1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 old_ctrl, ctrl;
990 
991 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
993 
994 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
995 		switch (speed) {
996 		case SPEED_10000:
997 			ctrl |= priv->hw->link.xgmii.speed10000;
998 			break;
999 		case SPEED_5000:
1000 			ctrl |= priv->hw->link.xgmii.speed5000;
1001 			break;
1002 		case SPEED_2500:
1003 			ctrl |= priv->hw->link.xgmii.speed2500;
1004 			break;
1005 		default:
1006 			return;
1007 		}
1008 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009 		switch (speed) {
1010 		case SPEED_100000:
1011 			ctrl |= priv->hw->link.xlgmii.speed100000;
1012 			break;
1013 		case SPEED_50000:
1014 			ctrl |= priv->hw->link.xlgmii.speed50000;
1015 			break;
1016 		case SPEED_40000:
1017 			ctrl |= priv->hw->link.xlgmii.speed40000;
1018 			break;
1019 		case SPEED_25000:
1020 			ctrl |= priv->hw->link.xlgmii.speed25000;
1021 			break;
1022 		case SPEED_10000:
1023 			ctrl |= priv->hw->link.xgmii.speed10000;
1024 			break;
1025 		case SPEED_2500:
1026 			ctrl |= priv->hw->link.speed2500;
1027 			break;
1028 		case SPEED_1000:
1029 			ctrl |= priv->hw->link.speed1000;
1030 			break;
1031 		default:
1032 			return;
1033 		}
1034 	} else {
1035 		switch (speed) {
1036 		case SPEED_2500:
1037 			ctrl |= priv->hw->link.speed2500;
1038 			break;
1039 		case SPEED_1000:
1040 			ctrl |= priv->hw->link.speed1000;
1041 			break;
1042 		case SPEED_100:
1043 			ctrl |= priv->hw->link.speed100;
1044 			break;
1045 		case SPEED_10:
1046 			ctrl |= priv->hw->link.speed10;
1047 			break;
1048 		default:
1049 			return;
1050 		}
1051 	}
1052 
1053 	priv->speed = speed;
1054 
1055 	if (priv->plat->fix_mac_speed)
1056 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057 
1058 	if (!duplex)
1059 		ctrl &= ~priv->hw->link.duplex;
1060 	else
1061 		ctrl |= priv->hw->link.duplex;
1062 
1063 	/* Flow Control operation */
1064 	if (tx_pause && rx_pause)
1065 		stmmac_mac_flow_ctrl(priv, duplex);
1066 
1067 	if (ctrl != old_ctrl)
1068 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1069 
1070 	stmmac_mac_set(priv, priv->ioaddr, true);
1071 	if (phy && priv->dma_cap.eee) {
1072 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1073 		priv->eee_enabled = stmmac_eee_init(priv);
1074 		priv->tx_lpi_enabled = priv->eee_enabled;
1075 		stmmac_set_eee_pls(priv, priv->hw, true);
1076 	}
1077 
1078 	if (priv->dma_cap.fpesel)
1079 		stmmac_fpe_link_state_handle(priv, true);
1080 }
1081 
1082 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1083 	.mac_select_pcs = stmmac_mac_select_pcs,
1084 	.mac_config = stmmac_mac_config,
1085 	.mac_link_down = stmmac_mac_link_down,
1086 	.mac_link_up = stmmac_mac_link_up,
1087 };
1088 
1089 /**
1090  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1091  * @priv: driver private structure
1092  * Description: this is to verify if the HW supports the PCS.
1093  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1094  * configured for the TBI, RTBI, or SGMII PHY interface.
1095  */
1096 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1097 {
1098 	int interface = priv->plat->interface;
1099 
1100 	if (priv->dma_cap.pcs) {
1101 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1102 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1103 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1104 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1105 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1106 			priv->hw->pcs = STMMAC_PCS_RGMII;
1107 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1108 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1109 			priv->hw->pcs = STMMAC_PCS_SGMII;
1110 		}
1111 	}
1112 }
1113 
1114 /**
1115  * stmmac_init_phy - PHY initialization
1116  * @dev: net device structure
1117  * Description: it initializes the driver's PHY state, and attaches the PHY
1118  * to the mac driver.
1119  *  Return value:
1120  *  0 on success
1121  */
1122 static int stmmac_init_phy(struct net_device *dev)
1123 {
1124 	struct stmmac_priv *priv = netdev_priv(dev);
1125 	struct fwnode_handle *fwnode;
1126 	int ret;
1127 
1128 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1129 	if (!fwnode)
1130 		fwnode = dev_fwnode(priv->device);
1131 
1132 	if (fwnode)
1133 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1134 
1135 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1136 	 * manually parse it
1137 	 */
1138 	if (!fwnode || ret) {
1139 		int addr = priv->plat->phy_addr;
1140 		struct phy_device *phydev;
1141 
1142 		phydev = mdiobus_get_phy(priv->mii, addr);
1143 		if (!phydev) {
1144 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1145 			return -ENODEV;
1146 		}
1147 
1148 		ret = phylink_connect_phy(priv->phylink, phydev);
1149 	}
1150 
1151 	if (!priv->plat->pmt) {
1152 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1153 
1154 		phylink_ethtool_get_wol(priv->phylink, &wol);
1155 		device_set_wakeup_capable(priv->device, !!wol.supported);
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 static int stmmac_phy_setup(struct stmmac_priv *priv)
1162 {
1163 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1164 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1165 	int max_speed = priv->plat->max_speed;
1166 	int mode = priv->plat->phy_interface;
1167 	struct phylink *phylink;
1168 
1169 	priv->phylink_config.dev = &priv->dev->dev;
1170 	priv->phylink_config.type = PHYLINK_NETDEV;
1171 	if (priv->plat->mdio_bus_data)
1172 		priv->phylink_config.ovr_an_inband =
1173 			mdio_bus_data->xpcs_an_inband;
1174 
1175 	if (!fwnode)
1176 		fwnode = dev_fwnode(priv->device);
1177 
1178 	/* Set the platform/firmware specified interface mode */
1179 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1180 
1181 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1182 	if (priv->hw->xpcs)
1183 		xpcs_get_interfaces(priv->hw->xpcs,
1184 				    priv->phylink_config.supported_interfaces);
1185 
1186 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1187 		MAC_10 | MAC_100;
1188 
1189 	if (!max_speed || max_speed >= 1000)
1190 		priv->phylink_config.mac_capabilities |= MAC_1000;
1191 
1192 	if (priv->plat->has_gmac4) {
1193 		if (!max_speed || max_speed >= 2500)
1194 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1195 	} else if (priv->plat->has_xgmac) {
1196 		if (!max_speed || max_speed >= 2500)
1197 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1198 		if (!max_speed || max_speed >= 5000)
1199 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1200 		if (!max_speed || max_speed >= 10000)
1201 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1202 		if (!max_speed || max_speed >= 25000)
1203 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1204 		if (!max_speed || max_speed >= 40000)
1205 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1206 		if (!max_speed || max_speed >= 50000)
1207 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1208 		if (!max_speed || max_speed >= 100000)
1209 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1210 	}
1211 
1212 	/* Half-Duplex can only work with single queue */
1213 	if (priv->plat->tx_queues_to_use > 1)
1214 		priv->phylink_config.mac_capabilities &=
1215 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1216 	priv->phylink_config.mac_managed_pm = true;
1217 
1218 	phylink = phylink_create(&priv->phylink_config, fwnode,
1219 				 mode, &stmmac_phylink_mac_ops);
1220 	if (IS_ERR(phylink))
1221 		return PTR_ERR(phylink);
1222 
1223 	priv->phylink = phylink;
1224 	return 0;
1225 }
1226 
1227 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1228 				    struct stmmac_dma_conf *dma_conf)
1229 {
1230 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1231 	unsigned int desc_size;
1232 	void *head_rx;
1233 	u32 queue;
1234 
1235 	/* Display RX rings */
1236 	for (queue = 0; queue < rx_cnt; queue++) {
1237 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1238 
1239 		pr_info("\tRX Queue %u rings\n", queue);
1240 
1241 		if (priv->extend_desc) {
1242 			head_rx = (void *)rx_q->dma_erx;
1243 			desc_size = sizeof(struct dma_extended_desc);
1244 		} else {
1245 			head_rx = (void *)rx_q->dma_rx;
1246 			desc_size = sizeof(struct dma_desc);
1247 		}
1248 
1249 		/* Display RX ring */
1250 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1251 				    rx_q->dma_rx_phy, desc_size);
1252 	}
1253 }
1254 
1255 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1256 				    struct stmmac_dma_conf *dma_conf)
1257 {
1258 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1259 	unsigned int desc_size;
1260 	void *head_tx;
1261 	u32 queue;
1262 
1263 	/* Display TX rings */
1264 	for (queue = 0; queue < tx_cnt; queue++) {
1265 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1266 
1267 		pr_info("\tTX Queue %d rings\n", queue);
1268 
1269 		if (priv->extend_desc) {
1270 			head_tx = (void *)tx_q->dma_etx;
1271 			desc_size = sizeof(struct dma_extended_desc);
1272 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1273 			head_tx = (void *)tx_q->dma_entx;
1274 			desc_size = sizeof(struct dma_edesc);
1275 		} else {
1276 			head_tx = (void *)tx_q->dma_tx;
1277 			desc_size = sizeof(struct dma_desc);
1278 		}
1279 
1280 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1281 				    tx_q->dma_tx_phy, desc_size);
1282 	}
1283 }
1284 
1285 static void stmmac_display_rings(struct stmmac_priv *priv,
1286 				 struct stmmac_dma_conf *dma_conf)
1287 {
1288 	/* Display RX ring */
1289 	stmmac_display_rx_rings(priv, dma_conf);
1290 
1291 	/* Display TX ring */
1292 	stmmac_display_tx_rings(priv, dma_conf);
1293 }
1294 
1295 static int stmmac_set_bfsize(int mtu, int bufsize)
1296 {
1297 	int ret = bufsize;
1298 
1299 	if (mtu >= BUF_SIZE_8KiB)
1300 		ret = BUF_SIZE_16KiB;
1301 	else if (mtu >= BUF_SIZE_4KiB)
1302 		ret = BUF_SIZE_8KiB;
1303 	else if (mtu >= BUF_SIZE_2KiB)
1304 		ret = BUF_SIZE_4KiB;
1305 	else if (mtu > DEFAULT_BUFSIZE)
1306 		ret = BUF_SIZE_2KiB;
1307 	else
1308 		ret = DEFAULT_BUFSIZE;
1309 
1310 	return ret;
1311 }
1312 
1313 /**
1314  * stmmac_clear_rx_descriptors - clear RX descriptors
1315  * @priv: driver private structure
1316  * @dma_conf: structure to take the dma data
1317  * @queue: RX queue index
1318  * Description: this function is called to clear the RX descriptors
1319  * in case of both basic and extended descriptors are used.
1320  */
1321 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1322 					struct stmmac_dma_conf *dma_conf,
1323 					u32 queue)
1324 {
1325 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1326 	int i;
1327 
1328 	/* Clear the RX descriptors */
1329 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1330 		if (priv->extend_desc)
1331 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1332 					priv->use_riwt, priv->mode,
1333 					(i == dma_conf->dma_rx_size - 1),
1334 					dma_conf->dma_buf_sz);
1335 		else
1336 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1337 					priv->use_riwt, priv->mode,
1338 					(i == dma_conf->dma_rx_size - 1),
1339 					dma_conf->dma_buf_sz);
1340 }
1341 
1342 /**
1343  * stmmac_clear_tx_descriptors - clear tx descriptors
1344  * @priv: driver private structure
1345  * @dma_conf: structure to take the dma data
1346  * @queue: TX queue index.
1347  * Description: this function is called to clear the TX descriptors
1348  * in case of both basic and extended descriptors are used.
1349  */
1350 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1351 					struct stmmac_dma_conf *dma_conf,
1352 					u32 queue)
1353 {
1354 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1355 	int i;
1356 
1357 	/* Clear the TX descriptors */
1358 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1359 		int last = (i == (dma_conf->dma_tx_size - 1));
1360 		struct dma_desc *p;
1361 
1362 		if (priv->extend_desc)
1363 			p = &tx_q->dma_etx[i].basic;
1364 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1365 			p = &tx_q->dma_entx[i].basic;
1366 		else
1367 			p = &tx_q->dma_tx[i];
1368 
1369 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1370 	}
1371 }
1372 
1373 /**
1374  * stmmac_clear_descriptors - clear descriptors
1375  * @priv: driver private structure
1376  * @dma_conf: structure to take the dma data
1377  * Description: this function is called to clear the TX and RX descriptors
1378  * in case of both basic and extended descriptors are used.
1379  */
1380 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1381 				     struct stmmac_dma_conf *dma_conf)
1382 {
1383 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1384 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1385 	u32 queue;
1386 
1387 	/* Clear the RX descriptors */
1388 	for (queue = 0; queue < rx_queue_cnt; queue++)
1389 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1390 
1391 	/* Clear the TX descriptors */
1392 	for (queue = 0; queue < tx_queue_cnt; queue++)
1393 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1394 }
1395 
1396 /**
1397  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1398  * @priv: driver private structure
1399  * @dma_conf: structure to take the dma data
1400  * @p: descriptor pointer
1401  * @i: descriptor index
1402  * @flags: gfp flag
1403  * @queue: RX queue index
1404  * Description: this function is called to allocate a receive buffer, perform
1405  * the DMA mapping and init the descriptor.
1406  */
1407 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1408 				  struct stmmac_dma_conf *dma_conf,
1409 				  struct dma_desc *p,
1410 				  int i, gfp_t flags, u32 queue)
1411 {
1412 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1413 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1414 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1415 
1416 	if (priv->dma_cap.addr64 <= 32)
1417 		gfp |= GFP_DMA32;
1418 
1419 	if (!buf->page) {
1420 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1421 		if (!buf->page)
1422 			return -ENOMEM;
1423 		buf->page_offset = stmmac_rx_offset(priv);
1424 	}
1425 
1426 	if (priv->sph && !buf->sec_page) {
1427 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1428 		if (!buf->sec_page)
1429 			return -ENOMEM;
1430 
1431 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1432 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1433 	} else {
1434 		buf->sec_page = NULL;
1435 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1436 	}
1437 
1438 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1439 
1440 	stmmac_set_desc_addr(priv, p, buf->addr);
1441 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1442 		stmmac_init_desc3(priv, p);
1443 
1444 	return 0;
1445 }
1446 
1447 /**
1448  * stmmac_free_rx_buffer - free RX dma buffers
1449  * @priv: private structure
1450  * @rx_q: RX queue
1451  * @i: buffer index.
1452  */
1453 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1454 				  struct stmmac_rx_queue *rx_q,
1455 				  int i)
1456 {
1457 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1458 
1459 	if (buf->page)
1460 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1461 	buf->page = NULL;
1462 
1463 	if (buf->sec_page)
1464 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1465 	buf->sec_page = NULL;
1466 }
1467 
1468 /**
1469  * stmmac_free_tx_buffer - free RX dma buffers
1470  * @priv: private structure
1471  * @dma_conf: structure to take the dma data
1472  * @queue: RX queue index
1473  * @i: buffer index.
1474  */
1475 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1476 				  struct stmmac_dma_conf *dma_conf,
1477 				  u32 queue, int i)
1478 {
1479 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1480 
1481 	if (tx_q->tx_skbuff_dma[i].buf &&
1482 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1484 			dma_unmap_page(priv->device,
1485 				       tx_q->tx_skbuff_dma[i].buf,
1486 				       tx_q->tx_skbuff_dma[i].len,
1487 				       DMA_TO_DEVICE);
1488 		else
1489 			dma_unmap_single(priv->device,
1490 					 tx_q->tx_skbuff_dma[i].buf,
1491 					 tx_q->tx_skbuff_dma[i].len,
1492 					 DMA_TO_DEVICE);
1493 	}
1494 
1495 	if (tx_q->xdpf[i] &&
1496 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498 		xdp_return_frame(tx_q->xdpf[i]);
1499 		tx_q->xdpf[i] = NULL;
1500 	}
1501 
1502 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503 		tx_q->xsk_frames_done++;
1504 
1505 	if (tx_q->tx_skbuff[i] &&
1506 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508 		tx_q->tx_skbuff[i] = NULL;
1509 	}
1510 
1511 	tx_q->tx_skbuff_dma[i].buf = 0;
1512 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1513 }
1514 
1515 /**
1516  * dma_free_rx_skbufs - free RX dma buffers
1517  * @priv: private structure
1518  * @dma_conf: structure to take the dma data
1519  * @queue: RX queue index
1520  */
1521 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1522 			       struct stmmac_dma_conf *dma_conf,
1523 			       u32 queue)
1524 {
1525 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1526 	int i;
1527 
1528 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1529 		stmmac_free_rx_buffer(priv, rx_q, i);
1530 }
1531 
1532 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1533 				   struct stmmac_dma_conf *dma_conf,
1534 				   u32 queue, gfp_t flags)
1535 {
1536 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1537 	int i;
1538 
1539 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1540 		struct dma_desc *p;
1541 		int ret;
1542 
1543 		if (priv->extend_desc)
1544 			p = &((rx_q->dma_erx + i)->basic);
1545 		else
1546 			p = rx_q->dma_rx + i;
1547 
1548 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1549 					     queue);
1550 		if (ret)
1551 			return ret;
1552 
1553 		rx_q->buf_alloc_num++;
1554 	}
1555 
1556 	return 0;
1557 }
1558 
1559 /**
1560  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1561  * @priv: private structure
1562  * @dma_conf: structure to take the dma data
1563  * @queue: RX queue index
1564  */
1565 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1566 				struct stmmac_dma_conf *dma_conf,
1567 				u32 queue)
1568 {
1569 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1570 	int i;
1571 
1572 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1573 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1574 
1575 		if (!buf->xdp)
1576 			continue;
1577 
1578 		xsk_buff_free(buf->xdp);
1579 		buf->xdp = NULL;
1580 	}
1581 }
1582 
1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1584 				      struct stmmac_dma_conf *dma_conf,
1585 				      u32 queue)
1586 {
1587 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1588 	int i;
1589 
1590 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1591 		struct stmmac_rx_buffer *buf;
1592 		dma_addr_t dma_addr;
1593 		struct dma_desc *p;
1594 
1595 		if (priv->extend_desc)
1596 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1597 		else
1598 			p = rx_q->dma_rx + i;
1599 
1600 		buf = &rx_q->buf_pool[i];
1601 
1602 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1603 		if (!buf->xdp)
1604 			return -ENOMEM;
1605 
1606 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1607 		stmmac_set_desc_addr(priv, p, dma_addr);
1608 		rx_q->buf_alloc_num++;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1615 {
1616 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1617 		return NULL;
1618 
1619 	return xsk_get_pool_from_qid(priv->dev, queue);
1620 }
1621 
1622 /**
1623  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1624  * @priv: driver private structure
1625  * @dma_conf: structure to take the dma data
1626  * @queue: RX queue index
1627  * @flags: gfp flag.
1628  * Description: this function initializes the DMA RX descriptors
1629  * and allocates the socket buffers. It supports the chained and ring
1630  * modes.
1631  */
1632 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1633 				    struct stmmac_dma_conf *dma_conf,
1634 				    u32 queue, gfp_t flags)
1635 {
1636 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1637 	int ret;
1638 
1639 	netif_dbg(priv, probe, priv->dev,
1640 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1641 		  (u32)rx_q->dma_rx_phy);
1642 
1643 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1644 
1645 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1646 
1647 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1648 
1649 	if (rx_q->xsk_pool) {
1650 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1651 						   MEM_TYPE_XSK_BUFF_POOL,
1652 						   NULL));
1653 		netdev_info(priv->dev,
1654 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1655 			    rx_q->queue_index);
1656 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1657 	} else {
1658 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1659 						   MEM_TYPE_PAGE_POOL,
1660 						   rx_q->page_pool));
1661 		netdev_info(priv->dev,
1662 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1663 			    rx_q->queue_index);
1664 	}
1665 
1666 	if (rx_q->xsk_pool) {
1667 		/* RX XDP ZC buffer pool may not be populated, e.g.
1668 		 * xdpsock TX-only.
1669 		 */
1670 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1671 	} else {
1672 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1673 		if (ret < 0)
1674 			return -ENOMEM;
1675 	}
1676 
1677 	/* Setup the chained descriptor addresses */
1678 	if (priv->mode == STMMAC_CHAIN_MODE) {
1679 		if (priv->extend_desc)
1680 			stmmac_mode_init(priv, rx_q->dma_erx,
1681 					 rx_q->dma_rx_phy,
1682 					 dma_conf->dma_rx_size, 1);
1683 		else
1684 			stmmac_mode_init(priv, rx_q->dma_rx,
1685 					 rx_q->dma_rx_phy,
1686 					 dma_conf->dma_rx_size, 0);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 static int init_dma_rx_desc_rings(struct net_device *dev,
1693 				  struct stmmac_dma_conf *dma_conf,
1694 				  gfp_t flags)
1695 {
1696 	struct stmmac_priv *priv = netdev_priv(dev);
1697 	u32 rx_count = priv->plat->rx_queues_to_use;
1698 	int queue;
1699 	int ret;
1700 
1701 	/* RX INITIALIZATION */
1702 	netif_dbg(priv, probe, priv->dev,
1703 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1704 
1705 	for (queue = 0; queue < rx_count; queue++) {
1706 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1707 		if (ret)
1708 			goto err_init_rx_buffers;
1709 	}
1710 
1711 	return 0;
1712 
1713 err_init_rx_buffers:
1714 	while (queue >= 0) {
1715 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1716 
1717 		if (rx_q->xsk_pool)
1718 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1719 		else
1720 			dma_free_rx_skbufs(priv, dma_conf, queue);
1721 
1722 		rx_q->buf_alloc_num = 0;
1723 		rx_q->xsk_pool = NULL;
1724 
1725 		queue--;
1726 	}
1727 
1728 	return ret;
1729 }
1730 
1731 /**
1732  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1733  * @priv: driver private structure
1734  * @dma_conf: structure to take the dma data
1735  * @queue: TX queue index
1736  * Description: this function initializes the DMA TX descriptors
1737  * and allocates the socket buffers. It supports the chained and ring
1738  * modes.
1739  */
1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1741 				    struct stmmac_dma_conf *dma_conf,
1742 				    u32 queue)
1743 {
1744 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1745 	int i;
1746 
1747 	netif_dbg(priv, probe, priv->dev,
1748 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1749 		  (u32)tx_q->dma_tx_phy);
1750 
1751 	/* Setup the chained descriptor addresses */
1752 	if (priv->mode == STMMAC_CHAIN_MODE) {
1753 		if (priv->extend_desc)
1754 			stmmac_mode_init(priv, tx_q->dma_etx,
1755 					 tx_q->dma_tx_phy,
1756 					 dma_conf->dma_tx_size, 1);
1757 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1758 			stmmac_mode_init(priv, tx_q->dma_tx,
1759 					 tx_q->dma_tx_phy,
1760 					 dma_conf->dma_tx_size, 0);
1761 	}
1762 
1763 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1764 
1765 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1766 		struct dma_desc *p;
1767 
1768 		if (priv->extend_desc)
1769 			p = &((tx_q->dma_etx + i)->basic);
1770 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1771 			p = &((tx_q->dma_entx + i)->basic);
1772 		else
1773 			p = tx_q->dma_tx + i;
1774 
1775 		stmmac_clear_desc(priv, p);
1776 
1777 		tx_q->tx_skbuff_dma[i].buf = 0;
1778 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1779 		tx_q->tx_skbuff_dma[i].len = 0;
1780 		tx_q->tx_skbuff_dma[i].last_segment = false;
1781 		tx_q->tx_skbuff[i] = NULL;
1782 	}
1783 
1784 	return 0;
1785 }
1786 
1787 static int init_dma_tx_desc_rings(struct net_device *dev,
1788 				  struct stmmac_dma_conf *dma_conf)
1789 {
1790 	struct stmmac_priv *priv = netdev_priv(dev);
1791 	u32 tx_queue_cnt;
1792 	u32 queue;
1793 
1794 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1795 
1796 	for (queue = 0; queue < tx_queue_cnt; queue++)
1797 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1798 
1799 	return 0;
1800 }
1801 
1802 /**
1803  * init_dma_desc_rings - init the RX/TX descriptor rings
1804  * @dev: net device structure
1805  * @dma_conf: structure to take the dma data
1806  * @flags: gfp flag.
1807  * Description: this function initializes the DMA RX/TX descriptors
1808  * and allocates the socket buffers. It supports the chained and ring
1809  * modes.
