1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/prefetch.h> 32 #include <linux/pinctrl/consumer.h> 33 #ifdef CONFIG_DEBUG_FS 34 #include <linux/debugfs.h> 35 #include <linux/seq_file.h> 36 #endif /* CONFIG_DEBUG_FS */ 37 #include <linux/net_tstamp.h> 38 #include <linux/phylink.h> 39 #include <linux/udp.h> 40 #include <net/pkt_cls.h> 41 #include "stmmac_ptp.h" 42 #include "stmmac.h" 43 #include <linux/reset.h> 44 #include <linux/of_mdio.h> 45 #include "dwmac1000.h" 46 #include "dwxgmac2.h" 47 #include "hwif.h" 48 49 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 50 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 51 52 /* Module parameters */ 53 #define TX_TIMEO 5000 54 static int watchdog = TX_TIMEO; 55 module_param(watchdog, int, 0644); 56 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 57 58 static int debug = -1; 59 module_param(debug, int, 0644); 60 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 61 62 static int phyaddr = -1; 63 module_param(phyaddr, int, 0444); 64 MODULE_PARM_DESC(phyaddr, "Physical device address"); 65 66 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 67 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 68 69 static int flow_ctrl = FLOW_AUTO; 70 module_param(flow_ctrl, int, 0644); 71 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 72 73 static int pause = PAUSE_TIME; 74 module_param(pause, int, 0644); 75 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 76 77 #define TC_DEFAULT 64 78 static int tc = TC_DEFAULT; 79 module_param(tc, int, 0644); 80 MODULE_PARM_DESC(tc, "DMA threshold control value"); 81 82 #define DEFAULT_BUFSIZE 1536 83 static int buf_sz = DEFAULT_BUFSIZE; 84 module_param(buf_sz, int, 0644); 85 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 86 87 #define STMMAC_RX_COPYBREAK 256 88 89 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 90 NETIF_MSG_LINK | NETIF_MSG_IFUP | 91 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 92 93 #define STMMAC_DEFAULT_LPI_TIMER 1000 94 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 95 module_param(eee_timer, int, 0644); 96 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 97 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 98 99 /* By default the driver will use the ring mode to manage tx and rx descriptors, 100 * but allow user to force to use the chain instead of the ring 101 */ 102 static unsigned int chain_mode; 103 module_param(chain_mode, int, 0444); 104 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 105 106 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 107 108 #ifdef CONFIG_DEBUG_FS 109 static const struct net_device_ops stmmac_netdev_ops; 110 static void stmmac_init_fs(struct net_device *dev); 111 static void stmmac_exit_fs(struct net_device *dev); 112 #endif 113 114 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 115 116 /** 117 * stmmac_verify_args - verify the driver parameters. 118 * Description: it checks the driver parameters and set a default in case of 119 * errors. 120 */ 121 static void stmmac_verify_args(void) 122 { 123 if (unlikely(watchdog < 0)) 124 watchdog = TX_TIMEO; 125 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 126 buf_sz = DEFAULT_BUFSIZE; 127 if (unlikely(flow_ctrl > 1)) 128 flow_ctrl = FLOW_AUTO; 129 else if (likely(flow_ctrl < 0)) 130 flow_ctrl = FLOW_OFF; 131 if (unlikely((pause < 0) || (pause > 0xffff))) 132 pause = PAUSE_TIME; 133 if (eee_timer < 0) 134 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 135 } 136 137 /** 138 * stmmac_disable_all_queues - Disable all queues 139 * @priv: driver private structure 140 */ 141 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 142 { 143 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 144 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 145 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 146 u32 queue; 147 148 for (queue = 0; queue < maxq; queue++) { 149 struct stmmac_channel *ch = &priv->channel[queue]; 150 151 if (queue < rx_queues_cnt) 152 napi_disable(&ch->rx_napi); 153 if (queue < tx_queues_cnt) 154 napi_disable(&ch->tx_napi); 155 } 156 } 157 158 /** 159 * stmmac_enable_all_queues - Enable all queues 160 * @priv: driver private structure 161 */ 162 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 163 { 164 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 165 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 166 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 167 u32 queue; 168 169 for (queue = 0; queue < maxq; queue++) { 170 struct stmmac_channel *ch = &priv->channel[queue]; 171 172 if (queue < rx_queues_cnt) 173 napi_enable(&ch->rx_napi); 174 if (queue < tx_queues_cnt) 175 napi_enable(&ch->tx_napi); 176 } 177 } 178 179 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 180 { 181 if (!test_bit(STMMAC_DOWN, &priv->state) && 182 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 183 queue_work(priv->wq, &priv->service_task); 184 } 185 186 static void stmmac_global_err(struct stmmac_priv *priv) 187 { 188 netif_carrier_off(priv->dev); 189 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 190 stmmac_service_event_schedule(priv); 191 } 192 193 /** 194 * stmmac_clk_csr_set - dynamically set the MDC clock 195 * @priv: driver private structure 196 * Description: this is to dynamically set the MDC clock according to the csr 197 * clock input. 198 * Note: 199 * If a specific clk_csr value is passed from the platform 200 * this means that the CSR Clock Range selection cannot be 201 * changed at run-time and it is fixed (as reported in the driver 202 * documentation). Viceversa the driver will try to set the MDC 203 * clock dynamically according to the actual clock input. 204 */ 205 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 206 { 207 u32 clk_rate; 208 209 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 210 211 /* Platform provided default clk_csr would be assumed valid 212 * for all other cases except for the below mentioned ones. 213 * For values higher than the IEEE 802.3 specified frequency 214 * we can not estimate the proper divider as it is not known 215 * the frequency of clk_csr_i. So we do not change the default 216 * divider. 217 */ 218 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 219 if (clk_rate < CSR_F_35M) 220 priv->clk_csr = STMMAC_CSR_20_35M; 221 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 222 priv->clk_csr = STMMAC_CSR_35_60M; 223 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 224 priv->clk_csr = STMMAC_CSR_60_100M; 225 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 226 priv->clk_csr = STMMAC_CSR_100_150M; 227 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 228 priv->clk_csr = STMMAC_CSR_150_250M; 229 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 230 priv->clk_csr = STMMAC_CSR_250_300M; 231 } 232 233 if (priv->plat->has_sun8i) { 234 if (clk_rate > 160000000) 235 priv->clk_csr = 0x03; 236 else if (clk_rate > 80000000) 237 priv->clk_csr = 0x02; 238 else if (clk_rate > 40000000) 239 priv->clk_csr = 0x01; 240 else 241 priv->clk_csr = 0; 242 } 243 244 if (priv->plat->has_xgmac) { 245 if (clk_rate > 400000000) 246 priv->clk_csr = 0x5; 247 else if (clk_rate > 350000000) 248 priv->clk_csr = 0x4; 249 else if (clk_rate > 300000000) 250 priv->clk_csr = 0x3; 251 else if (clk_rate > 250000000) 252 priv->clk_csr = 0x2; 253 else if (clk_rate > 150000000) 254 priv->clk_csr = 0x1; 255 else 256 priv->clk_csr = 0x0; 257 } 258 } 259 260 static void print_pkt(unsigned char *buf, int len) 261 { 262 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 263 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 264 } 265 266 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 267 { 268 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 269 u32 avail; 270 271 if (tx_q->dirty_tx > tx_q->cur_tx) 272 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 273 else 274 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 275 276 return avail; 277 } 278 279 /** 280 * stmmac_rx_dirty - Get RX queue dirty 281 * @priv: driver private structure 282 * @queue: RX queue index 283 */ 284 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 285 { 286 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 287 u32 dirty; 288 289 if (rx_q->dirty_rx <= rx_q->cur_rx) 290 dirty = rx_q->cur_rx - rx_q->dirty_rx; 291 else 292 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 293 294 return dirty; 295 } 296 297 /** 298 * stmmac_enable_eee_mode - check and enter in LPI mode 299 * @priv: driver private structure 300 * Description: this function is to verify and enter in LPI mode in case of 301 * EEE. 302 */ 303 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 304 { 305 u32 tx_cnt = priv->plat->tx_queues_to_use; 306 u32 queue; 307 308 /* check if all TX queues have the work finished */ 309 for (queue = 0; queue < tx_cnt; queue++) { 310 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 311 312 if (tx_q->dirty_tx != tx_q->cur_tx) 313 return; /* still unfinished work */ 314 } 315 316 /* Check and enter in LPI mode */ 317 if (!priv->tx_path_in_lpi_mode) 318 stmmac_set_eee_mode(priv, priv->hw, 319 priv->plat->en_tx_lpi_clockgating); 320 } 321 322 /** 323 * stmmac_disable_eee_mode - disable and exit from LPI mode 324 * @priv: driver private structure 325 * Description: this function is to exit and disable EEE in case of 326 * LPI state is true. This is called by the xmit. 327 */ 328 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 329 { 330 stmmac_reset_eee_mode(priv, priv->hw); 331 del_timer_sync(&priv->eee_ctrl_timer); 332 priv->tx_path_in_lpi_mode = false; 333 } 334 335 /** 336 * stmmac_eee_ctrl_timer - EEE TX SW timer. 337 * @t: timer_list struct containing private info 338 * Description: 339 * if there is no data transfer and if we are not in LPI state, 340 * then MAC Transmitter can be moved to LPI state. 341 */ 342 static void stmmac_eee_ctrl_timer(struct timer_list *t) 343 { 344 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 345 346 stmmac_enable_eee_mode(priv); 347 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 348 } 349 350 /** 351 * stmmac_eee_init - init EEE 352 * @priv: driver private structure 353 * Description: 354 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 355 * can also manage EEE, this function enable the LPI state and start related 356 * timer. 357 */ 358 bool stmmac_eee_init(struct stmmac_priv *priv) 359 { 360 int tx_lpi_timer = priv->tx_lpi_timer; 361 362 /* Using PCS we cannot dial with the phy registers at this stage 363 * so we do not support extra feature like EEE. 364 */ 365 if (priv->hw->pcs == STMMAC_PCS_TBI || 366 priv->hw->pcs == STMMAC_PCS_RTBI) 367 return false; 368 369 /* Check if MAC core supports the EEE feature. */ 370 if (!priv->dma_cap.eee) 371 return false; 372 373 mutex_lock(&priv->lock); 374 375 /* Check if it needs to be deactivated */ 376 if (!priv->eee_active) { 377 if (priv->eee_enabled) { 378 netdev_dbg(priv->dev, "disable EEE\n"); 379 del_timer_sync(&priv->eee_ctrl_timer); 380 stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer); 381 } 382 mutex_unlock(&priv->lock); 383 return false; 384 } 385 386 if (priv->eee_active && !priv->eee_enabled) { 387 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 388 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 389 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 390 tx_lpi_timer); 391 } 392 393 mutex_unlock(&priv->lock); 394 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 395 return true; 396 } 397 398 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 399 * @priv: driver private structure 400 * @p : descriptor pointer 401 * @skb : the socket buffer 402 * Description : 403 * This function will read timestamp from the descriptor & pass it to stack. 404 * and also perform some sanity checks. 405 */ 406 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 407 struct dma_desc *p, struct sk_buff *skb) 408 { 409 struct skb_shared_hwtstamps shhwtstamp; 410 bool found = false; 411 u64 ns = 0; 412 413 if (!priv->hwts_tx_en) 414 return; 415 416 /* exit if skb doesn't support hw tstamp */ 417 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 418 return; 419 420 /* check tx tstamp status */ 421 if (stmmac_get_tx_timestamp_status(priv, p)) { 422 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 423 found = true; 424 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 425 found = true; 426 } 427 428 if (found) { 429 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 430 shhwtstamp.hwtstamp = ns_to_ktime(ns); 431 432 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 433 /* pass tstamp to stack */ 434 skb_tstamp_tx(skb, &shhwtstamp); 435 } 436 } 437 438 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 439 * @priv: driver private structure 440 * @p : descriptor pointer 441 * @np : next descriptor pointer 442 * @skb : the socket buffer 443 * Description : 444 * This function will read received packet's timestamp from the descriptor 445 * and pass it to stack. It also perform some sanity checks. 446 */ 447 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 448 struct dma_desc *np, struct sk_buff *skb) 449 { 450 struct skb_shared_hwtstamps *shhwtstamp = NULL; 451 struct dma_desc *desc = p; 452 u64 ns = 0; 453 454 if (!priv->hwts_rx_en) 455 return; 456 /* For GMAC4, the valid timestamp is from CTX next desc. */ 457 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 458 desc = np; 459 460 /* Check if timestamp is available */ 461 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 462 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 463 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 464 shhwtstamp = skb_hwtstamps(skb); 465 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 466 shhwtstamp->hwtstamp = ns_to_ktime(ns); 467 } else { 468 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 469 } 470 } 471 472 /** 473 * stmmac_hwtstamp_set - control hardware timestamping. 474 * @dev: device pointer. 475 * @ifr: An IOCTL specific structure, that can contain a pointer to 476 * a proprietary structure used to pass information to the driver. 477 * Description: 478 * This function configures the MAC to enable/disable both outgoing(TX) 479 * and incoming(RX) packets time stamping based on user input. 480 * Return Value: 481 * 0 on success and an appropriate -ve integer on failure. 482 */ 483 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 484 { 485 struct stmmac_priv *priv = netdev_priv(dev); 486 struct hwtstamp_config config; 487 struct timespec64 now; 488 u64 temp = 0; 489 u32 ptp_v2 = 0; 490 u32 tstamp_all = 0; 491 u32 ptp_over_ipv4_udp = 0; 492 u32 ptp_over_ipv6_udp = 0; 493 u32 ptp_over_ethernet = 0; 494 u32 snap_type_sel = 0; 495 u32 ts_master_en = 0; 496 u32 ts_event_en = 0; 497 u32 sec_inc = 0; 498 u32 value = 0; 499 bool xmac; 500 501 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 502 503 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 504 netdev_alert(priv->dev, "No support for HW time stamping\n"); 505 priv->hwts_tx_en = 0; 506 priv->hwts_rx_en = 0; 507 508 return -EOPNOTSUPP; 509 } 510 511 if (copy_from_user(&config, ifr->ifr_data, 512 sizeof(config))) 513 return -EFAULT; 514 515 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 516 __func__, config.flags, config.tx_type, config.rx_filter); 517 518 /* reserved for future extensions */ 519 if (config.flags) 520 return -EINVAL; 521 522 if (config.tx_type != HWTSTAMP_TX_OFF && 523 config.tx_type != HWTSTAMP_TX_ON) 524 return -ERANGE; 525 526 if (priv->adv_ts) { 527 switch (config.rx_filter) { 528 case HWTSTAMP_FILTER_NONE: 529 /* time stamp no incoming packet at all */ 530 config.rx_filter = HWTSTAMP_FILTER_NONE; 531 break; 532 533 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 534 /* PTP v1, UDP, any kind of event packet */ 535 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 536 /* 'xmac' hardware can support Sync, Pdelay_Req and 537 * Pdelay_resp by setting bit14 and bits17/16 to 01 538 * This leaves Delay_Req timestamps out. 539 * Enable all events *and* general purpose message 540 * timestamping 541 */ 542 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 543 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 544 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 545 break; 546 547 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 548 /* PTP v1, UDP, Sync packet */ 549 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 550 /* take time stamp for SYNC messages only */ 551 ts_event_en = PTP_TCR_TSEVNTENA; 552 553 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 554 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 555 break; 556 557 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 558 /* PTP v1, UDP, Delay_req packet */ 559 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 560 /* take time stamp for Delay_Req messages only */ 561 ts_master_en = PTP_TCR_TSMSTRENA; 562 ts_event_en = PTP_TCR_TSEVNTENA; 563 564 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 565 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 566 break; 567 568 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 569 /* PTP v2, UDP, any kind of event packet */ 570 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 571 ptp_v2 = PTP_TCR_TSVER2ENA; 572 /* take time stamp for all event messages */ 573 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 574 575 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 576 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 577 break; 578 579 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 580 /* PTP v2, UDP, Sync packet */ 581 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 582 ptp_v2 = PTP_TCR_TSVER2ENA; 583 /* take time stamp for SYNC messages only */ 584 ts_event_en = PTP_TCR_TSEVNTENA; 585 586 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 587 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 588 break; 589 590 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 591 /* PTP v2, UDP, Delay_req packet */ 592 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 593 ptp_v2 = PTP_TCR_TSVER2ENA; 594 /* take time stamp for Delay_Req messages only */ 595 ts_master_en = PTP_TCR_TSMSTRENA; 596 ts_event_en = PTP_TCR_TSEVNTENA; 597 598 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 599 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 600 break; 601 602 case HWTSTAMP_FILTER_PTP_V2_EVENT: 603 /* PTP v2/802.AS1 any layer, any kind of event packet */ 604 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 605 ptp_v2 = PTP_TCR_TSVER2ENA; 606 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 607 if (priv->synopsys_id != DWMAC_CORE_5_10) 608 ts_event_en = PTP_TCR_TSEVNTENA; 609 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 610 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 611 ptp_over_ethernet = PTP_TCR_TSIPENA; 612 break; 613 614 case HWTSTAMP_FILTER_PTP_V2_SYNC: 615 /* PTP v2/802.AS1, any layer, Sync packet */ 616 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 617 ptp_v2 = PTP_TCR_TSVER2ENA; 618 /* take time stamp for SYNC messages only */ 619 ts_event_en = PTP_TCR_TSEVNTENA; 620 621 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 622 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 623 ptp_over_ethernet = PTP_TCR_TSIPENA; 624 break; 625 626 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 627 /* PTP v2/802.AS1, any layer, Delay_req packet */ 628 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 629 ptp_v2 = PTP_TCR_TSVER2ENA; 630 /* take time stamp for Delay_Req messages only */ 631 ts_master_en = PTP_TCR_TSMSTRENA; 632 ts_event_en = PTP_TCR_TSEVNTENA; 633 634 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 635 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 636 ptp_over_ethernet = PTP_TCR_TSIPENA; 637 break; 638 639 case HWTSTAMP_FILTER_NTP_ALL: 640 case HWTSTAMP_FILTER_ALL: 641 /* time stamp any incoming packet */ 642 config.rx_filter = HWTSTAMP_FILTER_ALL; 643 tstamp_all = PTP_TCR_TSENALL; 644 break; 645 646 default: 647 return -ERANGE; 648 } 649 } else { 650 switch (config.rx_filter) { 651 case HWTSTAMP_FILTER_NONE: 652 config.rx_filter = HWTSTAMP_FILTER_NONE; 653 break; 654 default: 655 /* PTP v1, UDP, any kind of event packet */ 656 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 657 break; 658 } 659 } 660 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 661 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 662 663 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 664 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 665 else { 666 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 667 tstamp_all | ptp_v2 | ptp_over_ethernet | 668 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 669 ts_master_en | snap_type_sel); 670 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 671 672 /* program Sub Second Increment reg */ 673 stmmac_config_sub_second_increment(priv, 674 priv->ptpaddr, priv->plat->clk_ptp_rate, 675 xmac, &sec_inc); 676 temp = div_u64(1000000000ULL, sec_inc); 677 678 /* Store sub second increment and flags for later use */ 679 priv->sub_second_inc = sec_inc; 680 priv->systime_flags = value; 681 682 /* calculate default added value: 683 * formula is : 684 * addend = (2^32)/freq_div_ratio; 685 * where, freq_div_ratio = 1e9ns/sec_inc 686 */ 687 temp = (u64)(temp << 32); 688 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 689 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 690 691 /* initialize system time */ 692 ktime_get_real_ts64(&now); 693 694 /* lower 32 bits of tv_sec are safe until y2106 */ 695 stmmac_init_systime(priv, priv->ptpaddr, 696 (u32)now.tv_sec, now.tv_nsec); 697 } 698 699 memcpy(&priv->tstamp_config, &config, sizeof(config)); 700 701 return copy_to_user(ifr->ifr_data, &config, 702 sizeof(config)) ? -EFAULT : 0; 703 } 704 705 /** 706 * stmmac_hwtstamp_get - read hardware timestamping. 