1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif
50 #include "stmmac.h"
51 
52 #undef STMMAC_DEBUG
53 /*#define STMMAC_DEBUG*/
54 #ifdef STMMAC_DEBUG
55 #define DBG(nlevel, klevel, fmt, args...) \
56 		((void)(netif_msg_##nlevel(priv) && \
57 		printk(KERN_##klevel fmt, ## args)))
58 #else
59 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
60 #endif
61 
62 #undef STMMAC_RX_DEBUG
63 /*#define STMMAC_RX_DEBUG*/
64 #ifdef STMMAC_RX_DEBUG
65 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
66 #else
67 #define RX_DBG(fmt, args...)  do { } while (0)
68 #endif
69 
70 #undef STMMAC_XMIT_DEBUG
71 /*#define STMMAC_XMIT_DEBUG*/
72 #ifdef STMMAC_TX_DEBUG
73 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
74 #else
75 #define TX_DBG(fmt, args...)  do { } while (0)
76 #endif
77 
78 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
79 #define JUMBO_LEN	9000
80 
81 /* Module parameters */
82 #define TX_TIMEO 5000 /* default 5 seconds */
83 static int watchdog = TX_TIMEO;
84 module_param(watchdog, int, S_IRUGO | S_IWUSR);
85 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
86 
87 static int debug = -1;		/* -1: default, 0: no output, 16:  all */
88 module_param(debug, int, S_IRUGO | S_IWUSR);
89 MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
90 
91 int phyaddr = -1;
92 module_param(phyaddr, int, S_IRUGO);
93 MODULE_PARM_DESC(phyaddr, "Physical device address");
94 
95 #define DMA_TX_SIZE 256
96 static int dma_txsize = DMA_TX_SIZE;
97 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
99 
100 #define DMA_RX_SIZE 256
101 static int dma_rxsize = DMA_RX_SIZE;
102 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
103 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
104 
105 static int flow_ctrl = FLOW_OFF;
106 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
108 
109 static int pause = PAUSE_TIME;
110 module_param(pause, int, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
112 
113 #define TC_DEFAULT 64
114 static int tc = TC_DEFAULT;
115 module_param(tc, int, S_IRUGO | S_IWUSR);
116 MODULE_PARM_DESC(tc, "DMA threshold control value");
117 
118 /* Pay attention to tune this parameter; take care of both
119  * hardware capability and network stabitily/performance impact.
120  * Many tests showed that ~4ms latency seems to be good enough. */
121 #ifdef CONFIG_STMMAC_TIMER
122 #define DEFAULT_PERIODIC_RATE	256
123 static int tmrate = DEFAULT_PERIODIC_RATE;
124 module_param(tmrate, int, S_IRUGO | S_IWUSR);
125 MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
126 #endif
127 
128 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
129 static int buf_sz = DMA_BUFFER_SIZE;
130 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
131 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
132 
133 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
134 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
135 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
136 
137 #define STMMAC_DEFAULT_LPI_TIMER	1000
138 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
139 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
140 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
141 #define STMMAC_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
142 
143 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
144 
145 #ifdef CONFIG_STMMAC_DEBUG_FS
146 static int stmmac_init_fs(struct net_device *dev);
147 static void stmmac_exit_fs(void);
148 #endif
149 
150 /**
151  * stmmac_verify_args - verify the driver parameters.
152  * Description: it verifies if some wrong parameter is passed to the driver.
153  * Note that wrong parameters are replaced with the default values.
154  */
155 static void stmmac_verify_args(void)
156 {
157 	if (unlikely(watchdog < 0))
158 		watchdog = TX_TIMEO;
159 	if (unlikely(dma_rxsize < 0))
160 		dma_rxsize = DMA_RX_SIZE;
161 	if (unlikely(dma_txsize < 0))
162 		dma_txsize = DMA_TX_SIZE;
163 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
164 		buf_sz = DMA_BUFFER_SIZE;
165 	if (unlikely(flow_ctrl > 1))
166 		flow_ctrl = FLOW_AUTO;
167 	else if (likely(flow_ctrl < 0))
168 		flow_ctrl = FLOW_OFF;
169 	if (unlikely((pause < 0) || (pause > 0xffff)))
170 		pause = PAUSE_TIME;
171 	if (eee_timer < 0)
172 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
173 }
174 
175 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
176 {
177 	u32 clk_rate;
178 
179 	clk_rate = clk_get_rate(priv->stmmac_clk);
180 
181 	/* Platform provided default clk_csr would be assumed valid
182 	 * for all other cases except for the below mentioned ones. */
183 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
184 		if (clk_rate < CSR_F_35M)
185 			priv->clk_csr = STMMAC_CSR_20_35M;
186 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
187 			priv->clk_csr = STMMAC_CSR_35_60M;
188 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
189 			priv->clk_csr = STMMAC_CSR_60_100M;
190 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
191 			priv->clk_csr = STMMAC_CSR_100_150M;
192 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
193 			priv->clk_csr = STMMAC_CSR_150_250M;
194 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
195 			priv->clk_csr = STMMAC_CSR_250_300M;
196 	} /* For values higher than the IEEE 802.3 specified frequency
197 	   * we can not estimate the proper divider as it is not known
198 	   * the frequency of clk_csr_i. So we do not change the default
199 	   * divider. */
200 }
201 
202 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
203 static void print_pkt(unsigned char *buf, int len)
204 {
205 	int j;
206 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
207 	for (j = 0; j < len; j++) {
208 		if ((j % 16) == 0)
209 			pr_info("\n %03x:", j);
210 		pr_info(" %02x", buf[j]);
211 	}
212 	pr_info("\n");
213 }
214 #endif
215 
216 /* minimum number of free TX descriptors required to wake up TX process */
217 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
218 
219 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
220 {
221 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
222 }
223 
224 /* On some ST platforms, some HW system configuraton registers have to be
225  * set according to the link speed negotiated.
226  */
227 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
228 {
229 	struct phy_device *phydev = priv->phydev;
230 
231 	if (likely(priv->plat->fix_mac_speed))
232 		priv->plat->fix_mac_speed(priv->plat->bsp_priv,
233 					  phydev->speed);
234 }
235 
236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
237 {
238 	/* Check and enter in LPI mode */
239 	if ((priv->dirty_tx == priv->cur_tx) &&
240 	    (priv->tx_path_in_lpi_mode == false))
241 		priv->hw->mac->set_eee_mode(priv->ioaddr);
242 }
243 
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 	/* Exit and disable EEE in case of we are are in LPI state. */
247 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
248 	del_timer_sync(&priv->eee_ctrl_timer);
249 	priv->tx_path_in_lpi_mode = false;
250 }
251 
252 /**
253  * stmmac_eee_ctrl_timer
254  * @arg : data hook
255  * Description:
256  *  If there is no data transfer and if we are not in LPI state,
257  *  then MAC Transmitter can be moved to LPI state.
258  */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263 	stmmac_enable_eee_mode(priv);
264 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
265 }
266 
267 /**
268  * stmmac_eee_init
269  * @priv: private device pointer
270  * Description:
271  *  If the EEE support has been enabled while configuring the driver,
272  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
273  *  phy can also manage EEE, so enable the LPI state and start the timer
274  *  to verify if the tx path can enter in LPI state.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 	bool ret = false;
279 
280 	/* MAC core supports the EEE feature. */
281 	if (priv->dma_cap.eee) {
282 		/* Check if the PHY supports EEE */
283 		if (phy_init_eee(priv->phydev, 1))
284 			goto out;
285 
286 		priv->eee_active = 1;
287 		init_timer(&priv->eee_ctrl_timer);
288 		priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
289 		priv->eee_ctrl_timer.data = (unsigned long)priv;
290 		priv->eee_ctrl_timer.expires = STMMAC_LPI_TIMER(eee_timer);
291 		add_timer(&priv->eee_ctrl_timer);
292 
293 		priv->hw->mac->set_eee_timer(priv->ioaddr,
294 					     STMMAC_DEFAULT_LIT_LS_TIMER,
295 					     priv->tx_lpi_timer);
296 
297 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
298 
299 		ret = true;
300 	}
301 out:
302 	return ret;
303 }
304 
305 static void stmmac_eee_adjust(struct stmmac_priv *priv)
306 {
307 	/* When the EEE has been already initialised we have to
308 	 * modify the PLS bit in the LPI ctrl & status reg according
309 	 * to the PHY link status. For this reason.
310 	 */
311 	if (priv->eee_enabled)
312 		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
313 }
314 
315 /**
316  * stmmac_adjust_link
317  * @dev: net device structure
318  * Description: it adjusts the link parameters.
319  */
320 static void stmmac_adjust_link(struct net_device *dev)
321 {
322 	struct stmmac_priv *priv = netdev_priv(dev);
323 	struct phy_device *phydev = priv->phydev;
324 	unsigned long flags;
325 	int new_state = 0;
326 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
327 
328 	if (phydev == NULL)
329 		return;
330 
331 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
332 	    phydev->addr, phydev->link);
333 
334 	spin_lock_irqsave(&priv->lock, flags);
335 
336 	if (phydev->link) {
337 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
338 
339 		/* Now we make sure that we can be in full duplex mode.