1810  */
1811 static int init_dma_desc_rings(struct net_device *dev,
1812 			       struct stmmac_dma_conf *dma_conf,
1813 			       gfp_t flags)
1814 {
1815 	struct stmmac_priv *priv = netdev_priv(dev);
1816 	int ret;
1817 
1818 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1819 	if (ret)
1820 		return ret;
1821 
1822 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1823 
1824 	stmmac_clear_descriptors(priv, dma_conf);
1825 
1826 	if (netif_msg_hw(priv))
1827 		stmmac_display_rings(priv, dma_conf);
1828 
1829 	return ret;
1830 }
1831 
1832 /**
1833  * dma_free_tx_skbufs - free TX dma buffers
1834  * @priv: private structure
1835  * @dma_conf: structure to take the dma data
1836  * @queue: TX queue index
1837  */
1838 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1839 			       struct stmmac_dma_conf *dma_conf,
1840 			       u32 queue)
1841 {
1842 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1843 	int i;
1844 
1845 	tx_q->xsk_frames_done = 0;
1846 
1847 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1848 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1849 
1850 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1851 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1852 		tx_q->xsk_frames_done = 0;
1853 		tx_q->xsk_pool = NULL;
1854 	}
1855 }
1856 
1857 /**
1858  * stmmac_free_tx_skbufs - free TX skb buffers
1859  * @priv: private structure
1860  */
1861 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1862 {
1863 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1864 	u32 queue;
1865 
1866 	for (queue = 0; queue < tx_queue_cnt; queue++)
1867 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1868 }
1869 
1870 /**
1871  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1872  * @priv: private structure
1873  * @dma_conf: structure to take the dma data
1874  * @queue: RX queue index
1875  */
1876 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1877 					 struct stmmac_dma_conf *dma_conf,
1878 					 u32 queue)
1879 {
1880 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1881 
1882 	/* Release the DMA RX socket buffers */
1883 	if (rx_q->xsk_pool)
1884 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1885 	else
1886 		dma_free_rx_skbufs(priv, dma_conf, queue);
1887 
1888 	rx_q->buf_alloc_num = 0;
1889 	rx_q->xsk_pool = NULL;
1890 
1891 	/* Free DMA regions of consistent memory previously allocated */
1892 	if (!priv->extend_desc)
1893 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1894 				  sizeof(struct dma_desc),
1895 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1896 	else
1897 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1898 				  sizeof(struct dma_extended_desc),
1899 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1900 
1901 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1902 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1903 
1904 	kfree(rx_q->buf_pool);
1905 	if (rx_q->page_pool)
1906 		page_pool_destroy(rx_q->page_pool);
1907 }
1908 
1909 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1910 				       struct stmmac_dma_conf *dma_conf)
1911 {
1912 	u32 rx_count = priv->plat->rx_queues_to_use;
1913 	u32 queue;
1914 
1915 	/* Free RX queue resources */
1916 	for (queue = 0; queue < rx_count; queue++)
1917 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1918 }
1919 
1920 /**
1921  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1922  * @priv: private structure
1923  * @dma_conf: structure to take the dma data
1924  * @queue: TX queue index
1925  */
1926 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1927 					 struct stmmac_dma_conf *dma_conf,
1928 					 u32 queue)
1929 {
1930 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1931 	size_t size;
1932 	void *addr;
1933 
1934 	/* Release the DMA TX socket buffers */
1935 	dma_free_tx_skbufs(priv, dma_conf, queue);
1936 
1937 	if (priv->extend_desc) {
1938 		size = sizeof(struct dma_extended_desc);
1939 		addr = tx_q->dma_etx;
1940 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1941 		size = sizeof(struct dma_edesc);
1942 		addr = tx_q->dma_entx;
1943 	} else {
1944 		size = sizeof(struct dma_desc);
1945 		addr = tx_q->dma_tx;
1946 	}
1947 
1948 	size *= dma_conf->dma_tx_size;
1949 
1950 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1951 
1952 	kfree(tx_q->tx_skbuff_dma);
1953 	kfree(tx_q->tx_skbuff);
1954 }
1955 
1956 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1957 				       struct stmmac_dma_conf *dma_conf)
1958 {
1959 	u32 tx_count = priv->plat->tx_queues_to_use;
1960 	u32 queue;
1961 
1962 	/* Free TX queue resources */
1963 	for (queue = 0; queue < tx_count; queue++)
1964 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1965 }
1966 
1967 /**
1968  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1969  * @priv: private structure
1970  * @dma_conf: structure to take the dma data
1971  * @queue: RX queue index
1972  * Description: according to which descriptor can be used (extend or basic)
1973  * this function allocates the resources for TX and RX paths. In case of
1974  * reception, for example, it pre-allocated the RX socket buffer in order to
1975  * allow zero-copy mechanism.
1976  */
1977 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1978 					 struct stmmac_dma_conf *dma_conf,
1979 					 u32 queue)
1980 {
1981 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1982 	struct stmmac_channel *ch = &priv->channel[queue];
1983 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1984 	struct page_pool_params pp_params = { 0 };
1985 	unsigned int num_pages;
1986 	unsigned int napi_id;
1987 	int ret;
1988 
1989 	rx_q->queue_index = queue;
1990 	rx_q->priv_data = priv;
1991 
1992 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1993 	pp_params.pool_size = dma_conf->dma_rx_size;
1994 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
1995 	pp_params.order = ilog2(num_pages);
1996 	pp_params.nid = dev_to_node(priv->device);
1997 	pp_params.dev = priv->device;
1998 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1999 	pp_params.offset = stmmac_rx_offset(priv);
2000 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2001 
2002 	rx_q->page_pool = page_pool_create(&pp_params);
2003 	if (IS_ERR(rx_q->page_pool)) {
2004 		ret = PTR_ERR(rx_q->page_pool);
2005 		rx_q->page_pool = NULL;
2006 		return ret;
2007 	}
2008 
2009 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2010 				 sizeof(*rx_q->buf_pool),
2011 				 GFP_KERNEL);
2012 	if (!rx_q->buf_pool)
2013 		return -ENOMEM;
2014 
2015 	if (priv->extend_desc) {
2016 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2017 						   dma_conf->dma_rx_size *
2018 						   sizeof(struct dma_extended_desc),
2019 						   &rx_q->dma_rx_phy,
2020 						   GFP_KERNEL);
2021 		if (!rx_q->dma_erx)
2022 			return -ENOMEM;
2023 
2024 	} else {
2025 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2026 						  dma_conf->dma_rx_size *
2027 						  sizeof(struct dma_desc),
2028 						  &rx_q->dma_rx_phy,
2029 						  GFP_KERNEL);
2030 		if (!rx_q->dma_rx)
2031 			return -ENOMEM;
2032 	}
2033 
2034 	if (stmmac_xdp_is_enabled(priv) &&
2035 	    test_bit(queue, priv->af_xdp_zc_qps))
2036 		napi_id = ch->rxtx_napi.napi_id;
2037 	else
2038 		napi_id = ch->rx_napi.napi_id;
2039 
2040 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2041 			       rx_q->queue_index,
2042 			       napi_id);
2043 	if (ret) {
2044 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2045 		return -EINVAL;
2046 	}
2047 
2048 	return 0;
2049 }
2050 
2051 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2052 				       struct stmmac_dma_conf *dma_conf)
2053 {
2054 	u32 rx_count = priv->plat->rx_queues_to_use;
2055 	u32 queue;
2056 	int ret;
2057 
2058 	/* RX queues buffers and DMA */
2059 	for (queue = 0; queue < rx_count; queue++) {
2060 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2061 		if (ret)
2062 			goto err_dma;
2063 	}
2064 
2065 	return 0;
2066 
2067 err_dma:
2068 	free_dma_rx_desc_resources(priv, dma_conf);
2069 
2070 	return ret;
2071 }
2072 
2073 /**
2074  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2075  * @priv: private structure
2076  * @dma_conf: structure to take the dma data
2077  * @queue: TX queue index
2078  * Description: according to which descriptor can be used (extend or basic)
2079  * this function allocates the resources for TX and RX paths. In case of
2080  * reception, for example, it pre-allocated the RX socket buffer in order to
2081  * allow zero-copy mechanism.
2082  */
2083 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2084 					 struct stmmac_dma_conf *dma_conf,
2085 					 u32 queue)
2086 {
2087 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2088 	size_t size;
2089 	void *addr;
2090 
2091 	tx_q->queue_index = queue;
2092 	tx_q->priv_data = priv;
2093 
2094 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2095 				      sizeof(*tx_q->tx_skbuff_dma),
2096 				      GFP_KERNEL);
2097 	if (!tx_q->tx_skbuff_dma)
2098 		return -ENOMEM;
2099 
2100 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2101 				  sizeof(struct sk_buff *),
2102 				  GFP_KERNEL);
2103 	if (!tx_q->tx_skbuff)
2104 		return -ENOMEM;
2105 
2106 	if (priv->extend_desc)
2107 		size = sizeof(struct dma_extended_desc);
2108 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2109 		size = sizeof(struct dma_edesc);
2110 	else
2111 		size = sizeof(struct dma_desc);
2112 
2113 	size *= dma_conf->dma_tx_size;
2114 
2115 	addr = dma_alloc_coherent(priv->device, size,
2116 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2117 	if (!addr)
2118 		return -ENOMEM;
2119 
2120 	if (priv->extend_desc)
2121 		tx_q->dma_etx = addr;
2122 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2123 		tx_q->dma_entx = addr;
2124 	else
2125 		tx_q->dma_tx = addr;
2126 
2127 	return 0;
2128 }
2129 
2130 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2131 				       struct stmmac_dma_conf *dma_conf)
2132 {
2133 	u32 tx_count = priv->plat->tx_queues_to_use;
2134 	u32 queue;
2135 	int ret;
2136 
2137 	/* TX queues buffers and DMA */
2138 	for (queue = 0; queue < tx_count; queue++) {
2139 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2140 		if (ret)
2141 			goto err_dma;
2142 	}
2143 
2144 	return 0;
2145 
2146 err_dma:
2147 	free_dma_tx_desc_resources(priv, dma_conf);
2148 	return ret;
2149 }
2150 
2151 /**
2152  * alloc_dma_desc_resources - alloc TX/RX resources.
2153  * @priv: private structure
2154  * @dma_conf: structure to take the dma data
2155  * Description: according to which descriptor can be used (extend or basic)
2156  * this function allocates the resources for TX and RX paths. In case of
2157  * reception, for example, it pre-allocated the RX socket buffer in order to
2158  * allow zero-copy mechanism.
2159  */
2160 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2161 				    struct stmmac_dma_conf *dma_conf)
2162 {
2163 	/* RX Allocation */
2164 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2165 
2166 	if (ret)
2167 		return ret;
2168 
2169 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2170 
2171 	return ret;
2172 }
2173 
2174 /**
2175  * free_dma_desc_resources - free dma desc resources
2176  * @priv: private structure
2177  * @dma_conf: structure to take the dma data
2178  */
2179 static void free_dma_desc_resources(struct stmmac_priv *priv,
2180 				    struct stmmac_dma_conf *dma_conf)
2181 {
2182 	/* Release the DMA TX socket buffers */
2183 	free_dma_tx_desc_resources(priv, dma_conf);
2184 
2185 	/* Release the DMA RX socket buffers later
2186 	 * to ensure all pending XDP_TX buffers are returned.
2187 	 */
2188 	free_dma_rx_desc_resources(priv, dma_conf);
2189 }
2190 
2191 /**
2192  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2193  *  @priv: driver private structure
2194  *  Description: It is used for enabling the rx queues in the MAC
2195  */
2196 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2197 {
2198 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2199 	int queue;
2200 	u8 mode;
2201 
2202 	for (queue = 0; queue < rx_queues_count; queue++) {
2203 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2204 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2205 	}
2206 }
2207 
2208 /**
2209  * stmmac_start_rx_dma - start RX DMA channel
2210  * @priv: driver private structure
2211  * @chan: RX channel index
2212  * Description:
2213  * This starts a RX DMA channel
2214  */
2215 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2216 {
2217 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2218 	stmmac_start_rx(priv, priv->ioaddr, chan);
2219 }
2220 
2221 /**
2222  * stmmac_start_tx_dma - start TX DMA channel
2223  * @priv: driver private structure
2224  * @chan: TX channel index
2225  * Description:
2226  * This starts a TX DMA channel
2227  */
2228 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2229 {
2230 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2231 	stmmac_start_tx(priv, priv->ioaddr, chan);
2232 }
2233 
2234 /**
2235  * stmmac_stop_rx_dma - stop RX DMA channel
2236  * @priv: driver private structure
2237  * @chan: RX channel index
2238  * Description:
2239  * This stops a RX DMA channel
2240  */
2241 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2242 {
2243 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2244 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2245 }
2246 
2247 /**
2248  * stmmac_stop_tx_dma - stop TX DMA channel
2249  * @priv: driver private structure
2250  * @chan: TX channel index
2251  * Description:
2252  * This stops a TX DMA channel
2253  */
2254 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2255 {
2256 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2257 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2258 }
2259 
2260 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2261 {
2262 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2263 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2264 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2265 	u32 chan;
2266 
2267 	for (chan = 0; chan < dma_csr_ch; chan++) {
2268 		struct stmmac_channel *ch = &priv->channel[chan];
2269 		unsigned long flags;
2270 
2271 		spin_lock_irqsave(&ch->lock, flags);
2272 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2273 		spin_unlock_irqrestore(&ch->lock, flags);
2274 	}
2275 }
2276 
2277 /**
2278  * stmmac_start_all_dma - start all RX and TX DMA channels
2279  * @priv: driver private structure
2280  * Description:
2281  * This starts all the RX and TX DMA channels
2282  */
2283 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2284 {
2285 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2286 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2287 	u32 chan = 0;
2288 
2289 	for (chan = 0; chan < rx_channels_count; chan++)
2290 		stmmac_start_rx_dma(priv, chan);
2291 
2292 	for (chan = 0; chan < tx_channels_count; chan++)
2293 		stmmac_start_tx_dma(priv, chan);
2294 }
2295 
2296 /**
2297  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2298  * @priv: driver private structure
2299  * Description:
2300  * This stops the RX and TX DMA channels
2301  */
2302 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2303 {
2304 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2305 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2306 	u32 chan = 0;
2307 
2308 	for (chan = 0; chan < rx_channels_count; chan++)
2309 		stmmac_stop_rx_dma(priv, chan);
2310 
2311 	for (chan = 0; chan < tx_channels_count; chan++)
2312 		stmmac_stop_tx_dma(priv, chan);
2313 }
2314 
2315 /**
2316  *  stmmac_dma_operation_mode - HW DMA operation mode
2317  *  @priv: driver private structure
2318  *  Description: it is used for configuring the DMA operation mode register in
2319  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2320  */
2321 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2322 {
2323 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2324 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2325 	int rxfifosz = priv->plat->rx_fifo_size;
2326 	int txfifosz = priv->plat->tx_fifo_size;
2327 	u32 txmode = 0;
2328 	u32 rxmode = 0;
2329 	u32 chan = 0;
2330 	u8 qmode = 0;
2331 
2332 	if (rxfifosz == 0)
2333 		rxfifosz = priv->dma_cap.rx_fifo_size;
2334 	if (txfifosz == 0)
2335 		txfifosz = priv->dma_cap.tx_fifo_size;
2336 
2337 	/* Adjust for real per queue fifo size */
2338 	rxfifosz /= rx_channels_count;
2339 	txfifosz /= tx_channels_count;
2340 
2341 	if (priv->plat->force_thresh_dma_mode) {
2342 		txmode = tc;
2343 		rxmode = tc;
2344 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2345 		/*
2346 		 * In case of GMAC, SF mode can be enabled
2347 		 * to perform the TX COE in HW. This depends on:
2348 		 * 1) TX COE if actually supported
2349 		 * 2) There is no bugged Jumbo frame support
2350 		 *    that needs to not insert csum in the TDES.
2351 		 */
2352 		txmode = SF_DMA_MODE;
2353 		rxmode = SF_DMA_MODE;
2354 		priv->xstats.threshold = SF_DMA_MODE;
2355 	} else {
2356 		txmode = tc;
2357 		rxmode = SF_DMA_MODE;
2358 	}
2359 
2360 	/* configure all channels */
2361 	for (chan = 0; chan < rx_channels_count; chan++) {
2362 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2363 		u32 buf_size;
2364 
2365 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2366 
2367 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2368 				rxfifosz, qmode);
2369 
2370 		if (rx_q->xsk_pool) {
2371 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2372 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2373 					      buf_size,
2374 					      chan);
2375 		} else {
2376 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2377 					      priv->dma_conf.dma_buf_sz,
2378 					      chan);
2379 		}
2380 	}
2381 
2382 	for (chan = 0; chan < tx_channels_count; chan++) {
2383 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2384 
2385 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2386 				txfifosz, qmode);
2387 	}
2388 }
2389 
2390 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2391 {
2392 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2393 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2394 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2395 	unsigned int entry = tx_q->cur_tx;
2396 	struct dma_desc *tx_desc = NULL;
2397 	struct xdp_desc xdp_desc;
2398 	bool work_done = true;
2399 
2400 	/* Avoids TX time-out as we are sharing with slow path */
2401 	txq_trans_cond_update(nq);
2402 
2403 	budget = min(budget, stmmac_tx_avail(priv, queue));
2404 
2405 	while (budget-- > 0) {
2406 		dma_addr_t dma_addr;
2407 		bool set_ic;
2408 
2409 		/* We are sharing with slow path and stop XSK TX desc submission when
2410 		 * available TX ring is less than threshold.
2411 		 */
2412 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2413 		    !netif_carrier_ok(priv->dev)) {
2414 			work_done = false;
2415 			break;
2416 		}
2417 
2418 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2419 			break;
2420 
2421 		if (likely(priv->extend_desc))
2422 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2423 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2424 			tx_desc = &tx_q->dma_entx[entry].basic;
2425 		else
2426 			tx_desc = tx_q->dma_tx + entry;
2427 
2428 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2429 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2430 
2431 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2432 
2433 		/* To return XDP buffer to XSK pool, we simple call
2434 		 * xsk_tx_completed(), so we don't need to fill up
2435 		 * 'buf' and 'xdpf'.
2436 		 */
2437 		tx_q->tx_skbuff_dma[entry].buf = 0;
2438 		tx_q->xdpf[entry] = NULL;
2439 
2440 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2441 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2442 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2443 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2444 
2445 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2446 
2447 		tx_q->tx_count_frames++;
2448 
2449 		if (!priv->tx_coal_frames[queue])
2450 			set_ic = false;
2451 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2452 			set_ic = true;
2453 		else
2454 			set_ic = false;
2455 
2456 		if (set_ic) {
2457 			tx_q->tx_count_frames = 0;
2458 			stmmac_set_tx_ic(priv, tx_desc);
2459 			priv->xstats.tx_set_ic_bit++;
2460 		}
2461 
2462 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2463 				       true, priv->mode, true, true,
2464 				       xdp_desc.len);
2465 
2466 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2467 
2468 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2469 		entry = tx_q->cur_tx;
2470 	}
2471 
2472 	if (tx_desc) {
2473 		stmmac_flush_tx_descriptors(priv, queue);
2474 		xsk_tx_release(pool);
2475 	}
2476 
2477 	/* Return true if all of the 3 conditions are met
2478 	 *  a) TX Budget is still available
2479 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2480 	 *     pending XSK TX for transmission)
2481 	 */
2482 	return !!budget && work_done;
2483 }
2484 
2485 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2486 {
2487 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2488 		tc += 64;
2489 
2490 		if (priv->plat->force_thresh_dma_mode)
2491 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2492 		else
2493 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2494 						      chan);
2495 
2496 		priv->xstats.threshold = tc;
2497 	}
2498 }
2499 
2500 /**
2501  * stmmac_tx_clean - to manage the transmission completion
2502  * @priv: driver private structure
2503  * @budget: napi budget limiting this functions packet handling
2504  * @queue: TX queue index
2505  * Description: it reclaims the transmit resources after transmission completes.
2506  */
2507 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2508 {
2509 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2510 	unsigned int bytes_compl = 0, pkts_compl = 0;
2511 	unsigned int entry, xmits = 0, count = 0;
2512 
2513 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2514 
2515 	priv->xstats.tx_clean++;
2516 
2517 	tx_q->xsk_frames_done = 0;
2518 
2519 	entry = tx_q->dirty_tx;
2520 
2521 	/* Try to clean all TX complete frame in 1 shot */
2522 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2523 		struct xdp_frame *xdpf;
2524 		struct sk_buff *skb;
2525 		struct dma_desc *p;
2526 		int status;
2527 
2528 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2529 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2530 			xdpf = tx_q->xdpf[entry];
2531 			skb = NULL;
2532 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2533 			xdpf = NULL;
2534 			skb = tx_q->tx_skbuff[entry];
2535 		} else {
2536 			xdpf = NULL;
2537 			skb = NULL;
2538 		}
2539 
2540 		if (priv->extend_desc)
2541 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2542 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2543 			p = &tx_q->dma_entx[entry].basic;
2544 		else
2545 			p = tx_q->dma_tx + entry;
2546 
2547 		status = stmmac_tx_status(priv, &priv->dev->stats,
2548 				&priv->xstats, p, priv->ioaddr);
2549 		/* Check if the descriptor is owned by the DMA */
2550 		if (unlikely(status & tx_dma_own))
2551 			break;
2552 
2553 		count++;
2554 
2555 		/* Make sure descriptor fields are read after reading
2556 		 * the own bit.
2557 		 */
2558 		dma_rmb();
2559 
2560 		/* Just consider the last segment and ...*/
2561 		if (likely(!(status & tx_not_ls))) {
2562 			/* ... verify the status error condition */
2563 			if (unlikely(status & tx_err)) {
2564 				priv->dev->stats.tx_errors++;
2565 				if (unlikely(status & tx_err_bump_tc))
2566 					stmmac_bump_dma_threshold(priv, queue);
2567 			} else {
2568 				priv->dev->stats.tx_packets++;
2569 				priv->xstats.tx_pkt_n++;
2570 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2571 			}
2572 			if (skb)
2573 				stmmac_get_tx_hwtstamp(priv, p, skb);
2574 		}
2575 
2576 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2577 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2578 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2579 				dma_unmap_page(priv->device,
2580 					       tx_q->tx_skbuff_dma[entry].buf,
2581 					       tx_q->tx_skbuff_dma[entry].len,
2582 					       DMA_TO_DEVICE);
2583 			else
2584 				dma_unmap_single(priv->device,
2585 						 tx_q->tx_skbuff_dma[entry].buf,
2586 						 tx_q->tx_skbuff_dma[entry].len,
2587 						 DMA_TO_DEVICE);
2588 			tx_q->tx_skbuff_dma[entry].buf = 0;
2589 			tx_q->tx_skbuff_dma[entry].len = 0;
2590 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2591 		}
2592 
2593 		stmmac_clean_desc3(priv, tx_q, p);
2594 
2595 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2596 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2597 
2598 		if (xdpf &&
2599 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2600 			xdp_return_frame_rx_napi(xdpf);
2601 			tx_q->xdpf[entry] = NULL;
2602 		}
2603 
2604 		if (xdpf &&
2605 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2606 			xdp_return_frame(xdpf);
2607 			tx_q->xdpf[entry] = NULL;
2608 		}
2609 
2610 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2611 			tx_q->xsk_frames_done++;
2612 
2613 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2614 			if (likely(skb)) {
2615 				pkts_compl++;
2616 				bytes_compl += skb->len;
2617 				dev_consume_skb_any(skb);
2618 				tx_q->tx_skbuff[entry] = NULL;
2619 			}
2620 		}
2621 
2622 		stmmac_release_tx_desc(priv, p, priv->mode);
2623 
2624 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2625 	}
2626 	tx_q->dirty_tx = entry;
2627 
2628 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2629 				  pkts_compl, bytes_compl);
2630 
2631 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2632 								queue))) &&
2633 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2634 
2635 		netif_dbg(priv, tx_done, priv->dev,
2636 			  "%s: restart transmit\n", __func__);
2637 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2638 	}
2639 
2640 	if (tx_q->xsk_pool) {
2641 		bool work_done;
2642 
2643 		if (tx_q->xsk_frames_done)
2644 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2645 
2646 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2647 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2648 
2649 		/* For XSK TX, we try to send as many as possible.
2650 		 * If XSK work done (XSK TX desc empty and budget still
2651 		 * available), return "budget - 1" to reenable TX IRQ.
2652 		 * Else, return "budget" to make NAPI continue polling.
2653 		 */
2654 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2655 					       STMMAC_XSK_TX_BUDGET_MAX);
2656 		if (work_done)
2657 			xmits = budget - 1;
2658 		else
2659 			xmits = budget;
2660 	}
2661 
2662 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2663 	    priv->eee_sw_timer_en) {
2664 		if (stmmac_enable_eee_mode(priv))
2665 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2666 	}
2667 
2668 	/* We still have pending packets, let's call for a new scheduling */
2669 	if (tx_q->dirty_tx != tx_q->cur_tx)
2670 		hrtimer_start(&tx_q->txtimer,
2671 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2672 			      HRTIMER_MODE_REL);
2673 
2674 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2675 
2676 	/* Combine decisions from TX clean and XSK TX */
2677 	return max(count, xmits);
2678 }
2679 
2680 /**
2681  * stmmac_tx_err - to manage the tx error
2682  * @priv: driver private structure
2683  * @chan: channel index
2684  * Description: it cleans the descriptors and restarts the transmission
2685  * in case of transmission errors.
