1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 24 25 Documentation available at: 26 http://www.stlinux.com 27 Support available at: 28 https://bugzilla.stlinux.com/ 29 *******************************************************************************/ 30 31 #include <linux/clk.h> 32 #include <linux/kernel.h> 33 #include <linux/interrupt.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/skbuff.h> 37 #include <linux/ethtool.h> 38 #include <linux/if_ether.h> 39 #include <linux/crc32.h> 40 #include <linux/mii.h> 41 #include <linux/if.h> 42 #include <linux/if_vlan.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/slab.h> 45 #include <linux/prefetch.h> 46 #include <linux/pinctrl/consumer.h> 47 #ifdef CONFIG_DEBUG_FS 48 #include <linux/debugfs.h> 49 #include <linux/seq_file.h> 50 #endif /* CONFIG_DEBUG_FS */ 51 #include <linux/net_tstamp.h> 52 #include "stmmac_ptp.h" 53 #include "stmmac.h" 54 #include <linux/reset.h> 55 #include <linux/of_mdio.h> 56 57 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x) 58 59 /* Module parameters */ 60 #define TX_TIMEO 5000 61 static int watchdog = TX_TIMEO; 62 module_param(watchdog, int, S_IRUGO | S_IWUSR); 63 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 64 65 static int debug = -1; 66 module_param(debug, int, S_IRUGO | S_IWUSR); 67 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 68 69 static int phyaddr = -1; 70 module_param(phyaddr, int, S_IRUGO); 71 MODULE_PARM_DESC(phyaddr, "Physical device address"); 72 73 #define DMA_TX_SIZE 256 74 static int dma_txsize = DMA_TX_SIZE; 75 module_param(dma_txsize, int, S_IRUGO | S_IWUSR); 76 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list"); 77 78 #define DMA_RX_SIZE 256 79 static int dma_rxsize = DMA_RX_SIZE; 80 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR); 81 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list"); 82 83 static int flow_ctrl = FLOW_OFF; 84 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR); 85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 86 87 static int pause = PAUSE_TIME; 88 module_param(pause, int, S_IRUGO | S_IWUSR); 89 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 90 91 #define TC_DEFAULT 64 92 static int tc = TC_DEFAULT; 93 module_param(tc, int, S_IRUGO | S_IWUSR); 94 MODULE_PARM_DESC(tc, "DMA threshold control value"); 95 96 #define DEFAULT_BUFSIZE 1536 97 static int buf_sz = DEFAULT_BUFSIZE; 98 module_param(buf_sz, int, S_IRUGO | S_IWUSR); 99 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 100 101 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 102 NETIF_MSG_LINK | NETIF_MSG_IFUP | 103 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 104 105 #define STMMAC_DEFAULT_LPI_TIMER 1000 106 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 107 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 108 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 109 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 110 111 /* By default the driver will use the ring mode to manage tx and rx descriptors 112 * but passing this value so user can force to use the chain instead of the ring 113 */ 114 static unsigned int chain_mode; 115 module_param(chain_mode, int, S_IRUGO); 116 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 117 118 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 119 120 #ifdef CONFIG_DEBUG_FS 121 static int stmmac_init_fs(struct net_device *dev); 122 static void stmmac_exit_fs(struct net_device *dev); 123 #endif 124 125 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 126 127 /** 128 * stmmac_verify_args - verify the driver parameters. 129 * Description: it checks the driver parameters and set a default in case of 130 * errors. 131 */ 132 static void stmmac_verify_args(void) 133 { 134 if (unlikely(watchdog < 0)) 135 watchdog = TX_TIMEO; 136 if (unlikely(dma_rxsize < 0)) 137 dma_rxsize = DMA_RX_SIZE; 138 if (unlikely(dma_txsize < 0)) 139 dma_txsize = DMA_TX_SIZE; 140 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 141 buf_sz = DEFAULT_BUFSIZE; 142 if (unlikely(flow_ctrl > 1)) 143 flow_ctrl = FLOW_AUTO; 144 else if (likely(flow_ctrl < 0)) 145 flow_ctrl = FLOW_OFF; 146 if (unlikely((pause < 0) || (pause > 0xffff))) 147 pause = PAUSE_TIME; 148 if (eee_timer < 0) 149 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 150 } 151 152 /** 153 * stmmac_clk_csr_set - dynamically set the MDC clock 154 * @priv: driver private structure 155 * Description: this is to dynamically set the MDC clock according to the csr 156 * clock input. 157 * Note: 158 * If a specific clk_csr value is passed from the platform 159 * this means that the CSR Clock Range selection cannot be 160 * changed at run-time and it is fixed (as reported in the driver 161 * documentation). Viceversa the driver will try to set the MDC 162 * clock dynamically according to the actual clock input. 