707 * @dev: device pointer. 708 * @ifr: An IOCTL specific structure, that can contain a pointer to 709 * a proprietary structure used to pass information to the driver. 710 * Description: 711 * This function obtain the current hardware timestamping settings 712 * as requested. 713 */ 714 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 715 { 716 struct stmmac_priv *priv = netdev_priv(dev); 717 struct hwtstamp_config *config = &priv->tstamp_config; 718 719 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 720 return -EOPNOTSUPP; 721 722 return copy_to_user(ifr->ifr_data, config, 723 sizeof(*config)) ? -EFAULT : 0; 724 } 725 726 /** 727 * stmmac_init_ptp - init PTP 728 * @priv: driver private structure 729 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 730 * This is done by looking at the HW cap. register. 731 * This function also registers the ptp driver. 732 */ 733 static int stmmac_init_ptp(struct stmmac_priv *priv) 734 { 735 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 736 737 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 738 return -EOPNOTSUPP; 739 740 priv->adv_ts = 0; 741 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 742 if (xmac && priv->dma_cap.atime_stamp) 743 priv->adv_ts = 1; 744 /* Dwmac 3.x core with extend_desc can support adv_ts */ 745 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 746 priv->adv_ts = 1; 747 748 if (priv->dma_cap.time_stamp) 749 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 750 751 if (priv->adv_ts) 752 netdev_info(priv->dev, 753 "IEEE 1588-2008 Advanced Timestamp supported\n"); 754 755 priv->hwts_tx_en = 0; 756 priv->hwts_rx_en = 0; 757 758 stmmac_ptp_register(priv); 759 760 return 0; 761 } 762 763 static void stmmac_release_ptp(struct stmmac_priv *priv) 764 { 765 clk_disable_unprepare(priv->plat->clk_ptp_ref); 766 stmmac_ptp_unregister(priv); 767 } 768 769 /** 770 * stmmac_mac_flow_ctrl - Configure flow control in all queues 771 * @priv: driver private structure 772 * @duplex: duplex passed to the next function 773 * Description: It is used for configuring the flow control in all queues 774 */ 775 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 776 { 777 u32 tx_cnt = priv->plat->tx_queues_to_use; 778 779 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 780 priv->pause, tx_cnt); 781 } 782 783 static void stmmac_validate(struct phylink_config *config, 784 unsigned long *supported, 785 struct phylink_link_state *state) 786 { 787 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 788 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 789 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 790 int tx_cnt = priv->plat->tx_queues_to_use; 791 int max_speed = priv->plat->max_speed; 792 793 phylink_set(mac_supported, 10baseT_Half); 794 phylink_set(mac_supported, 10baseT_Full); 795 phylink_set(mac_supported, 100baseT_Half); 796 phylink_set(mac_supported, 100baseT_Full); 797 phylink_set(mac_supported, 1000baseT_Half); 798 phylink_set(mac_supported, 1000baseT_Full); 799 phylink_set(mac_supported, 1000baseKX_Full); 800 801 phylink_set(mac_supported, Autoneg); 802 phylink_set(mac_supported, Pause); 803 phylink_set(mac_supported, Asym_Pause); 804 phylink_set_port_modes(mac_supported); 805 806 /* Cut down 1G if asked to */ 807 if ((max_speed > 0) && (max_speed < 1000)) { 808 phylink_set(mask, 1000baseT_Full); 809 phylink_set(mask, 1000baseX_Full); 810 } else if (priv->plat->has_xgmac) { 811 if (!max_speed || (max_speed >= 2500)) { 812 phylink_set(mac_supported, 2500baseT_Full); 813 phylink_set(mac_supported, 2500baseX_Full); 814 } 815 if (!max_speed || (max_speed >= 5000)) { 816 phylink_set(mac_supported, 5000baseT_Full); 817 } 818 if (!max_speed || (max_speed >= 10000)) { 819 phylink_set(mac_supported, 10000baseSR_Full); 820 phylink_set(mac_supported, 10000baseLR_Full); 821 phylink_set(mac_supported, 10000baseER_Full); 822 phylink_set(mac_supported, 10000baseLRM_Full); 823 phylink_set(mac_supported, 10000baseT_Full); 824 phylink_set(mac_supported, 10000baseKX4_Full); 825 phylink_set(mac_supported, 10000baseKR_Full); 826 } 827 if (!max_speed || (max_speed >= 25000)) { 828 phylink_set(mac_supported, 25000baseCR_Full); 829 phylink_set(mac_supported, 25000baseKR_Full); 830 phylink_set(mac_supported, 25000baseSR_Full); 831 } 832 if (!max_speed || (max_speed >= 40000)) { 833 phylink_set(mac_supported, 40000baseKR4_Full); 834 phylink_set(mac_supported, 40000baseCR4_Full); 835 phylink_set(mac_supported, 40000baseSR4_Full); 836 phylink_set(mac_supported, 40000baseLR4_Full); 837 } 838 if (!max_speed || (max_speed >= 50000)) { 839 phylink_set(mac_supported, 50000baseCR2_Full); 840 phylink_set(mac_supported, 50000baseKR2_Full); 841 phylink_set(mac_supported, 50000baseSR2_Full); 842 phylink_set(mac_supported, 50000baseKR_Full); 843 phylink_set(mac_supported, 50000baseSR_Full); 844 phylink_set(mac_supported, 50000baseCR_Full); 845 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 846 phylink_set(mac_supported, 50000baseDR_Full); 847 } 848 if (!max_speed || (max_speed >= 100000)) { 849 phylink_set(mac_supported, 100000baseKR4_Full); 850 phylink_set(mac_supported, 100000baseSR4_Full); 851 phylink_set(mac_supported, 100000baseCR4_Full); 852 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 853 phylink_set(mac_supported, 100000baseKR2_Full); 854 phylink_set(mac_supported, 100000baseSR2_Full); 855 phylink_set(mac_supported, 100000baseCR2_Full); 856 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 857 phylink_set(mac_supported, 100000baseDR2_Full); 858 } 859 } 860 861 /* Half-Duplex can only work with single queue */ 862 if (tx_cnt > 1) { 863 phylink_set(mask, 10baseT_Half); 864 phylink_set(mask, 100baseT_Half); 865 phylink_set(mask, 1000baseT_Half); 866 } 867 868 linkmode_and(supported, supported, mac_supported); 869 linkmode_andnot(supported, supported, mask); 870 871 linkmode_and(state->advertising, state->advertising, mac_supported); 872 linkmode_andnot(state->advertising, state->advertising, mask); 873 874 /* If PCS is supported, check which modes it supports. */ 875 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state); 876 } 877 878 static void stmmac_mac_pcs_get_state(struct phylink_config *config, 879 struct phylink_link_state *state) 880 { 881 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 882 883 state->link = 0; 884 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state); 885 } 886 887 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 888 const struct phylink_link_state *state) 889 { 890 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 891 892 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state); 893 } 894 895 static void stmmac_mac_an_restart(struct phylink_config *config) 896 { 897 /* Not Supported */ 898 } 899 900 static void stmmac_mac_link_down(struct phylink_config *config, 901 unsigned int mode, phy_interface_t interface) 902 { 903 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 904 905 stmmac_mac_set(priv, priv->ioaddr, false); 906 priv->eee_active = false; 907 stmmac_eee_init(priv); 908 stmmac_set_eee_pls(priv, priv->hw, false); 909 } 910 911 static void stmmac_mac_link_up(struct phylink_config *config, 912 struct phy_device *phy, 913 unsigned int mode, phy_interface_t interface, 914 int speed, int duplex, 915 bool tx_pause, bool rx_pause) 916 { 917 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 918 u32 ctrl; 919 920 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface); 921 922 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 923 ctrl &= ~priv->hw->link.speed_mask; 924 925 if (interface == PHY_INTERFACE_MODE_USXGMII) { 926 switch (speed) { 927 case SPEED_10000: 928 ctrl |= priv->hw->link.xgmii.speed10000; 929 break; 930 case SPEED_5000: 931 ctrl |= priv->hw->link.xgmii.speed5000; 932 break; 933 case SPEED_2500: 934 ctrl |= priv->hw->link.xgmii.speed2500; 935 break; 936 default: 937 return; 938 } 939 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 940 switch (speed) { 941 case SPEED_100000: 942 ctrl |= priv->hw->link.xlgmii.speed100000; 943 break; 944 case SPEED_50000: 945 ctrl |= priv->hw->link.xlgmii.speed50000; 946 break; 947 case SPEED_40000: 948 ctrl |= priv->hw->link.xlgmii.speed40000; 949 break; 950 case SPEED_25000: 951 ctrl |= priv->hw->link.xlgmii.speed25000; 952 break; 953 case SPEED_10000: 954 ctrl |= priv->hw->link.xgmii.speed10000; 955 break; 956 case SPEED_2500: 957 ctrl |= priv->hw->link.speed2500; 958 break; 959 case SPEED_1000: 960 ctrl |= priv->hw->link.speed1000; 961 break; 962 default: 963 return; 964 } 965 } else { 966 switch (speed) { 967 case SPEED_2500: 968 ctrl |= priv->hw->link.speed2500; 969 break; 970 case SPEED_1000: 971 ctrl |= priv->hw->link.speed1000; 972 break; 973 case SPEED_100: 974 ctrl |= priv->hw->link.speed100; 975 break; 976 case SPEED_10: 977 ctrl |= priv->hw->link.speed10; 978 break; 979 default: 980 return; 981 } 982 } 983 984 priv->speed = speed; 985 986 if (priv->plat->fix_mac_speed) 987 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 988 989 if (!duplex) 990 ctrl &= ~priv->hw->link.duplex; 991 else 992 ctrl |= priv->hw->link.duplex; 993 994 /* Flow Control operation */ 995 if (tx_pause && rx_pause) 996 stmmac_mac_flow_ctrl(priv, duplex); 997 998 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 999 1000 stmmac_mac_set(priv, priv->ioaddr, true); 1001 if (phy && priv->dma_cap.eee) { 1002 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1003 priv->eee_enabled = stmmac_eee_init(priv); 1004 stmmac_set_eee_pls(priv, priv->hw, true); 1005 } 1006 } 1007 1008 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1009 .validate = stmmac_validate, 1010 .mac_pcs_get_state = stmmac_mac_pcs_get_state, 1011 .mac_config = stmmac_mac_config, 1012 .mac_an_restart = stmmac_mac_an_restart, 1013 .mac_link_down = stmmac_mac_link_down, 1014 .mac_link_up = stmmac_mac_link_up, 1015 }; 1016 1017 /** 1018 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1019 * @priv: driver private structure 1020 * Description: this is to verify if the HW supports the PCS. 1021 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1022 * configured for the TBI, RTBI, or SGMII PHY interface. 1023 */ 1024 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1025 { 1026 int interface = priv->plat->interface; 1027 1028 if (priv->dma_cap.pcs) { 1029 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1030 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1031 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1032 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1033 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1034 priv->hw->pcs = STMMAC_PCS_RGMII; 1035 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1036 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1037 priv->hw->pcs = STMMAC_PCS_SGMII; 1038 } 1039 } 1040 } 1041 1042 /** 1043 * stmmac_init_phy - PHY initialization 1044 * @dev: net device structure 1045 * Description: it initializes the driver's PHY state, and attaches the PHY 1046 * to the mac driver. 1047 * Return value: 1048 * 0 on success 1049 */ 1050 static int stmmac_init_phy(struct net_device *dev) 1051 { 1052 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1053 struct stmmac_priv *priv = netdev_priv(dev); 1054 struct device_node *node; 1055 int ret; 1056 1057 node = priv->plat->phylink_node; 1058 1059 if (node) 1060 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1061 1062 /* Some DT bindings do not set-up the PHY handle. Let's try to 1063 * manually parse it 1064 */ 1065 if (!node || ret) { 1066 int addr = priv->plat->phy_addr; 1067 struct phy_device *phydev; 1068 1069 phydev = mdiobus_get_phy(priv->mii, addr); 1070 if (!phydev) { 1071 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1072 return -ENODEV; 1073 } 1074 1075 ret = phylink_connect_phy(priv->phylink, phydev); 1076 } 1077 1078 phylink_ethtool_get_wol(priv->phylink, &wol); 1079 device_set_wakeup_capable(priv->device, !!wol.supported); 1080 1081 return ret; 1082 } 1083 1084 static int stmmac_phy_setup(struct stmmac_priv *priv) 1085 { 1086 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1087 int mode = priv->plat->phy_interface; 1088 struct phylink *phylink; 1089 1090 priv->phylink_config.dev = &priv->dev->dev; 1091 priv->phylink_config.type = PHYLINK_NETDEV; 1092 priv->phylink_config.pcs_poll = true; 1093 1094 if (!fwnode) 1095 fwnode = dev_fwnode(priv->device); 1096 1097 phylink = phylink_create(&priv->phylink_config, fwnode, 1098 mode, &stmmac_phylink_mac_ops); 1099 if (IS_ERR(phylink)) 1100 return PTR_ERR(phylink); 1101 1102 priv->phylink = phylink; 1103 return 0; 1104 } 1105 1106 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1107 { 1108 u32 rx_cnt = priv->plat->rx_queues_to_use; 1109 void *head_rx; 1110 u32 queue; 1111 1112 /* Display RX rings */ 1113 for (queue = 0; queue < rx_cnt; queue++) { 1114 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1115 1116 pr_info("\tRX Queue %u rings\n", queue); 1117 1118 if (priv->extend_desc) 1119 head_rx = (void *)rx_q->dma_erx; 1120 else 1121 head_rx = (void *)rx_q->dma_rx; 1122 1123 /* Display RX ring */ 1124 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true); 1125 } 1126 } 1127 1128 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1129 { 1130 u32 tx_cnt = priv->plat->tx_queues_to_use; 1131 void *head_tx; 1132 u32 queue; 1133 1134 /* Display TX rings */ 1135 for (queue = 0; queue < tx_cnt; queue++) { 1136 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1137 1138 pr_info("\tTX Queue %d rings\n", queue); 1139 1140 if (priv->extend_desc) 1141 head_tx = (void *)tx_q->dma_etx; 1142 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1143 head_tx = (void *)tx_q->dma_entx; 1144 else 1145 head_tx = (void *)tx_q->dma_tx; 1146 1147 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false); 1148 } 1149 } 1150 1151 static void stmmac_display_rings(struct stmmac_priv *priv) 1152 { 1153 /* Display RX ring */ 1154 stmmac_display_rx_rings(priv); 1155 1156 /* Display TX ring */ 1157 stmmac_display_tx_rings(priv); 1158 } 1159 1160 static int stmmac_set_bfsize(int mtu, int bufsize) 1161 { 1162 int ret = bufsize; 1163 1164 if (mtu >= BUF_SIZE_8KiB) 1165 ret = BUF_SIZE_16KiB; 1166 else if (mtu >= BUF_SIZE_4KiB) 1167 ret = BUF_SIZE_8KiB; 1168 else if (mtu >= BUF_SIZE_2KiB) 1169 ret = BUF_SIZE_4KiB; 1170 else if (mtu > DEFAULT_BUFSIZE) 1171 ret = BUF_SIZE_2KiB; 1172 else 1173 ret = DEFAULT_BUFSIZE; 1174 1175 return ret; 1176 } 1177 1178 /** 1179 * stmmac_clear_rx_descriptors - clear RX descriptors 1180 * @priv: driver private structure 1181 * @queue: RX queue index 1182 * Description: this function is called to clear the RX descriptors 1183 * in case of both basic and extended descriptors are used. 1184 */ 1185 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1186 { 1187 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1188 int i; 1189 1190 /* Clear the RX descriptors */ 1191 for (i = 0; i < priv->dma_rx_size; i++) 1192 if (priv->extend_desc) 1193 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1194 priv->use_riwt, priv->mode, 1195 (i == priv->dma_rx_size - 1), 1196 priv->dma_buf_sz); 1197 else 1198 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1199 priv->use_riwt, priv->mode, 1200 (i == priv->dma_rx_size - 1), 1201 priv->dma_buf_sz); 1202 } 1203 1204 /** 1205 * stmmac_clear_tx_descriptors - clear tx descriptors 1206 * @priv: driver private structure 1207 * @queue: TX queue index. 1208 * Description: this function is called to clear the TX descriptors 1209 * in case of both basic and extended descriptors are used. 1210 */ 1211 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1212 { 1213 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1214 int i; 1215 1216 /* Clear the TX descriptors */ 1217 for (i = 0; i < priv->dma_tx_size; i++) { 1218 int last = (i == (priv->dma_tx_size - 1)); 1219 struct dma_desc *p; 1220 1221 if (priv->extend_desc) 1222 p = &tx_q->dma_etx[i].basic; 1223 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1224 p = &tx_q->dma_entx[i].basic; 1225 else 1226 p = &tx_q->dma_tx[i]; 1227 1228 stmmac_init_tx_desc(priv, p, priv->mode, last); 1229 } 1230 } 1231 1232 /** 1233 * stmmac_clear_descriptors - clear descriptors 1234 * @priv: driver private structure 1235 * Description: this function is called to clear the TX and RX descriptors 1236 * in case of both basic and extended descriptors are used. 1237 */ 1238 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1239 { 1240 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1241 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1242 u32 queue; 1243 1244 /* Clear the RX descriptors */ 1245 for (queue = 0; queue < rx_queue_cnt; queue++) 1246 stmmac_clear_rx_descriptors(priv, queue); 1247 1248 /* Clear the TX descriptors */ 1249 for (queue = 0; queue < tx_queue_cnt; queue++) 1250 stmmac_clear_tx_descriptors(priv, queue); 1251 } 1252 1253 /** 1254 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1255 * @priv: driver private structure 1256 * @p: descriptor pointer 1257 * @i: descriptor index 1258 * @flags: gfp flag 1259 * @queue: RX queue index 1260 * Description: this function is called to allocate a receive buffer, perform 1261 * the DMA mapping and init the descriptor. 1262 */ 1263 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1264 int i, gfp_t flags, u32 queue) 1265 { 1266 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1267 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1268 1269 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1270 if (!buf->page) 1271 return -ENOMEM; 1272 1273 if (priv->sph) { 1274 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1275 if (!buf->sec_page) 1276 return -ENOMEM; 1277 1278 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1279 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); 1280 } else { 1281 buf->sec_page = NULL; 1282 } 1283 1284 buf->addr = page_pool_get_dma_addr(buf->page); 1285 stmmac_set_desc_addr(priv, p, buf->addr); 1286 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1287 stmmac_init_desc3(priv, p); 1288 1289 return 0; 1290 } 1291 1292 /** 1293 * stmmac_free_rx_buffer - free RX dma buffers 1294 * @priv: private structure 1295 * @queue: RX queue index 1296 * @i: buffer index. 1297 */ 1298 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1299 { 1300 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1301 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1302 1303 if (buf->page) 1304 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1305 buf->page = NULL; 1306 1307 if (buf->sec_page) 1308 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1309 buf->sec_page = NULL; 1310 } 1311 1312 /** 1313 * stmmac_free_tx_buffer - free RX dma buffers 1314 * @priv: private structure 1315 * @queue: RX queue index 1316 * @i: buffer index. 