1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 #include "dwmac1000.h"
57 
58 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, S_IRUGO | S_IWUSR);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, S_IRUGO | S_IWUSR);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, S_IRUGO);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define DMA_TX_SIZE 256
75 static int dma_txsize = DMA_TX_SIZE;
76 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
77 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
78 
79 #define DMA_RX_SIZE 256
80 static int dma_rxsize = DMA_RX_SIZE;
81 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
82 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
83 
84 static int flow_ctrl = FLOW_OFF;
85 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
86 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
87 
88 static int pause = PAUSE_TIME;
89 module_param(pause, int, S_IRUGO | S_IWUSR);
90 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
91 
92 #define TC_DEFAULT 64
93 static int tc = TC_DEFAULT;
94 module_param(tc, int, S_IRUGO | S_IWUSR);
95 MODULE_PARM_DESC(tc, "DMA threshold control value");
96 
97 #define	DEFAULT_BUFSIZE	1536
98 static int buf_sz = DEFAULT_BUFSIZE;
99 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
101 
102 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
103 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
104 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
105 
106 #define STMMAC_DEFAULT_LPI_TIMER	1000
107 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
108 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
110 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
111 
112 /* By default the driver will use the ring mode to manage tx and rx descriptors
113  * but passing this value so user can force to use the chain instead of the ring
114  */
115 static unsigned int chain_mode;
116 module_param(chain_mode, int, S_IRUGO);
117 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
118 
119 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
120 
121 #ifdef CONFIG_DEBUG_FS
122 static int stmmac_init_fs(struct net_device *dev);
123 static void stmmac_exit_fs(struct net_device *dev);
124 #endif
125 
126 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
127 
128 /**
129  * stmmac_verify_args - verify the driver parameters.
130  * Description: it checks the driver parameters and set a default in case of
131  * errors.
132  */
133 static void stmmac_verify_args(void)
134 {
135 	if (unlikely(watchdog < 0))
136 		watchdog = TX_TIMEO;
137 	if (unlikely(dma_rxsize < 0))
138 		dma_rxsize = DMA_RX_SIZE;
139 	if (unlikely(dma_txsize < 0))
140 		dma_txsize = DMA_TX_SIZE;
141 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
142 		buf_sz = DEFAULT_BUFSIZE;
143 	if (unlikely(flow_ctrl > 1))
144 		flow_ctrl = FLOW_AUTO;
145 	else if (likely(flow_ctrl < 0))
146 		flow_ctrl = FLOW_OFF;
147 	if (unlikely((pause < 0) || (pause > 0xffff)))
148 		pause = PAUSE_TIME;
149 	if (eee_timer < 0)
150 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
151 }
152 
153 /**
154  * stmmac_clk_csr_set - dynamically set the MDC clock
155  * @priv: driver private structure
156  * Description: this is to dynamically set the MDC clock according to the csr
157  * clock input.
158  * Note:
159  *	If a specific clk_csr value is passed from the platform
160  *	this means that the CSR Clock Range selection cannot be
161  *	changed at run-time and it is fixed (as reported in the driver
162  *	documentation). Viceversa the driver will try to set the MDC
163  *	clock dynamically according to the actual clock input.
164  */
165 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
166 {
167 	u32 clk_rate;
168 
169 	clk_rate = clk_get_rate(priv->stmmac_clk);
170 
171 	/* Platform provided default clk_csr would be assumed valid
172 	 * for all other cases except for the below mentioned ones.
173 	 * For values higher than the IEEE 802.3 specified frequency
174 	 * we can not estimate the proper divider as it is not known
175 	 * the frequency of clk_csr_i. So we do not change the default
176 	 * divider.
177 	 */
178 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
179 		if (clk_rate < CSR_F_35M)
180 			priv->clk_csr = STMMAC_CSR_20_35M;
181 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
182 			priv->clk_csr = STMMAC_CSR_35_60M;
183 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
184 			priv->clk_csr = STMMAC_CSR_60_100M;
185 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
186 			priv->clk_csr = STMMAC_CSR_100_150M;
187 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
188 			priv->clk_csr = STMMAC_CSR_150_250M;
189 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
190 			priv->clk_csr = STMMAC_CSR_250_300M;
191 	}
192 }
193 
194 static void print_pkt(unsigned char *buf, int len)
195 {
196 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
197 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
198 }
199 
200 /* minimum number of free TX descriptors required to wake up TX process */
201 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
202 
203 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
204 {
205 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
206 }
207 
208 /**
209  * stmmac_hw_fix_mac_speed - callback for speed selection
210  * @priv: driver private structure
211  * Description: on some platforms (e.g. ST), some HW system configuraton
212  * registers have to be set according to the link speed negotiated.
213  */
214 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
215 {
216 	struct phy_device *phydev = priv->phydev;
217 
218 	if (likely(priv->plat->fix_mac_speed))
219 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
220 }
221 
222 /**
223  * stmmac_enable_eee_mode - check and enter in LPI mode
224  * @priv: driver private structure
225  * Description: this function is to verify and enter in LPI mode in case of
226  * EEE.
227  */
228 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
229 {
230 	/* Check and enter in LPI mode */
231 	if ((priv->dirty_tx == priv->cur_tx) &&
232 	    (priv->tx_path_in_lpi_mode == false))
233 		priv->hw->mac->set_eee_mode(priv->hw);
234 }
235 
236 /**
237  * stmmac_disable_eee_mode - disable and exit from LPI mode
238  * @priv: driver private structure
239  * Description: this function is to exit and disable EEE in case of
240  * LPI state is true. This is called by the xmit.
241  */
242 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
243 {
244 	priv->hw->mac->reset_eee_mode(priv->hw);
245 	del_timer_sync(&priv->eee_ctrl_timer);
246 	priv->tx_path_in_lpi_mode = false;
247 }
248 
249 /**
250  * stmmac_eee_ctrl_timer - EEE TX SW timer.
251  * @arg : data hook
252  * Description:
253  *  if there is no data transfer and if we are not in LPI state,
254  *  then MAC Transmitter can be moved to LPI state.
255  */
256 static void stmmac_eee_ctrl_timer(unsigned long arg)
257 {
258 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
259 
260 	stmmac_enable_eee_mode(priv);
261 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
262 }
263 
264 /**
265  * stmmac_eee_init - init EEE
266  * @priv: driver private structure
267  * Description:
268  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
269  *  can also manage EEE, this function enable the LPI state and start related
270  *  timer.
271  */
272 bool stmmac_eee_init(struct stmmac_priv *priv)
273 {
274 	char *phy_bus_name = priv->plat->phy_bus_name;
275 	unsigned long flags;
276 	bool ret = false;
277 
278 	/* Using PCS we cannot dial with the phy registers at this stage
279 	 * so we do not support extra feature like EEE.
280 	 */
281 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
282 	    (priv->pcs == STMMAC_PCS_RTBI))
283 		goto out;
284 
285 	/* Never init EEE in case of a switch is attached */
286 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
287 		goto out;
288 
289 	/* MAC core supports the EEE feature. */
290 	if (priv->dma_cap.eee) {
291 		int tx_lpi_timer = priv->tx_lpi_timer;
292 
293 		/* Check if the PHY supports EEE */
294 		if (phy_init_eee(priv->phydev, 1)) {
295 			/* To manage at run-time if the EEE cannot be supported
296 			 * anymore (for example because the lp caps have been
297 			 * changed).
298 			 * In that case the driver disable own timers.
299 			 */
300 			spin_lock_irqsave(&priv->lock, flags);
301 			if (priv->eee_active) {
302 				pr_debug("stmmac: disable EEE\n");
303 				del_timer_sync(&priv->eee_ctrl_timer);
304 				priv->hw->mac->set_eee_timer(priv->hw, 0,
305 							     tx_lpi_timer);
306 			}
307 			priv->eee_active = 0;
308 			spin_unlock_irqrestore(&priv->lock, flags);
309 			goto out;
310 		}
311 		/* Activate the EEE and start timers */
312 		spin_lock_irqsave(&priv->lock, flags);
313 		if (!priv->eee_active) {
314 			priv->eee_active = 1;
315 			setup_timer(&priv->eee_ctrl_timer,
316 				    stmmac_eee_ctrl_timer,
317 				    (unsigned long)priv);
318 			mod_timer(&priv->eee_ctrl_timer,
319 				  STMMAC_LPI_T(eee_timer));
320 
321 			priv->hw->mac->set_eee_timer(priv->hw,
322 						     STMMAC_DEFAULT_LIT_LS,
323 						     tx_lpi_timer);
324 		}
325 		/* Set HW EEE according to the speed */
326 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
327 
328 		ret = true;
329 		spin_unlock_irqrestore(&priv->lock, flags);
330 
331 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
332 	}
333 out:
334 	return ret;
335 }
336 
337 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
338  * @priv: driver private structure
339  * @entry : descriptor index to be used.
340  * @skb : the socket buffer
341  * Description :
342  * This function will read timestamp from the descriptor & pass it to stack.
343  * and also perform some sanity checks.
344  */
345 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
346 				   unsigned int entry, struct sk_buff *skb)
347 {
348 	struct skb_shared_hwtstamps shhwtstamp;
349 	u64 ns;
350 	void *desc = NULL;
351 
352 	if (!priv->hwts_tx_en)
353 		return;
354 
355 	/* exit if skb doesn't support hw tstamp */
356 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
357 		return;
358 
359 	if (priv->adv_ts)
360 		desc = (priv->dma_etx + entry);
361 	else
362 		desc = (priv->dma_tx + entry);
363 
364 	/* check tx tstamp status */
365 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
366 		return;
367 
368 	/* get the valid tstamp */
369 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
370 
371 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
372 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
373 	/* pass tstamp to stack */
374 	skb_tstamp_tx(skb, &shhwtstamp);
375 
376 	return;
377 }
378 
379 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
380  * @priv: driver private structure
381  * @entry : descriptor index to be used.
382  * @skb : the socket buffer
383  * Description :
384  * This function will read received packet's timestamp from the descriptor
385  * and pass it to stack. It also perform some sanity checks.
386  */
387 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
388 				   unsigned int entry, struct sk_buff *skb)
389 {
390 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
391 	u64 ns;
392 	void *desc = NULL;
393 
394 	if (!priv->hwts_rx_en)
395 		return;
396 
397 	if (priv->adv_ts)
398 		desc = (priv->dma_erx + entry);
399 	else
400 		desc = (priv->dma_rx + entry);
401 
402 	/* exit if rx tstamp is not valid */
403 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
404 		return;
405 
406 	/* get valid tstamp */
407 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
408 	shhwtstamp = skb_hwtstamps(skb);
409 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
410 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
411 }
412 
413 /**
414  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
415  *  @dev: device pointer.
416  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
417  *  a proprietary structure used to pass information to the driver.
418  *  Description:
419  *  This function configures the MAC to enable/disable both outgoing(TX)
420  *  and incoming(RX) packets time stamping based on user input.
421  *  Return Value:
422  *  0 on success and an appropriate -ve integer on failure.
