1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 #include <linux/of_mdio.h>
56 
57 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
58 
59 /* Module parameters */
60 #define TX_TIMEO	5000
61 static int watchdog = TX_TIMEO;
62 module_param(watchdog, int, S_IRUGO | S_IWUSR);
63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
64 
65 static int debug = -1;
66 module_param(debug, int, S_IRUGO | S_IWUSR);
67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
68 
69 static int phyaddr = -1;
70 module_param(phyaddr, int, S_IRUGO);
71 MODULE_PARM_DESC(phyaddr, "Physical device address");
72 
73 #define DMA_TX_SIZE 256
74 static int dma_txsize = DMA_TX_SIZE;
75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
77 
78 #define DMA_RX_SIZE 256
79 static int dma_rxsize = DMA_RX_SIZE;
80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
82 
83 static int flow_ctrl = FLOW_OFF;
84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86 
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90 
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, S_IRUGO | S_IWUSR);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95 
96 #define	DEFAULT_BUFSIZE	1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100 
101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
102 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
103 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
104 
105 #define STMMAC_DEFAULT_LPI_TIMER	1000
106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
107 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
110 
111 /* By default the driver will use the ring mode to manage tx and rx descriptors
112  * but passing this value so user can force to use the chain instead of the ring
113  */
114 static unsigned int chain_mode;
115 module_param(chain_mode, int, S_IRUGO);
116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
117 
118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
119 
120 #ifdef CONFIG_DEBUG_FS
121 static int stmmac_init_fs(struct net_device *dev);
122 static void stmmac_exit_fs(struct net_device *dev);
123 #endif
124 
125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
126 
127 /**
128  * stmmac_verify_args - verify the driver parameters.
129  * Description: it checks the driver parameters and set a default in case of
130  * errors.
131  */
132 static void stmmac_verify_args(void)
133 {
134 	if (unlikely(watchdog < 0))
135 		watchdog = TX_TIMEO;
136 	if (unlikely(dma_rxsize < 0))
137 		dma_rxsize = DMA_RX_SIZE;
138 	if (unlikely(dma_txsize < 0))
139 		dma_txsize = DMA_TX_SIZE;
140 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
141 		buf_sz = DEFAULT_BUFSIZE;
142 	if (unlikely(flow_ctrl > 1))
143 		flow_ctrl = FLOW_AUTO;
144 	else if (likely(flow_ctrl < 0))
145 		flow_ctrl = FLOW_OFF;
146 	if (unlikely((pause < 0) || (pause > 0xffff)))
147 		pause = PAUSE_TIME;
148 	if (eee_timer < 0)
149 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
150 }
151 
152 /**
153  * stmmac_clk_csr_set - dynamically set the MDC clock
154  * @priv: driver private structure
155  * Description: this is to dynamically set the MDC clock according to the csr
156  * clock input.
157  * Note:
158  *	If a specific clk_csr value is passed from the platform
159  *	this means that the CSR Clock Range selection cannot be
160  *	changed at run-time and it is fixed (as reported in the driver
161  *	documentation). Viceversa the driver will try to set the MDC
162  *	clock dynamically according to the actual clock input.
163  */
164 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
165 {
166 	u32 clk_rate;
167 
168 	clk_rate = clk_get_rate(priv->stmmac_clk);
169 
170 	/* Platform provided default clk_csr would be assumed valid
171 	 * for all other cases except for the below mentioned ones.
172 	 * For values higher than the IEEE 802.3 specified frequency
173 	 * we can not estimate the proper divider as it is not known
174 	 * the frequency of clk_csr_i. So we do not change the default
175 	 * divider.
176 	 */
177 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
178 		if (clk_rate < CSR_F_35M)
179 			priv->clk_csr = STMMAC_CSR_20_35M;
180 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
181 			priv->clk_csr = STMMAC_CSR_35_60M;
182 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
183 			priv->clk_csr = STMMAC_CSR_60_100M;
184 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
185 			priv->clk_csr = STMMAC_CSR_100_150M;
186 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
187 			priv->clk_csr = STMMAC_CSR_150_250M;
188 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
189 			priv->clk_csr = STMMAC_CSR_250_300M;
190 	}
191 }
192 
193 static void print_pkt(unsigned char *buf, int len)
194 {
195 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
196 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
197 }
198 
199 /* minimum number of free TX descriptors required to wake up TX process */
200 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
201 
202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
203 {
204 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
205 }
206 
207 /**
208  * stmmac_hw_fix_mac_speed - callback for speed selection
209  * @priv: driver private structure
210  * Description: on some platforms (e.g. ST), some HW system configuraton
211  * registers have to be set according to the link speed negotiated.
212  */
213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
214 {
215 	struct phy_device *phydev = priv->phydev;
216 
217 	if (likely(priv->plat->fix_mac_speed))
218 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
219 }
220 
221 /**
222  * stmmac_enable_eee_mode - check and enter in LPI mode
223  * @priv: driver private structure
224  * Description: this function is to verify and enter in LPI mode in case of
225  * EEE.
226  */
227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
228 {
229 	/* Check and enter in LPI mode */
230 	if ((priv->dirty_tx == priv->cur_tx) &&
231 	    (priv->tx_path_in_lpi_mode == false))
232 		priv->hw->mac->set_eee_mode(priv->hw);
233 }
234 
235 /**
236  * stmmac_disable_eee_mode - disable and exit from LPI mode
237  * @priv: driver private structure
238  * Description: this function is to exit and disable EEE in case of
239  * LPI state is true. This is called by the xmit.
240  */
241 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
242 {
243 	priv->hw->mac->reset_eee_mode(priv->hw);
244 	del_timer_sync(&priv->eee_ctrl_timer);
245 	priv->tx_path_in_lpi_mode = false;
246 }
247 
248 /**
249  * stmmac_eee_ctrl_timer - EEE TX SW timer.
250  * @arg : data hook
251  * Description:
252  *  if there is no data transfer and if we are not in LPI state,
253  *  then MAC Transmitter can be moved to LPI state.
254  */
255 static void stmmac_eee_ctrl_timer(unsigned long arg)
256 {
257 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
258 
259 	stmmac_enable_eee_mode(priv);
260 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
261 }
262 
263 /**
264  * stmmac_eee_init - init EEE
265  * @priv: driver private structure
266  * Description:
267  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
268  *  can also manage EEE, this function enable the LPI state and start related
269  *  timer.
270  */
271 bool stmmac_eee_init(struct stmmac_priv *priv)
272 {
273 	char *phy_bus_name = priv->plat->phy_bus_name;
274 	unsigned long flags;
275 	bool ret = false;
276 
277 	/* Using PCS we cannot dial with the phy registers at this stage
278 	 * so we do not support extra feature like EEE.
279 	 */
280 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
281 	    (priv->pcs == STMMAC_PCS_RTBI))
282 		goto out;
283 
284 	/* Never init EEE in case of a switch is attached */
285 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
286 		goto out;
287 
288 	/* MAC core supports the EEE feature. */
289 	if (priv->dma_cap.eee) {
290 		int tx_lpi_timer = priv->tx_lpi_timer;
291 
292 		/* Check if the PHY supports EEE */
293 		if (phy_init_eee(priv->phydev, 1)) {
294 			/* To manage at run-time if the EEE cannot be supported
295 			 * anymore (for example because the lp caps have been
296 			 * changed).
297 			 * In that case the driver disable own timers.
298 			 */
299 			spin_lock_irqsave(&priv->lock, flags);
300 			if (priv->eee_active) {
301 				pr_debug("stmmac: disable EEE\n");
302 				del_timer_sync(&priv->eee_ctrl_timer);
303 				priv->hw->mac->set_eee_timer(priv->hw, 0,
304 							     tx_lpi_timer);
305 			}
306 			priv->eee_active = 0;
307 			spin_unlock_irqrestore(&priv->lock, flags);
308 			goto out;
309 		}
310 		/* Activate the EEE and start timers */
311 		spin_lock_irqsave(&priv->lock, flags);
312 		if (!priv->eee_active) {
313 			priv->eee_active = 1;
314 			setup_timer(&priv->eee_ctrl_timer,
315 				    stmmac_eee_ctrl_timer,
316 				    (unsigned long)priv);
317 			mod_timer(&priv->eee_ctrl_timer,
318 				  STMMAC_LPI_T(eee_timer));
319 
320 			priv->hw->mac->set_eee_timer(priv->hw,
321 						     STMMAC_DEFAULT_LIT_LS,
322 						     tx_lpi_timer);
323 		}
324 		/* Set HW EEE according to the speed */
325 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
326 
327 		ret = true;
328 		spin_unlock_irqrestore(&priv->lock, flags);
329 
330 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
331 	}
332 out:
333 	return ret;
334 }
335 
336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
337  * @priv: driver private structure
338  * @entry : descriptor index to be used.
339  * @skb : the socket buffer
340  * Description :
341  * This function will read timestamp from the descriptor & pass it to stack.
342  * and also perform some sanity checks.
343  */
344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
345 				   unsigned int entry, struct sk_buff *skb)
346 {
347 	struct skb_shared_hwtstamps shhwtstamp;
348 	u64 ns;
349 	void *desc = NULL;
350 
351 	if (!priv->hwts_tx_en)
352 		return;
353 
354 	/* exit if skb doesn't support hw tstamp */
355 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
356 		return;
357 
358 	if (priv->adv_ts)
359 		desc = (priv->dma_etx + entry);
360 	else
361 		desc = (priv->dma_tx + entry);
362 
363 	/* check tx tstamp status */
364 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
365 		return;
366 
367 	/* get the valid tstamp */
368 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
369 
370 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
371 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
372 	/* pass tstamp to stack */
373 	skb_tstamp_tx(skb, &shhwtstamp);
374 
375 	return;
376 }
377 
378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
379  * @priv: driver private structure
380  * @entry : descriptor index to be used.
381  * @skb : the socket buffer
382  * Description :
383  * This function will read received packet's timestamp from the descriptor
384  * and pass it to stack. It also perform some sanity checks.
385  */
386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
387 				   unsigned int entry, struct sk_buff *skb)
388 {
389 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
390 	u64 ns;
391 	void *desc = NULL;
392 
393 	if (!priv->hwts_rx_en)
394 		return;
395 
396 	if (priv->adv_ts)
397 		desc = (priv->dma_erx + entry);
398 	else
399 		desc = (priv->dma_rx + entry);
400 
401 	/* exit if rx tstamp is not valid */
402 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
403 		return;
404 
405 	/* get valid tstamp */
406 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
407 	shhwtstamp = skb_hwtstamps(skb);
408 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
409 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
410 }
411 
412 /**
413  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
414  *  @dev: device pointer.
415  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
416  *  a proprietary structure used to pass information to the driver.
417  *  Description:
418  *  This function configures the MAC to enable/disable both outgoing(TX)
419  *  and incoming(RX) packets time stamping based on user input.
420  *  Return Value:
421  *  0 on success and an appropriate -ve integer on failure.
