1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 24 25 Documentation available at: 26 http://www.stlinux.com 27 Support available at: 28 https://bugzilla.stlinux.com/ 29 *******************************************************************************/ 30 31 #include <linux/clk.h> 32 #include <linux/kernel.h> 33 #include <linux/interrupt.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/skbuff.h> 37 #include <linux/ethtool.h> 38 #include <linux/if_ether.h> 39 #include <linux/crc32.h> 40 #include <linux/mii.h> 41 #include <linux/if.h> 42 #include <linux/if_vlan.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/slab.h> 45 #include <linux/prefetch.h> 46 #include <linux/pinctrl/consumer.h> 47 #ifdef CONFIG_DEBUG_FS 48 #include <linux/debugfs.h> 49 #include <linux/seq_file.h> 50 #endif /* CONFIG_DEBUG_FS */ 51 #include <linux/net_tstamp.h> 52 #include "stmmac_ptp.h" 53 #include "stmmac.h" 54 #include <linux/reset.h> 55 56 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x) 57 58 /* Module parameters */ 59 #define TX_TIMEO 5000 60 static int watchdog = TX_TIMEO; 61 module_param(watchdog, int, S_IRUGO | S_IWUSR); 62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 63 64 static int debug = -1; 65 module_param(debug, int, S_IRUGO | S_IWUSR); 66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 67 68 static int phyaddr = -1; 69 module_param(phyaddr, int, S_IRUGO); 70 MODULE_PARM_DESC(phyaddr, "Physical device address"); 71 72 #define DMA_TX_SIZE 256 73 static int dma_txsize = DMA_TX_SIZE; 74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR); 75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list"); 76 77 #define DMA_RX_SIZE 256 78 static int dma_rxsize = DMA_RX_SIZE; 79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR); 80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list"); 81 82 static int flow_ctrl = FLOW_OFF; 83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR); 84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 85 86 static int pause = PAUSE_TIME; 87 module_param(pause, int, S_IRUGO | S_IWUSR); 88 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 89 90 #define TC_DEFAULT 64 91 static int tc = TC_DEFAULT; 92 module_param(tc, int, S_IRUGO | S_IWUSR); 93 MODULE_PARM_DESC(tc, "DMA threshold control value"); 94 95 #define DEFAULT_BUFSIZE 1536 96 static int buf_sz = DEFAULT_BUFSIZE; 97 module_param(buf_sz, int, S_IRUGO | S_IWUSR); 98 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 99 100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 101 NETIF_MSG_LINK | NETIF_MSG_IFUP | 102 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 103 104 #define STMMAC_DEFAULT_LPI_TIMER 1000 105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 106 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 109 110 /* By default the driver will use the ring mode to manage tx and rx descriptors 111 * but passing this value so user can force to use the chain instead of the ring 112 */ 113 static unsigned int chain_mode; 114 module_param(chain_mode, int, S_IRUGO); 115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 116 117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 118 119 #ifdef CONFIG_DEBUG_FS 120 static int stmmac_init_fs(struct net_device *dev); 121 static void stmmac_exit_fs(void); 122 #endif 123 124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 125 126 /** 127 * stmmac_verify_args - verify the driver parameters. 128 * Description: it checks the driver parameters and set a default in case of 129 * errors. 130 */ 131 static void stmmac_verify_args(void) 132 { 133 if (unlikely(watchdog < 0)) 134 watchdog = TX_TIMEO; 135 if (unlikely(dma_rxsize < 0)) 136 dma_rxsize = DMA_RX_SIZE; 137 if (unlikely(dma_txsize < 0)) 138 dma_txsize = DMA_TX_SIZE; 139 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 140 buf_sz = DEFAULT_BUFSIZE; 141 if (unlikely(flow_ctrl > 1)) 142 flow_ctrl = FLOW_AUTO; 143 else if (likely(flow_ctrl < 0)) 144 flow_ctrl = FLOW_OFF; 145 if (unlikely((pause < 0) || (pause > 0xffff))) 146 pause = PAUSE_TIME; 147 if (eee_timer < 0) 148 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 149 } 150 151 /** 152 * stmmac_clk_csr_set - dynamically set the MDC clock 153 * @priv: driver private structure 154 * Description: this is to dynamically set the MDC clock according to the csr 155 * clock input. 156 * Note: 157 * If a specific clk_csr value is passed from the platform 158 * this means that the CSR Clock Range selection cannot be 159 * changed at run-time and it is fixed (as reported in the driver 160 * documentation). Viceversa the driver will try to set the MDC 161 * clock dynamically according to the actual clock input. 162 */ 163 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 164 { 165 u32 clk_rate; 166 167 clk_rate = clk_get_rate(priv->stmmac_clk); 168 169 /* Platform provided default clk_csr would be assumed valid 170 * for all other cases except for the below mentioned ones. 171 * For values higher than the IEEE 802.3 specified frequency 172 * we can not estimate the proper divider as it is not known 173 * the frequency of clk_csr_i. So we do not change the default 174 * divider. 175 */ 176 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 177 if (clk_rate < CSR_F_35M) 178 priv->clk_csr = STMMAC_CSR_20_35M; 179 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 180 priv->clk_csr = STMMAC_CSR_35_60M; 181 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 182 priv->clk_csr = STMMAC_CSR_60_100M; 183 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 184 priv->clk_csr = STMMAC_CSR_100_150M; 185 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 186 priv->clk_csr = STMMAC_CSR_150_250M; 187 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 188 priv->clk_csr = STMMAC_CSR_250_300M; 189 } 190 } 191 192 static void print_pkt(unsigned char *buf, int len) 193 { 194 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 195 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 196 } 197 198 /* minimum number of free TX descriptors required to wake up TX process */ 199 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4) 200 201 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) 202 { 203 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1; 204 } 205 206 /** 207 * stmmac_hw_fix_mac_speed - callback for speed selection 208 * @priv: driver private structure 209 * Description: on some platforms (e.g. ST), some HW system configuraton 210 * registers have to be set according to the link speed negotiated. 211 */ 212 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 213 { 214 struct phy_device *phydev = priv->phydev; 215 216 if (likely(priv->plat->fix_mac_speed)) 217 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 218 } 219 220 /** 221 * stmmac_enable_eee_mode - check and enter in LPI mode 222 * @priv: driver private structure 223 * Description: this function is to verify and enter in LPI mode in case of 224 * EEE. 225 */ 226 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 227 { 228 /* Check and enter in LPI mode */ 229 if ((priv->dirty_tx == priv->cur_tx) && 230 (priv->tx_path_in_lpi_mode == false)) 231 priv->hw->mac->set_eee_mode(priv->hw); 232 } 233 234 /** 235 * stmmac_disable_eee_mode - disable and exit from LPI mode 236 * @priv: driver private structure 237 * Description: this function is to exit and disable EEE in case of 238 * LPI state is true. This is called by the xmit. 239 */ 240 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 241 { 242 priv->hw->mac->reset_eee_mode(priv->hw); 243 del_timer_sync(&priv->eee_ctrl_timer); 244 priv->tx_path_in_lpi_mode = false; 245 } 246 247 /** 248 * stmmac_eee_ctrl_timer - EEE TX SW timer. 249 * @arg : data hook 250 * Description: 251 * if there is no data transfer and if we are not in LPI state, 252 * then MAC Transmitter can be moved to LPI state. 253 */ 254 static void stmmac_eee_ctrl_timer(unsigned long arg) 255 { 256 struct stmmac_priv *priv = (struct stmmac_priv *)arg; 257 258 stmmac_enable_eee_mode(priv); 259 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 260 } 261 262 /** 263 * stmmac_eee_init - init EEE 264 * @priv: driver private structure 265 * Description: 266 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 267 * can also manage EEE, this function enable the LPI state and start related 268 * timer. 269 */ 270 bool stmmac_eee_init(struct stmmac_priv *priv) 271 { 272 char *phy_bus_name = priv->plat->phy_bus_name; 273 unsigned long flags; 274 bool ret = false; 275 276 /* Using PCS we cannot dial with the phy registers at this stage 277 * so we do not support extra feature like EEE. 278 */ 279 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) || 280 (priv->pcs == STMMAC_PCS_RTBI)) 281 goto out; 282 283 /* Never init EEE in case of a switch is attached */ 284 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed"))) 285 goto out; 286 287 /* MAC core supports the EEE feature. */ 288 if (priv->dma_cap.eee) { 289 int tx_lpi_timer = priv->tx_lpi_timer; 290 291 /* Check if the PHY supports EEE */ 292 if (phy_init_eee(priv->phydev, 1)) { 293 /* To manage at run-time if the EEE cannot be supported 294 * anymore (for example because the lp caps have been 295 * changed). 296 * In that case the driver disable own timers. 297 */ 298 spin_lock_irqsave(&priv->lock, flags); 299 if (priv->eee_active) { 300 pr_debug("stmmac: disable EEE\n"); 301 del_timer_sync(&priv->eee_ctrl_timer); 302 priv->hw->mac->set_eee_timer(priv->hw, 0, 303 tx_lpi_timer); 304 } 305 priv->eee_active = 0; 306 spin_unlock_irqrestore(&priv->lock, flags); 307 goto out; 308 } 309 /* Activate the EEE and start timers */ 310 spin_lock_irqsave(&priv->lock, flags); 311 if (!priv->eee_active) { 312 priv->eee_active = 1; 313 setup_timer(&priv->eee_ctrl_timer, 314 stmmac_eee_ctrl_timer, 315 (unsigned long)priv); 316 mod_timer(&priv->eee_ctrl_timer, 317 STMMAC_LPI_T(eee_timer)); 318 319 priv->hw->mac->set_eee_timer(priv->hw, 320 STMMAC_DEFAULT_LIT_LS, 321 tx_lpi_timer); 322 } 323 /* Set HW EEE according to the speed */ 324 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link); 325 326 ret = true; 327 spin_unlock_irqrestore(&priv->lock, flags); 328 329 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n"); 330 } 331 out: 332 return ret; 333 } 334 335 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 336 * @priv: driver private structure 337 * @entry : descriptor index to be used. 338 * @skb : the socket buffer 339 * Description : 340 * This function will read timestamp from the descriptor & pass it to stack. 341 * and also perform some sanity checks. 342 */ 343 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 344 unsigned int entry, struct sk_buff *skb) 345 { 346 struct skb_shared_hwtstamps shhwtstamp; 347 u64 ns; 348 void *desc = NULL; 349 350 if (!priv->hwts_tx_en) 351 return; 352 353 /* exit if skb doesn't support hw tstamp */ 354 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 355 return; 356 357 if (priv->adv_ts) 358 desc = (priv->dma_etx + entry); 359 else 360 desc = (priv->dma_tx + entry); 361 362 /* check tx tstamp status */ 363 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc)) 364 return; 365 366 /* get the valid tstamp */ 367 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 368 369 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 370 shhwtstamp.hwtstamp = ns_to_ktime(ns); 371 /* pass tstamp to stack */ 372 skb_tstamp_tx(skb, &shhwtstamp); 373 374 return; 375 } 376 377 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 378 * @priv: driver private structure 379 * @entry : descriptor index to be used. 380 * @skb : the socket buffer 381 * Description : 382 * This function will read received packet's timestamp from the descriptor 383 * and pass it to stack. It also perform some sanity checks. 384 */ 385 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, 386 unsigned int entry, struct sk_buff *skb) 387 { 388 struct skb_shared_hwtstamps *shhwtstamp = NULL; 389 u64 ns; 390 void *desc = NULL; 391 392 if (!priv->hwts_rx_en) 393 return; 394 395 if (priv->adv_ts) 396 desc = (priv->dma_erx + entry); 397 else 398 desc = (priv->dma_rx + entry); 399 400 /* exit if rx tstamp is not valid */ 401 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) 402 return; 403 404 /* get valid tstamp */ 405 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 406 shhwtstamp = skb_hwtstamps(skb); 407 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 408 shhwtstamp->hwtstamp = ns_to_ktime(ns); 409 } 410 411 /** 412 * stmmac_hwtstamp_ioctl - control hardware timestamping. 