1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <linux/udp.h>
40 #include <net/pkt_cls.h>
41 #include "stmmac_ptp.h"
42 #include "stmmac.h"
43 #include <linux/reset.h>
44 #include <linux/of_mdio.h>
45 #include "dwmac1000.h"
46 #include "dwxgmac2.h"
47 #include "hwif.h"
48 
49 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
50 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
51 
52 /* Module parameters */
53 #define TX_TIMEO	5000
54 static int watchdog = TX_TIMEO;
55 module_param(watchdog, int, 0644);
56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
57 
58 static int debug = -1;
59 module_param(debug, int, 0644);
60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
61 
62 static int phyaddr = -1;
63 module_param(phyaddr, int, 0444);
64 MODULE_PARM_DESC(phyaddr, "Physical device address");
65 
66 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
67 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
68 
69 static int flow_ctrl = FLOW_AUTO;
70 module_param(flow_ctrl, int, 0644);
71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
72 
73 static int pause = PAUSE_TIME;
74 module_param(pause, int, 0644);
75 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
76 
77 #define TC_DEFAULT 64
78 static int tc = TC_DEFAULT;
79 module_param(tc, int, 0644);
80 MODULE_PARM_DESC(tc, "DMA threshold control value");
81 
82 #define	DEFAULT_BUFSIZE	1536
83 static int buf_sz = DEFAULT_BUFSIZE;
84 module_param(buf_sz, int, 0644);
85 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
86 
87 #define	STMMAC_RX_COPYBREAK	256
88 
89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
91 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
92 
93 #define STMMAC_DEFAULT_LPI_TIMER	1000
94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
95 module_param(eee_timer, int, 0644);
96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
98 
99 /* By default the driver will use the ring mode to manage tx and rx descriptors,
100  * but allow user to force to use the chain instead of the ring
101  */
102 static unsigned int chain_mode;
103 module_param(chain_mode, int, 0444);
104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
105 
106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
107 
108 #ifdef CONFIG_DEBUG_FS
109 static const struct net_device_ops stmmac_netdev_ops;
110 static void stmmac_init_fs(struct net_device *dev);
111 static void stmmac_exit_fs(struct net_device *dev);
112 #endif
113 
114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
115 
116 /**
117  * stmmac_verify_args - verify the driver parameters.
118  * Description: it checks the driver parameters and set a default in case of
119  * errors.
120  */
121 static void stmmac_verify_args(void)
122 {
123 	if (unlikely(watchdog < 0))
124 		watchdog = TX_TIMEO;
125 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
126 		buf_sz = DEFAULT_BUFSIZE;
127 	if (unlikely(flow_ctrl > 1))
128 		flow_ctrl = FLOW_AUTO;
129 	else if (likely(flow_ctrl < 0))
130 		flow_ctrl = FLOW_OFF;
131 	if (unlikely((pause < 0) || (pause > 0xffff)))
132 		pause = PAUSE_TIME;
133 	if (eee_timer < 0)
134 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
135 }
136 
137 /**
138  * stmmac_disable_all_queues - Disable all queues
139  * @priv: driver private structure
140  */
141 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
142 {
143 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
144 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
145 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
146 	u32 queue;
147 
148 	for (queue = 0; queue < maxq; queue++) {
149 		struct stmmac_channel *ch = &priv->channel[queue];
150 
151 		if (queue < rx_queues_cnt)
152 			napi_disable(&ch->rx_napi);
153 		if (queue < tx_queues_cnt)
154 			napi_disable(&ch->tx_napi);
155 	}
156 }
157 
158 /**
159  * stmmac_enable_all_queues - Enable all queues
160  * @priv: driver private structure
161  */
162 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
163 {
164 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
165 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
166 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
167 	u32 queue;
168 
169 	for (queue = 0; queue < maxq; queue++) {
170 		struct stmmac_channel *ch = &priv->channel[queue];
171 
172 		if (queue < rx_queues_cnt)
173 			napi_enable(&ch->rx_napi);
174 		if (queue < tx_queues_cnt)
175 			napi_enable(&ch->tx_napi);
176 	}
177 }
178 
179 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
180 {
181 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
182 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
183 		queue_work(priv->wq, &priv->service_task);
184 }
185 
186 static void stmmac_global_err(struct stmmac_priv *priv)
187 {
188 	netif_carrier_off(priv->dev);
189 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
190 	stmmac_service_event_schedule(priv);
191 }
192 
193 /**
194  * stmmac_clk_csr_set - dynamically set the MDC clock
195  * @priv: driver private structure
196  * Description: this is to dynamically set the MDC clock according to the csr
197  * clock input.
198  * Note:
199  *	If a specific clk_csr value is passed from the platform
200  *	this means that the CSR Clock Range selection cannot be
201  *	changed at run-time and it is fixed (as reported in the driver
202  *	documentation). Viceversa the driver will try to set the MDC
203  *	clock dynamically according to the actual clock input.
204  */
205 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
206 {
207 	u32 clk_rate;
208 
209 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
210 
211 	/* Platform provided default clk_csr would be assumed valid
212 	 * for all other cases except for the below mentioned ones.
213 	 * For values higher than the IEEE 802.3 specified frequency
214 	 * we can not estimate the proper divider as it is not known
215 	 * the frequency of clk_csr_i. So we do not change the default
216 	 * divider.
217 	 */
218 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
219 		if (clk_rate < CSR_F_35M)
220 			priv->clk_csr = STMMAC_CSR_20_35M;
221 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
222 			priv->clk_csr = STMMAC_CSR_35_60M;
223 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
224 			priv->clk_csr = STMMAC_CSR_60_100M;
225 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
226 			priv->clk_csr = STMMAC_CSR_100_150M;
227 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
228 			priv->clk_csr = STMMAC_CSR_150_250M;
229 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
230 			priv->clk_csr = STMMAC_CSR_250_300M;
231 	}
232 
233 	if (priv->plat->has_sun8i) {
234 		if (clk_rate > 160000000)
235 			priv->clk_csr = 0x03;
236 		else if (clk_rate > 80000000)
237 			priv->clk_csr = 0x02;
238 		else if (clk_rate > 40000000)
239 			priv->clk_csr = 0x01;
240 		else
241 			priv->clk_csr = 0;
242 	}
243 
244 	if (priv->plat->has_xgmac) {
245 		if (clk_rate > 400000000)
246 			priv->clk_csr = 0x5;
247 		else if (clk_rate > 350000000)
248 			priv->clk_csr = 0x4;
249 		else if (clk_rate > 300000000)
250 			priv->clk_csr = 0x3;
251 		else if (clk_rate > 250000000)
252 			priv->clk_csr = 0x2;
253 		else if (clk_rate > 150000000)
254 			priv->clk_csr = 0x1;
255 		else
256 			priv->clk_csr = 0x0;
257 	}
258 }
259 
260 static void print_pkt(unsigned char *buf, int len)
261 {
262 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
263 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
264 }
265 
266 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
267 {
268 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
269 	u32 avail;
270 
271 	if (tx_q->dirty_tx > tx_q->cur_tx)
272 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
273 	else
274 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
275 
276 	return avail;
277 }
278 
279 /**
280  * stmmac_rx_dirty - Get RX queue dirty
281  * @priv: driver private structure
282  * @queue: RX queue index
283  */
284 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
285 {
286 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
287 	u32 dirty;
288 
289 	if (rx_q->dirty_rx <= rx_q->cur_rx)
290 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
291 	else
292 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
293 
294 	return dirty;
295 }
296 
297 /**
298  * stmmac_enable_eee_mode - check and enter in LPI mode
299  * @priv: driver private structure
300  * Description: this function is to verify and enter in LPI mode in case of
301  * EEE.
302  */
303 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
304 {
305 	u32 tx_cnt = priv->plat->tx_queues_to_use;
306 	u32 queue;
307 
308 	/* check if all TX queues have the work finished */
309 	for (queue = 0; queue < tx_cnt; queue++) {
310 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
311 
312 		if (tx_q->dirty_tx != tx_q->cur_tx)
313 			return; /* still unfinished work */
314 	}
315 
316 	/* Check and enter in LPI mode */
317 	if (!priv->tx_path_in_lpi_mode)
318 		stmmac_set_eee_mode(priv, priv->hw,
319 				priv->plat->en_tx_lpi_clockgating);
320 }
321 
322 /**
323  * stmmac_disable_eee_mode - disable and exit from LPI mode
324  * @priv: driver private structure
325  * Description: this function is to exit and disable EEE in case of
326  * LPI state is true. This is called by the xmit.
327  */
328 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
329 {
330 	stmmac_reset_eee_mode(priv, priv->hw);
331 	del_timer_sync(&priv->eee_ctrl_timer);
332 	priv->tx_path_in_lpi_mode = false;
333 }
334 
335 /**
336  * stmmac_eee_ctrl_timer - EEE TX SW timer.
337  * @t:  timer_list struct containing private info
338  * Description:
339  *  if there is no data transfer and if we are not in LPI state,
340  *  then MAC Transmitter can be moved to LPI state.
341  */
342 static void stmmac_eee_ctrl_timer(struct timer_list *t)
343 {
344 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
345 
346 	stmmac_enable_eee_mode(priv);
347 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
348 }
349 
350 /**
351  * stmmac_eee_init - init EEE
352  * @priv: driver private structure
353  * Description:
354  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
355  *  can also manage EEE, this function enable the LPI state and start related
356  *  timer.
357  */
358 bool stmmac_eee_init(struct stmmac_priv *priv)
359 {
360 	int tx_lpi_timer = priv->tx_lpi_timer;
361 
362 	/* Using PCS we cannot dial with the phy registers at this stage
363 	 * so we do not support extra feature like EEE.
364 	 */
365 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
366 	    priv->hw->pcs == STMMAC_PCS_RTBI)
367 		return false;
368 
369 	/* Check if MAC core supports the EEE feature. */
370 	if (!priv->dma_cap.eee)
371 		return false;
372 
373 	mutex_lock(&priv->lock);
374 
375 	/* Check if it needs to be deactivated */
376 	if (!priv->eee_active) {
377 		if (priv->eee_enabled) {
378 			netdev_dbg(priv->dev, "disable EEE\n");
379 			del_timer_sync(&priv->eee_ctrl_timer);
380 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
381 		}
382 		mutex_unlock(&priv->lock);
383 		return false;
384 	}
385 
386 	if (priv->eee_active && !priv->eee_enabled) {
387 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
388 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
389 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
390 				     tx_lpi_timer);
391 	}
392 
393 	mutex_unlock(&priv->lock);
394 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
395 	return true;
396 }
397 
398 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
399  * @priv: driver private structure
400  * @p : descriptor pointer
401  * @skb : the socket buffer
402  * Description :
403  * This function will read timestamp from the descriptor & pass it to stack.
404  * and also perform some sanity checks.
405  */
406 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
407 				   struct dma_desc *p, struct sk_buff *skb)
408 {
409 	struct skb_shared_hwtstamps shhwtstamp;
410 	bool found = false;
411 	u64 ns = 0;
412 
413 	if (!priv->hwts_tx_en)
414 		return;
415 
416 	/* exit if skb doesn't support hw tstamp */
417 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
418 		return;
419 
420 	/* check tx tstamp status */
421 	if (stmmac_get_tx_timestamp_status(priv, p)) {
422 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
423 		found = true;
424 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
425 		found = true;
426 	}
427 
428 	if (found) {
429 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
430 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
431 
432 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
433 		/* pass tstamp to stack */
434 		skb_tstamp_tx(skb, &shhwtstamp);
435 	}
436 }
437 
438 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
439  * @priv: driver private structure
440  * @p : descriptor pointer
441  * @np : next descriptor pointer
442  * @skb : the socket buffer
443  * Description :
444  * This function will read received packet's timestamp from the descriptor
445  * and pass it to stack. It also perform some sanity checks.
446  */
447 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
448 				   struct dma_desc *np, struct sk_buff *skb)
449 {
450 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
451 	struct dma_desc *desc = p;
452 	u64 ns = 0;
453 
454 	if (!priv->hwts_rx_en)
455 		return;
456 	/* For GMAC4, the valid timestamp is from CTX next desc. */
457 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
458 		desc = np;
459 
460 	/* Check if timestamp is available */
461 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
462 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
463 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
464 		shhwtstamp = skb_hwtstamps(skb);
465 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
466 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
467 	} else  {
468 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
469 	}
470 }
471 
472 /**
473  *  stmmac_hwtstamp_set - control hardware timestamping.
474  *  @dev: device pointer.
475  *  @ifr: An IOCTL specific structure, that can contain a pointer to
476  *  a proprietary structure used to pass information to the driver.
477  *  Description:
478  *  This function configures the MAC to enable/disable both outgoing(TX)
479  *  and incoming(RX) packets time stamping based on user input.
480  *  Return Value:
481  *  0 on success and an appropriate -ve integer on failure.
482  */
483 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
484 {
485 	struct stmmac_priv *priv = netdev_priv(dev);
486 	struct hwtstamp_config config;
487 	struct timespec64 now;
488 	u64 temp = 0;
489 	u32 ptp_v2 = 0;
490 	u32 tstamp_all = 0;
491 	u32 ptp_over_ipv4_udp = 0;
492 	u32 ptp_over_ipv6_udp = 0;
493 	u32 ptp_over_ethernet = 0;
494 	u32 snap_type_sel = 0;
495 	u32 ts_master_en = 0;
496 	u32 ts_event_en = 0;
497 	u32 sec_inc = 0;
498 	u32 value = 0;
499 	bool xmac;
500 
501 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
502 
503 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
504 		netdev_alert(priv->dev, "No support for HW time stamping\n");
505 		priv->hwts_tx_en = 0;
506 		priv->hwts_rx_en = 0;
507 
508 		return -EOPNOTSUPP;
509 	}
510 
511 	if (copy_from_user(&config, ifr->ifr_data,
512 			   sizeof(config)))
513 		return -EFAULT;
514 
515 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
516 		   __func__, config.flags, config.tx_type, config.rx_filter);
517 
518 	/* reserved for future extensions */
519 	if (config.flags)
520 		return -EINVAL;
521 
522 	if (config.tx_type != HWTSTAMP_TX_OFF &&
523 	    config.tx_type != HWTSTAMP_TX_ON)
524 		return -ERANGE;
525 
526 	if (priv->adv_ts) {
527 		switch (config.rx_filter) {
528 		case HWTSTAMP_FILTER_NONE:
529 			/* time stamp no incoming packet at all */
530 			config.rx_filter = HWTSTAMP_FILTER_NONE;
531 			break;
532 
533 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
534 			/* PTP v1, UDP, any kind of event packet */
535 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
536 			/* 'xmac' hardware can support Sync, Pdelay_Req and
537 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
538 			 * This leaves Delay_Req timestamps out.
539 			 * Enable all events *and* general purpose message
540 			 * timestamping
541 			 */
542 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
543 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
544 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
545 			break;
546 
547 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
548 			/* PTP v1, UDP, Sync packet */
549 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
550 			/* take time stamp for SYNC messages only */
551 			ts_event_en = PTP_TCR_TSEVNTENA;
552 
553 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 			break;
556 
557 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
558 			/* PTP v1, UDP, Delay_req packet */
559 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
560 			/* take time stamp for Delay_Req messages only */
561 			ts_master_en = PTP_TCR_TSMSTRENA;
562 			ts_event_en = PTP_TCR_TSEVNTENA;
563 
564 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
565 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
566 			break;
567 
568 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
569 			/* PTP v2, UDP, any kind of event packet */
570 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
571 			ptp_v2 = PTP_TCR_TSVER2ENA;
572 			/* take time stamp for all event messages */
573 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
574 
575 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
576 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
577 			break;
578 
579 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
580 			/* PTP v2, UDP, Sync packet */
581 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
582 			ptp_v2 = PTP_TCR_TSVER2ENA;
583 			/* take time stamp for SYNC messages only */
584 			ts_event_en = PTP_TCR_TSEVNTENA;
585 
586 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
587 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
588 			break;
589 
590 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
591 			/* PTP v2, UDP, Delay_req packet */
592 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
593 			ptp_v2 = PTP_TCR_TSVER2ENA;
594 			/* take time stamp for Delay_Req messages only */
595 			ts_master_en = PTP_TCR_TSMSTRENA;
596 			ts_event_en = PTP_TCR_TSEVNTENA;
597 
598 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
599 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
600 			break;
601 
602 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
603 			/* PTP v2/802.AS1 any layer, any kind of event packet */
604 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
605 			ptp_v2 = PTP_TCR_TSVER2ENA;
606 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
607 			if (priv->synopsys_id != DWMAC_CORE_5_10)
608 				ts_event_en = PTP_TCR_TSEVNTENA;
609 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
610 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
611 			ptp_over_ethernet = PTP_TCR_TSIPENA;
612 			break;
613 
614 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
615 			/* PTP v2/802.AS1, any layer, Sync packet */
616 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
617 			ptp_v2 = PTP_TCR_TSVER2ENA;
618 			/* take time stamp for SYNC messages only */
619 			ts_event_en = PTP_TCR_TSEVNTENA;
620 
621 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
622 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
623 			ptp_over_ethernet = PTP_TCR_TSIPENA;
624 			break;
625 
626 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
627 			/* PTP v2/802.AS1, any layer, Delay_req packet */
628 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
629 			ptp_v2 = PTP_TCR_TSVER2ENA;
630 			/* take time stamp for Delay_Req messages only */
631 			ts_master_en = PTP_TCR_TSMSTRENA;
632 			ts_event_en = PTP_TCR_TSEVNTENA;
633 
634 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
635 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
636 			ptp_over_ethernet = PTP_TCR_TSIPENA;
637 			break;
638 
639 		case HWTSTAMP_FILTER_NTP_ALL:
640 		case HWTSTAMP_FILTER_ALL:
641 			/* time stamp any incoming packet */
642 			config.rx_filter = HWTSTAMP_FILTER_ALL;
643 			tstamp_all = PTP_TCR_TSENALL;
644 			break;
645 
646 		default:
647 			return -ERANGE;
648 		}
649 	} else {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			config.rx_filter = HWTSTAMP_FILTER_NONE;
653 			break;
654 		default:
655 			/* PTP v1, UDP, any kind of event packet */
656 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
657 			break;
658 		}
659 	}
660 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
661 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
662 
663 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
664 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
665 	else {
666 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
667 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
668 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
669 			 ts_master_en | snap_type_sel);
670 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
671 
672 		/* program Sub Second Increment reg */
673 		stmmac_config_sub_second_increment(priv,
674 				priv->ptpaddr, priv->plat->clk_ptp_rate,
675 				xmac, &sec_inc);
676 		temp = div_u64(1000000000ULL, sec_inc);
677 
678 		/* Store sub second increment and flags for later use */
679 		priv->sub_second_inc = sec_inc;
680 		priv->systime_flags = value;
681 
682 		/* calculate default added value:
683 		 * formula is :
684 		 * addend = (2^32)/freq_div_ratio;
685 		 * where, freq_div_ratio = 1e9ns/sec_inc
686 		 */
687 		temp = (u64)(temp << 32);
688 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
689 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
690 
691 		/* initialize system time */
692 		ktime_get_real_ts64(&now);
693 
694 		/* lower 32 bits of tv_sec are safe until y2106 */
695 		stmmac_init_systime(priv, priv->ptpaddr,
696 				(u32)now.tv_sec, now.tv_nsec);
697 	}
698 
699 	memcpy(&priv->tstamp_config, &config, sizeof(config));
700 
701 	return copy_to_user(ifr->ifr_data, &config,
702 			    sizeof(config)) ? -EFAULT : 0;
703 }
704 
705 /**
706  *  stmmac_hwtstamp_get - read hardware timestamping.
707  *  @dev: device pointer.
708  *  @ifr: An IOCTL specific structure, that can contain a pointer to
709  *  a proprietary structure used to pass information to the driver.
710  *  Description:
711  *  This function obtain the current hardware timestamping settings
712  *  as requested.
713  */
714 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
715 {
716 	struct stmmac_priv *priv = netdev_priv(dev);
717 	struct hwtstamp_config *config = &priv->tstamp_config;
718 
719 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
720 		return -EOPNOTSUPP;
721 
722 	return copy_to_user(ifr->ifr_data, config,
723 			    sizeof(*config)) ? -EFAULT : 0;
724 }
725 
726 /**
727  * stmmac_init_ptp - init PTP
728  * @priv: driver private structure
729  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
730  * This is done by looking at the HW cap. register.