422  */
423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
424 {
425 	struct stmmac_priv *priv = netdev_priv(dev);
426 	struct hwtstamp_config config;
427 	struct timespec64 now;
428 	u64 temp = 0;
429 	u32 ptp_v2 = 0;
430 	u32 tstamp_all = 0;
431 	u32 ptp_over_ipv4_udp = 0;
432 	u32 ptp_over_ipv6_udp = 0;
433 	u32 ptp_over_ethernet = 0;
434 	u32 snap_type_sel = 0;
435 	u32 ts_master_en = 0;
436 	u32 ts_event_en = 0;
437 	u32 value = 0;
438 
439 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
440 		netdev_alert(priv->dev, "No support for HW time stamping\n");
441 		priv->hwts_tx_en = 0;
442 		priv->hwts_rx_en = 0;
443 
444 		return -EOPNOTSUPP;
445 	}
446 
447 	if (copy_from_user(&config, ifr->ifr_data,
448 			   sizeof(struct hwtstamp_config)))
449 		return -EFAULT;
450 
451 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
452 		 __func__, config.flags, config.tx_type, config.rx_filter);
453 
454 	/* reserved for future extensions */
455 	if (config.flags)
456 		return -EINVAL;
457 
458 	if (config.tx_type != HWTSTAMP_TX_OFF &&
459 	    config.tx_type != HWTSTAMP_TX_ON)
460 		return -ERANGE;
461 
462 	if (priv->adv_ts) {
463 		switch (config.rx_filter) {
464 		case HWTSTAMP_FILTER_NONE:
465 			/* time stamp no incoming packet at all */
466 			config.rx_filter = HWTSTAMP_FILTER_NONE;
467 			break;
468 
469 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
470 			/* PTP v1, UDP, any kind of event packet */
471 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
472 			/* take time stamp for all event messages */
473 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
474 
475 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
476 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
477 			break;
478 
479 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
480 			/* PTP v1, UDP, Sync packet */
481 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
482 			/* take time stamp for SYNC messages only */
483 			ts_event_en = PTP_TCR_TSEVNTENA;
484 
485 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
486 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
487 			break;
488 
489 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
490 			/* PTP v1, UDP, Delay_req packet */
491 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
492 			/* take time stamp for Delay_Req messages only */
493 			ts_master_en = PTP_TCR_TSMSTRENA;
494 			ts_event_en = PTP_TCR_TSEVNTENA;
495 
496 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
497 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
498 			break;
499 
500 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
501 			/* PTP v2, UDP, any kind of event packet */
502 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
503 			ptp_v2 = PTP_TCR_TSVER2ENA;
504 			/* take time stamp for all event messages */
505 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
506 
507 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
508 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
509 			break;
510 
511 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
512 			/* PTP v2, UDP, Sync packet */
513 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
514 			ptp_v2 = PTP_TCR_TSVER2ENA;
515 			/* take time stamp for SYNC messages only */
516 			ts_event_en = PTP_TCR_TSEVNTENA;
517 
518 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
519 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
520 			break;
521 
522 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
523 			/* PTP v2, UDP, Delay_req packet */
524 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
525 			ptp_v2 = PTP_TCR_TSVER2ENA;
526 			/* take time stamp for Delay_Req messages only */
527 			ts_master_en = PTP_TCR_TSMSTRENA;
528 			ts_event_en = PTP_TCR_TSEVNTENA;
529 
530 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
531 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
532 			break;
533 
534 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
535 			/* PTP v2/802.AS1 any layer, any kind of event packet */
536 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
537 			ptp_v2 = PTP_TCR_TSVER2ENA;
538 			/* take time stamp for all event messages */
539 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
540 
541 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
542 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
543 			ptp_over_ethernet = PTP_TCR_TSIPENA;
544 			break;
545 
546 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
547 			/* PTP v2/802.AS1, any layer, Sync packet */
548 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
549 			ptp_v2 = PTP_TCR_TSVER2ENA;
550 			/* take time stamp for SYNC messages only */
551 			ts_event_en = PTP_TCR_TSEVNTENA;
552 
553 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 			ptp_over_ethernet = PTP_TCR_TSIPENA;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
559 			/* PTP v2/802.AS1, any layer, Delay_req packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
561 			ptp_v2 = PTP_TCR_TSVER2ENA;
562 			/* take time stamp for Delay_Req messages only */
563 			ts_master_en = PTP_TCR_TSMSTRENA;
564 			ts_event_en = PTP_TCR_TSEVNTENA;
565 
566 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
567 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
568 			ptp_over_ethernet = PTP_TCR_TSIPENA;
569 			break;
570 
571 		case HWTSTAMP_FILTER_ALL:
572 			/* time stamp any incoming packet */
573 			config.rx_filter = HWTSTAMP_FILTER_ALL;
574 			tstamp_all = PTP_TCR_TSENALL;
575 			break;
576 
577 		default:
578 			return -ERANGE;
579 		}
580 	} else {
581 		switch (config.rx_filter) {
582 		case HWTSTAMP_FILTER_NONE:
583 			config.rx_filter = HWTSTAMP_FILTER_NONE;
584 			break;
585 		default:
586 			/* PTP v1, UDP, any kind of event packet */
587 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
588 			break;
589 		}
590 	}
591 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
592 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
593 
594 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
595 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
596 	else {
597 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
598 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
599 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
600 			 ts_master_en | snap_type_sel);
601 
602 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
603 
604 		/* program Sub Second Increment reg */
605 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
606 
607 		/* calculate default added value:
608 		 * formula is :
609 		 * addend = (2^32)/freq_div_ratio;
610 		 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
611 		 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
612 		 * NOTE: clk_ptp_ref_i should be >= 50MHz to
613 		 *       achieve 20ns accuracy.
614 		 *
615 		 * 2^x * y == (y << x), hence
616 		 * 2^32 * 50000000 ==> (50000000 << 32)
617 		 */
618 		temp = (u64) (50000000ULL << 32);
619 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
620 		priv->hw->ptp->config_addend(priv->ioaddr,
621 					     priv->default_addend);
622 
623 		/* initialize system time */
624 		ktime_get_real_ts64(&now);
625 
626 		/* lower 32 bits of tv_sec are safe until y2106 */
627 		priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec,
628 					    now.tv_nsec);
629 	}
630 
631 	return copy_to_user(ifr->ifr_data, &config,
632 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
633 }
634 
635 /**
636  * stmmac_init_ptp - init PTP
637  * @priv: driver private structure
638  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
639  * This is done by looking at the HW cap. register.
640  * This function also registers the ptp driver.
641  */
642 static int stmmac_init_ptp(struct stmmac_priv *priv)
643 {
644 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
645 		return -EOPNOTSUPP;
646 
647 	/* Fall-back to main clock in case of no PTP ref is passed */
648 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
649 	if (IS_ERR(priv->clk_ptp_ref)) {
650 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
651 		priv->clk_ptp_ref = NULL;
652 	} else {
653 		clk_prepare_enable(priv->clk_ptp_ref);
654 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
655 	}
656 
657 	priv->adv_ts = 0;
658 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
659 		priv->adv_ts = 1;
660 
661 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
662 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
663 
664 	if (netif_msg_hw(priv) && priv->adv_ts)
665 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
666 
667 	priv->hw->ptp = &stmmac_ptp;
668 	priv->hwts_tx_en = 0;
669 	priv->hwts_rx_en = 0;
670 
671 	return stmmac_ptp_register(priv);
672 }
673 
674 static void stmmac_release_ptp(struct stmmac_priv *priv)
675 {
676 	if (priv->clk_ptp_ref)
677 		clk_disable_unprepare(priv->clk_ptp_ref);
678 	stmmac_ptp_unregister(priv);
679 }
680 
681 /**
682  * stmmac_adjust_link - adjusts the link parameters
683  * @dev: net device structure
684  * Description: this is the helper called by the physical abstraction layer
685  * drivers to communicate the phy link status. According the speed and duplex
686  * this driver can invoke registered glue-logic as well.
687  * It also invoke the eee initialization because it could happen when switch
688  * on different networks (that are eee capable).
689  */
690 static void stmmac_adjust_link(struct net_device *dev)
691 {
692 	struct stmmac_priv *priv = netdev_priv(dev);
693 	struct phy_device *phydev = priv->phydev;
694 	unsigned long flags;
695 	int new_state = 0;
696 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
697 
698 	if (phydev == NULL)
699 		return;
700 
701 	spin_lock_irqsave(&priv->lock, flags);
702 
703 	if (phydev->link) {
704 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
705 
706 		/* Now we make sure that we can be in full duplex mode.
707 		 * If not, we operate in half-duplex mode. */
708 		if (phydev->duplex != priv->oldduplex) {
709 			new_state = 1;
710 			if (!(phydev->duplex))
711 				ctrl &= ~priv->hw->link.duplex;
712 			else
713 				ctrl |= priv->hw->link.duplex;
714 			priv->oldduplex = phydev->duplex;
715 		}
716 		/* Flow Control operation */
717 		if (phydev->pause)
718 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
719 						 fc, pause_time);
720 
721 		if (phydev->speed != priv->speed) {
722 			new_state = 1;
723 			switch (phydev->speed) {
724 			case 1000:
725 				if (likely(priv->plat->has_gmac))
726 					ctrl &= ~priv->hw->link.port;
727 				stmmac_hw_fix_mac_speed(priv);
728 				break;
729 			case 100:
730 			case 10:
731 				if (priv->plat->has_gmac) {
732 					ctrl |= priv->hw->link.port;
733 					if (phydev->speed == SPEED_100) {
734 						ctrl |= priv->hw->link.speed;
735 					} else {
736 						ctrl &= ~(priv->hw->link.speed);
737 					}
738 				} else {
739 					ctrl &= ~priv->hw->link.port;
740 				}
741 				stmmac_hw_fix_mac_speed(priv);
742 				break;
743 			default:
744 				if (netif_msg_link(priv))
745 					pr_warn("%s: Speed (%d) not 10/100\n",
746 						dev->name, phydev->speed);
747 				break;
748 			}
749 
750 			priv->speed = phydev->speed;
751 		}
752 
753 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
754 
755 		if (!priv->oldlink) {
756 			new_state = 1;
757 			priv->oldlink = 1;
758 		}
759 	} else if (priv->oldlink) {
760 		new_state = 1;
761 		priv->oldlink = 0;
762 		priv->speed = 0;
763 		priv->oldduplex = -1;
764 	}
765 
766 	if (new_state && netif_msg_link(priv))
767 		phy_print_status(phydev);
768 
769 	spin_unlock_irqrestore(&priv->lock, flags);
770 
771 	/* At this stage, it could be needed to setup the EEE or adjust some
772 	 * MAC related HW registers.
773 	 */
774 	priv->eee_enabled = stmmac_eee_init(priv);
775 }
776 
777 /**
778  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
779  * @priv: driver private structure
780  * Description: this is to verify if the HW supports the PCS.
781  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
782  * configured for the TBI, RTBI, or SGMII PHY interface.
783  */
784 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
785 {
786 	int interface = priv->plat->interface;
787 
788 	if (priv->dma_cap.pcs) {
789 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
790 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
791 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
792 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
793 			pr_debug("STMMAC: PCS RGMII support enable\n");
794 			priv->pcs = STMMAC_PCS_RGMII;
795 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
796 			pr_debug("STMMAC: PCS SGMII support enable\n");
797 			priv->pcs = STMMAC_PCS_SGMII;
798 		}
799 	}
800 }
801 
802 /**
803  * stmmac_init_phy - PHY initialization
804  * @dev: net device structure
805  * Description: it initializes the driver's PHY state, and attaches the PHY
806  * to the mac driver.
807  *  Return value:
808  *  0 on success
809  */
810 static int stmmac_init_phy(struct net_device *dev)
811 {
812 	struct stmmac_priv *priv = netdev_priv(dev);
813 	struct phy_device *phydev;
814 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
815 	char bus_id[MII_BUS_ID_SIZE];
816 	int interface = priv->plat->interface;
817 	int max_speed = priv->plat->max_speed;
818 	priv->oldlink = 0;
819 	priv->speed = 0;
820 	priv->oldduplex = -1;
821 
822 	if (priv->plat->phy_node) {
823 		phydev = of_phy_connect(dev, priv->plat->phy_node,
824 					&stmmac_adjust_link, 0, interface);
825 	} else {
826 		if (priv->plat->phy_bus_name)
827 			snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
828 				 priv->plat->phy_bus_name, priv->plat->bus_id);
829 		else
830 			snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
831 				 priv->plat->bus_id);
832 
833 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
834 			 priv->plat->phy_addr);
835 		pr_debug("stmmac_init_phy:  trying to attach to %s\n",
836 			 phy_id_fmt);
837 
838 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
839 				     interface);
840 	}
841 
842 	if (IS_ERR_OR_NULL(phydev)) {
843 		pr_err("%s: Could not attach to PHY\n", dev->name);
844 		if (!phydev)
845 			return -ENODEV;
846 
847 		return PTR_ERR(phydev);
848 	}
849 
850 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
851 	if ((interface == PHY_INTERFACE_MODE_MII) ||
852 	    (interface == PHY_INTERFACE_MODE_RMII) ||
853 		(max_speed < 1000 && max_speed > 0))
854 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
855 					 SUPPORTED_1000baseT_Full);
856 
857 	/*
858 	 * Broken HW is sometimes missing the pull-up resistor on the
859 	 * MDIO line, which results in reads to non-existent devices returning
860 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
861 	 * device as well.
862 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
863 	 */
864 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
865 		phy_disconnect(phydev);
866 		return -ENODEV;
867 	}
868 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
869 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
870 
871 	priv->phydev = phydev;
872 
873 	return 0;
874 }
875 
876 /**
877  * stmmac_display_ring - display ring
878  * @head: pointer to the head of the ring passed.
879  * @size: size of the ring.
880  * @extend_desc: to verify if extended descriptors are used.
881  * Description: display the control/status and buffer descriptors.
