1155 device_set_wakeup_capable(priv->device, !!wol.supported); 1156 } 1157 1158 return ret; 1159 } 1160 1161 static int stmmac_phy_setup(struct stmmac_priv *priv) 1162 { 1163 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1164 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1165 int max_speed = priv->plat->max_speed; 1166 int mode = priv->plat->phy_interface; 1167 struct phylink *phylink; 1168 1169 priv->phylink_config.dev = &priv->dev->dev; 1170 priv->phylink_config.type = PHYLINK_NETDEV; 1171 if (priv->plat->mdio_bus_data) 1172 priv->phylink_config.ovr_an_inband = 1173 mdio_bus_data->xpcs_an_inband; 1174 1175 if (!fwnode) 1176 fwnode = dev_fwnode(priv->device); 1177 1178 /* Set the platform/firmware specified interface mode */ 1179 __set_bit(mode, priv->phylink_config.supported_interfaces); 1180 1181 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1182 if (priv->hw->xpcs) 1183 xpcs_get_interfaces(priv->hw->xpcs, 1184 priv->phylink_config.supported_interfaces); 1185 1186 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1187 MAC_10 | MAC_100; 1188 1189 if (!max_speed || max_speed >= 1000) 1190 priv->phylink_config.mac_capabilities |= MAC_1000; 1191 1192 if (priv->plat->has_gmac4) { 1193 if (!max_speed || max_speed >= 2500) 1194 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1195 } else if (priv->plat->has_xgmac) { 1196 if (!max_speed || max_speed >= 2500) 1197 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1198 if (!max_speed || max_speed >= 5000) 1199 priv->phylink_config.mac_capabilities |= MAC_5000FD; 1200 if (!max_speed || max_speed >= 10000) 1201 priv->phylink_config.mac_capabilities |= MAC_10000FD; 1202 if (!max_speed || max_speed >= 25000) 1203 priv->phylink_config.mac_capabilities |= MAC_25000FD; 1204 if (!max_speed || max_speed >= 40000) 1205 priv->phylink_config.mac_capabilities |= MAC_40000FD; 1206 if (!max_speed || max_speed >= 50000) 1207 priv->phylink_config.mac_capabilities |= MAC_50000FD; 1208 if (!max_speed || max_speed >= 100000) 1209 priv->phylink_config.mac_capabilities |= MAC_100000FD; 1210 } 1211 1212 /* Half-Duplex can only work with single queue */ 1213 if (priv->plat->tx_queues_to_use > 1) 1214 priv->phylink_config.mac_capabilities &= 1215 ~(MAC_10HD | MAC_100HD | MAC_1000HD); 1216 priv->phylink_config.mac_managed_pm = true; 1217 1218 phylink = phylink_create(&priv->phylink_config, fwnode, 1219 mode, &stmmac_phylink_mac_ops); 1220 if (IS_ERR(phylink)) 1221 return PTR_ERR(phylink); 1222 1223 priv->phylink = phylink; 1224 return 0; 1225 } 1226 1227 static void stmmac_display_rx_rings(struct stmmac_priv *priv, 1228 struct stmmac_dma_conf *dma_conf) 1229 { 1230 u32 rx_cnt = priv->plat->rx_queues_to_use; 1231 unsigned int desc_size; 1232 void *head_rx; 1233 u32 queue; 1234 1235 /* Display RX rings */ 1236 for (queue = 0; queue < rx_cnt; queue++) { 1237 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1238 1239 pr_info("\tRX Queue %u rings\n", queue); 1240 1241 if (priv->extend_desc) { 1242 head_rx = (void *)rx_q->dma_erx; 1243 desc_size = sizeof(struct dma_extended_desc); 1244 } else { 1245 head_rx = (void *)rx_q->dma_rx; 1246 desc_size = sizeof(struct dma_desc); 1247 } 1248 1249 /* Display RX ring */ 1250 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, 1251 rx_q->dma_rx_phy, desc_size); 1252 } 1253 } 1254 1255 static void stmmac_display_tx_rings(struct stmmac_priv *priv, 1256 struct stmmac_dma_conf *dma_conf) 1257 { 1258 u32 tx_cnt = priv->plat->tx_queues_to_use; 1259 unsigned int desc_size; 1260 void *head_tx; 1261 u32 queue; 1262 1263 /* Display TX rings */ 1264 for (queue = 0; queue < tx_cnt; queue++) { 1265 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1266 1267 pr_info("\tTX Queue %d rings\n", queue); 1268 1269 if (priv->extend_desc) { 1270 head_tx = (void *)tx_q->dma_etx; 1271 desc_size = sizeof(struct dma_extended_desc); 1272 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1273 head_tx = (void *)tx_q->dma_entx; 1274 desc_size = sizeof(struct dma_edesc); 1275 } else { 1276 head_tx = (void *)tx_q->dma_tx; 1277 desc_size = sizeof(struct dma_desc); 1278 } 1279 1280 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, 1281 tx_q->dma_tx_phy, desc_size); 1282 } 1283 } 1284 1285 static void stmmac_display_rings(struct stmmac_priv *priv, 1286 struct stmmac_dma_conf *dma_conf) 1287 { 1288 /* Display RX ring */ 1289 stmmac_display_rx_rings(priv, dma_conf); 1290 1291 /* Display TX ring */ 1292 stmmac_display_tx_rings(priv, dma_conf); 1293 } 1294 1295 static int stmmac_set_bfsize(int mtu, int bufsize) 1296 { 1297 int ret = bufsize; 1298 1299 if (mtu >= BUF_SIZE_8KiB) 1300 ret = BUF_SIZE_16KiB; 1301 else if (mtu >= BUF_SIZE_4KiB) 1302 ret = BUF_SIZE_8KiB; 1303 else if (mtu >= BUF_SIZE_2KiB) 1304 ret = BUF_SIZE_4KiB; 1305 else if (mtu > DEFAULT_BUFSIZE) 1306 ret = BUF_SIZE_2KiB; 1307 else 1308 ret = DEFAULT_BUFSIZE; 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * stmmac_clear_rx_descriptors - clear RX descriptors 1315 * @priv: driver private structure 1316 * @dma_conf: structure to take the dma data 1317 * @queue: RX queue index 1318 * Description: this function is called to clear the RX descriptors 1319 * in case of both basic and extended descriptors are used. 1320 */ 1321 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, 1322 struct stmmac_dma_conf *dma_conf, 1323 u32 queue) 1324 { 1325 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1326 int i; 1327 1328 /* Clear the RX descriptors */ 1329 for (i = 0; i < dma_conf->dma_rx_size; i++) 1330 if (priv->extend_desc) 1331 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1332 priv->use_riwt, priv->mode, 1333 (i == dma_conf->dma_rx_size - 1), 1334 dma_conf->dma_buf_sz); 1335 else 1336 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1337 priv->use_riwt, priv->mode, 1338 (i == dma_conf->dma_rx_size - 1), 1339 dma_conf->dma_buf_sz); 1340 } 1341 1342 /** 1343 * stmmac_clear_tx_descriptors - clear tx descriptors 1344 * @priv: driver private structure 1345 * @dma_conf: structure to take the dma data 1346 * @queue: TX queue index. 1347 * Description: this function is called to clear the TX descriptors 1348 * in case of both basic and extended descriptors are used. 1349 */ 1350 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, 1351 struct stmmac_dma_conf *dma_conf, 1352 u32 queue) 1353 { 1354 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1355 int i; 1356 1357 /* Clear the TX descriptors */ 1358 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1359 int last = (i == (dma_conf->dma_tx_size - 1)); 1360 struct dma_desc *p; 1361 1362 if (priv->extend_desc) 1363 p = &tx_q->dma_etx[i].basic; 1364 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1365 p = &tx_q->dma_entx[i].basic; 1366 else 1367 p = &tx_q->dma_tx[i]; 1368 1369 stmmac_init_tx_desc(priv, p, priv->mode, last); 1370 } 1371 } 1372 1373 /** 1374 * stmmac_clear_descriptors - clear descriptors 1375 * @priv: driver private structure 1376 * @dma_conf: structure to take the dma data 1377 * Description: this function is called to clear the TX and RX descriptors 1378 * in case of both basic and extended descriptors are used. 1379 */ 1380 static void stmmac_clear_descriptors(struct stmmac_priv *priv, 1381 struct stmmac_dma_conf *dma_conf) 1382 { 1383 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1384 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1385 u32 queue; 1386 1387 /* Clear the RX descriptors */ 1388 for (queue = 0; queue < rx_queue_cnt; queue++) 1389 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1390 1391 /* Clear the TX descriptors */ 1392 for (queue = 0; queue < tx_queue_cnt; queue++) 1393 stmmac_clear_tx_descriptors(priv, dma_conf, queue); 1394 } 1395 1396 /** 1397 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1398 * @priv: driver private structure 1399 * @dma_conf: structure to take the dma data 1400 * @p: descriptor pointer 1401 * @i: descriptor index 1402 * @flags: gfp flag 1403 * @queue: RX queue index 1404 * Description: this function is called to allocate a receive buffer, perform 1405 * the DMA mapping and init the descriptor. 1406 */ 1407 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, 1408 struct stmmac_dma_conf *dma_conf, 1409 struct dma_desc *p, 1410 int i, gfp_t flags, u32 queue) 1411 { 1412 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1413 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1414 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1415 1416 if (priv->dma_cap.addr64 <= 32) 1417 gfp |= GFP_DMA32; 1418 1419 if (!buf->page) { 1420 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1421 if (!buf->page) 1422 return -ENOMEM; 1423 buf->page_offset = stmmac_rx_offset(priv); 1424 } 1425 1426 if (priv->sph && !buf->sec_page) { 1427 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1428 if (!buf->sec_page) 1429 return -ENOMEM; 1430 1431 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1432 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1433 } else { 1434 buf->sec_page = NULL; 1435 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1436 } 1437 1438 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1439 1440 stmmac_set_desc_addr(priv, p, buf->addr); 1441 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) 1442 stmmac_init_desc3(priv, p); 1443 1444 return 0; 1445 } 1446 1447 /** 1448 * stmmac_free_rx_buffer - free RX dma buffers 1449 * @priv: private structure 1450 * @rx_q: RX queue 1451 * @i: buffer index. 1452 */ 1453 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, 1454 struct stmmac_rx_queue *rx_q, 1455 int i) 1456 { 1457 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1458 1459 if (buf->page) 1460 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1461 buf->page = NULL; 1462 1463 if (buf->sec_page) 1464 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1465 buf->sec_page = NULL; 1466 } 1467 1468 /** 1469 * stmmac_free_tx_buffer - free RX dma buffers 1470 * @priv: private structure 1471 * @dma_conf: structure to take the dma data 1472 * @queue: RX queue index 1473 * @i: buffer index. 1474 */ 1475 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, 1476 struct stmmac_dma_conf *dma_conf, 1477 u32 queue, int i) 1478 { 1479 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1480 1481 if (tx_q->tx_skbuff_dma[i].buf && 1482 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1483 if (tx_q->tx_skbuff_dma[i].map_as_page) 1484 dma_unmap_page(priv->device, 1485 tx_q->tx_skbuff_dma[i].buf, 1486 tx_q->tx_skbuff_dma[i].len, 1487 DMA_TO_DEVICE); 1488 else 1489 dma_unmap_single(priv->device, 1490 tx_q->tx_skbuff_dma[i].buf, 1491 tx_q->tx_skbuff_dma[i].len, 1492 DMA_TO_DEVICE); 1493 } 1494 1495 if (tx_q->xdpf[i] && 1496 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1497 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1498 xdp_return_frame(tx_q->xdpf[i]); 1499 tx_q->xdpf[i] = NULL; 1500 } 1501 1502 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1503 tx_q->xsk_frames_done++; 1504 1505 if (tx_q->tx_skbuff[i] && 1506 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1507 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1508 tx_q->tx_skbuff[i] = NULL; 1509 } 1510 1511 tx_q->tx_skbuff_dma[i].buf = 0; 1512 tx_q->tx_skbuff_dma[i].map_as_page = false; 1513 } 1514 1515 /** 1516 * dma_free_rx_skbufs - free RX dma buffers 1517 * @priv: private structure 1518 * @dma_conf: structure to take the dma data 1519 * @queue: RX queue index 1520 */ 1521 static void dma_free_rx_skbufs(struct stmmac_priv *priv, 1522 struct stmmac_dma_conf *dma_conf, 1523 u32 queue) 1524 { 1525 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1526 int i; 1527 1528 for (i = 0; i < dma_conf->dma_rx_size; i++) 1529 stmmac_free_rx_buffer(priv, rx_q, i); 1530 } 1531 1532 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, 1533 struct stmmac_dma_conf *dma_conf, 1534 u32 queue, gfp_t flags) 1535 { 1536 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1537 int i; 1538 1539 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1540 struct dma_desc *p; 1541 int ret; 1542 1543 if (priv->extend_desc) 1544 p = &((rx_q->dma_erx + i)->basic); 1545 else 1546 p = rx_q->dma_rx + i; 1547 1548 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, 1549 queue); 1550 if (ret) 1551 return ret; 1552 1553 rx_q->buf_alloc_num++; 1554 } 1555 1556 return 0; 1557 } 1558 1559 /** 1560 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1561 * @priv: private structure 1562 * @dma_conf: structure to take the dma data 1563 * @queue: RX queue index 1564 */ 1565 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, 1566 struct stmmac_dma_conf *dma_conf, 1567 u32 queue) 1568 { 1569 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1570 int i; 1571 1572 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1573 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1574 1575 if (!buf->xdp) 1576 continue; 1577 1578 xsk_buff_free(buf->xdp); 1579 buf->xdp = NULL; 1580 } 1581 } 1582 1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, 1584 struct stmmac_dma_conf *dma_conf, 1585 u32 queue) 1586 { 1587 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1588 int i; 1589 1590 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1591 struct stmmac_rx_buffer *buf; 1592 dma_addr_t dma_addr; 1593 struct dma_desc *p; 1594 1595 if (priv->extend_desc) 1596 p = (struct dma_desc *)(rx_q->dma_erx + i); 1597 else 1598 p = rx_q->dma_rx + i; 1599 1600 buf = &rx_q->buf_pool[i]; 1601 1602 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1603 if (!buf->xdp) 1604 return -ENOMEM; 1605 1606 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1607 stmmac_set_desc_addr(priv, p, dma_addr); 1608 rx_q->buf_alloc_num++; 1609 } 1610 1611 return 0; 1612 } 1613 1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1615 { 1616 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1617 return NULL; 1618 1619 return xsk_get_pool_from_qid(priv->dev, queue); 1620 } 1621 1622 /** 1623 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1624 * @priv: driver private structure 1625 * @dma_conf: structure to take the dma data 1626 * @queue: RX queue index 1627 * @flags: gfp flag. 1628 * Description: this function initializes the DMA RX descriptors 1629 * and allocates the socket buffers. It supports the chained and ring 1630 * modes. 1631 */ 1632 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, 1633 struct stmmac_dma_conf *dma_conf, 1634 u32 queue, gfp_t flags) 1635 { 1636 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1637 int ret; 1638 1639 netif_dbg(priv, probe, priv->dev, 1640 "(%s) dma_rx_phy=0x%08x\n", __func__, 1641 (u32)rx_q->dma_rx_phy); 1642 1643 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1644 1645 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1646 1647 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1648 1649 if (rx_q->xsk_pool) { 1650 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1651 MEM_TYPE_XSK_BUFF_POOL, 1652 NULL)); 1653 netdev_info(priv->dev, 1654 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1655 rx_q->queue_index); 1656 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1657 } else { 1658 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1659 MEM_TYPE_PAGE_POOL, 1660 rx_q->page_pool)); 1661 netdev_info(priv->dev, 1662 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1663 rx_q->queue_index); 1664 } 1665 1666 if (rx_q->xsk_pool) { 1667 /* RX XDP ZC buffer pool may not be populated, e.g. 1668 * xdpsock TX-only. 1669 */ 1670 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); 1671 } else { 1672 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); 1673 if (ret < 0) 1674 return -ENOMEM; 1675 } 1676 1677 /* Setup the chained descriptor addresses */ 1678 if (priv->mode == STMMAC_CHAIN_MODE) { 1679 if (priv->extend_desc) 1680 stmmac_mode_init(priv, rx_q->dma_erx, 1681 rx_q->dma_rx_phy, 1682 dma_conf->dma_rx_size, 1); 1683 else 1684 stmmac_mode_init(priv, rx_q->dma_rx, 1685 rx_q->dma_rx_phy, 1686 dma_conf->dma_rx_size, 0); 1687 } 1688 1689 return 0; 1690 } 1691 1692 static int init_dma_rx_desc_rings(struct net_device *dev, 1693 struct stmmac_dma_conf *dma_conf, 1694 gfp_t flags) 1695 { 1696 struct stmmac_priv *priv = netdev_priv(dev); 1697 u32 rx_count = priv->plat->rx_queues_to_use; 1698 int queue; 1699 int ret; 1700 1701 /* RX INITIALIZATION */ 1702 netif_dbg(priv, probe, priv->dev, 1703 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1704 1705 for (queue = 0; queue < rx_count; queue++) { 1706 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); 1707 if (ret) 1708 goto err_init_rx_buffers; 1709 } 1710 1711 return 0; 1712 1713 err_init_rx_buffers: 1714 while (queue >= 0) { 1715 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1716 1717 if (rx_q->xsk_pool) 1718 dma_free_rx_xskbufs(priv, dma_conf, queue); 1719 else 1720 dma_free_rx_skbufs(priv, dma_conf, queue); 1721 1722 rx_q->buf_alloc_num = 0; 1723 rx_q->xsk_pool = NULL; 1724 1725 queue--; 1726 } 1727 1728 return ret; 1729 } 1730 1731 /** 1732 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1733 * @priv: driver private structure 1734 * @dma_conf: structure to take the dma data 1735 * @queue: TX queue index 1736 * Description: this function initializes the DMA TX descriptors 1737 * and allocates the socket buffers. It supports the chained and ring 1738 * modes. 1739 */ 1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, 1741 struct stmmac_dma_conf *dma_conf, 1742 u32 queue) 1743 { 1744 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1745 int i; 1746 1747 netif_dbg(priv, probe, priv->dev, 1748 "(%s) dma_tx_phy=0x%08x\n", __func__, 1749 (u32)tx_q->dma_tx_phy); 1750 1751 /* Setup the chained descriptor addresses */ 1752 if (priv->mode == STMMAC_CHAIN_MODE) { 1753 if (priv->extend_desc) 1754 stmmac_mode_init(priv, tx_q->dma_etx, 1755 tx_q->dma_tx_phy, 1756 dma_conf->dma_tx_size, 1); 1757 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1758 stmmac_mode_init(priv, tx_q->dma_tx, 1759 tx_q->dma_tx_phy, 1760 dma_conf->dma_tx_size, 0); 1761 } 1762 1763 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1764 1765 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1766 struct dma_desc *p; 1767 1768 if (priv->extend_desc) 1769 p = &((tx_q->dma_etx + i)->basic); 1770 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1771 p = &((tx_q->dma_entx + i)->basic); 1772 else 1773 p = tx_q->dma_tx + i; 1774 1775 stmmac_clear_desc(priv, p); 1776 1777 tx_q->tx_skbuff_dma[i].buf = 0; 1778 tx_q->tx_skbuff_dma[i].map_as_page = false; 1779 tx_q->tx_skbuff_dma[i].len = 0; 1780 tx_q->tx_skbuff_dma[i].last_segment = false; 1781 tx_q->tx_skbuff[i] = NULL; 1782 } 1783 1784 return 0; 1785 } 1786 1787 static int init_dma_tx_desc_rings(struct net_device *dev, 1788 struct stmmac_dma_conf *dma_conf) 1789 { 1790 struct stmmac_priv *priv = netdev_priv(dev); 1791 u32 tx_queue_cnt; 1792 u32 queue; 1793 1794 tx_queue_cnt = priv->plat->tx_queues_to_use; 1795 1796 for (queue = 0; queue < tx_queue_cnt; queue++) 1797 __init_dma_tx_desc_rings(priv, dma_conf, queue); 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * init_dma_desc_rings - init the RX/TX descriptor rings 1804 * @dev: net device structure 1805 * @dma_conf: structure to take the dma data 1806 * @flags: gfp flag. 1807 * Description: this function initializes the DMA RX/TX descriptors 1808 * and allocates the socket buffers. It supports the chained and ring 1809 * modes. 1810 */ 1811 static int init_dma_desc_rings(struct net_device *dev, 1812 struct stmmac_dma_conf *dma_conf, 1813 gfp_t flags) 1814 { 1815 struct stmmac_priv *priv = netdev_priv(dev); 1816 int ret; 1817 1818 ret = init_dma_rx_desc_rings(dev, dma_conf, flags); 1819 if (ret) 1820 return ret; 1821 1822 ret = init_dma_tx_desc_rings(dev, dma_conf); 1823 1824 stmmac_clear_descriptors(priv, dma_conf); 1825 1826 if (netif_msg_hw(priv)) 1827 stmmac_display_rings(priv, dma_conf); 1828 1829 return ret; 1830 } 1831 1832 /** 1833 * dma_free_tx_skbufs - free TX dma buffers 1834 * @priv: private structure 1835 * @dma_conf: structure to take the dma data 1836 * @queue: TX queue index 1837 */ 1838 static void dma_free_tx_skbufs(struct stmmac_priv *priv, 1839 struct stmmac_dma_conf *dma_conf, 1840 u32 queue) 1841 { 1842 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1843 int i; 1844 1845 tx_q->xsk_frames_done = 0; 1846 1847 for (i = 0; i < dma_conf->dma_tx_size; i++) 1848 stmmac_free_tx_buffer(priv, dma_conf, queue, i); 1849 1850 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1851 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1852 tx_q->xsk_frames_done = 0; 1853 tx_q->xsk_pool = NULL; 1854 } 1855 } 1856 1857 /** 1858 * stmmac_free_tx_skbufs - free TX skb buffers 1859 * @priv: private structure 1860 */ 1861 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1862 { 1863 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1864 u32 queue; 1865 1866 for (queue = 0; queue < tx_queue_cnt; queue++) 1867 dma_free_tx_skbufs(priv, &priv->dma_conf, queue); 1868 } 1869 1870 /** 1871 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1872 * @priv: private structure 1873 * @dma_conf: structure to take the dma data 1874 * @queue: RX queue index 1875 */ 1876 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, 1877 struct stmmac_dma_conf *dma_conf, 1878 u32 queue) 1879 { 1880 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1881 1882 /* Release the DMA RX socket buffers */ 1883 if (rx_q->xsk_pool) 1884 dma_free_rx_xskbufs(priv, dma_conf, queue); 1885 else 1886 dma_free_rx_skbufs(priv, dma_conf, queue); 1887 1888 rx_q->buf_alloc_num = 0; 1889 rx_q->xsk_pool = NULL; 1890 1891 /* Free DMA regions of consistent memory previously allocated */ 1892 if (!priv->extend_desc) 1893 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1894 sizeof(struct dma_desc), 1895 rx_q->dma_rx, rx_q->dma_rx_phy); 1896 else 1897 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1898 sizeof(struct dma_extended_desc), 1899 rx_q->dma_erx, rx_q->dma_rx_phy); 1900 1901 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1902 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1903 1904 kfree(rx_q->buf_pool); 1905 if (rx_q->page_pool) 1906 page_pool_destroy(rx_q->page_pool); 1907 } 1908 1909 static void free_dma_rx_desc_resources(struct stmmac_priv *priv, 1910 struct stmmac_dma_conf *dma_conf) 1911 { 1912 u32 rx_count = priv->plat->rx_queues_to_use; 1913 u32 queue; 1914 1915 /* Free RX queue resources */ 1916 for (queue = 0; queue < rx_count; queue++) 1917 __free_dma_rx_desc_resources(priv, dma_conf, queue); 1918 } 1919 1920 /** 1921 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1922 * @priv: private structure 1923 * @dma_conf: structure to take the dma data 1924 * @queue: TX queue index 1925 */ 1926 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, 1927 struct stmmac_dma_conf *dma_conf, 1928 u32 queue) 1929 { 1930 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1931 size_t size; 1932 void *addr; 1933 1934 /* Release the DMA TX socket buffers */ 1935 dma_free_tx_skbufs(priv, dma_conf, queue); 1936 1937 if (priv->extend_desc) { 1938 size = sizeof(struct dma_extended_desc); 1939 addr = tx_q->dma_etx; 1940 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1941 size = sizeof(struct dma_edesc); 1942 addr = tx_q->dma_entx; 1943 } else { 1944 size = sizeof(struct dma_desc); 1945 addr = tx_q->dma_tx; 1946 } 1947 1948 size *= dma_conf->dma_tx_size; 1949 1950 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1951 1952 kfree(tx_q->tx_skbuff_dma); 1953 kfree(tx_q->tx_skbuff); 1954 } 1955 1956 static void free_dma_tx_desc_resources(struct stmmac_priv *priv, 1957 struct stmmac_dma_conf *dma_conf) 1958 { 1959 u32 tx_count = priv->plat->tx_queues_to_use; 1960 u32 queue; 1961 1962 /* Free TX queue resources */ 1963 for (queue = 0; queue < tx_count; queue++) 1964 __free_dma_tx_desc_resources(priv, dma_conf, queue); 1965 } 1966 1967 /** 1968 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1969 * @priv: private structure 1970 * @dma_conf: structure to take the dma data 1971 * @queue: RX queue index 1972 * Description: according to which descriptor can be used (extend or basic) 1973 * this function allocates the resources for TX and RX paths. In case of 1974 * reception, for example, it pre-allocated the RX socket buffer in order to 1975 * allow zero-copy mechanism. 