340 		 * If not, we operate in half-duplex mode. */
341 		if (phydev->duplex != priv->oldduplex) {
342 			new_state = 1;
343 			if (!(phydev->duplex))
344 				ctrl &= ~priv->hw->link.duplex;
345 			else
346 				ctrl |= priv->hw->link.duplex;
347 			priv->oldduplex = phydev->duplex;
348 		}
349 		/* Flow Control operation */
350 		if (phydev->pause)
351 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
352 						 fc, pause_time);
353 
354 		if (phydev->speed != priv->speed) {
355 			new_state = 1;
356 			switch (phydev->speed) {
357 			case 1000:
358 				if (likely(priv->plat->has_gmac))
359 					ctrl &= ~priv->hw->link.port;
360 					stmmac_hw_fix_mac_speed(priv);
361 				break;
362 			case 100:
363 			case 10:
364 				if (priv->plat->has_gmac) {
365 					ctrl |= priv->hw->link.port;
366 					if (phydev->speed == SPEED_100) {
367 						ctrl |= priv->hw->link.speed;
368 					} else {
369 						ctrl &= ~(priv->hw->link.speed);
370 					}
371 				} else {
372 					ctrl &= ~priv->hw->link.port;
373 				}
374 				stmmac_hw_fix_mac_speed(priv);
375 				break;
376 			default:
377 				if (netif_msg_link(priv))
378 					pr_warning("%s: Speed (%d) is not 10"
379 				       " or 100!\n", dev->name, phydev->speed);
380 				break;
381 			}
382 
383 			priv->speed = phydev->speed;
384 		}
385 
386 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
387 
388 		if (!priv->oldlink) {
389 			new_state = 1;
390 			priv->oldlink = 1;
391 		}
392 	} else if (priv->oldlink) {
393 		new_state = 1;
394 		priv->oldlink = 0;
395 		priv->speed = 0;
396 		priv->oldduplex = -1;
397 	}
398 
399 	if (new_state && netif_msg_link(priv))
400 		phy_print_status(phydev);
401 
402 	stmmac_eee_adjust(priv);
403 
404 	spin_unlock_irqrestore(&priv->lock, flags);
405 
406 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
407 }
408 
409 /**
410  * stmmac_init_phy - PHY initialization
411  * @dev: net device structure
412  * Description: it initializes the driver's PHY state, and attaches the PHY
413  * to the mac driver.
414  *  Return value:
415  *  0 on success
416  */
417 static int stmmac_init_phy(struct net_device *dev)
418 {
419 	struct stmmac_priv *priv = netdev_priv(dev);
420 	struct phy_device *phydev;
421 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
422 	char bus_id[MII_BUS_ID_SIZE];
423 	int interface = priv->plat->interface;
424 	priv->oldlink = 0;
425 	priv->speed = 0;
426 	priv->oldduplex = -1;
427 
428 	if (priv->plat->phy_bus_name)
429 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
430 				priv->plat->phy_bus_name, priv->plat->bus_id);
431 	else
432 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
433 				priv->plat->bus_id);
434 
435 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
436 		 priv->plat->phy_addr);
437 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
438 
439 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 0,
440 			     interface);
441 
442 	if (IS_ERR(phydev)) {
443 		pr_err("%s: Could not attach to PHY\n", dev->name);
444 		return PTR_ERR(phydev);
445 	}
446 
447 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
448 	if ((interface == PHY_INTERFACE_MODE_MII) ||
449 	    (interface == PHY_INTERFACE_MODE_RMII))
450 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
451 					 SUPPORTED_1000baseT_Full);
452 
453 	/*
454 	 * Broken HW is sometimes missing the pull-up resistor on the
455 	 * MDIO line, which results in reads to non-existent devices returning
456 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
457 	 * device as well.
458 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
459 	 */
460 	if (phydev->phy_id == 0) {
461 		phy_disconnect(phydev);
462 		return -ENODEV;
463 	}
464 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
465 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
466 
467 	priv->phydev = phydev;
468 
469 	return 0;
470 }
471 
472 /**
473  * display_ring
474  * @p: pointer to the ring.
475  * @size: size of the ring.
476  * Description: display all the descriptors within the ring.
477  */
478 static void display_ring(struct dma_desc *p, int size)
479 {
480 	struct tmp_s {
481 		u64 a;
482 		unsigned int b;
483 		unsigned int c;
484 	};
485 	int i;
486 	for (i = 0; i < size; i++) {
487 		struct tmp_s *x = (struct tmp_s *)(p + i);
488 		pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
489 		       i, (unsigned int)virt_to_phys(&p[i]),
490 		       (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
491 		       x->b, x->c);
492 		pr_info("\n");
493 	}
494 }
495 
496 static int stmmac_set_bfsize(int mtu, int bufsize)
497 {
498 	int ret = bufsize;
499 
500 	if (mtu >= BUF_SIZE_4KiB)
501 		ret = BUF_SIZE_8KiB;
502 	else if (mtu >= BUF_SIZE_2KiB)
503 		ret = BUF_SIZE_4KiB;
504 	else if (mtu >= DMA_BUFFER_SIZE)
505 		ret = BUF_SIZE_2KiB;
506 	else
507 		ret = DMA_BUFFER_SIZE;
508 
509 	return ret;
510 }
511 
512 /**
513  * init_dma_desc_rings - init the RX/TX descriptor rings
514  * @dev: net device structure
515  * Description:  this function initializes the DMA RX/TX descriptors
516  * and allocates the socket buffers. It suppors the chained and ring
517  * modes.
518  */
519 static void init_dma_desc_rings(struct net_device *dev)
520 {
521 	int i;
522 	struct stmmac_priv *priv = netdev_priv(dev);
523 	struct sk_buff *skb;
524 	unsigned int txsize = priv->dma_tx_size;
525 	unsigned int rxsize = priv->dma_rx_size;
526 	unsigned int bfsize;
527 	int dis_ic = 0;
528 	int des3_as_data_buf = 0;
529 
530 	/* Set the max buffer size according to the DESC mode
531 	 * and the MTU. Note that RING mode allows 16KiB bsize. */
532 	bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
533 
534 	if (bfsize == BUF_SIZE_16KiB)
535 		des3_as_data_buf = 1;
536 	else
537 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
538 
539 #ifdef CONFIG_STMMAC_TIMER
540 	/* Disable interrupts on completion for the reception if timer is on */
541 	if (likely(priv->tm->enable))
542 		dis_ic = 1;
543 #endif
544 
545 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
546 	    txsize, rxsize, bfsize);
547 
548 	priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
549 	priv->rx_skbuff =
550 	    kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
551 	priv->dma_rx =
552 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
553 						  rxsize *
554 						  sizeof(struct dma_desc),
555 						  &priv->dma_rx_phy,
556 						  GFP_KERNEL);
557 	priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
558 				       GFP_KERNEL);
559 	priv->dma_tx =
560 	    (struct dma_desc *)dma_alloc_coherent(priv->device,
561 						  txsize *
562 						  sizeof(struct dma_desc),
563 						  &priv->dma_tx_phy,
564 						  GFP_KERNEL);
565 
566 	if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
567 		pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
568 		return;
569 	}
570 
571 	DBG(probe, INFO, "stmmac (%s) DMA desc: virt addr (Rx %p, "
572 	    "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
573 	    dev->name, priv->dma_rx, priv->dma_tx,
574 	    (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
575 
576 	/* RX INITIALIZATION */
577 	DBG(probe, INFO, "stmmac: SKB addresses:\n"
578 			 "skb\t\tskb data\tdma data\n");
579 
580 	for (i = 0; i < rxsize; i++) {
581 		struct dma_desc *p = priv->dma_rx + i;
582 
583 		skb = __netdev_alloc_skb(dev, bfsize + NET_IP_ALIGN,
584 					 GFP_KERNEL);
585 		if (unlikely(skb == NULL)) {
586 			pr_err("%s: Rx init fails; skb is NULL\n", __func__);
587 			break;
588 		}
589 		skb_reserve(skb, NET_IP_ALIGN);
590 		priv->rx_skbuff[i] = skb;
591 		priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
592 						bfsize, DMA_FROM_DEVICE);
593 
594 		p->des2 = priv->rx_skbuff_dma[i];
595 
596 		priv->hw->ring->init_desc3(des3_as_data_buf, p);
597 
598 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
599 			priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
600 	}
601 	priv->cur_rx = 0;
602 	priv->dirty_rx = (unsigned int)(i - rxsize);
603 	priv->dma_buf_sz = bfsize;
604 	buf_sz = bfsize;
605 
606 	/* TX INITIALIZATION */
607 	for (i = 0; i < txsize; i++) {
608 		priv->tx_skbuff[i] = NULL;
609 		priv->dma_tx[i].des2 = 0;
610 	}
611 
612 	/* In case of Chained mode this sets the des3 to the next
613 	 * element in the chain */
614 	priv->hw->ring->init_dma_chain(priv->dma_rx, priv->dma_rx_phy, rxsize);
615 	priv->hw->ring->init_dma_chain(priv->dma_tx, priv->dma_tx_phy, txsize);
616 
617 	priv->dirty_tx = 0;
618 	priv->cur_tx = 0;
619 
620 	/* Clear the Rx/Tx descriptors */
621 	priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
622 	priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
623 
624 	if (netif_msg_hw(priv)) {
625 		pr_info("RX descriptor ring:\n");
626 		display_ring(priv->dma_rx, rxsize);
627 		pr_info("TX descriptor ring:\n");
628 		display_ring(priv->dma_tx, txsize);
629 	}
630 }
631 
632 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
633 {
634 	int i;
635 
636 	for (i = 0; i < priv->dma_rx_size; i++) {
637 		if (priv->rx_skbuff[i]) {
638 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
639 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
640 			dev_kfree_skb_any(priv->rx_skbuff[i]);
641 		}
642 		priv->rx_skbuff[i] = NULL;
643 	}
644 }
645 
646 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
647 {
648 	int i;
649 
650 	for (i = 0; i < priv->dma_tx_size; i++) {
651 		if (priv->tx_skbuff[i] != NULL) {
652 			struct dma_desc *p = priv->dma_tx + i;
653 			if (p->des2)
654 				dma_unmap_single(priv->device, p->des2,
655 						 priv->hw->desc->get_tx_len(p),
656 						 DMA_TO_DEVICE);
657 			dev_kfree_skb_any(priv->tx_skbuff[i]);
658 			priv->tx_skbuff[i] = NULL;
659 		}
660 	}
661 }
662 
663 static void free_dma_desc_resources(struct stmmac_priv *priv)
664 {
665 	/* Release the DMA TX/RX socket buffers */
666 	dma_free_rx_skbufs(priv);
667 	dma_free_tx_skbufs(priv);
668 
669 	/* Free the region of consistent memory previously allocated for
670 	 * the DMA */
671 	dma_free_coherent(priv->device,
672 			  priv->dma_tx_size * sizeof(struct dma_desc),
673 			  priv->dma_tx, priv->dma_tx_phy);
674 	dma_free_coherent(priv->device,
675 			  priv->dma_rx_size * sizeof(struct dma_desc),
676 			  priv->dma_rx, priv->dma_rx_phy);
677 	kfree(priv->rx_skbuff_dma);
678 	kfree(priv->rx_skbuff);
679 	kfree(priv->tx_skbuff);
680 }
681 
682 /**
683  *  stmmac_dma_operation_mode - HW DMA operation mode
684  *  @priv : pointer to the private device structure.