423  */
424 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
425 {
426 	struct stmmac_priv *priv = netdev_priv(dev);
427 	struct hwtstamp_config config;
428 	struct timespec64 now;
429 	u64 temp = 0;
430 	u32 ptp_v2 = 0;
431 	u32 tstamp_all = 0;
432 	u32 ptp_over_ipv4_udp = 0;
433 	u32 ptp_over_ipv6_udp = 0;
434 	u32 ptp_over_ethernet = 0;
435 	u32 snap_type_sel = 0;
436 	u32 ts_master_en = 0;
437 	u32 ts_event_en = 0;
438 	u32 value = 0;
439 	u32 sec_inc;
440 
441 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
442 		netdev_alert(priv->dev, "No support for HW time stamping\n");
443 		priv->hwts_tx_en = 0;
444 		priv->hwts_rx_en = 0;
445 
446 		return -EOPNOTSUPP;
447 	}
448 
449 	if (copy_from_user(&config, ifr->ifr_data,
450 			   sizeof(struct hwtstamp_config)))
451 		return -EFAULT;
452 
453 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
454 		 __func__, config.flags, config.tx_type, config.rx_filter);
455 
456 	/* reserved for future extensions */
457 	if (config.flags)
458 		return -EINVAL;
459 
460 	if (config.tx_type != HWTSTAMP_TX_OFF &&
461 	    config.tx_type != HWTSTAMP_TX_ON)
462 		return -ERANGE;
463 
464 	if (priv->adv_ts) {
465 		switch (config.rx_filter) {
466 		case HWTSTAMP_FILTER_NONE:
467 			/* time stamp no incoming packet at all */
468 			config.rx_filter = HWTSTAMP_FILTER_NONE;
469 			break;
470 
471 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
472 			/* PTP v1, UDP, any kind of event packet */
473 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
474 			/* take time stamp for all event messages */
475 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
476 
477 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
478 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
479 			break;
480 
481 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
482 			/* PTP v1, UDP, Sync packet */
483 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
484 			/* take time stamp for SYNC messages only */
485 			ts_event_en = PTP_TCR_TSEVNTENA;
486 
487 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489 			break;
490 
491 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
492 			/* PTP v1, UDP, Delay_req packet */
493 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
494 			/* take time stamp for Delay_Req messages only */
495 			ts_master_en = PTP_TCR_TSMSTRENA;
496 			ts_event_en = PTP_TCR_TSEVNTENA;
497 
498 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500 			break;
501 
502 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
503 			/* PTP v2, UDP, any kind of event packet */
504 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
505 			ptp_v2 = PTP_TCR_TSVER2ENA;
506 			/* take time stamp for all event messages */
507 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
508 
509 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
510 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
511 			break;
512 
513 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
514 			/* PTP v2, UDP, Sync packet */
515 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
516 			ptp_v2 = PTP_TCR_TSVER2ENA;
517 			/* take time stamp for SYNC messages only */
518 			ts_event_en = PTP_TCR_TSEVNTENA;
519 
520 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
521 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
522 			break;
523 
524 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
525 			/* PTP v2, UDP, Delay_req packet */
526 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
527 			ptp_v2 = PTP_TCR_TSVER2ENA;
528 			/* take time stamp for Delay_Req messages only */
529 			ts_master_en = PTP_TCR_TSMSTRENA;
530 			ts_event_en = PTP_TCR_TSEVNTENA;
531 
532 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
533 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
534 			break;
535 
536 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
537 			/* PTP v2/802.AS1 any layer, any kind of event packet */
538 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
539 			ptp_v2 = PTP_TCR_TSVER2ENA;
540 			/* take time stamp for all event messages */
541 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
542 
543 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
544 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
545 			ptp_over_ethernet = PTP_TCR_TSIPENA;
546 			break;
547 
548 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
549 			/* PTP v2/802.AS1, any layer, Sync packet */
550 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
551 			ptp_v2 = PTP_TCR_TSVER2ENA;
552 			/* take time stamp for SYNC messages only */
553 			ts_event_en = PTP_TCR_TSEVNTENA;
554 
555 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
556 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
557 			ptp_over_ethernet = PTP_TCR_TSIPENA;
558 			break;
559 
560 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
561 			/* PTP v2/802.AS1, any layer, Delay_req packet */
562 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
563 			ptp_v2 = PTP_TCR_TSVER2ENA;
564 			/* take time stamp for Delay_Req messages only */
565 			ts_master_en = PTP_TCR_TSMSTRENA;
566 			ts_event_en = PTP_TCR_TSEVNTENA;
567 
568 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 			ptp_over_ethernet = PTP_TCR_TSIPENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_ALL:
574 			/* time stamp any incoming packet */
575 			config.rx_filter = HWTSTAMP_FILTER_ALL;
576 			tstamp_all = PTP_TCR_TSENALL;
577 			break;
578 
579 		default:
580 			return -ERANGE;
581 		}
582 	} else {
583 		switch (config.rx_filter) {
584 		case HWTSTAMP_FILTER_NONE:
585 			config.rx_filter = HWTSTAMP_FILTER_NONE;
586 			break;
587 		default:
588 			/* PTP v1, UDP, any kind of event packet */
589 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
590 			break;
591 		}
592 	}
593 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
594 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
595 
596 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
597 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
598 	else {
599 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
600 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
601 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
602 			 ts_master_en | snap_type_sel);
603 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
604 
605 		/* program Sub Second Increment reg */
606 		sec_inc = priv->hw->ptp->config_sub_second_increment(
607 			priv->ioaddr, priv->clk_ptp_rate);
608 		temp = div_u64(1000000000ULL, sec_inc);
609 
610 		/* calculate default added value:
611 		 * formula is :
612 		 * addend = (2^32)/freq_div_ratio;
613 		 * where, freq_div_ratio = 1e9ns/sec_inc
614 		 */
615 		temp = (u64)(temp << 32);
616 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
617 		priv->hw->ptp->config_addend(priv->ioaddr,
618 					     priv->default_addend);
619 
620 		/* initialize system time */
621 		ktime_get_real_ts64(&now);
622 
623 		/* lower 32 bits of tv_sec are safe until y2106 */
624 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
625 					    now.tv_nsec);
626 	}
627 
628 	return copy_to_user(ifr->ifr_data, &config,
629 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
630 }
631 
632 /**
633  * stmmac_init_ptp - init PTP
634  * @priv: driver private structure
635  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
636  * This is done by looking at the HW cap. register.
637  * This function also registers the ptp driver.
638  */
639 static int stmmac_init_ptp(struct stmmac_priv *priv)
640 {
641 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
642 		return -EOPNOTSUPP;
643 
644 	/* Fall-back to main clock in case of no PTP ref is passed */
645 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
646 	if (IS_ERR(priv->clk_ptp_ref)) {
647 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
648 		priv->clk_ptp_ref = NULL;
649 	} else {
650 		clk_prepare_enable(priv->clk_ptp_ref);
651 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
652 	}
653 
654 	priv->adv_ts = 0;
655 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
656 		priv->adv_ts = 1;
657 
658 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
659 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
660 
661 	if (netif_msg_hw(priv) && priv->adv_ts)
662 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
663 
664 	priv->hw->ptp = &stmmac_ptp;
665 	priv->hwts_tx_en = 0;
666 	priv->hwts_rx_en = 0;
667 
668 	return stmmac_ptp_register(priv);
669 }
670 
671 static void stmmac_release_ptp(struct stmmac_priv *priv)
672 {
673 	if (priv->clk_ptp_ref)
674 		clk_disable_unprepare(priv->clk_ptp_ref);
675 	stmmac_ptp_unregister(priv);
676 }
677 
678 /**
679  * stmmac_adjust_link - adjusts the link parameters
680  * @dev: net device structure
681  * Description: this is the helper called by the physical abstraction layer
682  * drivers to communicate the phy link status. According the speed and duplex
683  * this driver can invoke registered glue-logic as well.
684  * It also invoke the eee initialization because it could happen when switch
685  * on different networks (that are eee capable).
686  */
687 static void stmmac_adjust_link(struct net_device *dev)
688 {
689 	struct stmmac_priv *priv = netdev_priv(dev);
690 	struct phy_device *phydev = priv->phydev;
691 	unsigned long flags;
692 	int new_state = 0;
693 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
694 
695 	if (phydev == NULL)
696 		return;
697 
698 	spin_lock_irqsave(&priv->lock, flags);
699 
700 	if (phydev->link) {
701 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
702 
703 		/* Now we make sure that we can be in full duplex mode.
704 		 * If not, we operate in half-duplex mode. */
705 		if (phydev->duplex != priv->oldduplex) {
706 			new_state = 1;
707 			if (!(phydev->duplex))
708 				ctrl &= ~priv->hw->link.duplex;
709 			else
710 				ctrl |= priv->hw->link.duplex;
711 			priv->oldduplex = phydev->duplex;
712 		}
713 		/* Flow Control operation */
714 		if (phydev->pause)
715 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
716 						 fc, pause_time);
717 
718 		if (phydev->speed != priv->speed) {
719 			new_state = 1;
720 			switch (phydev->speed) {
721 			case 1000:
722 				if (likely(priv->plat->has_gmac))
723 					ctrl &= ~priv->hw->link.port;
724 				stmmac_hw_fix_mac_speed(priv);
725 				break;
726 			case 100:
727 			case 10:
728 				if (priv->plat->has_gmac) {
729 					ctrl |= priv->hw->link.port;
730 					if (phydev->speed == SPEED_100) {
731 						ctrl |= priv->hw->link.speed;
732 					} else {
733 						ctrl &= ~(priv->hw->link.speed);
734 					}
735 				} else {
736 					ctrl &= ~priv->hw->link.port;
737 				}
738 				stmmac_hw_fix_mac_speed(priv);
739 				break;
740 			default:
741 				if (netif_msg_link(priv))
742 					pr_warn("%s: Speed (%d) not 10/100\n",
743 						dev->name, phydev->speed);
744 				break;
745 			}
746 
747 			priv->speed = phydev->speed;
748 		}
749 
750 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
751 
752 		if (!priv->oldlink) {
753 			new_state = 1;
754 			priv->oldlink = 1;
755 		}
756 	} else if (priv->oldlink) {
757 		new_state = 1;
758 		priv->oldlink = 0;
759 		priv->speed = 0;
760 		priv->oldduplex = -1;
761 	}
762 
763 	if (new_state && netif_msg_link(priv))
764 		phy_print_status(phydev);
765 
766 	spin_unlock_irqrestore(&priv->lock, flags);
767 
768 	/* At this stage, it could be needed to setup the EEE or adjust some
769 	 * MAC related HW registers.
770 	 */
771 	priv->eee_enabled = stmmac_eee_init(priv);
772 }
773 
774 /**
775  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
776  * @priv: driver private structure
777  * Description: this is to verify if the HW supports the PCS.
778  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
779  * configured for the TBI, RTBI, or SGMII PHY interface.
780  */
781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
782 {
783 	int interface = priv->plat->interface;
784 
785 	if (priv->dma_cap.pcs) {
786 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
787 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
788 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
789 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
790 			pr_debug("STMMAC: PCS RGMII support enable\n");
791 			priv->pcs = STMMAC_PCS_RGMII;
792 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
793 			pr_debug("STMMAC: PCS SGMII support enable\n");
794 			priv->pcs = STMMAC_PCS_SGMII;
795 		}
796 	}
797 }
798 
799 /**
800  * stmmac_init_phy - PHY initialization
801  * @dev: net device structure
802  * Description: it initializes the driver's PHY state, and attaches the PHY
803  * to the mac driver.
804  *  Return value:
805  *  0 on success
806  */
807 static int stmmac_init_phy(struct net_device *dev)
808 {
809 	struct stmmac_priv *priv = netdev_priv(dev);
810 	struct phy_device *phydev;
811 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
812 	char bus_id[MII_BUS_ID_SIZE];
813 	int interface = priv->plat->interface;
814 	int max_speed = priv->plat->max_speed;
815 	priv->oldlink = 0;
816 	priv->speed = 0;
817 	priv->oldduplex = -1;
818 
819 	if (priv->plat->phy_node) {
820 		phydev = of_phy_connect(dev, priv->plat->phy_node,
821 					&stmmac_adjust_link, 0, interface);
822 	} else {
823 		if (priv->plat->phy_bus_name)
824 			snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
825 				 priv->plat->phy_bus_name, priv->plat->bus_id);
826 		else
827 			snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
828 				 priv->plat->bus_id);
829 
830 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
831 			 priv->plat->phy_addr);
832 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
833 			 phy_id_fmt);
834 
835 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
836 				     interface);
837 	}
838 
839 	if (IS_ERR_OR_NULL(phydev)) {
840 		pr_err("%s: Could not attach to PHY\n", dev->name);
841 		if (!phydev)
842 			return -ENODEV;
843 
844 		return PTR_ERR(phydev);
845 	}
846 
847 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
848 	if ((interface == PHY_INTERFACE_MODE_MII) ||
849 	    (interface == PHY_INTERFACE_MODE_RMII) ||
850 		(max_speed < 1000 && max_speed > 0))
851 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
852 					 SUPPORTED_1000baseT_Full);
853 
854 	/*
855 	 * Broken HW is sometimes missing the pull-up resistor on the
856 	 * MDIO line, which results in reads to non-existent devices returning
857 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
858 	 * device as well.
859 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
860 	 */
861 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
862 		phy_disconnect(phydev);
863 		return -ENODEV;
864 	}
865 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
866 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
867 
868 	priv->phydev = phydev;
869 
870 	return 0;
871 }
872 
873 /**
874  * stmmac_display_ring - display ring
875  * @head: pointer to the head of the ring passed.
876  * @size: size of the ring.
877  * @extend_desc: to verify if extended descriptors are used.
878  * Description: display the control/status and buffer descriptors.