731  * This function also registers the ptp driver.
732  */
733 static int stmmac_init_ptp(struct stmmac_priv *priv)
734 {
735 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
736 
737 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
738 		return -EOPNOTSUPP;
739 
740 	priv->adv_ts = 0;
741 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
742 	if (xmac && priv->dma_cap.atime_stamp)
743 		priv->adv_ts = 1;
744 	/* Dwmac 3.x core with extend_desc can support adv_ts */
745 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
746 		priv->adv_ts = 1;
747 
748 	if (priv->dma_cap.time_stamp)
749 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
750 
751 	if (priv->adv_ts)
752 		netdev_info(priv->dev,
753 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
754 
755 	priv->hwts_tx_en = 0;
756 	priv->hwts_rx_en = 0;
757 
758 	stmmac_ptp_register(priv);
759 
760 	return 0;
761 }
762 
763 static void stmmac_release_ptp(struct stmmac_priv *priv)
764 {
765 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
766 	stmmac_ptp_unregister(priv);
767 }
768 
769 /**
770  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
771  *  @priv: driver private structure
772  *  @duplex: duplex passed to the next function
773  *  Description: It is used for configuring the flow control in all queues
774  */
775 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
776 {
777 	u32 tx_cnt = priv->plat->tx_queues_to_use;
778 
779 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
780 			priv->pause, tx_cnt);
781 }
782 
783 static void stmmac_validate(struct phylink_config *config,
784 			    unsigned long *supported,
785 			    struct phylink_link_state *state)
786 {
787 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
788 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
789 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
790 	int tx_cnt = priv->plat->tx_queues_to_use;
791 	int max_speed = priv->plat->max_speed;
792 
793 	phylink_set(mac_supported, 10baseT_Half);
794 	phylink_set(mac_supported, 10baseT_Full);
795 	phylink_set(mac_supported, 100baseT_Half);
796 	phylink_set(mac_supported, 100baseT_Full);
797 	phylink_set(mac_supported, 1000baseT_Half);
798 	phylink_set(mac_supported, 1000baseT_Full);
799 	phylink_set(mac_supported, 1000baseKX_Full);
800 
801 	phylink_set(mac_supported, Autoneg);
802 	phylink_set(mac_supported, Pause);
803 	phylink_set(mac_supported, Asym_Pause);
804 	phylink_set_port_modes(mac_supported);
805 
806 	/* Cut down 1G if asked to */
807 	if ((max_speed > 0) && (max_speed < 1000)) {
808 		phylink_set(mask, 1000baseT_Full);
809 		phylink_set(mask, 1000baseX_Full);
810 	} else if (priv->plat->has_xgmac) {
811 		if (!max_speed || (max_speed >= 2500)) {
812 			phylink_set(mac_supported, 2500baseT_Full);
813 			phylink_set(mac_supported, 2500baseX_Full);
814 		}
815 		if (!max_speed || (max_speed >= 5000)) {
816 			phylink_set(mac_supported, 5000baseT_Full);
817 		}
818 		if (!max_speed || (max_speed >= 10000)) {
819 			phylink_set(mac_supported, 10000baseSR_Full);
820 			phylink_set(mac_supported, 10000baseLR_Full);
821 			phylink_set(mac_supported, 10000baseER_Full);
822 			phylink_set(mac_supported, 10000baseLRM_Full);
823 			phylink_set(mac_supported, 10000baseT_Full);
824 			phylink_set(mac_supported, 10000baseKX4_Full);
825 			phylink_set(mac_supported, 10000baseKR_Full);
826 		}
827 		if (!max_speed || (max_speed >= 25000)) {
828 			phylink_set(mac_supported, 25000baseCR_Full);
829 			phylink_set(mac_supported, 25000baseKR_Full);
830 			phylink_set(mac_supported, 25000baseSR_Full);
831 		}
832 		if (!max_speed || (max_speed >= 40000)) {
833 			phylink_set(mac_supported, 40000baseKR4_Full);
834 			phylink_set(mac_supported, 40000baseCR4_Full);
835 			phylink_set(mac_supported, 40000baseSR4_Full);
836 			phylink_set(mac_supported, 40000baseLR4_Full);
837 		}
838 		if (!max_speed || (max_speed >= 50000)) {
839 			phylink_set(mac_supported, 50000baseCR2_Full);
840 			phylink_set(mac_supported, 50000baseKR2_Full);
841 			phylink_set(mac_supported, 50000baseSR2_Full);
842 			phylink_set(mac_supported, 50000baseKR_Full);
843 			phylink_set(mac_supported, 50000baseSR_Full);
844 			phylink_set(mac_supported, 50000baseCR_Full);
845 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
846 			phylink_set(mac_supported, 50000baseDR_Full);
847 		}
848 		if (!max_speed || (max_speed >= 100000)) {
849 			phylink_set(mac_supported, 100000baseKR4_Full);
850 			phylink_set(mac_supported, 100000baseSR4_Full);
851 			phylink_set(mac_supported, 100000baseCR4_Full);
852 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
853 			phylink_set(mac_supported, 100000baseKR2_Full);
854 			phylink_set(mac_supported, 100000baseSR2_Full);
855 			phylink_set(mac_supported, 100000baseCR2_Full);
856 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
857 			phylink_set(mac_supported, 100000baseDR2_Full);
858 		}
859 	}
860 
861 	/* Half-Duplex can only work with single queue */
862 	if (tx_cnt > 1) {
863 		phylink_set(mask, 10baseT_Half);
864 		phylink_set(mask, 100baseT_Half);
865 		phylink_set(mask, 1000baseT_Half);
866 	}
867 
868 	linkmode_and(supported, supported, mac_supported);
869 	linkmode_andnot(supported, supported, mask);
870 
871 	linkmode_and(state->advertising, state->advertising, mac_supported);
872 	linkmode_andnot(state->advertising, state->advertising, mask);
873 
874 	/* If PCS is supported, check which modes it supports. */
875 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
876 }
877 
878 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
879 				     struct phylink_link_state *state)
880 {
881 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
882 
883 	state->link = 0;
884 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
885 }
886 
887 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
888 			      const struct phylink_link_state *state)
889 {
890 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
891 
892 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
893 }
894 
895 static void stmmac_mac_an_restart(struct phylink_config *config)
896 {
897 	/* Not Supported */
898 }
899 
900 static void stmmac_mac_link_down(struct phylink_config *config,
901 				 unsigned int mode, phy_interface_t interface)
902 {
903 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
904 
905 	stmmac_mac_set(priv, priv->ioaddr, false);
906 	priv->eee_active = false;
907 	stmmac_eee_init(priv);
908 	stmmac_set_eee_pls(priv, priv->hw, false);
909 }
910 
911 static void stmmac_mac_link_up(struct phylink_config *config,
912 			       struct phy_device *phy,
913 			       unsigned int mode, phy_interface_t interface,
914 			       int speed, int duplex,
915 			       bool tx_pause, bool rx_pause)
916 {
917 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
918 	u32 ctrl;
919 
920 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
921 
922 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
923 	ctrl &= ~priv->hw->link.speed_mask;
924 
925 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
926 		switch (speed) {
927 		case SPEED_10000:
928 			ctrl |= priv->hw->link.xgmii.speed10000;
929 			break;
930 		case SPEED_5000:
931 			ctrl |= priv->hw->link.xgmii.speed5000;
932 			break;
933 		case SPEED_2500:
934 			ctrl |= priv->hw->link.xgmii.speed2500;
935 			break;
936 		default:
937 			return;
938 		}
939 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
940 		switch (speed) {
941 		case SPEED_100000:
942 			ctrl |= priv->hw->link.xlgmii.speed100000;
943 			break;
944 		case SPEED_50000:
945 			ctrl |= priv->hw->link.xlgmii.speed50000;
946 			break;
947 		case SPEED_40000:
948 			ctrl |= priv->hw->link.xlgmii.speed40000;
949 			break;
950 		case SPEED_25000:
951 			ctrl |= priv->hw->link.xlgmii.speed25000;
952 			break;
953 		case SPEED_10000:
954 			ctrl |= priv->hw->link.xgmii.speed10000;
955 			break;
956 		case SPEED_2500:
957 			ctrl |= priv->hw->link.speed2500;
958 			break;
959 		case SPEED_1000:
960 			ctrl |= priv->hw->link.speed1000;
961 			break;
962 		default:
963 			return;
964 		}
965 	} else {
966 		switch (speed) {
967 		case SPEED_2500:
968 			ctrl |= priv->hw->link.speed2500;
969 			break;
970 		case SPEED_1000:
971 			ctrl |= priv->hw->link.speed1000;
972 			break;
973 		case SPEED_100:
974 			ctrl |= priv->hw->link.speed100;
975 			break;
976 		case SPEED_10:
977 			ctrl |= priv->hw->link.speed10;
978 			break;
979 		default:
980 			return;
981 		}
982 	}
983 
984 	priv->speed = speed;
985 
986 	if (priv->plat->fix_mac_speed)
987 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
988 
989 	if (!duplex)
990 		ctrl &= ~priv->hw->link.duplex;
991 	else
992 		ctrl |= priv->hw->link.duplex;
993 
994 	/* Flow Control operation */
995 	if (tx_pause && rx_pause)
996 		stmmac_mac_flow_ctrl(priv, duplex);
997 
998 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
999 
1000 	stmmac_mac_set(priv, priv->ioaddr, true);
1001 	if (phy && priv->dma_cap.eee) {
1002 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1003 		priv->eee_enabled = stmmac_eee_init(priv);
1004 		stmmac_set_eee_pls(priv, priv->hw, true);
1005 	}
1006 }
1007 
1008 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1009 	.validate = stmmac_validate,
1010 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1011 	.mac_config = stmmac_mac_config,
1012 	.mac_an_restart = stmmac_mac_an_restart,
1013 	.mac_link_down = stmmac_mac_link_down,
1014 	.mac_link_up = stmmac_mac_link_up,
1015 };
1016 
1017 /**
1018  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1019  * @priv: driver private structure
1020  * Description: this is to verify if the HW supports the PCS.
1021  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1022  * configured for the TBI, RTBI, or SGMII PHY interface.
1023  */
1024 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1025 {
1026 	int interface = priv->plat->interface;
1027 
1028 	if (priv->dma_cap.pcs) {
1029 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1030 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1031 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1032 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1033 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1034 			priv->hw->pcs = STMMAC_PCS_RGMII;
1035 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1036 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1037 			priv->hw->pcs = STMMAC_PCS_SGMII;
1038 		}
1039 	}
1040 }
1041 
1042 /**
1043  * stmmac_init_phy - PHY initialization
1044  * @dev: net device structure
1045  * Description: it initializes the driver's PHY state, and attaches the PHY
1046  * to the mac driver.
1047  *  Return value:
1048  *  0 on success
1049  */
1050 static int stmmac_init_phy(struct net_device *dev)
1051 {
1052 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1053 	struct stmmac_priv *priv = netdev_priv(dev);
1054 	struct device_node *node;
1055 	int ret;
1056 
1057 	node = priv->plat->phylink_node;
1058 
1059 	if (node)
1060 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1061 
1062 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1063 	 * manually parse it
1064 	 */
1065 	if (!node || ret) {
1066 		int addr = priv->plat->phy_addr;
1067 		struct phy_device *phydev;
1068 
1069 		phydev = mdiobus_get_phy(priv->mii, addr);
1070 		if (!phydev) {
1071 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1072 			return -ENODEV;
1073 		}
1074 
1075 		ret = phylink_connect_phy(priv->phylink, phydev);
1076 	}
1077 
1078 	phylink_ethtool_get_wol(priv->phylink, &wol);
1079 	device_set_wakeup_capable(priv->device, !!wol.supported);
1080 
1081 	return ret;
1082 }
1083 
1084 static int stmmac_phy_setup(struct stmmac_priv *priv)
1085 {
1086 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1087 	int mode = priv->plat->phy_interface;
1088 	struct phylink *phylink;
1089 
1090 	priv->phylink_config.dev = &priv->dev->dev;
1091 	priv->phylink_config.type = PHYLINK_NETDEV;
1092 	priv->phylink_config.pcs_poll = true;
1093 
1094 	if (!fwnode)
1095 		fwnode = dev_fwnode(priv->device);
1096 
1097 	phylink = phylink_create(&priv->phylink_config, fwnode,
1098 				 mode, &stmmac_phylink_mac_ops);
1099 	if (IS_ERR(phylink))
1100 		return PTR_ERR(phylink);
1101 
1102 	priv->phylink = phylink;
1103 	return 0;
1104 }
1105 
1106 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1107 {
1108 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1109 	void *head_rx;
1110 	u32 queue;
1111 
1112 	/* Display RX rings */
1113 	for (queue = 0; queue < rx_cnt; queue++) {
1114 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1115 
1116 		pr_info("\tRX Queue %u rings\n", queue);
1117 
1118 		if (priv->extend_desc)
1119 			head_rx = (void *)rx_q->dma_erx;
1120 		else
1121 			head_rx = (void *)rx_q->dma_rx;
1122 
1123 		/* Display RX ring */
1124 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true);
1125 	}
1126 }
1127 
1128 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1129 {
1130 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1131 	void *head_tx;
1132 	u32 queue;
1133 
1134 	/* Display TX rings */
1135 	for (queue = 0; queue < tx_cnt; queue++) {
1136 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1137 
1138 		pr_info("\tTX Queue %d rings\n", queue);
1139 
1140 		if (priv->extend_desc)
1141 			head_tx = (void *)tx_q->dma_etx;
1142 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1143 			head_tx = (void *)tx_q->dma_entx;
1144 		else
1145 			head_tx = (void *)tx_q->dma_tx;
1146 
1147 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false);
1148 	}
1149 }
1150 
1151 static void stmmac_display_rings(struct stmmac_priv *priv)
1152 {
1153 	/* Display RX ring */
1154 	stmmac_display_rx_rings(priv);
1155 
1156 	/* Display TX ring */
1157 	stmmac_display_tx_rings(priv);
1158 }
1159 
1160 static int stmmac_set_bfsize(int mtu, int bufsize)
1161 {
1162 	int ret = bufsize;
1163 
1164 	if (mtu >= BUF_SIZE_8KiB)
1165 		ret = BUF_SIZE_16KiB;
1166 	else if (mtu >= BUF_SIZE_4KiB)
1167 		ret = BUF_SIZE_8KiB;
1168 	else if (mtu >= BUF_SIZE_2KiB)
1169 		ret = BUF_SIZE_4KiB;
1170 	else if (mtu > DEFAULT_BUFSIZE)
1171 		ret = BUF_SIZE_2KiB;
1172 	else
1173 		ret = DEFAULT_BUFSIZE;
1174 
1175 	return ret;
1176 }
1177 
1178 /**
1179  * stmmac_clear_rx_descriptors - clear RX descriptors
1180  * @priv: driver private structure
1181  * @queue: RX queue index
1182  * Description: this function is called to clear the RX descriptors
1183  * in case of both basic and extended descriptors are used.
1184  */
1185 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1186 {
1187 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1188 	int i;
1189 
1190 	/* Clear the RX descriptors */
1191 	for (i = 0; i < priv->dma_rx_size; i++)
1192 		if (priv->extend_desc)
1193 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1194 					priv->use_riwt, priv->mode,
1195 					(i == priv->dma_rx_size - 1),
1196 					priv->dma_buf_sz);
1197 		else
1198 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1199 					priv->use_riwt, priv->mode,
1200 					(i == priv->dma_rx_size - 1),
1201 					priv->dma_buf_sz);
1202 }
1203 
1204 /**
1205  * stmmac_clear_tx_descriptors - clear tx descriptors
1206  * @priv: driver private structure
1207  * @queue: TX queue index.
1208  * Description: this function is called to clear the TX descriptors
1209  * in case of both basic and extended descriptors are used.
1210  */
1211 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1212 {
1213 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1214 	int i;
1215 
1216 	/* Clear the TX descriptors */
1217 	for (i = 0; i < priv->dma_tx_size; i++) {
1218 		int last = (i == (priv->dma_tx_size - 1));
1219 		struct dma_desc *p;
1220 
1221 		if (priv->extend_desc)
1222 			p = &tx_q->dma_etx[i].basic;
1223 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1224 			p = &tx_q->dma_entx[i].basic;
1225 		else
1226 			p = &tx_q->dma_tx[i];
1227 
1228 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1229 	}
1230 }
1231 
1232 /**
1233  * stmmac_clear_descriptors - clear descriptors
1234  * @priv: driver private structure
1235  * Description: this function is called to clear the TX and RX descriptors
1236  * in case of both basic and extended descriptors are used.
1237  */
1238 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1239 {
1240 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1241 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1242 	u32 queue;
1243 
1244 	/* Clear the RX descriptors */
1245 	for (queue = 0; queue < rx_queue_cnt; queue++)
1246 		stmmac_clear_rx_descriptors(priv, queue);
1247 
1248 	/* Clear the TX descriptors */
1249 	for (queue = 0; queue < tx_queue_cnt; queue++)
1250 		stmmac_clear_tx_descriptors(priv, queue);
1251 }
1252 
1253 /**
1254  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1255  * @priv: driver private structure
1256  * @p: descriptor pointer
1257  * @i: descriptor index
1258  * @flags: gfp flag
1259  * @queue: RX queue index
1260  * Description: this function is called to allocate a receive buffer, perform
1261  * the DMA mapping and init the descriptor.
1262  */
1263 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1264 				  int i, gfp_t flags, u32 queue)
1265 {
1266 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1267 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1268 
1269 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1270 	if (!buf->page)
1271 		return -ENOMEM;
1272 
1273 	if (priv->sph) {
1274 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1275 		if (!buf->sec_page)
1276 			return -ENOMEM;
1277 
1278 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1279 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1280 	} else {
1281 		buf->sec_page = NULL;
1282 	}
1283 
1284 	buf->addr = page_pool_get_dma_addr(buf->page);
1285 	stmmac_set_desc_addr(priv, p, buf->addr);
1286 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1287 		stmmac_init_desc3(priv, p);
1288 
1289 	return 0;
1290 }
1291 
1292 /**
1293  * stmmac_free_rx_buffer - free RX dma buffers
1294  * @priv: private structure
1295  * @queue: RX queue index
1296  * @i: buffer index.
1297  */
1298 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1299 {
1300 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1301 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1302 
1303 	if (buf->page)
1304 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1305 	buf->page = NULL;
1306 
1307 	if (buf->sec_page)
1308 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1309 	buf->sec_page = NULL;
1310 }
1311 
1312 /**
1313  * stmmac_free_tx_buffer - free RX dma buffers
1314  * @priv: private structure
1315  * @queue: RX queue index
1316  * @i: buffer index.
1317  */
1318 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1319 {
1320 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1321 
1322 	if (tx_q->tx_skbuff_dma[i].buf) {
1323 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1324 			dma_unmap_page(priv->device,
1325 				       tx_q->tx_skbuff_dma[i].buf,
1326 				       tx_q->tx_skbuff_dma[i].len,
1327 				       DMA_TO_DEVICE);
1328 		else
1329 			dma_unmap_single(priv->device,
1330 					 tx_q->tx_skbuff_dma[i].buf,
1331 					 tx_q->tx_skbuff_dma[i].len,
1332 					 DMA_TO_DEVICE);
1333 	}
1334 
1335 	if (tx_q->tx_skbuff[i]) {
1336 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1337 		tx_q->tx_skbuff[i] = NULL;
1338 		tx_q->tx_skbuff_dma[i].buf = 0;
1339 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1340 	}
1341 }
1342 
1343 /**
1344  * init_dma_rx_desc_rings - init the RX descriptor rings
1345  * @dev: net device structure
1346  * @flags: gfp flag.
1347  * Description: this function initializes the DMA RX descriptors
1348  * and allocates the socket buffers. It supports the chained and ring
1349  * modes.
