1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 24 25 Documentation available at: 26 http://www.stlinux.com 27 Support available at: 28 https://bugzilla.stlinux.com/ 29 *******************************************************************************/ 30 31 #include <linux/clk.h> 32 #include <linux/kernel.h> 33 #include <linux/interrupt.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/skbuff.h> 37 #include <linux/ethtool.h> 38 #include <linux/if_ether.h> 39 #include <linux/crc32.h> 40 #include <linux/mii.h> 41 #include <linux/if.h> 42 #include <linux/if_vlan.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/slab.h> 45 #include <linux/prefetch.h> 46 #include <linux/pinctrl/consumer.h> 47 #ifdef CONFIG_DEBUG_FS 48 #include <linux/debugfs.h> 49 #include <linux/seq_file.h> 50 #endif /* CONFIG_DEBUG_FS */ 51 #include <linux/net_tstamp.h> 52 #include "stmmac_ptp.h" 53 #include "stmmac.h" 54 #include <linux/reset.h> 55 #include <linux/of_mdio.h> 56 #include "dwmac1000.h" 57 58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x) 59 60 /* Module parameters */ 61 #define TX_TIMEO 5000 62 static int watchdog = TX_TIMEO; 63 module_param(watchdog, int, S_IRUGO | S_IWUSR); 64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 65 66 static int debug = -1; 67 module_param(debug, int, S_IRUGO | S_IWUSR); 68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 69 70 static int phyaddr = -1; 71 module_param(phyaddr, int, S_IRUGO); 72 MODULE_PARM_DESC(phyaddr, "Physical device address"); 73 74 #define DMA_TX_SIZE 256 75 static int dma_txsize = DMA_TX_SIZE; 76 module_param(dma_txsize, int, S_IRUGO | S_IWUSR); 77 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list"); 78 79 #define DMA_RX_SIZE 256 80 static int dma_rxsize = DMA_RX_SIZE; 81 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR); 82 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list"); 83 84 static int flow_ctrl = FLOW_OFF; 85 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR); 86 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 87 88 static int pause = PAUSE_TIME; 89 module_param(pause, int, S_IRUGO | S_IWUSR); 90 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 91 92 #define TC_DEFAULT 64 93 static int tc = TC_DEFAULT; 94 module_param(tc, int, S_IRUGO | S_IWUSR); 95 MODULE_PARM_DESC(tc, "DMA threshold control value"); 96 97 #define DEFAULT_BUFSIZE 1536 98 static int buf_sz = DEFAULT_BUFSIZE; 99 module_param(buf_sz, int, S_IRUGO | S_IWUSR); 100 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 101 102 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 103 NETIF_MSG_LINK | NETIF_MSG_IFUP | 104 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 105 106 #define STMMAC_DEFAULT_LPI_TIMER 1000 107 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 108 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 109 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 110 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 111 112 /* By default the driver will use the ring mode to manage tx and rx descriptors 113 * but passing this value so user can force to use the chain instead of the ring 114 */ 115 static unsigned int chain_mode; 116 module_param(chain_mode, int, S_IRUGO); 117 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 118 119 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 120 121 #ifdef CONFIG_DEBUG_FS 122 static int stmmac_init_fs(struct net_device *dev); 123 static void stmmac_exit_fs(struct net_device *dev); 124 #endif 125 126 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 127 128 /** 129 * stmmac_verify_args - verify the driver parameters. 130 * Description: it checks the driver parameters and set a default in case of 131 * errors. 132 */ 133 static void stmmac_verify_args(void) 134 { 135 if (unlikely(watchdog < 0)) 136 watchdog = TX_TIMEO; 137 if (unlikely(dma_rxsize < 0)) 138 dma_rxsize = DMA_RX_SIZE; 139 if (unlikely(dma_txsize < 0)) 140 dma_txsize = DMA_TX_SIZE; 141 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 142 buf_sz = DEFAULT_BUFSIZE; 143 if (unlikely(flow_ctrl > 1)) 144 flow_ctrl = FLOW_AUTO; 145 else if (likely(flow_ctrl < 0)) 146 flow_ctrl = FLOW_OFF; 147 if (unlikely((pause < 0) || (pause > 0xffff))) 148 pause = PAUSE_TIME; 149 if (eee_timer < 0) 150 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 151 } 152 153 /** 154 * stmmac_clk_csr_set - dynamically set the MDC clock 155 * @priv: driver private structure 156 * Description: this is to dynamically set the MDC clock according to the csr 157 * clock input. 158 * Note: 159 * If a specific clk_csr value is passed from the platform 160 * this means that the CSR Clock Range selection cannot be 161 * changed at run-time and it is fixed (as reported in the driver 162 * documentation). Viceversa the driver will try to set the MDC 163 * clock dynamically according to the actual clock input. 164 */ 165 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 166 { 167 u32 clk_rate; 168 169 clk_rate = clk_get_rate(priv->stmmac_clk); 170 171 /* Platform provided default clk_csr would be assumed valid 172 * for all other cases except for the below mentioned ones. 173 * For values higher than the IEEE 802.3 specified frequency 174 * we can not estimate the proper divider as it is not known 175 * the frequency of clk_csr_i. So we do not change the default 176 * divider. 177 */ 178 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 179 if (clk_rate < CSR_F_35M) 180 priv->clk_csr = STMMAC_CSR_20_35M; 181 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 182 priv->clk_csr = STMMAC_CSR_35_60M; 183 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 184 priv->clk_csr = STMMAC_CSR_60_100M; 185 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 186 priv->clk_csr = STMMAC_CSR_100_150M; 187 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 188 priv->clk_csr = STMMAC_CSR_150_250M; 189 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 190 priv->clk_csr = STMMAC_CSR_250_300M; 191 } 192 } 193 194 static void print_pkt(unsigned char *buf, int len) 195 { 196 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 197 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 198 } 199 200 /* minimum number of free TX descriptors required to wake up TX process */ 201 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4) 202 203 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) 204 { 205 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1; 206 } 207 208 /** 209 * stmmac_hw_fix_mac_speed - callback for speed selection 210 * @priv: driver private structure 211 * Description: on some platforms (e.g. ST), some HW system configuraton 212 * registers have to be set according to the link speed negotiated. 213 */ 214 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 215 { 216 struct phy_device *phydev = priv->phydev; 217 218 if (likely(priv->plat->fix_mac_speed)) 219 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 220 } 221 222 /** 223 * stmmac_enable_eee_mode - check and enter in LPI mode 224 * @priv: driver private structure 225 * Description: this function is to verify and enter in LPI mode in case of 226 * EEE. 227 */ 228 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 229 { 230 /* Check and enter in LPI mode */ 231 if ((priv->dirty_tx == priv->cur_tx) && 232 (priv->tx_path_in_lpi_mode == false)) 233 priv->hw->mac->set_eee_mode(priv->hw); 234 } 235 236 /** 237 * stmmac_disable_eee_mode - disable and exit from LPI mode 238 * @priv: driver private structure 239 * Description: this function is to exit and disable EEE in case of 240 * LPI state is true. This is called by the xmit. 241 */ 242 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 243 { 244 priv->hw->mac->reset_eee_mode(priv->hw); 245 del_timer_sync(&priv->eee_ctrl_timer); 246 priv->tx_path_in_lpi_mode = false; 247 } 248 249 /** 250 * stmmac_eee_ctrl_timer - EEE TX SW timer. 251 * @arg : data hook 252 * Description: 253 * if there is no data transfer and if we are not in LPI state, 254 * then MAC Transmitter can be moved to LPI state. 255 */ 256 static void stmmac_eee_ctrl_timer(unsigned long arg) 257 { 258 struct stmmac_priv *priv = (struct stmmac_priv *)arg; 259 260 stmmac_enable_eee_mode(priv); 261 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 262 } 263 264 /** 265 * stmmac_eee_init - init EEE 266 * @priv: driver private structure 267 * Description: 268 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 269 * can also manage EEE, this function enable the LPI state and start related 270 * timer. 271 */ 272 bool stmmac_eee_init(struct stmmac_priv *priv) 273 { 274 char *phy_bus_name = priv->plat->phy_bus_name; 275 unsigned long flags; 276 bool ret = false; 277 278 /* Using PCS we cannot dial with the phy registers at this stage 279 * so we do not support extra feature like EEE. 280 */ 281 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) || 282 (priv->pcs == STMMAC_PCS_RTBI)) 283 goto out; 284 285 /* Never init EEE in case of a switch is attached */ 286 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed"))) 287 goto out; 288 289 /* MAC core supports the EEE feature. */ 290 if (priv->dma_cap.eee) { 291 int tx_lpi_timer = priv->tx_lpi_timer; 292 293 /* Check if the PHY supports EEE */ 294 if (phy_init_eee(priv->phydev, 1)) { 295 /* To manage at run-time if the EEE cannot be supported 296 * anymore (for example because the lp caps have been 297 * changed). 298 * In that case the driver disable own timers. 299 */ 300 spin_lock_irqsave(&priv->lock, flags); 301 if (priv->eee_active) { 302 pr_debug("stmmac: disable EEE\n"); 303 del_timer_sync(&priv->eee_ctrl_timer); 304 priv->hw->mac->set_eee_timer(priv->hw, 0, 305 tx_lpi_timer); 306 } 307 priv->eee_active = 0; 308 spin_unlock_irqrestore(&priv->lock, flags); 309 goto out; 310 } 311 /* Activate the EEE and start timers */ 312 spin_lock_irqsave(&priv->lock, flags); 313 if (!priv->eee_active) { 314 priv->eee_active = 1; 315 setup_timer(&priv->eee_ctrl_timer, 316 stmmac_eee_ctrl_timer, 317 (unsigned long)priv); 318 mod_timer(&priv->eee_ctrl_timer, 319 STMMAC_LPI_T(eee_timer)); 320 321 priv->hw->mac->set_eee_timer(priv->hw, 322 STMMAC_DEFAULT_LIT_LS, 323 tx_lpi_timer); 324 } 325 /* Set HW EEE according to the speed */ 326 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link); 327 328 ret = true; 329 spin_unlock_irqrestore(&priv->lock, flags); 330 331 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n"); 332 } 333 out: 334 return ret; 335 } 336 337 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 338 * @priv: driver private structure 339 * @entry : descriptor index to be used. 340 * @skb : the socket buffer 341 * Description : 342 * This function will read timestamp from the descriptor & pass it to stack. 343 * and also perform some sanity checks. 344 */ 345 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 346 unsigned int entry, struct sk_buff *skb) 347 { 348 struct skb_shared_hwtstamps shhwtstamp; 349 u64 ns; 350 void *desc = NULL; 351 352 if (!priv->hwts_tx_en) 353 return; 354 355 /* exit if skb doesn't support hw tstamp */ 356 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 357 return; 358 359 if (priv->adv_ts) 360 desc = (priv->dma_etx + entry); 361 else 362 desc = (priv->dma_tx + entry); 363 364 /* check tx tstamp status */ 365 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc)) 366 return; 367 368 /* get the valid tstamp */ 369 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 370 371 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 372 shhwtstamp.hwtstamp = ns_to_ktime(ns); 373 /* pass tstamp to stack */ 374 skb_tstamp_tx(skb, &shhwtstamp); 375 376 return; 377 } 378 379 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 380 * @priv: driver private structure 381 * @entry : descriptor index to be used. 382 * @skb : the socket buffer 383 * Description : 384 * This function will read received packet's timestamp from the descriptor 385 * and pass it to stack. It also perform some sanity checks. 