1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
55 
56 /* Module parameters */
57 #define TX_TIMEO	5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61 
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65 
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69 
70 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
72 
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX	256
75 #define STMMAC_TX_XSK_AVAIL		16
76 #define STMMAC_RX_FILL_BATCH		16
77 
78 #define STMMAC_XDP_PASS		0
79 #define STMMAC_XDP_CONSUMED	BIT(0)
80 #define STMMAC_XDP_TX		BIT(1)
81 #define STMMAC_XDP_REDIRECT	BIT(2)
82 
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86 
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90 
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95 
96 #define	DEFAULT_BUFSIZE	1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100 
101 #define	STMMAC_RX_COPYBREAK	256
102 
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
105 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106 
107 #define STMMAC_DEFAULT_LPI_TIMER	1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112 
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119 
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128 
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134 
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136 
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139 	int ret = 0;
140 
141 	if (enabled) {
142 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
143 		if (ret)
144 			return ret;
145 		ret = clk_prepare_enable(priv->plat->pclk);
146 		if (ret) {
147 			clk_disable_unprepare(priv->plat->stmmac_clk);
148 			return ret;
149 		}
150 		if (priv->plat->clks_config) {
151 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152 			if (ret) {
153 				clk_disable_unprepare(priv->plat->stmmac_clk);
154 				clk_disable_unprepare(priv->plat->pclk);
155 				return ret;
156 			}
157 		}
158 	} else {
159 		clk_disable_unprepare(priv->plat->stmmac_clk);
160 		clk_disable_unprepare(priv->plat->pclk);
161 		if (priv->plat->clks_config)
162 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163 	}
164 
165 	return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168 
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176 	if (unlikely(watchdog < 0))
177 		watchdog = TX_TIMEO;
178 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179 		buf_sz = DEFAULT_BUFSIZE;
180 	if (unlikely(flow_ctrl > 1))
181 		flow_ctrl = FLOW_AUTO;
182 	else if (likely(flow_ctrl < 0))
183 		flow_ctrl = FLOW_OFF;
184 	if (unlikely((pause < 0) || (pause > 0xffff)))
185 		pause = PAUSE_TIME;
186 	if (eee_timer < 0)
187 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189 
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195 	u32 queue;
196 
197 	for (queue = 0; queue < maxq; queue++) {
198 		struct stmmac_channel *ch = &priv->channel[queue];
199 
200 		if (stmmac_xdp_is_enabled(priv) &&
201 		    test_bit(queue, priv->af_xdp_zc_qps)) {
202 			napi_disable(&ch->rxtx_napi);
203 			continue;
204 		}
205 
206 		if (queue < rx_queues_cnt)
207 			napi_disable(&ch->rx_napi);
208 		if (queue < tx_queues_cnt)
209 			napi_disable(&ch->tx_napi);
210 	}
211 }
212 
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220 	struct stmmac_rx_queue *rx_q;
221 	u32 queue;
222 
223 	/* synchronize_rcu() needed for pending XDP buffers to drain */
224 	for (queue = 0; queue < rx_queues_cnt; queue++) {
225 		rx_q = &priv->rx_queue[queue];
226 		if (rx_q->xsk_pool) {
227 			synchronize_rcu();
228 			break;
229 		}
230 	}
231 
232 	__stmmac_disable_all_queues(priv);
233 }
234 
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244 	u32 queue;
245 
246 	for (queue = 0; queue < maxq; queue++) {
247 		struct stmmac_channel *ch = &priv->channel[queue];
248 
249 		if (stmmac_xdp_is_enabled(priv) &&
250 		    test_bit(queue, priv->af_xdp_zc_qps)) {
251 			napi_enable(&ch->rxtx_napi);
252 			continue;
253 		}
254 
255 		if (queue < rx_queues_cnt)
256 			napi_enable(&ch->rx_napi);
257 		if (queue < tx_queues_cnt)
258 			napi_enable(&ch->tx_napi);
259 	}
260 }
261 
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
265 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266 		queue_work(priv->wq, &priv->service_task);
267 }
268 
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271 	netif_carrier_off(priv->dev);
272 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273 	stmmac_service_event_schedule(priv);
274 }
275 
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *	If a specific clk_csr value is passed from the platform
283  *	this means that the CSR Clock Range selection cannot be
284  *	changed at run-time and it is fixed (as reported in the driver
285  *	documentation). Viceversa the driver will try to set the MDC
286  *	clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290 	u32 clk_rate;
291 
292 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293 
294 	/* Platform provided default clk_csr would be assumed valid
295 	 * for all other cases except for the below mentioned ones.
296 	 * For values higher than the IEEE 802.3 specified frequency
297 	 * we can not estimate the proper divider as it is not known
298 	 * the frequency of clk_csr_i. So we do not change the default
299 	 * divider.
300 	 */
301 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302 		if (clk_rate < CSR_F_35M)
303 			priv->clk_csr = STMMAC_CSR_20_35M;
304 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305 			priv->clk_csr = STMMAC_CSR_35_60M;
306 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307 			priv->clk_csr = STMMAC_CSR_60_100M;
308 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309 			priv->clk_csr = STMMAC_CSR_100_150M;
310 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311 			priv->clk_csr = STMMAC_CSR_150_250M;
312 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313 			priv->clk_csr = STMMAC_CSR_250_300M;
314 	}
315 
316 	if (priv->plat->has_sun8i) {
317 		if (clk_rate > 160000000)
318 			priv->clk_csr = 0x03;
319 		else if (clk_rate > 80000000)
320 			priv->clk_csr = 0x02;
321 		else if (clk_rate > 40000000)
322 			priv->clk_csr = 0x01;
323 		else
324 			priv->clk_csr = 0;
325 	}
326 
327 	if (priv->plat->has_xgmac) {
328 		if (clk_rate > 400000000)
329 			priv->clk_csr = 0x5;
330 		else if (clk_rate > 350000000)
331 			priv->clk_csr = 0x4;
332 		else if (clk_rate > 300000000)
333 			priv->clk_csr = 0x3;
334 		else if (clk_rate > 250000000)
335 			priv->clk_csr = 0x2;
336 		else if (clk_rate > 150000000)
337 			priv->clk_csr = 0x1;
338 		else
339 			priv->clk_csr = 0x0;
340 	}
341 }
342 
343 static void print_pkt(unsigned char *buf, int len)
344 {
345 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348 
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352 	u32 avail;
353 
354 	if (tx_q->dirty_tx > tx_q->cur_tx)
355 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356 	else
357 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358 
359 	return avail;
360 }
361 
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370 	u32 dirty;
371 
372 	if (rx_q->dirty_rx <= rx_q->cur_rx)
373 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
374 	else
375 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376 
377 	return dirty;
378 }
379 
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382 	int tx_lpi_timer;
383 
384 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
385 	priv->eee_sw_timer_en = en ? 0 : 1;
386 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389 
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398 	u32 tx_cnt = priv->plat->tx_queues_to_use;
399 	u32 queue;
400 
401 	/* check if all TX queues have the work finished */
402 	for (queue = 0; queue < tx_cnt; queue++) {
403 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404 
405 		if (tx_q->dirty_tx != tx_q->cur_tx)
406 			return; /* still unfinished work */
407 	}
408 
409 	/* Check and enter in LPI mode */
410 	if (!priv->tx_path_in_lpi_mode)
411 		stmmac_set_eee_mode(priv, priv->hw,
412 				priv->plat->en_tx_lpi_clockgating);
413 }
414 
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423 	if (!priv->eee_sw_timer_en) {
424 		stmmac_lpi_entry_timer_config(priv, 0);
425 		return;
426 	}
427 
428 	stmmac_reset_eee_mode(priv, priv->hw);
429 	del_timer_sync(&priv->eee_ctrl_timer);
430 	priv->tx_path_in_lpi_mode = false;
431 }
432 
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443 
444 	stmmac_enable_eee_mode(priv);
445 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447 
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458 	int eee_tw_timer = priv->eee_tw_timer;
459 
460 	/* Using PCS we cannot dial with the phy registers at this stage
461 	 * so we do not support extra feature like EEE.
462 	 */
463 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
464 	    priv->hw->pcs == STMMAC_PCS_RTBI)
465 		return false;
466 
467 	/* Check if MAC core supports the EEE feature. */
468 	if (!priv->dma_cap.eee)
469 		return false;
470 
471 	mutex_lock(&priv->lock);
472 
473 	/* Check if it needs to be deactivated */
474 	if (!priv->eee_active) {
475 		if (priv->eee_enabled) {
476 			netdev_dbg(priv->dev, "disable EEE\n");
477 			stmmac_lpi_entry_timer_config(priv, 0);
478 			del_timer_sync(&priv->eee_ctrl_timer);
479 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480 		}
481 		mutex_unlock(&priv->lock);
482 		return false;
483 	}
484 
485 	if (priv->eee_active && !priv->eee_enabled) {
486 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
487 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488 				     eee_tw_timer);
489 	}
490 
491 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
492 		del_timer_sync(&priv->eee_ctrl_timer);
493 		priv->tx_path_in_lpi_mode = false;
494 		stmmac_lpi_entry_timer_config(priv, 1);
495 	} else {
496 		stmmac_lpi_entry_timer_config(priv, 0);
497 		mod_timer(&priv->eee_ctrl_timer,
498 			  STMMAC_LPI_T(priv->tx_lpi_timer));
499 	}
500 
501 	mutex_unlock(&priv->lock);
502 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
503 	return true;
504 }
505 
506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
507  * @priv: driver private structure
508  * @p : descriptor pointer
509  * @skb : the socket buffer
510  * Description :
511  * This function will read timestamp from the descriptor & pass it to stack.
512  * and also perform some sanity checks.
513  */
514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515 				   struct dma_desc *p, struct sk_buff *skb)
516 {
517 	struct skb_shared_hwtstamps shhwtstamp;
518 	bool found = false;
519 	s64 adjust = 0;
520 	u64 ns = 0;
521 
522 	if (!priv->hwts_tx_en)
523 		return;
524 
525 	/* exit if skb doesn't support hw tstamp */
526 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527 		return;
528 
529 	/* check tx tstamp status */
530 	if (stmmac_get_tx_timestamp_status(priv, p)) {
531 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532 		found = true;
533 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
534 		found = true;
535 	}
536 
537 	if (found) {
538 		/* Correct the clk domain crossing(CDC) error */
539 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
540 			adjust += -(2 * (NSEC_PER_SEC /
541 					 priv->plat->clk_ptp_rate));
542 			ns += adjust;
543 		}
544 
545 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
546 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
547 
548 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549 		/* pass tstamp to stack */
550 		skb_tstamp_tx(skb, &shhwtstamp);
551 	}
552 }
553 
554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
555  * @priv: driver private structure
556  * @p : descriptor pointer
557  * @np : next descriptor pointer
558  * @skb : the socket buffer
559  * Description :
560  * This function will read received packet's timestamp from the descriptor
561  * and pass it to stack. It also perform some sanity checks.
562  */
563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
564 				   struct dma_desc *np, struct sk_buff *skb)
565 {
566 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
567 	struct dma_desc *desc = p;
568 	u64 adjust = 0;
569 	u64 ns = 0;
570 
571 	if (!priv->hwts_rx_en)
572 		return;
573 	/* For GMAC4, the valid timestamp is from CTX next desc. */
574 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575 		desc = np;
576 
577 	/* Check if timestamp is available */
578 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
579 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580 
581 		/* Correct the clk domain crossing(CDC) error */
582 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
583 			adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
584 			ns -= adjust;
585 		}
586 
587 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588 		shhwtstamp = skb_hwtstamps(skb);
589 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
590 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
591 	} else  {
592 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593 	}
594 }
595 
596 /**
597  *  stmmac_hwtstamp_set - control hardware timestamping.
598  *  @dev: device pointer.
599  *  @ifr: An IOCTL specific structure, that can contain a pointer to
600  *  a proprietary structure used to pass information to the driver.
601  *  Description:
602  *  This function configures the MAC to enable/disable both outgoing(TX)
603  *  and incoming(RX) packets time stamping based on user input.
604  *  Return Value:
605  *  0 on success and an appropriate -ve integer on failure.
606  */
607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 {
609 	struct stmmac_priv *priv = netdev_priv(dev);
610 	struct hwtstamp_config config;
611 	struct timespec64 now;
612 	u64 temp = 0;
613 	u32 ptp_v2 = 0;
614 	u32 tstamp_all = 0;
615 	u32 ptp_over_ipv4_udp = 0;
616 	u32 ptp_over_ipv6_udp = 0;
617 	u32 ptp_over_ethernet = 0;
618 	u32 snap_type_sel = 0;
619 	u32 ts_master_en = 0;
620 	u32 ts_event_en = 0;
621 	u32 sec_inc = 0;
622 	u32 value = 0;
623 	bool xmac;
624 
625 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	/* reserved for future extensions */
643 	if (config.flags)
644 		return -EINVAL;
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id != DWMAC_CORE_5_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789 	else {
790 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
791 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
792 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
793 			 ts_master_en | snap_type_sel);
794 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795 
796 		/* program Sub Second Increment reg */
797 		stmmac_config_sub_second_increment(priv,
798 				priv->ptpaddr, priv->plat->clk_ptp_rate,
799 				xmac, &sec_inc);
800 		temp = div_u64(1000000000ULL, sec_inc);
801 
802 		/* Store sub second increment and flags for later use */
803 		priv->sub_second_inc = sec_inc;
804 		priv->systime_flags = value;
805 
806 		/* calculate default added value:
807 		 * formula is :
808 		 * addend = (2^32)/freq_div_ratio;
809 		 * where, freq_div_ratio = 1e9ns/sec_inc
810 		 */
811 		temp = (u64)(temp << 32);
812 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814 
815 		/* initialize system time */
816 		ktime_get_real_ts64(&now);
817 
818 		/* lower 32 bits of tv_sec are safe until y2106 */
819 		stmmac_init_systime(priv, priv->ptpaddr,
820 				(u32)now.tv_sec, now.tv_nsec);
821 	}
822 
823 	memcpy(&priv->tstamp_config, &config, sizeof(config));
824 
825 	return copy_to_user(ifr->ifr_data, &config,
826 			    sizeof(config)) ? -EFAULT : 0;
827 }
828 
829 /**
830  *  stmmac_hwtstamp_get - read hardware timestamping.
831  *  @dev: device pointer.
832  *  @ifr: An IOCTL specific structure, that can contain a pointer to
833  *  a proprietary structure used to pass information to the driver.
834  *  Description:
835  *  This function obtain the current hardware timestamping settings
836  *  as requested.
837  */
838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct hwtstamp_config *config = &priv->tstamp_config;
842 
843 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844 		return -EOPNOTSUPP;
845 
846 	return copy_to_user(ifr->ifr_data, config,
847 			    sizeof(*config)) ? -EFAULT : 0;
848 }
849 
850 /**
851  * stmmac_init_ptp - init PTP
852  * @priv: driver private structure
853  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854  * This is done by looking at the HW cap. register.
855  * This function also registers the ptp driver.
856  */
857 static int stmmac_init_ptp(struct stmmac_priv *priv)
858 {
859 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
860 
861 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
862 		return -EOPNOTSUPP;
863 
864 	priv->adv_ts = 0;
865 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
866 	if (xmac && priv->dma_cap.atime_stamp)
867 		priv->adv_ts = 1;
868 	/* Dwmac 3.x core with extend_desc can support adv_ts */
869 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870 		priv->adv_ts = 1;
871 
872 	if (priv->dma_cap.time_stamp)
873 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874 
875 	if (priv->adv_ts)
876 		netdev_info(priv->dev,
877 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
878 
879 	priv->hwts_tx_en = 0;
880 	priv->hwts_rx_en = 0;
881 
882 	stmmac_ptp_register(priv);
883 
884 	return 0;
885 }
886 
887 static void stmmac_release_ptp(struct stmmac_priv *priv)
888 {
889 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
890 	stmmac_ptp_unregister(priv);
891 }
892 
893 /**
894  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
895  *  @priv: driver private structure
896  *  @duplex: duplex passed to the next function
897  *  Description: It is used for configuring the flow control in all queues
898  */
899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
900 {
901 	u32 tx_cnt = priv->plat->tx_queues_to_use;
902 
903 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
904 			priv->pause, tx_cnt);
905 }
906 
907 static void stmmac_validate(struct phylink_config *config,
908 			    unsigned long *supported,
909 			    struct phylink_link_state *state)
910 {
911 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
914 	int tx_cnt = priv->plat->tx_queues_to_use;
915 	int max_speed = priv->plat->max_speed;
916 
917 	phylink_set(mac_supported, 10baseT_Half);
918 	phylink_set(mac_supported, 10baseT_Full);
919 	phylink_set(mac_supported, 100baseT_Half);
920 	phylink_set(mac_supported, 100baseT_Full);
921 	phylink_set(mac_supported, 1000baseT_Half);
922 	phylink_set(mac_supported, 1000baseT_Full);
923 	phylink_set(mac_supported, 1000baseKX_Full);
924 
925 	phylink_set(mac_supported, Autoneg);
926 	phylink_set(mac_supported, Pause);
927 	phylink_set(mac_supported, Asym_Pause);
928 	phylink_set_port_modes(mac_supported);
929 
930 	/* Cut down 1G if asked to */
931 	if ((max_speed > 0) && (max_speed < 1000)) {
932 		phylink_set(mask, 1000baseT_Full);
933 		phylink_set(mask, 1000baseX_Full);
934 	} else if (priv->plat->has_gmac4) {
935 		if (!max_speed || max_speed >= 2500) {
936 			phylink_set(mac_supported, 2500baseT_Full);
937 			phylink_set(mac_supported, 2500baseX_Full);
938 		}
939 	} else if (priv->plat->has_xgmac) {
940 		if (!max_speed || (max_speed >= 2500)) {
941 			phylink_set(mac_supported, 2500baseT_Full);
942 			phylink_set(mac_supported, 2500baseX_Full);
943 		}
944 		if (!max_speed || (max_speed >= 5000)) {
945 			phylink_set(mac_supported, 5000baseT_Full);
946 		}
947 		if (!max_speed || (max_speed >= 10000)) {
948 			phylink_set(mac_supported, 10000baseSR_Full);
949 			phylink_set(mac_supported, 10000baseLR_Full);
950 			phylink_set(mac_supported, 10000baseER_Full);
951 			phylink_set(mac_supported, 10000baseLRM_Full);
952 			phylink_set(mac_supported, 10000baseT_Full);
953 			phylink_set(mac_supported, 10000baseKX4_Full);
954 			phylink_set(mac_supported, 10000baseKR_Full);
955 		}
956 		if (!max_speed || (max_speed >= 25000)) {
957 			phylink_set(mac_supported, 25000baseCR_Full);
958 			phylink_set(mac_supported, 25000baseKR_Full);
959 			phylink_set(mac_supported, 25000baseSR_Full);
960 		}
961 		if (!max_speed || (max_speed >= 40000)) {
962 			phylink_set(mac_supported, 40000baseKR4_Full);
963 			phylink_set(mac_supported, 40000baseCR4_Full);
964 			phylink_set(mac_supported, 40000baseSR4_Full);
965 			phylink_set(mac_supported, 40000baseLR4_Full);
966 		}
967 		if (!max_speed || (max_speed >= 50000)) {
968 			phylink_set(mac_supported, 50000baseCR2_Full);
969 			phylink_set(mac_supported, 50000baseKR2_Full);
970 			phylink_set(mac_supported, 50000baseSR2_Full);
971 			phylink_set(mac_supported, 50000baseKR_Full);
972 			phylink_set(mac_supported, 50000baseSR_Full);
973 			phylink_set(mac_supported, 50000baseCR_Full);
974 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
975 			phylink_set(mac_supported, 50000baseDR_Full);
976 		}
977 		if (!max_speed || (max_speed >= 100000)) {
978 			phylink_set(mac_supported, 100000baseKR4_Full);
979 			phylink_set(mac_supported, 100000baseSR4_Full);
980 			phylink_set(mac_supported, 100000baseCR4_Full);
981 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
982 			phylink_set(mac_supported, 100000baseKR2_Full);
983 			phylink_set(mac_supported, 100000baseSR2_Full);
984 			phylink_set(mac_supported, 100000baseCR2_Full);
985 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
986 			phylink_set(mac_supported, 100000baseDR2_Full);
987 		}
988 	}
989 
990 	/* Half-Duplex can only work with single queue */
991 	if (tx_cnt > 1) {
992 		phylink_set(mask, 10baseT_Half);
993 		phylink_set(mask, 100baseT_Half);
994 		phylink_set(mask, 1000baseT_Half);
995 	}
996 
997 	linkmode_and(supported, supported, mac_supported);
998 	linkmode_andnot(supported, supported, mask);
999 
1000 	linkmode_and(state->advertising, state->advertising, mac_supported);
1001 	linkmode_andnot(state->advertising, state->advertising, mask);
1002 
1003 	/* If PCS is supported, check which modes it supports. */
1004 	if (priv->hw->xpcs)
1005 		xpcs_validate(priv->hw->xpcs, supported, state);
1006 }
1007 
1008 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1009 			      const struct phylink_link_state *state)
1010 {
1011 	/* Nothing to do, xpcs_config() handles everything */
1012 }
1013 
1014 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1015 {
1016 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1017 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1018 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1019 	bool *hs_enable = &fpe_cfg->hs_enable;
1020 
1021 	if (is_up && *hs_enable) {
1022 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1023 	} else {
1024 		*lo_state = FPE_STATE_OFF;
1025 		*lp_state = FPE_STATE_OFF;
1026 	}
1027 }
1028 
1029 static void stmmac_mac_link_down(struct phylink_config *config,
1030 				 unsigned int mode, phy_interface_t interface)
1031 {
1032 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1033 
1034 	stmmac_mac_set(priv, priv->ioaddr, false);
1035 	priv->eee_active = false;
1036 	priv->tx_lpi_enabled = false;
1037 	stmmac_eee_init(priv);
1038 	stmmac_set_eee_pls(priv, priv->hw, false);
1039 
1040 	if (priv->dma_cap.fpesel)
1041 		stmmac_fpe_link_state_handle(priv, false);
1042 }
1043 
1044 static void stmmac_mac_link_up(struct phylink_config *config,
1045 			       struct phy_device *phy,
1046 			       unsigned int mode, phy_interface_t interface,
1047 			       int speed, int duplex,
1048 			       bool tx_pause, bool rx_pause)
1049 {
1050 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1051 	u32 ctrl;
1052 
1053 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1054 	ctrl &= ~priv->hw->link.speed_mask;
1055 
1056 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1057 		switch (speed) {
1058 		case SPEED_10000:
1059 			ctrl |= priv->hw->link.xgmii.speed10000;
1060 			break;
1061 		case SPEED_5000:
1062 			ctrl |= priv->hw->link.xgmii.speed5000;
1063 			break;
1064 		case SPEED_2500:
1065 			ctrl |= priv->hw->link.xgmii.speed2500;
1066 			break;
1067 		default:
1068 			return;
1069 		}
1070 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1071 		switch (speed) {
1072 		case SPEED_100000:
1073 			ctrl |= priv->hw->link.xlgmii.speed100000;
1074 			break;
1075 		case SPEED_50000:
1076 			ctrl |= priv->hw->link.xlgmii.speed50000;
1077 			break;
1078 		case SPEED_40000:
1079 			ctrl |= priv->hw->link.xlgmii.speed40000;
1080 			break;
1081 		case SPEED_25000:
1082 			ctrl |= priv->hw->link.xlgmii.speed25000;
1083 			break;
1084 		case SPEED_10000:
1085 			ctrl |= priv->hw->link.xgmii.speed10000;
1086 			break;
1087 		case SPEED_2500:
1088 			ctrl |= priv->hw->link.speed2500;
1089 			break;
1090 		case SPEED_1000:
1091 			ctrl |= priv->hw->link.speed1000;
1092 			break;
1093 		default:
1094 			return;
1095 		}
1096 	} else {
1097 		switch (speed) {
1098 		case SPEED_2500:
1099 			ctrl |= priv->hw->link.speed2500;
1100 			break;
1101 		case SPEED_1000:
1102 			ctrl |= priv->hw->link.speed1000;
1103 			break;
1104 		case SPEED_100:
1105 			ctrl |= priv->hw->link.speed100;
1106 			break;
1107 		case SPEED_10:
1108 			ctrl |= priv->hw->link.speed10;
1109 			break;
1110 		default:
1111 			return;
1112 		}
1113 	}
1114 
1115 	priv->speed = speed;
1116 
1117 	if (priv->plat->fix_mac_speed)
1118 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1119 
1120 	if (!duplex)
1121 		ctrl &= ~priv->hw->link.duplex;
1122 	else
1123 		ctrl |= priv->hw->link.duplex;
1124 
1125 	/* Flow Control operation */
1126 	if (tx_pause && rx_pause)
1127 		stmmac_mac_flow_ctrl(priv, duplex);
1128 
1129 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1130 
1131 	stmmac_mac_set(priv, priv->ioaddr, true);
1132 	if (phy && priv->dma_cap.eee) {
1133 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1134 		priv->eee_enabled = stmmac_eee_init(priv);
1135 		priv->tx_lpi_enabled = priv->eee_enabled;
1136 		stmmac_set_eee_pls(priv, priv->hw, true);
1137 	}
1138 
1139 	if (priv->dma_cap.fpesel)
1140 		stmmac_fpe_link_state_handle(priv, true);
1141 }
1142 
1143 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1144 	.validate = stmmac_validate,
1145 	.mac_config = stmmac_mac_config,
1146 	.mac_link_down = stmmac_mac_link_down,
1147 	.mac_link_up = stmmac_mac_link_up,
1148 };
1149 
1150 /**
1151  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1152  * @priv: driver private structure
1153  * Description: this is to verify if the HW supports the PCS.
1154  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1155  * configured for the TBI, RTBI, or SGMII PHY interface.
1156  */
1157 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1158 {
1159 	int interface = priv->plat->interface;
1160 
1161 	if (priv->dma_cap.pcs) {
1162 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1163 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1164 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1165 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1166 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1167 			priv->hw->pcs = STMMAC_PCS_RGMII;
1168 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1169 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1170 			priv->hw->pcs = STMMAC_PCS_SGMII;
1171 		}
1172 	}
1173 }
1174 
1175 /**
1176  * stmmac_init_phy - PHY initialization
1177  * @dev: net device structure
1178  * Description: it initializes the driver's PHY state, and attaches the PHY
1179  * to the mac driver.