879  */
880 static void stmmac_display_ring(void *head, int size, int extend_desc)
881 {
882 	int i;
883 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
884 	struct dma_desc *p = (struct dma_desc *)head;
885 
886 	for (i = 0; i < size; i++) {
887 		u64 x;
888 		if (extend_desc) {
889 			x = *(u64 *) ep;
890 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
891 				i, (unsigned int)virt_to_phys(ep),
892 				(unsigned int)x, (unsigned int)(x >> 32),
893 				ep->basic.des2, ep->basic.des3);
894 			ep++;
895 		} else {
896 			x = *(u64 *) p;
897 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
898 				i, (unsigned int)virt_to_phys(p),
899 				(unsigned int)x, (unsigned int)(x >> 32),
900 				p->des2, p->des3);
901 			p++;
902 		}
903 		pr_info("\n");
904 	}
905 }
906 
907 static void stmmac_display_rings(struct stmmac_priv *priv)
908 {
909 	unsigned int txsize = priv->dma_tx_size;
910 	unsigned int rxsize = priv->dma_rx_size;
911 
912 	if (priv->extend_desc) {
913 		pr_info("Extended RX descriptor ring:\n");
914 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
915 		pr_info("Extended TX descriptor ring:\n");
916 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
917 	} else {
918 		pr_info("RX descriptor ring:\n");
919 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
920 		pr_info("TX descriptor ring:\n");
921 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
922 	}
923 }
924 
925 static int stmmac_set_bfsize(int mtu, int bufsize)
926 {
927 	int ret = bufsize;
928 
929 	if (mtu >= BUF_SIZE_4KiB)
930 		ret = BUF_SIZE_8KiB;
931 	else if (mtu >= BUF_SIZE_2KiB)
932 		ret = BUF_SIZE_4KiB;
933 	else if (mtu > DEFAULT_BUFSIZE)
934 		ret = BUF_SIZE_2KiB;
935 	else
936 		ret = DEFAULT_BUFSIZE;
937 
938 	return ret;
939 }
940 
941 /**
942  * stmmac_clear_descriptors - clear descriptors
943  * @priv: driver private structure
944  * Description: this function is called to clear the tx and rx descriptors
945  * in case of both basic and extended descriptors are used.
946  */
947 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
948 {
949 	int i;
950 	unsigned int txsize = priv->dma_tx_size;
951 	unsigned int rxsize = priv->dma_rx_size;
952 
953 	/* Clear the Rx/Tx descriptors */
954 	for (i = 0; i < rxsize; i++)
955 		if (priv->extend_desc)
956 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
957 						     priv->use_riwt, priv->mode,
958 						     (i == rxsize - 1));
959 		else
960 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
961 						     priv->use_riwt, priv->mode,
962 						     (i == rxsize - 1));
963 	for (i = 0; i < txsize; i++)
964 		if (priv->extend_desc)
965 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
966 						     priv->mode,
967 						     (i == txsize - 1));
968 		else
969 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
970 						     priv->mode,
971 						     (i == txsize - 1));
972 }
973 
974 /**
975  * stmmac_init_rx_buffers - init the RX descriptor buffer.
976  * @priv: driver private structure
977  * @p: descriptor pointer
978  * @i: descriptor index
979  * @flags: gfp flag.
980  * Description: this function is called to allocate a receive buffer, perform
981  * the DMA mapping and init the descriptor.
982  */
983 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
984 				  int i, gfp_t flags)
985 {
986 	struct sk_buff *skb;
987 
988 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
989 	if (!skb) {
990 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
991 		return -ENOMEM;
992 	}
993 	priv->rx_skbuff[i] = skb;
994 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
995 						priv->dma_buf_sz,
996 						DMA_FROM_DEVICE);
997 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
998 		pr_err("%s: DMA mapping error\n", __func__);
999 		dev_kfree_skb_any(skb);
1000 		return -EINVAL;
1001 	}
1002 
1003 	p->des2 = priv->rx_skbuff_dma[i];
1004 
1005 	if ((priv->hw->mode->init_desc3) &&
1006 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
1007 		priv->hw->mode->init_desc3(p);
1008 
1009 	return 0;
1010 }
1011 
1012 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1013 {
1014 	if (priv->rx_skbuff[i]) {
1015 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1016 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1017 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1018 	}
1019 	priv->rx_skbuff[i] = NULL;
1020 }
1021 
1022 /**
1023  * init_dma_desc_rings - init the RX/TX descriptor rings
1024  * @dev: net device structure
1025  * @flags: gfp flag.
1026  * Description: this function initializes the DMA RX/TX descriptors
1027  * and allocates the socket buffers. It suppors the chained and ring
1028  * modes.
1029  */
1030 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1031 {
1032 	int i;
1033 	struct stmmac_priv *priv = netdev_priv(dev);
1034 	unsigned int txsize = priv->dma_tx_size;
1035 	unsigned int rxsize = priv->dma_rx_size;
1036 	unsigned int bfsize = 0;
1037 	int ret = -ENOMEM;
1038 
1039 	if (priv->hw->mode->set_16kib_bfsize)
1040 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1041 
1042 	if (bfsize < BUF_SIZE_16KiB)
1043 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1044 
1045 	priv->dma_buf_sz = bfsize;
1046 
1047 	if (netif_msg_probe(priv))
1048 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1049 			 txsize, rxsize, bfsize);
1050 
1051 	if (netif_msg_probe(priv)) {
1052 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1053 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1054 
1055 		/* RX INITIALIZATION */
1056 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1057 	}
1058 	for (i = 0; i < rxsize; i++) {
1059 		struct dma_desc *p;
1060 		if (priv->extend_desc)
1061 			p = &((priv->dma_erx + i)->basic);
1062 		else
1063 			p = priv->dma_rx + i;
1064 
1065 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1066 		if (ret)
1067 			goto err_init_rx_buffers;
1068 
1069 		if (netif_msg_probe(priv))
1070 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1071 				 priv->rx_skbuff[i]->data,
1072 				 (unsigned int)priv->rx_skbuff_dma[i]);
1073 	}
1074 	priv->cur_rx = 0;
1075 	priv->dirty_rx = (unsigned int)(i - rxsize);
1076 	buf_sz = bfsize;
1077 
1078 	/* Setup the chained descriptor addresses */
1079 	if (priv->mode == STMMAC_CHAIN_MODE) {
1080 		if (priv->extend_desc) {
1081 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1082 					     rxsize, 1);
1083 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1084 					     txsize, 1);
1085 		} else {
1086 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1087 					     rxsize, 0);
1088 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1089 					     txsize, 0);
1090 		}
1091 	}
1092 
1093 	/* TX INITIALIZATION */
1094 	for (i = 0; i < txsize; i++) {
1095 		struct dma_desc *p;
1096 		if (priv->extend_desc)
1097 			p = &((priv->dma_etx + i)->basic);
1098 		else
1099 			p = priv->dma_tx + i;
1100 		p->des2 = 0;
1101 		priv->tx_skbuff_dma[i].buf = 0;
1102 		priv->tx_skbuff_dma[i].map_as_page = false;
1103 		priv->tx_skbuff[i] = NULL;
1104 	}
1105 
1106 	priv->dirty_tx = 0;
1107 	priv->cur_tx = 0;
1108 	netdev_reset_queue(priv->dev);
1109 
1110 	stmmac_clear_descriptors(priv);
1111 
1112 	if (netif_msg_hw(priv))
1113 		stmmac_display_rings(priv);
1114 
1115 	return 0;
1116 err_init_rx_buffers:
1117 	while (--i >= 0)
1118 		stmmac_free_rx_buffers(priv, i);
1119 	return ret;
1120 }
1121 
1122 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1123 {
1124 	int i;
1125 
1126 	for (i = 0; i < priv->dma_rx_size; i++)
1127 		stmmac_free_rx_buffers(priv, i);
1128 }
1129 
1130 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1131 {
1132 	int i;
1133 
1134 	for (i = 0; i < priv->dma_tx_size; i++) {
1135 		struct dma_desc *p;
1136 
1137 		if (priv->extend_desc)
1138 			p = &((priv->dma_etx + i)->basic);
1139 		else
1140 			p = priv->dma_tx + i;
1141 
1142 		if (priv->tx_skbuff_dma[i].buf) {
1143 			if (priv->tx_skbuff_dma[i].map_as_page)
1144 				dma_unmap_page(priv->device,
1145 					       priv->tx_skbuff_dma[i].buf,
1146 					       priv->hw->desc->get_tx_len(p),
1147 					       DMA_TO_DEVICE);
1148 			else
1149 				dma_unmap_single(priv->device,
1150 						 priv->tx_skbuff_dma[i].buf,
1151 						 priv->hw->desc->get_tx_len(p),
1152 						 DMA_TO_DEVICE);
1153 		}
1154 
1155 		if (priv->tx_skbuff[i] != NULL) {
1156 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1157 			priv->tx_skbuff[i] = NULL;
1158 			priv->tx_skbuff_dma[i].buf = 0;
1159 			priv->tx_skbuff_dma[i].map_as_page = false;
1160 		}
1161 	}
1162 }
1163 
1164 /**
1165  * alloc_dma_desc_resources - alloc TX/RX resources.
1166  * @priv: private structure
1167  * Description: according to which descriptor can be used (extend or basic)
1168  * this function allocates the resources for TX and RX paths. In case of
1169  * reception, for example, it pre-allocated the RX socket buffer in order to
1170  * allow zero-copy mechanism.
1171  */
1172 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1173 {
1174 	unsigned int txsize = priv->dma_tx_size;
1175 	unsigned int rxsize = priv->dma_rx_size;
1176 	int ret = -ENOMEM;
1177 
1178 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1179 					    GFP_KERNEL);
1180 	if (!priv->rx_skbuff_dma)
1181 		return -ENOMEM;
1182 
1183 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1184 					GFP_KERNEL);
1185 	if (!priv->rx_skbuff)
1186 		goto err_rx_skbuff;
1187 
1188 	priv->tx_skbuff_dma = kmalloc_array(txsize,
1189 					    sizeof(*priv->tx_skbuff_dma),
1190 					    GFP_KERNEL);
1191 	if (!priv->tx_skbuff_dma)
1192 		goto err_tx_skbuff_dma;
1193 
1194 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1195 					GFP_KERNEL);
1196 	if (!priv->tx_skbuff)
1197 		goto err_tx_skbuff;
1198 
1199 	if (priv->extend_desc) {
1200 		priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1201 						    sizeof(struct
1202 							   dma_extended_desc),
1203 						    &priv->dma_rx_phy,
1204 						    GFP_KERNEL);
1205 		if (!priv->dma_erx)
1206 			goto err_dma;
1207 
1208 		priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1209 						    sizeof(struct
1210 							   dma_extended_desc),
1211 						    &priv->dma_tx_phy,
1212 						    GFP_KERNEL);
1213 		if (!priv->dma_etx) {
1214 			dma_free_coherent(priv->device, priv->dma_rx_size *
1215 					  sizeof(struct dma_extended_desc),
1216 					  priv->dma_erx, priv->dma_rx_phy);
1217 			goto err_dma;
1218 		}
1219 	} else {
1220 		priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1221 						   sizeof(struct dma_desc),
1222 						   &priv->dma_rx_phy,
1223 						   GFP_KERNEL);
1224 		if (!priv->dma_rx)
1225 			goto err_dma;
1226 
1227 		priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1228 						   sizeof(struct dma_desc),
1229 						   &priv->dma_tx_phy,
1230 						   GFP_KERNEL);
1231 		if (!priv->dma_tx) {
1232 			dma_free_coherent(priv->device, priv->dma_rx_size *
1233 					  sizeof(struct dma_desc),
1234 					  priv->dma_rx, priv->dma_rx_phy);
1235 			goto err_dma;
1236 		}
1237 	}
1238 
1239 	return 0;
1240 
1241 err_dma:
1242 	kfree(priv->tx_skbuff);
1243 err_tx_skbuff:
1244 	kfree(priv->tx_skbuff_dma);
1245 err_tx_skbuff_dma:
1246 	kfree(priv->rx_skbuff);
1247 err_rx_skbuff:
1248 	kfree(priv->rx_skbuff_dma);
1249 	return ret;
1250 }
1251 
1252 static void free_dma_desc_resources(struct stmmac_priv *priv)
1253 {
1254 	/* Release the DMA TX/RX socket buffers */
1255 	dma_free_rx_skbufs(priv);
1256 	dma_free_tx_skbufs(priv);
1257 
1258 	/* Free DMA regions of consistent memory previously allocated */
1259 	if (!priv->extend_desc) {
1260 		dma_free_coherent(priv->device,
1261 				  priv->dma_tx_size * sizeof(struct dma_desc),
1262 				  priv->dma_tx, priv->dma_tx_phy);
1263 		dma_free_coherent(priv->device,
1264 				  priv->dma_rx_size * sizeof(struct dma_desc),
1265 				  priv->dma_rx, priv->dma_rx_phy);
1266 	} else {
1267 		dma_free_coherent(priv->device, priv->dma_tx_size *
1268 				  sizeof(struct dma_extended_desc),
1269 				  priv->dma_etx, priv->dma_tx_phy);
1270 		dma_free_coherent(priv->device, priv->dma_rx_size *
1271 				  sizeof(struct dma_extended_desc),
1272 				  priv->dma_erx, priv->dma_rx_phy);
1273 	}
1274 	kfree(priv->rx_skbuff_dma);
1275 	kfree(priv->rx_skbuff);
1276 	kfree(priv->tx_skbuff_dma);
1277 	kfree(priv->tx_skbuff);
1278 }
1279 
1280 /**
1281  *  stmmac_dma_operation_mode - HW DMA operation mode
1282  *  @priv: driver private structure
1283  *  Description: it is used for configuring the DMA operation mode register in
1284  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1285  */
1286 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1287 {
1288 	int rxfifosz = priv->plat->rx_fifo_size;
1289 
1290 	if (priv->plat->force_thresh_dma_mode)
1291 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1292 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1293 		/*
1294 		 * In case of GMAC, SF mode can be enabled
1295 		 * to perform the TX COE in HW. This depends on:
1296 		 * 1) TX COE if actually supported
1297 		 * 2) There is no bugged Jumbo frame support
1298 		 *    that needs to not insert csum in the TDES.