1317 */ 1318 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1319 { 1320 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1321 1322 if (tx_q->tx_skbuff_dma[i].buf) { 1323 if (tx_q->tx_skbuff_dma[i].map_as_page) 1324 dma_unmap_page(priv->device, 1325 tx_q->tx_skbuff_dma[i].buf, 1326 tx_q->tx_skbuff_dma[i].len, 1327 DMA_TO_DEVICE); 1328 else 1329 dma_unmap_single(priv->device, 1330 tx_q->tx_skbuff_dma[i].buf, 1331 tx_q->tx_skbuff_dma[i].len, 1332 DMA_TO_DEVICE); 1333 } 1334 1335 if (tx_q->tx_skbuff[i]) { 1336 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1337 tx_q->tx_skbuff[i] = NULL; 1338 tx_q->tx_skbuff_dma[i].buf = 0; 1339 tx_q->tx_skbuff_dma[i].map_as_page = false; 1340 } 1341 } 1342 1343 /** 1344 * init_dma_rx_desc_rings - init the RX descriptor rings 1345 * @dev: net device structure 1346 * @flags: gfp flag. 1347 * Description: this function initializes the DMA RX descriptors 1348 * and allocates the socket buffers. It supports the chained and ring 1349 * modes. 1350 */ 1351 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1352 { 1353 struct stmmac_priv *priv = netdev_priv(dev); 1354 u32 rx_count = priv->plat->rx_queues_to_use; 1355 int ret = -ENOMEM; 1356 int queue; 1357 int i; 1358 1359 /* RX INITIALIZATION */ 1360 netif_dbg(priv, probe, priv->dev, 1361 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1362 1363 for (queue = 0; queue < rx_count; queue++) { 1364 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1365 1366 netif_dbg(priv, probe, priv->dev, 1367 "(%s) dma_rx_phy=0x%08x\n", __func__, 1368 (u32)rx_q->dma_rx_phy); 1369 1370 stmmac_clear_rx_descriptors(priv, queue); 1371 1372 for (i = 0; i < priv->dma_rx_size; i++) { 1373 struct dma_desc *p; 1374 1375 if (priv->extend_desc) 1376 p = &((rx_q->dma_erx + i)->basic); 1377 else 1378 p = rx_q->dma_rx + i; 1379 1380 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1381 queue); 1382 if (ret) 1383 goto err_init_rx_buffers; 1384 } 1385 1386 rx_q->cur_rx = 0; 1387 rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size); 1388 1389 /* Setup the chained descriptor addresses */ 1390 if (priv->mode == STMMAC_CHAIN_MODE) { 1391 if (priv->extend_desc) 1392 stmmac_mode_init(priv, rx_q->dma_erx, 1393 rx_q->dma_rx_phy, 1394 priv->dma_rx_size, 1); 1395 else 1396 stmmac_mode_init(priv, rx_q->dma_rx, 1397 rx_q->dma_rx_phy, 1398 priv->dma_rx_size, 0); 1399 } 1400 } 1401 1402 return 0; 1403 1404 err_init_rx_buffers: 1405 while (queue >= 0) { 1406 while (--i >= 0) 1407 stmmac_free_rx_buffer(priv, queue, i); 1408 1409 if (queue == 0) 1410 break; 1411 1412 i = priv->dma_rx_size; 1413 queue--; 1414 } 1415 1416 return ret; 1417 } 1418 1419 /** 1420 * init_dma_tx_desc_rings - init the TX descriptor rings 1421 * @dev: net device structure. 1422 * Description: this function initializes the DMA TX descriptors 1423 * and allocates the socket buffers. It supports the chained and ring 1424 * modes. 1425 */ 1426 static int init_dma_tx_desc_rings(struct net_device *dev) 1427 { 1428 struct stmmac_priv *priv = netdev_priv(dev); 1429 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1430 u32 queue; 1431 int i; 1432 1433 for (queue = 0; queue < tx_queue_cnt; queue++) { 1434 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1435 1436 netif_dbg(priv, probe, priv->dev, 1437 "(%s) dma_tx_phy=0x%08x\n", __func__, 1438 (u32)tx_q->dma_tx_phy); 1439 1440 /* Setup the chained descriptor addresses */ 1441 if (priv->mode == STMMAC_CHAIN_MODE) { 1442 if (priv->extend_desc) 1443 stmmac_mode_init(priv, tx_q->dma_etx, 1444 tx_q->dma_tx_phy, 1445 priv->dma_tx_size, 1); 1446 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1447 stmmac_mode_init(priv, tx_q->dma_tx, 1448 tx_q->dma_tx_phy, 1449 priv->dma_tx_size, 0); 1450 } 1451 1452 for (i = 0; i < priv->dma_tx_size; i++) { 1453 struct dma_desc *p; 1454 if (priv->extend_desc) 1455 p = &((tx_q->dma_etx + i)->basic); 1456 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1457 p = &((tx_q->dma_entx + i)->basic); 1458 else 1459 p = tx_q->dma_tx + i; 1460 1461 stmmac_clear_desc(priv, p); 1462 1463 tx_q->tx_skbuff_dma[i].buf = 0; 1464 tx_q->tx_skbuff_dma[i].map_as_page = false; 1465 tx_q->tx_skbuff_dma[i].len = 0; 1466 tx_q->tx_skbuff_dma[i].last_segment = false; 1467 tx_q->tx_skbuff[i] = NULL; 1468 } 1469 1470 tx_q->dirty_tx = 0; 1471 tx_q->cur_tx = 0; 1472 tx_q->mss = 0; 1473 1474 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1475 } 1476 1477 return 0; 1478 } 1479 1480 /** 1481 * init_dma_desc_rings - init the RX/TX descriptor rings 1482 * @dev: net device structure 1483 * @flags: gfp flag. 1484 * Description: this function initializes the DMA RX/TX descriptors 1485 * and allocates the socket buffers. It supports the chained and ring 1486 * modes. 1487 */ 1488 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1489 { 1490 struct stmmac_priv *priv = netdev_priv(dev); 1491 int ret; 1492 1493 ret = init_dma_rx_desc_rings(dev, flags); 1494 if (ret) 1495 return ret; 1496 1497 ret = init_dma_tx_desc_rings(dev); 1498 1499 stmmac_clear_descriptors(priv); 1500 1501 if (netif_msg_hw(priv)) 1502 stmmac_display_rings(priv); 1503 1504 return ret; 1505 } 1506 1507 /** 1508 * dma_free_rx_skbufs - free RX dma buffers 1509 * @priv: private structure 1510 * @queue: RX queue index 1511 */ 1512 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1513 { 1514 int i; 1515 1516 for (i = 0; i < priv->dma_rx_size; i++) 1517 stmmac_free_rx_buffer(priv, queue, i); 1518 } 1519 1520 /** 1521 * dma_free_tx_skbufs - free TX dma buffers 1522 * @priv: private structure 1523 * @queue: TX queue index 1524 */ 1525 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1526 { 1527 int i; 1528 1529 for (i = 0; i < priv->dma_tx_size; i++) 1530 stmmac_free_tx_buffer(priv, queue, i); 1531 } 1532 1533 /** 1534 * free_dma_rx_desc_resources - free RX dma desc resources 1535 * @priv: private structure 1536 */ 1537 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1538 { 1539 u32 rx_count = priv->plat->rx_queues_to_use; 1540 u32 queue; 1541 1542 /* Free RX queue resources */ 1543 for (queue = 0; queue < rx_count; queue++) { 1544 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1545 1546 /* Release the DMA RX socket buffers */ 1547 dma_free_rx_skbufs(priv, queue); 1548 1549 /* Free DMA regions of consistent memory previously allocated */ 1550 if (!priv->extend_desc) 1551 dma_free_coherent(priv->device, priv->dma_rx_size * 1552 sizeof(struct dma_desc), 1553 rx_q->dma_rx, rx_q->dma_rx_phy); 1554 else 1555 dma_free_coherent(priv->device, priv->dma_rx_size * 1556 sizeof(struct dma_extended_desc), 1557 rx_q->dma_erx, rx_q->dma_rx_phy); 1558 1559 kfree(rx_q->buf_pool); 1560 if (rx_q->page_pool) 1561 page_pool_destroy(rx_q->page_pool); 1562 } 1563 } 1564 1565 /** 1566 * free_dma_tx_desc_resources - free TX dma desc resources 1567 * @priv: private structure 1568 */ 1569 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1570 { 1571 u32 tx_count = priv->plat->tx_queues_to_use; 1572 u32 queue; 1573 1574 /* Free TX queue resources */ 1575 for (queue = 0; queue < tx_count; queue++) { 1576 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1577 size_t size; 1578 void *addr; 1579 1580 /* Release the DMA TX socket buffers */ 1581 dma_free_tx_skbufs(priv, queue); 1582 1583 if (priv->extend_desc) { 1584 size = sizeof(struct dma_extended_desc); 1585 addr = tx_q->dma_etx; 1586 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1587 size = sizeof(struct dma_edesc); 1588 addr = tx_q->dma_entx; 1589 } else { 1590 size = sizeof(struct dma_desc); 1591 addr = tx_q->dma_tx; 1592 } 1593 1594 size *= priv->dma_tx_size; 1595 1596 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1597 1598 kfree(tx_q->tx_skbuff_dma); 1599 kfree(tx_q->tx_skbuff); 1600 } 1601 } 1602 1603 /** 1604 * alloc_dma_rx_desc_resources - alloc RX resources. 1605 * @priv: private structure 1606 * Description: according to which descriptor can be used (extend or basic) 1607 * this function allocates the resources for TX and RX paths. In case of 1608 * reception, for example, it pre-allocated the RX socket buffer in order to 1609 * allow zero-copy mechanism. 1610 */ 1611 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 1612 { 1613 u32 rx_count = priv->plat->rx_queues_to_use; 1614 int ret = -ENOMEM; 1615 u32 queue; 1616 1617 /* RX queues buffers and DMA */ 1618 for (queue = 0; queue < rx_count; queue++) { 1619 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1620 struct page_pool_params pp_params = { 0 }; 1621 unsigned int num_pages; 1622 1623 rx_q->queue_index = queue; 1624 rx_q->priv_data = priv; 1625 1626 pp_params.flags = PP_FLAG_DMA_MAP; 1627 pp_params.pool_size = priv->dma_rx_size; 1628 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1629 pp_params.order = ilog2(num_pages); 1630 pp_params.nid = dev_to_node(priv->device); 1631 pp_params.dev = priv->device; 1632 pp_params.dma_dir = DMA_FROM_DEVICE; 1633 1634 rx_q->page_pool = page_pool_create(&pp_params); 1635 if (IS_ERR(rx_q->page_pool)) { 1636 ret = PTR_ERR(rx_q->page_pool); 1637 rx_q->page_pool = NULL; 1638 goto err_dma; 1639 } 1640 1641 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1642 sizeof(*rx_q->buf_pool), 1643 GFP_KERNEL); 1644 if (!rx_q->buf_pool) 1645 goto err_dma; 1646 1647 if (priv->extend_desc) { 1648 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1649 priv->dma_rx_size * 1650 sizeof(struct dma_extended_desc), 1651 &rx_q->dma_rx_phy, 1652 GFP_KERNEL); 1653 if (!rx_q->dma_erx) 1654 goto err_dma; 1655 1656 } else { 1657 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1658 priv->dma_rx_size * 1659 sizeof(struct dma_desc), 1660 &rx_q->dma_rx_phy, 1661 GFP_KERNEL); 1662 if (!rx_q->dma_rx) 1663 goto err_dma; 1664 } 1665 } 1666 1667 return 0; 1668 1669 err_dma: 1670 free_dma_rx_desc_resources(priv); 1671 1672 return ret; 1673 } 1674 1675 /** 1676 * alloc_dma_tx_desc_resources - alloc TX resources. 1677 * @priv: private structure 1678 * Description: according to which descriptor can be used (extend or basic) 1679 * this function allocates the resources for TX and RX paths. In case of 1680 * reception, for example, it pre-allocated the RX socket buffer in order to 1681 * allow zero-copy mechanism. 1682 */ 1683 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 1684 { 1685 u32 tx_count = priv->plat->tx_queues_to_use; 1686 int ret = -ENOMEM; 1687 u32 queue; 1688 1689 /* TX queues buffers and DMA */ 1690 for (queue = 0; queue < tx_count; queue++) { 1691 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1692 size_t size; 1693 void *addr; 1694 1695 tx_q->queue_index = queue; 1696 tx_q->priv_data = priv; 1697 1698 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 1699 sizeof(*tx_q->tx_skbuff_dma), 1700 GFP_KERNEL); 1701 if (!tx_q->tx_skbuff_dma) 1702 goto err_dma; 1703 1704 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 1705 sizeof(struct sk_buff *), 1706 GFP_KERNEL); 1707 if (!tx_q->tx_skbuff) 1708 goto err_dma; 1709 1710 if (priv->extend_desc) 1711 size = sizeof(struct dma_extended_desc); 1712 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1713 size = sizeof(struct dma_edesc); 1714 else 1715 size = sizeof(struct dma_desc); 1716 1717 size *= priv->dma_tx_size; 1718 1719 addr = dma_alloc_coherent(priv->device, size, 1720 &tx_q->dma_tx_phy, GFP_KERNEL); 1721 if (!addr) 1722 goto err_dma; 1723 1724 if (priv->extend_desc) 1725 tx_q->dma_etx = addr; 1726 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1727 tx_q->dma_entx = addr; 1728 else 1729 tx_q->dma_tx = addr; 1730 } 1731 1732 return 0; 1733 1734 err_dma: 1735 free_dma_tx_desc_resources(priv); 1736 return ret; 1737 } 1738 1739 /** 1740 * alloc_dma_desc_resources - alloc TX/RX resources. 1741 * @priv: private structure 1742 * Description: according to which descriptor can be used (extend or basic) 1743 * this function allocates the resources for TX and RX paths. In case of 1744 * reception, for example, it pre-allocated the RX socket buffer in order to 1745 * allow zero-copy mechanism. 1746 */ 1747 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1748 { 1749 /* RX Allocation */ 1750 int ret = alloc_dma_rx_desc_resources(priv); 1751 1752 if (ret) 1753 return ret; 1754 1755 ret = alloc_dma_tx_desc_resources(priv); 1756 1757 return ret; 1758 } 1759 1760 /** 1761 * free_dma_desc_resources - free dma desc resources 1762 * @priv: private structure 1763 */ 1764 static void free_dma_desc_resources(struct stmmac_priv *priv) 1765 { 1766 /* Release the DMA RX socket buffers */ 1767 free_dma_rx_desc_resources(priv); 1768 1769 /* Release the DMA TX socket buffers */ 1770 free_dma_tx_desc_resources(priv); 1771 } 1772 1773 /** 1774 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 1775 * @priv: driver private structure 1776 * Description: It is used for enabling the rx queues in the MAC 1777 */ 1778 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 1779 { 1780 u32 rx_queues_count = priv->plat->rx_queues_to_use; 1781 int queue; 1782 u8 mode; 1783 1784 for (queue = 0; queue < rx_queues_count; queue++) { 1785 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 1786 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 1787 } 1788 } 1789 1790 /** 1791 * stmmac_start_rx_dma - start RX DMA channel 1792 * @priv: driver private structure 1793 * @chan: RX channel index 1794 * Description: 1795 * This starts a RX DMA channel 1796 */ 1797 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 1798 { 1799 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 1800 stmmac_start_rx(priv, priv->ioaddr, chan); 1801 } 1802 1803 /** 1804 * stmmac_start_tx_dma - start TX DMA channel 1805 * @priv: driver private structure 1806 * @chan: TX channel index 1807 * Description: 1808 * This starts a TX DMA channel 1809 */ 1810 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 1811 { 1812 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 1813 stmmac_start_tx(priv, priv->ioaddr, chan); 1814 } 1815 1816 /** 1817 * stmmac_stop_rx_dma - stop RX DMA channel 1818 * @priv: driver private structure 1819 * @chan: RX channel index 1820 * Description: 1821 * This stops a RX DMA channel 1822 */ 1823 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 1824 { 1825 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 1826 stmmac_stop_rx(priv, priv->ioaddr, chan); 1827 } 1828 1829 /** 1830 * stmmac_stop_tx_dma - stop TX DMA channel 1831 * @priv: driver private structure 1832 * @chan: TX channel index 1833 * Description: 1834 * This stops a TX DMA channel 1835 */ 1836 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 1837 { 1838 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 1839 stmmac_stop_tx(priv, priv->ioaddr, chan); 1840 } 1841 1842 /** 1843 * stmmac_start_all_dma - start all RX and TX DMA channels 1844 * @priv: driver private structure 1845 * Description: 1846 * This starts all the RX and TX DMA channels 1847 */ 1848 static void stmmac_start_all_dma(struct stmmac_priv *priv) 1849 { 1850 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1851 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1852 u32 chan = 0; 1853 1854 for (chan = 0; chan < rx_channels_count; chan++) 1855 stmmac_start_rx_dma(priv, chan); 1856 1857 for (chan = 0; chan < tx_channels_count; chan++) 1858 stmmac_start_tx_dma(priv, chan); 1859 } 1860 1861 /** 1862 * stmmac_stop_all_dma - stop all RX and TX DMA channels 1863 * @priv: driver private structure 1864 * Description: 1865 * This stops the RX and TX DMA channels 1866 */ 1867 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 1868 { 1869 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1870 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1871 u32 chan = 0; 1872 1873 for (chan = 0; chan < rx_channels_count; chan++) 1874 stmmac_stop_rx_dma(priv, chan); 1875 1876 for (chan = 0; chan < tx_channels_count; chan++) 1877 stmmac_stop_tx_dma(priv, chan); 1878 } 1879 1880 /** 1881 * stmmac_dma_operation_mode - HW DMA operation mode 1882 * @priv: driver private structure 1883 * Description: it is used for configuring the DMA operation mode register in 1884 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1885 */ 1886 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1887 { 1888 u32 rx_channels_count = priv->plat->rx_queues_to_use; 1889 u32 tx_channels_count = priv->plat->tx_queues_to_use; 1890 int rxfifosz = priv->plat->rx_fifo_size; 1891 int txfifosz = priv->plat->tx_fifo_size; 1892 u32 txmode = 0; 1893 u32 rxmode = 0; 1894 u32 chan = 0; 1895 u8 qmode = 0; 1896 1897 if (rxfifosz == 0) 1898 rxfifosz = priv->dma_cap.rx_fifo_size; 1899 if (txfifosz == 0) 1900 txfifosz = priv->dma_cap.tx_fifo_size; 1901 1902 /* Adjust for real per queue fifo size */ 1903 rxfifosz /= rx_channels_count; 1904 txfifosz /= tx_channels_count; 1905 1906 if (priv->plat->force_thresh_dma_mode) { 1907 txmode = tc; 1908 rxmode = tc; 1909 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1910 /* 1911 * In case of GMAC, SF mode can be enabled 1912 * to perform the TX COE in HW. This depends on: 1913 * 1) TX COE if actually supported 1914 * 2) There is no bugged Jumbo frame support 1915 * that needs to not insert csum in the TDES. 1916 */ 1917 txmode = SF_DMA_MODE; 1918 rxmode = SF_DMA_MODE; 1919 priv->xstats.threshold = SF_DMA_MODE; 1920 } else { 1921 txmode = tc; 1922 rxmode = SF_DMA_MODE; 1923 } 1924 1925 /* configure all channels */ 1926 for (chan = 0; chan < rx_channels_count; chan++) { 1927 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 1928 1929 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 1930 rxfifosz, qmode); 1931 stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz, 1932 chan); 1933 } 1934 1935 for (chan = 0; chan < tx_channels_count; chan++) { 1936 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 1937 1938 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 1939 txfifosz, qmode); 1940 } 1941 } 1942 1943 /** 1944 * stmmac_tx_clean - to manage the transmission completion 1945 * @priv: driver private structure 1946 * @budget: napi budget limiting this functions packet handling 1947 * @queue: TX queue index 1948 * Description: it reclaims the transmit resources after transmission completes. 1949 */ 1950 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 1951 { 1952 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1953 unsigned int bytes_compl = 0, pkts_compl = 0; 1954 unsigned int entry, count = 0; 1955 1956 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 1957 1958 priv->xstats.tx_clean++; 1959 1960 entry = tx_q->dirty_tx; 1961 while ((entry != tx_q->cur_tx) && (count < budget)) { 1962 struct sk_buff *skb = tx_q->tx_skbuff[entry]; 1963 struct dma_desc *p; 1964 int status; 1965 1966 if (priv->extend_desc) 1967 p = (struct dma_desc *)(tx_q->dma_etx + entry); 1968 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1969 p = &tx_q->dma_entx[entry].basic; 1970 else 1971 p = tx_q->dma_tx + entry; 1972 1973 status = stmmac_tx_status(priv, &priv->dev->stats, 1974 &priv->xstats, p, priv->ioaddr); 1975 /* Check if the descriptor is owned by the DMA */ 1976 if (unlikely(status & tx_dma_own)) 1977 break; 1978 1979 count++; 1980 1981 /* Make sure descriptor fields are read after reading 1982 * the own bit. 1983 */ 1984 dma_rmb(); 1985 1986 /* Just consider the last segment and ...*/ 1987 if (likely(!