882  */
883 static void stmmac_display_ring(void *head, int size, int extend_desc)
884 {
885 	int i;
886 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
887 	struct dma_desc *p = (struct dma_desc *)head;
888 
889 	for (i = 0; i < size; i++) {
890 		u64 x;
891 		if (extend_desc) {
892 			x = *(u64 *) ep;
893 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
894 				i, (unsigned int)virt_to_phys(ep),
895 				(unsigned int)x, (unsigned int)(x >> 32),
896 				ep->basic.des2, ep->basic.des3);
897 			ep++;
898 		} else {
899 			x = *(u64 *) p;
900 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
901 				i, (unsigned int)virt_to_phys(p),
902 				(unsigned int)x, (unsigned int)(x >> 32),
903 				p->des2, p->des3);
904 			p++;
905 		}
906 		pr_info("\n");
907 	}
908 }
909 
910 static void stmmac_display_rings(struct stmmac_priv *priv)
911 {
912 	unsigned int txsize = priv->dma_tx_size;
913 	unsigned int rxsize = priv->dma_rx_size;
914 
915 	if (priv->extend_desc) {
916 		pr_info("Extended RX descriptor ring:\n");
917 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
918 		pr_info("Extended TX descriptor ring:\n");
919 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
920 	} else {
921 		pr_info("RX descriptor ring:\n");
922 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
923 		pr_info("TX descriptor ring:\n");
924 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
925 	}
926 }
927 
928 static int stmmac_set_bfsize(int mtu, int bufsize)
929 {
930 	int ret = bufsize;
931 
932 	if (mtu >= BUF_SIZE_4KiB)
933 		ret = BUF_SIZE_8KiB;
934 	else if (mtu >= BUF_SIZE_2KiB)
935 		ret = BUF_SIZE_4KiB;
936 	else if (mtu > DEFAULT_BUFSIZE)
937 		ret = BUF_SIZE_2KiB;
938 	else
939 		ret = DEFAULT_BUFSIZE;
940 
941 	return ret;
942 }
943 
944 /**
945  * stmmac_clear_descriptors - clear descriptors
946  * @priv: driver private structure
947  * Description: this function is called to clear the tx and rx descriptors
948  * in case of both basic and extended descriptors are used.
949  */
950 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
951 {
952 	int i;
953 	unsigned int txsize = priv->dma_tx_size;
954 	unsigned int rxsize = priv->dma_rx_size;
955 
956 	/* Clear the Rx/Tx descriptors */
957 	for (i = 0; i < rxsize; i++)
958 		if (priv->extend_desc)
959 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
960 						     priv->use_riwt, priv->mode,
961 						     (i == rxsize - 1));
962 		else
963 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
964 						     priv->use_riwt, priv->mode,
965 						     (i == rxsize - 1));
966 	for (i = 0; i < txsize; i++)
967 		if (priv->extend_desc)
968 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
969 						     priv->mode,
970 						     (i == txsize - 1));
971 		else
972 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
973 						     priv->mode,
974 						     (i == txsize - 1));
975 }
976 
977 /**
978  * stmmac_init_rx_buffers - init the RX descriptor buffer.
979  * @priv: driver private structure
980  * @p: descriptor pointer
981  * @i: descriptor index
982  * @flags: gfp flag.
983  * Description: this function is called to allocate a receive buffer, perform
984  * the DMA mapping and init the descriptor.
985  */
986 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
987 				  int i, gfp_t flags)
988 {
989 	struct sk_buff *skb;
990 
991 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
992 	if (!skb) {
993 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
994 		return -ENOMEM;
995 	}
996 	priv->rx_skbuff[i] = skb;
997 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
998 						priv->dma_buf_sz,
999 						DMA_FROM_DEVICE);
1000 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
1001 		pr_err("%s: DMA mapping error\n", __func__);
1002 		dev_kfree_skb_any(skb);
1003 		return -EINVAL;
1004 	}
1005 
1006 	p->des2 = priv->rx_skbuff_dma[i];
1007 
1008 	if ((priv->hw->mode->init_desc3) &&
1009 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
1010 		priv->hw->mode->init_desc3(p);
1011 
1012 	return 0;
1013 }
1014 
1015 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
1016 {
1017 	if (priv->rx_skbuff[i]) {
1018 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1019 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1020 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1021 	}
1022 	priv->rx_skbuff[i] = NULL;
1023 }
1024 
1025 /**
1026  * init_dma_desc_rings - init the RX/TX descriptor rings
1027  * @dev: net device structure
1028  * @flags: gfp flag.
1029  * Description: this function initializes the DMA RX/TX descriptors
1030  * and allocates the socket buffers. It suppors the chained and ring
1031  * modes.
1032  */
1033 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1034 {
1035 	int i;
1036 	struct stmmac_priv *priv = netdev_priv(dev);
1037 	unsigned int txsize = priv->dma_tx_size;
1038 	unsigned int rxsize = priv->dma_rx_size;
1039 	unsigned int bfsize = 0;
1040 	int ret = -ENOMEM;
1041 
1042 	if (priv->hw->mode->set_16kib_bfsize)
1043 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1044 
1045 	if (bfsize < BUF_SIZE_16KiB)
1046 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1047 
1048 	priv->dma_buf_sz = bfsize;
1049 
1050 	if (netif_msg_probe(priv))
1051 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1052 			 txsize, rxsize, bfsize);
1053 
1054 	if (netif_msg_probe(priv)) {
1055 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1056 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1057 
1058 		/* RX INITIALIZATION */
1059 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1060 	}
1061 	for (i = 0; i < rxsize; i++) {
1062 		struct dma_desc *p;
1063 		if (priv->extend_desc)
1064 			p = &((priv->dma_erx + i)->basic);
1065 		else
1066 			p = priv->dma_rx + i;
1067 
1068 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1069 		if (ret)
1070 			goto err_init_rx_buffers;
1071 
1072 		if (netif_msg_probe(priv))
1073 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1074 				 priv->rx_skbuff[i]->data,
1075 				 (unsigned int)priv->rx_skbuff_dma[i]);
1076 	}
1077 	priv->cur_rx = 0;
1078 	priv->dirty_rx = (unsigned int)(i - rxsize);
1079 	buf_sz = bfsize;
1080 
1081 	/* Setup the chained descriptor addresses */
1082 	if (priv->mode == STMMAC_CHAIN_MODE) {
1083 		if (priv->extend_desc) {
1084 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1085 					     rxsize, 1);
1086 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1087 					     txsize, 1);
1088 		} else {
1089 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1090 					     rxsize, 0);
1091 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1092 					     txsize, 0);
1093 		}
1094 	}
1095 
1096 	/* TX INITIALIZATION */
1097 	for (i = 0; i < txsize; i++) {
1098 		struct dma_desc *p;
1099 		if (priv->extend_desc)
1100 			p = &((priv->dma_etx + i)->basic);
1101 		else
1102 			p = priv->dma_tx + i;
1103 		p->des2 = 0;
1104 		priv->tx_skbuff_dma[i].buf = 0;
1105 		priv->tx_skbuff_dma[i].map_as_page = false;
1106 		priv->tx_skbuff[i] = NULL;
1107 	}
1108 
1109 	priv->dirty_tx = 0;
1110 	priv->cur_tx = 0;
1111 	netdev_reset_queue(priv->dev);
1112 
1113 	stmmac_clear_descriptors(priv);
1114 
1115 	if (netif_msg_hw(priv))
1116 		stmmac_display_rings(priv);
1117 
1118 	return 0;
1119 err_init_rx_buffers:
1120 	while (--i >= 0)
1121 		stmmac_free_rx_buffers(priv, i);
1122 	return ret;
1123 }
1124 
1125 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1126 {
1127 	int i;
1128 
1129 	for (i = 0; i < priv->dma_rx_size; i++)
1130 		stmmac_free_rx_buffers(priv, i);
1131 }
1132 
1133 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1134 {
1135 	int i;
1136 
1137 	for (i = 0; i < priv->dma_tx_size; i++) {
1138 		struct dma_desc *p;
1139 
1140 		if (priv->extend_desc)
1141 			p = &((priv->dma_etx + i)->basic);
1142 		else
1143 			p = priv->dma_tx + i;
1144 
1145 		if (priv->tx_skbuff_dma[i].buf) {
1146 			if (priv->tx_skbuff_dma[i].map_as_page)
1147 				dma_unmap_page(priv->device,
1148 					       priv->tx_skbuff_dma[i].buf,
1149 					       priv->hw->desc->get_tx_len(p),
1150 					       DMA_TO_DEVICE);
1151 			else
1152 				dma_unmap_single(priv->device,
1153 						 priv->tx_skbuff_dma[i].buf,
1154 						 priv->hw->desc->get_tx_len(p),
1155 						 DMA_TO_DEVICE);
1156 		}
1157 
1158 		if (priv->tx_skbuff[i] != NULL) {
1159 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1160 			priv->tx_skbuff[i] = NULL;
1161 			priv->tx_skbuff_dma[i].buf = 0;
1162 			priv->tx_skbuff_dma[i].map_as_page = false;
1163 		}
1164 	}
1165 }
1166 
1167 /**
1168  * alloc_dma_desc_resources - alloc TX/RX resources.
1169  * @priv: private structure
1170  * Description: according to which descriptor can be used (extend or basic)
1171  * this function allocates the resources for TX and RX paths. In case of
1172  * reception, for example, it pre-allocated the RX socket buffer in order to
1173  * allow zero-copy mechanism.
1174  */
1175 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1176 {
1177 	unsigned int txsize = priv->dma_tx_size;
1178 	unsigned int rxsize = priv->dma_rx_size;
1179 	int ret = -ENOMEM;
1180 
1181 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1182 					    GFP_KERNEL);
1183 	if (!priv->rx_skbuff_dma)
1184 		return -ENOMEM;
1185 
1186 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1187 					GFP_KERNEL);
1188 	if (!priv->rx_skbuff)
1189 		goto err_rx_skbuff;
1190 
1191 	priv->tx_skbuff_dma = kmalloc_array(txsize,
1192 					    sizeof(*priv->tx_skbuff_dma),
1193 					    GFP_KERNEL);
1194 	if (!priv->tx_skbuff_dma)
1195 		goto err_tx_skbuff_dma;
1196 
1197 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1198 					GFP_KERNEL);
1199 	if (!priv->tx_skbuff)
1200 		goto err_tx_skbuff;
1201 
1202 	if (priv->extend_desc) {
1203 		priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize *
1204 						    sizeof(struct
1205 							   dma_extended_desc),
1206 						    &priv->dma_rx_phy,
1207 						    GFP_KERNEL);
1208 		if (!priv->dma_erx)
1209 			goto err_dma;
1210 
1211 		priv->dma_etx = dma_zalloc_coherent(priv->device, txsize *
1212 						    sizeof(struct
1213 							   dma_extended_desc),
1214 						    &priv->dma_tx_phy,
1215 						    GFP_KERNEL);
1216 		if (!priv->dma_etx) {
1217 			dma_free_coherent(priv->device, priv->dma_rx_size *
1218 					  sizeof(struct dma_extended_desc),
1219 					  priv->dma_erx, priv->dma_rx_phy);
1220 			goto err_dma;
1221 		}
1222 	} else {
1223 		priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize *
1224 						   sizeof(struct dma_desc),
1225 						   &priv->dma_rx_phy,
1226 						   GFP_KERNEL);
1227 		if (!priv->dma_rx)
1228 			goto err_dma;
1229 
1230 		priv->dma_tx = dma_zalloc_coherent(priv->device, txsize *
1231 						   sizeof(struct dma_desc),
1232 						   &priv->dma_tx_phy,
1233 						   GFP_KERNEL);
1234 		if (!priv->dma_tx) {
1235 			dma_free_coherent(priv->device, priv->dma_rx_size *
1236 					  sizeof(struct dma_desc),
1237 					  priv->dma_rx, priv->dma_rx_phy);
1238 			goto err_dma;
1239 		}
1240 	}
1241 
1242 	return 0;
1243 
1244 err_dma:
1245 	kfree(priv->tx_skbuff);
1246 err_tx_skbuff:
1247 	kfree(priv->tx_skbuff_dma);
1248 err_tx_skbuff_dma:
1249 	kfree(priv->rx_skbuff);
1250 err_rx_skbuff:
1251 	kfree(priv->rx_skbuff_dma);
1252 	return ret;
1253 }
1254 
1255 static void free_dma_desc_resources(struct stmmac_priv *priv)
1256 {
1257 	/* Release the DMA TX/RX socket buffers */
1258 	dma_free_rx_skbufs(priv);
1259 	dma_free_tx_skbufs(priv);
1260 
1261 	/* Free DMA regions of consistent memory previously allocated */
1262 	if (!priv->extend_desc) {
1263 		dma_free_coherent(priv->device,
1264 				  priv->dma_tx_size * sizeof(struct dma_desc),
1265 				  priv->dma_tx, priv->dma_tx_phy);
1266 		dma_free_coherent(priv->device,
1267 				  priv->dma_rx_size * sizeof(struct dma_desc),
1268 				  priv->dma_rx, priv->dma_rx_phy);
1269 	} else {
1270 		dma_free_coherent(priv->device, priv->dma_tx_size *
1271 				  sizeof(struct dma_extended_desc),
1272 				  priv->dma_etx, priv->dma_tx_phy);
1273 		dma_free_coherent(priv->device, priv->dma_rx_size *
1274 				  sizeof(struct dma_extended_desc),
1275 				  priv->dma_erx, priv->dma_rx_phy);
1276 	}
1277 	kfree(priv->rx_skbuff_dma);
1278 	kfree(priv->rx_skbuff);
1279 	kfree(priv->tx_skbuff_dma);
1280 	kfree(priv->tx_skbuff);
1281 }
1282 
1283 /**
1284  *  stmmac_dma_operation_mode - HW DMA operation mode
1285  *  @priv: driver private structure
1286  *  Description: it is used for configuring the DMA operation mode register in
1287  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1288  */
1289 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1290 {
1291 	int rxfifosz = priv->plat->rx_fifo_size;
1292 
1293 	if (priv->plat->force_thresh_dma_mode)
1294 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz);
1295 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1296 		/*
1297 		 * In case of GMAC, SF mode can be enabled
1298 		 * to perform the TX COE in HW. This depends on:
1299 		 * 1) TX COE if actually supported
1300 		 * 2) There is no bugged Jumbo frame support
1301 		 *    that needs to not insert csum in the TDES.