685  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
686  *  or Store-And-Forward capability.
687  */
688 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
689 {
690 	if (likely(priv->plat->force_sf_dma_mode ||
691 		((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
692 		/*
693 		 * In case of GMAC, SF mode can be enabled
694 		 * to perform the TX COE in HW. This depends on:
695 		 * 1) TX COE if actually supported
696 		 * 2) There is no bugged Jumbo frame support
697 		 *    that needs to not insert csum in the TDES.
698 		 */
699 		priv->hw->dma->dma_mode(priv->ioaddr,
700 					SF_DMA_MODE, SF_DMA_MODE);
701 		tc = SF_DMA_MODE;
702 	} else
703 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
704 }
705 
706 /**
707  * stmmac_tx:
708  * @priv: private driver structure
709  * Description: it reclaims resources after transmission completes.
710  */
711 static void stmmac_tx(struct stmmac_priv *priv)
712 {
713 	unsigned int txsize = priv->dma_tx_size;
714 
715 	spin_lock(&priv->tx_lock);
716 
717 	while (priv->dirty_tx != priv->cur_tx) {
718 		int last;
719 		unsigned int entry = priv->dirty_tx % txsize;
720 		struct sk_buff *skb = priv->tx_skbuff[entry];
721 		struct dma_desc *p = priv->dma_tx + entry;
722 
723 		/* Check if the descriptor is owned by the DMA. */
724 		if (priv->hw->desc->get_tx_owner(p))
725 			break;
726 
727 		/* Verify tx error by looking at the last segment */
728 		last = priv->hw->desc->get_tx_ls(p);
729 		if (likely(last)) {
730 			int tx_error =
731 				priv->hw->desc->tx_status(&priv->dev->stats,
732 							  &priv->xstats, p,
733 							  priv->ioaddr);
734 			if (likely(tx_error == 0)) {
735 				priv->dev->stats.tx_packets++;
736 				priv->xstats.tx_pkt_n++;
737 			} else
738 				priv->dev->stats.tx_errors++;
739 		}
740 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
741 			priv->cur_tx, priv->dirty_tx);
742 
743 		if (likely(p->des2))
744 			dma_unmap_single(priv->device, p->des2,
745 					 priv->hw->desc->get_tx_len(p),
746 					 DMA_TO_DEVICE);
747 		priv->hw->ring->clean_desc3(p);
748 
749 		if (likely(skb != NULL)) {
750 			/*
751 			 * If there's room in the queue (limit it to size)
752 			 * we add this skb back into the pool,
753 			 * if it's the right size.
754 			 */
755 			if ((skb_queue_len(&priv->rx_recycle) <
756 				priv->dma_rx_size) &&
757 				skb_recycle_check(skb, priv->dma_buf_sz))
758 				__skb_queue_head(&priv->rx_recycle, skb);
759 			else
760 				dev_kfree_skb(skb);
761 
762 			priv->tx_skbuff[entry] = NULL;
763 		}
764 
765 		priv->hw->desc->release_tx_desc(p);
766 
767 		priv->dirty_tx++;
768 	}
769 	if (unlikely(netif_queue_stopped(priv->dev) &&
770 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
771 		netif_tx_lock(priv->dev);
772 		if (netif_queue_stopped(priv->dev) &&
773 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
774 			TX_DBG("%s: restart transmit\n", __func__);
775 			netif_wake_queue(priv->dev);
776 		}
777 		netif_tx_unlock(priv->dev);
778 	}
779 
780 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
781 		stmmac_enable_eee_mode(priv);
782 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_TIMER(eee_timer));
783 	}
784 	spin_unlock(&priv->tx_lock);
785 }
786 
787 static inline void stmmac_enable_irq(struct stmmac_priv *priv)
788 {
789 #ifdef CONFIG_STMMAC_TIMER
790 	if (likely(priv->tm->enable))
791 		priv->tm->timer_start(tmrate);
792 	else
793 #endif
794 		priv->hw->dma->enable_dma_irq(priv->ioaddr);
795 }
796 
797 static inline void stmmac_disable_irq(struct stmmac_priv *priv)
798 {
799 #ifdef CONFIG_STMMAC_TIMER
800 	if (likely(priv->tm->enable))
801 		priv->tm->timer_stop();
802 	else
803 #endif
804 		priv->hw->dma->disable_dma_irq(priv->ioaddr);
805 }
806 
807 static int stmmac_has_work(struct stmmac_priv *priv)
808 {
809 	unsigned int has_work = 0;
810 	int rxret, tx_work = 0;
811 
812 	rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
813 		(priv->cur_rx % priv->dma_rx_size));
814 
815 	if (priv->dirty_tx != priv->cur_tx)
816 		tx_work = 1;
817 
818 	if (likely(!rxret || tx_work))
819 		has_work = 1;
820 
821 	return has_work;
822 }
823 
824 static inline void _stmmac_schedule(struct stmmac_priv *priv)
825 {
826 	if (likely(stmmac_has_work(priv))) {
827 		stmmac_disable_irq(priv);
828 		napi_schedule(&priv->napi);
829 	}
830 }
831 
832 #ifdef CONFIG_STMMAC_TIMER
833 void stmmac_schedule(struct net_device *dev)
834 {
835 	struct stmmac_priv *priv = netdev_priv(dev);
836 
837 	priv->xstats.sched_timer_n++;
838 
839 	_stmmac_schedule(priv);
840 }
841 
842 static void stmmac_no_timer_started(unsigned int x)
843 {;
844 };
845 
846 static void stmmac_no_timer_stopped(void)
847 {;
848 };
849 #endif
850 
851 /**
852  * stmmac_tx_err:
853  * @priv: pointer to the private device structure
854  * Description: it cleans the descriptors and restarts the transmission
855  * in case of errors.
856  */
857 static void stmmac_tx_err(struct stmmac_priv *priv)
858 {
859 	netif_stop_queue(priv->dev);
860 
861 	priv->hw->dma->stop_tx(priv->ioaddr);
862 	dma_free_tx_skbufs(priv);
863 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
864 	priv->dirty_tx = 0;
865 	priv->cur_tx = 0;
866 	priv->hw->dma->start_tx(priv->ioaddr);
867 
868 	priv->dev->stats.tx_errors++;
869 	netif_wake_queue(priv->dev);
870 }
871 
872 
873 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
874 {
875 	int status;
876 
877 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
878 	if (likely(status == handle_tx_rx))
879 		_stmmac_schedule(priv);
880 
881 	else if (unlikely(status == tx_hard_error_bump_tc)) {
882 		/* Try to bump up the dma threshold on this failure */
883 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
884 			tc += 64;
885 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
886 			priv->xstats.threshold = tc;
887 		}
888 	} else if (unlikely(status == tx_hard_error))
889 		stmmac_tx_err(priv);
890 }
891 
892 static void stmmac_mmc_setup(struct stmmac_priv *priv)
893 {
894 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
895 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
896 
897 	/* Mask MMC irq, counters are managed in SW and registers
898 	 * are cleared on each READ eventually. */
899 	dwmac_mmc_intr_all_mask(priv->ioaddr);
900 
901 	if (priv->dma_cap.rmon) {
902 		dwmac_mmc_ctrl(priv->ioaddr, mode);
903 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
904 	} else
905 		pr_info(" No MAC Management Counters available\n");
906 }
907 
908 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
909 {
910 	u32 hwid = priv->hw->synopsys_uid;
911 
912 	/* Only check valid Synopsys Id because old MAC chips
913 	 * have no HW registers where get the ID */
914 	if (likely(hwid)) {
915 		u32 uid = ((hwid & 0x0000ff00) >> 8);
916 		u32 synid = (hwid & 0x000000ff);
917 
918 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
919 			uid, synid);
920 
921 		return synid;
922 	}
923 	return 0;
924 }
925 
926 /**
927  * stmmac_selec_desc_mode
928  * @priv : private structure
929  * Description: select the Enhanced/Alternate or Normal descriptors
930  */
931 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
932 {
933 	if (priv->plat->enh_desc) {
934 		pr_info(" Enhanced/Alternate descriptors\n");
935 		priv->hw->desc = &enh_desc_ops;
936 	} else {
937 		pr_info(" Normal descriptors\n");
938 		priv->hw->desc = &ndesc_ops;
939 	}
940 }
941 
942 /**
943  * stmmac_get_hw_features
944  * @priv : private device pointer
945  * Description:
946  *  new GMAC chip generations have a new register to indicate the
947  *  presence of the optional feature/functions.