1299 		 */
1300 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1301 					rxfifosz);
1302 		priv->xstats.threshold = SF_DMA_MODE;
1303 	} else
1304 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1305 					rxfifosz);
1306 }
1307 
1308 /**
1309  * stmmac_tx_clean - to manage the transmission completion
1310  * @priv: driver private structure
1311  * Description: it reclaims the transmit resources after transmission completes.
1312  */
1313 static void stmmac_tx_clean(struct stmmac_priv *priv)
1314 {
1315 	unsigned int txsize = priv->dma_tx_size;
1316 	unsigned int bytes_compl = 0, pkts_compl = 0;
1317 
1318 	spin_lock(&priv->tx_lock);
1319 
1320 	priv->xstats.tx_clean++;
1321 
1322 	while (priv->dirty_tx != priv->cur_tx) {
1323 		int last;
1324 		unsigned int entry = priv->dirty_tx % txsize;
1325 		struct sk_buff *skb = priv->tx_skbuff[entry];
1326 		struct dma_desc *p;
1327 
1328 		if (priv->extend_desc)
1329 			p = (struct dma_desc *)(priv->dma_etx + entry);
1330 		else
1331 			p = priv->dma_tx + entry;
1332 
1333 		/* Check if the descriptor is owned by the DMA. */
1334 		if (priv->hw->desc->get_tx_owner(p))
1335 			break;
1336 
1337 		/* Verify tx error by looking at the last segment. */
1338 		last = priv->hw->desc->get_tx_ls(p);
1339 		if (likely(last)) {
1340 			int tx_error =
1341 			    priv->hw->desc->tx_status(&priv->dev->stats,
1342 						      &priv->xstats, p,
1343 						      priv->ioaddr);
1344 			if (likely(tx_error == 0)) {
1345 				priv->dev->stats.tx_packets++;
1346 				priv->xstats.tx_pkt_n++;
1347 			} else
1348 				priv->dev->stats.tx_errors++;
1349 
1350 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1351 		}
1352 		if (netif_msg_tx_done(priv))
1353 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1354 				 priv->cur_tx, priv->dirty_tx);
1355 
1356 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1357 			if (priv->tx_skbuff_dma[entry].map_as_page)
1358 				dma_unmap_page(priv->device,
1359 					       priv->tx_skbuff_dma[entry].buf,
1360 					       priv->hw->desc->get_tx_len(p),
1361 					       DMA_TO_DEVICE);
1362 			else
1363 				dma_unmap_single(priv->device,
1364 						 priv->tx_skbuff_dma[entry].buf,
1365 						 priv->hw->desc->get_tx_len(p),
1366 						 DMA_TO_DEVICE);
1367 			priv->tx_skbuff_dma[entry].buf = 0;
1368 			priv->tx_skbuff_dma[entry].map_as_page = false;
1369 		}
1370 		priv->hw->mode->clean_desc3(priv, p);
1371 
1372 		if (likely(skb != NULL)) {
1373 			pkts_compl++;
1374 			bytes_compl += skb->len;
1375 			dev_consume_skb_any(skb);
1376 			priv->tx_skbuff[entry] = NULL;
1377 		}
1378 
1379 		priv->hw->desc->release_tx_desc(p, priv->mode);
1380 
1381 		priv->dirty_tx++;
1382 	}
1383 
1384 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1385 
1386 	if (unlikely(netif_queue_stopped(priv->dev) &&
1387 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1388 		netif_tx_lock(priv->dev);
1389 		if (netif_queue_stopped(priv->dev) &&
1390 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1391 			if (netif_msg_tx_done(priv))
1392 				pr_debug("%s: restart transmit\n", __func__);
1393 			netif_wake_queue(priv->dev);
1394 		}
1395 		netif_tx_unlock(priv->dev);
1396 	}
1397 
1398 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1399 		stmmac_enable_eee_mode(priv);
1400 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1401 	}
1402 	spin_unlock(&priv->tx_lock);
1403 }
1404 
1405 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1406 {
1407 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1408 }
1409 
1410 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1411 {
1412 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1413 }
1414 
1415 /**
1416  * stmmac_tx_err - to manage the tx error
1417  * @priv: driver private structure
1418  * Description: it cleans the descriptors and restarts the transmission
1419  * in case of transmission errors.
1420  */
1421 static void stmmac_tx_err(struct stmmac_priv *priv)
1422 {
1423 	int i;
1424 	int txsize = priv->dma_tx_size;
1425 	netif_stop_queue(priv->dev);
1426 
1427 	priv->hw->dma->stop_tx(priv->ioaddr);
1428 	dma_free_tx_skbufs(priv);
1429 	for (i = 0; i < txsize; i++)
1430 		if (priv->extend_desc)
1431 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1432 						     priv->mode,
1433 						     (i == txsize - 1));
1434 		else
1435 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1436 						     priv->mode,
1437 						     (i == txsize - 1));
1438 	priv->dirty_tx = 0;
1439 	priv->cur_tx = 0;
1440 	netdev_reset_queue(priv->dev);
1441 	priv->hw->dma->start_tx(priv->ioaddr);
1442 
1443 	priv->dev->stats.tx_errors++;
1444 	netif_wake_queue(priv->dev);
1445 }
1446 
1447 /**
1448  * stmmac_dma_interrupt - DMA ISR
1449  * @priv: driver private structure
1450  * Description: this is the DMA ISR. It is called by the main ISR.
1451  * It calls the dwmac dma routine and schedule poll method in case of some
1452  * work can be done.
1453  */
1454 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1455 {
1456 	int status;
1457 	int rxfifosz = priv->plat->rx_fifo_size;
1458 
1459 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1460 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1461 		if (likely(napi_schedule_prep(&priv->napi))) {
1462 			stmmac_disable_dma_irq(priv);
1463 			__napi_schedule(&priv->napi);
1464 		}
1465 	}
1466 	if (unlikely(status & tx_hard_error_bump_tc)) {
1467 		/* Try to bump up the dma threshold on this failure */
1468 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1469 		    (tc <= 256)) {
1470 			tc += 64;
1471 			if (priv->plat->force_thresh_dma_mode)
1472 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1473 							rxfifosz);
1474 			else
1475 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1476 							SF_DMA_MODE, rxfifosz);
1477 			priv->xstats.threshold = tc;
1478 		}
1479 	} else if (unlikely(status == tx_hard_error))
1480 		stmmac_tx_err(priv);
1481 }
1482 
1483 /**
1484  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1485  * @priv: driver private structure
1486  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1487  */
1488 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1489 {
1490 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1491 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1492 
1493 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1494 
1495 	if (priv->dma_cap.rmon) {
1496 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1497 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1498 	} else
1499 		pr_info(" No MAC Management Counters available\n");
1500 }
1501 
1502 /**
1503  * stmmac_get_synopsys_id - return the SYINID.
1504  * @priv: driver private structure
1505  * Description: this simple function is to decode and return the SYINID
1506  * starting from the HW core register.
1507  */
1508 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1509 {
1510 	u32 hwid = priv->hw->synopsys_uid;
1511 
1512 	/* Check Synopsys Id (not available on old chips) */
1513 	if (likely(hwid)) {
1514 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1515 		u32 synid = (hwid & 0x000000ff);
1516 
1517 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1518 			uid, synid);
1519 
1520 		return synid;
1521 	}
1522 	return 0;
1523 }
1524 
1525 /**
1526  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1527  * @priv: driver private structure
1528  * Description: select the Enhanced/Alternate or Normal descriptors.
1529  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1530  * supported by the HW capability register.
1531  */
1532 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1533 {
1534 	if (priv->plat->enh_desc) {
1535 		pr_info(" Enhanced/Alternate descriptors\n");
1536 
1537 		/* GMAC older than 3.50 has no extended descriptors */
1538 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1539 			pr_info("\tEnabled extended descriptors\n");
1540 			priv->extend_desc = 1;
1541 		} else
1542 			pr_warn("Extended descriptors not supported\n");
1543 
1544 		priv->hw->desc = &enh_desc_ops;
1545 	} else {
1546 		pr_info(" Normal descriptors\n");
1547 		priv->hw->desc = &ndesc_ops;
1548 	}
1549 }
1550 
1551 /**
1552  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1553  * @priv: driver private structure
1554  * Description:
1555  *  new GMAC chip generations have a new register to indicate the
1556  *  presence of the optional feature/functions.
1557  *  This can be also used to override the value passed through the
1558  *  platform and necessary for old MAC10/100 and GMAC chips.
1559  */
1560 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1561 {
1562 	u32 hw_cap = 0;
1563 
1564 	if (priv->hw->dma->get_hw_feature) {
1565 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1566 
1567 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1568 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1569 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1570 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1571 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1572 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1573 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1574 		priv->dma_cap.pmt_remote_wake_up =
1575 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1576 		priv->dma_cap.pmt_magic_frame =
1577 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1578 		/* MMC */
1579 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1580 		/* IEEE 1588-2002 */
1581 		priv->dma_cap.time_stamp =
1582 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1583 		/* IEEE 1588-2008 */
1584 		priv->dma_cap.atime_stamp =
1585 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1586 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1587 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1588 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1589 		/* TX and RX csum */
1590 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1591 		priv->dma_cap.rx_coe_type1 =
1592 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1593 		priv->dma_cap.rx_coe_type2 =
1594 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1595 		priv->dma_cap.rxfifo_over_2048 =
1596 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1597 		/* TX and RX number of channels */
1598 		priv->dma_cap.number_rx_channel =
1599 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1600 		priv->dma_cap.number_tx_channel =
1601 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1602 		/* Alternate (enhanced) DESC mode */
1603 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1604 	}
1605 
1606 	return hw_cap;
1607 }
1608 
1609 /**
1610  * stmmac_check_ether_addr - check if the MAC addr is valid
1611  * @priv: driver private structure
1612  * Description:
1613  * it is to verify if the MAC address is valid, in case of failures it
1614  * generates a random MAC address
1615  */
1616 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1617 {
1618 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1619 		priv->hw->mac->get_umac_addr(priv->hw,
1620 					     priv->dev->dev_addr, 0);
1621 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1622 			eth_hw_addr_random(priv->dev);
1623 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1624 			priv->dev->dev_addr);
1625 	}
1626 }
1627 
1628 /**
1629  * stmmac_init_dma_engine - DMA init.
1630  * @priv: driver private structure
1631  * Description:
1632  * It inits the DMA invoking the specific MAC/GMAC callback.
1633  * Some DMA parameters can be passed from the platform;
1634  * in case of these are not passed a default is kept for the MAC or GMAC.
1635  */
1636 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1637 {
1638 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1639 	int mixed_burst = 0;
1640 	int atds = 0;
1641 
1642 	if (priv->plat->dma_cfg) {
1643 		pbl = priv->plat->dma_cfg->pbl;
1644 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1645 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1646 		burst_len = priv->plat->dma_cfg->burst_len;
1647 	}
1648 
1649 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1650 		atds = 1;
1651 
1652 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1653 				   burst_len, priv->dma_tx_phy,
1654 				   priv->dma_rx_phy, atds);
1655 }
1656 
1657 /**
1658  * stmmac_tx_timer - mitigation sw timer for tx.
1659  * @data: data pointer
1660  * Description:
1661  * This is the timer handler to directly invoke the stmmac_tx_clean.
1662  */
1663 static void stmmac_tx_timer(unsigned long data)
1664 {
1665 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1666 
1667 	stmmac_tx_clean(priv);
1668 }
1669 
1670 /**
1671  * stmmac_init_tx_coalesce - init tx mitigation options.
1672  * @priv: driver private structure
1673  * Description:
1674  * This inits the transmit coalesce parameters: i.e. timer rate,
1675  * timer handler and default threshold used for enabling the
1676  * interrupt on completion bit.