1976 */ 1977 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 1978 struct stmmac_dma_conf *dma_conf, 1979 u32 queue) 1980 { 1981 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1982 struct stmmac_channel *ch = &priv->channel[queue]; 1983 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1984 struct page_pool_params pp_params = { 0 }; 1985 unsigned int num_pages; 1986 unsigned int napi_id; 1987 int ret; 1988 1989 rx_q->queue_index = queue; 1990 rx_q->priv_data = priv; 1991 1992 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1993 pp_params.pool_size = dma_conf->dma_rx_size; 1994 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); 1995 pp_params.order = ilog2(num_pages); 1996 pp_params.nid = dev_to_node(priv->device); 1997 pp_params.dev = priv->device; 1998 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1999 pp_params.offset = stmmac_rx_offset(priv); 2000 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2001 2002 rx_q->page_pool = page_pool_create(&pp_params); 2003 if (IS_ERR(rx_q->page_pool)) { 2004 ret = PTR_ERR(rx_q->page_pool); 2005 rx_q->page_pool = NULL; 2006 return ret; 2007 } 2008 2009 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, 2010 sizeof(*rx_q->buf_pool), 2011 GFP_KERNEL); 2012 if (!rx_q->buf_pool) 2013 return -ENOMEM; 2014 2015 if (priv->extend_desc) { 2016 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2017 dma_conf->dma_rx_size * 2018 sizeof(struct dma_extended_desc), 2019 &rx_q->dma_rx_phy, 2020 GFP_KERNEL); 2021 if (!rx_q->dma_erx) 2022 return -ENOMEM; 2023 2024 } else { 2025 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2026 dma_conf->dma_rx_size * 2027 sizeof(struct dma_desc), 2028 &rx_q->dma_rx_phy, 2029 GFP_KERNEL); 2030 if (!rx_q->dma_rx) 2031 return -ENOMEM; 2032 } 2033 2034 if (stmmac_xdp_is_enabled(priv) && 2035 test_bit(queue, priv->af_xdp_zc_qps)) 2036 napi_id = ch->rxtx_napi.napi_id; 2037 else 2038 napi_id = ch->rx_napi.napi_id; 2039 2040 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2041 rx_q->queue_index, 2042 napi_id); 2043 if (ret) { 2044 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2045 return -EINVAL; 2046 } 2047 2048 return 0; 2049 } 2050 2051 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2052 struct stmmac_dma_conf *dma_conf) 2053 { 2054 u32 rx_count = priv->plat->rx_queues_to_use; 2055 u32 queue; 2056 int ret; 2057 2058 /* RX queues buffers and DMA */ 2059 for (queue = 0; queue < rx_count; queue++) { 2060 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); 2061 if (ret) 2062 goto err_dma; 2063 } 2064 2065 return 0; 2066 2067 err_dma: 2068 free_dma_rx_desc_resources(priv, dma_conf); 2069 2070 return ret; 2071 } 2072 2073 /** 2074 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2075 * @priv: private structure 2076 * @dma_conf: structure to take the dma data 2077 * @queue: TX queue index 2078 * Description: according to which descriptor can be used (extend or basic) 2079 * this function allocates the resources for TX and RX paths. In case of 2080 * reception, for example, it pre-allocated the RX socket buffer in order to 2081 * allow zero-copy mechanism. 2082 */ 2083 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2084 struct stmmac_dma_conf *dma_conf, 2085 u32 queue) 2086 { 2087 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 2088 size_t size; 2089 void *addr; 2090 2091 tx_q->queue_index = queue; 2092 tx_q->priv_data = priv; 2093 2094 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, 2095 sizeof(*tx_q->tx_skbuff_dma), 2096 GFP_KERNEL); 2097 if (!tx_q->tx_skbuff_dma) 2098 return -ENOMEM; 2099 2100 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, 2101 sizeof(struct sk_buff *), 2102 GFP_KERNEL); 2103 if (!tx_q->tx_skbuff) 2104 return -ENOMEM; 2105 2106 if (priv->extend_desc) 2107 size = sizeof(struct dma_extended_desc); 2108 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2109 size = sizeof(struct dma_edesc); 2110 else 2111 size = sizeof(struct dma_desc); 2112 2113 size *= dma_conf->dma_tx_size; 2114 2115 addr = dma_alloc_coherent(priv->device, size, 2116 &tx_q->dma_tx_phy, GFP_KERNEL); 2117 if (!addr) 2118 return -ENOMEM; 2119 2120 if (priv->extend_desc) 2121 tx_q->dma_etx = addr; 2122 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2123 tx_q->dma_entx = addr; 2124 else 2125 tx_q->dma_tx = addr; 2126 2127 return 0; 2128 } 2129 2130 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2131 struct stmmac_dma_conf *dma_conf) 2132 { 2133 u32 tx_count = priv->plat->tx_queues_to_use; 2134 u32 queue; 2135 int ret; 2136 2137 /* TX queues buffers and DMA */ 2138 for (queue = 0; queue < tx_count; queue++) { 2139 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); 2140 if (ret) 2141 goto err_dma; 2142 } 2143 2144 return 0; 2145 2146 err_dma: 2147 free_dma_tx_desc_resources(priv, dma_conf); 2148 return ret; 2149 } 2150 2151 /** 2152 * alloc_dma_desc_resources - alloc TX/RX resources. 2153 * @priv: private structure 2154 * @dma_conf: structure to take the dma data 2155 * Description: according to which descriptor can be used (extend or basic) 2156 * this function allocates the resources for TX and RX paths. In case of 2157 * reception, for example, it pre-allocated the RX socket buffer in order to 2158 * allow zero-copy mechanism. 2159 */ 2160 static int alloc_dma_desc_resources(struct stmmac_priv *priv, 2161 struct stmmac_dma_conf *dma_conf) 2162 { 2163 /* RX Allocation */ 2164 int ret = alloc_dma_rx_desc_resources(priv, dma_conf); 2165 2166 if (ret) 2167 return ret; 2168 2169 ret = alloc_dma_tx_desc_resources(priv, dma_conf); 2170 2171 return ret; 2172 } 2173 2174 /** 2175 * free_dma_desc_resources - free dma desc resources 2176 * @priv: private structure 2177 * @dma_conf: structure to take the dma data 2178 */ 2179 static void free_dma_desc_resources(struct stmmac_priv *priv, 2180 struct stmmac_dma_conf *dma_conf) 2181 { 2182 /* Release the DMA TX socket buffers */ 2183 free_dma_tx_desc_resources(priv, dma_conf); 2184 2185 /* Release the DMA RX socket buffers later 2186 * to ensure all pending XDP_TX buffers are returned. 2187 */ 2188 free_dma_rx_desc_resources(priv, dma_conf); 2189 } 2190 2191 /** 2192 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2193 * @priv: driver private structure 2194 * Description: It is used for enabling the rx queues in the MAC 2195 */ 2196 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2197 { 2198 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2199 int queue; 2200 u8 mode; 2201 2202 for (queue = 0; queue < rx_queues_count; queue++) { 2203 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2204 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2205 } 2206 } 2207 2208 /** 2209 * stmmac_start_rx_dma - start RX DMA channel 2210 * @priv: driver private structure 2211 * @chan: RX channel index 2212 * Description: 2213 * This starts a RX DMA channel 2214 */ 2215 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2216 { 2217 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2218 stmmac_start_rx(priv, priv->ioaddr, chan); 2219 } 2220 2221 /** 2222 * stmmac_start_tx_dma - start TX DMA channel 2223 * @priv: driver private structure 2224 * @chan: TX channel index 2225 * Description: 2226 * This starts a TX DMA channel 2227 */ 2228 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2229 { 2230 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2231 stmmac_start_tx(priv, priv->ioaddr, chan); 2232 } 2233 2234 /** 2235 * stmmac_stop_rx_dma - stop RX DMA channel 2236 * @priv: driver private structure 2237 * @chan: RX channel index 2238 * Description: 2239 * This stops a RX DMA channel 2240 */ 2241 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2242 { 2243 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2244 stmmac_stop_rx(priv, priv->ioaddr, chan); 2245 } 2246 2247 /** 2248 * stmmac_stop_tx_dma - stop TX DMA channel 2249 * @priv: driver private structure 2250 * @chan: TX channel index 2251 * Description: 2252 * This stops a TX DMA channel 2253 */ 2254 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2255 { 2256 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2257 stmmac_stop_tx(priv, priv->ioaddr, chan); 2258 } 2259 2260 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2261 { 2262 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2263 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2264 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2265 u32 chan; 2266 2267 for (chan = 0; chan < dma_csr_ch; chan++) { 2268 struct stmmac_channel *ch = &priv->channel[chan]; 2269 unsigned long flags; 2270 2271 spin_lock_irqsave(&ch->lock, flags); 2272 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2273 spin_unlock_irqrestore(&ch->lock, flags); 2274 } 2275 } 2276 2277 /** 2278 * stmmac_start_all_dma - start all RX and TX DMA channels 2279 * @priv: driver private structure 2280 * Description: 2281 * This starts all the RX and TX DMA channels 2282 */ 2283 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2284 { 2285 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2286 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2287 u32 chan = 0; 2288 2289 for (chan = 0; chan < rx_channels_count; chan++) 2290 stmmac_start_rx_dma(priv, chan); 2291 2292 for (chan = 0; chan < tx_channels_count; chan++) 2293 stmmac_start_tx_dma(priv, chan); 2294 } 2295 2296 /** 2297 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2298 * @priv: driver private structure 2299 * Description: 2300 * This stops the RX and TX DMA channels 2301 */ 2302 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2303 { 2304 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2305 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2306 u32 chan = 0; 2307 2308 for (chan = 0; chan < rx_channels_count; chan++) 2309 stmmac_stop_rx_dma(priv, chan); 2310 2311 for (chan = 0; chan < tx_channels_count; chan++) 2312 stmmac_stop_tx_dma(priv, chan); 2313 } 2314 2315 /** 2316 * stmmac_dma_operation_mode - HW DMA operation mode 2317 * @priv: driver private structure 2318 * Description: it is used for configuring the DMA operation mode register in 2319 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2320 */ 2321 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2322 { 2323 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2324 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2325 int rxfifosz = priv->plat->rx_fifo_size; 2326 int txfifosz = priv->plat->tx_fifo_size; 2327 u32 txmode = 0; 2328 u32 rxmode = 0; 2329 u32 chan = 0; 2330 u8 qmode = 0; 2331 2332 if (rxfifosz == 0) 2333 rxfifosz = priv->dma_cap.rx_fifo_size; 2334 if (txfifosz == 0) 2335 txfifosz = priv->dma_cap.tx_fifo_size; 2336 2337 /* Adjust for real per queue fifo size */ 2338 rxfifosz /= rx_channels_count; 2339 txfifosz /= tx_channels_count; 2340 2341 if (priv->plat->force_thresh_dma_mode) { 2342 txmode = tc; 2343 rxmode = tc; 2344 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2345 /* 2346 * In case of GMAC, SF mode can be enabled 2347 * to perform the TX COE in HW. This depends on: 2348 * 1) TX COE if actually supported 2349 * 2) There is no bugged Jumbo frame support 2350 * that needs to not insert csum in the TDES. 2351 */ 2352 txmode = SF_DMA_MODE; 2353 rxmode = SF_DMA_MODE; 2354 priv->xstats.threshold = SF_DMA_MODE; 2355 } else { 2356 txmode = tc; 2357 rxmode = SF_DMA_MODE; 2358 } 2359 2360 /* configure all channels */ 2361 for (chan = 0; chan < rx_channels_count; chan++) { 2362 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2363 u32 buf_size; 2364 2365 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2366 2367 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2368 rxfifosz, qmode); 2369 2370 if (rx_q->xsk_pool) { 2371 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2372 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2373 buf_size, 2374 chan); 2375 } else { 2376 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2377 priv->dma_conf.dma_buf_sz, 2378 chan); 2379 } 2380 } 2381 2382 for (chan = 0; chan < tx_channels_count; chan++) { 2383 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2384 2385 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2386 txfifosz, qmode); 2387 } 2388 } 2389 2390 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2391 { 2392 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2393 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2394 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2395 unsigned int entry = tx_q->cur_tx; 2396 struct dma_desc *tx_desc = NULL; 2397 struct xdp_desc xdp_desc; 2398 bool work_done = true; 2399 2400 /* Avoids TX time-out as we are sharing with slow path */ 2401 txq_trans_cond_update(nq); 2402 2403 budget = min(budget, stmmac_tx_avail(priv, queue)); 2404 2405 while (budget-- > 0) { 2406 dma_addr_t dma_addr; 2407 bool set_ic; 2408 2409 /* We are sharing with slow path and stop XSK TX desc submission when 2410 * available TX ring is less than threshold. 2411 */ 2412 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2413 !netif_carrier_ok(priv->dev)) { 2414 work_done = false; 2415 break; 2416 } 2417 2418 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2419 break; 2420 2421 if (likely(priv->extend_desc)) 2422 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2423 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2424 tx_desc = &tx_q->dma_entx[entry].basic; 2425 else 2426 tx_desc = tx_q->dma_tx + entry; 2427 2428 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2429 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2430 2431 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2432 2433 /* To return XDP buffer to XSK pool, we simple call 2434 * xsk_tx_completed(), so we don't need to fill up 2435 * 'buf' and 'xdpf'. 2436 */ 2437 tx_q->tx_skbuff_dma[entry].buf = 0; 2438 tx_q->xdpf[entry] = NULL; 2439 2440 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2441 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2442 tx_q->tx_skbuff_dma[entry].last_segment = true; 2443 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2444 2445 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2446 2447 tx_q->tx_count_frames++; 2448 2449 if (!priv->tx_coal_frames[queue]) 2450 set_ic = false; 2451 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2452 set_ic = true; 2453 else 2454 set_ic = false; 2455 2456 if (set_ic) { 2457 tx_q->tx_count_frames = 0; 2458 stmmac_set_tx_ic(priv, tx_desc); 2459 priv->xstats.tx_set_ic_bit++; 2460 } 2461 2462 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2463 true, priv->mode, true, true, 2464 xdp_desc.len); 2465 2466 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2467 2468 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 2469 entry = tx_q->cur_tx; 2470 } 2471 2472 if (tx_desc) { 2473 stmmac_flush_tx_descriptors(priv, queue); 2474 xsk_tx_release(pool); 2475 } 2476 2477 /* Return true if all of the 3 conditions are met 2478 * a) TX Budget is still available 2479 * b) work_done = true when XSK TX desc peek is empty (no more 2480 * pending XSK TX for transmission) 2481 */ 2482 return !!budget && work_done; 2483 } 2484 2485 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2486 { 2487 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2488 tc += 64; 2489 2490 if (priv->plat->force_thresh_dma_mode) 2491 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2492 else 2493 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2494 chan); 2495 2496 priv->xstats.threshold = tc; 2497 } 2498 } 2499 2500 /** 2501 * stmmac_tx_clean - to manage the transmission completion 2502 * @priv: driver private structure 2503 * @budget: napi budget limiting this functions packet handling 2504 * @queue: TX queue index 2505 * Description: it reclaims the transmit resources after transmission completes. 2506 */ 2507 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2508 { 2509 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2510 unsigned int bytes_compl = 0, pkts_compl = 0; 2511 unsigned int entry, xmits = 0, count = 0; 2512 2513 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2514 2515 priv->xstats.tx_clean++; 2516 2517 tx_q->xsk_frames_done = 0; 2518 2519 entry = tx_q->dirty_tx; 2520 2521 /* Try to clean all TX complete frame in 1 shot */ 2522 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { 2523 struct xdp_frame *xdpf; 2524 struct sk_buff *skb; 2525 struct dma_desc *p; 2526 int status; 2527 2528 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2529 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2530 xdpf = tx_q->xdpf[entry]; 2531 skb = NULL; 2532 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2533 xdpf = NULL; 2534 skb = tx_q->tx_skbuff[entry]; 2535 } else { 2536 xdpf = NULL; 2537 skb = NULL; 2538 } 2539 2540 if (priv->extend_desc) 2541 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2542 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2543 p = &tx_q->dma_entx[entry].basic; 2544 else 2545 p = tx_q->dma_tx + entry; 2546 2547 status = stmmac_tx_status(priv, &priv->dev->stats, 2548 &priv->xstats, p, priv->ioaddr); 2549 /* Check if the descriptor is owned by the DMA */ 2550 if (unlikely(status & tx_dma_own)) 2551 break; 2552 2553 count++; 2554 2555 /* Make sure descriptor fields are read after reading 2556 * the own bit. 2557 */ 2558 dma_rmb(); 2559 2560 /* Just consider the last segment and ...*/ 2561 if (likely(!(status & tx_not_ls))) { 2562 /* ... verify the status error condition */ 2563 if (unlikely(status & tx_err)) { 2564 priv->dev->stats.tx_errors++; 2565 if (unlikely(status & tx_err_bump_tc)) 2566 stmmac_bump_dma_threshold(priv, queue); 2567 } else { 2568 priv->dev->stats.tx_packets++; 2569 priv->xstats.tx_pkt_n++; 2570 priv->xstats.txq_stats[queue].tx_pkt_n++; 2571 } 2572 if (skb) 2573 stmmac_get_tx_hwtstamp(priv, p, skb); 2574 } 2575 2576 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2577 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2578 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2579 dma_unmap_page(priv->device, 2580 tx_q->tx_skbuff_dma[entry].buf, 2581 tx_q->tx_skbuff_dma[entry].len, 2582 DMA_TO_DEVICE); 2583 else 2584 dma_unmap_single(priv->device, 2585 tx_q->tx_skbuff_dma[entry].buf, 2586 tx_q->tx_skbuff_dma[entry].len, 2587 DMA_TO_DEVICE); 2588 tx_q->tx_skbuff_dma[entry].buf = 0; 2589 tx_q->tx_skbuff_dma[entry].len = 0; 2590 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2591 } 2592 2593 stmmac_clean_desc3(priv, tx_q, p); 2594 2595 tx_q->tx_skbuff_dma[entry].last_segment = false; 2596 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2597 2598 if (xdpf && 2599 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2600 xdp_return_frame_rx_napi(xdpf); 2601 tx_q->xdpf[entry] = NULL; 2602 } 2603 2604 if (xdpf && 2605 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2606 xdp_return_frame(xdpf); 2607 tx_q->xdpf[entry] = NULL; 2608 } 2609 2610 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2611 tx_q->xsk_frames_done++; 2612 2613 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2614 if (likely(skb)) { 2615 pkts_compl++; 2616 bytes_compl += skb->len; 2617 dev_consume_skb_any(skb); 2618 tx_q->tx_skbuff[entry] = NULL; 2619 } 2620 } 2621 2622 stmmac_release_tx_desc(priv, p, priv->mode); 2623 2624 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 2625 } 2626 tx_q->dirty_tx = entry; 2627 2628 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2629 pkts_compl, bytes_compl); 2630 2631 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2632 queue))) && 2633 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2634 2635 netif_dbg(priv, tx_done, priv->dev, 2636 "%s: restart transmit\n", __func__); 2637 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2638 } 2639 2640 if (tx_q->xsk_pool) { 2641 bool work_done; 2642 2643 if (tx_q->xsk_frames_done) 2644 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2645 2646 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2647 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2648 2649 /* For XSK TX, we try to send as many as possible. 2650 * If XSK work done (XSK TX desc empty and budget still 2651 * available), return "budget - 1" to reenable TX IRQ. 2652 * Else, return "budget" to make NAPI continue polling. 2653 */ 2654 work_done = stmmac_xdp_xmit_zc(priv, queue, 2655 STMMAC_XSK_TX_BUDGET_MAX); 2656 if (work_done) 2657 xmits = budget - 1; 2658 else 2659 xmits = budget; 2660 } 2661 2662 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2663 priv->eee_sw_timer_en) { 2664 if (stmmac_enable_eee_mode(priv)) 2665 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2666 } 2667 2668 /* We still have pending packets, let's call for a new scheduling */ 2669 if (tx_q->dirty_tx != tx_q->cur_tx) 2670 hrtimer_start(&tx_q->txtimer, 2671 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2672 HRTIMER_MODE_REL); 2673 2674 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2675 2676 /* Combine decisions from TX clean and XSK TX */ 2677 return max(count, xmits); 2678 } 2679 2680 /** 2681 * stmmac_tx_err - to manage the tx error 2682 * @priv: driver private structure 2683 * @chan: channel index 2684 * Description: it cleans the descriptors and restarts the transmission 2685 * in case of transmission errors. 2686 */ 2687 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2688 { 2689 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2690 2691 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2692 2693 stmmac_stop_tx_dma(priv, chan); 2694 dma_free_tx_skbufs(priv, &priv->dma_conf, chan); 2695 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); 2696 stmmac_reset_tx_queue(priv, chan); 2697 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2698 tx_q->dma_tx_phy, chan); 2699 stmmac_start_tx_dma(priv, chan); 2700 2701 priv->dev->stats.tx_errors++; 2702 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2703 } 2704 2705 /** 2706 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2707 * @priv: driver private structure 2708 * @txmode: TX operating mode 2709 * @rxmode: RX operating mode 2710 * @chan: channel index 2711 * Description: it is used for configuring of the DMA operation mode in 2712 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2713 * mode. 2714 */ 2715 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2716 u32 rxmode, u32 chan) 2717 { 2718 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2719 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2720 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2721 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2722 int rxfifosz = priv->plat->rx_fifo_size; 2723 int txfifosz = priv->plat->tx_fifo_size; 2724 2725 if (rxfifosz == 0) 2726 rxfifosz = priv->dma_cap.rx_fifo_size; 2727 if (txfifosz == 0) 2728 txfifosz = priv->dma_cap.tx_fifo_size; 2729 2730 /* Adjust for real per queue fifo size */ 2731 rxfifosz /= rx_channels_count; 2732 txfifosz /= tx_channels_count; 2733 2734 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2735 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2736 } 2737 2738 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2739 { 2740 int ret; 2741 2742 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2743 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2744 if (ret && (ret != -EINVAL)) { 2745 stmmac_global_err(priv); 2746 return true; 2747 } 2748 2749 return false; 2750 } 2751 2752 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2753 { 2754 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2755 &priv->xstats, chan, dir); 2756 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2757 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2758 struct stmmac_channel *ch = &priv->channel[chan]; 2759 struct napi_struct *rx_napi; 2760 struct napi_struct *tx_napi; 2761 unsigned long flags; 2762 2763 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2764 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2765 2766 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2767 if (napi_schedule_prep(rx_napi)) { 2768 spin_lock_irqsave(&ch->lock, flags); 2769 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2770 spin_unlock_irqrestore(&ch->lock, flags); 2771 __napi_schedule(rx_napi); 2772 } 2773 } 2774 2775 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2776 if (napi_schedule_prep(tx_napi)) { 2777 spin_lock_irqsave(&ch->lock, flags); 2778 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2779 spin_unlock_irqrestore(&ch->lock, flags); 2780 __napi_schedule(tx_napi); 2781 } 2782 } 2783 2784 return status; 2785 } 2786 2787 /** 2788 * stmmac_dma_interrupt - DMA ISR 2789 * @priv: driver private structure 2790 * Description: this is the DMA ISR. It is called by the main ISR. 2791 * It calls the dwmac dma routine and schedule poll method in case of some 2792 * work can be done. 2793 */ 2794 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2795 { 2796 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2797 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2798 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2799 tx_channel_count : rx_channel_count; 2800 u32 chan; 2801 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2802 2803 /* Make sure we never check beyond our status buffer. */ 2804 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2805 channels_to_check = ARRAY_SIZE(status); 2806 2807 for (chan = 0; chan < channels_to_check; chan++) 2808 status[chan] = stmmac_napi_check(priv, chan, 2809 DMA_DIR_RXTX); 2810 2811 for (chan = 0; chan < tx_channel_count; chan++) { 2812 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2813 /* Try to bump up the dma threshold on this failure */ 2814 stmmac_bump_dma_threshold(priv, chan); 2815 } else if (unlikely(status[chan] == tx_hard_error)) { 2816 stmmac_tx_err(priv, chan); 2817 } 2818 } 2819 } 2820 2821 /** 2822 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2823 * @priv: driver private structure 2824 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2825 */ 2826 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2827 { 2828 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2829 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2830 2831 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2832 2833 if (priv->dma_cap.rmon) { 2834 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2835 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2836 } else 2837 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2838 } 2839 2840 /** 2841 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2842 * @priv: driver private structure 2843 * Description: 2844 * new GMAC chip generations have a new register to indicate the 2845 * presence of the optional feature/functions. 