1302 		 */
1303 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE,
1304 					rxfifosz);
1305 		priv->xstats.threshold = SF_DMA_MODE;
1306 	} else
1307 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE,
1308 					rxfifosz);
1309 }
1310 
1311 /**
1312  * stmmac_tx_clean - to manage the transmission completion
1313  * @priv: driver private structure
1314  * Description: it reclaims the transmit resources after transmission completes.
1315  */
1316 static void stmmac_tx_clean(struct stmmac_priv *priv)
1317 {
1318 	unsigned int txsize = priv->dma_tx_size;
1319 	unsigned int bytes_compl = 0, pkts_compl = 0;
1320 
1321 	spin_lock(&priv->tx_lock);
1322 
1323 	priv->xstats.tx_clean++;
1324 
1325 	while (priv->dirty_tx != priv->cur_tx) {
1326 		int last;
1327 		unsigned int entry = priv->dirty_tx % txsize;
1328 		struct sk_buff *skb = priv->tx_skbuff[entry];
1329 		struct dma_desc *p;
1330 
1331 		if (priv->extend_desc)
1332 			p = (struct dma_desc *)(priv->dma_etx + entry);
1333 		else
1334 			p = priv->dma_tx + entry;
1335 
1336 		/* Check if the descriptor is owned by the DMA. */
1337 		if (priv->hw->desc->get_tx_owner(p))
1338 			break;
1339 
1340 		/* Verify tx error by looking at the last segment. */
1341 		last = priv->hw->desc->get_tx_ls(p);
1342 		if (likely(last)) {
1343 			int tx_error =
1344 			    priv->hw->desc->tx_status(&priv->dev->stats,
1345 						      &priv->xstats, p,
1346 						      priv->ioaddr);
1347 			if (likely(tx_error == 0)) {
1348 				priv->dev->stats.tx_packets++;
1349 				priv->xstats.tx_pkt_n++;
1350 			} else
1351 				priv->dev->stats.tx_errors++;
1352 
1353 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1354 		}
1355 		if (netif_msg_tx_done(priv))
1356 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1357 				 priv->cur_tx, priv->dirty_tx);
1358 
1359 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1360 			if (priv->tx_skbuff_dma[entry].map_as_page)
1361 				dma_unmap_page(priv->device,
1362 					       priv->tx_skbuff_dma[entry].buf,
1363 					       priv->hw->desc->get_tx_len(p),
1364 					       DMA_TO_DEVICE);
1365 			else
1366 				dma_unmap_single(priv->device,
1367 						 priv->tx_skbuff_dma[entry].buf,
1368 						 priv->hw->desc->get_tx_len(p),
1369 						 DMA_TO_DEVICE);
1370 			priv->tx_skbuff_dma[entry].buf = 0;
1371 			priv->tx_skbuff_dma[entry].map_as_page = false;
1372 		}
1373 		priv->hw->mode->clean_desc3(priv, p);
1374 
1375 		if (likely(skb != NULL)) {
1376 			pkts_compl++;
1377 			bytes_compl += skb->len;
1378 			dev_consume_skb_any(skb);
1379 			priv->tx_skbuff[entry] = NULL;
1380 		}
1381 
1382 		priv->hw->desc->release_tx_desc(p, priv->mode);
1383 
1384 		priv->dirty_tx++;
1385 	}
1386 
1387 	netdev_completed_queue(priv->dev, pkts_compl, bytes_compl);
1388 
1389 	if (unlikely(netif_queue_stopped(priv->dev) &&
1390 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1391 		netif_tx_lock(priv->dev);
1392 		if (netif_queue_stopped(priv->dev) &&
1393 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1394 			if (netif_msg_tx_done(priv))
1395 				pr_debug("%s: restart transmit\n", __func__);
1396 			netif_wake_queue(priv->dev);
1397 		}
1398 		netif_tx_unlock(priv->dev);
1399 	}
1400 
1401 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1402 		stmmac_enable_eee_mode(priv);
1403 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1404 	}
1405 	spin_unlock(&priv->tx_lock);
1406 }
1407 
1408 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1409 {
1410 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1411 }
1412 
1413 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1414 {
1415 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1416 }
1417 
1418 /**
1419  * stmmac_tx_err - to manage the tx error
1420  * @priv: driver private structure
1421  * Description: it cleans the descriptors and restarts the transmission
1422  * in case of transmission errors.
1423  */
1424 static void stmmac_tx_err(struct stmmac_priv *priv)
1425 {
1426 	int i;
1427 	int txsize = priv->dma_tx_size;
1428 	netif_stop_queue(priv->dev);
1429 
1430 	priv->hw->dma->stop_tx(priv->ioaddr);
1431 	dma_free_tx_skbufs(priv);
1432 	for (i = 0; i < txsize; i++)
1433 		if (priv->extend_desc)
1434 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1435 						     priv->mode,
1436 						     (i == txsize - 1));
1437 		else
1438 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1439 						     priv->mode,
1440 						     (i == txsize - 1));
1441 	priv->dirty_tx = 0;
1442 	priv->cur_tx = 0;
1443 	netdev_reset_queue(priv->dev);
1444 	priv->hw->dma->start_tx(priv->ioaddr);
1445 
1446 	priv->dev->stats.tx_errors++;
1447 	netif_wake_queue(priv->dev);
1448 }
1449 
1450 /**
1451  * stmmac_dma_interrupt - DMA ISR
1452  * @priv: driver private structure
1453  * Description: this is the DMA ISR. It is called by the main ISR.
1454  * It calls the dwmac dma routine and schedule poll method in case of some
1455  * work can be done.
1456  */
1457 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1458 {
1459 	int status;
1460 	int rxfifosz = priv->plat->rx_fifo_size;
1461 
1462 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1463 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1464 		if (likely(napi_schedule_prep(&priv->napi))) {
1465 			stmmac_disable_dma_irq(priv);
1466 			__napi_schedule(&priv->napi);
1467 		}
1468 	}
1469 	if (unlikely(status & tx_hard_error_bump_tc)) {
1470 		/* Try to bump up the dma threshold on this failure */
1471 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
1472 		    (tc <= 256)) {
1473 			tc += 64;
1474 			if (priv->plat->force_thresh_dma_mode)
1475 				priv->hw->dma->dma_mode(priv->ioaddr, tc, tc,
1476 							rxfifosz);
1477 			else
1478 				priv->hw->dma->dma_mode(priv->ioaddr, tc,
1479 							SF_DMA_MODE, rxfifosz);
1480 			priv->xstats.threshold = tc;
1481 		}
1482 	} else if (unlikely(status == tx_hard_error))
1483 		stmmac_tx_err(priv);
1484 }
1485 
1486 /**
1487  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1488  * @priv: driver private structure
1489  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1490  */
1491 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1492 {
1493 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1494 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1495 
1496 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1497 
1498 	if (priv->dma_cap.rmon) {
1499 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1500 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1501 	} else
1502 		pr_info(" No MAC Management Counters available\n");
1503 }
1504 
1505 /**
1506  * stmmac_get_synopsys_id - return the SYINID.
1507  * @priv: driver private structure
1508  * Description: this simple function is to decode and return the SYINID
1509  * starting from the HW core register.
1510  */
1511 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1512 {
1513 	u32 hwid = priv->hw->synopsys_uid;
1514 
1515 	/* Check Synopsys Id (not available on old chips) */
1516 	if (likely(hwid)) {
1517 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1518 		u32 synid = (hwid & 0x000000ff);
1519 
1520 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1521 			uid, synid);
1522 
1523 		return synid;
1524 	}
1525 	return 0;
1526 }
1527 
1528 /**
1529  * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors
1530  * @priv: driver private structure
1531  * Description: select the Enhanced/Alternate or Normal descriptors.
1532  * In case of Enhanced/Alternate, it checks if the extended descriptors are
1533  * supported by the HW capability register.
1534  */
1535 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1536 {
1537 	if (priv->plat->enh_desc) {
1538 		pr_info(" Enhanced/Alternate descriptors\n");
1539 
1540 		/* GMAC older than 3.50 has no extended descriptors */
1541 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1542 			pr_info("\tEnabled extended descriptors\n");
1543 			priv->extend_desc = 1;
1544 		} else
1545 			pr_warn("Extended descriptors not supported\n");
1546 
1547 		priv->hw->desc = &enh_desc_ops;
1548 	} else {
1549 		pr_info(" Normal descriptors\n");
1550 		priv->hw->desc = &ndesc_ops;
1551 	}
1552 }
1553 
1554 /**
1555  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
1556  * @priv: driver private structure
1557  * Description:
1558  *  new GMAC chip generations have a new register to indicate the
1559  *  presence of the optional feature/functions.
1560  *  This can be also used to override the value passed through the
1561  *  platform and necessary for old MAC10/100 and GMAC chips.
1562  */
1563 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1564 {
1565 	u32 hw_cap = 0;
1566 
1567 	if (priv->hw->dma->get_hw_feature) {
1568 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1569 
1570 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1571 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1572 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1573 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1574 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1575 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1576 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1577 		priv->dma_cap.pmt_remote_wake_up =
1578 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1579 		priv->dma_cap.pmt_magic_frame =
1580 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1581 		/* MMC */
1582 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1583 		/* IEEE 1588-2002 */
1584 		priv->dma_cap.time_stamp =
1585 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1586 		/* IEEE 1588-2008 */
1587 		priv->dma_cap.atime_stamp =
1588 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1589 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1590 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1591 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1592 		/* TX and RX csum */
1593 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1594 		priv->dma_cap.rx_coe_type1 =
1595 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1596 		priv->dma_cap.rx_coe_type2 =
1597 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1598 		priv->dma_cap.rxfifo_over_2048 =
1599 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1600 		/* TX and RX number of channels */
1601 		priv->dma_cap.number_rx_channel =
1602 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1603 		priv->dma_cap.number_tx_channel =
1604 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1605 		/* Alternate (enhanced) DESC mode */
1606 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1607 	}
1608 
1609 	return hw_cap;
1610 }
1611 
1612 /**
1613  * stmmac_check_ether_addr - check if the MAC addr is valid
1614  * @priv: driver private structure
1615  * Description:
1616  * it is to verify if the MAC address is valid, in case of failures it
1617  * generates a random MAC address
1618  */
1619 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1620 {
1621 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1622 		priv->hw->mac->get_umac_addr(priv->hw,
1623 					     priv->dev->dev_addr, 0);
1624 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1625 			eth_hw_addr_random(priv->dev);
1626 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1627 			priv->dev->dev_addr);
1628 	}
1629 }
1630 
1631 /**
1632  * stmmac_init_dma_engine - DMA init.
1633  * @priv: driver private structure
1634  * Description:
1635  * It inits the DMA invoking the specific MAC/GMAC callback.
1636  * Some DMA parameters can be passed from the platform;
1637  * in case of these are not passed a default is kept for the MAC or GMAC.
1638  */
1639 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1640 {
1641 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1642 	int mixed_burst = 0;
1643 	int atds = 0;
1644 
1645 	if (priv->plat->dma_cfg) {
1646 		pbl = priv->plat->dma_cfg->pbl;
1647 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1648 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1649 		burst_len = priv->plat->dma_cfg->burst_len;
1650 	}
1651 
1652 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1653 		atds = 1;
1654 
1655 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1656 				   burst_len, priv->dma_tx_phy,
1657 				   priv->dma_rx_phy, atds);
1658 }
1659 
1660 /**
1661  * stmmac_tx_timer - mitigation sw timer for tx.
1662  * @data: data pointer
1663  * Description:
1664  * This is the timer handler to directly invoke the stmmac_tx_clean.
1665  */
1666 static void stmmac_tx_timer(unsigned long data)
1667 {
1668 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1669 
1670 	stmmac_tx_clean(priv);
1671 }
1672 
1673 /**
1674  * stmmac_init_tx_coalesce - init tx mitigation options.