413 * @dev: device pointer. 414 * @ifr: An IOCTL specefic structure, that can contain a pointer to 415 * a proprietary structure used to pass information to the driver. 416 * Description: 417 * This function configures the MAC to enable/disable both outgoing(TX) 418 * and incoming(RX) packets time stamping based on user input. 419 * Return Value: 420 * 0 on success and an appropriate -ve integer on failure. 421 */ 422 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 423 { 424 struct stmmac_priv *priv = netdev_priv(dev); 425 struct hwtstamp_config config; 426 struct timespec now; 427 u64 temp = 0; 428 u32 ptp_v2 = 0; 429 u32 tstamp_all = 0; 430 u32 ptp_over_ipv4_udp = 0; 431 u32 ptp_over_ipv6_udp = 0; 432 u32 ptp_over_ethernet = 0; 433 u32 snap_type_sel = 0; 434 u32 ts_master_en = 0; 435 u32 ts_event_en = 0; 436 u32 value = 0; 437 438 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 439 netdev_alert(priv->dev, "No support for HW time stamping\n"); 440 priv->hwts_tx_en = 0; 441 priv->hwts_rx_en = 0; 442 443 return -EOPNOTSUPP; 444 } 445 446 if (copy_from_user(&config, ifr->ifr_data, 447 sizeof(struct hwtstamp_config))) 448 return -EFAULT; 449 450 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 451 __func__, config.flags, config.tx_type, config.rx_filter); 452 453 /* reserved for future extensions */ 454 if (config.flags) 455 return -EINVAL; 456 457 if (config.tx_type != HWTSTAMP_TX_OFF && 458 config.tx_type != HWTSTAMP_TX_ON) 459 return -ERANGE; 460 461 if (priv->adv_ts) { 462 switch (config.rx_filter) { 463 case HWTSTAMP_FILTER_NONE: 464 /* time stamp no incoming packet at all */ 465 config.rx_filter = HWTSTAMP_FILTER_NONE; 466 break; 467 468 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 469 /* PTP v1, UDP, any kind of event packet */ 470 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 471 /* take time stamp for all event messages */ 472 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 473 474 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 475 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 476 break; 477 478 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 479 /* PTP v1, UDP, Sync packet */ 480 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 481 /* take time stamp for SYNC messages only */ 482 ts_event_en = PTP_TCR_TSEVNTENA; 483 484 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 485 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 486 break; 487 488 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 489 /* PTP v1, UDP, Delay_req packet */ 490 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 491 /* take time stamp for Delay_Req messages only */ 492 ts_master_en = PTP_TCR_TSMSTRENA; 493 ts_event_en = PTP_TCR_TSEVNTENA; 494 495 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 496 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 497 break; 498 499 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 500 /* PTP v2, UDP, any kind of event packet */ 501 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 502 ptp_v2 = PTP_TCR_TSVER2ENA; 503 /* take time stamp for all event messages */ 504 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 505 506 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 507 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 508 break; 509 510 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 511 /* PTP v2, UDP, Sync packet */ 512 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 513 ptp_v2 = PTP_TCR_TSVER2ENA; 514 /* take time stamp for SYNC messages only */ 515 ts_event_en = PTP_TCR_TSEVNTENA; 516 517 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 518 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 519 break; 520 521 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 522 /* PTP v2, UDP, Delay_req packet */ 523 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 524 ptp_v2 = PTP_TCR_TSVER2ENA; 525 /* take time stamp for Delay_Req messages only */ 526 ts_master_en = PTP_TCR_TSMSTRENA; 527 ts_event_en = PTP_TCR_TSEVNTENA; 528 529 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 530 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 531 break; 532 533 case HWTSTAMP_FILTER_PTP_V2_EVENT: 534 /* PTP v2/802.AS1 any layer, any kind of event packet */ 535 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 536 ptp_v2 = PTP_TCR_TSVER2ENA; 537 /* take time stamp for all event messages */ 538 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 539 540 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 541 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 542 ptp_over_ethernet = PTP_TCR_TSIPENA; 543 break; 544 545 case HWTSTAMP_FILTER_PTP_V2_SYNC: 546 /* PTP v2/802.AS1, any layer, Sync packet */ 547 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 548 ptp_v2 = PTP_TCR_TSVER2ENA; 549 /* take time stamp for SYNC messages only */ 550 ts_event_en = PTP_TCR_TSEVNTENA; 551 552 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 553 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 554 ptp_over_ethernet = PTP_TCR_TSIPENA; 555 break; 556 557 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 558 /* PTP v2/802.AS1, any layer, Delay_req packet */ 559 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 560 ptp_v2 = PTP_TCR_TSVER2ENA; 561 /* take time stamp for Delay_Req messages only */ 562 ts_master_en = PTP_TCR_TSMSTRENA; 563 ts_event_en = PTP_TCR_TSEVNTENA; 564 565 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 566 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 567 ptp_over_ethernet = PTP_TCR_TSIPENA; 568 break; 569 570 case HWTSTAMP_FILTER_ALL: 571 /* time stamp any incoming packet */ 572 config.rx_filter = HWTSTAMP_FILTER_ALL; 573 tstamp_all = PTP_TCR_TSENALL; 574 break; 575 576 default: 577 return -ERANGE; 578 } 579 } else { 580 switch (config.rx_filter) { 581 case HWTSTAMP_FILTER_NONE: 582 config.rx_filter = HWTSTAMP_FILTER_NONE; 583 break; 584 default: 585 /* PTP v1, UDP, any kind of event packet */ 586 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 587 break; 588 } 589 } 590 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 591 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 592 593 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 594 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0); 595 else { 596 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 597 tstamp_all | ptp_v2 | ptp_over_ethernet | 598 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 599 ts_master_en | snap_type_sel); 600 601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value); 602 603 /* program Sub Second Increment reg */ 604 priv->hw->ptp->config_sub_second_increment(priv->ioaddr); 605 606 /* calculate default added value: 607 * formula is : 608 * addend = (2^32)/freq_div_ratio; 609 * where, freq_div_ratio = clk_ptp_ref_i/50MHz 610 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i; 611 * NOTE: clk_ptp_ref_i should be >= 50MHz to 612 * achieve 20ns accuracy. 613 * 614 * 2^x * y == (y << x), hence 615 * 2^32 * 50000000 ==> (50000000 << 32) 616 */ 617 temp = (u64) (50000000ULL << 32); 618 priv->default_addend = div_u64(temp, priv->clk_ptp_rate); 619 priv->hw->ptp->config_addend(priv->ioaddr, 620 priv->default_addend); 621 622 /* initialize system time */ 623 getnstimeofday(&now); 624 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec, 625 now.tv_nsec); 626 } 627 628 return copy_to_user(ifr->ifr_data, &config, 629 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 630 } 631 632 /** 633 * stmmac_init_ptp - init PTP 634 * @priv: driver private structure 635 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 636 * This is done by looking at the HW cap. register. 637 * This function also registers the ptp driver. 638 */ 639 static int stmmac_init_ptp(struct stmmac_priv *priv) 640 { 641 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 642 return -EOPNOTSUPP; 643 644 /* Fall-back to main clock in case of no PTP ref is passed */ 645 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref"); 646 if (IS_ERR(priv->clk_ptp_ref)) { 647 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk); 648 priv->clk_ptp_ref = NULL; 649 } else { 650 clk_prepare_enable(priv->clk_ptp_ref); 651 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref); 652 } 653 654 priv->adv_ts = 0; 655 if (priv->dma_cap.atime_stamp && priv->extend_desc) 656 priv->adv_ts = 1; 657 658 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp) 659 pr_debug("IEEE 1588-2002 Time Stamp supported\n"); 660 661 if (netif_msg_hw(priv) && priv->adv_ts) 662 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n"); 663 664 priv->hw->ptp = &stmmac_ptp; 665 priv->hwts_tx_en = 0; 666 priv->hwts_rx_en = 0; 667 668 return stmmac_ptp_register(priv); 669 } 670 671 static void stmmac_release_ptp(struct stmmac_priv *priv) 672 { 673 if (priv->clk_ptp_ref) 674 clk_disable_unprepare(priv->clk_ptp_ref); 675 stmmac_ptp_unregister(priv); 676 } 677 678 /** 679 * stmmac_adjust_link - adjusts the link parameters 680 * @dev: net device structure 681 * Description: this is the helper called by the physical abstraction layer 682 * drivers to communicate the phy link status. According the speed and duplex 683 * this driver can invoke registered glue-logic as well. 684 * It also invoke the eee initialization because it could happen when switch 685 * on different networks (that are eee capable). 686 */ 687 static void stmmac_adjust_link(struct net_device *dev) 688 { 689 struct stmmac_priv *priv = netdev_priv(dev); 690 struct phy_device *phydev = priv->phydev; 691 unsigned long flags; 692 int new_state = 0; 693 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause; 694 695 if (phydev == NULL) 696 return; 697 698 spin_lock_irqsave(&priv->lock, flags); 699 700 if (phydev->link) { 701 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 702 703 /* Now we make sure that we can be in full duplex mode. 704 * If not, we operate in half-duplex mode. */ 705 if (phydev->duplex != priv->oldduplex) { 706 new_state = 1; 707 if (!(phydev->duplex)) 708 ctrl &= ~priv->hw->link.duplex; 709 else 710 ctrl |= priv->hw->link.duplex; 711 priv->oldduplex = phydev->duplex; 712 } 713 /* Flow Control operation */ 714 if (phydev->pause) 715 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex, 716 fc, pause_time); 717 718 if (phydev->speed != priv->speed) { 719 new_state = 1; 720 switch (phydev->speed) { 721 case 1000: 722 if (likely(priv->plat->has_gmac)) 723 ctrl &= ~priv->hw->link.port; 724 stmmac_hw_fix_mac_speed(priv); 725 break; 726 case 100: 727 case 10: 728 if (priv->plat->has_gmac) { 729 ctrl |= priv->hw->link.port; 730 if (phydev->speed == SPEED_100) { 731 ctrl |= priv->hw->link.speed; 732 } else { 733 ctrl &= ~(priv->hw->link.speed); 734 } 735 } else { 736 ctrl &= ~priv->hw->link.port; 737 } 738 stmmac_hw_fix_mac_speed(priv); 739 break; 740 default: 741 if (netif_msg_link(priv)) 742 pr_warn("%s: Speed (%d) not 10/100\n", 743 dev->name, phydev->speed); 744 break; 745 } 746 747 priv->speed = phydev->speed; 748 } 749 750 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 751 752 if (!priv->oldlink) { 753 new_state = 1; 754 priv->oldlink = 1; 755 } 756 } else if (priv->oldlink) { 757 new_state = 1; 758 priv->oldlink = 0; 759 priv->speed = 0; 760 priv->oldduplex = -1; 761 } 762 763 if (new_state && netif_msg_link(priv)) 764 phy_print_status(phydev); 765 766 spin_unlock_irqrestore(&priv->lock, flags); 767 768 /* At this stage, it could be needed to setup the EEE or adjust some 769 * MAC related HW registers. 770 */ 771 priv->eee_enabled = stmmac_eee_init(priv); 772 } 773 774 /** 775 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 776 * @priv: driver private structure 777 * Description: this is to verify if the HW supports the PCS. 778 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 779 * configured for the TBI, RTBI, or SGMII PHY interface. 