1677  */
1678 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1679 {
1680 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1681 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1682 	init_timer(&priv->txtimer);
1683 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1684 	priv->txtimer.data = (unsigned long)priv;
1685 	priv->txtimer.function = stmmac_tx_timer;
1686 	add_timer(&priv->txtimer);
1687 }
1688 
1689 /**
1690  * stmmac_hw_setup - setup mac in a usable state.
1691  *  @dev : pointer to the device structure.
1692  *  Description:
1693  *  this is the main function to setup the HW in a usable state because the
1694  *  dma engine is reset, the core registers are configured (e.g. AXI,
1695  *  Checksum features, timers). The DMA is ready to start receiving and
1696  *  transmitting.
1697  *  Return value:
1698  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1699  *  file on failure.
1700  */
1701 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1702 {
1703 	struct stmmac_priv *priv = netdev_priv(dev);
1704 	int ret;
1705 
1706 	/* DMA initialization and SW reset */
1707 	ret = stmmac_init_dma_engine(priv);
1708 	if (ret < 0) {
1709 		pr_err("%s: DMA engine initialization failed\n", __func__);
1710 		return ret;
1711 	}
1712 
1713 	/* Copy the MAC addr into the HW  */
1714 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1715 
1716 	/* If required, perform hw setup of the bus. */
1717 	if (priv->plat->bus_setup)
1718 		priv->plat->bus_setup(priv->ioaddr);
1719 
1720 	/* Initialize the MAC Core */
1721 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1722 
1723 	ret = priv->hw->mac->rx_ipc(priv->hw);
1724 	if (!ret) {
1725 		pr_warn(" RX IPC Checksum Offload disabled\n");
1726 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1727 		priv->hw->rx_csum = 0;
1728 	}
1729 
1730 	/* Enable the MAC Rx/Tx */
1731 	stmmac_set_mac(priv->ioaddr, true);
1732 
1733 	/* Set the HW DMA mode and the COE */
1734 	stmmac_dma_operation_mode(priv);
1735 
1736 	stmmac_mmc_setup(priv);
1737 
1738 	if (init_ptp) {
1739 		ret = stmmac_init_ptp(priv);
1740 		if (ret && ret != -EOPNOTSUPP)
1741 			pr_warn("%s: failed PTP initialisation\n", __func__);
1742 	}
1743 
1744 #ifdef CONFIG_DEBUG_FS
1745 	ret = stmmac_init_fs(dev);
1746 	if (ret < 0)
1747 		pr_warn("%s: failed debugFS registration\n", __func__);
1748 #endif
1749 	/* Start the ball rolling... */
1750 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1751 	priv->hw->dma->start_tx(priv->ioaddr);
1752 	priv->hw->dma->start_rx(priv->ioaddr);
1753 
1754 	/* Dump DMA/MAC registers */
1755 	if (netif_msg_hw(priv)) {
1756 		priv->hw->mac->dump_regs(priv->hw);
1757 		priv->hw->dma->dump_regs(priv->ioaddr);
1758 	}
1759 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1760 
1761 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1762 		priv->rx_riwt = MAX_DMA_RIWT;
1763 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1764 	}
1765 
1766 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1767 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1768 
1769 	return 0;
1770 }
1771 
1772 /**
1773  *  stmmac_open - open entry point of the driver
1774  *  @dev : pointer to the device structure.
1775  *  Description:
1776  *  This function is the open entry point of the driver.
1777  *  Return value:
1778  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1779  *  file on failure.
1780  */
1781 static int stmmac_open(struct net_device *dev)
1782 {
1783 	struct stmmac_priv *priv = netdev_priv(dev);
1784 	int ret;
1785 
1786 	stmmac_check_ether_addr(priv);
1787 
1788 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1789 	    priv->pcs != STMMAC_PCS_RTBI) {
1790 		ret = stmmac_init_phy(dev);
1791 		if (ret) {
1792 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1793 			       __func__, ret);
1794 			return ret;
1795 		}
1796 	}
1797 
1798 	/* Extra statistics */
1799 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1800 	priv->xstats.threshold = tc;
1801 
1802 	/* Create and initialize the TX/RX descriptors chains. */
1803 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1804 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1805 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1806 
1807 	ret = alloc_dma_desc_resources(priv);
1808 	if (ret < 0) {
1809 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1810 		goto dma_desc_error;
1811 	}
1812 
1813 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1814 	if (ret < 0) {
1815 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1816 		goto init_error;
1817 	}
1818 
1819 	ret = stmmac_hw_setup(dev, true);
1820 	if (ret < 0) {
1821 		pr_err("%s: Hw setup failed\n", __func__);
1822 		goto init_error;
1823 	}
1824 
1825 	stmmac_init_tx_coalesce(priv);
1826 
1827 	if (priv->phydev)
1828 		phy_start(priv->phydev);
1829 
1830 	/* Request the IRQ lines */
1831 	ret = request_irq(dev->irq, stmmac_interrupt,
1832 			  IRQF_SHARED, dev->name, dev);
1833 	if (unlikely(ret < 0)) {
1834 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1835 		       __func__, dev->irq, ret);
1836 		goto init_error;
1837 	}
1838 
1839 	/* Request the Wake IRQ in case of another line is used for WoL */
1840 	if (priv->wol_irq != dev->irq) {
1841 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1842 				  IRQF_SHARED, dev->name, dev);
1843 		if (unlikely(ret < 0)) {
1844 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1845 			       __func__, priv->wol_irq, ret);
1846 			goto wolirq_error;
1847 		}
1848 	}
1849 
1850 	/* Request the IRQ lines */
1851 	if (priv->lpi_irq > 0) {
1852 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1853 				  dev->name, dev);
1854 		if (unlikely(ret < 0)) {
1855 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1856 			       __func__, priv->lpi_irq, ret);
1857 			goto lpiirq_error;
1858 		}
1859 	}
1860 
1861 	napi_enable(&priv->napi);
1862 	netif_start_queue(dev);
1863 
1864 	return 0;
1865 
1866 lpiirq_error:
1867 	if (priv->wol_irq != dev->irq)
1868 		free_irq(priv->wol_irq, dev);
1869 wolirq_error:
1870 	free_irq(dev->irq, dev);
1871 
1872 init_error:
1873 	free_dma_desc_resources(priv);
1874 dma_desc_error:
1875 	if (priv->phydev)
1876 		phy_disconnect(priv->phydev);
1877 
1878 	return ret;
1879 }
1880 
1881 /**
1882  *  stmmac_release - close entry point of the driver
1883  *  @dev : device pointer.
1884  *  Description:
1885  *  This is the stop entry point of the driver.
1886  */
1887 static int stmmac_release(struct net_device *dev)
1888 {
1889 	struct stmmac_priv *priv = netdev_priv(dev);
1890 
1891 	if (priv->eee_enabled)
1892 		del_timer_sync(&priv->eee_ctrl_timer);
1893 
1894 	/* Stop and disconnect the PHY */
1895 	if (priv->phydev) {
1896 		phy_stop(priv->phydev);
1897 		phy_disconnect(priv->phydev);
1898 		priv->phydev = NULL;
1899 	}
1900 
1901 	netif_stop_queue(dev);
1902 
1903 	napi_disable(&priv->napi);
1904 
1905 	del_timer_sync(&priv->txtimer);
1906 
1907 	/* Free the IRQ lines */
1908 	free_irq(dev->irq, dev);
1909 	if (priv->wol_irq != dev->irq)
1910 		free_irq(priv->wol_irq, dev);
1911 	if (priv->lpi_irq > 0)
1912 		free_irq(priv->lpi_irq, dev);
1913 
1914 	/* Stop TX/RX DMA and clear the descriptors */
1915 	priv->hw->dma->stop_tx(priv->ioaddr);
1916 	priv->hw->dma->stop_rx(priv->ioaddr);
1917 
1918 	/* Release and free the Rx/Tx resources */
1919 	free_dma_desc_resources(priv);
1920 
1921 	/* Disable the MAC Rx/Tx */
1922 	stmmac_set_mac(priv->ioaddr, false);
1923 
1924 	netif_carrier_off(dev);
1925 
1926 #ifdef CONFIG_DEBUG_FS
1927 	stmmac_exit_fs(dev);
1928 #endif
1929 
1930 	stmmac_release_ptp(priv);
1931 
1932 	return 0;
1933 }
1934 
1935 /**
1936  *  stmmac_xmit - Tx entry point of the driver
1937  *  @skb : the socket buffer
1938  *  @dev : device pointer
1939  *  Description : this is the tx entry point of the driver.
1940  *  It programs the chain or the ring and supports oversized frames
1941  *  and SG feature.
1942  */
1943 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1944 {
1945 	struct stmmac_priv *priv = netdev_priv(dev);
1946 	unsigned int txsize = priv->dma_tx_size;
1947 	int entry;
1948 	int i, csum_insertion = 0, is_jumbo = 0;
1949 	int nfrags = skb_shinfo(skb)->nr_frags;
1950 	struct dma_desc *desc, *first;
1951 	unsigned int nopaged_len = skb_headlen(skb);
1952 	unsigned int enh_desc = priv->plat->enh_desc;
1953 
1954 	spin_lock(&priv->tx_lock);
1955 
1956 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1957 		spin_unlock(&priv->tx_lock);
1958 		if (!netif_queue_stopped(dev)) {
1959 			netif_stop_queue(dev);
1960 			/* This is a hard error, log it. */
1961 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1962 		}
1963 		return NETDEV_TX_BUSY;
1964 	}
1965 
1966 	if (priv->tx_path_in_lpi_mode)
1967 		stmmac_disable_eee_mode(priv);
1968 
1969 	entry = priv->cur_tx % txsize;
1970 
1971 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1972 
1973 	if (priv->extend_desc)
1974 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1975 	else
1976 		desc = priv->dma_tx + entry;
1977 
1978 	first = desc;
1979 
1980 	/* To program the descriptors according to the size of the frame */
1981 	if (enh_desc)
1982 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1983 
1984 	if (likely(!is_jumbo)) {
1985 		desc->des2 = dma_map_single(priv->device, skb->data,
1986 					    nopaged_len, DMA_TO_DEVICE);
1987 		if (dma_mapping_error(priv->device, desc->des2))
1988 			goto dma_map_err;
1989 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1990 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1991 						csum_insertion, priv->mode);
1992 	} else {
1993 		desc = first;
1994 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1995 		if (unlikely(entry < 0))
1996 			goto dma_map_err;
1997 	}
1998 
1999 	for (i = 0; i < nfrags; i++) {
2000 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2001 		int len = skb_frag_size(frag);
2002 
2003 		priv->tx_skbuff[entry] = NULL;
2004 		entry = (++priv->cur_tx) % txsize;
2005 		if (priv->extend_desc)
2006 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2007 		else
2008 			desc = priv->dma_tx + entry;
2009 
2010 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2011 					      DMA_TO_DEVICE);
2012 		if (dma_mapping_error(priv->device, desc->des2))
2013 			goto dma_map_err; /* should reuse desc w/o issues */
2014 
2015 		priv->tx_skbuff_dma[entry].buf = desc->des2;
2016 		priv->tx_skbuff_dma[entry].map_as_page = true;
2017 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2018 						priv->mode);
2019 		wmb();
2020 		priv->hw->desc->set_tx_owner(desc);
2021 		wmb();
2022 	}
2023 
2024 	priv->tx_skbuff[entry] = skb;
2025 
2026 	/* Finalize the latest segment. */
2027 	priv->hw->desc->close_tx_desc(desc);
2028 
2029 	wmb();
2030 	/* According to the coalesce parameter the IC bit for the latest
2031 	 * segment could be reset and the timer re-started to invoke the
2032 	 * stmmac_tx function. This approach takes care about the fragments.