948  *  This can be also used to override the value passed through the
949  *  platform and necessary for old MAC10/100 and GMAC chips.
950  */
951 static int stmmac_get_hw_features(struct stmmac_priv *priv)
952 {
953 	u32 hw_cap = 0;
954 
955 	if (priv->hw->dma->get_hw_feature) {
956 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
957 
958 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
959 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
960 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
961 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
962 		priv->dma_cap.multi_addr =
963 			(hw_cap & DMA_HW_FEAT_ADDMACADRSEL) >> 5;
964 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
965 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
966 		priv->dma_cap.pmt_remote_wake_up =
967 			(hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
968 		priv->dma_cap.pmt_magic_frame =
969 			(hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
970 		/* MMC */
971 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
972 		/* IEEE 1588-2002*/
973 		priv->dma_cap.time_stamp =
974 			(hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
975 		/* IEEE 1588-2008*/
976 		priv->dma_cap.atime_stamp =
977 			(hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
978 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
979 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
980 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
981 		/* TX and RX csum */
982 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
983 		priv->dma_cap.rx_coe_type1 =
984 			(hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
985 		priv->dma_cap.rx_coe_type2 =
986 			(hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
987 		priv->dma_cap.rxfifo_over_2048 =
988 			(hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
989 		/* TX and RX number of channels */
990 		priv->dma_cap.number_rx_channel =
991 			(hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
992 		priv->dma_cap.number_tx_channel =
993 			(hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
994 		/* Alternate (enhanced) DESC mode*/
995 		priv->dma_cap.enh_desc =
996 			(hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
997 
998 	}
999 
1000 	return hw_cap;
1001 }
1002 
1003 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1004 {
1005 	/* verify if the MAC address is valid, in case of failures it
1006 	 * generates a random MAC address */
1007 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1008 		priv->hw->mac->get_umac_addr((void __iomem *)
1009 					     priv->dev->base_addr,
1010 					     priv->dev->dev_addr, 0);
1011 		if  (!is_valid_ether_addr(priv->dev->dev_addr))
1012 			eth_hw_addr_random(priv->dev);
1013 	}
1014 	pr_warning("%s: device MAC address %pM\n", priv->dev->name,
1015 						   priv->dev->dev_addr);
1016 }
1017 
1018 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1019 {
1020 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1021 	int mixed_burst = 0;
1022 
1023 	/* Some DMA parameters can be passed from the platform;
1024 	 * in case of these are not passed we keep a default
1025 	 * (good for all the chips) and init the DMA! */
1026 	if (priv->plat->dma_cfg) {
1027 		pbl = priv->plat->dma_cfg->pbl;
1028 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1029 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1030 		burst_len = priv->plat->dma_cfg->burst_len;
1031 	}
1032 
1033 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1034 				   burst_len, priv->dma_tx_phy,
1035 				   priv->dma_rx_phy);
1036 }
1037 
1038 /**
1039  *  stmmac_open - open entry point of the driver
1040  *  @dev : pointer to the device structure.
1041  *  Description:
1042  *  This function is the open entry point of the driver.
1043  *  Return value:
1044  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1045  *  file on failure.
1046  */
1047 static int stmmac_open(struct net_device *dev)
1048 {
1049 	struct stmmac_priv *priv = netdev_priv(dev);
1050 	int ret;
1051 
1052 #ifdef CONFIG_STMMAC_TIMER
1053 	priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
1054 	if (unlikely(priv->tm == NULL))
1055 		return -ENOMEM;
1056 
1057 	priv->tm->freq = tmrate;
1058 
1059 	/* Test if the external timer can be actually used.
1060 	 * In case of failure continue without timer. */
1061 	if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
1062 		pr_warning("stmmaceth: cannot attach the external timer.\n");
1063 		priv->tm->freq = 0;
1064 		priv->tm->timer_start = stmmac_no_timer_started;
1065 		priv->tm->timer_stop = stmmac_no_timer_stopped;
1066 	} else
1067 		priv->tm->enable = 1;
1068 #endif
1069 	clk_enable(priv->stmmac_clk);
1070 
1071 	stmmac_check_ether_addr(priv);
1072 
1073 	ret = stmmac_init_phy(dev);
1074 	if (unlikely(ret)) {
1075 		pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1076 		goto open_error;
1077 	}
1078 
1079 	/* Create and initialize the TX/RX descriptors chains. */
1080 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1081 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1082 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1083 	init_dma_desc_rings(dev);
1084 
1085 	/* DMA initialization and SW reset */
1086 	ret = stmmac_init_dma_engine(priv);
1087 	if (ret < 0) {
1088 		pr_err("%s: DMA initialization failed\n", __func__);
1089 		goto open_error;
1090 	}
1091 
1092 	/* Copy the MAC addr into the HW  */
1093 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1094 
1095 	/* If required, perform hw setup of the bus. */
1096 	if (priv->plat->bus_setup)
1097 		priv->plat->bus_setup(priv->ioaddr);
1098 
1099 	/* Initialize the MAC Core */
1100 	priv->hw->mac->core_init(priv->ioaddr);
1101 
1102 	/* Request the IRQ lines */
1103 	ret = request_irq(dev->irq, stmmac_interrupt,
1104 			 IRQF_SHARED, dev->name, dev);
1105 	if (unlikely(ret < 0)) {
1106 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1107 		       __func__, dev->irq, ret);
1108 		goto open_error;
1109 	}
1110 
1111 	/* Request the Wake IRQ in case of another line is used for WoL */
1112 	if (priv->wol_irq != dev->irq) {
1113 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1114 				  IRQF_SHARED, dev->name, dev);
1115 		if (unlikely(ret < 0)) {
1116 			pr_err("%s: ERROR: allocating the ext WoL IRQ %d "
1117 			       "(error: %d)\n",	__func__, priv->wol_irq, ret);
1118 			goto open_error_wolirq;
1119 		}
1120 	}
1121 
1122 	/* Request the IRQ lines */
1123 	if (priv->lpi_irq != -ENXIO) {
1124 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1125 				  dev->name, dev);
1126 		if (unlikely(ret < 0)) {
1127 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1128 			       __func__, priv->lpi_irq, ret);
1129 			goto open_error_lpiirq;
1130 		}
1131 	}
1132 
1133 	/* Enable the MAC Rx/Tx */
1134 	stmmac_set_mac(priv->ioaddr, true);
1135 
1136 	/* Set the HW DMA mode and the COE */
1137 	stmmac_dma_operation_mode(priv);
1138 
1139 	/* Extra statistics */
1140 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1141 	priv->xstats.threshold = tc;
1142 
1143 	stmmac_mmc_setup(priv);
1144 
1145 #ifdef CONFIG_STMMAC_DEBUG_FS
1146 	ret = stmmac_init_fs(dev);
1147 	if (ret < 0)
1148 		pr_warning("%s: failed debugFS registration\n", __func__);
1149 #endif
1150 	/* Start the ball rolling... */
1151 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1152 	priv->hw->dma->start_tx(priv->ioaddr);
1153 	priv->hw->dma->start_rx(priv->ioaddr);
1154 
1155 #ifdef CONFIG_STMMAC_TIMER
1156 	priv->tm->timer_start(tmrate);
1157 #endif
1158 
1159 	/* Dump DMA/MAC registers */
1160 	if (netif_msg_hw(priv)) {
1161 		priv->hw->mac->dump_regs(priv->ioaddr);
1162 		priv->hw->dma->dump_regs(priv->ioaddr);
1163 	}
1164 
1165 	if (priv->phydev)
1166 		phy_start(priv->phydev);
1167 
1168 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS_TIMER;
1169 	priv->eee_enabled = stmmac_eee_init(priv);
1170 
1171 	napi_enable(&priv->napi);
1172 	skb_queue_head_init(&priv->rx_recycle);
1173 	netif_start_queue(dev);
1174 
1175 	return 0;
1176 
1177 open_error_lpiirq:
1178 	if (priv->wol_irq != dev->irq)
1179 		free_irq(priv->wol_irq, dev);
1180 
1181 open_error_wolirq:
1182 	free_irq(dev->irq, dev);
1183 
1184 open_error:
1185 #ifdef CONFIG_STMMAC_TIMER
1186 	kfree(priv->tm);
1187 #endif
1188 	if (priv->phydev)
1189 		phy_disconnect(priv->phydev);
1190 
1191 	clk_disable(priv->stmmac_clk);
1192 
1193 	return ret;
1194 }
1195 
1196 /**
1197  *  stmmac_release - close entry point of the driver
1198  *  @dev : device pointer.
1199  *  Description:
1200  *  This is the stop entry point of the driver.