386 */ 387 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, 388 unsigned int entry, struct sk_buff *skb) 389 { 390 struct skb_shared_hwtstamps *shhwtstamp = NULL; 391 u64 ns; 392 void *desc = NULL; 393 394 if (!priv->hwts_rx_en) 395 return; 396 397 if (priv->adv_ts) 398 desc = (priv->dma_erx + entry); 399 else 400 desc = (priv->dma_rx + entry); 401 402 /* exit if rx tstamp is not valid */ 403 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) 404 return; 405 406 /* get valid tstamp */ 407 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 408 shhwtstamp = skb_hwtstamps(skb); 409 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 410 shhwtstamp->hwtstamp = ns_to_ktime(ns); 411 } 412 413 /** 414 * stmmac_hwtstamp_ioctl - control hardware timestamping. 415 * @dev: device pointer. 416 * @ifr: An IOCTL specefic structure, that can contain a pointer to 417 * a proprietary structure used to pass information to the driver. 418 * Description: 419 * This function configures the MAC to enable/disable both outgoing(TX) 420 * and incoming(RX) packets time stamping based on user input. 421 * Return Value: 422 * 0 on success and an appropriate -ve integer on failure. 423 */ 424 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 425 { 426 struct stmmac_priv *priv = netdev_priv(dev); 427 struct hwtstamp_config config; 428 struct timespec64 now; 429 u64 temp = 0; 430 u32 ptp_v2 = 0; 431 u32 tstamp_all = 0; 432 u32 ptp_over_ipv4_udp = 0; 433 u32 ptp_over_ipv6_udp = 0; 434 u32 ptp_over_ethernet = 0; 435 u32 snap_type_sel = 0; 436 u32 ts_master_en = 0; 437 u32 ts_event_en = 0; 438 u32 value = 0; 439 u32 sec_inc; 440 441 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 442 netdev_alert(priv->dev, "No support for HW time stamping\n"); 443 priv->hwts_tx_en = 0; 444 priv->hwts_rx_en = 0; 445 446 return -EOPNOTSUPP; 447 } 448 449 if (copy_from_user(&config, ifr->ifr_data, 450 sizeof(struct hwtstamp_config))) 451 return -EFAULT; 452 453 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 454 __func__, config.flags, config.tx_type, config.rx_filter); 455 456 /* reserved for future extensions */ 457 if (config.flags) 458 return -EINVAL; 459 460 if (config.tx_type != HWTSTAMP_TX_OFF && 461 config.tx_type != HWTSTAMP_TX_ON) 462 return -ERANGE; 463 464 if (priv->adv_ts) { 465 switch (config.rx_filter) { 466 case HWTSTAMP_FILTER_NONE: 467 /* time stamp no incoming packet at all */ 468 config.rx_filter = HWTSTAMP_FILTER_NONE; 469 break; 470 471 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 472 /* PTP v1, UDP, any kind of event packet */ 473 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 474 /* take time stamp for all event messages */ 475 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 476 477 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 478 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 479 break; 480 481 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 482 /* PTP v1, UDP, Sync packet */ 483 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 484 /* take time stamp for SYNC messages only */ 485 ts_event_en = PTP_TCR_TSEVNTENA; 486 487 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 488 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 489 break; 490 491 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 492 /* PTP v1, UDP, Delay_req packet */ 493 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 494 /* take time stamp for Delay_Req messages only */ 495 ts_master_en = PTP_TCR_TSMSTRENA; 496 ts_event_en = PTP_TCR_TSEVNTENA; 497 498 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 499 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 500 break; 501 502 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 503 /* PTP v2, UDP, any kind of event packet */ 504 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 505 ptp_v2 = PTP_TCR_TSVER2ENA; 506 /* take time stamp for all event messages */ 507 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 508 509 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 510 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 511 break; 512 513 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 514 /* PTP v2, UDP, Sync packet */ 515 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 516 ptp_v2 = PTP_TCR_TSVER2ENA; 517 /* take time stamp for SYNC messages only */ 518 ts_event_en = PTP_TCR_TSEVNTENA; 519 520 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 521 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 522 break; 523 524 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 525 /* PTP v2, UDP, Delay_req packet */ 526 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 527 ptp_v2 = PTP_TCR_TSVER2ENA; 528 /* take time stamp for Delay_Req messages only */ 529 ts_master_en = PTP_TCR_TSMSTRENA; 530 ts_event_en = PTP_TCR_TSEVNTENA; 531 532 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 533 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 534 break; 535 536 case HWTSTAMP_FILTER_PTP_V2_EVENT: 537 /* PTP v2/802.AS1 any layer, any kind of event packet */ 538 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 539 ptp_v2 = PTP_TCR_TSVER2ENA; 540 /* take time stamp for all event messages */ 541 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 542 543 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 544 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 545 ptp_over_ethernet = PTP_TCR_TSIPENA; 546 break; 547 548 case HWTSTAMP_FILTER_PTP_V2_SYNC: 549 /* PTP v2/802.AS1, any layer, Sync packet */ 550 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 551 ptp_v2 = PTP_TCR_TSVER2ENA; 552 /* take time stamp for SYNC messages only */ 553 ts_event_en = PTP_TCR_TSEVNTENA; 554 555 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 556 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 557 ptp_over_ethernet = PTP_TCR_TSIPENA; 558 break; 559 560 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 561 /* PTP v2/802.AS1, any layer, Delay_req packet */ 562 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 563 ptp_v2 = PTP_TCR_TSVER2ENA; 564 /* take time stamp for Delay_Req messages only */ 565 ts_master_en = PTP_TCR_TSMSTRENA; 566 ts_event_en = PTP_TCR_TSEVNTENA; 567 568 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 569 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 570 ptp_over_ethernet = PTP_TCR_TSIPENA; 571 break; 572 573 case HWTSTAMP_FILTER_ALL: 574 /* time stamp any incoming packet */ 575 config.rx_filter = HWTSTAMP_FILTER_ALL; 576 tstamp_all = PTP_TCR_TSENALL; 577 break; 578 579 default: 580 return -ERANGE; 581 } 582 } else { 583 switch (config.rx_filter) { 584 case HWTSTAMP_FILTER_NONE: 585 config.rx_filter = HWTSTAMP_FILTER_NONE; 586 break; 587 default: 588 /* PTP v1, UDP, any kind of event packet */ 589 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 590 break; 591 } 592 } 593 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 594 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 595 596 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 597 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0); 598 else { 599 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 600 tstamp_all | ptp_v2 | ptp_over_ethernet | 601 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 602 ts_master_en | snap_type_sel); 603 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value); 604 605 /* program Sub Second Increment reg */ 606 sec_inc = priv->hw->ptp->config_sub_second_increment( 607 priv->ioaddr, priv->clk_ptp_rate); 608 temp = div_u64(1000000000ULL, sec_inc); 609 610 /* calculate default added value: 611 * formula is : 612 * addend = (2^32)/freq_div_ratio; 613 * where, freq_div_ratio = 1e9ns/sec_inc 614 */ 615 temp = (u64)(temp << 32); 616 priv->default_addend = div_u64(temp, priv->clk_ptp_rate); 617 priv->hw->ptp->config_addend(priv->ioaddr, 618 priv->default_addend); 619 620 /* initialize system time */ 621 ktime_get_real_ts64(&now); 622 623 /* lower 32 bits of tv_sec are safe until y2106 */ 624 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec, 625 now.tv_nsec); 626 } 627 628 return copy_to_user(ifr->ifr_data, &config, 629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 630 } 631 632 /** 633 * stmmac_init_ptp - init PTP 634 * @priv: driver private structure 635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 636 * This is done by looking at the HW cap. register. 637 * This function also registers the ptp driver. 638 */ 639 static int stmmac_init_ptp(struct stmmac_priv *priv) 640 { 641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 642 return -EOPNOTSUPP; 643 644 /* Fall-back to main clock in case of no PTP ref is passed */ 645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref"); 646 if (IS_ERR(priv->clk_ptp_ref)) { 647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk); 648 priv->clk_ptp_ref = NULL; 649 } else { 650 clk_prepare_enable(priv->clk_ptp_ref); 651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref); 652 } 653 654 priv->adv_ts = 0; 655 if (priv->dma_cap.atime_stamp && priv->extend_desc) 656 priv->adv_ts = 1; 657 658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp) 659 pr_debug("IEEE 1588-2002 Time Stamp supported\n"); 660 661 if (netif_msg_hw(priv) && priv->adv_ts) 662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n"); 663 664 priv->hw->ptp = &stmmac_ptp; 665 priv->hwts_tx_en = 0; 666 priv->hwts_rx_en = 0; 667 668 return stmmac_ptp_register(priv); 669 } 670 671 static void stmmac_release_ptp(struct stmmac_priv *priv) 672 { 673 if (priv->clk_ptp_ref) 674 clk_disable_unprepare(priv->clk_ptp_ref); 675 stmmac_ptp_unregister(priv); 676 } 677 678 /** 679 * stmmac_adjust_link - adjusts the link parameters 680 * @dev: net device structure 681 * Description: this is the helper called by the physical abstraction layer 682 * drivers to communicate the phy link status. According the speed and duplex 683 * this driver can invoke registered glue-logic as well. 684 * It also invoke the eee initialization because it could happen when switch 685 * on different networks (that are eee capable). 686 */ 687 static void stmmac_adjust_link(struct net_device *dev) 688 { 689 struct stmmac_priv *priv = netdev_priv(dev); 690 struct phy_device *phydev = priv->phydev; 691 unsigned long flags; 692 int new_state = 0; 693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause; 694 695 if (phydev == NULL) 696 return; 697 698 spin_lock_irqsave(&priv->lock, flags); 699 700 if (phydev->link) { 701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 702 703 /* Now we make sure that we can be in full duplex mode. 704 * If not, we operate in half-duplex mode. */ 705 if (phydev->duplex != priv->oldduplex) { 706 new_state = 1; 707 if (!(phydev->duplex)) 708 ctrl &= ~priv->hw->link.duplex; 709 else 710 ctrl |= priv->hw->link.duplex; 711 priv->oldduplex = phydev->duplex; 712 } 713 /* Flow Control operation */ 714 if (phydev->pause) 715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex, 716 fc, pause_time); 717 718 if (phydev->speed != priv->speed) { 719 new_state = 1; 720 switch (phydev->speed) { 721 case 1000: 722 if (likely(priv->plat->has_gmac)) 723 ctrl &= ~priv->hw->link.port; 724 stmmac_hw_fix_mac_speed(priv); 725 break; 726 case 100: 727 case 10: 728 if (priv->plat->has_gmac) { 729 ctrl |= priv->hw->link.port; 730 if (phydev->speed == SPEED_100) { 731 ctrl |= priv->hw->link.speed; 732 } else { 733 ctrl &= ~(priv->hw->link.speed); 734 } 735 } else { 736 ctrl &= ~priv->hw->link.port; 737 } 738 stmmac_hw_fix_mac_speed(priv); 739 break; 740 default: 741 if (netif_msg_link(priv)) 742 pr_warn("%s: Speed (%d) not 10/100\n", 743 dev->name, phydev->speed); 744 break; 745 } 746 747 priv->speed = phydev->speed; 748 } 749 750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 751 752 if (!priv->oldlink) { 753 new_state = 1; 754 priv->oldlink = 1; 755 } 756 } else if (priv->oldlink) { 757 new_state = 1; 758 priv->oldlink = 0; 759 priv->speed = 0; 760 priv->oldduplex = -1; 761 } 762 763 if (new_state && netif_msg_link(priv)) 764 phy_print_status(phydev); 765 766 spin_unlock_irqrestore(&priv->lock, flags); 767 768 /* At this stage, it could be needed to setup the EEE or adjust some 769 * MAC related HW registers. 770 */ 771 priv->eee_enabled = stmmac_eee_init(priv); 772 } 773 774 /** 775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 776 * @priv: driver private structure 777 * Description: this is to verify if the HW supports the PCS. 778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 779 * configured for the TBI, RTBI, or SGMII PHY interface. 