2846 * This can be also used to override the value passed through the 2847 * platform and necessary for old MAC10/100 and GMAC chips. 2848 */ 2849 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2850 { 2851 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2852 } 2853 2854 /** 2855 * stmmac_check_ether_addr - check if the MAC addr is valid 2856 * @priv: driver private structure 2857 * Description: 2858 * it is to verify if the MAC address is valid, in case of failures it 2859 * generates a random MAC address 2860 */ 2861 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2862 { 2863 u8 addr[ETH_ALEN]; 2864 2865 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2866 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2867 if (is_valid_ether_addr(addr)) 2868 eth_hw_addr_set(priv->dev, addr); 2869 else 2870 eth_hw_addr_random(priv->dev); 2871 dev_info(priv->device, "device MAC address %pM\n", 2872 priv->dev->dev_addr); 2873 } 2874 } 2875 2876 /** 2877 * stmmac_init_dma_engine - DMA init. 2878 * @priv: driver private structure 2879 * Description: 2880 * It inits the DMA invoking the specific MAC/GMAC callback. 2881 * Some DMA parameters can be passed from the platform; 2882 * in case of these are not passed a default is kept for the MAC or GMAC. 2883 */ 2884 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2885 { 2886 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2887 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2888 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2889 struct stmmac_rx_queue *rx_q; 2890 struct stmmac_tx_queue *tx_q; 2891 u32 chan = 0; 2892 int atds = 0; 2893 int ret = 0; 2894 2895 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2896 dev_err(priv->device, "Invalid DMA configuration\n"); 2897 return -EINVAL; 2898 } 2899 2900 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2901 atds = 1; 2902 2903 ret = stmmac_reset(priv, priv->ioaddr); 2904 if (ret) { 2905 dev_err(priv->device, "Failed to reset the dma\n"); 2906 return ret; 2907 } 2908 2909 /* DMA Configuration */ 2910 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2911 2912 if (priv->plat->axi) 2913 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2914 2915 /* DMA CSR Channel configuration */ 2916 for (chan = 0; chan < dma_csr_ch; chan++) { 2917 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2918 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2919 } 2920 2921 /* DMA RX Channel Configuration */ 2922 for (chan = 0; chan < rx_channels_count; chan++) { 2923 rx_q = &priv->dma_conf.rx_queue[chan]; 2924 2925 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2926 rx_q->dma_rx_phy, chan); 2927 2928 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2929 (rx_q->buf_alloc_num * 2930 sizeof(struct dma_desc)); 2931 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2932 rx_q->rx_tail_addr, chan); 2933 } 2934 2935 /* DMA TX Channel Configuration */ 2936 for (chan = 0; chan < tx_channels_count; chan++) { 2937 tx_q = &priv->dma_conf.tx_queue[chan]; 2938 2939 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2940 tx_q->dma_tx_phy, chan); 2941 2942 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2943 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2944 tx_q->tx_tail_addr, chan); 2945 } 2946 2947 return ret; 2948 } 2949 2950 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2951 { 2952 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2953 2954 hrtimer_start(&tx_q->txtimer, 2955 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2956 HRTIMER_MODE_REL); 2957 } 2958 2959 /** 2960 * stmmac_tx_timer - mitigation sw timer for tx. 2961 * @t: data pointer 2962 * Description: 2963 * This is the timer handler to directly invoke the stmmac_tx_clean. 2964 */ 2965 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2966 { 2967 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2968 struct stmmac_priv *priv = tx_q->priv_data; 2969 struct stmmac_channel *ch; 2970 struct napi_struct *napi; 2971 2972 ch = &priv->channel[tx_q->queue_index]; 2973 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2974 2975 if (likely(napi_schedule_prep(napi))) { 2976 unsigned long flags; 2977 2978 spin_lock_irqsave(&ch->lock, flags); 2979 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2980 spin_unlock_irqrestore(&ch->lock, flags); 2981 __napi_schedule(napi); 2982 } 2983 2984 return HRTIMER_NORESTART; 2985 } 2986 2987 /** 2988 * stmmac_init_coalesce - init mitigation options. 2989 * @priv: driver private structure 2990 * Description: 2991 * This inits the coalesce parameters: i.e. timer rate, 2992 * timer handler and default threshold used for enabling the 2993 * interrupt on completion bit. 2994 */ 2995 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2996 { 2997 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2998 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2999 u32 chan; 3000 3001 for (chan = 0; chan < tx_channel_count; chan++) { 3002 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3003 3004 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 3005 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 3006 3007 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3008 tx_q->txtimer.function = stmmac_tx_timer; 3009 } 3010 3011 for (chan = 0; chan < rx_channel_count; chan++) 3012 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3013 } 3014 3015 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3016 { 3017 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3018 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3019 u32 chan; 3020 3021 /* set TX ring length */ 3022 for (chan = 0; chan < tx_channels_count; chan++) 3023 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3024 (priv->dma_conf.dma_tx_size - 1), chan); 3025 3026 /* set RX ring length */ 3027 for (chan = 0; chan < rx_channels_count; chan++) 3028 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3029 (priv->dma_conf.dma_rx_size - 1), chan); 3030 } 3031 3032 /** 3033 * stmmac_set_tx_queue_weight - Set TX queue weight 3034 * @priv: driver private structure 3035 * Description: It is used for setting TX queues weight 3036 */ 3037 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3038 { 3039 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3040 u32 weight; 3041 u32 queue; 3042 3043 for (queue = 0; queue < tx_queues_count; queue++) { 3044 weight = priv->plat->tx_queues_cfg[queue].weight; 3045 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3046 } 3047 } 3048 3049 /** 3050 * stmmac_configure_cbs - Configure CBS in TX queue 3051 * @priv: driver private structure 3052 * Description: It is used for configuring CBS in AVB TX queues 3053 */ 3054 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3055 { 3056 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3057 u32 mode_to_use; 3058 u32 queue; 3059 3060 /* queue 0 is reserved for legacy traffic */ 3061 for (queue = 1; queue < tx_queues_count; queue++) { 3062 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3063 if (mode_to_use == MTL_QUEUE_DCB) 3064 continue; 3065 3066 stmmac_config_cbs(priv, priv->hw, 3067 priv->plat->tx_queues_cfg[queue].send_slope, 3068 priv->plat->tx_queues_cfg[queue].idle_slope, 3069 priv->plat->tx_queues_cfg[queue].high_credit, 3070 priv->plat->tx_queues_cfg[queue].low_credit, 3071 queue); 3072 } 3073 } 3074 3075 /** 3076 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3077 * @priv: driver private structure 3078 * Description: It is used for mapping RX queues to RX dma channels 3079 */ 3080 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3081 { 3082 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3083 u32 queue; 3084 u32 chan; 3085 3086 for (queue = 0; queue < rx_queues_count; queue++) { 3087 chan = priv->plat->rx_queues_cfg[queue].chan; 3088 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3089 } 3090 } 3091 3092 /** 3093 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3094 * @priv: driver private structure 3095 * Description: It is used for configuring the RX Queue Priority 3096 */ 3097 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3098 { 3099 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3100 u32 queue; 3101 u32 prio; 3102 3103 for (queue = 0; queue < rx_queues_count; queue++) { 3104 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3105 continue; 3106 3107 prio = priv->plat->rx_queues_cfg[queue].prio; 3108 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3109 } 3110 } 3111 3112 /** 3113 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3114 * @priv: driver private structure 3115 * Description: It is used for configuring the TX Queue Priority 3116 */ 3117 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3118 { 3119 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3120 u32 queue; 3121 u32 prio; 3122 3123 for (queue = 0; queue < tx_queues_count; queue++) { 3124 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3125 continue; 3126 3127 prio = priv->plat->tx_queues_cfg[queue].prio; 3128 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3129 } 3130 } 3131 3132 /** 3133 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3134 * @priv: driver private structure 3135 * Description: It is used for configuring the RX queue routing 3136 */ 3137 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3138 { 3139 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3140 u32 queue; 3141 u8 packet; 3142 3143 for (queue = 0; queue < rx_queues_count; queue++) { 3144 /* no specific packet type routing specified for the queue */ 3145 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3146 continue; 3147 3148 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3149 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3150 } 3151 } 3152 3153 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3154 { 3155 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3156 priv->rss.enable = false; 3157 return; 3158 } 3159 3160 if (priv->dev->features & NETIF_F_RXHASH) 3161 priv->rss.enable = true; 3162 else 3163 priv->rss.enable = false; 3164 3165 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3166 priv->plat->rx_queues_to_use); 3167 } 3168 3169 /** 3170 * stmmac_mtl_configuration - Configure MTL 3171 * @priv: driver private structure 3172 * Description: It is used for configurring MTL 3173 */ 3174 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3175 { 3176 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3177 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3178 3179 if (tx_queues_count > 1) 3180 stmmac_set_tx_queue_weight(priv); 3181 3182 /* Configure MTL RX algorithms */ 3183 if (rx_queues_count > 1) 3184 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3185 priv->plat->rx_sched_algorithm); 3186 3187 /* Configure MTL TX algorithms */ 3188 if (tx_queues_count > 1) 3189 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3190 priv->plat->tx_sched_algorithm); 3191 3192 /* Configure CBS in AVB TX queues */ 3193 if (tx_queues_count > 1) 3194 stmmac_configure_cbs(priv); 3195 3196 /* Map RX MTL to DMA channels */ 3197 stmmac_rx_queue_dma_chan_map(priv); 3198 3199 /* Enable MAC RX Queues */ 3200 stmmac_mac_enable_rx_queues(priv); 3201 3202 /* Set RX priorities */ 3203 if (rx_queues_count > 1) 3204 stmmac_mac_config_rx_queues_prio(priv); 3205 3206 /* Set TX priorities */ 3207 if (tx_queues_count > 1) 3208 stmmac_mac_config_tx_queues_prio(priv); 3209 3210 /* Set RX routing */ 3211 if (rx_queues_count > 1) 3212 stmmac_mac_config_rx_queues_routing(priv); 3213 3214 /* Receive Side Scaling */ 3215 if (rx_queues_count > 1) 3216 stmmac_mac_config_rss(priv); 3217 } 3218 3219 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3220 { 3221 if (priv->dma_cap.asp) { 3222 netdev_info(priv->dev, "Enabling Safety Features\n"); 3223 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3224 priv->plat->safety_feat_cfg); 3225 } else { 3226 netdev_info(priv->dev, "No Safety Features support found\n"); 3227 } 3228 } 3229 3230 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3231 { 3232 char *name; 3233 3234 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3235 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3236 3237 name = priv->wq_name; 3238 sprintf(name, "%s-fpe", priv->dev->name); 3239 3240 priv->fpe_wq = create_singlethread_workqueue(name); 3241 if (!priv->fpe_wq) { 3242 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3243 3244 return -ENOMEM; 3245 } 3246 netdev_info(priv->dev, "FPE workqueue start"); 3247 3248 return 0; 3249 } 3250 3251 /** 3252 * stmmac_hw_setup - setup mac in a usable state. 3253 * @dev : pointer to the device structure. 3254 * @ptp_register: register PTP if set 3255 * Description: 3256 * this is the main function to setup the HW in a usable state because the 3257 * dma engine is reset, the core registers are configured (e.g. AXI, 3258 * Checksum features, timers). The DMA is ready to start receiving and 3259 * transmitting. 3260 * Return value: 3261 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3262 * file on failure. 3263 */ 3264 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3265 { 3266 struct stmmac_priv *priv = netdev_priv(dev); 3267 u32 rx_cnt = priv->plat->rx_queues_to_use; 3268 u32 tx_cnt = priv->plat->tx_queues_to_use; 3269 bool sph_en; 3270 u32 chan; 3271 int ret; 3272 3273 /* DMA initialization and SW reset */ 3274 ret = stmmac_init_dma_engine(priv); 3275 if (ret < 0) { 3276 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3277 __func__); 3278 return ret; 3279 } 3280 3281 /* Copy the MAC addr into the HW */ 3282 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3283 3284 /* PS and related bits will be programmed according to the speed */ 3285 if (priv->hw->pcs) { 3286 int speed = priv->plat->mac_port_sel_speed; 3287 3288 if ((speed == SPEED_10) || (speed == SPEED_100) || 3289 (speed == SPEED_1000)) { 3290 priv->hw->ps = speed; 3291 } else { 3292 dev_warn(priv->device, "invalid port speed\n"); 3293 priv->hw->ps = 0; 3294 } 3295 } 3296 3297 /* Initialize the MAC Core */ 3298 stmmac_core_init(priv, priv->hw, dev); 3299 3300 /* Initialize MTL*/ 3301 stmmac_mtl_configuration(priv); 3302 3303 /* Initialize Safety Features */ 3304 stmmac_safety_feat_configuration(priv); 3305 3306 ret = stmmac_rx_ipc(priv, priv->hw); 3307 if (!ret) { 3308 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3309 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3310 priv->hw->rx_csum = 0; 3311 } 3312 3313 /* Enable the MAC Rx/Tx */ 3314 stmmac_mac_set(priv, priv->ioaddr, true); 3315 3316 /* Set the HW DMA mode and the COE */ 3317 stmmac_dma_operation_mode(priv); 3318 3319 stmmac_mmc_setup(priv); 3320 3321 if (ptp_register) { 3322 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3323 if (ret < 0) 3324 netdev_warn(priv->dev, 3325 "failed to enable PTP reference clock: %pe\n", 3326 ERR_PTR(ret)); 3327 } 3328 3329 ret = stmmac_init_ptp(priv); 3330 if (ret == -EOPNOTSUPP) 3331 netdev_info(priv->dev, "PTP not supported by HW\n"); 3332 else if (ret) 3333 netdev_warn(priv->dev, "PTP init failed\n"); 3334 else if (ptp_register) 3335 stmmac_ptp_register(priv); 3336 3337 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3338 3339 /* Convert the timer from msec to usec */ 3340 if (!priv->tx_lpi_timer) 3341 priv->tx_lpi_timer = eee_timer * 1000; 3342 3343 if (priv->use_riwt) { 3344 u32 queue; 3345 3346 for (queue = 0; queue < rx_cnt; queue++) { 3347 if (!priv->rx_riwt[queue]) 3348 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3349 3350 stmmac_rx_watchdog(priv, priv->ioaddr, 3351 priv->rx_riwt[queue], queue); 3352 } 3353 } 3354 3355 if (priv->hw->pcs) 3356 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3357 3358 /* set TX and RX rings length */ 3359 stmmac_set_rings_length(priv); 3360 3361 /* Enable TSO */ 3362 if (priv->tso) { 3363 for (chan = 0; chan < tx_cnt; chan++) { 3364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3365 3366 /* TSO and TBS cannot co-exist */ 3367 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3368 continue; 3369 3370 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3371 } 3372 } 3373 3374 /* Enable Split Header */ 3375 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3376 for (chan = 0; chan < rx_cnt; chan++) 3377 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3378 3379 3380 /* VLAN Tag Insertion */ 3381 if (priv->dma_cap.vlins) 3382 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3383 3384 /* TBS */ 3385 for (chan = 0; chan < tx_cnt; chan++) { 3386 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3387 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3388 3389 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3390 } 3391 3392 /* Configure real RX and TX queues */ 3393 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3394 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3395 3396 /* Start the ball rolling... */ 3397 stmmac_start_all_dma(priv); 3398 3399 if (priv->dma_cap.fpesel) { 3400 stmmac_fpe_start_wq(priv); 3401 3402 if (priv->plat->fpe_cfg->enable) 3403 stmmac_fpe_handshake(priv, true); 3404 } 3405 3406 return 0; 3407 } 3408 3409 static void stmmac_hw_teardown(struct net_device *dev) 3410 { 3411 struct stmmac_priv *priv = netdev_priv(dev); 3412 3413 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3414 } 3415 3416 static void stmmac_free_irq(struct net_device *dev, 3417 enum request_irq_err irq_err, int irq_idx) 3418 { 3419 struct stmmac_priv *priv = netdev_priv(dev); 3420 int j; 3421 3422 switch (irq_err) { 3423 case REQ_IRQ_ERR_ALL: 3424 irq_idx = priv->plat->tx_queues_to_use; 3425 fallthrough; 3426 case REQ_IRQ_ERR_TX: 3427 for (j = irq_idx - 1; j >= 0; j--) { 3428 if (priv->tx_irq[j] > 0) { 3429 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3430 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); 3431 } 3432 } 3433 irq_idx = priv->plat->rx_queues_to_use; 3434 fallthrough; 3435 case REQ_IRQ_ERR_RX: 3436 for (j = irq_idx - 1; j >= 0; j--) { 3437 if (priv->rx_irq[j] > 0) { 3438 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3439 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); 3440 } 3441 } 3442 3443 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3444 free_irq(priv->sfty_ue_irq, dev); 3445 fallthrough; 3446 case REQ_IRQ_ERR_SFTY_UE: 3447 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3448 free_irq(priv->sfty_ce_irq, dev); 3449 fallthrough; 3450 case REQ_IRQ_ERR_SFTY_CE: 3451 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3452 free_irq(priv->lpi_irq, dev); 3453 fallthrough; 3454 case REQ_IRQ_ERR_LPI: 3455 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3456 free_irq(priv->wol_irq, dev); 3457 fallthrough; 3458 case REQ_IRQ_ERR_WOL: 3459 free_irq(dev->irq, dev); 3460 fallthrough; 3461 case REQ_IRQ_ERR_MAC: 3462 case REQ_IRQ_ERR_NO: 3463 /* If MAC IRQ request error, no more IRQ to free */ 3464 break; 3465 } 3466 } 3467 3468 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3469 { 3470 struct stmmac_priv *priv = netdev_priv(dev); 3471 enum request_irq_err irq_err; 3472 cpumask_t cpu_mask; 3473 int irq_idx = 0; 3474 char *int_name; 3475 int ret; 3476 int i; 3477 3478 /* For common interrupt */ 3479 int_name = priv->int_name_mac; 3480 sprintf(int_name, "%s:%s", dev->name, "mac"); 3481 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3482 0, int_name, dev); 3483 if (unlikely(ret < 0)) { 3484 netdev_err(priv->dev, 3485 "%s: alloc mac MSI %d (error: %d)\n", 3486 __func__, dev->irq, ret); 3487 irq_err = REQ_IRQ_ERR_MAC; 3488 goto irq_error; 3489 } 3490 3491 /* Request the Wake IRQ in case of another line 3492 * is used for WoL 3493 */ 3494 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3495 int_name = priv->int_name_wol; 3496 sprintf(int_name, "%s:%s", dev->name, "wol"); 3497 ret = request_irq(priv->wol_irq, 3498 stmmac_mac_interrupt, 3499 0, int_name, dev); 3500 if (unlikely(ret < 0)) { 3501 netdev_err(priv->dev, 3502 "%s: alloc wol MSI %d (error: %d)\n", 3503 __func__, priv->wol_irq, ret); 3504 irq_err = REQ_IRQ_ERR_WOL; 3505 goto irq_error; 3506 } 3507 } 3508 3509 /* Request the LPI IRQ in case of another line 3510 * is used for LPI 3511 */ 3512 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3513 int_name = priv->int_name_lpi; 3514 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3515 ret = request_irq(priv->lpi_irq, 3516 stmmac_mac_interrupt, 3517 0, int_name, dev); 3518 if (unlikely(ret < 0)) { 3519 netdev_err(priv->dev, 3520 "%s: alloc lpi MSI %d (error: %d)\n", 3521 __func__, priv->lpi_irq, ret); 3522 irq_err = REQ_IRQ_ERR_LPI; 3523 goto irq_error; 3524 } 3525 } 3526 3527 /* Request the Safety Feature Correctible Error line in 3528 * case of another line is used 3529 */ 3530 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3531 int_name = priv->int_name_sfty_ce; 3532 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3533 ret = request_irq(priv->sfty_ce_irq, 3534 stmmac_safety_interrupt, 3535 0, int_name, dev); 3536 if (unlikely(ret < 0)) { 3537 netdev_err(priv->dev, 3538 "%s: alloc sfty ce MSI %d (error: %d)\n", 3539 __func__, priv->sfty_ce_irq, ret); 3540 irq_err = REQ_IRQ_ERR_SFTY_CE; 3541 goto irq_error; 3542 } 3543 } 3544 3545 /* Request the Safety Feature Uncorrectible Error line in 3546 * case of another line is used 3547 */ 3548 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3549 int_name = priv->int_name_sfty_ue; 3550 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3551 ret = request_irq(priv->sfty_ue_irq, 3552 stmmac_safety_interrupt, 3553 0, int_name, dev); 3554 if (unlikely(ret < 0)) { 3555 netdev_err(priv->dev, 3556 "%s: alloc sfty ue MSI %d (error: %d)\n", 3557 __func__, priv->sfty_ue_irq, ret); 3558 irq_err = REQ_IRQ_ERR_SFTY_UE; 3559 goto irq_error; 3560 } 