1350  */
1351 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1352 {
1353 	struct stmmac_priv *priv = netdev_priv(dev);
1354 	u32 rx_count = priv->plat->rx_queues_to_use;
1355 	int ret = -ENOMEM;
1356 	int queue;
1357 	int i;
1358 
1359 	/* RX INITIALIZATION */
1360 	netif_dbg(priv, probe, priv->dev,
1361 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1362 
1363 	for (queue = 0; queue < rx_count; queue++) {
1364 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1365 
1366 		netif_dbg(priv, probe, priv->dev,
1367 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1368 			  (u32)rx_q->dma_rx_phy);
1369 
1370 		stmmac_clear_rx_descriptors(priv, queue);
1371 
1372 		for (i = 0; i < priv->dma_rx_size; i++) {
1373 			struct dma_desc *p;
1374 
1375 			if (priv->extend_desc)
1376 				p = &((rx_q->dma_erx + i)->basic);
1377 			else
1378 				p = rx_q->dma_rx + i;
1379 
1380 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1381 						     queue);
1382 			if (ret)
1383 				goto err_init_rx_buffers;
1384 		}
1385 
1386 		rx_q->cur_rx = 0;
1387 		rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1388 
1389 		/* Setup the chained descriptor addresses */
1390 		if (priv->mode == STMMAC_CHAIN_MODE) {
1391 			if (priv->extend_desc)
1392 				stmmac_mode_init(priv, rx_q->dma_erx,
1393 						 rx_q->dma_rx_phy,
1394 						 priv->dma_rx_size, 1);
1395 			else
1396 				stmmac_mode_init(priv, rx_q->dma_rx,
1397 						 rx_q->dma_rx_phy,
1398 						 priv->dma_rx_size, 0);
1399 		}
1400 	}
1401 
1402 	return 0;
1403 
1404 err_init_rx_buffers:
1405 	while (queue >= 0) {
1406 		while (--i >= 0)
1407 			stmmac_free_rx_buffer(priv, queue, i);
1408 
1409 		if (queue == 0)
1410 			break;
1411 
1412 		i = priv->dma_rx_size;
1413 		queue--;
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 /**
1420  * init_dma_tx_desc_rings - init the TX descriptor rings
1421  * @dev: net device structure.
1422  * Description: this function initializes the DMA TX descriptors
1423  * and allocates the socket buffers. It supports the chained and ring
1424  * modes.
1425  */
1426 static int init_dma_tx_desc_rings(struct net_device *dev)
1427 {
1428 	struct stmmac_priv *priv = netdev_priv(dev);
1429 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1430 	u32 queue;
1431 	int i;
1432 
1433 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1434 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1435 
1436 		netif_dbg(priv, probe, priv->dev,
1437 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1438 			 (u32)tx_q->dma_tx_phy);
1439 
1440 		/* Setup the chained descriptor addresses */
1441 		if (priv->mode == STMMAC_CHAIN_MODE) {
1442 			if (priv->extend_desc)
1443 				stmmac_mode_init(priv, tx_q->dma_etx,
1444 						 tx_q->dma_tx_phy,
1445 						 priv->dma_tx_size, 1);
1446 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1447 				stmmac_mode_init(priv, tx_q->dma_tx,
1448 						 tx_q->dma_tx_phy,
1449 						 priv->dma_tx_size, 0);
1450 		}
1451 
1452 		for (i = 0; i < priv->dma_tx_size; i++) {
1453 			struct dma_desc *p;
1454 			if (priv->extend_desc)
1455 				p = &((tx_q->dma_etx + i)->basic);
1456 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1457 				p = &((tx_q->dma_entx + i)->basic);
1458 			else
1459 				p = tx_q->dma_tx + i;
1460 
1461 			stmmac_clear_desc(priv, p);
1462 
1463 			tx_q->tx_skbuff_dma[i].buf = 0;
1464 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1465 			tx_q->tx_skbuff_dma[i].len = 0;
1466 			tx_q->tx_skbuff_dma[i].last_segment = false;
1467 			tx_q->tx_skbuff[i] = NULL;
1468 		}
1469 
1470 		tx_q->dirty_tx = 0;
1471 		tx_q->cur_tx = 0;
1472 		tx_q->mss = 0;
1473 
1474 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1475 	}
1476 
1477 	return 0;
1478 }
1479 
1480 /**
1481  * init_dma_desc_rings - init the RX/TX descriptor rings
1482  * @dev: net device structure
1483  * @flags: gfp flag.
1484  * Description: this function initializes the DMA RX/TX descriptors
1485  * and allocates the socket buffers. It supports the chained and ring
1486  * modes.
1487  */
1488 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1489 {
1490 	struct stmmac_priv *priv = netdev_priv(dev);
1491 	int ret;
1492 
1493 	ret = init_dma_rx_desc_rings(dev, flags);
1494 	if (ret)
1495 		return ret;
1496 
1497 	ret = init_dma_tx_desc_rings(dev);
1498 
1499 	stmmac_clear_descriptors(priv);
1500 
1501 	if (netif_msg_hw(priv))
1502 		stmmac_display_rings(priv);
1503 
1504 	return ret;
1505 }
1506 
1507 /**
1508  * dma_free_rx_skbufs - free RX dma buffers
1509  * @priv: private structure
1510  * @queue: RX queue index
1511  */
1512 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1513 {
1514 	int i;
1515 
1516 	for (i = 0; i < priv->dma_rx_size; i++)
1517 		stmmac_free_rx_buffer(priv, queue, i);
1518 }
1519 
1520 /**
1521  * dma_free_tx_skbufs - free TX dma buffers
1522  * @priv: private structure
1523  * @queue: TX queue index
1524  */
1525 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1526 {
1527 	int i;
1528 
1529 	for (i = 0; i < priv->dma_tx_size; i++)
1530 		stmmac_free_tx_buffer(priv, queue, i);
1531 }
1532 
1533 /**
1534  * free_dma_rx_desc_resources - free RX dma desc resources
1535  * @priv: private structure
1536  */
1537 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1538 {
1539 	u32 rx_count = priv->plat->rx_queues_to_use;
1540 	u32 queue;
1541 
1542 	/* Free RX queue resources */
1543 	for (queue = 0; queue < rx_count; queue++) {
1544 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1545 
1546 		/* Release the DMA RX socket buffers */
1547 		dma_free_rx_skbufs(priv, queue);
1548 
1549 		/* Free DMA regions of consistent memory previously allocated */
1550 		if (!priv->extend_desc)
1551 			dma_free_coherent(priv->device, priv->dma_rx_size *
1552 					  sizeof(struct dma_desc),
1553 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1554 		else
1555 			dma_free_coherent(priv->device, priv->dma_rx_size *
1556 					  sizeof(struct dma_extended_desc),
1557 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1558 
1559 		kfree(rx_q->buf_pool);
1560 		if (rx_q->page_pool)
1561 			page_pool_destroy(rx_q->page_pool);
1562 	}
1563 }
1564 
1565 /**
1566  * free_dma_tx_desc_resources - free TX dma desc resources
1567  * @priv: private structure
1568  */
1569 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1570 {
1571 	u32 tx_count = priv->plat->tx_queues_to_use;
1572 	u32 queue;
1573 
1574 	/* Free TX queue resources */
1575 	for (queue = 0; queue < tx_count; queue++) {
1576 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1577 		size_t size;
1578 		void *addr;
1579 
1580 		/* Release the DMA TX socket buffers */
1581 		dma_free_tx_skbufs(priv, queue);
1582 
1583 		if (priv->extend_desc) {
1584 			size = sizeof(struct dma_extended_desc);
1585 			addr = tx_q->dma_etx;
1586 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1587 			size = sizeof(struct dma_edesc);
1588 			addr = tx_q->dma_entx;
1589 		} else {
1590 			size = sizeof(struct dma_desc);
1591 			addr = tx_q->dma_tx;
1592 		}
1593 
1594 		size *= priv->dma_tx_size;
1595 
1596 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1597 
1598 		kfree(tx_q->tx_skbuff_dma);
1599 		kfree(tx_q->tx_skbuff);
1600 	}
1601 }
1602 
1603 /**
1604  * alloc_dma_rx_desc_resources - alloc RX resources.
1605  * @priv: private structure
1606  * Description: according to which descriptor can be used (extend or basic)
1607  * this function allocates the resources for TX and RX paths. In case of
1608  * reception, for example, it pre-allocated the RX socket buffer in order to
1609  * allow zero-copy mechanism.
1610  */
1611 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1612 {
1613 	u32 rx_count = priv->plat->rx_queues_to_use;
1614 	int ret = -ENOMEM;
1615 	u32 queue;
1616 
1617 	/* RX queues buffers and DMA */
1618 	for (queue = 0; queue < rx_count; queue++) {
1619 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1620 		struct page_pool_params pp_params = { 0 };
1621 		unsigned int num_pages;
1622 
1623 		rx_q->queue_index = queue;
1624 		rx_q->priv_data = priv;
1625 
1626 		pp_params.flags = PP_FLAG_DMA_MAP;
1627 		pp_params.pool_size = priv->dma_rx_size;
1628 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1629 		pp_params.order = ilog2(num_pages);
1630 		pp_params.nid = dev_to_node(priv->device);
1631 		pp_params.dev = priv->device;
1632 		pp_params.dma_dir = DMA_FROM_DEVICE;
1633 
1634 		rx_q->page_pool = page_pool_create(&pp_params);
1635 		if (IS_ERR(rx_q->page_pool)) {
1636 			ret = PTR_ERR(rx_q->page_pool);
1637 			rx_q->page_pool = NULL;
1638 			goto err_dma;
1639 		}
1640 
1641 		rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1642 					 sizeof(*rx_q->buf_pool),
1643 					 GFP_KERNEL);
1644 		if (!rx_q->buf_pool)
1645 			goto err_dma;
1646 
1647 		if (priv->extend_desc) {
1648 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1649 							   priv->dma_rx_size *
1650 							   sizeof(struct dma_extended_desc),
1651 							   &rx_q->dma_rx_phy,
1652 							   GFP_KERNEL);
1653 			if (!rx_q->dma_erx)
1654 				goto err_dma;
1655 
1656 		} else {
1657 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1658 							  priv->dma_rx_size *
1659 							  sizeof(struct dma_desc),
1660 							  &rx_q->dma_rx_phy,
1661 							  GFP_KERNEL);
1662 			if (!rx_q->dma_rx)
1663 				goto err_dma;
1664 		}
1665 	}
1666 
1667 	return 0;
1668 
1669 err_dma:
1670 	free_dma_rx_desc_resources(priv);
1671 
1672 	return ret;
1673 }
1674 
1675 /**
1676  * alloc_dma_tx_desc_resources - alloc TX resources.
1677  * @priv: private structure
1678  * Description: according to which descriptor can be used (extend or basic)
1679  * this function allocates the resources for TX and RX paths. In case of
1680  * reception, for example, it pre-allocated the RX socket buffer in order to
1681  * allow zero-copy mechanism.
1682  */
1683 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1684 {
1685 	u32 tx_count = priv->plat->tx_queues_to_use;
1686 	int ret = -ENOMEM;
1687 	u32 queue;
1688 
1689 	/* TX queues buffers and DMA */
1690 	for (queue = 0; queue < tx_count; queue++) {
1691 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1692 		size_t size;
1693 		void *addr;
1694 
1695 		tx_q->queue_index = queue;
1696 		tx_q->priv_data = priv;
1697 
1698 		tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1699 					      sizeof(*tx_q->tx_skbuff_dma),
1700 					      GFP_KERNEL);
1701 		if (!tx_q->tx_skbuff_dma)
1702 			goto err_dma;
1703 
1704 		tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1705 					  sizeof(struct sk_buff *),
1706 					  GFP_KERNEL);
1707 		if (!tx_q->tx_skbuff)
1708 			goto err_dma;
1709 
1710 		if (priv->extend_desc)
1711 			size = sizeof(struct dma_extended_desc);
1712 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1713 			size = sizeof(struct dma_edesc);
1714 		else
1715 			size = sizeof(struct dma_desc);
1716 
1717 		size *= priv->dma_tx_size;
1718 
1719 		addr = dma_alloc_coherent(priv->device, size,
1720 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1721 		if (!addr)
1722 			goto err_dma;
1723 
1724 		if (priv->extend_desc)
1725 			tx_q->dma_etx = addr;
1726 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1727 			tx_q->dma_entx = addr;
1728 		else
1729 			tx_q->dma_tx = addr;
1730 	}
1731 
1732 	return 0;
1733 
1734 err_dma:
1735 	free_dma_tx_desc_resources(priv);
1736 	return ret;
1737 }
1738 
1739 /**
1740  * alloc_dma_desc_resources - alloc TX/RX resources.
1741  * @priv: private structure
1742  * Description: according to which descriptor can be used (extend or basic)
1743  * this function allocates the resources for TX and RX paths. In case of
1744  * reception, for example, it pre-allocated the RX socket buffer in order to
1745  * allow zero-copy mechanism.
1746  */
1747 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1748 {
1749 	/* RX Allocation */
1750 	int ret = alloc_dma_rx_desc_resources(priv);
1751 
1752 	if (ret)
1753 		return ret;
1754 
1755 	ret = alloc_dma_tx_desc_resources(priv);
1756 
1757 	return ret;
1758 }
1759 
1760 /**
1761  * free_dma_desc_resources - free dma desc resources
1762  * @priv: private structure
1763  */
1764 static void free_dma_desc_resources(struct stmmac_priv *priv)
1765 {
1766 	/* Release the DMA RX socket buffers */
1767 	free_dma_rx_desc_resources(priv);
1768 
1769 	/* Release the DMA TX socket buffers */
1770 	free_dma_tx_desc_resources(priv);
1771 }
1772 
1773 /**
1774  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1775  *  @priv: driver private structure
1776  *  Description: It is used for enabling the rx queues in the MAC
1777  */
1778 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1779 {
1780 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1781 	int queue;
1782 	u8 mode;
1783 
1784 	for (queue = 0; queue < rx_queues_count; queue++) {
1785 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1786 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1787 	}
1788 }
1789 
1790 /**
1791  * stmmac_start_rx_dma - start RX DMA channel
1792  * @priv: driver private structure
1793  * @chan: RX channel index
1794  * Description:
1795  * This starts a RX DMA channel
1796  */
1797 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1798 {
1799 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1800 	stmmac_start_rx(priv, priv->ioaddr, chan);
1801 }
1802 
1803 /**
1804  * stmmac_start_tx_dma - start TX DMA channel
1805  * @priv: driver private structure
1806  * @chan: TX channel index
1807  * Description:
1808  * This starts a TX DMA channel
1809  */
1810 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1811 {
1812 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1813 	stmmac_start_tx(priv, priv->ioaddr, chan);
1814 }
1815 
1816 /**
1817  * stmmac_stop_rx_dma - stop RX DMA channel
1818  * @priv: driver private structure
1819  * @chan: RX channel index
1820  * Description:
1821  * This stops a RX DMA channel
1822  */
1823 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1824 {
1825 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1826 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1827 }
1828 
1829 /**
1830  * stmmac_stop_tx_dma - stop TX DMA channel
1831  * @priv: driver private structure
1832  * @chan: TX channel index
1833  * Description:
1834  * This stops a TX DMA channel
1835  */
1836 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1837 {
1838 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1839 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1840 }
1841 
1842 /**
1843  * stmmac_start_all_dma - start all RX and TX DMA channels
1844  * @priv: driver private structure
1845  * Description:
1846  * This starts all the RX and TX DMA channels
1847  */
1848 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1849 {
1850 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1851 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1852 	u32 chan = 0;
1853 
1854 	for (chan = 0; chan < rx_channels_count; chan++)
1855 		stmmac_start_rx_dma(priv, chan);
1856 
1857 	for (chan = 0; chan < tx_channels_count; chan++)
1858 		stmmac_start_tx_dma(priv, chan);
1859 }
1860 
1861 /**
1862  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1863  * @priv: driver private structure
1864  * Description:
1865  * This stops the RX and TX DMA channels
1866  */
1867 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1868 {
1869 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1870 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1871 	u32 chan = 0;
1872 
1873 	for (chan = 0; chan < rx_channels_count; chan++)
1874 		stmmac_stop_rx_dma(priv, chan);
1875 
1876 	for (chan = 0; chan < tx_channels_count; chan++)
1877 		stmmac_stop_tx_dma(priv, chan);
1878 }
1879 
1880 /**
1881  *  stmmac_dma_operation_mode - HW DMA operation mode
1882  *  @priv: driver private structure
1883  *  Description: it is used for configuring the DMA operation mode register in
1884  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1885  */
1886 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1887 {
1888 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1889 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1890 	int rxfifosz = priv->plat->rx_fifo_size;
1891 	int txfifosz = priv->plat->tx_fifo_size;
1892 	u32 txmode = 0;
1893 	u32 rxmode = 0;
1894 	u32 chan = 0;
1895 	u8 qmode = 0;
1896 
1897 	if (rxfifosz == 0)
1898 		rxfifosz = priv->dma_cap.rx_fifo_size;
1899 	if (txfifosz == 0)
1900 		txfifosz = priv->dma_cap.tx_fifo_size;
1901 
1902 	/* Adjust for real per queue fifo size */
1903 	rxfifosz /= rx_channels_count;
1904 	txfifosz /= tx_channels_count;
1905 
1906 	if (priv->plat->force_thresh_dma_mode) {
1907 		txmode = tc;
1908 		rxmode = tc;
1909 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1910 		/*
1911 		 * In case of GMAC, SF mode can be enabled
1912 		 * to perform the TX COE in HW. This depends on:
1913 		 * 1) TX COE if actually supported
1914 		 * 2) There is no bugged Jumbo frame support
1915 		 *    that needs to not insert csum in the TDES.
1916 		 */
1917 		txmode = SF_DMA_MODE;
1918 		rxmode = SF_DMA_MODE;
1919 		priv->xstats.threshold = SF_DMA_MODE;
1920 	} else {
1921 		txmode = tc;
1922 		rxmode = SF_DMA_MODE;
1923 	}
1924 
1925 	/* configure all channels */
1926 	for (chan = 0; chan < rx_channels_count; chan++) {
1927 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1928 
1929 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1930 				rxfifosz, qmode);
1931 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1932 				chan);
1933 	}
1934 
1935 	for (chan = 0; chan < tx_channels_count; chan++) {
1936 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1937 
1938 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1939 				txfifosz, qmode);
1940 	}
1941 }
1942 
1943 /**
1944  * stmmac_tx_clean - to manage the transmission completion
1945  * @priv: driver private structure
1946  * @budget: napi budget limiting this functions packet handling
1947  * @queue: TX queue index
1948  * Description: it reclaims the transmit resources after transmission completes.
1949  */
1950 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1951 {
1952 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1953 	unsigned int bytes_compl = 0, pkts_compl = 0;
1954 	unsigned int entry, count = 0;
1955 
1956 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1957 
1958 	priv->xstats.tx_clean++;
1959 
1960 	entry = tx_q->dirty_tx;
1961 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1962 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1963 		struct dma_desc *p;
1964 		int status;
1965 
1966 		if (priv->extend_desc)
1967 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1968 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1969 			p = &tx_q->dma_entx[entry].basic;
1970 		else
1971 			p = tx_q->dma_tx + entry;
1972 
1973 		status = stmmac_tx_status(priv, &priv->dev->stats,
1974 				&priv->xstats, p, priv->ioaddr);
1975 		/* Check if the descriptor is owned by the DMA */
1976 		if (unlikely(status & tx_dma_own))
1977 			break;
1978 
1979 		count++;
1980 
1981 		/* Make sure descriptor fields are read after reading
1982 		 * the own bit.