2033 	 */
2034 	priv->tx_count_frames += nfrags + 1;
2035 	if (priv->tx_coal_frames > priv->tx_count_frames) {
2036 		priv->hw->desc->clear_tx_ic(desc);
2037 		priv->xstats.tx_reset_ic_bit++;
2038 		mod_timer(&priv->txtimer,
2039 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2040 	} else
2041 		priv->tx_count_frames = 0;
2042 
2043 	/* To avoid raise condition */
2044 	priv->hw->desc->set_tx_owner(first);
2045 	wmb();
2046 
2047 	priv->cur_tx++;
2048 
2049 	if (netif_msg_pktdata(priv)) {
2050 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2051 			__func__, (priv->cur_tx % txsize),
2052 			(priv->dirty_tx % txsize), entry, first, nfrags);
2053 
2054 		if (priv->extend_desc)
2055 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2056 		else
2057 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2058 
2059 		pr_debug(">>> frame to be transmitted: ");
2060 		print_pkt(skb->data, skb->len);
2061 	}
2062 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2063 		if (netif_msg_hw(priv))
2064 			pr_debug("%s: stop transmitted packets\n", __func__);
2065 		netif_stop_queue(dev);
2066 	}
2067 
2068 	dev->stats.tx_bytes += skb->len;
2069 
2070 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2071 		     priv->hwts_tx_en)) {
2072 		/* declare that device is doing timestamping */
2073 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2074 		priv->hw->desc->enable_tx_timestamp(first);
2075 	}
2076 
2077 	if (!priv->hwts_tx_en)
2078 		skb_tx_timestamp(skb);
2079 
2080 	netdev_sent_queue(dev, skb->len);
2081 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2082 
2083 	spin_unlock(&priv->tx_lock);
2084 	return NETDEV_TX_OK;
2085 
2086 dma_map_err:
2087 	spin_unlock(&priv->tx_lock);
2088 	dev_err(priv->device, "Tx dma map failed\n");
2089 	dev_kfree_skb(skb);
2090 	priv->dev->stats.tx_dropped++;
2091 	return NETDEV_TX_OK;
2092 }
2093 
2094 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2095 {
2096 	struct ethhdr *ehdr;
2097 	u16 vlanid;
2098 
2099 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2100 	    NETIF_F_HW_VLAN_CTAG_RX &&
2101 	    !__vlan_get_tag(skb, &vlanid)) {
2102 		/* pop the vlan tag */
2103 		ehdr = (struct ethhdr *)skb->data;
2104 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2105 		skb_pull(skb, VLAN_HLEN);
2106 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2107 	}
2108 }
2109 
2110 
2111 /**
2112  * stmmac_rx_refill - refill used skb preallocated buffers
2113  * @priv: driver private structure
2114  * Description : this is to reallocate the skb for the reception process
2115  * that is based on zero-copy.
2116  */
2117 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2118 {
2119 	unsigned int rxsize = priv->dma_rx_size;
2120 	int bfsize = priv->dma_buf_sz;
2121 
2122 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2123 		unsigned int entry = priv->dirty_rx % rxsize;
2124 		struct dma_desc *p;
2125 
2126 		if (priv->extend_desc)
2127 			p = (struct dma_desc *)(priv->dma_erx + entry);
2128 		else
2129 			p = priv->dma_rx + entry;
2130 
2131 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2132 			struct sk_buff *skb;
2133 
2134 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2135 
2136 			if (unlikely(skb == NULL))
2137 				break;
2138 
2139 			priv->rx_skbuff[entry] = skb;
2140 			priv->rx_skbuff_dma[entry] =
2141 			    dma_map_single(priv->device, skb->data, bfsize,
2142 					   DMA_FROM_DEVICE);
2143 			if (dma_mapping_error(priv->device,
2144 					      priv->rx_skbuff_dma[entry])) {
2145 				dev_err(priv->device, "Rx dma map failed\n");
2146 				dev_kfree_skb(skb);
2147 				break;
2148 			}
2149 			p->des2 = priv->rx_skbuff_dma[entry];
2150 
2151 			priv->hw->mode->refill_desc3(priv, p);
2152 
2153 			if (netif_msg_rx_status(priv))
2154 				pr_debug("\trefill entry #%d\n", entry);
2155 		}
2156 		wmb();
2157 		priv->hw->desc->set_rx_owner(p);
2158 		wmb();
2159 	}
2160 }
2161 
2162 /**
2163  * stmmac_rx - manage the receive process
2164  * @priv: driver private structure
2165  * @limit: napi bugget.
2166  * Description :  this the function called by the napi poll method.
2167  * It gets all the frames inside the ring.
2168  */
2169 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2170 {
2171 	unsigned int rxsize = priv->dma_rx_size;
2172 	unsigned int entry = priv->cur_rx % rxsize;
2173 	unsigned int next_entry;
2174 	unsigned int count = 0;
2175 	int coe = priv->hw->rx_csum;
2176 
2177 	if (netif_msg_rx_status(priv)) {
2178 		pr_debug("%s: descriptor ring:\n", __func__);
2179 		if (priv->extend_desc)
2180 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2181 		else
2182 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2183 	}
2184 	while (count < limit) {
2185 		int status;
2186 		struct dma_desc *p;
2187 
2188 		if (priv->extend_desc)
2189 			p = (struct dma_desc *)(priv->dma_erx + entry);
2190 		else
2191 			p = priv->dma_rx + entry;
2192 
2193 		if (priv->hw->desc->get_rx_owner(p))
2194 			break;
2195 
2196 		count++;
2197 
2198 		next_entry = (++priv->cur_rx) % rxsize;
2199 		if (priv->extend_desc)
2200 			prefetch(priv->dma_erx + next_entry);
2201 		else
2202 			prefetch(priv->dma_rx + next_entry);
2203 
2204 		/* read the status of the incoming frame */
2205 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2206 						   &priv->xstats, p);
2207 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2208 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2209 							   &priv->xstats,
2210 							   priv->dma_erx +
2211 							   entry);
2212 		if (unlikely(status == discard_frame)) {
2213 			priv->dev->stats.rx_errors++;
2214 			if (priv->hwts_rx_en && !priv->extend_desc) {
2215 				/* DESC2 & DESC3 will be overwitten by device
2216 				 * with timestamp value, hence reinitialize
2217 				 * them in stmmac_rx_refill() function so that
2218 				 * device can reuse it.
2219 				 */
2220 				priv->rx_skbuff[entry] = NULL;
2221 				dma_unmap_single(priv->device,
2222 						 priv->rx_skbuff_dma[entry],
2223 						 priv->dma_buf_sz,
2224 						 DMA_FROM_DEVICE);
2225 			}
2226 		} else {
2227 			struct sk_buff *skb;
2228 			int frame_len;
2229 
2230 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2231 
2232 			/*  check if frame_len fits the preallocated memory */
2233 			if (frame_len > priv->dma_buf_sz) {
2234 				priv->dev->stats.rx_length_errors++;
2235 				break;
2236 			}
2237 
2238 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2239 			 * Type frames (LLC/LLC-SNAP)
2240 			 */
2241 			if (unlikely(status != llc_snap))
2242 				frame_len -= ETH_FCS_LEN;
2243 
2244 			if (netif_msg_rx_status(priv)) {
2245 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2246 					 p, entry, p->des2);
2247 				if (frame_len > ETH_FRAME_LEN)
2248 					pr_debug("\tframe size %d, COE: %d\n",
2249 						 frame_len, status);
2250 			}
2251 			skb = priv->rx_skbuff[entry];
2252 			if (unlikely(!skb)) {
2253 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2254 				       priv->dev->name);
2255 				priv->dev->stats.rx_dropped++;
2256 				break;
2257 			}
2258 			prefetch(skb->data - NET_IP_ALIGN);
2259 			priv->rx_skbuff[entry] = NULL;
2260 
2261 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2262 
2263 			skb_put(skb, frame_len);
2264 			dma_unmap_single(priv->device,
2265 					 priv->rx_skbuff_dma[entry],
2266 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2267 
2268 			if (netif_msg_pktdata(priv)) {
2269 				pr_debug("frame received (%dbytes)", frame_len);
2270 				print_pkt(skb->data, frame_len);
2271 			}
2272 
2273 			stmmac_rx_vlan(priv->dev, skb);
2274 
2275 			skb->protocol = eth_type_trans(skb, priv->dev);
2276 
2277 			if (unlikely(!coe))
2278 				skb_checksum_none_assert(skb);
2279 			else
2280 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2281 
2282 			napi_gro_receive(&priv->napi, skb);
2283 
2284 			priv->dev->stats.rx_packets++;
2285 			priv->dev->stats.rx_bytes += frame_len;
2286 		}
2287 		entry = next_entry;
2288 	}
2289 
2290 	stmmac_rx_refill(priv);
2291 
2292 	priv->xstats.rx_pkt_n += count;
2293 
2294 	return count;
2295 }
2296 
2297 /**
2298  *  stmmac_poll - stmmac poll method (NAPI)
2299  *  @napi : pointer to the napi structure.
2300  *  @budget : maximum number of packets that the current CPU can receive from
2301  *	      all interfaces.
2302  *  Description :
2303  *  To look at the incoming frames and clear the tx resources.
2304  */
2305 static int stmmac_poll(struct napi_struct *napi, int budget)
2306 {
2307 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2308 	int work_done = 0;
2309 
2310 	priv->xstats.napi_poll++;
2311 	stmmac_tx_clean(priv);
2312 
2313 	work_done = stmmac_rx(priv, budget);
2314 	if (work_done < budget) {
2315 		napi_complete(napi);
2316 		stmmac_enable_dma_irq(priv);
2317 	}
2318 	return work_done;
2319 }
2320 
2321 /**
2322  *  stmmac_tx_timeout
2323  *  @dev : Pointer to net device structure
2324  *  Description: this function is called when a packet transmission fails to
2325  *   complete within a reasonable time. The driver will mark the error in the
2326  *   netdev structure and arrange for the device to be reset to a sane state
2327  *   in order to transmit a new packet.
2328  */
2329 static void stmmac_tx_timeout(struct net_device *dev)
2330 {
2331 	struct stmmac_priv *priv = netdev_priv(dev);
2332 
2333 	/* Clear Tx resources and restart transmitting again */
2334 	stmmac_tx_err(priv);
2335 }
2336 
2337 /**
2338  *  stmmac_set_rx_mode - entry point for multicast addressing
2339  *  @dev : pointer to the device structure
2340  *  Description:
2341  *  This function is a driver entry point which gets called by the kernel
2342  *  whenever multicast addresses must be enabled/disabled.
2343  *  Return value:
2344  *  void.
2345  */
2346 static void stmmac_set_rx_mode(struct net_device *dev)
2347 {
2348 	struct stmmac_priv *priv = netdev_priv(dev);
2349 
2350 	priv->hw->mac->set_filter(priv->hw, dev);
2351 }
2352 
2353 /**
2354  *  stmmac_change_mtu - entry point to change MTU size for the device.
2355  *  @dev : device pointer.
2356  *  @new_mtu : the new MTU size for the device.
2357  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2358  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2359  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2360  *  Return value:
2361  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2362  *  file on failure.
2363  */
2364 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2365 {
2366 	struct stmmac_priv *priv = netdev_priv(dev);
2367 	int max_mtu;
2368 
2369 	if (netif_running(dev)) {
2370 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2371 		return -EBUSY;
2372 	}
2373 
2374 	if (priv->plat->enh_desc)
2375 		max_mtu = JUMBO_LEN;
2376 	else
2377 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2378 
2379 	if (priv->plat->maxmtu < max_mtu)
2380 		max_mtu = priv->plat->maxmtu;
2381 
2382 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2383 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2384 		return -EINVAL;
2385 	}
2386 
2387 	dev->mtu = new_mtu;
2388 	netdev_update_features(dev);
2389 
2390 	return 0;
2391 }
2392 
2393 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2394 					     netdev_features_t features)
2395 {
2396 	struct stmmac_priv *priv = netdev_priv(dev);
2397 
2398 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2399 		features &= ~NETIF_F_RXCSUM;
2400 
2401 	if (!priv->plat->tx_coe)
2402 		features &= ~NETIF_F_CSUM_MASK;
2403 
2404 	/* Some GMAC devices have a bugged Jumbo frame support that
2405 	 * needs to have the Tx COE disabled for oversized frames
2406 	 * (due to limited buffer sizes). In this case we disable
2407 	 * the TX csum insertionin the TDES and not use SF.
2408 	 */
2409 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2410 		features &= ~NETIF_F_CSUM_MASK;
2411 
2412 	return features;
2413 }
2414 
2415 static int stmmac_set_features(struct net_device *netdev,
2416 			       netdev_features_t features)
2417 {
2418 	struct stmmac_priv *priv = netdev_priv(netdev);
2419 
2420 	/* Keep the COE Type in case of csum is supporting */
2421 	if (features & NETIF_F_RXCSUM)
2422 		priv->hw->rx_csum = priv->plat->rx_coe;
2423 	else
2424 		priv->hw->rx_csum = 0;
2425 	/* No check needed because rx_coe has been set before and it will be
2426 	 * fixed in case of issue.
2427 	 */
2428 	priv->hw->mac->rx_ipc(priv->hw);
2429 
2430 	return 0;
2431 }
2432 
2433 /**
2434  *  stmmac_interrupt - main ISR
2435  *  @irq: interrupt number.
2436  *  @dev_id: to pass the net device pointer.
2437  *  Description: this is the main driver interrupt service routine.
2438  *  It can call:
2439  *  o DMA service routine (to manage incoming frame reception and transmission
2440  *    status)
2441  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2442  *    interrupts.