780 */ 781 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 782 { 783 int interface = priv->plat->interface; 784 785 if (priv->dma_cap.pcs) { 786 if ((interface == PHY_INTERFACE_MODE_RGMII) || 787 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 788 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 789 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 790 pr_debug("STMMAC: PCS RGMII support enable\n"); 791 priv->pcs = STMMAC_PCS_RGMII; 792 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 793 pr_debug("STMMAC: PCS SGMII support enable\n"); 794 priv->pcs = STMMAC_PCS_SGMII; 795 } 796 } 797 } 798 799 /** 800 * stmmac_init_phy - PHY initialization 801 * @dev: net device structure 802 * Description: it initializes the driver's PHY state, and attaches the PHY 803 * to the mac driver. 804 * Return value: 805 * 0 on success 806 */ 807 static int stmmac_init_phy(struct net_device *dev) 808 { 809 struct stmmac_priv *priv = netdev_priv(dev); 810 struct phy_device *phydev; 811 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 812 char bus_id[MII_BUS_ID_SIZE]; 813 int interface = priv->plat->interface; 814 int max_speed = priv->plat->max_speed; 815 priv->oldlink = 0; 816 priv->speed = 0; 817 priv->oldduplex = -1; 818 819 if (priv->plat->phy_bus_name) 820 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 821 priv->plat->phy_bus_name, priv->plat->bus_id); 822 else 823 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 824 priv->plat->bus_id); 825 826 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 827 priv->plat->phy_addr); 828 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id_fmt); 829 830 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface); 831 832 if (IS_ERR(phydev)) { 833 pr_err("%s: Could not attach to PHY\n", dev->name); 834 return PTR_ERR(phydev); 835 } 836 837 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 838 if ((interface == PHY_INTERFACE_MODE_MII) || 839 (interface == PHY_INTERFACE_MODE_RMII) || 840 (max_speed < 1000 && max_speed > 0)) 841 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 842 SUPPORTED_1000baseT_Full); 843 844 /* 845 * Broken HW is sometimes missing the pull-up resistor on the 846 * MDIO line, which results in reads to non-existent devices returning 847 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 848 * device as well. 849 * Note: phydev->phy_id is the result of reading the UID PHY registers. 850 */ 851 if (phydev->phy_id == 0) { 852 phy_disconnect(phydev); 853 return -ENODEV; 854 } 855 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)" 856 " Link = %d\n", dev->name, phydev->phy_id, phydev->link); 857 858 priv->phydev = phydev; 859 860 return 0; 861 } 862 863 /** 864 * stmmac_display_ring - display ring 865 * @head: pointer to the head of the ring passed. 866 * @size: size of the ring. 867 * @extend_desc: to verify if extended descriptors are used. 868 * Description: display the control/status and buffer descriptors. 869 */ 870 static void stmmac_display_ring(void *head, int size, int extend_desc) 871 { 872 int i; 873 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 874 struct dma_desc *p = (struct dma_desc *)head; 875 876 for (i = 0; i < size; i++) { 877 u64 x; 878 if (extend_desc) { 879 x = *(u64 *) ep; 880 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 881 i, (unsigned int)virt_to_phys(ep), 882 (unsigned int)x, (unsigned int)(x >> 32), 883 ep->basic.des2, ep->basic.des3); 884 ep++; 885 } else { 886 x = *(u64 *) p; 887 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x", 888 i, (unsigned int)virt_to_phys(p), 889 (unsigned int)x, (unsigned int)(x >> 32), 890 p->des2, p->des3); 891 p++; 892 } 893 pr_info("\n"); 894 } 895 } 896 897 static void stmmac_display_rings(struct stmmac_priv *priv) 898 { 899 unsigned int txsize = priv->dma_tx_size; 900 unsigned int rxsize = priv->dma_rx_size; 901 902 if (priv->extend_desc) { 903 pr_info("Extended RX descriptor ring:\n"); 904 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 905 pr_info("Extended TX descriptor ring:\n"); 906 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 907 } else { 908 pr_info("RX descriptor ring:\n"); 909 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 910 pr_info("TX descriptor ring:\n"); 911 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 912 } 913 } 914 915 static int stmmac_set_bfsize(int mtu, int bufsize) 916 { 917 int ret = bufsize; 918 919 if (mtu >= BUF_SIZE_4KiB) 920 ret = BUF_SIZE_8KiB; 921 else if (mtu >= BUF_SIZE_2KiB) 922 ret = BUF_SIZE_4KiB; 923 else if (mtu > DEFAULT_BUFSIZE) 924 ret = BUF_SIZE_2KiB; 925 else 926 ret = DEFAULT_BUFSIZE; 927 928 return ret; 929 } 930 931 /** 932 * stmmac_clear_descriptors - clear descriptors 933 * @priv: driver private structure 934 * Description: this function is called to clear the tx and rx descriptors 935 * in case of both basic and extended descriptors are used. 936 */ 937 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 938 { 939 int i; 940 unsigned int txsize = priv->dma_tx_size; 941 unsigned int rxsize = priv->dma_rx_size; 942 943 /* Clear the Rx/Tx descriptors */ 944 for (i = 0; i < rxsize; i++) 945 if (priv->extend_desc) 946 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, 947 priv->use_riwt, priv->mode, 948 (i == rxsize - 1)); 949 else 950 priv->hw->desc->init_rx_desc(&priv->dma_rx[i], 951 priv->use_riwt, priv->mode, 952 (i == rxsize - 1)); 953 for (i = 0; i < txsize; i++) 954 if (priv->extend_desc) 955 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 956 priv->mode, 957 (i == txsize - 1)); 958 else 959 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 960 priv->mode, 961 (i == txsize - 1)); 962 } 963 964 /** 965 * stmmac_init_rx_buffers - init the RX descriptor buffer. 966 * @priv: driver private structure 967 * @p: descriptor pointer 968 * @i: descriptor index 969 * @flags: gfp flag. 970 * Description: this function is called to allocate a receive buffer, perform 971 * the DMA mapping and init the descriptor. 972 */ 973 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 974 int i, gfp_t flags) 975 { 976 struct sk_buff *skb; 977 978 skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN, 979 flags); 980 if (!skb) { 981 pr_err("%s: Rx init fails; skb is NULL\n", __func__); 982 return -ENOMEM; 983 } 984 skb_reserve(skb, NET_IP_ALIGN); 985 priv->rx_skbuff[i] = skb; 986 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 987 priv->dma_buf_sz, 988 DMA_FROM_DEVICE); 989 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) { 990 pr_err("%s: DMA mapping error\n", __func__); 991 dev_kfree_skb_any(skb); 992 return -EINVAL; 993 } 994 995 p->des2 = priv->rx_skbuff_dma[i]; 996 997 if ((priv->hw->mode->init_desc3) && 998 (priv->dma_buf_sz == BUF_SIZE_16KiB)) 999 priv->hw->mode->init_desc3(p); 1000 1001 return 0; 1002 } 1003 1004 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i) 1005 { 1006 if (priv->rx_skbuff[i]) { 1007 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i], 1008 priv->dma_buf_sz, DMA_FROM_DEVICE); 1009 dev_kfree_skb_any(priv->rx_skbuff[i]); 1010 } 1011 priv->rx_skbuff[i] = NULL; 1012 } 1013 1014 /** 1015 * init_dma_desc_rings - init the RX/TX descriptor rings 1016 * @dev: net device structure 1017 * @flags: gfp flag. 1018 * Description: this function initializes the DMA RX/TX descriptors 1019 * and allocates the socket buffers. It suppors the chained and ring 1020 * modes. 1021 */ 1022 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1023 { 1024 int i; 1025 struct stmmac_priv *priv = netdev_priv(dev); 1026 unsigned int txsize = priv->dma_tx_size; 1027 unsigned int rxsize = priv->dma_rx_size; 1028 unsigned int bfsize = 0; 1029 int ret = -ENOMEM; 1030 1031 if (priv->hw->mode->set_16kib_bfsize) 1032 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu); 1033 1034 if (bfsize < BUF_SIZE_16KiB) 1035 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1036 1037 priv->dma_buf_sz = bfsize; 1038 1039 if (netif_msg_probe(priv)) 1040 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__, 1041 txsize, rxsize, bfsize); 1042 1043 if (netif_msg_probe(priv)) { 1044 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__, 1045 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy); 1046 1047 /* RX INITIALIZATION */ 1048 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n"); 1049 } 1050 for (i = 0; i < rxsize; i++) { 1051 struct dma_desc *p; 1052 if (priv->extend_desc) 1053 p = &((priv->dma_erx + i)->basic); 1054 else 1055 p = priv->dma_rx + i; 1056 1057 ret = stmmac_init_rx_buffers(priv, p, i, flags); 1058 if (ret) 1059 goto err_init_rx_buffers; 1060 1061 if (netif_msg_probe(priv)) 1062 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i], 1063 priv->rx_skbuff[i]->data, 1064 (unsigned int)priv->rx_skbuff_dma[i]); 1065 } 1066 priv->cur_rx = 0; 1067 priv->dirty_rx = (unsigned int)(i - rxsize); 1068 buf_sz = bfsize; 1069 1070 /* Setup the chained descriptor addresses */ 1071 if (priv->mode == STMMAC_CHAIN_MODE) { 1072 if (priv->extend_desc) { 1073 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy, 1074 rxsize, 1); 1075 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy, 1076 txsize, 1); 1077 } else { 1078 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy, 1079 rxsize, 0); 1080 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy, 1081 txsize, 0); 1082 } 1083 } 1084 1085 /* TX INITIALIZATION */ 1086 for (i = 0; i < txsize; i++) { 1087 struct dma_desc *p; 1088 if (priv->extend_desc) 1089 p = &((priv->dma_etx + i)->basic); 1090 else 1091 p = priv->dma_tx + i; 1092 p->des2 = 0; 1093 priv->tx_skbuff_dma[i].buf = 0; 1094 priv->tx_skbuff_dma[i].map_as_page = false; 1095 priv->tx_skbuff[i] = NULL; 1096 } 1097 1098 priv->dirty_tx = 0; 1099 priv->cur_tx = 0; 1100 netdev_reset_queue(priv->dev); 1101 1102 stmmac_clear_descriptors(priv); 1103 1104 if (netif_msg_hw(priv)) 1105 stmmac_display_rings(priv); 1106 1107 return 0; 1108 err_init_rx_buffers: 1109 while (--i >= 0) 1110 stmmac_free_rx_buffers(priv, i); 1111 return ret; 1112 } 1113 1114 static void dma_free_rx_skbufs(struct stmmac_priv *priv) 1115 { 1116 int i; 1117 1118 for (i = 0; i < priv->dma_rx_size; i++) 1119 stmmac_free_rx_buffers(priv, i); 1120 } 1121 1122 static void dma_free_tx_skbufs(struct stmmac_priv *priv) 1123 { 1124 int i; 1125 1126 for (i = 0; i < priv->dma_tx_size; i++) { 1127 struct dma_desc *p; 1128 1129 if (priv->extend_desc) 1130 p = &((priv->dma_etx + i)->basic); 1131 else 1132 p = priv->dma_tx + i; 1133 1134 if (priv->tx_skbuff_dma[i].buf) { 1135 if (priv->tx_skbuff_dma[i].map_as_page) 1136 dma_unmap_page(priv->device, 1137 priv->tx_skbuff_dma[i].buf, 1138 priv->hw->desc->get_tx_len(p), 1139 DMA_TO_DEVICE); 1140 else 1141 dma_unmap_single(priv->device, 1142 priv->tx_skbuff_dma[i].buf, 1143 priv->hw->desc->get_tx_len(p), 1144 DMA_TO_DEVICE); 1145 } 1146 1147 if (priv->tx_skbuff[i] != NULL) { 1148 dev_kfree_skb_any(priv->tx_skbuff[i]); 1149 priv->tx_skbuff[i] = NULL; 1150 priv->tx_skbuff_dma[i].buf = 0; 1151 priv->tx_skbuff_dma[i].map_as_page = false; 1152 } 1153 } 1154 } 1155 1156 /** 1157 * alloc_dma_desc_resources - alloc TX/RX resources. 1158 * @priv: private structure 1159 * Description: according to which descriptor can be used (extend or basic) 1160 * this function allocates the resources for TX and RX paths. In case of 1161 * reception, for example, it pre-allocated the RX socket buffer in order to 1162 * allow zero-copy mechanism. 