780 */ 781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 782 { 783 int interface = priv->plat->interface; 784 785 if (priv->dma_cap.pcs) { 786 if ((interface == PHY_INTERFACE_MODE_RGMII) || 787 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 790 pr_debug("STMMAC: PCS RGMII support enable\n"); 791 priv->pcs = STMMAC_PCS_RGMII; 792 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 793 pr_debug("STMMAC: PCS SGMII support enable\n"); 794 priv->pcs = STMMAC_PCS_SGMII; 795 } 796 } 797 } 798 799 /** 800 * stmmac_init_phy - PHY initialization 801 * @dev: net device structure 802 * Description: it initializes the driver's PHY state, and attaches the PHY 803 * to the mac driver. 804 * Return value: 805 * 0 on success 806 */ 807 static int stmmac_init_phy(struct net_device *dev) 808 { 809 struct stmmac_priv *priv = netdev_priv(dev); 810 struct phy_device *phydev; 811 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 812 char bus_id[MII_BUS_ID_SIZE]; 813 int interface = priv->plat->interface; 814 int max_speed = priv->plat->max_speed; 815 priv->oldlink = 0; 816 priv->speed = 0; 817 priv->oldduplex = -1; 818 819 if (priv->plat->phy_node) { 820 phydev = of_phy_connect(dev, priv->plat->phy_node, 821 &stmmac_adjust_link, 0, interface); 822 } else { 823 if (priv->plat->phy_bus_name) 824 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 825 priv->plat->phy_bus_name, priv->plat->bus_id); 826 else 827 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 828 priv->plat->bus_id); 829 830 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 831 priv->plat->phy_addr); 832 pr_debug("stmmac_init_phy: trying to attach to %s\n", 833 phy_id_fmt); 834 835 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 836 interface); 837 } 838 839 if (IS_ERR_OR_NULL(phydev)) { 840 pr_err("%s: Could not attach to PHY\n", dev->name); 841 if (!phydev) 842 return -ENODEV; 843 844 return PTR_ERR(phydev); 845 } 846 847 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 848 if ((interface == PHY_INTERFACE_MODE_MII) || 849 (interface == PHY_INTERFACE_MODE_RMII) || 850 (max_speed < 1000 && max_speed > 0)) 851 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 852 SUPPORTED_1000baseT_Full); 853 854 /* 855 * Broken HW is sometimes missing the pull-up resistor on the 856 * MDIO line, which results in reads to non-existent devices returning 857 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 858 * device as well. 859 * Note: phydev->phy_id is the result of reading the UID PHY registers. 860 */ 861 if (!priv->plat->phy_node && phydev->phy_id == 0) { 862 phy_disconnect(phydev); 863 return -ENODEV; 864 } 865 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)" 866 " Link = %d\n", dev->name, phydev->phy_id, phydev->link); 867 868 priv->phydev = phydev; 869 870 return 0; 871 } 872 873 /** 874 * stmmac_display_ring - display ring 875 * @head: pointer to the head of the ring passed. 876 * @size: size of the ring. 877 * @extend_desc: to verify if extended descriptors are used. 878 * Description: display the control/status and buffer descriptors. 879 */ 880 static void stmmac_display_ring(void *head, int size, int extend_desc) 881 { 882 int i; 883 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 884 struct dma_desc *p = (struct dma_desc *)head; 885 886 for (i = 0; i < size; i++) { 887 u64 x; 888 if (extend_desc) { 889 x = *(u64 *) ep; 890 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 891 i, (unsigned int)virt_to_phys(ep), 892 (unsigned int)x, (unsigned int)(x >> 32), 893 ep->basic.des2, ep->basic.des3); 894 ep++; 895 } else { 896 x = *(u64 *) p; 897 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x", 898 i, (unsigned int)virt_to_phys(p), 899 (unsigned int)x, (unsigned int)(x >> 32), 900 p->des2, p->des3); 901 p++; 902 } 903 pr_info("\n"); 904 } 905 } 906 907 static void stmmac_display_rings(struct stmmac_priv *priv) 908 { 909 unsigned int txsize = priv->dma_tx_size; 910 unsigned int rxsize = priv->dma_rx_size; 911 912 if (priv->extend_desc) { 913 pr_info("Extended RX descriptor ring:\n"); 914 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 915 pr_info("Extended TX descriptor ring:\n"); 916 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 917 } else { 918 pr_info("RX descriptor ring:\n"); 919 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 920 pr_info("TX descriptor ring:\n"); 921 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 922 } 923 } 924 925 static int stmmac_set_bfsize(int mtu, int bufsize) 926 { 927 int ret = bufsize; 928 929 if (mtu >= BUF_SIZE_4KiB) 930 ret = BUF_SIZE_8KiB; 931 else if (mtu >= BUF_SIZE_2KiB) 932 ret = BUF_SIZE_4KiB; 933 else if (mtu > DEFAULT_BUFSIZE) 934 ret = BUF_SIZE_2KiB; 935 else 936 ret = DEFAULT_BUFSIZE; 937 938 return ret; 939 } 940 941 /** 942 * stmmac_clear_descriptors - clear descriptors 943 * @priv: driver private structure 944 * Description: this function is called to clear the tx and rx descriptors 945 * in case of both basic and extended descriptors are used. 946 */ 947 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 948 { 949 int i; 950 unsigned int txsize = priv->dma_tx_size; 951 unsigned int rxsize = priv->dma_rx_size; 952 953 /* Clear the Rx/Tx descriptors */ 954 for (i = 0; i < rxsize; i++) 955 if (priv->extend_desc) 956 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, 957 priv->use_riwt, priv->mode, 958 (i == rxsize - 1)); 959 else 960 priv->hw->desc->init_rx_desc(&priv->dma_rx[i], 961 priv->use_riwt, priv->mode, 962 (i == rxsize - 1)); 963 for (i = 0; i < txsize; i++) 964 if (priv->extend_desc) 965 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 966 priv->mode, 967 (i == txsize - 1)); 968 else 969 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 970 priv->mode, 971 (i == txsize - 1)); 972 } 973 974 /** 975 * stmmac_init_rx_buffers - init the RX descriptor buffer. 976 * @priv: driver private structure 977 * @p: descriptor pointer 978 * @i: descriptor index 979 * @flags: gfp flag. 980 * Description: this function is called to allocate a receive buffer, perform 981 * the DMA mapping and init the descriptor. 982 */ 983 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 984 int i, gfp_t flags) 985 { 986 struct sk_buff *skb; 987 988 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 989 if (!skb) { 990 pr_err("%s: Rx init fails; skb is NULL\n", __func__); 991 return -ENOMEM; 992 } 993 priv->rx_skbuff[i] = skb; 994 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 995 priv->dma_buf_sz, 996 DMA_FROM_DEVICE); 997 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) { 998 pr_err("%s: DMA mapping error\n", __func__); 999 dev_kfree_skb_any(skb); 1000 return -EINVAL; 1001 } 1002 1003 p->des2 = priv->rx_skbuff_dma[i]; 1004 1005 if ((priv->hw->mode->init_desc3) && 1006 (priv->dma_buf_sz == BUF_SIZE_16KiB)) 1007 priv->hw->mode->init_desc3(p); 1008 1009 return 0; 1010 } 1011 1012 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i) 1013 { 1014 if (priv->rx_skbuff[i]) { 1015 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i], 1016 priv->dma_buf_sz, DMA_FROM_DEVICE); 1017 dev_kfree_skb_any(priv->rx_skbuff[i]); 1018 } 1019 priv->rx_skbuff[i] = NULL; 1020 } 1021 1022 /** 1023 * init_dma_desc_rings - init the RX/TX descriptor rings 1024 * @dev: net device structure 1025 * @flags: gfp flag. 1026 * Description: this function initializes the DMA RX/TX descriptors 1027 * and allocates the socket buffers. It suppors the chained and ring 1028 * modes. 1029 */ 1030 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1031 { 1032 int i; 1033 struct stmmac_priv *priv = netdev_priv(dev); 1034 unsigned int txsize = priv->dma_tx_size; 1035 unsigned int rxsize = priv->dma_rx_size; 1036 unsigned int bfsize = 0; 1037 int ret = -ENOMEM; 1038 1039 if (priv->hw->mode->set_16kib_bfsize) 1040 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu); 1041 1042 if (bfsize < BUF_SIZE_16KiB) 1043 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1044 1045 priv->dma_buf_sz = bfsize; 1046 1047 if (netif_msg_probe(priv)) 1048 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__, 1049 txsize, rxsize, bfsize); 1050 1051 if (netif_msg_probe(priv)) { 1052 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__, 1053 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy); 1054 1055 /* RX INITIALIZATION */ 1056 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n"); 1057 } 1058 for (i = 0; i < rxsize; i++) { 1059 struct dma_desc *p; 1060 if (priv->extend_desc) 1061 p = &((priv->dma_erx + i)->basic); 1062 else 1063 p = priv->dma_rx + i; 1064 1065 ret = stmmac_init_rx_buffers(priv, p, i, flags); 1066 if (ret) 1067 goto err_init_rx_buffers; 1068 1069 if (netif_msg_probe(priv)) 1070 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i], 1071 priv->rx_skbuff[i]->data, 1072 (unsigned int)priv->rx_skbuff_dma[i]); 1073 } 1074 priv->cur_rx = 0; 1075 priv->dirty_rx = (unsigned int)(i - rxsize); 1076 buf_sz = bfsize; 1077 1078 /* Setup the chained descriptor addresses */ 1079 if (priv->mode == STMMAC_CHAIN_MODE) { 1080 if (priv->extend_desc) { 1081 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy, 1082 rxsize, 1); 1083 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy, 1084 txsize, 1); 1085 } else { 1086 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy, 1087 rxsize, 0); 1088 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy, 1089 txsize, 0); 1090 } 1091 } 1092 1093 /* TX INITIALIZATION */ 1094 for (i = 0; i < txsize; i++) { 1095 struct dma_desc *p; 1096 if (priv->extend_desc) 1097 p = &((priv->dma_etx + i)->basic); 1098 else 1099 p = priv->dma_tx + i; 1100 p->des2 = 0; 1101 priv->tx_skbuff_dma[i].buf = 0; 1102 priv->tx_skbuff_dma[i].map_as_page = false; 1103 priv->tx_skbuff[i] = NULL; 1104 } 1105 1106 priv->dirty_tx = 0; 1107 priv->cur_tx = 0; 1108 netdev_reset_queue(priv->dev); 1109 1110 stmmac_clear_descriptors(priv); 1111 1112 if (netif_msg_hw(priv)) 1113 stmmac_display_rings(priv); 1114 1115 return 0; 1116 err_init_rx_buffers: 1117 while (--i >= 0) 1118 stmmac_free_rx_buffers(priv, i); 1119 return ret; 1120 } 1121 1122 static void dma_free_rx_skbufs(struct stmmac_priv *priv) 1123 { 1124 int i; 1125 1126 for (i = 0; i < priv->dma_rx_size; i++) 1127 stmmac_free_rx_buffers(priv, i); 1128 } 1129 1130 static void dma_free_tx_skbufs(struct stmmac_priv *priv) 1131 { 1132 int i; 1133 1134 for (i = 0; i < priv->dma_tx_size; i++) { 1135 struct dma_desc *p; 1136 1137 if (priv->extend_desc) 1138 p = &((priv->dma_etx + i)->basic); 1139 else 1140 p = priv->dma_tx + i; 1141 1142 if (priv->tx_skbuff_dma[i].buf) { 1143 if (priv->tx_skbuff_dma[i].map_as_page) 1144 dma_unmap_page(priv->device, 1145 priv->tx_skbuff_dma[i].buf, 1146 priv->hw->desc->get_tx_len(p), 1147 DMA_TO_DEVICE); 1148 else 1149 dma_unmap_single(priv->device, 1150 priv->tx_skbuff_dma[i].buf, 1151 priv->hw->desc->get_tx_len(p), 1152 DMA_TO_DEVICE); 1153 } 1154 1155 if (priv->tx_skbuff[i] != NULL) { 1156 dev_kfree_skb_any(priv->tx_skbuff[i]); 1157 priv->tx_skbuff[i] = NULL; 1158 priv->tx_skbuff_dma[i].buf = 0; 1159 priv->tx_skbuff_dma[i].map_as_page = false; 1160 } 1161 } 1162 } 1163 1164 /** 1165 * alloc_dma_desc_resources - alloc TX/RX resources. 1166 * @priv: private structure 1167 * Description: according to which descriptor can be used (extend or basic) 1168 * this function allocates the resources for TX and RX paths. In case of 1169 * reception, for example, it pre-allocated the RX socket buffer in order to 1170 * allow zero-copy mechanism. 