(status & tx_not_ls))) { 1988 /* ... verify the status error condition */ 1989 if (unlikely(status & tx_err)) { 1990 priv->dev->stats.tx_errors++; 1991 } else { 1992 priv->dev->stats.tx_packets++; 1993 priv->xstats.tx_pkt_n++; 1994 } 1995 stmmac_get_tx_hwtstamp(priv, p, skb); 1996 } 1997 1998 if (likely(tx_q->tx_skbuff_dma[entry].buf)) { 1999 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2000 dma_unmap_page(priv->device, 2001 tx_q->tx_skbuff_dma[entry].buf, 2002 tx_q->tx_skbuff_dma[entry].len, 2003 DMA_TO_DEVICE); 2004 else 2005 dma_unmap_single(priv->device, 2006 tx_q->tx_skbuff_dma[entry].buf, 2007 tx_q->tx_skbuff_dma[entry].len, 2008 DMA_TO_DEVICE); 2009 tx_q->tx_skbuff_dma[entry].buf = 0; 2010 tx_q->tx_skbuff_dma[entry].len = 0; 2011 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2012 } 2013 2014 stmmac_clean_desc3(priv, tx_q, p); 2015 2016 tx_q->tx_skbuff_dma[entry].last_segment = false; 2017 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2018 2019 if (likely(skb != NULL)) { 2020 pkts_compl++; 2021 bytes_compl += skb->len; 2022 dev_consume_skb_any(skb); 2023 tx_q->tx_skbuff[entry] = NULL; 2024 } 2025 2026 stmmac_release_tx_desc(priv, p, priv->mode); 2027 2028 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2029 } 2030 tx_q->dirty_tx = entry; 2031 2032 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2033 pkts_compl, bytes_compl); 2034 2035 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2036 queue))) && 2037 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2038 2039 netif_dbg(priv, tx_done, priv->dev, 2040 "%s: restart transmit\n", __func__); 2041 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2042 } 2043 2044 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 2045 stmmac_enable_eee_mode(priv); 2046 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 2047 } 2048 2049 /* We still have pending packets, let's call for a new scheduling */ 2050 if (tx_q->dirty_tx != tx_q->cur_tx) 2051 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2052 2053 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2054 2055 return count; 2056 } 2057 2058 /** 2059 * stmmac_tx_err - to manage the tx error 2060 * @priv: driver private structure 2061 * @chan: channel index 2062 * Description: it cleans the descriptors and restarts the transmission 2063 * in case of transmission errors. 2064 */ 2065 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2066 { 2067 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2068 2069 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2070 2071 stmmac_stop_tx_dma(priv, chan); 2072 dma_free_tx_skbufs(priv, chan); 2073 stmmac_clear_tx_descriptors(priv, chan); 2074 tx_q->dirty_tx = 0; 2075 tx_q->cur_tx = 0; 2076 tx_q->mss = 0; 2077 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2078 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2079 tx_q->dma_tx_phy, chan); 2080 stmmac_start_tx_dma(priv, chan); 2081 2082 priv->dev->stats.tx_errors++; 2083 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2084 } 2085 2086 /** 2087 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2088 * @priv: driver private structure 2089 * @txmode: TX operating mode 2090 * @rxmode: RX operating mode 2091 * @chan: channel index 2092 * Description: it is used for configuring of the DMA operation mode in 2093 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2094 * mode. 2095 */ 2096 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2097 u32 rxmode, u32 chan) 2098 { 2099 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2100 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2101 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2102 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2103 int rxfifosz = priv->plat->rx_fifo_size; 2104 int txfifosz = priv->plat->tx_fifo_size; 2105 2106 if (rxfifosz == 0) 2107 rxfifosz = priv->dma_cap.rx_fifo_size; 2108 if (txfifosz == 0) 2109 txfifosz = priv->dma_cap.tx_fifo_size; 2110 2111 /* Adjust for real per queue fifo size */ 2112 rxfifosz /= rx_channels_count; 2113 txfifosz /= tx_channels_count; 2114 2115 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2116 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2117 } 2118 2119 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2120 { 2121 int ret; 2122 2123 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2124 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2125 if (ret && (ret != -EINVAL)) { 2126 stmmac_global_err(priv); 2127 return true; 2128 } 2129 2130 return false; 2131 } 2132 2133 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan) 2134 { 2135 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2136 &priv->xstats, chan); 2137 struct stmmac_channel *ch = &priv->channel[chan]; 2138 unsigned long flags; 2139 2140 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2141 if (napi_schedule_prep(&ch->rx_napi)) { 2142 spin_lock_irqsave(&ch->lock, flags); 2143 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2144 spin_unlock_irqrestore(&ch->lock, flags); 2145 __napi_schedule_irqoff(&ch->rx_napi); 2146 } 2147 } 2148 2149 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2150 if (napi_schedule_prep(&ch->tx_napi)) { 2151 spin_lock_irqsave(&ch->lock, flags); 2152 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2153 spin_unlock_irqrestore(&ch->lock, flags); 2154 __napi_schedule_irqoff(&ch->tx_napi); 2155 } 2156 } 2157 2158 return status; 2159 } 2160 2161 /** 2162 * stmmac_dma_interrupt - DMA ISR 2163 * @priv: driver private structure 2164 * Description: this is the DMA ISR. It is called by the main ISR. 2165 * It calls the dwmac dma routine and schedule poll method in case of some 2166 * work can be done. 2167 */ 2168 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2169 { 2170 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2171 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2172 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2173 tx_channel_count : rx_channel_count; 2174 u32 chan; 2175 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2176 2177 /* Make sure we never check beyond our status buffer. */ 2178 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2179 channels_to_check = ARRAY_SIZE(status); 2180 2181 for (chan = 0; chan < channels_to_check; chan++) 2182 status[chan] = stmmac_napi_check(priv, chan); 2183 2184 for (chan = 0; chan < tx_channel_count; chan++) { 2185 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2186 /* Try to bump up the dma threshold on this failure */ 2187 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2188 (tc <= 256)) { 2189 tc += 64; 2190 if (priv->plat->force_thresh_dma_mode) 2191 stmmac_set_dma_operation_mode(priv, 2192 tc, 2193 tc, 2194 chan); 2195 else 2196 stmmac_set_dma_operation_mode(priv, 2197 tc, 2198 SF_DMA_MODE, 2199 chan); 2200 priv->xstats.threshold = tc; 2201 } 2202 } else if (unlikely(status[chan] == tx_hard_error)) { 2203 stmmac_tx_err(priv, chan); 2204 } 2205 } 2206 } 2207 2208 /** 2209 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2210 * @priv: driver private structure 2211 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2212 */ 2213 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2214 { 2215 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2216 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2217 2218 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2219 2220 if (priv->dma_cap.rmon) { 2221 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2222 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2223 } else 2224 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2225 } 2226 2227 /** 2228 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2229 * @priv: driver private structure 2230 * Description: 2231 * new GMAC chip generations have a new register to indicate the 2232 * presence of the optional feature/functions. 2233 * This can be also used to override the value passed through the 2234 * platform and necessary for old MAC10/100 and GMAC chips. 2235 */ 2236 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2237 { 2238 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2239 } 2240 2241 /** 2242 * stmmac_check_ether_addr - check if the MAC addr is valid 2243 * @priv: driver private structure 2244 * Description: 2245 * it is to verify if the MAC address is valid, in case of failures it 2246 * generates a random MAC address 2247 */ 2248 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2249 { 2250 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2251 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2252 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2253 eth_hw_addr_random(priv->dev); 2254 dev_info(priv->device, "device MAC address %pM\n", 2255 priv->dev->dev_addr); 2256 } 2257 } 2258 2259 /** 2260 * stmmac_init_dma_engine - DMA init. 2261 * @priv: driver private structure 2262 * Description: 2263 * It inits the DMA invoking the specific MAC/GMAC callback. 2264 * Some DMA parameters can be passed from the platform; 2265 * in case of these are not passed a default is kept for the MAC or GMAC. 2266 */ 2267 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2268 { 2269 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2270 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2271 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2272 struct stmmac_rx_queue *rx_q; 2273 struct stmmac_tx_queue *tx_q; 2274 u32 chan = 0; 2275 int atds = 0; 2276 int ret = 0; 2277 2278 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2279 dev_err(priv->device, "Invalid DMA configuration\n"); 2280 return -EINVAL; 2281 } 2282 2283 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2284 atds = 1; 2285 2286 ret = stmmac_reset(priv, priv->ioaddr); 2287 if (ret) { 2288 dev_err(priv->device, "Failed to reset the dma\n"); 2289 return ret; 2290 } 2291 2292 /* DMA Configuration */ 2293 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2294 2295 if (priv->plat->axi) 2296 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2297 2298 /* DMA CSR Channel configuration */ 2299 for (chan = 0; chan < dma_csr_ch; chan++) 2300 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2301 2302 /* DMA RX Channel Configuration */ 2303 for (chan = 0; chan < rx_channels_count; chan++) { 2304 rx_q = &priv->rx_queue[chan]; 2305 2306 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2307 rx_q->dma_rx_phy, chan); 2308 2309 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2310 (priv->dma_rx_size * 2311 sizeof(struct dma_desc)); 2312 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2313 rx_q->rx_tail_addr, chan); 2314 } 2315 2316 /* DMA TX Channel Configuration */ 2317 for (chan = 0; chan < tx_channels_count; chan++) { 2318 tx_q = &priv->tx_queue[chan]; 2319 2320 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2321 tx_q->dma_tx_phy, chan); 2322 2323 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2324 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2325 tx_q->tx_tail_addr, chan); 2326 } 2327 2328 return ret; 2329 } 2330 2331 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2332 { 2333 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2334 2335 mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2336 } 2337 2338 /** 2339 * stmmac_tx_timer - mitigation sw timer for tx. 2340 * @t: data pointer 2341 * Description: 2342 * This is the timer handler to directly invoke the stmmac_tx_clean. 2343 */ 2344 static void stmmac_tx_timer(struct timer_list *t) 2345 { 2346 struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer); 2347 struct stmmac_priv *priv = tx_q->priv_data; 2348 struct stmmac_channel *ch; 2349 2350 ch = &priv->channel[tx_q->queue_index]; 2351 2352 if (likely(napi_schedule_prep(&ch->tx_napi))) { 2353 unsigned long flags; 2354 2355 spin_lock_irqsave(&ch->lock, flags); 2356 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2357 spin_unlock_irqrestore(&ch->lock, flags); 2358 __napi_schedule(&ch->tx_napi); 2359 } 2360 } 2361 2362 /** 2363 * stmmac_init_coalesce - init mitigation options. 2364 * @priv: driver private structure 2365 * Description: 2366 * This inits the coalesce parameters: i.e. timer rate, 2367 * timer handler and default threshold used for enabling the 2368 * interrupt on completion bit. 2369 */ 2370 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2371 { 2372 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2373 u32 chan; 2374 2375 priv->tx_coal_frames = STMMAC_TX_FRAMES; 2376 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 2377 priv->rx_coal_frames = STMMAC_RX_FRAMES; 2378 2379 for (chan = 0; chan < tx_channel_count; chan++) { 2380 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2381 2382 timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0); 2383 } 2384 } 2385 2386 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2387 { 2388 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2389 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2390 u32 chan; 2391 2392 /* set TX ring length */ 2393 for (chan = 0; chan < tx_channels_count; chan++) 2394 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2395 (priv->dma_tx_size - 1), chan); 2396 2397 /* set RX ring length */ 2398 for (chan = 0; chan < rx_channels_count; chan++) 2399 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2400 (priv->dma_rx_size - 1), chan); 2401 } 2402 2403 /** 2404 * stmmac_set_tx_queue_weight - Set TX queue weight 2405 * @priv: driver private structure 2406 * Description: It is used for setting TX queues weight 2407 */ 2408 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2409 { 2410 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2411 u32 weight; 2412 u32 queue; 2413 2414 for (queue = 0; queue < tx_queues_count; queue++) { 2415 weight = priv->plat->tx_queues_cfg[queue].weight; 2416 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2417 } 2418 } 2419 2420 /** 2421 * stmmac_configure_cbs - Configure CBS in TX queue 2422 * @priv: driver private structure 2423 * Description: It is used for configuring CBS in AVB TX queues 2424 */ 2425 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2426 { 2427 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2428 u32 mode_to_use; 2429 u32 queue; 2430 2431 /* queue 0 is reserved for legacy traffic */ 2432 for (queue = 1; queue < tx_queues_count; queue++) { 2433 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 2434 if (mode_to_use == MTL_QUEUE_DCB) 2435 continue; 2436 2437 stmmac_config_cbs(priv, priv->hw, 2438 priv->plat->tx_queues_cfg[queue].send_slope, 2439 priv->plat->tx_queues_cfg[queue].idle_slope, 2440 priv->plat->tx_queues_cfg[queue].high_credit, 2441 priv->plat->tx_queues_cfg[queue].low_credit, 2442 queue); 2443 } 2444 } 2445 2446 /** 2447 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 2448 * @priv: driver private structure 2449 * Description: It is used for mapping RX queues to RX dma channels 2450 */ 2451 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 2452 { 2453 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2454 u32 queue; 2455 u32 chan; 2456 2457 for (queue = 0; queue < rx_queues_count; queue++) { 2458 chan = priv->plat->rx_queues_cfg[queue].chan; 2459 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 2460 } 2461 } 2462 2463 /** 2464 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 2465 * @priv: driver private structure 2466 * Description: It is used for configuring the RX Queue Priority 2467 */ 2468 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 2469 { 2470 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2471 u32 queue; 2472 u32 prio; 2473 2474 for (queue = 0; queue < rx_queues_count; queue++) { 2475 if (!priv->plat->rx_queues_cfg[queue].use_prio) 2476 continue; 2477 2478 prio = priv->plat->rx_queues_cfg[queue].prio; 2479 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 2480 } 2481 } 2482 2483 /** 2484 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 2485 * @priv: driver private structure 2486 * Description: It is used for configuring the TX Queue Priority 2487 */ 2488 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 2489 { 2490 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2491 u32 queue; 2492 u32 prio; 2493 2494 for (queue = 0; queue < tx_queues_count; queue++) { 2495 if (!priv->plat->tx_queues_cfg[queue].use_prio) 2496 continue; 2497 2498 prio = priv->plat->tx_queues_cfg[queue].prio; 2499 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 2500 } 2501 } 2502 2503 /** 2504 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 2505 * @priv: driver private structure 2506 * Description: It is used for configuring the RX queue routing 2507 */ 2508 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 2509 { 2510 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2511 u32 queue; 2512 u8 packet; 2513 2514 for (queue = 0; queue < rx_queues_count; queue++) { 2515 /* no specific packet type routing specified for the queue */ 2516 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 2517 continue; 2518 2519 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 2520 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 2521 } 2522 } 2523 2524 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 2525 { 2526 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 2527 priv->rss.enable = false; 2528 return; 2529 } 2530 2531 if (priv->dev->features & NETIF_F_RXHASH) 2532 priv->rss.enable = true; 2533 else 2534 priv->rss.enable = false; 2535 2536 stmmac_rss_configure(priv, priv->hw, &priv->rss, 2537 priv->plat->rx_queues_to_use); 2538 } 2539 2540 /** 2541 * stmmac_mtl_configuration - Configure MTL 2542 * @priv: driver private structure 2543 * Description: It is used for configurring MTL 2544 */ 2545 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 2546 { 2547 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2548 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2549 2550 if (tx_queues_count > 1) 2551 stmmac_set_tx_queue_weight(priv); 2552 2553 /* Configure MTL RX algorithms */ 2554 if (rx_queues_count > 1) 2555 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 2556 priv->plat->rx_sched_algorithm); 2557 2558 /* Configure MTL TX algorithms */ 2559 if (tx_queues_count > 1) 2560 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 2561 priv->plat->tx_sched_algorithm); 2562 2563 /* Configure CBS in AVB TX queues */ 2564 if (tx_queues_count > 1) 2565 stmmac_configure_cbs(priv); 2566 2567 /* Map RX MTL to DMA channels */ 2568 stmmac_rx_queue_dma_chan_map(priv); 2569 2570 /* Enable MAC RX Queues */ 2571 stmmac_mac_enable_rx_queues(priv); 2572 2573 /* Set RX priorities */ 2574 if (rx_queues_count > 1) 2575 stmmac_mac_config_rx_queues_prio(priv); 2576 2577 /* Set TX priorities */ 2578 if (tx_queues_count > 1) 2579 stmmac_mac_config_tx_queues_prio(priv); 2580 2581 /* Set RX routing */ 2582 if (rx_queues_count > 1) 2583 stmmac_mac_config_rx_queues_routing(priv); 2584 2585 /* Receive Side Scaling */ 2586 if (rx_queues_count > 1) 2587 stmmac_mac_config_rss(priv); 2588 } 2589 2590 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 2591 { 2592 if (priv->dma_cap.asp) { 2593 netdev_info(priv->dev, "Enabling Safety Features\n"); 2594 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 2595 } else { 2596 netdev_info(priv->dev, "No Safety Features support found\n"); 2597 } 2598 } 2599 2600 /** 2601 * stmmac_hw_setup - setup mac in a usable state. 2602 * @dev : pointer to the device structure. 2603 * @init_ptp: initialize PTP if set 2604 * Description: 2605 * this is the main function to setup the HW in a usable state because the 2606 * dma engine is reset, the core registers are configured (e.g. AXI, 2607 * Checksum features, timers). The DMA is ready to start receiving and 2608 * transmitting. 2609 * Return value: 2610 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2611 * file on failure. 