1163 */ 1164 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1165 { 1166 unsigned int txsize = priv->dma_tx_size; 1167 unsigned int rxsize = priv->dma_rx_size; 1168 int ret = -ENOMEM; 1169 1170 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t), 1171 GFP_KERNEL); 1172 if (!priv->rx_skbuff_dma) 1173 return -ENOMEM; 1174 1175 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *), 1176 GFP_KERNEL); 1177 if (!priv->rx_skbuff) 1178 goto err_rx_skbuff; 1179 1180 priv->tx_skbuff_dma = kmalloc_array(txsize, 1181 sizeof(*priv->tx_skbuff_dma), 1182 GFP_KERNEL); 1183 if (!priv->tx_skbuff_dma) 1184 goto err_tx_skbuff_dma; 1185 1186 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *), 1187 GFP_KERNEL); 1188 if (!priv->tx_skbuff) 1189 goto err_tx_skbuff; 1190 1191 if (priv->extend_desc) { 1192 priv->dma_erx = dma_alloc_coherent(priv->device, rxsize * 1193 sizeof(struct 1194 dma_extended_desc), 1195 &priv->dma_rx_phy, 1196 GFP_KERNEL); 1197 if (!priv->dma_erx) 1198 goto err_dma; 1199 1200 priv->dma_etx = dma_alloc_coherent(priv->device, txsize * 1201 sizeof(struct 1202 dma_extended_desc), 1203 &priv->dma_tx_phy, 1204 GFP_KERNEL); 1205 if (!priv->dma_etx) { 1206 dma_free_coherent(priv->device, priv->dma_rx_size * 1207 sizeof(struct dma_extended_desc), 1208 priv->dma_erx, priv->dma_rx_phy); 1209 goto err_dma; 1210 } 1211 } else { 1212 priv->dma_rx = dma_alloc_coherent(priv->device, rxsize * 1213 sizeof(struct dma_desc), 1214 &priv->dma_rx_phy, 1215 GFP_KERNEL); 1216 if (!priv->dma_rx) 1217 goto err_dma; 1218 1219 priv->dma_tx = dma_alloc_coherent(priv->device, txsize * 1220 sizeof(struct dma_desc), 1221 &priv->dma_tx_phy, 1222 GFP_KERNEL); 1223 if (!priv->dma_tx) { 1224 dma_free_coherent(priv->device, priv->dma_rx_size * 1225 sizeof(struct dma_desc), 1226 priv->dma_rx, priv->dma_rx_phy); 1227 goto err_dma; 1228 } 1229 } 1230 1231 return 0; 1232 1233 err_dma: 1234 kfree(priv->tx_skbuff); 1235 err_tx_skbuff: 1236 kfree(priv->tx_skbuff_dma); 1237 err_tx_skbuff_dma: 1238 kfree(priv->rx_skbuff); 1239 err_rx_skbuff: 1240 kfree(priv->rx_skbuff_dma); 1241 return ret; 1242 } 1243 1244 static void free_dma_desc_resources(struct stmmac_priv *priv) 1245 { 1246 /* Release the DMA TX/RX socket buffers */ 1247 dma_free_rx_skbufs(priv); 1248 dma_free_tx_skbufs(priv); 1249 1250 /* Free DMA regions of consistent memory previously allocated */ 1251 if (!priv->extend_desc) { 1252 dma_free_coherent(priv->device, 1253 priv->dma_tx_size * sizeof(struct dma_desc), 1254 priv->dma_tx, priv->dma_tx_phy); 1255 dma_free_coherent(priv->device, 1256 priv->dma_rx_size * sizeof(struct dma_desc), 1257 priv->dma_rx, priv->dma_rx_phy); 1258 } else { 1259 dma_free_coherent(priv->device, priv->dma_tx_size * 1260 sizeof(struct dma_extended_desc), 1261 priv->dma_etx, priv->dma_tx_phy); 1262 dma_free_coherent(priv->device, priv->dma_rx_size * 1263 sizeof(struct dma_extended_desc), 1264 priv->dma_erx, priv->dma_rx_phy); 1265 } 1266 kfree(priv->rx_skbuff_dma); 1267 kfree(priv->rx_skbuff); 1268 kfree(priv->tx_skbuff_dma); 1269 kfree(priv->tx_skbuff); 1270 } 1271 1272 /** 1273 * stmmac_dma_operation_mode - HW DMA operation mode 1274 * @priv: driver private structure 1275 * Description: it is used for configuring the DMA operation mode register in 1276 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1277 */ 1278 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1279 { 1280 int rxfifosz = priv->plat->rx_fifo_size; 1281 1282 if (priv->plat->force_thresh_dma_mode) 1283 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz); 1284 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1285 /* 1286 * In case of GMAC, SF mode can be enabled 1287 * to perform the TX COE in HW. This depends on: 1288 * 1) TX COE if actually supported 1289 * 2) There is no bugged Jumbo frame support 1290 * that needs to not insert csum in the TDES. 1291 */ 1292 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE, 1293 rxfifosz); 1294 priv->xstats.threshold = SF_DMA_MODE; 1295 } else 1296 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE, 1297 rxfifosz); 1298 } 1299 1300 /** 1301 * stmmac_tx_clean - to manage the transmission completion 1302 * @priv: driver private structure 1303 * Description: it reclaims the transmit resources after transmission completes. 1304 */ 1305 static void stmmac_tx_clean(struct stmmac_priv *priv) 1306 { 1307 unsigned int txsize = priv->dma_tx_size; 1308 unsigned int bytes_compl = 0, pkts_compl = 0; 1309 1310 spin_lock(&priv->tx_lock); 1311 1312 priv->xstats.tx_clean++; 1313 1314 while (priv->dirty_tx != priv->cur_tx) { 1315 int last; 1316 unsigned int entry = priv->dirty_tx % txsize; 1317 struct sk_buff *skb = priv->tx_skbuff[entry]; 1318 struct dma_desc *p; 1319 1320 if (priv->extend_desc) 1321 p = (struct dma_desc *)(priv->dma_etx + entry); 1322 else 1323 p = priv->dma_tx + entry; 1324 1325 /* Check if the descriptor is owned by the DMA. */ 1326 if (priv->hw->desc->get_tx_owner(p)) 1327 break; 1328 1329 /* Verify tx error by looking at the last segment. */ 1330 last = priv->hw->desc->get_tx_ls(p); 1331 if (likely(last)) { 1332 int tx_error = 1333 priv->hw->desc->tx_status(&priv->dev->stats, 1334 &priv->xstats, p, 1335 priv->ioaddr); 1336 if (likely(tx_error == 0)) { 1337 priv->dev->stats.tx_packets++; 1338 priv->xstats.tx_pkt_n++; 1339 } else 1340 priv->dev->stats.tx_errors++; 1341 1342 stmmac_get_tx_hwtstamp(priv, entry, skb); 1343 } 1344 if (netif_msg_tx_done(priv)) 1345 pr_debug("%s: curr %d, dirty %d\n", __func__, 1346 priv->cur_tx, priv->dirty_tx); 1347 1348 if (likely(priv->tx_skbuff_dma[entry].buf)) { 1349 if (priv->tx_skbuff_dma[entry].map_as_page) 1350 dma_unmap_page(priv->device, 1351 priv->tx_skbuff_dma[entry].buf, 1352 priv->hw->desc->get_tx_len(p), 1353 DMA_TO_DEVICE); 1354 else 1355 dma_unmap_single(priv->device, 1356 priv->tx_skbuff_dma[entry].buf, 1357 priv->hw->desc->get_tx_len(p), 1358 DMA_TO_DEVICE); 1359 priv->tx_skbuff_dma[entry].buf = 0; 1360 priv->tx_skbuff_dma[entry].map_as_page = false; 1361 } 1362 priv->hw->mode->clean_desc3(priv, p); 1363 1364 if (likely(skb != NULL)) { 1365 pkts_compl++; 1366 bytes_compl += skb->len; 1367 dev_consume_skb_any(skb); 1368 priv->tx_skbuff[entry] = NULL; 1369 } 1370 1371 priv->hw->desc->release_tx_desc(p, priv->mode); 1372 1373 priv->dirty_tx++; 1374 } 1375 1376 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl); 1377 1378 if (unlikely(netif_queue_stopped(priv->dev) && 1379 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) { 1380 netif_tx_lock(priv->dev); 1381 if (netif_queue_stopped(priv->dev) && 1382 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) { 1383 if (netif_msg_tx_done(priv)) 1384 pr_debug("%s: restart transmit\n", __func__); 1385 netif_wake_queue(priv->dev); 1386 } 1387 netif_tx_unlock(priv->dev); 1388 } 1389 1390 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1391 stmmac_enable_eee_mode(priv); 1392 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1393 } 1394 spin_unlock(&priv->tx_lock); 1395 } 1396 1397 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv) 1398 { 1399 priv->hw->dma->enable_dma_irq(priv->ioaddr); 1400 } 1401 1402 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv) 1403 { 1404 priv->hw->dma->disable_dma_irq(priv->ioaddr); 1405 } 1406 1407 /** 1408 * stmmac_tx_err - to manage the tx error 1409 * @priv: driver private structure 1410 * Description: it cleans the descriptors and restarts the transmission 1411 * in case of transmission errors. 1412 */ 1413 static void stmmac_tx_err(struct stmmac_priv *priv) 1414 { 1415 int i; 1416 int txsize = priv->dma_tx_size; 1417 netif_stop_queue(priv->dev); 1418 1419 priv->hw->dma->stop_tx(priv->ioaddr); 1420 dma_free_tx_skbufs(priv); 1421 for (i = 0; i < txsize; i++) 1422 if (priv->extend_desc) 1423 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 1424 priv->mode, 1425 (i == txsize - 1)); 1426 else 1427 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 1428 priv->mode, 1429 (i == txsize - 1)); 1430 priv->dirty_tx = 0; 1431 priv->cur_tx = 0; 1432 netdev_reset_queue(priv->dev); 1433 priv->hw->dma->start_tx(priv->ioaddr); 1434 1435 priv->dev->stats.tx_errors++; 1436 netif_wake_queue(priv->dev); 1437 } 1438 1439 /** 1440 * stmmac_dma_interrupt - DMA ISR 1441 * @priv: driver private structure 1442 * Description: this is the DMA ISR. It is called by the main ISR. 1443 * It calls the dwmac dma routine and schedule poll method in case of some 1444 * work can be done. 1445 */ 1446 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 1447 { 1448 int status; 1449 int rxfifosz = priv->plat->rx_fifo_size; 1450 1451 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats); 1452 if (likely((status & handle_rx)) || (status & handle_tx)) { 1453 if (likely(napi_schedule_prep(&priv->napi))) { 1454 stmmac_disable_dma_irq(priv); 1455 __napi_schedule(&priv->napi); 1456 } 1457 } 1458 if (unlikely(status & tx_hard_error_bump_tc)) { 1459 /* Try to bump up the dma threshold on this failure */ 1460 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 1461 (tc <= 256)) { 1462 tc += 64; 1463 if (priv->plat->force_thresh_dma_mode) 1464 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, 1465 rxfifosz); 1466 else 1467 priv->hw->dma->dma_mode(priv->ioaddr, tc, 1468 SF_DMA_MODE, rxfifosz); 1469 priv->xstats.threshold = tc; 1470 } 1471 } else if (unlikely(status == tx_hard_error)) 1472 stmmac_tx_err(priv); 1473 } 1474 1475 /** 1476 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 1477 * @priv: driver private structure 1478 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 1479 */ 1480 static void stmmac_mmc_setup(struct stmmac_priv *priv) 1481 { 1482 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 1483 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 1484 1485 dwmac_mmc_intr_all_mask(priv->ioaddr); 1486 1487 if (priv->dma_cap.rmon) { 1488 dwmac_mmc_ctrl(priv->ioaddr, mode); 1489 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 1490 } else 1491 pr_info(" No MAC Management Counters available\n"); 1492 } 1493 1494 /** 1495 * stmmac_get_synopsys_id - return the SYINID. 1496 * @priv: driver private structure 1497 * Description: this simple function is to decode and return the SYINID 1498 * starting from the HW core register. 1499 */ 1500 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv) 1501 { 1502 u32 hwid = priv->hw->synopsys_uid; 1503 1504 /* Check Synopsys Id (not available on old chips) */ 1505 if (likely(hwid)) { 1506 u32 uid = ((hwid & 0x0000ff00) >> 8); 1507 u32 synid = (hwid & 0x000000ff); 1508 1509 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n", 1510 uid, synid); 1511 1512 return synid; 1513 } 1514 return 0; 1515 } 1516 1517 /** 1518 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors 1519 * @priv: driver private structure 1520 * Description: select the Enhanced/Alternate or Normal descriptors. 1521 * In case of Enhanced/Alternate, it checks if the extended descriptors are 1522 * supported by the HW capability register. 1523 */ 1524 static void stmmac_selec_desc_mode(struct stmmac_priv *priv) 1525 { 1526 if (priv->plat->enh_desc) { 1527 pr_info(" Enhanced/Alternate descriptors\n"); 1528 1529 /* GMAC older than 3.50 has no extended descriptors */ 1530 if (priv->synopsys_id >= DWMAC_CORE_3_50) { 1531 pr_info("\tEnabled extended descriptors\n"); 1532 priv->extend_desc = 1; 1533 } else 1534 pr_warn("Extended descriptors not supported\n"); 1535 1536 priv->hw->desc = &enh_desc_ops; 1537 } else { 1538 pr_info(" Normal descriptors\n"); 1539 priv->hw->desc = &ndesc_ops; 1540 } 1541 } 1542 1543 /** 1544 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 1545 * @priv: driver private structure 1546 * Description: 1547 * new GMAC chip generations have a new register to indicate the 1548 * presence of the optional feature/functions. 1549 * This can be also used to override the value passed through the 1550 * platform and necessary for old MAC10/100 and GMAC chips. 