1180  *  Return value:
1181  *  0 on success
1182  */
1183 static int stmmac_init_phy(struct net_device *dev)
1184 {
1185 	struct stmmac_priv *priv = netdev_priv(dev);
1186 	struct device_node *node;
1187 	int ret;
1188 
1189 	node = priv->plat->phylink_node;
1190 
1191 	if (node)
1192 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1193 
1194 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1195 	 * manually parse it
1196 	 */
1197 	if (!node || ret) {
1198 		int addr = priv->plat->phy_addr;
1199 		struct phy_device *phydev;
1200 
1201 		phydev = mdiobus_get_phy(priv->mii, addr);
1202 		if (!phydev) {
1203 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1204 			return -ENODEV;
1205 		}
1206 
1207 		ret = phylink_connect_phy(priv->phylink, phydev);
1208 	}
1209 
1210 	if (!priv->plat->pmt) {
1211 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1212 
1213 		phylink_ethtool_get_wol(priv->phylink, &wol);
1214 		device_set_wakeup_capable(priv->device, !!wol.supported);
1215 	}
1216 
1217 	return ret;
1218 }
1219 
1220 static int stmmac_phy_setup(struct stmmac_priv *priv)
1221 {
1222 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1223 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1224 	int mode = priv->plat->phy_interface;
1225 	struct phylink *phylink;
1226 
1227 	priv->phylink_config.dev = &priv->dev->dev;
1228 	priv->phylink_config.type = PHYLINK_NETDEV;
1229 	priv->phylink_config.pcs_poll = true;
1230 	if (priv->plat->mdio_bus_data)
1231 		priv->phylink_config.ovr_an_inband =
1232 			mdio_bus_data->xpcs_an_inband;
1233 
1234 	if (!fwnode)
1235 		fwnode = dev_fwnode(priv->device);
1236 
1237 	phylink = phylink_create(&priv->phylink_config, fwnode,
1238 				 mode, &stmmac_phylink_mac_ops);
1239 	if (IS_ERR(phylink))
1240 		return PTR_ERR(phylink);
1241 
1242 	if (priv->hw->xpcs)
1243 		phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1244 
1245 	priv->phylink = phylink;
1246 	return 0;
1247 }
1248 
1249 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1250 {
1251 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1252 	unsigned int desc_size;
1253 	void *head_rx;
1254 	u32 queue;
1255 
1256 	/* Display RX rings */
1257 	for (queue = 0; queue < rx_cnt; queue++) {
1258 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1259 
1260 		pr_info("\tRX Queue %u rings\n", queue);
1261 
1262 		if (priv->extend_desc) {
1263 			head_rx = (void *)rx_q->dma_erx;
1264 			desc_size = sizeof(struct dma_extended_desc);
1265 		} else {
1266 			head_rx = (void *)rx_q->dma_rx;
1267 			desc_size = sizeof(struct dma_desc);
1268 		}
1269 
1270 		/* Display RX ring */
1271 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1272 				    rx_q->dma_rx_phy, desc_size);
1273 	}
1274 }
1275 
1276 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1277 {
1278 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1279 	unsigned int desc_size;
1280 	void *head_tx;
1281 	u32 queue;
1282 
1283 	/* Display TX rings */
1284 	for (queue = 0; queue < tx_cnt; queue++) {
1285 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1286 
1287 		pr_info("\tTX Queue %d rings\n", queue);
1288 
1289 		if (priv->extend_desc) {
1290 			head_tx = (void *)tx_q->dma_etx;
1291 			desc_size = sizeof(struct dma_extended_desc);
1292 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1293 			head_tx = (void *)tx_q->dma_entx;
1294 			desc_size = sizeof(struct dma_edesc);
1295 		} else {
1296 			head_tx = (void *)tx_q->dma_tx;
1297 			desc_size = sizeof(struct dma_desc);
1298 		}
1299 
1300 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1301 				    tx_q->dma_tx_phy, desc_size);
1302 	}
1303 }
1304 
1305 static void stmmac_display_rings(struct stmmac_priv *priv)
1306 {
1307 	/* Display RX ring */
1308 	stmmac_display_rx_rings(priv);
1309 
1310 	/* Display TX ring */
1311 	stmmac_display_tx_rings(priv);
1312 }
1313 
1314 static int stmmac_set_bfsize(int mtu, int bufsize)
1315 {
1316 	int ret = bufsize;
1317 
1318 	if (mtu >= BUF_SIZE_8KiB)
1319 		ret = BUF_SIZE_16KiB;
1320 	else if (mtu >= BUF_SIZE_4KiB)
1321 		ret = BUF_SIZE_8KiB;
1322 	else if (mtu >= BUF_SIZE_2KiB)
1323 		ret = BUF_SIZE_4KiB;
1324 	else if (mtu > DEFAULT_BUFSIZE)
1325 		ret = BUF_SIZE_2KiB;
1326 	else
1327 		ret = DEFAULT_BUFSIZE;
1328 
1329 	return ret;
1330 }
1331 
1332 /**
1333  * stmmac_clear_rx_descriptors - clear RX descriptors
1334  * @priv: driver private structure
1335  * @queue: RX queue index
1336  * Description: this function is called to clear the RX descriptors
1337  * in case of both basic and extended descriptors are used.
1338  */
1339 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1340 {
1341 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1342 	int i;
1343 
1344 	/* Clear the RX descriptors */
1345 	for (i = 0; i < priv->dma_rx_size; i++)
1346 		if (priv->extend_desc)
1347 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1348 					priv->use_riwt, priv->mode,
1349 					(i == priv->dma_rx_size - 1),
1350 					priv->dma_buf_sz);
1351 		else
1352 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1353 					priv->use_riwt, priv->mode,
1354 					(i == priv->dma_rx_size - 1),
1355 					priv->dma_buf_sz);
1356 }
1357 
1358 /**
1359  * stmmac_clear_tx_descriptors - clear tx descriptors
1360  * @priv: driver private structure
1361  * @queue: TX queue index.
1362  * Description: this function is called to clear the TX descriptors
1363  * in case of both basic and extended descriptors are used.
1364  */
1365 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1366 {
1367 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1368 	int i;
1369 
1370 	/* Clear the TX descriptors */
1371 	for (i = 0; i < priv->dma_tx_size; i++) {
1372 		int last = (i == (priv->dma_tx_size - 1));
1373 		struct dma_desc *p;
1374 
1375 		if (priv->extend_desc)
1376 			p = &tx_q->dma_etx[i].basic;
1377 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1378 			p = &tx_q->dma_entx[i].basic;
1379 		else
1380 			p = &tx_q->dma_tx[i];
1381 
1382 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1383 	}
1384 }
1385 
1386 /**
1387  * stmmac_clear_descriptors - clear descriptors
1388  * @priv: driver private structure
1389  * Description: this function is called to clear the TX and RX descriptors
1390  * in case of both basic and extended descriptors are used.
1391  */
1392 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1393 {
1394 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1395 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1396 	u32 queue;
1397 
1398 	/* Clear the RX descriptors */
1399 	for (queue = 0; queue < rx_queue_cnt; queue++)
1400 		stmmac_clear_rx_descriptors(priv, queue);
1401 
1402 	/* Clear the TX descriptors */
1403 	for (queue = 0; queue < tx_queue_cnt; queue++)
1404 		stmmac_clear_tx_descriptors(priv, queue);
1405 }
1406 
1407 /**
1408  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1409  * @priv: driver private structure
1410  * @p: descriptor pointer
1411  * @i: descriptor index
1412  * @flags: gfp flag
1413  * @queue: RX queue index
1414  * Description: this function is called to allocate a receive buffer, perform
1415  * the DMA mapping and init the descriptor.
1416  */
1417 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1418 				  int i, gfp_t flags, u32 queue)
1419 {
1420 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1421 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1422 
1423 	if (!buf->page) {
1424 		buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1425 		if (!buf->page)
1426 			return -ENOMEM;
1427 		buf->page_offset = stmmac_rx_offset(priv);
1428 	}
1429 
1430 	if (priv->sph && !buf->sec_page) {
1431 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1432 		if (!buf->sec_page)
1433 			return -ENOMEM;
1434 
1435 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1436 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1437 	} else {
1438 		buf->sec_page = NULL;
1439 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1440 	}
1441 
1442 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1443 
1444 	stmmac_set_desc_addr(priv, p, buf->addr);
1445 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1446 		stmmac_init_desc3(priv, p);
1447 
1448 	return 0;
1449 }
1450 
1451 /**
1452  * stmmac_free_rx_buffer - free RX dma buffers
1453  * @priv: private structure
1454  * @queue: RX queue index
1455  * @i: buffer index.
1456  */
1457 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1458 {
1459 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1460 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1461 
1462 	if (buf->page)
1463 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1464 	buf->page = NULL;
1465 
1466 	if (buf->sec_page)
1467 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1468 	buf->sec_page = NULL;
1469 }
1470 
1471 /**
1472  * stmmac_free_tx_buffer - free RX dma buffers
1473  * @priv: private structure
1474  * @queue: RX queue index
1475  * @i: buffer index.
1476  */
1477 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1478 {
1479 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1480 
1481 	if (tx_q->tx_skbuff_dma[i].buf &&
1482 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1483 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1484 			dma_unmap_page(priv->device,
1485 				       tx_q->tx_skbuff_dma[i].buf,
1486 				       tx_q->tx_skbuff_dma[i].len,
1487 				       DMA_TO_DEVICE);
1488 		else
1489 			dma_unmap_single(priv->device,
1490 					 tx_q->tx_skbuff_dma[i].buf,
1491 					 tx_q->tx_skbuff_dma[i].len,
1492 					 DMA_TO_DEVICE);
1493 	}
1494 
1495 	if (tx_q->xdpf[i] &&
1496 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1497 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1498 		xdp_return_frame(tx_q->xdpf[i]);
1499 		tx_q->xdpf[i] = NULL;
1500 	}
1501 
1502 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1503 		tx_q->xsk_frames_done++;
1504 
1505 	if (tx_q->tx_skbuff[i] &&
1506 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1507 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1508 		tx_q->tx_skbuff[i] = NULL;
1509 	}
1510 
1511 	tx_q->tx_skbuff_dma[i].buf = 0;
1512 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1513 }
1514 
1515 /**
1516  * dma_free_rx_skbufs - free RX dma buffers
1517  * @priv: private structure
1518  * @queue: RX queue index
1519  */
1520 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1521 {
1522 	int i;
1523 
1524 	for (i = 0; i < priv->dma_rx_size; i++)
1525 		stmmac_free_rx_buffer(priv, queue, i);
1526 }
1527 
1528 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1529 				   gfp_t flags)
1530 {
1531 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1532 	int i;
1533 
1534 	for (i = 0; i < priv->dma_rx_size; i++) {
1535 		struct dma_desc *p;
1536 		int ret;
1537 
1538 		if (priv->extend_desc)
1539 			p = &((rx_q->dma_erx + i)->basic);
1540 		else
1541 			p = rx_q->dma_rx + i;
1542 
1543 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1544 					     queue);
1545 		if (ret)
1546 			return ret;
1547 
1548 		rx_q->buf_alloc_num++;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1556  * @priv: private structure
1557  * @queue: RX queue index
1558  */
1559 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1560 {
1561 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1562 	int i;
1563 
1564 	for (i = 0; i < priv->dma_rx_size; i++) {
1565 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1566 
1567 		if (!buf->xdp)
1568 			continue;
1569 
1570 		xsk_buff_free(buf->xdp);
1571 		buf->xdp = NULL;
1572 	}
1573 }
1574 
1575 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1576 {
1577 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1578 	int i;
1579 
1580 	for (i = 0; i < priv->dma_rx_size; i++) {
1581 		struct stmmac_rx_buffer *buf;
1582 		dma_addr_t dma_addr;
1583 		struct dma_desc *p;
1584 
1585 		if (priv->extend_desc)
1586 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1587 		else
1588 			p = rx_q->dma_rx + i;
1589 
1590 		buf = &rx_q->buf_pool[i];
1591 
1592 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1593 		if (!buf->xdp)
1594 			return -ENOMEM;
1595 
1596 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1597 		stmmac_set_desc_addr(priv, p, dma_addr);
1598 		rx_q->buf_alloc_num++;
1599 	}
1600 
1601 	return 0;
1602 }
1603 
1604 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1605 {
1606 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1607 		return NULL;
1608 
1609 	return xsk_get_pool_from_qid(priv->dev, queue);
1610 }
1611 
1612 /**
1613  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1614  * @priv: driver private structure
1615  * @queue: RX queue index
1616  * @flags: gfp flag.
1617  * Description: this function initializes the DMA RX descriptors
1618  * and allocates the socket buffers. It supports the chained and ring
1619  * modes.
1620  */
1621 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1622 {
1623 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1624 	int ret;
1625 
1626 	netif_dbg(priv, probe, priv->dev,
1627 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1628 		  (u32)rx_q->dma_rx_phy);
1629 
1630 	stmmac_clear_rx_descriptors(priv, queue);
1631 
1632 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1633 
1634 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1635 
1636 	if (rx_q->xsk_pool) {
1637 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1638 						   MEM_TYPE_XSK_BUFF_POOL,
1639 						   NULL));
1640 		netdev_info(priv->dev,
1641 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1642 			    rx_q->queue_index);
1643 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1644 	} else {
1645 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1646 						   MEM_TYPE_PAGE_POOL,
1647 						   rx_q->page_pool));
1648 		netdev_info(priv->dev,
1649 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1650 			    rx_q->queue_index);
1651 	}
1652 
1653 	if (rx_q->xsk_pool) {
1654 		/* RX XDP ZC buffer pool may not be populated, e.g.
1655 		 * xdpsock TX-only.
1656 		 */
1657 		stmmac_alloc_rx_buffers_zc(priv, queue);
1658 	} else {
1659 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1660 		if (ret < 0)
1661 			return -ENOMEM;
1662 	}
1663 
1664 	rx_q->cur_rx = 0;
1665 	rx_q->dirty_rx = 0;
1666 
1667 	/* Setup the chained descriptor addresses */
1668 	if (priv->mode == STMMAC_CHAIN_MODE) {
1669 		if (priv->extend_desc)
1670 			stmmac_mode_init(priv, rx_q->dma_erx,
1671 					 rx_q->dma_rx_phy,
1672 					 priv->dma_rx_size, 1);
1673 		else
1674 			stmmac_mode_init(priv, rx_q->dma_rx,
1675 					 rx_q->dma_rx_phy,
1676 					 priv->dma_rx_size, 0);
1677 	}
1678 
1679 	return 0;
1680 }
1681 
1682 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1683 {
1684 	struct stmmac_priv *priv = netdev_priv(dev);
1685 	u32 rx_count = priv->plat->rx_queues_to_use;
1686 	u32 queue;
1687 	int ret;
1688 
1689 	/* RX INITIALIZATION */
1690 	netif_dbg(priv, probe, priv->dev,
1691 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1692 
1693 	for (queue = 0; queue < rx_count; queue++) {
1694 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1695 		if (ret)
1696 			goto err_init_rx_buffers;
1697 	}
1698 
1699 	return 0;
1700 
1701 err_init_rx_buffers:
1702 	while (queue >= 0) {
1703 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1704 
1705 		if (rx_q->xsk_pool)
1706 			dma_free_rx_xskbufs(priv, queue);
1707 		else
1708 			dma_free_rx_skbufs(priv, queue);
1709 
1710 		rx_q->buf_alloc_num = 0;
1711 		rx_q->xsk_pool = NULL;
1712 
1713 		if (queue == 0)
1714 			break;
1715 
1716 		queue--;
1717 	}
1718 
1719 	return ret;
1720 }
1721 
1722 /**
1723  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1724  * @priv: driver private structure
1725  * @queue : TX queue index
1726  * Description: this function initializes the DMA TX descriptors
1727  * and allocates the socket buffers. It supports the chained and ring
1728  * modes.
1729  */
1730 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1731 {
1732 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1733 	int i;
1734 
1735 	netif_dbg(priv, probe, priv->dev,
1736 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1737 		  (u32)tx_q->dma_tx_phy);
1738 
1739 	/* Setup the chained descriptor addresses */
1740 	if (priv->mode == STMMAC_CHAIN_MODE) {
1741 		if (priv->extend_desc)
1742 			stmmac_mode_init(priv, tx_q->dma_etx,
1743 					 tx_q->dma_tx_phy,
1744 					 priv->dma_tx_size, 1);
1745 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1746 			stmmac_mode_init(priv, tx_q->dma_tx,
1747 					 tx_q->dma_tx_phy,
1748 					 priv->dma_tx_size, 0);
1749 	}
1750 
1751 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1752 
1753 	for (i = 0; i < priv->dma_tx_size; i++) {
1754 		struct dma_desc *p;
1755 
1756 		if (priv->extend_desc)
1757 			p = &((tx_q->dma_etx + i)->basic);
1758 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1759 			p = &((tx_q->dma_entx + i)->basic);
1760 		else
1761 			p = tx_q->dma_tx + i;
1762 
1763 		stmmac_clear_desc(priv, p);
1764 
1765 		tx_q->tx_skbuff_dma[i].buf = 0;
1766 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1767 		tx_q->tx_skbuff_dma[i].len = 0;
1768 		tx_q->tx_skbuff_dma[i].last_segment = false;
1769 		tx_q->tx_skbuff[i] = NULL;
1770 	}
1771 
1772 	tx_q->dirty_tx = 0;
1773 	tx_q->cur_tx = 0;
1774 	tx_q->mss = 0;
1775 
1776 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1777 
1778 	return 0;
1779 }
1780 
1781 static int init_dma_tx_desc_rings(struct net_device *dev)
1782 {
1783 	struct stmmac_priv *priv = netdev_priv(dev);
1784 	u32 tx_queue_cnt;
1785 	u32 queue;
1786 
1787 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1788 
1789 	for (queue = 0; queue < tx_queue_cnt; queue++)
1790 		__init_dma_tx_desc_rings(priv, queue);
1791 
1792 	return 0;
1793 }
1794 
1795 /**
1796  * init_dma_desc_rings - init the RX/TX descriptor rings
1797  * @dev: net device structure
1798  * @flags: gfp flag.
1799  * Description: this function initializes the DMA RX/TX descriptors
1800  * and allocates the socket buffers. It supports the chained and ring
1801  * modes.
1802  */
1803 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1804 {
1805 	struct stmmac_priv *priv = netdev_priv(dev);
1806 	int ret;
1807 
1808 	ret = init_dma_rx_desc_rings(dev, flags);
1809 	if (ret)
1810 		return ret;
1811 
1812 	ret = init_dma_tx_desc_rings(dev);
1813 
1814 	stmmac_clear_descriptors(priv);
1815 
1816 	if (netif_msg_hw(priv))
1817 		stmmac_display_rings(priv);
1818 
1819 	return ret;
1820 }
1821 
1822 /**
1823  * dma_free_tx_skbufs - free TX dma buffers
1824  * @priv: private structure
1825  * @queue: TX queue index
1826  */
1827 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1828 {
1829 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1830 	int i;
1831 
1832 	tx_q->xsk_frames_done = 0;
1833 
1834 	for (i = 0; i < priv->dma_tx_size; i++)
1835 		stmmac_free_tx_buffer(priv, queue, i);
1836 
1837 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1838 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1839 		tx_q->xsk_frames_done = 0;
1840 		tx_q->xsk_pool = NULL;
1841 	}
1842 }
1843 
1844 /**
1845  * stmmac_free_tx_skbufs - free TX skb buffers
1846  * @priv: private structure
1847  */
1848 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1849 {
1850 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1851 	u32 queue;
1852 
1853 	for (queue = 0; queue < tx_queue_cnt; queue++)
1854 		dma_free_tx_skbufs(priv, queue);
1855 }
1856 
1857 /**
1858  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1859  * @priv: private structure
1860  * @queue: RX queue index
1861  */
1862 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1863 {
1864 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1865 
1866 	/* Release the DMA RX socket buffers */
1867 	if (rx_q->xsk_pool)
1868 		dma_free_rx_xskbufs(priv, queue);
1869 	else
1870 		dma_free_rx_skbufs(priv, queue);
1871 
1872 	rx_q->buf_alloc_num = 0;
1873 	rx_q->xsk_pool = NULL;
1874 
1875 	/* Free DMA regions of consistent memory previously allocated */
1876 	if (!priv->extend_desc)
1877 		dma_free_coherent(priv->device, priv->dma_rx_size *
1878 				  sizeof(struct dma_desc),
1879 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1880 	else
1881 		dma_free_coherent(priv->device, priv->dma_rx_size *
1882 				  sizeof(struct dma_extended_desc),
1883 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1884 
1885 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1886 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1887 
1888 	kfree(rx_q->buf_pool);
1889 	if (rx_q->page_pool)
1890 		page_pool_destroy(rx_q->page_pool);
1891 }
1892 
1893 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1894 {
1895 	u32 rx_count = priv->plat->rx_queues_to_use;
1896 	u32 queue;
1897 
1898 	/* Free RX queue resources */
1899 	for (queue = 0; queue < rx_count; queue++)
1900 		__free_dma_rx_desc_resources(priv, queue);
1901 }
1902 
1903 /**
1904  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1905  * @priv: private structure
1906  * @queue: TX queue index
1907  */
1908 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1909 {
1910 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1911 	size_t size;
1912 	void *addr;
1913 
1914 	/* Release the DMA TX socket buffers */
1915 	dma_free_tx_skbufs(priv, queue);
1916 
1917 	if (priv->extend_desc) {
1918 		size = sizeof(struct dma_extended_desc);
1919 		addr = tx_q->dma_etx;
1920 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1921 		size = sizeof(struct dma_edesc);
1922 		addr = tx_q->dma_entx;
1923 	} else {
1924 		size = sizeof(struct dma_desc);
1925 		addr = tx_q->dma_tx;
1926 	}
1927 
1928 	size *= priv->dma_tx_size;
1929 
1930 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1931 
1932 	kfree(tx_q->tx_skbuff_dma);
1933 	kfree(tx_q->tx_skbuff);
1934 }
1935 
1936 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1937 {
1938 	u32 tx_count = priv->plat->tx_queues_to_use;
1939 	u32 queue;
1940 
1941 	/* Free TX queue resources */
1942 	for (queue = 0; queue < tx_count; queue++)
1943 		__free_dma_tx_desc_resources(priv, queue);
1944 }
1945 
1946 /**
1947  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1948  * @priv: private structure
1949  * @queue: RX queue index
1950  * Description: according to which descriptor can be used (extend or basic)
1951  * this function allocates the resources for TX and RX paths. In case of
1952  * reception, for example, it pre-allocated the RX socket buffer in order to
1953  * allow zero-copy mechanism.
1954  */
1955 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1956 {
1957 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1958 	struct stmmac_channel *ch = &priv->channel[queue];
1959 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1960 	struct page_pool_params pp_params = { 0 };
1961 	unsigned int num_pages;
1962 	unsigned int napi_id;
1963 	int ret;
1964 
1965 	rx_q->queue_index = queue;
1966 	rx_q->priv_data = priv;
1967 
1968 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1969 	pp_params.pool_size = priv->dma_rx_size;
1970 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1971 	pp_params.order = ilog2(num_pages);
1972 	pp_params.nid = dev_to_node(priv->device);
1973 	pp_params.dev = priv->device;
1974 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1975 	pp_params.offset = stmmac_rx_offset(priv);
1976 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1977 
1978 	rx_q->page_pool = page_pool_create(&pp_params);
1979 	if (IS_ERR(rx_q->page_pool)) {
1980 		ret = PTR_ERR(rx_q->page_pool);
1981 		rx_q->page_pool = NULL;
1982 		return ret;
1983 	}
1984 
1985 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1986 				 sizeof(*rx_q->buf_pool),
1987 				 GFP_KERNEL);
1988 	if (!rx_q->buf_pool)
1989 		return -ENOMEM;
1990 
1991 	if (priv->extend_desc) {
1992 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
1993 						   priv->dma_rx_size *
1994 						   sizeof(struct dma_extended_desc),
1995 						   &rx_q->dma_rx_phy,
1996 						   GFP_KERNEL);
1997 		if (!rx_q->dma_erx)
1998 			return -ENOMEM;
1999 
2000 	} else {
2001 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2002 						  priv->dma_rx_size *
2003 						  sizeof(struct dma_desc),
2004 						  &rx_q->dma_rx_phy,
2005 						  GFP_KERNEL);
2006 		if (!rx_q->dma_rx)
2007 			return -ENOMEM;
2008 	}
2009 
2010 	if (stmmac_xdp_is_enabled(priv) &&
2011 	    test_bit(queue, priv->af_xdp_zc_qps))
2012 		napi_id = ch->rxtx_napi.napi_id;
2013 	else
2014 		napi_id = ch->rx_napi.napi_id;
2015 
2016 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2017 			       rx_q->queue_index,
2018 			       napi_id);
2019 	if (ret) {
2020 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2021 		return -EINVAL;
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2028 {
2029 	u32 rx_count = priv->plat->rx_queues_to_use;
2030 	u32 queue;
2031 	int ret;
2032 
2033 	/* RX queues buffers and DMA */
2034 	for (queue = 0; queue < rx_count; queue++) {
2035 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2036 		if (ret)
2037 			goto err_dma;
2038 	}
2039 
2040 	return 0;
2041 
2042 err_dma:
2043 	free_dma_rx_desc_resources(priv);
2044 
2045 	return ret;
2046 }
2047 
2048 /**
2049  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2050  * @priv: private structure
2051  * @queue: TX queue index
2052  * Description: according to which descriptor can be used (extend or basic)
2053  * this function allocates the resources for TX and RX paths. In case of
2054  * reception, for example, it pre-allocated the RX socket buffer in order to
2055  * allow zero-copy mechanism.