1171 */ 1172 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1173 { 1174 unsigned int txsize = priv->dma_tx_size; 1175 unsigned int rxsize = priv->dma_rx_size; 1176 int ret = -ENOMEM; 1177 1178 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t), 1179 GFP_KERNEL); 1180 if (!priv->rx_skbuff_dma) 1181 return -ENOMEM; 1182 1183 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *), 1184 GFP_KERNEL); 1185 if (!priv->rx_skbuff) 1186 goto err_rx_skbuff; 1187 1188 priv->tx_skbuff_dma = kmalloc_array(txsize, 1189 sizeof(*priv->tx_skbuff_dma), 1190 GFP_KERNEL); 1191 if (!priv->tx_skbuff_dma) 1192 goto err_tx_skbuff_dma; 1193 1194 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *), 1195 GFP_KERNEL); 1196 if (!priv->tx_skbuff) 1197 goto err_tx_skbuff; 1198 1199 if (priv->extend_desc) { 1200 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize * 1201 sizeof(struct 1202 dma_extended_desc), 1203 &priv->dma_rx_phy, 1204 GFP_KERNEL); 1205 if (!priv->dma_erx) 1206 goto err_dma; 1207 1208 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize * 1209 sizeof(struct 1210 dma_extended_desc), 1211 &priv->dma_tx_phy, 1212 GFP_KERNEL); 1213 if (!priv->dma_etx) { 1214 dma_free_coherent(priv->device, priv->dma_rx_size * 1215 sizeof(struct dma_extended_desc), 1216 priv->dma_erx, priv->dma_rx_phy); 1217 goto err_dma; 1218 } 1219 } else { 1220 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize * 1221 sizeof(struct dma_desc), 1222 &priv->dma_rx_phy, 1223 GFP_KERNEL); 1224 if (!priv->dma_rx) 1225 goto err_dma; 1226 1227 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize * 1228 sizeof(struct dma_desc), 1229 &priv->dma_tx_phy, 1230 GFP_KERNEL); 1231 if (!priv->dma_tx) { 1232 dma_free_coherent(priv->device, priv->dma_rx_size * 1233 sizeof(struct dma_desc), 1234 priv->dma_rx, priv->dma_rx_phy); 1235 goto err_dma; 1236 } 1237 } 1238 1239 return 0; 1240 1241 err_dma: 1242 kfree(priv->tx_skbuff); 1243 err_tx_skbuff: 1244 kfree(priv->tx_skbuff_dma); 1245 err_tx_skbuff_dma: 1246 kfree(priv->rx_skbuff); 1247 err_rx_skbuff: 1248 kfree(priv->rx_skbuff_dma); 1249 return ret; 1250 } 1251 1252 static void free_dma_desc_resources(struct stmmac_priv *priv) 1253 { 1254 /* Release the DMA TX/RX socket buffers */ 1255 dma_free_rx_skbufs(priv); 1256 dma_free_tx_skbufs(priv); 1257 1258 /* Free DMA regions of consistent memory previously allocated */ 1259 if (!priv->extend_desc) { 1260 dma_free_coherent(priv->device, 1261 priv->dma_tx_size * sizeof(struct dma_desc), 1262 priv->dma_tx, priv->dma_tx_phy); 1263 dma_free_coherent(priv->device, 1264 priv->dma_rx_size * sizeof(struct dma_desc), 1265 priv->dma_rx, priv->dma_rx_phy); 1266 } else { 1267 dma_free_coherent(priv->device, priv->dma_tx_size * 1268 sizeof(struct dma_extended_desc), 1269 priv->dma_etx, priv->dma_tx_phy); 1270 dma_free_coherent(priv->device, priv->dma_rx_size * 1271 sizeof(struct dma_extended_desc), 1272 priv->dma_erx, priv->dma_rx_phy); 1273 } 1274 kfree(priv->rx_skbuff_dma); 1275 kfree(priv->rx_skbuff); 1276 kfree(priv->tx_skbuff_dma); 1277 kfree(priv->tx_skbuff); 1278 } 1279 1280 /** 1281 * stmmac_dma_operation_mode - HW DMA operation mode 1282 * @priv: driver private structure 1283 * Description: it is used for configuring the DMA operation mode register in 1284 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1285 */ 1286 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1287 { 1288 int rxfifosz = priv->plat->rx_fifo_size; 1289 1290 if (priv->plat->force_thresh_dma_mode) 1291 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz); 1292 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1293 /* 1294 * In case of GMAC, SF mode can be enabled 1295 * to perform the TX COE in HW. This depends on: 1296 * 1) TX COE if actually supported 1297 * 2) There is no bugged Jumbo frame support 1298 * that needs to not insert csum in the TDES. 1299 */ 1300 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE, 1301 rxfifosz); 1302 priv->xstats.threshold = SF_DMA_MODE; 1303 } else 1304 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE, 1305 rxfifosz); 1306 } 1307 1308 /** 1309 * stmmac_tx_clean - to manage the transmission completion 1310 * @priv: driver private structure 1311 * Description: it reclaims the transmit resources after transmission completes. 1312 */ 1313 static void stmmac_tx_clean(struct stmmac_priv *priv) 1314 { 1315 unsigned int txsize = priv->dma_tx_size; 1316 unsigned int bytes_compl = 0, pkts_compl = 0; 1317 1318 spin_lock(&priv->tx_lock); 1319 1320 priv->xstats.tx_clean++; 1321 1322 while (priv->dirty_tx != priv->cur_tx) { 1323 int last; 1324 unsigned int entry = priv->dirty_tx % txsize; 1325 struct sk_buff *skb = priv->tx_skbuff[entry]; 1326 struct dma_desc *p; 1327 1328 if (priv->extend_desc) 1329 p = (struct dma_desc *)(priv->dma_etx + entry); 1330 else 1331 p = priv->dma_tx + entry; 1332 1333 /* Check if the descriptor is owned by the DMA. */ 1334 if (priv->hw->desc->get_tx_owner(p)) 1335 break; 1336 1337 /* Verify tx error by looking at the last segment. */ 1338 last = priv->hw->desc->get_tx_ls(p); 1339 if (likely(last)) { 1340 int tx_error = 1341 priv->hw->desc->tx_status(&priv->dev->stats, 1342 &priv->xstats, p, 1343 priv->ioaddr); 1344 if (likely(tx_error == 0)) { 1345 priv->dev->stats.tx_packets++; 1346 priv->xstats.tx_pkt_n++; 1347 } else 1348 priv->dev->stats.tx_errors++; 1349 1350 stmmac_get_tx_hwtstamp(priv, entry, skb); 1351 } 1352 if (netif_msg_tx_done(priv)) 1353 pr_debug("%s: curr %d, dirty %d\n", __func__, 1354 priv->cur_tx, priv->dirty_tx); 1355 1356 if (likely(priv->tx_skbuff_dma[entry].buf)) { 1357 if (priv->tx_skbuff_dma[entry].map_as_page) 1358 dma_unmap_page(priv->device, 1359 priv->tx_skbuff_dma[entry].buf, 1360 priv->hw->desc->get_tx_len(p), 1361 DMA_TO_DEVICE); 1362 else 1363 dma_unmap_single(priv->device, 1364 priv->tx_skbuff_dma[entry].buf, 1365 priv->hw->desc->get_tx_len(p), 1366 DMA_TO_DEVICE); 1367 priv->tx_skbuff_dma[entry].buf = 0; 1368 priv->tx_skbuff_dma[entry].map_as_page = false; 1369 } 1370 priv->hw->mode->clean_desc3(priv, p); 1371 1372 if (likely(skb != NULL)) { 1373 pkts_compl++; 1374 bytes_compl += skb->len; 1375 dev_consume_skb_any(skb); 1376 priv->tx_skbuff[entry] = NULL; 1377 } 1378 1379 priv->hw->desc->release_tx_desc(p, priv->mode); 1380 1381 priv->dirty_tx++; 1382 } 1383 1384 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl); 1385 1386 if (unlikely(netif_queue_stopped(priv->dev) && 1387 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) { 1388 netif_tx_lock(priv->dev); 1389 if (netif_queue_stopped(priv->dev) && 1390 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) { 1391 if (netif_msg_tx_done(priv)) 1392 pr_debug("%s: restart transmit\n", __func__); 1393 netif_wake_queue(priv->dev); 1394 } 1395 netif_tx_unlock(priv->dev); 1396 } 1397 1398 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1399 stmmac_enable_eee_mode(priv); 1400 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1401 } 1402 spin_unlock(&priv->tx_lock); 1403 } 1404 1405 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv) 1406 { 1407 priv->hw->dma->enable_dma_irq(priv->ioaddr); 1408 } 1409 1410 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv) 1411 { 1412 priv->hw->dma->disable_dma_irq(priv->ioaddr); 1413 } 1414 1415 /** 1416 * stmmac_tx_err - to manage the tx error 1417 * @priv: driver private structure 1418 * Description: it cleans the descriptors and restarts the transmission 1419 * in case of transmission errors. 1420 */ 1421 static void stmmac_tx_err(struct stmmac_priv *priv) 1422 { 1423 int i; 1424 int txsize = priv->dma_tx_size; 1425 netif_stop_queue(priv->dev); 1426 1427 priv->hw->dma->stop_tx(priv->ioaddr); 1428 dma_free_tx_skbufs(priv); 1429 for (i = 0; i < txsize; i++) 1430 if (priv->extend_desc) 1431 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 1432 priv->mode, 1433 (i == txsize - 1)); 1434 else 1435 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 1436 priv->mode, 1437 (i == txsize - 1)); 1438 priv->dirty_tx = 0; 1439 priv->cur_tx = 0; 1440 netdev_reset_queue(priv->dev); 1441 priv->hw->dma->start_tx(priv->ioaddr); 1442 1443 priv->dev->stats.tx_errors++; 1444 netif_wake_queue(priv->dev); 1445 } 1446 1447 /** 1448 * stmmac_dma_interrupt - DMA ISR 1449 * @priv: driver private structure 1450 * Description: this is the DMA ISR. It is called by the main ISR. 1451 * It calls the dwmac dma routine and schedule poll method in case of some 1452 * work can be done. 1453 */ 1454 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 1455 { 1456 int status; 1457 int rxfifosz = priv->plat->rx_fifo_size; 1458 1459 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats); 1460 if (likely((status & handle_rx)) || (status & handle_tx)) { 1461 if (likely(napi_schedule_prep(&priv->napi))) { 1462 stmmac_disable_dma_irq(priv); 1463 __napi_schedule(&priv->napi); 1464 } 1465 } 1466 if (unlikely(status & tx_hard_error_bump_tc)) { 1467 /* Try to bump up the dma threshold on this failure */ 1468 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 1469 (tc <= 256)) { 1470 tc += 64; 1471 if (priv->plat->force_thresh_dma_mode) 1472 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, 1473 rxfifosz); 1474 else 1475 priv->hw->dma->dma_mode(priv->ioaddr, tc, 1476 SF_DMA_MODE, rxfifosz); 1477 priv->xstats.threshold = tc; 1478 } 1479 } else if (unlikely(status == tx_hard_error)) 1480 stmmac_tx_err(priv); 1481 } 1482 1483 /** 1484 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 1485 * @priv: driver private structure 1486 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 1487 */ 1488 static void stmmac_mmc_setup(struct stmmac_priv *priv) 1489 { 1490 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 1491 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 1492 1493 dwmac_mmc_intr_all_mask(priv->ioaddr); 1494 1495 if (priv->dma_cap.rmon) { 1496 dwmac_mmc_ctrl(priv->ioaddr, mode); 1497 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 1498 } else 1499 pr_info(" No MAC Management Counters available\n"); 1500 } 1501 1502 /** 1503 * stmmac_get_synopsys_id - return the SYINID. 1504 * @priv: driver private structure 1505 * Description: this simple function is to decode and return the SYINID 1506 * starting from the HW core register. 1507 */ 1508 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv) 1509 { 1510 u32 hwid = priv->hw->synopsys_uid; 1511 1512 /* Check Synopsys Id (not available on old chips) */ 1513 if (likely(hwid)) { 1514 u32 uid = ((hwid & 0x0000ff00) >> 8); 1515 u32 synid = (hwid & 0x000000ff); 1516 1517 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n", 1518 uid, synid); 1519 1520 return synid; 1521 } 1522 return 0; 1523 } 1524 1525 /** 1526 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors 1527 * @priv: driver private structure 1528 * Description: select the Enhanced/Alternate or Normal descriptors. 1529 * In case of Enhanced/Alternate, it checks if the extended descriptors are 1530 * supported by the HW capability register. 1531 */ 1532 static void stmmac_selec_desc_mode(struct stmmac_priv *priv) 1533 { 1534 if (priv->plat->enh_desc) { 1535 pr_info(" Enhanced/Alternate descriptors\n"); 1536 1537 /* GMAC older than 3.50 has no extended descriptors */ 1538 if (priv->synopsys_id >= DWMAC_CORE_3_50) { 1539 pr_info("\tEnabled extended descriptors\n"); 1540 priv->extend_desc = 1; 1541 } else 1542 pr_warn("Extended descriptors not supported\n"); 1543 1544 priv->hw->desc = &enh_desc_ops; 1545 } else { 1546 pr_info(" Normal descriptors\n"); 1547 priv->hw->desc = &ndesc_ops; 1548 } 1549 } 1550 1551 /** 1552 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 1553 * @priv: driver private structure 1554 * Description: 1555 * new GMAC chip generations have a new register to indicate the 1556 * presence of the optional feature/functions. 1557 * This can be also used to override the value passed through the 1558 * platform and necessary for old MAC10/100 and GMAC chips. 