1983 		 */
1984 		dma_rmb();
1985 
1986 		/* Just consider the last segment and ...*/
1987 		if (likely(!(status & tx_not_ls))) {
1988 			/* ... verify the status error condition */
1989 			if (unlikely(status & tx_err)) {
1990 				priv->dev->stats.tx_errors++;
1991 			} else {
1992 				priv->dev->stats.tx_packets++;
1993 				priv->xstats.tx_pkt_n++;
1994 			}
1995 			stmmac_get_tx_hwtstamp(priv, p, skb);
1996 		}
1997 
1998 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1999 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2000 				dma_unmap_page(priv->device,
2001 					       tx_q->tx_skbuff_dma[entry].buf,
2002 					       tx_q->tx_skbuff_dma[entry].len,
2003 					       DMA_TO_DEVICE);
2004 			else
2005 				dma_unmap_single(priv->device,
2006 						 tx_q->tx_skbuff_dma[entry].buf,
2007 						 tx_q->tx_skbuff_dma[entry].len,
2008 						 DMA_TO_DEVICE);
2009 			tx_q->tx_skbuff_dma[entry].buf = 0;
2010 			tx_q->tx_skbuff_dma[entry].len = 0;
2011 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2012 		}
2013 
2014 		stmmac_clean_desc3(priv, tx_q, p);
2015 
2016 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2017 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2018 
2019 		if (likely(skb != NULL)) {
2020 			pkts_compl++;
2021 			bytes_compl += skb->len;
2022 			dev_consume_skb_any(skb);
2023 			tx_q->tx_skbuff[entry] = NULL;
2024 		}
2025 
2026 		stmmac_release_tx_desc(priv, p, priv->mode);
2027 
2028 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2029 	}
2030 	tx_q->dirty_tx = entry;
2031 
2032 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2033 				  pkts_compl, bytes_compl);
2034 
2035 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2036 								queue))) &&
2037 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2038 
2039 		netif_dbg(priv, tx_done, priv->dev,
2040 			  "%s: restart transmit\n", __func__);
2041 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2042 	}
2043 
2044 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
2045 		stmmac_enable_eee_mode(priv);
2046 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
2047 	}
2048 
2049 	/* We still have pending packets, let's call for a new scheduling */
2050 	if (tx_q->dirty_tx != tx_q->cur_tx)
2051 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2052 
2053 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2054 
2055 	return count;
2056 }
2057 
2058 /**
2059  * stmmac_tx_err - to manage the tx error
2060  * @priv: driver private structure
2061  * @chan: channel index
2062  * Description: it cleans the descriptors and restarts the transmission
2063  * in case of transmission errors.
2064  */
2065 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2066 {
2067 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2068 
2069 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2070 
2071 	stmmac_stop_tx_dma(priv, chan);
2072 	dma_free_tx_skbufs(priv, chan);
2073 	stmmac_clear_tx_descriptors(priv, chan);
2074 	tx_q->dirty_tx = 0;
2075 	tx_q->cur_tx = 0;
2076 	tx_q->mss = 0;
2077 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2078 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2079 			    tx_q->dma_tx_phy, chan);
2080 	stmmac_start_tx_dma(priv, chan);
2081 
2082 	priv->dev->stats.tx_errors++;
2083 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2084 }
2085 
2086 /**
2087  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2088  *  @priv: driver private structure
2089  *  @txmode: TX operating mode
2090  *  @rxmode: RX operating mode
2091  *  @chan: channel index
2092  *  Description: it is used for configuring of the DMA operation mode in
2093  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2094  *  mode.
2095  */
2096 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2097 					  u32 rxmode, u32 chan)
2098 {
2099 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2100 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2101 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2102 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2103 	int rxfifosz = priv->plat->rx_fifo_size;
2104 	int txfifosz = priv->plat->tx_fifo_size;
2105 
2106 	if (rxfifosz == 0)
2107 		rxfifosz = priv->dma_cap.rx_fifo_size;
2108 	if (txfifosz == 0)
2109 		txfifosz = priv->dma_cap.tx_fifo_size;
2110 
2111 	/* Adjust for real per queue fifo size */
2112 	rxfifosz /= rx_channels_count;
2113 	txfifosz /= tx_channels_count;
2114 
2115 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2116 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2117 }
2118 
2119 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2120 {
2121 	int ret;
2122 
2123 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2124 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2125 	if (ret && (ret != -EINVAL)) {
2126 		stmmac_global_err(priv);
2127 		return true;
2128 	}
2129 
2130 	return false;
2131 }
2132 
2133 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2134 {
2135 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2136 						 &priv->xstats, chan);
2137 	struct stmmac_channel *ch = &priv->channel[chan];
2138 	unsigned long flags;
2139 
2140 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2141 		if (napi_schedule_prep(&ch->rx_napi)) {
2142 			spin_lock_irqsave(&ch->lock, flags);
2143 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2144 			spin_unlock_irqrestore(&ch->lock, flags);
2145 			__napi_schedule_irqoff(&ch->rx_napi);
2146 		}
2147 	}
2148 
2149 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2150 		if (napi_schedule_prep(&ch->tx_napi)) {
2151 			spin_lock_irqsave(&ch->lock, flags);
2152 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2153 			spin_unlock_irqrestore(&ch->lock, flags);
2154 			__napi_schedule_irqoff(&ch->tx_napi);
2155 		}
2156 	}
2157 
2158 	return status;
2159 }
2160 
2161 /**
2162  * stmmac_dma_interrupt - DMA ISR
2163  * @priv: driver private structure
2164  * Description: this is the DMA ISR. It is called by the main ISR.
2165  * It calls the dwmac dma routine and schedule poll method in case of some
2166  * work can be done.
2167  */
2168 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2169 {
2170 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2171 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2172 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2173 				tx_channel_count : rx_channel_count;
2174 	u32 chan;
2175 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2176 
2177 	/* Make sure we never check beyond our status buffer. */
2178 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2179 		channels_to_check = ARRAY_SIZE(status);
2180 
2181 	for (chan = 0; chan < channels_to_check; chan++)
2182 		status[chan] = stmmac_napi_check(priv, chan);
2183 
2184 	for (chan = 0; chan < tx_channel_count; chan++) {
2185 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2186 			/* Try to bump up the dma threshold on this failure */
2187 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2188 			    (tc <= 256)) {
2189 				tc += 64;
2190 				if (priv->plat->force_thresh_dma_mode)
2191 					stmmac_set_dma_operation_mode(priv,
2192 								      tc,
2193 								      tc,
2194 								      chan);
2195 				else
2196 					stmmac_set_dma_operation_mode(priv,
2197 								    tc,
2198 								    SF_DMA_MODE,
2199 								    chan);
2200 				priv->xstats.threshold = tc;
2201 			}
2202 		} else if (unlikely(status[chan] == tx_hard_error)) {
2203 			stmmac_tx_err(priv, chan);
2204 		}
2205 	}
2206 }
2207 
2208 /**
2209  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2210  * @priv: driver private structure
2211  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2212  */
2213 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2214 {
2215 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2216 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2217 
2218 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2219 
2220 	if (priv->dma_cap.rmon) {
2221 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2222 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2223 	} else
2224 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2225 }
2226 
2227 /**
2228  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2229  * @priv: driver private structure
2230  * Description:
2231  *  new GMAC chip generations have a new register to indicate the
2232  *  presence of the optional feature/functions.
2233  *  This can be also used to override the value passed through the
2234  *  platform and necessary for old MAC10/100 and GMAC chips.
2235  */
2236 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2237 {
2238 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2239 }
2240 
2241 /**
2242  * stmmac_check_ether_addr - check if the MAC addr is valid
2243  * @priv: driver private structure
2244  * Description:
2245  * it is to verify if the MAC address is valid, in case of failures it
2246  * generates a random MAC address
2247  */
2248 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2249 {
2250 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2251 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2252 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2253 			eth_hw_addr_random(priv->dev);
2254 		dev_info(priv->device, "device MAC address %pM\n",
2255 			 priv->dev->dev_addr);
2256 	}
2257 }
2258 
2259 /**
2260  * stmmac_init_dma_engine - DMA init.
2261  * @priv: driver private structure
2262  * Description:
2263  * It inits the DMA invoking the specific MAC/GMAC callback.
2264  * Some DMA parameters can be passed from the platform;
2265  * in case of these are not passed a default is kept for the MAC or GMAC.
2266  */
2267 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2268 {
2269 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2270 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2271 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2272 	struct stmmac_rx_queue *rx_q;
2273 	struct stmmac_tx_queue *tx_q;
2274 	u32 chan = 0;
2275 	int atds = 0;
2276 	int ret = 0;
2277 
2278 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2279 		dev_err(priv->device, "Invalid DMA configuration\n");
2280 		return -EINVAL;
2281 	}
2282 
2283 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2284 		atds = 1;
2285 
2286 	ret = stmmac_reset(priv, priv->ioaddr);
2287 	if (ret) {
2288 		dev_err(priv->device, "Failed to reset the dma\n");
2289 		return ret;
2290 	}
2291 
2292 	/* DMA Configuration */
2293 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2294 
2295 	if (priv->plat->axi)
2296 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2297 
2298 	/* DMA CSR Channel configuration */
2299 	for (chan = 0; chan < dma_csr_ch; chan++)
2300 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2301 
2302 	/* DMA RX Channel Configuration */
2303 	for (chan = 0; chan < rx_channels_count; chan++) {
2304 		rx_q = &priv->rx_queue[chan];
2305 
2306 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2307 				    rx_q->dma_rx_phy, chan);
2308 
2309 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2310 				     (priv->dma_rx_size *
2311 				      sizeof(struct dma_desc));
2312 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2313 				       rx_q->rx_tail_addr, chan);
2314 	}
2315 
2316 	/* DMA TX Channel Configuration */
2317 	for (chan = 0; chan < tx_channels_count; chan++) {
2318 		tx_q = &priv->tx_queue[chan];
2319 
2320 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2321 				    tx_q->dma_tx_phy, chan);
2322 
2323 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2324 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2325 				       tx_q->tx_tail_addr, chan);
2326 	}
2327 
2328 	return ret;
2329 }
2330 
2331 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2332 {
2333 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2334 
2335 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2336 }
2337 
2338 /**
2339  * stmmac_tx_timer - mitigation sw timer for tx.
2340  * @t: data pointer
2341  * Description:
2342  * This is the timer handler to directly invoke the stmmac_tx_clean.
2343  */
2344 static void stmmac_tx_timer(struct timer_list *t)
2345 {
2346 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2347 	struct stmmac_priv *priv = tx_q->priv_data;
2348 	struct stmmac_channel *ch;
2349 
2350 	ch = &priv->channel[tx_q->queue_index];
2351 
2352 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2353 		unsigned long flags;
2354 
2355 		spin_lock_irqsave(&ch->lock, flags);
2356 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2357 		spin_unlock_irqrestore(&ch->lock, flags);
2358 		__napi_schedule(&ch->tx_napi);
2359 	}
2360 }
2361 
2362 /**
2363  * stmmac_init_coalesce - init mitigation options.
2364  * @priv: driver private structure
2365  * Description:
2366  * This inits the coalesce parameters: i.e. timer rate,
2367  * timer handler and default threshold used for enabling the
2368  * interrupt on completion bit.
2369  */
2370 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2371 {
2372 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2373 	u32 chan;
2374 
2375 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2376 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2377 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2378 
2379 	for (chan = 0; chan < tx_channel_count; chan++) {
2380 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2381 
2382 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2383 	}
2384 }
2385 
2386 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2387 {
2388 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2389 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2390 	u32 chan;
2391 
2392 	/* set TX ring length */
2393 	for (chan = 0; chan < tx_channels_count; chan++)
2394 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2395 				       (priv->dma_tx_size - 1), chan);
2396 
2397 	/* set RX ring length */
2398 	for (chan = 0; chan < rx_channels_count; chan++)
2399 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2400 				       (priv->dma_rx_size - 1), chan);
2401 }
2402 
2403 /**
2404  *  stmmac_set_tx_queue_weight - Set TX queue weight
2405  *  @priv: driver private structure
2406  *  Description: It is used for setting TX queues weight
2407  */
2408 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2409 {
2410 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2411 	u32 weight;
2412 	u32 queue;
2413 
2414 	for (queue = 0; queue < tx_queues_count; queue++) {
2415 		weight = priv->plat->tx_queues_cfg[queue].weight;
2416 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2417 	}
2418 }
2419 
2420 /**
2421  *  stmmac_configure_cbs - Configure CBS in TX queue
2422  *  @priv: driver private structure
2423  *  Description: It is used for configuring CBS in AVB TX queues
2424  */
2425 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2426 {
2427 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2428 	u32 mode_to_use;
2429 	u32 queue;
2430 
2431 	/* queue 0 is reserved for legacy traffic */
2432 	for (queue = 1; queue < tx_queues_count; queue++) {
2433 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2434 		if (mode_to_use == MTL_QUEUE_DCB)
2435 			continue;
2436 
2437 		stmmac_config_cbs(priv, priv->hw,
2438 				priv->plat->tx_queues_cfg[queue].send_slope,
2439 				priv->plat->tx_queues_cfg[queue].idle_slope,
2440 				priv->plat->tx_queues_cfg[queue].high_credit,
2441 				priv->plat->tx_queues_cfg[queue].low_credit,
2442 				queue);
2443 	}
2444 }
2445 
2446 /**
2447  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2448  *  @priv: driver private structure
2449  *  Description: It is used for mapping RX queues to RX dma channels
2450  */
2451 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2452 {
2453 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2454 	u32 queue;
2455 	u32 chan;
2456 
2457 	for (queue = 0; queue < rx_queues_count; queue++) {
2458 		chan = priv->plat->rx_queues_cfg[queue].chan;
2459 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2460 	}
2461 }
2462 
2463 /**
2464  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2465  *  @priv: driver private structure
2466  *  Description: It is used for configuring the RX Queue Priority
2467  */
2468 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2469 {
2470 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2471 	u32 queue;
2472 	u32 prio;
2473 
2474 	for (queue = 0; queue < rx_queues_count; queue++) {
2475 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2476 			continue;
2477 
2478 		prio = priv->plat->rx_queues_cfg[queue].prio;
2479 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2480 	}
2481 }
2482 
2483 /**
2484  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2485  *  @priv: driver private structure
2486  *  Description: It is used for configuring the TX Queue Priority
2487  */
2488 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2489 {
2490 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2491 	u32 queue;
2492 	u32 prio;
2493 
2494 	for (queue = 0; queue < tx_queues_count; queue++) {
2495 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2496 			continue;
2497 
2498 		prio = priv->plat->tx_queues_cfg[queue].prio;
2499 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2500 	}
2501 }
2502 
2503 /**
2504  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2505  *  @priv: driver private structure
2506  *  Description: It is used for configuring the RX queue routing
2507  */
2508 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2509 {
2510 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2511 	u32 queue;
2512 	u8 packet;
2513 
2514 	for (queue = 0; queue < rx_queues_count; queue++) {
2515 		/* no specific packet type routing specified for the queue */
2516 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2517 			continue;
2518 
2519 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2520 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2521 	}
2522 }
2523 
2524 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2525 {
2526 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2527 		priv->rss.enable = false;
2528 		return;
2529 	}
2530 
2531 	if (priv->dev->features & NETIF_F_RXHASH)
2532 		priv->rss.enable = true;
2533 	else
2534 		priv->rss.enable = false;
2535 
2536 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2537 			     priv->plat->rx_queues_to_use);
2538 }
2539 
2540 /**
2541  *  stmmac_mtl_configuration - Configure MTL
2542  *  @priv: driver private structure
2543  *  Description: It is used for configurring MTL
2544  */
2545 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2546 {
2547 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2548 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2549 
2550 	if (tx_queues_count > 1)
2551 		stmmac_set_tx_queue_weight(priv);
2552 
2553 	/* Configure MTL RX algorithms */
2554 	if (rx_queues_count > 1)
2555 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2556 				priv->plat->rx_sched_algorithm);
2557 
2558 	/* Configure MTL TX algorithms */
2559 	if (tx_queues_count > 1)
2560 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2561 				priv->plat->tx_sched_algorithm);
2562 
2563 	/* Configure CBS in AVB TX queues */
2564 	if (tx_queues_count > 1)
2565 		stmmac_configure_cbs(priv);
2566 
2567 	/* Map RX MTL to DMA channels */
2568 	stmmac_rx_queue_dma_chan_map(priv);
2569 
2570 	/* Enable MAC RX Queues */
2571 	stmmac_mac_enable_rx_queues(priv);
2572 
2573 	/* Set RX priorities */
2574 	if (rx_queues_count > 1)
2575 		stmmac_mac_config_rx_queues_prio(priv);
2576 
2577 	/* Set TX priorities */
2578 	if (tx_queues_count > 1)
2579 		stmmac_mac_config_tx_queues_prio(priv);
2580 
2581 	/* Set RX routing */
2582 	if (rx_queues_count > 1)
2583 		stmmac_mac_config_rx_queues_routing(priv);
2584 
2585 	/* Receive Side Scaling */
2586 	if (rx_queues_count > 1)
2587 		stmmac_mac_config_rss(priv);
2588 }
2589 
2590 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2591 {
2592 	if (priv->dma_cap.asp) {
2593 		netdev_info(priv->dev, "Enabling Safety Features\n");
2594 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2595 	} else {
2596 		netdev_info(priv->dev, "No Safety Features support found\n");
2597 	}
2598 }
2599 
2600 /**
2601  * stmmac_hw_setup - setup mac in a usable state.
2602  *  @dev : pointer to the device structure.
2603  *  @init_ptp: initialize PTP if set
2604  *  Description:
2605  *  this is the main function to setup the HW in a usable state because the
2606  *  dma engine is reset, the core registers are configured (e.g. AXI,
2607  *  Checksum features, timers). The DMA is ready to start receiving and
2608  *  transmitting.
2609  *  Return value:
2610  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2611  *  file on failure.
2612  */
2613 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2614 {
2615 	struct stmmac_priv *priv = netdev_priv(dev);
2616 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2617 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2618 	u32 chan;
2619 	int ret;
2620 
2621 	/* DMA initialization and SW reset */
2622 	ret = stmmac_init_dma_engine(priv);
2623 	if (ret < 0) {
2624 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2625 			   __func__);
2626 		return ret;
2627 	}
2628 
2629 	/* Copy the MAC addr into the HW  */
2630 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2631 
2632 	/* PS and related bits will be programmed according to the speed */
2633 	if (priv->hw->pcs) {
2634 		int speed = priv->plat->mac_port_sel_speed;
2635 
2636 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2637 		    (speed == SPEED_1000)) {
2638 			priv->hw->ps = speed;
2639 		} else {
2640 			dev_warn(priv->device, "invalid port speed\n");
2641 			priv->hw->ps = 0;
2642 		}
2643 	}
2644 
2645 	/* Initialize the MAC Core */
2646 	stmmac_core_init(priv, priv->hw, dev);
2647 
2648 	/* Initialize MTL*/
2649 	stmmac_mtl_configuration(priv);
2650 
2651 	/* Initialize Safety Features */
2652 	stmmac_safety_feat_configuration(priv);
2653 
2654 	ret = stmmac_rx_ipc(priv, priv->hw);
2655 	if (!ret) {
2656 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2657 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2658 		priv->hw->rx_csum = 0;
2659 	}
2660 
2661 	/* Enable the MAC Rx/Tx */
2662 	stmmac_mac_set(priv, priv->ioaddr, true);
2663 
2664 	/* Set the HW DMA mode and the COE */
2665 	stmmac_dma_operation_mode(priv);
2666 
2667 	stmmac_mmc_setup(priv);
2668 
2669 	if (init_ptp) {
2670 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2671 		if (ret < 0)
2672 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2673 
2674 		ret = stmmac_init_ptp(priv);
2675 		if (ret == -EOPNOTSUPP)
2676 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2677 		else if (ret)
2678 			netdev_warn(priv->dev, "PTP init failed\n");
2679 	}
2680 
2681 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2682 
2683 	if (priv->use_riwt) {
2684 		if (!priv->rx_riwt)
2685 			priv->rx_riwt = DEF_DMA_RIWT;
2686 
2687 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2688 	}
2689 
2690 	if (priv->hw->pcs)
2691 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2692 
2693 	/* set TX and RX rings length */
2694 	stmmac_set_rings_length(priv);
2695 
2696 	/* Enable TSO */
2697 	if (priv->tso) {
2698 		for (chan = 0; chan < tx_cnt; chan++)
2699 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2700 	}
2701 
2702 	/* Enable Split Header */
2703 	if (priv->sph && priv->hw->rx_csum) {
2704 		for (chan = 0; chan < rx_cnt; chan++)
2705 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2706 	}
2707 
2708 	/* VLAN Tag Insertion */
2709 	if (priv->dma_cap.vlins)
2710 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2711 
2712 	/* TBS */
2713 	for (chan = 0; chan < tx_cnt; chan++) {
2714 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2715 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2716 
2717 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2718 	}
2719 
2720 	/* Configure real RX and TX queues */
2721 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2722 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2723 
2724 	/* Start the ball rolling... */
2725 	stmmac_start_all_dma(priv);
2726 
2727 	return 0;
2728 }
2729 
2730 static void stmmac_hw_teardown(struct net_device *dev)
2731 {
2732 	struct stmmac_priv *priv = netdev_priv(dev);
2733 
2734 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2735 }
2736 
2737 /**
2738  *  stmmac_open - open entry point of the driver
2739  *  @dev : pointer to the device structure.