2056  */
2057 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2058 {
2059 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2060 	size_t size;
2061 	void *addr;
2062 
2063 	tx_q->queue_index = queue;
2064 	tx_q->priv_data = priv;
2065 
2066 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2067 				      sizeof(*tx_q->tx_skbuff_dma),
2068 				      GFP_KERNEL);
2069 	if (!tx_q->tx_skbuff_dma)
2070 		return -ENOMEM;
2071 
2072 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2073 				  sizeof(struct sk_buff *),
2074 				  GFP_KERNEL);
2075 	if (!tx_q->tx_skbuff)
2076 		return -ENOMEM;
2077 
2078 	if (priv->extend_desc)
2079 		size = sizeof(struct dma_extended_desc);
2080 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2081 		size = sizeof(struct dma_edesc);
2082 	else
2083 		size = sizeof(struct dma_desc);
2084 
2085 	size *= priv->dma_tx_size;
2086 
2087 	addr = dma_alloc_coherent(priv->device, size,
2088 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2089 	if (!addr)
2090 		return -ENOMEM;
2091 
2092 	if (priv->extend_desc)
2093 		tx_q->dma_etx = addr;
2094 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2095 		tx_q->dma_entx = addr;
2096 	else
2097 		tx_q->dma_tx = addr;
2098 
2099 	return 0;
2100 }
2101 
2102 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2103 {
2104 	u32 tx_count = priv->plat->tx_queues_to_use;
2105 	u32 queue;
2106 	int ret;
2107 
2108 	/* TX queues buffers and DMA */
2109 	for (queue = 0; queue < tx_count; queue++) {
2110 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2111 		if (ret)
2112 			goto err_dma;
2113 	}
2114 
2115 	return 0;
2116 
2117 err_dma:
2118 	free_dma_tx_desc_resources(priv);
2119 	return ret;
2120 }
2121 
2122 /**
2123  * alloc_dma_desc_resources - alloc TX/RX resources.
2124  * @priv: private structure
2125  * Description: according to which descriptor can be used (extend or basic)
2126  * this function allocates the resources for TX and RX paths. In case of
2127  * reception, for example, it pre-allocated the RX socket buffer in order to
2128  * allow zero-copy mechanism.
2129  */
2130 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2131 {
2132 	/* RX Allocation */
2133 	int ret = alloc_dma_rx_desc_resources(priv);
2134 
2135 	if (ret)
2136 		return ret;
2137 
2138 	ret = alloc_dma_tx_desc_resources(priv);
2139 
2140 	return ret;
2141 }
2142 
2143 /**
2144  * free_dma_desc_resources - free dma desc resources
2145  * @priv: private structure
2146  */
2147 static void free_dma_desc_resources(struct stmmac_priv *priv)
2148 {
2149 	/* Release the DMA TX socket buffers */
2150 	free_dma_tx_desc_resources(priv);
2151 
2152 	/* Release the DMA RX socket buffers later
2153 	 * to ensure all pending XDP_TX buffers are returned.
2154 	 */
2155 	free_dma_rx_desc_resources(priv);
2156 }
2157 
2158 /**
2159  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2160  *  @priv: driver private structure
2161  *  Description: It is used for enabling the rx queues in the MAC
2162  */
2163 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2164 {
2165 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2166 	int queue;
2167 	u8 mode;
2168 
2169 	for (queue = 0; queue < rx_queues_count; queue++) {
2170 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2171 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2172 	}
2173 }
2174 
2175 /**
2176  * stmmac_start_rx_dma - start RX DMA channel
2177  * @priv: driver private structure
2178  * @chan: RX channel index
2179  * Description:
2180  * This starts a RX DMA channel
2181  */
2182 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2183 {
2184 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2185 	stmmac_start_rx(priv, priv->ioaddr, chan);
2186 }
2187 
2188 /**
2189  * stmmac_start_tx_dma - start TX DMA channel
2190  * @priv: driver private structure
2191  * @chan: TX channel index
2192  * Description:
2193  * This starts a TX DMA channel
2194  */
2195 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2196 {
2197 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2198 	stmmac_start_tx(priv, priv->ioaddr, chan);
2199 }
2200 
2201 /**
2202  * stmmac_stop_rx_dma - stop RX DMA channel
2203  * @priv: driver private structure
2204  * @chan: RX channel index
2205  * Description:
2206  * This stops a RX DMA channel
2207  */
2208 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2209 {
2210 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2211 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2212 }
2213 
2214 /**
2215  * stmmac_stop_tx_dma - stop TX DMA channel
2216  * @priv: driver private structure
2217  * @chan: TX channel index
2218  * Description:
2219  * This stops a TX DMA channel
2220  */
2221 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2222 {
2223 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2224 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2225 }
2226 
2227 /**
2228  * stmmac_start_all_dma - start all RX and TX DMA channels
2229  * @priv: driver private structure
2230  * Description:
2231  * This starts all the RX and TX DMA channels
2232  */
2233 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2234 {
2235 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2236 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2237 	u32 chan = 0;
2238 
2239 	for (chan = 0; chan < rx_channels_count; chan++)
2240 		stmmac_start_rx_dma(priv, chan);
2241 
2242 	for (chan = 0; chan < tx_channels_count; chan++)
2243 		stmmac_start_tx_dma(priv, chan);
2244 }
2245 
2246 /**
2247  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2248  * @priv: driver private structure
2249  * Description:
2250  * This stops the RX and TX DMA channels
2251  */
2252 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2253 {
2254 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2255 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2256 	u32 chan = 0;
2257 
2258 	for (chan = 0; chan < rx_channels_count; chan++)
2259 		stmmac_stop_rx_dma(priv, chan);
2260 
2261 	for (chan = 0; chan < tx_channels_count; chan++)
2262 		stmmac_stop_tx_dma(priv, chan);
2263 }
2264 
2265 /**
2266  *  stmmac_dma_operation_mode - HW DMA operation mode
2267  *  @priv: driver private structure
2268  *  Description: it is used for configuring the DMA operation mode register in
2269  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2270  */
2271 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2272 {
2273 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275 	int rxfifosz = priv->plat->rx_fifo_size;
2276 	int txfifosz = priv->plat->tx_fifo_size;
2277 	u32 txmode = 0;
2278 	u32 rxmode = 0;
2279 	u32 chan = 0;
2280 	u8 qmode = 0;
2281 
2282 	if (rxfifosz == 0)
2283 		rxfifosz = priv->dma_cap.rx_fifo_size;
2284 	if (txfifosz == 0)
2285 		txfifosz = priv->dma_cap.tx_fifo_size;
2286 
2287 	/* Adjust for real per queue fifo size */
2288 	rxfifosz /= rx_channels_count;
2289 	txfifosz /= tx_channels_count;
2290 
2291 	if (priv->plat->force_thresh_dma_mode) {
2292 		txmode = tc;
2293 		rxmode = tc;
2294 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2295 		/*
2296 		 * In case of GMAC, SF mode can be enabled
2297 		 * to perform the TX COE in HW. This depends on:
2298 		 * 1) TX COE if actually supported
2299 		 * 2) There is no bugged Jumbo frame support
2300 		 *    that needs to not insert csum in the TDES.
2301 		 */
2302 		txmode = SF_DMA_MODE;
2303 		rxmode = SF_DMA_MODE;
2304 		priv->xstats.threshold = SF_DMA_MODE;
2305 	} else {
2306 		txmode = tc;
2307 		rxmode = SF_DMA_MODE;
2308 	}
2309 
2310 	/* configure all channels */
2311 	for (chan = 0; chan < rx_channels_count; chan++) {
2312 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2313 		u32 buf_size;
2314 
2315 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2316 
2317 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2318 				rxfifosz, qmode);
2319 
2320 		if (rx_q->xsk_pool) {
2321 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2322 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2323 					      buf_size,
2324 					      chan);
2325 		} else {
2326 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2327 					      priv->dma_buf_sz,
2328 					      chan);
2329 		}
2330 	}
2331 
2332 	for (chan = 0; chan < tx_channels_count; chan++) {
2333 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2334 
2335 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2336 				txfifosz, qmode);
2337 	}
2338 }
2339 
2340 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2341 {
2342 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2343 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2344 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2345 	unsigned int entry = tx_q->cur_tx;
2346 	struct dma_desc *tx_desc = NULL;
2347 	struct xdp_desc xdp_desc;
2348 	bool work_done = true;
2349 
2350 	/* Avoids TX time-out as we are sharing with slow path */
2351 	nq->trans_start = jiffies;
2352 
2353 	budget = min(budget, stmmac_tx_avail(priv, queue));
2354 
2355 	while (budget-- > 0) {
2356 		dma_addr_t dma_addr;
2357 		bool set_ic;
2358 
2359 		/* We are sharing with slow path and stop XSK TX desc submission when
2360 		 * available TX ring is less than threshold.
2361 		 */
2362 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2363 		    !netif_carrier_ok(priv->dev)) {
2364 			work_done = false;
2365 			break;
2366 		}
2367 
2368 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2369 			break;
2370 
2371 		if (likely(priv->extend_desc))
2372 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2373 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2374 			tx_desc = &tx_q->dma_entx[entry].basic;
2375 		else
2376 			tx_desc = tx_q->dma_tx + entry;
2377 
2378 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2379 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2380 
2381 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2382 
2383 		/* To return XDP buffer to XSK pool, we simple call
2384 		 * xsk_tx_completed(), so we don't need to fill up
2385 		 * 'buf' and 'xdpf'.
2386 		 */
2387 		tx_q->tx_skbuff_dma[entry].buf = 0;
2388 		tx_q->xdpf[entry] = NULL;
2389 
2390 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2391 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2392 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2393 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2394 
2395 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2396 
2397 		tx_q->tx_count_frames++;
2398 
2399 		if (!priv->tx_coal_frames[queue])
2400 			set_ic = false;
2401 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2402 			set_ic = true;
2403 		else
2404 			set_ic = false;
2405 
2406 		if (set_ic) {
2407 			tx_q->tx_count_frames = 0;
2408 			stmmac_set_tx_ic(priv, tx_desc);
2409 			priv->xstats.tx_set_ic_bit++;
2410 		}
2411 
2412 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2413 				       true, priv->mode, true, true,
2414 				       xdp_desc.len);
2415 
2416 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2417 
2418 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2419 		entry = tx_q->cur_tx;
2420 	}
2421 
2422 	if (tx_desc) {
2423 		stmmac_flush_tx_descriptors(priv, queue);
2424 		xsk_tx_release(pool);
2425 	}
2426 
2427 	/* Return true if all of the 3 conditions are met
2428 	 *  a) TX Budget is still available
2429 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2430 	 *     pending XSK TX for transmission)
2431 	 */
2432 	return !!budget && work_done;
2433 }
2434 
2435 /**
2436  * stmmac_tx_clean - to manage the transmission completion
2437  * @priv: driver private structure
2438  * @budget: napi budget limiting this functions packet handling
2439  * @queue: TX queue index
2440  * Description: it reclaims the transmit resources after transmission completes.
2441  */
2442 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2443 {
2444 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2445 	unsigned int bytes_compl = 0, pkts_compl = 0;
2446 	unsigned int entry, xmits = 0, count = 0;
2447 
2448 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2449 
2450 	priv->xstats.tx_clean++;
2451 
2452 	tx_q->xsk_frames_done = 0;
2453 
2454 	entry = tx_q->dirty_tx;
2455 
2456 	/* Try to clean all TX complete frame in 1 shot */
2457 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2458 		struct xdp_frame *xdpf;
2459 		struct sk_buff *skb;
2460 		struct dma_desc *p;
2461 		int status;
2462 
2463 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2464 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2465 			xdpf = tx_q->xdpf[entry];
2466 			skb = NULL;
2467 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2468 			xdpf = NULL;
2469 			skb = tx_q->tx_skbuff[entry];
2470 		} else {
2471 			xdpf = NULL;
2472 			skb = NULL;
2473 		}
2474 
2475 		if (priv->extend_desc)
2476 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2477 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2478 			p = &tx_q->dma_entx[entry].basic;
2479 		else
2480 			p = tx_q->dma_tx + entry;
2481 
2482 		status = stmmac_tx_status(priv, &priv->dev->stats,
2483 				&priv->xstats, p, priv->ioaddr);
2484 		/* Check if the descriptor is owned by the DMA */
2485 		if (unlikely(status & tx_dma_own))
2486 			break;
2487 
2488 		count++;
2489 
2490 		/* Make sure descriptor fields are read after reading
2491 		 * the own bit.
2492 		 */
2493 		dma_rmb();
2494 
2495 		/* Just consider the last segment and ...*/
2496 		if (likely(!(status & tx_not_ls))) {
2497 			/* ... verify the status error condition */
2498 			if (unlikely(status & tx_err)) {
2499 				priv->dev->stats.tx_errors++;
2500 			} else {
2501 				priv->dev->stats.tx_packets++;
2502 				priv->xstats.tx_pkt_n++;
2503 			}
2504 			if (skb)
2505 				stmmac_get_tx_hwtstamp(priv, p, skb);
2506 		}
2507 
2508 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2509 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2510 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2511 				dma_unmap_page(priv->device,
2512 					       tx_q->tx_skbuff_dma[entry].buf,
2513 					       tx_q->tx_skbuff_dma[entry].len,
2514 					       DMA_TO_DEVICE);
2515 			else
2516 				dma_unmap_single(priv->device,
2517 						 tx_q->tx_skbuff_dma[entry].buf,
2518 						 tx_q->tx_skbuff_dma[entry].len,
2519 						 DMA_TO_DEVICE);
2520 			tx_q->tx_skbuff_dma[entry].buf = 0;
2521 			tx_q->tx_skbuff_dma[entry].len = 0;
2522 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2523 		}
2524 
2525 		stmmac_clean_desc3(priv, tx_q, p);
2526 
2527 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2528 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2529 
2530 		if (xdpf &&
2531 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2532 			xdp_return_frame_rx_napi(xdpf);
2533 			tx_q->xdpf[entry] = NULL;
2534 		}
2535 
2536 		if (xdpf &&
2537 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2538 			xdp_return_frame(xdpf);
2539 			tx_q->xdpf[entry] = NULL;
2540 		}
2541 
2542 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2543 			tx_q->xsk_frames_done++;
2544 
2545 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2546 			if (likely(skb)) {
2547 				pkts_compl++;
2548 				bytes_compl += skb->len;
2549 				dev_consume_skb_any(skb);
2550 				tx_q->tx_skbuff[entry] = NULL;
2551 			}
2552 		}
2553 
2554 		stmmac_release_tx_desc(priv, p, priv->mode);
2555 
2556 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2557 	}
2558 	tx_q->dirty_tx = entry;
2559 
2560 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2561 				  pkts_compl, bytes_compl);
2562 
2563 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2564 								queue))) &&
2565 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2566 
2567 		netif_dbg(priv, tx_done, priv->dev,
2568 			  "%s: restart transmit\n", __func__);
2569 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2570 	}
2571 
2572 	if (tx_q->xsk_pool) {
2573 		bool work_done;
2574 
2575 		if (tx_q->xsk_frames_done)
2576 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2577 
2578 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2579 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2580 
2581 		/* For XSK TX, we try to send as many as possible.
2582 		 * If XSK work done (XSK TX desc empty and budget still
2583 		 * available), return "budget - 1" to reenable TX IRQ.
2584 		 * Else, return "budget" to make NAPI continue polling.
2585 		 */
2586 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2587 					       STMMAC_XSK_TX_BUDGET_MAX);
2588 		if (work_done)
2589 			xmits = budget - 1;
2590 		else
2591 			xmits = budget;
2592 	}
2593 
2594 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2595 	    priv->eee_sw_timer_en) {
2596 		stmmac_enable_eee_mode(priv);
2597 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2598 	}
2599 
2600 	/* We still have pending packets, let's call for a new scheduling */
2601 	if (tx_q->dirty_tx != tx_q->cur_tx)
2602 		hrtimer_start(&tx_q->txtimer,
2603 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2604 			      HRTIMER_MODE_REL);
2605 
2606 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2607 
2608 	/* Combine decisions from TX clean and XSK TX */
2609 	return max(count, xmits);
2610 }
2611 
2612 /**
2613  * stmmac_tx_err - to manage the tx error
2614  * @priv: driver private structure
2615  * @chan: channel index
2616  * Description: it cleans the descriptors and restarts the transmission
2617  * in case of transmission errors.
2618  */
2619 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2620 {
2621 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2622 
2623 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2624 
2625 	stmmac_stop_tx_dma(priv, chan);
2626 	dma_free_tx_skbufs(priv, chan);
2627 	stmmac_clear_tx_descriptors(priv, chan);
2628 	tx_q->dirty_tx = 0;
2629 	tx_q->cur_tx = 0;
2630 	tx_q->mss = 0;
2631 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2632 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2633 			    tx_q->dma_tx_phy, chan);
2634 	stmmac_start_tx_dma(priv, chan);
2635 
2636 	priv->dev->stats.tx_errors++;
2637 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2638 }
2639 
2640 /**
2641  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2642  *  @priv: driver private structure
2643  *  @txmode: TX operating mode
2644  *  @rxmode: RX operating mode
2645  *  @chan: channel index
2646  *  Description: it is used for configuring of the DMA operation mode in
2647  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2648  *  mode.
2649  */
2650 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2651 					  u32 rxmode, u32 chan)
2652 {
2653 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2654 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2655 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2656 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2657 	int rxfifosz = priv->plat->rx_fifo_size;
2658 	int txfifosz = priv->plat->tx_fifo_size;
2659 
2660 	if (rxfifosz == 0)
2661 		rxfifosz = priv->dma_cap.rx_fifo_size;
2662 	if (txfifosz == 0)
2663 		txfifosz = priv->dma_cap.tx_fifo_size;
2664 
2665 	/* Adjust for real per queue fifo size */
2666 	rxfifosz /= rx_channels_count;
2667 	txfifosz /= tx_channels_count;
2668 
2669 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2670 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2671 }
2672 
2673 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2674 {
2675 	int ret;
2676 
2677 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2678 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2679 	if (ret && (ret != -EINVAL)) {
2680 		stmmac_global_err(priv);
2681 		return true;
2682 	}
2683 
2684 	return false;
2685 }
2686 
2687 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2688 {
2689 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2690 						 &priv->xstats, chan, dir);
2691 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2692 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2693 	struct stmmac_channel *ch = &priv->channel[chan];
2694 	struct napi_struct *rx_napi;
2695 	struct napi_struct *tx_napi;
2696 	unsigned long flags;
2697 
2698 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2699 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2700 
2701 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2702 		if (napi_schedule_prep(rx_napi)) {
2703 			spin_lock_irqsave(&ch->lock, flags);
2704 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2705 			spin_unlock_irqrestore(&ch->lock, flags);
2706 			__napi_schedule(rx_napi);
2707 		}
2708 	}
2709 
2710 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2711 		if (napi_schedule_prep(tx_napi)) {
2712 			spin_lock_irqsave(&ch->lock, flags);
2713 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2714 			spin_unlock_irqrestore(&ch->lock, flags);
2715 			__napi_schedule(tx_napi);
2716 		}
2717 	}
2718 
2719 	return status;
2720 }
2721 
2722 /**
2723  * stmmac_dma_interrupt - DMA ISR
2724  * @priv: driver private structure
2725  * Description: this is the DMA ISR. It is called by the main ISR.
2726  * It calls the dwmac dma routine and schedule poll method in case of some
2727  * work can be done.
2728  */
2729 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2730 {
2731 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2732 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2733 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2734 				tx_channel_count : rx_channel_count;
2735 	u32 chan;
2736 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2737 
2738 	/* Make sure we never check beyond our status buffer. */
2739 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2740 		channels_to_check = ARRAY_SIZE(status);
2741 
2742 	for (chan = 0; chan < channels_to_check; chan++)
2743 		status[chan] = stmmac_napi_check(priv, chan,
2744 						 DMA_DIR_RXTX);
2745 
2746 	for (chan = 0; chan < tx_channel_count; chan++) {
2747 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2748 			/* Try to bump up the dma threshold on this failure */
2749 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2750 			    (tc <= 256)) {
2751 				tc += 64;
2752 				if (priv->plat->force_thresh_dma_mode)
2753 					stmmac_set_dma_operation_mode(priv,
2754 								      tc,
2755 								      tc,
2756 								      chan);
2757 				else
2758 					stmmac_set_dma_operation_mode(priv,
2759 								    tc,
2760 								    SF_DMA_MODE,
2761 								    chan);
2762 				priv->xstats.threshold = tc;
2763 			}
2764 		} else if (unlikely(status[chan] == tx_hard_error)) {
2765 			stmmac_tx_err(priv, chan);
2766 		}
2767 	}
2768 }
2769 
2770 /**
2771  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2772  * @priv: driver private structure
2773  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2774  */
2775 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2776 {
2777 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2778 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2779 
2780 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2781 
2782 	if (priv->dma_cap.rmon) {
2783 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2784 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2785 	} else
2786 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2787 }
2788 
2789 /**
2790  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2791  * @priv: driver private structure
2792  * Description:
2793  *  new GMAC chip generations have a new register to indicate the
2794  *  presence of the optional feature/functions.
2795  *  This can be also used to override the value passed through the
2796  *  platform and necessary for old MAC10/100 and GMAC chips.
2797  */
2798 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2799 {
2800 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2801 }
2802 
2803 /**
2804  * stmmac_check_ether_addr - check if the MAC addr is valid
2805  * @priv: driver private structure
2806  * Description:
2807  * it is to verify if the MAC address is valid, in case of failures it
2808  * generates a random MAC address
2809  */
2810 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2811 {
2812 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2813 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2814 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2815 			eth_hw_addr_random(priv->dev);
2816 		dev_info(priv->device, "device MAC address %pM\n",
2817 			 priv->dev->dev_addr);
2818 	}
2819 }
2820 
2821 /**
2822  * stmmac_init_dma_engine - DMA init.
2823  * @priv: driver private structure
2824  * Description:
2825  * It inits the DMA invoking the specific MAC/GMAC callback.
2826  * Some DMA parameters can be passed from the platform;
2827  * in case of these are not passed a default is kept for the MAC or GMAC.
2828  */
2829 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2830 {
2831 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2832 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2833 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2834 	struct stmmac_rx_queue *rx_q;
2835 	struct stmmac_tx_queue *tx_q;
2836 	u32 chan = 0;
2837 	int atds = 0;
2838 	int ret = 0;
2839 
2840 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2841 		dev_err(priv->device, "Invalid DMA configuration\n");
2842 		return -EINVAL;
2843 	}
2844 
2845 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2846 		atds = 1;
2847 
2848 	ret = stmmac_reset(priv, priv->ioaddr);
2849 	if (ret) {
2850 		dev_err(priv->device, "Failed to reset the dma\n");
2851 		return ret;
2852 	}
2853 
2854 	/* DMA Configuration */
2855 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2856 
2857 	if (priv->plat->axi)
2858 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2859 
2860 	/* DMA CSR Channel configuration */
2861 	for (chan = 0; chan < dma_csr_ch; chan++)
2862 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2863 
2864 	/* DMA RX Channel Configuration */
2865 	for (chan = 0; chan < rx_channels_count; chan++) {
2866 		rx_q = &priv->rx_queue[chan];
2867 
2868 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2869 				    rx_q->dma_rx_phy, chan);
2870 
2871 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2872 				     (rx_q->buf_alloc_num *
2873 				      sizeof(struct dma_desc));
2874 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2875 				       rx_q->rx_tail_addr, chan);
2876 	}
2877 
2878 	/* DMA TX Channel Configuration */
2879 	for (chan = 0; chan < tx_channels_count; chan++) {
2880 		tx_q = &priv->tx_queue[chan];
2881 
2882 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2883 				    tx_q->dma_tx_phy, chan);
2884 
2885 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2886 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2887 				       tx_q->tx_tail_addr, chan);
2888 	}
2889 
2890 	return ret;
2891 }
2892 
2893 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2894 {
2895 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2896 
2897 	hrtimer_start(&tx_q->txtimer,
2898 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2899 		      HRTIMER_MODE_REL);
2900 }
2901 
2902 /**
2903  * stmmac_tx_timer - mitigation sw timer for tx.
2904  * @t: data pointer
2905  * Description:
2906  * This is the timer handler to directly invoke the stmmac_tx_clean.
2907  */
2908 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2909 {
2910 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2911 	struct stmmac_priv *priv = tx_q->priv_data;
2912 	struct stmmac_channel *ch;
2913 	struct napi_struct *napi;
2914 
2915 	ch = &priv->channel[tx_q->queue_index];
2916 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2917 
2918 	if (likely(napi_schedule_prep(napi))) {
2919 		unsigned long flags;
2920 
2921 		spin_lock_irqsave(&ch->lock, flags);
2922 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2923 		spin_unlock_irqrestore(&ch->lock, flags);
2924 		__napi_schedule(napi);
2925 	}
2926 
2927 	return HRTIMER_NORESTART;
2928 }
2929 
2930 /**
2931  * stmmac_init_coalesce - init mitigation options.
2932  * @priv: driver private structure
2933  * Description:
2934  * This inits the coalesce parameters: i.e. timer rate,
2935  * timer handler and default threshold used for enabling the
2936  * interrupt on completion bit.