1675  * @priv: driver private structure
1676  * Description:
1677  * This inits the transmit coalesce parameters: i.e. timer rate,
1678  * timer handler and default threshold used for enabling the
1679  * interrupt on completion bit.
1680  */
1681 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1682 {
1683 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1684 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1685 	init_timer(&priv->txtimer);
1686 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1687 	priv->txtimer.data = (unsigned long)priv;
1688 	priv->txtimer.function = stmmac_tx_timer;
1689 	add_timer(&priv->txtimer);
1690 }
1691 
1692 /**
1693  * stmmac_hw_setup - setup mac in a usable state.
1694  *  @dev : pointer to the device structure.
1695  *  Description:
1696  *  this is the main function to setup the HW in a usable state because the
1697  *  dma engine is reset, the core registers are configured (e.g. AXI,
1698  *  Checksum features, timers). The DMA is ready to start receiving and
1699  *  transmitting.
1700  *  Return value:
1701  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1702  *  file on failure.
1703  */
1704 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
1705 {
1706 	struct stmmac_priv *priv = netdev_priv(dev);
1707 	int ret;
1708 
1709 	/* DMA initialization and SW reset */
1710 	ret = stmmac_init_dma_engine(priv);
1711 	if (ret < 0) {
1712 		pr_err("%s: DMA engine initialization failed\n", __func__);
1713 		return ret;
1714 	}
1715 
1716 	/* Copy the MAC addr into the HW  */
1717 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1718 
1719 	/* If required, perform hw setup of the bus. */
1720 	if (priv->plat->bus_setup)
1721 		priv->plat->bus_setup(priv->ioaddr);
1722 
1723 	/* Initialize the MAC Core */
1724 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1725 
1726 	ret = priv->hw->mac->rx_ipc(priv->hw);
1727 	if (!ret) {
1728 		pr_warn(" RX IPC Checksum Offload disabled\n");
1729 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1730 		priv->hw->rx_csum = 0;
1731 	}
1732 
1733 	/* Enable the MAC Rx/Tx */
1734 	stmmac_set_mac(priv->ioaddr, true);
1735 
1736 	/* Set the HW DMA mode and the COE */
1737 	stmmac_dma_operation_mode(priv);
1738 
1739 	stmmac_mmc_setup(priv);
1740 
1741 	if (init_ptp) {
1742 		ret = stmmac_init_ptp(priv);
1743 		if (ret && ret != -EOPNOTSUPP)
1744 			pr_warn("%s: failed PTP initialisation\n", __func__);
1745 	}
1746 
1747 #ifdef CONFIG_DEBUG_FS
1748 	ret = stmmac_init_fs(dev);
1749 	if (ret < 0)
1750 		pr_warn("%s: failed debugFS registration\n", __func__);
1751 #endif
1752 	/* Start the ball rolling... */
1753 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1754 	priv->hw->dma->start_tx(priv->ioaddr);
1755 	priv->hw->dma->start_rx(priv->ioaddr);
1756 
1757 	/* Dump DMA/MAC registers */
1758 	if (netif_msg_hw(priv)) {
1759 		priv->hw->mac->dump_regs(priv->hw);
1760 		priv->hw->dma->dump_regs(priv->ioaddr);
1761 	}
1762 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1763 
1764 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1765 		priv->rx_riwt = MAX_DMA_RIWT;
1766 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1767 	}
1768 
1769 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1770 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1771 
1772 	return 0;
1773 }
1774 
1775 /**
1776  *  stmmac_open - open entry point of the driver
1777  *  @dev : pointer to the device structure.
1778  *  Description:
1779  *  This function is the open entry point of the driver.
1780  *  Return value:
1781  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1782  *  file on failure.
1783  */
1784 static int stmmac_open(struct net_device *dev)
1785 {
1786 	struct stmmac_priv *priv = netdev_priv(dev);
1787 	int ret;
1788 
1789 	stmmac_check_ether_addr(priv);
1790 
1791 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1792 	    priv->pcs != STMMAC_PCS_RTBI) {
1793 		ret = stmmac_init_phy(dev);
1794 		if (ret) {
1795 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1796 			       __func__, ret);
1797 			return ret;
1798 		}
1799 	}
1800 
1801 	/* Extra statistics */
1802 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1803 	priv->xstats.threshold = tc;
1804 
1805 	/* Create and initialize the TX/RX descriptors chains. */
1806 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1807 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1808 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1809 
1810 	ret = alloc_dma_desc_resources(priv);
1811 	if (ret < 0) {
1812 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1813 		goto dma_desc_error;
1814 	}
1815 
1816 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1817 	if (ret < 0) {
1818 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1819 		goto init_error;
1820 	}
1821 
1822 	ret = stmmac_hw_setup(dev, true);
1823 	if (ret < 0) {
1824 		pr_err("%s: Hw setup failed\n", __func__);
1825 		goto init_error;
1826 	}
1827 
1828 	stmmac_init_tx_coalesce(priv);
1829 
1830 	if (priv->phydev)
1831 		phy_start(priv->phydev);
1832 
1833 	/* Request the IRQ lines */
1834 	ret = request_irq(dev->irq, stmmac_interrupt,
1835 			  IRQF_SHARED, dev->name, dev);
1836 	if (unlikely(ret < 0)) {
1837 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1838 		       __func__, dev->irq, ret);
1839 		goto init_error;
1840 	}
1841 
1842 	/* Request the Wake IRQ in case of another line is used for WoL */
1843 	if (priv->wol_irq != dev->irq) {
1844 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1845 				  IRQF_SHARED, dev->name, dev);
1846 		if (unlikely(ret < 0)) {
1847 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1848 			       __func__, priv->wol_irq, ret);
1849 			goto wolirq_error;
1850 		}
1851 	}
1852 
1853 	/* Request the IRQ lines */
1854 	if (priv->lpi_irq > 0) {
1855 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1856 				  dev->name, dev);
1857 		if (unlikely(ret < 0)) {
1858 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1859 			       __func__, priv->lpi_irq, ret);
1860 			goto lpiirq_error;
1861 		}
1862 	}
1863 
1864 	napi_enable(&priv->napi);
1865 	netif_start_queue(dev);
1866 
1867 	return 0;
1868 
1869 lpiirq_error:
1870 	if (priv->wol_irq != dev->irq)
1871 		free_irq(priv->wol_irq, dev);
1872 wolirq_error:
1873 	free_irq(dev->irq, dev);
1874 
1875 init_error:
1876 	free_dma_desc_resources(priv);
1877 dma_desc_error:
1878 	if (priv->phydev)
1879 		phy_disconnect(priv->phydev);
1880 
1881 	return ret;
1882 }
1883 
1884 /**
1885  *  stmmac_release - close entry point of the driver
1886  *  @dev : device pointer.
1887  *  Description:
1888  *  This is the stop entry point of the driver.
1889  */
1890 static int stmmac_release(struct net_device *dev)
1891 {
1892 	struct stmmac_priv *priv = netdev_priv(dev);
1893 
1894 	if (priv->eee_enabled)
1895 		del_timer_sync(&priv->eee_ctrl_timer);
1896 
1897 	/* Stop and disconnect the PHY */
1898 	if (priv->phydev) {
1899 		phy_stop(priv->phydev);
1900 		phy_disconnect(priv->phydev);
1901 		priv->phydev = NULL;
1902 	}
1903 
1904 	netif_stop_queue(dev);
1905 
1906 	napi_disable(&priv->napi);
1907 
1908 	del_timer_sync(&priv->txtimer);
1909 
1910 	/* Free the IRQ lines */
1911 	free_irq(dev->irq, dev);
1912 	if (priv->wol_irq != dev->irq)
1913 		free_irq(priv->wol_irq, dev);
1914 	if (priv->lpi_irq > 0)
1915 		free_irq(priv->lpi_irq, dev);
1916 
1917 	/* Stop TX/RX DMA and clear the descriptors */
1918 	priv->hw->dma->stop_tx(priv->ioaddr);
1919 	priv->hw->dma->stop_rx(priv->ioaddr);
1920 
1921 	/* Release and free the Rx/Tx resources */
1922 	free_dma_desc_resources(priv);
1923 
1924 	/* Disable the MAC Rx/Tx */
1925 	stmmac_set_mac(priv->ioaddr, false);
1926 
1927 	netif_carrier_off(dev);
1928 
1929 #ifdef CONFIG_DEBUG_FS
1930 	stmmac_exit_fs(dev);
1931 #endif
1932 
1933 	stmmac_release_ptp(priv);
1934 
1935 	return 0;
1936 }
1937 
1938 /**
1939  *  stmmac_xmit - Tx entry point of the driver
1940  *  @skb : the socket buffer
1941  *  @dev : device pointer
1942  *  Description : this is the tx entry point of the driver.
1943  *  It programs the chain or the ring and supports oversized frames
1944  *  and SG feature.
1945  */
1946 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1947 {
1948 	struct stmmac_priv *priv = netdev_priv(dev);
1949 	unsigned int txsize = priv->dma_tx_size;
1950 	int entry;
1951 	int i, csum_insertion = 0, is_jumbo = 0;
1952 	int nfrags = skb_shinfo(skb)->nr_frags;
1953 	struct dma_desc *desc, *first;
1954 	unsigned int nopaged_len = skb_headlen(skb);
1955 	unsigned int enh_desc = priv->plat->enh_desc;
1956 
1957 	spin_lock(&priv->tx_lock);
1958 
1959 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1960 		spin_unlock(&priv->tx_lock);
1961 		if (!netif_queue_stopped(dev)) {
1962 			netif_stop_queue(dev);
1963 			/* This is a hard error, log it. */
1964 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1965 		}
1966 		return NETDEV_TX_BUSY;
1967 	}
1968 
1969 	if (priv->tx_path_in_lpi_mode)
1970 		stmmac_disable_eee_mode(priv);
1971 
1972 	entry = priv->cur_tx % txsize;
1973 
1974 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1975 
1976 	if (priv->extend_desc)
1977 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1978 	else
1979 		desc = priv->dma_tx + entry;
1980 
1981 	first = desc;
1982 
1983 	/* To program the descriptors according to the size of the frame */
1984 	if (enh_desc)
1985 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1986 
1987 	if (likely(!is_jumbo)) {
1988 		desc->des2 = dma_map_single(priv->device, skb->data,
1989 					    nopaged_len, DMA_TO_DEVICE);
1990 		if (dma_mapping_error(priv->device, desc->des2))
1991 			goto dma_map_err;
1992 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1993 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1994 						csum_insertion, priv->mode);
1995 	} else {
1996 		desc = first;
1997 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1998 		if (unlikely(entry < 0))
1999 			goto dma_map_err;
2000 	}
2001 
2002 	for (i = 0; i < nfrags; i++) {
2003 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2004 		int len = skb_frag_size(frag);
2005 
2006 		priv->tx_skbuff[entry] = NULL;
2007 		entry = (++priv->cur_tx) % txsize;
2008 		if (priv->extend_desc)
2009 			desc = (struct dma_desc *)(priv->dma_etx + entry);
2010 		else
2011 			desc = priv->dma_tx + entry;
2012 
2013 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
2014 					      DMA_TO_DEVICE);
2015 		if (dma_mapping_error(priv->device, desc->des2))
2016 			goto dma_map_err; /* should reuse desc w/o issues */
2017 
2018 		priv->tx_skbuff_dma[entry].buf = desc->des2;
2019 		priv->tx_skbuff_dma[entry].map_as_page = true;
2020 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
2021 						priv->mode);
2022 		wmb();
2023 		priv->hw->desc->set_tx_owner(desc);
2024 		wmb();
2025 	}
2026 
2027 	priv->tx_skbuff[entry] = skb;
2028 
2029 	/* Finalize the latest segment. */
2030 	priv->hw->desc->close_tx_desc(desc);
2031 
2032 	wmb();
2033 	/* According to the coalesce parameter the IC bit for the latest
2034 	 * segment could be reset and the timer re-started to invoke the
2035 	 * stmmac_tx function. This approach takes care about the fragments.