1559 */ 1560 static int stmmac_get_hw_features(struct stmmac_priv *priv) 1561 { 1562 u32 hw_cap = 0; 1563 1564 if (priv->hw->dma->get_hw_feature) { 1565 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr); 1566 1567 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL); 1568 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1; 1569 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2; 1570 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4; 1571 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5; 1572 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6; 1573 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8; 1574 priv->dma_cap.pmt_remote_wake_up = 1575 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9; 1576 priv->dma_cap.pmt_magic_frame = 1577 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10; 1578 /* MMC */ 1579 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11; 1580 /* IEEE 1588-2002 */ 1581 priv->dma_cap.time_stamp = 1582 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12; 1583 /* IEEE 1588-2008 */ 1584 priv->dma_cap.atime_stamp = 1585 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13; 1586 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 1587 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14; 1588 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15; 1589 /* TX and RX csum */ 1590 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16; 1591 priv->dma_cap.rx_coe_type1 = 1592 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17; 1593 priv->dma_cap.rx_coe_type2 = 1594 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18; 1595 priv->dma_cap.rxfifo_over_2048 = 1596 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19; 1597 /* TX and RX number of channels */ 1598 priv->dma_cap.number_rx_channel = 1599 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20; 1600 priv->dma_cap.number_tx_channel = 1601 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22; 1602 /* Alternate (enhanced) DESC mode */ 1603 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24; 1604 } 1605 1606 return hw_cap; 1607 } 1608 1609 /** 1610 * stmmac_check_ether_addr - check if the MAC addr is valid 1611 * @priv: driver private structure 1612 * Description: 1613 * it is to verify if the MAC address is valid, in case of failures it 1614 * generates a random MAC address 1615 */ 1616 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 1617 { 1618 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 1619 priv->hw->mac->get_umac_addr(priv->hw, 1620 priv->dev->dev_addr, 0); 1621 if (!is_valid_ether_addr(priv->dev->dev_addr)) 1622 eth_hw_addr_random(priv->dev); 1623 pr_info("%s: device MAC address %pM\n", priv->dev->name, 1624 priv->dev->dev_addr); 1625 } 1626 } 1627 1628 /** 1629 * stmmac_init_dma_engine - DMA init. 1630 * @priv: driver private structure 1631 * Description: 1632 * It inits the DMA invoking the specific MAC/GMAC callback. 1633 * Some DMA parameters can be passed from the platform; 1634 * in case of these are not passed a default is kept for the MAC or GMAC. 1635 */ 1636 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 1637 { 1638 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0; 1639 int mixed_burst = 0; 1640 int atds = 0; 1641 1642 if (priv->plat->dma_cfg) { 1643 pbl = priv->plat->dma_cfg->pbl; 1644 fixed_burst = priv->plat->dma_cfg->fixed_burst; 1645 mixed_burst = priv->plat->dma_cfg->mixed_burst; 1646 burst_len = priv->plat->dma_cfg->burst_len; 1647 } 1648 1649 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 1650 atds = 1; 1651 1652 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst, 1653 burst_len, priv->dma_tx_phy, 1654 priv->dma_rx_phy, atds); 1655 } 1656 1657 /** 1658 * stmmac_tx_timer - mitigation sw timer for tx. 1659 * @data: data pointer 1660 * Description: 1661 * This is the timer handler to directly invoke the stmmac_tx_clean. 1662 */ 1663 static void stmmac_tx_timer(unsigned long data) 1664 { 1665 struct stmmac_priv *priv = (struct stmmac_priv *)data; 1666 1667 stmmac_tx_clean(priv); 1668 } 1669 1670 /** 1671 * stmmac_init_tx_coalesce - init tx mitigation options. 1672 * @priv: driver private structure 1673 * Description: 1674 * This inits the transmit coalesce parameters: i.e. timer rate, 1675 * timer handler and default threshold used for enabling the 1676 * interrupt on completion bit. 1677 */ 1678 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 1679 { 1680 priv->tx_coal_frames = STMMAC_TX_FRAMES; 1681 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 1682 init_timer(&priv->txtimer); 1683 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 1684 priv->txtimer.data = (unsigned long)priv; 1685 priv->txtimer.function = stmmac_tx_timer; 1686 add_timer(&priv->txtimer); 1687 } 1688 1689 /** 1690 * stmmac_hw_setup - setup mac in a usable state. 1691 * @dev : pointer to the device structure. 1692 * Description: 1693 * this is the main function to setup the HW in a usable state because the 1694 * dma engine is reset, the core registers are configured (e.g. AXI, 1695 * Checksum features, timers). The DMA is ready to start receiving and 1696 * transmitting. 1697 * Return value: 1698 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1699 * file on failure. 1700 */ 1701 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 1702 { 1703 struct stmmac_priv *priv = netdev_priv(dev); 1704 int ret; 1705 1706 /* DMA initialization and SW reset */ 1707 ret = stmmac_init_dma_engine(priv); 1708 if (ret < 0) { 1709 pr_err("%s: DMA engine initialization failed\n", __func__); 1710 return ret; 1711 } 1712 1713 /* Copy the MAC addr into the HW */ 1714 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0); 1715 1716 /* If required, perform hw setup of the bus. */ 1717 if (priv->plat->bus_setup) 1718 priv->plat->bus_setup(priv->ioaddr); 1719 1720 /* Initialize the MAC Core */ 1721 priv->hw->mac->core_init(priv->hw, dev->mtu); 1722 1723 ret = priv->hw->mac->rx_ipc(priv->hw); 1724 if (!ret) { 1725 pr_warn(" RX IPC Checksum Offload disabled\n"); 1726 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 1727 priv->hw->rx_csum = 0; 1728 } 1729 1730 /* Enable the MAC Rx/Tx */ 1731 stmmac_set_mac(priv->ioaddr, true); 1732 1733 /* Set the HW DMA mode and the COE */ 1734 stmmac_dma_operation_mode(priv); 1735 1736 stmmac_mmc_setup(priv); 1737 1738 if (init_ptp) { 1739 ret = stmmac_init_ptp(priv); 1740 if (ret && ret != -EOPNOTSUPP) 1741 pr_warn("%s: failed PTP initialisation\n", __func__); 1742 } 1743 1744 #ifdef CONFIG_DEBUG_FS 1745 ret = stmmac_init_fs(dev); 1746 if (ret < 0) 1747 pr_warn("%s: failed debugFS registration\n", __func__); 1748 #endif 1749 /* Start the ball rolling... */ 1750 pr_debug("%s: DMA RX/TX processes started...\n", dev->name); 1751 priv->hw->dma->start_tx(priv->ioaddr); 1752 priv->hw->dma->start_rx(priv->ioaddr); 1753 1754 /* Dump DMA/MAC registers */ 1755 if (netif_msg_hw(priv)) { 1756 priv->hw->mac->dump_regs(priv->hw); 1757 priv->hw->dma->dump_regs(priv->ioaddr); 1758 } 1759 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 1760 1761 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1762 priv->rx_riwt = MAX_DMA_RIWT; 1763 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT); 1764 } 1765 1766 if (priv->pcs && priv->hw->mac->ctrl_ane) 1767 priv->hw->mac->ctrl_ane(priv->hw, 0); 1768 1769 return 0; 1770 } 1771 1772 /** 1773 * stmmac_open - open entry point of the driver 1774 * @dev : pointer to the device structure. 1775 * Description: 1776 * This function is the open entry point of the driver. 1777 * Return value: 1778 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1779 * file on failure. 1780 */ 1781 static int stmmac_open(struct net_device *dev) 1782 { 1783 struct stmmac_priv *priv = netdev_priv(dev); 1784 int ret; 1785 1786 stmmac_check_ether_addr(priv); 1787 1788 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 1789 priv->pcs != STMMAC_PCS_RTBI) { 1790 ret = stmmac_init_phy(dev); 1791 if (ret) { 1792 pr_err("%s: Cannot attach to PHY (error: %d)\n", 1793 __func__, ret); 1794 return ret; 1795 } 1796 } 1797 1798 /* Extra statistics */ 1799 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 1800 priv->xstats.threshold = tc; 1801 1802 /* Create and initialize the TX/RX descriptors chains. */ 1803 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize); 1804 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize); 1805 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 1806 1807 ret = alloc_dma_desc_resources(priv); 1808 if (ret < 0) { 1809 pr_err("%s: DMA descriptors allocation failed\n", __func__); 1810 goto dma_desc_error; 1811 } 1812 1813 ret = init_dma_desc_rings(dev, GFP_KERNEL); 1814 if (ret < 0) { 1815 pr_err("%s: DMA descriptors initialization failed\n", __func__); 1816 goto init_error; 1817 } 1818 1819 ret = stmmac_hw_setup(dev, true); 1820 if (ret < 0) { 1821 pr_err("%s: Hw setup failed\n", __func__); 1822 goto init_error; 1823 } 1824 1825 stmmac_init_tx_coalesce(priv); 1826 1827 if (priv->phydev) 1828 phy_start(priv->phydev); 1829 1830 /* Request the IRQ lines */ 1831 ret = request_irq(dev->irq, stmmac_interrupt, 1832 IRQF_SHARED, dev->name, dev); 1833 if (unlikely(ret < 0)) { 1834 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n", 1835 __func__, dev->irq, ret); 1836 goto init_error; 1837 } 1838 1839 /* Request the Wake IRQ in case of another line is used for WoL */ 1840 if (priv->wol_irq != dev->irq) { 1841 ret = request_irq(priv->wol_irq, stmmac_interrupt, 1842 IRQF_SHARED, dev->name, dev); 1843 if (unlikely(ret < 0)) { 1844 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n", 1845 __func__, priv->wol_irq, ret); 1846 goto wolirq_error; 1847 } 1848 } 1849 1850 /* Request the IRQ lines */ 1851 if (priv->lpi_irq > 0) { 1852 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 1853 dev->name, dev); 1854 if (unlikely(ret < 0)) { 1855 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1856 __func__, priv->lpi_irq, ret); 1857 goto lpiirq_error; 1858 } 1859 } 1860 1861 napi_enable(&priv->napi); 1862 netif_start_queue(dev); 1863 1864 return 0; 1865 1866 lpiirq_error: 1867 if (priv->wol_irq != dev->irq) 1868 free_irq(priv->wol_irq, dev); 1869 wolirq_error: 1870 free_irq(dev->irq, dev); 1871 1872 init_error: 1873 free_dma_desc_resources(priv); 1874 dma_desc_error: 1875 if (priv->phydev) 1876 phy_disconnect(priv->phydev); 1877 1878 return ret; 1879 } 1880 1881 /** 1882 * stmmac_release - close entry point of the driver 1883 * @dev : device pointer. 1884 * Description: 1885 * This is the stop entry point of the driver. 1886 */ 1887 static int stmmac_release(struct net_device *dev) 1888 { 1889 struct stmmac_priv *priv = netdev_priv(dev); 1890 1891 if (priv->eee_enabled) 1892 del_timer_sync(&priv->eee_ctrl_timer); 1893 1894 /* Stop and disconnect the PHY */ 1895 if (priv->phydev) { 1896 phy_stop(priv->phydev); 1897 phy_disconnect(priv->phydev); 1898 priv->phydev = NULL; 1899 } 1900 1901 netif_stop_queue(dev); 1902 1903 napi_disable(&priv->napi); 1904 1905 del_timer_sync(&priv->txtimer); 1906 1907 /* Free the IRQ lines */ 1908 free_irq(dev->irq, dev); 1909 if (priv->wol_irq != dev->irq) 1910 free_irq(priv->wol_irq, dev); 1911 if (priv->lpi_irq > 0) 1912 free_irq(priv->lpi_irq, dev); 1913 1914 /* Stop TX/RX DMA and clear the descriptors */ 1915 priv->hw->dma->stop_tx(priv->ioaddr); 1916 priv->hw->dma->stop_rx(priv->ioaddr); 1917 1918 /* Release and free the Rx/Tx resources */ 1919 free_dma_desc_resources(priv); 1920 1921 /* Disable the MAC Rx/Tx */ 1922 stmmac_set_mac(priv->ioaddr, false); 1923 1924 netif_carrier_off(dev); 1925 1926 #ifdef CONFIG_DEBUG_FS 1927 stmmac_exit_fs(dev); 1928 #endif 1929 1930 stmmac_release_ptp(priv); 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * stmmac_xmit - Tx entry point of the driver 1937 * @skb : the socket buffer 1938 * @dev : device pointer 1939 * Description : this is the tx entry point of the driver. 1940 * It programs the chain or the ring and supports oversized frames 1941 * and SG feature. 1942 */ 1943 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 1944 { 1945 struct stmmac_priv *priv = netdev_priv(dev); 1946 unsigned int txsize = priv->dma_tx_size; 1947 int entry; 1948 int i, csum_insertion = 0, is_jumbo = 0; 1949 int nfrags = skb_shinfo(skb)->nr_frags; 1950 struct dma_desc *desc, *first; 1951 unsigned int nopaged_len = skb_headlen(skb); 1952 unsigned int enh_desc = priv->plat->enh_desc; 1953 1954 spin_lock(&priv->tx_lock); 1955 1956 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { 1957 spin_unlock(&priv->tx_lock); 1958 if (!netif_queue_stopped(dev)) { 1959 netif_stop_queue(dev); 1960 /* This is a hard error, log it. */ 1961 pr_err("%s: Tx Ring full when queue awake\n", __func__); 1962 } 1963 return NETDEV_TX_BUSY; 1964 } 1965 1966 if (priv->tx_path_in_lpi_mode) 1967 stmmac_disable_eee_mode(priv); 1968 1969 entry = priv->cur_tx % txsize; 1970 1971 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 1972 1973 if (priv->extend_desc) 1974 desc = (struct dma_desc *)(priv->dma_etx + entry); 1975 else 1976 desc = priv->dma_tx + entry; 1977 1978 first = desc; 1979 1980 /* To program the descriptors according to the size of the frame */ 1981 if (enh_desc) 1982 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc); 1983 1984 if (likely(!is_jumbo)) { 1985 desc->des2 = dma_map_single(priv->device, skb->data, 1986 nopaged_len, DMA_TO_DEVICE); 1987 if (dma_mapping_error(priv->device, desc->des2)) 1988 goto dma_map_err; 1989 priv->tx_skbuff_dma[entry].buf = desc->des2; 1990 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, 1991 csum_insertion, priv->mode); 1992 } else { 1993 desc = first; 1994 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion); 1995 if (unlikely(entry < 0)) 1996 goto dma_map_err; 1997 } 1998 1999 for (i = 0; i < nfrags; i++) { 2000 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2001 int len = skb_frag_size(frag); 2002 2003 priv->tx_skbuff[entry] = NULL; 2004 entry = (++priv->cur_tx) % txsize; 2005 if (priv->extend_desc) 2006 desc = (struct dma_desc *)(priv->dma_etx + entry); 2007 else 2008 desc = priv->dma_tx + entry; 2009 2010 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len, 2011 DMA_TO_DEVICE); 2012 if (dma_mapping_error(priv->device, desc->des2)) 2013 goto dma_map_err; /* should reuse desc w/o issues */ 2014 2015 priv->tx_skbuff_dma[entry].buf = desc->des2; 2016 priv->tx_skbuff_dma[entry].map_as_page = true; 2017 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, 2018 priv->mode); 2019 wmb(); 2020 priv->hw->desc->set_tx_owner(desc); 2021 wmb(); 2022 } 2023 2024 priv->tx_skbuff[entry] = skb; 2025 2026 /* Finalize the latest segment. */ 2027 priv->hw->desc->close_tx_desc(desc); 2028 2029 wmb(); 2030 /* According to the coalesce parameter the IC bit for the latest 2031 * segment could be reset and the timer re-started to invoke the 2032 * stmmac_tx function. This approach takes care about the fragments. 