2937  */
2938 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2939 {
2940 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2941 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2942 	u32 chan;
2943 
2944 	for (chan = 0; chan < tx_channel_count; chan++) {
2945 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2946 
2947 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2948 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2949 
2950 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2951 		tx_q->txtimer.function = stmmac_tx_timer;
2952 	}
2953 
2954 	for (chan = 0; chan < rx_channel_count; chan++)
2955 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2956 }
2957 
2958 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2959 {
2960 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2961 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2962 	u32 chan;
2963 
2964 	/* set TX ring length */
2965 	for (chan = 0; chan < tx_channels_count; chan++)
2966 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2967 				       (priv->dma_tx_size - 1), chan);
2968 
2969 	/* set RX ring length */
2970 	for (chan = 0; chan < rx_channels_count; chan++)
2971 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2972 				       (priv->dma_rx_size - 1), chan);
2973 }
2974 
2975 /**
2976  *  stmmac_set_tx_queue_weight - Set TX queue weight
2977  *  @priv: driver private structure
2978  *  Description: It is used for setting TX queues weight
2979  */
2980 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2981 {
2982 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2983 	u32 weight;
2984 	u32 queue;
2985 
2986 	for (queue = 0; queue < tx_queues_count; queue++) {
2987 		weight = priv->plat->tx_queues_cfg[queue].weight;
2988 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2989 	}
2990 }
2991 
2992 /**
2993  *  stmmac_configure_cbs - Configure CBS in TX queue
2994  *  @priv: driver private structure
2995  *  Description: It is used for configuring CBS in AVB TX queues
2996  */
2997 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2998 {
2999 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3000 	u32 mode_to_use;
3001 	u32 queue;
3002 
3003 	/* queue 0 is reserved for legacy traffic */
3004 	for (queue = 1; queue < tx_queues_count; queue++) {
3005 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3006 		if (mode_to_use == MTL_QUEUE_DCB)
3007 			continue;
3008 
3009 		stmmac_config_cbs(priv, priv->hw,
3010 				priv->plat->tx_queues_cfg[queue].send_slope,
3011 				priv->plat->tx_queues_cfg[queue].idle_slope,
3012 				priv->plat->tx_queues_cfg[queue].high_credit,
3013 				priv->plat->tx_queues_cfg[queue].low_credit,
3014 				queue);
3015 	}
3016 }
3017 
3018 /**
3019  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3020  *  @priv: driver private structure
3021  *  Description: It is used for mapping RX queues to RX dma channels
3022  */
3023 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3024 {
3025 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3026 	u32 queue;
3027 	u32 chan;
3028 
3029 	for (queue = 0; queue < rx_queues_count; queue++) {
3030 		chan = priv->plat->rx_queues_cfg[queue].chan;
3031 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3032 	}
3033 }
3034 
3035 /**
3036  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3037  *  @priv: driver private structure
3038  *  Description: It is used for configuring the RX Queue Priority
3039  */
3040 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3041 {
3042 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3043 	u32 queue;
3044 	u32 prio;
3045 
3046 	for (queue = 0; queue < rx_queues_count; queue++) {
3047 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3048 			continue;
3049 
3050 		prio = priv->plat->rx_queues_cfg[queue].prio;
3051 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3052 	}
3053 }
3054 
3055 /**
3056  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3057  *  @priv: driver private structure
3058  *  Description: It is used for configuring the TX Queue Priority
3059  */
3060 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3061 {
3062 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3063 	u32 queue;
3064 	u32 prio;
3065 
3066 	for (queue = 0; queue < tx_queues_count; queue++) {
3067 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3068 			continue;
3069 
3070 		prio = priv->plat->tx_queues_cfg[queue].prio;
3071 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3072 	}
3073 }
3074 
3075 /**
3076  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3077  *  @priv: driver private structure
3078  *  Description: It is used for configuring the RX queue routing
3079  */
3080 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3081 {
3082 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3083 	u32 queue;
3084 	u8 packet;
3085 
3086 	for (queue = 0; queue < rx_queues_count; queue++) {
3087 		/* no specific packet type routing specified for the queue */
3088 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3089 			continue;
3090 
3091 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3092 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3093 	}
3094 }
3095 
3096 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3097 {
3098 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3099 		priv->rss.enable = false;
3100 		return;
3101 	}
3102 
3103 	if (priv->dev->features & NETIF_F_RXHASH)
3104 		priv->rss.enable = true;
3105 	else
3106 		priv->rss.enable = false;
3107 
3108 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3109 			     priv->plat->rx_queues_to_use);
3110 }
3111 
3112 /**
3113  *  stmmac_mtl_configuration - Configure MTL
3114  *  @priv: driver private structure
3115  *  Description: It is used for configurring MTL
3116  */
3117 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3118 {
3119 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3120 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3121 
3122 	if (tx_queues_count > 1)
3123 		stmmac_set_tx_queue_weight(priv);
3124 
3125 	/* Configure MTL RX algorithms */
3126 	if (rx_queues_count > 1)
3127 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3128 				priv->plat->rx_sched_algorithm);
3129 
3130 	/* Configure MTL TX algorithms */
3131 	if (tx_queues_count > 1)
3132 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3133 				priv->plat->tx_sched_algorithm);
3134 
3135 	/* Configure CBS in AVB TX queues */
3136 	if (tx_queues_count > 1)
3137 		stmmac_configure_cbs(priv);
3138 
3139 	/* Map RX MTL to DMA channels */
3140 	stmmac_rx_queue_dma_chan_map(priv);
3141 
3142 	/* Enable MAC RX Queues */
3143 	stmmac_mac_enable_rx_queues(priv);
3144 
3145 	/* Set RX priorities */
3146 	if (rx_queues_count > 1)
3147 		stmmac_mac_config_rx_queues_prio(priv);
3148 
3149 	/* Set TX priorities */
3150 	if (tx_queues_count > 1)
3151 		stmmac_mac_config_tx_queues_prio(priv);
3152 
3153 	/* Set RX routing */
3154 	if (rx_queues_count > 1)
3155 		stmmac_mac_config_rx_queues_routing(priv);
3156 
3157 	/* Receive Side Scaling */
3158 	if (rx_queues_count > 1)
3159 		stmmac_mac_config_rss(priv);
3160 }
3161 
3162 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3163 {
3164 	if (priv->dma_cap.asp) {
3165 		netdev_info(priv->dev, "Enabling Safety Features\n");
3166 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3167 					  priv->plat->safety_feat_cfg);
3168 	} else {
3169 		netdev_info(priv->dev, "No Safety Features support found\n");
3170 	}
3171 }
3172 
3173 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3174 {
3175 	char *name;
3176 
3177 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3178 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3179 
3180 	name = priv->wq_name;
3181 	sprintf(name, "%s-fpe", priv->dev->name);
3182 
3183 	priv->fpe_wq = create_singlethread_workqueue(name);
3184 	if (!priv->fpe_wq) {
3185 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3186 
3187 		return -ENOMEM;
3188 	}
3189 	netdev_info(priv->dev, "FPE workqueue start");
3190 
3191 	return 0;
3192 }
3193 
3194 /**
3195  * stmmac_hw_setup - setup mac in a usable state.
3196  *  @dev : pointer to the device structure.
3197  *  @init_ptp: initialize PTP if set
3198  *  Description:
3199  *  this is the main function to setup the HW in a usable state because the
3200  *  dma engine is reset, the core registers are configured (e.g. AXI,
3201  *  Checksum features, timers). The DMA is ready to start receiving and
3202  *  transmitting.
3203  *  Return value:
3204  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3205  *  file on failure.
3206  */
3207 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3208 {
3209 	struct stmmac_priv *priv = netdev_priv(dev);
3210 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3211 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3212 	bool sph_en;
3213 	u32 chan;
3214 	int ret;
3215 
3216 	/* DMA initialization and SW reset */
3217 	ret = stmmac_init_dma_engine(priv);
3218 	if (ret < 0) {
3219 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3220 			   __func__);
3221 		return ret;
3222 	}
3223 
3224 	/* Copy the MAC addr into the HW  */
3225 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3226 
3227 	/* PS and related bits will be programmed according to the speed */
3228 	if (priv->hw->pcs) {
3229 		int speed = priv->plat->mac_port_sel_speed;
3230 
3231 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3232 		    (speed == SPEED_1000)) {
3233 			priv->hw->ps = speed;
3234 		} else {
3235 			dev_warn(priv->device, "invalid port speed\n");
3236 			priv->hw->ps = 0;
3237 		}
3238 	}
3239 
3240 	/* Initialize the MAC Core */
3241 	stmmac_core_init(priv, priv->hw, dev);
3242 
3243 	/* Initialize MTL*/
3244 	stmmac_mtl_configuration(priv);
3245 
3246 	/* Initialize Safety Features */
3247 	stmmac_safety_feat_configuration(priv);
3248 
3249 	ret = stmmac_rx_ipc(priv, priv->hw);
3250 	if (!ret) {
3251 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3252 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3253 		priv->hw->rx_csum = 0;
3254 	}
3255 
3256 	/* Enable the MAC Rx/Tx */
3257 	stmmac_mac_set(priv, priv->ioaddr, true);
3258 
3259 	/* Set the HW DMA mode and the COE */
3260 	stmmac_dma_operation_mode(priv);
3261 
3262 	stmmac_mmc_setup(priv);
3263 
3264 	if (init_ptp) {
3265 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3266 		if (ret < 0)
3267 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3268 
3269 		ret = stmmac_init_ptp(priv);
3270 		if (ret == -EOPNOTSUPP)
3271 			netdev_warn(priv->dev, "PTP not supported by HW\n");
3272 		else if (ret)
3273 			netdev_warn(priv->dev, "PTP init failed\n");
3274 	}
3275 
3276 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3277 
3278 	/* Convert the timer from msec to usec */
3279 	if (!priv->tx_lpi_timer)
3280 		priv->tx_lpi_timer = eee_timer * 1000;
3281 
3282 	if (priv->use_riwt) {
3283 		u32 queue;
3284 
3285 		for (queue = 0; queue < rx_cnt; queue++) {
3286 			if (!priv->rx_riwt[queue])
3287 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3288 
3289 			stmmac_rx_watchdog(priv, priv->ioaddr,
3290 					   priv->rx_riwt[queue], queue);
3291 		}
3292 	}
3293 
3294 	if (priv->hw->pcs)
3295 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3296 
3297 	/* set TX and RX rings length */
3298 	stmmac_set_rings_length(priv);
3299 
3300 	/* Enable TSO */
3301 	if (priv->tso) {
3302 		for (chan = 0; chan < tx_cnt; chan++) {
3303 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3304 
3305 			/* TSO and TBS cannot co-exist */
3306 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3307 				continue;
3308 
3309 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3310 		}
3311 	}
3312 
3313 	/* Enable Split Header */
3314 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3315 	for (chan = 0; chan < rx_cnt; chan++)
3316 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3317 
3318 
3319 	/* VLAN Tag Insertion */
3320 	if (priv->dma_cap.vlins)
3321 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3322 
3323 	/* TBS */
3324 	for (chan = 0; chan < tx_cnt; chan++) {
3325 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3326 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3327 
3328 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3329 	}
3330 
3331 	/* Configure real RX and TX queues */
3332 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3333 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3334 
3335 	/* Start the ball rolling... */
3336 	stmmac_start_all_dma(priv);
3337 
3338 	if (priv->dma_cap.fpesel) {
3339 		stmmac_fpe_start_wq(priv);
3340 
3341 		if (priv->plat->fpe_cfg->enable)
3342 			stmmac_fpe_handshake(priv, true);
3343 	}
3344 
3345 	return 0;
3346 }
3347 
3348 static void stmmac_hw_teardown(struct net_device *dev)
3349 {
3350 	struct stmmac_priv *priv = netdev_priv(dev);
3351 
3352 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3353 }
3354 
3355 static void stmmac_free_irq(struct net_device *dev,
3356 			    enum request_irq_err irq_err, int irq_idx)
3357 {
3358 	struct stmmac_priv *priv = netdev_priv(dev);
3359 	int j;
3360 
3361 	switch (irq_err) {
3362 	case REQ_IRQ_ERR_ALL:
3363 		irq_idx = priv->plat->tx_queues_to_use;
3364 		fallthrough;
3365 	case REQ_IRQ_ERR_TX:
3366 		for (j = irq_idx - 1; j >= 0; j--) {
3367 			if (priv->tx_irq[j] > 0) {
3368 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3369 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3370 			}
3371 		}
3372 		irq_idx = priv->plat->rx_queues_to_use;
3373 		fallthrough;
3374 	case REQ_IRQ_ERR_RX:
3375 		for (j = irq_idx - 1; j >= 0; j--) {
3376 			if (priv->rx_irq[j] > 0) {
3377 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3378 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3379 			}
3380 		}
3381 
3382 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3383 			free_irq(priv->sfty_ue_irq, dev);
3384 		fallthrough;
3385 	case REQ_IRQ_ERR_SFTY_UE:
3386 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3387 			free_irq(priv->sfty_ce_irq, dev);
3388 		fallthrough;
3389 	case REQ_IRQ_ERR_SFTY_CE:
3390 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3391 			free_irq(priv->lpi_irq, dev);
3392 		fallthrough;
3393 	case REQ_IRQ_ERR_LPI:
3394 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3395 			free_irq(priv->wol_irq, dev);
3396 		fallthrough;
3397 	case REQ_IRQ_ERR_WOL:
3398 		free_irq(dev->irq, dev);
3399 		fallthrough;
3400 	case REQ_IRQ_ERR_MAC:
3401 	case REQ_IRQ_ERR_NO:
3402 		/* If MAC IRQ request error, no more IRQ to free */
3403 		break;
3404 	}
3405 }
3406 
3407 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3408 {
3409 	struct stmmac_priv *priv = netdev_priv(dev);
3410 	enum request_irq_err irq_err;
3411 	cpumask_t cpu_mask;
3412 	int irq_idx = 0;
3413 	char *int_name;
3414 	int ret;
3415 	int i;
3416 
3417 	/* For common interrupt */
3418 	int_name = priv->int_name_mac;
3419 	sprintf(int_name, "%s:%s", dev->name, "mac");
3420 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3421 			  0, int_name, dev);
3422 	if (unlikely(ret < 0)) {
3423 		netdev_err(priv->dev,
3424 			   "%s: alloc mac MSI %d (error: %d)\n",
3425 			   __func__, dev->irq, ret);
3426 		irq_err = REQ_IRQ_ERR_MAC;
3427 		goto irq_error;
3428 	}
3429 
3430 	/* Request the Wake IRQ in case of another line
3431 	 * is used for WoL
3432 	 */
3433 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3434 		int_name = priv->int_name_wol;
3435 		sprintf(int_name, "%s:%s", dev->name, "wol");
3436 		ret = request_irq(priv->wol_irq,
3437 				  stmmac_mac_interrupt,
3438 				  0, int_name, dev);
3439 		if (unlikely(ret < 0)) {
3440 			netdev_err(priv->dev,
3441 				   "%s: alloc wol MSI %d (error: %d)\n",
3442 				   __func__, priv->wol_irq, ret);
3443 			irq_err = REQ_IRQ_ERR_WOL;
3444 			goto irq_error;
3445 		}
3446 	}
3447 
3448 	/* Request the LPI IRQ in case of another line
3449 	 * is used for LPI
3450 	 */
3451 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3452 		int_name = priv->int_name_lpi;
3453 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3454 		ret = request_irq(priv->lpi_irq,
3455 				  stmmac_mac_interrupt,
3456 				  0, int_name, dev);
3457 		if (unlikely(ret < 0)) {
3458 			netdev_err(priv->dev,
3459 				   "%s: alloc lpi MSI %d (error: %d)\n",
3460 				   __func__, priv->lpi_irq, ret);
3461 			irq_err = REQ_IRQ_ERR_LPI;
3462 			goto irq_error;
3463 		}
3464 	}
3465 
3466 	/* Request the Safety Feature Correctible Error line in
3467 	 * case of another line is used
3468 	 */
3469 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3470 		int_name = priv->int_name_sfty_ce;
3471 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3472 		ret = request_irq(priv->sfty_ce_irq,
3473 				  stmmac_safety_interrupt,
3474 				  0, int_name, dev);
3475 		if (unlikely(ret < 0)) {
3476 			netdev_err(priv->dev,
3477 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3478 				   __func__, priv->sfty_ce_irq, ret);
3479 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3480 			goto irq_error;
3481 		}
3482 	}
3483 
3484 	/* Request the Safety Feature Uncorrectible Error line in
3485 	 * case of another line is used
3486 	 */
3487 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3488 		int_name = priv->int_name_sfty_ue;
3489 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3490 		ret = request_irq(priv->sfty_ue_irq,
3491 				  stmmac_safety_interrupt,
3492 				  0, int_name, dev);
3493 		if (unlikely(ret < 0)) {
3494 			netdev_err(priv->dev,
3495 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3496 				   __func__, priv->sfty_ue_irq, ret);
3497 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3498 			goto irq_error;
3499 		}
3500 	}
3501 
3502 	/* Request Rx MSI irq */
3503 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3504 		if (priv->rx_irq[i] == 0)
3505 			continue;
3506 
3507 		int_name = priv->int_name_rx_irq[i];
3508 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3509 		ret = request_irq(priv->rx_irq[i],
3510 				  stmmac_msi_intr_rx,
3511 				  0, int_name, &priv->rx_queue[i]);
3512 		if (unlikely(ret < 0)) {
3513 			netdev_err(priv->dev,
3514 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3515 				   __func__, i, priv->rx_irq[i], ret);
3516 			irq_err = REQ_IRQ_ERR_RX;
3517 			irq_idx = i;
3518 			goto irq_error;
3519 		}
3520 		cpumask_clear(&cpu_mask);
3521 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3522 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3523 	}
3524 
3525 	/* Request Tx MSI irq */
3526 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3527 		if (priv->tx_irq[i] == 0)
3528 			continue;
3529 
3530 		int_name = priv->int_name_tx_irq[i];
3531 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3532 		ret = request_irq(priv->tx_irq[i],
3533 				  stmmac_msi_intr_tx,
3534 				  0, int_name, &priv->tx_queue[i]);
3535 		if (unlikely(ret < 0)) {
3536 			netdev_err(priv->dev,
3537 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3538 				   __func__, i, priv->tx_irq[i], ret);
3539 			irq_err = REQ_IRQ_ERR_TX;
3540 			irq_idx = i;
3541 			goto irq_error;
3542 		}
3543 		cpumask_clear(&cpu_mask);
3544 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3545 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3546 	}
3547 
3548 	return 0;
3549 
3550 irq_error:
3551 	stmmac_free_irq(dev, irq_err, irq_idx);
3552 	return ret;
3553 }
3554 
3555 static int stmmac_request_irq_single(struct net_device *dev)
3556 {
3557 	struct stmmac_priv *priv = netdev_priv(dev);
3558 	enum request_irq_err irq_err;
3559 	int ret;
3560 
3561 	ret = request_irq(dev->irq, stmmac_interrupt,
3562 			  IRQF_SHARED, dev->name, dev);
3563 	if (unlikely(ret < 0)) {
3564 		netdev_err(priv->dev,
3565 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3566 			   __func__, dev->irq, ret);
3567 		irq_err = REQ_IRQ_ERR_MAC;
3568 		goto irq_error;
3569 	}
3570 
3571 	/* Request the Wake IRQ in case of another line
3572 	 * is used for WoL
3573 	 */
3574 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3575 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3576 				  IRQF_SHARED, dev->name, dev);
3577 		if (unlikely(ret < 0)) {
3578 			netdev_err(priv->dev,
3579 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3580 				   __func__, priv->wol_irq, ret);
3581 			irq_err = REQ_IRQ_ERR_WOL;
3582 			goto irq_error;
3583 		}
3584 	}
3585 
3586 	/* Request the IRQ lines */
3587 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3588 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3589 				  IRQF_SHARED, dev->name, dev);
3590 		if (unlikely(ret < 0)) {
3591 			netdev_err(priv->dev,
3592 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3593 				   __func__, priv->lpi_irq, ret);
3594 			irq_err = REQ_IRQ_ERR_LPI;
3595 			goto irq_error;
3596 		}
3597 	}
3598 
3599 	return 0;
3600 
3601 irq_error:
3602 	stmmac_free_irq(dev, irq_err, 0);
3603 	return ret;
3604 }
3605 
3606 static int stmmac_request_irq(struct net_device *dev)
3607 {
3608 	struct stmmac_priv *priv = netdev_priv(dev);
3609 	int ret;
3610 
3611 	/* Request the IRQ lines */
3612 	if (priv->plat->multi_msi_en)
3613 		ret = stmmac_request_irq_multi_msi(dev);
3614 	else
3615 		ret = stmmac_request_irq_single(dev);
3616 
3617 	return ret;
3618 }
3619 
3620 /**
3621  *  stmmac_open - open entry point of the driver
3622  *  @dev : pointer to the device structure.
3623  *  Description:
3624  *  This function is the open entry point of the driver.
3625  *  Return value:
3626  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3627  *  file on failure.
3628  */
3629 int stmmac_open(struct net_device *dev)
3630 {
3631 	struct stmmac_priv *priv = netdev_priv(dev);
3632 	int mode = priv->plat->phy_interface;
3633 	int bfsize = 0;
3634 	u32 chan;
3635 	int ret;
3636 
3637 	ret = pm_runtime_get_sync(priv->device);
3638 	if (ret < 0) {
3639 		pm_runtime_put_noidle(priv->device);
3640 		return ret;
3641 	}
3642 
3643 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3644 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3645 	    (!priv->hw->xpcs ||
3646 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3647 		ret = stmmac_init_phy(dev);
3648 		if (ret) {
3649 			netdev_err(priv->dev,
3650 				   "%s: Cannot attach to PHY (error: %d)\n",
3651 				   __func__, ret);
3652 			goto init_phy_error;
3653 		}
3654 	}
3655 
3656 	/* Extra statistics */
3657 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3658 	priv->xstats.threshold = tc;
3659 
3660 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3661 	if (bfsize < 0)
3662 		bfsize = 0;
3663 
3664 	if (bfsize < BUF_SIZE_16KiB)
3665 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3666 
3667 	priv->dma_buf_sz = bfsize;
3668 	buf_sz = bfsize;
3669 
3670 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3671 
3672 	if (!priv->dma_tx_size)
3673 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3674 	if (!priv->dma_rx_size)
3675 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3676 
3677 	/* Earlier check for TBS */
3678 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3679 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3680 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3681 
3682 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3683 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3684 	}
3685 
3686 	ret = alloc_dma_desc_resources(priv);
3687 	if (ret < 0) {
3688 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3689 			   __func__);
3690 		goto dma_desc_error;
3691 	}
3692 
3693 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3694 	if (ret < 0) {
3695 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3696 			   __func__);
3697 		goto init_error;
3698 	}
3699 
3700 	ret = stmmac_hw_setup(dev, true);
3701 	if (ret < 0) {
3702 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3703 		goto init_error;
3704 	}
3705 
3706 	stmmac_init_coalesce(priv);
3707 
3708 	phylink_start(priv->phylink);
3709 	/* We may have called phylink_speed_down before */
3710 	phylink_speed_up(priv->phylink);
3711 
3712 	ret = stmmac_request_irq(dev);
3713 	if (ret)
3714 		goto irq_error;
3715 
3716 	stmmac_enable_all_queues(priv);
3717 	netif_tx_start_all_queues(priv->dev);
3718 
3719 	return 0;
3720 
3721 irq_error:
3722 	phylink_stop(priv->phylink);
3723 
3724 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3725 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3726 
3727 	stmmac_hw_teardown(dev);
3728 init_error:
3729 	free_dma_desc_resources(priv);
3730 dma_desc_error:
3731 	phylink_disconnect_phy(priv->phylink);
3732 init_phy_error:
3733 	pm_runtime_put(priv->device);
3734 	return ret;
3735 }
3736 
3737 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3738 {
3739 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3740 
3741 	if (priv->fpe_wq)
3742 		destroy_workqueue(priv->fpe_wq);
3743 
3744 	netdev_info(priv->dev, "FPE workqueue stop");
3745 }
3746 
3747 /**
3748  *  stmmac_release - close entry point of the driver
3749  *  @dev : device pointer.
3750  *  Description:
3751  *  This is the stop entry point of the driver.
3752  */
3753 int stmmac_release(struct net_device *dev)
3754 {
3755 	struct stmmac_priv *priv = netdev_priv(dev);
3756 	u32 chan;
3757 
3758 	if (device_may_wakeup(priv->device))
3759 		phylink_speed_down(priv->phylink, false);
3760 	/* Stop and disconnect the PHY */
3761 	phylink_stop(priv->phylink);
3762 	phylink_disconnect_phy(priv->phylink);
3763 
3764 	stmmac_disable_all_queues(priv);
3765 
3766 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3767 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3768 
3769 	/* Free the IRQ lines */
3770 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3771 
3772 	if (priv->eee_enabled) {
3773 		priv->tx_path_in_lpi_mode = false;
3774 		del_timer_sync(&priv->eee_ctrl_timer);
3775 	}
3776 
3777 	/* Stop TX/RX DMA and clear the descriptors */
3778 	stmmac_stop_all_dma(priv);
3779 
3780 	/* Release and free the Rx/Tx resources */
3781 	free_dma_desc_resources(priv);
3782 
3783 	/* Disable the MAC Rx/Tx */
3784 	stmmac_mac_set(priv, priv->ioaddr, false);
3785 
3786 	netif_carrier_off(dev);
3787 
3788 	stmmac_release_ptp(priv);
3789 
3790 	pm_runtime_put(priv->device);
3791 
3792 	if (priv->dma_cap.fpesel)
3793 		stmmac_fpe_stop_wq(priv);
3794 
3795 	return 0;
3796 }
3797 
3798 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3799 			       struct stmmac_tx_queue *tx_q)
3800 {
3801 	u16 tag = 0x0, inner_tag = 0x0;
3802 	u32 inner_type = 0x0;
3803 	struct dma_desc *p;
3804 
3805 	if (!priv->dma_cap.vlins)
3806 		return false;
3807 	if (!skb_vlan_tag_present(skb))
3808 		return false;
3809 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3810 		inner_tag = skb_vlan_tag_get(skb);
3811 		inner_type = STMMAC_VLAN_INSERT;
3812 	}
3813 
3814 	tag = skb_vlan_tag_get(skb);
3815 
3816 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3817 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3818 	else
3819 		p = &tx_q->dma_tx[tx_q->cur_tx];
3820 
3821 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3822 		return false;
3823 
3824 	stmmac_set_tx_owner(priv, p);
3825 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3826 	return true;
3827 }
3828 
3829 /**
3830  *  stmmac_tso_allocator - close entry point of the driver
3831  *  @priv: driver private structure
3832  *  @des: buffer start address
3833  *  @total_len: total length to fill in descriptors
3834  *  @last_segment: condition for the last descriptor
3835  *  @queue: TX queue index
3836  *  Description:
3837  *  This function fills descriptor and request new descriptors according to
3838  *  buffer length to fill
3839  */
3840 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3841 				 int total_len, bool last_segment, u32 queue)
3842 {
3843 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3844 	struct dma_desc *desc;
3845 	u32 buff_size;
3846 	int tmp_len;
3847 
3848 	tmp_len = total_len;
3849 
3850 	while (tmp_len > 0) {
3851 		dma_addr_t curr_addr;
3852 
3853 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3854 						priv->dma_tx_size);
3855 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3856 
3857 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3858 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3859 		else
3860 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3861 
3862 		curr_addr = des + (total_len - tmp_len);
3863 		if (priv->dma_cap.addr64 <= 32)
3864 			desc->des0 = cpu_to_le32(curr_addr);
3865 		else
3866 			stmmac_set_desc_addr(priv, desc, curr_addr);
3867 
3868 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3869 			    TSO_MAX_BUFF_SIZE : tmp_len;
3870 
3871 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3872 				0, 1,
3873 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3874 				0, 0);
3875 
3876 		tmp_len -= TSO_MAX_BUFF_SIZE;
3877 	}
3878 }
3879 
3880 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3881 {
3882 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3883 	int desc_size;
3884 
3885 	if (likely(priv->extend_desc))
3886 		desc_size = sizeof(struct dma_extended_desc);
3887 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3888 		desc_size = sizeof(struct dma_edesc);
3889 	else
3890 		desc_size = sizeof(struct dma_desc);
3891 
3892 	/* The own bit must be the latest setting done when prepare the
3893 	 * descriptor and then barrier is needed to make sure that
3894 	 * all is coherent before granting the DMA engine.