3561 } 3562 3563 /* Request Rx MSI irq */ 3564 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3565 if (i >= MTL_MAX_RX_QUEUES) 3566 break; 3567 if (priv->rx_irq[i] == 0) 3568 continue; 3569 3570 int_name = priv->int_name_rx_irq[i]; 3571 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3572 ret = request_irq(priv->rx_irq[i], 3573 stmmac_msi_intr_rx, 3574 0, int_name, &priv->dma_conf.rx_queue[i]); 3575 if (unlikely(ret < 0)) { 3576 netdev_err(priv->dev, 3577 "%s: alloc rx-%d MSI %d (error: %d)\n", 3578 __func__, i, priv->rx_irq[i], ret); 3579 irq_err = REQ_IRQ_ERR_RX; 3580 irq_idx = i; 3581 goto irq_error; 3582 } 3583 cpumask_clear(&cpu_mask); 3584 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3585 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3586 } 3587 3588 /* Request Tx MSI irq */ 3589 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3590 if (i >= MTL_MAX_TX_QUEUES) 3591 break; 3592 if (priv->tx_irq[i] == 0) 3593 continue; 3594 3595 int_name = priv->int_name_tx_irq[i]; 3596 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3597 ret = request_irq(priv->tx_irq[i], 3598 stmmac_msi_intr_tx, 3599 0, int_name, &priv->dma_conf.tx_queue[i]); 3600 if (unlikely(ret < 0)) { 3601 netdev_err(priv->dev, 3602 "%s: alloc tx-%d MSI %d (error: %d)\n", 3603 __func__, i, priv->tx_irq[i], ret); 3604 irq_err = REQ_IRQ_ERR_TX; 3605 irq_idx = i; 3606 goto irq_error; 3607 } 3608 cpumask_clear(&cpu_mask); 3609 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3610 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3611 } 3612 3613 return 0; 3614 3615 irq_error: 3616 stmmac_free_irq(dev, irq_err, irq_idx); 3617 return ret; 3618 } 3619 3620 static int stmmac_request_irq_single(struct net_device *dev) 3621 { 3622 struct stmmac_priv *priv = netdev_priv(dev); 3623 enum request_irq_err irq_err; 3624 int ret; 3625 3626 ret = request_irq(dev->irq, stmmac_interrupt, 3627 IRQF_SHARED, dev->name, dev); 3628 if (unlikely(ret < 0)) { 3629 netdev_err(priv->dev, 3630 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3631 __func__, dev->irq, ret); 3632 irq_err = REQ_IRQ_ERR_MAC; 3633 goto irq_error; 3634 } 3635 3636 /* Request the Wake IRQ in case of another line 3637 * is used for WoL 3638 */ 3639 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3640 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3641 IRQF_SHARED, dev->name, dev); 3642 if (unlikely(ret < 0)) { 3643 netdev_err(priv->dev, 3644 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3645 __func__, priv->wol_irq, ret); 3646 irq_err = REQ_IRQ_ERR_WOL; 3647 goto irq_error; 3648 } 3649 } 3650 3651 /* Request the IRQ lines */ 3652 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3653 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3654 IRQF_SHARED, dev->name, dev); 3655 if (unlikely(ret < 0)) { 3656 netdev_err(priv->dev, 3657 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3658 __func__, priv->lpi_irq, ret); 3659 irq_err = REQ_IRQ_ERR_LPI; 3660 goto irq_error; 3661 } 3662 } 3663 3664 return 0; 3665 3666 irq_error: 3667 stmmac_free_irq(dev, irq_err, 0); 3668 return ret; 3669 } 3670 3671 static int stmmac_request_irq(struct net_device *dev) 3672 { 3673 struct stmmac_priv *priv = netdev_priv(dev); 3674 int ret; 3675 3676 /* Request the IRQ lines */ 3677 if (priv->plat->multi_msi_en) 3678 ret = stmmac_request_irq_multi_msi(dev); 3679 else 3680 ret = stmmac_request_irq_single(dev); 3681 3682 return ret; 3683 } 3684 3685 /** 3686 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue 3687 * @priv: driver private structure 3688 * @mtu: MTU to setup the dma queue and buf with 3689 * Description: Allocate and generate a dma_conf based on the provided MTU. 3690 * Allocate the Tx/Rx DMA queue and init them. 3691 * Return value: 3692 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. 3693 */ 3694 static struct stmmac_dma_conf * 3695 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) 3696 { 3697 struct stmmac_dma_conf *dma_conf; 3698 int chan, bfsize, ret; 3699 3700 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); 3701 if (!dma_conf) { 3702 netdev_err(priv->dev, "%s: DMA conf allocation failed\n", 3703 __func__); 3704 return ERR_PTR(-ENOMEM); 3705 } 3706 3707 bfsize = stmmac_set_16kib_bfsize(priv, mtu); 3708 if (bfsize < 0) 3709 bfsize = 0; 3710 3711 if (bfsize < BUF_SIZE_16KiB) 3712 bfsize = stmmac_set_bfsize(mtu, 0); 3713 3714 dma_conf->dma_buf_sz = bfsize; 3715 /* Chose the tx/rx size from the already defined one in the 3716 * priv struct. (if defined) 3717 */ 3718 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; 3719 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; 3720 3721 if (!dma_conf->dma_tx_size) 3722 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3723 if (!dma_conf->dma_rx_size) 3724 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3725 3726 /* Earlier check for TBS */ 3727 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3728 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; 3729 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3730 3731 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3732 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3733 } 3734 3735 ret = alloc_dma_desc_resources(priv, dma_conf); 3736 if (ret < 0) { 3737 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3738 __func__); 3739 goto alloc_error; 3740 } 3741 3742 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); 3743 if (ret < 0) { 3744 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3745 __func__); 3746 goto init_error; 3747 } 3748 3749 return dma_conf; 3750 3751 init_error: 3752 free_dma_desc_resources(priv, dma_conf); 3753 alloc_error: 3754 kfree(dma_conf); 3755 return ERR_PTR(ret); 3756 } 3757 3758 /** 3759 * __stmmac_open - open entry point of the driver 3760 * @dev : pointer to the device structure. 3761 * @dma_conf : structure to take the dma data 3762 * Description: 3763 * This function is the open entry point of the driver. 3764 * Return value: 3765 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3766 * file on failure. 3767 */ 3768 static int __stmmac_open(struct net_device *dev, 3769 struct stmmac_dma_conf *dma_conf) 3770 { 3771 struct stmmac_priv *priv = netdev_priv(dev); 3772 int mode = priv->plat->phy_interface; 3773 u32 chan; 3774 int ret; 3775 3776 ret = pm_runtime_resume_and_get(priv->device); 3777 if (ret < 0) 3778 return ret; 3779 3780 if (priv->hw->pcs != STMMAC_PCS_TBI && 3781 priv->hw->pcs != STMMAC_PCS_RTBI && 3782 (!priv->hw->xpcs || 3783 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3784 ret = stmmac_init_phy(dev); 3785 if (ret) { 3786 netdev_err(priv->dev, 3787 "%s: Cannot attach to PHY (error: %d)\n", 3788 __func__, ret); 3789 goto init_phy_error; 3790 } 3791 } 3792 3793 /* Extra statistics */ 3794 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3795 priv->xstats.threshold = tc; 3796 3797 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3798 3799 buf_sz = dma_conf->dma_buf_sz; 3800 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); 3801 3802 stmmac_reset_queues_param(priv); 3803 3804 if (priv->plat->serdes_powerup) { 3805 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv); 3806 if (ret < 0) { 3807 netdev_err(priv->dev, "%s: Serdes powerup failed\n", 3808 __func__); 3809 goto init_error; 3810 } 3811 } 3812 3813 ret = stmmac_hw_setup(dev, true); 3814 if (ret < 0) { 3815 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3816 goto init_error; 3817 } 3818 3819 stmmac_init_coalesce(priv); 3820 3821 phylink_start(priv->phylink); 3822 /* We may have called phylink_speed_down before */ 3823 phylink_speed_up(priv->phylink); 3824 3825 ret = stmmac_request_irq(dev); 3826 if (ret) 3827 goto irq_error; 3828 3829 stmmac_enable_all_queues(priv); 3830 netif_tx_start_all_queues(priv->dev); 3831 stmmac_enable_all_dma_irq(priv); 3832 3833 return 0; 3834 3835 irq_error: 3836 phylink_stop(priv->phylink); 3837 3838 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3839 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3840 3841 stmmac_hw_teardown(dev); 3842 init_error: 3843 free_dma_desc_resources(priv, &priv->dma_conf); 3844 phylink_disconnect_phy(priv->phylink); 3845 init_phy_error: 3846 pm_runtime_put(priv->device); 3847 return ret; 3848 } 3849 3850 static int stmmac_open(struct net_device *dev) 3851 { 3852 struct stmmac_priv *priv = netdev_priv(dev); 3853 struct stmmac_dma_conf *dma_conf; 3854 int ret; 3855 3856 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); 3857 if (IS_ERR(dma_conf)) 3858 return PTR_ERR(dma_conf); 3859 3860 ret = __stmmac_open(dev, dma_conf); 3861 kfree(dma_conf); 3862 return ret; 3863 } 3864 3865 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3866 { 3867 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3868 3869 if (priv->fpe_wq) 3870 destroy_workqueue(priv->fpe_wq); 3871 3872 netdev_info(priv->dev, "FPE workqueue stop"); 3873 } 3874 3875 /** 3876 * stmmac_release - close entry point of the driver 3877 * @dev : device pointer. 3878 * Description: 3879 * This is the stop entry point of the driver. 3880 */ 3881 static int stmmac_release(struct net_device *dev) 3882 { 3883 struct stmmac_priv *priv = netdev_priv(dev); 3884 u32 chan; 3885 3886 if (device_may_wakeup(priv->device)) 3887 phylink_speed_down(priv->phylink, false); 3888 /* Stop and disconnect the PHY */ 3889 phylink_stop(priv->phylink); 3890 phylink_disconnect_phy(priv->phylink); 3891 3892 stmmac_disable_all_queues(priv); 3893 3894 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3895 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3896 3897 netif_tx_disable(dev); 3898 3899 /* Free the IRQ lines */ 3900 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3901 3902 if (priv->eee_enabled) { 3903 priv->tx_path_in_lpi_mode = false; 3904 del_timer_sync(&priv->eee_ctrl_timer); 3905 } 3906 3907 /* Stop TX/RX DMA and clear the descriptors */ 3908 stmmac_stop_all_dma(priv); 3909 3910 /* Release and free the Rx/Tx resources */ 3911 free_dma_desc_resources(priv, &priv->dma_conf); 3912 3913 /* Disable the MAC Rx/Tx */ 3914 stmmac_mac_set(priv, priv->ioaddr, false); 3915 3916 /* Powerdown Serdes if there is */ 3917 if (priv->plat->serdes_powerdown) 3918 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv); 3919 3920 netif_carrier_off(dev); 3921 3922 stmmac_release_ptp(priv); 3923 3924 pm_runtime_put(priv->device); 3925 3926 if (priv->dma_cap.fpesel) 3927 stmmac_fpe_stop_wq(priv); 3928 3929 return 0; 3930 } 3931 3932 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3933 struct stmmac_tx_queue *tx_q) 3934 { 3935 u16 tag = 0x0, inner_tag = 0x0; 3936 u32 inner_type = 0x0; 3937 struct dma_desc *p; 3938 3939 if (!priv->dma_cap.vlins) 3940 return false; 3941 if (!skb_vlan_tag_present(skb)) 3942 return false; 3943 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3944 inner_tag = skb_vlan_tag_get(skb); 3945 inner_type = STMMAC_VLAN_INSERT; 3946 } 3947 3948 tag = skb_vlan_tag_get(skb); 3949 3950 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3951 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3952 else 3953 p = &tx_q->dma_tx[tx_q->cur_tx]; 3954 3955 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3956 return false; 3957 3958 stmmac_set_tx_owner(priv, p); 3959 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 3960 return true; 3961 } 3962 3963 /** 3964 * stmmac_tso_allocator - close entry point of the driver 3965 * @priv: driver private structure 3966 * @des: buffer start address 3967 * @total_len: total length to fill in descriptors 3968 * @last_segment: condition for the last descriptor 3969 * @queue: TX queue index 3970 * Description: 3971 * This function fills descriptor and request new descriptors according to 3972 * buffer length to fill 3973 */ 3974 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3975 int total_len, bool last_segment, u32 queue) 3976 { 3977 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 3978 struct dma_desc *desc; 3979 u32 buff_size; 3980 int tmp_len; 3981 3982 tmp_len = total_len; 3983 3984 while (tmp_len > 0) { 3985 dma_addr_t curr_addr; 3986 3987 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3988 priv->dma_conf.dma_tx_size); 3989 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3990 3991 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3992 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3993 else 3994 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3995 3996 curr_addr = des + (total_len - tmp_len); 3997 if (priv->dma_cap.addr64 <= 32) 3998 desc->des0 = cpu_to_le32(curr_addr); 3999 else 4000 stmmac_set_desc_addr(priv, desc, curr_addr); 4001 4002 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 4003 TSO_MAX_BUFF_SIZE : tmp_len; 4004 4005 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 4006 0, 1, 4007 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 4008 0, 0); 4009 4010 tmp_len -= TSO_MAX_BUFF_SIZE; 4011 } 4012 } 4013 4014 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 4015 { 4016 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4017 int desc_size; 4018 4019 if (likely(priv->extend_desc)) 4020 desc_size = sizeof(struct dma_extended_desc); 4021 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4022 desc_size = sizeof(struct dma_edesc); 4023 else 4024 desc_size = sizeof(struct dma_desc); 4025 4026 /* The own bit must be the latest setting done when prepare the 4027 * descriptor and then barrier is needed to make sure that 4028 * all is coherent before granting the DMA engine. 4029 */ 4030 wmb(); 4031 4032 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 4033 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 4034 } 4035 4036 /** 4037 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 4038 * @skb : the socket buffer 4039 * @dev : device pointer 4040 * Description: this is the transmit function that is called on TSO frames 4041 * (support available on GMAC4 and newer chips). 4042 * Diagram below show the ring programming in case of TSO frames: 4043 * 4044 * First Descriptor 4045 * -------- 4046 * | DES0 |---> buffer1 = L2/L3/L4 header 4047 * | DES1 |---> TCP Payload (can continue on next descr...) 4048 * | DES2 |---> buffer 1 and 2 len 4049 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 4050 * -------- 4051 * | 4052 * ... 4053 * | 4054 * -------- 4055 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 4056 * | DES1 | --| 4057 * | DES2 | --> buffer 1 and 2 len 4058 * | DES3 | 4059 * -------- 4060 * 4061 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 4062 */ 4063 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 4064 { 4065 struct dma_desc *desc, *first, *mss_desc = NULL; 4066 struct stmmac_priv *priv = netdev_priv(dev); 4067 int nfrags = skb_shinfo(skb)->nr_frags; 4068 u32 queue = skb_get_queue_mapping(skb); 4069 unsigned int first_entry, tx_packets; 4070 int tmp_pay_len = 0, first_tx; 4071 struct stmmac_tx_queue *tx_q; 4072 bool has_vlan, set_ic; 4073 u8 proto_hdr_len, hdr; 4074 u32 pay_len, mss; 4075 dma_addr_t des; 4076 int i; 4077 4078 tx_q = &priv->dma_conf.tx_queue[queue]; 4079 first_tx = tx_q->cur_tx; 4080 4081 /* Compute header lengths */ 4082 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 4083 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 4084 hdr = sizeof(struct udphdr); 4085 } else { 4086 proto_hdr_len = skb_tcp_all_headers(skb); 4087 hdr = tcp_hdrlen(skb); 4088 } 4089 4090 /* Desc availability based on threshold should be enough safe */ 4091 if (unlikely(stmmac_tx_avail(priv, queue) < 4092 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4093 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4094 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4095 queue)); 4096 /* This is a hard error, log it. */ 4097 netdev_err(priv->dev, 4098 "%s: Tx Ring full when queue awake\n", 4099 __func__); 4100 } 4101 return NETDEV_TX_BUSY; 4102 } 4103 4104 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4105 4106 mss = skb_shinfo(skb)->gso_size; 4107 4108 /* set new MSS value if needed */ 4109 if (mss != tx_q->mss) { 4110 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4111 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4112 else 4113 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4114 4115 stmmac_set_mss(priv, mss_desc, mss); 4116 tx_q->mss = mss; 4117 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4118 priv->dma_conf.dma_tx_size); 4119 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4120 } 4121 4122 if (netif_msg_tx_queued(priv)) { 4123 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4124 __func__, hdr, proto_hdr_len, pay_len, mss); 4125 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4126 skb->data_len); 4127 } 4128 4129 /* Check if VLAN can be inserted by HW */ 4130 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4131 4132 first_entry = tx_q->cur_tx; 4133 WARN_ON(tx_q->tx_skbuff[first_entry]); 4134 4135 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4136 desc = &tx_q->dma_entx[first_entry].basic; 4137 else 4138 desc = &tx_q->dma_tx[first_entry]; 4139 first = desc; 4140 4141 if (has_vlan) 4142 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4143 4144 /* first descriptor: fill Headers on Buf1 */ 4145 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4146 DMA_TO_DEVICE); 4147 if (dma_mapping_error(priv->device, des)) 4148 goto dma_map_err; 4149 4150 tx_q->tx_skbuff_dma[first_entry].buf = des; 4151 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4152 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4153 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4154 4155 if (priv->dma_cap.addr64 <= 32) { 4156 first->des0 = cpu_to_le32(des); 4157 4158 /* Fill start of payload in buff2 of first descriptor */ 4159 if (pay_len) 4160 first->des1 = cpu_to_le32(des + proto_hdr_len); 4161 4162 /* If needed take extra descriptors to fill the remaining payload */ 4163 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4164 } else { 4165 stmmac_set_desc_addr(priv, first, des); 4166 tmp_pay_len = pay_len; 4167 des += proto_hdr_len; 4168 pay_len = 0; 4169 } 4170 4171 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4172 4173 /* Prepare fragments */ 4174 for (i = 0; i < nfrags; i++) { 4175 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4176 4177 des = skb_frag_dma_map(priv->device, frag, 0, 4178 skb_frag_size(frag), 4179 DMA_TO_DEVICE); 4180 if (dma_mapping_error(priv->device, des)) 4181 goto dma_map_err; 4182 4183 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4184 (i == nfrags - 1), queue); 4185 4186 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4187 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4188 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4189 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4190 } 4191 4192 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4193 4194 /* Only the last descriptor gets to point to the skb. */ 4195 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4196 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4197 4198 /* Manage tx mitigation */ 4199 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4200 tx_q->tx_count_frames += tx_packets; 4201 4202 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4203 set_ic = true; 4204 else if (!priv->tx_coal_frames[queue]) 4205 set_ic = false; 4206 else if (tx_packets > priv->tx_coal_frames[queue]) 4207 set_ic = true; 4208 else if ((tx_q->tx_count_frames % 4209 priv->tx_coal_frames[queue]) < tx_packets) 4210 set_ic = true; 4211 else 4212 set_ic = false; 4213 4214 if (set_ic) { 4215 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4216 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4217 else 4218 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4219 4220 tx_q->tx_count_frames = 0; 4221 stmmac_set_tx_ic(priv, desc); 4222 priv->xstats.tx_set_ic_bit++; 4223 } 4224 4225 /* We've used all descriptors we need for this skb, however, 4226 * advance cur_tx so that it references a fresh descriptor. 4227 * ndo_start_xmit will fill this descriptor the next time it's 4228 * called and stmmac_tx_clean may clean up to this descriptor. 4229 */ 4230 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4231 4232 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4233 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4234 __func__); 4235 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4236 } 4237 4238 dev->stats.tx_bytes += skb->len; 4239 priv->xstats.tx_tso_frames++; 4240 priv->xstats.tx_tso_nfrags += nfrags; 4241 4242 if (priv->sarc_type) 4243 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4244 4245 skb_tx_timestamp(skb); 4246 4247 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4248 priv->hwts_tx_en)) { 4249 /* declare that device is doing timestamping */ 4250 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4251 stmmac_enable_tx_timestamp(priv, first); 4252 } 4253 4254 /* Complete the first descriptor before granting the DMA */ 4255 stmmac_prepare_tso_tx_desc(priv, first, 1, 4256 proto_hdr_len, 4257 pay_len, 4258 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4259 hdr / 4, (skb->len - proto_hdr_len)); 4260 4261 /* If context desc is used to change MSS */ 4262 if (mss_desc) { 4263 /* Make sure that first descriptor has been completely 4264 * written, including its own bit. This is because MSS is 4265 * actually before first descriptor, so we need to make 4266 * sure that MSS's own bit is the last thing written. 4267 */ 4268 dma_wmb(); 4269 stmmac_set_tx_owner(priv, mss_desc); 4270 } 4271 4272 if (netif_msg_pktdata(priv)) { 4273 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4274 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4275 tx_q->cur_tx, first, nfrags); 4276 pr_info(">>> frame to be transmitted: "); 4277 print_pkt(skb->data, skb_headlen(skb)); 4278 } 4279 4280 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4281 4282 stmmac_flush_tx_descriptors(priv, queue); 4283 stmmac_tx_timer_arm(priv, queue); 4284 4285 return NETDEV_TX_OK; 4286 4287 dma_map_err: 4288 dev_err(priv->device, "Tx dma map failed\n"); 4289 dev_kfree_skb(skb); 4290 priv->dev->stats.tx_dropped++; 4291 return NETDEV_TX_OK; 4292 } 4293 4294 /** 4295 * stmmac_xmit - Tx entry point of the driver 4296 * @skb : the socket buffer 4297 * @dev : device pointer 4298 * Description : this is the tx entry point of the driver. 4299 * It programs the chain or the ring and supports oversized frames 4300 * and SG feature. 