2033 */ 2034 priv->tx_count_frames += nfrags + 1; 2035 if (priv->tx_coal_frames > priv->tx_count_frames) { 2036 priv->hw->desc->clear_tx_ic(desc); 2037 priv->xstats.tx_reset_ic_bit++; 2038 mod_timer(&priv->txtimer, 2039 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2040 } else 2041 priv->tx_count_frames = 0; 2042 2043 /* To avoid raise condition */ 2044 priv->hw->desc->set_tx_owner(first); 2045 wmb(); 2046 2047 priv->cur_tx++; 2048 2049 if (netif_msg_pktdata(priv)) { 2050 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d", 2051 __func__, (priv->cur_tx % txsize), 2052 (priv->dirty_tx % txsize), entry, first, nfrags); 2053 2054 if (priv->extend_desc) 2055 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 2056 else 2057 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 2058 2059 pr_debug(">>> frame to be transmitted: "); 2060 print_pkt(skb->data, skb->len); 2061 } 2062 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 2063 if (netif_msg_hw(priv)) 2064 pr_debug("%s: stop transmitted packets\n", __func__); 2065 netif_stop_queue(dev); 2066 } 2067 2068 dev->stats.tx_bytes += skb->len; 2069 2070 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2071 priv->hwts_tx_en)) { 2072 /* declare that device is doing timestamping */ 2073 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2074 priv->hw->desc->enable_tx_timestamp(first); 2075 } 2076 2077 if (!priv->hwts_tx_en) 2078 skb_tx_timestamp(skb); 2079 2080 netdev_sent_queue(dev, skb->len); 2081 priv->hw->dma->enable_dma_transmission(priv->ioaddr); 2082 2083 spin_unlock(&priv->tx_lock); 2084 return NETDEV_TX_OK; 2085 2086 dma_map_err: 2087 spin_unlock(&priv->tx_lock); 2088 dev_err(priv->device, "Tx dma map failed\n"); 2089 dev_kfree_skb(skb); 2090 priv->dev->stats.tx_dropped++; 2091 return NETDEV_TX_OK; 2092 } 2093 2094 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 2095 { 2096 struct ethhdr *ehdr; 2097 u16 vlanid; 2098 2099 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) == 2100 NETIF_F_HW_VLAN_CTAG_RX && 2101 !__vlan_get_tag(skb, &vlanid)) { 2102 /* pop the vlan tag */ 2103 ehdr = (struct ethhdr *)skb->data; 2104 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2); 2105 skb_pull(skb, VLAN_HLEN); 2106 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid); 2107 } 2108 } 2109 2110 2111 /** 2112 * stmmac_rx_refill - refill used skb preallocated buffers 2113 * @priv: driver private structure 2114 * Description : this is to reallocate the skb for the reception process 2115 * that is based on zero-copy. 2116 */ 2117 static inline void stmmac_rx_refill(struct stmmac_priv *priv) 2118 { 2119 unsigned int rxsize = priv->dma_rx_size; 2120 int bfsize = priv->dma_buf_sz; 2121 2122 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) { 2123 unsigned int entry = priv->dirty_rx % rxsize; 2124 struct dma_desc *p; 2125 2126 if (priv->extend_desc) 2127 p = (struct dma_desc *)(priv->dma_erx + entry); 2128 else 2129 p = priv->dma_rx + entry; 2130 2131 if (likely(priv->rx_skbuff[entry] == NULL)) { 2132 struct sk_buff *skb; 2133 2134 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 2135 2136 if (unlikely(skb == NULL)) 2137 break; 2138 2139 priv->rx_skbuff[entry] = skb; 2140 priv->rx_skbuff_dma[entry] = 2141 dma_map_single(priv->device, skb->data, bfsize, 2142 DMA_FROM_DEVICE); 2143 if (dma_mapping_error(priv->device, 2144 priv->rx_skbuff_dma[entry])) { 2145 dev_err(priv->device, "Rx dma map failed\n"); 2146 dev_kfree_skb(skb); 2147 break; 2148 } 2149 p->des2 = priv->rx_skbuff_dma[entry]; 2150 2151 priv->hw->mode->refill_desc3(priv, p); 2152 2153 if (netif_msg_rx_status(priv)) 2154 pr_debug("\trefill entry #%d\n", entry); 2155 } 2156 wmb(); 2157 priv->hw->desc->set_rx_owner(p); 2158 wmb(); 2159 } 2160 } 2161 2162 /** 2163 * stmmac_rx - manage the receive process 2164 * @priv: driver private structure 2165 * @limit: napi bugget. 2166 * Description : this the function called by the napi poll method. 2167 * It gets all the frames inside the ring. 2168 */ 2169 static int stmmac_rx(struct stmmac_priv *priv, int limit) 2170 { 2171 unsigned int rxsize = priv->dma_rx_size; 2172 unsigned int entry = priv->cur_rx % rxsize; 2173 unsigned int next_entry; 2174 unsigned int count = 0; 2175 int coe = priv->hw->rx_csum; 2176 2177 if (netif_msg_rx_status(priv)) { 2178 pr_debug("%s: descriptor ring:\n", __func__); 2179 if (priv->extend_desc) 2180 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 2181 else 2182 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 2183 } 2184 while (count < limit) { 2185 int status; 2186 struct dma_desc *p; 2187 2188 if (priv->extend_desc) 2189 p = (struct dma_desc *)(priv->dma_erx + entry); 2190 else 2191 p = priv->dma_rx + entry; 2192 2193 if (priv->hw->desc->get_rx_owner(p)) 2194 break; 2195 2196 count++; 2197 2198 next_entry = (++priv->cur_rx) % rxsize; 2199 if (priv->extend_desc) 2200 prefetch(priv->dma_erx + next_entry); 2201 else 2202 prefetch(priv->dma_rx + next_entry); 2203 2204 /* read the status of the incoming frame */ 2205 status = priv->hw->desc->rx_status(&priv->dev->stats, 2206 &priv->xstats, p); 2207 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) 2208 priv->hw->desc->rx_extended_status(&priv->dev->stats, 2209 &priv->xstats, 2210 priv->dma_erx + 2211 entry); 2212 if (unlikely(status == discard_frame)) { 2213 priv->dev->stats.rx_errors++; 2214 if (priv->hwts_rx_en && !priv->extend_desc) { 2215 /* DESC2 & DESC3 will be overwitten by device 2216 * with timestamp value, hence reinitialize 2217 * them in stmmac_rx_refill() function so that 2218 * device can reuse it. 2219 */ 2220 priv->rx_skbuff[entry] = NULL; 2221 dma_unmap_single(priv->device, 2222 priv->rx_skbuff_dma[entry], 2223 priv->dma_buf_sz, 2224 DMA_FROM_DEVICE); 2225 } 2226 } else { 2227 struct sk_buff *skb; 2228 int frame_len; 2229 2230 frame_len = priv->hw->desc->get_rx_frame_len(p, coe); 2231 2232 /* check if frame_len fits the preallocated memory */ 2233 if (frame_len > priv->dma_buf_sz) { 2234 priv->dev->stats.rx_length_errors++; 2235 break; 2236 } 2237 2238 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 2239 * Type frames (LLC/LLC-SNAP) 2240 */ 2241 if (unlikely(status != llc_snap)) 2242 frame_len -= ETH_FCS_LEN; 2243 2244 if (netif_msg_rx_status(priv)) { 2245 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n", 2246 p, entry, p->des2); 2247 if (frame_len > ETH_FRAME_LEN) 2248 pr_debug("\tframe size %d, COE: %d\n", 2249 frame_len, status); 2250 } 2251 skb = priv->rx_skbuff[entry]; 2252 if (unlikely(!skb)) { 2253 pr_err("%s: Inconsistent Rx descriptor chain\n", 2254 priv->dev->name); 2255 priv->dev->stats.rx_dropped++; 2256 break; 2257 } 2258 prefetch(skb->data - NET_IP_ALIGN); 2259 priv->rx_skbuff[entry] = NULL; 2260 2261 stmmac_get_rx_hwtstamp(priv, entry, skb); 2262 2263 skb_put(skb, frame_len); 2264 dma_unmap_single(priv->device, 2265 priv->rx_skbuff_dma[entry], 2266 priv->dma_buf_sz, DMA_FROM_DEVICE); 2267 2268 if (netif_msg_pktdata(priv)) { 2269 pr_debug("frame received (%dbytes)", frame_len); 2270 print_pkt(skb->data, frame_len); 2271 } 2272 2273 stmmac_rx_vlan(priv->dev, skb); 2274 2275 skb->protocol = eth_type_trans(skb, priv->dev); 2276 2277 if (unlikely(!coe)) 2278 skb_checksum_none_assert(skb); 2279 else 2280 skb->ip_summed = CHECKSUM_UNNECESSARY; 2281 2282 napi_gro_receive(&priv->napi, skb); 2283 2284 priv->dev->stats.rx_packets++; 2285 priv->dev->stats.rx_bytes += frame_len; 2286 } 2287 entry = next_entry; 2288 } 2289 2290 stmmac_rx_refill(priv); 2291 2292 priv->xstats.rx_pkt_n += count; 2293 2294 return count; 2295 } 2296 2297 /** 2298 * stmmac_poll - stmmac poll method (NAPI) 2299 * @napi : pointer to the napi structure. 2300 * @budget : maximum number of packets that the current CPU can receive from 2301 * all interfaces. 2302 * Description : 2303 * To look at the incoming frames and clear the tx resources. 2304 */ 2305 static int stmmac_poll(struct napi_struct *napi, int budget) 2306 { 2307 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); 2308 int work_done = 0; 2309 2310 priv->xstats.napi_poll++; 2311 stmmac_tx_clean(priv); 2312 2313 work_done = stmmac_rx(priv, budget); 2314 if (work_done < budget) { 2315 napi_complete(napi); 2316 stmmac_enable_dma_irq(priv); 2317 } 2318 return work_done; 2319 } 2320 2321 /** 2322 * stmmac_tx_timeout 2323 * @dev : Pointer to net device structure 2324 * Description: this function is called when a packet transmission fails to 2325 * complete within a reasonable time. The driver will mark the error in the 2326 * netdev structure and arrange for the device to be reset to a sane state 2327 * in order to transmit a new packet. 2328 */ 2329 static void stmmac_tx_timeout(struct net_device *dev) 2330 { 2331 struct stmmac_priv *priv = netdev_priv(dev); 2332 2333 /* Clear Tx resources and restart transmitting again */ 2334 stmmac_tx_err(priv); 2335 } 2336 2337 /** 2338 * stmmac_set_rx_mode - entry point for multicast addressing 2339 * @dev : pointer to the device structure 2340 * Description: 2341 * This function is a driver entry point which gets called by the kernel 2342 * whenever multicast addresses must be enabled/disabled. 2343 * Return value: 2344 * void. 2345 */ 2346 static void stmmac_set_rx_mode(struct net_device *dev) 2347 { 2348 struct stmmac_priv *priv = netdev_priv(dev); 2349 2350 priv->hw->mac->set_filter(priv->hw, dev); 2351 } 2352 2353 /** 2354 * stmmac_change_mtu - entry point to change MTU size for the device. 2355 * @dev : device pointer. 2356 * @new_mtu : the new MTU size for the device. 2357 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 2358 * to drive packet transmission. Ethernet has an MTU of 1500 octets 2359 * (ETH_DATA_LEN). This value can be changed with ifconfig. 2360 * Return value: 2361 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2362 * file on failure. 2363 */ 2364 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 2365 { 2366 struct stmmac_priv *priv = netdev_priv(dev); 2367 int max_mtu; 2368 2369 if (netif_running(dev)) { 2370 pr_err("%s: must be stopped to change its MTU\n", dev->name); 2371 return -EBUSY; 2372 } 2373 2374 if (priv->plat->enh_desc) 2375 max_mtu = JUMBO_LEN; 2376 else 2377 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 2378 2379 if (priv->plat->maxmtu < max_mtu) 2380 max_mtu = priv->plat->maxmtu; 2381 2382 if ((new_mtu < 46) || (new_mtu > max_mtu)) { 2383 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu); 2384 return -EINVAL; 2385 } 2386 2387 dev->mtu = new_mtu; 2388 netdev_update_features(dev); 2389 2390 return 0; 2391 } 2392 2393 static netdev_features_t stmmac_fix_features(struct net_device *dev, 2394 netdev_features_t features) 2395 { 2396 struct stmmac_priv *priv = netdev_priv(dev); 2397 2398 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 2399 features &= ~NETIF_F_RXCSUM; 2400 2401 if (!priv->plat->tx_coe) 2402 features &= ~NETIF_F_CSUM_MASK; 2403 2404 /* Some GMAC devices have a bugged Jumbo frame support that 2405 * needs to have the Tx COE disabled for oversized frames 2406 * (due to limited buffer sizes). In this case we disable 2407 * the TX csum insertionin the TDES and not use SF. 2408 */ 2409 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 2410 features &= ~NETIF_F_CSUM_MASK; 2411 2412 return features; 2413 } 2414 2415 static int stmmac_set_features(struct net_device *netdev, 2416 netdev_features_t features) 2417 { 2418 struct stmmac_priv *priv = netdev_priv(netdev); 2419 2420 /* Keep the COE Type in case of csum is supporting */ 2421 if (features & NETIF_F_RXCSUM) 2422 priv->hw->rx_csum = priv->plat->rx_coe; 2423 else 2424 priv->hw->rx_csum = 0; 2425 /* No check needed because rx_coe has been set before and it will be 2426 * fixed in case of issue. 