3895 	 */
3896 	wmb();
3897 
3898 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3899 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3900 }
3901 
3902 /**
3903  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3904  *  @skb : the socket buffer
3905  *  @dev : device pointer
3906  *  Description: this is the transmit function that is called on TSO frames
3907  *  (support available on GMAC4 and newer chips).
3908  *  Diagram below show the ring programming in case of TSO frames:
3909  *
3910  *  First Descriptor
3911  *   --------
3912  *   | DES0 |---> buffer1 = L2/L3/L4 header
3913  *   | DES1 |---> TCP Payload (can continue on next descr...)
3914  *   | DES2 |---> buffer 1 and 2 len
3915  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3916  *   --------
3917  *	|
3918  *     ...
3919  *	|
3920  *   --------
3921  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3922  *   | DES1 | --|
3923  *   | DES2 | --> buffer 1 and 2 len
3924  *   | DES3 |
3925  *   --------
3926  *
3927  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3928  */
3929 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3930 {
3931 	struct dma_desc *desc, *first, *mss_desc = NULL;
3932 	struct stmmac_priv *priv = netdev_priv(dev);
3933 	int nfrags = skb_shinfo(skb)->nr_frags;
3934 	u32 queue = skb_get_queue_mapping(skb);
3935 	unsigned int first_entry, tx_packets;
3936 	int tmp_pay_len = 0, first_tx;
3937 	struct stmmac_tx_queue *tx_q;
3938 	bool has_vlan, set_ic;
3939 	u8 proto_hdr_len, hdr;
3940 	u32 pay_len, mss;
3941 	dma_addr_t des;
3942 	int i;
3943 
3944 	tx_q = &priv->tx_queue[queue];
3945 	first_tx = tx_q->cur_tx;
3946 
3947 	/* Compute header lengths */
3948 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3949 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3950 		hdr = sizeof(struct udphdr);
3951 	} else {
3952 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3953 		hdr = tcp_hdrlen(skb);
3954 	}
3955 
3956 	/* Desc availability based on threshold should be enough safe */
3957 	if (unlikely(stmmac_tx_avail(priv, queue) <
3958 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3959 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3960 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3961 								queue));
3962 			/* This is a hard error, log it. */
3963 			netdev_err(priv->dev,
3964 				   "%s: Tx Ring full when queue awake\n",
3965 				   __func__);
3966 		}
3967 		return NETDEV_TX_BUSY;
3968 	}
3969 
3970 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3971 
3972 	mss = skb_shinfo(skb)->gso_size;
3973 
3974 	/* set new MSS value if needed */
3975 	if (mss != tx_q->mss) {
3976 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3977 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3978 		else
3979 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3980 
3981 		stmmac_set_mss(priv, mss_desc, mss);
3982 		tx_q->mss = mss;
3983 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3984 						priv->dma_tx_size);
3985 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3986 	}
3987 
3988 	if (netif_msg_tx_queued(priv)) {
3989 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3990 			__func__, hdr, proto_hdr_len, pay_len, mss);
3991 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3992 			skb->data_len);
3993 	}
3994 
3995 	/* Check if VLAN can be inserted by HW */
3996 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3997 
3998 	first_entry = tx_q->cur_tx;
3999 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4000 
4001 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4002 		desc = &tx_q->dma_entx[first_entry].basic;
4003 	else
4004 		desc = &tx_q->dma_tx[first_entry];
4005 	first = desc;
4006 
4007 	if (has_vlan)
4008 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4009 
4010 	/* first descriptor: fill Headers on Buf1 */
4011 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4012 			     DMA_TO_DEVICE);
4013 	if (dma_mapping_error(priv->device, des))
4014 		goto dma_map_err;
4015 
4016 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4017 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4018 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4019 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4020 
4021 	if (priv->dma_cap.addr64 <= 32) {
4022 		first->des0 = cpu_to_le32(des);
4023 
4024 		/* Fill start of payload in buff2 of first descriptor */
4025 		if (pay_len)
4026 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4027 
4028 		/* If needed take extra descriptors to fill the remaining payload */
4029 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4030 	} else {
4031 		stmmac_set_desc_addr(priv, first, des);
4032 		tmp_pay_len = pay_len;
4033 		des += proto_hdr_len;
4034 		pay_len = 0;
4035 	}
4036 
4037 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4038 
4039 	/* Prepare fragments */
4040 	for (i = 0; i < nfrags; i++) {
4041 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4042 
4043 		des = skb_frag_dma_map(priv->device, frag, 0,
4044 				       skb_frag_size(frag),
4045 				       DMA_TO_DEVICE);
4046 		if (dma_mapping_error(priv->device, des))
4047 			goto dma_map_err;
4048 
4049 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4050 				     (i == nfrags - 1), queue);
4051 
4052 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4053 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4054 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4055 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4056 	}
4057 
4058 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4059 
4060 	/* Only the last descriptor gets to point to the skb. */
4061 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4062 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4063 
4064 	/* Manage tx mitigation */
4065 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4066 	tx_q->tx_count_frames += tx_packets;
4067 
4068 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4069 		set_ic = true;
4070 	else if (!priv->tx_coal_frames[queue])
4071 		set_ic = false;
4072 	else if (tx_packets > priv->tx_coal_frames[queue])
4073 		set_ic = true;
4074 	else if ((tx_q->tx_count_frames %
4075 		  priv->tx_coal_frames[queue]) < tx_packets)
4076 		set_ic = true;
4077 	else
4078 		set_ic = false;
4079 
4080 	if (set_ic) {
4081 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4082 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4083 		else
4084 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4085 
4086 		tx_q->tx_count_frames = 0;
4087 		stmmac_set_tx_ic(priv, desc);
4088 		priv->xstats.tx_set_ic_bit++;
4089 	}
4090 
4091 	/* We've used all descriptors we need for this skb, however,
4092 	 * advance cur_tx so that it references a fresh descriptor.
4093 	 * ndo_start_xmit will fill this descriptor the next time it's
4094 	 * called and stmmac_tx_clean may clean up to this descriptor.
4095 	 */
4096 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4097 
4098 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4099 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4100 			  __func__);
4101 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4102 	}
4103 
4104 	dev->stats.tx_bytes += skb->len;
4105 	priv->xstats.tx_tso_frames++;
4106 	priv->xstats.tx_tso_nfrags += nfrags;
4107 
4108 	if (priv->sarc_type)
4109 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4110 
4111 	skb_tx_timestamp(skb);
4112 
4113 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4114 		     priv->hwts_tx_en)) {
4115 		/* declare that device is doing timestamping */
4116 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4117 		stmmac_enable_tx_timestamp(priv, first);
4118 	}
4119 
4120 	/* Complete the first descriptor before granting the DMA */
4121 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4122 			proto_hdr_len,
4123 			pay_len,
4124 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4125 			hdr / 4, (skb->len - proto_hdr_len));
4126 
4127 	/* If context desc is used to change MSS */
4128 	if (mss_desc) {
4129 		/* Make sure that first descriptor has been completely
4130 		 * written, including its own bit. This is because MSS is
4131 		 * actually before first descriptor, so we need to make
4132 		 * sure that MSS's own bit is the last thing written.
4133 		 */
4134 		dma_wmb();
4135 		stmmac_set_tx_owner(priv, mss_desc);
4136 	}
4137 
4138 	if (netif_msg_pktdata(priv)) {
4139 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4140 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4141 			tx_q->cur_tx, first, nfrags);
4142 		pr_info(">>> frame to be transmitted: ");
4143 		print_pkt(skb->data, skb_headlen(skb));
4144 	}
4145 
4146 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4147 
4148 	stmmac_flush_tx_descriptors(priv, queue);
4149 	stmmac_tx_timer_arm(priv, queue);
4150 
4151 	return NETDEV_TX_OK;
4152 
4153 dma_map_err:
4154 	dev_err(priv->device, "Tx dma map failed\n");
4155 	dev_kfree_skb(skb);
4156 	priv->dev->stats.tx_dropped++;
4157 	return NETDEV_TX_OK;
4158 }
4159 
4160 /**
4161  *  stmmac_xmit - Tx entry point of the driver
4162  *  @skb : the socket buffer
4163  *  @dev : device pointer
4164  *  Description : this is the tx entry point of the driver.
4165  *  It programs the chain or the ring and supports oversized frames
4166  *  and SG feature.
4167  */
4168 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4169 {
4170 	unsigned int first_entry, tx_packets, enh_desc;
4171 	struct stmmac_priv *priv = netdev_priv(dev);
4172 	unsigned int nopaged_len = skb_headlen(skb);
4173 	int i, csum_insertion = 0, is_jumbo = 0;
4174 	u32 queue = skb_get_queue_mapping(skb);
4175 	int nfrags = skb_shinfo(skb)->nr_frags;
4176 	int gso = skb_shinfo(skb)->gso_type;
4177 	struct dma_edesc *tbs_desc = NULL;
4178 	struct dma_desc *desc, *first;
4179 	struct stmmac_tx_queue *tx_q;
4180 	bool has_vlan, set_ic;
4181 	int entry, first_tx;
4182 	dma_addr_t des;
4183 
4184 	tx_q = &priv->tx_queue[queue];
4185 	first_tx = tx_q->cur_tx;
4186 
4187 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4188 		stmmac_disable_eee_mode(priv);
4189 
4190 	/* Manage oversized TCP frames for GMAC4 device */
4191 	if (skb_is_gso(skb) && priv->tso) {
4192 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4193 			return stmmac_tso_xmit(skb, dev);
4194 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4195 			return stmmac_tso_xmit(skb, dev);
4196 	}
4197 
4198 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4199 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4200 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4201 								queue));
4202 			/* This is a hard error, log it. */
4203 			netdev_err(priv->dev,
4204 				   "%s: Tx Ring full when queue awake\n",
4205 				   __func__);
4206 		}
4207 		return NETDEV_TX_BUSY;
4208 	}
4209 
4210 	/* Check if VLAN can be inserted by HW */
4211 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4212 
4213 	entry = tx_q->cur_tx;
4214 	first_entry = entry;
4215 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4216 
4217 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4218 
4219 	if (likely(priv->extend_desc))
4220 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4221 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4222 		desc = &tx_q->dma_entx[entry].basic;
4223 	else
4224 		desc = tx_q->dma_tx + entry;
4225 
4226 	first = desc;
4227 
4228 	if (has_vlan)
4229 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4230 
4231 	enh_desc = priv->plat->enh_desc;
4232 	/* To program the descriptors according to the size of the frame */
4233 	if (enh_desc)
4234 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4235 
4236 	if (unlikely(is_jumbo)) {
4237 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4238 		if (unlikely(entry < 0) && (entry != -EINVAL))
4239 			goto dma_map_err;
4240 	}
4241 
4242 	for (i = 0; i < nfrags; i++) {
4243 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4244 		int len = skb_frag_size(frag);
4245 		bool last_segment = (i == (nfrags - 1));
4246 
4247 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4248 		WARN_ON(tx_q->tx_skbuff[entry]);
4249 
4250 		if (likely(priv->extend_desc))
4251 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4252 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4253 			desc = &tx_q->dma_entx[entry].basic;
4254 		else
4255 			desc = tx_q->dma_tx + entry;
4256 
4257 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4258 				       DMA_TO_DEVICE);
4259 		if (dma_mapping_error(priv->device, des))
4260 			goto dma_map_err; /* should reuse desc w/o issues */
4261 
4262 		tx_q->tx_skbuff_dma[entry].buf = des;
4263 
4264 		stmmac_set_desc_addr(priv, desc, des);
4265 
4266 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4267 		tx_q->tx_skbuff_dma[entry].len = len;
4268 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4269 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4270 
4271 		/* Prepare the descriptor and set the own bit too */
4272 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4273 				priv->mode, 1, last_segment, skb->len);
4274 	}
4275 
4276 	/* Only the last descriptor gets to point to the skb. */
4277 	tx_q->tx_skbuff[entry] = skb;
4278 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4279 
4280 	/* According to the coalesce parameter the IC bit for the latest
4281 	 * segment is reset and the timer re-started to clean the tx status.
4282 	 * This approach takes care about the fragments: desc is the first
4283 	 * element in case of no SG.
4284 	 */
4285 	tx_packets = (entry + 1) - first_tx;
4286 	tx_q->tx_count_frames += tx_packets;
4287 
4288 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4289 		set_ic = true;
4290 	else if (!priv->tx_coal_frames[queue])
4291 		set_ic = false;
4292 	else if (tx_packets > priv->tx_coal_frames[queue])
4293 		set_ic = true;
4294 	else if ((tx_q->tx_count_frames %
4295 		  priv->tx_coal_frames[queue]) < tx_packets)
4296 		set_ic = true;
4297 	else
4298 		set_ic = false;
4299 
4300 	if (set_ic) {
4301 		if (likely(priv->extend_desc))
4302 			desc = &tx_q->dma_etx[entry].basic;
4303 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4304 			desc = &tx_q->dma_entx[entry].basic;
4305 		else
4306 			desc = &tx_q->dma_tx[entry];
4307 
4308 		tx_q->tx_count_frames = 0;
4309 		stmmac_set_tx_ic(priv, desc);
4310 		priv->xstats.tx_set_ic_bit++;
4311 	}
4312 
4313 	/* We've used all descriptors we need for this skb, however,
4314 	 * advance cur_tx so that it references a fresh descriptor.
4315 	 * ndo_start_xmit will fill this descriptor the next time it's
4316 	 * called and stmmac_tx_clean may clean up to this descriptor.
4317 	 */
4318 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4319 	tx_q->cur_tx = entry;
4320 
4321 	if (netif_msg_pktdata(priv)) {
4322 		netdev_dbg(priv->dev,
4323 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4324 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4325 			   entry, first, nfrags);
4326 
4327 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4328 		print_pkt(skb->data, skb->len);
4329 	}
4330 
4331 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4332 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4333 			  __func__);
4334 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4335 	}
4336 
4337 	dev->stats.tx_bytes += skb->len;
4338 
4339 	if (priv->sarc_type)
4340 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4341 
4342 	skb_tx_timestamp(skb);
4343 
4344 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4345 	 * problems because all the descriptors are actually ready to be
4346 	 * passed to the DMA engine.
4347 	 */
4348 	if (likely(!is_jumbo)) {
4349 		bool last_segment = (nfrags == 0);
4350 
4351 		des = dma_map_single(priv->device, skb->data,
4352 				     nopaged_len, DMA_TO_DEVICE);
4353 		if (dma_mapping_error(priv->device, des))
4354 			goto dma_map_err;
4355 
4356 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4357 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4358 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4359 
4360 		stmmac_set_desc_addr(priv, first, des);
4361 
4362 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4363 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4364 
4365 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4366 			     priv->hwts_tx_en)) {
4367 			/* declare that device is doing timestamping */
4368 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4369 			stmmac_enable_tx_timestamp(priv, first);
4370 		}
4371 
4372 		/* Prepare the first descriptor setting the OWN bit too */
4373 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4374 				csum_insertion, priv->mode, 0, last_segment,
4375 				skb->len);
4376 	}
4377 
4378 	if (tx_q->tbs & STMMAC_TBS_EN) {
4379 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4380 
4381 		tbs_desc = &tx_q->dma_entx[first_entry];
4382 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4383 	}
4384 
4385 	stmmac_set_tx_owner(priv, first);
4386 
4387 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4388 
4389 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4390 
4391 	stmmac_flush_tx_descriptors(priv, queue);
4392 	stmmac_tx_timer_arm(priv, queue);
4393 
4394 	return NETDEV_TX_OK;
4395 
4396 dma_map_err:
4397 	netdev_err(priv->dev, "Tx DMA map failed\n");
4398 	dev_kfree_skb(skb);
4399 	priv->dev->stats.tx_dropped++;
4400 	return NETDEV_TX_OK;
4401 }
4402 
4403 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4404 {
4405 	struct vlan_ethhdr *veth;
4406 	__be16 vlan_proto;
4407 	u16 vlanid;
4408 
4409 	veth = (struct vlan_ethhdr *)skb->data;
4410 	vlan_proto = veth->h_vlan_proto;
4411 
4412 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4413 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4414 	    (vlan_proto == htons(ETH_P_8021AD) &&
4415 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4416 		/* pop the vlan tag */
4417 		vlanid = ntohs(veth->h_vlan_TCI);
4418 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4419 		skb_pull(skb, VLAN_HLEN);
4420 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4421 	}
4422 }
4423 
4424 /**
4425  * stmmac_rx_refill - refill used skb preallocated buffers
4426  * @priv: driver private structure
4427  * @queue: RX queue index
4428  * Description : this is to reallocate the skb for the reception process
4429  * that is based on zero-copy.
4430  */
4431 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4432 {
4433 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4434 	int dirty = stmmac_rx_dirty(priv, queue);
4435 	unsigned int entry = rx_q->dirty_rx;
4436 
4437 	while (dirty-- > 0) {
4438 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4439 		struct dma_desc *p;
4440 		bool use_rx_wd;
4441 
4442 		if (priv->extend_desc)
4443 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4444 		else
4445 			p = rx_q->dma_rx + entry;
4446 
4447 		if (!buf->page) {
4448 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4449 			if (!buf->page)
4450 				break;
4451 		}
4452 
4453 		if (priv->sph && !buf->sec_page) {
4454 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4455 			if (!buf->sec_page)
4456 				break;
4457 
4458 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4459 		}
4460 
4461 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4462 
4463 		stmmac_set_desc_addr(priv, p, buf->addr);
4464 		if (priv->sph)
4465 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4466 		else
4467 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4468 		stmmac_refill_desc3(priv, rx_q, p);
4469 
4470 		rx_q->rx_count_frames++;
4471 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4472 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4473 			rx_q->rx_count_frames = 0;
4474 
4475 		use_rx_wd = !priv->rx_coal_frames[queue];
4476 		use_rx_wd |= rx_q->rx_count_frames > 0;
4477 		if (!priv->use_riwt)
4478 			use_rx_wd = false;
4479 
4480 		dma_wmb();
4481 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4482 
4483 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4484 	}
4485 	rx_q->dirty_rx = entry;
4486 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4487 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4488 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4489 }
4490 
4491 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4492 				       struct dma_desc *p,
4493 				       int status, unsigned int len)
4494 {
4495 	unsigned int plen = 0, hlen = 0;
4496 	int coe = priv->hw->rx_csum;
4497 
4498 	/* Not first descriptor, buffer is always zero */
4499 	if (priv->sph && len)
4500 		return 0;
4501 
4502 	/* First descriptor, get split header length */
4503 	stmmac_get_rx_header_len(priv, p, &hlen);
4504 	if (priv->sph && hlen) {
4505 		priv->xstats.rx_split_hdr_pkt_n++;
4506 		return hlen;
4507 	}
4508 
4509 	/* First descriptor, not last descriptor and not split header */
4510 	if (status & rx_not_ls)
4511 		return priv->dma_buf_sz;
4512 
4513 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4514 
4515 	/* First descriptor and last descriptor and not split header */
4516 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4517 }
4518 
4519 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4520 				       struct dma_desc *p,
4521 				       int status, unsigned int len)
4522 {
4523 	int coe = priv->hw->rx_csum;
4524 	unsigned int plen = 0;
4525 
4526 	/* Not split header, buffer is not available */
4527 	if (!priv->sph)
4528 		return 0;
4529 
4530 	/* Not last descriptor */
4531 	if (status & rx_not_ls)
4532 		return priv->dma_buf_sz;
4533 
4534 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4535 
4536 	/* Last descriptor */
4537 	return plen - len;
4538 }
4539 
4540 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4541 				struct xdp_frame *xdpf, bool dma_map)
4542 {
4543 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4544 	unsigned int entry = tx_q->cur_tx;
4545 	struct dma_desc *tx_desc;
4546 	dma_addr_t dma_addr;
4547 	bool set_ic;
4548 
4549 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4550 		return STMMAC_XDP_CONSUMED;
4551 
4552 	if (likely(priv->extend_desc))
4553 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4554 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4555 		tx_desc = &tx_q->dma_entx[entry].basic;
4556 	else
4557 		tx_desc = tx_q->dma_tx + entry;
4558 
4559 	if (dma_map) {
4560 		dma_addr = dma_map_single(priv->device, xdpf->data,
4561 					  xdpf->len, DMA_TO_DEVICE);
4562 		if (dma_mapping_error(priv->device, dma_addr))
4563 			return STMMAC_XDP_CONSUMED;
4564 
4565 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4566 	} else {
4567 		struct page *page = virt_to_page(xdpf->data);
4568 
4569 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4570 			   xdpf->headroom;
4571 		dma_sync_single_for_device(priv->device, dma_addr,
4572 					   xdpf->len, DMA_BIDIRECTIONAL);
4573 
4574 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4575 	}
4576 
4577 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4578 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4579 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4580 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4581 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4582 
4583 	tx_q->xdpf[entry] = xdpf;
4584 
4585 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4586 
4587 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4588 			       true, priv->mode, true, true,
4589 			       xdpf->len);
4590 
4591 	tx_q->tx_count_frames++;
4592 
4593 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4594 		set_ic = true;
4595 	else
4596 		set_ic = false;
4597 
4598 	if (set_ic) {
4599 		tx_q->tx_count_frames = 0;
4600 		stmmac_set_tx_ic(priv, tx_desc);
4601 		priv->xstats.tx_set_ic_bit++;
4602 	}
4603 
4604 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4605 
4606 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4607 	tx_q->cur_tx = entry;
4608 
4609 	return STMMAC_XDP_TX;
4610 }
4611 
4612 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4613 				   int cpu)
4614 {
4615 	int index = cpu;
4616 
4617 	if (unlikely(index < 0))
4618 		index = 0;
4619 
4620 	while (index >= priv->plat->tx_queues_to_use)
4621 		index -= priv->plat->tx_queues_to_use;
4622 
4623 	return index;
4624 }
4625 
4626 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4627 				struct xdp_buff *xdp)
4628 {
4629 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4630 	int cpu = smp_processor_id();
4631 	struct netdev_queue *nq;
4632 	int queue;
4633 	int res;
4634 
4635 	if (unlikely(!xdpf))
4636 		return STMMAC_XDP_CONSUMED;
4637 
4638 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4639 	nq = netdev_get_tx_queue(priv->dev, queue);
4640 
4641 	__netif_tx_lock(nq, cpu);
4642 	/* Avoids TX time-out as we are sharing with slow path */
4643 	nq->trans_start = jiffies;
4644 
4645 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4646 	if (res == STMMAC_XDP_TX)
4647 		stmmac_flush_tx_descriptors(priv, queue);
4648 
4649 	__netif_tx_unlock(nq);
4650 
4651 	return res;
4652 }
4653 
4654 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4655 				 struct bpf_prog *prog,
4656 				 struct xdp_buff *xdp)
4657 {
4658 	u32 act;
4659 	int res;
4660 
4661 	act = bpf_prog_run_xdp(prog, xdp);
4662 	switch (act) {
4663 	case XDP_PASS:
4664 		res = STMMAC_XDP_PASS;
4665 		break;
4666 	case XDP_TX:
4667 		res = stmmac_xdp_xmit_back(priv, xdp);
4668 		break;
4669 	case XDP_REDIRECT:
4670 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4671 			res = STMMAC_XDP_CONSUMED;
4672 		else
4673 			res = STMMAC_XDP_REDIRECT;
4674 		break;
4675 	default:
4676 		bpf_warn_invalid_xdp_action(act);
4677 		fallthrough;
4678 	case XDP_ABORTED:
4679 		trace_xdp_exception(priv->dev, prog, act);
4680 		fallthrough;
4681 	case XDP_DROP:
4682 		res = STMMAC_XDP_CONSUMED;
4683 		break;
4684 	}
4685 
4686 	return res;
4687 }
4688 
4689 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4690 					   struct xdp_buff *xdp)
4691 {
4692 	struct bpf_prog *prog;
4693 	int res;
4694 
4695 	prog = READ_ONCE(priv->xdp_prog);
4696 	if (!prog) {
4697 		res = STMMAC_XDP_PASS;
4698 		goto out;
4699 	}
4700 
4701 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4702 out:
4703 	return ERR_PTR(-res);
4704 }
4705 
4706 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4707 				   int xdp_status)
4708 {
4709 	int cpu = smp_processor_id();
4710 	int queue;
4711 
4712 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4713 
4714 	if (xdp_status & STMMAC_XDP_TX)
4715 		stmmac_tx_timer_arm(priv, queue);
4716 
4717 	if (xdp_status & STMMAC_XDP_REDIRECT)
4718 		xdp_do_flush();
4719 }
4720 
4721 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4722 					       struct xdp_buff *xdp)
4723 {
4724 	unsigned int metasize = xdp->data - xdp->data_meta;
4725 	unsigned int datasize = xdp->data_end - xdp->data;
4726 	struct sk_buff *skb;
4727 
4728 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4729 			       xdp->data_end - xdp->data_hard_start,
4730 			       GFP_ATOMIC | __GFP_NOWARN);
4731 	if (unlikely(!skb))
4732 		return NULL;
4733 
4734 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4735 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4736 	if (metasize)
4737 		skb_metadata_set(skb, metasize);
4738 
4739 	return skb;
4740 }
4741 
4742 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4743 				   struct dma_desc *p, struct dma_desc *np,
4744 				   struct xdp_buff *xdp)
4745 {
4746 	struct stmmac_channel *ch = &priv->channel[queue];
4747 	unsigned int len = xdp->data_end - xdp->data;
4748 	enum pkt_hash_types hash_type;
4749 	int coe = priv->hw->rx_csum;
4750 	struct sk_buff *skb;
4751 	u32 hash;
4752 
4753 	skb = stmmac_construct_skb_zc(ch, xdp);
4754 	if (!skb) {
4755 		priv->dev->stats.rx_dropped++;
4756 		return;
4757 	}
4758 
4759 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4760 	stmmac_rx_vlan(priv->dev, skb);
4761 	skb->protocol = eth_type_trans(skb, priv->dev);
4762 
4763 	if (unlikely(!coe))
4764 		skb_checksum_none_assert(skb);
4765 	else
4766 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4767 
4768 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4769 		skb_set_hash(skb, hash, hash_type);
4770 
4771 	skb_record_rx_queue(skb, queue);
4772 	napi_gro_receive(&ch->rxtx_napi, skb);
4773 
4774 	priv->dev->stats.rx_packets++;
4775 	priv->dev->stats.rx_bytes += len;
4776 }
4777 
4778 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4779 {
4780 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4781 	unsigned int entry = rx_q->dirty_rx;
4782 	struct dma_desc *rx_desc = NULL;
4783 	bool ret = true;
4784 
4785 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4786 
4787 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4788 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4789 		dma_addr_t dma_addr;
4790 		bool use_rx_wd;
4791 
4792 		if (!buf->xdp) {
4793 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4794 			if (!buf->xdp) {
4795 				ret = false;
4796 				break;
4797 			}
4798 		}
4799 
4800 		if (priv->extend_desc)
4801 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4802 		else
4803 			rx_desc = rx_q->dma_rx + entry;
4804 
4805 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4806 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4807 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4808 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4809 
4810 		rx_q->rx_count_frames++;
4811 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4812 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4813 			rx_q->rx_count_frames = 0;
4814 
4815 		use_rx_wd = !priv->rx_coal_frames[queue];
4816 		use_rx_wd |= rx_q->rx_count_frames > 0;
4817 		if (!priv->use_riwt)
4818 			use_rx_wd = false;
4819 
4820 		dma_wmb();
4821 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4822 
4823 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4824 	}
4825 
4826 	if (rx_desc) {
4827 		rx_q->dirty_rx = entry;
4828 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4829 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4830 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4831 	}
4832 
4833 	return ret;
4834 }
4835 
4836 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4837 {
4838 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4839 	unsigned int count = 0, error = 0, len = 0;
4840 	int dirty = stmmac_rx_dirty(priv, queue);
4841 	unsigned int next_entry = rx_q->cur_rx;
4842 	unsigned int desc_size;
4843 	struct bpf_prog *prog;
4844 	bool failure = false;
4845 	int xdp_status = 0;
4846 	int status = 0;
4847 
4848 	if (netif_msg_rx_status(priv)) {
4849 		void *rx_head;
4850 
4851 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4852 		if (priv->extend_desc) {
4853 			rx_head = (void *)rx_q->dma_erx;
4854 			desc_size = sizeof(struct dma_extended_desc);
4855 		} else {
4856 			rx_head = (void *)rx_q->dma_rx;
4857 			desc_size = sizeof(struct dma_desc);
4858 		}
4859 
4860 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4861 				    rx_q->dma_rx_phy, desc_size);
4862 	}
4863 	while (count < limit) {
4864 		struct stmmac_rx_buffer *buf;
4865 		unsigned int buf1_len = 0;
4866 		struct dma_desc *np, *p;
4867 		int entry;
4868 		int res;
4869 
4870 		if (!count && rx_q->state_saved) {
4871 			error = rx_q->state.error;
4872 			len = rx_q->state.len;
4873 		} else {
4874 			rx_q->state_saved = false;
4875 			error = 0;
4876 			len = 0;
4877 		}
4878 
4879 		if (count >= limit)
4880 			break;
4881 
4882 read_again:
4883 		buf1_len = 0;
4884 		entry = next_entry;
4885 		buf = &rx_q->buf_pool[entry];
4886 
4887 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4888 			failure = failure ||
4889 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4890 			dirty = 0;
4891 		}
4892 
4893 		if (priv->extend_desc)
4894 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4895 		else
4896 			p = rx_q->dma_rx + entry;
4897 
4898 		/* read the status of the incoming frame */
4899 		status = stmmac_rx_status(priv, &priv->dev->stats,
4900 					  &priv->xstats, p);
4901 		/* check if managed by the DMA otherwise go ahead */
4902 		if (unlikely(status & dma_own))
4903 			break;
4904 
4905 		/* Prefetch the next RX descriptor */
4906 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4907 						priv->dma_rx_size);
4908 		next_entry = rx_q->cur_rx;
4909 
4910 		if (priv->extend_desc)
4911 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4912 		else
4913 			np = rx_q->dma_rx + next_entry;
4914 
4915 		prefetch(np);
4916 
4917 		if (priv->extend_desc)
4918 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4919 						  &priv->xstats,
4920 						  rx_q->dma_erx + entry);
4921 		if (unlikely(status == discard_frame)) {
4922 			xsk_buff_free(buf->xdp);
4923 			buf->xdp = NULL;
4924 			dirty++;
4925 			error = 1;
4926 			if (!priv->hwts_rx_en)
4927 				priv->dev->stats.rx_errors++;
4928 		}
4929 
4930 		if (unlikely(error && (status & rx_not_ls)))
4931 			goto read_again;
4932 		if (unlikely(error)) {
4933 			count++;
4934 			continue;
4935 		}
4936 
4937 		/* Ensure a valid XSK buffer before proceed */
4938 		if (!buf->xdp)
4939 			break;
4940 
4941 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4942 		if (likely(status & rx_not_ls)) {
4943 			xsk_buff_free(buf->xdp);
4944 			buf->xdp = NULL;
4945 			dirty++;
4946 			count++;
4947 			goto read_again;
4948 		}
4949 
4950 		/* XDP ZC Frame only support primary buffers for now */
4951 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4952 		len += buf1_len;
4953 
4954 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4955 		 * Type frames (LLC/LLC-SNAP)
4956 		 *
4957 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4958 		 * feature is always disabled and packets need to be
4959 		 * stripped manually.