4301 */ 4302 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4303 { 4304 unsigned int first_entry, tx_packets, enh_desc; 4305 struct stmmac_priv *priv = netdev_priv(dev); 4306 unsigned int nopaged_len = skb_headlen(skb); 4307 int i, csum_insertion = 0, is_jumbo = 0; 4308 u32 queue = skb_get_queue_mapping(skb); 4309 int nfrags = skb_shinfo(skb)->nr_frags; 4310 int gso = skb_shinfo(skb)->gso_type; 4311 struct dma_edesc *tbs_desc = NULL; 4312 struct dma_desc *desc, *first; 4313 struct stmmac_tx_queue *tx_q; 4314 bool has_vlan, set_ic; 4315 int entry, first_tx; 4316 dma_addr_t des; 4317 4318 tx_q = &priv->dma_conf.tx_queue[queue]; 4319 first_tx = tx_q->cur_tx; 4320 4321 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4322 stmmac_disable_eee_mode(priv); 4323 4324 /* Manage oversized TCP frames for GMAC4 device */ 4325 if (skb_is_gso(skb) && priv->tso) { 4326 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4327 return stmmac_tso_xmit(skb, dev); 4328 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4329 return stmmac_tso_xmit(skb, dev); 4330 } 4331 4332 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4333 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4334 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4335 queue)); 4336 /* This is a hard error, log it. */ 4337 netdev_err(priv->dev, 4338 "%s: Tx Ring full when queue awake\n", 4339 __func__); 4340 } 4341 return NETDEV_TX_BUSY; 4342 } 4343 4344 /* Check if VLAN can be inserted by HW */ 4345 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4346 4347 entry = tx_q->cur_tx; 4348 first_entry = entry; 4349 WARN_ON(tx_q->tx_skbuff[first_entry]); 4350 4351 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4352 4353 if (likely(priv->extend_desc)) 4354 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4355 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4356 desc = &tx_q->dma_entx[entry].basic; 4357 else 4358 desc = tx_q->dma_tx + entry; 4359 4360 first = desc; 4361 4362 if (has_vlan) 4363 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4364 4365 enh_desc = priv->plat->enh_desc; 4366 /* To program the descriptors according to the size of the frame */ 4367 if (enh_desc) 4368 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4369 4370 if (unlikely(is_jumbo)) { 4371 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4372 if (unlikely(entry < 0) && (entry != -EINVAL)) 4373 goto dma_map_err; 4374 } 4375 4376 for (i = 0; i < nfrags; i++) { 4377 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4378 int len = skb_frag_size(frag); 4379 bool last_segment = (i == (nfrags - 1)); 4380 4381 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4382 WARN_ON(tx_q->tx_skbuff[entry]); 4383 4384 if (likely(priv->extend_desc)) 4385 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4386 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4387 desc = &tx_q->dma_entx[entry].basic; 4388 else 4389 desc = tx_q->dma_tx + entry; 4390 4391 des = skb_frag_dma_map(priv->device, frag, 0, len, 4392 DMA_TO_DEVICE); 4393 if (dma_mapping_error(priv->device, des)) 4394 goto dma_map_err; /* should reuse desc w/o issues */ 4395 4396 tx_q->tx_skbuff_dma[entry].buf = des; 4397 4398 stmmac_set_desc_addr(priv, desc, des); 4399 4400 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4401 tx_q->tx_skbuff_dma[entry].len = len; 4402 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4403 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4404 4405 /* Prepare the descriptor and set the own bit too */ 4406 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4407 priv->mode, 1, last_segment, skb->len); 4408 } 4409 4410 /* Only the last descriptor gets to point to the skb. */ 4411 tx_q->tx_skbuff[entry] = skb; 4412 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4413 4414 /* According to the coalesce parameter the IC bit for the latest 4415 * segment is reset and the timer re-started to clean the tx status. 4416 * This approach takes care about the fragments: desc is the first 4417 * element in case of no SG. 4418 */ 4419 tx_packets = (entry + 1) - first_tx; 4420 tx_q->tx_count_frames += tx_packets; 4421 4422 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4423 set_ic = true; 4424 else if (!priv->tx_coal_frames[queue]) 4425 set_ic = false; 4426 else if (tx_packets > priv->tx_coal_frames[queue]) 4427 set_ic = true; 4428 else if ((tx_q->tx_count_frames % 4429 priv->tx_coal_frames[queue]) < tx_packets) 4430 set_ic = true; 4431 else 4432 set_ic = false; 4433 4434 if (set_ic) { 4435 if (likely(priv->extend_desc)) 4436 desc = &tx_q->dma_etx[entry].basic; 4437 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4438 desc = &tx_q->dma_entx[entry].basic; 4439 else 4440 desc = &tx_q->dma_tx[entry]; 4441 4442 tx_q->tx_count_frames = 0; 4443 stmmac_set_tx_ic(priv, desc); 4444 priv->xstats.tx_set_ic_bit++; 4445 } 4446 4447 /* We've used all descriptors we need for this skb, however, 4448 * advance cur_tx so that it references a fresh descriptor. 4449 * ndo_start_xmit will fill this descriptor the next time it's 4450 * called and stmmac_tx_clean may clean up to this descriptor. 4451 */ 4452 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4453 tx_q->cur_tx = entry; 4454 4455 if (netif_msg_pktdata(priv)) { 4456 netdev_dbg(priv->dev, 4457 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4458 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4459 entry, first, nfrags); 4460 4461 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4462 print_pkt(skb->data, skb->len); 4463 } 4464 4465 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4466 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4467 __func__); 4468 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4469 } 4470 4471 dev->stats.tx_bytes += skb->len; 4472 4473 if (priv->sarc_type) 4474 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4475 4476 skb_tx_timestamp(skb); 4477 4478 /* Ready to fill the first descriptor and set the OWN bit w/o any 4479 * problems because all the descriptors are actually ready to be 4480 * passed to the DMA engine. 4481 */ 4482 if (likely(!is_jumbo)) { 4483 bool last_segment = (nfrags == 0); 4484 4485 des = dma_map_single(priv->device, skb->data, 4486 nopaged_len, DMA_TO_DEVICE); 4487 if (dma_mapping_error(priv->device, des)) 4488 goto dma_map_err; 4489 4490 tx_q->tx_skbuff_dma[first_entry].buf = des; 4491 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4492 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4493 4494 stmmac_set_desc_addr(priv, first, des); 4495 4496 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4497 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4498 4499 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4500 priv->hwts_tx_en)) { 4501 /* declare that device is doing timestamping */ 4502 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4503 stmmac_enable_tx_timestamp(priv, first); 4504 } 4505 4506 /* Prepare the first descriptor setting the OWN bit too */ 4507 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4508 csum_insertion, priv->mode, 0, last_segment, 4509 skb->len); 4510 } 4511 4512 if (tx_q->tbs & STMMAC_TBS_EN) { 4513 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4514 4515 tbs_desc = &tx_q->dma_entx[first_entry]; 4516 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4517 } 4518 4519 stmmac_set_tx_owner(priv, first); 4520 4521 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4522 4523 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4524 4525 stmmac_flush_tx_descriptors(priv, queue); 4526 stmmac_tx_timer_arm(priv, queue); 4527 4528 return NETDEV_TX_OK; 4529 4530 dma_map_err: 4531 netdev_err(priv->dev, "Tx DMA map failed\n"); 4532 dev_kfree_skb(skb); 4533 priv->dev->stats.tx_dropped++; 4534 return NETDEV_TX_OK; 4535 } 4536 4537 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4538 { 4539 struct vlan_ethhdr *veth; 4540 __be16 vlan_proto; 4541 u16 vlanid; 4542 4543 veth = (struct vlan_ethhdr *)skb->data; 4544 vlan_proto = veth->h_vlan_proto; 4545 4546 if ((vlan_proto == htons(ETH_P_8021Q) && 4547 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4548 (vlan_proto == htons(ETH_P_8021AD) && 4549 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4550 /* pop the vlan tag */ 4551 vlanid = ntohs(veth->h_vlan_TCI); 4552 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4553 skb_pull(skb, VLAN_HLEN); 4554 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4555 } 4556 } 4557 4558 /** 4559 * stmmac_rx_refill - refill used skb preallocated buffers 4560 * @priv: driver private structure 4561 * @queue: RX queue index 4562 * Description : this is to reallocate the skb for the reception process 4563 * that is based on zero-copy. 4564 */ 4565 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4566 { 4567 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4568 int dirty = stmmac_rx_dirty(priv, queue); 4569 unsigned int entry = rx_q->dirty_rx; 4570 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4571 4572 if (priv->dma_cap.addr64 <= 32) 4573 gfp |= GFP_DMA32; 4574 4575 while (dirty-- > 0) { 4576 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4577 struct dma_desc *p; 4578 bool use_rx_wd; 4579 4580 if (priv->extend_desc) 4581 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4582 else 4583 p = rx_q->dma_rx + entry; 4584 4585 if (!buf->page) { 4586 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4587 if (!buf->page) 4588 break; 4589 } 4590 4591 if (priv->sph && !buf->sec_page) { 4592 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4593 if (!buf->sec_page) 4594 break; 4595 4596 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4597 } 4598 4599 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4600 4601 stmmac_set_desc_addr(priv, p, buf->addr); 4602 if (priv->sph) 4603 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4604 else 4605 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4606 stmmac_refill_desc3(priv, rx_q, p); 4607 4608 rx_q->rx_count_frames++; 4609 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4610 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4611 rx_q->rx_count_frames = 0; 4612 4613 use_rx_wd = !priv->rx_coal_frames[queue]; 4614 use_rx_wd |= rx_q->rx_count_frames > 0; 4615 if (!priv->use_riwt) 4616 use_rx_wd = false; 4617 4618 dma_wmb(); 4619 stmmac_set_rx_owner(priv, p, use_rx_wd); 4620 4621 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4622 } 4623 rx_q->dirty_rx = entry; 4624 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4625 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4626 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4627 } 4628 4629 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4630 struct dma_desc *p, 4631 int status, unsigned int len) 4632 { 4633 unsigned int plen = 0, hlen = 0; 4634 int coe = priv->hw->rx_csum; 4635 4636 /* Not first descriptor, buffer is always zero */ 4637 if (priv->sph && len) 4638 return 0; 4639 4640 /* First descriptor, get split header length */ 4641 stmmac_get_rx_header_len(priv, p, &hlen); 4642 if (priv->sph && hlen) { 4643 priv->xstats.rx_split_hdr_pkt_n++; 4644 return hlen; 4645 } 4646 4647 /* First descriptor, not last descriptor and not split header */ 4648 if (status & rx_not_ls) 4649 return priv->dma_conf.dma_buf_sz; 4650 4651 plen = stmmac_get_rx_frame_len(priv, p, coe); 4652 4653 /* First descriptor and last descriptor and not split header */ 4654 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); 4655 } 4656 4657 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4658 struct dma_desc *p, 4659 int status, unsigned int len) 4660 { 4661 int coe = priv->hw->rx_csum; 4662 unsigned int plen = 0; 4663 4664 /* Not split header, buffer is not available */ 4665 if (!priv->sph) 4666 return 0; 4667 4668 /* Not last descriptor */ 4669 if (status & rx_not_ls) 4670 return priv->dma_conf.dma_buf_sz; 4671 4672 plen = stmmac_get_rx_frame_len(priv, p, coe); 4673 4674 /* Last descriptor */ 4675 return plen - len; 4676 } 4677 4678 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4679 struct xdp_frame *xdpf, bool dma_map) 4680 { 4681 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4682 unsigned int entry = tx_q->cur_tx; 4683 struct dma_desc *tx_desc; 4684 dma_addr_t dma_addr; 4685 bool set_ic; 4686 4687 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4688 return STMMAC_XDP_CONSUMED; 4689 4690 if (likely(priv->extend_desc)) 4691 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4692 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4693 tx_desc = &tx_q->dma_entx[entry].basic; 4694 else 4695 tx_desc = tx_q->dma_tx + entry; 4696 4697 if (dma_map) { 4698 dma_addr = dma_map_single(priv->device, xdpf->data, 4699 xdpf->len, DMA_TO_DEVICE); 4700 if (dma_mapping_error(priv->device, dma_addr)) 4701 return STMMAC_XDP_CONSUMED; 4702 4703 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4704 } else { 4705 struct page *page = virt_to_page(xdpf->data); 4706 4707 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4708 xdpf->headroom; 4709 dma_sync_single_for_device(priv->device, dma_addr, 4710 xdpf->len, DMA_BIDIRECTIONAL); 4711 4712 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4713 } 4714 4715 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4716 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4717 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4718 tx_q->tx_skbuff_dma[entry].last_segment = true; 4719 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4720 4721 tx_q->xdpf[entry] = xdpf; 4722 4723 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4724 4725 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4726 true, priv->mode, true, true, 4727 xdpf->len); 4728 4729 tx_q->tx_count_frames++; 4730 4731 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4732 set_ic = true; 4733 else 4734 set_ic = false; 4735 4736 if (set_ic) { 4737 tx_q->tx_count_frames = 0; 4738 stmmac_set_tx_ic(priv, tx_desc); 4739 priv->xstats.tx_set_ic_bit++; 4740 } 4741 4742 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4743 4744 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4745 tx_q->cur_tx = entry; 4746 4747 return STMMAC_XDP_TX; 4748 } 4749 4750 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4751 int cpu) 4752 { 4753 int index = cpu; 4754 4755 if (unlikely(index < 0)) 4756 index = 0; 4757 4758 while (index >= priv->plat->tx_queues_to_use) 4759 index -= priv->plat->tx_queues_to_use; 4760 4761 return index; 4762 } 4763 4764 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4765 struct xdp_buff *xdp) 4766 { 4767 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4768 int cpu = smp_processor_id(); 4769 struct netdev_queue *nq; 4770 int queue; 4771 int res; 4772 4773 if (unlikely(!xdpf)) 4774 return STMMAC_XDP_CONSUMED; 4775 4776 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4777 nq = netdev_get_tx_queue(priv->dev, queue); 4778 4779 __netif_tx_lock(nq, cpu); 4780 /* Avoids TX time-out as we are sharing with slow path */ 4781 txq_trans_cond_update(nq); 4782 4783 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4784 if (res == STMMAC_XDP_TX) 4785 stmmac_flush_tx_descriptors(priv, queue); 4786 4787 __netif_tx_unlock(nq); 4788 4789 return res; 4790 } 4791 4792 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4793 struct bpf_prog *prog, 4794 struct xdp_buff *xdp) 4795 { 4796 u32 act; 4797 int res; 4798 4799 act = bpf_prog_run_xdp(prog, xdp); 4800 switch (act) { 4801 case XDP_PASS: 4802 res = STMMAC_XDP_PASS; 4803 break; 4804 case XDP_TX: 4805 res = stmmac_xdp_xmit_back(priv, xdp); 4806 break; 4807 case XDP_REDIRECT: 4808 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4809 res = STMMAC_XDP_CONSUMED; 4810 else 4811 res = STMMAC_XDP_REDIRECT; 4812 break; 4813 default: 4814 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4815 fallthrough; 4816 case XDP_ABORTED: 4817 trace_xdp_exception(priv->dev, prog, act); 4818 fallthrough; 4819 case XDP_DROP: 4820 res = STMMAC_XDP_CONSUMED; 4821 break; 4822 } 4823 4824 return res; 4825 } 4826 4827 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4828 struct xdp_buff *xdp) 4829 { 4830 struct bpf_prog *prog; 4831 int res; 4832 4833 prog = READ_ONCE(priv->xdp_prog); 4834 if (!prog) { 4835 res = STMMAC_XDP_PASS; 4836 goto out; 4837 } 4838 4839 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4840 out: 4841 return ERR_PTR(-res); 4842 } 4843 4844 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4845 int xdp_status) 4846 { 4847 int cpu = smp_processor_id(); 4848 int queue; 4849 4850 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4851 4852 if (xdp_status & STMMAC_XDP_TX) 4853 stmmac_tx_timer_arm(priv, queue); 4854 4855 if (xdp_status & STMMAC_XDP_REDIRECT) 4856 xdp_do_flush(); 4857 } 4858 4859 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4860 struct xdp_buff *xdp) 4861 { 4862 unsigned int metasize = xdp->data - xdp->data_meta; 4863 unsigned int datasize = xdp->data_end - xdp->data; 4864 struct sk_buff *skb; 4865 4866 skb = __napi_alloc_skb(&ch->rxtx_napi, 4867 xdp->data_end - xdp->data_hard_start, 4868 GFP_ATOMIC | __GFP_NOWARN); 4869 if (unlikely(!skb)) 4870 return NULL; 4871 4872 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4873 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4874 if (metasize) 4875 skb_metadata_set(skb, metasize); 4876 4877 return skb; 4878 } 4879 4880 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4881 struct dma_desc *p, struct dma_desc *np, 4882 struct xdp_buff *xdp) 4883 { 4884 struct stmmac_channel *ch = &priv->channel[queue]; 4885 unsigned int len = xdp->data_end - xdp->data; 4886 enum pkt_hash_types hash_type; 4887 int coe = priv->hw->rx_csum; 4888 struct sk_buff *skb; 4889 u32 hash; 4890 4891 skb = stmmac_construct_skb_zc(ch, xdp); 4892 if (!skb) { 4893 priv->dev->stats.rx_dropped++; 4894 return; 4895 } 4896 4897 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4898 stmmac_rx_vlan(priv->dev, skb); 4899 skb->protocol = eth_type_trans(skb, priv->dev); 4900 4901 if (unlikely(!coe)) 4902 skb_checksum_none_assert(skb); 4903 else 4904 skb->ip_summed = CHECKSUM_UNNECESSARY; 4905 4906 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4907 skb_set_hash(skb, hash, hash_type); 4908 4909 skb_record_rx_queue(skb, queue); 4910 napi_gro_receive(&ch->rxtx_napi, skb); 4911 4912 priv->dev->stats.rx_packets++; 4913 priv->dev->stats.rx_bytes += len; 4914 } 4915 4916 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4917 { 4918 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4919 unsigned int entry = rx_q->dirty_rx; 4920 struct dma_desc *rx_desc = NULL; 4921 bool ret = true; 4922 4923 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4924 4925 while (budget-- > 0 && entry != rx_q->cur_rx) { 4926 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4927 dma_addr_t dma_addr; 4928 bool use_rx_wd; 4929 4930 if (!buf->xdp) { 4931 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4932 if (!buf->xdp) { 4933 ret = false; 4934 break; 4935 } 4936 } 4937 4938 if (priv->extend_desc) 4939 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4940 else 4941 rx_desc = rx_q->dma_rx + entry; 4942 4943 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4944 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4945 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4946 stmmac_refill_desc3(priv, rx_q, rx_desc); 4947 4948 rx_q->rx_count_frames++; 4949 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4950 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4951 rx_q->rx_count_frames = 0; 4952 4953 use_rx_wd = !priv->rx_coal_frames[queue]; 4954 use_rx_wd |= rx_q->rx_count_frames > 0; 4955 if (!priv->use_riwt) 4956 use_rx_wd = false; 4957 4958 dma_wmb(); 4959 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4960 4961 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4962 } 4963 4964 if (rx_desc) { 4965 rx_q->dirty_rx = entry; 4966 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4967 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4968 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4969 } 4970 4971 return ret; 4972 } 4973 4974 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4975 { 4976 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4977 unsigned int count = 0, error = 0, len = 0; 4978 int dirty = stmmac_rx_dirty(priv, queue); 4979 unsigned int next_entry = rx_q->cur_rx; 4980 unsigned int desc_size; 4981 struct bpf_prog *prog; 4982 bool failure = false; 4983 int xdp_status = 0; 4984 int status = 0; 4985 4986 if (netif_msg_rx_status(priv)) { 4987 void *rx_head; 4988 4989 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4990 if (priv->extend_desc) { 4991 rx_head = (void *)rx_q->dma_erx; 4992 desc_size = sizeof(struct dma_extended_desc); 4993 } else { 4994 rx_head = (void *)rx_q->dma_rx; 4995 desc_size = sizeof(struct dma_desc); 4996 } 4997 4998 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 4999 rx_q->dma_rx_phy, desc_size); 5000 } 5001 while (count < limit) { 5002 struct stmmac_rx_buffer *buf; 5003 unsigned int buf1_len = 0; 5004 struct dma_desc *np, *p; 5005 int entry; 5006 int res; 5007 5008 if (!count && rx_q->state_saved) { 5009 error = rx_q->state.error; 5010 len = rx_q->state.len; 5011 } else { 5012 rx_q->state_saved = false; 5013 error = 0; 5014 len = 0; 5015 } 5016 5017 if (count >= limit) 5018 break; 5019 5020 read_again: 5021 buf1_len = 0; 5022 entry = next_entry; 5023 buf = &rx_q->buf_pool[entry]; 5024 5025 if (dirty >= STMMAC_RX_FILL_BATCH) { 5026 failure = failure || 5027 !stmmac_rx_refill_zc(priv, queue, dirty); 5028 dirty = 0; 5029 } 5030 5031 if (priv->extend_desc) 5032 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5033 else 5034 p = rx_q->dma_rx + entry; 5035 5036 /* read the status of the incoming frame */ 5037 status = stmmac_rx_status(priv, &priv->dev->stats, 5038 &priv->xstats, p); 5039 /* check if managed by the DMA otherwise go ahead */ 5040 if (unlikely(status & dma_own)) 5041 break; 5042 5043 /* Prefetch the next RX descriptor */ 5044 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5045 priv->dma_conf.dma_rx_size); 5046 next_entry = rx_q->cur_rx; 5047 5048 if (priv->extend_desc) 5049 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5050 else 5051 np = rx_q->dma_rx + next_entry; 5052 5053 prefetch(np); 5054 5055 /* Ensure a valid XSK buffer before proceed */ 5056 if (!buf->xdp) 5057 break; 5058 5059 if (priv->extend_desc) 5060 stmmac_rx_extended_status(priv, &priv->dev->stats, 5061 &priv->xstats, 5062 rx_q->dma_erx + entry); 5063 if (unlikely(status == discard_frame)) { 5064 xsk_buff_free(buf->xdp); 5065 buf->xdp = NULL; 5066 dirty++; 5067 error = 1; 5068 if (!priv->hwts_rx_en) 5069 priv->dev->stats.rx_errors++; 5070 } 5071 5072 if (unlikely(error && (status & rx_not_ls))) 5073 goto read_again; 5074 if (unlikely(error)) { 5075 count++; 5076 continue; 5077 } 5078 5079 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 5080 if (likely(status & rx_not_ls)) { 5081 xsk_buff_free(buf->xdp); 5082 buf->xdp = NULL; 5083 dirty++; 5084 count++; 5085 goto read_again; 5086 } 5087 5088 /* XDP ZC Frame only support primary buffers for now */ 5089 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5090 len += buf1_len; 5091 5092 /* ACS is disabled; strip manually. */ 5093 if (likely(!(status & rx_not_ls))) { 5094 buf1_len -= ETH_FCS_LEN; 5095 len -= ETH_FCS_LEN; 5096 } 5097 5098 /* RX buffer is good and fit into a XSK pool buffer */ 5099 buf->xdp->data_end = buf->xdp->data + buf1_len; 5100 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5101 5102 prog = READ_ONCE(priv->xdp_prog); 5103 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5104 5105 switch (res) { 5106 case STMMAC_XDP_PASS: 5107 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5108 xsk_buff_free(buf->xdp); 5109 break; 5110 case STMMAC_XDP_CONSUMED: 5111 xsk_buff_free(buf->xdp); 5112 priv->dev->stats.rx_dropped++; 5113 break; 5114 case STMMAC_XDP_TX: 5115 case STMMAC_XDP_REDIRECT: 5116 xdp_status |= res; 5117 break; 5118 } 5119 5120 buf->xdp = NULL; 5121 dirty++; 5122 count++; 5123 } 5124 5125 if (status & rx_not_ls) { 5126 rx_q->state_saved = true; 5127 rx_q->state.error = error; 5128 rx_q->state.len = len; 5129 } 5130 5131 stmmac_finalize_xdp_rx(priv, xdp_status); 5132 5133 priv->xstats.rx_pkt_n += count; 5134 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5135 5136 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5137 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5138 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5139 else 5140 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5141 5142 return (int)count; 5143 } 5144 5145 return failure ? limit : (int)count; 5146 } 5147 5148 /** 5149 * stmmac_rx - manage the receive process 5150 * @priv: driver private structure 5151 * @limit: napi bugget 5152 * @queue: RX queue index. 5153 * Description : this the function called by the napi poll method. 