2686  */
2687 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2688 {
2689 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2690 
2691 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2692 
2693 	stmmac_stop_tx_dma(priv, chan);
2694 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2695 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2696 	stmmac_reset_tx_queue(priv, chan);
2697 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2698 			    tx_q->dma_tx_phy, chan);
2699 	stmmac_start_tx_dma(priv, chan);
2700 
2701 	priv->dev->stats.tx_errors++;
2702 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2703 }
2704 
2705 /**
2706  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2707  *  @priv: driver private structure
2708  *  @txmode: TX operating mode
2709  *  @rxmode: RX operating mode
2710  *  @chan: channel index
2711  *  Description: it is used for configuring of the DMA operation mode in
2712  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2713  *  mode.
2714  */
2715 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2716 					  u32 rxmode, u32 chan)
2717 {
2718 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2719 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2720 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2721 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2722 	int rxfifosz = priv->plat->rx_fifo_size;
2723 	int txfifosz = priv->plat->tx_fifo_size;
2724 
2725 	if (rxfifosz == 0)
2726 		rxfifosz = priv->dma_cap.rx_fifo_size;
2727 	if (txfifosz == 0)
2728 		txfifosz = priv->dma_cap.tx_fifo_size;
2729 
2730 	/* Adjust for real per queue fifo size */
2731 	rxfifosz /= rx_channels_count;
2732 	txfifosz /= tx_channels_count;
2733 
2734 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2735 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2736 }
2737 
2738 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2739 {
2740 	int ret;
2741 
2742 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2743 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2744 	if (ret && (ret != -EINVAL)) {
2745 		stmmac_global_err(priv);
2746 		return true;
2747 	}
2748 
2749 	return false;
2750 }
2751 
2752 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2753 {
2754 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2755 						 &priv->xstats, chan, dir);
2756 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2757 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2758 	struct stmmac_channel *ch = &priv->channel[chan];
2759 	struct napi_struct *rx_napi;
2760 	struct napi_struct *tx_napi;
2761 	unsigned long flags;
2762 
2763 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2764 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2765 
2766 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2767 		if (napi_schedule_prep(rx_napi)) {
2768 			spin_lock_irqsave(&ch->lock, flags);
2769 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2770 			spin_unlock_irqrestore(&ch->lock, flags);
2771 			__napi_schedule(rx_napi);
2772 		}
2773 	}
2774 
2775 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2776 		if (napi_schedule_prep(tx_napi)) {
2777 			spin_lock_irqsave(&ch->lock, flags);
2778 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2779 			spin_unlock_irqrestore(&ch->lock, flags);
2780 			__napi_schedule(tx_napi);
2781 		}
2782 	}
2783 
2784 	return status;
2785 }
2786 
2787 /**
2788  * stmmac_dma_interrupt - DMA ISR
2789  * @priv: driver private structure
2790  * Description: this is the DMA ISR. It is called by the main ISR.
2791  * It calls the dwmac dma routine and schedule poll method in case of some
2792  * work can be done.
2793  */
2794 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2795 {
2796 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2797 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2798 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2799 				tx_channel_count : rx_channel_count;
2800 	u32 chan;
2801 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2802 
2803 	/* Make sure we never check beyond our status buffer. */
2804 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2805 		channels_to_check = ARRAY_SIZE(status);
2806 
2807 	for (chan = 0; chan < channels_to_check; chan++)
2808 		status[chan] = stmmac_napi_check(priv, chan,
2809 						 DMA_DIR_RXTX);
2810 
2811 	for (chan = 0; chan < tx_channel_count; chan++) {
2812 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2813 			/* Try to bump up the dma threshold on this failure */
2814 			stmmac_bump_dma_threshold(priv, chan);
2815 		} else if (unlikely(status[chan] == tx_hard_error)) {
2816 			stmmac_tx_err(priv, chan);
2817 		}
2818 	}
2819 }
2820 
2821 /**
2822  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2823  * @priv: driver private structure
2824  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2825  */
2826 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2827 {
2828 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2829 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2830 
2831 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2832 
2833 	if (priv->dma_cap.rmon) {
2834 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2835 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2836 	} else
2837 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2838 }
2839 
2840 /**
2841  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2842  * @priv: driver private structure
2843  * Description:
2844  *  new GMAC chip generations have a new register to indicate the
2845  *  presence of the optional feature/functions.
2846  *  This can be also used to override the value passed through the
2847  *  platform and necessary for old MAC10/100 and GMAC chips.
2848  */
2849 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2850 {
2851 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2852 }
2853 
2854 /**
2855  * stmmac_check_ether_addr - check if the MAC addr is valid
2856  * @priv: driver private structure
2857  * Description:
2858  * it is to verify if the MAC address is valid, in case of failures it
2859  * generates a random MAC address
2860  */
2861 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2862 {
2863 	u8 addr[ETH_ALEN];
2864 
2865 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2866 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2867 		if (is_valid_ether_addr(addr))
2868 			eth_hw_addr_set(priv->dev, addr);
2869 		else
2870 			eth_hw_addr_random(priv->dev);
2871 		dev_info(priv->device, "device MAC address %pM\n",
2872 			 priv->dev->dev_addr);
2873 	}
2874 }
2875 
2876 /**
2877  * stmmac_init_dma_engine - DMA init.
2878  * @priv: driver private structure
2879  * Description:
2880  * It inits the DMA invoking the specific MAC/GMAC callback.
2881  * Some DMA parameters can be passed from the platform;
2882  * in case of these are not passed a default is kept for the MAC or GMAC.
2883  */
2884 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2885 {
2886 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2887 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2888 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2889 	struct stmmac_rx_queue *rx_q;
2890 	struct stmmac_tx_queue *tx_q;
2891 	u32 chan = 0;
2892 	int atds = 0;
2893 	int ret = 0;
2894 
2895 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2896 		dev_err(priv->device, "Invalid DMA configuration\n");
2897 		return -EINVAL;
2898 	}
2899 
2900 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2901 		atds = 1;
2902 
2903 	ret = stmmac_reset(priv, priv->ioaddr);
2904 	if (ret) {
2905 		dev_err(priv->device, "Failed to reset the dma\n");
2906 		return ret;
2907 	}
2908 
2909 	/* DMA Configuration */
2910 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2911 
2912 	if (priv->plat->axi)
2913 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2914 
2915 	/* DMA CSR Channel configuration */
2916 	for (chan = 0; chan < dma_csr_ch; chan++) {
2917 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2918 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2919 	}
2920 
2921 	/* DMA RX Channel Configuration */
2922 	for (chan = 0; chan < rx_channels_count; chan++) {
2923 		rx_q = &priv->dma_conf.rx_queue[chan];
2924 
2925 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2926 				    rx_q->dma_rx_phy, chan);
2927 
2928 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2929 				     (rx_q->buf_alloc_num *
2930 				      sizeof(struct dma_desc));
2931 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2932 				       rx_q->rx_tail_addr, chan);
2933 	}
2934 
2935 	/* DMA TX Channel Configuration */
2936 	for (chan = 0; chan < tx_channels_count; chan++) {
2937 		tx_q = &priv->dma_conf.tx_queue[chan];
2938 
2939 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2940 				    tx_q->dma_tx_phy, chan);
2941 
2942 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2943 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2944 				       tx_q->tx_tail_addr, chan);
2945 	}
2946 
2947 	return ret;
2948 }
2949 
2950 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2951 {
2952 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2953 
2954 	hrtimer_start(&tx_q->txtimer,
2955 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2956 		      HRTIMER_MODE_REL);
2957 }
2958 
2959 /**
2960  * stmmac_tx_timer - mitigation sw timer for tx.
2961  * @t: data pointer
2962  * Description:
2963  * This is the timer handler to directly invoke the stmmac_tx_clean.
2964  */
2965 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2966 {
2967 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2968 	struct stmmac_priv *priv = tx_q->priv_data;
2969 	struct stmmac_channel *ch;
2970 	struct napi_struct *napi;
2971 
2972 	ch = &priv->channel[tx_q->queue_index];
2973 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2974 
2975 	if (likely(napi_schedule_prep(napi))) {
2976 		unsigned long flags;
2977 
2978 		spin_lock_irqsave(&ch->lock, flags);
2979 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2980 		spin_unlock_irqrestore(&ch->lock, flags);
2981 		__napi_schedule(napi);
2982 	}
2983 
2984 	return HRTIMER_NORESTART;
2985 }
2986 
2987 /**
2988  * stmmac_init_coalesce - init mitigation options.
2989  * @priv: driver private structure
2990  * Description:
2991  * This inits the coalesce parameters: i.e. timer rate,
2992  * timer handler and default threshold used for enabling the
2993  * interrupt on completion bit.
2994  */
2995 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2996 {
2997 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2998 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2999 	u32 chan;
3000 
3001 	for (chan = 0; chan < tx_channel_count; chan++) {
3002 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3003 
3004 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3005 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3006 
3007 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3008 		tx_q->txtimer.function = stmmac_tx_timer;
3009 	}
3010 
3011 	for (chan = 0; chan < rx_channel_count; chan++)
3012 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3013 }
3014 
3015 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3016 {
3017 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3018 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3019 	u32 chan;
3020 
3021 	/* set TX ring length */
3022 	for (chan = 0; chan < tx_channels_count; chan++)
3023 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3024 				       (priv->dma_conf.dma_tx_size - 1), chan);
3025 
3026 	/* set RX ring length */
3027 	for (chan = 0; chan < rx_channels_count; chan++)
3028 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3029 				       (priv->dma_conf.dma_rx_size - 1), chan);
3030 }
3031 
3032 /**
3033  *  stmmac_set_tx_queue_weight - Set TX queue weight
3034  *  @priv: driver private structure
3035  *  Description: It is used for setting TX queues weight
3036  */
3037 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3038 {
3039 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3040 	u32 weight;
3041 	u32 queue;
3042 
3043 	for (queue = 0; queue < tx_queues_count; queue++) {
3044 		weight = priv->plat->tx_queues_cfg[queue].weight;
3045 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3046 	}
3047 }
3048 
3049 /**
3050  *  stmmac_configure_cbs - Configure CBS in TX queue
3051  *  @priv: driver private structure
3052  *  Description: It is used for configuring CBS in AVB TX queues
3053  */
3054 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3055 {
3056 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3057 	u32 mode_to_use;
3058 	u32 queue;
3059 
3060 	/* queue 0 is reserved for legacy traffic */
3061 	for (queue = 1; queue < tx_queues_count; queue++) {
3062 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3063 		if (mode_to_use == MTL_QUEUE_DCB)
3064 			continue;
3065 
3066 		stmmac_config_cbs(priv, priv->hw,
3067 				priv->plat->tx_queues_cfg[queue].send_slope,
3068 				priv->plat->tx_queues_cfg[queue].idle_slope,
3069 				priv->plat->tx_queues_cfg[queue].high_credit,
3070 				priv->plat->tx_queues_cfg[queue].low_credit,
3071 				queue);
3072 	}
3073 }
3074 
3075 /**
3076  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3077  *  @priv: driver private structure
3078  *  Description: It is used for mapping RX queues to RX dma channels
3079  */
3080 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3081 {
3082 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3083 	u32 queue;
3084 	u32 chan;
3085 
3086 	for (queue = 0; queue < rx_queues_count; queue++) {
3087 		chan = priv->plat->rx_queues_cfg[queue].chan;
3088 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3089 	}
3090 }
3091 
3092 /**
3093  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3094  *  @priv: driver private structure
3095  *  Description: It is used for configuring the RX Queue Priority
3096  */
3097 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3098 {
3099 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3100 	u32 queue;
3101 	u32 prio;
3102 
3103 	for (queue = 0; queue < rx_queues_count; queue++) {
3104 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3105 			continue;
3106 
3107 		prio = priv->plat->rx_queues_cfg[queue].prio;
3108 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3109 	}
3110 }
3111 
3112 /**
3113  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3114  *  @priv: driver private structure
3115  *  Description: It is used for configuring the TX Queue Priority
3116  */
3117 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3118 {
3119 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3120 	u32 queue;
3121 	u32 prio;
3122 
3123 	for (queue = 0; queue < tx_queues_count; queue++) {
3124 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3125 			continue;
3126 
3127 		prio = priv->plat->tx_queues_cfg[queue].prio;
3128 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3129 	}
3130 }
3131 
3132 /**
3133  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3134  *  @priv: driver private structure
3135  *  Description: It is used for configuring the RX queue routing
3136  */
3137 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3138 {
3139 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3140 	u32 queue;
3141 	u8 packet;
3142 
3143 	for (queue = 0; queue < rx_queues_count; queue++) {
3144 		/* no specific packet type routing specified for the queue */
3145 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3146 			continue;
3147 
3148 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3149 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3150 	}
3151 }
3152 
3153 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3154 {
3155 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3156 		priv->rss.enable = false;
3157 		return;
3158 	}
3159 
3160 	if (priv->dev->features & NETIF_F_RXHASH)
3161 		priv->rss.enable = true;
3162 	else
3163 		priv->rss.enable = false;
3164 
3165 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3166 			     priv->plat->rx_queues_to_use);
3167 }
3168 
3169 /**
3170  *  stmmac_mtl_configuration - Configure MTL
3171  *  @priv: driver private structure
3172  *  Description: It is used for configurring MTL
3173  */
3174 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3175 {
3176 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3177 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3178 
3179 	if (tx_queues_count > 1)
3180 		stmmac_set_tx_queue_weight(priv);
3181 
3182 	/* Configure MTL RX algorithms */
3183 	if (rx_queues_count > 1)
3184 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3185 				priv->plat->rx_sched_algorithm);
3186 
3187 	/* Configure MTL TX algorithms */
3188 	if (tx_queues_count > 1)
3189 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3190 				priv->plat->tx_sched_algorithm);
3191 
3192 	/* Configure CBS in AVB TX queues */
3193 	if (tx_queues_count > 1)
3194 		stmmac_configure_cbs(priv);
3195 
3196 	/* Map RX MTL to DMA channels */
3197 	stmmac_rx_queue_dma_chan_map(priv);
3198 
3199 	/* Enable MAC RX Queues */
3200 	stmmac_mac_enable_rx_queues(priv);
3201 
3202 	/* Set RX priorities */
3203 	if (rx_queues_count > 1)
3204 		stmmac_mac_config_rx_queues_prio(priv);
3205 
3206 	/* Set TX priorities */
3207 	if (tx_queues_count > 1)
3208 		stmmac_mac_config_tx_queues_prio(priv);
3209 
3210 	/* Set RX routing */
3211 	if (rx_queues_count > 1)
3212 		stmmac_mac_config_rx_queues_routing(priv);
3213 
3214 	/* Receive Side Scaling */
3215 	if (rx_queues_count > 1)
3216 		stmmac_mac_config_rss(priv);
3217 }
3218 
3219 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3220 {
3221 	if (priv->dma_cap.asp) {
3222 		netdev_info(priv->dev, "Enabling Safety Features\n");
3223 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3224 					  priv->plat->safety_feat_cfg);
3225 	} else {
3226 		netdev_info(priv->dev, "No Safety Features support found\n");
3227 	}
3228 }
3229 
3230 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3231 {
3232 	char *name;
3233 
3234 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3235 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3236 
3237 	name = priv->wq_name;
3238 	sprintf(name, "%s-fpe", priv->dev->name);
3239 
3240 	priv->fpe_wq = create_singlethread_workqueue(name);
3241 	if (!priv->fpe_wq) {
3242 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3243 
3244 		return -ENOMEM;
3245 	}
3246 	netdev_info(priv->dev, "FPE workqueue start");
3247 
3248 	return 0;
3249 }
3250 
3251 /**
3252  * stmmac_hw_setup - setup mac in a usable state.
3253  *  @dev : pointer to the device structure.
3254  *  @ptp_register: register PTP if set
3255  *  Description:
3256  *  this is the main function to setup the HW in a usable state because the
3257  *  dma engine is reset, the core registers are configured (e.g. AXI,
3258  *  Checksum features, timers). The DMA is ready to start receiving and
3259  *  transmitting.
3260  *  Return value:
3261  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3262  *  file on failure.
3263  */
3264 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3265 {
3266 	struct stmmac_priv *priv = netdev_priv(dev);
3267 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3268 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3269 	bool sph_en;
3270 	u32 chan;
3271 	int ret;
3272 
3273 	/* DMA initialization and SW reset */
3274 	ret = stmmac_init_dma_engine(priv);
3275 	if (ret < 0) {
3276 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3277 			   __func__);
3278 		return ret;
3279 	}
3280 
3281 	/* Copy the MAC addr into the HW  */
3282 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3283 
3284 	/* PS and related bits will be programmed according to the speed */
3285 	if (priv->hw->pcs) {
3286 		int speed = priv->plat->mac_port_sel_speed;
3287 
3288 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3289 		    (speed == SPEED_1000)) {
3290 			priv->hw->ps = speed;
3291 		} else {
3292 			dev_warn(priv->device, "invalid port speed\n");
3293 			priv->hw->ps = 0;
3294 		}
3295 	}
3296 
3297 	/* Initialize the MAC Core */
3298 	stmmac_core_init(priv, priv->hw, dev);
3299 
3300 	/* Initialize MTL*/
3301 	stmmac_mtl_configuration(priv);
3302 
3303 	/* Initialize Safety Features */
3304 	stmmac_safety_feat_configuration(priv);
3305 
3306 	ret = stmmac_rx_ipc(priv, priv->hw);
3307 	if (!ret) {
3308 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3309 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3310 		priv->hw->rx_csum = 0;
3311 	}
3312 
3313 	/* Enable the MAC Rx/Tx */
3314 	stmmac_mac_set(priv, priv->ioaddr, true);
3315 
3316 	/* Set the HW DMA mode and the COE */
3317 	stmmac_dma_operation_mode(priv);
3318 
3319 	stmmac_mmc_setup(priv);
3320 
3321 	if (ptp_register) {
3322 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3323 		if (ret < 0)
3324 			netdev_warn(priv->dev,
3325 				    "failed to enable PTP reference clock: %pe\n",
3326 				    ERR_PTR(ret));
3327 	}
3328 
3329 	ret = stmmac_init_ptp(priv);
3330 	if (ret == -EOPNOTSUPP)
3331 		netdev_info(priv->dev, "PTP not supported by HW\n");
3332 	else if (ret)
3333 		netdev_warn(priv->dev, "PTP init failed\n");
3334 	else if (ptp_register)
3335 		stmmac_ptp_register(priv);
3336 
3337 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3338 
3339 	/* Convert the timer from msec to usec */
3340 	if (!priv->tx_lpi_timer)
3341 		priv->tx_lpi_timer = eee_timer * 1000;
3342 
3343 	if (priv->use_riwt) {
3344 		u32 queue;
3345 
3346 		for (queue = 0; queue < rx_cnt; queue++) {
3347 			if (!priv->rx_riwt[queue])
3348 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3349 
3350 			stmmac_rx_watchdog(priv, priv->ioaddr,
3351 					   priv->rx_riwt[queue], queue);
3352 		}
3353 	}
3354 
3355 	if (priv->hw->pcs)
3356 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3357 
3358 	/* set TX and RX rings length */
3359 	stmmac_set_rings_length(priv);
3360 
3361 	/* Enable TSO */
3362 	if (priv->tso) {
3363 		for (chan = 0; chan < tx_cnt; chan++) {
3364 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3365 
3366 			/* TSO and TBS cannot co-exist */
3367 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3368 				continue;
3369 
3370 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3371 		}
3372 	}
3373 
3374 	/* Enable Split Header */
3375 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3376 	for (chan = 0; chan < rx_cnt; chan++)
3377 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3378 
3379 
3380 	/* VLAN Tag Insertion */
3381 	if (priv->dma_cap.vlins)
3382 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3383 
3384 	/* TBS */
3385 	for (chan = 0; chan < tx_cnt; chan++) {
3386 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3387 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3388 
3389 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3390 	}
3391 
3392 	/* Configure real RX and TX queues */
3393 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3394 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3395 
3396 	/* Start the ball rolling... */
3397 	stmmac_start_all_dma(priv);
3398 
3399 	if (priv->dma_cap.fpesel) {
3400 		stmmac_fpe_start_wq(priv);
3401 
3402 		if (priv->plat->fpe_cfg->enable)
3403 			stmmac_fpe_handshake(priv, true);
3404 	}
3405 
3406 	return 0;
3407 }
3408 
3409 static void stmmac_hw_teardown(struct net_device *dev)
3410 {
3411 	struct stmmac_priv *priv = netdev_priv(dev);
3412 
3413 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3414 }
3415 
3416 static void stmmac_free_irq(struct net_device *dev,
3417 			    enum request_irq_err irq_err, int irq_idx)
3418 {
3419 	struct stmmac_priv *priv = netdev_priv(dev);
3420 	int j;
3421 
3422 	switch (irq_err) {
3423 	case REQ_IRQ_ERR_ALL:
3424 		irq_idx = priv->plat->tx_queues_to_use;
3425 		fallthrough;
3426 	case REQ_IRQ_ERR_TX:
3427 		for (j = irq_idx - 1; j >= 0; j--) {
3428 			if (priv->tx_irq[j] > 0) {
3429 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3430 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3431 			}
3432 		}
3433 		irq_idx = priv->plat->rx_queues_to_use;
3434 		fallthrough;
3435 	case REQ_IRQ_ERR_RX:
3436 		for (j = irq_idx - 1; j >= 0; j--) {
3437 			if (priv->rx_irq[j] > 0) {
3438 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3439 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3440 			}
3441 		}
3442 
3443 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3444 			free_irq(priv->sfty_ue_irq, dev);
3445 		fallthrough;
3446 	case REQ_IRQ_ERR_SFTY_UE:
3447 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3448 			free_irq(priv->sfty_ce_irq, dev);
3449 		fallthrough;
3450 	case REQ_IRQ_ERR_SFTY_CE:
3451 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3452 			free_irq(priv->lpi_irq, dev);
3453 		fallthrough;
3454 	case REQ_IRQ_ERR_LPI:
3455 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3456 			free_irq(priv->wol_irq, dev);
3457 		fallthrough;
3458 	case REQ_IRQ_ERR_WOL:
3459 		free_irq(dev->irq, dev);
3460 		fallthrough;
3461 	case REQ_IRQ_ERR_MAC:
3462 	case REQ_IRQ_ERR_NO:
3463 		/* If MAC IRQ request error, no more IRQ to free */
3464 		break;
3465 	}
3466 }
3467 
3468 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3469 {
3470 	struct stmmac_priv *priv = netdev_priv(dev);
3471 	enum request_irq_err irq_err;
3472 	cpumask_t cpu_mask;
3473 	int irq_idx = 0;
3474 	char *int_name;
3475 	int ret;
3476 	int i;
3477 
3478 	/* For common interrupt */
3479 	int_name = priv->int_name_mac;
3480 	sprintf(int_name, "%s:%s", dev->name, "mac");
3481 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3482 			  0, int_name, dev);
3483 	if (unlikely(ret < 0)) {
3484 		netdev_err(priv->dev,
3485 			   "%s: alloc mac MSI %d (error: %d)\n",
3486 			   __func__, dev->irq, ret);
3487 		irq_err = REQ_IRQ_ERR_MAC;
3488 		goto irq_error;
3489 	}
3490 
3491 	/* Request the Wake IRQ in case of another line
3492 	 * is used for WoL
3493 	 */
3494 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3495 		int_name = priv->int_name_wol;
3496 		sprintf(int_name, "%s:%s", dev->name, "wol");
3497 		ret = request_irq(priv->wol_irq,
3498 				  stmmac_mac_interrupt,
3499 				  0, int_name, dev);
3500 		if (unlikely(ret < 0)) {
3501 			netdev_err(priv->dev,
3502 				   "%s: alloc wol MSI %d (error: %d)\n",
3503 				   __func__, priv->wol_irq, ret);
3504 			irq_err = REQ_IRQ_ERR_WOL;
3505 			goto irq_error;
3506 		}
3507 	}
3508 
3509 	/* Request the LPI IRQ in case of another line
3510 	 * is used for LPI
3511 	 */
3512 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3513 		int_name = priv->int_name_lpi;
3514 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3515 		ret = request_irq(priv->lpi_irq,
3516 				  stmmac_mac_interrupt,
3517 				  0, int_name, dev);
3518 		if (unlikely(ret < 0)) {
3519 			netdev_err(priv->dev,
3520 				   "%s: alloc lpi MSI %d (error: %d)\n",
3521 				   __func__, priv->lpi_irq, ret);
3522 			irq_err = REQ_IRQ_ERR_LPI;
3523 			goto irq_error;
3524 		}
3525 	}
3526 
3527 	/* Request the Safety Feature Correctible Error line in
3528 	 * case of another line is used
3529 	 */
3530 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3531 		int_name = priv->int_name_sfty_ce;
3532 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3533 		ret = request_irq(priv->sfty_ce_irq,
3534 				  stmmac_safety_interrupt,
3535 				  0, int_name, dev);
3536 		if (unlikely(ret < 0)) {
3537 			netdev_err(priv->dev,
3538 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3539 				   __func__, priv->sfty_ce_irq, ret);
3540 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3541 			goto irq_error;
3542 		}
3543 	}
3544 
3545 	/* Request the Safety Feature Uncorrectible Error line in
3546 	 * case of another line is used
3547 	 */
3548 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3549 		int_name = priv->int_name_sfty_ue;
3550 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3551 		ret = request_irq(priv->sfty_ue_irq,
3552 				  stmmac_safety_interrupt,
3553 				  0, int_name, dev);
3554 		if (unlikely(ret < 0)) {
3555 			netdev_err(priv->dev,
3556 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3557 				   __func__, priv->sfty_ue_irq, ret);
3558 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3559 			goto irq_error;
3560 		}
3561 	}
3562 
3563 	/* Request Rx MSI irq */
3564 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3565 		if (i >= MTL_MAX_RX_QUEUES)
3566 			break;
3567 		if (priv->rx_irq[i] == 0)
3568 			continue;
3569 
3570 		int_name = priv->int_name_rx_irq[i];
3571 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3572 		ret = request_irq(priv->rx_irq[i],
3573 				  stmmac_msi_intr_rx,
3574 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3575 		if (unlikely(ret < 0)) {
3576 			netdev_err(priv->dev,
3577 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3578 				   __func__, i, priv->rx_irq[i], ret);
3579 			irq_err = REQ_IRQ_ERR_RX;
3580 			irq_idx = i;
3581 			goto irq_error;
3582 		}
3583 		cpumask_clear(&cpu_mask);
3584 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3585 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3586 	}
3587 
3588 	/* Request Tx MSI irq */
3589 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3590 		if (i >= MTL_MAX_TX_QUEUES)
3591 			break;
3592 		if (priv->tx_irq[i] == 0)
3593 			continue;
3594 
3595 		int_name = priv->int_name_tx_irq[i];
3596 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3597 		ret = request_irq(priv->tx_irq[i],
3598 				  stmmac_msi_intr_tx,
3599 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3600 		if (unlikely(ret < 0)) {
3601 			netdev_err(priv->dev,
3602 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3603 				   __func__, i, priv->tx_irq[i], ret);
3604 			irq_err = REQ_IRQ_ERR_TX;
3605 			irq_idx = i;
3606 			goto irq_error;
3607 		}
3608 		cpumask_clear(&cpu_mask);
3609 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3610 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3611 	}
3612 
3613 	return 0;
3614 
3615 irq_error:
3616 	stmmac_free_irq(dev, irq_err, irq_idx);
3617 	return ret;
3618 }
3619 
3620 static int stmmac_request_irq_single(struct net_device *dev)
3621 {
3622 	struct stmmac_priv *priv = netdev_priv(dev);
3623 	enum request_irq_err irq_err;
3624 	int ret;
3625 
3626 	ret = request_irq(dev->irq, stmmac_interrupt,
3627 			  IRQF_SHARED, dev->name, dev);
3628 	if (unlikely(ret < 0)) {
3629 		netdev_err(priv->dev,
3630 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3631 			   __func__, dev->irq, ret);
3632 		irq_err = REQ_IRQ_ERR_MAC;
3633 		goto irq_error;
3634 	}
3635 
3636 	/* Request the Wake IRQ in case of another line
3637 	 * is used for WoL
3638 	 */
3639 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3640 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3641 				  IRQF_SHARED, dev->name, dev);
3642 		if (unlikely(ret < 0)) {
3643 			netdev_err(priv->dev,
3644 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3645 				   __func__, priv->wol_irq, ret);
3646 			irq_err = REQ_IRQ_ERR_WOL;
3647 			goto irq_error;
3648 		}
3649 	}
3650 
3651 	/* Request the IRQ lines */
3652 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3653 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3654 				  IRQF_SHARED, dev->name, dev);
3655 		if (unlikely(ret < 0)) {
3656 			netdev_err(priv->dev,
3657 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3658 				   __func__, priv->lpi_irq, ret);
3659 			irq_err = REQ_IRQ_ERR_LPI;
3660 			goto irq_error;
3661 		}
3662 	}
3663 
3664 	return 0;
3665 
3666 irq_error:
3667 	stmmac_free_irq(dev, irq_err, 0);
3668 	return ret;
3669 }
3670 
3671 static int stmmac_request_irq(struct net_device *dev)
3672 {
3673 	struct stmmac_priv *priv = netdev_priv(dev);
3674 	int ret;
3675 
3676 	/* Request the IRQ lines */
3677 	if (priv->plat->multi_msi_en)
3678 		ret = stmmac_request_irq_multi_msi(dev);
3679 	else
3680 		ret = stmmac_request_irq_single(dev);
3681 
3682 	return ret;
3683 }
3684 
3685 /**
3686  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3687  *  @priv: driver private structure
3688  *  @mtu: MTU to setup the dma queue and buf with
3689  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3690  *  Allocate the Tx/Rx DMA queue and init them.