2740  *  Description:
2741  *  This function is the open entry point of the driver.
2742  *  Return value:
2743  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2744  *  file on failure.
2745  */
2746 static int stmmac_open(struct net_device *dev)
2747 {
2748 	struct stmmac_priv *priv = netdev_priv(dev);
2749 	int bfsize = 0;
2750 	u32 chan;
2751 	int ret;
2752 
2753 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2754 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2755 	    priv->hw->xpcs == NULL) {
2756 		ret = stmmac_init_phy(dev);
2757 		if (ret) {
2758 			netdev_err(priv->dev,
2759 				   "%s: Cannot attach to PHY (error: %d)\n",
2760 				   __func__, ret);
2761 			return ret;
2762 		}
2763 	}
2764 
2765 	/* Extra statistics */
2766 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2767 	priv->xstats.threshold = tc;
2768 
2769 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2770 	if (bfsize < 0)
2771 		bfsize = 0;
2772 
2773 	if (bfsize < BUF_SIZE_16KiB)
2774 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2775 
2776 	priv->dma_buf_sz = bfsize;
2777 	buf_sz = bfsize;
2778 
2779 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2780 
2781 	if (!priv->dma_tx_size)
2782 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2783 	if (!priv->dma_rx_size)
2784 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2785 
2786 	/* Earlier check for TBS */
2787 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2788 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2789 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2790 
2791 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2792 		if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2793 			tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2794 	}
2795 
2796 	ret = alloc_dma_desc_resources(priv);
2797 	if (ret < 0) {
2798 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2799 			   __func__);
2800 		goto dma_desc_error;
2801 	}
2802 
2803 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2804 	if (ret < 0) {
2805 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2806 			   __func__);
2807 		goto init_error;
2808 	}
2809 
2810 	ret = stmmac_hw_setup(dev, true);
2811 	if (ret < 0) {
2812 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2813 		goto init_error;
2814 	}
2815 
2816 	stmmac_init_coalesce(priv);
2817 
2818 	phylink_start(priv->phylink);
2819 	/* We may have called phylink_speed_down before */
2820 	phylink_speed_up(priv->phylink);
2821 
2822 	/* Request the IRQ lines */
2823 	ret = request_irq(dev->irq, stmmac_interrupt,
2824 			  IRQF_SHARED, dev->name, dev);
2825 	if (unlikely(ret < 0)) {
2826 		netdev_err(priv->dev,
2827 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2828 			   __func__, dev->irq, ret);
2829 		goto irq_error;
2830 	}
2831 
2832 	/* Request the Wake IRQ in case of another line is used for WoL */
2833 	if (priv->wol_irq != dev->irq) {
2834 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2835 				  IRQF_SHARED, dev->name, dev);
2836 		if (unlikely(ret < 0)) {
2837 			netdev_err(priv->dev,
2838 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2839 				   __func__, priv->wol_irq, ret);
2840 			goto wolirq_error;
2841 		}
2842 	}
2843 
2844 	/* Request the IRQ lines */
2845 	if (priv->lpi_irq > 0) {
2846 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2847 				  dev->name, dev);
2848 		if (unlikely(ret < 0)) {
2849 			netdev_err(priv->dev,
2850 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2851 				   __func__, priv->lpi_irq, ret);
2852 			goto lpiirq_error;
2853 		}
2854 	}
2855 
2856 	stmmac_enable_all_queues(priv);
2857 	netif_tx_start_all_queues(priv->dev);
2858 
2859 	return 0;
2860 
2861 lpiirq_error:
2862 	if (priv->wol_irq != dev->irq)
2863 		free_irq(priv->wol_irq, dev);
2864 wolirq_error:
2865 	free_irq(dev->irq, dev);
2866 irq_error:
2867 	phylink_stop(priv->phylink);
2868 
2869 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2870 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2871 
2872 	stmmac_hw_teardown(dev);
2873 init_error:
2874 	free_dma_desc_resources(priv);
2875 dma_desc_error:
2876 	phylink_disconnect_phy(priv->phylink);
2877 	return ret;
2878 }
2879 
2880 /**
2881  *  stmmac_release - close entry point of the driver
2882  *  @dev : device pointer.
2883  *  Description:
2884  *  This is the stop entry point of the driver.
2885  */
2886 static int stmmac_release(struct net_device *dev)
2887 {
2888 	struct stmmac_priv *priv = netdev_priv(dev);
2889 	u32 chan;
2890 
2891 	if (priv->eee_enabled)
2892 		del_timer_sync(&priv->eee_ctrl_timer);
2893 
2894 	if (device_may_wakeup(priv->device))
2895 		phylink_speed_down(priv->phylink, false);
2896 	/* Stop and disconnect the PHY */
2897 	phylink_stop(priv->phylink);
2898 	phylink_disconnect_phy(priv->phylink);
2899 
2900 	stmmac_disable_all_queues(priv);
2901 
2902 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2903 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2904 
2905 	/* Free the IRQ lines */
2906 	free_irq(dev->irq, dev);
2907 	if (priv->wol_irq != dev->irq)
2908 		free_irq(priv->wol_irq, dev);
2909 	if (priv->lpi_irq > 0)
2910 		free_irq(priv->lpi_irq, dev);
2911 
2912 	/* Stop TX/RX DMA and clear the descriptors */
2913 	stmmac_stop_all_dma(priv);
2914 
2915 	/* Release and free the Rx/Tx resources */
2916 	free_dma_desc_resources(priv);
2917 
2918 	/* Disable the MAC Rx/Tx */
2919 	stmmac_mac_set(priv, priv->ioaddr, false);
2920 
2921 	netif_carrier_off(dev);
2922 
2923 	stmmac_release_ptp(priv);
2924 
2925 	return 0;
2926 }
2927 
2928 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2929 			       struct stmmac_tx_queue *tx_q)
2930 {
2931 	u16 tag = 0x0, inner_tag = 0x0;
2932 	u32 inner_type = 0x0;
2933 	struct dma_desc *p;
2934 
2935 	if (!priv->dma_cap.vlins)
2936 		return false;
2937 	if (!skb_vlan_tag_present(skb))
2938 		return false;
2939 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2940 		inner_tag = skb_vlan_tag_get(skb);
2941 		inner_type = STMMAC_VLAN_INSERT;
2942 	}
2943 
2944 	tag = skb_vlan_tag_get(skb);
2945 
2946 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
2947 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
2948 	else
2949 		p = &tx_q->dma_tx[tx_q->cur_tx];
2950 
2951 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2952 		return false;
2953 
2954 	stmmac_set_tx_owner(priv, p);
2955 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2956 	return true;
2957 }
2958 
2959 /**
2960  *  stmmac_tso_allocator - close entry point of the driver
2961  *  @priv: driver private structure
2962  *  @des: buffer start address
2963  *  @total_len: total length to fill in descriptors
2964  *  @last_segment: condition for the last descriptor
2965  *  @queue: TX queue index
2966  *  Description:
2967  *  This function fills descriptor and request new descriptors according to
2968  *  buffer length to fill
2969  */
2970 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2971 				 int total_len, bool last_segment, u32 queue)
2972 {
2973 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2974 	struct dma_desc *desc;
2975 	u32 buff_size;
2976 	int tmp_len;
2977 
2978 	tmp_len = total_len;
2979 
2980 	while (tmp_len > 0) {
2981 		dma_addr_t curr_addr;
2982 
2983 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
2984 						priv->dma_tx_size);
2985 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2986 
2987 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
2988 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
2989 		else
2990 			desc = &tx_q->dma_tx[tx_q->cur_tx];
2991 
2992 		curr_addr = des + (total_len - tmp_len);
2993 		if (priv->dma_cap.addr64 <= 32)
2994 			desc->des0 = cpu_to_le32(curr_addr);
2995 		else
2996 			stmmac_set_desc_addr(priv, desc, curr_addr);
2997 
2998 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2999 			    TSO_MAX_BUFF_SIZE : tmp_len;
3000 
3001 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3002 				0, 1,
3003 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3004 				0, 0);
3005 
3006 		tmp_len -= TSO_MAX_BUFF_SIZE;
3007 	}
3008 }
3009 
3010 /**
3011  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3012  *  @skb : the socket buffer
3013  *  @dev : device pointer
3014  *  Description: this is the transmit function that is called on TSO frames
3015  *  (support available on GMAC4 and newer chips).
3016  *  Diagram below show the ring programming in case of TSO frames:
3017  *
3018  *  First Descriptor
3019  *   --------
3020  *   | DES0 |---> buffer1 = L2/L3/L4 header
3021  *   | DES1 |---> TCP Payload (can continue on next descr...)
3022  *   | DES2 |---> buffer 1 and 2 len
3023  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3024  *   --------
3025  *	|
3026  *     ...
3027  *	|
3028  *   --------
3029  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3030  *   | DES1 | --|
3031  *   | DES2 | --> buffer 1 and 2 len
3032  *   | DES3 |
3033  *   --------
3034  *
3035  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3036  */
3037 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3038 {
3039 	struct dma_desc *desc, *first, *mss_desc = NULL;
3040 	struct stmmac_priv *priv = netdev_priv(dev);
3041 	int desc_size, tmp_pay_len = 0, first_tx;
3042 	int nfrags = skb_shinfo(skb)->nr_frags;
3043 	u32 queue = skb_get_queue_mapping(skb);
3044 	unsigned int first_entry, tx_packets;
3045 	struct stmmac_tx_queue *tx_q;
3046 	bool has_vlan, set_ic;
3047 	u8 proto_hdr_len, hdr;
3048 	u32 pay_len, mss;
3049 	dma_addr_t des;
3050 	int i;
3051 
3052 	tx_q = &priv->tx_queue[queue];
3053 	first_tx = tx_q->cur_tx;
3054 
3055 	/* Compute header lengths */
3056 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3057 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3058 		hdr = sizeof(struct udphdr);
3059 	} else {
3060 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3061 		hdr = tcp_hdrlen(skb);
3062 	}
3063 
3064 	/* Desc availability based on threshold should be enough safe */
3065 	if (unlikely(stmmac_tx_avail(priv, queue) <
3066 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3067 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3068 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3069 								queue));
3070 			/* This is a hard error, log it. */
3071 			netdev_err(priv->dev,
3072 				   "%s: Tx Ring full when queue awake\n",
3073 				   __func__);
3074 		}
3075 		return NETDEV_TX_BUSY;
3076 	}
3077 
3078 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3079 
3080 	mss = skb_shinfo(skb)->gso_size;
3081 
3082 	/* set new MSS value if needed */
3083 	if (mss != tx_q->mss) {
3084 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3085 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3086 		else
3087 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3088 
3089 		stmmac_set_mss(priv, mss_desc, mss);
3090 		tx_q->mss = mss;
3091 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3092 						priv->dma_tx_size);
3093 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3094 	}
3095 
3096 	if (netif_msg_tx_queued(priv)) {
3097 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3098 			__func__, hdr, proto_hdr_len, pay_len, mss);
3099 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3100 			skb->data_len);
3101 	}
3102 
3103 	/* Check if VLAN can be inserted by HW */
3104 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3105 
3106 	first_entry = tx_q->cur_tx;
3107 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3108 
3109 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3110 		desc = &tx_q->dma_entx[first_entry].basic;
3111 	else
3112 		desc = &tx_q->dma_tx[first_entry];
3113 	first = desc;
3114 
3115 	if (has_vlan)
3116 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3117 
3118 	/* first descriptor: fill Headers on Buf1 */
3119 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3120 			     DMA_TO_DEVICE);
3121 	if (dma_mapping_error(priv->device, des))
3122 		goto dma_map_err;
3123 
3124 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3125 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3126 
3127 	if (priv->dma_cap.addr64 <= 32) {
3128 		first->des0 = cpu_to_le32(des);
3129 
3130 		/* Fill start of payload in buff2 of first descriptor */
3131 		if (pay_len)
3132 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3133 
3134 		/* If needed take extra descriptors to fill the remaining payload */
3135 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3136 	} else {
3137 		stmmac_set_desc_addr(priv, first, des);
3138 		tmp_pay_len = pay_len;
3139 		des += proto_hdr_len;
3140 		pay_len = 0;
3141 	}
3142 
3143 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3144 
3145 	/* Prepare fragments */
3146 	for (i = 0; i < nfrags; i++) {
3147 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3148 
3149 		des = skb_frag_dma_map(priv->device, frag, 0,
3150 				       skb_frag_size(frag),
3151 				       DMA_TO_DEVICE);
3152 		if (dma_mapping_error(priv->device, des))
3153 			goto dma_map_err;
3154 
3155 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3156 				     (i == nfrags - 1), queue);
3157 
3158 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3159 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3160 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3161 	}
3162 
3163 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3164 
3165 	/* Only the last descriptor gets to point to the skb. */
3166 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3167 
3168 	/* Manage tx mitigation */
3169 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3170 	tx_q->tx_count_frames += tx_packets;
3171 
3172 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3173 		set_ic = true;
3174 	else if (!priv->tx_coal_frames)
3175 		set_ic = false;
3176 	else if (tx_packets > priv->tx_coal_frames)
3177 		set_ic = true;
3178 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3179 		set_ic = true;
3180 	else
3181 		set_ic = false;
3182 
3183 	if (set_ic) {
3184 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3185 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3186 		else
3187 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3188 
3189 		tx_q->tx_count_frames = 0;
3190 		stmmac_set_tx_ic(priv, desc);
3191 		priv->xstats.tx_set_ic_bit++;
3192 	}
3193 
3194 	/* We've used all descriptors we need for this skb, however,
3195 	 * advance cur_tx so that it references a fresh descriptor.
3196 	 * ndo_start_xmit will fill this descriptor the next time it's
3197 	 * called and stmmac_tx_clean may clean up to this descriptor.
3198 	 */
3199 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3200 
3201 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3202 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3203 			  __func__);
3204 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3205 	}
3206 
3207 	dev->stats.tx_bytes += skb->len;
3208 	priv->xstats.tx_tso_frames++;
3209 	priv->xstats.tx_tso_nfrags += nfrags;
3210 
3211 	if (priv->sarc_type)
3212 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3213 
3214 	skb_tx_timestamp(skb);
3215 
3216 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3217 		     priv->hwts_tx_en)) {
3218 		/* declare that device is doing timestamping */
3219 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3220 		stmmac_enable_tx_timestamp(priv, first);
3221 	}
3222 
3223 	/* Complete the first descriptor before granting the DMA */
3224 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3225 			proto_hdr_len,
3226 			pay_len,
3227 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3228 			hdr / 4, (skb->len - proto_hdr_len));
3229 
3230 	/* If context desc is used to change MSS */
3231 	if (mss_desc) {
3232 		/* Make sure that first descriptor has been completely
3233 		 * written, including its own bit. This is because MSS is
3234 		 * actually before first descriptor, so we need to make
3235 		 * sure that MSS's own bit is the last thing written.
3236 		 */
3237 		dma_wmb();
3238 		stmmac_set_tx_owner(priv, mss_desc);
3239 	}
3240 
3241 	/* The own bit must be the latest setting done when prepare the
3242 	 * descriptor and then barrier is needed to make sure that
3243 	 * all is coherent before granting the DMA engine.
3244 	 */
3245 	wmb();
3246 
3247 	if (netif_msg_pktdata(priv)) {
3248 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3249 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3250 			tx_q->cur_tx, first, nfrags);
3251 		pr_info(">>> frame to be transmitted: ");
3252 		print_pkt(skb->data, skb_headlen(skb));
3253 	}
3254 
3255 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3256 
3257 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3258 		desc_size = sizeof(struct dma_edesc);
3259 	else
3260 		desc_size = sizeof(struct dma_desc);
3261 
3262 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3263 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3264 	stmmac_tx_timer_arm(priv, queue);
3265 
3266 	return NETDEV_TX_OK;
3267 
3268 dma_map_err:
3269 	dev_err(priv->device, "Tx dma map failed\n");
3270 	dev_kfree_skb(skb);
3271 	priv->dev->stats.tx_dropped++;
3272 	return NETDEV_TX_OK;
3273 }
3274 
3275 /**
3276  *  stmmac_xmit - Tx entry point of the driver
3277  *  @skb : the socket buffer
3278  *  @dev : device pointer
3279  *  Description : this is the tx entry point of the driver.
3280  *  It programs the chain or the ring and supports oversized frames
3281  *  and SG feature.
3282  */
3283 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3284 {
3285 	unsigned int first_entry, tx_packets, enh_desc;
3286 	struct stmmac_priv *priv = netdev_priv(dev);
3287 	unsigned int nopaged_len = skb_headlen(skb);
3288 	int i, csum_insertion = 0, is_jumbo = 0;
3289 	u32 queue = skb_get_queue_mapping(skb);
3290 	int nfrags = skb_shinfo(skb)->nr_frags;
3291 	int gso = skb_shinfo(skb)->gso_type;
3292 	struct dma_edesc *tbs_desc = NULL;
3293 	int entry, desc_size, first_tx;
3294 	struct dma_desc *desc, *first;
3295 	struct stmmac_tx_queue *tx_q;
3296 	bool has_vlan, set_ic;
3297 	dma_addr_t des;
3298 
3299 	tx_q = &priv->tx_queue[queue];
3300 	first_tx = tx_q->cur_tx;
3301 
3302 	if (priv->tx_path_in_lpi_mode)
3303 		stmmac_disable_eee_mode(priv);
3304 
3305 	/* Manage oversized TCP frames for GMAC4 device */
3306 	if (skb_is_gso(skb) && priv->tso) {
3307 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3308 			return stmmac_tso_xmit(skb, dev);
3309 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3310 			return stmmac_tso_xmit(skb, dev);
3311 	}
3312 
3313 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3314 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3315 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3316 								queue));
3317 			/* This is a hard error, log it. */
3318 			netdev_err(priv->dev,
3319 				   "%s: Tx Ring full when queue awake\n",
3320 				   __func__);
3321 		}
3322 		return NETDEV_TX_BUSY;
3323 	}
3324 
3325 	/* Check if VLAN can be inserted by HW */
3326 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3327 
3328 	entry = tx_q->cur_tx;
3329 	first_entry = entry;
3330 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3331 
3332 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3333 
3334 	if (likely(priv->extend_desc))
3335 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3336 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3337 		desc = &tx_q->dma_entx[entry].basic;
3338 	else
3339 		desc = tx_q->dma_tx + entry;
3340 
3341 	first = desc;
3342 
3343 	if (has_vlan)
3344 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3345 
3346 	enh_desc = priv->plat->enh_desc;
3347 	/* To program the descriptors according to the size of the frame */
3348 	if (enh_desc)
3349 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3350 
3351 	if (unlikely(is_jumbo)) {
3352 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3353 		if (unlikely(entry < 0) && (entry != -EINVAL))
3354 			goto dma_map_err;
3355 	}
3356 
3357 	for (i = 0; i < nfrags; i++) {
3358 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3359 		int len = skb_frag_size(frag);
3360 		bool last_segment = (i == (nfrags - 1));
3361 
3362 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3363 		WARN_ON(tx_q->tx_skbuff[entry]);
3364 
3365 		if (likely(priv->extend_desc))
3366 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3367 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3368 			desc = &tx_q->dma_entx[entry].basic;
3369 		else
3370 			desc = tx_q->dma_tx + entry;
3371 
3372 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3373 				       DMA_TO_DEVICE);
3374 		if (dma_mapping_error(priv->device, des))
3375 			goto dma_map_err; /* should reuse desc w/o issues */
3376 
3377 		tx_q->tx_skbuff_dma[entry].buf = des;
3378 
3379 		stmmac_set_desc_addr(priv, desc, des);
3380 
3381 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3382 		tx_q->tx_skbuff_dma[entry].len = len;
3383 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3384 
3385 		/* Prepare the descriptor and set the own bit too */
3386 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3387 				priv->mode, 1, last_segment, skb->len);
3388 	}
3389 
3390 	/* Only the last descriptor gets to point to the skb. */
3391 	tx_q->tx_skbuff[entry] = skb;
3392 
3393 	/* According to the coalesce parameter the IC bit for the latest
3394 	 * segment is reset and the timer re-started to clean the tx status.
3395 	 * This approach takes care about the fragments: desc is the first
3396 	 * element in case of no SG.