4960 		 */
4961 		if (likely(!(status & rx_not_ls)) &&
4962 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4963 		     unlikely(status != llc_snap))) {
4964 			buf1_len -= ETH_FCS_LEN;
4965 			len -= ETH_FCS_LEN;
4966 		}
4967 
4968 		/* RX buffer is good and fit into a XSK pool buffer */
4969 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4970 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4971 
4972 		prog = READ_ONCE(priv->xdp_prog);
4973 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4974 
4975 		switch (res) {
4976 		case STMMAC_XDP_PASS:
4977 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4978 			xsk_buff_free(buf->xdp);
4979 			break;
4980 		case STMMAC_XDP_CONSUMED:
4981 			xsk_buff_free(buf->xdp);
4982 			priv->dev->stats.rx_dropped++;
4983 			break;
4984 		case STMMAC_XDP_TX:
4985 		case STMMAC_XDP_REDIRECT:
4986 			xdp_status |= res;
4987 			break;
4988 		}
4989 
4990 		buf->xdp = NULL;
4991 		dirty++;
4992 		count++;
4993 	}
4994 
4995 	if (status & rx_not_ls) {
4996 		rx_q->state_saved = true;
4997 		rx_q->state.error = error;
4998 		rx_q->state.len = len;
4999 	}
5000 
5001 	stmmac_finalize_xdp_rx(priv, xdp_status);
5002 
5003 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5004 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5005 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5006 		else
5007 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5008 
5009 		return (int)count;
5010 	}
5011 
5012 	return failure ? limit : (int)count;
5013 }
5014 
5015 /**
5016  * stmmac_rx - manage the receive process
5017  * @priv: driver private structure
5018  * @limit: napi bugget
5019  * @queue: RX queue index.
5020  * Description :  this the function called by the napi poll method.
5021  * It gets all the frames inside the ring.
5022  */
5023 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5024 {
5025 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5026 	struct stmmac_channel *ch = &priv->channel[queue];
5027 	unsigned int count = 0, error = 0, len = 0;
5028 	int status = 0, coe = priv->hw->rx_csum;
5029 	unsigned int next_entry = rx_q->cur_rx;
5030 	enum dma_data_direction dma_dir;
5031 	unsigned int desc_size;
5032 	struct sk_buff *skb = NULL;
5033 	struct xdp_buff xdp;
5034 	int xdp_status = 0;
5035 	int buf_sz;
5036 
5037 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5038 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5039 
5040 	if (netif_msg_rx_status(priv)) {
5041 		void *rx_head;
5042 
5043 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5044 		if (priv->extend_desc) {
5045 			rx_head = (void *)rx_q->dma_erx;
5046 			desc_size = sizeof(struct dma_extended_desc);
5047 		} else {
5048 			rx_head = (void *)rx_q->dma_rx;
5049 			desc_size = sizeof(struct dma_desc);
5050 		}
5051 
5052 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5053 				    rx_q->dma_rx_phy, desc_size);
5054 	}
5055 	while (count < limit) {
5056 		unsigned int buf1_len = 0, buf2_len = 0;
5057 		enum pkt_hash_types hash_type;
5058 		struct stmmac_rx_buffer *buf;
5059 		struct dma_desc *np, *p;
5060 		int entry;
5061 		u32 hash;
5062 
5063 		if (!count && rx_q->state_saved) {
5064 			skb = rx_q->state.skb;
5065 			error = rx_q->state.error;
5066 			len = rx_q->state.len;
5067 		} else {
5068 			rx_q->state_saved = false;
5069 			skb = NULL;
5070 			error = 0;
5071 			len = 0;
5072 		}
5073 
5074 		if (count >= limit)
5075 			break;
5076 
5077 read_again:
5078 		buf1_len = 0;
5079 		buf2_len = 0;
5080 		entry = next_entry;
5081 		buf = &rx_q->buf_pool[entry];
5082 
5083 		if (priv->extend_desc)
5084 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5085 		else
5086 			p = rx_q->dma_rx + entry;
5087 
5088 		/* read the status of the incoming frame */
5089 		status = stmmac_rx_status(priv, &priv->dev->stats,
5090 				&priv->xstats, p);
5091 		/* check if managed by the DMA otherwise go ahead */
5092 		if (unlikely(status & dma_own))
5093 			break;
5094 
5095 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5096 						priv->dma_rx_size);
5097 		next_entry = rx_q->cur_rx;
5098 
5099 		if (priv->extend_desc)
5100 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5101 		else
5102 			np = rx_q->dma_rx + next_entry;
5103 
5104 		prefetch(np);
5105 
5106 		if (priv->extend_desc)
5107 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5108 					&priv->xstats, rx_q->dma_erx + entry);
5109 		if (unlikely(status == discard_frame)) {
5110 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5111 			buf->page = NULL;
5112 			error = 1;
5113 			if (!priv->hwts_rx_en)
5114 				priv->dev->stats.rx_errors++;
5115 		}
5116 
5117 		if (unlikely(error && (status & rx_not_ls)))
5118 			goto read_again;
5119 		if (unlikely(error)) {
5120 			dev_kfree_skb(skb);
5121 			skb = NULL;
5122 			count++;
5123 			continue;
5124 		}
5125 
5126 		/* Buffer is good. Go on. */
5127 
5128 		prefetch(page_address(buf->page) + buf->page_offset);
5129 		if (buf->sec_page)
5130 			prefetch(page_address(buf->sec_page));
5131 
5132 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5133 		len += buf1_len;
5134 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5135 		len += buf2_len;
5136 
5137 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5138 		 * Type frames (LLC/LLC-SNAP)
5139 		 *
5140 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5141 		 * feature is always disabled and packets need to be
5142 		 * stripped manually.
5143 		 */
5144 		if (likely(!(status & rx_not_ls)) &&
5145 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5146 		     unlikely(status != llc_snap))) {
5147 			if (buf2_len)
5148 				buf2_len -= ETH_FCS_LEN;
5149 			else
5150 				buf1_len -= ETH_FCS_LEN;
5151 
5152 			len -= ETH_FCS_LEN;
5153 		}
5154 
5155 		if (!skb) {
5156 			unsigned int pre_len, sync_len;
5157 
5158 			dma_sync_single_for_cpu(priv->device, buf->addr,
5159 						buf1_len, dma_dir);
5160 
5161 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5162 			xdp_prepare_buff(&xdp, page_address(buf->page),
5163 					 buf->page_offset, buf1_len, false);
5164 
5165 			pre_len = xdp.data_end - xdp.data_hard_start -
5166 				  buf->page_offset;
5167 			skb = stmmac_xdp_run_prog(priv, &xdp);
5168 			/* Due xdp_adjust_tail: DMA sync for_device
5169 			 * cover max len CPU touch
5170 			 */
5171 			sync_len = xdp.data_end - xdp.data_hard_start -
5172 				   buf->page_offset;
5173 			sync_len = max(sync_len, pre_len);
5174 
5175 			/* For Not XDP_PASS verdict */
5176 			if (IS_ERR(skb)) {
5177 				unsigned int xdp_res = -PTR_ERR(skb);
5178 
5179 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5180 					page_pool_put_page(rx_q->page_pool,
5181 							   virt_to_head_page(xdp.data),
5182 							   sync_len, true);
5183 					buf->page = NULL;
5184 					priv->dev->stats.rx_dropped++;
5185 
5186 					/* Clear skb as it was set as
5187 					 * status by XDP program.
5188 					 */
5189 					skb = NULL;
5190 
5191 					if (unlikely((status & rx_not_ls)))
5192 						goto read_again;
5193 
5194 					count++;
5195 					continue;
5196 				} else if (xdp_res & (STMMAC_XDP_TX |
5197 						      STMMAC_XDP_REDIRECT)) {
5198 					xdp_status |= xdp_res;
5199 					buf->page = NULL;
5200 					skb = NULL;
5201 					count++;
5202 					continue;
5203 				}
5204 			}
5205 		}
5206 
5207 		if (!skb) {
5208 			/* XDP program may expand or reduce tail */
5209 			buf1_len = xdp.data_end - xdp.data;
5210 
5211 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5212 			if (!skb) {
5213 				priv->dev->stats.rx_dropped++;
5214 				count++;
5215 				goto drain_data;
5216 			}
5217 
5218 			/* XDP program may adjust header */
5219 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5220 			skb_put(skb, buf1_len);
5221 
5222 			/* Data payload copied into SKB, page ready for recycle */
5223 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5224 			buf->page = NULL;
5225 		} else if (buf1_len) {
5226 			dma_sync_single_for_cpu(priv->device, buf->addr,
5227 						buf1_len, dma_dir);
5228 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5229 					buf->page, buf->page_offset, buf1_len,
5230 					priv->dma_buf_sz);
5231 
5232 			/* Data payload appended into SKB */
5233 			page_pool_release_page(rx_q->page_pool, buf->page);
5234 			buf->page = NULL;
5235 		}
5236 
5237 		if (buf2_len) {
5238 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5239 						buf2_len, dma_dir);
5240 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5241 					buf->sec_page, 0, buf2_len,
5242 					priv->dma_buf_sz);
5243 
5244 			/* Data payload appended into SKB */
5245 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5246 			buf->sec_page = NULL;
5247 		}
5248 
5249 drain_data:
5250 		if (likely(status & rx_not_ls))
5251 			goto read_again;
5252 		if (!skb)
5253 			continue;
5254 
5255 		/* Got entire packet into SKB. Finish it. */
5256 
5257 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5258 		stmmac_rx_vlan(priv->dev, skb);
5259 		skb->protocol = eth_type_trans(skb, priv->dev);
5260 
5261 		if (unlikely(!coe))
5262 			skb_checksum_none_assert(skb);
5263 		else
5264 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5265 
5266 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5267 			skb_set_hash(skb, hash, hash_type);
5268 
5269 		skb_record_rx_queue(skb, queue);
5270 		napi_gro_receive(&ch->rx_napi, skb);
5271 		skb = NULL;
5272 
5273 		priv->dev->stats.rx_packets++;
5274 		priv->dev->stats.rx_bytes += len;
5275 		count++;
5276 	}
5277 
5278 	if (status & rx_not_ls || skb) {
5279 		rx_q->state_saved = true;
5280 		rx_q->state.skb = skb;
5281 		rx_q->state.error = error;
5282 		rx_q->state.len = len;
5283 	}
5284 
5285 	stmmac_finalize_xdp_rx(priv, xdp_status);
5286 
5287 	stmmac_rx_refill(priv, queue);
5288 
5289 	priv->xstats.rx_pkt_n += count;
5290 
5291 	return count;
5292 }
5293 
5294 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5295 {
5296 	struct stmmac_channel *ch =
5297 		container_of(napi, struct stmmac_channel, rx_napi);
5298 	struct stmmac_priv *priv = ch->priv_data;
5299 	u32 chan = ch->index;
5300 	int work_done;
5301 
5302 	priv->xstats.napi_poll++;
5303 
5304 	work_done = stmmac_rx(priv, budget, chan);
5305 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5306 		unsigned long flags;
5307 
5308 		spin_lock_irqsave(&ch->lock, flags);
5309 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5310 		spin_unlock_irqrestore(&ch->lock, flags);
5311 	}
5312 
5313 	return work_done;
5314 }
5315 
5316 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5317 {
5318 	struct stmmac_channel *ch =
5319 		container_of(napi, struct stmmac_channel, tx_napi);
5320 	struct stmmac_priv *priv = ch->priv_data;
5321 	u32 chan = ch->index;
5322 	int work_done;
5323 
5324 	priv->xstats.napi_poll++;
5325 
5326 	work_done = stmmac_tx_clean(priv, budget, chan);
5327 	work_done = min(work_done, budget);
5328 
5329 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5330 		unsigned long flags;
5331 
5332 		spin_lock_irqsave(&ch->lock, flags);
5333 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5334 		spin_unlock_irqrestore(&ch->lock, flags);
5335 	}
5336 
5337 	return work_done;
5338 }
5339 
5340 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5341 {
5342 	struct stmmac_channel *ch =
5343 		container_of(napi, struct stmmac_channel, rxtx_napi);
5344 	struct stmmac_priv *priv = ch->priv_data;
5345 	int rx_done, tx_done;
5346 	u32 chan = ch->index;
5347 
5348 	priv->xstats.napi_poll++;
5349 
5350 	tx_done = stmmac_tx_clean(priv, budget, chan);
5351 	tx_done = min(tx_done, budget);
5352 
5353 	rx_done = stmmac_rx_zc(priv, budget, chan);
5354 
5355 	/* If either TX or RX work is not complete, return budget
5356 	 * and keep pooling
5357 	 */
5358 	if (tx_done >= budget || rx_done >= budget)
5359 		return budget;
5360 
5361 	/* all work done, exit the polling mode */
5362 	if (napi_complete_done(napi, rx_done)) {
5363 		unsigned long flags;
5364 
5365 		spin_lock_irqsave(&ch->lock, flags);
5366 		/* Both RX and TX work done are compelte,
5367 		 * so enable both RX & TX IRQs.
5368 		 */
5369 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5370 		spin_unlock_irqrestore(&ch->lock, flags);
5371 	}
5372 
5373 	return min(rx_done, budget - 1);
5374 }
5375 
5376 /**
5377  *  stmmac_tx_timeout
5378  *  @dev : Pointer to net device structure
5379  *  @txqueue: the index of the hanging transmit queue
5380  *  Description: this function is called when a packet transmission fails to
5381  *   complete within a reasonable time. The driver will mark the error in the
5382  *   netdev structure and arrange for the device to be reset to a sane state
5383  *   in order to transmit a new packet.
5384  */
5385 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5386 {
5387 	struct stmmac_priv *priv = netdev_priv(dev);
5388 
5389 	stmmac_global_err(priv);
5390 }
5391 
5392 /**
5393  *  stmmac_set_rx_mode - entry point for multicast addressing
5394  *  @dev : pointer to the device structure
5395  *  Description:
5396  *  This function is a driver entry point which gets called by the kernel
5397  *  whenever multicast addresses must be enabled/disabled.
5398  *  Return value:
5399  *  void.
5400  */
5401 static void stmmac_set_rx_mode(struct net_device *dev)
5402 {
5403 	struct stmmac_priv *priv = netdev_priv(dev);
5404 
5405 	stmmac_set_filter(priv, priv->hw, dev);
5406 }
5407 
5408 /**
5409  *  stmmac_change_mtu - entry point to change MTU size for the device.
5410  *  @dev : device pointer.
5411  *  @new_mtu : the new MTU size for the device.
5412  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5413  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5414  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5415  *  Return value:
5416  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5417  *  file on failure.
5418  */
5419 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5420 {
5421 	struct stmmac_priv *priv = netdev_priv(dev);
5422 	int txfifosz = priv->plat->tx_fifo_size;
5423 	const int mtu = new_mtu;
5424 
5425 	if (txfifosz == 0)
5426 		txfifosz = priv->dma_cap.tx_fifo_size;
5427 
5428 	txfifosz /= priv->plat->tx_queues_to_use;
5429 
5430 	if (netif_running(dev)) {
5431 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5432 		return -EBUSY;
5433 	}
5434 
5435 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5436 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5437 		return -EINVAL;
5438 	}
5439 
5440 	new_mtu = STMMAC_ALIGN(new_mtu);
5441 
5442 	/* If condition true, FIFO is too small or MTU too large */
5443 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5444 		return -EINVAL;
5445 
5446 	dev->mtu = mtu;
5447 
5448 	netdev_update_features(dev);
5449 
5450 	return 0;
5451 }
5452 
5453 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5454 					     netdev_features_t features)
5455 {
5456 	struct stmmac_priv *priv = netdev_priv(dev);
5457 
5458 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5459 		features &= ~NETIF_F_RXCSUM;
5460 
5461 	if (!priv->plat->tx_coe)
5462 		features &= ~NETIF_F_CSUM_MASK;
5463 
5464 	/* Some GMAC devices have a bugged Jumbo frame support that
5465 	 * needs to have the Tx COE disabled for oversized frames
5466 	 * (due to limited buffer sizes). In this case we disable
5467 	 * the TX csum insertion in the TDES and not use SF.
5468 	 */
5469 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5470 		features &= ~NETIF_F_CSUM_MASK;
5471 
5472 	/* Disable tso if asked by ethtool */
5473 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5474 		if (features & NETIF_F_TSO)
5475 			priv->tso = true;
5476 		else
5477 			priv->tso = false;
5478 	}
5479 
5480 	return features;
5481 }
5482 
5483 static int stmmac_set_features(struct net_device *netdev,
5484 			       netdev_features_t features)
5485 {
5486 	struct stmmac_priv *priv = netdev_priv(netdev);
5487 	bool sph_en;
5488 	u32 chan;
5489 
5490 	/* Keep the COE Type in case of csum is supporting */
5491 	if (features & NETIF_F_RXCSUM)
5492 		priv->hw->rx_csum = priv->plat->rx_coe;
5493 	else
5494 		priv->hw->rx_csum = 0;
5495 	/* No check needed because rx_coe has been set before and it will be
5496 	 * fixed in case of issue.
5497 	 */
5498 	stmmac_rx_ipc(priv, priv->hw);
5499 
5500 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5501 
5502 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5503 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5504 
5505 	return 0;
5506 }
5507 
5508 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5509 {
5510 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5511 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5512 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5513 	bool *hs_enable = &fpe_cfg->hs_enable;
5514 
5515 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5516 		return;
5517 
5518 	/* If LP has sent verify mPacket, LP is FPE capable */
5519 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5520 		if (*lp_state < FPE_STATE_CAPABLE)
5521 			*lp_state = FPE_STATE_CAPABLE;
5522 
5523 		/* If user has requested FPE enable, quickly response */
5524 		if (*hs_enable)
5525 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5526 						MPACKET_RESPONSE);
5527 	}
5528 
5529 	/* If Local has sent verify mPacket, Local is FPE capable */
5530 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5531 		if (*lo_state < FPE_STATE_CAPABLE)
5532 			*lo_state = FPE_STATE_CAPABLE;
5533 	}
5534 
5535 	/* If LP has sent response mPacket, LP is entering FPE ON */
5536 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5537 		*lp_state = FPE_STATE_ENTERING_ON;
5538 
5539 	/* If Local has sent response mPacket, Local is entering FPE ON */
5540 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5541 		*lo_state = FPE_STATE_ENTERING_ON;
5542 
5543 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5544 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5545 	    priv->fpe_wq) {
5546 		queue_work(priv->fpe_wq, &priv->fpe_task);
5547 	}
5548 }
5549 
5550 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5551 {
5552 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5553 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5554 	u32 queues_count;
5555 	u32 queue;
5556 	bool xmac;
5557 
5558 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5559 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5560 
5561 	if (priv->irq_wake)
5562 		pm_wakeup_event(priv->device, 0);
5563 
5564 	if (priv->dma_cap.estsel)
5565 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5566 				      &priv->xstats, tx_cnt);
5567 
5568 	if (priv->dma_cap.fpesel) {
5569 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5570 						   priv->dev);
5571 
5572 		stmmac_fpe_event_status(priv, status);
5573 	}
5574 
5575 	/* To handle GMAC own interrupts */
5576 	if ((priv->plat->has_gmac) || xmac) {
5577 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5578 
5579 		if (unlikely(status)) {
5580 			/* For LPI we need to save the tx status */
5581 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5582 				priv->tx_path_in_lpi_mode = true;
5583 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5584 				priv->tx_path_in_lpi_mode = false;
5585 		}
5586 
5587 		for (queue = 0; queue < queues_count; queue++) {
5588 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5589 							    queue);
5590 		}
5591 
5592 		/* PCS link status */
5593 		if (priv->hw->pcs) {
5594 			if (priv->xstats.pcs_link)
5595 				netif_carrier_on(priv->dev);
5596 			else
5597 				netif_carrier_off(priv->dev);
5598 		}
5599 
5600 		stmmac_timestamp_interrupt(priv, priv);
5601 	}
5602 }
5603 
5604 /**
5605  *  stmmac_interrupt - main ISR
5606  *  @irq: interrupt number.
5607  *  @dev_id: to pass the net device pointer.
5608  *  Description: this is the main driver interrupt service routine.
5609  *  It can call:
5610  *  o DMA service routine (to manage incoming frame reception and transmission
5611  *    status)
5612  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5613  *    interrupts.