2427 */ 2428 priv->hw->mac->rx_ipc(priv->hw); 2429 2430 return 0; 2431 } 2432 2433 /** 2434 * stmmac_interrupt - main ISR 2435 * @irq: interrupt number. 2436 * @dev_id: to pass the net device pointer. 2437 * Description: this is the main driver interrupt service routine. 2438 * It can call: 2439 * o DMA service routine (to manage incoming frame reception and transmission 2440 * status) 2441 * o Core interrupts to manage: remote wake-up, management counter, LPI 2442 * interrupts. 2443 */ 2444 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 2445 { 2446 struct net_device *dev = (struct net_device *)dev_id; 2447 struct stmmac_priv *priv = netdev_priv(dev); 2448 2449 if (priv->irq_wake) 2450 pm_wakeup_event(priv->device, 0); 2451 2452 if (unlikely(!dev)) { 2453 pr_err("%s: invalid dev pointer\n", __func__); 2454 return IRQ_NONE; 2455 } 2456 2457 /* To handle GMAC own interrupts */ 2458 if (priv->plat->has_gmac) { 2459 int status = priv->hw->mac->host_irq_status(priv->hw, 2460 &priv->xstats); 2461 if (unlikely(status)) { 2462 /* For LPI we need to save the tx status */ 2463 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 2464 priv->tx_path_in_lpi_mode = true; 2465 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 2466 priv->tx_path_in_lpi_mode = false; 2467 } 2468 } 2469 2470 /* To handle DMA interrupts */ 2471 stmmac_dma_interrupt(priv); 2472 2473 return IRQ_HANDLED; 2474 } 2475 2476 #ifdef CONFIG_NET_POLL_CONTROLLER 2477 /* Polling receive - used by NETCONSOLE and other diagnostic tools 2478 * to allow network I/O with interrupts disabled. 2479 */ 2480 static void stmmac_poll_controller(struct net_device *dev) 2481 { 2482 disable_irq(dev->irq); 2483 stmmac_interrupt(dev->irq, dev); 2484 enable_irq(dev->irq); 2485 } 2486 #endif 2487 2488 /** 2489 * stmmac_ioctl - Entry point for the Ioctl 2490 * @dev: Device pointer. 2491 * @rq: An IOCTL specefic structure, that can contain a pointer to 2492 * a proprietary structure used to pass information to the driver. 2493 * @cmd: IOCTL command 2494 * Description: 2495 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 2496 */ 2497 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2498 { 2499 struct stmmac_priv *priv = netdev_priv(dev); 2500 int ret = -EOPNOTSUPP; 2501 2502 if (!netif_running(dev)) 2503 return -EINVAL; 2504 2505 switch (cmd) { 2506 case SIOCGMIIPHY: 2507 case SIOCGMIIREG: 2508 case SIOCSMIIREG: 2509 if (!priv->phydev) 2510 return -EINVAL; 2511 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 2512 break; 2513 case SIOCSHWTSTAMP: 2514 ret = stmmac_hwtstamp_ioctl(dev, rq); 2515 break; 2516 default: 2517 break; 2518 } 2519 2520 return ret; 2521 } 2522 2523 #ifdef CONFIG_DEBUG_FS 2524 static struct dentry *stmmac_fs_dir; 2525 2526 static void sysfs_display_ring(void *head, int size, int extend_desc, 2527 struct seq_file *seq) 2528 { 2529 int i; 2530 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 2531 struct dma_desc *p = (struct dma_desc *)head; 2532 2533 for (i = 0; i < size; i++) { 2534 u64 x; 2535 if (extend_desc) { 2536 x = *(u64 *) ep; 2537 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2538 i, (unsigned int)virt_to_phys(ep), 2539 (unsigned int)x, (unsigned int)(x >> 32), 2540 ep->basic.des2, ep->basic.des3); 2541 ep++; 2542 } else { 2543 x = *(u64 *) p; 2544 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2545 i, (unsigned int)virt_to_phys(ep), 2546 (unsigned int)x, (unsigned int)(x >> 32), 2547 p->des2, p->des3); 2548 p++; 2549 } 2550 seq_printf(seq, "\n"); 2551 } 2552 } 2553 2554 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 2555 { 2556 struct net_device *dev = seq->private; 2557 struct stmmac_priv *priv = netdev_priv(dev); 2558 unsigned int txsize = priv->dma_tx_size; 2559 unsigned int rxsize = priv->dma_rx_size; 2560 2561 if (priv->extend_desc) { 2562 seq_printf(seq, "Extended RX descriptor ring:\n"); 2563 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq); 2564 seq_printf(seq, "Extended TX descriptor ring:\n"); 2565 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq); 2566 } else { 2567 seq_printf(seq, "RX descriptor ring:\n"); 2568 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq); 2569 seq_printf(seq, "TX descriptor ring:\n"); 2570 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq); 2571 } 2572 2573 return 0; 2574 } 2575 2576 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 2577 { 2578 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 2579 } 2580 2581 static const struct file_operations stmmac_rings_status_fops = { 2582 .owner = THIS_MODULE, 2583 .open = stmmac_sysfs_ring_open, 2584 .read = seq_read, 2585 .llseek = seq_lseek, 2586 .release = single_release, 2587 }; 2588 2589 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 2590 { 2591 struct net_device *dev = seq->private; 2592 struct stmmac_priv *priv = netdev_priv(dev); 2593 2594 if (!priv->hw_cap_support) { 2595 seq_printf(seq, "DMA HW features not supported\n"); 2596 return 0; 2597 } 2598 2599 seq_printf(seq, "==============================\n"); 2600 seq_printf(seq, "\tDMA HW features\n"); 2601 seq_printf(seq, "==============================\n"); 2602 2603 seq_printf(seq, "\t10/100 Mbps %s\n", 2604 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 2605 seq_printf(seq, "\t1000 Mbps %s\n", 2606 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 2607 seq_printf(seq, "\tHalf duple %s\n", 2608 (priv->dma_cap.half_duplex) ? "Y" : "N"); 2609 seq_printf(seq, "\tHash Filter: %s\n", 2610 (priv->dma_cap.hash_filter) ? "Y" : "N"); 2611 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 2612 (priv->dma_cap.multi_addr) ? "Y" : "N"); 2613 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n", 2614 (priv->dma_cap.pcs) ? "Y" : "N"); 2615 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 2616 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 2617 seq_printf(seq, "\tPMT Remote wake up: %s\n", 2618 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 2619 seq_printf(seq, "\tPMT Magic Frame: %s\n", 2620 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 2621 seq_printf(seq, "\tRMON module: %s\n", 2622 (priv->dma_cap.rmon) ? "Y" : "N"); 2623 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 2624 (priv->dma_cap.time_stamp) ? "Y" : "N"); 2625 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n", 2626 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 2627 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n", 2628 (priv->dma_cap.eee) ? "Y" : "N"); 2629 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 2630 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 2631 (priv->dma_cap.tx_coe) ? "Y" : "N"); 2632 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 2633 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 2634 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 2635 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 2636 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 2637 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 2638 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 2639 priv->dma_cap.number_rx_channel); 2640 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 2641 priv->dma_cap.number_tx_channel); 2642 seq_printf(seq, "\tEnhanced descriptors: %s\n", 2643 (priv->dma_cap.enh_desc) ? "Y" : "N"); 2644 2645 return 0; 2646 } 2647 2648 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 2649 { 2650 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 2651 } 2652 2653 static const struct file_operations stmmac_dma_cap_fops = { 2654 .owner = THIS_MODULE, 2655 .open = stmmac_sysfs_dma_cap_open, 2656 .read = seq_read, 2657 .llseek = seq_lseek, 2658 .release = single_release, 2659 }; 2660 2661 static int stmmac_init_fs(struct net_device *dev) 2662 { 2663 struct stmmac_priv *priv = netdev_priv(dev); 2664 2665 /* Create per netdev entries */ 2666 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 2667 2668 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 2669 pr_err("ERROR %s/%s, debugfs create directory failed\n", 2670 STMMAC_RESOURCE_NAME, dev->name); 2671 2672 return -ENOMEM; 2673 } 2674 2675 /* Entry to report DMA RX/TX rings */ 2676 priv->dbgfs_rings_status = 2677 debugfs_create_file("descriptors_status", S_IRUGO, 2678 priv->dbgfs_dir, dev, 2679 &stmmac_rings_status_fops); 2680 2681 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 2682 pr_info("ERROR creating stmmac ring debugfs file\n"); 2683 debugfs_remove_recursive(priv->dbgfs_dir); 2684 2685 return -ENOMEM; 2686 } 2687 2688 /* Entry to report the DMA HW features */ 2689 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, 2690 priv->dbgfs_dir, 2691 dev, &stmmac_dma_cap_fops); 2692 2693 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 2694 pr_info("ERROR creating stmmac MMC debugfs file\n"); 2695 debugfs_remove_recursive(priv->dbgfs_dir); 2696 2697 return -ENOMEM; 2698 } 2699 2700 return 0; 2701 } 2702 2703 static void stmmac_exit_fs(struct net_device *dev) 2704 { 2705 struct stmmac_priv *priv = netdev_priv(dev); 2706 2707 debugfs_remove_recursive(priv->dbgfs_dir); 2708 } 2709 #endif /* CONFIG_DEBUG_FS */ 2710 2711 static const struct net_device_ops stmmac_netdev_ops = { 2712 .ndo_open = stmmac_open, 2713 .ndo_start_xmit = stmmac_xmit, 2714 .ndo_stop = stmmac_release, 2715 .ndo_change_mtu = stmmac_change_mtu, 2716 .ndo_fix_features = stmmac_fix_features, 2717 .ndo_set_features = stmmac_set_features, 2718 .ndo_set_rx_mode = stmmac_set_rx_mode, 2719 .ndo_tx_timeout = stmmac_tx_timeout, 2720 .ndo_do_ioctl = stmmac_ioctl, 2721 #ifdef CONFIG_NET_POLL_CONTROLLER 2722 .ndo_poll_controller = stmmac_poll_controller, 2723 #endif 2724 .ndo_set_mac_address = eth_mac_addr, 2725 }; 2726 2727 /** 2728 * stmmac_hw_init - Init the MAC device 2729 * @priv: driver private structure 2730 * Description: this function is to configure the MAC device according to 2731 * some platform parameters or the HW capability register. It prepares the 2732 * driver to use either ring or chain modes and to setup either enhanced or 2733 * normal descriptors. 2734 */ 2735 static int stmmac_hw_init(struct stmmac_priv *priv) 2736 { 2737 struct mac_device_info *mac; 2738 2739 /* Identify the MAC HW device */ 2740 if (priv->plat->has_gmac) { 2741 priv->dev->priv_flags |= IFF_UNICAST_FLT; 2742 mac = dwmac1000_setup(priv->ioaddr, 2743 priv->plat->multicast_filter_bins, 2744 priv->plat->unicast_filter_entries); 2745 } else { 2746 mac = dwmac100_setup(priv->ioaddr); 2747 } 2748 if (!mac) 2749 return -ENOMEM; 2750 2751 priv->hw = mac; 2752 2753 /* Get and dump the chip ID */ 2754 priv->synopsys_id = stmmac_get_synopsys_id(priv); 2755 2756 /* To use the chained or ring mode */ 2757 if (chain_mode) { 2758 priv->hw->mode = &chain_mode_ops; 2759 pr_info(" Chain mode enabled\n"); 2760 priv->mode = STMMAC_CHAIN_MODE; 2761 } else { 2762 priv->hw->mode = &ring_mode_ops; 2763 pr_info(" Ring mode enabled\n"); 2764 priv->mode = STMMAC_RING_MODE; 2765 } 2766 2767 /* Get the HW capability (new GMAC newer than 3.50a) */ 2768 priv->hw_cap_support = stmmac_get_hw_features(priv); 2769 if (priv->hw_cap_support) { 2770 pr_info(" DMA HW capability register supported"); 2771 2772 /* We can override some gmac/dma configuration fields: e.g. 2773 * enh_desc, tx_coe (e.g. that are passed through the 2774 * platform) with the values from the HW capability 2775 * register (if supported). 