2443  */
2444 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2445 {
2446 	struct net_device *dev = (struct net_device *)dev_id;
2447 	struct stmmac_priv *priv = netdev_priv(dev);
2448 
2449 	if (priv->irq_wake)
2450 		pm_wakeup_event(priv->device, 0);
2451 
2452 	if (unlikely(!dev)) {
2453 		pr_err("%s: invalid dev pointer\n", __func__);
2454 		return IRQ_NONE;
2455 	}
2456 
2457 	/* To handle GMAC own interrupts */
2458 	if (priv->plat->has_gmac) {
2459 		int status = priv->hw->mac->host_irq_status(priv->hw,
2460 							    &priv->xstats);
2461 		if (unlikely(status)) {
2462 			/* For LPI we need to save the tx status */
2463 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2464 				priv->tx_path_in_lpi_mode = true;
2465 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2466 				priv->tx_path_in_lpi_mode = false;
2467 		}
2468 	}
2469 
2470 	/* To handle DMA interrupts */
2471 	stmmac_dma_interrupt(priv);
2472 
2473 	return IRQ_HANDLED;
2474 }
2475 
2476 #ifdef CONFIG_NET_POLL_CONTROLLER
2477 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2478  * to allow network I/O with interrupts disabled.
2479  */
2480 static void stmmac_poll_controller(struct net_device *dev)
2481 {
2482 	disable_irq(dev->irq);
2483 	stmmac_interrupt(dev->irq, dev);
2484 	enable_irq(dev->irq);
2485 }
2486 #endif
2487 
2488 /**
2489  *  stmmac_ioctl - Entry point for the Ioctl
2490  *  @dev: Device pointer.
2491  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2492  *  a proprietary structure used to pass information to the driver.
2493  *  @cmd: IOCTL command
2494  *  Description:
2495  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2496  */
2497 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2498 {
2499 	struct stmmac_priv *priv = netdev_priv(dev);
2500 	int ret = -EOPNOTSUPP;
2501 
2502 	if (!netif_running(dev))
2503 		return -EINVAL;
2504 
2505 	switch (cmd) {
2506 	case SIOCGMIIPHY:
2507 	case SIOCGMIIREG:
2508 	case SIOCSMIIREG:
2509 		if (!priv->phydev)
2510 			return -EINVAL;
2511 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2512 		break;
2513 	case SIOCSHWTSTAMP:
2514 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2515 		break;
2516 	default:
2517 		break;
2518 	}
2519 
2520 	return ret;
2521 }
2522 
2523 #ifdef CONFIG_DEBUG_FS
2524 static struct dentry *stmmac_fs_dir;
2525 
2526 static void sysfs_display_ring(void *head, int size, int extend_desc,
2527 			       struct seq_file *seq)
2528 {
2529 	int i;
2530 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2531 	struct dma_desc *p = (struct dma_desc *)head;
2532 
2533 	for (i = 0; i < size; i++) {
2534 		u64 x;
2535 		if (extend_desc) {
2536 			x = *(u64 *) ep;
2537 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2538 				   i, (unsigned int)virt_to_phys(ep),
2539 				   (unsigned int)x, (unsigned int)(x >> 32),
2540 				   ep->basic.des2, ep->basic.des3);
2541 			ep++;
2542 		} else {
2543 			x = *(u64 *) p;
2544 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2545 				   i, (unsigned int)virt_to_phys(ep),
2546 				   (unsigned int)x, (unsigned int)(x >> 32),
2547 				   p->des2, p->des3);
2548 			p++;
2549 		}
2550 		seq_printf(seq, "\n");
2551 	}
2552 }
2553 
2554 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2555 {
2556 	struct net_device *dev = seq->private;
2557 	struct stmmac_priv *priv = netdev_priv(dev);
2558 	unsigned int txsize = priv->dma_tx_size;
2559 	unsigned int rxsize = priv->dma_rx_size;
2560 
2561 	if (priv->extend_desc) {
2562 		seq_printf(seq, "Extended RX descriptor ring:\n");
2563 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2564 		seq_printf(seq, "Extended TX descriptor ring:\n");
2565 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2566 	} else {
2567 		seq_printf(seq, "RX descriptor ring:\n");
2568 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2569 		seq_printf(seq, "TX descriptor ring:\n");
2570 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2571 	}
2572 
2573 	return 0;
2574 }
2575 
2576 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2577 {
2578 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2579 }
2580 
2581 static const struct file_operations stmmac_rings_status_fops = {
2582 	.owner = THIS_MODULE,
2583 	.open = stmmac_sysfs_ring_open,
2584 	.read = seq_read,
2585 	.llseek = seq_lseek,
2586 	.release = single_release,
2587 };
2588 
2589 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2590 {
2591 	struct net_device *dev = seq->private;
2592 	struct stmmac_priv *priv = netdev_priv(dev);
2593 
2594 	if (!priv->hw_cap_support) {
2595 		seq_printf(seq, "DMA HW features not supported\n");
2596 		return 0;
2597 	}
2598 
2599 	seq_printf(seq, "==============================\n");
2600 	seq_printf(seq, "\tDMA HW features\n");
2601 	seq_printf(seq, "==============================\n");
2602 
2603 	seq_printf(seq, "\t10/100 Mbps %s\n",
2604 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2605 	seq_printf(seq, "\t1000 Mbps %s\n",
2606 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2607 	seq_printf(seq, "\tHalf duple %s\n",
2608 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2609 	seq_printf(seq, "\tHash Filter: %s\n",
2610 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2611 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2612 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2613 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2614 		   (priv->dma_cap.pcs) ? "Y" : "N");
2615 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2616 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2617 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2618 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2619 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2620 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2621 	seq_printf(seq, "\tRMON module: %s\n",
2622 		   (priv->dma_cap.rmon) ? "Y" : "N");
2623 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2624 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2625 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2626 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2627 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2628 		   (priv->dma_cap.eee) ? "Y" : "N");
2629 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2630 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2631 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2632 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2633 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2634 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2635 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2636 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2637 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2638 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2639 		   priv->dma_cap.number_rx_channel);
2640 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2641 		   priv->dma_cap.number_tx_channel);
2642 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2643 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2644 
2645 	return 0;
2646 }
2647 
2648 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2649 {
2650 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2651 }
2652 
2653 static const struct file_operations stmmac_dma_cap_fops = {
2654 	.owner = THIS_MODULE,
2655 	.open = stmmac_sysfs_dma_cap_open,
2656 	.read = seq_read,
2657 	.llseek = seq_lseek,
2658 	.release = single_release,
2659 };
2660 
2661 static int stmmac_init_fs(struct net_device *dev)
2662 {
2663 	struct stmmac_priv *priv = netdev_priv(dev);
2664 
2665 	/* Create per netdev entries */
2666 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2667 
2668 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2669 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
2670 		       STMMAC_RESOURCE_NAME, dev->name);
2671 
2672 		return -ENOMEM;
2673 	}
2674 
2675 	/* Entry to report DMA RX/TX rings */
2676 	priv->dbgfs_rings_status =
2677 		debugfs_create_file("descriptors_status", S_IRUGO,
2678 				    priv->dbgfs_dir, dev,
2679 				    &stmmac_rings_status_fops);
2680 
2681 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2682 		pr_info("ERROR creating stmmac ring debugfs file\n");
2683 		debugfs_remove_recursive(priv->dbgfs_dir);
2684 
2685 		return -ENOMEM;
2686 	}
2687 
2688 	/* Entry to report the DMA HW features */
2689 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2690 					    priv->dbgfs_dir,
2691 					    dev, &stmmac_dma_cap_fops);
2692 
2693 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2694 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2695 		debugfs_remove_recursive(priv->dbgfs_dir);
2696 
2697 		return -ENOMEM;
2698 	}
2699 
2700 	return 0;
2701 }
2702 
2703 static void stmmac_exit_fs(struct net_device *dev)
2704 {
2705 	struct stmmac_priv *priv = netdev_priv(dev);
2706 
2707 	debugfs_remove_recursive(priv->dbgfs_dir);
2708 }
2709 #endif /* CONFIG_DEBUG_FS */
2710 
2711 static const struct net_device_ops stmmac_netdev_ops = {
2712 	.ndo_open = stmmac_open,
2713 	.ndo_start_xmit = stmmac_xmit,
2714 	.ndo_stop = stmmac_release,
2715 	.ndo_change_mtu = stmmac_change_mtu,
2716 	.ndo_fix_features = stmmac_fix_features,
2717 	.ndo_set_features = stmmac_set_features,
2718 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2719 	.ndo_tx_timeout = stmmac_tx_timeout,
2720 	.ndo_do_ioctl = stmmac_ioctl,
2721 #ifdef CONFIG_NET_POLL_CONTROLLER
2722 	.ndo_poll_controller = stmmac_poll_controller,
2723 #endif
2724 	.ndo_set_mac_address = eth_mac_addr,
2725 };
2726 
2727 /**
2728  *  stmmac_hw_init - Init the MAC device
2729  *  @priv: driver private structure
2730  *  Description: this function is to configure the MAC device according to
2731  *  some platform parameters or the HW capability register. It prepares the
2732  *  driver to use either ring or chain modes and to setup either enhanced or
2733  *  normal descriptors.
2734  */
2735 static int stmmac_hw_init(struct stmmac_priv *priv)
2736 {
2737 	struct mac_device_info *mac;
2738 
2739 	/* Identify the MAC HW device */
2740 	if (priv->plat->has_gmac) {
2741 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2742 		mac = dwmac1000_setup(priv->ioaddr,
2743 				      priv->plat->multicast_filter_bins,
2744 				      priv->plat->unicast_filter_entries);
2745 	} else {
2746 		mac = dwmac100_setup(priv->ioaddr);
2747 	}
2748 	if (!mac)
2749 		return -ENOMEM;
2750 
2751 	priv->hw = mac;
2752 
2753 	/* Get and dump the chip ID */
2754 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2755 
2756 	/* To use the chained or ring mode */
2757 	if (chain_mode) {
2758 		priv->hw->mode = &chain_mode_ops;
2759 		pr_info(" Chain mode enabled\n");
2760 		priv->mode = STMMAC_CHAIN_MODE;
2761 	} else {
2762 		priv->hw->mode = &ring_mode_ops;
2763 		pr_info(" Ring mode enabled\n");
2764 		priv->mode = STMMAC_RING_MODE;
2765 	}
2766 
2767 	/* Get the HW capability (new GMAC newer than 3.50a) */
2768 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2769 	if (priv->hw_cap_support) {
2770 		pr_info(" DMA HW capability register supported");
2771 
2772 		/* We can override some gmac/dma configuration fields: e.g.
2773 		 * enh_desc, tx_coe (e.g. that are passed through the
2774 		 * platform) with the values from the HW capability
2775 		 * register (if supported).
2776 		 */
2777 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2778 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2779 
2780 		/* TXCOE doesn't work in thresh DMA mode */
2781 		if (priv->plat->force_thresh_dma_mode)
2782 			priv->plat->tx_coe = 0;
2783 		else
2784 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
2785 
2786 		if (priv->dma_cap.rx_coe_type2)
2787 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2788 		else if (priv->dma_cap.rx_coe_type1)
2789 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2790 
2791 	} else
2792 		pr_info(" No HW DMA feature register supported");
2793 
2794 	/* To use alternate (extended) or normal descriptor structures */
2795 	stmmac_selec_desc_mode(priv);
2796 
2797 	if (priv->plat->rx_coe) {
2798 		priv->hw->rx_csum = priv->plat->rx_coe;
2799 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2800 			priv->plat->rx_coe);
2801 	}
2802 	if (priv->plat->tx_coe)
2803 		pr_info(" TX Checksum insertion supported\n");
2804 
2805 	if (priv->plat->pmt) {
2806 		pr_info(" Wake-Up On Lan supported\n");
2807 		device_set_wakeup_capable(priv->device, 1);
2808 	}
2809 
2810 	return 0;
2811 }
2812 
2813 /**
2814  * stmmac_dvr_probe
2815  * @device: device pointer
2816  * @plat_dat: platform data pointer
2817  * @res: stmmac resource pointer
2818  * Description: this is the main probe function used to
2819  * call the alloc_etherdev, allocate the priv structure.
2820  * Return:
2821  * returns 0 on success, otherwise errno.