2612 */ 2613 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 2614 { 2615 struct stmmac_priv *priv = netdev_priv(dev); 2616 u32 rx_cnt = priv->plat->rx_queues_to_use; 2617 u32 tx_cnt = priv->plat->tx_queues_to_use; 2618 u32 chan; 2619 int ret; 2620 2621 /* DMA initialization and SW reset */ 2622 ret = stmmac_init_dma_engine(priv); 2623 if (ret < 0) { 2624 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 2625 __func__); 2626 return ret; 2627 } 2628 2629 /* Copy the MAC addr into the HW */ 2630 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 2631 2632 /* PS and related bits will be programmed according to the speed */ 2633 if (priv->hw->pcs) { 2634 int speed = priv->plat->mac_port_sel_speed; 2635 2636 if ((speed == SPEED_10) || (speed == SPEED_100) || 2637 (speed == SPEED_1000)) { 2638 priv->hw->ps = speed; 2639 } else { 2640 dev_warn(priv->device, "invalid port speed\n"); 2641 priv->hw->ps = 0; 2642 } 2643 } 2644 2645 /* Initialize the MAC Core */ 2646 stmmac_core_init(priv, priv->hw, dev); 2647 2648 /* Initialize MTL*/ 2649 stmmac_mtl_configuration(priv); 2650 2651 /* Initialize Safety Features */ 2652 stmmac_safety_feat_configuration(priv); 2653 2654 ret = stmmac_rx_ipc(priv, priv->hw); 2655 if (!ret) { 2656 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 2657 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 2658 priv->hw->rx_csum = 0; 2659 } 2660 2661 /* Enable the MAC Rx/Tx */ 2662 stmmac_mac_set(priv, priv->ioaddr, true); 2663 2664 /* Set the HW DMA mode and the COE */ 2665 stmmac_dma_operation_mode(priv); 2666 2667 stmmac_mmc_setup(priv); 2668 2669 if (init_ptp) { 2670 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 2671 if (ret < 0) 2672 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 2673 2674 ret = stmmac_init_ptp(priv); 2675 if (ret == -EOPNOTSUPP) 2676 netdev_warn(priv->dev, "PTP not supported by HW\n"); 2677 else if (ret) 2678 netdev_warn(priv->dev, "PTP init failed\n"); 2679 } 2680 2681 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 2682 2683 if (priv->use_riwt) { 2684 if (!priv->rx_riwt) 2685 priv->rx_riwt = DEF_DMA_RIWT; 2686 2687 ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt); 2688 } 2689 2690 if (priv->hw->pcs) 2691 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 2692 2693 /* set TX and RX rings length */ 2694 stmmac_set_rings_length(priv); 2695 2696 /* Enable TSO */ 2697 if (priv->tso) { 2698 for (chan = 0; chan < tx_cnt; chan++) 2699 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 2700 } 2701 2702 /* Enable Split Header */ 2703 if (priv->sph && priv->hw->rx_csum) { 2704 for (chan = 0; chan < rx_cnt; chan++) 2705 stmmac_enable_sph(priv, priv->ioaddr, 1, chan); 2706 } 2707 2708 /* VLAN Tag Insertion */ 2709 if (priv->dma_cap.vlins) 2710 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 2711 2712 /* TBS */ 2713 for (chan = 0; chan < tx_cnt; chan++) { 2714 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2715 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 2716 2717 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 2718 } 2719 2720 /* Configure real RX and TX queues */ 2721 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 2722 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 2723 2724 /* Start the ball rolling... */ 2725 stmmac_start_all_dma(priv); 2726 2727 return 0; 2728 } 2729 2730 static void stmmac_hw_teardown(struct net_device *dev) 2731 { 2732 struct stmmac_priv *priv = netdev_priv(dev); 2733 2734 clk_disable_unprepare(priv->plat->clk_ptp_ref); 2735 } 2736 2737 /** 2738 * stmmac_open - open entry point of the driver 2739 * @dev : pointer to the device structure. 2740 * Description: 2741 * This function is the open entry point of the driver. 2742 * Return value: 2743 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2744 * file on failure. 2745 */ 2746 static int stmmac_open(struct net_device *dev) 2747 { 2748 struct stmmac_priv *priv = netdev_priv(dev); 2749 int bfsize = 0; 2750 u32 chan; 2751 int ret; 2752 2753 if (priv->hw->pcs != STMMAC_PCS_TBI && 2754 priv->hw->pcs != STMMAC_PCS_RTBI && 2755 priv->hw->xpcs == NULL) { 2756 ret = stmmac_init_phy(dev); 2757 if (ret) { 2758 netdev_err(priv->dev, 2759 "%s: Cannot attach to PHY (error: %d)\n", 2760 __func__, ret); 2761 return ret; 2762 } 2763 } 2764 2765 /* Extra statistics */ 2766 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 2767 priv->xstats.threshold = tc; 2768 2769 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 2770 if (bfsize < 0) 2771 bfsize = 0; 2772 2773 if (bfsize < BUF_SIZE_16KiB) 2774 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 2775 2776 priv->dma_buf_sz = bfsize; 2777 buf_sz = bfsize; 2778 2779 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 2780 2781 if (!priv->dma_tx_size) 2782 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 2783 if (!priv->dma_rx_size) 2784 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 2785 2786 /* Earlier check for TBS */ 2787 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 2788 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2789 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 2790 2791 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 2792 if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan)) 2793 tx_q->tbs &= ~STMMAC_TBS_AVAIL; 2794 } 2795 2796 ret = alloc_dma_desc_resources(priv); 2797 if (ret < 0) { 2798 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 2799 __func__); 2800 goto dma_desc_error; 2801 } 2802 2803 ret = init_dma_desc_rings(dev, GFP_KERNEL); 2804 if (ret < 0) { 2805 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 2806 __func__); 2807 goto init_error; 2808 } 2809 2810 ret = stmmac_hw_setup(dev, true); 2811 if (ret < 0) { 2812 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 2813 goto init_error; 2814 } 2815 2816 stmmac_init_coalesce(priv); 2817 2818 phylink_start(priv->phylink); 2819 /* We may have called phylink_speed_down before */ 2820 phylink_speed_up(priv->phylink); 2821 2822 /* Request the IRQ lines */ 2823 ret = request_irq(dev->irq, stmmac_interrupt, 2824 IRQF_SHARED, dev->name, dev); 2825 if (unlikely(ret < 0)) { 2826 netdev_err(priv->dev, 2827 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 2828 __func__, dev->irq, ret); 2829 goto irq_error; 2830 } 2831 2832 /* Request the Wake IRQ in case of another line is used for WoL */ 2833 if (priv->wol_irq != dev->irq) { 2834 ret = request_irq(priv->wol_irq, stmmac_interrupt, 2835 IRQF_SHARED, dev->name, dev); 2836 if (unlikely(ret < 0)) { 2837 netdev_err(priv->dev, 2838 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 2839 __func__, priv->wol_irq, ret); 2840 goto wolirq_error; 2841 } 2842 } 2843 2844 /* Request the IRQ lines */ 2845 if (priv->lpi_irq > 0) { 2846 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 2847 dev->name, dev); 2848 if (unlikely(ret < 0)) { 2849 netdev_err(priv->dev, 2850 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 2851 __func__, priv->lpi_irq, ret); 2852 goto lpiirq_error; 2853 } 2854 } 2855 2856 stmmac_enable_all_queues(priv); 2857 netif_tx_start_all_queues(priv->dev); 2858 2859 return 0; 2860 2861 lpiirq_error: 2862 if (priv->wol_irq != dev->irq) 2863 free_irq(priv->wol_irq, dev); 2864 wolirq_error: 2865 free_irq(dev->irq, dev); 2866 irq_error: 2867 phylink_stop(priv->phylink); 2868 2869 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2870 del_timer_sync(&priv->tx_queue[chan].txtimer); 2871 2872 stmmac_hw_teardown(dev); 2873 init_error: 2874 free_dma_desc_resources(priv); 2875 dma_desc_error: 2876 phylink_disconnect_phy(priv->phylink); 2877 return ret; 2878 } 2879 2880 /** 2881 * stmmac_release - close entry point of the driver 2882 * @dev : device pointer. 2883 * Description: 2884 * This is the stop entry point of the driver. 2885 */ 2886 static int stmmac_release(struct net_device *dev) 2887 { 2888 struct stmmac_priv *priv = netdev_priv(dev); 2889 u32 chan; 2890 2891 if (priv->eee_enabled) 2892 del_timer_sync(&priv->eee_ctrl_timer); 2893 2894 if (device_may_wakeup(priv->device)) 2895 phylink_speed_down(priv->phylink, false); 2896 /* Stop and disconnect the PHY */ 2897 phylink_stop(priv->phylink); 2898 phylink_disconnect_phy(priv->phylink); 2899 2900 stmmac_disable_all_queues(priv); 2901 2902 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 2903 del_timer_sync(&priv->tx_queue[chan].txtimer); 2904 2905 /* Free the IRQ lines */ 2906 free_irq(dev->irq, dev); 2907 if (priv->wol_irq != dev->irq) 2908 free_irq(priv->wol_irq, dev); 2909 if (priv->lpi_irq > 0) 2910 free_irq(priv->lpi_irq, dev); 2911 2912 /* Stop TX/RX DMA and clear the descriptors */ 2913 stmmac_stop_all_dma(priv); 2914 2915 /* Release and free the Rx/Tx resources */ 2916 free_dma_desc_resources(priv); 2917 2918 /* Disable the MAC Rx/Tx */ 2919 stmmac_mac_set(priv, priv->ioaddr, false); 2920 2921 netif_carrier_off(dev); 2922 2923 stmmac_release_ptp(priv); 2924 2925 return 0; 2926 } 2927 2928 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 2929 struct stmmac_tx_queue *tx_q) 2930 { 2931 u16 tag = 0x0, inner_tag = 0x0; 2932 u32 inner_type = 0x0; 2933 struct dma_desc *p; 2934 2935 if (!priv->dma_cap.vlins) 2936 return false; 2937 if (!skb_vlan_tag_present(skb)) 2938 return false; 2939 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 2940 inner_tag = skb_vlan_tag_get(skb); 2941 inner_type = STMMAC_VLAN_INSERT; 2942 } 2943 2944 tag = skb_vlan_tag_get(skb); 2945 2946 if (tx_q->tbs & STMMAC_TBS_AVAIL) 2947 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 2948 else 2949 p = &tx_q->dma_tx[tx_q->cur_tx]; 2950 2951 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 2952 return false; 2953 2954 stmmac_set_tx_owner(priv, p); 2955 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2956 return true; 2957 } 2958 2959 /** 2960 * stmmac_tso_allocator - close entry point of the driver 2961 * @priv: driver private structure 2962 * @des: buffer start address 2963 * @total_len: total length to fill in descriptors 2964 * @last_segment: condition for the last descriptor 2965 * @queue: TX queue index 2966 * Description: 2967 * This function fills descriptor and request new descriptors according to 2968 * buffer length to fill 2969 */ 2970 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 2971 int total_len, bool last_segment, u32 queue) 2972 { 2973 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2974 struct dma_desc *desc; 2975 u32 buff_size; 2976 int tmp_len; 2977 2978 tmp_len = total_len; 2979 2980 while (tmp_len > 0) { 2981 dma_addr_t curr_addr; 2982 2983 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 2984 priv->dma_tx_size); 2985 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 2986 2987 if (tx_q->tbs & STMMAC_TBS_AVAIL) 2988 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 2989 else 2990 desc = &tx_q->dma_tx[tx_q->cur_tx]; 2991 2992 curr_addr = des + (total_len - tmp_len); 2993 if (priv->dma_cap.addr64 <= 32) 2994 desc->des0 = cpu_to_le32(curr_addr); 2995 else 2996 stmmac_set_desc_addr(priv, desc, curr_addr); 2997 2998 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 2999 TSO_MAX_BUFF_SIZE : tmp_len; 3000 3001 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3002 0, 1, 3003 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3004 0, 0); 3005 3006 tmp_len -= TSO_MAX_BUFF_SIZE; 3007 } 3008 } 3009 3010 /** 3011 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3012 * @skb : the socket buffer 3013 * @dev : device pointer 3014 * Description: this is the transmit function that is called on TSO frames 3015 * (support available on GMAC4 and newer chips). 3016 * Diagram below show the ring programming in case of TSO frames: 3017 * 3018 * First Descriptor 3019 * -------- 3020 * | DES0 |---> buffer1 = L2/L3/L4 header 3021 * | DES1 |---> TCP Payload (can continue on next descr...) 3022 * | DES2 |---> buffer 1 and 2 len 3023 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3024 * -------- 3025 * | 3026 * ... 3027 * | 3028 * -------- 3029 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3030 * | DES1 | --| 3031 * | DES2 | --> buffer 1 and 2 len 3032 * | DES3 | 3033 * -------- 3034 * 3035 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3036 */ 3037 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3038 { 3039 struct dma_desc *desc, *first, *mss_desc = NULL; 3040 struct stmmac_priv *priv = netdev_priv(dev); 3041 int desc_size, tmp_pay_len = 0, first_tx; 3042 int nfrags = skb_shinfo(skb)->nr_frags; 3043 u32 queue = skb_get_queue_mapping(skb); 3044 unsigned int first_entry, tx_packets; 3045 struct stmmac_tx_queue *tx_q; 3046 bool has_vlan, set_ic; 3047 u8 proto_hdr_len, hdr; 3048 u32 pay_len, mss; 3049 dma_addr_t des; 3050 int i; 3051 3052 tx_q = &priv->tx_queue[queue]; 3053 first_tx = tx_q->cur_tx; 3054 3055 /* Compute header lengths */ 3056 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3057 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3058 hdr = sizeof(struct udphdr); 3059 } else { 3060 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3061 hdr = tcp_hdrlen(skb); 3062 } 3063 3064 /* Desc availability based on threshold should be enough safe */ 3065 if (unlikely(stmmac_tx_avail(priv, queue) < 3066 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3067 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3068 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3069 queue)); 3070 /* This is a hard error, log it. */ 3071 netdev_err(priv->dev, 3072 "%s: Tx Ring full when queue awake\n", 3073 __func__); 3074 } 3075 return NETDEV_TX_BUSY; 3076 } 3077 3078 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3079 3080 mss = skb_shinfo(skb)->gso_size; 3081 3082 /* set new MSS value if needed */ 3083 if (mss != tx_q->mss) { 3084 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3085 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3086 else 3087 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3088 3089 stmmac_set_mss(priv, mss_desc, mss); 3090 tx_q->mss = mss; 3091 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3092 priv->dma_tx_size); 3093 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3094 } 3095 3096 if (netif_msg_tx_queued(priv)) { 3097 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 3098 __func__, hdr, proto_hdr_len, pay_len, mss); 3099 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 3100 skb->data_len); 3101 } 3102 3103 /* Check if VLAN can be inserted by HW */ 3104 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3105 3106 first_entry = tx_q->cur_tx; 3107 WARN_ON(tx_q->tx_skbuff[first_entry]); 3108 3109 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3110 desc = &tx_q->dma_entx[first_entry].basic; 3111 else 3112 desc = &tx_q->dma_tx[first_entry]; 3113 first = desc; 3114 3115 if (has_vlan) 3116 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 3117 3118 /* first descriptor: fill Headers on Buf1 */ 3119 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 3120 DMA_TO_DEVICE); 3121 if (dma_mapping_error(priv->device, des)) 3122 goto dma_map_err; 3123 3124 tx_q->tx_skbuff_dma[first_entry].buf = des; 3125 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 3126 3127 if (priv->dma_cap.addr64 <= 32) { 3128 first->des0 = cpu_to_le32(des); 3129 3130 /* Fill start of payload in buff2 of first descriptor */ 3131 if (pay_len) 3132 first->des1 = cpu_to_le32(des + proto_hdr_len); 3133 3134 /* If needed take extra descriptors to fill the remaining payload */ 3135 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 3136 } else { 3137 stmmac_set_desc_addr(priv, first, des); 3138 tmp_pay_len = pay_len; 3139 des += proto_hdr_len; 3140 pay_len = 0; 3141 } 3142 3143 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 3144 3145 /* Prepare fragments */ 3146 for (i = 0; i < nfrags; i++) { 3147 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3148 3149 des = skb_frag_dma_map(priv->device, frag, 0, 3150 skb_frag_size(frag), 3151 DMA_TO_DEVICE); 3152 if (dma_mapping_error(priv->device, des)) 3153 goto dma_map_err; 3154 3155 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 3156 (i == nfrags - 1), queue); 3157 3158 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 3159 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 3160 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 3161 } 3162 3163 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 3164 3165 /* Only the last descriptor gets to point to the skb. */ 3166 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 3167 3168 /* Manage tx mitigation */ 3169 tx_packets = (tx_q->cur_tx + 1) - first_tx; 3170 tx_q->tx_count_frames += tx_packets; 3171 3172 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 3173 set_ic = true; 3174 else if (!priv->tx_coal_frames) 3175 set_ic = false; 3176 else if (tx_packets > priv->tx_coal_frames) 3177 set_ic = true; 3178 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) 3179 set_ic = true; 3180 else 3181 set_ic = false; 3182 3183 if (set_ic) { 3184 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3185 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3186 else 3187 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3188 3189 tx_q->tx_count_frames = 0; 3190 stmmac_set_tx_ic(priv, desc); 3191 priv->xstats.tx_set_ic_bit++; 3192 } 3193 3194 /* We've used all descriptors we need for this skb, however, 3195 * advance cur_tx so that it references a fresh descriptor. 3196 * ndo_start_xmit will fill this descriptor the next time it's 3197 * called and stmmac_tx_clean may clean up to this descriptor. 3198 */ 3199 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3200 3201 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3202 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3203 __func__); 3204 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3205 } 3206 3207 dev->stats.tx_bytes += skb->len; 3208 priv->xstats.tx_tso_frames++; 3209 priv->xstats.tx_tso_nfrags += nfrags; 3210 3211 if (priv->sarc_type) 3212 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 3213 3214 skb_tx_timestamp(skb); 3215 3216 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3217 priv->hwts_tx_en)) { 3218 /* declare that device is doing timestamping */ 3219 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3220 stmmac_enable_tx_timestamp(priv, first); 3221 } 3222 3223 /* Complete the first descriptor before granting the DMA */ 3224 stmmac_prepare_tso_tx_desc(priv, first, 1, 3225 proto_hdr_len, 3226 pay_len, 3227 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 3228 hdr / 4, (skb->len - proto_hdr_len)); 3229 3230 /* If context desc is used to change MSS */ 3231 if (mss_desc) { 3232 /* Make sure that first descriptor has been completely 3233 * written, including its own bit. This is because MSS is 3234 * actually before first descriptor, so we need to make 3235 * sure that MSS's own bit is the last thing written. 3236 */ 3237 dma_wmb(); 3238 stmmac_set_tx_owner(priv, mss_desc); 3239 } 3240 3241 /* The own bit must be the latest setting done when prepare the 3242 * descriptor and then barrier is needed to make sure that 3243 * all is coherent before granting the DMA engine. 3244 */ 3245 wmb(); 3246 3247 if (netif_msg_pktdata(priv)) { 3248 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 3249 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3250 tx_q->cur_tx, first, nfrags); 3251 pr_info(">>> frame to be transmitted: "); 3252 print_pkt(skb->data, skb_headlen(skb)); 3253 } 3254 3255 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3256 3257 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3258 desc_size = sizeof(struct dma_edesc); 3259 else 3260 desc_size = sizeof(struct dma_desc); 3261 3262 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3263 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3264 stmmac_tx_timer_arm(priv, queue); 3265 3266 return NETDEV_TX_OK; 3267 3268 dma_map_err: 3269 dev_err(priv->device, "Tx dma map failed\n"); 3270 dev_kfree_skb(skb); 3271 priv->dev->stats.tx_dropped++; 3272 return NETDEV_TX_OK; 3273 } 3274 3275 /** 3276 * stmmac_xmit - Tx entry point of the driver 3277 * @skb : the socket buffer 3278 * @dev : device pointer 3279 * Description : this is the tx entry point of the driver. 3280 * It programs the chain or the ring and supports oversized frames 3281 * and SG feature. 