3691  *  Return value:
3692  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3693  */
3694 static struct stmmac_dma_conf *
3695 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3696 {
3697 	struct stmmac_dma_conf *dma_conf;
3698 	int chan, bfsize, ret;
3699 
3700 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3701 	if (!dma_conf) {
3702 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3703 			   __func__);
3704 		return ERR_PTR(-ENOMEM);
3705 	}
3706 
3707 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3708 	if (bfsize < 0)
3709 		bfsize = 0;
3710 
3711 	if (bfsize < BUF_SIZE_16KiB)
3712 		bfsize = stmmac_set_bfsize(mtu, 0);
3713 
3714 	dma_conf->dma_buf_sz = bfsize;
3715 	/* Chose the tx/rx size from the already defined one in the
3716 	 * priv struct. (if defined)
3717 	 */
3718 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3719 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3720 
3721 	if (!dma_conf->dma_tx_size)
3722 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3723 	if (!dma_conf->dma_rx_size)
3724 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3725 
3726 	/* Earlier check for TBS */
3727 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3728 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3729 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3730 
3731 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3732 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3733 	}
3734 
3735 	ret = alloc_dma_desc_resources(priv, dma_conf);
3736 	if (ret < 0) {
3737 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3738 			   __func__);
3739 		goto alloc_error;
3740 	}
3741 
3742 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3743 	if (ret < 0) {
3744 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3745 			   __func__);
3746 		goto init_error;
3747 	}
3748 
3749 	return dma_conf;
3750 
3751 init_error:
3752 	free_dma_desc_resources(priv, dma_conf);
3753 alloc_error:
3754 	kfree(dma_conf);
3755 	return ERR_PTR(ret);
3756 }
3757 
3758 /**
3759  *  __stmmac_open - open entry point of the driver
3760  *  @dev : pointer to the device structure.
3761  *  @dma_conf :  structure to take the dma data
3762  *  Description:
3763  *  This function is the open entry point of the driver.
3764  *  Return value:
3765  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3766  *  file on failure.
3767  */
3768 static int __stmmac_open(struct net_device *dev,
3769 			 struct stmmac_dma_conf *dma_conf)
3770 {
3771 	struct stmmac_priv *priv = netdev_priv(dev);
3772 	int mode = priv->plat->phy_interface;
3773 	u32 chan;
3774 	int ret;
3775 
3776 	ret = pm_runtime_resume_and_get(priv->device);
3777 	if (ret < 0)
3778 		return ret;
3779 
3780 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3781 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3782 	    (!priv->hw->xpcs ||
3783 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3784 		ret = stmmac_init_phy(dev);
3785 		if (ret) {
3786 			netdev_err(priv->dev,
3787 				   "%s: Cannot attach to PHY (error: %d)\n",
3788 				   __func__, ret);
3789 			goto init_phy_error;
3790 		}
3791 	}
3792 
3793 	/* Extra statistics */
3794 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3795 	priv->xstats.threshold = tc;
3796 
3797 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3798 
3799 	buf_sz = dma_conf->dma_buf_sz;
3800 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3801 
3802 	stmmac_reset_queues_param(priv);
3803 
3804 	if (priv->plat->serdes_powerup) {
3805 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3806 		if (ret < 0) {
3807 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3808 				   __func__);
3809 			goto init_error;
3810 		}
3811 	}
3812 
3813 	ret = stmmac_hw_setup(dev, true);
3814 	if (ret < 0) {
3815 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3816 		goto init_error;
3817 	}
3818 
3819 	stmmac_init_coalesce(priv);
3820 
3821 	phylink_start(priv->phylink);
3822 	/* We may have called phylink_speed_down before */
3823 	phylink_speed_up(priv->phylink);
3824 
3825 	ret = stmmac_request_irq(dev);
3826 	if (ret)
3827 		goto irq_error;
3828 
3829 	stmmac_enable_all_queues(priv);
3830 	netif_tx_start_all_queues(priv->dev);
3831 	stmmac_enable_all_dma_irq(priv);
3832 
3833 	return 0;
3834 
3835 irq_error:
3836 	phylink_stop(priv->phylink);
3837 
3838 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3839 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3840 
3841 	stmmac_hw_teardown(dev);
3842 init_error:
3843 	free_dma_desc_resources(priv, &priv->dma_conf);
3844 	phylink_disconnect_phy(priv->phylink);
3845 init_phy_error:
3846 	pm_runtime_put(priv->device);
3847 	return ret;
3848 }
3849 
3850 static int stmmac_open(struct net_device *dev)
3851 {
3852 	struct stmmac_priv *priv = netdev_priv(dev);
3853 	struct stmmac_dma_conf *dma_conf;
3854 	int ret;
3855 
3856 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3857 	if (IS_ERR(dma_conf))
3858 		return PTR_ERR(dma_conf);
3859 
3860 	ret = __stmmac_open(dev, dma_conf);
3861 	kfree(dma_conf);
3862 	return ret;
3863 }
3864 
3865 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3866 {
3867 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3868 
3869 	if (priv->fpe_wq)
3870 		destroy_workqueue(priv->fpe_wq);
3871 
3872 	netdev_info(priv->dev, "FPE workqueue stop");
3873 }
3874 
3875 /**
3876  *  stmmac_release - close entry point of the driver
3877  *  @dev : device pointer.
3878  *  Description:
3879  *  This is the stop entry point of the driver.
3880  */
3881 static int stmmac_release(struct net_device *dev)
3882 {
3883 	struct stmmac_priv *priv = netdev_priv(dev);
3884 	u32 chan;
3885 
3886 	if (device_may_wakeup(priv->device))
3887 		phylink_speed_down(priv->phylink, false);
3888 	/* Stop and disconnect the PHY */
3889 	phylink_stop(priv->phylink);
3890 	phylink_disconnect_phy(priv->phylink);
3891 
3892 	stmmac_disable_all_queues(priv);
3893 
3894 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3895 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3896 
3897 	netif_tx_disable(dev);
3898 
3899 	/* Free the IRQ lines */
3900 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3901 
3902 	if (priv->eee_enabled) {
3903 		priv->tx_path_in_lpi_mode = false;
3904 		del_timer_sync(&priv->eee_ctrl_timer);
3905 	}
3906 
3907 	/* Stop TX/RX DMA and clear the descriptors */
3908 	stmmac_stop_all_dma(priv);
3909 
3910 	/* Release and free the Rx/Tx resources */
3911 	free_dma_desc_resources(priv, &priv->dma_conf);
3912 
3913 	/* Disable the MAC Rx/Tx */
3914 	stmmac_mac_set(priv, priv->ioaddr, false);
3915 
3916 	/* Powerdown Serdes if there is */
3917 	if (priv->plat->serdes_powerdown)
3918 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3919 
3920 	netif_carrier_off(dev);
3921 
3922 	stmmac_release_ptp(priv);
3923 
3924 	pm_runtime_put(priv->device);
3925 
3926 	if (priv->dma_cap.fpesel)
3927 		stmmac_fpe_stop_wq(priv);
3928 
3929 	return 0;
3930 }
3931 
3932 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3933 			       struct stmmac_tx_queue *tx_q)
3934 {
3935 	u16 tag = 0x0, inner_tag = 0x0;
3936 	u32 inner_type = 0x0;
3937 	struct dma_desc *p;
3938 
3939 	if (!priv->dma_cap.vlins)
3940 		return false;
3941 	if (!skb_vlan_tag_present(skb))
3942 		return false;
3943 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3944 		inner_tag = skb_vlan_tag_get(skb);
3945 		inner_type = STMMAC_VLAN_INSERT;
3946 	}
3947 
3948 	tag = skb_vlan_tag_get(skb);
3949 
3950 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3951 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3952 	else
3953 		p = &tx_q->dma_tx[tx_q->cur_tx];
3954 
3955 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3956 		return false;
3957 
3958 	stmmac_set_tx_owner(priv, p);
3959 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3960 	return true;
3961 }
3962 
3963 /**
3964  *  stmmac_tso_allocator - close entry point of the driver
3965  *  @priv: driver private structure
3966  *  @des: buffer start address
3967  *  @total_len: total length to fill in descriptors
3968  *  @last_segment: condition for the last descriptor
3969  *  @queue: TX queue index
3970  *  Description:
3971  *  This function fills descriptor and request new descriptors according to
3972  *  buffer length to fill
3973  */
3974 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3975 				 int total_len, bool last_segment, u32 queue)
3976 {
3977 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3978 	struct dma_desc *desc;
3979 	u32 buff_size;
3980 	int tmp_len;
3981 
3982 	tmp_len = total_len;
3983 
3984 	while (tmp_len > 0) {
3985 		dma_addr_t curr_addr;
3986 
3987 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3988 						priv->dma_conf.dma_tx_size);
3989 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3990 
3991 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3992 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3993 		else
3994 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3995 
3996 		curr_addr = des + (total_len - tmp_len);
3997 		if (priv->dma_cap.addr64 <= 32)
3998 			desc->des0 = cpu_to_le32(curr_addr);
3999 		else
4000 			stmmac_set_desc_addr(priv, desc, curr_addr);
4001 
4002 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4003 			    TSO_MAX_BUFF_SIZE : tmp_len;
4004 
4005 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4006 				0, 1,
4007 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4008 				0, 0);
4009 
4010 		tmp_len -= TSO_MAX_BUFF_SIZE;
4011 	}
4012 }
4013 
4014 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4015 {
4016 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4017 	int desc_size;
4018 
4019 	if (likely(priv->extend_desc))
4020 		desc_size = sizeof(struct dma_extended_desc);
4021 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4022 		desc_size = sizeof(struct dma_edesc);
4023 	else
4024 		desc_size = sizeof(struct dma_desc);
4025 
4026 	/* The own bit must be the latest setting done when prepare the
4027 	 * descriptor and then barrier is needed to make sure that
4028 	 * all is coherent before granting the DMA engine.
4029 	 */
4030 	wmb();
4031 
4032 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4033 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4034 }
4035 
4036 /**
4037  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4038  *  @skb : the socket buffer
4039  *  @dev : device pointer
4040  *  Description: this is the transmit function that is called on TSO frames
4041  *  (support available on GMAC4 and newer chips).
4042  *  Diagram below show the ring programming in case of TSO frames:
4043  *
4044  *  First Descriptor
4045  *   --------
4046  *   | DES0 |---> buffer1 = L2/L3/L4 header
4047  *   | DES1 |---> TCP Payload (can continue on next descr...)
4048  *   | DES2 |---> buffer 1 and 2 len
4049  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4050  *   --------
4051  *	|
4052  *     ...
4053  *	|
4054  *   --------
4055  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4056  *   | DES1 | --|
4057  *   | DES2 | --> buffer 1 and 2 len
4058  *   | DES3 |
4059  *   --------
4060  *
4061  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4062  */
4063 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4064 {
4065 	struct dma_desc *desc, *first, *mss_desc = NULL;
4066 	struct stmmac_priv *priv = netdev_priv(dev);
4067 	int nfrags = skb_shinfo(skb)->nr_frags;
4068 	u32 queue = skb_get_queue_mapping(skb);
4069 	unsigned int first_entry, tx_packets;
4070 	int tmp_pay_len = 0, first_tx;
4071 	struct stmmac_tx_queue *tx_q;
4072 	bool has_vlan, set_ic;
4073 	u8 proto_hdr_len, hdr;
4074 	u32 pay_len, mss;
4075 	dma_addr_t des;
4076 	int i;
4077 
4078 	tx_q = &priv->dma_conf.tx_queue[queue];
4079 	first_tx = tx_q->cur_tx;
4080 
4081 	/* Compute header lengths */
4082 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4083 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4084 		hdr = sizeof(struct udphdr);
4085 	} else {
4086 		proto_hdr_len = skb_tcp_all_headers(skb);
4087 		hdr = tcp_hdrlen(skb);
4088 	}
4089 
4090 	/* Desc availability based on threshold should be enough safe */
4091 	if (unlikely(stmmac_tx_avail(priv, queue) <
4092 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4093 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4094 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4095 								queue));
4096 			/* This is a hard error, log it. */
4097 			netdev_err(priv->dev,
4098 				   "%s: Tx Ring full when queue awake\n",
4099 				   __func__);
4100 		}
4101 		return NETDEV_TX_BUSY;
4102 	}
4103 
4104 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4105 
4106 	mss = skb_shinfo(skb)->gso_size;
4107 
4108 	/* set new MSS value if needed */
4109 	if (mss != tx_q->mss) {
4110 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4111 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4112 		else
4113 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4114 
4115 		stmmac_set_mss(priv, mss_desc, mss);
4116 		tx_q->mss = mss;
4117 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4118 						priv->dma_conf.dma_tx_size);
4119 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4120 	}
4121 
4122 	if (netif_msg_tx_queued(priv)) {
4123 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4124 			__func__, hdr, proto_hdr_len, pay_len, mss);
4125 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4126 			skb->data_len);
4127 	}
4128 
4129 	/* Check if VLAN can be inserted by HW */
4130 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4131 
4132 	first_entry = tx_q->cur_tx;
4133 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4134 
4135 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4136 		desc = &tx_q->dma_entx[first_entry].basic;
4137 	else
4138 		desc = &tx_q->dma_tx[first_entry];
4139 	first = desc;
4140 
4141 	if (has_vlan)
4142 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4143 
4144 	/* first descriptor: fill Headers on Buf1 */
4145 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4146 			     DMA_TO_DEVICE);
4147 	if (dma_mapping_error(priv->device, des))
4148 		goto dma_map_err;
4149 
4150 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4151 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4152 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4153 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4154 
4155 	if (priv->dma_cap.addr64 <= 32) {
4156 		first->des0 = cpu_to_le32(des);
4157 
4158 		/* Fill start of payload in buff2 of first descriptor */
4159 		if (pay_len)
4160 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4161 
4162 		/* If needed take extra descriptors to fill the remaining payload */
4163 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4164 	} else {
4165 		stmmac_set_desc_addr(priv, first, des);
4166 		tmp_pay_len = pay_len;
4167 		des += proto_hdr_len;
4168 		pay_len = 0;
4169 	}
4170 
4171 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4172 
4173 	/* Prepare fragments */
4174 	for (i = 0; i < nfrags; i++) {
4175 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4176 
4177 		des = skb_frag_dma_map(priv->device, frag, 0,
4178 				       skb_frag_size(frag),
4179 				       DMA_TO_DEVICE);
4180 		if (dma_mapping_error(priv->device, des))
4181 			goto dma_map_err;
4182 
4183 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4184 				     (i == nfrags - 1), queue);
4185 
4186 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4187 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4188 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4189 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4190 	}
4191 
4192 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4193 
4194 	/* Only the last descriptor gets to point to the skb. */
4195 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4196 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4197 
4198 	/* Manage tx mitigation */
4199 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4200 	tx_q->tx_count_frames += tx_packets;
4201 
4202 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4203 		set_ic = true;
4204 	else if (!priv->tx_coal_frames[queue])
4205 		set_ic = false;
4206 	else if (tx_packets > priv->tx_coal_frames[queue])
4207 		set_ic = true;
4208 	else if ((tx_q->tx_count_frames %
4209 		  priv->tx_coal_frames[queue]) < tx_packets)
4210 		set_ic = true;
4211 	else
4212 		set_ic = false;
4213 
4214 	if (set_ic) {
4215 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4216 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4217 		else
4218 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4219 
4220 		tx_q->tx_count_frames = 0;
4221 		stmmac_set_tx_ic(priv, desc);
4222 		priv->xstats.tx_set_ic_bit++;
4223 	}
4224 
4225 	/* We've used all descriptors we need for this skb, however,
4226 	 * advance cur_tx so that it references a fresh descriptor.
4227 	 * ndo_start_xmit will fill this descriptor the next time it's
4228 	 * called and stmmac_tx_clean may clean up to this descriptor.
4229 	 */
4230 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4231 
4232 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4233 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4234 			  __func__);
4235 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4236 	}
4237 
4238 	dev->stats.tx_bytes += skb->len;
4239 	priv->xstats.tx_tso_frames++;
4240 	priv->xstats.tx_tso_nfrags += nfrags;
4241 
4242 	if (priv->sarc_type)
4243 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4244 
4245 	skb_tx_timestamp(skb);
4246 
4247 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4248 		     priv->hwts_tx_en)) {
4249 		/* declare that device is doing timestamping */
4250 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4251 		stmmac_enable_tx_timestamp(priv, first);
4252 	}
4253 
4254 	/* Complete the first descriptor before granting the DMA */
4255 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4256 			proto_hdr_len,
4257 			pay_len,
4258 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4259 			hdr / 4, (skb->len - proto_hdr_len));
4260 
4261 	/* If context desc is used to change MSS */
4262 	if (mss_desc) {
4263 		/* Make sure that first descriptor has been completely
4264 		 * written, including its own bit. This is because MSS is
4265 		 * actually before first descriptor, so we need to make
4266 		 * sure that MSS's own bit is the last thing written.
4267 		 */
4268 		dma_wmb();
4269 		stmmac_set_tx_owner(priv, mss_desc);
4270 	}
4271 
4272 	if (netif_msg_pktdata(priv)) {
4273 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4274 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4275 			tx_q->cur_tx, first, nfrags);
4276 		pr_info(">>> frame to be transmitted: ");
4277 		print_pkt(skb->data, skb_headlen(skb));
4278 	}
4279 
4280 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4281 
4282 	stmmac_flush_tx_descriptors(priv, queue);
4283 	stmmac_tx_timer_arm(priv, queue);
4284 
4285 	return NETDEV_TX_OK;
4286 
4287 dma_map_err:
4288 	dev_err(priv->device, "Tx dma map failed\n");
4289 	dev_kfree_skb(skb);
4290 	priv->dev->stats.tx_dropped++;
4291 	return NETDEV_TX_OK;
4292 }
4293 
4294 /**
4295  *  stmmac_xmit - Tx entry point of the driver
4296  *  @skb : the socket buffer
4297  *  @dev : device pointer
4298  *  Description : this is the tx entry point of the driver.
4299  *  It programs the chain or the ring and supports oversized frames
4300  *  and SG feature.