2822  */
2823 int stmmac_dvr_probe(struct device *device,
2824 		     struct plat_stmmacenet_data *plat_dat,
2825 		     struct stmmac_resources *res)
2826 {
2827 	int ret = 0;
2828 	struct net_device *ndev = NULL;
2829 	struct stmmac_priv *priv;
2830 
2831 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2832 	if (!ndev)
2833 		return -ENOMEM;
2834 
2835 	SET_NETDEV_DEV(ndev, device);
2836 
2837 	priv = netdev_priv(ndev);
2838 	priv->device = device;
2839 	priv->dev = ndev;
2840 
2841 	stmmac_set_ethtool_ops(ndev);
2842 	priv->pause = pause;
2843 	priv->plat = plat_dat;
2844 	priv->ioaddr = res->addr;
2845 	priv->dev->base_addr = (unsigned long)res->addr;
2846 
2847 	priv->dev->irq = res->irq;
2848 	priv->wol_irq = res->wol_irq;
2849 	priv->lpi_irq = res->lpi_irq;
2850 
2851 	if (res->mac)
2852 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2853 
2854 	dev_set_drvdata(device, priv->dev);
2855 
2856 	/* Verify driver arguments */
2857 	stmmac_verify_args();
2858 
2859 	/* Override with kernel parameters if supplied XXX CRS XXX
2860 	 * this needs to have multiple instances
2861 	 */
2862 	if ((phyaddr >= 0) && (phyaddr <= 31))
2863 		priv->plat->phy_addr = phyaddr;
2864 
2865 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2866 	if (IS_ERR(priv->stmmac_clk)) {
2867 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2868 			 __func__);
2869 		/* If failed to obtain stmmac_clk and specific clk_csr value
2870 		 * is NOT passed from the platform, probe fail.
2871 		 */
2872 		if (!priv->plat->clk_csr) {
2873 			ret = PTR_ERR(priv->stmmac_clk);
2874 			goto error_clk_get;
2875 		} else {
2876 			priv->stmmac_clk = NULL;
2877 		}
2878 	}
2879 	clk_prepare_enable(priv->stmmac_clk);
2880 
2881 	priv->pclk = devm_clk_get(priv->device, "pclk");
2882 	if (IS_ERR(priv->pclk)) {
2883 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2884 			ret = -EPROBE_DEFER;
2885 			goto error_pclk_get;
2886 		}
2887 		priv->pclk = NULL;
2888 	}
2889 	clk_prepare_enable(priv->pclk);
2890 
2891 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2892 						  STMMAC_RESOURCE_NAME);
2893 	if (IS_ERR(priv->stmmac_rst)) {
2894 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2895 			ret = -EPROBE_DEFER;
2896 			goto error_hw_init;
2897 		}
2898 		dev_info(priv->device, "no reset control found\n");
2899 		priv->stmmac_rst = NULL;
2900 	}
2901 	if (priv->stmmac_rst)
2902 		reset_control_deassert(priv->stmmac_rst);
2903 
2904 	/* Init MAC and get the capabilities */
2905 	ret = stmmac_hw_init(priv);
2906 	if (ret)
2907 		goto error_hw_init;
2908 
2909 	ndev->netdev_ops = &stmmac_netdev_ops;
2910 
2911 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2912 			    NETIF_F_RXCSUM;
2913 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2914 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2915 #ifdef STMMAC_VLAN_TAG_USED
2916 	/* Both mac100 and gmac support receive VLAN tag detection */
2917 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2918 #endif
2919 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2920 
2921 	if (flow_ctrl)
2922 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2923 
2924 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2925 	 * In some case, for example on bugged HW this feature
2926 	 * has to be disable and this can be done by passing the
2927 	 * riwt_off field from the platform.
2928 	 */
2929 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2930 		priv->use_riwt = 1;
2931 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2932 	}
2933 
2934 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2935 
2936 	spin_lock_init(&priv->lock);
2937 	spin_lock_init(&priv->tx_lock);
2938 
2939 	ret = register_netdev(ndev);
2940 	if (ret) {
2941 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2942 		goto error_netdev_register;
2943 	}
2944 
2945 	/* If a specific clk_csr value is passed from the platform
2946 	 * this means that the CSR Clock Range selection cannot be
2947 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2948 	 * set the MDC clock dynamically according to the csr actual
2949 	 * clock input.
2950 	 */
2951 	if (!priv->plat->clk_csr)
2952 		stmmac_clk_csr_set(priv);
2953 	else
2954 		priv->clk_csr = priv->plat->clk_csr;
2955 
2956 	stmmac_check_pcs_mode(priv);
2957 
2958 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2959 	    priv->pcs != STMMAC_PCS_RTBI) {
2960 		/* MDIO bus Registration */
2961 		ret = stmmac_mdio_register(ndev);
2962 		if (ret < 0) {
2963 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2964 				 __func__, priv->plat->bus_id);
2965 			goto error_mdio_register;
2966 		}
2967 	}
2968 
2969 	return 0;
2970 
2971 error_mdio_register:
2972 	unregister_netdev(ndev);
2973 error_netdev_register:
2974 	netif_napi_del(&priv->napi);
2975 error_hw_init:
2976 	clk_disable_unprepare(priv->pclk);
2977 error_pclk_get:
2978 	clk_disable_unprepare(priv->stmmac_clk);
2979 error_clk_get:
2980 	free_netdev(ndev);
2981 
2982 	return ret;
2983 }
2984 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2985 
2986 /**
2987  * stmmac_dvr_remove
2988  * @ndev: net device pointer
2989  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2990  * changes the link status, releases the DMA descriptor rings.
2991  */
2992 int stmmac_dvr_remove(struct net_device *ndev)
2993 {
2994 	struct stmmac_priv *priv = netdev_priv(ndev);
2995 
2996 	pr_info("%s:\n\tremoving driver", __func__);
2997 
2998 	priv->hw->dma->stop_rx(priv->ioaddr);
2999 	priv->hw->dma->stop_tx(priv->ioaddr);
3000 
3001 	stmmac_set_mac(priv->ioaddr, false);
3002 	netif_carrier_off(ndev);
3003 	unregister_netdev(ndev);
3004 	if (priv->stmmac_rst)
3005 		reset_control_assert(priv->stmmac_rst);
3006 	clk_disable_unprepare(priv->pclk);
3007 	clk_disable_unprepare(priv->stmmac_clk);
3008 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3009 	    priv->pcs != STMMAC_PCS_RTBI)
3010 		stmmac_mdio_unregister(ndev);
3011 	free_netdev(ndev);
3012 
3013 	return 0;
3014 }
3015 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3016 
3017 /**
3018  * stmmac_suspend - suspend callback
3019  * @ndev: net device pointer
3020  * Description: this is the function to suspend the device and it is called
3021  * by the platform driver to stop the network queue, release the resources,
3022  * program the PMT register (for WoL), clean and release driver resources.
3023  */
3024 int stmmac_suspend(struct net_device *ndev)
3025 {
3026 	struct stmmac_priv *priv = netdev_priv(ndev);
3027 	unsigned long flags;
3028 
3029 	if (!ndev || !netif_running(ndev))
3030 		return 0;
3031 
3032 	if (priv->phydev)
3033 		phy_stop(priv->phydev);
3034 
3035 	spin_lock_irqsave(&priv->lock, flags);
3036 
3037 	netif_device_detach(ndev);
3038 	netif_stop_queue(ndev);
3039 
3040 	napi_disable(&priv->napi);
3041 
3042 	/* Stop TX/RX DMA */
3043 	priv->hw->dma->stop_tx(priv->ioaddr);
3044 	priv->hw->dma->stop_rx(priv->ioaddr);
3045 
3046 	/* Enable Power down mode by programming the PMT regs */
3047 	if (device_may_wakeup(priv->device)) {
3048 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3049 		priv->irq_wake = 1;
3050 	} else {
3051 		stmmac_set_mac(priv->ioaddr, false);
3052 		pinctrl_pm_select_sleep_state(priv->device);
3053 		/* Disable clock in case of PWM is off */
3054 		clk_disable(priv->pclk);
3055 		clk_disable(priv->stmmac_clk);
3056 	}
3057 	spin_unlock_irqrestore(&priv->lock, flags);
3058 
3059 	priv->oldlink = 0;
3060 	priv->speed = 0;
3061 	priv->oldduplex = -1;
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL_GPL(stmmac_suspend);
3065 
3066 /**
3067  * stmmac_resume - resume callback
3068  * @ndev: net device pointer
3069  * Description: when resume this function is invoked to setup the DMA and CORE
3070  * in a usable state.
3071  */
3072 int stmmac_resume(struct net_device *ndev)
3073 {
3074 	struct stmmac_priv *priv = netdev_priv(ndev);
3075 	unsigned long flags;
3076 
3077 	if (!netif_running(ndev))
3078 		return 0;
3079 
3080 	spin_lock_irqsave(&priv->lock, flags);
3081 
3082 	/* Power Down bit, into the PM register, is cleared
3083 	 * automatically as soon as a magic packet or a Wake-up frame
3084 	 * is received. Anyway, it's better to manually clear
3085 	 * this bit because it can generate problems while resuming
3086 	 * from another devices (e.g. serial console).
3087 	 */
3088 	if (device_may_wakeup(priv->device)) {
3089 		priv->hw->mac->pmt(priv->hw, 0);
3090 		priv->irq_wake = 0;
3091 	} else {
3092 		pinctrl_pm_select_default_state(priv->device);
3093 		/* enable the clk prevously disabled */
3094 		clk_enable(priv->stmmac_clk);
3095 		clk_enable(priv->pclk);
3096 		/* reset the phy so that it's ready */
3097 		if (priv->mii)
3098 			stmmac_mdio_reset(priv->mii);
3099 	}
3100 
3101 	netif_device_attach(ndev);
3102 
3103 	priv->cur_rx = 0;
3104 	priv->dirty_rx = 0;
3105 	priv->dirty_tx = 0;
3106 	priv->cur_tx = 0;
3107 	stmmac_clear_descriptors(priv);
3108 
3109 	stmmac_hw_setup(ndev, false);
3110 	stmmac_init_tx_coalesce(priv);
3111 	stmmac_set_rx_mode(ndev);
3112 
3113 	napi_enable(&priv->napi);
3114 
3115 	netif_start_queue(ndev);
3116 
3117 	spin_unlock_irqrestore(&priv->lock, flags);
3118 
3119 	if (priv->phydev)
3120 		phy_start(priv->phydev);
3121 
3122 	return 0;
3123 }
3124 EXPORT_SYMBOL_GPL(stmmac_resume);
3125 
3126 #ifndef MODULE
3127 static int __init stmmac_cmdline_opt(char *str)
3128 {
3129 	char *opt;
3130 
3131 	if (!str || !*str)
3132 		return -EINVAL;
3133 	while ((opt = strsep(&str, ",")) != NULL) {
3134 		if (!strncmp(opt, "debug:", 6)) {
3135 			if (kstrtoint(opt + 6, 0, &debug))
3136 				goto err;
3137 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3138 			if (kstrtoint(opt + 8, 0, &phyaddr))
3139 				goto err;
3140 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3141 			if (kstrtoint(opt + 11, 0, &dma_txsize))
3142 				goto err;
3143 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3144 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3145 				goto err;
3146 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3147 			if (kstrtoint(opt + 7, 0, &buf_sz))
3148 				goto err;
3149 		} else if (!strncmp(opt, "tc:", 3)) {
3150 			if (kstrtoint(opt + 3, 0, &tc))
3151 				goto err;
3152 		} else if (!strncmp(opt, "watchdog:", 9)) {
3153 			if (kstrtoint(opt + 9, 0, &watchdog))
3154 				goto err;
3155 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3156 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3157 				goto err;
3158 		} else if (!strncmp(opt, "pause:", 6)) {
3159 			if (kstrtoint(opt + 6, 0, &pause))
3160 				goto err;
3161 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3162 			if (kstrtoint(opt + 10, 0, &eee_timer))
3163 				goto err;
3164 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3165 			if (kstrtoint(opt + 11, 0, &chain_mode))
3166 				goto err;
3167 		}
3168 	}
3169 	return 0;
3170 
3171 err:
3172 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3173 	return -EINVAL;
3174 }
3175 
3176 __setup("stmmaceth=", stmmac_cmdline_opt);
3177 #endif /* MODULE */
3178 
3179 static int __init stmmac_init(void)
3180 {
3181 #ifdef CONFIG_DEBUG_FS
3182 	/* Create debugfs main directory if it doesn't exist yet */
3183 	if (!stmmac_fs_dir) {
3184 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3185 
3186 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3187 			pr_err("ERROR %s, debugfs create directory failed\n",
3188 			       STMMAC_RESOURCE_NAME);
3189 
3190 			return -ENOMEM;
3191 		}
3192 	}
3193 #endif
3194 
3195 	return 0;
3196 }
3197 
3198 static void __exit stmmac_exit(void)
3199 {
3200 #ifdef CONFIG_DEBUG_FS
3201 	debugfs_remove_recursive(stmmac_fs_dir);
3202 #endif
3203 }
3204 
3205 module_init(stmmac_init)
3206 module_exit(stmmac_exit)
3207 
3208 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3209 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3210 MODULE_LICENSE("GPL");
3211