1551 */ 1552 static int stmmac_get_hw_features(struct stmmac_priv *priv) 1553 { 1554 u32 hw_cap = 0; 1555 1556 if (priv->hw->dma->get_hw_feature) { 1557 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr); 1558 1559 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL); 1560 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1; 1561 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2; 1562 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4; 1563 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5; 1564 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6; 1565 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8; 1566 priv->dma_cap.pmt_remote_wake_up = 1567 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9; 1568 priv->dma_cap.pmt_magic_frame = 1569 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10; 1570 /* MMC */ 1571 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11; 1572 /* IEEE 1588-2002 */ 1573 priv->dma_cap.time_stamp = 1574 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12; 1575 /* IEEE 1588-2008 */ 1576 priv->dma_cap.atime_stamp = 1577 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13; 1578 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 1579 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14; 1580 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15; 1581 /* TX and RX csum */ 1582 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16; 1583 priv->dma_cap.rx_coe_type1 = 1584 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17; 1585 priv->dma_cap.rx_coe_type2 = 1586 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18; 1587 priv->dma_cap.rxfifo_over_2048 = 1588 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19; 1589 /* TX and RX number of channels */ 1590 priv->dma_cap.number_rx_channel = 1591 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20; 1592 priv->dma_cap.number_tx_channel = 1593 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22; 1594 /* Alternate (enhanced) DESC mode */ 1595 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24; 1596 } 1597 1598 return hw_cap; 1599 } 1600 1601 /** 1602 * stmmac_check_ether_addr - check if the MAC addr is valid 1603 * @priv: driver private structure 1604 * Description: 1605 * it is to verify if the MAC address is valid, in case of failures it 1606 * generates a random MAC address 1607 */ 1608 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 1609 { 1610 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 1611 priv->hw->mac->get_umac_addr(priv->hw, 1612 priv->dev->dev_addr, 0); 1613 if (!is_valid_ether_addr(priv->dev->dev_addr)) 1614 eth_hw_addr_random(priv->dev); 1615 pr_info("%s: device MAC address %pM\n", priv->dev->name, 1616 priv->dev->dev_addr); 1617 } 1618 } 1619 1620 /** 1621 * stmmac_init_dma_engine - DMA init. 1622 * @priv: driver private structure 1623 * Description: 1624 * It inits the DMA invoking the specific MAC/GMAC callback. 1625 * Some DMA parameters can be passed from the platform; 1626 * in case of these are not passed a default is kept for the MAC or GMAC. 1627 */ 1628 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 1629 { 1630 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0; 1631 int mixed_burst = 0; 1632 int atds = 0; 1633 1634 if (priv->plat->dma_cfg) { 1635 pbl = priv->plat->dma_cfg->pbl; 1636 fixed_burst = priv->plat->dma_cfg->fixed_burst; 1637 mixed_burst = priv->plat->dma_cfg->mixed_burst; 1638 burst_len = priv->plat->dma_cfg->burst_len; 1639 } 1640 1641 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 1642 atds = 1; 1643 1644 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst, 1645 burst_len, priv->dma_tx_phy, 1646 priv->dma_rx_phy, atds); 1647 } 1648 1649 /** 1650 * stmmac_tx_timer - mitigation sw timer for tx. 1651 * @data: data pointer 1652 * Description: 1653 * This is the timer handler to directly invoke the stmmac_tx_clean. 1654 */ 1655 static void stmmac_tx_timer(unsigned long data) 1656 { 1657 struct stmmac_priv *priv = (struct stmmac_priv *)data; 1658 1659 stmmac_tx_clean(priv); 1660 } 1661 1662 /** 1663 * stmmac_init_tx_coalesce - init tx mitigation options. 1664 * @priv: driver private structure 1665 * Description: 1666 * This inits the transmit coalesce parameters: i.e. timer rate, 1667 * timer handler and default threshold used for enabling the 1668 * interrupt on completion bit. 1669 */ 1670 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 1671 { 1672 priv->tx_coal_frames = STMMAC_TX_FRAMES; 1673 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 1674 init_timer(&priv->txtimer); 1675 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 1676 priv->txtimer.data = (unsigned long)priv; 1677 priv->txtimer.function = stmmac_tx_timer; 1678 add_timer(&priv->txtimer); 1679 } 1680 1681 /** 1682 * stmmac_hw_setup - setup mac in a usable state. 1683 * @dev : pointer to the device structure. 1684 * Description: 1685 * this is the main function to setup the HW in a usable state because the 1686 * dma engine is reset, the core registers are configured (e.g. AXI, 1687 * Checksum features, timers). The DMA is ready to start receiving and 1688 * transmitting. 1689 * Return value: 1690 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1691 * file on failure. 1692 */ 1693 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 1694 { 1695 struct stmmac_priv *priv = netdev_priv(dev); 1696 int ret; 1697 1698 /* DMA initialization and SW reset */ 1699 ret = stmmac_init_dma_engine(priv); 1700 if (ret < 0) { 1701 pr_err("%s: DMA engine initialization failed\n", __func__); 1702 return ret; 1703 } 1704 1705 /* Copy the MAC addr into the HW */ 1706 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0); 1707 1708 /* If required, perform hw setup of the bus. */ 1709 if (priv->plat->bus_setup) 1710 priv->plat->bus_setup(priv->ioaddr); 1711 1712 /* Initialize the MAC Core */ 1713 priv->hw->mac->core_init(priv->hw, dev->mtu); 1714 1715 ret = priv->hw->mac->rx_ipc(priv->hw); 1716 if (!ret) { 1717 pr_warn(" RX IPC Checksum Offload disabled\n"); 1718 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 1719 priv->hw->rx_csum = 0; 1720 } 1721 1722 /* Enable the MAC Rx/Tx */ 1723 stmmac_set_mac(priv->ioaddr, true); 1724 1725 /* Set the HW DMA mode and the COE */ 1726 stmmac_dma_operation_mode(priv); 1727 1728 stmmac_mmc_setup(priv); 1729 1730 if (init_ptp) { 1731 ret = stmmac_init_ptp(priv); 1732 if (ret && ret != -EOPNOTSUPP) 1733 pr_warn("%s: failed PTP initialisation\n", __func__); 1734 } 1735 1736 #ifdef CONFIG_DEBUG_FS 1737 ret = stmmac_init_fs(dev); 1738 if (ret < 0) 1739 pr_warn("%s: failed debugFS registration\n", __func__); 1740 #endif 1741 /* Start the ball rolling... */ 1742 pr_debug("%s: DMA RX/TX processes started...\n", dev->name); 1743 priv->hw->dma->start_tx(priv->ioaddr); 1744 priv->hw->dma->start_rx(priv->ioaddr); 1745 1746 /* Dump DMA/MAC registers */ 1747 if (netif_msg_hw(priv)) { 1748 priv->hw->mac->dump_regs(priv->hw); 1749 priv->hw->dma->dump_regs(priv->ioaddr); 1750 } 1751 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 1752 1753 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1754 priv->rx_riwt = MAX_DMA_RIWT; 1755 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT); 1756 } 1757 1758 if (priv->pcs && priv->hw->mac->ctrl_ane) 1759 priv->hw->mac->ctrl_ane(priv->hw, 0); 1760 1761 return 0; 1762 } 1763 1764 /** 1765 * stmmac_open - open entry point of the driver 1766 * @dev : pointer to the device structure. 1767 * Description: 1768 * This function is the open entry point of the driver. 1769 * Return value: 1770 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1771 * file on failure. 1772 */ 1773 static int stmmac_open(struct net_device *dev) 1774 { 1775 struct stmmac_priv *priv = netdev_priv(dev); 1776 int ret; 1777 1778 stmmac_check_ether_addr(priv); 1779 1780 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 1781 priv->pcs != STMMAC_PCS_RTBI) { 1782 ret = stmmac_init_phy(dev); 1783 if (ret) { 1784 pr_err("%s: Cannot attach to PHY (error: %d)\n", 1785 __func__, ret); 1786 return ret; 1787 } 1788 } 1789 1790 /* Extra statistics */ 1791 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 1792 priv->xstats.threshold = tc; 1793 1794 /* Create and initialize the TX/RX descriptors chains. */ 1795 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize); 1796 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize); 1797 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 1798 1799 ret = alloc_dma_desc_resources(priv); 1800 if (ret < 0) { 1801 pr_err("%s: DMA descriptors allocation failed\n", __func__); 1802 goto dma_desc_error; 1803 } 1804 1805 ret = init_dma_desc_rings(dev, GFP_KERNEL); 1806 if (ret < 0) { 1807 pr_err("%s: DMA descriptors initialization failed\n", __func__); 1808 goto init_error; 1809 } 1810 1811 ret = stmmac_hw_setup(dev, true); 1812 if (ret < 0) { 1813 pr_err("%s: Hw setup failed\n", __func__); 1814 goto init_error; 1815 } 1816 1817 stmmac_init_tx_coalesce(priv); 1818 1819 if (priv->phydev) 1820 phy_start(priv->phydev); 1821 1822 /* Request the IRQ lines */ 1823 ret = request_irq(dev->irq, stmmac_interrupt, 1824 IRQF_SHARED, dev->name, dev); 1825 if (unlikely(ret < 0)) { 1826 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n", 1827 __func__, dev->irq, ret); 1828 goto init_error; 1829 } 1830 1831 /* Request the Wake IRQ in case of another line is used for WoL */ 1832 if (priv->wol_irq != dev->irq) { 1833 ret = request_irq(priv->wol_irq, stmmac_interrupt, 1834 IRQF_SHARED, dev->name, dev); 1835 if (unlikely(ret < 0)) { 1836 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n", 1837 __func__, priv->wol_irq, ret); 1838 goto wolirq_error; 1839 } 1840 } 1841 1842 /* Request the IRQ lines */ 1843 if (priv->lpi_irq > 0) { 1844 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 1845 dev->name, dev); 1846 if (unlikely(ret < 0)) { 1847 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1848 __func__, priv->lpi_irq, ret); 1849 goto lpiirq_error; 1850 } 1851 } 1852 1853 napi_enable(&priv->napi); 1854 netif_start_queue(dev); 1855 1856 return 0; 1857 1858 lpiirq_error: 1859 if (priv->wol_irq != dev->irq) 1860 free_irq(priv->wol_irq, dev); 1861 wolirq_error: 1862 free_irq(dev->irq, dev); 1863 1864 init_error: 1865 free_dma_desc_resources(priv); 1866 dma_desc_error: 1867 if (priv->phydev) 1868 phy_disconnect(priv->phydev); 1869 1870 return ret; 1871 } 1872 1873 /** 1874 * stmmac_release - close entry point of the driver 1875 * @dev : device pointer. 1876 * Description: 1877 * This is the stop entry point of the driver. 1878 */ 1879 static int stmmac_release(struct net_device *dev) 1880 { 1881 struct stmmac_priv *priv = netdev_priv(dev); 1882 1883 if (priv->eee_enabled) 1884 del_timer_sync(&priv->eee_ctrl_timer); 1885 1886 /* Stop and disconnect the PHY */ 1887 if (priv->phydev) { 1888 phy_stop(priv->phydev); 1889 phy_disconnect(priv->phydev); 1890 priv->phydev = NULL; 1891 } 1892 1893 netif_stop_queue(dev); 1894 1895 napi_disable(&priv->napi); 1896 1897 del_timer_sync(&priv->txtimer); 1898 1899 /* Free the IRQ lines */ 1900 free_irq(dev->irq, dev); 1901 if (priv->wol_irq != dev->irq) 1902 free_irq(priv->wol_irq, dev); 1903 if (priv->lpi_irq > 0) 1904 free_irq(priv->lpi_irq, dev); 1905 1906 /* Stop TX/RX DMA and clear the descriptors */ 1907 priv->hw->dma->stop_tx(priv->ioaddr); 1908 priv->hw->dma->stop_rx(priv->ioaddr); 1909 1910 /* Release and free the Rx/Tx resources */ 1911 free_dma_desc_resources(priv); 1912 1913 /* Disable the MAC Rx/Tx */ 1914 stmmac_set_mac(priv->ioaddr, false); 1915 1916 netif_carrier_off(dev); 1917 1918 #ifdef CONFIG_DEBUG_FS 1919 stmmac_exit_fs(); 1920 #endif 1921 1922 stmmac_release_ptp(priv); 1923 1924 return 0; 1925 } 1926 1927 /** 1928 * stmmac_xmit - Tx entry point of the driver 1929 * @skb : the socket buffer 1930 * @dev : device pointer 1931 * Description : this is the tx entry point of the driver. 1932 * It programs the chain or the ring and supports oversized frames 1933 * and SG feature. 