4301  */
4302 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4303 {
4304 	unsigned int first_entry, tx_packets, enh_desc;
4305 	struct stmmac_priv *priv = netdev_priv(dev);
4306 	unsigned int nopaged_len = skb_headlen(skb);
4307 	int i, csum_insertion = 0, is_jumbo = 0;
4308 	u32 queue = skb_get_queue_mapping(skb);
4309 	int nfrags = skb_shinfo(skb)->nr_frags;
4310 	int gso = skb_shinfo(skb)->gso_type;
4311 	struct dma_edesc *tbs_desc = NULL;
4312 	struct dma_desc *desc, *first;
4313 	struct stmmac_tx_queue *tx_q;
4314 	bool has_vlan, set_ic;
4315 	int entry, first_tx;
4316 	dma_addr_t des;
4317 
4318 	tx_q = &priv->dma_conf.tx_queue[queue];
4319 	first_tx = tx_q->cur_tx;
4320 
4321 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4322 		stmmac_disable_eee_mode(priv);
4323 
4324 	/* Manage oversized TCP frames for GMAC4 device */
4325 	if (skb_is_gso(skb) && priv->tso) {
4326 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4327 			return stmmac_tso_xmit(skb, dev);
4328 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4329 			return stmmac_tso_xmit(skb, dev);
4330 	}
4331 
4332 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4333 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4334 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4335 								queue));
4336 			/* This is a hard error, log it. */
4337 			netdev_err(priv->dev,
4338 				   "%s: Tx Ring full when queue awake\n",
4339 				   __func__);
4340 		}
4341 		return NETDEV_TX_BUSY;
4342 	}
4343 
4344 	/* Check if VLAN can be inserted by HW */
4345 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4346 
4347 	entry = tx_q->cur_tx;
4348 	first_entry = entry;
4349 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4350 
4351 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4352 
4353 	if (likely(priv->extend_desc))
4354 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4355 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4356 		desc = &tx_q->dma_entx[entry].basic;
4357 	else
4358 		desc = tx_q->dma_tx + entry;
4359 
4360 	first = desc;
4361 
4362 	if (has_vlan)
4363 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4364 
4365 	enh_desc = priv->plat->enh_desc;
4366 	/* To program the descriptors according to the size of the frame */
4367 	if (enh_desc)
4368 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4369 
4370 	if (unlikely(is_jumbo)) {
4371 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4372 		if (unlikely(entry < 0) && (entry != -EINVAL))
4373 			goto dma_map_err;
4374 	}
4375 
4376 	for (i = 0; i < nfrags; i++) {
4377 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4378 		int len = skb_frag_size(frag);
4379 		bool last_segment = (i == (nfrags - 1));
4380 
4381 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4382 		WARN_ON(tx_q->tx_skbuff[entry]);
4383 
4384 		if (likely(priv->extend_desc))
4385 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4386 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4387 			desc = &tx_q->dma_entx[entry].basic;
4388 		else
4389 			desc = tx_q->dma_tx + entry;
4390 
4391 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4392 				       DMA_TO_DEVICE);
4393 		if (dma_mapping_error(priv->device, des))
4394 			goto dma_map_err; /* should reuse desc w/o issues */
4395 
4396 		tx_q->tx_skbuff_dma[entry].buf = des;
4397 
4398 		stmmac_set_desc_addr(priv, desc, des);
4399 
4400 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4401 		tx_q->tx_skbuff_dma[entry].len = len;
4402 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4403 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4404 
4405 		/* Prepare the descriptor and set the own bit too */
4406 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4407 				priv->mode, 1, last_segment, skb->len);
4408 	}
4409 
4410 	/* Only the last descriptor gets to point to the skb. */
4411 	tx_q->tx_skbuff[entry] = skb;
4412 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4413 
4414 	/* According to the coalesce parameter the IC bit for the latest
4415 	 * segment is reset and the timer re-started to clean the tx status.
4416 	 * This approach takes care about the fragments: desc is the first
4417 	 * element in case of no SG.
4418 	 */
4419 	tx_packets = (entry + 1) - first_tx;
4420 	tx_q->tx_count_frames += tx_packets;
4421 
4422 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4423 		set_ic = true;
4424 	else if (!priv->tx_coal_frames[queue])
4425 		set_ic = false;
4426 	else if (tx_packets > priv->tx_coal_frames[queue])
4427 		set_ic = true;
4428 	else if ((tx_q->tx_count_frames %
4429 		  priv->tx_coal_frames[queue]) < tx_packets)
4430 		set_ic = true;
4431 	else
4432 		set_ic = false;
4433 
4434 	if (set_ic) {
4435 		if (likely(priv->extend_desc))
4436 			desc = &tx_q->dma_etx[entry].basic;
4437 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4438 			desc = &tx_q->dma_entx[entry].basic;
4439 		else
4440 			desc = &tx_q->dma_tx[entry];
4441 
4442 		tx_q->tx_count_frames = 0;
4443 		stmmac_set_tx_ic(priv, desc);
4444 		priv->xstats.tx_set_ic_bit++;
4445 	}
4446 
4447 	/* We've used all descriptors we need for this skb, however,
4448 	 * advance cur_tx so that it references a fresh descriptor.
4449 	 * ndo_start_xmit will fill this descriptor the next time it's
4450 	 * called and stmmac_tx_clean may clean up to this descriptor.
4451 	 */
4452 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4453 	tx_q->cur_tx = entry;
4454 
4455 	if (netif_msg_pktdata(priv)) {
4456 		netdev_dbg(priv->dev,
4457 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4458 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4459 			   entry, first, nfrags);
4460 
4461 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4462 		print_pkt(skb->data, skb->len);
4463 	}
4464 
4465 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4466 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4467 			  __func__);
4468 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4469 	}
4470 
4471 	dev->stats.tx_bytes += skb->len;
4472 
4473 	if (priv->sarc_type)
4474 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4475 
4476 	skb_tx_timestamp(skb);
4477 
4478 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4479 	 * problems because all the descriptors are actually ready to be
4480 	 * passed to the DMA engine.
4481 	 */
4482 	if (likely(!is_jumbo)) {
4483 		bool last_segment = (nfrags == 0);
4484 
4485 		des = dma_map_single(priv->device, skb->data,
4486 				     nopaged_len, DMA_TO_DEVICE);
4487 		if (dma_mapping_error(priv->device, des))
4488 			goto dma_map_err;
4489 
4490 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4491 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4492 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4493 
4494 		stmmac_set_desc_addr(priv, first, des);
4495 
4496 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4497 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4498 
4499 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4500 			     priv->hwts_tx_en)) {
4501 			/* declare that device is doing timestamping */
4502 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4503 			stmmac_enable_tx_timestamp(priv, first);
4504 		}
4505 
4506 		/* Prepare the first descriptor setting the OWN bit too */
4507 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4508 				csum_insertion, priv->mode, 0, last_segment,
4509 				skb->len);
4510 	}
4511 
4512 	if (tx_q->tbs & STMMAC_TBS_EN) {
4513 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4514 
4515 		tbs_desc = &tx_q->dma_entx[first_entry];
4516 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4517 	}
4518 
4519 	stmmac_set_tx_owner(priv, first);
4520 
4521 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4522 
4523 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4524 
4525 	stmmac_flush_tx_descriptors(priv, queue);
4526 	stmmac_tx_timer_arm(priv, queue);
4527 
4528 	return NETDEV_TX_OK;
4529 
4530 dma_map_err:
4531 	netdev_err(priv->dev, "Tx DMA map failed\n");
4532 	dev_kfree_skb(skb);
4533 	priv->dev->stats.tx_dropped++;
4534 	return NETDEV_TX_OK;
4535 }
4536 
4537 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4538 {
4539 	struct vlan_ethhdr *veth;
4540 	__be16 vlan_proto;
4541 	u16 vlanid;
4542 
4543 	veth = (struct vlan_ethhdr *)skb->data;
4544 	vlan_proto = veth->h_vlan_proto;
4545 
4546 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4547 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4548 	    (vlan_proto == htons(ETH_P_8021AD) &&
4549 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4550 		/* pop the vlan tag */
4551 		vlanid = ntohs(veth->h_vlan_TCI);
4552 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4553 		skb_pull(skb, VLAN_HLEN);
4554 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4555 	}
4556 }
4557 
4558 /**
4559  * stmmac_rx_refill - refill used skb preallocated buffers
4560  * @priv: driver private structure
4561  * @queue: RX queue index
4562  * Description : this is to reallocate the skb for the reception process
4563  * that is based on zero-copy.
4564  */
4565 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4566 {
4567 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4568 	int dirty = stmmac_rx_dirty(priv, queue);
4569 	unsigned int entry = rx_q->dirty_rx;
4570 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4571 
4572 	if (priv->dma_cap.addr64 <= 32)
4573 		gfp |= GFP_DMA32;
4574 
4575 	while (dirty-- > 0) {
4576 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4577 		struct dma_desc *p;
4578 		bool use_rx_wd;
4579 
4580 		if (priv->extend_desc)
4581 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4582 		else
4583 			p = rx_q->dma_rx + entry;
4584 
4585 		if (!buf->page) {
4586 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4587 			if (!buf->page)
4588 				break;
4589 		}
4590 
4591 		if (priv->sph && !buf->sec_page) {
4592 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4593 			if (!buf->sec_page)
4594 				break;
4595 
4596 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4597 		}
4598 
4599 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4600 
4601 		stmmac_set_desc_addr(priv, p, buf->addr);
4602 		if (priv->sph)
4603 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4604 		else
4605 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4606 		stmmac_refill_desc3(priv, rx_q, p);
4607 
4608 		rx_q->rx_count_frames++;
4609 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4610 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4611 			rx_q->rx_count_frames = 0;
4612 
4613 		use_rx_wd = !priv->rx_coal_frames[queue];
4614 		use_rx_wd |= rx_q->rx_count_frames > 0;
4615 		if (!priv->use_riwt)
4616 			use_rx_wd = false;
4617 
4618 		dma_wmb();
4619 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4620 
4621 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4622 	}
4623 	rx_q->dirty_rx = entry;
4624 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4625 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4626 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4627 }
4628 
4629 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4630 				       struct dma_desc *p,
4631 				       int status, unsigned int len)
4632 {
4633 	unsigned int plen = 0, hlen = 0;
4634 	int coe = priv->hw->rx_csum;
4635 
4636 	/* Not first descriptor, buffer is always zero */
4637 	if (priv->sph && len)
4638 		return 0;
4639 
4640 	/* First descriptor, get split header length */
4641 	stmmac_get_rx_header_len(priv, p, &hlen);
4642 	if (priv->sph && hlen) {
4643 		priv->xstats.rx_split_hdr_pkt_n++;
4644 		return hlen;
4645 	}
4646 
4647 	/* First descriptor, not last descriptor and not split header */
4648 	if (status & rx_not_ls)
4649 		return priv->dma_conf.dma_buf_sz;
4650 
4651 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4652 
4653 	/* First descriptor and last descriptor and not split header */
4654 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4655 }
4656 
4657 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4658 				       struct dma_desc *p,
4659 				       int status, unsigned int len)
4660 {
4661 	int coe = priv->hw->rx_csum;
4662 	unsigned int plen = 0;
4663 
4664 	/* Not split header, buffer is not available */
4665 	if (!priv->sph)
4666 		return 0;
4667 
4668 	/* Not last descriptor */
4669 	if (status & rx_not_ls)
4670 		return priv->dma_conf.dma_buf_sz;
4671 
4672 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4673 
4674 	/* Last descriptor */
4675 	return plen - len;
4676 }
4677 
4678 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4679 				struct xdp_frame *xdpf, bool dma_map)
4680 {
4681 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4682 	unsigned int entry = tx_q->cur_tx;
4683 	struct dma_desc *tx_desc;
4684 	dma_addr_t dma_addr;
4685 	bool set_ic;
4686 
4687 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4688 		return STMMAC_XDP_CONSUMED;
4689 
4690 	if (likely(priv->extend_desc))
4691 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4692 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4693 		tx_desc = &tx_q->dma_entx[entry].basic;
4694 	else
4695 		tx_desc = tx_q->dma_tx + entry;
4696 
4697 	if (dma_map) {
4698 		dma_addr = dma_map_single(priv->device, xdpf->data,
4699 					  xdpf->len, DMA_TO_DEVICE);
4700 		if (dma_mapping_error(priv->device, dma_addr))
4701 			return STMMAC_XDP_CONSUMED;
4702 
4703 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4704 	} else {
4705 		struct page *page = virt_to_page(xdpf->data);
4706 
4707 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4708 			   xdpf->headroom;
4709 		dma_sync_single_for_device(priv->device, dma_addr,
4710 					   xdpf->len, DMA_BIDIRECTIONAL);
4711 
4712 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4713 	}
4714 
4715 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4716 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4717 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4718 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4719 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4720 
4721 	tx_q->xdpf[entry] = xdpf;
4722 
4723 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4724 
4725 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4726 			       true, priv->mode, true, true,
4727 			       xdpf->len);
4728 
4729 	tx_q->tx_count_frames++;
4730 
4731 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4732 		set_ic = true;
4733 	else
4734 		set_ic = false;
4735 
4736 	if (set_ic) {
4737 		tx_q->tx_count_frames = 0;
4738 		stmmac_set_tx_ic(priv, tx_desc);
4739 		priv->xstats.tx_set_ic_bit++;
4740 	}
4741 
4742 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4743 
4744 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4745 	tx_q->cur_tx = entry;
4746 
4747 	return STMMAC_XDP_TX;
4748 }
4749 
4750 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4751 				   int cpu)
4752 {
4753 	int index = cpu;
4754 
4755 	if (unlikely(index < 0))
4756 		index = 0;
4757 
4758 	while (index >= priv->plat->tx_queues_to_use)
4759 		index -= priv->plat->tx_queues_to_use;
4760 
4761 	return index;
4762 }
4763 
4764 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4765 				struct xdp_buff *xdp)
4766 {
4767 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4768 	int cpu = smp_processor_id();
4769 	struct netdev_queue *nq;
4770 	int queue;
4771 	int res;
4772 
4773 	if (unlikely(!xdpf))
4774 		return STMMAC_XDP_CONSUMED;
4775 
4776 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4777 	nq = netdev_get_tx_queue(priv->dev, queue);
4778 
4779 	__netif_tx_lock(nq, cpu);
4780 	/* Avoids TX time-out as we are sharing with slow path */
4781 	txq_trans_cond_update(nq);
4782 
4783 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4784 	if (res == STMMAC_XDP_TX)
4785 		stmmac_flush_tx_descriptors(priv, queue);
4786 
4787 	__netif_tx_unlock(nq);
4788 
4789 	return res;
4790 }
4791 
4792 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4793 				 struct bpf_prog *prog,
4794 				 struct xdp_buff *xdp)
4795 {
4796 	u32 act;
4797 	int res;
4798 
4799 	act = bpf_prog_run_xdp(prog, xdp);
4800 	switch (act) {
4801 	case XDP_PASS:
4802 		res = STMMAC_XDP_PASS;
4803 		break;
4804 	case XDP_TX:
4805 		res = stmmac_xdp_xmit_back(priv, xdp);
4806 		break;
4807 	case XDP_REDIRECT:
4808 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4809 			res = STMMAC_XDP_CONSUMED;
4810 		else
4811 			res = STMMAC_XDP_REDIRECT;
4812 		break;
4813 	default:
4814 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4815 		fallthrough;
4816 	case XDP_ABORTED:
4817 		trace_xdp_exception(priv->dev, prog, act);
4818 		fallthrough;
4819 	case XDP_DROP:
4820 		res = STMMAC_XDP_CONSUMED;
4821 		break;
4822 	}
4823 
4824 	return res;
4825 }
4826 
4827 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4828 					   struct xdp_buff *xdp)
4829 {
4830 	struct bpf_prog *prog;
4831 	int res;
4832 
4833 	prog = READ_ONCE(priv->xdp_prog);
4834 	if (!prog) {
4835 		res = STMMAC_XDP_PASS;
4836 		goto out;
4837 	}
4838 
4839 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4840 out:
4841 	return ERR_PTR(-res);
4842 }
4843 
4844 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4845 				   int xdp_status)
4846 {
4847 	int cpu = smp_processor_id();
4848 	int queue;
4849 
4850 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4851 
4852 	if (xdp_status & STMMAC_XDP_TX)
4853 		stmmac_tx_timer_arm(priv, queue);
4854 
4855 	if (xdp_status & STMMAC_XDP_REDIRECT)
4856 		xdp_do_flush();
4857 }
4858 
4859 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4860 					       struct xdp_buff *xdp)
4861 {
4862 	unsigned int metasize = xdp->data - xdp->data_meta;
4863 	unsigned int datasize = xdp->data_end - xdp->data;
4864 	struct sk_buff *skb;
4865 
4866 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4867 			       xdp->data_end - xdp->data_hard_start,
4868 			       GFP_ATOMIC | __GFP_NOWARN);
4869 	if (unlikely(!skb))
4870 		return NULL;
4871 
4872 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4873 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4874 	if (metasize)
4875 		skb_metadata_set(skb, metasize);
4876 
4877 	return skb;
4878 }
4879 
4880 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4881 				   struct dma_desc *p, struct dma_desc *np,
4882 				   struct xdp_buff *xdp)
4883 {
4884 	struct stmmac_channel *ch = &priv->channel[queue];
4885 	unsigned int len = xdp->data_end - xdp->data;
4886 	enum pkt_hash_types hash_type;
4887 	int coe = priv->hw->rx_csum;
4888 	struct sk_buff *skb;
4889 	u32 hash;
4890 
4891 	skb = stmmac_construct_skb_zc(ch, xdp);
4892 	if (!skb) {
4893 		priv->dev->stats.rx_dropped++;
4894 		return;
4895 	}
4896 
4897 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4898 	stmmac_rx_vlan(priv->dev, skb);
4899 	skb->protocol = eth_type_trans(skb, priv->dev);
4900 
4901 	if (unlikely(!coe))
4902 		skb_checksum_none_assert(skb);
4903 	else
4904 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4905 
4906 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4907 		skb_set_hash(skb, hash, hash_type);
4908 
4909 	skb_record_rx_queue(skb, queue);
4910 	napi_gro_receive(&ch->rxtx_napi, skb);
4911 
4912 	priv->dev->stats.rx_packets++;
4913 	priv->dev->stats.rx_bytes += len;
4914 }
4915 
4916 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4917 {
4918 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4919 	unsigned int entry = rx_q->dirty_rx;
4920 	struct dma_desc *rx_desc = NULL;
4921 	bool ret = true;
4922 
4923 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4924 
4925 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4926 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4927 		dma_addr_t dma_addr;
4928 		bool use_rx_wd;
4929 
4930 		if (!buf->xdp) {
4931 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4932 			if (!buf->xdp) {
4933 				ret = false;
4934 				break;
4935 			}
4936 		}
4937 
4938 		if (priv->extend_desc)
4939 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4940 		else
4941 			rx_desc = rx_q->dma_rx + entry;
4942 
4943 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4944 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4945 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4946 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4947 
4948 		rx_q->rx_count_frames++;
4949 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4950 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4951 			rx_q->rx_count_frames = 0;
4952 
4953 		use_rx_wd = !priv->rx_coal_frames[queue];
4954 		use_rx_wd |= rx_q->rx_count_frames > 0;
4955 		if (!priv->use_riwt)
4956 			use_rx_wd = false;
4957 
4958 		dma_wmb();
4959 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4960 
4961 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4962 	}
4963 
4964 	if (rx_desc) {
4965 		rx_q->dirty_rx = entry;
4966 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4967 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4968 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4969 	}
4970 
4971 	return ret;
4972 }
4973 
4974 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4975 {
4976 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4977 	unsigned int count = 0, error = 0, len = 0;
4978 	int dirty = stmmac_rx_dirty(priv, queue);
4979 	unsigned int next_entry = rx_q->cur_rx;
4980 	unsigned int desc_size;
4981 	struct bpf_prog *prog;
4982 	bool failure = false;
4983 	int xdp_status = 0;
4984 	int status = 0;
4985 
4986 	if (netif_msg_rx_status(priv)) {
4987 		void *rx_head;
4988 
4989 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4990 		if (priv->extend_desc) {
4991 			rx_head = (void *)rx_q->dma_erx;
4992 			desc_size = sizeof(struct dma_extended_desc);
4993 		} else {
4994 			rx_head = (void *)rx_q->dma_rx;
4995 			desc_size = sizeof(struct dma_desc);
4996 		}
4997 
4998 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
4999 				    rx_q->dma_rx_phy, desc_size);
5000 	}
5001 	while (count < limit) {
5002 		struct stmmac_rx_buffer *buf;
5003 		unsigned int buf1_len = 0;
5004 		struct dma_desc *np, *p;
5005 		int entry;
5006 		int res;
5007 
5008 		if (!count && rx_q->state_saved) {
5009 			error = rx_q->state.error;
5010 			len = rx_q->state.len;
5011 		} else {
5012 			rx_q->state_saved = false;
5013 			error = 0;
5014 			len = 0;
5015 		}
5016 
5017 		if (count >= limit)
5018 			break;
5019 
5020 read_again:
5021 		buf1_len = 0;
5022 		entry = next_entry;
5023 		buf = &rx_q->buf_pool[entry];
5024 
5025 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5026 			failure = failure ||
5027 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5028 			dirty = 0;
5029 		}
5030 
5031 		if (priv->extend_desc)
5032 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5033 		else
5034 			p = rx_q->dma_rx + entry;
5035 
5036 		/* read the status of the incoming frame */
5037 		status = stmmac_rx_status(priv, &priv->dev->stats,
5038 					  &priv->xstats, p);
5039 		/* check if managed by the DMA otherwise go ahead */
5040 		if (unlikely(status & dma_own))
5041 			break;
5042 
5043 		/* Prefetch the next RX descriptor */
5044 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5045 						priv->dma_conf.dma_rx_size);
5046 		next_entry = rx_q->cur_rx;
5047 
5048 		if (priv->extend_desc)
5049 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5050 		else
5051 			np = rx_q->dma_rx + next_entry;
5052 
5053 		prefetch(np);
5054 
5055 		/* Ensure a valid XSK buffer before proceed */
5056 		if (!buf->xdp)
5057 			break;
5058 
5059 		if (priv->extend_desc)
5060 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5061 						  &priv->xstats,
5062 						  rx_q->dma_erx + entry);
5063 		if (unlikely(status == discard_frame)) {
5064 			xsk_buff_free(buf->xdp);
5065 			buf->xdp = NULL;
5066 			dirty++;
5067 			error = 1;
5068 			if (!priv->hwts_rx_en)
5069 				priv->dev->stats.rx_errors++;
5070 		}
5071 
5072 		if (unlikely(error && (status & rx_not_ls)))
5073 			goto read_again;
5074 		if (unlikely(error)) {
5075 			count++;
5076 			continue;
5077 		}
5078 
5079 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5080 		if (likely(status & rx_not_ls)) {
5081 			xsk_buff_free(buf->xdp);
5082 			buf->xdp = NULL;
5083 			dirty++;
5084 			count++;
5085 			goto read_again;
5086 		}
5087 
5088 		/* XDP ZC Frame only support primary buffers for now */
5089 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5090 		len += buf1_len;
5091 
5092 		/* ACS is disabled; strip manually. */
5093 		if (likely(!(status & rx_not_ls))) {
5094 			buf1_len -= ETH_FCS_LEN;
5095 			len -= ETH_FCS_LEN;
5096 		}
5097 
5098 		/* RX buffer is good and fit into a XSK pool buffer */
5099 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5100 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5101 
5102 		prog = READ_ONCE(priv->xdp_prog);
5103 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5104 
5105 		switch (res) {
5106 		case STMMAC_XDP_PASS:
5107 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5108 			xsk_buff_free(buf->xdp);
5109 			break;
5110 		case STMMAC_XDP_CONSUMED:
5111 			xsk_buff_free(buf->xdp);
5112 			priv->dev->stats.rx_dropped++;
5113 			break;
5114 		case STMMAC_XDP_TX:
5115 		case STMMAC_XDP_REDIRECT:
5116 			xdp_status |= res;
5117 			break;
5118 		}
5119 
5120 		buf->xdp = NULL;
5121 		dirty++;
5122 		count++;
5123 	}
5124 
5125 	if (status & rx_not_ls) {
5126 		rx_q->state_saved = true;
5127 		rx_q->state.error = error;
5128 		rx_q->state.len = len;
5129 	}
5130 
5131 	stmmac_finalize_xdp_rx(priv, xdp_status);
5132 
5133 	priv->xstats.rx_pkt_n += count;
5134 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5135 
5136 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5137 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5138 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5139 		else
5140 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5141 
5142 		return (int)count;
5143 	}
5144 
5145 	return failure ? limit : (int)count;
5146 }
5147 
5148 /**
5149  * stmmac_rx - manage the receive process
5150  * @priv: driver private structure
5151  * @limit: napi bugget
5152  * @queue: RX queue index.
5153  * Description :  this the function called by the napi poll method.
5154  * It gets all the frames inside the ring.