2036 	 */
2037 	priv->tx_count_frames += nfrags + 1;
2038 	if (priv->tx_coal_frames > priv->tx_count_frames) {
2039 		priv->hw->desc->clear_tx_ic(desc);
2040 		priv->xstats.tx_reset_ic_bit++;
2041 		mod_timer(&priv->txtimer,
2042 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
2043 	} else
2044 		priv->tx_count_frames = 0;
2045 
2046 	/* To avoid raise condition */
2047 	priv->hw->desc->set_tx_owner(first);
2048 	wmb();
2049 
2050 	priv->cur_tx++;
2051 
2052 	if (netif_msg_pktdata(priv)) {
2053 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
2054 			__func__, (priv->cur_tx % txsize),
2055 			(priv->dirty_tx % txsize), entry, first, nfrags);
2056 
2057 		if (priv->extend_desc)
2058 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2059 		else
2060 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2061 
2062 		pr_debug(">>> frame to be transmitted: ");
2063 		print_pkt(skb->data, skb->len);
2064 	}
2065 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2066 		if (netif_msg_hw(priv))
2067 			pr_debug("%s: stop transmitted packets\n", __func__);
2068 		netif_stop_queue(dev);
2069 	}
2070 
2071 	dev->stats.tx_bytes += skb->len;
2072 
2073 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2074 		     priv->hwts_tx_en)) {
2075 		/* declare that device is doing timestamping */
2076 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2077 		priv->hw->desc->enable_tx_timestamp(first);
2078 	}
2079 
2080 	if (!priv->hwts_tx_en)
2081 		skb_tx_timestamp(skb);
2082 
2083 	netdev_sent_queue(dev, skb->len);
2084 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2085 
2086 	spin_unlock(&priv->tx_lock);
2087 	return NETDEV_TX_OK;
2088 
2089 dma_map_err:
2090 	spin_unlock(&priv->tx_lock);
2091 	dev_err(priv->device, "Tx dma map failed\n");
2092 	dev_kfree_skb(skb);
2093 	priv->dev->stats.tx_dropped++;
2094 	return NETDEV_TX_OK;
2095 }
2096 
2097 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2098 {
2099 	struct ethhdr *ehdr;
2100 	u16 vlanid;
2101 
2102 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2103 	    NETIF_F_HW_VLAN_CTAG_RX &&
2104 	    !__vlan_get_tag(skb, &vlanid)) {
2105 		/* pop the vlan tag */
2106 		ehdr = (struct ethhdr *)skb->data;
2107 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2108 		skb_pull(skb, VLAN_HLEN);
2109 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2110 	}
2111 }
2112 
2113 
2114 /**
2115  * stmmac_rx_refill - refill used skb preallocated buffers
2116  * @priv: driver private structure
2117  * Description : this is to reallocate the skb for the reception process
2118  * that is based on zero-copy.
2119  */
2120 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2121 {
2122 	unsigned int rxsize = priv->dma_rx_size;
2123 	int bfsize = priv->dma_buf_sz;
2124 
2125 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2126 		unsigned int entry = priv->dirty_rx % rxsize;
2127 		struct dma_desc *p;
2128 
2129 		if (priv->extend_desc)
2130 			p = (struct dma_desc *)(priv->dma_erx + entry);
2131 		else
2132 			p = priv->dma_rx + entry;
2133 
2134 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2135 			struct sk_buff *skb;
2136 
2137 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2138 
2139 			if (unlikely(skb == NULL))
2140 				break;
2141 
2142 			priv->rx_skbuff[entry] = skb;
2143 			priv->rx_skbuff_dma[entry] =
2144 			    dma_map_single(priv->device, skb->data, bfsize,
2145 					   DMA_FROM_DEVICE);
2146 			if (dma_mapping_error(priv->device,
2147 					      priv->rx_skbuff_dma[entry])) {
2148 				dev_err(priv->device, "Rx dma map failed\n");
2149 				dev_kfree_skb(skb);
2150 				break;
2151 			}
2152 			p->des2 = priv->rx_skbuff_dma[entry];
2153 
2154 			priv->hw->mode->refill_desc3(priv, p);
2155 
2156 			if (netif_msg_rx_status(priv))
2157 				pr_debug("\trefill entry #%d\n", entry);
2158 		}
2159 		wmb();
2160 		priv->hw->desc->set_rx_owner(p);
2161 		wmb();
2162 	}
2163 }
2164 
2165 /**
2166  * stmmac_rx - manage the receive process
2167  * @priv: driver private structure
2168  * @limit: napi bugget.
2169  * Description :  this the function called by the napi poll method.
2170  * It gets all the frames inside the ring.
2171  */
2172 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2173 {
2174 	unsigned int rxsize = priv->dma_rx_size;
2175 	unsigned int entry = priv->cur_rx % rxsize;
2176 	unsigned int next_entry;
2177 	unsigned int count = 0;
2178 	int coe = priv->hw->rx_csum;
2179 
2180 	if (netif_msg_rx_status(priv)) {
2181 		pr_debug("%s: descriptor ring:\n", __func__);
2182 		if (priv->extend_desc)
2183 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2184 		else
2185 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2186 	}
2187 	while (count < limit) {
2188 		int status;
2189 		struct dma_desc *p;
2190 
2191 		if (priv->extend_desc)
2192 			p = (struct dma_desc *)(priv->dma_erx + entry);
2193 		else
2194 			p = priv->dma_rx + entry;
2195 
2196 		if (priv->hw->desc->get_rx_owner(p))
2197 			break;
2198 
2199 		count++;
2200 
2201 		next_entry = (++priv->cur_rx) % rxsize;
2202 		if (priv->extend_desc)
2203 			prefetch(priv->dma_erx + next_entry);
2204 		else
2205 			prefetch(priv->dma_rx + next_entry);
2206 
2207 		/* read the status of the incoming frame */
2208 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2209 						   &priv->xstats, p);
2210 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2211 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2212 							   &priv->xstats,
2213 							   priv->dma_erx +
2214 							   entry);
2215 		if (unlikely(status == discard_frame)) {
2216 			priv->dev->stats.rx_errors++;
2217 			if (priv->hwts_rx_en && !priv->extend_desc) {
2218 				/* DESC2 & DESC3 will be overwitten by device
2219 				 * with timestamp value, hence reinitialize
2220 				 * them in stmmac_rx_refill() function so that
2221 				 * device can reuse it.
2222 				 */
2223 				priv->rx_skbuff[entry] = NULL;
2224 				dma_unmap_single(priv->device,
2225 						 priv->rx_skbuff_dma[entry],
2226 						 priv->dma_buf_sz,
2227 						 DMA_FROM_DEVICE);
2228 			}
2229 		} else {
2230 			struct sk_buff *skb;
2231 			int frame_len;
2232 
2233 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2234 
2235 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2236 			 * Type frames (LLC/LLC-SNAP)
2237 			 */
2238 			if (unlikely(status != llc_snap))
2239 				frame_len -= ETH_FCS_LEN;
2240 
2241 			if (netif_msg_rx_status(priv)) {
2242 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2243 					 p, entry, p->des2);
2244 				if (frame_len > ETH_FRAME_LEN)
2245 					pr_debug("\tframe size %d, COE: %d\n",
2246 						 frame_len, status);
2247 			}
2248 			skb = priv->rx_skbuff[entry];
2249 			if (unlikely(!skb)) {
2250 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2251 				       priv->dev->name);
2252 				priv->dev->stats.rx_dropped++;
2253 				break;
2254 			}
2255 			prefetch(skb->data - NET_IP_ALIGN);
2256 			priv->rx_skbuff[entry] = NULL;
2257 
2258 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2259 
2260 			skb_put(skb, frame_len);
2261 			dma_unmap_single(priv->device,
2262 					 priv->rx_skbuff_dma[entry],
2263 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2264 
2265 			if (netif_msg_pktdata(priv)) {
2266 				pr_debug("frame received (%dbytes)", frame_len);
2267 				print_pkt(skb->data, frame_len);
2268 			}
2269 
2270 			stmmac_rx_vlan(priv->dev, skb);
2271 
2272 			skb->protocol = eth_type_trans(skb, priv->dev);
2273 
2274 			if (unlikely(!coe))
2275 				skb_checksum_none_assert(skb);
2276 			else
2277 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2278 
2279 			napi_gro_receive(&priv->napi, skb);
2280 
2281 			priv->dev->stats.rx_packets++;
2282 			priv->dev->stats.rx_bytes += frame_len;
2283 		}
2284 		entry = next_entry;
2285 	}
2286 
2287 	stmmac_rx_refill(priv);
2288 
2289 	priv->xstats.rx_pkt_n += count;
2290 
2291 	return count;
2292 }
2293 
2294 /**
2295  *  stmmac_poll - stmmac poll method (NAPI)
2296  *  @napi : pointer to the napi structure.
2297  *  @budget : maximum number of packets that the current CPU can receive from
2298  *	      all interfaces.
2299  *  Description :
2300  *  To look at the incoming frames and clear the tx resources.
2301  */
2302 static int stmmac_poll(struct napi_struct *napi, int budget)
2303 {
2304 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2305 	int work_done = 0;
2306 
2307 	priv->xstats.napi_poll++;
2308 	stmmac_tx_clean(priv);
2309 
2310 	work_done = stmmac_rx(priv, budget);
2311 	if (work_done < budget) {
2312 		napi_complete(napi);
2313 		stmmac_enable_dma_irq(priv);
2314 	}
2315 	return work_done;
2316 }
2317 
2318 /**
2319  *  stmmac_tx_timeout
2320  *  @dev : Pointer to net device structure
2321  *  Description: this function is called when a packet transmission fails to
2322  *   complete within a reasonable time. The driver will mark the error in the
2323  *   netdev structure and arrange for the device to be reset to a sane state
2324  *   in order to transmit a new packet.
2325  */
2326 static void stmmac_tx_timeout(struct net_device *dev)
2327 {
2328 	struct stmmac_priv *priv = netdev_priv(dev);
2329 
2330 	/* Clear Tx resources and restart transmitting again */
2331 	stmmac_tx_err(priv);
2332 }
2333 
2334 /**
2335  *  stmmac_set_rx_mode - entry point for multicast addressing
2336  *  @dev : pointer to the device structure
2337  *  Description:
2338  *  This function is a driver entry point which gets called by the kernel
2339  *  whenever multicast addresses must be enabled/disabled.
2340  *  Return value:
2341  *  void.
2342  */
2343 static void stmmac_set_rx_mode(struct net_device *dev)
2344 {
2345 	struct stmmac_priv *priv = netdev_priv(dev);
2346 
2347 	priv->hw->mac->set_filter(priv->hw, dev);
2348 }
2349 
2350 /**
2351  *  stmmac_change_mtu - entry point to change MTU size for the device.
2352  *  @dev : device pointer.
2353  *  @new_mtu : the new MTU size for the device.
2354  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2355  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2356  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2357  *  Return value:
2358  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2359  *  file on failure.
2360  */
2361 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2362 {
2363 	struct stmmac_priv *priv = netdev_priv(dev);
2364 	int max_mtu;
2365 
2366 	if (netif_running(dev)) {
2367 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2368 		return -EBUSY;
2369 	}
2370 
2371 	if (priv->plat->enh_desc)
2372 		max_mtu = JUMBO_LEN;
2373 	else
2374 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2375 
2376 	if (priv->plat->maxmtu < max_mtu)
2377 		max_mtu = priv->plat->maxmtu;
2378 
2379 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2380 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2381 		return -EINVAL;
2382 	}
2383 
2384 	dev->mtu = new_mtu;
2385 	netdev_update_features(dev);
2386 
2387 	return 0;
2388 }
2389 
2390 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2391 					     netdev_features_t features)
2392 {
2393 	struct stmmac_priv *priv = netdev_priv(dev);
2394 
2395 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2396 		features &= ~NETIF_F_RXCSUM;
2397 
2398 	if (!priv->plat->tx_coe)
2399 		features &= ~NETIF_F_ALL_CSUM;
2400 
2401 	/* Some GMAC devices have a bugged Jumbo frame support that
2402 	 * needs to have the Tx COE disabled for oversized frames
2403 	 * (due to limited buffer sizes). In this case we disable
2404 	 * the TX csum insertionin the TDES and not use SF.
2405 	 */
2406 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2407 		features &= ~NETIF_F_ALL_CSUM;
2408 
2409 	return features;
2410 }
2411 
2412 static int stmmac_set_features(struct net_device *netdev,
2413 			       netdev_features_t features)
2414 {
2415 	struct stmmac_priv *priv = netdev_priv(netdev);
2416 
2417 	/* Keep the COE Type in case of csum is supporting */
2418 	if (features & NETIF_F_RXCSUM)
2419 		priv->hw->rx_csum = priv->plat->rx_coe;
2420 	else
2421 		priv->hw->rx_csum = 0;
2422 	/* No check needed because rx_coe has been set before and it will be
2423 	 * fixed in case of issue.
2424 	 */
2425 	priv->hw->mac->rx_ipc(priv->hw);
2426 
2427 	return 0;
2428 }
2429 
2430 /**
2431  *  stmmac_interrupt - main ISR
2432  *  @irq: interrupt number.
2433  *  @dev_id: to pass the net device pointer.
2434  *  Description: this is the main driver interrupt service routine.
2435  *  It can call:
2436  *  o DMA service routine (to manage incoming frame reception and transmission
2437  *    status)
2438  *  o Core interrupts to manage: remote wake-up, management counter, LPI
2439  *    interrupts.