3282 */ 3283 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 3284 { 3285 unsigned int first_entry, tx_packets, enh_desc; 3286 struct stmmac_priv *priv = netdev_priv(dev); 3287 unsigned int nopaged_len = skb_headlen(skb); 3288 int i, csum_insertion = 0, is_jumbo = 0; 3289 u32 queue = skb_get_queue_mapping(skb); 3290 int nfrags = skb_shinfo(skb)->nr_frags; 3291 int gso = skb_shinfo(skb)->gso_type; 3292 struct dma_edesc *tbs_desc = NULL; 3293 int entry, desc_size, first_tx; 3294 struct dma_desc *desc, *first; 3295 struct stmmac_tx_queue *tx_q; 3296 bool has_vlan, set_ic; 3297 dma_addr_t des; 3298 3299 tx_q = &priv->tx_queue[queue]; 3300 first_tx = tx_q->cur_tx; 3301 3302 if (priv->tx_path_in_lpi_mode) 3303 stmmac_disable_eee_mode(priv); 3304 3305 /* Manage oversized TCP frames for GMAC4 device */ 3306 if (skb_is_gso(skb) && priv->tso) { 3307 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 3308 return stmmac_tso_xmit(skb, dev); 3309 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 3310 return stmmac_tso_xmit(skb, dev); 3311 } 3312 3313 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 3314 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3315 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3316 queue)); 3317 /* This is a hard error, log it. */ 3318 netdev_err(priv->dev, 3319 "%s: Tx Ring full when queue awake\n", 3320 __func__); 3321 } 3322 return NETDEV_TX_BUSY; 3323 } 3324 3325 /* Check if VLAN can be inserted by HW */ 3326 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3327 3328 entry = tx_q->cur_tx; 3329 first_entry = entry; 3330 WARN_ON(tx_q->tx_skbuff[first_entry]); 3331 3332 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 3333 3334 if (likely(priv->extend_desc)) 3335 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3336 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3337 desc = &tx_q->dma_entx[entry].basic; 3338 else 3339 desc = tx_q->dma_tx + entry; 3340 3341 first = desc; 3342 3343 if (has_vlan) 3344 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 3345 3346 enh_desc = priv->plat->enh_desc; 3347 /* To program the descriptors according to the size of the frame */ 3348 if (enh_desc) 3349 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 3350 3351 if (unlikely(is_jumbo)) { 3352 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 3353 if (unlikely(entry < 0) && (entry != -EINVAL)) 3354 goto dma_map_err; 3355 } 3356 3357 for (i = 0; i < nfrags; i++) { 3358 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3359 int len = skb_frag_size(frag); 3360 bool last_segment = (i == (nfrags - 1)); 3361 3362 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 3363 WARN_ON(tx_q->tx_skbuff[entry]); 3364 3365 if (likely(priv->extend_desc)) 3366 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 3367 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3368 desc = &tx_q->dma_entx[entry].basic; 3369 else 3370 desc = tx_q->dma_tx + entry; 3371 3372 des = skb_frag_dma_map(priv->device, frag, 0, len, 3373 DMA_TO_DEVICE); 3374 if (dma_mapping_error(priv->device, des)) 3375 goto dma_map_err; /* should reuse desc w/o issues */ 3376 3377 tx_q->tx_skbuff_dma[entry].buf = des; 3378 3379 stmmac_set_desc_addr(priv, desc, des); 3380 3381 tx_q->tx_skbuff_dma[entry].map_as_page = true; 3382 tx_q->tx_skbuff_dma[entry].len = len; 3383 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 3384 3385 /* Prepare the descriptor and set the own bit too */ 3386 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 3387 priv->mode, 1, last_segment, skb->len); 3388 } 3389 3390 /* Only the last descriptor gets to point to the skb. */ 3391 tx_q->tx_skbuff[entry] = skb; 3392 3393 /* According to the coalesce parameter the IC bit for the latest 3394 * segment is reset and the timer re-started to clean the tx status. 3395 * This approach takes care about the fragments: desc is the first 3396 * element in case of no SG. 3397 */ 3398 tx_packets = (entry + 1) - first_tx; 3399 tx_q->tx_count_frames += tx_packets; 3400 3401 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 3402 set_ic = true; 3403 else if (!priv->tx_coal_frames) 3404 set_ic = false; 3405 else if (tx_packets > priv->tx_coal_frames) 3406 set_ic = true; 3407 else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets) 3408 set_ic = true; 3409 else 3410 set_ic = false; 3411 3412 if (set_ic) { 3413 if (likely(priv->extend_desc)) 3414 desc = &tx_q->dma_etx[entry].basic; 3415 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3416 desc = &tx_q->dma_entx[entry].basic; 3417 else 3418 desc = &tx_q->dma_tx[entry]; 3419 3420 tx_q->tx_count_frames = 0; 3421 stmmac_set_tx_ic(priv, desc); 3422 priv->xstats.tx_set_ic_bit++; 3423 } 3424 3425 /* We've used all descriptors we need for this skb, however, 3426 * advance cur_tx so that it references a fresh descriptor. 3427 * ndo_start_xmit will fill this descriptor the next time it's 3428 * called and stmmac_tx_clean may clean up to this descriptor. 3429 */ 3430 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 3431 tx_q->cur_tx = entry; 3432 3433 if (netif_msg_pktdata(priv)) { 3434 netdev_dbg(priv->dev, 3435 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 3436 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 3437 entry, first, nfrags); 3438 3439 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 3440 print_pkt(skb->data, skb->len); 3441 } 3442 3443 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 3444 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 3445 __func__); 3446 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 3447 } 3448 3449 dev->stats.tx_bytes += skb->len; 3450 3451 if (priv->sarc_type) 3452 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 3453 3454 skb_tx_timestamp(skb); 3455 3456 /* Ready to fill the first descriptor and set the OWN bit w/o any 3457 * problems because all the descriptors are actually ready to be 3458 * passed to the DMA engine. 3459 */ 3460 if (likely(!is_jumbo)) { 3461 bool last_segment = (nfrags == 0); 3462 3463 des = dma_map_single(priv->device, skb->data, 3464 nopaged_len, DMA_TO_DEVICE); 3465 if (dma_mapping_error(priv->device, des)) 3466 goto dma_map_err; 3467 3468 tx_q->tx_skbuff_dma[first_entry].buf = des; 3469 3470 stmmac_set_desc_addr(priv, first, des); 3471 3472 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 3473 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 3474 3475 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 3476 priv->hwts_tx_en)) { 3477 /* declare that device is doing timestamping */ 3478 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 3479 stmmac_enable_tx_timestamp(priv, first); 3480 } 3481 3482 /* Prepare the first descriptor setting the OWN bit too */ 3483 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 3484 csum_insertion, priv->mode, 0, last_segment, 3485 skb->len); 3486 } 3487 3488 if (tx_q->tbs & STMMAC_TBS_EN) { 3489 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 3490 3491 tbs_desc = &tx_q->dma_entx[first_entry]; 3492 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 3493 } 3494 3495 stmmac_set_tx_owner(priv, first); 3496 3497 /* The own bit must be the latest setting done when prepare the 3498 * descriptor and then barrier is needed to make sure that 3499 * all is coherent before granting the DMA engine. 3500 */ 3501 wmb(); 3502 3503 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 3504 3505 stmmac_enable_dma_transmission(priv, priv->ioaddr); 3506 3507 if (likely(priv->extend_desc)) 3508 desc_size = sizeof(struct dma_extended_desc); 3509 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3510 desc_size = sizeof(struct dma_edesc); 3511 else 3512 desc_size = sizeof(struct dma_desc); 3513 3514 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3515 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3516 stmmac_tx_timer_arm(priv, queue); 3517 3518 return NETDEV_TX_OK; 3519 3520 dma_map_err: 3521 netdev_err(priv->dev, "Tx DMA map failed\n"); 3522 dev_kfree_skb(skb); 3523 priv->dev->stats.tx_dropped++; 3524 return NETDEV_TX_OK; 3525 } 3526 3527 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 3528 { 3529 struct vlan_ethhdr *veth; 3530 __be16 vlan_proto; 3531 u16 vlanid; 3532 3533 veth = (struct vlan_ethhdr *)skb->data; 3534 vlan_proto = veth->h_vlan_proto; 3535 3536 if ((vlan_proto == htons(ETH_P_8021Q) && 3537 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 3538 (vlan_proto == htons(ETH_P_8021AD) && 3539 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 3540 /* pop the vlan tag */ 3541 vlanid = ntohs(veth->h_vlan_TCI); 3542 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 3543 skb_pull(skb, VLAN_HLEN); 3544 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 3545 } 3546 } 3547 3548 /** 3549 * stmmac_rx_refill - refill used skb preallocated buffers 3550 * @priv: driver private structure 3551 * @queue: RX queue index 3552 * Description : this is to reallocate the skb for the reception process 3553 * that is based on zero-copy. 3554 */ 3555 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 3556 { 3557 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3558 int len, dirty = stmmac_rx_dirty(priv, queue); 3559 unsigned int entry = rx_q->dirty_rx; 3560 3561 len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 3562 3563 while (dirty-- > 0) { 3564 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 3565 struct dma_desc *p; 3566 bool use_rx_wd; 3567 3568 if (priv->extend_desc) 3569 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3570 else 3571 p = rx_q->dma_rx + entry; 3572 3573 if (!buf->page) { 3574 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 3575 if (!buf->page) 3576 break; 3577 } 3578 3579 if (priv->sph && !buf->sec_page) { 3580 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 3581 if (!buf->sec_page) 3582 break; 3583 3584 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 3585 3586 dma_sync_single_for_device(priv->device, buf->sec_addr, 3587 len, DMA_FROM_DEVICE); 3588 } 3589 3590 buf->addr = page_pool_get_dma_addr(buf->page); 3591 3592 /* Sync whole allocation to device. This will invalidate old 3593 * data. 3594 */ 3595 dma_sync_single_for_device(priv->device, buf->addr, len, 3596 DMA_FROM_DEVICE); 3597 3598 stmmac_set_desc_addr(priv, p, buf->addr); 3599 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr); 3600 stmmac_refill_desc3(priv, rx_q, p); 3601 3602 rx_q->rx_count_frames++; 3603 rx_q->rx_count_frames += priv->rx_coal_frames; 3604 if (rx_q->rx_count_frames > priv->rx_coal_frames) 3605 rx_q->rx_count_frames = 0; 3606 3607 use_rx_wd = !priv->rx_coal_frames; 3608 use_rx_wd |= rx_q->rx_count_frames > 0; 3609 if (!priv->use_riwt) 3610 use_rx_wd = false; 3611 3612 dma_wmb(); 3613 stmmac_set_rx_owner(priv, p, use_rx_wd); 3614 3615 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 3616 } 3617 rx_q->dirty_rx = entry; 3618 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 3619 (rx_q->dirty_rx * sizeof(struct dma_desc)); 3620 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 3621 } 3622 3623 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 3624 struct dma_desc *p, 3625 int status, unsigned int len) 3626 { 3627 unsigned int plen = 0, hlen = 0; 3628 int coe = priv->hw->rx_csum; 3629 3630 /* Not first descriptor, buffer is always zero */ 3631 if (priv->sph && len) 3632 return 0; 3633 3634 /* First descriptor, get split header length */ 3635 stmmac_get_rx_header_len(priv, p, &hlen); 3636 if (priv->sph && hlen) { 3637 priv->xstats.rx_split_hdr_pkt_n++; 3638 return hlen; 3639 } 3640 3641 /* First descriptor, not last descriptor and not split header */ 3642 if (status & rx_not_ls) 3643 return priv->dma_buf_sz; 3644 3645 plen = stmmac_get_rx_frame_len(priv, p, coe); 3646 3647 /* First descriptor and last descriptor and not split header */ 3648 return min_t(unsigned int, priv->dma_buf_sz, plen); 3649 } 3650 3651 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 3652 struct dma_desc *p, 3653 int status, unsigned int len) 3654 { 3655 int coe = priv->hw->rx_csum; 3656 unsigned int plen = 0; 3657 3658 /* Not split header, buffer is not available */ 3659 if (!priv->sph) 3660 return 0; 3661 3662 /* Not last descriptor */ 3663 if (status & rx_not_ls) 3664 return priv->dma_buf_sz; 3665 3666 plen = stmmac_get_rx_frame_len(priv, p, coe); 3667 3668 /* Last descriptor */ 3669 return plen - len; 3670 } 3671 3672 /** 3673 * stmmac_rx - manage the receive process 3674 * @priv: driver private structure 3675 * @limit: napi bugget 3676 * @queue: RX queue index. 3677 * Description : this the function called by the napi poll method. 3678 * It gets all the frames inside the ring. 3679 */ 3680 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 3681 { 3682 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 3683 struct stmmac_channel *ch = &priv->channel[queue]; 3684 unsigned int count = 0, error = 0, len = 0; 3685 int status = 0, coe = priv->hw->rx_csum; 3686 unsigned int next_entry = rx_q->cur_rx; 3687 struct sk_buff *skb = NULL; 3688 3689 if (netif_msg_rx_status(priv)) { 3690 void *rx_head; 3691 3692 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 3693 if (priv->extend_desc) 3694 rx_head = (void *)rx_q->dma_erx; 3695 else 3696 rx_head = (void *)rx_q->dma_rx; 3697 3698 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true); 3699 } 3700 while (count < limit) { 3701 unsigned int buf1_len = 0, buf2_len = 0; 3702 enum pkt_hash_types hash_type; 3703 struct stmmac_rx_buffer *buf; 3704 struct dma_desc *np, *p; 3705 int entry; 3706 u32 hash; 3707 3708 if (!count && rx_q->state_saved) { 3709 skb = rx_q->state.skb; 3710 error = rx_q->state.error; 3711 len = rx_q->state.len; 3712 } else { 3713 rx_q->state_saved = false; 3714 skb = NULL; 3715 error = 0; 3716 len = 0; 3717 } 3718 3719 if (count >= limit) 3720 break; 3721 3722 read_again: 3723 buf1_len = 0; 3724 buf2_len = 0; 3725 entry = next_entry; 3726 buf = &rx_q->buf_pool[entry]; 3727 3728 if (priv->extend_desc) 3729 p = (struct dma_desc *)(rx_q->dma_erx + entry); 3730 else 3731 p = rx_q->dma_rx + entry; 3732 3733 /* read the status of the incoming frame */ 3734 status = stmmac_rx_status(priv, &priv->dev->stats, 3735 &priv->xstats, p); 3736 /* check if managed by the DMA otherwise go ahead */ 3737 if (unlikely(status & dma_own)) 3738 break; 3739 3740 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 3741 priv->dma_rx_size); 3742 next_entry = rx_q->cur_rx; 3743 3744 if (priv->extend_desc) 3745 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 3746 else 3747 np = rx_q->dma_rx + next_entry; 3748 3749 prefetch(np); 3750 3751 if (priv->extend_desc) 3752 stmmac_rx_extended_status(priv, &priv->dev->stats, 3753 &priv->xstats, rx_q->dma_erx + entry); 3754 if (unlikely(status == discard_frame)) { 3755 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3756 buf->page = NULL; 3757 error = 1; 3758 if (!priv->hwts_rx_en) 3759 priv->dev->stats.rx_errors++; 3760 } 3761 3762 if (unlikely(error && (status & rx_not_ls))) 3763 goto read_again; 3764 if (unlikely(error)) { 3765 dev_kfree_skb(skb); 3766 skb = NULL; 3767 count++; 3768 continue; 3769 } 3770 3771 /* Buffer is good. Go on. */ 3772 3773 prefetch(page_address(buf->page)); 3774 if (buf->sec_page) 3775 prefetch(page_address(buf->sec_page)); 3776 3777 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 3778 len += buf1_len; 3779 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 3780 len += buf2_len; 3781 3782 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 3783 * Type frames (LLC/LLC-SNAP) 3784 * 3785 * llc_snap is never checked in GMAC >= 4, so this ACS 3786 * feature is always disabled and packets need to be 3787 * stripped manually. 3788 */ 3789 if (likely(!(status & rx_not_ls)) && 3790 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 3791 unlikely(status != llc_snap))) { 3792 if (buf2_len) 3793 buf2_len -= ETH_FCS_LEN; 3794 else 3795 buf1_len -= ETH_FCS_LEN; 3796 3797 len -= ETH_FCS_LEN; 3798 } 3799 3800 if (!skb) { 3801 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 3802 if (!skb) { 3803 priv->dev->stats.rx_dropped++; 3804 count++; 3805 goto drain_data; 3806 } 3807 3808 dma_sync_single_for_cpu(priv->device, buf->addr, 3809 buf1_len, DMA_FROM_DEVICE); 3810 skb_copy_to_linear_data(skb, page_address(buf->page), 3811 buf1_len); 3812 skb_put(skb, buf1_len); 3813 3814 /* Data payload copied into SKB, page ready for recycle */ 3815 page_pool_recycle_direct(rx_q->page_pool, buf->page); 3816 buf->page = NULL; 3817 } else if (buf1_len) { 3818 dma_sync_single_for_cpu(priv->device, buf->addr, 3819 buf1_len, DMA_FROM_DEVICE); 3820 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 3821 buf->page, 0, buf1_len, 3822 priv->dma_buf_sz); 3823 3824 /* Data payload appended into SKB */ 3825 page_pool_release_page(rx_q->page_pool, buf->page); 3826 buf->page = NULL; 3827 } 3828 3829 if (buf2_len) { 3830 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 3831 buf2_len, DMA_FROM_DEVICE); 3832 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 3833 buf->sec_page, 0, buf2_len, 3834 priv->dma_buf_sz); 3835 3836 /* Data payload appended into SKB */ 3837 page_pool_release_page(rx_q->page_pool, buf->sec_page); 3838 buf->sec_page = NULL; 3839 } 3840 3841 drain_data: 3842 if (likely(status & rx_not_ls)) 3843 goto read_again; 3844 if (!skb) 3845 continue; 3846 3847 /* Got entire packet into SKB. Finish it. */ 3848 3849 stmmac_get_rx_hwtstamp(priv, p, np, skb); 3850 stmmac_rx_vlan(priv->dev, skb); 3851 skb->protocol = eth_type_trans(skb, priv->dev); 3852 3853 if (unlikely(!coe)) 3854 skb_checksum_none_assert(skb); 3855 else 3856 skb->ip_summed = CHECKSUM_UNNECESSARY; 3857 3858 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 3859 skb_set_hash(skb, hash, hash_type); 3860 3861 skb_record_rx_queue(skb, queue); 3862 napi_gro_receive(&ch->rx_napi, skb); 3863 skb = NULL; 3864 3865 priv->dev->stats.rx_packets++; 3866 priv->dev->stats.rx_bytes += len; 3867 count++; 3868 } 3869 3870 if (status & rx_not_ls || skb) { 3871 rx_q->state_saved = true; 3872 rx_q->state.skb = skb; 3873 rx_q->state.error = error; 3874 rx_q->state.len = len; 3875 } 3876 3877 stmmac_rx_refill(priv, queue); 3878 3879 priv->xstats.rx_pkt_n += count; 3880 3881 return count; 3882 } 3883 3884 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 3885 { 3886 struct stmmac_channel *ch = 3887 container_of(napi, struct stmmac_channel, rx_napi); 3888 struct stmmac_priv *priv = ch->priv_data; 3889 u32 chan = ch->index; 3890 int work_done; 3891 3892 priv->xstats.napi_poll++; 3893 3894 work_done = stmmac_rx(priv, budget, chan); 3895 if (work_done < budget && napi_complete_done(napi, work_done)) { 3896 unsigned long flags; 3897 3898 spin_lock_irqsave(&ch->lock, flags); 3899 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 3900 spin_unlock_irqrestore(&ch->lock, flags); 3901 } 3902 3903 return work_done; 3904 } 3905 3906 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 3907 { 3908 struct stmmac_channel *ch = 3909 container_of(napi, struct stmmac_channel, tx_napi); 3910 struct stmmac_priv *priv = ch->priv_data; 3911 u32 chan = ch->index; 3912 int work_done; 3913 3914 priv->xstats.napi_poll++; 3915 3916 work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan); 3917 work_done = min(work_done, budget); 3918 3919 if (work_done < budget && napi_complete_done(napi, work_done)) { 3920 unsigned long flags; 3921 3922 spin_lock_irqsave(&ch->lock, flags); 3923 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 3924 spin_unlock_irqrestore(&ch->lock, flags); 3925 } 3926 3927 return work_done; 3928 } 3929 3930 /** 3931 * stmmac_tx_timeout 3932 * @dev : Pointer to net device structure 3933 * @txqueue: the index of the hanging transmit queue 3934 * Description: this function is called when a packet transmission fails to 3935 * complete within a reasonable time. The driver will mark the error in the 3936 * netdev structure and arrange for the device to be reset to a sane state 3937 * in order to transmit a new packet. 3938 */ 3939 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 3940 { 3941 struct stmmac_priv *priv = netdev_priv(dev); 3942 3943 stmmac_global_err(priv); 3944 } 3945 3946 /** 3947 * stmmac_set_rx_mode - entry point for multicast addressing 3948 * @dev : pointer to the device structure 3949 * Description: 3950 * This function is a driver entry point which gets called by the kernel 3951 * whenever multicast addresses must be enabled/disabled. 3952 * Return value: 3953 * void. 3954 */ 3955 static void stmmac_set_rx_mode(struct net_device *dev) 3956 { 3957 struct stmmac_priv *priv = netdev_priv(dev); 3958 3959 stmmac_set_filter(priv, priv->hw, dev); 3960 } 3961 3962 /** 3963 * stmmac_change_mtu - entry point to change MTU size for the device. 3964 * @dev : device pointer. 3965 * @new_mtu : the new MTU size for the device. 3966 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 3967 * to drive packet transmission. Ethernet has an MTU of 1500 octets 3968 * (ETH_DATA_LEN). This value can be changed with ifconfig. 3969 * Return value: 3970 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3971 * file on failure. 