5155  */
5156 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5157 {
5158 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5159 	struct stmmac_channel *ch = &priv->channel[queue];
5160 	unsigned int count = 0, error = 0, len = 0;
5161 	int status = 0, coe = priv->hw->rx_csum;
5162 	unsigned int next_entry = rx_q->cur_rx;
5163 	enum dma_data_direction dma_dir;
5164 	unsigned int desc_size;
5165 	struct sk_buff *skb = NULL;
5166 	struct xdp_buff xdp;
5167 	int xdp_status = 0;
5168 	int buf_sz;
5169 
5170 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5171 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5172 
5173 	if (netif_msg_rx_status(priv)) {
5174 		void *rx_head;
5175 
5176 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5177 		if (priv->extend_desc) {
5178 			rx_head = (void *)rx_q->dma_erx;
5179 			desc_size = sizeof(struct dma_extended_desc);
5180 		} else {
5181 			rx_head = (void *)rx_q->dma_rx;
5182 			desc_size = sizeof(struct dma_desc);
5183 		}
5184 
5185 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5186 				    rx_q->dma_rx_phy, desc_size);
5187 	}
5188 	while (count < limit) {
5189 		unsigned int buf1_len = 0, buf2_len = 0;
5190 		enum pkt_hash_types hash_type;
5191 		struct stmmac_rx_buffer *buf;
5192 		struct dma_desc *np, *p;
5193 		int entry;
5194 		u32 hash;
5195 
5196 		if (!count && rx_q->state_saved) {
5197 			skb = rx_q->state.skb;
5198 			error = rx_q->state.error;
5199 			len = rx_q->state.len;
5200 		} else {
5201 			rx_q->state_saved = false;
5202 			skb = NULL;
5203 			error = 0;
5204 			len = 0;
5205 		}
5206 
5207 		if (count >= limit)
5208 			break;
5209 
5210 read_again:
5211 		buf1_len = 0;
5212 		buf2_len = 0;
5213 		entry = next_entry;
5214 		buf = &rx_q->buf_pool[entry];
5215 
5216 		if (priv->extend_desc)
5217 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5218 		else
5219 			p = rx_q->dma_rx + entry;
5220 
5221 		/* read the status of the incoming frame */
5222 		status = stmmac_rx_status(priv, &priv->dev->stats,
5223 				&priv->xstats, p);
5224 		/* check if managed by the DMA otherwise go ahead */
5225 		if (unlikely(status & dma_own))
5226 			break;
5227 
5228 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5229 						priv->dma_conf.dma_rx_size);
5230 		next_entry = rx_q->cur_rx;
5231 
5232 		if (priv->extend_desc)
5233 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5234 		else
5235 			np = rx_q->dma_rx + next_entry;
5236 
5237 		prefetch(np);
5238 
5239 		if (priv->extend_desc)
5240 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5241 					&priv->xstats, rx_q->dma_erx + entry);
5242 		if (unlikely(status == discard_frame)) {
5243 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5244 			buf->page = NULL;
5245 			error = 1;
5246 			if (!priv->hwts_rx_en)
5247 				priv->dev->stats.rx_errors++;
5248 		}
5249 
5250 		if (unlikely(error && (status & rx_not_ls)))
5251 			goto read_again;
5252 		if (unlikely(error)) {
5253 			dev_kfree_skb(skb);
5254 			skb = NULL;
5255 			count++;
5256 			continue;
5257 		}
5258 
5259 		/* Buffer is good. Go on. */
5260 
5261 		prefetch(page_address(buf->page) + buf->page_offset);
5262 		if (buf->sec_page)
5263 			prefetch(page_address(buf->sec_page));
5264 
5265 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5266 		len += buf1_len;
5267 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5268 		len += buf2_len;
5269 
5270 		/* ACS is disabled; strip manually. */
5271 		if (likely(!(status & rx_not_ls))) {
5272 			if (buf2_len) {
5273 				buf2_len -= ETH_FCS_LEN;
5274 				len -= ETH_FCS_LEN;
5275 			} else if (buf1_len) {
5276 				buf1_len -= ETH_FCS_LEN;
5277 				len -= ETH_FCS_LEN;
5278 			}
5279 		}
5280 
5281 		if (!skb) {
5282 			unsigned int pre_len, sync_len;
5283 
5284 			dma_sync_single_for_cpu(priv->device, buf->addr,
5285 						buf1_len, dma_dir);
5286 
5287 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5288 			xdp_prepare_buff(&xdp, page_address(buf->page),
5289 					 buf->page_offset, buf1_len, false);
5290 
5291 			pre_len = xdp.data_end - xdp.data_hard_start -
5292 				  buf->page_offset;
5293 			skb = stmmac_xdp_run_prog(priv, &xdp);
5294 			/* Due xdp_adjust_tail: DMA sync for_device
5295 			 * cover max len CPU touch
5296 			 */
5297 			sync_len = xdp.data_end - xdp.data_hard_start -
5298 				   buf->page_offset;
5299 			sync_len = max(sync_len, pre_len);
5300 
5301 			/* For Not XDP_PASS verdict */
5302 			if (IS_ERR(skb)) {
5303 				unsigned int xdp_res = -PTR_ERR(skb);
5304 
5305 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5306 					page_pool_put_page(rx_q->page_pool,
5307 							   virt_to_head_page(xdp.data),
5308 							   sync_len, true);
5309 					buf->page = NULL;
5310 					priv->dev->stats.rx_dropped++;
5311 
5312 					/* Clear skb as it was set as
5313 					 * status by XDP program.
5314 					 */
5315 					skb = NULL;
5316 
5317 					if (unlikely((status & rx_not_ls)))
5318 						goto read_again;
5319 
5320 					count++;
5321 					continue;
5322 				} else if (xdp_res & (STMMAC_XDP_TX |
5323 						      STMMAC_XDP_REDIRECT)) {
5324 					xdp_status |= xdp_res;
5325 					buf->page = NULL;
5326 					skb = NULL;
5327 					count++;
5328 					continue;
5329 				}
5330 			}
5331 		}
5332 
5333 		if (!skb) {
5334 			/* XDP program may expand or reduce tail */
5335 			buf1_len = xdp.data_end - xdp.data;
5336 
5337 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5338 			if (!skb) {
5339 				priv->dev->stats.rx_dropped++;
5340 				count++;
5341 				goto drain_data;
5342 			}
5343 
5344 			/* XDP program may adjust header */
5345 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5346 			skb_put(skb, buf1_len);
5347 
5348 			/* Data payload copied into SKB, page ready for recycle */
5349 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5350 			buf->page = NULL;
5351 		} else if (buf1_len) {
5352 			dma_sync_single_for_cpu(priv->device, buf->addr,
5353 						buf1_len, dma_dir);
5354 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5355 					buf->page, buf->page_offset, buf1_len,
5356 					priv->dma_conf.dma_buf_sz);
5357 
5358 			/* Data payload appended into SKB */
5359 			page_pool_release_page(rx_q->page_pool, buf->page);
5360 			buf->page = NULL;
5361 		}
5362 
5363 		if (buf2_len) {
5364 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5365 						buf2_len, dma_dir);
5366 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5367 					buf->sec_page, 0, buf2_len,
5368 					priv->dma_conf.dma_buf_sz);
5369 
5370 			/* Data payload appended into SKB */
5371 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5372 			buf->sec_page = NULL;
5373 		}
5374 
5375 drain_data:
5376 		if (likely(status & rx_not_ls))
5377 			goto read_again;
5378 		if (!skb)
5379 			continue;
5380 
5381 		/* Got entire packet into SKB. Finish it. */
5382 
5383 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5384 		stmmac_rx_vlan(priv->dev, skb);
5385 		skb->protocol = eth_type_trans(skb, priv->dev);
5386 
5387 		if (unlikely(!coe))
5388 			skb_checksum_none_assert(skb);
5389 		else
5390 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5391 
5392 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5393 			skb_set_hash(skb, hash, hash_type);
5394 
5395 		skb_record_rx_queue(skb, queue);
5396 		napi_gro_receive(&ch->rx_napi, skb);
5397 		skb = NULL;
5398 
5399 		priv->dev->stats.rx_packets++;
5400 		priv->dev->stats.rx_bytes += len;
5401 		count++;
5402 	}
5403 
5404 	if (status & rx_not_ls || skb) {
5405 		rx_q->state_saved = true;
5406 		rx_q->state.skb = skb;
5407 		rx_q->state.error = error;
5408 		rx_q->state.len = len;
5409 	}
5410 
5411 	stmmac_finalize_xdp_rx(priv, xdp_status);
5412 
5413 	stmmac_rx_refill(priv, queue);
5414 
5415 	priv->xstats.rx_pkt_n += count;
5416 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5417 
5418 	return count;
5419 }
5420 
5421 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5422 {
5423 	struct stmmac_channel *ch =
5424 		container_of(napi, struct stmmac_channel, rx_napi);
5425 	struct stmmac_priv *priv = ch->priv_data;
5426 	u32 chan = ch->index;
5427 	int work_done;
5428 
5429 	priv->xstats.napi_poll++;
5430 
5431 	work_done = stmmac_rx(priv, budget, chan);
5432 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5433 		unsigned long flags;
5434 
5435 		spin_lock_irqsave(&ch->lock, flags);
5436 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5437 		spin_unlock_irqrestore(&ch->lock, flags);
5438 	}
5439 
5440 	return work_done;
5441 }
5442 
5443 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5444 {
5445 	struct stmmac_channel *ch =
5446 		container_of(napi, struct stmmac_channel, tx_napi);
5447 	struct stmmac_priv *priv = ch->priv_data;
5448 	u32 chan = ch->index;
5449 	int work_done;
5450 
5451 	priv->xstats.napi_poll++;
5452 
5453 	work_done = stmmac_tx_clean(priv, budget, chan);
5454 	work_done = min(work_done, budget);
5455 
5456 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5457 		unsigned long flags;
5458 
5459 		spin_lock_irqsave(&ch->lock, flags);
5460 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5461 		spin_unlock_irqrestore(&ch->lock, flags);
5462 	}
5463 
5464 	return work_done;
5465 }
5466 
5467 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5468 {
5469 	struct stmmac_channel *ch =
5470 		container_of(napi, struct stmmac_channel, rxtx_napi);
5471 	struct stmmac_priv *priv = ch->priv_data;
5472 	int rx_done, tx_done, rxtx_done;
5473 	u32 chan = ch->index;
5474 
5475 	priv->xstats.napi_poll++;
5476 
5477 	tx_done = stmmac_tx_clean(priv, budget, chan);
5478 	tx_done = min(tx_done, budget);
5479 
5480 	rx_done = stmmac_rx_zc(priv, budget, chan);
5481 
5482 	rxtx_done = max(tx_done, rx_done);
5483 
5484 	/* If either TX or RX work is not complete, return budget
5485 	 * and keep pooling
5486 	 */
5487 	if (rxtx_done >= budget)
5488 		return budget;
5489 
5490 	/* all work done, exit the polling mode */
5491 	if (napi_complete_done(napi, rxtx_done)) {
5492 		unsigned long flags;
5493 
5494 		spin_lock_irqsave(&ch->lock, flags);
5495 		/* Both RX and TX work done are compelte,
5496 		 * so enable both RX & TX IRQs.
5497 		 */
5498 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5499 		spin_unlock_irqrestore(&ch->lock, flags);
5500 	}
5501 
5502 	return min(rxtx_done, budget - 1);
5503 }
5504 
5505 /**
5506  *  stmmac_tx_timeout
5507  *  @dev : Pointer to net device structure
5508  *  @txqueue: the index of the hanging transmit queue
5509  *  Description: this function is called when a packet transmission fails to
5510  *   complete within a reasonable time. The driver will mark the error in the
5511  *   netdev structure and arrange for the device to be reset to a sane state
5512  *   in order to transmit a new packet.
5513  */
5514 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5515 {
5516 	struct stmmac_priv *priv = netdev_priv(dev);
5517 
5518 	stmmac_global_err(priv);
5519 }
5520 
5521 /**
5522  *  stmmac_set_rx_mode - entry point for multicast addressing
5523  *  @dev : pointer to the device structure
5524  *  Description:
5525  *  This function is a driver entry point which gets called by the kernel
5526  *  whenever multicast addresses must be enabled/disabled.
5527  *  Return value:
5528  *  void.
5529  */
5530 static void stmmac_set_rx_mode(struct net_device *dev)
5531 {
5532 	struct stmmac_priv *priv = netdev_priv(dev);
5533 
5534 	stmmac_set_filter(priv, priv->hw, dev);
5535 }
5536 
5537 /**
5538  *  stmmac_change_mtu - entry point to change MTU size for the device.
5539  *  @dev : device pointer.
5540  *  @new_mtu : the new MTU size for the device.
5541  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5542  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5543  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5544  *  Return value:
5545  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5546  *  file on failure.
5547  */
5548 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5549 {
5550 	struct stmmac_priv *priv = netdev_priv(dev);
5551 	int txfifosz = priv->plat->tx_fifo_size;
5552 	struct stmmac_dma_conf *dma_conf;
5553 	const int mtu = new_mtu;
5554 	int ret;
5555 
5556 	if (txfifosz == 0)
5557 		txfifosz = priv->dma_cap.tx_fifo_size;
5558 
5559 	txfifosz /= priv->plat->tx_queues_to_use;
5560 
5561 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5562 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5563 		return -EINVAL;
5564 	}
5565 
5566 	new_mtu = STMMAC_ALIGN(new_mtu);
5567 
5568 	/* If condition true, FIFO is too small or MTU too large */
5569 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5570 		return -EINVAL;
5571 
5572 	if (netif_running(dev)) {
5573 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5574 		/* Try to allocate the new DMA conf with the new mtu */
5575 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5576 		if (IS_ERR(dma_conf)) {
5577 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5578 				   mtu);
5579 			return PTR_ERR(dma_conf);
5580 		}
5581 
5582 		stmmac_release(dev);
5583 
5584 		ret = __stmmac_open(dev, dma_conf);
5585 		kfree(dma_conf);
5586 		if (ret) {
5587 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5588 			return ret;
5589 		}
5590 
5591 		stmmac_set_rx_mode(dev);
5592 	}
5593 
5594 	dev->mtu = mtu;
5595 	netdev_update_features(dev);
5596 
5597 	return 0;
5598 }
5599 
5600 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5601 					     netdev_features_t features)
5602 {
5603 	struct stmmac_priv *priv = netdev_priv(dev);
5604 
5605 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5606 		features &= ~NETIF_F_RXCSUM;
5607 
5608 	if (!priv->plat->tx_coe)
5609 		features &= ~NETIF_F_CSUM_MASK;
5610 
5611 	/* Some GMAC devices have a bugged Jumbo frame support that
5612 	 * needs to have the Tx COE disabled for oversized frames
5613 	 * (due to limited buffer sizes). In this case we disable
5614 	 * the TX csum insertion in the TDES and not use SF.
5615 	 */
5616 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5617 		features &= ~NETIF_F_CSUM_MASK;
5618 
5619 	/* Disable tso if asked by ethtool */
5620 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5621 		if (features & NETIF_F_TSO)
5622 			priv->tso = true;
5623 		else
5624 			priv->tso = false;
5625 	}
5626 
5627 	return features;
5628 }
5629 
5630 static int stmmac_set_features(struct net_device *netdev,
5631 			       netdev_features_t features)
5632 {
5633 	struct stmmac_priv *priv = netdev_priv(netdev);
5634 
5635 	/* Keep the COE Type in case of csum is supporting */
5636 	if (features & NETIF_F_RXCSUM)
5637 		priv->hw->rx_csum = priv->plat->rx_coe;
5638 	else
5639 		priv->hw->rx_csum = 0;
5640 	/* No check needed because rx_coe has been set before and it will be
5641 	 * fixed in case of issue.
5642 	 */
5643 	stmmac_rx_ipc(priv, priv->hw);
5644 
5645 	if (priv->sph_cap) {
5646 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5647 		u32 chan;
5648 
5649 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5650 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5651 	}
5652 
5653 	return 0;
5654 }
5655 
5656 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5657 {
5658 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5659 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5660 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5661 	bool *hs_enable = &fpe_cfg->hs_enable;
5662 
5663 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5664 		return;
5665 
5666 	/* If LP has sent verify mPacket, LP is FPE capable */
5667 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5668 		if (*lp_state < FPE_STATE_CAPABLE)
5669 			*lp_state = FPE_STATE_CAPABLE;
5670 
5671 		/* If user has requested FPE enable, quickly response */
5672 		if (*hs_enable)
5673 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5674 						MPACKET_RESPONSE);
5675 	}
5676 
5677 	/* If Local has sent verify mPacket, Local is FPE capable */
5678 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5679 		if (*lo_state < FPE_STATE_CAPABLE)
5680 			*lo_state = FPE_STATE_CAPABLE;
5681 	}
5682 
5683 	/* If LP has sent response mPacket, LP is entering FPE ON */
5684 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5685 		*lp_state = FPE_STATE_ENTERING_ON;
5686 
5687 	/* If Local has sent response mPacket, Local is entering FPE ON */
5688 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5689 		*lo_state = FPE_STATE_ENTERING_ON;
5690 
5691 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5692 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5693 	    priv->fpe_wq) {
5694 		queue_work(priv->fpe_wq, &priv->fpe_task);
5695 	}
5696 }
5697 
5698 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5699 {
5700 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5701 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5702 	u32 queues_count;
5703 	u32 queue;
5704 	bool xmac;
5705 
5706 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5707 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5708 
5709 	if (priv->irq_wake)
5710 		pm_wakeup_event(priv->device, 0);
5711 
5712 	if (priv->dma_cap.estsel)
5713 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5714 				      &priv->xstats, tx_cnt);
5715 
5716 	if (priv->dma_cap.fpesel) {
5717 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5718 						   priv->dev);
5719 
5720 		stmmac_fpe_event_status(priv, status);
5721 	}
5722 
5723 	/* To handle GMAC own interrupts */
5724 	if ((priv->plat->has_gmac) || xmac) {
5725 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5726 
5727 		if (unlikely(status)) {
5728 			/* For LPI we need to save the tx status */
5729 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5730 				priv->tx_path_in_lpi_mode = true;
5731 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5732 				priv->tx_path_in_lpi_mode = false;
5733 		}
5734 
5735 		for (queue = 0; queue < queues_count; queue++) {
5736 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5737 							    queue);
5738 		}
5739 
5740 		/* PCS link status */
5741 		if (priv->hw->pcs) {
5742 			if (priv->xstats.pcs_link)
5743 				netif_carrier_on(priv->dev);
5744 			else
5745 				netif_carrier_off(priv->dev);
5746 		}
5747 
5748 		stmmac_timestamp_interrupt(priv, priv);
5749 	}
5750 }
5751 
5752 /**
5753  *  stmmac_interrupt - main ISR
5754  *  @irq: interrupt number.
5755  *  @dev_id: to pass the net device pointer.
5756  *  Description: this is the main driver interrupt service routine.
5757  *  It can call:
5758  *  o DMA service routine (to manage incoming frame reception and transmission
5759  *    status)
5760  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5761  *    interrupts.
5762  */
5763 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5764 {
5765 	struct net_device *dev = (struct net_device *)dev_id;
5766 	struct stmmac_priv *priv = netdev_priv(dev);
5767 
5768 	/* Check if adapter is up */
5769 	if (test_bit(STMMAC_DOWN, &priv->state))
5770 		return IRQ_HANDLED;
5771 
5772 	/* Check if a fatal error happened */
5773 	if (stmmac_safety_feat_interrupt(priv))
5774 		return IRQ_HANDLED;
5775 
5776 	/* To handle Common interrupts */
5777 	stmmac_common_interrupt(priv);
5778 
5779 	/* To handle DMA interrupts */
5780 	stmmac_dma_interrupt(priv);
5781 
5782 	return IRQ_HANDLED;
5783 }
5784 
5785 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5786 {
5787 	struct net_device *dev = (struct net_device *)dev_id;
5788 	struct stmmac_priv *priv = netdev_priv(dev);
5789 
5790 	if (unlikely(!dev)) {
5791 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5792 		return IRQ_NONE;
5793 	}
5794 
5795 	/* Check if adapter is up */
5796 	if (test_bit(STMMAC_DOWN, &priv->state))
5797 		return IRQ_HANDLED;
5798 
5799 	/* To handle Common interrupts */
5800 	stmmac_common_interrupt(priv);
5801 
5802 	return IRQ_HANDLED;
5803 }
5804 
5805 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5806 {
5807 	struct net_device *dev = (struct net_device *)dev_id;
5808 	struct stmmac_priv *priv = netdev_priv(dev);
5809 
5810 	if (unlikely(!dev)) {
5811 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5812 		return IRQ_NONE;
5813 	}
5814 
5815 	/* Check if adapter is up */
5816 	if (test_bit(STMMAC_DOWN, &priv->state))
5817 		return IRQ_HANDLED;
5818 
5819 	/* Check if a fatal error happened */
5820 	stmmac_safety_feat_interrupt(priv);
5821 
5822 	return IRQ_HANDLED;
5823 }
5824 
5825 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5826 {
5827 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5828 	struct stmmac_dma_conf *dma_conf;
5829 	int chan = tx_q->queue_index;
5830 	struct stmmac_priv *priv;
5831 	int status;
5832 
5833 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5834 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5835 
5836 	if (unlikely(!data)) {
5837 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5838 		return IRQ_NONE;
5839 	}
5840 
5841 	/* Check if adapter is up */
5842 	if (test_bit(STMMAC_DOWN, &priv->state))
5843 		return IRQ_HANDLED;
5844 
5845 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5846 
5847 	if (unlikely(status & tx_hard_error_bump_tc)) {
5848 		/* Try to bump up the dma threshold on this failure */
5849 		stmmac_bump_dma_threshold(priv, chan);
5850 	} else if (unlikely(status == tx_hard_error)) {
5851 		stmmac_tx_err(priv, chan);
5852 	}
5853 
5854 	return IRQ_HANDLED;
5855 }
5856 
5857 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5858 {
5859 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5860 	struct stmmac_dma_conf *dma_conf;
5861 	int chan = rx_q->queue_index;
5862 	struct stmmac_priv *priv;
5863 
5864 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5865 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5866 
5867 	if (unlikely(!data)) {
5868 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5869 		return IRQ_NONE;
5870 	}
5871 
5872 	/* Check if adapter is up */
5873 	if (test_bit(STMMAC_DOWN, &priv->state))
5874 		return IRQ_HANDLED;
5875 
5876 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5877 
5878 	return IRQ_HANDLED;
5879 }
5880 
5881 #ifdef CONFIG_NET_POLL_CONTROLLER
5882 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5883  * to allow network I/O with interrupts disabled.
5884  */
5885 static void stmmac_poll_controller(struct net_device *dev)
5886 {
5887 	struct stmmac_priv *priv = netdev_priv(dev);
5888 	int i;
5889 
5890 	/* If adapter is down, do nothing */
5891 	if (test_bit(STMMAC_DOWN, &priv->state))
5892 		return;
5893 
5894 	if (priv->plat->multi_msi_en) {
5895 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5896 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5897 
5898 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5899 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5900 	} else {
5901 		disable_irq(dev->irq);
5902 		stmmac_interrupt(dev->irq, dev);
5903 		enable_irq(dev->irq);
5904 	}
5905 }
5906 #endif
5907 
5908 /**
5909  *  stmmac_ioctl - Entry point for the Ioctl
5910  *  @dev: Device pointer.
5911  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5912  *  a proprietary structure used to pass information to the driver.
5913  *  @cmd: IOCTL command
5914  *  Description:
5915  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5916  */
5917 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5918 {
5919 	struct stmmac_priv *priv = netdev_priv (dev);
5920 	int ret = -EOPNOTSUPP;
5921 
5922 	if (!netif_running(dev))
5923 		return -EINVAL;
5924 
5925 	switch (cmd) {
5926 	case SIOCGMIIPHY:
5927 	case SIOCGMIIREG:
5928 	case SIOCSMIIREG:
5929 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5930 		break;
5931 	case SIOCSHWTSTAMP:
5932 		ret = stmmac_hwtstamp_set(dev, rq);
5933 		break;
5934 	case SIOCGHWTSTAMP:
5935 		ret = stmmac_hwtstamp_get(dev, rq);
5936 		break;
5937 	default:
5938 		break;
5939 	}
5940 
5941 	return ret;
5942 }
5943 
5944 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5945 				    void *cb_priv)
5946 {
5947 	struct stmmac_priv *priv = cb_priv;
5948 	int ret = -EOPNOTSUPP;
5949 
5950 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5951 		return ret;
5952 
5953 	__stmmac_disable_all_queues(priv);
5954 
5955 	switch (type) {
5956 	case TC_SETUP_CLSU32:
5957 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5958 		break;
5959 	case TC_SETUP_CLSFLOWER:
5960 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5961 		break;
5962 	default:
5963 		break;
5964 	}
5965 
5966 	stmmac_enable_all_queues(priv);
5967 	return ret;
5968 }
5969 
5970 static LIST_HEAD(stmmac_block_cb_list);
5971 
5972 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5973 			   void *type_data)
5974 {
5975 	struct stmmac_priv *priv = netdev_priv(ndev);
5976 
5977 	switch (type) {
5978 	case TC_SETUP_BLOCK:
5979 		return flow_block_cb_setup_simple(type_data,
5980 						  &stmmac_block_cb_list,
5981 						  stmmac_setup_tc_block_cb,
5982 						  priv, priv, true);
5983 	case TC_SETUP_QDISC_CBS:
5984 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5985 	case TC_SETUP_QDISC_TAPRIO:
5986 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5987 	case TC_SETUP_QDISC_ETF:
5988 		return stmmac_tc_setup_etf(priv, priv, type_data);
5989 	default:
5990 		return -EOPNOTSUPP;
5991 	}
5992 }
5993 
5994 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5995 			       struct net_device *sb_dev)
5996 {
5997 	int gso = skb_shinfo(skb)->gso_type;
5998 
5999 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6000 		/*
6001 		 * There is no way to determine the number of TSO/USO
6002 		 * capable Queues. Let's use always the Queue 0
6003 		 * because if TSO/USO is supported then at least this
6004 		 * one will be capable.