1201  */
1202 static int stmmac_release(struct net_device *dev)
1203 {
1204 	struct stmmac_priv *priv = netdev_priv(dev);
1205 
1206 	if (priv->eee_enabled)
1207 		del_timer_sync(&priv->eee_ctrl_timer);
1208 
1209 	/* Stop and disconnect the PHY */
1210 	if (priv->phydev) {
1211 		phy_stop(priv->phydev);
1212 		phy_disconnect(priv->phydev);
1213 		priv->phydev = NULL;
1214 	}
1215 
1216 	netif_stop_queue(dev);
1217 
1218 #ifdef CONFIG_STMMAC_TIMER
1219 	/* Stop and release the timer */
1220 	stmmac_close_ext_timer();
1221 	if (priv->tm != NULL)
1222 		kfree(priv->tm);
1223 #endif
1224 	napi_disable(&priv->napi);
1225 	skb_queue_purge(&priv->rx_recycle);
1226 
1227 	/* Free the IRQ lines */
1228 	free_irq(dev->irq, dev);
1229 	if (priv->wol_irq != dev->irq)
1230 		free_irq(priv->wol_irq, dev);
1231 	if (priv->lpi_irq != -ENXIO)
1232 		free_irq(priv->lpi_irq, dev);
1233 
1234 	/* Stop TX/RX DMA and clear the descriptors */
1235 	priv->hw->dma->stop_tx(priv->ioaddr);
1236 	priv->hw->dma->stop_rx(priv->ioaddr);
1237 
1238 	/* Release and free the Rx/Tx resources */
1239 	free_dma_desc_resources(priv);
1240 
1241 	/* Disable the MAC Rx/Tx */
1242 	stmmac_set_mac(priv->ioaddr, false);
1243 
1244 	netif_carrier_off(dev);
1245 
1246 #ifdef CONFIG_STMMAC_DEBUG_FS
1247 	stmmac_exit_fs();
1248 #endif
1249 	clk_disable(priv->stmmac_clk);
1250 
1251 	return 0;
1252 }
1253 
1254 /**
1255  *  stmmac_xmit:
1256  *  @skb : the socket buffer
1257  *  @dev : device pointer
1258  *  Description : Tx entry point of the driver.
1259  */
1260 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1261 {
1262 	struct stmmac_priv *priv = netdev_priv(dev);
1263 	unsigned int txsize = priv->dma_tx_size;
1264 	unsigned int entry;
1265 	int i, csum_insertion = 0;
1266 	int nfrags = skb_shinfo(skb)->nr_frags;
1267 	struct dma_desc *desc, *first;
1268 	unsigned int nopaged_len = skb_headlen(skb);
1269 
1270 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1271 		if (!netif_queue_stopped(dev)) {
1272 			netif_stop_queue(dev);
1273 			/* This is a hard error, log it. */
1274 			pr_err("%s: BUG! Tx Ring full when queue awake\n",
1275 				__func__);
1276 		}
1277 		return NETDEV_TX_BUSY;
1278 	}
1279 
1280 	spin_lock(&priv->tx_lock);
1281 
1282 	if (priv->tx_path_in_lpi_mode)
1283 		stmmac_disable_eee_mode(priv);
1284 
1285 	entry = priv->cur_tx % txsize;
1286 
1287 #ifdef STMMAC_XMIT_DEBUG
1288 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1289 		pr_info("stmmac xmit:\n"
1290 		       "\tskb addr %p - len: %d - nopaged_len: %d\n"
1291 		       "\tn_frags: %d - ip_summed: %d - %s gso\n",
1292 		       skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1293 		       !skb_is_gso(skb) ? "isn't" : "is");
1294 #endif
1295 
1296 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1297 
1298 	desc = priv->dma_tx + entry;
1299 	first = desc;
1300 
1301 #ifdef STMMAC_XMIT_DEBUG
1302 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1303 		pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1304 		       "\t\tn_frags: %d, ip_summed: %d\n",
1305 		       skb->len, nopaged_len, nfrags, skb->ip_summed);
1306 #endif
1307 	priv->tx_skbuff[entry] = skb;
1308 
1309 	if (priv->hw->ring->is_jumbo_frm(skb->len, priv->plat->enh_desc)) {
1310 		entry = priv->hw->ring->jumbo_frm(priv, skb, csum_insertion);
1311 		desc = priv->dma_tx + entry;
1312 	} else {
1313 		desc->des2 = dma_map_single(priv->device, skb->data,
1314 					nopaged_len, DMA_TO_DEVICE);
1315 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1316 						csum_insertion);
1317 	}
1318 
1319 	for (i = 0; i < nfrags; i++) {
1320 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1321 		int len = skb_frag_size(frag);
1322 
1323 		entry = (++priv->cur_tx) % txsize;
1324 		desc = priv->dma_tx + entry;
1325 
1326 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1327 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1328 					      DMA_TO_DEVICE);
1329 		priv->tx_skbuff[entry] = NULL;
1330 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1331 		wmb();
1332 		priv->hw->desc->set_tx_owner(desc);
1333 		wmb();
1334 	}
1335 
1336 	/* Interrupt on completition only for the latest segment */
1337 	priv->hw->desc->close_tx_desc(desc);
1338 
1339 #ifdef CONFIG_STMMAC_TIMER
1340 	/* Clean IC while using timer */
1341 	if (likely(priv->tm->enable))
1342 		priv->hw->desc->clear_tx_ic(desc);
1343 #endif
1344 
1345 	wmb();
1346 
1347 	/* To avoid raise condition */
1348 	priv->hw->desc->set_tx_owner(first);
1349 	wmb();
1350 
1351 	priv->cur_tx++;
1352 
1353 #ifdef STMMAC_XMIT_DEBUG
1354 	if (netif_msg_pktdata(priv)) {
1355 		pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1356 		       "first=%p, nfrags=%d\n",
1357 		       (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1358 		       entry, first, nfrags);
1359 		display_ring(priv->dma_tx, txsize);
1360 		pr_info(">>> frame to be transmitted: ");
1361 		print_pkt(skb->data, skb->len);
1362 	}
1363 #endif
1364 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1365 		TX_DBG("%s: stop transmitted packets\n", __func__);
1366 		netif_stop_queue(dev);
1367 	}
1368 
1369 	dev->stats.tx_bytes += skb->len;
1370 
1371 	skb_tx_timestamp(skb);
1372 
1373 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1374 
1375 	spin_unlock(&priv->tx_lock);
1376 
1377 	return NETDEV_TX_OK;
1378 }
1379 
1380 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1381 {
1382 	unsigned int rxsize = priv->dma_rx_size;
1383 	int bfsize = priv->dma_buf_sz;
1384 	struct dma_desc *p = priv->dma_rx;
1385 
1386 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1387 		unsigned int entry = priv->dirty_rx % rxsize;
1388 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1389 			struct sk_buff *skb;
1390 
1391 			skb = __skb_dequeue(&priv->rx_recycle);
1392 			if (skb == NULL)
1393 				skb = netdev_alloc_skb_ip_align(priv->dev,
1394 								bfsize);
1395 
1396 			if (unlikely(skb == NULL))
1397 				break;
1398 
1399 			priv->rx_skbuff[entry] = skb;
1400 			priv->rx_skbuff_dma[entry] =
1401 			    dma_map_single(priv->device, skb->data, bfsize,
1402 					   DMA_FROM_DEVICE);
1403 
1404 			(p + entry)->des2 = priv->rx_skbuff_dma[entry];
1405 
1406 			if (unlikely(priv->plat->has_gmac))
1407 				priv->hw->ring->refill_desc3(bfsize, p + entry);
1408 
1409 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1410 		}
1411 		wmb();
1412 		priv->hw->desc->set_rx_owner(p + entry);
1413 		wmb();
1414 	}
1415 }
1416 
1417 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1418 {
1419 	unsigned int rxsize = priv->dma_rx_size;
1420 	unsigned int entry = priv->cur_rx % rxsize;
1421 	unsigned int next_entry;
1422 	unsigned int count = 0;
1423 	struct dma_desc *p = priv->dma_rx + entry;
1424 	struct dma_desc *p_next;
1425 
1426 #ifdef STMMAC_RX_DEBUG
1427 	if (netif_msg_hw(priv)) {
1428 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1429 		display_ring(priv->dma_rx, rxsize);
1430 	}
1431 #endif
1432 	while (!priv->hw->desc->get_rx_owner(p)) {
1433 		int status;
1434 
1435 		if (count >= limit)
1436 			break;
1437 
1438 		count++;
1439 
1440 		next_entry = (++priv->cur_rx) % rxsize;
1441 		p_next = priv->dma_rx + next_entry;
1442 		prefetch(p_next);
1443 
1444 		/* read the status of the incoming frame */
1445 		status = (priv->hw->desc->rx_status(&priv->dev->stats,
1446 						    &priv->xstats, p));
1447 		if (unlikely(status == discard_frame))
1448 			priv->dev->stats.rx_errors++;
1449 		else {
1450 			struct sk_buff *skb;
1451 			int frame_len;
1452 
1453 			frame_len = priv->hw->desc->get_rx_frame_len(p,
1454 					priv->plat->rx_coe);
1455 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
1456 			 * Type frames (LLC/LLC-SNAP) */
1457 			if (unlikely(status != llc_snap))
1458 				frame_len -= ETH_FCS_LEN;
1459 #ifdef STMMAC_RX_DEBUG
1460 			if (frame_len > ETH_FRAME_LEN)
1461 				pr_debug("\tRX frame size %d, COE status: %d\n",
1462 					frame_len, status);
1463 
1464 			if (netif_msg_hw(priv))
1465 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1466 					p, entry, p->des2);
1467 #endif
1468 			skb = priv->rx_skbuff[entry];
1469 			if (unlikely(!skb)) {
1470 				pr_err("%s: Inconsistent Rx descriptor chain\n",
1471 					priv->dev->name);
1472 				priv->dev->stats.rx_dropped++;
1473 				break;
1474 			}
1475 			prefetch(skb->data - NET_IP_ALIGN);
1476 			priv->rx_skbuff[entry] = NULL;
1477 
1478 			skb_put(skb, frame_len);
1479 			dma_unmap_single(priv->device,
1480 					 priv->rx_skbuff_dma[entry],
1481 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1482 #ifdef STMMAC_RX_DEBUG
1483 			if (netif_msg_pktdata(priv)) {
1484 				pr_info(" frame received (%dbytes)", frame_len);
1485 				print_pkt(skb->data, frame_len);
1486 			}
1487 #endif
1488 			skb->protocol = eth_type_trans(skb, priv->dev);
1489 
1490 			if (unlikely(!priv->plat->rx_coe)) {
1491 				/* No RX COE for old mac10/100 devices */
1492 				skb_checksum_none_assert(skb);
1493 				netif_receive_skb(skb);
1494 			} else {
1495 				skb->ip_summed = CHECKSUM_UNNECESSARY;
1496 				napi_gro_receive(&priv->napi, skb);
1497 			}
1498 
1499 			priv->dev->stats.rx_packets++;
1500 			priv->dev->stats.rx_bytes += frame_len;
1501 		}
1502 		entry = next_entry;
1503 		p = p_next;	/* use prefetched values */
1504 	}
1505 
1506 	stmmac_rx_refill(priv);
1507 
1508 	priv->xstats.rx_pkt_n += count;
1509 
1510 	return count;
1511 }
1512 
1513 /**
1514  *  stmmac_poll - stmmac poll method (NAPI)
1515  *  @napi : pointer to the napi structure.