3972 */ 3973 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 3974 { 3975 struct stmmac_priv *priv = netdev_priv(dev); 3976 int txfifosz = priv->plat->tx_fifo_size; 3977 3978 if (txfifosz == 0) 3979 txfifosz = priv->dma_cap.tx_fifo_size; 3980 3981 txfifosz /= priv->plat->tx_queues_to_use; 3982 3983 if (netif_running(dev)) { 3984 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 3985 return -EBUSY; 3986 } 3987 3988 new_mtu = STMMAC_ALIGN(new_mtu); 3989 3990 /* If condition true, FIFO is too small or MTU too large */ 3991 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 3992 return -EINVAL; 3993 3994 dev->mtu = new_mtu; 3995 3996 netdev_update_features(dev); 3997 3998 return 0; 3999 } 4000 4001 static netdev_features_t stmmac_fix_features(struct net_device *dev, 4002 netdev_features_t features) 4003 { 4004 struct stmmac_priv *priv = netdev_priv(dev); 4005 4006 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 4007 features &= ~NETIF_F_RXCSUM; 4008 4009 if (!priv->plat->tx_coe) 4010 features &= ~NETIF_F_CSUM_MASK; 4011 4012 /* Some GMAC devices have a bugged Jumbo frame support that 4013 * needs to have the Tx COE disabled for oversized frames 4014 * (due to limited buffer sizes). In this case we disable 4015 * the TX csum insertion in the TDES and not use SF. 4016 */ 4017 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 4018 features &= ~NETIF_F_CSUM_MASK; 4019 4020 /* Disable tso if asked by ethtool */ 4021 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4022 if (features & NETIF_F_TSO) 4023 priv->tso = true; 4024 else 4025 priv->tso = false; 4026 } 4027 4028 return features; 4029 } 4030 4031 static int stmmac_set_features(struct net_device *netdev, 4032 netdev_features_t features) 4033 { 4034 struct stmmac_priv *priv = netdev_priv(netdev); 4035 bool sph_en; 4036 u32 chan; 4037 4038 /* Keep the COE Type in case of csum is supporting */ 4039 if (features & NETIF_F_RXCSUM) 4040 priv->hw->rx_csum = priv->plat->rx_coe; 4041 else 4042 priv->hw->rx_csum = 0; 4043 /* No check needed because rx_coe has been set before and it will be 4044 * fixed in case of issue. 4045 */ 4046 stmmac_rx_ipc(priv, priv->hw); 4047 4048 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 4049 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 4050 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 4051 4052 return 0; 4053 } 4054 4055 /** 4056 * stmmac_interrupt - main ISR 4057 * @irq: interrupt number. 4058 * @dev_id: to pass the net device pointer (must be valid). 4059 * Description: this is the main driver interrupt service routine. 4060 * It can call: 4061 * o DMA service routine (to manage incoming frame reception and transmission 4062 * status) 4063 * o Core interrupts to manage: remote wake-up, management counter, LPI 4064 * interrupts. 4065 */ 4066 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 4067 { 4068 struct net_device *dev = (struct net_device *)dev_id; 4069 struct stmmac_priv *priv = netdev_priv(dev); 4070 u32 rx_cnt = priv->plat->rx_queues_to_use; 4071 u32 tx_cnt = priv->plat->tx_queues_to_use; 4072 u32 queues_count; 4073 u32 queue; 4074 bool xmac; 4075 4076 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 4077 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 4078 4079 if (priv->irq_wake) 4080 pm_wakeup_event(priv->device, 0); 4081 4082 /* Check if adapter is up */ 4083 if (test_bit(STMMAC_DOWN, &priv->state)) 4084 return IRQ_HANDLED; 4085 /* Check if a fatal error happened */ 4086 if (stmmac_safety_feat_interrupt(priv)) 4087 return IRQ_HANDLED; 4088 4089 /* To handle GMAC own interrupts */ 4090 if ((priv->plat->has_gmac) || xmac) { 4091 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 4092 int mtl_status; 4093 4094 if (unlikely(status)) { 4095 /* For LPI we need to save the tx status */ 4096 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 4097 priv->tx_path_in_lpi_mode = true; 4098 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 4099 priv->tx_path_in_lpi_mode = false; 4100 } 4101 4102 for (queue = 0; queue < queues_count; queue++) { 4103 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4104 4105 mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw, 4106 queue); 4107 if (mtl_status != -EINVAL) 4108 status |= mtl_status; 4109 4110 if (status & CORE_IRQ_MTL_RX_OVERFLOW) 4111 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 4112 rx_q->rx_tail_addr, 4113 queue); 4114 } 4115 4116 /* PCS link status */ 4117 if (priv->hw->pcs) { 4118 if (priv->xstats.pcs_link) 4119 netif_carrier_on(dev); 4120 else 4121 netif_carrier_off(dev); 4122 } 4123 } 4124 4125 /* To handle DMA interrupts */ 4126 stmmac_dma_interrupt(priv); 4127 4128 return IRQ_HANDLED; 4129 } 4130 4131 #ifdef CONFIG_NET_POLL_CONTROLLER 4132 /* Polling receive - used by NETCONSOLE and other diagnostic tools 4133 * to allow network I/O with interrupts disabled. 4134 */ 4135 static void stmmac_poll_controller(struct net_device *dev) 4136 { 4137 disable_irq(dev->irq); 4138 stmmac_interrupt(dev->irq, dev); 4139 enable_irq(dev->irq); 4140 } 4141 #endif 4142 4143 /** 4144 * stmmac_ioctl - Entry point for the Ioctl 4145 * @dev: Device pointer. 4146 * @rq: An IOCTL specefic structure, that can contain a pointer to 4147 * a proprietary structure used to pass information to the driver. 4148 * @cmd: IOCTL command 4149 * Description: 4150 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 4151 */ 4152 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 4153 { 4154 struct stmmac_priv *priv = netdev_priv (dev); 4155 int ret = -EOPNOTSUPP; 4156 4157 if (!netif_running(dev)) 4158 return -EINVAL; 4159 4160 switch (cmd) { 4161 case SIOCGMIIPHY: 4162 case SIOCGMIIREG: 4163 case SIOCSMIIREG: 4164 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 4165 break; 4166 case SIOCSHWTSTAMP: 4167 ret = stmmac_hwtstamp_set(dev, rq); 4168 break; 4169 case SIOCGHWTSTAMP: 4170 ret = stmmac_hwtstamp_get(dev, rq); 4171 break; 4172 default: 4173 break; 4174 } 4175 4176 return ret; 4177 } 4178 4179 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 4180 void *cb_priv) 4181 { 4182 struct stmmac_priv *priv = cb_priv; 4183 int ret = -EOPNOTSUPP; 4184 4185 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 4186 return ret; 4187 4188 stmmac_disable_all_queues(priv); 4189 4190 switch (type) { 4191 case TC_SETUP_CLSU32: 4192 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 4193 break; 4194 case TC_SETUP_CLSFLOWER: 4195 ret = stmmac_tc_setup_cls(priv, priv, type_data); 4196 break; 4197 default: 4198 break; 4199 } 4200 4201 stmmac_enable_all_queues(priv); 4202 return ret; 4203 } 4204 4205 static LIST_HEAD(stmmac_block_cb_list); 4206 4207 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 4208 void *type_data) 4209 { 4210 struct stmmac_priv *priv = netdev_priv(ndev); 4211 4212 switch (type) { 4213 case TC_SETUP_BLOCK: 4214 return flow_block_cb_setup_simple(type_data, 4215 &stmmac_block_cb_list, 4216 stmmac_setup_tc_block_cb, 4217 priv, priv, true); 4218 case TC_SETUP_QDISC_CBS: 4219 return stmmac_tc_setup_cbs(priv, priv, type_data); 4220 case TC_SETUP_QDISC_TAPRIO: 4221 return stmmac_tc_setup_taprio(priv, priv, type_data); 4222 case TC_SETUP_QDISC_ETF: 4223 return stmmac_tc_setup_etf(priv, priv, type_data); 4224 default: 4225 return -EOPNOTSUPP; 4226 } 4227 } 4228 4229 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 4230 struct net_device *sb_dev) 4231 { 4232 int gso = skb_shinfo(skb)->gso_type; 4233 4234 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 4235 /* 4236 * There is no way to determine the number of TSO/USO 4237 * capable Queues. Let's use always the Queue 0 4238 * because if TSO/USO is supported then at least this 4239 * one will be capable. 4240 */ 4241 return 0; 4242 } 4243 4244 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 4245 } 4246 4247 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 4248 { 4249 struct stmmac_priv *priv = netdev_priv(ndev); 4250 int ret = 0; 4251 4252 ret = eth_mac_addr(ndev, addr); 4253 if (ret) 4254 return ret; 4255 4256 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 4257 4258 return ret; 4259 } 4260 4261 #ifdef CONFIG_DEBUG_FS 4262 static struct dentry *stmmac_fs_dir; 4263 4264 static void sysfs_display_ring(void *head, int size, int extend_desc, 4265 struct seq_file *seq) 4266 { 4267 int i; 4268 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 4269 struct dma_desc *p = (struct dma_desc *)head; 4270 4271 for (i = 0; i < size; i++) { 4272 if (extend_desc) { 4273 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 4274 i, (unsigned int)virt_to_phys(ep), 4275 le32_to_cpu(ep->basic.des0), 4276 le32_to_cpu(ep->basic.des1), 4277 le32_to_cpu(ep->basic.des2), 4278 le32_to_cpu(ep->basic.des3)); 4279 ep++; 4280 } else { 4281 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 4282 i, (unsigned int)virt_to_phys(p), 4283 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 4284 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 4285 p++; 4286 } 4287 seq_printf(seq, "\n"); 4288 } 4289 } 4290 4291 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 4292 { 4293 struct net_device *dev = seq->private; 4294 struct stmmac_priv *priv = netdev_priv(dev); 4295 u32 rx_count = priv->plat->rx_queues_to_use; 4296 u32 tx_count = priv->plat->tx_queues_to_use; 4297 u32 queue; 4298 4299 if ((dev->flags & IFF_UP) == 0) 4300 return 0; 4301 4302 for (queue = 0; queue < rx_count; queue++) { 4303 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4304 4305 seq_printf(seq, "RX Queue %d:\n", queue); 4306 4307 if (priv->extend_desc) { 4308 seq_printf(seq, "Extended descriptor ring:\n"); 4309 sysfs_display_ring((void *)rx_q->dma_erx, 4310 priv->dma_rx_size, 1, seq); 4311 } else { 4312 seq_printf(seq, "Descriptor ring:\n"); 4313 sysfs_display_ring((void *)rx_q->dma_rx, 4314 priv->dma_rx_size, 0, seq); 4315 } 4316 } 4317 4318 for (queue = 0; queue < tx_count; queue++) { 4319 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4320 4321 seq_printf(seq, "TX Queue %d:\n", queue); 4322 4323 if (priv->extend_desc) { 4324 seq_printf(seq, "Extended descriptor ring:\n"); 4325 sysfs_display_ring((void *)tx_q->dma_etx, 4326 priv->dma_tx_size, 1, seq); 4327 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 4328 seq_printf(seq, "Descriptor ring:\n"); 4329 sysfs_display_ring((void *)tx_q->dma_tx, 4330 priv->dma_tx_size, 0, seq); 4331 } 4332 } 4333 4334 return 0; 4335 } 4336 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 4337 4338 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 4339 { 4340 struct net_device *dev = seq->private; 4341 struct stmmac_priv *priv = netdev_priv(dev); 4342 4343 if (!priv->hw_cap_support) { 4344 seq_printf(seq, "DMA HW features not supported\n"); 4345 return 0; 4346 } 4347 4348 seq_printf(seq, "==============================\n"); 4349 seq_printf(seq, "\tDMA HW features\n"); 4350 seq_printf(seq, "==============================\n"); 4351 4352 seq_printf(seq, "\t10/100 Mbps: %s\n", 4353 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 4354 seq_printf(seq, "\t1000 Mbps: %s\n", 4355 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 4356 seq_printf(seq, "\tHalf duplex: %s\n", 4357 (priv->dma_cap.half_duplex) ? "Y" : "N"); 4358 seq_printf(seq, "\tHash Filter: %s\n", 4359 (priv->dma_cap.hash_filter) ? "Y" : "N"); 4360 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 4361 (priv->dma_cap.multi_addr) ? "Y" : "N"); 4362 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 4363 (priv->dma_cap.pcs) ? "Y" : "N"); 4364 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 4365 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 4366 seq_printf(seq, "\tPMT Remote wake up: %s\n", 4367 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 4368 seq_printf(seq, "\tPMT Magic Frame: %s\n", 4369 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 4370 seq_printf(seq, "\tRMON module: %s\n", 4371 (priv->dma_cap.rmon) ? "Y" : "N"); 4372 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 4373 (priv->dma_cap.time_stamp) ? "Y" : "N"); 4374 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 4375 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 4376 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 4377 (priv->dma_cap.eee) ? "Y" : "N"); 4378 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 4379 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 4380 (priv->dma_cap.tx_coe) ? "Y" : "N"); 4381 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 4382 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 4383 (priv->dma_cap.rx_coe) ? "Y" : "N"); 4384 } else { 4385 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 4386 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 4387 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 4388 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 4389 } 4390 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 4391 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 4392 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 4393 priv->dma_cap.number_rx_channel); 4394 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 4395 priv->dma_cap.number_tx_channel); 4396 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 4397 priv->dma_cap.number_rx_queues); 4398 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 4399 priv->dma_cap.number_tx_queues); 4400 seq_printf(seq, "\tEnhanced descriptors: %s\n", 4401 (priv->dma_cap.enh_desc) ? "Y" : "N"); 4402 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 4403 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 4404 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 4405 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 4406 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 4407 priv->dma_cap.pps_out_num); 4408 seq_printf(seq, "\tSafety Features: %s\n", 4409 priv->dma_cap.asp ? "Y" : "N"); 4410 seq_printf(seq, "\tFlexible RX Parser: %s\n", 4411 priv->dma_cap.frpsel ? "Y" : "N"); 4412 seq_printf(seq, "\tEnhanced Addressing: %d\n", 4413 priv->dma_cap.addr64); 4414 seq_printf(seq, "\tReceive Side Scaling: %s\n", 4415 priv->dma_cap.rssen ? "Y" : "N"); 4416 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 4417 priv->dma_cap.vlhash ? "Y" : "N"); 4418 seq_printf(seq, "\tSplit Header: %s\n", 4419 priv->dma_cap.sphen ? "Y" : "N"); 4420 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 4421 priv->dma_cap.vlins ? "Y" : "N"); 4422 seq_printf(seq, "\tDouble VLAN: %s\n", 4423 priv->dma_cap.dvlan ? "Y" : "N"); 4424 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 4425 priv->dma_cap.l3l4fnum); 4426 seq_printf(seq, "\tARP Offloading: %s\n", 4427 priv->dma_cap.arpoffsel ? "Y" : "N"); 4428 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 4429 priv->dma_cap.estsel ? "Y" : "N"); 4430 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 4431 priv->dma_cap.fpesel ? "Y" : "N"); 4432 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 4433 priv->dma_cap.tbssel ? "Y" : "N"); 4434 return 0; 4435 } 4436 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 4437 4438 /* Use network device events to rename debugfs file entries. 4439 */ 4440 static int stmmac_device_event(struct notifier_block *unused, 4441 unsigned long event, void *ptr) 4442 { 4443 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 4444 struct stmmac_priv *priv = netdev_priv(dev); 4445 4446 if (dev->netdev_ops != &stmmac_netdev_ops) 4447 goto done; 4448 4449 switch (event) { 4450 case NETDEV_CHANGENAME: 4451 if (priv->dbgfs_dir) 4452 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 4453 priv->dbgfs_dir, 4454 stmmac_fs_dir, 4455 dev->name); 4456 break; 4457 } 4458 done: 4459 return NOTIFY_DONE; 4460 } 4461 4462 static struct notifier_block stmmac_notifier = { 4463 .notifier_call = stmmac_device_event, 4464 }; 4465 4466 static void stmmac_init_fs(struct net_device *dev) 4467 { 4468 struct stmmac_priv *priv = netdev_priv(dev); 4469 4470 rtnl_lock(); 4471 4472 /* Create per netdev entries */ 4473 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 4474 4475 /* Entry to report DMA RX/TX rings */ 4476 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 4477 &stmmac_rings_status_fops); 4478 4479 /* Entry to report the DMA HW features */ 4480 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 4481 &stmmac_dma_cap_fops); 4482 4483 rtnl_unlock(); 4484 } 4485 4486 static void stmmac_exit_fs(struct net_device *dev) 4487 { 4488 struct stmmac_priv *priv = netdev_priv(dev); 4489 4490 debugfs_remove_recursive(priv->dbgfs_dir); 4491 } 4492 #endif /* CONFIG_DEBUG_FS */ 4493 4494 static u32 stmmac_vid_crc32_le(__le16 vid_le) 4495 { 4496 unsigned char *data = (unsigned char *)&vid_le; 4497 unsigned char data_byte = 0; 4498 u32 crc = ~0x0; 4499 u32 temp = 0; 4500 int i, bits; 4501 4502 bits = get_bitmask_order(VLAN_VID_MASK); 4503 for (i = 0; i < bits; i++) { 4504 if ((i % 8) == 0) 4505 data_byte = data[i / 8]; 4506 4507 temp = ((crc & 1) ^ data_byte) & 1; 4508 crc >>= 1; 4509 data_byte >>= 1; 4510 4511 if (temp) 4512 crc ^= 0xedb88320; 4513 } 4514 4515 return crc; 4516 } 4517 4518 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 4519 { 4520 u32 crc, hash = 0; 4521 __le16 pmatch = 0; 4522 int count = 0; 4523 u16 vid = 0; 4524 4525 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 4526 __le16 vid_le = cpu_to_le16(vid); 4527 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 4528 hash |= (1 << crc); 4529 count++; 4530 } 4531 4532 if (!priv->dma_cap.vlhash) { 4533 if (count > 2) /* VID = 0 always passes filter */ 4534 return -EOPNOTSUPP; 4535 4536 pmatch = cpu_to_le16(vid); 4537 hash = 0; 4538 } 4539 4540 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 4541 } 4542 4543 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 4544 { 4545 struct stmmac_priv *priv = netdev_priv(ndev); 4546 bool is_double = false; 4547 int ret; 4548 4549 if (be16_to_cpu(proto) == ETH_P_8021AD) 4550 is_double = true; 4551 4552 set_bit(vid, priv->active_vlans); 4553 ret = stmmac_vlan_update(priv, is_double); 4554 if (ret) { 4555 clear_bit(vid, priv->active_vlans); 4556 return ret; 4557 } 4558 4559 if (priv->hw->num_vlan) { 4560 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 4561 if (ret) 4562 return ret; 4563 } 4564 4565 return 0; 4566 } 4567 4568 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 4569 { 4570 struct stmmac_priv *priv = netdev_priv(ndev); 4571 bool is_double = false; 4572 int ret; 4573 4574 if (be16_to_cpu(proto) == ETH_P_8021AD) 4575 is_double = true; 4576 4577 clear_bit(vid, priv->active_vlans); 4578 4579 if (priv->hw->num_vlan) { 4580 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 4581 if (ret) 4582 return ret; 4583 } 4584 4585 return stmmac_vlan_update(priv, is_double); 4586 } 4587 4588 static const struct net_device_ops stmmac_netdev_ops = { 4589 .ndo_open = stmmac_open, 4590 .ndo_start_xmit = stmmac_xmit, 4591 .ndo_stop = stmmac_release, 4592 .ndo_change_mtu = stmmac_change_mtu, 4593 .ndo_fix_features = stmmac_fix_features, 4594 .ndo_set_features = stmmac_set_features, 4595 .ndo_set_rx_mode = stmmac_set_rx_mode, 4596 .ndo_tx_timeout = stmmac_tx_timeout, 4597 .ndo_do_ioctl = stmmac_ioctl, 4598 .ndo_setup_tc = stmmac_setup_tc, 4599 .ndo_select_queue = stmmac_select_queue, 4600 #ifdef CONFIG_NET_POLL_CONTROLLER 4601 .ndo_poll_controller = stmmac_poll_controller, 4602 #endif 4603 .ndo_set_mac_address = stmmac_set_mac_address, 4604 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 4605 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 4606 }; 4607 4608 static void stmmac_reset_subtask(struct stmmac_priv *priv) 4609 { 4610 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 4611 return; 4612 if (test_bit(STMMAC_DOWN, &priv->state)) 4613 return; 4614 4615 netdev_err(priv->dev, "Reset adapter.\n"); 4616 4617 rtnl_lock(); 4618 netif_trans_update(priv->dev); 4619 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 4620 usleep_range(1000, 2000); 4621 4622 set_bit(STMMAC_DOWN, &priv->state); 4623 dev_close(priv->dev); 4624 dev_open(priv->dev, NULL); 4625 clear_bit(STMMAC_DOWN, &priv->state); 4626 clear_bit(STMMAC_RESETING, &priv->state); 4627 rtnl_unlock(); 4628 } 4629 4630 static void stmmac_service_task(struct work_struct *work) 4631 { 4632 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 4633 service_task); 4634 4635 stmmac_reset_subtask(priv); 4636 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 4637 } 4638 4639 /** 4640 * stmmac_hw_init - Init the MAC device 4641 * @priv: driver private structure 4642 * Description: this function is to configure the MAC device according to 4643 * some platform parameters or the HW capability register. It prepares the 4644 * driver to use either ring or chain modes and to setup either enhanced or 4645 * normal descriptors. 4646 */ 4647 static int stmmac_hw_init(struct stmmac_priv *priv) 4648 { 4649 int ret; 4650 4651 /* dwmac-sun8i only work in chain mode */ 4652 if (priv->plat->has_sun8i) 4653 chain_mode = 1; 4654 priv->chain_mode = chain_mode; 4655 4656 /* Initialize HW Interface */ 4657 ret = stmmac_hwif_init(priv); 4658 if (ret) 4659 return ret; 4660 4661 /* Get the HW capability (new GMAC newer than 3.50a) */ 4662 priv->hw_cap_support = stmmac_get_hw_features(priv); 4663 if (priv->hw_cap_support) { 4664 dev_info(priv->device, "DMA HW capability register supported\n"); 4665 4666 /* We can override some gmac/dma configuration fields: e.g. 4667 * enh_desc, tx_coe (e.g. that are passed through the 4668 * platform) with the values from the HW capability 4669 * register (if supported). 