5154 * It gets all the frames inside the ring. 5155 */ 5156 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5157 { 5158 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5159 struct stmmac_channel *ch = &priv->channel[queue]; 5160 unsigned int count = 0, error = 0, len = 0; 5161 int status = 0, coe = priv->hw->rx_csum; 5162 unsigned int next_entry = rx_q->cur_rx; 5163 enum dma_data_direction dma_dir; 5164 unsigned int desc_size; 5165 struct sk_buff *skb = NULL; 5166 struct xdp_buff xdp; 5167 int xdp_status = 0; 5168 int buf_sz; 5169 5170 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5171 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5172 5173 if (netif_msg_rx_status(priv)) { 5174 void *rx_head; 5175 5176 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5177 if (priv->extend_desc) { 5178 rx_head = (void *)rx_q->dma_erx; 5179 desc_size = sizeof(struct dma_extended_desc); 5180 } else { 5181 rx_head = (void *)rx_q->dma_rx; 5182 desc_size = sizeof(struct dma_desc); 5183 } 5184 5185 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5186 rx_q->dma_rx_phy, desc_size); 5187 } 5188 while (count < limit) { 5189 unsigned int buf1_len = 0, buf2_len = 0; 5190 enum pkt_hash_types hash_type; 5191 struct stmmac_rx_buffer *buf; 5192 struct dma_desc *np, *p; 5193 int entry; 5194 u32 hash; 5195 5196 if (!count && rx_q->state_saved) { 5197 skb = rx_q->state.skb; 5198 error = rx_q->state.error; 5199 len = rx_q->state.len; 5200 } else { 5201 rx_q->state_saved = false; 5202 skb = NULL; 5203 error = 0; 5204 len = 0; 5205 } 5206 5207 if (count >= limit) 5208 break; 5209 5210 read_again: 5211 buf1_len = 0; 5212 buf2_len = 0; 5213 entry = next_entry; 5214 buf = &rx_q->buf_pool[entry]; 5215 5216 if (priv->extend_desc) 5217 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5218 else 5219 p = rx_q->dma_rx + entry; 5220 5221 /* read the status of the incoming frame */ 5222 status = stmmac_rx_status(priv, &priv->dev->stats, 5223 &priv->xstats, p); 5224 /* check if managed by the DMA otherwise go ahead */ 5225 if (unlikely(status & dma_own)) 5226 break; 5227 5228 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5229 priv->dma_conf.dma_rx_size); 5230 next_entry = rx_q->cur_rx; 5231 5232 if (priv->extend_desc) 5233 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5234 else 5235 np = rx_q->dma_rx + next_entry; 5236 5237 prefetch(np); 5238 5239 if (priv->extend_desc) 5240 stmmac_rx_extended_status(priv, &priv->dev->stats, 5241 &priv->xstats, rx_q->dma_erx + entry); 5242 if (unlikely(status == discard_frame)) { 5243 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5244 buf->page = NULL; 5245 error = 1; 5246 if (!priv->hwts_rx_en) 5247 priv->dev->stats.rx_errors++; 5248 } 5249 5250 if (unlikely(error && (status & rx_not_ls))) 5251 goto read_again; 5252 if (unlikely(error)) { 5253 dev_kfree_skb(skb); 5254 skb = NULL; 5255 count++; 5256 continue; 5257 } 5258 5259 /* Buffer is good. Go on. */ 5260 5261 prefetch(page_address(buf->page) + buf->page_offset); 5262 if (buf->sec_page) 5263 prefetch(page_address(buf->sec_page)); 5264 5265 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5266 len += buf1_len; 5267 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5268 len += buf2_len; 5269 5270 /* ACS is disabled; strip manually. */ 5271 if (likely(!(status & rx_not_ls))) { 5272 if (buf2_len) { 5273 buf2_len -= ETH_FCS_LEN; 5274 len -= ETH_FCS_LEN; 5275 } else if (buf1_len) { 5276 buf1_len -= ETH_FCS_LEN; 5277 len -= ETH_FCS_LEN; 5278 } 5279 } 5280 5281 if (!skb) { 5282 unsigned int pre_len, sync_len; 5283 5284 dma_sync_single_for_cpu(priv->device, buf->addr, 5285 buf1_len, dma_dir); 5286 5287 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5288 xdp_prepare_buff(&xdp, page_address(buf->page), 5289 buf->page_offset, buf1_len, false); 5290 5291 pre_len = xdp.data_end - xdp.data_hard_start - 5292 buf->page_offset; 5293 skb = stmmac_xdp_run_prog(priv, &xdp); 5294 /* Due xdp_adjust_tail: DMA sync for_device 5295 * cover max len CPU touch 5296 */ 5297 sync_len = xdp.data_end - xdp.data_hard_start - 5298 buf->page_offset; 5299 sync_len = max(sync_len, pre_len); 5300 5301 /* For Not XDP_PASS verdict */ 5302 if (IS_ERR(skb)) { 5303 unsigned int xdp_res = -PTR_ERR(skb); 5304 5305 if (xdp_res & STMMAC_XDP_CONSUMED) { 5306 page_pool_put_page(rx_q->page_pool, 5307 virt_to_head_page(xdp.data), 5308 sync_len, true); 5309 buf->page = NULL; 5310 priv->dev->stats.rx_dropped++; 5311 5312 /* Clear skb as it was set as 5313 * status by XDP program. 5314 */ 5315 skb = NULL; 5316 5317 if (unlikely((status & rx_not_ls))) 5318 goto read_again; 5319 5320 count++; 5321 continue; 5322 } else if (xdp_res & (STMMAC_XDP_TX | 5323 STMMAC_XDP_REDIRECT)) { 5324 xdp_status |= xdp_res; 5325 buf->page = NULL; 5326 skb = NULL; 5327 count++; 5328 continue; 5329 } 5330 } 5331 } 5332 5333 if (!skb) { 5334 /* XDP program may expand or reduce tail */ 5335 buf1_len = xdp.data_end - xdp.data; 5336 5337 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5338 if (!skb) { 5339 priv->dev->stats.rx_dropped++; 5340 count++; 5341 goto drain_data; 5342 } 5343 5344 /* XDP program may adjust header */ 5345 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5346 skb_put(skb, buf1_len); 5347 5348 /* Data payload copied into SKB, page ready for recycle */ 5349 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5350 buf->page = NULL; 5351 } else if (buf1_len) { 5352 dma_sync_single_for_cpu(priv->device, buf->addr, 5353 buf1_len, dma_dir); 5354 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5355 buf->page, buf->page_offset, buf1_len, 5356 priv->dma_conf.dma_buf_sz); 5357 5358 /* Data payload appended into SKB */ 5359 page_pool_release_page(rx_q->page_pool, buf->page); 5360 buf->page = NULL; 5361 } 5362 5363 if (buf2_len) { 5364 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5365 buf2_len, dma_dir); 5366 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5367 buf->sec_page, 0, buf2_len, 5368 priv->dma_conf.dma_buf_sz); 5369 5370 /* Data payload appended into SKB */ 5371 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5372 buf->sec_page = NULL; 5373 } 5374 5375 drain_data: 5376 if (likely(status & rx_not_ls)) 5377 goto read_again; 5378 if (!skb) 5379 continue; 5380 5381 /* Got entire packet into SKB. Finish it. */ 5382 5383 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5384 stmmac_rx_vlan(priv->dev, skb); 5385 skb->protocol = eth_type_trans(skb, priv->dev); 5386 5387 if (unlikely(!coe)) 5388 skb_checksum_none_assert(skb); 5389 else 5390 skb->ip_summed = CHECKSUM_UNNECESSARY; 5391 5392 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5393 skb_set_hash(skb, hash, hash_type); 5394 5395 skb_record_rx_queue(skb, queue); 5396 napi_gro_receive(&ch->rx_napi, skb); 5397 skb = NULL; 5398 5399 priv->dev->stats.rx_packets++; 5400 priv->dev->stats.rx_bytes += len; 5401 count++; 5402 } 5403 5404 if (status & rx_not_ls || skb) { 5405 rx_q->state_saved = true; 5406 rx_q->state.skb = skb; 5407 rx_q->state.error = error; 5408 rx_q->state.len = len; 5409 } 5410 5411 stmmac_finalize_xdp_rx(priv, xdp_status); 5412 5413 stmmac_rx_refill(priv, queue); 5414 5415 priv->xstats.rx_pkt_n += count; 5416 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5417 5418 return count; 5419 } 5420 5421 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5422 { 5423 struct stmmac_channel *ch = 5424 container_of(napi, struct stmmac_channel, rx_napi); 5425 struct stmmac_priv *priv = ch->priv_data; 5426 u32 chan = ch->index; 5427 int work_done; 5428 5429 priv->xstats.napi_poll++; 5430 5431 work_done = stmmac_rx(priv, budget, chan); 5432 if (work_done < budget && napi_complete_done(napi, work_done)) { 5433 unsigned long flags; 5434 5435 spin_lock_irqsave(&ch->lock, flags); 5436 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5437 spin_unlock_irqrestore(&ch->lock, flags); 5438 } 5439 5440 return work_done; 5441 } 5442 5443 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5444 { 5445 struct stmmac_channel *ch = 5446 container_of(napi, struct stmmac_channel, tx_napi); 5447 struct stmmac_priv *priv = ch->priv_data; 5448 u32 chan = ch->index; 5449 int work_done; 5450 5451 priv->xstats.napi_poll++; 5452 5453 work_done = stmmac_tx_clean(priv, budget, chan); 5454 work_done = min(work_done, budget); 5455 5456 if (work_done < budget && napi_complete_done(napi, work_done)) { 5457 unsigned long flags; 5458 5459 spin_lock_irqsave(&ch->lock, flags); 5460 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5461 spin_unlock_irqrestore(&ch->lock, flags); 5462 } 5463 5464 return work_done; 5465 } 5466 5467 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5468 { 5469 struct stmmac_channel *ch = 5470 container_of(napi, struct stmmac_channel, rxtx_napi); 5471 struct stmmac_priv *priv = ch->priv_data; 5472 int rx_done, tx_done, rxtx_done; 5473 u32 chan = ch->index; 5474 5475 priv->xstats.napi_poll++; 5476 5477 tx_done = stmmac_tx_clean(priv, budget, chan); 5478 tx_done = min(tx_done, budget); 5479 5480 rx_done = stmmac_rx_zc(priv, budget, chan); 5481 5482 rxtx_done = max(tx_done, rx_done); 5483 5484 /* If either TX or RX work is not complete, return budget 5485 * and keep pooling 5486 */ 5487 if (rxtx_done >= budget) 5488 return budget; 5489 5490 /* all work done, exit the polling mode */ 5491 if (napi_complete_done(napi, rxtx_done)) { 5492 unsigned long flags; 5493 5494 spin_lock_irqsave(&ch->lock, flags); 5495 /* Both RX and TX work done are compelte, 5496 * so enable both RX & TX IRQs. 5497 */ 5498 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5499 spin_unlock_irqrestore(&ch->lock, flags); 5500 } 5501 5502 return min(rxtx_done, budget - 1); 5503 } 5504 5505 /** 5506 * stmmac_tx_timeout 5507 * @dev : Pointer to net device structure 5508 * @txqueue: the index of the hanging transmit queue 5509 * Description: this function is called when a packet transmission fails to 5510 * complete within a reasonable time. The driver will mark the error in the 5511 * netdev structure and arrange for the device to be reset to a sane state 5512 * in order to transmit a new packet. 5513 */ 5514 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5515 { 5516 struct stmmac_priv *priv = netdev_priv(dev); 5517 5518 stmmac_global_err(priv); 5519 } 5520 5521 /** 5522 * stmmac_set_rx_mode - entry point for multicast addressing 5523 * @dev : pointer to the device structure 5524 * Description: 5525 * This function is a driver entry point which gets called by the kernel 5526 * whenever multicast addresses must be enabled/disabled. 5527 * Return value: 5528 * void. 5529 */ 5530 static void stmmac_set_rx_mode(struct net_device *dev) 5531 { 5532 struct stmmac_priv *priv = netdev_priv(dev); 5533 5534 stmmac_set_filter(priv, priv->hw, dev); 5535 } 5536 5537 /** 5538 * stmmac_change_mtu - entry point to change MTU size for the device. 5539 * @dev : device pointer. 5540 * @new_mtu : the new MTU size for the device. 5541 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5542 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5543 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5544 * Return value: 5545 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5546 * file on failure. 5547 */ 5548 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5549 { 5550 struct stmmac_priv *priv = netdev_priv(dev); 5551 int txfifosz = priv->plat->tx_fifo_size; 5552 struct stmmac_dma_conf *dma_conf; 5553 const int mtu = new_mtu; 5554 int ret; 5555 5556 if (txfifosz == 0) 5557 txfifosz = priv->dma_cap.tx_fifo_size; 5558 5559 txfifosz /= priv->plat->tx_queues_to_use; 5560 5561 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5562 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5563 return -EINVAL; 5564 } 5565 5566 new_mtu = STMMAC_ALIGN(new_mtu); 5567 5568 /* If condition true, FIFO is too small or MTU too large */ 5569 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5570 return -EINVAL; 5571 5572 if (netif_running(dev)) { 5573 netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); 5574 /* Try to allocate the new DMA conf with the new mtu */ 5575 dma_conf = stmmac_setup_dma_desc(priv, mtu); 5576 if (IS_ERR(dma_conf)) { 5577 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", 5578 mtu); 5579 return PTR_ERR(dma_conf); 5580 } 5581 5582 stmmac_release(dev); 5583 5584 ret = __stmmac_open(dev, dma_conf); 5585 kfree(dma_conf); 5586 if (ret) { 5587 netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); 5588 return ret; 5589 } 5590 5591 stmmac_set_rx_mode(dev); 5592 } 5593 5594 dev->mtu = mtu; 5595 netdev_update_features(dev); 5596 5597 return 0; 5598 } 5599 5600 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5601 netdev_features_t features) 5602 { 5603 struct stmmac_priv *priv = netdev_priv(dev); 5604 5605 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5606 features &= ~NETIF_F_RXCSUM; 5607 5608 if (!priv->plat->tx_coe) 5609 features &= ~NETIF_F_CSUM_MASK; 5610 5611 /* Some GMAC devices have a bugged Jumbo frame support that 5612 * needs to have the Tx COE disabled for oversized frames 5613 * (due to limited buffer sizes). In this case we disable 5614 * the TX csum insertion in the TDES and not use SF. 5615 */ 5616 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5617 features &= ~NETIF_F_CSUM_MASK; 5618 5619 /* Disable tso if asked by ethtool */ 5620 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5621 if (features & NETIF_F_TSO) 5622 priv->tso = true; 5623 else 5624 priv->tso = false; 5625 } 5626 5627 return features; 5628 } 5629 5630 static int stmmac_set_features(struct net_device *netdev, 5631 netdev_features_t features) 5632 { 5633 struct stmmac_priv *priv = netdev_priv(netdev); 5634 5635 /* Keep the COE Type in case of csum is supporting */ 5636 if (features & NETIF_F_RXCSUM) 5637 priv->hw->rx_csum = priv->plat->rx_coe; 5638 else 5639 priv->hw->rx_csum = 0; 5640 /* No check needed because rx_coe has been set before and it will be 5641 * fixed in case of issue. 5642 */ 5643 stmmac_rx_ipc(priv, priv->hw); 5644 5645 if (priv->sph_cap) { 5646 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5647 u32 chan; 5648 5649 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5650 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5651 } 5652 5653 return 0; 5654 } 5655 5656 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5657 { 5658 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5659 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5660 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5661 bool *hs_enable = &fpe_cfg->hs_enable; 5662 5663 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5664 return; 5665 5666 /* If LP has sent verify mPacket, LP is FPE capable */ 5667 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5668 if (*lp_state < FPE_STATE_CAPABLE) 5669 *lp_state = FPE_STATE_CAPABLE; 5670 5671 /* If user has requested FPE enable, quickly response */ 5672 if (*hs_enable) 5673 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5674 MPACKET_RESPONSE); 5675 } 5676 5677 /* If Local has sent verify mPacket, Local is FPE capable */ 5678 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5679 if (*lo_state < FPE_STATE_CAPABLE) 5680 *lo_state = FPE_STATE_CAPABLE; 5681 } 5682 5683 /* If LP has sent response mPacket, LP is entering FPE ON */ 5684 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5685 *lp_state = FPE_STATE_ENTERING_ON; 5686 5687 /* If Local has sent response mPacket, Local is entering FPE ON */ 5688 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5689 *lo_state = FPE_STATE_ENTERING_ON; 5690 5691 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5692 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5693 priv->fpe_wq) { 5694 queue_work(priv->fpe_wq, &priv->fpe_task); 5695 } 5696 } 5697 5698 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5699 { 5700 u32 rx_cnt = priv->plat->rx_queues_to_use; 5701 u32 tx_cnt = priv->plat->tx_queues_to_use; 5702 u32 queues_count; 5703 u32 queue; 5704 bool xmac; 5705 5706 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5707 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5708 5709 if (priv->irq_wake) 5710 pm_wakeup_event(priv->device, 0); 5711 5712 if (priv->dma_cap.estsel) 5713 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5714 &priv->xstats, tx_cnt); 5715 5716 if (priv->dma_cap.fpesel) { 5717 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5718 priv->dev); 5719 5720 stmmac_fpe_event_status(priv, status); 5721 } 5722 5723 /* To handle GMAC own interrupts */ 5724 if ((priv->plat->has_gmac) || xmac) { 5725 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5726 5727 if (unlikely(status)) { 5728 /* For LPI we need to save the tx status */ 5729 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5730 priv->tx_path_in_lpi_mode = true; 5731 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5732 priv->tx_path_in_lpi_mode = false; 5733 } 5734 5735 for (queue = 0; queue < queues_count; queue++) { 5736 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5737 queue); 5738 } 5739 5740 /* PCS link status */ 5741 if (priv->hw->pcs) { 5742 if (priv->xstats.pcs_link) 5743 netif_carrier_on(priv->dev); 5744 else 5745 netif_carrier_off(priv->dev); 5746 } 5747 5748 stmmac_timestamp_interrupt(priv, priv); 5749 } 5750 } 5751 5752 /** 5753 * stmmac_interrupt - main ISR 5754 * @irq: interrupt number. 5755 * @dev_id: to pass the net device pointer. 5756 * Description: this is the main driver interrupt service routine. 5757 * It can call: 5758 * o DMA service routine (to manage incoming frame reception and transmission 5759 * status) 5760 * o Core interrupts to manage: remote wake-up, management counter, LPI 5761 * interrupts. 5762 */ 5763 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5764 { 5765 struct net_device *dev = (struct net_device *)dev_id; 5766 struct stmmac_priv *priv = netdev_priv(dev); 5767 5768 /* Check if adapter is up */ 5769 if (test_bit(STMMAC_DOWN, &priv->state)) 5770 return IRQ_HANDLED; 5771 5772 /* Check if a fatal error happened */ 5773 if (stmmac_safety_feat_interrupt(priv)) 5774 return IRQ_HANDLED; 5775 5776 /* To handle Common interrupts */ 5777 stmmac_common_interrupt(priv); 5778 5779 /* To handle DMA interrupts */ 5780 stmmac_dma_interrupt(priv); 5781 5782 return IRQ_HANDLED; 5783 } 5784 5785 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5786 { 5787 struct net_device *dev = (struct net_device *)dev_id; 5788 struct stmmac_priv *priv = netdev_priv(dev); 5789 5790 if (unlikely(!dev)) { 5791 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5792 return IRQ_NONE; 5793 } 5794 5795 /* Check if adapter is up */ 5796 if (test_bit(STMMAC_DOWN, &priv->state)) 5797 return IRQ_HANDLED; 5798 5799 /* To handle Common interrupts */ 5800 stmmac_common_interrupt(priv); 5801 5802 return IRQ_HANDLED; 5803 } 5804 5805 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5806 { 5807 struct net_device *dev = (struct net_device *)dev_id; 5808 struct stmmac_priv *priv = netdev_priv(dev); 5809 5810 if (unlikely(!dev)) { 5811 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5812 return IRQ_NONE; 5813 } 5814 5815 /* Check if adapter is up */ 5816 if (test_bit(STMMAC_DOWN, &priv->state)) 5817 return IRQ_HANDLED; 5818 5819 /* Check if a fatal error happened */ 5820 stmmac_safety_feat_interrupt(priv); 5821 5822 return IRQ_HANDLED; 5823 } 5824 5825 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5826 { 5827 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5828 struct stmmac_dma_conf *dma_conf; 5829 int chan = tx_q->queue_index; 5830 struct stmmac_priv *priv; 5831 int status; 5832 5833 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); 5834 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5835 5836 if (unlikely(!data)) { 5837 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5838 return IRQ_NONE; 5839 } 5840 5841 /* Check if adapter is up */ 5842 if (test_bit(STMMAC_DOWN, &priv->state)) 5843 return IRQ_HANDLED; 5844 5845 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5846 5847 if (unlikely(status & tx_hard_error_bump_tc)) { 5848 /* Try to bump up the dma threshold on this failure */ 5849 stmmac_bump_dma_threshold(priv, chan); 5850 } else if (unlikely(status == tx_hard_error)) { 5851 stmmac_tx_err(priv, chan); 5852 } 5853 5854 return IRQ_HANDLED; 5855 } 5856 5857 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5858 { 5859 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5860 struct stmmac_dma_conf *dma_conf; 5861 int chan = rx_q->queue_index; 5862 struct stmmac_priv *priv; 5863 5864 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); 5865 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5866 5867 if (unlikely(!data)) { 5868 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5869 return IRQ_NONE; 5870 } 5871 5872 /* Check if adapter is up */ 5873 if (test_bit(STMMAC_DOWN, &priv->state)) 5874 return IRQ_HANDLED; 5875 5876 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5877 5878 return IRQ_HANDLED; 5879 } 5880 5881 #ifdef CONFIG_NET_POLL_CONTROLLER 5882 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5883 * to allow network I/O with interrupts disabled. 5884 */ 5885 static void stmmac_poll_controller(struct net_device *dev) 5886 { 5887 struct stmmac_priv *priv = netdev_priv(dev); 5888 int i; 5889 5890 /* If adapter is down, do nothing */ 5891 if (test_bit(STMMAC_DOWN, &priv->state)) 5892 return; 5893 5894 if (priv->plat->multi_msi_en) { 5895 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5896 stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]); 5897 5898 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5899 stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]); 5900 } else { 5901 disable_irq(dev->irq); 5902 stmmac_interrupt(dev->irq, dev); 5903 enable_irq(dev->irq); 5904 } 5905 } 5906 #endif 5907 5908 /** 5909 * stmmac_ioctl - Entry point for the Ioctl 5910 * @dev: Device pointer. 5911 * @rq: An IOCTL specefic structure, that can contain a pointer to 5912 * a proprietary structure used to pass information to the driver. 5913 * @cmd: IOCTL command 5914 * Description: 5915 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5916 */ 5917 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5918 { 5919 struct stmmac_priv *priv = netdev_priv (dev); 5920 int ret = -EOPNOTSUPP; 5921 5922 if (!netif_running(dev)) 5923 return -EINVAL; 5924 5925 switch (cmd) { 5926 case SIOCGMIIPHY: 5927 case SIOCGMIIREG: 5928 case SIOCSMIIREG: 5929 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5930 break; 5931 case SIOCSHWTSTAMP: 5932 ret = stmmac_hwtstamp_set(dev, rq); 5933 break; 5934 case SIOCGHWTSTAMP: 5935 ret = stmmac_hwtstamp_get(dev, rq); 5936 break; 5937 default: 5938 break; 5939 } 5940 5941 return ret; 5942 } 5943 5944 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5945 void *cb_priv) 5946 { 5947 struct stmmac_priv *priv = cb_priv; 5948 int ret = -EOPNOTSUPP; 5949 5950 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5951 return ret; 5952 5953 __stmmac_disable_all_queues(priv); 5954 5955 switch (type) { 5956 case TC_SETUP_CLSU32: 5957 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5958 break; 5959 case TC_SETUP_CLSFLOWER: 5960 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5961 break; 5962 default: 5963 break; 5964 } 5965 5966 stmmac_enable_all_queues(priv); 5967 return ret; 5968 } 5969 5970 static LIST_HEAD(stmmac_block_cb_list); 5971 5972 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5973 void *type_data) 5974 { 5975 struct stmmac_priv *priv = netdev_priv(ndev); 5976 5977 switch (type) { 5978 case TC_SETUP_BLOCK: 5979 return flow_block_cb_setup_simple(type_data, 5980 &stmmac_block_cb_list, 5981 stmmac_setup_tc_block_cb, 5982 priv, priv, true); 5983 case TC_SETUP_QDISC_CBS: 5984 return stmmac_tc_setup_cbs(priv, priv, type_data); 5985 case TC_SETUP_QDISC_TAPRIO: 5986 return stmmac_tc_setup_taprio(priv, priv, type_data); 5987 case TC_SETUP_QDISC_ETF: 5988 return stmmac_tc_setup_etf(priv, priv, type_data); 5989 default: 5990 return -EOPNOTSUPP; 5991 } 5992 } 5993 5994 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5995 struct net_device *sb_dev) 5996 { 5997 int gso = skb_shinfo(skb)->gso_type; 5998 5999 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 6000 /* 6001 * There is no way to determine the number of TSO/USO 6002 * capable Queues. Let's use always the Queue 0 6003 * because if TSO/USO is supported then at least this 6004 * one will be capable. 