3397 	 */
3398 	tx_packets = (entry + 1) - first_tx;
3399 	tx_q->tx_count_frames += tx_packets;
3400 
3401 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3402 		set_ic = true;
3403 	else if (!priv->tx_coal_frames)
3404 		set_ic = false;
3405 	else if (tx_packets > priv->tx_coal_frames)
3406 		set_ic = true;
3407 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3408 		set_ic = true;
3409 	else
3410 		set_ic = false;
3411 
3412 	if (set_ic) {
3413 		if (likely(priv->extend_desc))
3414 			desc = &tx_q->dma_etx[entry].basic;
3415 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3416 			desc = &tx_q->dma_entx[entry].basic;
3417 		else
3418 			desc = &tx_q->dma_tx[entry];
3419 
3420 		tx_q->tx_count_frames = 0;
3421 		stmmac_set_tx_ic(priv, desc);
3422 		priv->xstats.tx_set_ic_bit++;
3423 	}
3424 
3425 	/* We've used all descriptors we need for this skb, however,
3426 	 * advance cur_tx so that it references a fresh descriptor.
3427 	 * ndo_start_xmit will fill this descriptor the next time it's
3428 	 * called and stmmac_tx_clean may clean up to this descriptor.
3429 	 */
3430 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3431 	tx_q->cur_tx = entry;
3432 
3433 	if (netif_msg_pktdata(priv)) {
3434 		netdev_dbg(priv->dev,
3435 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3436 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3437 			   entry, first, nfrags);
3438 
3439 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3440 		print_pkt(skb->data, skb->len);
3441 	}
3442 
3443 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3444 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3445 			  __func__);
3446 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3447 	}
3448 
3449 	dev->stats.tx_bytes += skb->len;
3450 
3451 	if (priv->sarc_type)
3452 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3453 
3454 	skb_tx_timestamp(skb);
3455 
3456 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3457 	 * problems because all the descriptors are actually ready to be
3458 	 * passed to the DMA engine.
3459 	 */
3460 	if (likely(!is_jumbo)) {
3461 		bool last_segment = (nfrags == 0);
3462 
3463 		des = dma_map_single(priv->device, skb->data,
3464 				     nopaged_len, DMA_TO_DEVICE);
3465 		if (dma_mapping_error(priv->device, des))
3466 			goto dma_map_err;
3467 
3468 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3469 
3470 		stmmac_set_desc_addr(priv, first, des);
3471 
3472 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3473 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3474 
3475 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3476 			     priv->hwts_tx_en)) {
3477 			/* declare that device is doing timestamping */
3478 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3479 			stmmac_enable_tx_timestamp(priv, first);
3480 		}
3481 
3482 		/* Prepare the first descriptor setting the OWN bit too */
3483 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3484 				csum_insertion, priv->mode, 0, last_segment,
3485 				skb->len);
3486 	}
3487 
3488 	if (tx_q->tbs & STMMAC_TBS_EN) {
3489 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3490 
3491 		tbs_desc = &tx_q->dma_entx[first_entry];
3492 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3493 	}
3494 
3495 	stmmac_set_tx_owner(priv, first);
3496 
3497 	/* The own bit must be the latest setting done when prepare the
3498 	 * descriptor and then barrier is needed to make sure that
3499 	 * all is coherent before granting the DMA engine.
3500 	 */
3501 	wmb();
3502 
3503 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3504 
3505 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3506 
3507 	if (likely(priv->extend_desc))
3508 		desc_size = sizeof(struct dma_extended_desc);
3509 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3510 		desc_size = sizeof(struct dma_edesc);
3511 	else
3512 		desc_size = sizeof(struct dma_desc);
3513 
3514 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3515 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3516 	stmmac_tx_timer_arm(priv, queue);
3517 
3518 	return NETDEV_TX_OK;
3519 
3520 dma_map_err:
3521 	netdev_err(priv->dev, "Tx DMA map failed\n");
3522 	dev_kfree_skb(skb);
3523 	priv->dev->stats.tx_dropped++;
3524 	return NETDEV_TX_OK;
3525 }
3526 
3527 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3528 {
3529 	struct vlan_ethhdr *veth;
3530 	__be16 vlan_proto;
3531 	u16 vlanid;
3532 
3533 	veth = (struct vlan_ethhdr *)skb->data;
3534 	vlan_proto = veth->h_vlan_proto;
3535 
3536 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3537 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3538 	    (vlan_proto == htons(ETH_P_8021AD) &&
3539 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3540 		/* pop the vlan tag */
3541 		vlanid = ntohs(veth->h_vlan_TCI);
3542 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3543 		skb_pull(skb, VLAN_HLEN);
3544 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3545 	}
3546 }
3547 
3548 /**
3549  * stmmac_rx_refill - refill used skb preallocated buffers
3550  * @priv: driver private structure
3551  * @queue: RX queue index
3552  * Description : this is to reallocate the skb for the reception process
3553  * that is based on zero-copy.
3554  */
3555 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3556 {
3557 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3558 	int len, dirty = stmmac_rx_dirty(priv, queue);
3559 	unsigned int entry = rx_q->dirty_rx;
3560 
3561 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3562 
3563 	while (dirty-- > 0) {
3564 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3565 		struct dma_desc *p;
3566 		bool use_rx_wd;
3567 
3568 		if (priv->extend_desc)
3569 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3570 		else
3571 			p = rx_q->dma_rx + entry;
3572 
3573 		if (!buf->page) {
3574 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3575 			if (!buf->page)
3576 				break;
3577 		}
3578 
3579 		if (priv->sph && !buf->sec_page) {
3580 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3581 			if (!buf->sec_page)
3582 				break;
3583 
3584 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3585 
3586 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3587 						   len, DMA_FROM_DEVICE);
3588 		}
3589 
3590 		buf->addr = page_pool_get_dma_addr(buf->page);
3591 
3592 		/* Sync whole allocation to device. This will invalidate old
3593 		 * data.
3594 		 */
3595 		dma_sync_single_for_device(priv->device, buf->addr, len,
3596 					   DMA_FROM_DEVICE);
3597 
3598 		stmmac_set_desc_addr(priv, p, buf->addr);
3599 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3600 		stmmac_refill_desc3(priv, rx_q, p);
3601 
3602 		rx_q->rx_count_frames++;
3603 		rx_q->rx_count_frames += priv->rx_coal_frames;
3604 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3605 			rx_q->rx_count_frames = 0;
3606 
3607 		use_rx_wd = !priv->rx_coal_frames;
3608 		use_rx_wd |= rx_q->rx_count_frames > 0;
3609 		if (!priv->use_riwt)
3610 			use_rx_wd = false;
3611 
3612 		dma_wmb();
3613 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3614 
3615 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3616 	}
3617 	rx_q->dirty_rx = entry;
3618 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3619 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3620 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3621 }
3622 
3623 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3624 				       struct dma_desc *p,
3625 				       int status, unsigned int len)
3626 {
3627 	unsigned int plen = 0, hlen = 0;
3628 	int coe = priv->hw->rx_csum;
3629 
3630 	/* Not first descriptor, buffer is always zero */
3631 	if (priv->sph && len)
3632 		return 0;
3633 
3634 	/* First descriptor, get split header length */
3635 	stmmac_get_rx_header_len(priv, p, &hlen);
3636 	if (priv->sph && hlen) {
3637 		priv->xstats.rx_split_hdr_pkt_n++;
3638 		return hlen;
3639 	}
3640 
3641 	/* First descriptor, not last descriptor and not split header */
3642 	if (status & rx_not_ls)
3643 		return priv->dma_buf_sz;
3644 
3645 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3646 
3647 	/* First descriptor and last descriptor and not split header */
3648 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3649 }
3650 
3651 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3652 				       struct dma_desc *p,
3653 				       int status, unsigned int len)
3654 {
3655 	int coe = priv->hw->rx_csum;
3656 	unsigned int plen = 0;
3657 
3658 	/* Not split header, buffer is not available */
3659 	if (!priv->sph)
3660 		return 0;
3661 
3662 	/* Not last descriptor */
3663 	if (status & rx_not_ls)
3664 		return priv->dma_buf_sz;
3665 
3666 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3667 
3668 	/* Last descriptor */
3669 	return plen - len;
3670 }
3671 
3672 /**
3673  * stmmac_rx - manage the receive process
3674  * @priv: driver private structure
3675  * @limit: napi bugget
3676  * @queue: RX queue index.
3677  * Description :  this the function called by the napi poll method.
3678  * It gets all the frames inside the ring.
3679  */
3680 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3681 {
3682 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3683 	struct stmmac_channel *ch = &priv->channel[queue];
3684 	unsigned int count = 0, error = 0, len = 0;
3685 	int status = 0, coe = priv->hw->rx_csum;
3686 	unsigned int next_entry = rx_q->cur_rx;
3687 	struct sk_buff *skb = NULL;
3688 
3689 	if (netif_msg_rx_status(priv)) {
3690 		void *rx_head;
3691 
3692 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3693 		if (priv->extend_desc)
3694 			rx_head = (void *)rx_q->dma_erx;
3695 		else
3696 			rx_head = (void *)rx_q->dma_rx;
3697 
3698 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true);
3699 	}
3700 	while (count < limit) {
3701 		unsigned int buf1_len = 0, buf2_len = 0;
3702 		enum pkt_hash_types hash_type;
3703 		struct stmmac_rx_buffer *buf;
3704 		struct dma_desc *np, *p;
3705 		int entry;
3706 		u32 hash;
3707 
3708 		if (!count && rx_q->state_saved) {
3709 			skb = rx_q->state.skb;
3710 			error = rx_q->state.error;
3711 			len = rx_q->state.len;
3712 		} else {
3713 			rx_q->state_saved = false;
3714 			skb = NULL;
3715 			error = 0;
3716 			len = 0;
3717 		}
3718 
3719 		if (count >= limit)
3720 			break;
3721 
3722 read_again:
3723 		buf1_len = 0;
3724 		buf2_len = 0;
3725 		entry = next_entry;
3726 		buf = &rx_q->buf_pool[entry];
3727 
3728 		if (priv->extend_desc)
3729 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3730 		else
3731 			p = rx_q->dma_rx + entry;
3732 
3733 		/* read the status of the incoming frame */
3734 		status = stmmac_rx_status(priv, &priv->dev->stats,
3735 				&priv->xstats, p);
3736 		/* check if managed by the DMA otherwise go ahead */
3737 		if (unlikely(status & dma_own))
3738 			break;
3739 
3740 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3741 						priv->dma_rx_size);
3742 		next_entry = rx_q->cur_rx;
3743 
3744 		if (priv->extend_desc)
3745 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3746 		else
3747 			np = rx_q->dma_rx + next_entry;
3748 
3749 		prefetch(np);
3750 
3751 		if (priv->extend_desc)
3752 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3753 					&priv->xstats, rx_q->dma_erx + entry);
3754 		if (unlikely(status == discard_frame)) {
3755 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3756 			buf->page = NULL;
3757 			error = 1;
3758 			if (!priv->hwts_rx_en)
3759 				priv->dev->stats.rx_errors++;
3760 		}
3761 
3762 		if (unlikely(error && (status & rx_not_ls)))
3763 			goto read_again;
3764 		if (unlikely(error)) {
3765 			dev_kfree_skb(skb);
3766 			skb = NULL;
3767 			count++;
3768 			continue;
3769 		}
3770 
3771 		/* Buffer is good. Go on. */
3772 
3773 		prefetch(page_address(buf->page));
3774 		if (buf->sec_page)
3775 			prefetch(page_address(buf->sec_page));
3776 
3777 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3778 		len += buf1_len;
3779 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3780 		len += buf2_len;
3781 
3782 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3783 		 * Type frames (LLC/LLC-SNAP)
3784 		 *
3785 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3786 		 * feature is always disabled and packets need to be
3787 		 * stripped manually.
3788 		 */
3789 		if (likely(!(status & rx_not_ls)) &&
3790 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3791 		     unlikely(status != llc_snap))) {
3792 			if (buf2_len)
3793 				buf2_len -= ETH_FCS_LEN;
3794 			else
3795 				buf1_len -= ETH_FCS_LEN;
3796 
3797 			len -= ETH_FCS_LEN;
3798 		}
3799 
3800 		if (!skb) {
3801 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
3802 			if (!skb) {
3803 				priv->dev->stats.rx_dropped++;
3804 				count++;
3805 				goto drain_data;
3806 			}
3807 
3808 			dma_sync_single_for_cpu(priv->device, buf->addr,
3809 						buf1_len, DMA_FROM_DEVICE);
3810 			skb_copy_to_linear_data(skb, page_address(buf->page),
3811 						buf1_len);
3812 			skb_put(skb, buf1_len);
3813 
3814 			/* Data payload copied into SKB, page ready for recycle */
3815 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3816 			buf->page = NULL;
3817 		} else if (buf1_len) {
3818 			dma_sync_single_for_cpu(priv->device, buf->addr,
3819 						buf1_len, DMA_FROM_DEVICE);
3820 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3821 					buf->page, 0, buf1_len,
3822 					priv->dma_buf_sz);
3823 
3824 			/* Data payload appended into SKB */
3825 			page_pool_release_page(rx_q->page_pool, buf->page);
3826 			buf->page = NULL;
3827 		}
3828 
3829 		if (buf2_len) {
3830 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3831 						buf2_len, DMA_FROM_DEVICE);
3832 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3833 					buf->sec_page, 0, buf2_len,
3834 					priv->dma_buf_sz);
3835 
3836 			/* Data payload appended into SKB */
3837 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3838 			buf->sec_page = NULL;
3839 		}
3840 
3841 drain_data:
3842 		if (likely(status & rx_not_ls))
3843 			goto read_again;
3844 		if (!skb)
3845 			continue;
3846 
3847 		/* Got entire packet into SKB. Finish it. */
3848 
3849 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3850 		stmmac_rx_vlan(priv->dev, skb);
3851 		skb->protocol = eth_type_trans(skb, priv->dev);
3852 
3853 		if (unlikely(!coe))
3854 			skb_checksum_none_assert(skb);
3855 		else
3856 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3857 
3858 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3859 			skb_set_hash(skb, hash, hash_type);
3860 
3861 		skb_record_rx_queue(skb, queue);
3862 		napi_gro_receive(&ch->rx_napi, skb);
3863 		skb = NULL;
3864 
3865 		priv->dev->stats.rx_packets++;
3866 		priv->dev->stats.rx_bytes += len;
3867 		count++;
3868 	}
3869 
3870 	if (status & rx_not_ls || skb) {
3871 		rx_q->state_saved = true;
3872 		rx_q->state.skb = skb;
3873 		rx_q->state.error = error;
3874 		rx_q->state.len = len;
3875 	}
3876 
3877 	stmmac_rx_refill(priv, queue);
3878 
3879 	priv->xstats.rx_pkt_n += count;
3880 
3881 	return count;
3882 }
3883 
3884 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3885 {
3886 	struct stmmac_channel *ch =
3887 		container_of(napi, struct stmmac_channel, rx_napi);
3888 	struct stmmac_priv *priv = ch->priv_data;
3889 	u32 chan = ch->index;
3890 	int work_done;
3891 
3892 	priv->xstats.napi_poll++;
3893 
3894 	work_done = stmmac_rx(priv, budget, chan);
3895 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3896 		unsigned long flags;
3897 
3898 		spin_lock_irqsave(&ch->lock, flags);
3899 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
3900 		spin_unlock_irqrestore(&ch->lock, flags);
3901 	}
3902 
3903 	return work_done;
3904 }
3905 
3906 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3907 {
3908 	struct stmmac_channel *ch =
3909 		container_of(napi, struct stmmac_channel, tx_napi);
3910 	struct stmmac_priv *priv = ch->priv_data;
3911 	u32 chan = ch->index;
3912 	int work_done;
3913 
3914 	priv->xstats.napi_poll++;
3915 
3916 	work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
3917 	work_done = min(work_done, budget);
3918 
3919 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3920 		unsigned long flags;
3921 
3922 		spin_lock_irqsave(&ch->lock, flags);
3923 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
3924 		spin_unlock_irqrestore(&ch->lock, flags);
3925 	}
3926 
3927 	return work_done;
3928 }
3929 
3930 /**
3931  *  stmmac_tx_timeout
3932  *  @dev : Pointer to net device structure
3933  *  @txqueue: the index of the hanging transmit queue
3934  *  Description: this function is called when a packet transmission fails to
3935  *   complete within a reasonable time. The driver will mark the error in the
3936  *   netdev structure and arrange for the device to be reset to a sane state
3937  *   in order to transmit a new packet.
3938  */
3939 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
3940 {
3941 	struct stmmac_priv *priv = netdev_priv(dev);
3942 
3943 	stmmac_global_err(priv);
3944 }
3945 
3946 /**
3947  *  stmmac_set_rx_mode - entry point for multicast addressing
3948  *  @dev : pointer to the device structure
3949  *  Description:
3950  *  This function is a driver entry point which gets called by the kernel
3951  *  whenever multicast addresses must be enabled/disabled.
3952  *  Return value:
3953  *  void.
3954  */
3955 static void stmmac_set_rx_mode(struct net_device *dev)
3956 {
3957 	struct stmmac_priv *priv = netdev_priv(dev);
3958 
3959 	stmmac_set_filter(priv, priv->hw, dev);
3960 }
3961 
3962 /**
3963  *  stmmac_change_mtu - entry point to change MTU size for the device.
3964  *  @dev : device pointer.
3965  *  @new_mtu : the new MTU size for the device.
3966  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3967  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3968  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3969  *  Return value:
3970  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3971  *  file on failure.
3972  */
3973 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3974 {
3975 	struct stmmac_priv *priv = netdev_priv(dev);
3976 	int txfifosz = priv->plat->tx_fifo_size;
3977 
3978 	if (txfifosz == 0)
3979 		txfifosz = priv->dma_cap.tx_fifo_size;
3980 
3981 	txfifosz /= priv->plat->tx_queues_to_use;
3982 
3983 	if (netif_running(dev)) {
3984 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3985 		return -EBUSY;
3986 	}
3987 
3988 	new_mtu = STMMAC_ALIGN(new_mtu);
3989 
3990 	/* If condition true, FIFO is too small or MTU too large */
3991 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
3992 		return -EINVAL;
3993 
3994 	dev->mtu = new_mtu;
3995 
3996 	netdev_update_features(dev);
3997 
3998 	return 0;
3999 }
4000 
4001 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4002 					     netdev_features_t features)
4003 {
4004 	struct stmmac_priv *priv = netdev_priv(dev);
4005 
4006 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4007 		features &= ~NETIF_F_RXCSUM;
4008 
4009 	if (!priv->plat->tx_coe)
4010 		features &= ~NETIF_F_CSUM_MASK;
4011 
4012 	/* Some GMAC devices have a bugged Jumbo frame support that
4013 	 * needs to have the Tx COE disabled for oversized frames
4014 	 * (due to limited buffer sizes). In this case we disable
4015 	 * the TX csum insertion in the TDES and not use SF.
4016 	 */
4017 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4018 		features &= ~NETIF_F_CSUM_MASK;
4019 
4020 	/* Disable tso if asked by ethtool */
4021 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4022 		if (features & NETIF_F_TSO)
4023 			priv->tso = true;
4024 		else
4025 			priv->tso = false;
4026 	}
4027 
4028 	return features;
4029 }
4030 
4031 static int stmmac_set_features(struct net_device *netdev,
4032 			       netdev_features_t features)
4033 {
4034 	struct stmmac_priv *priv = netdev_priv(netdev);
4035 	bool sph_en;
4036 	u32 chan;
4037 
4038 	/* Keep the COE Type in case of csum is supporting */
4039 	if (features & NETIF_F_RXCSUM)
4040 		priv->hw->rx_csum = priv->plat->rx_coe;
4041 	else
4042 		priv->hw->rx_csum = 0;
4043 	/* No check needed because rx_coe has been set before and it will be
4044 	 * fixed in case of issue.
4045 	 */
4046 	stmmac_rx_ipc(priv, priv->hw);
4047 
4048 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4049 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4050 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4051 
4052 	return 0;
4053 }
4054 
4055 /**
4056  *  stmmac_interrupt - main ISR
4057  *  @irq: interrupt number.
4058  *  @dev_id: to pass the net device pointer (must be valid).
4059  *  Description: this is the main driver interrupt service routine.
4060  *  It can call:
4061  *  o DMA service routine (to manage incoming frame reception and transmission
4062  *    status)
4063  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4064  *    interrupts.