2440  */
2441 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2442 {
2443 	struct net_device *dev = (struct net_device *)dev_id;
2444 	struct stmmac_priv *priv = netdev_priv(dev);
2445 
2446 	if (priv->irq_wake)
2447 		pm_wakeup_event(priv->device, 0);
2448 
2449 	if (unlikely(!dev)) {
2450 		pr_err("%s: invalid dev pointer\n", __func__);
2451 		return IRQ_NONE;
2452 	}
2453 
2454 	/* To handle GMAC own interrupts */
2455 	if (priv->plat->has_gmac) {
2456 		int status = priv->hw->mac->host_irq_status(priv->hw,
2457 							    &priv->xstats);
2458 		if (unlikely(status)) {
2459 			/* For LPI we need to save the tx status */
2460 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2461 				priv->tx_path_in_lpi_mode = true;
2462 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2463 				priv->tx_path_in_lpi_mode = false;
2464 		}
2465 	}
2466 
2467 	/* To handle DMA interrupts */
2468 	stmmac_dma_interrupt(priv);
2469 
2470 	return IRQ_HANDLED;
2471 }
2472 
2473 #ifdef CONFIG_NET_POLL_CONTROLLER
2474 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2475  * to allow network I/O with interrupts disabled.
2476  */
2477 static void stmmac_poll_controller(struct net_device *dev)
2478 {
2479 	disable_irq(dev->irq);
2480 	stmmac_interrupt(dev->irq, dev);
2481 	enable_irq(dev->irq);
2482 }
2483 #endif
2484 
2485 /**
2486  *  stmmac_ioctl - Entry point for the Ioctl
2487  *  @dev: Device pointer.
2488  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2489  *  a proprietary structure used to pass information to the driver.
2490  *  @cmd: IOCTL command
2491  *  Description:
2492  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2493  */
2494 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2495 {
2496 	struct stmmac_priv *priv = netdev_priv(dev);
2497 	int ret = -EOPNOTSUPP;
2498 
2499 	if (!netif_running(dev))
2500 		return -EINVAL;
2501 
2502 	switch (cmd) {
2503 	case SIOCGMIIPHY:
2504 	case SIOCGMIIREG:
2505 	case SIOCSMIIREG:
2506 		if (!priv->phydev)
2507 			return -EINVAL;
2508 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2509 		break;
2510 	case SIOCSHWTSTAMP:
2511 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2512 		break;
2513 	default:
2514 		break;
2515 	}
2516 
2517 	return ret;
2518 }
2519 
2520 #ifdef CONFIG_DEBUG_FS
2521 static struct dentry *stmmac_fs_dir;
2522 
2523 static void sysfs_display_ring(void *head, int size, int extend_desc,
2524 			       struct seq_file *seq)
2525 {
2526 	int i;
2527 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2528 	struct dma_desc *p = (struct dma_desc *)head;
2529 
2530 	for (i = 0; i < size; i++) {
2531 		u64 x;
2532 		if (extend_desc) {
2533 			x = *(u64 *) ep;
2534 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2535 				   i, (unsigned int)virt_to_phys(ep),
2536 				   (unsigned int)x, (unsigned int)(x >> 32),
2537 				   ep->basic.des2, ep->basic.des3);
2538 			ep++;
2539 		} else {
2540 			x = *(u64 *) p;
2541 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2542 				   i, (unsigned int)virt_to_phys(ep),
2543 				   (unsigned int)x, (unsigned int)(x >> 32),
2544 				   p->des2, p->des3);
2545 			p++;
2546 		}
2547 		seq_printf(seq, "\n");
2548 	}
2549 }
2550 
2551 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2552 {
2553 	struct net_device *dev = seq->private;
2554 	struct stmmac_priv *priv = netdev_priv(dev);
2555 	unsigned int txsize = priv->dma_tx_size;
2556 	unsigned int rxsize = priv->dma_rx_size;
2557 
2558 	if (priv->extend_desc) {
2559 		seq_printf(seq, "Extended RX descriptor ring:\n");
2560 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2561 		seq_printf(seq, "Extended TX descriptor ring:\n");
2562 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2563 	} else {
2564 		seq_printf(seq, "RX descriptor ring:\n");
2565 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2566 		seq_printf(seq, "TX descriptor ring:\n");
2567 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2568 	}
2569 
2570 	return 0;
2571 }
2572 
2573 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2574 {
2575 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2576 }
2577 
2578 static const struct file_operations stmmac_rings_status_fops = {
2579 	.owner = THIS_MODULE,
2580 	.open = stmmac_sysfs_ring_open,
2581 	.read = seq_read,
2582 	.llseek = seq_lseek,
2583 	.release = single_release,
2584 };
2585 
2586 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2587 {
2588 	struct net_device *dev = seq->private;
2589 	struct stmmac_priv *priv = netdev_priv(dev);
2590 
2591 	if (!priv->hw_cap_support) {
2592 		seq_printf(seq, "DMA HW features not supported\n");
2593 		return 0;
2594 	}
2595 
2596 	seq_printf(seq, "==============================\n");
2597 	seq_printf(seq, "\tDMA HW features\n");
2598 	seq_printf(seq, "==============================\n");
2599 
2600 	seq_printf(seq, "\t10/100 Mbps %s\n",
2601 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2602 	seq_printf(seq, "\t1000 Mbps %s\n",
2603 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2604 	seq_printf(seq, "\tHalf duple %s\n",
2605 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2606 	seq_printf(seq, "\tHash Filter: %s\n",
2607 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2608 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2609 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2610 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2611 		   (priv->dma_cap.pcs) ? "Y" : "N");
2612 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2613 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2614 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2615 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2616 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2617 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2618 	seq_printf(seq, "\tRMON module: %s\n",
2619 		   (priv->dma_cap.rmon) ? "Y" : "N");
2620 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2621 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2622 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2623 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2624 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2625 		   (priv->dma_cap.eee) ? "Y" : "N");
2626 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2627 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2628 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2629 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2630 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2631 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2632 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2633 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2634 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2635 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2636 		   priv->dma_cap.number_rx_channel);
2637 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2638 		   priv->dma_cap.number_tx_channel);
2639 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2640 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2641 
2642 	return 0;
2643 }
2644 
2645 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2646 {
2647 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2648 }
2649 
2650 static const struct file_operations stmmac_dma_cap_fops = {
2651 	.owner = THIS_MODULE,
2652 	.open = stmmac_sysfs_dma_cap_open,
2653 	.read = seq_read,
2654 	.llseek = seq_lseek,
2655 	.release = single_release,
2656 };
2657 
2658 static int stmmac_init_fs(struct net_device *dev)
2659 {
2660 	struct stmmac_priv *priv = netdev_priv(dev);
2661 
2662 	/* Create per netdev entries */
2663 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
2664 
2665 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
2666 		pr_err("ERROR %s/%s, debugfs create directory failed\n",
2667 		       STMMAC_RESOURCE_NAME, dev->name);
2668 
2669 		return -ENOMEM;
2670 	}
2671 
2672 	/* Entry to report DMA RX/TX rings */
2673 	priv->dbgfs_rings_status =
2674 		debugfs_create_file("descriptors_status", S_IRUGO,
2675 				    priv->dbgfs_dir, dev,
2676 				    &stmmac_rings_status_fops);
2677 
2678 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
2679 		pr_info("ERROR creating stmmac ring debugfs file\n");
2680 		debugfs_remove_recursive(priv->dbgfs_dir);
2681 
2682 		return -ENOMEM;
2683 	}
2684 
2685 	/* Entry to report the DMA HW features */
2686 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO,
2687 					    priv->dbgfs_dir,
2688 					    dev, &stmmac_dma_cap_fops);
2689 
2690 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
2691 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2692 		debugfs_remove_recursive(priv->dbgfs_dir);
2693 
2694 		return -ENOMEM;
2695 	}
2696 
2697 	return 0;
2698 }
2699 
2700 static void stmmac_exit_fs(struct net_device *dev)
2701 {
2702 	struct stmmac_priv *priv = netdev_priv(dev);
2703 
2704 	debugfs_remove_recursive(priv->dbgfs_dir);
2705 }
2706 #endif /* CONFIG_DEBUG_FS */
2707 
2708 static const struct net_device_ops stmmac_netdev_ops = {
2709 	.ndo_open = stmmac_open,
2710 	.ndo_start_xmit = stmmac_xmit,
2711 	.ndo_stop = stmmac_release,
2712 	.ndo_change_mtu = stmmac_change_mtu,
2713 	.ndo_fix_features = stmmac_fix_features,
2714 	.ndo_set_features = stmmac_set_features,
2715 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2716 	.ndo_tx_timeout = stmmac_tx_timeout,
2717 	.ndo_do_ioctl = stmmac_ioctl,
2718 #ifdef CONFIG_NET_POLL_CONTROLLER
2719 	.ndo_poll_controller = stmmac_poll_controller,
2720 #endif
2721 	.ndo_set_mac_address = eth_mac_addr,
2722 };
2723 
2724 /**
2725  *  stmmac_hw_init - Init the MAC device
2726  *  @priv: driver private structure
2727  *  Description: this function is to configure the MAC device according to
2728  *  some platform parameters or the HW capability register. It prepares the
2729  *  driver to use either ring or chain modes and to setup either enhanced or
2730  *  normal descriptors.
2731  */
2732 static int stmmac_hw_init(struct stmmac_priv *priv)
2733 {
2734 	struct mac_device_info *mac;
2735 
2736 	/* Identify the MAC HW device */
2737 	if (priv->plat->has_gmac) {
2738 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2739 		mac = dwmac1000_setup(priv->ioaddr,
2740 				      priv->plat->multicast_filter_bins,
2741 				      priv->plat->unicast_filter_entries);
2742 	} else {
2743 		mac = dwmac100_setup(priv->ioaddr);
2744 	}
2745 	if (!mac)
2746 		return -ENOMEM;
2747 
2748 	priv->hw = mac;
2749 
2750 	/* Get and dump the chip ID */
2751 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2752 
2753 	/* To use the chained or ring mode */
2754 	if (chain_mode) {
2755 		priv->hw->mode = &chain_mode_ops;
2756 		pr_info(" Chain mode enabled\n");
2757 		priv->mode = STMMAC_CHAIN_MODE;
2758 	} else {
2759 		priv->hw->mode = &ring_mode_ops;
2760 		pr_info(" Ring mode enabled\n");
2761 		priv->mode = STMMAC_RING_MODE;
2762 	}
2763 
2764 	/* Get the HW capability (new GMAC newer than 3.50a) */
2765 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2766 	if (priv->hw_cap_support) {
2767 		pr_info(" DMA HW capability register supported");
2768 
2769 		/* We can override some gmac/dma configuration fields: e.g.
2770 		 * enh_desc, tx_coe (e.g. that are passed through the
2771 		 * platform) with the values from the HW capability
2772 		 * register (if supported).
2773 		 */
2774 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2775 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2776 
2777 		/* TXCOE doesn't work in thresh DMA mode */
2778 		if (priv->plat->force_thresh_dma_mode)
2779 			priv->plat->tx_coe = 0;
2780 		else
2781 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
2782 
2783 		if (priv->dma_cap.rx_coe_type2)
2784 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2785 		else if (priv->dma_cap.rx_coe_type1)
2786 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2787 
2788 	} else
2789 		pr_info(" No HW DMA feature register supported");
2790 
2791 	/* To use alternate (extended) or normal descriptor structures */
2792 	stmmac_selec_desc_mode(priv);
2793 
2794 	if (priv->plat->rx_coe) {
2795 		priv->hw->rx_csum = priv->plat->rx_coe;
2796 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2797 			priv->plat->rx_coe);
2798 	}
2799 	if (priv->plat->tx_coe)
2800 		pr_info(" TX Checksum insertion supported\n");
2801 
2802 	if (priv->plat->pmt) {
2803 		pr_info(" Wake-Up On Lan supported\n");
2804 		device_set_wakeup_capable(priv->device, 1);
2805 	}
2806 
2807 	return 0;
2808 }
2809 
2810 /**
2811  * stmmac_dvr_probe
2812  * @device: device pointer
2813  * @plat_dat: platform data pointer
2814  * @res: stmmac resource pointer
2815  * Description: this is the main probe function used to
2816  * call the alloc_etherdev, allocate the priv structure.
2817  * Return:
2818  * returns 0 on success, otherwise errno.