1934 */ 1935 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 1936 { 1937 struct stmmac_priv *priv = netdev_priv(dev); 1938 unsigned int txsize = priv->dma_tx_size; 1939 unsigned int entry; 1940 int i, csum_insertion = 0, is_jumbo = 0; 1941 int nfrags = skb_shinfo(skb)->nr_frags; 1942 struct dma_desc *desc, *first; 1943 unsigned int nopaged_len = skb_headlen(skb); 1944 unsigned int enh_desc = priv->plat->enh_desc; 1945 1946 spin_lock(&priv->tx_lock); 1947 1948 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { 1949 spin_unlock(&priv->tx_lock); 1950 if (!netif_queue_stopped(dev)) { 1951 netif_stop_queue(dev); 1952 /* This is a hard error, log it. */ 1953 pr_err("%s: Tx Ring full when queue awake\n", __func__); 1954 } 1955 return NETDEV_TX_BUSY; 1956 } 1957 1958 if (priv->tx_path_in_lpi_mode) 1959 stmmac_disable_eee_mode(priv); 1960 1961 entry = priv->cur_tx % txsize; 1962 1963 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 1964 1965 if (priv->extend_desc) 1966 desc = (struct dma_desc *)(priv->dma_etx + entry); 1967 else 1968 desc = priv->dma_tx + entry; 1969 1970 first = desc; 1971 1972 /* To program the descriptors according to the size of the frame */ 1973 if (enh_desc) 1974 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc); 1975 1976 if (likely(!is_jumbo)) { 1977 desc->des2 = dma_map_single(priv->device, skb->data, 1978 nopaged_len, DMA_TO_DEVICE); 1979 if (dma_mapping_error(priv->device, desc->des2)) 1980 goto dma_map_err; 1981 priv->tx_skbuff_dma[entry].buf = desc->des2; 1982 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, 1983 csum_insertion, priv->mode); 1984 } else { 1985 desc = first; 1986 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion); 1987 if (unlikely(entry < 0)) 1988 goto dma_map_err; 1989 } 1990 1991 for (i = 0; i < nfrags; i++) { 1992 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1993 int len = skb_frag_size(frag); 1994 1995 priv->tx_skbuff[entry] = NULL; 1996 entry = (++priv->cur_tx) % txsize; 1997 if (priv->extend_desc) 1998 desc = (struct dma_desc *)(priv->dma_etx + entry); 1999 else 2000 desc = priv->dma_tx + entry; 2001 2002 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len, 2003 DMA_TO_DEVICE); 2004 if (dma_mapping_error(priv->device, desc->des2)) 2005 goto dma_map_err; /* should reuse desc w/o issues */ 2006 2007 priv->tx_skbuff_dma[entry].buf = desc->des2; 2008 priv->tx_skbuff_dma[entry].map_as_page = true; 2009 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, 2010 priv->mode); 2011 wmb(); 2012 priv->hw->desc->set_tx_owner(desc); 2013 wmb(); 2014 } 2015 2016 priv->tx_skbuff[entry] = skb; 2017 2018 /* Finalize the latest segment. */ 2019 priv->hw->desc->close_tx_desc(desc); 2020 2021 wmb(); 2022 /* According to the coalesce parameter the IC bit for the latest 2023 * segment could be reset and the timer re-started to invoke the 2024 * stmmac_tx function. This approach takes care about the fragments. 2025 */ 2026 priv->tx_count_frames += nfrags + 1; 2027 if (priv->tx_coal_frames > priv->tx_count_frames) { 2028 priv->hw->desc->clear_tx_ic(desc); 2029 priv->xstats.tx_reset_ic_bit++; 2030 mod_timer(&priv->txtimer, 2031 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2032 } else 2033 priv->tx_count_frames = 0; 2034 2035 /* To avoid raise condition */ 2036 priv->hw->desc->set_tx_owner(first); 2037 wmb(); 2038 2039 priv->cur_tx++; 2040 2041 if (netif_msg_pktdata(priv)) { 2042 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d", 2043 __func__, (priv->cur_tx % txsize), 2044 (priv->dirty_tx % txsize), entry, first, nfrags); 2045 2046 if (priv->extend_desc) 2047 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 2048 else 2049 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 2050 2051 pr_debug(">>> frame to be transmitted: "); 2052 print_pkt(skb->data, skb->len); 2053 } 2054 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 2055 if (netif_msg_hw(priv)) 2056 pr_debug("%s: stop transmitted packets\n", __func__); 2057 netif_stop_queue(dev); 2058 } 2059 2060 dev->stats.tx_bytes += skb->len; 2061 2062 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2063 priv->hwts_tx_en)) { 2064 /* declare that device is doing timestamping */ 2065 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2066 priv->hw->desc->enable_tx_timestamp(first); 2067 } 2068 2069 if (!priv->hwts_tx_en) 2070 skb_tx_timestamp(skb); 2071 2072 netdev_sent_queue(dev, skb->len); 2073 priv->hw->dma->enable_dma_transmission(priv->ioaddr); 2074 2075 spin_unlock(&priv->tx_lock); 2076 return NETDEV_TX_OK; 2077 2078 dma_map_err: 2079 spin_unlock(&priv->tx_lock); 2080 dev_err(priv->device, "Tx dma map failed\n"); 2081 dev_kfree_skb(skb); 2082 priv->dev->stats.tx_dropped++; 2083 return NETDEV_TX_OK; 2084 } 2085 2086 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 2087 { 2088 struct ethhdr *ehdr; 2089 u16 vlanid; 2090 2091 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) == 2092 NETIF_F_HW_VLAN_CTAG_RX && 2093 !__vlan_get_tag(skb, &vlanid)) { 2094 /* pop the vlan tag */ 2095 ehdr = (struct ethhdr *)skb->data; 2096 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2); 2097 skb_pull(skb, VLAN_HLEN); 2098 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid); 2099 } 2100 } 2101 2102 2103 /** 2104 * stmmac_rx_refill - refill used skb preallocated buffers 2105 * @priv: driver private structure 2106 * Description : this is to reallocate the skb for the reception process 2107 * that is based on zero-copy. 2108 */ 2109 static inline void stmmac_rx_refill(struct stmmac_priv *priv) 2110 { 2111 unsigned int rxsize = priv->dma_rx_size; 2112 int bfsize = priv->dma_buf_sz; 2113 2114 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) { 2115 unsigned int entry = priv->dirty_rx % rxsize; 2116 struct dma_desc *p; 2117 2118 if (priv->extend_desc) 2119 p = (struct dma_desc *)(priv->dma_erx + entry); 2120 else 2121 p = priv->dma_rx + entry; 2122 2123 if (likely(priv->rx_skbuff[entry] == NULL)) { 2124 struct sk_buff *skb; 2125 2126 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 2127 2128 if (unlikely(skb == NULL)) 2129 break; 2130 2131 priv->rx_skbuff[entry] = skb; 2132 priv->rx_skbuff_dma[entry] = 2133 dma_map_single(priv->device, skb->data, bfsize, 2134 DMA_FROM_DEVICE); 2135 if (dma_mapping_error(priv->device, 2136 priv->rx_skbuff_dma[entry])) { 2137 dev_err(priv->device, "Rx dma map failed\n"); 2138 dev_kfree_skb(skb); 2139 break; 2140 } 2141 p->des2 = priv->rx_skbuff_dma[entry]; 2142 2143 priv->hw->mode->refill_desc3(priv, p); 2144 2145 if (netif_msg_rx_status(priv)) 2146 pr_debug("\trefill entry #%d\n", entry); 2147 } 2148 wmb(); 2149 priv->hw->desc->set_rx_owner(p); 2150 wmb(); 2151 } 2152 } 2153 2154 /** 2155 * stmmac_rx - manage the receive process 2156 * @priv: driver private structure 2157 * @limit: napi bugget. 2158 * Description : this the function called by the napi poll method. 2159 * It gets all the frames inside the ring. 2160 */ 2161 static int stmmac_rx(struct stmmac_priv *priv, int limit) 2162 { 2163 unsigned int rxsize = priv->dma_rx_size; 2164 unsigned int entry = priv->cur_rx % rxsize; 2165 unsigned int next_entry; 2166 unsigned int count = 0; 2167 int coe = priv->hw->rx_csum; 2168 2169 if (netif_msg_rx_status(priv)) { 2170 pr_debug("%s: descriptor ring:\n", __func__); 2171 if (priv->extend_desc) 2172 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 2173 else 2174 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 2175 } 2176 while (count < limit) { 2177 int status; 2178 struct dma_desc *p; 2179 2180 if (priv->extend_desc) 2181 p = (struct dma_desc *)(priv->dma_erx + entry); 2182 else 2183 p = priv->dma_rx + entry; 2184 2185 if (priv->hw->desc->get_rx_owner(p)) 2186 break; 2187 2188 count++; 2189 2190 next_entry = (++priv->cur_rx) % rxsize; 2191 if (priv->extend_desc) 2192 prefetch(priv->dma_erx + next_entry); 2193 else 2194 prefetch(priv->dma_rx + next_entry); 2195 2196 /* read the status of the incoming frame */ 2197 status = priv->hw->desc->rx_status(&priv->dev->stats, 2198 &priv->xstats, p); 2199 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) 2200 priv->hw->desc->rx_extended_status(&priv->dev->stats, 2201 &priv->xstats, 2202 priv->dma_erx + 2203 entry); 2204 if (unlikely(status == discard_frame)) { 2205 priv->dev->stats.rx_errors++; 2206 if (priv->hwts_rx_en && !priv->extend_desc) { 2207 /* DESC2 & DESC3 will be overwitten by device 2208 * with timestamp value, hence reinitialize 2209 * them in stmmac_rx_refill() function so that 2210 * device can reuse it. 2211 */ 2212 priv->rx_skbuff[entry] = NULL; 2213 dma_unmap_single(priv->device, 2214 priv->rx_skbuff_dma[entry], 2215 priv->dma_buf_sz, 2216 DMA_FROM_DEVICE); 2217 } 2218 } else { 2219 struct sk_buff *skb; 2220 int frame_len; 2221 2222 frame_len = priv->hw->desc->get_rx_frame_len(p, coe); 2223 2224 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 2225 * Type frames (LLC/LLC-SNAP) 2226 */ 2227 if (unlikely(status != llc_snap)) 2228 frame_len -= ETH_FCS_LEN; 2229 2230 if (netif_msg_rx_status(priv)) { 2231 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n", 2232 p, entry, p->des2); 2233 if (frame_len > ETH_FRAME_LEN) 2234 pr_debug("\tframe size %d, COE: %d\n", 2235 frame_len, status); 2236 } 2237 skb = priv->rx_skbuff[entry]; 2238 if (unlikely(!skb)) { 2239 pr_err("%s: Inconsistent Rx descriptor chain\n", 2240 priv->dev->name); 2241 priv->dev->stats.rx_dropped++; 2242 break; 2243 } 2244 prefetch(skb->data - NET_IP_ALIGN); 2245 priv->rx_skbuff[entry] = NULL; 2246 2247 stmmac_get_rx_hwtstamp(priv, entry, skb); 2248 2249 skb_put(skb, frame_len); 2250 dma_unmap_single(priv->device, 2251 priv->rx_skbuff_dma[entry], 2252 priv->dma_buf_sz, DMA_FROM_DEVICE); 2253 2254 if (netif_msg_pktdata(priv)) { 2255 pr_debug("frame received (%dbytes)", frame_len); 2256 print_pkt(skb->data, frame_len); 2257 } 2258 2259 stmmac_rx_vlan(priv->dev, skb); 2260 2261 skb->protocol = eth_type_trans(skb, priv->dev); 2262 2263 if (unlikely(!coe)) 2264 skb_checksum_none_assert(skb); 2265 else 2266 skb->ip_summed = CHECKSUM_UNNECESSARY; 2267 2268 napi_gro_receive(&priv->napi, skb); 2269 2270 priv->dev->stats.rx_packets++; 2271 priv->dev->stats.rx_bytes += frame_len; 2272 } 2273 entry = next_entry; 2274 } 2275 2276 stmmac_rx_refill(priv); 2277 2278 priv->xstats.rx_pkt_n += count; 2279 2280 return count; 2281 } 2282 2283 /** 2284 * stmmac_poll - stmmac poll method (NAPI) 2285 * @napi : pointer to the napi structure. 2286 * @budget : maximum number of packets that the current CPU can receive from 2287 * all interfaces. 2288 * Description : 2289 * To look at the incoming frames and clear the tx resources. 2290 */ 2291 static int stmmac_poll(struct napi_struct *napi, int budget) 2292 { 2293 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); 2294 int work_done = 0; 2295 2296 priv->xstats.napi_poll++; 2297 stmmac_tx_clean(priv); 2298 2299 work_done = stmmac_rx(priv, budget); 2300 if (work_done < budget) { 2301 napi_complete(napi); 2302 stmmac_enable_dma_irq(priv); 2303 } 2304 return work_done; 2305 } 2306 2307 /** 2308 * stmmac_tx_timeout 2309 * @dev : Pointer to net device structure 2310 * Description: this function is called when a packet transmission fails to 2311 * complete within a reasonable time. The driver will mark the error in the 2312 * netdev structure and arrange for the device to be reset to a sane state 2313 * in order to transmit a new packet. 2314 */ 2315 static void stmmac_tx_timeout(struct net_device *dev) 2316 { 2317 struct stmmac_priv *priv = netdev_priv(dev); 2318 2319 /* Clear Tx resources and restart transmitting again */ 2320 stmmac_tx_err(priv); 2321 } 2322 2323 /** 2324 * stmmac_set_rx_mode - entry point for multicast addressing 2325 * @dev : pointer to the device structure 2326 * Description: 2327 * This function is a driver entry point which gets called by the kernel 2328 * whenever multicast addresses must be enabled/disabled. 2329 * Return value: 2330 * void. 2331 */ 2332 static void stmmac_set_rx_mode(struct net_device *dev) 2333 { 2334 struct stmmac_priv *priv = netdev_priv(dev); 2335 2336 priv->hw->mac->set_filter(priv->hw, dev); 2337 } 2338 2339 /** 2340 * stmmac_change_mtu - entry point to change MTU size for the device. 2341 * @dev : device pointer. 2342 * @new_mtu : the new MTU size for the device. 2343 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 2344 * to drive packet transmission. Ethernet has an MTU of 1500 octets 2345 * (ETH_DATA_LEN). This value can be changed with ifconfig. 2346 * Return value: 2347 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2348 * file on failure. 