6005 */ 6006 return 0; 6007 } 6008 6009 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 6010 } 6011 6012 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 6013 { 6014 struct stmmac_priv *priv = netdev_priv(ndev); 6015 int ret = 0; 6016 6017 ret = pm_runtime_resume_and_get(priv->device); 6018 if (ret < 0) 6019 return ret; 6020 6021 ret = eth_mac_addr(ndev, addr); 6022 if (ret) 6023 goto set_mac_error; 6024 6025 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 6026 6027 set_mac_error: 6028 pm_runtime_put(priv->device); 6029 6030 return ret; 6031 } 6032 6033 #ifdef CONFIG_DEBUG_FS 6034 static struct dentry *stmmac_fs_dir; 6035 6036 static void sysfs_display_ring(void *head, int size, int extend_desc, 6037 struct seq_file *seq, dma_addr_t dma_phy_addr) 6038 { 6039 int i; 6040 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 6041 struct dma_desc *p = (struct dma_desc *)head; 6042 dma_addr_t dma_addr; 6043 6044 for (i = 0; i < size; i++) { 6045 if (extend_desc) { 6046 dma_addr = dma_phy_addr + i * sizeof(*ep); 6047 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6048 i, &dma_addr, 6049 le32_to_cpu(ep->basic.des0), 6050 le32_to_cpu(ep->basic.des1), 6051 le32_to_cpu(ep->basic.des2), 6052 le32_to_cpu(ep->basic.des3)); 6053 ep++; 6054 } else { 6055 dma_addr = dma_phy_addr + i * sizeof(*p); 6056 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6057 i, &dma_addr, 6058 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 6059 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 6060 p++; 6061 } 6062 seq_printf(seq, "\n"); 6063 } 6064 } 6065 6066 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 6067 { 6068 struct net_device *dev = seq->private; 6069 struct stmmac_priv *priv = netdev_priv(dev); 6070 u32 rx_count = priv->plat->rx_queues_to_use; 6071 u32 tx_count = priv->plat->tx_queues_to_use; 6072 u32 queue; 6073 6074 if ((dev->flags & IFF_UP) == 0) 6075 return 0; 6076 6077 for (queue = 0; queue < rx_count; queue++) { 6078 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6079 6080 seq_printf(seq, "RX Queue %d:\n", queue); 6081 6082 if (priv->extend_desc) { 6083 seq_printf(seq, "Extended descriptor ring:\n"); 6084 sysfs_display_ring((void *)rx_q->dma_erx, 6085 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6086 } else { 6087 seq_printf(seq, "Descriptor ring:\n"); 6088 sysfs_display_ring((void *)rx_q->dma_rx, 6089 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6090 } 6091 } 6092 6093 for (queue = 0; queue < tx_count; queue++) { 6094 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6095 6096 seq_printf(seq, "TX Queue %d:\n", queue); 6097 6098 if (priv->extend_desc) { 6099 seq_printf(seq, "Extended descriptor ring:\n"); 6100 sysfs_display_ring((void *)tx_q->dma_etx, 6101 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6102 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6103 seq_printf(seq, "Descriptor ring:\n"); 6104 sysfs_display_ring((void *)tx_q->dma_tx, 6105 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6106 } 6107 } 6108 6109 return 0; 6110 } 6111 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6112 6113 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6114 { 6115 struct net_device *dev = seq->private; 6116 struct stmmac_priv *priv = netdev_priv(dev); 6117 6118 if (!priv->hw_cap_support) { 6119 seq_printf(seq, "DMA HW features not supported\n"); 6120 return 0; 6121 } 6122 6123 seq_printf(seq, "==============================\n"); 6124 seq_printf(seq, "\tDMA HW features\n"); 6125 seq_printf(seq, "==============================\n"); 6126 6127 seq_printf(seq, "\t10/100 Mbps: %s\n", 6128 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6129 seq_printf(seq, "\t1000 Mbps: %s\n", 6130 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6131 seq_printf(seq, "\tHalf duplex: %s\n", 6132 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6133 seq_printf(seq, "\tHash Filter: %s\n", 6134 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6135 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6136 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6137 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6138 (priv->dma_cap.pcs) ? "Y" : "N"); 6139 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6140 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6141 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6142 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6143 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6144 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6145 seq_printf(seq, "\tRMON module: %s\n", 6146 (priv->dma_cap.rmon) ? "Y" : "N"); 6147 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6148 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6149 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6150 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6151 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6152 (priv->dma_cap.eee) ? "Y" : "N"); 6153 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6154 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6155 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6156 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6157 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6158 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6159 } else { 6160 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6161 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6162 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6163 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6164 } 6165 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6166 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6167 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6168 priv->dma_cap.number_rx_channel); 6169 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6170 priv->dma_cap.number_tx_channel); 6171 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6172 priv->dma_cap.number_rx_queues); 6173 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6174 priv->dma_cap.number_tx_queues); 6175 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6176 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6177 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6178 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6179 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6180 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6181 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6182 priv->dma_cap.pps_out_num); 6183 seq_printf(seq, "\tSafety Features: %s\n", 6184 priv->dma_cap.asp ? "Y" : "N"); 6185 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6186 priv->dma_cap.frpsel ? "Y" : "N"); 6187 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6188 priv->dma_cap.addr64); 6189 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6190 priv->dma_cap.rssen ? "Y" : "N"); 6191 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6192 priv->dma_cap.vlhash ? "Y" : "N"); 6193 seq_printf(seq, "\tSplit Header: %s\n", 6194 priv->dma_cap.sphen ? "Y" : "N"); 6195 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6196 priv->dma_cap.vlins ? "Y" : "N"); 6197 seq_printf(seq, "\tDouble VLAN: %s\n", 6198 priv->dma_cap.dvlan ? "Y" : "N"); 6199 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6200 priv->dma_cap.l3l4fnum); 6201 seq_printf(seq, "\tARP Offloading: %s\n", 6202 priv->dma_cap.arpoffsel ? "Y" : "N"); 6203 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6204 priv->dma_cap.estsel ? "Y" : "N"); 6205 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6206 priv->dma_cap.fpesel ? "Y" : "N"); 6207 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6208 priv->dma_cap.tbssel ? "Y" : "N"); 6209 return 0; 6210 } 6211 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6212 6213 /* Use network device events to rename debugfs file entries. 6214 */ 6215 static int stmmac_device_event(struct notifier_block *unused, 6216 unsigned long event, void *ptr) 6217 { 6218 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6219 struct stmmac_priv *priv = netdev_priv(dev); 6220 6221 if (dev->netdev_ops != &stmmac_netdev_ops) 6222 goto done; 6223 6224 switch (event) { 6225 case NETDEV_CHANGENAME: 6226 if (priv->dbgfs_dir) 6227 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6228 priv->dbgfs_dir, 6229 stmmac_fs_dir, 6230 dev->name); 6231 break; 6232 } 6233 done: 6234 return NOTIFY_DONE; 6235 } 6236 6237 static struct notifier_block stmmac_notifier = { 6238 .notifier_call = stmmac_device_event, 6239 }; 6240 6241 static void stmmac_init_fs(struct net_device *dev) 6242 { 6243 struct stmmac_priv *priv = netdev_priv(dev); 6244 6245 rtnl_lock(); 6246 6247 /* Create per netdev entries */ 6248 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6249 6250 /* Entry to report DMA RX/TX rings */ 6251 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6252 &stmmac_rings_status_fops); 6253 6254 /* Entry to report the DMA HW features */ 6255 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6256 &stmmac_dma_cap_fops); 6257 6258 rtnl_unlock(); 6259 } 6260 6261 static void stmmac_exit_fs(struct net_device *dev) 6262 { 6263 struct stmmac_priv *priv = netdev_priv(dev); 6264 6265 debugfs_remove_recursive(priv->dbgfs_dir); 6266 } 6267 #endif /* CONFIG_DEBUG_FS */ 6268 6269 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6270 { 6271 unsigned char *data = (unsigned char *)&vid_le; 6272 unsigned char data_byte = 0; 6273 u32 crc = ~0x0; 6274 u32 temp = 0; 6275 int i, bits; 6276 6277 bits = get_bitmask_order(VLAN_VID_MASK); 6278 for (i = 0; i < bits; i++) { 6279 if ((i % 8) == 0) 6280 data_byte = data[i / 8]; 6281 6282 temp = ((crc & 1) ^ data_byte) & 1; 6283 crc >>= 1; 6284 data_byte >>= 1; 6285 6286 if (temp) 6287 crc ^= 0xedb88320; 6288 } 6289 6290 return crc; 6291 } 6292 6293 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6294 { 6295 u32 crc, hash = 0; 6296 __le16 pmatch = 0; 6297 int count = 0; 6298 u16 vid = 0; 6299 6300 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6301 __le16 vid_le = cpu_to_le16(vid); 6302 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6303 hash |= (1 << crc); 6304 count++; 6305 } 6306 6307 if (!priv->dma_cap.vlhash) { 6308 if (count > 2) /* VID = 0 always passes filter */ 6309 return -EOPNOTSUPP; 6310 6311 pmatch = cpu_to_le16(vid); 6312 hash = 0; 6313 } 6314 6315 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6316 } 6317 6318 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6319 { 6320 struct stmmac_priv *priv = netdev_priv(ndev); 6321 bool is_double = false; 6322 int ret; 6323 6324 if (be16_to_cpu(proto) == ETH_P_8021AD) 6325 is_double = true; 6326 6327 set_bit(vid, priv->active_vlans); 6328 ret = stmmac_vlan_update(priv, is_double); 6329 if (ret) { 6330 clear_bit(vid, priv->active_vlans); 6331 return ret; 6332 } 6333 6334 if (priv->hw->num_vlan) { 6335 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6336 if (ret) 6337 return ret; 6338 } 6339 6340 return 0; 6341 } 6342 6343 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6344 { 6345 struct stmmac_priv *priv = netdev_priv(ndev); 6346 bool is_double = false; 6347 int ret; 6348 6349 ret = pm_runtime_resume_and_get(priv->device); 6350 if (ret < 0) 6351 return ret; 6352 6353 if (be16_to_cpu(proto) == ETH_P_8021AD) 6354 is_double = true; 6355 6356 clear_bit(vid, priv->active_vlans); 6357 6358 if (priv->hw->num_vlan) { 6359 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6360 if (ret) 6361 goto del_vlan_error; 6362 } 6363 6364 ret = stmmac_vlan_update(priv, is_double); 6365 6366 del_vlan_error: 6367 pm_runtime_put(priv->device); 6368 6369 return ret; 6370 } 6371 6372 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6373 { 6374 struct stmmac_priv *priv = netdev_priv(dev); 6375 6376 switch (bpf->command) { 6377 case XDP_SETUP_PROG: 6378 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6379 case XDP_SETUP_XSK_POOL: 6380 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6381 bpf->xsk.queue_id); 6382 default: 6383 return -EOPNOTSUPP; 6384 } 6385 } 6386 6387 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6388 struct xdp_frame **frames, u32 flags) 6389 { 6390 struct stmmac_priv *priv = netdev_priv(dev); 6391 int cpu = smp_processor_id(); 6392 struct netdev_queue *nq; 6393 int i, nxmit = 0; 6394 int queue; 6395 6396 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6397 return -ENETDOWN; 6398 6399 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6400 return -EINVAL; 6401 6402 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6403 nq = netdev_get_tx_queue(priv->dev, queue); 6404 6405 __netif_tx_lock(nq, cpu); 6406 /* Avoids TX time-out as we are sharing with slow path */ 6407 txq_trans_cond_update(nq); 6408 6409 for (i = 0; i < num_frames; i++) { 6410 int res; 6411 6412 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6413 if (res == STMMAC_XDP_CONSUMED) 6414 break; 6415 6416 nxmit++; 6417 } 6418 6419 if (flags & XDP_XMIT_FLUSH) { 6420 stmmac_flush_tx_descriptors(priv, queue); 6421 stmmac_tx_timer_arm(priv, queue); 6422 } 6423 6424 __netif_tx_unlock(nq); 6425 6426 return nxmit; 6427 } 6428 6429 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6430 { 6431 struct stmmac_channel *ch = &priv->channel[queue]; 6432 unsigned long flags; 6433 6434 spin_lock_irqsave(&ch->lock, flags); 6435 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6436 spin_unlock_irqrestore(&ch->lock, flags); 6437 6438 stmmac_stop_rx_dma(priv, queue); 6439 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6440 } 6441 6442 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6443 { 6444 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6445 struct stmmac_channel *ch = &priv->channel[queue]; 6446 unsigned long flags; 6447 u32 buf_size; 6448 int ret; 6449 6450 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6451 if (ret) { 6452 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6453 return; 6454 } 6455 6456 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); 6457 if (ret) { 6458 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6459 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6460 return; 6461 } 6462 6463 stmmac_reset_rx_queue(priv, queue); 6464 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); 6465 6466 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6467 rx_q->dma_rx_phy, rx_q->queue_index); 6468 6469 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6470 sizeof(struct dma_desc)); 6471 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6472 rx_q->rx_tail_addr, rx_q->queue_index); 6473 6474 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6475 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6476 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6477 buf_size, 6478 rx_q->queue_index); 6479 } else { 6480 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6481 priv->dma_conf.dma_buf_sz, 6482 rx_q->queue_index); 6483 } 6484 6485 stmmac_start_rx_dma(priv, queue); 6486 6487 spin_lock_irqsave(&ch->lock, flags); 6488 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6489 spin_unlock_irqrestore(&ch->lock, flags); 6490 } 6491 6492 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6493 { 6494 struct stmmac_channel *ch = &priv->channel[queue]; 6495 unsigned long flags; 6496 6497 spin_lock_irqsave(&ch->lock, flags); 6498 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6499 spin_unlock_irqrestore(&ch->lock, flags); 6500 6501 stmmac_stop_tx_dma(priv, queue); 6502 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6503 } 6504 6505 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6506 { 6507 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6508 struct stmmac_channel *ch = &priv->channel[queue]; 6509 unsigned long flags; 6510 int ret; 6511 6512 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6513 if (ret) { 6514 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6515 return; 6516 } 6517 6518 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); 6519 if (ret) { 6520 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6521 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6522 return; 6523 } 6524 6525 stmmac_reset_tx_queue(priv, queue); 6526 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); 6527 6528 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6529 tx_q->dma_tx_phy, tx_q->queue_index); 6530 6531 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6532 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6533 6534 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6535 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6536 tx_q->tx_tail_addr, tx_q->queue_index); 6537 6538 stmmac_start_tx_dma(priv, queue); 6539 6540 spin_lock_irqsave(&ch->lock, flags); 6541 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6542 spin_unlock_irqrestore(&ch->lock, flags); 6543 } 6544 6545 void stmmac_xdp_release(struct net_device *dev) 6546 { 6547 struct stmmac_priv *priv = netdev_priv(dev); 6548 u32 chan; 6549 6550 /* Ensure tx function is not running */ 6551 netif_tx_disable(dev); 6552 6553 /* Disable NAPI process */ 6554 stmmac_disable_all_queues(priv); 6555 6556 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6557 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6558 6559 /* Free the IRQ lines */ 6560 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6561 6562 /* Stop TX/RX DMA channels */ 6563 stmmac_stop_all_dma(priv); 6564 6565 /* Release and free the Rx/Tx resources */ 6566 free_dma_desc_resources(priv, &priv->dma_conf); 6567 6568 /* Disable the MAC Rx/Tx */ 6569 stmmac_mac_set(priv, priv->ioaddr, false); 6570 6571 /* set trans_start so we don't get spurious 6572 * watchdogs during reset 6573 */ 6574 netif_trans_update(dev); 6575 netif_carrier_off(dev); 6576 } 6577 6578 int stmmac_xdp_open(struct net_device *dev) 6579 { 6580 struct stmmac_priv *priv = netdev_priv(dev); 6581 u32 rx_cnt = priv->plat->rx_queues_to_use; 6582 u32 tx_cnt = priv->plat->tx_queues_to_use; 6583 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6584 struct stmmac_rx_queue *rx_q; 6585 struct stmmac_tx_queue *tx_q; 6586 u32 buf_size; 6587 bool sph_en; 6588 u32 chan; 6589 int ret; 6590 6591 ret = alloc_dma_desc_resources(priv, &priv->dma_conf); 6592 if (ret < 0) { 6593 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6594 __func__); 6595 goto dma_desc_error; 6596 } 6597 6598 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); 6599 if (ret < 0) { 6600 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6601 __func__); 6602 goto init_error; 6603 } 6604 6605 /* DMA CSR Channel configuration */ 6606 for (chan = 0; chan < dma_csr_ch; chan++) { 6607 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6608 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6609 } 6610 6611 /* Adjust Split header */ 6612 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6613 6614 /* DMA RX Channel Configuration */ 6615 for (chan = 0; chan < rx_cnt; chan++) { 6616 rx_q = &priv->dma_conf.rx_queue[chan]; 6617 6618 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6619 rx_q->dma_rx_phy, chan); 6620 6621 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6622 (rx_q->buf_alloc_num * 6623 sizeof(struct dma_desc)); 6624 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6625 rx_q->rx_tail_addr, chan); 6626 6627 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6628 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6629 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6630 buf_size, 6631 rx_q->queue_index); 6632 } else { 6633 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6634 priv->dma_conf.dma_buf_sz, 6635 rx_q->queue_index); 6636 } 6637 6638 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6639 } 6640 6641 /* DMA TX Channel Configuration */ 6642 for (chan = 0; chan < tx_cnt; chan++) { 6643 tx_q = &priv->dma_conf.tx_queue[chan]; 6644 6645 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6646 tx_q->dma_tx_phy, chan); 6647 6648 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6649 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6650 tx_q->tx_tail_addr, chan); 6651 6652 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6653 tx_q->txtimer.function = stmmac_tx_timer; 6654 } 6655 6656 /* Enable the MAC Rx/Tx */ 6657 stmmac_mac_set(priv, priv->ioaddr, true); 6658 6659 /* Start Rx & Tx DMA Channels */ 6660 stmmac_start_all_dma(priv); 6661 6662 ret = stmmac_request_irq(dev); 6663 if (ret) 6664 goto irq_error; 6665 6666 /* Enable NAPI process*/ 6667 stmmac_enable_all_queues(priv); 6668 netif_carrier_on(dev); 6669 netif_tx_start_all_queues(dev); 6670 stmmac_enable_all_dma_irq(priv); 6671 6672 return 0; 6673 6674 irq_error: 6675 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6676 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6677 6678 stmmac_hw_teardown(dev); 6679 init_error: 6680 free_dma_desc_resources(priv, &priv->dma_conf); 6681 dma_desc_error: 6682 return ret; 6683 } 6684 6685 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6686 { 6687 struct stmmac_priv *priv = netdev_priv(dev); 6688 struct stmmac_rx_queue *rx_q; 6689 struct stmmac_tx_queue *tx_q; 6690 struct stmmac_channel *ch; 6691 6692 if (test_bit(STMMAC_DOWN, &priv->state) || 6693 !netif_carrier_ok(priv->dev)) 6694 return -ENETDOWN; 6695 6696 if (!stmmac_xdp_is_enabled(priv)) 6697 return -EINVAL; 6698 6699 if (queue >= priv->plat->rx_queues_to_use || 6700 queue >= priv->plat->tx_queues_to_use) 6701 return -EINVAL; 6702 6703 rx_q = &priv->dma_conf.rx_queue[queue]; 6704 tx_q = &priv->dma_conf.tx_queue[queue]; 6705 ch = &priv->channel[queue]; 6706 6707 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6708 return -EINVAL; 6709 6710 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6711 /* EQoS does not have per-DMA channel SW interrupt, 6712 * so we schedule RX Napi straight-away. 6713 */ 6714 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6715 __napi_schedule(&ch->rxtx_napi); 6716 } 6717 6718 return 0; 6719 } 6720 6721 static const struct net_device_ops stmmac_netdev_ops = { 6722 .ndo_open = stmmac_open, 6723 .ndo_start_xmit = stmmac_xmit, 6724 .ndo_stop = stmmac_release, 6725 .ndo_change_mtu = stmmac_change_mtu, 6726 .ndo_fix_features = stmmac_fix_features, 6727 .ndo_set_features = stmmac_set_features, 6728 .ndo_set_rx_mode = stmmac_set_rx_mode, 6729 .ndo_tx_timeout = stmmac_tx_timeout, 6730 .ndo_eth_ioctl = stmmac_ioctl, 6731 .ndo_setup_tc = stmmac_setup_tc, 6732 .ndo_select_queue = stmmac_select_queue, 6733 #ifdef CONFIG_NET_POLL_CONTROLLER 6734 .ndo_poll_controller = stmmac_poll_controller, 6735 #endif 6736 .ndo_set_mac_address = stmmac_set_mac_address, 6737 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6738 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6739 .ndo_bpf = stmmac_bpf, 6740 .ndo_xdp_xmit = stmmac_xdp_xmit, 6741 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6742 }; 6743 6744 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6745 { 6746 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6747 return; 6748 if (test_bit(STMMAC_DOWN, &priv->state)) 6749 return; 6750 6751 netdev_err(priv->dev, "Reset adapter.\n"); 6752 6753 rtnl_lock(); 6754 netif_trans_update(priv->dev); 6755 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6756 usleep_range(1000, 2000); 6757 6758 set_bit(STMMAC_DOWN, &priv->state); 6759 dev_close(priv->dev); 6760 dev_open(priv->dev, NULL); 6761 clear_bit(STMMAC_DOWN, &priv->state); 6762 clear_bit(STMMAC_RESETING, &priv->state); 6763 rtnl_unlock(); 6764 } 6765 6766 static void stmmac_service_task(struct work_struct *work) 6767 { 6768 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6769 service_task); 6770 6771 stmmac_reset_subtask(priv); 6772 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6773 } 6774 6775 /** 6776 * stmmac_hw_init - Init the MAC device 6777 * @priv: driver private structure 6778 * Description: this function is to configure the MAC device according to 6779 * some platform parameters or the HW capability register. It prepares the 6780 * driver to use either ring or chain modes and to setup either enhanced or 6781 * normal descriptors. 6782 */ 6783 static int stmmac_hw_init(struct stmmac_priv *priv) 6784 { 6785 int ret; 6786 6787 /* dwmac-sun8i only work in chain mode */ 6788 if (priv->plat->has_sun8i) 6789 chain_mode = 1; 6790 priv->chain_mode = chain_mode; 6791 6792 /* Initialize HW Interface */ 6793 ret = stmmac_hwif_init(priv); 6794 if (ret) 6795 return ret; 6796 6797 /* Get the HW capability (new GMAC newer than 3.50a) */ 6798 priv->hw_cap_support = stmmac_get_hw_features(priv); 6799 if (priv->hw_cap_support) { 6800 dev_info(priv->device, "DMA HW capability register supported\n"); 6801 6802 /* We can override some gmac/dma configuration fields: e.g. 6803 * enh_desc, tx_coe (e.g. that are passed through the 6804 * platform) with the values from the HW capability 6805 * register (if supported). 