5614  */
5615 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5616 {
5617 	struct net_device *dev = (struct net_device *)dev_id;
5618 	struct stmmac_priv *priv = netdev_priv(dev);
5619 
5620 	/* Check if adapter is up */
5621 	if (test_bit(STMMAC_DOWN, &priv->state))
5622 		return IRQ_HANDLED;
5623 
5624 	/* Check if a fatal error happened */
5625 	if (stmmac_safety_feat_interrupt(priv))
5626 		return IRQ_HANDLED;
5627 
5628 	/* To handle Common interrupts */
5629 	stmmac_common_interrupt(priv);
5630 
5631 	/* To handle DMA interrupts */
5632 	stmmac_dma_interrupt(priv);
5633 
5634 	return IRQ_HANDLED;
5635 }
5636 
5637 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5638 {
5639 	struct net_device *dev = (struct net_device *)dev_id;
5640 	struct stmmac_priv *priv = netdev_priv(dev);
5641 
5642 	if (unlikely(!dev)) {
5643 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5644 		return IRQ_NONE;
5645 	}
5646 
5647 	/* Check if adapter is up */
5648 	if (test_bit(STMMAC_DOWN, &priv->state))
5649 		return IRQ_HANDLED;
5650 
5651 	/* To handle Common interrupts */
5652 	stmmac_common_interrupt(priv);
5653 
5654 	return IRQ_HANDLED;
5655 }
5656 
5657 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5658 {
5659 	struct net_device *dev = (struct net_device *)dev_id;
5660 	struct stmmac_priv *priv = netdev_priv(dev);
5661 
5662 	if (unlikely(!dev)) {
5663 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5664 		return IRQ_NONE;
5665 	}
5666 
5667 	/* Check if adapter is up */
5668 	if (test_bit(STMMAC_DOWN, &priv->state))
5669 		return IRQ_HANDLED;
5670 
5671 	/* Check if a fatal error happened */
5672 	stmmac_safety_feat_interrupt(priv);
5673 
5674 	return IRQ_HANDLED;
5675 }
5676 
5677 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5678 {
5679 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5680 	int chan = tx_q->queue_index;
5681 	struct stmmac_priv *priv;
5682 	int status;
5683 
5684 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5685 
5686 	if (unlikely(!data)) {
5687 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5688 		return IRQ_NONE;
5689 	}
5690 
5691 	/* Check if adapter is up */
5692 	if (test_bit(STMMAC_DOWN, &priv->state))
5693 		return IRQ_HANDLED;
5694 
5695 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5696 
5697 	if (unlikely(status & tx_hard_error_bump_tc)) {
5698 		/* Try to bump up the dma threshold on this failure */
5699 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5700 		    tc <= 256) {
5701 			tc += 64;
5702 			if (priv->plat->force_thresh_dma_mode)
5703 				stmmac_set_dma_operation_mode(priv,
5704 							      tc,
5705 							      tc,
5706 							      chan);
5707 			else
5708 				stmmac_set_dma_operation_mode(priv,
5709 							      tc,
5710 							      SF_DMA_MODE,
5711 							      chan);
5712 			priv->xstats.threshold = tc;
5713 		}
5714 	} else if (unlikely(status == tx_hard_error)) {
5715 		stmmac_tx_err(priv, chan);
5716 	}
5717 
5718 	return IRQ_HANDLED;
5719 }
5720 
5721 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5722 {
5723 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5724 	int chan = rx_q->queue_index;
5725 	struct stmmac_priv *priv;
5726 
5727 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5728 
5729 	if (unlikely(!data)) {
5730 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5731 		return IRQ_NONE;
5732 	}
5733 
5734 	/* Check if adapter is up */
5735 	if (test_bit(STMMAC_DOWN, &priv->state))
5736 		return IRQ_HANDLED;
5737 
5738 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5739 
5740 	return IRQ_HANDLED;
5741 }
5742 
5743 #ifdef CONFIG_NET_POLL_CONTROLLER
5744 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5745  * to allow network I/O with interrupts disabled.
5746  */
5747 static void stmmac_poll_controller(struct net_device *dev)
5748 {
5749 	struct stmmac_priv *priv = netdev_priv(dev);
5750 	int i;
5751 
5752 	/* If adapter is down, do nothing */
5753 	if (test_bit(STMMAC_DOWN, &priv->state))
5754 		return;
5755 
5756 	if (priv->plat->multi_msi_en) {
5757 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5758 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5759 
5760 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5761 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5762 	} else {
5763 		disable_irq(dev->irq);
5764 		stmmac_interrupt(dev->irq, dev);
5765 		enable_irq(dev->irq);
5766 	}
5767 }
5768 #endif
5769 
5770 /**
5771  *  stmmac_ioctl - Entry point for the Ioctl
5772  *  @dev: Device pointer.
5773  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5774  *  a proprietary structure used to pass information to the driver.
5775  *  @cmd: IOCTL command
5776  *  Description:
5777  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5778  */
5779 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5780 {
5781 	struct stmmac_priv *priv = netdev_priv (dev);
5782 	int ret = -EOPNOTSUPP;
5783 
5784 	if (!netif_running(dev))
5785 		return -EINVAL;
5786 
5787 	switch (cmd) {
5788 	case SIOCGMIIPHY:
5789 	case SIOCGMIIREG:
5790 	case SIOCSMIIREG:
5791 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5792 		break;
5793 	case SIOCSHWTSTAMP:
5794 		ret = stmmac_hwtstamp_set(dev, rq);
5795 		break;
5796 	case SIOCGHWTSTAMP:
5797 		ret = stmmac_hwtstamp_get(dev, rq);
5798 		break;
5799 	default:
5800 		break;
5801 	}
5802 
5803 	return ret;
5804 }
5805 
5806 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5807 				    void *cb_priv)
5808 {
5809 	struct stmmac_priv *priv = cb_priv;
5810 	int ret = -EOPNOTSUPP;
5811 
5812 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5813 		return ret;
5814 
5815 	__stmmac_disable_all_queues(priv);
5816 
5817 	switch (type) {
5818 	case TC_SETUP_CLSU32:
5819 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5820 		break;
5821 	case TC_SETUP_CLSFLOWER:
5822 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5823 		break;
5824 	default:
5825 		break;
5826 	}
5827 
5828 	stmmac_enable_all_queues(priv);
5829 	return ret;
5830 }
5831 
5832 static LIST_HEAD(stmmac_block_cb_list);
5833 
5834 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5835 			   void *type_data)
5836 {
5837 	struct stmmac_priv *priv = netdev_priv(ndev);
5838 
5839 	switch (type) {
5840 	case TC_SETUP_BLOCK:
5841 		return flow_block_cb_setup_simple(type_data,
5842 						  &stmmac_block_cb_list,
5843 						  stmmac_setup_tc_block_cb,
5844 						  priv, priv, true);
5845 	case TC_SETUP_QDISC_CBS:
5846 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5847 	case TC_SETUP_QDISC_TAPRIO:
5848 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5849 	case TC_SETUP_QDISC_ETF:
5850 		return stmmac_tc_setup_etf(priv, priv, type_data);
5851 	default:
5852 		return -EOPNOTSUPP;
5853 	}
5854 }
5855 
5856 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5857 			       struct net_device *sb_dev)
5858 {
5859 	int gso = skb_shinfo(skb)->gso_type;
5860 
5861 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5862 		/*
5863 		 * There is no way to determine the number of TSO/USO
5864 		 * capable Queues. Let's use always the Queue 0
5865 		 * because if TSO/USO is supported then at least this
5866 		 * one will be capable.
5867 		 */
5868 		return 0;
5869 	}
5870 
5871 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5872 }
5873 
5874 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5875 {
5876 	struct stmmac_priv *priv = netdev_priv(ndev);
5877 	int ret = 0;
5878 
5879 	ret = pm_runtime_get_sync(priv->device);
5880 	if (ret < 0) {
5881 		pm_runtime_put_noidle(priv->device);
5882 		return ret;
5883 	}
5884 
5885 	ret = eth_mac_addr(ndev, addr);
5886 	if (ret)
5887 		goto set_mac_error;
5888 
5889 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5890 
5891 set_mac_error:
5892 	pm_runtime_put(priv->device);
5893 
5894 	return ret;
5895 }
5896 
5897 #ifdef CONFIG_DEBUG_FS
5898 static struct dentry *stmmac_fs_dir;
5899 
5900 static void sysfs_display_ring(void *head, int size, int extend_desc,
5901 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5902 {
5903 	int i;
5904 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5905 	struct dma_desc *p = (struct dma_desc *)head;
5906 	dma_addr_t dma_addr;
5907 
5908 	for (i = 0; i < size; i++) {
5909 		if (extend_desc) {
5910 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5911 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5912 				   i, &dma_addr,
5913 				   le32_to_cpu(ep->basic.des0),
5914 				   le32_to_cpu(ep->basic.des1),
5915 				   le32_to_cpu(ep->basic.des2),
5916 				   le32_to_cpu(ep->basic.des3));
5917 			ep++;
5918 		} else {
5919 			dma_addr = dma_phy_addr + i * sizeof(*p);
5920 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5921 				   i, &dma_addr,
5922 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5923 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5924 			p++;
5925 		}
5926 		seq_printf(seq, "\n");
5927 	}
5928 }
5929 
5930 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5931 {
5932 	struct net_device *dev = seq->private;
5933 	struct stmmac_priv *priv = netdev_priv(dev);
5934 	u32 rx_count = priv->plat->rx_queues_to_use;
5935 	u32 tx_count = priv->plat->tx_queues_to_use;
5936 	u32 queue;
5937 
5938 	if ((dev->flags & IFF_UP) == 0)
5939 		return 0;
5940 
5941 	for (queue = 0; queue < rx_count; queue++) {
5942 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5943 
5944 		seq_printf(seq, "RX Queue %d:\n", queue);
5945 
5946 		if (priv->extend_desc) {
5947 			seq_printf(seq, "Extended descriptor ring:\n");
5948 			sysfs_display_ring((void *)rx_q->dma_erx,
5949 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5950 		} else {
5951 			seq_printf(seq, "Descriptor ring:\n");
5952 			sysfs_display_ring((void *)rx_q->dma_rx,
5953 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5954 		}
5955 	}
5956 
5957 	for (queue = 0; queue < tx_count; queue++) {
5958 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5959 
5960 		seq_printf(seq, "TX Queue %d:\n", queue);
5961 
5962 		if (priv->extend_desc) {
5963 			seq_printf(seq, "Extended descriptor ring:\n");
5964 			sysfs_display_ring((void *)tx_q->dma_etx,
5965 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5966 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5967 			seq_printf(seq, "Descriptor ring:\n");
5968 			sysfs_display_ring((void *)tx_q->dma_tx,
5969 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5970 		}
5971 	}
5972 
5973 	return 0;
5974 }
5975 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5976 
5977 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5978 {
5979 	struct net_device *dev = seq->private;
5980 	struct stmmac_priv *priv = netdev_priv(dev);
5981 
5982 	if (!priv->hw_cap_support) {
5983 		seq_printf(seq, "DMA HW features not supported\n");
5984 		return 0;
5985 	}
5986 
5987 	seq_printf(seq, "==============================\n");
5988 	seq_printf(seq, "\tDMA HW features\n");
5989 	seq_printf(seq, "==============================\n");
5990 
5991 	seq_printf(seq, "\t10/100 Mbps: %s\n",
5992 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
5993 	seq_printf(seq, "\t1000 Mbps: %s\n",
5994 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
5995 	seq_printf(seq, "\tHalf duplex: %s\n",
5996 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
5997 	seq_printf(seq, "\tHash Filter: %s\n",
5998 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
5999 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6000 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6001 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6002 		   (priv->dma_cap.pcs) ? "Y" : "N");
6003 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6004 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6005 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6006 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6007 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6008 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6009 	seq_printf(seq, "\tRMON module: %s\n",
6010 		   (priv->dma_cap.rmon) ? "Y" : "N");
6011 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6012 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6013 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6014 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6015 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6016 		   (priv->dma_cap.eee) ? "Y" : "N");
6017 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6018 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6019 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6020 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6021 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6022 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6023 	} else {
6024 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6025 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6026 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6027 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6028 	}
6029 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6030 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6031 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6032 		   priv->dma_cap.number_rx_channel);
6033 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6034 		   priv->dma_cap.number_tx_channel);
6035 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6036 		   priv->dma_cap.number_rx_queues);
6037 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6038 		   priv->dma_cap.number_tx_queues);
6039 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6040 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6041 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6042 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6043 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6044 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6045 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6046 		   priv->dma_cap.pps_out_num);
6047 	seq_printf(seq, "\tSafety Features: %s\n",
6048 		   priv->dma_cap.asp ? "Y" : "N");
6049 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6050 		   priv->dma_cap.frpsel ? "Y" : "N");
6051 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6052 		   priv->dma_cap.addr64);
6053 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6054 		   priv->dma_cap.rssen ? "Y" : "N");
6055 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6056 		   priv->dma_cap.vlhash ? "Y" : "N");
6057 	seq_printf(seq, "\tSplit Header: %s\n",
6058 		   priv->dma_cap.sphen ? "Y" : "N");
6059 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6060 		   priv->dma_cap.vlins ? "Y" : "N");
6061 	seq_printf(seq, "\tDouble VLAN: %s\n",
6062 		   priv->dma_cap.dvlan ? "Y" : "N");
6063 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6064 		   priv->dma_cap.l3l4fnum);
6065 	seq_printf(seq, "\tARP Offloading: %s\n",
6066 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6067 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6068 		   priv->dma_cap.estsel ? "Y" : "N");
6069 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6070 		   priv->dma_cap.fpesel ? "Y" : "N");
6071 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6072 		   priv->dma_cap.tbssel ? "Y" : "N");
6073 	return 0;
6074 }
6075 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6076 
6077 /* Use network device events to rename debugfs file entries.
6078  */
6079 static int stmmac_device_event(struct notifier_block *unused,
6080 			       unsigned long event, void *ptr)
6081 {
6082 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6083 	struct stmmac_priv *priv = netdev_priv(dev);
6084 
6085 	if (dev->netdev_ops != &stmmac_netdev_ops)
6086 		goto done;
6087 
6088 	switch (event) {
6089 	case NETDEV_CHANGENAME:
6090 		if (priv->dbgfs_dir)
6091 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6092 							 priv->dbgfs_dir,
6093 							 stmmac_fs_dir,
6094 							 dev->name);
6095 		break;
6096 	}
6097 done:
6098 	return NOTIFY_DONE;
6099 }
6100 
6101 static struct notifier_block stmmac_notifier = {
6102 	.notifier_call = stmmac_device_event,
6103 };
6104 
6105 static void stmmac_init_fs(struct net_device *dev)
6106 {
6107 	struct stmmac_priv *priv = netdev_priv(dev);
6108 
6109 	rtnl_lock();
6110 
6111 	/* Create per netdev entries */
6112 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6113 
6114 	/* Entry to report DMA RX/TX rings */
6115 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6116 			    &stmmac_rings_status_fops);
6117 
6118 	/* Entry to report the DMA HW features */
6119 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6120 			    &stmmac_dma_cap_fops);
6121 
6122 	rtnl_unlock();
6123 }
6124 
6125 static void stmmac_exit_fs(struct net_device *dev)
6126 {
6127 	struct stmmac_priv *priv = netdev_priv(dev);
6128 
6129 	debugfs_remove_recursive(priv->dbgfs_dir);
6130 }
6131 #endif /* CONFIG_DEBUG_FS */
6132 
6133 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6134 {
6135 	unsigned char *data = (unsigned char *)&vid_le;
6136 	unsigned char data_byte = 0;
6137 	u32 crc = ~0x0;
6138 	u32 temp = 0;
6139 	int i, bits;
6140 
6141 	bits = get_bitmask_order(VLAN_VID_MASK);
6142 	for (i = 0; i < bits; i++) {
6143 		if ((i % 8) == 0)
6144 			data_byte = data[i / 8];
6145 
6146 		temp = ((crc & 1) ^ data_byte) & 1;
6147 		crc >>= 1;
6148 		data_byte >>= 1;
6149 
6150 		if (temp)
6151 			crc ^= 0xedb88320;
6152 	}
6153 
6154 	return crc;
6155 }
6156 
6157 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6158 {
6159 	u32 crc, hash = 0;
6160 	__le16 pmatch = 0;
6161 	int count = 0;
6162 	u16 vid = 0;
6163 
6164 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6165 		__le16 vid_le = cpu_to_le16(vid);
6166 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6167 		hash |= (1 << crc);
6168 		count++;
6169 	}
6170 
6171 	if (!priv->dma_cap.vlhash) {
6172 		if (count > 2) /* VID = 0 always passes filter */
6173 			return -EOPNOTSUPP;
6174 
6175 		pmatch = cpu_to_le16(vid);
6176 		hash = 0;
6177 	}
6178 
6179 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6180 }
6181 
6182 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6183 {
6184 	struct stmmac_priv *priv = netdev_priv(ndev);
6185 	bool is_double = false;
6186 	int ret;
6187 
6188 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6189 		is_double = true;
6190 
6191 	set_bit(vid, priv->active_vlans);
6192 	ret = stmmac_vlan_update(priv, is_double);
6193 	if (ret) {
6194 		clear_bit(vid, priv->active_vlans);
6195 		return ret;
6196 	}
6197 
6198 	if (priv->hw->num_vlan) {
6199 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6200 		if (ret)
6201 			return ret;
6202 	}
6203 
6204 	return 0;
6205 }
6206 
6207 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6208 {
6209 	struct stmmac_priv *priv = netdev_priv(ndev);
6210 	bool is_double = false;
6211 	int ret;
6212 
6213 	ret = pm_runtime_get_sync(priv->device);
6214 	if (ret < 0) {
6215 		pm_runtime_put_noidle(priv->device);
6216 		return ret;
6217 	}
6218 
6219 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6220 		is_double = true;
6221 
6222 	clear_bit(vid, priv->active_vlans);
6223 
6224 	if (priv->hw->num_vlan) {
6225 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6226 		if (ret)
6227 			goto del_vlan_error;
6228 	}
6229 
6230 	ret = stmmac_vlan_update(priv, is_double);
6231 
6232 del_vlan_error:
6233 	pm_runtime_put(priv->device);
6234 
6235 	return ret;
6236 }
6237 
6238 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6239 {
6240 	struct stmmac_priv *priv = netdev_priv(dev);
6241 
6242 	switch (bpf->command) {
6243 	case XDP_SETUP_PROG:
6244 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6245 	case XDP_SETUP_XSK_POOL:
6246 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6247 					     bpf->xsk.queue_id);
6248 	default:
6249 		return -EOPNOTSUPP;
6250 	}
6251 }
6252 
6253 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6254 			   struct xdp_frame **frames, u32 flags)
6255 {
6256 	struct stmmac_priv *priv = netdev_priv(dev);
6257 	int cpu = smp_processor_id();
6258 	struct netdev_queue *nq;
6259 	int i, nxmit = 0;
6260 	int queue;
6261 
6262 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6263 		return -ENETDOWN;
6264 
6265 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6266 		return -EINVAL;
6267 
6268 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6269 	nq = netdev_get_tx_queue(priv->dev, queue);
6270 
6271 	__netif_tx_lock(nq, cpu);
6272 	/* Avoids TX time-out as we are sharing with slow path */
6273 	nq->trans_start = jiffies;
6274 
6275 	for (i = 0; i < num_frames; i++) {
6276 		int res;
6277 
6278 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6279 		if (res == STMMAC_XDP_CONSUMED)
6280 			break;
6281 
6282 		nxmit++;
6283 	}
6284 
6285 	if (flags & XDP_XMIT_FLUSH) {
6286 		stmmac_flush_tx_descriptors(priv, queue);
6287 		stmmac_tx_timer_arm(priv, queue);
6288 	}
6289 
6290 	__netif_tx_unlock(nq);
6291 
6292 	return nxmit;
6293 }
6294 
6295 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6296 {
6297 	struct stmmac_channel *ch = &priv->channel[queue];
6298 	unsigned long flags;
6299 
6300 	spin_lock_irqsave(&ch->lock, flags);
6301 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6302 	spin_unlock_irqrestore(&ch->lock, flags);
6303 
6304 	stmmac_stop_rx_dma(priv, queue);
6305 	__free_dma_rx_desc_resources(priv, queue);
6306 }
6307 
6308 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6309 {
6310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6311 	struct stmmac_channel *ch = &priv->channel[queue];
6312 	unsigned long flags;
6313 	u32 buf_size;
6314 	int ret;
6315 
6316 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6317 	if (ret) {
6318 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6319 		return;
6320 	}
6321 
6322 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6323 	if (ret) {
6324 		__free_dma_rx_desc_resources(priv, queue);
6325 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6326 		return;
6327 	}
6328 
6329 	stmmac_clear_rx_descriptors(priv, queue);
6330 
6331 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6332 			    rx_q->dma_rx_phy, rx_q->queue_index);
6333 
6334 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6335 			     sizeof(struct dma_desc));
6336 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6337 			       rx_q->rx_tail_addr, rx_q->queue_index);
6338 
6339 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6340 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6341 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6342 				      buf_size,
6343 				      rx_q->queue_index);
6344 	} else {
6345 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6346 				      priv->dma_buf_sz,
6347 				      rx_q->queue_index);
6348 	}
6349 
6350 	stmmac_start_rx_dma(priv, queue);
6351 
6352 	spin_lock_irqsave(&ch->lock, flags);
6353 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6354 	spin_unlock_irqrestore(&ch->lock, flags);
6355 }
6356 
6357 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6358 {
6359 	struct stmmac_channel *ch = &priv->channel[queue];
6360 	unsigned long flags;
6361 
6362 	spin_lock_irqsave(&ch->lock, flags);
6363 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6364 	spin_unlock_irqrestore(&ch->lock, flags);
6365 
6366 	stmmac_stop_tx_dma(priv, queue);
6367 	__free_dma_tx_desc_resources(priv, queue);
6368 }
6369 
6370 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6371 {
6372 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6373 	struct stmmac_channel *ch = &priv->channel[queue];
6374 	unsigned long flags;
6375 	int ret;
6376 
6377 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6378 	if (ret) {
6379 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6380 		return;
6381 	}
6382 
6383 	ret = __init_dma_tx_desc_rings(priv, queue);
6384 	if (ret) {
6385 		__free_dma_tx_desc_resources(priv, queue);
6386 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6387 		return;
6388 	}
6389 
6390 	stmmac_clear_tx_descriptors(priv, queue);
6391 
6392 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6393 			    tx_q->dma_tx_phy, tx_q->queue_index);
6394 
6395 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6396 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6397 
6398 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6399 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6400 			       tx_q->tx_tail_addr, tx_q->queue_index);
6401 
6402 	stmmac_start_tx_dma(priv, queue);
6403 
6404 	spin_lock_irqsave(&ch->lock, flags);
6405 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6406 	spin_unlock_irqrestore(&ch->lock, flags);
6407 }
6408 
6409 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6410 {
6411 	struct stmmac_priv *priv = netdev_priv(dev);
6412 	struct stmmac_rx_queue *rx_q;
6413 	struct stmmac_tx_queue *tx_q;
6414 	struct stmmac_channel *ch;
6415 
6416 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6417 	    !netif_carrier_ok(priv->dev))
6418 		return -ENETDOWN;
6419 
6420 	if (!stmmac_xdp_is_enabled(priv))
6421 		return -ENXIO;
6422 
6423 	if (queue >= priv->plat->rx_queues_to_use ||
6424 	    queue >= priv->plat->tx_queues_to_use)
6425 		return -EINVAL;
6426 
6427 	rx_q = &priv->rx_queue[queue];
6428 	tx_q = &priv->tx_queue[queue];
6429 	ch = &priv->channel[queue];
6430 
6431 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6432 		return -ENXIO;
6433 
6434 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6435 		/* EQoS does not have per-DMA channel SW interrupt,
6436 		 * so we schedule RX Napi straight-away.
6437 		 */
6438 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6439 			__napi_schedule(&ch->rxtx_napi);
6440 	}
6441 
6442 	return 0;
6443 }
6444 
6445 static const struct net_device_ops stmmac_netdev_ops = {
6446 	.ndo_open = stmmac_open,
6447 	.ndo_start_xmit = stmmac_xmit,
6448 	.ndo_stop = stmmac_release,
6449 	.ndo_change_mtu = stmmac_change_mtu,
6450 	.ndo_fix_features = stmmac_fix_features,
6451 	.ndo_set_features = stmmac_set_features,
6452 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6453 	.ndo_tx_timeout = stmmac_tx_timeout,
6454 	.ndo_do_ioctl = stmmac_ioctl,
6455 	.ndo_setup_tc = stmmac_setup_tc,
6456 	.ndo_select_queue = stmmac_select_queue,
6457 #ifdef CONFIG_NET_POLL_CONTROLLER
6458 	.ndo_poll_controller = stmmac_poll_controller,
6459 #endif
6460 	.ndo_set_mac_address = stmmac_set_mac_address,
6461 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6462 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6463 	.ndo_bpf = stmmac_bpf,
6464 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6465 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6466 };
6467 
6468 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6469 {
6470 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6471 		return;
6472 	if (test_bit(STMMAC_DOWN, &priv->state))
6473 		return;
6474 
6475 	netdev_err(priv->dev, "Reset adapter.\n");
6476 
6477 	rtnl_lock();
6478 	netif_trans_update(priv->dev);
6479 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6480 		usleep_range(1000, 2000);
6481 
6482 	set_bit(STMMAC_DOWN, &priv->state);
6483 	dev_close(priv->dev);
6484 	dev_open(priv->dev, NULL);
6485 	clear_bit(STMMAC_DOWN, &priv->state);
6486 	clear_bit(STMMAC_RESETING, &priv->state);
6487 	rtnl_unlock();
6488 }
6489 
6490 static void stmmac_service_task(struct work_struct *work)
6491 {
6492 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6493 			service_task);
6494 
6495 	stmmac_reset_subtask(priv);
6496 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6497 }
6498 
6499 /**
6500  *  stmmac_hw_init - Init the MAC device
6501  *  @priv: driver private structure
6502  *  Description: this function is to configure the MAC device according to
6503  *  some platform parameters or the HW capability register. It prepares the
6504  *  driver to use either ring or chain modes and to setup either enhanced or
6505  *  normal descriptors.
6506  */
6507 static int stmmac_hw_init(struct stmmac_priv *priv)
6508 {
6509 	int ret;
6510 
6511 	/* dwmac-sun8i only work in chain mode */
6512 	if (priv->plat->has_sun8i)
6513 		chain_mode = 1;
6514 	priv->chain_mode = chain_mode;
6515 
6516 	/* Initialize HW Interface */
6517 	ret = stmmac_hwif_init(priv);
6518 	if (ret)
6519 		return ret;
6520 
6521 	/* Get the HW capability (new GMAC newer than 3.50a) */
6522 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6523 	if (priv->hw_cap_support) {
6524 		dev_info(priv->device, "DMA HW capability register supported\n");
6525 
6526 		/* We can override some gmac/dma configuration fields: e.g.
6527 		 * enh_desc, tx_coe (e.g. that are passed through the
6528 		 * platform) with the values from the HW capability
6529 		 * register (if supported).