2349 */ 2350 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 2351 { 2352 struct stmmac_priv *priv = netdev_priv(dev); 2353 int max_mtu; 2354 2355 if (netif_running(dev)) { 2356 pr_err("%s: must be stopped to change its MTU\n", dev->name); 2357 return -EBUSY; 2358 } 2359 2360 if (priv->plat->enh_desc) 2361 max_mtu = JUMBO_LEN; 2362 else 2363 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 2364 2365 if (priv->plat->maxmtu < max_mtu) 2366 max_mtu = priv->plat->maxmtu; 2367 2368 if ((new_mtu < 46) || (new_mtu > max_mtu)) { 2369 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu); 2370 return -EINVAL; 2371 } 2372 2373 dev->mtu = new_mtu; 2374 netdev_update_features(dev); 2375 2376 return 0; 2377 } 2378 2379 static netdev_features_t stmmac_fix_features(struct net_device *dev, 2380 netdev_features_t features) 2381 { 2382 struct stmmac_priv *priv = netdev_priv(dev); 2383 2384 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 2385 features &= ~NETIF_F_RXCSUM; 2386 2387 if (!priv->plat->tx_coe) 2388 features &= ~NETIF_F_ALL_CSUM; 2389 2390 /* Some GMAC devices have a bugged Jumbo frame support that 2391 * needs to have the Tx COE disabled for oversized frames 2392 * (due to limited buffer sizes). In this case we disable 2393 * the TX csum insertionin the TDES and not use SF. 2394 */ 2395 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 2396 features &= ~NETIF_F_ALL_CSUM; 2397 2398 return features; 2399 } 2400 2401 static int stmmac_set_features(struct net_device *netdev, 2402 netdev_features_t features) 2403 { 2404 struct stmmac_priv *priv = netdev_priv(netdev); 2405 2406 /* Keep the COE Type in case of csum is supporting */ 2407 if (features & NETIF_F_RXCSUM) 2408 priv->hw->rx_csum = priv->plat->rx_coe; 2409 else 2410 priv->hw->rx_csum = 0; 2411 /* No check needed because rx_coe has been set before and it will be 2412 * fixed in case of issue. 2413 */ 2414 priv->hw->mac->rx_ipc(priv->hw); 2415 2416 return 0; 2417 } 2418 2419 /** 2420 * stmmac_interrupt - main ISR 2421 * @irq: interrupt number. 2422 * @dev_id: to pass the net device pointer. 2423 * Description: this is the main driver interrupt service routine. 2424 * It can call: 2425 * o DMA service routine (to manage incoming frame reception and transmission 2426 * status) 2427 * o Core interrupts to manage: remote wake-up, management counter, LPI 2428 * interrupts. 2429 */ 2430 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 2431 { 2432 struct net_device *dev = (struct net_device *)dev_id; 2433 struct stmmac_priv *priv = netdev_priv(dev); 2434 2435 if (priv->irq_wake) 2436 pm_wakeup_event(priv->device, 0); 2437 2438 if (unlikely(!dev)) { 2439 pr_err("%s: invalid dev pointer\n", __func__); 2440 return IRQ_NONE; 2441 } 2442 2443 /* To handle GMAC own interrupts */ 2444 if (priv->plat->has_gmac) { 2445 int status = priv->hw->mac->host_irq_status(priv->hw, 2446 &priv->xstats); 2447 if (unlikely(status)) { 2448 /* For LPI we need to save the tx status */ 2449 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 2450 priv->tx_path_in_lpi_mode = true; 2451 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 2452 priv->tx_path_in_lpi_mode = false; 2453 } 2454 } 2455 2456 /* To handle DMA interrupts */ 2457 stmmac_dma_interrupt(priv); 2458 2459 return IRQ_HANDLED; 2460 } 2461 2462 #ifdef CONFIG_NET_POLL_CONTROLLER 2463 /* Polling receive - used by NETCONSOLE and other diagnostic tools 2464 * to allow network I/O with interrupts disabled. 2465 */ 2466 static void stmmac_poll_controller(struct net_device *dev) 2467 { 2468 disable_irq(dev->irq); 2469 stmmac_interrupt(dev->irq, dev); 2470 enable_irq(dev->irq); 2471 } 2472 #endif 2473 2474 /** 2475 * stmmac_ioctl - Entry point for the Ioctl 2476 * @dev: Device pointer. 2477 * @rq: An IOCTL specefic structure, that can contain a pointer to 2478 * a proprietary structure used to pass information to the driver. 2479 * @cmd: IOCTL command 2480 * Description: 2481 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 2482 */ 2483 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2484 { 2485 struct stmmac_priv *priv = netdev_priv(dev); 2486 int ret = -EOPNOTSUPP; 2487 2488 if (!netif_running(dev)) 2489 return -EINVAL; 2490 2491 switch (cmd) { 2492 case SIOCGMIIPHY: 2493 case SIOCGMIIREG: 2494 case SIOCSMIIREG: 2495 if (!priv->phydev) 2496 return -EINVAL; 2497 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 2498 break; 2499 case SIOCSHWTSTAMP: 2500 ret = stmmac_hwtstamp_ioctl(dev, rq); 2501 break; 2502 default: 2503 break; 2504 } 2505 2506 return ret; 2507 } 2508 2509 #ifdef CONFIG_DEBUG_FS 2510 static struct dentry *stmmac_fs_dir; 2511 static struct dentry *stmmac_rings_status; 2512 static struct dentry *stmmac_dma_cap; 2513 2514 static void sysfs_display_ring(void *head, int size, int extend_desc, 2515 struct seq_file *seq) 2516 { 2517 int i; 2518 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 2519 struct dma_desc *p = (struct dma_desc *)head; 2520 2521 for (i = 0; i < size; i++) { 2522 u64 x; 2523 if (extend_desc) { 2524 x = *(u64 *) ep; 2525 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2526 i, (unsigned int)virt_to_phys(ep), 2527 (unsigned int)x, (unsigned int)(x >> 32), 2528 ep->basic.des2, ep->basic.des3); 2529 ep++; 2530 } else { 2531 x = *(u64 *) p; 2532 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2533 i, (unsigned int)virt_to_phys(ep), 2534 (unsigned int)x, (unsigned int)(x >> 32), 2535 p->des2, p->des3); 2536 p++; 2537 } 2538 seq_printf(seq, "\n"); 2539 } 2540 } 2541 2542 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 2543 { 2544 struct net_device *dev = seq->private; 2545 struct stmmac_priv *priv = netdev_priv(dev); 2546 unsigned int txsize = priv->dma_tx_size; 2547 unsigned int rxsize = priv->dma_rx_size; 2548 2549 if (priv->extend_desc) { 2550 seq_printf(seq, "Extended RX descriptor ring:\n"); 2551 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq); 2552 seq_printf(seq, "Extended TX descriptor ring:\n"); 2553 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq); 2554 } else { 2555 seq_printf(seq, "RX descriptor ring:\n"); 2556 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq); 2557 seq_printf(seq, "TX descriptor ring:\n"); 2558 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq); 2559 } 2560 2561 return 0; 2562 } 2563 2564 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 2565 { 2566 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 2567 } 2568 2569 static const struct file_operations stmmac_rings_status_fops = { 2570 .owner = THIS_MODULE, 2571 .open = stmmac_sysfs_ring_open, 2572 .read = seq_read, 2573 .llseek = seq_lseek, 2574 .release = single_release, 2575 }; 2576 2577 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 2578 { 2579 struct net_device *dev = seq->private; 2580 struct stmmac_priv *priv = netdev_priv(dev); 2581 2582 if (!priv->hw_cap_support) { 2583 seq_printf(seq, "DMA HW features not supported\n"); 2584 return 0; 2585 } 2586 2587 seq_printf(seq, "==============================\n"); 2588 seq_printf(seq, "\tDMA HW features\n"); 2589 seq_printf(seq, "==============================\n"); 2590 2591 seq_printf(seq, "\t10/100 Mbps %s\n", 2592 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 2593 seq_printf(seq, "\t1000 Mbps %s\n", 2594 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 2595 seq_printf(seq, "\tHalf duple %s\n", 2596 (priv->dma_cap.half_duplex) ? "Y" : "N"); 2597 seq_printf(seq, "\tHash Filter: %s\n", 2598 (priv->dma_cap.hash_filter) ? "Y" : "N"); 2599 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 2600 (priv->dma_cap.multi_addr) ? "Y" : "N"); 2601 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n", 2602 (priv->dma_cap.pcs) ? "Y" : "N"); 2603 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 2604 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 2605 seq_printf(seq, "\tPMT Remote wake up: %s\n", 2606 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 2607 seq_printf(seq, "\tPMT Magic Frame: %s\n", 2608 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 2609 seq_printf(seq, "\tRMON module: %s\n", 2610 (priv->dma_cap.rmon) ? "Y" : "N"); 2611 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 2612 (priv->dma_cap.time_stamp) ? "Y" : "N"); 2613 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n", 2614 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 2615 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n", 2616 (priv->dma_cap.eee) ? "Y" : "N"); 2617 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 2618 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 2619 (priv->dma_cap.tx_coe) ? "Y" : "N"); 2620 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 2621 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 2622 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 2623 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 2624 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 2625 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 2626 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 2627 priv->dma_cap.number_rx_channel); 2628 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 2629 priv->dma_cap.number_tx_channel); 2630 seq_printf(seq, "\tEnhanced descriptors: %s\n", 2631 (priv->dma_cap.enh_desc) ? "Y" : "N"); 2632 2633 return 0; 2634 } 2635 2636 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 2637 { 2638 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 2639 } 2640 2641 static const struct file_operations stmmac_dma_cap_fops = { 2642 .owner = THIS_MODULE, 2643 .open = stmmac_sysfs_dma_cap_open, 2644 .read = seq_read, 2645 .llseek = seq_lseek, 2646 .release = single_release, 2647 }; 2648 2649 static int stmmac_init_fs(struct net_device *dev) 2650 { 2651 /* Create debugfs entries */ 2652 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 2653 2654 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 2655 pr_err("ERROR %s, debugfs create directory failed\n", 2656 STMMAC_RESOURCE_NAME); 2657 2658 return -ENOMEM; 2659 } 2660 2661 /* Entry to report DMA RX/TX rings */ 2662 stmmac_rings_status = debugfs_create_file("descriptors_status", 2663 S_IRUGO, stmmac_fs_dir, dev, 2664 &stmmac_rings_status_fops); 2665 2666 if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) { 2667 pr_info("ERROR creating stmmac ring debugfs file\n"); 2668 debugfs_remove(stmmac_fs_dir); 2669 2670 return -ENOMEM; 2671 } 2672 2673 /* Entry to report the DMA HW features */ 2674 stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir, 2675 dev, &stmmac_dma_cap_fops); 2676 2677 if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) { 2678 pr_info("ERROR creating stmmac MMC debugfs file\n"); 2679 debugfs_remove(stmmac_rings_status); 2680 debugfs_remove(stmmac_fs_dir); 2681 2682 return -ENOMEM; 2683 } 2684 2685 return 0; 2686 } 2687 2688 static void stmmac_exit_fs(void) 2689 { 2690 debugfs_remove(stmmac_rings_status); 2691 debugfs_remove(stmmac_dma_cap); 2692 debugfs_remove(stmmac_fs_dir); 2693 } 2694 #endif /* CONFIG_DEBUG_FS */ 2695 2696 static const struct net_device_ops stmmac_netdev_ops = { 2697 .ndo_open = stmmac_open, 2698 .ndo_start_xmit = stmmac_xmit, 2699 .ndo_stop = stmmac_release, 2700 .ndo_change_mtu = stmmac_change_mtu, 2701 .ndo_fix_features = stmmac_fix_features, 2702 .ndo_set_features = stmmac_set_features, 2703 .ndo_set_rx_mode = stmmac_set_rx_mode, 2704 .ndo_tx_timeout = stmmac_tx_timeout, 2705 .ndo_do_ioctl = stmmac_ioctl, 2706 #ifdef CONFIG_NET_POLL_CONTROLLER 2707 .ndo_poll_controller = stmmac_poll_controller, 2708 #endif 2709 .ndo_set_mac_address = eth_mac_addr, 2710 }; 2711 2712 /** 2713 * stmmac_hw_init - Init the MAC device 2714 * @priv: driver private structure 2715 * Description: this function is to configure the MAC device according to 2716 * some platform parameters or the HW capability register. It prepares the 2717 * driver to use either ring or chain modes and to setup either enhanced or 2718 * normal descriptors. 2719 */ 2720 static int stmmac_hw_init(struct stmmac_priv *priv) 2721 { 2722 struct mac_device_info *mac; 2723 2724 /* Identify the MAC HW device */ 2725 if (priv->plat->has_gmac) { 2726 priv->dev->priv_flags |= IFF_UNICAST_FLT; 2727 mac = dwmac1000_setup(priv->ioaddr, 2728 priv->plat->multicast_filter_bins, 2729 priv->plat->unicast_filter_entries); 2730 } else { 2731 mac = dwmac100_setup(priv->ioaddr); 2732 } 2733 if (!mac) 2734 return -ENOMEM; 2735 2736 priv->hw = mac; 2737 2738 /* Get and dump the chip ID */ 2739 priv->synopsys_id = stmmac_get_synopsys_id(priv); 2740 2741 /* To use the chained or ring mode */ 2742 if (chain_mode) { 2743 priv->hw->mode = &chain_mode_ops; 2744 pr_info(" Chain mode enabled\n"); 2745 priv->mode = STMMAC_CHAIN_MODE; 2746 } else { 2747 priv->hw->mode = &ring_mode_ops; 2748 pr_info(" Ring mode enabled\n"); 2749 priv->mode = STMMAC_RING_MODE; 2750 } 2751 2752 /* Get the HW capability (new GMAC newer than 3.50a) */ 2753 priv->hw_cap_support = stmmac_get_hw_features(priv); 2754 if (priv->hw_cap_support) { 2755 pr_info(" DMA HW capability register supported"); 2756 2757 /* We can override some gmac/dma configuration fields: e.g. 2758 * enh_desc, tx_coe (e.g. that are passed through the 2759 * platform) with the values from the HW capability 2760 * register (if supported). 