1516  *  @budget : maximum number of packets that the current CPU can receive from
1517  *	      all interfaces.
1518  *  Description :
1519  *   This function implements the the reception process.
1520  *   Also it runs the TX completion thread
1521  */
1522 static int stmmac_poll(struct napi_struct *napi, int budget)
1523 {
1524 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1525 	int work_done = 0;
1526 
1527 	priv->xstats.poll_n++;
1528 	stmmac_tx(priv);
1529 	work_done = stmmac_rx(priv, budget);
1530 
1531 	if (work_done < budget) {
1532 		napi_complete(napi);
1533 		stmmac_enable_irq(priv);
1534 	}
1535 	return work_done;
1536 }
1537 
1538 /**
1539  *  stmmac_tx_timeout
1540  *  @dev : Pointer to net device structure
1541  *  Description: this function is called when a packet transmission fails to
1542  *   complete within a reasonable tmrate. The driver will mark the error in the
1543  *   netdev structure and arrange for the device to be reset to a sane state
1544  *   in order to transmit a new packet.
1545  */
1546 static void stmmac_tx_timeout(struct net_device *dev)
1547 {
1548 	struct stmmac_priv *priv = netdev_priv(dev);
1549 
1550 	/* Clear Tx resources and restart transmitting again */
1551 	stmmac_tx_err(priv);
1552 }
1553 
1554 /* Configuration changes (passed on by ifconfig) */
1555 static int stmmac_config(struct net_device *dev, struct ifmap *map)
1556 {
1557 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
1558 		return -EBUSY;
1559 
1560 	/* Don't allow changing the I/O address */
1561 	if (map->base_addr != dev->base_addr) {
1562 		pr_warning("%s: can't change I/O address\n", dev->name);
1563 		return -EOPNOTSUPP;
1564 	}
1565 
1566 	/* Don't allow changing the IRQ */
1567 	if (map->irq != dev->irq) {
1568 		pr_warning("%s: can't change IRQ number %d\n",
1569 		       dev->name, dev->irq);
1570 		return -EOPNOTSUPP;
1571 	}
1572 
1573 	/* ignore other fields */
1574 	return 0;
1575 }
1576 
1577 /**
1578  *  stmmac_set_rx_mode - entry point for multicast addressing
1579  *  @dev : pointer to the device structure
1580  *  Description:
1581  *  This function is a driver entry point which gets called by the kernel
1582  *  whenever multicast addresses must be enabled/disabled.
1583  *  Return value:
1584  *  void.
1585  */
1586 static void stmmac_set_rx_mode(struct net_device *dev)
1587 {
1588 	struct stmmac_priv *priv = netdev_priv(dev);
1589 
1590 	spin_lock(&priv->lock);
1591 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
1592 	spin_unlock(&priv->lock);
1593 }
1594 
1595 /**
1596  *  stmmac_change_mtu - entry point to change MTU size for the device.
1597  *  @dev : device pointer.
1598  *  @new_mtu : the new MTU size for the device.
1599  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1600  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1601  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1602  *  Return value:
1603  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1604  *  file on failure.
1605  */
1606 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1607 {
1608 	struct stmmac_priv *priv = netdev_priv(dev);
1609 	int max_mtu;
1610 
1611 	if (netif_running(dev)) {
1612 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
1613 		return -EBUSY;
1614 	}
1615 
1616 	if (priv->plat->enh_desc)
1617 		max_mtu = JUMBO_LEN;
1618 	else
1619 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
1620 
1621 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1622 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1623 		return -EINVAL;
1624 	}
1625 
1626 	dev->mtu = new_mtu;
1627 	netdev_update_features(dev);
1628 
1629 	return 0;
1630 }
1631 
1632 static netdev_features_t stmmac_fix_features(struct net_device *dev,
1633 	netdev_features_t features)
1634 {
1635 	struct stmmac_priv *priv = netdev_priv(dev);
1636 
1637 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
1638 		features &= ~NETIF_F_RXCSUM;
1639 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
1640 		features &= ~NETIF_F_IPV6_CSUM;
1641 	if (!priv->plat->tx_coe)
1642 		features &= ~NETIF_F_ALL_CSUM;
1643 
1644 	/* Some GMAC devices have a bugged Jumbo frame support that
1645 	 * needs to have the Tx COE disabled for oversized frames
1646 	 * (due to limited buffer sizes). In this case we disable
1647 	 * the TX csum insertionin the TDES and not use SF. */
1648 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
1649 		features &= ~NETIF_F_ALL_CSUM;
1650 
1651 	return features;
1652 }
1653 
1654 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1655 {
1656 	struct net_device *dev = (struct net_device *)dev_id;
1657 	struct stmmac_priv *priv = netdev_priv(dev);
1658 
1659 	if (unlikely(!dev)) {
1660 		pr_err("%s: invalid dev pointer\n", __func__);
1661 		return IRQ_NONE;
1662 	}
1663 
1664 	/* To handle GMAC own interrupts */
1665 	if (priv->plat->has_gmac) {
1666 		int status = priv->hw->mac->host_irq_status((void __iomem *)
1667 							    dev->base_addr);
1668 		if (unlikely(status)) {
1669 			if (status & core_mmc_tx_irq)
1670 				priv->xstats.mmc_tx_irq_n++;
1671 			if (status & core_mmc_rx_irq)
1672 				priv->xstats.mmc_rx_irq_n++;
1673 			if (status & core_mmc_rx_csum_offload_irq)
1674 				priv->xstats.mmc_rx_csum_offload_irq_n++;
1675 			if (status & core_irq_receive_pmt_irq)
1676 				priv->xstats.irq_receive_pmt_irq_n++;
1677 
1678 			/* For LPI we need to save the tx status */
1679 			if (status & core_irq_tx_path_in_lpi_mode) {
1680 				priv->xstats.irq_tx_path_in_lpi_mode_n++;
1681 				priv->tx_path_in_lpi_mode = true;
1682 			}
1683 			if (status & core_irq_tx_path_exit_lpi_mode) {
1684 				priv->xstats.irq_tx_path_exit_lpi_mode_n++;
1685 				priv->tx_path_in_lpi_mode = false;
1686 			}
1687 			if (status & core_irq_rx_path_in_lpi_mode)
1688 				priv->xstats.irq_rx_path_in_lpi_mode_n++;
1689 			if (status & core_irq_rx_path_exit_lpi_mode)
1690 				priv->xstats.irq_rx_path_exit_lpi_mode_n++;
1691 		}
1692 	}
1693 
1694 	/* To handle DMA interrupts */
1695 	stmmac_dma_interrupt(priv);
1696 
1697 	return IRQ_HANDLED;
1698 }
1699 
1700 #ifdef CONFIG_NET_POLL_CONTROLLER
1701 /* Polling receive - used by NETCONSOLE and other diagnostic tools
1702  * to allow network I/O with interrupts disabled. */
1703 static void stmmac_poll_controller(struct net_device *dev)
1704 {
1705 	disable_irq(dev->irq);
1706 	stmmac_interrupt(dev->irq, dev);
1707 	enable_irq(dev->irq);
1708 }
1709 #endif
1710 
1711 /**
1712  *  stmmac_ioctl - Entry point for the Ioctl
1713  *  @dev: Device pointer.
1714  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1715  *  a proprietary structure used to pass information to the driver.
1716  *  @cmd: IOCTL command
1717  *  Description:
1718  *  Currently there are no special functionality supported in IOCTL, just the
1719  *  phy_mii_ioctl(...) can be invoked.