6530 		 */
6531 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6532 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6533 				!priv->plat->use_phy_wol;
6534 		priv->hw->pmt = priv->plat->pmt;
6535 		if (priv->dma_cap.hash_tb_sz) {
6536 			priv->hw->multicast_filter_bins =
6537 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6538 			priv->hw->mcast_bits_log2 =
6539 					ilog2(priv->hw->multicast_filter_bins);
6540 		}
6541 
6542 		/* TXCOE doesn't work in thresh DMA mode */
6543 		if (priv->plat->force_thresh_dma_mode)
6544 			priv->plat->tx_coe = 0;
6545 		else
6546 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6547 
6548 		/* In case of GMAC4 rx_coe is from HW cap register. */
6549 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6550 
6551 		if (priv->dma_cap.rx_coe_type2)
6552 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6553 		else if (priv->dma_cap.rx_coe_type1)
6554 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6555 
6556 	} else {
6557 		dev_info(priv->device, "No HW DMA feature register supported\n");
6558 	}
6559 
6560 	if (priv->plat->rx_coe) {
6561 		priv->hw->rx_csum = priv->plat->rx_coe;
6562 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6563 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6564 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6565 	}
6566 	if (priv->plat->tx_coe)
6567 		dev_info(priv->device, "TX Checksum insertion supported\n");
6568 
6569 	if (priv->plat->pmt) {
6570 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6571 		device_set_wakeup_capable(priv->device, 1);
6572 	}
6573 
6574 	if (priv->dma_cap.tsoen)
6575 		dev_info(priv->device, "TSO supported\n");
6576 
6577 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6578 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6579 
6580 	/* Run HW quirks, if any */
6581 	if (priv->hwif_quirks) {
6582 		ret = priv->hwif_quirks(priv);
6583 		if (ret)
6584 			return ret;
6585 	}
6586 
6587 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6588 	 * In some case, for example on bugged HW this feature
6589 	 * has to be disable and this can be done by passing the
6590 	 * riwt_off field from the platform.
6591 	 */
6592 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6593 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6594 		priv->use_riwt = 1;
6595 		dev_info(priv->device,
6596 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6597 	}
6598 
6599 	return 0;
6600 }
6601 
6602 static void stmmac_napi_add(struct net_device *dev)
6603 {
6604 	struct stmmac_priv *priv = netdev_priv(dev);
6605 	u32 queue, maxq;
6606 
6607 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6608 
6609 	for (queue = 0; queue < maxq; queue++) {
6610 		struct stmmac_channel *ch = &priv->channel[queue];
6611 
6612 		ch->priv_data = priv;
6613 		ch->index = queue;
6614 		spin_lock_init(&ch->lock);
6615 
6616 		if (queue < priv->plat->rx_queues_to_use) {
6617 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6618 				       NAPI_POLL_WEIGHT);
6619 		}
6620 		if (queue < priv->plat->tx_queues_to_use) {
6621 			netif_tx_napi_add(dev, &ch->tx_napi,
6622 					  stmmac_napi_poll_tx,
6623 					  NAPI_POLL_WEIGHT);
6624 		}
6625 		if (queue < priv->plat->rx_queues_to_use &&
6626 		    queue < priv->plat->tx_queues_to_use) {
6627 			netif_napi_add(dev, &ch->rxtx_napi,
6628 				       stmmac_napi_poll_rxtx,
6629 				       NAPI_POLL_WEIGHT);
6630 		}
6631 	}
6632 }
6633 
6634 static void stmmac_napi_del(struct net_device *dev)
6635 {
6636 	struct stmmac_priv *priv = netdev_priv(dev);
6637 	u32 queue, maxq;
6638 
6639 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6640 
6641 	for (queue = 0; queue < maxq; queue++) {
6642 		struct stmmac_channel *ch = &priv->channel[queue];
6643 
6644 		if (queue < priv->plat->rx_queues_to_use)
6645 			netif_napi_del(&ch->rx_napi);
6646 		if (queue < priv->plat->tx_queues_to_use)
6647 			netif_napi_del(&ch->tx_napi);
6648 		if (queue < priv->plat->rx_queues_to_use &&
6649 		    queue < priv->plat->tx_queues_to_use) {
6650 			netif_napi_del(&ch->rxtx_napi);
6651 		}
6652 	}
6653 }
6654 
6655 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6656 {
6657 	struct stmmac_priv *priv = netdev_priv(dev);
6658 	int ret = 0;
6659 
6660 	if (netif_running(dev))
6661 		stmmac_release(dev);
6662 
6663 	stmmac_napi_del(dev);
6664 
6665 	priv->plat->rx_queues_to_use = rx_cnt;
6666 	priv->plat->tx_queues_to_use = tx_cnt;
6667 
6668 	stmmac_napi_add(dev);
6669 
6670 	if (netif_running(dev))
6671 		ret = stmmac_open(dev);
6672 
6673 	return ret;
6674 }
6675 
6676 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6677 {
6678 	struct stmmac_priv *priv = netdev_priv(dev);
6679 	int ret = 0;
6680 
6681 	if (netif_running(dev))
6682 		stmmac_release(dev);
6683 
6684 	priv->dma_rx_size = rx_size;
6685 	priv->dma_tx_size = tx_size;
6686 
6687 	if (netif_running(dev))
6688 		ret = stmmac_open(dev);
6689 
6690 	return ret;
6691 }
6692 
6693 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6694 static void stmmac_fpe_lp_task(struct work_struct *work)
6695 {
6696 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6697 						fpe_task);
6698 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6699 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6700 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6701 	bool *hs_enable = &fpe_cfg->hs_enable;
6702 	bool *enable = &fpe_cfg->enable;
6703 	int retries = 20;
6704 
6705 	while (retries-- > 0) {
6706 		/* Bail out immediately if FPE handshake is OFF */
6707 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6708 			break;
6709 
6710 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6711 		    *lp_state == FPE_STATE_ENTERING_ON) {
6712 			stmmac_fpe_configure(priv, priv->ioaddr,
6713 					     priv->plat->tx_queues_to_use,
6714 					     priv->plat->rx_queues_to_use,
6715 					     *enable);
6716 
6717 			netdev_info(priv->dev, "configured FPE\n");
6718 
6719 			*lo_state = FPE_STATE_ON;
6720 			*lp_state = FPE_STATE_ON;
6721 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6722 			break;
6723 		}
6724 
6725 		if ((*lo_state == FPE_STATE_CAPABLE ||
6726 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6727 		     *lp_state != FPE_STATE_ON) {
6728 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6729 				    *lo_state, *lp_state);
6730 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6731 						MPACKET_VERIFY);
6732 		}
6733 		/* Sleep then retry */
6734 		msleep(500);
6735 	}
6736 
6737 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6738 }
6739 
6740 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6741 {
6742 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6743 		if (enable) {
6744 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6745 						MPACKET_VERIFY);
6746 		} else {
6747 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6748 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6749 		}
6750 
6751 		priv->plat->fpe_cfg->hs_enable = enable;
6752 	}
6753 }
6754 
6755 /**
6756  * stmmac_dvr_probe
6757  * @device: device pointer
6758  * @plat_dat: platform data pointer
6759  * @res: stmmac resource pointer
6760  * Description: this is the main probe function used to
6761  * call the alloc_etherdev, allocate the priv structure.
6762  * Return:
6763  * returns 0 on success, otherwise errno.
6764  */
6765 int stmmac_dvr_probe(struct device *device,
6766 		     struct plat_stmmacenet_data *plat_dat,
6767 		     struct stmmac_resources *res)
6768 {
6769 	struct net_device *ndev = NULL;
6770 	struct stmmac_priv *priv;
6771 	u32 rxq;
6772 	int i, ret = 0;
6773 
6774 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6775 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6776 	if (!ndev)
6777 		return -ENOMEM;
6778 
6779 	SET_NETDEV_DEV(ndev, device);
6780 
6781 	priv = netdev_priv(ndev);
6782 	priv->device = device;
6783 	priv->dev = ndev;
6784 
6785 	stmmac_set_ethtool_ops(ndev);
6786 	priv->pause = pause;
6787 	priv->plat = plat_dat;
6788 	priv->ioaddr = res->addr;
6789 	priv->dev->base_addr = (unsigned long)res->addr;
6790 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6791 
6792 	priv->dev->irq = res->irq;
6793 	priv->wol_irq = res->wol_irq;
6794 	priv->lpi_irq = res->lpi_irq;
6795 	priv->sfty_ce_irq = res->sfty_ce_irq;
6796 	priv->sfty_ue_irq = res->sfty_ue_irq;
6797 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6798 		priv->rx_irq[i] = res->rx_irq[i];
6799 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6800 		priv->tx_irq[i] = res->tx_irq[i];
6801 
6802 	if (!is_zero_ether_addr(res->mac))
6803 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6804 
6805 	dev_set_drvdata(device, priv->dev);
6806 
6807 	/* Verify driver arguments */
6808 	stmmac_verify_args();
6809 
6810 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6811 	if (!priv->af_xdp_zc_qps)
6812 		return -ENOMEM;
6813 
6814 	/* Allocate workqueue */
6815 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6816 	if (!priv->wq) {
6817 		dev_err(priv->device, "failed to create workqueue\n");
6818 		return -ENOMEM;
6819 	}
6820 
6821 	INIT_WORK(&priv->service_task, stmmac_service_task);
6822 
6823 	/* Initialize Link Partner FPE workqueue */
6824 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6825 
6826 	/* Override with kernel parameters if supplied XXX CRS XXX
6827 	 * this needs to have multiple instances
6828 	 */
6829 	if ((phyaddr >= 0) && (phyaddr <= 31))
6830 		priv->plat->phy_addr = phyaddr;
6831 
6832 	if (priv->plat->stmmac_rst) {
6833 		ret = reset_control_assert(priv->plat->stmmac_rst);
6834 		reset_control_deassert(priv->plat->stmmac_rst);
6835 		/* Some reset controllers have only reset callback instead of
6836 		 * assert + deassert callbacks pair.
6837 		 */
6838 		if (ret == -ENOTSUPP)
6839 			reset_control_reset(priv->plat->stmmac_rst);
6840 	}
6841 
6842 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6843 	if (ret == -ENOTSUPP)
6844 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6845 			ERR_PTR(ret));
6846 
6847 	/* Init MAC and get the capabilities */
6848 	ret = stmmac_hw_init(priv);
6849 	if (ret)
6850 		goto error_hw_init;
6851 
6852 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6853 	 */
6854 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6855 		priv->plat->dma_cfg->dche = false;
6856 
6857 	stmmac_check_ether_addr(priv);
6858 
6859 	ndev->netdev_ops = &stmmac_netdev_ops;
6860 
6861 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6862 			    NETIF_F_RXCSUM;
6863 
6864 	ret = stmmac_tc_init(priv, priv);
6865 	if (!ret) {
6866 		ndev->hw_features |= NETIF_F_HW_TC;
6867 	}
6868 
6869 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6870 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6871 		if (priv->plat->has_gmac4)
6872 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6873 		priv->tso = true;
6874 		dev_info(priv->device, "TSO feature enabled\n");
6875 	}
6876 
6877 	if (priv->dma_cap.sphen) {
6878 		ndev->hw_features |= NETIF_F_GRO;
6879 		priv->sph_cap = true;
6880 		priv->sph = priv->sph_cap;
6881 		dev_info(priv->device, "SPH feature enabled\n");
6882 	}
6883 
6884 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
6885 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
6886 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6887 	 * So overwrite dma_cap.addr64 according to HW real design.
6888 	 */
6889 	if (priv->plat->addr64)
6890 		priv->dma_cap.addr64 = priv->plat->addr64;
6891 
6892 	if (priv->dma_cap.addr64) {
6893 		ret = dma_set_mask_and_coherent(device,
6894 				DMA_BIT_MASK(priv->dma_cap.addr64));
6895 		if (!ret) {
6896 			dev_info(priv->device, "Using %d bits DMA width\n",
6897 				 priv->dma_cap.addr64);
6898 
6899 			/*
6900 			 * If more than 32 bits can be addressed, make sure to
6901 			 * enable enhanced addressing mode.
6902 			 */
6903 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6904 				priv->plat->dma_cfg->eame = true;
6905 		} else {
6906 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6907 			if (ret) {
6908 				dev_err(priv->device, "Failed to set DMA Mask\n");
6909 				goto error_hw_init;
6910 			}
6911 
6912 			priv->dma_cap.addr64 = 32;
6913 		}
6914 	}
6915 
6916 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6917 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6918 #ifdef STMMAC_VLAN_TAG_USED
6919 	/* Both mac100 and gmac support receive VLAN tag detection */
6920 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6921 	if (priv->dma_cap.vlhash) {
6922 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6923 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6924 	}
6925 	if (priv->dma_cap.vlins) {
6926 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6927 		if (priv->dma_cap.dvlan)
6928 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6929 	}
6930 #endif
6931 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
6932 
6933 	/* Initialize RSS */
6934 	rxq = priv->plat->rx_queues_to_use;
6935 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6936 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6937 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6938 
6939 	if (priv->dma_cap.rssen && priv->plat->rss_en)
6940 		ndev->features |= NETIF_F_RXHASH;
6941 
6942 	/* MTU range: 46 - hw-specific max */
6943 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6944 	if (priv->plat->has_xgmac)
6945 		ndev->max_mtu = XGMAC_JUMBO_LEN;
6946 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6947 		ndev->max_mtu = JUMBO_LEN;
6948 	else
6949 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6950 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6951 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6952 	 */
6953 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
6954 	    (priv->plat->maxmtu >= ndev->min_mtu))
6955 		ndev->max_mtu = priv->plat->maxmtu;
6956 	else if (priv->plat->maxmtu < ndev->min_mtu)
6957 		dev_warn(priv->device,
6958 			 "%s: warning: maxmtu having invalid value (%d)\n",
6959 			 __func__, priv->plat->maxmtu);
6960 
6961 	if (flow_ctrl)
6962 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
6963 
6964 	/* Setup channels NAPI */
6965 	stmmac_napi_add(ndev);
6966 
6967 	mutex_init(&priv->lock);
6968 
6969 	/* If a specific clk_csr value is passed from the platform
6970 	 * this means that the CSR Clock Range selection cannot be
6971 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
6972 	 * set the MDC clock dynamically according to the csr actual
6973 	 * clock input.
6974 	 */
6975 	if (priv->plat->clk_csr >= 0)
6976 		priv->clk_csr = priv->plat->clk_csr;
6977 	else
6978 		stmmac_clk_csr_set(priv);
6979 
6980 	stmmac_check_pcs_mode(priv);
6981 
6982 	pm_runtime_get_noresume(device);
6983 	pm_runtime_set_active(device);
6984 	pm_runtime_enable(device);
6985 
6986 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
6987 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
6988 		/* MDIO bus Registration */
6989 		ret = stmmac_mdio_register(ndev);
6990 		if (ret < 0) {
6991 			dev_err(priv->device,
6992 				"%s: MDIO bus (id: %d) registration failed",
6993 				__func__, priv->plat->bus_id);
6994 			goto error_mdio_register;
6995 		}
6996 	}
6997 
6998 	if (priv->plat->speed_mode_2500)
6999 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7000 
7001 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7002 		ret = stmmac_xpcs_setup(priv->mii);
7003 		if (ret)
7004 			goto error_xpcs_setup;
7005 	}
7006 
7007 	ret = stmmac_phy_setup(priv);
7008 	if (ret) {
7009 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7010 		goto error_phy_setup;
7011 	}
7012 
7013 	ret = register_netdev(ndev);
7014 	if (ret) {
7015 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7016 			__func__, ret);
7017 		goto error_netdev_register;
7018 	}
7019 
7020 	if (priv->plat->serdes_powerup) {
7021 		ret = priv->plat->serdes_powerup(ndev,
7022 						 priv->plat->bsp_priv);
7023 
7024 		if (ret < 0)
7025 			goto error_serdes_powerup;
7026 	}
7027 
7028 #ifdef CONFIG_DEBUG_FS
7029 	stmmac_init_fs(ndev);
7030 #endif
7031 
7032 	/* Let pm_runtime_put() disable the clocks.
7033 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7034 	 */
7035 	pm_runtime_put(device);
7036 
7037 	return ret;
7038 
7039 error_serdes_powerup:
7040 	unregister_netdev(ndev);
7041 error_netdev_register:
7042 	phylink_destroy(priv->phylink);
7043 error_xpcs_setup:
7044 error_phy_setup:
7045 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7046 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7047 		stmmac_mdio_unregister(ndev);
7048 error_mdio_register:
7049 	stmmac_napi_del(ndev);
7050 error_hw_init:
7051 	destroy_workqueue(priv->wq);
7052 	bitmap_free(priv->af_xdp_zc_qps);
7053 
7054 	return ret;
7055 }
7056 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7057 
7058 /**
7059  * stmmac_dvr_remove
7060  * @dev: device pointer
7061  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7062  * changes the link status, releases the DMA descriptor rings.
7063  */
7064 int stmmac_dvr_remove(struct device *dev)
7065 {
7066 	struct net_device *ndev = dev_get_drvdata(dev);
7067 	struct stmmac_priv *priv = netdev_priv(ndev);
7068 
7069 	netdev_info(priv->dev, "%s: removing driver", __func__);
7070 
7071 	stmmac_stop_all_dma(priv);
7072 	stmmac_mac_set(priv, priv->ioaddr, false);
7073 	netif_carrier_off(ndev);
7074 	unregister_netdev(ndev);
7075 
7076 	/* Serdes power down needs to happen after VLAN filter
7077 	 * is deleted that is triggered by unregister_netdev().
7078 	 */
7079 	if (priv->plat->serdes_powerdown)
7080 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7081 
7082 #ifdef CONFIG_DEBUG_FS
7083 	stmmac_exit_fs(ndev);
7084 #endif
7085 	phylink_destroy(priv->phylink);
7086 	if (priv->plat->stmmac_rst)
7087 		reset_control_assert(priv->plat->stmmac_rst);
7088 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7089 	pm_runtime_put(dev);
7090 	pm_runtime_disable(dev);
7091 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7092 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7093 		stmmac_mdio_unregister(ndev);
7094 	destroy_workqueue(priv->wq);
7095 	mutex_destroy(&priv->lock);
7096 	bitmap_free(priv->af_xdp_zc_qps);
7097 
7098 	return 0;
7099 }
7100 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7101 
7102 /**
7103  * stmmac_suspend - suspend callback
7104  * @dev: device pointer
7105  * Description: this is the function to suspend the device and it is called
7106  * by the platform driver to stop the network queue, release the resources,
7107  * program the PMT register (for WoL), clean and release driver resources.
7108  */
7109 int stmmac_suspend(struct device *dev)
7110 {
7111 	struct net_device *ndev = dev_get_drvdata(dev);
7112 	struct stmmac_priv *priv = netdev_priv(ndev);
7113 	u32 chan;
7114 	int ret;
7115 
7116 	if (!ndev || !netif_running(ndev))
7117 		return 0;
7118 
7119 	phylink_mac_change(priv->phylink, false);
7120 
7121 	mutex_lock(&priv->lock);
7122 
7123 	netif_device_detach(ndev);
7124 
7125 	stmmac_disable_all_queues(priv);
7126 
7127 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7128 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7129 
7130 	if (priv->eee_enabled) {
7131 		priv->tx_path_in_lpi_mode = false;
7132 		del_timer_sync(&priv->eee_ctrl_timer);
7133 	}
7134 
7135 	/* Stop TX/RX DMA */
7136 	stmmac_stop_all_dma(priv);
7137 
7138 	if (priv->plat->serdes_powerdown)
7139 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7140 
7141 	/* Enable Power down mode by programming the PMT regs */
7142 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7143 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7144 		priv->irq_wake = 1;
7145 	} else {
7146 		mutex_unlock(&priv->lock);
7147 		rtnl_lock();
7148 		if (device_may_wakeup(priv->device))
7149 			phylink_speed_down(priv->phylink, false);
7150 		phylink_stop(priv->phylink);
7151 		rtnl_unlock();
7152 		mutex_lock(&priv->lock);
7153 
7154 		stmmac_mac_set(priv, priv->ioaddr, false);
7155 		pinctrl_pm_select_sleep_state(priv->device);
7156 		/* Disable clock in case of PWM is off */
7157 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
7158 		ret = pm_runtime_force_suspend(dev);
7159 		if (ret) {
7160 			mutex_unlock(&priv->lock);
7161 			return ret;
7162 		}
7163 	}
7164 
7165 	mutex_unlock(&priv->lock);
7166 
7167 	if (priv->dma_cap.fpesel) {
7168 		/* Disable FPE */
7169 		stmmac_fpe_configure(priv, priv->ioaddr,
7170 				     priv->plat->tx_queues_to_use,
7171 				     priv->plat->rx_queues_to_use, false);
7172 
7173 		stmmac_fpe_handshake(priv, false);
7174 	}
7175 
7176 	priv->speed = SPEED_UNKNOWN;
7177 	return 0;
7178 }
7179 EXPORT_SYMBOL_GPL(stmmac_suspend);
7180 
7181 /**
7182  * stmmac_reset_queues_param - reset queue parameters
7183  * @priv: device pointer
7184  */
7185 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7186 {
7187 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7188 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7189 	u32 queue;
7190 
7191 	for (queue = 0; queue < rx_cnt; queue++) {
7192 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7193 
7194 		rx_q->cur_rx = 0;
7195 		rx_q->dirty_rx = 0;
7196 	}
7197 
7198 	for (queue = 0; queue < tx_cnt; queue++) {
7199 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7200 
7201 		tx_q->cur_tx = 0;
7202 		tx_q->dirty_tx = 0;
7203 		tx_q->mss = 0;
7204 
7205 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7206 	}
7207 }
7208 
7209 /**
7210  * stmmac_resume - resume callback
7211  * @dev: device pointer
7212  * Description: when resume this function is invoked to setup the DMA and CORE
7213  * in a usable state.
7214  */
7215 int stmmac_resume(struct device *dev)
7216 {
7217 	struct net_device *ndev = dev_get_drvdata(dev);
7218 	struct stmmac_priv *priv = netdev_priv(ndev);
7219 	int ret;
7220 
7221 	if (!netif_running(ndev))
7222 		return 0;
7223 
7224 	/* Power Down bit, into the PM register, is cleared
7225 	 * automatically as soon as a magic packet or a Wake-up frame
7226 	 * is received. Anyway, it's better to manually clear
7227 	 * this bit because it can generate problems while resuming
7228 	 * from another devices (e.g. serial console).
7229 	 */
7230 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7231 		mutex_lock(&priv->lock);
7232 		stmmac_pmt(priv, priv->hw, 0);
7233 		mutex_unlock(&priv->lock);
7234 		priv->irq_wake = 0;
7235 	} else {
7236 		pinctrl_pm_select_default_state(priv->device);
7237 		/* enable the clk previously disabled */
7238 		ret = pm_runtime_force_resume(dev);
7239 		if (ret)
7240 			return ret;
7241 		if (priv->plat->clk_ptp_ref)
7242 			clk_prepare_enable(priv->plat->clk_ptp_ref);
7243 		/* reset the phy so that it's ready */
7244 		if (priv->mii)
7245 			stmmac_mdio_reset(priv->mii);
7246 	}
7247 
7248 	if (priv->plat->serdes_powerup) {
7249 		ret = priv->plat->serdes_powerup(ndev,
7250 						 priv->plat->bsp_priv);
7251 
7252 		if (ret < 0)
7253 			return ret;
7254 	}
7255 
7256 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
7257 		rtnl_lock();
7258 		phylink_start(priv->phylink);
7259 		/* We may have called phylink_speed_down before */
7260 		phylink_speed_up(priv->phylink);
7261 		rtnl_unlock();
7262 	}
7263 
7264 	rtnl_lock();
7265 	mutex_lock(&priv->lock);
7266 
7267 	stmmac_reset_queues_param(priv);
7268 
7269 	stmmac_free_tx_skbufs(priv);
7270 	stmmac_clear_descriptors(priv);
7271 
7272 	stmmac_hw_setup(ndev, false);
7273 	stmmac_init_coalesce(priv);
7274 	stmmac_set_rx_mode(ndev);
7275 
7276 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7277 
7278 	stmmac_enable_all_queues(priv);
7279 
7280 	mutex_unlock(&priv->lock);
7281 	rtnl_unlock();
7282 
7283 	phylink_mac_change(priv->phylink, true);
7284 
7285 	netif_device_attach(ndev);
7286 
7287 	return 0;
7288 }
7289 EXPORT_SYMBOL_GPL(stmmac_resume);
7290 
7291 #ifndef MODULE
7292 static int __init stmmac_cmdline_opt(char *str)
7293 {
7294 	char *opt;
7295 
7296 	if (!str || !*str)
7297 		return -EINVAL;
7298 	while ((opt = strsep(&str, ",")) != NULL) {
7299 		if (!strncmp(opt, "debug:", 6)) {
7300 			if (kstrtoint(opt + 6, 0, &debug))
7301 				goto err;
7302 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7303 			if (kstrtoint(opt + 8, 0, &phyaddr))
7304 				goto err;
7305 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7306 			if (kstrtoint(opt + 7, 0, &buf_sz))
7307 				goto err;
7308 		} else if (!strncmp(opt, "tc:", 3)) {
7309 			if (kstrtoint(opt + 3, 0, &tc))
7310 				goto err;
7311 		} else if (!strncmp(opt, "watchdog:", 9)) {
7312 			if (kstrtoint(opt + 9, 0, &watchdog))
7313 				goto err;
7314 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7315 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7316 				goto err;
7317 		} else if (!strncmp(opt, "pause:", 6)) {
7318 			if (kstrtoint(opt + 6, 0, &pause))
7319 				goto err;
7320 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7321 			if (kstrtoint(opt + 10, 0, &eee_timer))
7322 				goto err;
7323 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7324 			if (kstrtoint(opt + 11, 0, &chain_mode))
7325 				goto err;
7326 		}
7327 	}
7328 	return 0;
7329 
7330 err:
7331 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7332 	return -EINVAL;
7333 }
7334 
7335 __setup("stmmaceth=", stmmac_cmdline_opt);
7336 #endif /* MODULE */
7337 
7338 static int __init stmmac_init(void)
7339 {
7340 #ifdef CONFIG_DEBUG_FS
7341 	/* Create debugfs main directory if it doesn't exist yet */
7342 	if (!stmmac_fs_dir)
7343 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7344 	register_netdevice_notifier(&stmmac_notifier);
7345 #endif
7346 
7347 	return 0;
7348 }
7349 
7350 static void __exit stmmac_exit(void)
7351 {
7352 #ifdef CONFIG_DEBUG_FS
7353 	unregister_netdevice_notifier(&stmmac_notifier);
7354 	debugfs_remove_recursive(stmmac_fs_dir);
7355 #endif
7356 }
7357 
7358 module_init(stmmac_init)
7359 module_exit(stmmac_exit)
7360 
7361 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7362 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7363 MODULE_LICENSE("GPL");
7364