2761 */ 2762 priv->plat->enh_desc = priv->dma_cap.enh_desc; 2763 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 2764 2765 /* TXCOE doesn't work in thresh DMA mode */ 2766 if (priv->plat->force_thresh_dma_mode) 2767 priv->plat->tx_coe = 0; 2768 else 2769 priv->plat->tx_coe = priv->dma_cap.tx_coe; 2770 2771 if (priv->dma_cap.rx_coe_type2) 2772 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 2773 else if (priv->dma_cap.rx_coe_type1) 2774 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 2775 2776 } else 2777 pr_info(" No HW DMA feature register supported"); 2778 2779 /* To use alternate (extended) or normal descriptor structures */ 2780 stmmac_selec_desc_mode(priv); 2781 2782 if (priv->plat->rx_coe) { 2783 priv->hw->rx_csum = priv->plat->rx_coe; 2784 pr_info(" RX Checksum Offload Engine supported (type %d)\n", 2785 priv->plat->rx_coe); 2786 } 2787 if (priv->plat->tx_coe) 2788 pr_info(" TX Checksum insertion supported\n"); 2789 2790 if (priv->plat->pmt) { 2791 pr_info(" Wake-Up On Lan supported\n"); 2792 device_set_wakeup_capable(priv->device, 1); 2793 } 2794 2795 return 0; 2796 } 2797 2798 /** 2799 * stmmac_dvr_probe 2800 * @device: device pointer 2801 * @plat_dat: platform data pointer 2802 * @addr: iobase memory address 2803 * Description: this is the main probe function used to 2804 * call the alloc_etherdev, allocate the priv structure. 2805 * Return: 2806 * on success the new private structure is returned, otherwise the error 2807 * pointer. 2808 */ 2809 struct stmmac_priv *stmmac_dvr_probe(struct device *device, 2810 struct plat_stmmacenet_data *plat_dat, 2811 void __iomem *addr) 2812 { 2813 int ret = 0; 2814 struct net_device *ndev = NULL; 2815 struct stmmac_priv *priv; 2816 2817 ndev = alloc_etherdev(sizeof(struct stmmac_priv)); 2818 if (!ndev) 2819 return ERR_PTR(-ENOMEM); 2820 2821 SET_NETDEV_DEV(ndev, device); 2822 2823 priv = netdev_priv(ndev); 2824 priv->device = device; 2825 priv->dev = ndev; 2826 2827 stmmac_set_ethtool_ops(ndev); 2828 priv->pause = pause; 2829 priv->plat = plat_dat; 2830 priv->ioaddr = addr; 2831 priv->dev->base_addr = (unsigned long)addr; 2832 2833 /* Verify driver arguments */ 2834 stmmac_verify_args(); 2835 2836 /* Override with kernel parameters if supplied XXX CRS XXX 2837 * this needs to have multiple instances 2838 */ 2839 if ((phyaddr >= 0) && (phyaddr <= 31)) 2840 priv->plat->phy_addr = phyaddr; 2841 2842 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME); 2843 if (IS_ERR(priv->stmmac_clk)) { 2844 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n", 2845 __func__); 2846 /* If failed to obtain stmmac_clk and specific clk_csr value 2847 * is NOT passed from the platform, probe fail. 2848 */ 2849 if (!priv->plat->clk_csr) { 2850 ret = PTR_ERR(priv->stmmac_clk); 2851 goto error_clk_get; 2852 } else { 2853 priv->stmmac_clk = NULL; 2854 } 2855 } 2856 clk_prepare_enable(priv->stmmac_clk); 2857 2858 priv->pclk = devm_clk_get(priv->device, "pclk"); 2859 if (IS_ERR(priv->pclk)) { 2860 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) { 2861 ret = -EPROBE_DEFER; 2862 goto error_pclk_get; 2863 } 2864 priv->pclk = NULL; 2865 } 2866 clk_prepare_enable(priv->pclk); 2867 2868 priv->stmmac_rst = devm_reset_control_get(priv->device, 2869 STMMAC_RESOURCE_NAME); 2870 if (IS_ERR(priv->stmmac_rst)) { 2871 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) { 2872 ret = -EPROBE_DEFER; 2873 goto error_hw_init; 2874 } 2875 dev_info(priv->device, "no reset control found\n"); 2876 priv->stmmac_rst = NULL; 2877 } 2878 if (priv->stmmac_rst) 2879 reset_control_deassert(priv->stmmac_rst); 2880 2881 /* Init MAC and get the capabilities */ 2882 ret = stmmac_hw_init(priv); 2883 if (ret) 2884 goto error_hw_init; 2885 2886 ndev->netdev_ops = &stmmac_netdev_ops; 2887 2888 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2889 NETIF_F_RXCSUM; 2890 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2891 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 2892 #ifdef STMMAC_VLAN_TAG_USED 2893 /* Both mac100 and gmac support receive VLAN tag detection */ 2894 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 2895 #endif 2896 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2897 2898 if (flow_ctrl) 2899 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 2900 2901 /* Rx Watchdog is available in the COREs newer than the 3.40. 2902 * In some case, for example on bugged HW this feature 2903 * has to be disable and this can be done by passing the 2904 * riwt_off field from the platform. 2905 */ 2906 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) { 2907 priv->use_riwt = 1; 2908 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n"); 2909 } 2910 2911 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); 2912 2913 spin_lock_init(&priv->lock); 2914 spin_lock_init(&priv->tx_lock); 2915 2916 ret = register_netdev(ndev); 2917 if (ret) { 2918 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2919 goto error_netdev_register; 2920 } 2921 2922 /* If a specific clk_csr value is passed from the platform 2923 * this means that the CSR Clock Range selection cannot be 2924 * changed at run-time and it is fixed. Viceversa the driver'll try to 2925 * set the MDC clock dynamically according to the csr actual 2926 * clock input. 2927 */ 2928 if (!priv->plat->clk_csr) 2929 stmmac_clk_csr_set(priv); 2930 else 2931 priv->clk_csr = priv->plat->clk_csr; 2932 2933 stmmac_check_pcs_mode(priv); 2934 2935 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2936 priv->pcs != STMMAC_PCS_RTBI) { 2937 /* MDIO bus Registration */ 2938 ret = stmmac_mdio_register(ndev); 2939 if (ret < 0) { 2940 pr_debug("%s: MDIO bus (id: %d) registration failed", 2941 __func__, priv->plat->bus_id); 2942 goto error_mdio_register; 2943 } 2944 } 2945 2946 return priv; 2947 2948 error_mdio_register: 2949 unregister_netdev(ndev); 2950 error_netdev_register: 2951 netif_napi_del(&priv->napi); 2952 error_hw_init: 2953 clk_disable_unprepare(priv->pclk); 2954 error_pclk_get: 2955 clk_disable_unprepare(priv->stmmac_clk); 2956 error_clk_get: 2957 free_netdev(ndev); 2958 2959 return ERR_PTR(ret); 2960 } 2961 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 2962 2963 /** 2964 * stmmac_dvr_remove 2965 * @ndev: net device pointer 2966 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2967 * changes the link status, releases the DMA descriptor rings. 2968 */ 2969 int stmmac_dvr_remove(struct net_device *ndev) 2970 { 2971 struct stmmac_priv *priv = netdev_priv(ndev); 2972 2973 pr_info("%s:\n\tremoving driver", __func__); 2974 2975 priv->hw->dma->stop_rx(priv->ioaddr); 2976 priv->hw->dma->stop_tx(priv->ioaddr); 2977 2978 stmmac_set_mac(priv->ioaddr, false); 2979 netif_carrier_off(ndev); 2980 unregister_netdev(ndev); 2981 if (priv->stmmac_rst) 2982 reset_control_assert(priv->stmmac_rst); 2983 clk_disable_unprepare(priv->pclk); 2984 clk_disable_unprepare(priv->stmmac_clk); 2985 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2986 priv->pcs != STMMAC_PCS_RTBI) 2987 stmmac_mdio_unregister(ndev); 2988 free_netdev(ndev); 2989 2990 return 0; 2991 } 2992 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 2993 2994 /** 2995 * stmmac_suspend - suspend callback 2996 * @ndev: net device pointer 2997 * Description: this is the function to suspend the device and it is called 2998 * by the platform driver to stop the network queue, release the resources, 2999 * program the PMT register (for WoL), clean and release driver resources. 3000 */ 3001 int stmmac_suspend(struct net_device *ndev) 3002 { 3003 struct stmmac_priv *priv = netdev_priv(ndev); 3004 unsigned long flags; 3005 3006 if (!ndev || !netif_running(ndev)) 3007 return 0; 3008 3009 if (priv->phydev) 3010 phy_stop(priv->phydev); 3011 3012 spin_lock_irqsave(&priv->lock, flags); 3013 3014 netif_device_detach(ndev); 3015 netif_stop_queue(ndev); 3016 3017 napi_disable(&priv->napi); 3018 3019 /* Stop TX/RX DMA */ 3020 priv->hw->dma->stop_tx(priv->ioaddr); 3021 priv->hw->dma->stop_rx(priv->ioaddr); 3022 3023 stmmac_clear_descriptors(priv); 3024 3025 /* Enable Power down mode by programming the PMT regs */ 3026 if (device_may_wakeup(priv->device)) { 3027 priv->hw->mac->pmt(priv->hw, priv->wolopts); 3028 priv->irq_wake = 1; 3029 } else { 3030 stmmac_set_mac(priv->ioaddr, false); 3031 pinctrl_pm_select_sleep_state(priv->device); 3032 /* Disable clock in case of PWM is off */ 3033 clk_disable(priv->pclk); 3034 clk_disable(priv->stmmac_clk); 3035 } 3036 spin_unlock_irqrestore(&priv->lock, flags); 3037 3038 priv->oldlink = 0; 3039 priv->speed = 0; 3040 priv->oldduplex = -1; 3041 return 0; 3042 } 3043 EXPORT_SYMBOL_GPL(stmmac_suspend); 3044 3045 /** 3046 * stmmac_resume - resume callback 3047 * @ndev: net device pointer 3048 * Description: when resume this function is invoked to setup the DMA and CORE 3049 * in a usable state. 3050 */ 3051 int stmmac_resume(struct net_device *ndev) 3052 { 3053 struct stmmac_priv *priv = netdev_priv(ndev); 3054 unsigned long flags; 3055 3056 if (!netif_running(ndev)) 3057 return 0; 3058 3059 spin_lock_irqsave(&priv->lock, flags); 3060 3061 /* Power Down bit, into the PM register, is cleared 3062 * automatically as soon as a magic packet or a Wake-up frame 3063 * is received. Anyway, it's better to manually clear 3064 * this bit because it can generate problems while resuming 3065 * from another devices (e.g. serial console). 3066 */ 3067 if (device_may_wakeup(priv->device)) { 3068 priv->hw->mac->pmt(priv->hw, 0); 3069 priv->irq_wake = 0; 3070 } else { 3071 pinctrl_pm_select_default_state(priv->device); 3072 /* enable the clk prevously disabled */ 3073 clk_enable(priv->stmmac_clk); 3074 clk_enable(priv->pclk); 3075 /* reset the phy so that it's ready */ 3076 if (priv->mii) 3077 stmmac_mdio_reset(priv->mii); 3078 } 3079 3080 netif_device_attach(ndev); 3081 3082 init_dma_desc_rings(ndev, GFP_ATOMIC); 3083 stmmac_hw_setup(ndev, false); 3084 stmmac_init_tx_coalesce(priv); 3085 3086 napi_enable(&priv->napi); 3087 3088 netif_start_queue(ndev); 3089 3090 spin_unlock_irqrestore(&priv->lock, flags); 3091 3092 if (priv->phydev) 3093 phy_start(priv->phydev); 3094 3095 return 0; 3096 } 3097 EXPORT_SYMBOL_GPL(stmmac_resume); 3098 3099 #ifndef MODULE 3100 static int __init stmmac_cmdline_opt(char *str) 3101 { 3102 char *opt; 3103 3104 if (!str || !*str) 3105 return -EINVAL; 3106 while ((opt = strsep(&str, ",")) != NULL) { 3107 if (!strncmp(opt, "debug:", 6)) { 3108 if (kstrtoint(opt + 6, 0, &debug)) 3109 goto err; 3110 } else if (!strncmp(opt, "phyaddr:", 8)) { 3111 if (kstrtoint(opt + 8, 0, &phyaddr)) 3112 goto err; 3113 } else if (!strncmp(opt, "dma_txsize:", 11)) { 3114 if (kstrtoint(opt + 11, 0, &dma_txsize)) 3115 goto err; 3116 } else if (!strncmp(opt, "dma_rxsize:", 11)) { 3117 if (kstrtoint(opt + 11, 0, &dma_rxsize)) 3118 goto err; 3119 } else if (!strncmp(opt, "buf_sz:", 7)) { 3120 if (kstrtoint(opt + 7, 0, &buf_sz)) 3121 goto err; 3122 } else if (!strncmp(opt, "tc:", 3)) { 3123 if (kstrtoint(opt + 3, 0, &tc)) 3124 goto err; 3125 } else if (!strncmp(opt, "watchdog:", 9)) { 3126 if (kstrtoint(opt + 9, 0, &watchdog)) 3127 goto err; 3128 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 3129 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 3130 goto err; 3131 } else if (!strncmp(opt, "pause:", 6)) { 3132 if (kstrtoint(opt + 6, 0, &pause)) 3133 goto err; 3134 } else if (!strncmp(opt, "eee_timer:", 10)) { 3135 if (kstrtoint(opt + 10, 0, &eee_timer)) 3136 goto err; 3137 } else if (!strncmp(opt, "chain_mode:", 11)) { 3138 if (kstrtoint(opt + 11, 0, &chain_mode)) 3139 goto err; 3140 } 3141 } 3142 return 0; 3143 3144 err: 3145 pr_err("%s: ERROR broken module parameter conversion", __func__); 3146 return -EINVAL; 3147 } 3148 3149 __setup("stmmaceth=", stmmac_cmdline_opt); 3150 #endif /* MODULE */ 3151 3152 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 3153 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 3154 MODULE_LICENSE("GPL"); 3155