1720  */
1721 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1722 {
1723 	struct stmmac_priv *priv = netdev_priv(dev);
1724 	int ret;
1725 
1726 	if (!netif_running(dev))
1727 		return -EINVAL;
1728 
1729 	if (!priv->phydev)
1730 		return -EINVAL;
1731 
1732 	ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1733 
1734 	return ret;
1735 }
1736 
1737 #ifdef CONFIG_STMMAC_DEBUG_FS
1738 static struct dentry *stmmac_fs_dir;
1739 static struct dentry *stmmac_rings_status;
1740 static struct dentry *stmmac_dma_cap;
1741 
1742 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
1743 {
1744 	struct tmp_s {
1745 		u64 a;
1746 		unsigned int b;
1747 		unsigned int c;
1748 	};
1749 	int i;
1750 	struct net_device *dev = seq->private;
1751 	struct stmmac_priv *priv = netdev_priv(dev);
1752 
1753 	seq_printf(seq, "=======================\n");
1754 	seq_printf(seq, " RX descriptor ring\n");
1755 	seq_printf(seq, "=======================\n");
1756 
1757 	for (i = 0; i < priv->dma_rx_size; i++) {
1758 		struct tmp_s *x = (struct tmp_s *)(priv->dma_rx + i);
1759 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1760 			   i, (unsigned int)(x->a),
1761 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1762 		seq_printf(seq, "\n");
1763 	}
1764 
1765 	seq_printf(seq, "\n");
1766 	seq_printf(seq, "=======================\n");
1767 	seq_printf(seq, "  TX descriptor ring\n");
1768 	seq_printf(seq, "=======================\n");
1769 
1770 	for (i = 0; i < priv->dma_tx_size; i++) {
1771 		struct tmp_s *x = (struct tmp_s *)(priv->dma_tx + i);
1772 		seq_printf(seq, "[%d] DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
1773 			   i, (unsigned int)(x->a),
1774 			   (unsigned int)((x->a) >> 32), x->b, x->c);
1775 		seq_printf(seq, "\n");
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
1782 {
1783 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
1784 }
1785 
1786 static const struct file_operations stmmac_rings_status_fops = {
1787 	.owner = THIS_MODULE,
1788 	.open = stmmac_sysfs_ring_open,
1789 	.read = seq_read,
1790 	.llseek = seq_lseek,
1791 	.release = single_release,
1792 };
1793 
1794 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
1795 {
1796 	struct net_device *dev = seq->private;
1797 	struct stmmac_priv *priv = netdev_priv(dev);
1798 
1799 	if (!priv->hw_cap_support) {
1800 		seq_printf(seq, "DMA HW features not supported\n");
1801 		return 0;
1802 	}
1803 
1804 	seq_printf(seq, "==============================\n");
1805 	seq_printf(seq, "\tDMA HW features\n");
1806 	seq_printf(seq, "==============================\n");
1807 
1808 	seq_printf(seq, "\t10/100 Mbps %s\n",
1809 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
1810 	seq_printf(seq, "\t1000 Mbps %s\n",
1811 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
1812 	seq_printf(seq, "\tHalf duple %s\n",
1813 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
1814 	seq_printf(seq, "\tHash Filter: %s\n",
1815 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
1816 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
1817 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
1818 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
1819 		   (priv->dma_cap.pcs) ? "Y" : "N");
1820 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
1821 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
1822 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
1823 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
1824 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
1825 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
1826 	seq_printf(seq, "\tRMON module: %s\n",
1827 		   (priv->dma_cap.rmon) ? "Y" : "N");
1828 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
1829 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
1830 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
1831 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
1832 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
1833 		   (priv->dma_cap.eee) ? "Y" : "N");
1834 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
1835 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
1836 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
1837 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
1838 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
1839 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
1840 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
1841 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
1842 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
1843 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
1844 		   priv->dma_cap.number_rx_channel);
1845 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
1846 		   priv->dma_cap.number_tx_channel);
1847 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
1848 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
1849 
1850 	return 0;
1851 }
1852 
1853 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
1854 {
1855 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
1856 }
1857 
1858 static const struct file_operations stmmac_dma_cap_fops = {
1859 	.owner = THIS_MODULE,
1860 	.open = stmmac_sysfs_dma_cap_open,
1861 	.read = seq_read,
1862 	.llseek = seq_lseek,
1863 	.release = single_release,
1864 };
1865 
1866 static int stmmac_init_fs(struct net_device *dev)
1867 {
1868 	/* Create debugfs entries */
1869 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
1870 
1871 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
1872 		pr_err("ERROR %s, debugfs create directory failed\n",
1873 		       STMMAC_RESOURCE_NAME);
1874 
1875 		return -ENOMEM;
1876 	}
1877 
1878 	/* Entry to report DMA RX/TX rings */
1879 	stmmac_rings_status = debugfs_create_file("descriptors_status",
1880 					   S_IRUGO, stmmac_fs_dir, dev,
1881 					   &stmmac_rings_status_fops);
1882 
1883 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
1884 		pr_info("ERROR creating stmmac ring debugfs file\n");
1885 		debugfs_remove(stmmac_fs_dir);
1886 
1887 		return -ENOMEM;
1888 	}
1889 
1890 	/* Entry to report the DMA HW features */
1891 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
1892 					     dev, &stmmac_dma_cap_fops);
1893 
1894 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
1895 		pr_info("ERROR creating stmmac MMC debugfs file\n");
1896 		debugfs_remove(stmmac_rings_status);
1897 		debugfs_remove(stmmac_fs_dir);
1898 
1899 		return -ENOMEM;
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static void stmmac_exit_fs(void)
1906 {
1907 	debugfs_remove(stmmac_rings_status);
1908 	debugfs_remove(stmmac_dma_cap);
1909 	debugfs_remove(stmmac_fs_dir);
1910 }
1911 #endif /* CONFIG_STMMAC_DEBUG_FS */
1912 
1913 static const struct net_device_ops stmmac_netdev_ops = {
1914 	.ndo_open = stmmac_open,
1915 	.ndo_start_xmit = stmmac_xmit,
1916 	.ndo_stop = stmmac_release,
1917 	.ndo_change_mtu = stmmac_change_mtu,
1918 	.ndo_fix_features = stmmac_fix_features,
1919 	.ndo_set_rx_mode = stmmac_set_rx_mode,
1920 	.ndo_tx_timeout = stmmac_tx_timeout,
1921 	.ndo_do_ioctl = stmmac_ioctl,
1922 	.ndo_set_config = stmmac_config,
1923 #ifdef CONFIG_NET_POLL_CONTROLLER
1924 	.ndo_poll_controller = stmmac_poll_controller,
1925 #endif
1926 	.ndo_set_mac_address = eth_mac_addr,
1927 };
1928 
1929 /**
1930  *  stmmac_hw_init - Init the MAC device
1931  *  @priv : pointer to the private device structure.
1932  *  Description: this function detects which MAC device
1933  *  (GMAC/MAC10-100) has to attached, checks the HW capability
1934  *  (if supported) and sets the driver's features (for example
1935  *  to use the ring or chaine mode or support the normal/enh
1936  *  descriptor structure).
1937  */
1938 static int stmmac_hw_init(struct stmmac_priv *priv)
1939 {
1940 	int ret = 0;
1941 	struct mac_device_info *mac;
1942 
1943 	/* Identify the MAC HW device */
1944 	if (priv->plat->has_gmac) {
1945 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
1946 		mac = dwmac1000_setup(priv->ioaddr);
1947 	} else {
1948 		mac = dwmac100_setup(priv->ioaddr);
1949 	}
1950 	if (!mac)
1951 		return -ENOMEM;
1952 
1953 	priv->hw = mac;
1954 
1955 	/* To use the chained or ring mode */
1956 	priv->hw->ring = &ring_mode_ops;
1957 
1958 	/* Get and dump the chip ID */
1959 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
1960 
1961 	/* Get the HW capability (new GMAC newer than 3.50a) */
1962 	priv->hw_cap_support = stmmac_get_hw_features(priv);
1963 	if (priv->hw_cap_support) {
1964 		pr_info(" DMA HW capability register supported");
1965 
1966 		/* We can override some gmac/dma configuration fields: e.g.
1967 		 * enh_desc, tx_coe (e.g. that are passed through the
1968 		 * platform) with the values from the HW capability
1969 		 * register (if supported).
1970 		 */
1971 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
1972 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
1973 
1974 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
1975 
1976 		if (priv->dma_cap.rx_coe_type2)
1977 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
1978 		else if (priv->dma_cap.rx_coe_type1)
1979 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
1980 
1981 	} else
1982 		pr_info(" No HW DMA feature register supported");
1983 
1984 	/* Select the enhnaced/normal descriptor structures */
1985 	stmmac_selec_desc_mode(priv);
1986 
1987 	/* Enable the IPC (Checksum Offload) and check if the feature has been
1988 	 * enabled during the core configuration. */
1989 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
1990 	if (!ret) {
1991 		pr_warning(" RX IPC Checksum Offload not configured.\n");
1992 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1993 	}
1994 
1995 	if (priv->plat->rx_coe)
1996 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
1997 			priv->plat->rx_coe);
1998 	if (priv->plat->tx_coe)
1999 		pr_info(" TX Checksum insertion supported\n");
2000 
2001 	if (priv->plat->pmt) {
2002 		pr_info(" Wake-Up On Lan supported\n");
2003 		device_set_wakeup_capable(priv->device, 1);
2004 	}
2005 
2006 	return ret;
2007 }
2008 
2009 /**
2010  * stmmac_dvr_probe
2011  * @device: device pointer
2012  * @plat_dat: platform data pointer
2013  * @addr: iobase memory address
2014  * Description: this is the main probe function used to
2015  * call the alloc_etherdev, allocate the priv structure.