4670 */ 4671 priv->plat->enh_desc = priv->dma_cap.enh_desc; 4672 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 4673 priv->hw->pmt = priv->plat->pmt; 4674 if (priv->dma_cap.hash_tb_sz) { 4675 priv->hw->multicast_filter_bins = 4676 (BIT(priv->dma_cap.hash_tb_sz) << 5); 4677 priv->hw->mcast_bits_log2 = 4678 ilog2(priv->hw->multicast_filter_bins); 4679 } 4680 4681 /* TXCOE doesn't work in thresh DMA mode */ 4682 if (priv->plat->force_thresh_dma_mode) 4683 priv->plat->tx_coe = 0; 4684 else 4685 priv->plat->tx_coe = priv->dma_cap.tx_coe; 4686 4687 /* In case of GMAC4 rx_coe is from HW cap register. */ 4688 priv->plat->rx_coe = priv->dma_cap.rx_coe; 4689 4690 if (priv->dma_cap.rx_coe_type2) 4691 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 4692 else if (priv->dma_cap.rx_coe_type1) 4693 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 4694 4695 } else { 4696 dev_info(priv->device, "No HW DMA feature register supported\n"); 4697 } 4698 4699 if (priv->plat->rx_coe) { 4700 priv->hw->rx_csum = priv->plat->rx_coe; 4701 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 4702 if (priv->synopsys_id < DWMAC_CORE_4_00) 4703 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 4704 } 4705 if (priv->plat->tx_coe) 4706 dev_info(priv->device, "TX Checksum insertion supported\n"); 4707 4708 if (priv->plat->pmt) { 4709 dev_info(priv->device, "Wake-Up On Lan supported\n"); 4710 device_set_wakeup_capable(priv->device, 1); 4711 } 4712 4713 if (priv->dma_cap.tsoen) 4714 dev_info(priv->device, "TSO supported\n"); 4715 4716 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 4717 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 4718 4719 /* Run HW quirks, if any */ 4720 if (priv->hwif_quirks) { 4721 ret = priv->hwif_quirks(priv); 4722 if (ret) 4723 return ret; 4724 } 4725 4726 /* Rx Watchdog is available in the COREs newer than the 3.40. 4727 * In some case, for example on bugged HW this feature 4728 * has to be disable and this can be done by passing the 4729 * riwt_off field from the platform. 4730 */ 4731 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 4732 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 4733 priv->use_riwt = 1; 4734 dev_info(priv->device, 4735 "Enable RX Mitigation via HW Watchdog Timer\n"); 4736 } 4737 4738 return 0; 4739 } 4740 4741 static void stmmac_napi_add(struct net_device *dev) 4742 { 4743 struct stmmac_priv *priv = netdev_priv(dev); 4744 u32 queue, maxq; 4745 4746 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4747 4748 for (queue = 0; queue < maxq; queue++) { 4749 struct stmmac_channel *ch = &priv->channel[queue]; 4750 4751 ch->priv_data = priv; 4752 ch->index = queue; 4753 4754 if (queue < priv->plat->rx_queues_to_use) { 4755 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 4756 NAPI_POLL_WEIGHT); 4757 } 4758 if (queue < priv->plat->tx_queues_to_use) { 4759 netif_tx_napi_add(dev, &ch->tx_napi, 4760 stmmac_napi_poll_tx, 4761 NAPI_POLL_WEIGHT); 4762 } 4763 } 4764 } 4765 4766 static void stmmac_napi_del(struct net_device *dev) 4767 { 4768 struct stmmac_priv *priv = netdev_priv(dev); 4769 u32 queue, maxq; 4770 4771 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 4772 4773 for (queue = 0; queue < maxq; queue++) { 4774 struct stmmac_channel *ch = &priv->channel[queue]; 4775 4776 if (queue < priv->plat->rx_queues_to_use) 4777 netif_napi_del(&ch->rx_napi); 4778 if (queue < priv->plat->tx_queues_to_use) 4779 netif_napi_del(&ch->tx_napi); 4780 } 4781 } 4782 4783 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 4784 { 4785 struct stmmac_priv *priv = netdev_priv(dev); 4786 int ret = 0; 4787 4788 if (netif_running(dev)) 4789 stmmac_release(dev); 4790 4791 stmmac_napi_del(dev); 4792 4793 priv->plat->rx_queues_to_use = rx_cnt; 4794 priv->plat->tx_queues_to_use = tx_cnt; 4795 4796 stmmac_napi_add(dev); 4797 4798 if (netif_running(dev)) 4799 ret = stmmac_open(dev); 4800 4801 return ret; 4802 } 4803 4804 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 4805 { 4806 struct stmmac_priv *priv = netdev_priv(dev); 4807 int ret = 0; 4808 4809 if (netif_running(dev)) 4810 stmmac_release(dev); 4811 4812 priv->dma_rx_size = rx_size; 4813 priv->dma_tx_size = tx_size; 4814 4815 if (netif_running(dev)) 4816 ret = stmmac_open(dev); 4817 4818 return ret; 4819 } 4820 4821 /** 4822 * stmmac_dvr_probe 4823 * @device: device pointer 4824 * @plat_dat: platform data pointer 4825 * @res: stmmac resource pointer 4826 * Description: this is the main probe function used to 4827 * call the alloc_etherdev, allocate the priv structure. 4828 * Return: 4829 * returns 0 on success, otherwise errno. 4830 */ 4831 int stmmac_dvr_probe(struct device *device, 4832 struct plat_stmmacenet_data *plat_dat, 4833 struct stmmac_resources *res) 4834 { 4835 struct net_device *ndev = NULL; 4836 struct stmmac_priv *priv; 4837 u32 rxq; 4838 int i, ret = 0; 4839 4840 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 4841 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 4842 if (!ndev) 4843 return -ENOMEM; 4844 4845 SET_NETDEV_DEV(ndev, device); 4846 4847 priv = netdev_priv(ndev); 4848 priv->device = device; 4849 priv->dev = ndev; 4850 4851 stmmac_set_ethtool_ops(ndev); 4852 priv->pause = pause; 4853 priv->plat = plat_dat; 4854 priv->ioaddr = res->addr; 4855 priv->dev->base_addr = (unsigned long)res->addr; 4856 4857 priv->dev->irq = res->irq; 4858 priv->wol_irq = res->wol_irq; 4859 priv->lpi_irq = res->lpi_irq; 4860 4861 if (!IS_ERR_OR_NULL(res->mac)) 4862 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 4863 4864 dev_set_drvdata(device, priv->dev); 4865 4866 /* Verify driver arguments */ 4867 stmmac_verify_args(); 4868 4869 /* Allocate workqueue */ 4870 priv->wq = create_singlethread_workqueue("stmmac_wq"); 4871 if (!priv->wq) { 4872 dev_err(priv->device, "failed to create workqueue\n"); 4873 return -ENOMEM; 4874 } 4875 4876 INIT_WORK(&priv->service_task, stmmac_service_task); 4877 4878 /* Override with kernel parameters if supplied XXX CRS XXX 4879 * this needs to have multiple instances 4880 */ 4881 if ((phyaddr >= 0) && (phyaddr <= 31)) 4882 priv->plat->phy_addr = phyaddr; 4883 4884 if (priv->plat->stmmac_rst) { 4885 ret = reset_control_assert(priv->plat->stmmac_rst); 4886 reset_control_deassert(priv->plat->stmmac_rst); 4887 /* Some reset controllers have only reset callback instead of 4888 * assert + deassert callbacks pair. 4889 */ 4890 if (ret == -ENOTSUPP) 4891 reset_control_reset(priv->plat->stmmac_rst); 4892 } 4893 4894 /* Init MAC and get the capabilities */ 4895 ret = stmmac_hw_init(priv); 4896 if (ret) 4897 goto error_hw_init; 4898 4899 stmmac_check_ether_addr(priv); 4900 4901 ndev->netdev_ops = &stmmac_netdev_ops; 4902 4903 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 4904 NETIF_F_RXCSUM; 4905 4906 ret = stmmac_tc_init(priv, priv); 4907 if (!ret) { 4908 ndev->hw_features |= NETIF_F_HW_TC; 4909 } 4910 4911 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 4912 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 4913 if (priv->plat->has_gmac4) 4914 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 4915 priv->tso = true; 4916 dev_info(priv->device, "TSO feature enabled\n"); 4917 } 4918 4919 if (priv->dma_cap.sphen) { 4920 ndev->hw_features |= NETIF_F_GRO; 4921 priv->sph = true; 4922 dev_info(priv->device, "SPH feature enabled\n"); 4923 } 4924 4925 if (priv->dma_cap.addr64) { 4926 ret = dma_set_mask_and_coherent(device, 4927 DMA_BIT_MASK(priv->dma_cap.addr64)); 4928 if (!ret) { 4929 dev_info(priv->device, "Using %d bits DMA width\n", 4930 priv->dma_cap.addr64); 4931 4932 /* 4933 * If more than 32 bits can be addressed, make sure to 4934 * enable enhanced addressing mode. 4935 */ 4936 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 4937 priv->plat->dma_cfg->eame = true; 4938 } else { 4939 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 4940 if (ret) { 4941 dev_err(priv->device, "Failed to set DMA Mask\n"); 4942 goto error_hw_init; 4943 } 4944 4945 priv->dma_cap.addr64 = 32; 4946 } 4947 } 4948 4949 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 4950 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 4951 #ifdef STMMAC_VLAN_TAG_USED 4952 /* Both mac100 and gmac support receive VLAN tag detection */ 4953 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 4954 if (priv->dma_cap.vlhash) { 4955 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 4956 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 4957 } 4958 if (priv->dma_cap.vlins) { 4959 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 4960 if (priv->dma_cap.dvlan) 4961 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 4962 } 4963 #endif 4964 priv->msg_enable = netif_msg_init(debug, default_msg_level); 4965 4966 /* Initialize RSS */ 4967 rxq = priv->plat->rx_queues_to_use; 4968 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 4969 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 4970 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 4971 4972 if (priv->dma_cap.rssen && priv->plat->rss_en) 4973 ndev->features |= NETIF_F_RXHASH; 4974 4975 /* MTU range: 46 - hw-specific max */ 4976 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 4977 if (priv->plat->has_xgmac) 4978 ndev->max_mtu = XGMAC_JUMBO_LEN; 4979 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 4980 ndev->max_mtu = JUMBO_LEN; 4981 else 4982 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 4983 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 4984 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 4985 */ 4986 if ((priv->plat->maxmtu < ndev->max_mtu) && 4987 (priv->plat->maxmtu >= ndev->min_mtu)) 4988 ndev->max_mtu = priv->plat->maxmtu; 4989 else if (priv->plat->maxmtu < ndev->min_mtu) 4990 dev_warn(priv->device, 4991 "%s: warning: maxmtu having invalid value (%d)\n", 4992 __func__, priv->plat->maxmtu); 4993 4994 if (flow_ctrl) 4995 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 4996 4997 /* Setup channels NAPI */ 4998 stmmac_napi_add(ndev); 4999 5000 mutex_init(&priv->lock); 5001 5002 /* If a specific clk_csr value is passed from the platform 5003 * this means that the CSR Clock Range selection cannot be 5004 * changed at run-time and it is fixed. Viceversa the driver'll try to 5005 * set the MDC clock dynamically according to the csr actual 5006 * clock input. 5007 */ 5008 if (priv->plat->clk_csr >= 0) 5009 priv->clk_csr = priv->plat->clk_csr; 5010 else 5011 stmmac_clk_csr_set(priv); 5012 5013 stmmac_check_pcs_mode(priv); 5014 5015 if (priv->hw->pcs != STMMAC_PCS_TBI && 5016 priv->hw->pcs != STMMAC_PCS_RTBI) { 5017 /* MDIO bus Registration */ 5018 ret = stmmac_mdio_register(ndev); 5019 if (ret < 0) { 5020 dev_err(priv->device, 5021 "%s: MDIO bus (id: %d) registration failed", 5022 __func__, priv->plat->bus_id); 5023 goto error_mdio_register; 5024 } 5025 } 5026 5027 ret = stmmac_phy_setup(priv); 5028 if (ret) { 5029 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 5030 goto error_phy_setup; 5031 } 5032 5033 ret = register_netdev(ndev); 5034 if (ret) { 5035 dev_err(priv->device, "%s: ERROR %i registering the device\n", 5036 __func__, ret); 5037 goto error_netdev_register; 5038 } 5039 5040 if (priv->plat->serdes_powerup) { 5041 ret = priv->plat->serdes_powerup(ndev, 5042 priv->plat->bsp_priv); 5043 5044 if (ret < 0) 5045 goto error_serdes_powerup; 5046 } 5047 5048 #ifdef CONFIG_DEBUG_FS 5049 stmmac_init_fs(ndev); 5050 #endif 5051 5052 return ret; 5053 5054 error_serdes_powerup: 5055 unregister_netdev(ndev); 5056 error_netdev_register: 5057 phylink_destroy(priv->phylink); 5058 error_phy_setup: 5059 if (priv->hw->pcs != STMMAC_PCS_TBI && 5060 priv->hw->pcs != STMMAC_PCS_RTBI) 5061 stmmac_mdio_unregister(ndev); 5062 error_mdio_register: 5063 stmmac_napi_del(ndev); 5064 error_hw_init: 5065 destroy_workqueue(priv->wq); 5066 5067 return ret; 5068 } 5069 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 5070 5071 /** 5072 * stmmac_dvr_remove 5073 * @dev: device pointer 5074 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 5075 * changes the link status, releases the DMA descriptor rings. 5076 */ 5077 int stmmac_dvr_remove(struct device *dev) 5078 { 5079 struct net_device *ndev = dev_get_drvdata(dev); 5080 struct stmmac_priv *priv = netdev_priv(ndev); 5081 5082 netdev_info(priv->dev, "%s: removing driver", __func__); 5083 5084 stmmac_stop_all_dma(priv); 5085 5086 if (priv->plat->serdes_powerdown) 5087 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 5088 5089 stmmac_mac_set(priv, priv->ioaddr, false); 5090 netif_carrier_off(ndev); 5091 unregister_netdev(ndev); 5092 #ifdef CONFIG_DEBUG_FS 5093 stmmac_exit_fs(ndev); 5094 #endif 5095 phylink_destroy(priv->phylink); 5096 if (priv->plat->stmmac_rst) 5097 reset_control_assert(priv->plat->stmmac_rst); 5098 clk_disable_unprepare(priv->plat->pclk); 5099 clk_disable_unprepare(priv->plat->stmmac_clk); 5100 if (priv->hw->pcs != STMMAC_PCS_TBI && 5101 priv->hw->pcs != STMMAC_PCS_RTBI) 5102 stmmac_mdio_unregister(ndev); 5103 destroy_workqueue(priv->wq); 5104 mutex_destroy(&priv->lock); 5105 5106 return 0; 5107 } 5108 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 5109 5110 /** 5111 * stmmac_suspend - suspend callback 5112 * @dev: device pointer 5113 * Description: this is the function to suspend the device and it is called 5114 * by the platform driver to stop the network queue, release the resources, 5115 * program the PMT register (for WoL), clean and release driver resources. 5116 */ 5117 int stmmac_suspend(struct device *dev) 5118 { 5119 struct net_device *ndev = dev_get_drvdata(dev); 5120 struct stmmac_priv *priv = netdev_priv(ndev); 5121 u32 chan; 5122 5123 if (!ndev || !netif_running(ndev)) 5124 return 0; 5125 5126 phylink_mac_change(priv->phylink, false); 5127 5128 mutex_lock(&priv->lock); 5129 5130 netif_device_detach(ndev); 5131 5132 stmmac_disable_all_queues(priv); 5133 5134 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 5135 del_timer_sync(&priv->tx_queue[chan].txtimer); 5136 5137 /* Stop TX/RX DMA */ 5138 stmmac_stop_all_dma(priv); 5139 5140 if (priv->plat->serdes_powerdown) 5141 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 5142 5143 /* Enable Power down mode by programming the PMT regs */ 5144 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 5145 stmmac_pmt(priv, priv->hw, priv->wolopts); 5146 priv->irq_wake = 1; 5147 } else { 5148 mutex_unlock(&priv->lock); 5149 rtnl_lock(); 5150 if (device_may_wakeup(priv->device)) 5151 phylink_speed_down(priv->phylink, false); 5152 phylink_stop(priv->phylink); 5153 rtnl_unlock(); 5154 mutex_lock(&priv->lock); 5155 5156 stmmac_mac_set(priv, priv->ioaddr, false); 5157 pinctrl_pm_select_sleep_state(priv->device); 5158 /* Disable clock in case of PWM is off */ 5159 clk_disable_unprepare(priv->plat->clk_ptp_ref); 5160 clk_disable_unprepare(priv->plat->pclk); 5161 clk_disable_unprepare(priv->plat->stmmac_clk); 5162 } 5163 mutex_unlock(&priv->lock); 5164 5165 priv->speed = SPEED_UNKNOWN; 5166 return 0; 5167 } 5168 EXPORT_SYMBOL_GPL(stmmac_suspend); 5169 5170 /** 5171 * stmmac_reset_queues_param - reset queue parameters 5172 * @priv: device pointer 5173 */ 5174 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 5175 { 5176 u32 rx_cnt = priv->plat->rx_queues_to_use; 5177 u32 tx_cnt = priv->plat->tx_queues_to_use; 5178 u32 queue; 5179 5180 for (queue = 0; queue < rx_cnt; queue++) { 5181 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5182 5183 rx_q->cur_rx = 0; 5184 rx_q->dirty_rx = 0; 5185 } 5186 5187 for (queue = 0; queue < tx_cnt; queue++) { 5188 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5189 5190 tx_q->cur_tx = 0; 5191 tx_q->dirty_tx = 0; 5192 tx_q->mss = 0; 5193 } 5194 } 5195 5196 /** 5197 * stmmac_resume - resume callback 5198 * @dev: device pointer 5199 * Description: when resume this function is invoked to setup the DMA and CORE 5200 * in a usable state. 5201 */ 5202 int stmmac_resume(struct device *dev) 5203 { 5204 struct net_device *ndev = dev_get_drvdata(dev); 5205 struct stmmac_priv *priv = netdev_priv(ndev); 5206 int ret; 5207 5208 if (!netif_running(ndev)) 5209 return 0; 5210 5211 /* Power Down bit, into the PM register, is cleared 5212 * automatically as soon as a magic packet or a Wake-up frame 5213 * is received. Anyway, it's better to manually clear 5214 * this bit because it can generate problems while resuming 5215 * from another devices (e.g. serial console). 5216 */ 5217 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 5218 mutex_lock(&priv->lock); 5219 stmmac_pmt(priv, priv->hw, 0); 5220 mutex_unlock(&priv->lock); 5221 priv->irq_wake = 0; 5222 } else { 5223 pinctrl_pm_select_default_state(priv->device); 5224 /* enable the clk previously disabled */ 5225 clk_prepare_enable(priv->plat->stmmac_clk); 5226 clk_prepare_enable(priv->plat->pclk); 5227 if (priv->plat->clk_ptp_ref) 5228 clk_prepare_enable(priv->plat->clk_ptp_ref); 5229 /* reset the phy so that it's ready */ 5230 if (priv->mii) 5231 stmmac_mdio_reset(priv->mii); 5232 } 5233 5234 if (priv->plat->serdes_powerup) { 5235 ret = priv->plat->serdes_powerup(ndev, 5236 priv->plat->bsp_priv); 5237 5238 if (ret < 0) 5239 return ret; 5240 } 5241 5242 mutex_lock(&priv->lock); 5243 5244 stmmac_reset_queues_param(priv); 5245 5246 stmmac_clear_descriptors(priv); 5247 5248 stmmac_hw_setup(ndev, false); 5249 stmmac_init_coalesce(priv); 5250 stmmac_set_rx_mode(ndev); 5251 5252 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 5253 5254 stmmac_enable_all_queues(priv); 5255 5256 mutex_unlock(&priv->lock); 5257 5258 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) { 5259 rtnl_lock(); 5260 phylink_start(priv->phylink); 5261 /* We may have called phylink_speed_down before */ 5262 phylink_speed_up(priv->phylink); 5263 rtnl_unlock(); 5264 } 5265 5266 phylink_mac_change(priv->phylink, true); 5267 5268 netif_device_attach(ndev); 5269 5270 return 0; 5271 } 5272 EXPORT_SYMBOL_GPL(stmmac_resume); 5273 5274 #ifndef MODULE 5275 static int __init stmmac_cmdline_opt(char *str) 5276 { 5277 char *opt; 5278 5279 if (!str || !*str) 5280 return -EINVAL; 5281 while ((opt = strsep(&str, ",")) != NULL) { 5282 if (!strncmp(opt, "debug:", 6)) { 5283 if (kstrtoint(opt + 6, 0, &debug)) 5284 goto err; 5285 } else if (!strncmp(opt, "phyaddr:", 8)) { 5286 if (kstrtoint(opt + 8, 0, &phyaddr)) 5287 goto err; 5288 } else if (!strncmp(opt, "buf_sz:", 7)) { 5289 if (kstrtoint(opt + 7, 0, &buf_sz)) 5290 goto err; 5291 } else if (!strncmp(opt, "tc:", 3)) { 5292 if (kstrtoint(opt + 3, 0, &tc)) 5293 goto err; 5294 } else if (!strncmp(opt, "watchdog:", 9)) { 5295 if (kstrtoint(opt + 9, 0, &watchdog)) 5296 goto err; 5297 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 5298 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 5299 goto err; 5300 } else if (!strncmp(opt, "pause:", 6)) { 5301 if (kstrtoint(opt + 6, 0, &pause)) 5302 goto err; 5303 } else if (!strncmp(opt, "eee_timer:", 10)) { 5304 if (kstrtoint(opt + 10, 0, &eee_timer)) 5305 goto err; 5306 } else if (!strncmp(opt, "chain_mode:", 11)) { 5307 if (kstrtoint(opt + 11, 0, &chain_mode)) 5308 goto err; 5309 } 5310 } 5311 return 0; 5312 5313 err: 5314 pr_err("%s: ERROR broken module parameter conversion", __func__); 5315 return -EINVAL; 5316 } 5317 5318 __setup("stmmaceth=", stmmac_cmdline_opt); 5319 #endif /* MODULE */ 5320 5321 static int __init stmmac_init(void) 5322 { 5323 #ifdef CONFIG_DEBUG_FS 5324 /* Create debugfs main directory if it doesn't exist yet */ 5325 if (!stmmac_fs_dir) 5326 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 5327 register_netdevice_notifier(&stmmac_notifier); 5328 #endif 5329 5330 return 0; 5331 } 5332 5333 static void __exit stmmac_exit(void) 5334 { 5335 #ifdef CONFIG_DEBUG_FS 5336 unregister_netdevice_notifier(&stmmac_notifier); 5337 debugfs_remove_recursive(stmmac_fs_dir); 5338 #endif 5339 } 5340 5341 module_init(stmmac_init) 5342 module_exit(stmmac_exit) 5343 5344 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 5345 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 5346 MODULE_LICENSE("GPL"); 5347