6806 */ 6807 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6808 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6809 !priv->plat->use_phy_wol; 6810 priv->hw->pmt = priv->plat->pmt; 6811 if (priv->dma_cap.hash_tb_sz) { 6812 priv->hw->multicast_filter_bins = 6813 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6814 priv->hw->mcast_bits_log2 = 6815 ilog2(priv->hw->multicast_filter_bins); 6816 } 6817 6818 /* TXCOE doesn't work in thresh DMA mode */ 6819 if (priv->plat->force_thresh_dma_mode) 6820 priv->plat->tx_coe = 0; 6821 else 6822 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6823 6824 /* In case of GMAC4 rx_coe is from HW cap register. */ 6825 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6826 6827 if (priv->dma_cap.rx_coe_type2) 6828 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6829 else if (priv->dma_cap.rx_coe_type1) 6830 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6831 6832 } else { 6833 dev_info(priv->device, "No HW DMA feature register supported\n"); 6834 } 6835 6836 if (priv->plat->rx_coe) { 6837 priv->hw->rx_csum = priv->plat->rx_coe; 6838 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6839 if (priv->synopsys_id < DWMAC_CORE_4_00) 6840 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6841 } 6842 if (priv->plat->tx_coe) 6843 dev_info(priv->device, "TX Checksum insertion supported\n"); 6844 6845 if (priv->plat->pmt) { 6846 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6847 device_set_wakeup_capable(priv->device, 1); 6848 } 6849 6850 if (priv->dma_cap.tsoen) 6851 dev_info(priv->device, "TSO supported\n"); 6852 6853 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6854 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6855 6856 /* Run HW quirks, if any */ 6857 if (priv->hwif_quirks) { 6858 ret = priv->hwif_quirks(priv); 6859 if (ret) 6860 return ret; 6861 } 6862 6863 /* Rx Watchdog is available in the COREs newer than the 3.40. 6864 * In some case, for example on bugged HW this feature 6865 * has to be disable and this can be done by passing the 6866 * riwt_off field from the platform. 6867 */ 6868 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6869 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6870 priv->use_riwt = 1; 6871 dev_info(priv->device, 6872 "Enable RX Mitigation via HW Watchdog Timer\n"); 6873 } 6874 6875 return 0; 6876 } 6877 6878 static void stmmac_napi_add(struct net_device *dev) 6879 { 6880 struct stmmac_priv *priv = netdev_priv(dev); 6881 u32 queue, maxq; 6882 6883 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6884 6885 for (queue = 0; queue < maxq; queue++) { 6886 struct stmmac_channel *ch = &priv->channel[queue]; 6887 6888 ch->priv_data = priv; 6889 ch->index = queue; 6890 spin_lock_init(&ch->lock); 6891 6892 if (queue < priv->plat->rx_queues_to_use) { 6893 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx); 6894 } 6895 if (queue < priv->plat->tx_queues_to_use) { 6896 netif_napi_add_tx(dev, &ch->tx_napi, 6897 stmmac_napi_poll_tx); 6898 } 6899 if (queue < priv->plat->rx_queues_to_use && 6900 queue < priv->plat->tx_queues_to_use) { 6901 netif_napi_add(dev, &ch->rxtx_napi, 6902 stmmac_napi_poll_rxtx); 6903 } 6904 } 6905 } 6906 6907 static void stmmac_napi_del(struct net_device *dev) 6908 { 6909 struct stmmac_priv *priv = netdev_priv(dev); 6910 u32 queue, maxq; 6911 6912 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6913 6914 for (queue = 0; queue < maxq; queue++) { 6915 struct stmmac_channel *ch = &priv->channel[queue]; 6916 6917 if (queue < priv->plat->rx_queues_to_use) 6918 netif_napi_del(&ch->rx_napi); 6919 if (queue < priv->plat->tx_queues_to_use) 6920 netif_napi_del(&ch->tx_napi); 6921 if (queue < priv->plat->rx_queues_to_use && 6922 queue < priv->plat->tx_queues_to_use) { 6923 netif_napi_del(&ch->rxtx_napi); 6924 } 6925 } 6926 } 6927 6928 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6929 { 6930 struct stmmac_priv *priv = netdev_priv(dev); 6931 int ret = 0; 6932 6933 if (netif_running(dev)) 6934 stmmac_release(dev); 6935 6936 stmmac_napi_del(dev); 6937 6938 priv->plat->rx_queues_to_use = rx_cnt; 6939 priv->plat->tx_queues_to_use = tx_cnt; 6940 6941 stmmac_napi_add(dev); 6942 6943 if (netif_running(dev)) 6944 ret = stmmac_open(dev); 6945 6946 return ret; 6947 } 6948 6949 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6950 { 6951 struct stmmac_priv *priv = netdev_priv(dev); 6952 int ret = 0; 6953 6954 if (netif_running(dev)) 6955 stmmac_release(dev); 6956 6957 priv->dma_conf.dma_rx_size = rx_size; 6958 priv->dma_conf.dma_tx_size = tx_size; 6959 6960 if (netif_running(dev)) 6961 ret = stmmac_open(dev); 6962 6963 return ret; 6964 } 6965 6966 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6967 static void stmmac_fpe_lp_task(struct work_struct *work) 6968 { 6969 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6970 fpe_task); 6971 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6972 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6973 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6974 bool *hs_enable = &fpe_cfg->hs_enable; 6975 bool *enable = &fpe_cfg->enable; 6976 int retries = 20; 6977 6978 while (retries-- > 0) { 6979 /* Bail out immediately if FPE handshake is OFF */ 6980 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6981 break; 6982 6983 if (*lo_state == FPE_STATE_ENTERING_ON && 6984 *lp_state == FPE_STATE_ENTERING_ON) { 6985 stmmac_fpe_configure(priv, priv->ioaddr, 6986 priv->plat->tx_queues_to_use, 6987 priv->plat->rx_queues_to_use, 6988 *enable); 6989 6990 netdev_info(priv->dev, "configured FPE\n"); 6991 6992 *lo_state = FPE_STATE_ON; 6993 *lp_state = FPE_STATE_ON; 6994 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6995 break; 6996 } 6997 6998 if ((*lo_state == FPE_STATE_CAPABLE || 6999 *lo_state == FPE_STATE_ENTERING_ON) && 7000 *lp_state != FPE_STATE_ON) { 7001 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 7002 *lo_state, *lp_state); 7003 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7004 MPACKET_VERIFY); 7005 } 7006 /* Sleep then retry */ 7007 msleep(500); 7008 } 7009 7010 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 7011 } 7012 7013 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 7014 { 7015 if (priv->plat->fpe_cfg->hs_enable != enable) { 7016 if (enable) { 7017 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7018 MPACKET_VERIFY); 7019 } else { 7020 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 7021 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 7022 } 7023 7024 priv->plat->fpe_cfg->hs_enable = enable; 7025 } 7026 } 7027 7028 /** 7029 * stmmac_dvr_probe 7030 * @device: device pointer 7031 * @plat_dat: platform data pointer 7032 * @res: stmmac resource pointer 7033 * Description: this is the main probe function used to 7034 * call the alloc_etherdev, allocate the priv structure. 7035 * Return: 7036 * returns 0 on success, otherwise errno. 7037 */ 7038 int stmmac_dvr_probe(struct device *device, 7039 struct plat_stmmacenet_data *plat_dat, 7040 struct stmmac_resources *res) 7041 { 7042 struct net_device *ndev = NULL; 7043 struct stmmac_priv *priv; 7044 u32 rxq; 7045 int i, ret = 0; 7046 7047 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 7048 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 7049 if (!ndev) 7050 return -ENOMEM; 7051 7052 SET_NETDEV_DEV(ndev, device); 7053 7054 priv = netdev_priv(ndev); 7055 priv->device = device; 7056 priv->dev = ndev; 7057 7058 stmmac_set_ethtool_ops(ndev); 7059 priv->pause = pause; 7060 priv->plat = plat_dat; 7061 priv->ioaddr = res->addr; 7062 priv->dev->base_addr = (unsigned long)res->addr; 7063 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 7064 7065 priv->dev->irq = res->irq; 7066 priv->wol_irq = res->wol_irq; 7067 priv->lpi_irq = res->lpi_irq; 7068 priv->sfty_ce_irq = res->sfty_ce_irq; 7069 priv->sfty_ue_irq = res->sfty_ue_irq; 7070 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7071 priv->rx_irq[i] = res->rx_irq[i]; 7072 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 7073 priv->tx_irq[i] = res->tx_irq[i]; 7074 7075 if (!is_zero_ether_addr(res->mac)) 7076 eth_hw_addr_set(priv->dev, res->mac); 7077 7078 dev_set_drvdata(device, priv->dev); 7079 7080 /* Verify driver arguments */ 7081 stmmac_verify_args(); 7082 7083 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 7084 if (!priv->af_xdp_zc_qps) 7085 return -ENOMEM; 7086 7087 /* Allocate workqueue */ 7088 priv->wq = create_singlethread_workqueue("stmmac_wq"); 7089 if (!priv->wq) { 7090 dev_err(priv->device, "failed to create workqueue\n"); 7091 return -ENOMEM; 7092 } 7093 7094 INIT_WORK(&priv->service_task, stmmac_service_task); 7095 7096 /* Initialize Link Partner FPE workqueue */ 7097 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7098 7099 /* Override with kernel parameters if supplied XXX CRS XXX 7100 * this needs to have multiple instances 7101 */ 7102 if ((phyaddr >= 0) && (phyaddr <= 31)) 7103 priv->plat->phy_addr = phyaddr; 7104 7105 if (priv->plat->stmmac_rst) { 7106 ret = reset_control_assert(priv->plat->stmmac_rst); 7107 reset_control_deassert(priv->plat->stmmac_rst); 7108 /* Some reset controllers have only reset callback instead of 7109 * assert + deassert callbacks pair. 7110 */ 7111 if (ret == -ENOTSUPP) 7112 reset_control_reset(priv->plat->stmmac_rst); 7113 } 7114 7115 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7116 if (ret == -ENOTSUPP) 7117 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7118 ERR_PTR(ret)); 7119 7120 /* Init MAC and get the capabilities */ 7121 ret = stmmac_hw_init(priv); 7122 if (ret) 7123 goto error_hw_init; 7124 7125 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7126 */ 7127 if (priv->synopsys_id < DWMAC_CORE_5_20) 7128 priv->plat->dma_cfg->dche = false; 7129 7130 stmmac_check_ether_addr(priv); 7131 7132 ndev->netdev_ops = &stmmac_netdev_ops; 7133 7134 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7135 NETIF_F_RXCSUM; 7136 7137 ret = stmmac_tc_init(priv, priv); 7138 if (!ret) { 7139 ndev->hw_features |= NETIF_F_HW_TC; 7140 } 7141 7142 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7143 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7144 if (priv->plat->has_gmac4) 7145 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7146 priv->tso = true; 7147 dev_info(priv->device, "TSO feature enabled\n"); 7148 } 7149 7150 if (priv->dma_cap.sphen && !priv->plat->sph_disable) { 7151 ndev->hw_features |= NETIF_F_GRO; 7152 priv->sph_cap = true; 7153 priv->sph = priv->sph_cap; 7154 dev_info(priv->device, "SPH feature enabled\n"); 7155 } 7156 7157 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7158 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7159 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7160 * So overwrite dma_cap.addr64 according to HW real design. 7161 */ 7162 if (priv->plat->addr64) 7163 priv->dma_cap.addr64 = priv->plat->addr64; 7164 7165 if (priv->dma_cap.addr64) { 7166 ret = dma_set_mask_and_coherent(device, 7167 DMA_BIT_MASK(priv->dma_cap.addr64)); 7168 if (!ret) { 7169 dev_info(priv->device, "Using %d bits DMA width\n", 7170 priv->dma_cap.addr64); 7171 7172 /* 7173 * If more than 32 bits can be addressed, make sure to 7174 * enable enhanced addressing mode. 7175 */ 7176 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7177 priv->plat->dma_cfg->eame = true; 7178 } else { 7179 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7180 if (ret) { 7181 dev_err(priv->device, "Failed to set DMA Mask\n"); 7182 goto error_hw_init; 7183 } 7184 7185 priv->dma_cap.addr64 = 32; 7186 } 7187 } 7188 7189 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7190 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7191 #ifdef STMMAC_VLAN_TAG_USED 7192 /* Both mac100 and gmac support receive VLAN tag detection */ 7193 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7194 if (priv->dma_cap.vlhash) { 7195 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7196 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7197 } 7198 if (priv->dma_cap.vlins) { 7199 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7200 if (priv->dma_cap.dvlan) 7201 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7202 } 7203 #endif 7204 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7205 7206 /* Initialize RSS */ 7207 rxq = priv->plat->rx_queues_to_use; 7208 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7209 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7210 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7211 7212 if (priv->dma_cap.rssen && priv->plat->rss_en) 7213 ndev->features |= NETIF_F_RXHASH; 7214 7215 /* MTU range: 46 - hw-specific max */ 7216 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7217 if (priv->plat->has_xgmac) 7218 ndev->max_mtu = XGMAC_JUMBO_LEN; 7219 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7220 ndev->max_mtu = JUMBO_LEN; 7221 else 7222 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7223 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7224 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7225 */ 7226 if ((priv->plat->maxmtu < ndev->max_mtu) && 7227 (priv->plat->maxmtu >= ndev->min_mtu)) 7228 ndev->max_mtu = priv->plat->maxmtu; 7229 else if (priv->plat->maxmtu < ndev->min_mtu) 7230 dev_warn(priv->device, 7231 "%s: warning: maxmtu having invalid value (%d)\n", 7232 __func__, priv->plat->maxmtu); 7233 7234 if (flow_ctrl) 7235 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7236 7237 /* Setup channels NAPI */ 7238 stmmac_napi_add(ndev); 7239 7240 mutex_init(&priv->lock); 7241 7242 /* If a specific clk_csr value is passed from the platform 7243 * this means that the CSR Clock Range selection cannot be 7244 * changed at run-time and it is fixed. Viceversa the driver'll try to 7245 * set the MDC clock dynamically according to the csr actual 7246 * clock input. 7247 */ 7248 if (priv->plat->clk_csr >= 0) 7249 priv->clk_csr = priv->plat->clk_csr; 7250 else 7251 stmmac_clk_csr_set(priv); 7252 7253 stmmac_check_pcs_mode(priv); 7254 7255 pm_runtime_get_noresume(device); 7256 pm_runtime_set_active(device); 7257 if (!pm_runtime_enabled(device)) 7258 pm_runtime_enable(device); 7259 7260 if (priv->hw->pcs != STMMAC_PCS_TBI && 7261 priv->hw->pcs != STMMAC_PCS_RTBI) { 7262 /* MDIO bus Registration */ 7263 ret = stmmac_mdio_register(ndev); 7264 if (ret < 0) { 7265 dev_err_probe(priv->device, ret, 7266 "%s: MDIO bus (id: %d) registration failed\n", 7267 __func__, priv->plat->bus_id); 7268 goto error_mdio_register; 7269 } 7270 } 7271 7272 if (priv->plat->speed_mode_2500) 7273 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7274 7275 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7276 ret = stmmac_xpcs_setup(priv->mii); 7277 if (ret) 7278 goto error_xpcs_setup; 7279 } 7280 7281 ret = stmmac_phy_setup(priv); 7282 if (ret) { 7283 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7284 goto error_phy_setup; 7285 } 7286 7287 ret = register_netdev(ndev); 7288 if (ret) { 7289 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7290 __func__, ret); 7291 goto error_netdev_register; 7292 } 7293 7294 #ifdef CONFIG_DEBUG_FS 7295 stmmac_init_fs(ndev); 7296 #endif 7297 7298 if (priv->plat->dump_debug_regs) 7299 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7300 7301 /* Let pm_runtime_put() disable the clocks. 7302 * If CONFIG_PM is not enabled, the clocks will stay powered. 7303 */ 7304 pm_runtime_put(device); 7305 7306 return ret; 7307 7308 error_netdev_register: 7309 phylink_destroy(priv->phylink); 7310 error_xpcs_setup: 7311 error_phy_setup: 7312 if (priv->hw->pcs != STMMAC_PCS_TBI && 7313 priv->hw->pcs != STMMAC_PCS_RTBI) 7314 stmmac_mdio_unregister(ndev); 7315 error_mdio_register: 7316 stmmac_napi_del(ndev); 7317 error_hw_init: 7318 destroy_workqueue(priv->wq); 7319 bitmap_free(priv->af_xdp_zc_qps); 7320 7321 return ret; 7322 } 7323 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7324 7325 /** 7326 * stmmac_dvr_remove 7327 * @dev: device pointer 7328 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7329 * changes the link status, releases the DMA descriptor rings. 7330 */ 7331 int stmmac_dvr_remove(struct device *dev) 7332 { 7333 struct net_device *ndev = dev_get_drvdata(dev); 7334 struct stmmac_priv *priv = netdev_priv(ndev); 7335 7336 netdev_info(priv->dev, "%s: removing driver", __func__); 7337 7338 pm_runtime_get_sync(dev); 7339 7340 stmmac_stop_all_dma(priv); 7341 stmmac_mac_set(priv, priv->ioaddr, false); 7342 netif_carrier_off(ndev); 7343 unregister_netdev(ndev); 7344 7345 /* Serdes power down needs to happen after VLAN filter 7346 * is deleted that is triggered by unregister_netdev(). 7347 */ 7348 if (priv->plat->serdes_powerdown) 7349 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7350 7351 #ifdef CONFIG_DEBUG_FS 7352 stmmac_exit_fs(ndev); 7353 #endif 7354 phylink_destroy(priv->phylink); 7355 if (priv->plat->stmmac_rst) 7356 reset_control_assert(priv->plat->stmmac_rst); 7357 reset_control_assert(priv->plat->stmmac_ahb_rst); 7358 if (priv->hw->pcs != STMMAC_PCS_TBI && 7359 priv->hw->pcs != STMMAC_PCS_RTBI) 7360 stmmac_mdio_unregister(ndev); 7361 destroy_workqueue(priv->wq); 7362 mutex_destroy(&priv->lock); 7363 bitmap_free(priv->af_xdp_zc_qps); 7364 7365 pm_runtime_disable(dev); 7366 pm_runtime_put_noidle(dev); 7367 7368 return 0; 7369 } 7370 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7371 7372 /** 7373 * stmmac_suspend - suspend callback 7374 * @dev: device pointer 7375 * Description: this is the function to suspend the device and it is called 7376 * by the platform driver to stop the network queue, release the resources, 7377 * program the PMT register (for WoL), clean and release driver resources. 7378 */ 7379 int stmmac_suspend(struct device *dev) 7380 { 7381 struct net_device *ndev = dev_get_drvdata(dev); 7382 struct stmmac_priv *priv = netdev_priv(ndev); 7383 u32 chan; 7384 7385 if (!ndev || !netif_running(ndev)) 7386 return 0; 7387 7388 mutex_lock(&priv->lock); 7389 7390 netif_device_detach(ndev); 7391 7392 stmmac_disable_all_queues(priv); 7393 7394 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7395 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 7396 7397 if (priv->eee_enabled) { 7398 priv->tx_path_in_lpi_mode = false; 7399 del_timer_sync(&priv->eee_ctrl_timer); 7400 } 7401 7402 /* Stop TX/RX DMA */ 7403 stmmac_stop_all_dma(priv); 7404 7405 if (priv->plat->serdes_powerdown) 7406 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7407 7408 /* Enable Power down mode by programming the PMT regs */ 7409 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7410 stmmac_pmt(priv, priv->hw, priv->wolopts); 7411 priv->irq_wake = 1; 7412 } else { 7413 stmmac_mac_set(priv, priv->ioaddr, false); 7414 pinctrl_pm_select_sleep_state(priv->device); 7415 } 7416 7417 mutex_unlock(&priv->lock); 7418 7419 rtnl_lock(); 7420 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7421 phylink_suspend(priv->phylink, true); 7422 } else { 7423 if (device_may_wakeup(priv->device)) 7424 phylink_speed_down(priv->phylink, false); 7425 phylink_suspend(priv->phylink, false); 7426 } 7427 rtnl_unlock(); 7428 7429 if (priv->dma_cap.fpesel) { 7430 /* Disable FPE */ 7431 stmmac_fpe_configure(priv, priv->ioaddr, 7432 priv->plat->tx_queues_to_use, 7433 priv->plat->rx_queues_to_use, false); 7434 7435 stmmac_fpe_handshake(priv, false); 7436 stmmac_fpe_stop_wq(priv); 7437 } 7438 7439 priv->speed = SPEED_UNKNOWN; 7440 return 0; 7441 } 7442 EXPORT_SYMBOL_GPL(stmmac_suspend); 7443 7444 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) 7445 { 7446 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 7447 7448 rx_q->cur_rx = 0; 7449 rx_q->dirty_rx = 0; 7450 } 7451 7452 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) 7453 { 7454 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 7455 7456 tx_q->cur_tx = 0; 7457 tx_q->dirty_tx = 0; 7458 tx_q->mss = 0; 7459 7460 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7461 } 7462 7463 /** 7464 * stmmac_reset_queues_param - reset queue parameters 7465 * @priv: device pointer 7466 */ 7467 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7468 { 7469 u32 rx_cnt = priv->plat->rx_queues_to_use; 7470 u32 tx_cnt = priv->plat->tx_queues_to_use; 7471 u32 queue; 7472 7473 for (queue = 0; queue < rx_cnt; queue++) 7474 stmmac_reset_rx_queue(priv, queue); 7475 7476 for (queue = 0; queue < tx_cnt; queue++) 7477 stmmac_reset_tx_queue(priv, queue); 7478 } 7479 7480 /** 7481 * stmmac_resume - resume callback 7482 * @dev: device pointer 7483 * Description: when resume this function is invoked to setup the DMA and CORE 7484 * in a usable state. 7485 */ 7486 int stmmac_resume(struct device *dev) 7487 { 7488 struct net_device *ndev = dev_get_drvdata(dev); 7489 struct stmmac_priv *priv = netdev_priv(ndev); 7490 int ret; 7491 7492 if (!netif_running(ndev)) 7493 return 0; 7494 7495 /* Power Down bit, into the PM register, is cleared 7496 * automatically as soon as a magic packet or a Wake-up frame 7497 * is received. Anyway, it's better to manually clear 7498 * this bit because it can generate problems while resuming 7499 * from another devices (e.g. serial console). 7500 */ 7501 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7502 mutex_lock(&priv->lock); 7503 stmmac_pmt(priv, priv->hw, 0); 7504 mutex_unlock(&priv->lock); 7505 priv->irq_wake = 0; 7506 } else { 7507 pinctrl_pm_select_default_state(priv->device); 7508 /* reset the phy so that it's ready */ 7509 if (priv->mii) 7510 stmmac_mdio_reset(priv->mii); 7511 } 7512 7513 if (priv->plat->serdes_powerup) { 7514 ret = priv->plat->serdes_powerup(ndev, 7515 priv->plat->bsp_priv); 7516 7517 if (ret < 0) 7518 return ret; 7519 } 7520 7521 rtnl_lock(); 7522 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7523 phylink_resume(priv->phylink); 7524 } else { 7525 phylink_resume(priv->phylink); 7526 if (device_may_wakeup(priv->device)) 7527 phylink_speed_up(priv->phylink); 7528 } 7529 rtnl_unlock(); 7530 7531 rtnl_lock(); 7532 mutex_lock(&priv->lock); 7533 7534 stmmac_reset_queues_param(priv); 7535 7536 stmmac_free_tx_skbufs(priv); 7537 stmmac_clear_descriptors(priv, &priv->dma_conf); 7538 7539 stmmac_hw_setup(ndev, false); 7540 stmmac_init_coalesce(priv); 7541 stmmac_set_rx_mode(ndev); 7542 7543 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7544 7545 stmmac_enable_all_queues(priv); 7546 stmmac_enable_all_dma_irq(priv); 7547 7548 mutex_unlock(&priv->lock); 7549 rtnl_unlock(); 7550 7551 netif_device_attach(ndev); 7552 7553 return 0; 7554 } 7555 EXPORT_SYMBOL_GPL(stmmac_resume); 7556 7557 #ifndef MODULE 7558 static int __init stmmac_cmdline_opt(char *str) 7559 { 7560 char *opt; 7561 7562 if (!str || !*str) 7563 return 1; 7564 while ((opt = strsep(&str, ",")) != NULL) { 7565 if (!strncmp(opt, "debug:", 6)) { 7566 if (kstrtoint(opt + 6, 0, &debug)) 7567 goto err; 7568 } else if (!strncmp(opt, "phyaddr:", 8)) { 7569 if (kstrtoint(opt + 8, 0, &phyaddr)) 7570 goto err; 7571 } else if (!strncmp(opt, "buf_sz:", 7)) { 7572 if (kstrtoint(opt + 7, 0, &buf_sz)) 7573 goto err; 7574 } else if (!strncmp(opt, "tc:", 3)) { 7575 if (kstrtoint(opt + 3, 0, &tc)) 7576 goto err; 7577 } else if (!strncmp(opt, "watchdog:", 9)) { 7578 if (kstrtoint(opt + 9, 0, &watchdog)) 7579 goto err; 7580 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7581 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7582 goto err; 7583 } else if (!strncmp(opt, "pause:", 6)) { 7584 if (kstrtoint(opt + 6, 0, &pause)) 7585 goto err; 7586 } else if (!strncmp(opt, "eee_timer:", 10)) { 7587 if (kstrtoint(opt + 10, 0, &eee_timer)) 7588 goto err; 7589 } else if (!strncmp(opt, "chain_mode:", 11)) { 7590 if (kstrtoint(opt + 11, 0, &chain_mode)) 7591 goto err; 7592 } 7593 } 7594 return 1; 7595 7596 err: 7597 pr_err("%s: ERROR broken module parameter conversion", __func__); 7598 return 1; 7599 } 7600 7601 __setup("stmmaceth=", stmmac_cmdline_opt); 7602 #endif /* MODULE */ 7603 7604 static int __init stmmac_init(void) 7605 { 7606 #ifdef CONFIG_DEBUG_FS 7607 /* Create debugfs main directory if it doesn't exist yet */ 7608 if (!stmmac_fs_dir) 7609 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7610 register_netdevice_notifier(&stmmac_notifier); 7611 #endif 7612 7613 return 0; 7614 } 7615 7616 static void __exit stmmac_exit(void) 7617 { 7618 #ifdef CONFIG_DEBUG_FS 7619 unregister_netdevice_notifier(&stmmac_notifier); 7620 debugfs_remove_recursive(stmmac_fs_dir); 7621 #endif 7622 } 7623 7624 module_init(stmmac_init) 7625 module_exit(stmmac_exit) 7626 7627 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7628 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7629 MODULE_LICENSE("GPL"); 7630