4065  */
4066 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4067 {
4068 	struct net_device *dev = (struct net_device *)dev_id;
4069 	struct stmmac_priv *priv = netdev_priv(dev);
4070 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4071 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4072 	u32 queues_count;
4073 	u32 queue;
4074 	bool xmac;
4075 
4076 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4077 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4078 
4079 	if (priv->irq_wake)
4080 		pm_wakeup_event(priv->device, 0);
4081 
4082 	/* Check if adapter is up */
4083 	if (test_bit(STMMAC_DOWN, &priv->state))
4084 		return IRQ_HANDLED;
4085 	/* Check if a fatal error happened */
4086 	if (stmmac_safety_feat_interrupt(priv))
4087 		return IRQ_HANDLED;
4088 
4089 	/* To handle GMAC own interrupts */
4090 	if ((priv->plat->has_gmac) || xmac) {
4091 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4092 		int mtl_status;
4093 
4094 		if (unlikely(status)) {
4095 			/* For LPI we need to save the tx status */
4096 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4097 				priv->tx_path_in_lpi_mode = true;
4098 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4099 				priv->tx_path_in_lpi_mode = false;
4100 		}
4101 
4102 		for (queue = 0; queue < queues_count; queue++) {
4103 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4104 
4105 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4106 								queue);
4107 			if (mtl_status != -EINVAL)
4108 				status |= mtl_status;
4109 
4110 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4111 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4112 						       rx_q->rx_tail_addr,
4113 						       queue);
4114 		}
4115 
4116 		/* PCS link status */
4117 		if (priv->hw->pcs) {
4118 			if (priv->xstats.pcs_link)
4119 				netif_carrier_on(dev);
4120 			else
4121 				netif_carrier_off(dev);
4122 		}
4123 	}
4124 
4125 	/* To handle DMA interrupts */
4126 	stmmac_dma_interrupt(priv);
4127 
4128 	return IRQ_HANDLED;
4129 }
4130 
4131 #ifdef CONFIG_NET_POLL_CONTROLLER
4132 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4133  * to allow network I/O with interrupts disabled.
4134  */
4135 static void stmmac_poll_controller(struct net_device *dev)
4136 {
4137 	disable_irq(dev->irq);
4138 	stmmac_interrupt(dev->irq, dev);
4139 	enable_irq(dev->irq);
4140 }
4141 #endif
4142 
4143 /**
4144  *  stmmac_ioctl - Entry point for the Ioctl
4145  *  @dev: Device pointer.
4146  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4147  *  a proprietary structure used to pass information to the driver.
4148  *  @cmd: IOCTL command
4149  *  Description:
4150  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4151  */
4152 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4153 {
4154 	struct stmmac_priv *priv = netdev_priv (dev);
4155 	int ret = -EOPNOTSUPP;
4156 
4157 	if (!netif_running(dev))
4158 		return -EINVAL;
4159 
4160 	switch (cmd) {
4161 	case SIOCGMIIPHY:
4162 	case SIOCGMIIREG:
4163 	case SIOCSMIIREG:
4164 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4165 		break;
4166 	case SIOCSHWTSTAMP:
4167 		ret = stmmac_hwtstamp_set(dev, rq);
4168 		break;
4169 	case SIOCGHWTSTAMP:
4170 		ret = stmmac_hwtstamp_get(dev, rq);
4171 		break;
4172 	default:
4173 		break;
4174 	}
4175 
4176 	return ret;
4177 }
4178 
4179 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4180 				    void *cb_priv)
4181 {
4182 	struct stmmac_priv *priv = cb_priv;
4183 	int ret = -EOPNOTSUPP;
4184 
4185 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4186 		return ret;
4187 
4188 	stmmac_disable_all_queues(priv);
4189 
4190 	switch (type) {
4191 	case TC_SETUP_CLSU32:
4192 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4193 		break;
4194 	case TC_SETUP_CLSFLOWER:
4195 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4196 		break;
4197 	default:
4198 		break;
4199 	}
4200 
4201 	stmmac_enable_all_queues(priv);
4202 	return ret;
4203 }
4204 
4205 static LIST_HEAD(stmmac_block_cb_list);
4206 
4207 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4208 			   void *type_data)
4209 {
4210 	struct stmmac_priv *priv = netdev_priv(ndev);
4211 
4212 	switch (type) {
4213 	case TC_SETUP_BLOCK:
4214 		return flow_block_cb_setup_simple(type_data,
4215 						  &stmmac_block_cb_list,
4216 						  stmmac_setup_tc_block_cb,
4217 						  priv, priv, true);
4218 	case TC_SETUP_QDISC_CBS:
4219 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4220 	case TC_SETUP_QDISC_TAPRIO:
4221 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4222 	case TC_SETUP_QDISC_ETF:
4223 		return stmmac_tc_setup_etf(priv, priv, type_data);
4224 	default:
4225 		return -EOPNOTSUPP;
4226 	}
4227 }
4228 
4229 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4230 			       struct net_device *sb_dev)
4231 {
4232 	int gso = skb_shinfo(skb)->gso_type;
4233 
4234 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4235 		/*
4236 		 * There is no way to determine the number of TSO/USO
4237 		 * capable Queues. Let's use always the Queue 0
4238 		 * because if TSO/USO is supported then at least this
4239 		 * one will be capable.
4240 		 */
4241 		return 0;
4242 	}
4243 
4244 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4245 }
4246 
4247 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4248 {
4249 	struct stmmac_priv *priv = netdev_priv(ndev);
4250 	int ret = 0;
4251 
4252 	ret = eth_mac_addr(ndev, addr);
4253 	if (ret)
4254 		return ret;
4255 
4256 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4257 
4258 	return ret;
4259 }
4260 
4261 #ifdef CONFIG_DEBUG_FS
4262 static struct dentry *stmmac_fs_dir;
4263 
4264 static void sysfs_display_ring(void *head, int size, int extend_desc,
4265 			       struct seq_file *seq)
4266 {
4267 	int i;
4268 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4269 	struct dma_desc *p = (struct dma_desc *)head;
4270 
4271 	for (i = 0; i < size; i++) {
4272 		if (extend_desc) {
4273 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4274 				   i, (unsigned int)virt_to_phys(ep),
4275 				   le32_to_cpu(ep->basic.des0),
4276 				   le32_to_cpu(ep->basic.des1),
4277 				   le32_to_cpu(ep->basic.des2),
4278 				   le32_to_cpu(ep->basic.des3));
4279 			ep++;
4280 		} else {
4281 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4282 				   i, (unsigned int)virt_to_phys(p),
4283 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4284 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4285 			p++;
4286 		}
4287 		seq_printf(seq, "\n");
4288 	}
4289 }
4290 
4291 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4292 {
4293 	struct net_device *dev = seq->private;
4294 	struct stmmac_priv *priv = netdev_priv(dev);
4295 	u32 rx_count = priv->plat->rx_queues_to_use;
4296 	u32 tx_count = priv->plat->tx_queues_to_use;
4297 	u32 queue;
4298 
4299 	if ((dev->flags & IFF_UP) == 0)
4300 		return 0;
4301 
4302 	for (queue = 0; queue < rx_count; queue++) {
4303 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4304 
4305 		seq_printf(seq, "RX Queue %d:\n", queue);
4306 
4307 		if (priv->extend_desc) {
4308 			seq_printf(seq, "Extended descriptor ring:\n");
4309 			sysfs_display_ring((void *)rx_q->dma_erx,
4310 					   priv->dma_rx_size, 1, seq);
4311 		} else {
4312 			seq_printf(seq, "Descriptor ring:\n");
4313 			sysfs_display_ring((void *)rx_q->dma_rx,
4314 					   priv->dma_rx_size, 0, seq);
4315 		}
4316 	}
4317 
4318 	for (queue = 0; queue < tx_count; queue++) {
4319 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4320 
4321 		seq_printf(seq, "TX Queue %d:\n", queue);
4322 
4323 		if (priv->extend_desc) {
4324 			seq_printf(seq, "Extended descriptor ring:\n");
4325 			sysfs_display_ring((void *)tx_q->dma_etx,
4326 					   priv->dma_tx_size, 1, seq);
4327 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4328 			seq_printf(seq, "Descriptor ring:\n");
4329 			sysfs_display_ring((void *)tx_q->dma_tx,
4330 					   priv->dma_tx_size, 0, seq);
4331 		}
4332 	}
4333 
4334 	return 0;
4335 }
4336 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4337 
4338 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4339 {
4340 	struct net_device *dev = seq->private;
4341 	struct stmmac_priv *priv = netdev_priv(dev);
4342 
4343 	if (!priv->hw_cap_support) {
4344 		seq_printf(seq, "DMA HW features not supported\n");
4345 		return 0;
4346 	}
4347 
4348 	seq_printf(seq, "==============================\n");
4349 	seq_printf(seq, "\tDMA HW features\n");
4350 	seq_printf(seq, "==============================\n");
4351 
4352 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4353 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4354 	seq_printf(seq, "\t1000 Mbps: %s\n",
4355 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4356 	seq_printf(seq, "\tHalf duplex: %s\n",
4357 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4358 	seq_printf(seq, "\tHash Filter: %s\n",
4359 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4360 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4361 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4362 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4363 		   (priv->dma_cap.pcs) ? "Y" : "N");
4364 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4365 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4366 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4367 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4368 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4369 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4370 	seq_printf(seq, "\tRMON module: %s\n",
4371 		   (priv->dma_cap.rmon) ? "Y" : "N");
4372 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4373 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4374 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4375 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4376 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4377 		   (priv->dma_cap.eee) ? "Y" : "N");
4378 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4379 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4380 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4381 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4382 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4383 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4384 	} else {
4385 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4386 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4387 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4388 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4389 	}
4390 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4391 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4392 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4393 		   priv->dma_cap.number_rx_channel);
4394 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4395 		   priv->dma_cap.number_tx_channel);
4396 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4397 		   priv->dma_cap.number_rx_queues);
4398 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4399 		   priv->dma_cap.number_tx_queues);
4400 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4401 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4402 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4403 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4404 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4405 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4406 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4407 		   priv->dma_cap.pps_out_num);
4408 	seq_printf(seq, "\tSafety Features: %s\n",
4409 		   priv->dma_cap.asp ? "Y" : "N");
4410 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4411 		   priv->dma_cap.frpsel ? "Y" : "N");
4412 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4413 		   priv->dma_cap.addr64);
4414 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4415 		   priv->dma_cap.rssen ? "Y" : "N");
4416 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4417 		   priv->dma_cap.vlhash ? "Y" : "N");
4418 	seq_printf(seq, "\tSplit Header: %s\n",
4419 		   priv->dma_cap.sphen ? "Y" : "N");
4420 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4421 		   priv->dma_cap.vlins ? "Y" : "N");
4422 	seq_printf(seq, "\tDouble VLAN: %s\n",
4423 		   priv->dma_cap.dvlan ? "Y" : "N");
4424 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4425 		   priv->dma_cap.l3l4fnum);
4426 	seq_printf(seq, "\tARP Offloading: %s\n",
4427 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4428 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4429 		   priv->dma_cap.estsel ? "Y" : "N");
4430 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4431 		   priv->dma_cap.fpesel ? "Y" : "N");
4432 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4433 		   priv->dma_cap.tbssel ? "Y" : "N");
4434 	return 0;
4435 }
4436 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4437 
4438 /* Use network device events to rename debugfs file entries.
4439  */
4440 static int stmmac_device_event(struct notifier_block *unused,
4441 			       unsigned long event, void *ptr)
4442 {
4443 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4444 	struct stmmac_priv *priv = netdev_priv(dev);
4445 
4446 	if (dev->netdev_ops != &stmmac_netdev_ops)
4447 		goto done;
4448 
4449 	switch (event) {
4450 	case NETDEV_CHANGENAME:
4451 		if (priv->dbgfs_dir)
4452 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4453 							 priv->dbgfs_dir,
4454 							 stmmac_fs_dir,
4455 							 dev->name);
4456 		break;
4457 	}
4458 done:
4459 	return NOTIFY_DONE;
4460 }
4461 
4462 static struct notifier_block stmmac_notifier = {
4463 	.notifier_call = stmmac_device_event,
4464 };
4465 
4466 static void stmmac_init_fs(struct net_device *dev)
4467 {
4468 	struct stmmac_priv *priv = netdev_priv(dev);
4469 
4470 	rtnl_lock();
4471 
4472 	/* Create per netdev entries */
4473 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4474 
4475 	/* Entry to report DMA RX/TX rings */
4476 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4477 			    &stmmac_rings_status_fops);
4478 
4479 	/* Entry to report the DMA HW features */
4480 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4481 			    &stmmac_dma_cap_fops);
4482 
4483 	rtnl_unlock();
4484 }
4485 
4486 static void stmmac_exit_fs(struct net_device *dev)
4487 {
4488 	struct stmmac_priv *priv = netdev_priv(dev);
4489 
4490 	debugfs_remove_recursive(priv->dbgfs_dir);
4491 }
4492 #endif /* CONFIG_DEBUG_FS */
4493 
4494 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4495 {
4496 	unsigned char *data = (unsigned char *)&vid_le;
4497 	unsigned char data_byte = 0;
4498 	u32 crc = ~0x0;
4499 	u32 temp = 0;
4500 	int i, bits;
4501 
4502 	bits = get_bitmask_order(VLAN_VID_MASK);
4503 	for (i = 0; i < bits; i++) {
4504 		if ((i % 8) == 0)
4505 			data_byte = data[i / 8];
4506 
4507 		temp = ((crc & 1) ^ data_byte) & 1;
4508 		crc >>= 1;
4509 		data_byte >>= 1;
4510 
4511 		if (temp)
4512 			crc ^= 0xedb88320;
4513 	}
4514 
4515 	return crc;
4516 }
4517 
4518 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4519 {
4520 	u32 crc, hash = 0;
4521 	__le16 pmatch = 0;
4522 	int count = 0;
4523 	u16 vid = 0;
4524 
4525 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4526 		__le16 vid_le = cpu_to_le16(vid);
4527 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4528 		hash |= (1 << crc);
4529 		count++;
4530 	}
4531 
4532 	if (!priv->dma_cap.vlhash) {
4533 		if (count > 2) /* VID = 0 always passes filter */
4534 			return -EOPNOTSUPP;
4535 
4536 		pmatch = cpu_to_le16(vid);
4537 		hash = 0;
4538 	}
4539 
4540 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4541 }
4542 
4543 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4544 {
4545 	struct stmmac_priv *priv = netdev_priv(ndev);
4546 	bool is_double = false;
4547 	int ret;
4548 
4549 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4550 		is_double = true;
4551 
4552 	set_bit(vid, priv->active_vlans);
4553 	ret = stmmac_vlan_update(priv, is_double);
4554 	if (ret) {
4555 		clear_bit(vid, priv->active_vlans);
4556 		return ret;
4557 	}
4558 
4559 	if (priv->hw->num_vlan) {
4560 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4561 		if (ret)
4562 			return ret;
4563 	}
4564 
4565 	return 0;
4566 }
4567 
4568 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4569 {
4570 	struct stmmac_priv *priv = netdev_priv(ndev);
4571 	bool is_double = false;
4572 	int ret;
4573 
4574 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4575 		is_double = true;
4576 
4577 	clear_bit(vid, priv->active_vlans);
4578 
4579 	if (priv->hw->num_vlan) {
4580 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4581 		if (ret)
4582 			return ret;
4583 	}
4584 
4585 	return stmmac_vlan_update(priv, is_double);
4586 }
4587 
4588 static const struct net_device_ops stmmac_netdev_ops = {
4589 	.ndo_open = stmmac_open,
4590 	.ndo_start_xmit = stmmac_xmit,
4591 	.ndo_stop = stmmac_release,
4592 	.ndo_change_mtu = stmmac_change_mtu,
4593 	.ndo_fix_features = stmmac_fix_features,
4594 	.ndo_set_features = stmmac_set_features,
4595 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4596 	.ndo_tx_timeout = stmmac_tx_timeout,
4597 	.ndo_do_ioctl = stmmac_ioctl,
4598 	.ndo_setup_tc = stmmac_setup_tc,
4599 	.ndo_select_queue = stmmac_select_queue,
4600 #ifdef CONFIG_NET_POLL_CONTROLLER
4601 	.ndo_poll_controller = stmmac_poll_controller,
4602 #endif
4603 	.ndo_set_mac_address = stmmac_set_mac_address,
4604 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4605 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4606 };
4607 
4608 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4609 {
4610 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4611 		return;
4612 	if (test_bit(STMMAC_DOWN, &priv->state))
4613 		return;
4614 
4615 	netdev_err(priv->dev, "Reset adapter.\n");
4616 
4617 	rtnl_lock();
4618 	netif_trans_update(priv->dev);
4619 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4620 		usleep_range(1000, 2000);
4621 
4622 	set_bit(STMMAC_DOWN, &priv->state);
4623 	dev_close(priv->dev);
4624 	dev_open(priv->dev, NULL);
4625 	clear_bit(STMMAC_DOWN, &priv->state);
4626 	clear_bit(STMMAC_RESETING, &priv->state);
4627 	rtnl_unlock();
4628 }
4629 
4630 static void stmmac_service_task(struct work_struct *work)
4631 {
4632 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4633 			service_task);
4634 
4635 	stmmac_reset_subtask(priv);
4636 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4637 }
4638 
4639 /**
4640  *  stmmac_hw_init - Init the MAC device
4641  *  @priv: driver private structure
4642  *  Description: this function is to configure the MAC device according to
4643  *  some platform parameters or the HW capability register. It prepares the
4644  *  driver to use either ring or chain modes and to setup either enhanced or
4645  *  normal descriptors.
4646  */
4647 static int stmmac_hw_init(struct stmmac_priv *priv)
4648 {
4649 	int ret;
4650 
4651 	/* dwmac-sun8i only work in chain mode */
4652 	if (priv->plat->has_sun8i)
4653 		chain_mode = 1;
4654 	priv->chain_mode = chain_mode;
4655 
4656 	/* Initialize HW Interface */
4657 	ret = stmmac_hwif_init(priv);
4658 	if (ret)
4659 		return ret;
4660 
4661 	/* Get the HW capability (new GMAC newer than 3.50a) */
4662 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4663 	if (priv->hw_cap_support) {
4664 		dev_info(priv->device, "DMA HW capability register supported\n");
4665 
4666 		/* We can override some gmac/dma configuration fields: e.g.
4667 		 * enh_desc, tx_coe (e.g. that are passed through the
4668 		 * platform) with the values from the HW capability
4669 		 * register (if supported).
4670 		 */
4671 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4672 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4673 		priv->hw->pmt = priv->plat->pmt;
4674 		if (priv->dma_cap.hash_tb_sz) {
4675 			priv->hw->multicast_filter_bins =
4676 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4677 			priv->hw->mcast_bits_log2 =
4678 					ilog2(priv->hw->multicast_filter_bins);
4679 		}
4680 
4681 		/* TXCOE doesn't work in thresh DMA mode */
4682 		if (priv->plat->force_thresh_dma_mode)
4683 			priv->plat->tx_coe = 0;
4684 		else
4685 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4686 
4687 		/* In case of GMAC4 rx_coe is from HW cap register. */
4688 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4689 
4690 		if (priv->dma_cap.rx_coe_type2)
4691 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4692 		else if (priv->dma_cap.rx_coe_type1)
4693 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4694 
4695 	} else {
4696 		dev_info(priv->device, "No HW DMA feature register supported\n");
4697 	}
4698 
4699 	if (priv->plat->rx_coe) {
4700 		priv->hw->rx_csum = priv->plat->rx_coe;
4701 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4702 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4703 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4704 	}
4705 	if (priv->plat->tx_coe)
4706 		dev_info(priv->device, "TX Checksum insertion supported\n");
4707 
4708 	if (priv->plat->pmt) {
4709 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4710 		device_set_wakeup_capable(priv->device, 1);
4711 	}
4712 
4713 	if (priv->dma_cap.tsoen)
4714 		dev_info(priv->device, "TSO supported\n");
4715 
4716 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4717 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4718 
4719 	/* Run HW quirks, if any */
4720 	if (priv->hwif_quirks) {
4721 		ret = priv->hwif_quirks(priv);
4722 		if (ret)
4723 			return ret;
4724 	}
4725 
4726 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4727 	 * In some case, for example on bugged HW this feature
4728 	 * has to be disable and this can be done by passing the
4729 	 * riwt_off field from the platform.