2776 */ 2777 priv->plat->enh_desc = priv->dma_cap.enh_desc; 2778 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 2779 2780 /* TXCOE doesn't work in thresh DMA mode */ 2781 if (priv->plat->force_thresh_dma_mode) 2782 priv->plat->tx_coe = 0; 2783 else 2784 priv->plat->tx_coe = priv->dma_cap.tx_coe; 2785 2786 if (priv->dma_cap.rx_coe_type2) 2787 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 2788 else if (priv->dma_cap.rx_coe_type1) 2789 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 2790 2791 } else 2792 pr_info(" No HW DMA feature register supported"); 2793 2794 /* To use alternate (extended) or normal descriptor structures */ 2795 stmmac_selec_desc_mode(priv); 2796 2797 if (priv->plat->rx_coe) { 2798 priv->hw->rx_csum = priv->plat->rx_coe; 2799 pr_info(" RX Checksum Offload Engine supported (type %d)\n", 2800 priv->plat->rx_coe); 2801 } 2802 if (priv->plat->tx_coe) 2803 pr_info(" TX Checksum insertion supported\n"); 2804 2805 if (priv->plat->pmt) { 2806 pr_info(" Wake-Up On Lan supported\n"); 2807 device_set_wakeup_capable(priv->device, 1); 2808 } 2809 2810 return 0; 2811 } 2812 2813 /** 2814 * stmmac_dvr_probe 2815 * @device: device pointer 2816 * @plat_dat: platform data pointer 2817 * @res: stmmac resource pointer 2818 * Description: this is the main probe function used to 2819 * call the alloc_etherdev, allocate the priv structure. 2820 * Return: 2821 * returns 0 on success, otherwise errno. 2822 */ 2823 int stmmac_dvr_probe(struct device *device, 2824 struct plat_stmmacenet_data *plat_dat, 2825 struct stmmac_resources *res) 2826 { 2827 int ret = 0; 2828 struct net_device *ndev = NULL; 2829 struct stmmac_priv *priv; 2830 2831 ndev = alloc_etherdev(sizeof(struct stmmac_priv)); 2832 if (!ndev) 2833 return -ENOMEM; 2834 2835 SET_NETDEV_DEV(ndev, device); 2836 2837 priv = netdev_priv(ndev); 2838 priv->device = device; 2839 priv->dev = ndev; 2840 2841 stmmac_set_ethtool_ops(ndev); 2842 priv->pause = pause; 2843 priv->plat = plat_dat; 2844 priv->ioaddr = res->addr; 2845 priv->dev->base_addr = (unsigned long)res->addr; 2846 2847 priv->dev->irq = res->irq; 2848 priv->wol_irq = res->wol_irq; 2849 priv->lpi_irq = res->lpi_irq; 2850 2851 if (res->mac) 2852 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 2853 2854 dev_set_drvdata(device, priv->dev); 2855 2856 /* Verify driver arguments */ 2857 stmmac_verify_args(); 2858 2859 /* Override with kernel parameters if supplied XXX CRS XXX 2860 * this needs to have multiple instances 2861 */ 2862 if ((phyaddr >= 0) && (phyaddr <= 31)) 2863 priv->plat->phy_addr = phyaddr; 2864 2865 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME); 2866 if (IS_ERR(priv->stmmac_clk)) { 2867 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n", 2868 __func__); 2869 /* If failed to obtain stmmac_clk and specific clk_csr value 2870 * is NOT passed from the platform, probe fail. 2871 */ 2872 if (!priv->plat->clk_csr) { 2873 ret = PTR_ERR(priv->stmmac_clk); 2874 goto error_clk_get; 2875 } else { 2876 priv->stmmac_clk = NULL; 2877 } 2878 } 2879 clk_prepare_enable(priv->stmmac_clk); 2880 2881 priv->pclk = devm_clk_get(priv->device, "pclk"); 2882 if (IS_ERR(priv->pclk)) { 2883 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) { 2884 ret = -EPROBE_DEFER; 2885 goto error_pclk_get; 2886 } 2887 priv->pclk = NULL; 2888 } 2889 clk_prepare_enable(priv->pclk); 2890 2891 priv->stmmac_rst = devm_reset_control_get(priv->device, 2892 STMMAC_RESOURCE_NAME); 2893 if (IS_ERR(priv->stmmac_rst)) { 2894 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) { 2895 ret = -EPROBE_DEFER; 2896 goto error_hw_init; 2897 } 2898 dev_info(priv->device, "no reset control found\n"); 2899 priv->stmmac_rst = NULL; 2900 } 2901 if (priv->stmmac_rst) 2902 reset_control_deassert(priv->stmmac_rst); 2903 2904 /* Init MAC and get the capabilities */ 2905 ret = stmmac_hw_init(priv); 2906 if (ret) 2907 goto error_hw_init; 2908 2909 ndev->netdev_ops = &stmmac_netdev_ops; 2910 2911 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2912 NETIF_F_RXCSUM; 2913 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2914 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 2915 #ifdef STMMAC_VLAN_TAG_USED 2916 /* Both mac100 and gmac support receive VLAN tag detection */ 2917 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 2918 #endif 2919 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2920 2921 if (flow_ctrl) 2922 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 2923 2924 /* Rx Watchdog is available in the COREs newer than the 3.40. 2925 * In some case, for example on bugged HW this feature 2926 * has to be disable and this can be done by passing the 2927 * riwt_off field from the platform. 2928 */ 2929 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) { 2930 priv->use_riwt = 1; 2931 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n"); 2932 } 2933 2934 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); 2935 2936 spin_lock_init(&priv->lock); 2937 spin_lock_init(&priv->tx_lock); 2938 2939 ret = register_netdev(ndev); 2940 if (ret) { 2941 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2942 goto error_netdev_register; 2943 } 2944 2945 /* If a specific clk_csr value is passed from the platform 2946 * this means that the CSR Clock Range selection cannot be 2947 * changed at run-time and it is fixed. Viceversa the driver'll try to 2948 * set the MDC clock dynamically according to the csr actual 2949 * clock input. 2950 */ 2951 if (!priv->plat->clk_csr) 2952 stmmac_clk_csr_set(priv); 2953 else 2954 priv->clk_csr = priv->plat->clk_csr; 2955 2956 stmmac_check_pcs_mode(priv); 2957 2958 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2959 priv->pcs != STMMAC_PCS_RTBI) { 2960 /* MDIO bus Registration */ 2961 ret = stmmac_mdio_register(ndev); 2962 if (ret < 0) { 2963 pr_debug("%s: MDIO bus (id: %d) registration failed", 2964 __func__, priv->plat->bus_id); 2965 goto error_mdio_register; 2966 } 2967 } 2968 2969 return 0; 2970 2971 error_mdio_register: 2972 unregister_netdev(ndev); 2973 error_netdev_register: 2974 netif_napi_del(&priv->napi); 2975 error_hw_init: 2976 clk_disable_unprepare(priv->pclk); 2977 error_pclk_get: 2978 clk_disable_unprepare(priv->stmmac_clk); 2979 error_clk_get: 2980 free_netdev(ndev); 2981 2982 return ret; 2983 } 2984 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 2985 2986 /** 2987 * stmmac_dvr_remove 2988 * @ndev: net device pointer 2989 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2990 * changes the link status, releases the DMA descriptor rings. 2991 */ 2992 int stmmac_dvr_remove(struct net_device *ndev) 2993 { 2994 struct stmmac_priv *priv = netdev_priv(ndev); 2995 2996 pr_info("%s:\n\tremoving driver", __func__); 2997 2998 priv->hw->dma->stop_rx(priv->ioaddr); 2999 priv->hw->dma->stop_tx(priv->ioaddr); 3000 3001 stmmac_set_mac(priv->ioaddr, false); 3002 netif_carrier_off(ndev); 3003 unregister_netdev(ndev); 3004 if (priv->stmmac_rst) 3005 reset_control_assert(priv->stmmac_rst); 3006 clk_disable_unprepare(priv->pclk); 3007 clk_disable_unprepare(priv->stmmac_clk); 3008 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 3009 priv->pcs != STMMAC_PCS_RTBI) 3010 stmmac_mdio_unregister(ndev); 3011 free_netdev(ndev); 3012 3013 return 0; 3014 } 3015 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 3016 3017 /** 3018 * stmmac_suspend - suspend callback 3019 * @ndev: net device pointer 3020 * Description: this is the function to suspend the device and it is called 3021 * by the platform driver to stop the network queue, release the resources, 3022 * program the PMT register (for WoL), clean and release driver resources. 3023 */ 3024 int stmmac_suspend(struct net_device *ndev) 3025 { 3026 struct stmmac_priv *priv = netdev_priv(ndev); 3027 unsigned long flags; 3028 3029 if (!ndev || !netif_running(ndev)) 3030 return 0; 3031 3032 if (priv->phydev) 3033 phy_stop(priv->phydev); 3034 3035 spin_lock_irqsave(&priv->lock, flags); 3036 3037 netif_device_detach(ndev); 3038 netif_stop_queue(ndev); 3039 3040 napi_disable(&priv->napi); 3041 3042 /* Stop TX/RX DMA */ 3043 priv->hw->dma->stop_tx(priv->ioaddr); 3044 priv->hw->dma->stop_rx(priv->ioaddr); 3045 3046 /* Enable Power down mode by programming the PMT regs */ 3047 if (device_may_wakeup(priv->device)) { 3048 priv->hw->mac->pmt(priv->hw, priv->wolopts); 3049 priv->irq_wake = 1; 3050 } else { 3051 stmmac_set_mac(priv->ioaddr, false); 3052 pinctrl_pm_select_sleep_state(priv->device); 3053 /* Disable clock in case of PWM is off */ 3054 clk_disable(priv->pclk); 3055 clk_disable(priv->stmmac_clk); 3056 } 3057 spin_unlock_irqrestore(&priv->lock, flags); 3058 3059 priv->oldlink = 0; 3060 priv->speed = 0; 3061 priv->oldduplex = -1; 3062 return 0; 3063 } 3064 EXPORT_SYMBOL_GPL(stmmac_suspend); 3065 3066 /** 3067 * stmmac_resume - resume callback 3068 * @ndev: net device pointer 3069 * Description: when resume this function is invoked to setup the DMA and CORE 3070 * in a usable state. 3071 */ 3072 int stmmac_resume(struct net_device *ndev) 3073 { 3074 struct stmmac_priv *priv = netdev_priv(ndev); 3075 unsigned long flags; 3076 3077 if (!netif_running(ndev)) 3078 return 0; 3079 3080 spin_lock_irqsave(&priv->lock, flags); 3081 3082 /* Power Down bit, into the PM register, is cleared 3083 * automatically as soon as a magic packet or a Wake-up frame 3084 * is received. Anyway, it's better to manually clear 3085 * this bit because it can generate problems while resuming 3086 * from another devices (e.g. serial console). 3087 */ 3088 if (device_may_wakeup(priv->device)) { 3089 priv->hw->mac->pmt(priv->hw, 0); 3090 priv->irq_wake = 0; 3091 } else { 3092 pinctrl_pm_select_default_state(priv->device); 3093 /* enable the clk prevously disabled */ 3094 clk_enable(priv->stmmac_clk); 3095 clk_enable(priv->pclk); 3096 /* reset the phy so that it's ready */ 3097 if (priv->mii) 3098 stmmac_mdio_reset(priv->mii); 3099 } 3100 3101 netif_device_attach(ndev); 3102 3103 priv->cur_rx = 0; 3104 priv->dirty_rx = 0; 3105 priv->dirty_tx = 0; 3106 priv->cur_tx = 0; 3107 stmmac_clear_descriptors(priv); 3108 3109 stmmac_hw_setup(ndev, false); 3110 stmmac_init_tx_coalesce(priv); 3111 stmmac_set_rx_mode(ndev); 3112 3113 napi_enable(&priv->napi); 3114 3115 netif_start_queue(ndev); 3116 3117 spin_unlock_irqrestore(&priv->lock, flags); 3118 3119 if (priv->phydev) 3120 phy_start(priv->phydev); 3121 3122 return 0; 3123 } 3124 EXPORT_SYMBOL_GPL(stmmac_resume); 3125 3126 #ifndef MODULE 3127 static int __init stmmac_cmdline_opt(char *str) 3128 { 3129 char *opt; 3130 3131 if (!str || !*str) 3132 return -EINVAL; 3133 while ((opt = strsep(&str, ",")) != NULL) { 3134 if (!strncmp(opt, "debug:", 6)) { 3135 if (kstrtoint(opt + 6, 0, &debug)) 3136 goto err; 3137 } else if (!strncmp(opt, "phyaddr:", 8)) { 3138 if (kstrtoint(opt + 8, 0, &phyaddr)) 3139 goto err; 3140 } else if (!strncmp(opt, "dma_txsize:", 11)) { 3141 if (kstrtoint(opt + 11, 0, &dma_txsize)) 3142 goto err; 3143 } else if (!strncmp(opt, "dma_rxsize:", 11)) { 3144 if (kstrtoint(opt + 11, 0, &dma_rxsize)) 3145 goto err; 3146 } else if (!strncmp(opt, "buf_sz:", 7)) { 3147 if (kstrtoint(opt + 7, 0, &buf_sz)) 3148 goto err; 3149 } else if (!strncmp(opt, "tc:", 3)) { 3150 if (kstrtoint(opt + 3, 0, &tc)) 3151 goto err; 3152 } else if (!strncmp(opt, "watchdog:", 9)) { 3153 if (kstrtoint(opt + 9, 0, &watchdog)) 3154 goto err; 3155 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 3156 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 3157 goto err; 3158 } else if (!strncmp(opt, "pause:", 6)) { 3159 if (kstrtoint(opt + 6, 0, &pause)) 3160 goto err; 3161 } else if (!strncmp(opt, "eee_timer:", 10)) { 3162 if (kstrtoint(opt + 10, 0, &eee_timer)) 3163 goto err; 3164 } else if (!strncmp(opt, "chain_mode:", 11)) { 3165 if (kstrtoint(opt + 11, 0, &chain_mode)) 3166 goto err; 3167 } 3168 } 3169 return 0; 3170 3171 err: 3172 pr_err("%s: ERROR broken module parameter conversion", __func__); 3173 return -EINVAL; 3174 } 3175 3176 __setup("stmmaceth=", stmmac_cmdline_opt); 3177 #endif /* MODULE */ 3178 3179 static int __init stmmac_init(void) 3180 { 3181 #ifdef CONFIG_DEBUG_FS 3182 /* Create debugfs main directory if it doesn't exist yet */ 3183 if (!stmmac_fs_dir) { 3184 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 3185 3186 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 3187 pr_err("ERROR %s, debugfs create directory failed\n", 3188 STMMAC_RESOURCE_NAME); 3189 3190 return -ENOMEM; 3191 } 3192 } 3193 #endif 3194 3195 return 0; 3196 } 3197 3198 static void __exit stmmac_exit(void) 3199 { 3200 #ifdef CONFIG_DEBUG_FS 3201 debugfs_remove_recursive(stmmac_fs_dir); 3202 #endif 3203 } 3204 3205 module_init(stmmac_init) 3206 module_exit(stmmac_exit) 3207 3208 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 3209 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 3210 MODULE_LICENSE("GPL"); 3211