6005 		 */
6006 		return 0;
6007 	}
6008 
6009 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6010 }
6011 
6012 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6013 {
6014 	struct stmmac_priv *priv = netdev_priv(ndev);
6015 	int ret = 0;
6016 
6017 	ret = pm_runtime_resume_and_get(priv->device);
6018 	if (ret < 0)
6019 		return ret;
6020 
6021 	ret = eth_mac_addr(ndev, addr);
6022 	if (ret)
6023 		goto set_mac_error;
6024 
6025 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6026 
6027 set_mac_error:
6028 	pm_runtime_put(priv->device);
6029 
6030 	return ret;
6031 }
6032 
6033 #ifdef CONFIG_DEBUG_FS
6034 static struct dentry *stmmac_fs_dir;
6035 
6036 static void sysfs_display_ring(void *head, int size, int extend_desc,
6037 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6038 {
6039 	int i;
6040 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6041 	struct dma_desc *p = (struct dma_desc *)head;
6042 	dma_addr_t dma_addr;
6043 
6044 	for (i = 0; i < size; i++) {
6045 		if (extend_desc) {
6046 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6047 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6048 				   i, &dma_addr,
6049 				   le32_to_cpu(ep->basic.des0),
6050 				   le32_to_cpu(ep->basic.des1),
6051 				   le32_to_cpu(ep->basic.des2),
6052 				   le32_to_cpu(ep->basic.des3));
6053 			ep++;
6054 		} else {
6055 			dma_addr = dma_phy_addr + i * sizeof(*p);
6056 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6057 				   i, &dma_addr,
6058 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6059 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6060 			p++;
6061 		}
6062 		seq_printf(seq, "\n");
6063 	}
6064 }
6065 
6066 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6067 {
6068 	struct net_device *dev = seq->private;
6069 	struct stmmac_priv *priv = netdev_priv(dev);
6070 	u32 rx_count = priv->plat->rx_queues_to_use;
6071 	u32 tx_count = priv->plat->tx_queues_to_use;
6072 	u32 queue;
6073 
6074 	if ((dev->flags & IFF_UP) == 0)
6075 		return 0;
6076 
6077 	for (queue = 0; queue < rx_count; queue++) {
6078 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6079 
6080 		seq_printf(seq, "RX Queue %d:\n", queue);
6081 
6082 		if (priv->extend_desc) {
6083 			seq_printf(seq, "Extended descriptor ring:\n");
6084 			sysfs_display_ring((void *)rx_q->dma_erx,
6085 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6086 		} else {
6087 			seq_printf(seq, "Descriptor ring:\n");
6088 			sysfs_display_ring((void *)rx_q->dma_rx,
6089 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6090 		}
6091 	}
6092 
6093 	for (queue = 0; queue < tx_count; queue++) {
6094 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6095 
6096 		seq_printf(seq, "TX Queue %d:\n", queue);
6097 
6098 		if (priv->extend_desc) {
6099 			seq_printf(seq, "Extended descriptor ring:\n");
6100 			sysfs_display_ring((void *)tx_q->dma_etx,
6101 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6102 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6103 			seq_printf(seq, "Descriptor ring:\n");
6104 			sysfs_display_ring((void *)tx_q->dma_tx,
6105 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6106 		}
6107 	}
6108 
6109 	return 0;
6110 }
6111 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6112 
6113 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6114 {
6115 	struct net_device *dev = seq->private;
6116 	struct stmmac_priv *priv = netdev_priv(dev);
6117 
6118 	if (!priv->hw_cap_support) {
6119 		seq_printf(seq, "DMA HW features not supported\n");
6120 		return 0;
6121 	}
6122 
6123 	seq_printf(seq, "==============================\n");
6124 	seq_printf(seq, "\tDMA HW features\n");
6125 	seq_printf(seq, "==============================\n");
6126 
6127 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6128 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6129 	seq_printf(seq, "\t1000 Mbps: %s\n",
6130 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6131 	seq_printf(seq, "\tHalf duplex: %s\n",
6132 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6133 	seq_printf(seq, "\tHash Filter: %s\n",
6134 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6135 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6136 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6137 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6138 		   (priv->dma_cap.pcs) ? "Y" : "N");
6139 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6140 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6141 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6142 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6143 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6144 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6145 	seq_printf(seq, "\tRMON module: %s\n",
6146 		   (priv->dma_cap.rmon) ? "Y" : "N");
6147 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6148 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6149 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6150 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6151 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6152 		   (priv->dma_cap.eee) ? "Y" : "N");
6153 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6154 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6155 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6156 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6157 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6158 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6159 	} else {
6160 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6161 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6162 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6163 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6164 	}
6165 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6166 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6167 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6168 		   priv->dma_cap.number_rx_channel);
6169 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6170 		   priv->dma_cap.number_tx_channel);
6171 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6172 		   priv->dma_cap.number_rx_queues);
6173 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6174 		   priv->dma_cap.number_tx_queues);
6175 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6176 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6177 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6178 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6179 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6180 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6181 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6182 		   priv->dma_cap.pps_out_num);
6183 	seq_printf(seq, "\tSafety Features: %s\n",
6184 		   priv->dma_cap.asp ? "Y" : "N");
6185 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6186 		   priv->dma_cap.frpsel ? "Y" : "N");
6187 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6188 		   priv->dma_cap.addr64);
6189 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6190 		   priv->dma_cap.rssen ? "Y" : "N");
6191 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6192 		   priv->dma_cap.vlhash ? "Y" : "N");
6193 	seq_printf(seq, "\tSplit Header: %s\n",
6194 		   priv->dma_cap.sphen ? "Y" : "N");
6195 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6196 		   priv->dma_cap.vlins ? "Y" : "N");
6197 	seq_printf(seq, "\tDouble VLAN: %s\n",
6198 		   priv->dma_cap.dvlan ? "Y" : "N");
6199 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6200 		   priv->dma_cap.l3l4fnum);
6201 	seq_printf(seq, "\tARP Offloading: %s\n",
6202 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6203 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6204 		   priv->dma_cap.estsel ? "Y" : "N");
6205 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6206 		   priv->dma_cap.fpesel ? "Y" : "N");
6207 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6208 		   priv->dma_cap.tbssel ? "Y" : "N");
6209 	return 0;
6210 }
6211 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6212 
6213 /* Use network device events to rename debugfs file entries.
6214  */
6215 static int stmmac_device_event(struct notifier_block *unused,
6216 			       unsigned long event, void *ptr)
6217 {
6218 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6219 	struct stmmac_priv *priv = netdev_priv(dev);
6220 
6221 	if (dev->netdev_ops != &stmmac_netdev_ops)
6222 		goto done;
6223 
6224 	switch (event) {
6225 	case NETDEV_CHANGENAME:
6226 		if (priv->dbgfs_dir)
6227 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6228 							 priv->dbgfs_dir,
6229 							 stmmac_fs_dir,
6230 							 dev->name);
6231 		break;
6232 	}
6233 done:
6234 	return NOTIFY_DONE;
6235 }
6236 
6237 static struct notifier_block stmmac_notifier = {
6238 	.notifier_call = stmmac_device_event,
6239 };
6240 
6241 static void stmmac_init_fs(struct net_device *dev)
6242 {
6243 	struct stmmac_priv *priv = netdev_priv(dev);
6244 
6245 	rtnl_lock();
6246 
6247 	/* Create per netdev entries */
6248 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6249 
6250 	/* Entry to report DMA RX/TX rings */
6251 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6252 			    &stmmac_rings_status_fops);
6253 
6254 	/* Entry to report the DMA HW features */
6255 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6256 			    &stmmac_dma_cap_fops);
6257 
6258 	rtnl_unlock();
6259 }
6260 
6261 static void stmmac_exit_fs(struct net_device *dev)
6262 {
6263 	struct stmmac_priv *priv = netdev_priv(dev);
6264 
6265 	debugfs_remove_recursive(priv->dbgfs_dir);
6266 }
6267 #endif /* CONFIG_DEBUG_FS */
6268 
6269 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6270 {
6271 	unsigned char *data = (unsigned char *)&vid_le;
6272 	unsigned char data_byte = 0;
6273 	u32 crc = ~0x0;
6274 	u32 temp = 0;
6275 	int i, bits;
6276 
6277 	bits = get_bitmask_order(VLAN_VID_MASK);
6278 	for (i = 0; i < bits; i++) {
6279 		if ((i % 8) == 0)
6280 			data_byte = data[i / 8];
6281 
6282 		temp = ((crc & 1) ^ data_byte) & 1;
6283 		crc >>= 1;
6284 		data_byte >>= 1;
6285 
6286 		if (temp)
6287 			crc ^= 0xedb88320;
6288 	}
6289 
6290 	return crc;
6291 }
6292 
6293 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6294 {
6295 	u32 crc, hash = 0;
6296 	__le16 pmatch = 0;
6297 	int count = 0;
6298 	u16 vid = 0;
6299 
6300 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6301 		__le16 vid_le = cpu_to_le16(vid);
6302 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6303 		hash |= (1 << crc);
6304 		count++;
6305 	}
6306 
6307 	if (!priv->dma_cap.vlhash) {
6308 		if (count > 2) /* VID = 0 always passes filter */
6309 			return -EOPNOTSUPP;
6310 
6311 		pmatch = cpu_to_le16(vid);
6312 		hash = 0;
6313 	}
6314 
6315 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6316 }
6317 
6318 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6319 {
6320 	struct stmmac_priv *priv = netdev_priv(ndev);
6321 	bool is_double = false;
6322 	int ret;
6323 
6324 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6325 		is_double = true;
6326 
6327 	set_bit(vid, priv->active_vlans);
6328 	ret = stmmac_vlan_update(priv, is_double);
6329 	if (ret) {
6330 		clear_bit(vid, priv->active_vlans);
6331 		return ret;
6332 	}
6333 
6334 	if (priv->hw->num_vlan) {
6335 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6336 		if (ret)
6337 			return ret;
6338 	}
6339 
6340 	return 0;
6341 }
6342 
6343 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6344 {
6345 	struct stmmac_priv *priv = netdev_priv(ndev);
6346 	bool is_double = false;
6347 	int ret;
6348 
6349 	ret = pm_runtime_resume_and_get(priv->device);
6350 	if (ret < 0)
6351 		return ret;
6352 
6353 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6354 		is_double = true;
6355 
6356 	clear_bit(vid, priv->active_vlans);
6357 
6358 	if (priv->hw->num_vlan) {
6359 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6360 		if (ret)
6361 			goto del_vlan_error;
6362 	}
6363 
6364 	ret = stmmac_vlan_update(priv, is_double);
6365 
6366 del_vlan_error:
6367 	pm_runtime_put(priv->device);
6368 
6369 	return ret;
6370 }
6371 
6372 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6373 {
6374 	struct stmmac_priv *priv = netdev_priv(dev);
6375 
6376 	switch (bpf->command) {
6377 	case XDP_SETUP_PROG:
6378 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6379 	case XDP_SETUP_XSK_POOL:
6380 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6381 					     bpf->xsk.queue_id);
6382 	default:
6383 		return -EOPNOTSUPP;
6384 	}
6385 }
6386 
6387 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6388 			   struct xdp_frame **frames, u32 flags)
6389 {
6390 	struct stmmac_priv *priv = netdev_priv(dev);
6391 	int cpu = smp_processor_id();
6392 	struct netdev_queue *nq;
6393 	int i, nxmit = 0;
6394 	int queue;
6395 
6396 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6397 		return -ENETDOWN;
6398 
6399 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6400 		return -EINVAL;
6401 
6402 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6403 	nq = netdev_get_tx_queue(priv->dev, queue);
6404 
6405 	__netif_tx_lock(nq, cpu);
6406 	/* Avoids TX time-out as we are sharing with slow path */
6407 	txq_trans_cond_update(nq);
6408 
6409 	for (i = 0; i < num_frames; i++) {
6410 		int res;
6411 
6412 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6413 		if (res == STMMAC_XDP_CONSUMED)
6414 			break;
6415 
6416 		nxmit++;
6417 	}
6418 
6419 	if (flags & XDP_XMIT_FLUSH) {
6420 		stmmac_flush_tx_descriptors(priv, queue);
6421 		stmmac_tx_timer_arm(priv, queue);
6422 	}
6423 
6424 	__netif_tx_unlock(nq);
6425 
6426 	return nxmit;
6427 }
6428 
6429 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6430 {
6431 	struct stmmac_channel *ch = &priv->channel[queue];
6432 	unsigned long flags;
6433 
6434 	spin_lock_irqsave(&ch->lock, flags);
6435 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6436 	spin_unlock_irqrestore(&ch->lock, flags);
6437 
6438 	stmmac_stop_rx_dma(priv, queue);
6439 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6440 }
6441 
6442 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6443 {
6444 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6445 	struct stmmac_channel *ch = &priv->channel[queue];
6446 	unsigned long flags;
6447 	u32 buf_size;
6448 	int ret;
6449 
6450 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6451 	if (ret) {
6452 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6453 		return;
6454 	}
6455 
6456 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6457 	if (ret) {
6458 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6459 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6460 		return;
6461 	}
6462 
6463 	stmmac_reset_rx_queue(priv, queue);
6464 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6465 
6466 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6467 			    rx_q->dma_rx_phy, rx_q->queue_index);
6468 
6469 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6470 			     sizeof(struct dma_desc));
6471 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6472 			       rx_q->rx_tail_addr, rx_q->queue_index);
6473 
6474 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6475 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6476 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6477 				      buf_size,
6478 				      rx_q->queue_index);
6479 	} else {
6480 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6481 				      priv->dma_conf.dma_buf_sz,
6482 				      rx_q->queue_index);
6483 	}
6484 
6485 	stmmac_start_rx_dma(priv, queue);
6486 
6487 	spin_lock_irqsave(&ch->lock, flags);
6488 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6489 	spin_unlock_irqrestore(&ch->lock, flags);
6490 }
6491 
6492 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6493 {
6494 	struct stmmac_channel *ch = &priv->channel[queue];
6495 	unsigned long flags;
6496 
6497 	spin_lock_irqsave(&ch->lock, flags);
6498 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6499 	spin_unlock_irqrestore(&ch->lock, flags);
6500 
6501 	stmmac_stop_tx_dma(priv, queue);
6502 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6503 }
6504 
6505 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6506 {
6507 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6508 	struct stmmac_channel *ch = &priv->channel[queue];
6509 	unsigned long flags;
6510 	int ret;
6511 
6512 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6513 	if (ret) {
6514 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6515 		return;
6516 	}
6517 
6518 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6519 	if (ret) {
6520 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6521 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6522 		return;
6523 	}
6524 
6525 	stmmac_reset_tx_queue(priv, queue);
6526 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6527 
6528 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6529 			    tx_q->dma_tx_phy, tx_q->queue_index);
6530 
6531 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6532 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6533 
6534 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6535 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6536 			       tx_q->tx_tail_addr, tx_q->queue_index);
6537 
6538 	stmmac_start_tx_dma(priv, queue);
6539 
6540 	spin_lock_irqsave(&ch->lock, flags);
6541 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6542 	spin_unlock_irqrestore(&ch->lock, flags);
6543 }
6544 
6545 void stmmac_xdp_release(struct net_device *dev)
6546 {
6547 	struct stmmac_priv *priv = netdev_priv(dev);
6548 	u32 chan;
6549 
6550 	/* Ensure tx function is not running */
6551 	netif_tx_disable(dev);
6552 
6553 	/* Disable NAPI process */
6554 	stmmac_disable_all_queues(priv);
6555 
6556 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6557 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6558 
6559 	/* Free the IRQ lines */
6560 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6561 
6562 	/* Stop TX/RX DMA channels */
6563 	stmmac_stop_all_dma(priv);
6564 
6565 	/* Release and free the Rx/Tx resources */
6566 	free_dma_desc_resources(priv, &priv->dma_conf);
6567 
6568 	/* Disable the MAC Rx/Tx */
6569 	stmmac_mac_set(priv, priv->ioaddr, false);
6570 
6571 	/* set trans_start so we don't get spurious
6572 	 * watchdogs during reset
6573 	 */
6574 	netif_trans_update(dev);
6575 	netif_carrier_off(dev);
6576 }
6577 
6578 int stmmac_xdp_open(struct net_device *dev)
6579 {
6580 	struct stmmac_priv *priv = netdev_priv(dev);
6581 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6582 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6583 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6584 	struct stmmac_rx_queue *rx_q;
6585 	struct stmmac_tx_queue *tx_q;
6586 	u32 buf_size;
6587 	bool sph_en;
6588 	u32 chan;
6589 	int ret;
6590 
6591 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6592 	if (ret < 0) {
6593 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6594 			   __func__);
6595 		goto dma_desc_error;
6596 	}
6597 
6598 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6599 	if (ret < 0) {
6600 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6601 			   __func__);
6602 		goto init_error;
6603 	}
6604 
6605 	/* DMA CSR Channel configuration */
6606 	for (chan = 0; chan < dma_csr_ch; chan++) {
6607 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6608 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6609 	}
6610 
6611 	/* Adjust Split header */
6612 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6613 
6614 	/* DMA RX Channel Configuration */
6615 	for (chan = 0; chan < rx_cnt; chan++) {
6616 		rx_q = &priv->dma_conf.rx_queue[chan];
6617 
6618 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6619 				    rx_q->dma_rx_phy, chan);
6620 
6621 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6622 				     (rx_q->buf_alloc_num *
6623 				      sizeof(struct dma_desc));
6624 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6625 				       rx_q->rx_tail_addr, chan);
6626 
6627 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6628 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6629 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6630 					      buf_size,
6631 					      rx_q->queue_index);
6632 		} else {
6633 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6634 					      priv->dma_conf.dma_buf_sz,
6635 					      rx_q->queue_index);
6636 		}
6637 
6638 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6639 	}
6640 
6641 	/* DMA TX Channel Configuration */
6642 	for (chan = 0; chan < tx_cnt; chan++) {
6643 		tx_q = &priv->dma_conf.tx_queue[chan];
6644 
6645 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6646 				    tx_q->dma_tx_phy, chan);
6647 
6648 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6649 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6650 				       tx_q->tx_tail_addr, chan);
6651 
6652 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6653 		tx_q->txtimer.function = stmmac_tx_timer;
6654 	}
6655 
6656 	/* Enable the MAC Rx/Tx */
6657 	stmmac_mac_set(priv, priv->ioaddr, true);
6658 
6659 	/* Start Rx & Tx DMA Channels */
6660 	stmmac_start_all_dma(priv);
6661 
6662 	ret = stmmac_request_irq(dev);
6663 	if (ret)
6664 		goto irq_error;
6665 
6666 	/* Enable NAPI process*/
6667 	stmmac_enable_all_queues(priv);
6668 	netif_carrier_on(dev);
6669 	netif_tx_start_all_queues(dev);
6670 	stmmac_enable_all_dma_irq(priv);
6671 
6672 	return 0;
6673 
6674 irq_error:
6675 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6676 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6677 
6678 	stmmac_hw_teardown(dev);
6679 init_error:
6680 	free_dma_desc_resources(priv, &priv->dma_conf);
6681 dma_desc_error:
6682 	return ret;
6683 }
6684 
6685 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6686 {
6687 	struct stmmac_priv *priv = netdev_priv(dev);
6688 	struct stmmac_rx_queue *rx_q;
6689 	struct stmmac_tx_queue *tx_q;
6690 	struct stmmac_channel *ch;
6691 
6692 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6693 	    !netif_carrier_ok(priv->dev))
6694 		return -ENETDOWN;
6695 
6696 	if (!stmmac_xdp_is_enabled(priv))
6697 		return -EINVAL;
6698 
6699 	if (queue >= priv->plat->rx_queues_to_use ||
6700 	    queue >= priv->plat->tx_queues_to_use)
6701 		return -EINVAL;
6702 
6703 	rx_q = &priv->dma_conf.rx_queue[queue];
6704 	tx_q = &priv->dma_conf.tx_queue[queue];
6705 	ch = &priv->channel[queue];
6706 
6707 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6708 		return -EINVAL;
6709 
6710 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6711 		/* EQoS does not have per-DMA channel SW interrupt,
6712 		 * so we schedule RX Napi straight-away.
6713 		 */
6714 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6715 			__napi_schedule(&ch->rxtx_napi);
6716 	}
6717 
6718 	return 0;
6719 }
6720 
6721 static const struct net_device_ops stmmac_netdev_ops = {
6722 	.ndo_open = stmmac_open,
6723 	.ndo_start_xmit = stmmac_xmit,
6724 	.ndo_stop = stmmac_release,
6725 	.ndo_change_mtu = stmmac_change_mtu,
6726 	.ndo_fix_features = stmmac_fix_features,
6727 	.ndo_set_features = stmmac_set_features,
6728 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6729 	.ndo_tx_timeout = stmmac_tx_timeout,
6730 	.ndo_eth_ioctl = stmmac_ioctl,
6731 	.ndo_setup_tc = stmmac_setup_tc,
6732 	.ndo_select_queue = stmmac_select_queue,
6733 #ifdef CONFIG_NET_POLL_CONTROLLER
6734 	.ndo_poll_controller = stmmac_poll_controller,
6735 #endif
6736 	.ndo_set_mac_address = stmmac_set_mac_address,
6737 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6738 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6739 	.ndo_bpf = stmmac_bpf,
6740 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6741 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6742 };
6743 
6744 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6745 {
6746 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6747 		return;
6748 	if (test_bit(STMMAC_DOWN, &priv->state))
6749 		return;
6750 
6751 	netdev_err(priv->dev, "Reset adapter.\n");
6752 
6753 	rtnl_lock();
6754 	netif_trans_update(priv->dev);
6755 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6756 		usleep_range(1000, 2000);
6757 
6758 	set_bit(STMMAC_DOWN, &priv->state);
6759 	dev_close(priv->dev);
6760 	dev_open(priv->dev, NULL);
6761 	clear_bit(STMMAC_DOWN, &priv->state);
6762 	clear_bit(STMMAC_RESETING, &priv->state);
6763 	rtnl_unlock();
6764 }
6765 
6766 static void stmmac_service_task(struct work_struct *work)
6767 {
6768 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6769 			service_task);
6770 
6771 	stmmac_reset_subtask(priv);
6772 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6773 }
6774 
6775 /**
6776  *  stmmac_hw_init - Init the MAC device
6777  *  @priv: driver private structure
6778  *  Description: this function is to configure the MAC device according to
6779  *  some platform parameters or the HW capability register. It prepares the
6780  *  driver to use either ring or chain modes and to setup either enhanced or
6781  *  normal descriptors.
6782  */
6783 static int stmmac_hw_init(struct stmmac_priv *priv)
6784 {
6785 	int ret;
6786 
6787 	/* dwmac-sun8i only work in chain mode */
6788 	if (priv->plat->has_sun8i)
6789 		chain_mode = 1;
6790 	priv->chain_mode = chain_mode;
6791 
6792 	/* Initialize HW Interface */
6793 	ret = stmmac_hwif_init(priv);
6794 	if (ret)
6795 		return ret;
6796 
6797 	/* Get the HW capability (new GMAC newer than 3.50a) */
6798 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6799 	if (priv->hw_cap_support) {
6800 		dev_info(priv->device, "DMA HW capability register supported\n");
6801 
6802 		/* We can override some gmac/dma configuration fields: e.g.
6803 		 * enh_desc, tx_coe (e.g. that are passed through the
6804 		 * platform) with the values from the HW capability
6805 		 * register (if supported).
6806 		 */
6807 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6808 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6809 				!priv->plat->use_phy_wol;
6810 		priv->hw->pmt = priv->plat->pmt;
6811 		if (priv->dma_cap.hash_tb_sz) {
6812 			priv->hw->multicast_filter_bins =
6813 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6814 			priv->hw->mcast_bits_log2 =
6815 					ilog2(priv->hw->multicast_filter_bins);
6816 		}
6817 
6818 		/* TXCOE doesn't work in thresh DMA mode */
6819 		if (priv->plat->force_thresh_dma_mode)
6820 			priv->plat->tx_coe = 0;
6821 		else
6822 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6823 
6824 		/* In case of GMAC4 rx_coe is from HW cap register. */
6825 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6826 
6827 		if (priv->dma_cap.rx_coe_type2)
6828 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6829 		else if (priv->dma_cap.rx_coe_type1)
6830 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6831 
6832 	} else {
6833 		dev_info(priv->device, "No HW DMA feature register supported\n");
6834 	}
6835 
6836 	if (priv->plat->rx_coe) {
6837 		priv->hw->rx_csum = priv->plat->rx_coe;
6838 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6839 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6840 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6841 	}
6842 	if (priv->plat->tx_coe)
6843 		dev_info(priv->device, "TX Checksum insertion supported\n");
6844 
6845 	if (priv->plat->pmt) {
6846 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6847 		device_set_wakeup_capable(priv->device, 1);
6848 	}
6849 
6850 	if (priv->dma_cap.tsoen)
6851 		dev_info(priv->device, "TSO supported\n");
6852 
6853 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6854 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6855 
6856 	/* Run HW quirks, if any */
6857 	if (priv->hwif_quirks) {
6858 		ret = priv->hwif_quirks(priv);
6859 		if (ret)
6860 			return ret;
6861 	}
6862 
6863 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6864 	 * In some case, for example on bugged HW this feature
6865 	 * has to be disable and this can be done by passing the
6866 	 * riwt_off field from the platform.