2016  */
2017 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2018 				     struct plat_stmmacenet_data *plat_dat,
2019 				     void __iomem *addr)
2020 {
2021 	int ret = 0;
2022 	struct net_device *ndev = NULL;
2023 	struct stmmac_priv *priv;
2024 
2025 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2026 	if (!ndev)
2027 		return NULL;
2028 
2029 	SET_NETDEV_DEV(ndev, device);
2030 
2031 	priv = netdev_priv(ndev);
2032 	priv->device = device;
2033 	priv->dev = ndev;
2034 
2035 	ether_setup(ndev);
2036 
2037 	stmmac_set_ethtool_ops(ndev);
2038 	priv->pause = pause;
2039 	priv->plat = plat_dat;
2040 	priv->ioaddr = addr;
2041 	priv->dev->base_addr = (unsigned long)addr;
2042 
2043 	/* Verify driver arguments */
2044 	stmmac_verify_args();
2045 
2046 	/* Override with kernel parameters if supplied XXX CRS XXX
2047 	 * this needs to have multiple instances */
2048 	if ((phyaddr >= 0) && (phyaddr <= 31))
2049 		priv->plat->phy_addr = phyaddr;
2050 
2051 	/* Init MAC and get the capabilities */
2052 	stmmac_hw_init(priv);
2053 
2054 	ndev->netdev_ops = &stmmac_netdev_ops;
2055 
2056 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2057 			    NETIF_F_RXCSUM;
2058 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2059 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2060 #ifdef STMMAC_VLAN_TAG_USED
2061 	/* Both mac100 and gmac support receive VLAN tag detection */
2062 	ndev->features |= NETIF_F_HW_VLAN_RX;
2063 #endif
2064 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2065 
2066 	if (flow_ctrl)
2067 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2068 
2069 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2070 
2071 	spin_lock_init(&priv->lock);
2072 	spin_lock_init(&priv->tx_lock);
2073 
2074 	ret = register_netdev(ndev);
2075 	if (ret) {
2076 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2077 		goto error_netdev_register;
2078 	}
2079 
2080 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2081 	if (IS_ERR(priv->stmmac_clk)) {
2082 		pr_warning("%s: warning: cannot get CSR clock\n", __func__);
2083 		goto error_clk_get;
2084 	}
2085 
2086 	/* If a specific clk_csr value is passed from the platform
2087 	 * this means that the CSR Clock Range selection cannot be
2088 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2089 	 * set the MDC clock dynamically according to the csr actual
2090 	 * clock input.
2091 	 */
2092 	if (!priv->plat->clk_csr)
2093 		stmmac_clk_csr_set(priv);
2094 	else
2095 		priv->clk_csr = priv->plat->clk_csr;
2096 
2097 	/* MDIO bus Registration */
2098 	ret = stmmac_mdio_register(ndev);
2099 	if (ret < 0) {
2100 		pr_debug("%s: MDIO bus (id: %d) registration failed",
2101 			 __func__, priv->plat->bus_id);
2102 		goto error_mdio_register;
2103 	}
2104 
2105 	return priv;
2106 
2107 error_mdio_register:
2108 	clk_put(priv->stmmac_clk);
2109 error_clk_get:
2110 	unregister_netdev(ndev);
2111 error_netdev_register:
2112 	netif_napi_del(&priv->napi);
2113 	free_netdev(ndev);
2114 
2115 	return NULL;
2116 }
2117 
2118 /**
2119  * stmmac_dvr_remove
2120  * @ndev: net device pointer
2121  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2122  * changes the link status, releases the DMA descriptor rings.
2123  */
2124 int stmmac_dvr_remove(struct net_device *ndev)
2125 {
2126 	struct stmmac_priv *priv = netdev_priv(ndev);
2127 
2128 	pr_info("%s:\n\tremoving driver", __func__);
2129 
2130 	priv->hw->dma->stop_rx(priv->ioaddr);
2131 	priv->hw->dma->stop_tx(priv->ioaddr);
2132 
2133 	stmmac_set_mac(priv->ioaddr, false);
2134 	stmmac_mdio_unregister(ndev);
2135 	netif_carrier_off(ndev);
2136 	unregister_netdev(ndev);
2137 	free_netdev(ndev);
2138 
2139 	return 0;
2140 }
2141 
2142 #ifdef CONFIG_PM
2143 int stmmac_suspend(struct net_device *ndev)
2144 {
2145 	struct stmmac_priv *priv = netdev_priv(ndev);
2146 	int dis_ic = 0;
2147 	unsigned long flags;
2148 
2149 	if (!ndev || !netif_running(ndev))
2150 		return 0;
2151 
2152 	if (priv->phydev)
2153 		phy_stop(priv->phydev);
2154 
2155 	spin_lock_irqsave(&priv->lock, flags);
2156 
2157 	netif_device_detach(ndev);
2158 	netif_stop_queue(ndev);
2159 
2160 #ifdef CONFIG_STMMAC_TIMER
2161 	priv->tm->timer_stop();
2162 	if (likely(priv->tm->enable))
2163 		dis_ic = 1;
2164 #endif
2165 	napi_disable(&priv->napi);
2166 
2167 	/* Stop TX/RX DMA */
2168 	priv->hw->dma->stop_tx(priv->ioaddr);
2169 	priv->hw->dma->stop_rx(priv->ioaddr);
2170 	/* Clear the Rx/Tx descriptors */
2171 	priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2172 				     dis_ic);
2173 	priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
2174 
2175 	/* Enable Power down mode by programming the PMT regs */
2176 	if (device_may_wakeup(priv->device))
2177 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2178 	else {
2179 		stmmac_set_mac(priv->ioaddr, false);
2180 		/* Disable clock in case of PWM is off */
2181 		clk_disable(priv->stmmac_clk);
2182 	}
2183 	spin_unlock_irqrestore(&priv->lock, flags);
2184 	return 0;
2185 }
2186 
2187 int stmmac_resume(struct net_device *ndev)
2188 {
2189 	struct stmmac_priv *priv = netdev_priv(ndev);
2190 	unsigned long flags;
2191 
2192 	if (!netif_running(ndev))
2193 		return 0;
2194 
2195 	spin_lock_irqsave(&priv->lock, flags);
2196 
2197 	/* Power Down bit, into the PM register, is cleared
2198 	 * automatically as soon as a magic packet or a Wake-up frame
2199 	 * is received. Anyway, it's better to manually clear
2200 	 * this bit because it can generate problems while resuming
2201 	 * from another devices (e.g. serial console). */
2202 	if (device_may_wakeup(priv->device))
2203 		priv->hw->mac->pmt(priv->ioaddr, 0);
2204 	else
2205 		/* enable the clk prevously disabled */
2206 		clk_enable(priv->stmmac_clk);
2207 
2208 	netif_device_attach(ndev);
2209 
2210 	/* Enable the MAC and DMA */
2211 	stmmac_set_mac(priv->ioaddr, true);
2212 	priv->hw->dma->start_tx(priv->ioaddr);
2213 	priv->hw->dma->start_rx(priv->ioaddr);
2214 
2215 #ifdef CONFIG_STMMAC_TIMER
2216 	if (likely(priv->tm->enable))
2217 		priv->tm->timer_start(tmrate);
2218 #endif
2219 	napi_enable(&priv->napi);
2220 
2221 	netif_start_queue(ndev);
2222 
2223 	spin_unlock_irqrestore(&priv->lock, flags);
2224 
2225 	if (priv->phydev)
2226 		phy_start(priv->phydev);
2227 
2228 	return 0;
2229 }
2230 
2231 int stmmac_freeze(struct net_device *ndev)
2232 {
2233 	if (!ndev || !netif_running(ndev))
2234 		return 0;
2235 
2236 	return stmmac_release(ndev);
2237 }
2238 
2239 int stmmac_restore(struct net_device *ndev)
2240 {
2241 	if (!ndev || !netif_running(ndev))
2242 		return 0;
2243 
2244 	return stmmac_open(ndev);
2245 }
2246 #endif /* CONFIG_PM */
2247 
2248 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2249  * depending on the configuration selected.
2250  */
2251 static int __init stmmac_init(void)
2252 {
2253 	int err_plt = 0;
2254 	int err_pci = 0;
2255 
2256 	err_plt = stmmac_register_platform();
2257 	err_pci = stmmac_register_pci();
2258 
2259 	if ((err_pci) && (err_plt)) {
2260 		pr_err("stmmac: driver registration failed\n");
2261 		return -EINVAL;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
2267 static void __exit stmmac_exit(void)
2268 {
2269 	stmmac_unregister_platform();
2270 	stmmac_unregister_pci();
2271 }
2272 
2273 module_init(stmmac_init);
2274 module_exit(stmmac_exit);
2275 
2276 #ifndef MODULE
2277 static int __init stmmac_cmdline_opt(char *str)
2278 {
2279 	char *opt;
2280 
2281 	if (!str || !*str)
2282 		return -EINVAL;
2283 	while ((opt = strsep(&str, ",")) != NULL) {
2284 		if (!strncmp(opt, "debug:", 6)) {
2285 			if (kstrtoint(opt + 6, 0, &debug))
2286 				goto err;
2287 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2288 			if (kstrtoint(opt + 8, 0, &phyaddr))
2289 				goto err;
2290 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2291 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2292 				goto err;
2293 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2294 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2295 				goto err;
2296 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2297 			if (kstrtoint(opt + 7, 0, &buf_sz))
2298 				goto err;
2299 		} else if (!strncmp(opt, "tc:", 3)) {
2300 			if (kstrtoint(opt + 3, 0, &tc))
2301 				goto err;
2302 		} else if (!strncmp(opt, "watchdog:", 9)) {
2303 			if (kstrtoint(opt + 9, 0, &watchdog))
2304 				goto err;
2305 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2306 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2307 				goto err;
2308 		} else if (!strncmp(opt, "pause:", 6)) {
2309 			if (kstrtoint(opt + 6, 0, &pause))
2310 				goto err;
2311 		} else if (!strncmp(opt, "eee_timer:", 6)) {
2312 			if (kstrtoint(opt + 10, 0, &eee_timer))
2313 				goto err;
2314 #ifdef CONFIG_STMMAC_TIMER
2315 		} else if (!strncmp(opt, "tmrate:", 7)) {
2316 			if (kstrtoint(opt + 7, 0, &tmrate))
2317 				goto err;
2318 #endif
2319 		}
2320 	}
2321 	return 0;
2322 
2323 err:
2324 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2325 	return -EINVAL;
2326 }
2327 
2328 __setup("stmmaceth=", stmmac_cmdline_opt);
2329 #endif
2330 
2331 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2332 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2333 MODULE_LICENSE("GPL");
2334