4730 	 */
4731 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4732 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4733 		priv->use_riwt = 1;
4734 		dev_info(priv->device,
4735 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4736 	}
4737 
4738 	return 0;
4739 }
4740 
4741 static void stmmac_napi_add(struct net_device *dev)
4742 {
4743 	struct stmmac_priv *priv = netdev_priv(dev);
4744 	u32 queue, maxq;
4745 
4746 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4747 
4748 	for (queue = 0; queue < maxq; queue++) {
4749 		struct stmmac_channel *ch = &priv->channel[queue];
4750 
4751 		ch->priv_data = priv;
4752 		ch->index = queue;
4753 
4754 		if (queue < priv->plat->rx_queues_to_use) {
4755 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4756 				       NAPI_POLL_WEIGHT);
4757 		}
4758 		if (queue < priv->plat->tx_queues_to_use) {
4759 			netif_tx_napi_add(dev, &ch->tx_napi,
4760 					  stmmac_napi_poll_tx,
4761 					  NAPI_POLL_WEIGHT);
4762 		}
4763 	}
4764 }
4765 
4766 static void stmmac_napi_del(struct net_device *dev)
4767 {
4768 	struct stmmac_priv *priv = netdev_priv(dev);
4769 	u32 queue, maxq;
4770 
4771 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4772 
4773 	for (queue = 0; queue < maxq; queue++) {
4774 		struct stmmac_channel *ch = &priv->channel[queue];
4775 
4776 		if (queue < priv->plat->rx_queues_to_use)
4777 			netif_napi_del(&ch->rx_napi);
4778 		if (queue < priv->plat->tx_queues_to_use)
4779 			netif_napi_del(&ch->tx_napi);
4780 	}
4781 }
4782 
4783 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4784 {
4785 	struct stmmac_priv *priv = netdev_priv(dev);
4786 	int ret = 0;
4787 
4788 	if (netif_running(dev))
4789 		stmmac_release(dev);
4790 
4791 	stmmac_napi_del(dev);
4792 
4793 	priv->plat->rx_queues_to_use = rx_cnt;
4794 	priv->plat->tx_queues_to_use = tx_cnt;
4795 
4796 	stmmac_napi_add(dev);
4797 
4798 	if (netif_running(dev))
4799 		ret = stmmac_open(dev);
4800 
4801 	return ret;
4802 }
4803 
4804 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
4805 {
4806 	struct stmmac_priv *priv = netdev_priv(dev);
4807 	int ret = 0;
4808 
4809 	if (netif_running(dev))
4810 		stmmac_release(dev);
4811 
4812 	priv->dma_rx_size = rx_size;
4813 	priv->dma_tx_size = tx_size;
4814 
4815 	if (netif_running(dev))
4816 		ret = stmmac_open(dev);
4817 
4818 	return ret;
4819 }
4820 
4821 /**
4822  * stmmac_dvr_probe
4823  * @device: device pointer
4824  * @plat_dat: platform data pointer
4825  * @res: stmmac resource pointer
4826  * Description: this is the main probe function used to
4827  * call the alloc_etherdev, allocate the priv structure.
4828  * Return:
4829  * returns 0 on success, otherwise errno.
4830  */
4831 int stmmac_dvr_probe(struct device *device,
4832 		     struct plat_stmmacenet_data *plat_dat,
4833 		     struct stmmac_resources *res)
4834 {
4835 	struct net_device *ndev = NULL;
4836 	struct stmmac_priv *priv;
4837 	u32 rxq;
4838 	int i, ret = 0;
4839 
4840 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4841 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4842 	if (!ndev)
4843 		return -ENOMEM;
4844 
4845 	SET_NETDEV_DEV(ndev, device);
4846 
4847 	priv = netdev_priv(ndev);
4848 	priv->device = device;
4849 	priv->dev = ndev;
4850 
4851 	stmmac_set_ethtool_ops(ndev);
4852 	priv->pause = pause;
4853 	priv->plat = plat_dat;
4854 	priv->ioaddr = res->addr;
4855 	priv->dev->base_addr = (unsigned long)res->addr;
4856 
4857 	priv->dev->irq = res->irq;
4858 	priv->wol_irq = res->wol_irq;
4859 	priv->lpi_irq = res->lpi_irq;
4860 
4861 	if (!IS_ERR_OR_NULL(res->mac))
4862 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4863 
4864 	dev_set_drvdata(device, priv->dev);
4865 
4866 	/* Verify driver arguments */
4867 	stmmac_verify_args();
4868 
4869 	/* Allocate workqueue */
4870 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4871 	if (!priv->wq) {
4872 		dev_err(priv->device, "failed to create workqueue\n");
4873 		return -ENOMEM;
4874 	}
4875 
4876 	INIT_WORK(&priv->service_task, stmmac_service_task);
4877 
4878 	/* Override with kernel parameters if supplied XXX CRS XXX
4879 	 * this needs to have multiple instances
4880 	 */
4881 	if ((phyaddr >= 0) && (phyaddr <= 31))
4882 		priv->plat->phy_addr = phyaddr;
4883 
4884 	if (priv->plat->stmmac_rst) {
4885 		ret = reset_control_assert(priv->plat->stmmac_rst);
4886 		reset_control_deassert(priv->plat->stmmac_rst);
4887 		/* Some reset controllers have only reset callback instead of
4888 		 * assert + deassert callbacks pair.
4889 		 */
4890 		if (ret == -ENOTSUPP)
4891 			reset_control_reset(priv->plat->stmmac_rst);
4892 	}
4893 
4894 	/* Init MAC and get the capabilities */
4895 	ret = stmmac_hw_init(priv);
4896 	if (ret)
4897 		goto error_hw_init;
4898 
4899 	stmmac_check_ether_addr(priv);
4900 
4901 	ndev->netdev_ops = &stmmac_netdev_ops;
4902 
4903 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4904 			    NETIF_F_RXCSUM;
4905 
4906 	ret = stmmac_tc_init(priv, priv);
4907 	if (!ret) {
4908 		ndev->hw_features |= NETIF_F_HW_TC;
4909 	}
4910 
4911 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4912 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4913 		if (priv->plat->has_gmac4)
4914 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
4915 		priv->tso = true;
4916 		dev_info(priv->device, "TSO feature enabled\n");
4917 	}
4918 
4919 	if (priv->dma_cap.sphen) {
4920 		ndev->hw_features |= NETIF_F_GRO;
4921 		priv->sph = true;
4922 		dev_info(priv->device, "SPH feature enabled\n");
4923 	}
4924 
4925 	if (priv->dma_cap.addr64) {
4926 		ret = dma_set_mask_and_coherent(device,
4927 				DMA_BIT_MASK(priv->dma_cap.addr64));
4928 		if (!ret) {
4929 			dev_info(priv->device, "Using %d bits DMA width\n",
4930 				 priv->dma_cap.addr64);
4931 
4932 			/*
4933 			 * If more than 32 bits can be addressed, make sure to
4934 			 * enable enhanced addressing mode.
4935 			 */
4936 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
4937 				priv->plat->dma_cfg->eame = true;
4938 		} else {
4939 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4940 			if (ret) {
4941 				dev_err(priv->device, "Failed to set DMA Mask\n");
4942 				goto error_hw_init;
4943 			}
4944 
4945 			priv->dma_cap.addr64 = 32;
4946 		}
4947 	}
4948 
4949 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4950 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4951 #ifdef STMMAC_VLAN_TAG_USED
4952 	/* Both mac100 and gmac support receive VLAN tag detection */
4953 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4954 	if (priv->dma_cap.vlhash) {
4955 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4956 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4957 	}
4958 	if (priv->dma_cap.vlins) {
4959 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4960 		if (priv->dma_cap.dvlan)
4961 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4962 	}
4963 #endif
4964 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4965 
4966 	/* Initialize RSS */
4967 	rxq = priv->plat->rx_queues_to_use;
4968 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4969 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4970 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4971 
4972 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4973 		ndev->features |= NETIF_F_RXHASH;
4974 
4975 	/* MTU range: 46 - hw-specific max */
4976 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4977 	if (priv->plat->has_xgmac)
4978 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4979 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4980 		ndev->max_mtu = JUMBO_LEN;
4981 	else
4982 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4983 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4984 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4985 	 */
4986 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4987 	    (priv->plat->maxmtu >= ndev->min_mtu))
4988 		ndev->max_mtu = priv->plat->maxmtu;
4989 	else if (priv->plat->maxmtu < ndev->min_mtu)
4990 		dev_warn(priv->device,
4991 			 "%s: warning: maxmtu having invalid value (%d)\n",
4992 			 __func__, priv->plat->maxmtu);
4993 
4994 	if (flow_ctrl)
4995 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4996 
4997 	/* Setup channels NAPI */
4998 	stmmac_napi_add(ndev);
4999 
5000 	mutex_init(&priv->lock);
5001 
5002 	/* If a specific clk_csr value is passed from the platform
5003 	 * this means that the CSR Clock Range selection cannot be
5004 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
5005 	 * set the MDC clock dynamically according to the csr actual
5006 	 * clock input.
5007 	 */
5008 	if (priv->plat->clk_csr >= 0)
5009 		priv->clk_csr = priv->plat->clk_csr;
5010 	else
5011 		stmmac_clk_csr_set(priv);
5012 
5013 	stmmac_check_pcs_mode(priv);
5014 
5015 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5016 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
5017 		/* MDIO bus Registration */
5018 		ret = stmmac_mdio_register(ndev);
5019 		if (ret < 0) {
5020 			dev_err(priv->device,
5021 				"%s: MDIO bus (id: %d) registration failed",
5022 				__func__, priv->plat->bus_id);
5023 			goto error_mdio_register;
5024 		}
5025 	}
5026 
5027 	ret = stmmac_phy_setup(priv);
5028 	if (ret) {
5029 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5030 		goto error_phy_setup;
5031 	}
5032 
5033 	ret = register_netdev(ndev);
5034 	if (ret) {
5035 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
5036 			__func__, ret);
5037 		goto error_netdev_register;
5038 	}
5039 
5040 	if (priv->plat->serdes_powerup) {
5041 		ret = priv->plat->serdes_powerup(ndev,
5042 						 priv->plat->bsp_priv);
5043 
5044 		if (ret < 0)
5045 			goto error_serdes_powerup;
5046 	}
5047 
5048 #ifdef CONFIG_DEBUG_FS
5049 	stmmac_init_fs(ndev);
5050 #endif
5051 
5052 	return ret;
5053 
5054 error_serdes_powerup:
5055 	unregister_netdev(ndev);
5056 error_netdev_register:
5057 	phylink_destroy(priv->phylink);
5058 error_phy_setup:
5059 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5060 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5061 		stmmac_mdio_unregister(ndev);
5062 error_mdio_register:
5063 	stmmac_napi_del(ndev);
5064 error_hw_init:
5065 	destroy_workqueue(priv->wq);
5066 
5067 	return ret;
5068 }
5069 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5070 
5071 /**
5072  * stmmac_dvr_remove
5073  * @dev: device pointer
5074  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5075  * changes the link status, releases the DMA descriptor rings.
5076  */
5077 int stmmac_dvr_remove(struct device *dev)
5078 {
5079 	struct net_device *ndev = dev_get_drvdata(dev);
5080 	struct stmmac_priv *priv = netdev_priv(ndev);
5081 
5082 	netdev_info(priv->dev, "%s: removing driver", __func__);
5083 
5084 	stmmac_stop_all_dma(priv);
5085 
5086 	if (priv->plat->serdes_powerdown)
5087 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5088 
5089 	stmmac_mac_set(priv, priv->ioaddr, false);
5090 	netif_carrier_off(ndev);
5091 	unregister_netdev(ndev);
5092 #ifdef CONFIG_DEBUG_FS
5093 	stmmac_exit_fs(ndev);
5094 #endif
5095 	phylink_destroy(priv->phylink);
5096 	if (priv->plat->stmmac_rst)
5097 		reset_control_assert(priv->plat->stmmac_rst);
5098 	clk_disable_unprepare(priv->plat->pclk);
5099 	clk_disable_unprepare(priv->plat->stmmac_clk);
5100 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5101 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5102 		stmmac_mdio_unregister(ndev);
5103 	destroy_workqueue(priv->wq);
5104 	mutex_destroy(&priv->lock);
5105 
5106 	return 0;
5107 }
5108 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5109 
5110 /**
5111  * stmmac_suspend - suspend callback
5112  * @dev: device pointer
5113  * Description: this is the function to suspend the device and it is called
5114  * by the platform driver to stop the network queue, release the resources,
5115  * program the PMT register (for WoL), clean and release driver resources.
5116  */
5117 int stmmac_suspend(struct device *dev)
5118 {
5119 	struct net_device *ndev = dev_get_drvdata(dev);
5120 	struct stmmac_priv *priv = netdev_priv(ndev);
5121 	u32 chan;
5122 
5123 	if (!ndev || !netif_running(ndev))
5124 		return 0;
5125 
5126 	phylink_mac_change(priv->phylink, false);
5127 
5128 	mutex_lock(&priv->lock);
5129 
5130 	netif_device_detach(ndev);
5131 
5132 	stmmac_disable_all_queues(priv);
5133 
5134 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5135 		del_timer_sync(&priv->tx_queue[chan].txtimer);
5136 
5137 	/* Stop TX/RX DMA */
5138 	stmmac_stop_all_dma(priv);
5139 
5140 	if (priv->plat->serdes_powerdown)
5141 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5142 
5143 	/* Enable Power down mode by programming the PMT regs */
5144 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5145 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5146 		priv->irq_wake = 1;
5147 	} else {
5148 		mutex_unlock(&priv->lock);
5149 		rtnl_lock();
5150 		if (device_may_wakeup(priv->device))
5151 			phylink_speed_down(priv->phylink, false);
5152 		phylink_stop(priv->phylink);
5153 		rtnl_unlock();
5154 		mutex_lock(&priv->lock);
5155 
5156 		stmmac_mac_set(priv, priv->ioaddr, false);
5157 		pinctrl_pm_select_sleep_state(priv->device);
5158 		/* Disable clock in case of PWM is off */
5159 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
5160 		clk_disable_unprepare(priv->plat->pclk);
5161 		clk_disable_unprepare(priv->plat->stmmac_clk);
5162 	}
5163 	mutex_unlock(&priv->lock);
5164 
5165 	priv->speed = SPEED_UNKNOWN;
5166 	return 0;
5167 }
5168 EXPORT_SYMBOL_GPL(stmmac_suspend);
5169 
5170 /**
5171  * stmmac_reset_queues_param - reset queue parameters
5172  * @priv: device pointer
5173  */
5174 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5175 {
5176 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5177 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5178 	u32 queue;
5179 
5180 	for (queue = 0; queue < rx_cnt; queue++) {
5181 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5182 
5183 		rx_q->cur_rx = 0;
5184 		rx_q->dirty_rx = 0;
5185 	}
5186 
5187 	for (queue = 0; queue < tx_cnt; queue++) {
5188 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5189 
5190 		tx_q->cur_tx = 0;
5191 		tx_q->dirty_tx = 0;
5192 		tx_q->mss = 0;
5193 	}
5194 }
5195 
5196 /**
5197  * stmmac_resume - resume callback
5198  * @dev: device pointer
5199  * Description: when resume this function is invoked to setup the DMA and CORE
5200  * in a usable state.
5201  */
5202 int stmmac_resume(struct device *dev)
5203 {
5204 	struct net_device *ndev = dev_get_drvdata(dev);
5205 	struct stmmac_priv *priv = netdev_priv(ndev);
5206 	int ret;
5207 
5208 	if (!netif_running(ndev))
5209 		return 0;
5210 
5211 	/* Power Down bit, into the PM register, is cleared
5212 	 * automatically as soon as a magic packet or a Wake-up frame
5213 	 * is received. Anyway, it's better to manually clear
5214 	 * this bit because it can generate problems while resuming
5215 	 * from another devices (e.g. serial console).
5216 	 */
5217 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5218 		mutex_lock(&priv->lock);
5219 		stmmac_pmt(priv, priv->hw, 0);
5220 		mutex_unlock(&priv->lock);
5221 		priv->irq_wake = 0;
5222 	} else {
5223 		pinctrl_pm_select_default_state(priv->device);
5224 		/* enable the clk previously disabled */
5225 		clk_prepare_enable(priv->plat->stmmac_clk);
5226 		clk_prepare_enable(priv->plat->pclk);
5227 		if (priv->plat->clk_ptp_ref)
5228 			clk_prepare_enable(priv->plat->clk_ptp_ref);
5229 		/* reset the phy so that it's ready */
5230 		if (priv->mii)
5231 			stmmac_mdio_reset(priv->mii);
5232 	}
5233 
5234 	if (priv->plat->serdes_powerup) {
5235 		ret = priv->plat->serdes_powerup(ndev,
5236 						 priv->plat->bsp_priv);
5237 
5238 		if (ret < 0)
5239 			return ret;
5240 	}
5241 
5242 	mutex_lock(&priv->lock);
5243 
5244 	stmmac_reset_queues_param(priv);
5245 
5246 	stmmac_clear_descriptors(priv);
5247 
5248 	stmmac_hw_setup(ndev, false);
5249 	stmmac_init_coalesce(priv);
5250 	stmmac_set_rx_mode(ndev);
5251 
5252 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5253 
5254 	stmmac_enable_all_queues(priv);
5255 
5256 	mutex_unlock(&priv->lock);
5257 
5258 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5259 		rtnl_lock();
5260 		phylink_start(priv->phylink);
5261 		/* We may have called phylink_speed_down before */
5262 		phylink_speed_up(priv->phylink);
5263 		rtnl_unlock();
5264 	}
5265 
5266 	phylink_mac_change(priv->phylink, true);
5267 
5268 	netif_device_attach(ndev);
5269 
5270 	return 0;
5271 }
5272 EXPORT_SYMBOL_GPL(stmmac_resume);
5273 
5274 #ifndef MODULE
5275 static int __init stmmac_cmdline_opt(char *str)
5276 {
5277 	char *opt;
5278 
5279 	if (!str || !*str)
5280 		return -EINVAL;
5281 	while ((opt = strsep(&str, ",")) != NULL) {
5282 		if (!strncmp(opt, "debug:", 6)) {
5283 			if (kstrtoint(opt + 6, 0, &debug))
5284 				goto err;
5285 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5286 			if (kstrtoint(opt + 8, 0, &phyaddr))
5287 				goto err;
5288 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5289 			if (kstrtoint(opt + 7, 0, &buf_sz))
5290 				goto err;
5291 		} else if (!strncmp(opt, "tc:", 3)) {
5292 			if (kstrtoint(opt + 3, 0, &tc))
5293 				goto err;
5294 		} else if (!strncmp(opt, "watchdog:", 9)) {
5295 			if (kstrtoint(opt + 9, 0, &watchdog))
5296 				goto err;
5297 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5298 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5299 				goto err;
5300 		} else if (!strncmp(opt, "pause:", 6)) {
5301 			if (kstrtoint(opt + 6, 0, &pause))
5302 				goto err;
5303 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5304 			if (kstrtoint(opt + 10, 0, &eee_timer))
5305 				goto err;
5306 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5307 			if (kstrtoint(opt + 11, 0, &chain_mode))
5308 				goto err;
5309 		}
5310 	}
5311 	return 0;
5312 
5313 err:
5314 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5315 	return -EINVAL;
5316 }
5317 
5318 __setup("stmmaceth=", stmmac_cmdline_opt);
5319 #endif /* MODULE */
5320 
5321 static int __init stmmac_init(void)
5322 {
5323 #ifdef CONFIG_DEBUG_FS
5324 	/* Create debugfs main directory if it doesn't exist yet */
5325 	if (!stmmac_fs_dir)
5326 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5327 	register_netdevice_notifier(&stmmac_notifier);
5328 #endif
5329 
5330 	return 0;
5331 }
5332 
5333 static void __exit stmmac_exit(void)
5334 {
5335 #ifdef CONFIG_DEBUG_FS
5336 	unregister_netdevice_notifier(&stmmac_notifier);
5337 	debugfs_remove_recursive(stmmac_fs_dir);
5338 #endif
5339 }
5340 
5341 module_init(stmmac_init)
5342 module_exit(stmmac_exit)
5343 
5344 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5345 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5346 MODULE_LICENSE("GPL");
5347