2819  */
2820 int stmmac_dvr_probe(struct device *device,
2821 		     struct plat_stmmacenet_data *plat_dat,
2822 		     struct stmmac_resources *res)
2823 {
2824 	int ret = 0;
2825 	struct net_device *ndev = NULL;
2826 	struct stmmac_priv *priv;
2827 
2828 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2829 	if (!ndev)
2830 		return -ENOMEM;
2831 
2832 	SET_NETDEV_DEV(ndev, device);
2833 
2834 	priv = netdev_priv(ndev);
2835 	priv->device = device;
2836 	priv->dev = ndev;
2837 
2838 	stmmac_set_ethtool_ops(ndev);
2839 	priv->pause = pause;
2840 	priv->plat = plat_dat;
2841 	priv->ioaddr = res->addr;
2842 	priv->dev->base_addr = (unsigned long)res->addr;
2843 
2844 	priv->dev->irq = res->irq;
2845 	priv->wol_irq = res->wol_irq;
2846 	priv->lpi_irq = res->lpi_irq;
2847 
2848 	if (res->mac)
2849 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
2850 
2851 	dev_set_drvdata(device, priv->dev);
2852 
2853 	/* Verify driver arguments */
2854 	stmmac_verify_args();
2855 
2856 	/* Override with kernel parameters if supplied XXX CRS XXX
2857 	 * this needs to have multiple instances
2858 	 */
2859 	if ((phyaddr >= 0) && (phyaddr <= 31))
2860 		priv->plat->phy_addr = phyaddr;
2861 
2862 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2863 	if (IS_ERR(priv->stmmac_clk)) {
2864 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2865 			 __func__);
2866 		/* If failed to obtain stmmac_clk and specific clk_csr value
2867 		 * is NOT passed from the platform, probe fail.
2868 		 */
2869 		if (!priv->plat->clk_csr) {
2870 			ret = PTR_ERR(priv->stmmac_clk);
2871 			goto error_clk_get;
2872 		} else {
2873 			priv->stmmac_clk = NULL;
2874 		}
2875 	}
2876 	clk_prepare_enable(priv->stmmac_clk);
2877 
2878 	priv->pclk = devm_clk_get(priv->device, "pclk");
2879 	if (IS_ERR(priv->pclk)) {
2880 		if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) {
2881 			ret = -EPROBE_DEFER;
2882 			goto error_pclk_get;
2883 		}
2884 		priv->pclk = NULL;
2885 	}
2886 	clk_prepare_enable(priv->pclk);
2887 
2888 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2889 						  STMMAC_RESOURCE_NAME);
2890 	if (IS_ERR(priv->stmmac_rst)) {
2891 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2892 			ret = -EPROBE_DEFER;
2893 			goto error_hw_init;
2894 		}
2895 		dev_info(priv->device, "no reset control found\n");
2896 		priv->stmmac_rst = NULL;
2897 	}
2898 	if (priv->stmmac_rst)
2899 		reset_control_deassert(priv->stmmac_rst);
2900 
2901 	/* Init MAC and get the capabilities */
2902 	ret = stmmac_hw_init(priv);
2903 	if (ret)
2904 		goto error_hw_init;
2905 
2906 	ndev->netdev_ops = &stmmac_netdev_ops;
2907 
2908 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2909 			    NETIF_F_RXCSUM;
2910 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2911 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2912 #ifdef STMMAC_VLAN_TAG_USED
2913 	/* Both mac100 and gmac support receive VLAN tag detection */
2914 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2915 #endif
2916 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2917 
2918 	if (flow_ctrl)
2919 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2920 
2921 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2922 	 * In some case, for example on bugged HW this feature
2923 	 * has to be disable and this can be done by passing the
2924 	 * riwt_off field from the platform.
2925 	 */
2926 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2927 		priv->use_riwt = 1;
2928 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2929 	}
2930 
2931 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2932 
2933 	spin_lock_init(&priv->lock);
2934 	spin_lock_init(&priv->tx_lock);
2935 
2936 	ret = register_netdev(ndev);
2937 	if (ret) {
2938 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2939 		goto error_netdev_register;
2940 	}
2941 
2942 	/* If a specific clk_csr value is passed from the platform
2943 	 * this means that the CSR Clock Range selection cannot be
2944 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2945 	 * set the MDC clock dynamically according to the csr actual
2946 	 * clock input.
2947 	 */
2948 	if (!priv->plat->clk_csr)
2949 		stmmac_clk_csr_set(priv);
2950 	else
2951 		priv->clk_csr = priv->plat->clk_csr;
2952 
2953 	stmmac_check_pcs_mode(priv);
2954 
2955 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2956 	    priv->pcs != STMMAC_PCS_RTBI) {
2957 		/* MDIO bus Registration */
2958 		ret = stmmac_mdio_register(ndev);
2959 		if (ret < 0) {
2960 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2961 				 __func__, priv->plat->bus_id);
2962 			goto error_mdio_register;
2963 		}
2964 	}
2965 
2966 	return 0;
2967 
2968 error_mdio_register:
2969 	unregister_netdev(ndev);
2970 error_netdev_register:
2971 	netif_napi_del(&priv->napi);
2972 error_hw_init:
2973 	clk_disable_unprepare(priv->pclk);
2974 error_pclk_get:
2975 	clk_disable_unprepare(priv->stmmac_clk);
2976 error_clk_get:
2977 	free_netdev(ndev);
2978 
2979 	return ret;
2980 }
2981 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
2982 
2983 /**
2984  * stmmac_dvr_remove
2985  * @ndev: net device pointer
2986  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2987  * changes the link status, releases the DMA descriptor rings.
2988  */
2989 int stmmac_dvr_remove(struct net_device *ndev)
2990 {
2991 	struct stmmac_priv *priv = netdev_priv(ndev);
2992 
2993 	pr_info("%s:\n\tremoving driver", __func__);
2994 
2995 	priv->hw->dma->stop_rx(priv->ioaddr);
2996 	priv->hw->dma->stop_tx(priv->ioaddr);
2997 
2998 	stmmac_set_mac(priv->ioaddr, false);
2999 	netif_carrier_off(ndev);
3000 	unregister_netdev(ndev);
3001 	if (priv->stmmac_rst)
3002 		reset_control_assert(priv->stmmac_rst);
3003 	clk_disable_unprepare(priv->pclk);
3004 	clk_disable_unprepare(priv->stmmac_clk);
3005 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
3006 	    priv->pcs != STMMAC_PCS_RTBI)
3007 		stmmac_mdio_unregister(ndev);
3008 	free_netdev(ndev);
3009 
3010 	return 0;
3011 }
3012 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
3013 
3014 /**
3015  * stmmac_suspend - suspend callback
3016  * @ndev: net device pointer
3017  * Description: this is the function to suspend the device and it is called
3018  * by the platform driver to stop the network queue, release the resources,
3019  * program the PMT register (for WoL), clean and release driver resources.
3020  */
3021 int stmmac_suspend(struct net_device *ndev)
3022 {
3023 	struct stmmac_priv *priv = netdev_priv(ndev);
3024 	unsigned long flags;
3025 
3026 	if (!ndev || !netif_running(ndev))
3027 		return 0;
3028 
3029 	if (priv->phydev)
3030 		phy_stop(priv->phydev);
3031 
3032 	spin_lock_irqsave(&priv->lock, flags);
3033 
3034 	netif_device_detach(ndev);
3035 	netif_stop_queue(ndev);
3036 
3037 	napi_disable(&priv->napi);
3038 
3039 	/* Stop TX/RX DMA */
3040 	priv->hw->dma->stop_tx(priv->ioaddr);
3041 	priv->hw->dma->stop_rx(priv->ioaddr);
3042 
3043 	stmmac_clear_descriptors(priv);
3044 
3045 	/* Enable Power down mode by programming the PMT regs */
3046 	if (device_may_wakeup(priv->device)) {
3047 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
3048 		priv->irq_wake = 1;
3049 	} else {
3050 		stmmac_set_mac(priv->ioaddr, false);
3051 		pinctrl_pm_select_sleep_state(priv->device);
3052 		/* Disable clock in case of PWM is off */
3053 		clk_disable(priv->pclk);
3054 		clk_disable(priv->stmmac_clk);
3055 	}
3056 	spin_unlock_irqrestore(&priv->lock, flags);
3057 
3058 	priv->oldlink = 0;
3059 	priv->speed = 0;
3060 	priv->oldduplex = -1;
3061 	return 0;
3062 }
3063 EXPORT_SYMBOL_GPL(stmmac_suspend);
3064 
3065 /**
3066  * stmmac_resume - resume callback
3067  * @ndev: net device pointer
3068  * Description: when resume this function is invoked to setup the DMA and CORE
3069  * in a usable state.
3070  */
3071 int stmmac_resume(struct net_device *ndev)
3072 {
3073 	struct stmmac_priv *priv = netdev_priv(ndev);
3074 	unsigned long flags;
3075 
3076 	if (!netif_running(ndev))
3077 		return 0;
3078 
3079 	spin_lock_irqsave(&priv->lock, flags);
3080 
3081 	/* Power Down bit, into the PM register, is cleared
3082 	 * automatically as soon as a magic packet or a Wake-up frame
3083 	 * is received. Anyway, it's better to manually clear
3084 	 * this bit because it can generate problems while resuming
3085 	 * from another devices (e.g. serial console).
3086 	 */
3087 	if (device_may_wakeup(priv->device)) {
3088 		priv->hw->mac->pmt(priv->hw, 0);
3089 		priv->irq_wake = 0;
3090 	} else {
3091 		pinctrl_pm_select_default_state(priv->device);
3092 		/* enable the clk prevously disabled */
3093 		clk_enable(priv->stmmac_clk);
3094 		clk_enable(priv->pclk);
3095 		/* reset the phy so that it's ready */
3096 		if (priv->mii)
3097 			stmmac_mdio_reset(priv->mii);
3098 	}
3099 
3100 	netif_device_attach(ndev);
3101 
3102 	init_dma_desc_rings(ndev, GFP_ATOMIC);
3103 	stmmac_hw_setup(ndev, false);
3104 	stmmac_init_tx_coalesce(priv);
3105 
3106 	napi_enable(&priv->napi);
3107 
3108 	netif_start_queue(ndev);
3109 
3110 	spin_unlock_irqrestore(&priv->lock, flags);
3111 
3112 	if (priv->phydev)
3113 		phy_start(priv->phydev);
3114 
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL_GPL(stmmac_resume);
3118 
3119 #ifndef MODULE
3120 static int __init stmmac_cmdline_opt(char *str)
3121 {
3122 	char *opt;
3123 
3124 	if (!str || !*str)
3125 		return -EINVAL;
3126 	while ((opt = strsep(&str, ",")) != NULL) {
3127 		if (!strncmp(opt, "debug:", 6)) {
3128 			if (kstrtoint(opt + 6, 0, &debug))
3129 				goto err;
3130 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3131 			if (kstrtoint(opt + 8, 0, &phyaddr))
3132 				goto err;
3133 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3134 			if (kstrtoint(opt + 11, 0, &dma_txsize))
3135 				goto err;
3136 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3137 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3138 				goto err;
3139 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3140 			if (kstrtoint(opt + 7, 0, &buf_sz))
3141 				goto err;
3142 		} else if (!strncmp(opt, "tc:", 3)) {
3143 			if (kstrtoint(opt + 3, 0, &tc))
3144 				goto err;
3145 		} else if (!strncmp(opt, "watchdog:", 9)) {
3146 			if (kstrtoint(opt + 9, 0, &watchdog))
3147 				goto err;
3148 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3149 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3150 				goto err;
3151 		} else if (!strncmp(opt, "pause:", 6)) {
3152 			if (kstrtoint(opt + 6, 0, &pause))
3153 				goto err;
3154 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3155 			if (kstrtoint(opt + 10, 0, &eee_timer))
3156 				goto err;
3157 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3158 			if (kstrtoint(opt + 11, 0, &chain_mode))
3159 				goto err;
3160 		}
3161 	}
3162 	return 0;
3163 
3164 err:
3165 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3166 	return -EINVAL;
3167 }
3168 
3169 __setup("stmmaceth=", stmmac_cmdline_opt);
3170 #endif /* MODULE */
3171 
3172 static int __init stmmac_init(void)
3173 {
3174 #ifdef CONFIG_DEBUG_FS
3175 	/* Create debugfs main directory if it doesn't exist yet */
3176 	if (!stmmac_fs_dir) {
3177 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
3178 
3179 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
3180 			pr_err("ERROR %s, debugfs create directory failed\n",
3181 			       STMMAC_RESOURCE_NAME);
3182 
3183 			return -ENOMEM;
3184 		}
3185 	}
3186 #endif
3187 
3188 	return 0;
3189 }
3190 
3191 static void __exit stmmac_exit(void)
3192 {
3193 #ifdef CONFIG_DEBUG_FS
3194 	debugfs_remove_recursive(stmmac_fs_dir);
3195 #endif
3196 }
3197 
3198 module_init(stmmac_init)
3199 module_exit(stmmac_exit)
3200 
3201 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3202 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3203 MODULE_LICENSE("GPL");
3204