6867 	 */
6868 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6869 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6870 		priv->use_riwt = 1;
6871 		dev_info(priv->device,
6872 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6873 	}
6874 
6875 	return 0;
6876 }
6877 
6878 static void stmmac_napi_add(struct net_device *dev)
6879 {
6880 	struct stmmac_priv *priv = netdev_priv(dev);
6881 	u32 queue, maxq;
6882 
6883 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6884 
6885 	for (queue = 0; queue < maxq; queue++) {
6886 		struct stmmac_channel *ch = &priv->channel[queue];
6887 
6888 		ch->priv_data = priv;
6889 		ch->index = queue;
6890 		spin_lock_init(&ch->lock);
6891 
6892 		if (queue < priv->plat->rx_queues_to_use) {
6893 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
6894 		}
6895 		if (queue < priv->plat->tx_queues_to_use) {
6896 			netif_napi_add_tx(dev, &ch->tx_napi,
6897 					  stmmac_napi_poll_tx);
6898 		}
6899 		if (queue < priv->plat->rx_queues_to_use &&
6900 		    queue < priv->plat->tx_queues_to_use) {
6901 			netif_napi_add(dev, &ch->rxtx_napi,
6902 				       stmmac_napi_poll_rxtx);
6903 		}
6904 	}
6905 }
6906 
6907 static void stmmac_napi_del(struct net_device *dev)
6908 {
6909 	struct stmmac_priv *priv = netdev_priv(dev);
6910 	u32 queue, maxq;
6911 
6912 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6913 
6914 	for (queue = 0; queue < maxq; queue++) {
6915 		struct stmmac_channel *ch = &priv->channel[queue];
6916 
6917 		if (queue < priv->plat->rx_queues_to_use)
6918 			netif_napi_del(&ch->rx_napi);
6919 		if (queue < priv->plat->tx_queues_to_use)
6920 			netif_napi_del(&ch->tx_napi);
6921 		if (queue < priv->plat->rx_queues_to_use &&
6922 		    queue < priv->plat->tx_queues_to_use) {
6923 			netif_napi_del(&ch->rxtx_napi);
6924 		}
6925 	}
6926 }
6927 
6928 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6929 {
6930 	struct stmmac_priv *priv = netdev_priv(dev);
6931 	int ret = 0;
6932 
6933 	if (netif_running(dev))
6934 		stmmac_release(dev);
6935 
6936 	stmmac_napi_del(dev);
6937 
6938 	priv->plat->rx_queues_to_use = rx_cnt;
6939 	priv->plat->tx_queues_to_use = tx_cnt;
6940 
6941 	stmmac_napi_add(dev);
6942 
6943 	if (netif_running(dev))
6944 		ret = stmmac_open(dev);
6945 
6946 	return ret;
6947 }
6948 
6949 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6950 {
6951 	struct stmmac_priv *priv = netdev_priv(dev);
6952 	int ret = 0;
6953 
6954 	if (netif_running(dev))
6955 		stmmac_release(dev);
6956 
6957 	priv->dma_conf.dma_rx_size = rx_size;
6958 	priv->dma_conf.dma_tx_size = tx_size;
6959 
6960 	if (netif_running(dev))
6961 		ret = stmmac_open(dev);
6962 
6963 	return ret;
6964 }
6965 
6966 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6967 static void stmmac_fpe_lp_task(struct work_struct *work)
6968 {
6969 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6970 						fpe_task);
6971 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6972 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6973 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6974 	bool *hs_enable = &fpe_cfg->hs_enable;
6975 	bool *enable = &fpe_cfg->enable;
6976 	int retries = 20;
6977 
6978 	while (retries-- > 0) {
6979 		/* Bail out immediately if FPE handshake is OFF */
6980 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6981 			break;
6982 
6983 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6984 		    *lp_state == FPE_STATE_ENTERING_ON) {
6985 			stmmac_fpe_configure(priv, priv->ioaddr,
6986 					     priv->plat->tx_queues_to_use,
6987 					     priv->plat->rx_queues_to_use,
6988 					     *enable);
6989 
6990 			netdev_info(priv->dev, "configured FPE\n");
6991 
6992 			*lo_state = FPE_STATE_ON;
6993 			*lp_state = FPE_STATE_ON;
6994 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6995 			break;
6996 		}
6997 
6998 		if ((*lo_state == FPE_STATE_CAPABLE ||
6999 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7000 		     *lp_state != FPE_STATE_ON) {
7001 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7002 				    *lo_state, *lp_state);
7003 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7004 						MPACKET_VERIFY);
7005 		}
7006 		/* Sleep then retry */
7007 		msleep(500);
7008 	}
7009 
7010 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7011 }
7012 
7013 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7014 {
7015 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7016 		if (enable) {
7017 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7018 						MPACKET_VERIFY);
7019 		} else {
7020 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7021 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7022 		}
7023 
7024 		priv->plat->fpe_cfg->hs_enable = enable;
7025 	}
7026 }
7027 
7028 /**
7029  * stmmac_dvr_probe
7030  * @device: device pointer
7031  * @plat_dat: platform data pointer
7032  * @res: stmmac resource pointer
7033  * Description: this is the main probe function used to
7034  * call the alloc_etherdev, allocate the priv structure.
7035  * Return:
7036  * returns 0 on success, otherwise errno.
7037  */
7038 int stmmac_dvr_probe(struct device *device,
7039 		     struct plat_stmmacenet_data *plat_dat,
7040 		     struct stmmac_resources *res)
7041 {
7042 	struct net_device *ndev = NULL;
7043 	struct stmmac_priv *priv;
7044 	u32 rxq;
7045 	int i, ret = 0;
7046 
7047 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7048 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7049 	if (!ndev)
7050 		return -ENOMEM;
7051 
7052 	SET_NETDEV_DEV(ndev, device);
7053 
7054 	priv = netdev_priv(ndev);
7055 	priv->device = device;
7056 	priv->dev = ndev;
7057 
7058 	stmmac_set_ethtool_ops(ndev);
7059 	priv->pause = pause;
7060 	priv->plat = plat_dat;
7061 	priv->ioaddr = res->addr;
7062 	priv->dev->base_addr = (unsigned long)res->addr;
7063 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7064 
7065 	priv->dev->irq = res->irq;
7066 	priv->wol_irq = res->wol_irq;
7067 	priv->lpi_irq = res->lpi_irq;
7068 	priv->sfty_ce_irq = res->sfty_ce_irq;
7069 	priv->sfty_ue_irq = res->sfty_ue_irq;
7070 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7071 		priv->rx_irq[i] = res->rx_irq[i];
7072 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7073 		priv->tx_irq[i] = res->tx_irq[i];
7074 
7075 	if (!is_zero_ether_addr(res->mac))
7076 		eth_hw_addr_set(priv->dev, res->mac);
7077 
7078 	dev_set_drvdata(device, priv->dev);
7079 
7080 	/* Verify driver arguments */
7081 	stmmac_verify_args();
7082 
7083 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7084 	if (!priv->af_xdp_zc_qps)
7085 		return -ENOMEM;
7086 
7087 	/* Allocate workqueue */
7088 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7089 	if (!priv->wq) {
7090 		dev_err(priv->device, "failed to create workqueue\n");
7091 		return -ENOMEM;
7092 	}
7093 
7094 	INIT_WORK(&priv->service_task, stmmac_service_task);
7095 
7096 	/* Initialize Link Partner FPE workqueue */
7097 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7098 
7099 	/* Override with kernel parameters if supplied XXX CRS XXX
7100 	 * this needs to have multiple instances
7101 	 */
7102 	if ((phyaddr >= 0) && (phyaddr <= 31))
7103 		priv->plat->phy_addr = phyaddr;
7104 
7105 	if (priv->plat->stmmac_rst) {
7106 		ret = reset_control_assert(priv->plat->stmmac_rst);
7107 		reset_control_deassert(priv->plat->stmmac_rst);
7108 		/* Some reset controllers have only reset callback instead of
7109 		 * assert + deassert callbacks pair.
7110 		 */
7111 		if (ret == -ENOTSUPP)
7112 			reset_control_reset(priv->plat->stmmac_rst);
7113 	}
7114 
7115 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7116 	if (ret == -ENOTSUPP)
7117 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7118 			ERR_PTR(ret));
7119 
7120 	/* Init MAC and get the capabilities */
7121 	ret = stmmac_hw_init(priv);
7122 	if (ret)
7123 		goto error_hw_init;
7124 
7125 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7126 	 */
7127 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7128 		priv->plat->dma_cfg->dche = false;
7129 
7130 	stmmac_check_ether_addr(priv);
7131 
7132 	ndev->netdev_ops = &stmmac_netdev_ops;
7133 
7134 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7135 			    NETIF_F_RXCSUM;
7136 
7137 	ret = stmmac_tc_init(priv, priv);
7138 	if (!ret) {
7139 		ndev->hw_features |= NETIF_F_HW_TC;
7140 	}
7141 
7142 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7143 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7144 		if (priv->plat->has_gmac4)
7145 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7146 		priv->tso = true;
7147 		dev_info(priv->device, "TSO feature enabled\n");
7148 	}
7149 
7150 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7151 		ndev->hw_features |= NETIF_F_GRO;
7152 		priv->sph_cap = true;
7153 		priv->sph = priv->sph_cap;
7154 		dev_info(priv->device, "SPH feature enabled\n");
7155 	}
7156 
7157 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7158 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7159 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7160 	 * So overwrite dma_cap.addr64 according to HW real design.
7161 	 */
7162 	if (priv->plat->addr64)
7163 		priv->dma_cap.addr64 = priv->plat->addr64;
7164 
7165 	if (priv->dma_cap.addr64) {
7166 		ret = dma_set_mask_and_coherent(device,
7167 				DMA_BIT_MASK(priv->dma_cap.addr64));
7168 		if (!ret) {
7169 			dev_info(priv->device, "Using %d bits DMA width\n",
7170 				 priv->dma_cap.addr64);
7171 
7172 			/*
7173 			 * If more than 32 bits can be addressed, make sure to
7174 			 * enable enhanced addressing mode.
7175 			 */
7176 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7177 				priv->plat->dma_cfg->eame = true;
7178 		} else {
7179 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7180 			if (ret) {
7181 				dev_err(priv->device, "Failed to set DMA Mask\n");
7182 				goto error_hw_init;
7183 			}
7184 
7185 			priv->dma_cap.addr64 = 32;
7186 		}
7187 	}
7188 
7189 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7190 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7191 #ifdef STMMAC_VLAN_TAG_USED
7192 	/* Both mac100 and gmac support receive VLAN tag detection */
7193 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7194 	if (priv->dma_cap.vlhash) {
7195 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7196 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7197 	}
7198 	if (priv->dma_cap.vlins) {
7199 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7200 		if (priv->dma_cap.dvlan)
7201 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7202 	}
7203 #endif
7204 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7205 
7206 	/* Initialize RSS */
7207 	rxq = priv->plat->rx_queues_to_use;
7208 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7209 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7210 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7211 
7212 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7213 		ndev->features |= NETIF_F_RXHASH;
7214 
7215 	/* MTU range: 46 - hw-specific max */
7216 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7217 	if (priv->plat->has_xgmac)
7218 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7219 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7220 		ndev->max_mtu = JUMBO_LEN;
7221 	else
7222 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7223 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7224 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7225 	 */
7226 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7227 	    (priv->plat->maxmtu >= ndev->min_mtu))
7228 		ndev->max_mtu = priv->plat->maxmtu;
7229 	else if (priv->plat->maxmtu < ndev->min_mtu)
7230 		dev_warn(priv->device,
7231 			 "%s: warning: maxmtu having invalid value (%d)\n",
7232 			 __func__, priv->plat->maxmtu);
7233 
7234 	if (flow_ctrl)
7235 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7236 
7237 	/* Setup channels NAPI */
7238 	stmmac_napi_add(ndev);
7239 
7240 	mutex_init(&priv->lock);
7241 
7242 	/* If a specific clk_csr value is passed from the platform
7243 	 * this means that the CSR Clock Range selection cannot be
7244 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7245 	 * set the MDC clock dynamically according to the csr actual
7246 	 * clock input.
7247 	 */
7248 	if (priv->plat->clk_csr >= 0)
7249 		priv->clk_csr = priv->plat->clk_csr;
7250 	else
7251 		stmmac_clk_csr_set(priv);
7252 
7253 	stmmac_check_pcs_mode(priv);
7254 
7255 	pm_runtime_get_noresume(device);
7256 	pm_runtime_set_active(device);
7257 	if (!pm_runtime_enabled(device))
7258 		pm_runtime_enable(device);
7259 
7260 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7261 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7262 		/* MDIO bus Registration */
7263 		ret = stmmac_mdio_register(ndev);
7264 		if (ret < 0) {
7265 			dev_err_probe(priv->device, ret,
7266 				      "%s: MDIO bus (id: %d) registration failed\n",
7267 				      __func__, priv->plat->bus_id);
7268 			goto error_mdio_register;
7269 		}
7270 	}
7271 
7272 	if (priv->plat->speed_mode_2500)
7273 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7274 
7275 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7276 		ret = stmmac_xpcs_setup(priv->mii);
7277 		if (ret)
7278 			goto error_xpcs_setup;
7279 	}
7280 
7281 	ret = stmmac_phy_setup(priv);
7282 	if (ret) {
7283 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7284 		goto error_phy_setup;
7285 	}
7286 
7287 	ret = register_netdev(ndev);
7288 	if (ret) {
7289 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7290 			__func__, ret);
7291 		goto error_netdev_register;
7292 	}
7293 
7294 #ifdef CONFIG_DEBUG_FS
7295 	stmmac_init_fs(ndev);
7296 #endif
7297 
7298 	if (priv->plat->dump_debug_regs)
7299 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7300 
7301 	/* Let pm_runtime_put() disable the clocks.
7302 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7303 	 */
7304 	pm_runtime_put(device);
7305 
7306 	return ret;
7307 
7308 error_netdev_register:
7309 	phylink_destroy(priv->phylink);
7310 error_xpcs_setup:
7311 error_phy_setup:
7312 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7313 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7314 		stmmac_mdio_unregister(ndev);
7315 error_mdio_register:
7316 	stmmac_napi_del(ndev);
7317 error_hw_init:
7318 	destroy_workqueue(priv->wq);
7319 	bitmap_free(priv->af_xdp_zc_qps);
7320 
7321 	return ret;
7322 }
7323 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7324 
7325 /**
7326  * stmmac_dvr_remove
7327  * @dev: device pointer
7328  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7329  * changes the link status, releases the DMA descriptor rings.
7330  */
7331 int stmmac_dvr_remove(struct device *dev)
7332 {
7333 	struct net_device *ndev = dev_get_drvdata(dev);
7334 	struct stmmac_priv *priv = netdev_priv(ndev);
7335 
7336 	netdev_info(priv->dev, "%s: removing driver", __func__);
7337 
7338 	pm_runtime_get_sync(dev);
7339 
7340 	stmmac_stop_all_dma(priv);
7341 	stmmac_mac_set(priv, priv->ioaddr, false);
7342 	netif_carrier_off(ndev);
7343 	unregister_netdev(ndev);
7344 
7345 	/* Serdes power down needs to happen after VLAN filter
7346 	 * is deleted that is triggered by unregister_netdev().
7347 	 */
7348 	if (priv->plat->serdes_powerdown)
7349 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7350 
7351 #ifdef CONFIG_DEBUG_FS
7352 	stmmac_exit_fs(ndev);
7353 #endif
7354 	phylink_destroy(priv->phylink);
7355 	if (priv->plat->stmmac_rst)
7356 		reset_control_assert(priv->plat->stmmac_rst);
7357 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7358 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7359 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7360 		stmmac_mdio_unregister(ndev);
7361 	destroy_workqueue(priv->wq);
7362 	mutex_destroy(&priv->lock);
7363 	bitmap_free(priv->af_xdp_zc_qps);
7364 
7365 	pm_runtime_disable(dev);
7366 	pm_runtime_put_noidle(dev);
7367 
7368 	return 0;
7369 }
7370 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7371 
7372 /**
7373  * stmmac_suspend - suspend callback
7374  * @dev: device pointer
7375  * Description: this is the function to suspend the device and it is called
7376  * by the platform driver to stop the network queue, release the resources,
7377  * program the PMT register (for WoL), clean and release driver resources.
7378  */
7379 int stmmac_suspend(struct device *dev)
7380 {
7381 	struct net_device *ndev = dev_get_drvdata(dev);
7382 	struct stmmac_priv *priv = netdev_priv(ndev);
7383 	u32 chan;
7384 
7385 	if (!ndev || !netif_running(ndev))
7386 		return 0;
7387 
7388 	mutex_lock(&priv->lock);
7389 
7390 	netif_device_detach(ndev);
7391 
7392 	stmmac_disable_all_queues(priv);
7393 
7394 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7395 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7396 
7397 	if (priv->eee_enabled) {
7398 		priv->tx_path_in_lpi_mode = false;
7399 		del_timer_sync(&priv->eee_ctrl_timer);
7400 	}
7401 
7402 	/* Stop TX/RX DMA */
7403 	stmmac_stop_all_dma(priv);
7404 
7405 	if (priv->plat->serdes_powerdown)
7406 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7407 
7408 	/* Enable Power down mode by programming the PMT regs */
7409 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7410 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7411 		priv->irq_wake = 1;
7412 	} else {
7413 		stmmac_mac_set(priv, priv->ioaddr, false);
7414 		pinctrl_pm_select_sleep_state(priv->device);
7415 	}
7416 
7417 	mutex_unlock(&priv->lock);
7418 
7419 	rtnl_lock();
7420 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7421 		phylink_suspend(priv->phylink, true);
7422 	} else {
7423 		if (device_may_wakeup(priv->device))
7424 			phylink_speed_down(priv->phylink, false);
7425 		phylink_suspend(priv->phylink, false);
7426 	}
7427 	rtnl_unlock();
7428 
7429 	if (priv->dma_cap.fpesel) {
7430 		/* Disable FPE */
7431 		stmmac_fpe_configure(priv, priv->ioaddr,
7432 				     priv->plat->tx_queues_to_use,
7433 				     priv->plat->rx_queues_to_use, false);
7434 
7435 		stmmac_fpe_handshake(priv, false);
7436 		stmmac_fpe_stop_wq(priv);
7437 	}
7438 
7439 	priv->speed = SPEED_UNKNOWN;
7440 	return 0;
7441 }
7442 EXPORT_SYMBOL_GPL(stmmac_suspend);
7443 
7444 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7445 {
7446 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7447 
7448 	rx_q->cur_rx = 0;
7449 	rx_q->dirty_rx = 0;
7450 }
7451 
7452 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7453 {
7454 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7455 
7456 	tx_q->cur_tx = 0;
7457 	tx_q->dirty_tx = 0;
7458 	tx_q->mss = 0;
7459 
7460 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7461 }
7462 
7463 /**
7464  * stmmac_reset_queues_param - reset queue parameters
7465  * @priv: device pointer
7466  */
7467 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7468 {
7469 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7470 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7471 	u32 queue;
7472 
7473 	for (queue = 0; queue < rx_cnt; queue++)
7474 		stmmac_reset_rx_queue(priv, queue);
7475 
7476 	for (queue = 0; queue < tx_cnt; queue++)
7477 		stmmac_reset_tx_queue(priv, queue);
7478 }
7479 
7480 /**
7481  * stmmac_resume - resume callback
7482  * @dev: device pointer
7483  * Description: when resume this function is invoked to setup the DMA and CORE
7484  * in a usable state.
7485  */
7486 int stmmac_resume(struct device *dev)
7487 {
7488 	struct net_device *ndev = dev_get_drvdata(dev);
7489 	struct stmmac_priv *priv = netdev_priv(ndev);
7490 	int ret;
7491 
7492 	if (!netif_running(ndev))
7493 		return 0;
7494 
7495 	/* Power Down bit, into the PM register, is cleared
7496 	 * automatically as soon as a magic packet or a Wake-up frame
7497 	 * is received. Anyway, it's better to manually clear
7498 	 * this bit because it can generate problems while resuming
7499 	 * from another devices (e.g. serial console).
7500 	 */
7501 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7502 		mutex_lock(&priv->lock);
7503 		stmmac_pmt(priv, priv->hw, 0);
7504 		mutex_unlock(&priv->lock);
7505 		priv->irq_wake = 0;
7506 	} else {
7507 		pinctrl_pm_select_default_state(priv->device);
7508 		/* reset the phy so that it's ready */
7509 		if (priv->mii)
7510 			stmmac_mdio_reset(priv->mii);
7511 	}
7512 
7513 	if (priv->plat->serdes_powerup) {
7514 		ret = priv->plat->serdes_powerup(ndev,
7515 						 priv->plat->bsp_priv);
7516 
7517 		if (ret < 0)
7518 			return ret;
7519 	}
7520 
7521 	rtnl_lock();
7522 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7523 		phylink_resume(priv->phylink);
7524 	} else {
7525 		phylink_resume(priv->phylink);
7526 		if (device_may_wakeup(priv->device))
7527 			phylink_speed_up(priv->phylink);
7528 	}
7529 	rtnl_unlock();
7530 
7531 	rtnl_lock();
7532 	mutex_lock(&priv->lock);
7533 
7534 	stmmac_reset_queues_param(priv);
7535 
7536 	stmmac_free_tx_skbufs(priv);
7537 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7538 
7539 	stmmac_hw_setup(ndev, false);
7540 	stmmac_init_coalesce(priv);
7541 	stmmac_set_rx_mode(ndev);
7542 
7543 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7544 
7545 	stmmac_enable_all_queues(priv);
7546 	stmmac_enable_all_dma_irq(priv);
7547 
7548 	mutex_unlock(&priv->lock);
7549 	rtnl_unlock();
7550 
7551 	netif_device_attach(ndev);
7552 
7553 	return 0;
7554 }
7555 EXPORT_SYMBOL_GPL(stmmac_resume);
7556 
7557 #ifndef MODULE
7558 static int __init stmmac_cmdline_opt(char *str)
7559 {
7560 	char *opt;
7561 
7562 	if (!str || !*str)
7563 		return 1;
7564 	while ((opt = strsep(&str, ",")) != NULL) {
7565 		if (!strncmp(opt, "debug:", 6)) {
7566 			if (kstrtoint(opt + 6, 0, &debug))
7567 				goto err;
7568 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7569 			if (kstrtoint(opt + 8, 0, &phyaddr))
7570 				goto err;
7571 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7572 			if (kstrtoint(opt + 7, 0, &buf_sz))
7573 				goto err;
7574 		} else if (!strncmp(opt, "tc:", 3)) {
7575 			if (kstrtoint(opt + 3, 0, &tc))
7576 				goto err;
7577 		} else if (!strncmp(opt, "watchdog:", 9)) {
7578 			if (kstrtoint(opt + 9, 0, &watchdog))
7579 				goto err;
7580 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7581 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7582 				goto err;
7583 		} else if (!strncmp(opt, "pause:", 6)) {
7584 			if (kstrtoint(opt + 6, 0, &pause))
7585 				goto err;
7586 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7587 			if (kstrtoint(opt + 10, 0, &eee_timer))
7588 				goto err;
7589 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7590 			if (kstrtoint(opt + 11, 0, &chain_mode))
7591 				goto err;
7592 		}
7593 	}
7594 	return 1;
7595 
7596 err:
7597 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7598 	return 1;
7599 }
7600 
7601 __setup("stmmaceth=", stmmac_cmdline_opt);
7602 #endif /* MODULE */
7603 
7604 static int __init stmmac_init(void)
7605 {
7606 #ifdef CONFIG_DEBUG_FS
7607 	/* Create debugfs main directory if it doesn't exist yet */
7608 	if (!stmmac_fs_dir)
7609 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7610 	register_netdevice_notifier(&stmmac_notifier);
7611 #endif
7612 
7613 	return 0;
7614 }
7615 
7616 static void __exit stmmac_exit(void)
7617 {
7618 #ifdef CONFIG_DEBUG_FS
7619 	unregister_netdevice_notifier(&stmmac_notifier);
7620 	debugfs_remove_recursive(stmmac_fs_dir);
7621 #endif
7622 }
7623 
7624 module_init(stmmac_init)
7625 module_exit(stmmac_exit)
7626 
7627 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7628 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7629 MODULE_LICENSE("GPL");
7630