163 */ 164 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 165 { 166 u32 clk_rate; 167 168 clk_rate = clk_get_rate(priv->stmmac_clk); 169 170 /* Platform provided default clk_csr would be assumed valid 171 * for all other cases except for the below mentioned ones. 172 * For values higher than the IEEE 802.3 specified frequency 173 * we can not estimate the proper divider as it is not known 174 * the frequency of clk_csr_i. So we do not change the default 175 * divider. 176 */ 177 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 178 if (clk_rate < CSR_F_35M) 179 priv->clk_csr = STMMAC_CSR_20_35M; 180 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 181 priv->clk_csr = STMMAC_CSR_35_60M; 182 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 183 priv->clk_csr = STMMAC_CSR_60_100M; 184 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 185 priv->clk_csr = STMMAC_CSR_100_150M; 186 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 187 priv->clk_csr = STMMAC_CSR_150_250M; 188 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 189 priv->clk_csr = STMMAC_CSR_250_300M; 190 } 191 } 192 193 static void print_pkt(unsigned char *buf, int len) 194 { 195 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 196 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 197 } 198 199 /* minimum number of free TX descriptors required to wake up TX process */ 200 #define STMMAC_TX_THRESH(x) (x->dma_tx_size/4) 201 202 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) 203 { 204 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1; 205 } 206 207 /** 208 * stmmac_hw_fix_mac_speed - callback for speed selection 209 * @priv: driver private structure 210 * Description: on some platforms (e.g. ST), some HW system configuraton 211 * registers have to be set according to the link speed negotiated. 212 */ 213 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 214 { 215 struct phy_device *phydev = priv->phydev; 216 217 if (likely(priv->plat->fix_mac_speed)) 218 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 219 } 220 221 /** 222 * stmmac_enable_eee_mode - check and enter in LPI mode 223 * @priv: driver private structure 224 * Description: this function is to verify and enter in LPI mode in case of 225 * EEE. 226 */ 227 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 228 { 229 /* Check and enter in LPI mode */ 230 if ((priv->dirty_tx == priv->cur_tx) && 231 (priv->tx_path_in_lpi_mode == false)) 232 priv->hw->mac->set_eee_mode(priv->hw); 233 } 234 235 /** 236 * stmmac_disable_eee_mode - disable and exit from LPI mode 237 * @priv: driver private structure 238 * Description: this function is to exit and disable EEE in case of 239 * LPI state is true. This is called by the xmit. 240 */ 241 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 242 { 243 priv->hw->mac->reset_eee_mode(priv->hw); 244 del_timer_sync(&priv->eee_ctrl_timer); 245 priv->tx_path_in_lpi_mode = false; 246 } 247 248 /** 249 * stmmac_eee_ctrl_timer - EEE TX SW timer. 250 * @arg : data hook 251 * Description: 252 * if there is no data transfer and if we are not in LPI state, 253 * then MAC Transmitter can be moved to LPI state. 254 */ 255 static void stmmac_eee_ctrl_timer(unsigned long arg) 256 { 257 struct stmmac_priv *priv = (struct stmmac_priv *)arg; 258 259 stmmac_enable_eee_mode(priv); 260 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 261 } 262 263 /** 264 * stmmac_eee_init - init EEE 265 * @priv: driver private structure 266 * Description: 267 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 268 * can also manage EEE, this function enable the LPI state and start related 269 * timer. 270 */ 271 bool stmmac_eee_init(struct stmmac_priv *priv) 272 { 273 char *phy_bus_name = priv->plat->phy_bus_name; 274 unsigned long flags; 275 bool ret = false; 276 277 /* Using PCS we cannot dial with the phy registers at this stage 278 * so we do not support extra feature like EEE. 279 */ 280 if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) || 281 (priv->pcs == STMMAC_PCS_RTBI)) 282 goto out; 283 284 /* Never init EEE in case of a switch is attached */ 285 if (phy_bus_name && (!strcmp(phy_bus_name, "fixed"))) 286 goto out; 287 288 /* MAC core supports the EEE feature. */ 289 if (priv->dma_cap.eee) { 290 int tx_lpi_timer = priv->tx_lpi_timer; 291 292 /* Check if the PHY supports EEE */ 293 if (phy_init_eee(priv->phydev, 1)) { 294 /* To manage at run-time if the EEE cannot be supported 295 * anymore (for example because the lp caps have been 296 * changed). 297 * In that case the driver disable own timers. 298 */ 299 spin_lock_irqsave(&priv->lock, flags); 300 if (priv->eee_active) { 301 pr_debug("stmmac: disable EEE\n"); 302 del_timer_sync(&priv->eee_ctrl_timer); 303 priv->hw->mac->set_eee_timer(priv->hw, 0, 304 tx_lpi_timer); 305 } 306 priv->eee_active = 0; 307 spin_unlock_irqrestore(&priv->lock, flags); 308 goto out; 309 } 310 /* Activate the EEE and start timers */ 311 spin_lock_irqsave(&priv->lock, flags); 312 if (!priv->eee_active) { 313 priv->eee_active = 1; 314 setup_timer(&priv->eee_ctrl_timer, 315 stmmac_eee_ctrl_timer, 316 (unsigned long)priv); 317 mod_timer(&priv->eee_ctrl_timer, 318 STMMAC_LPI_T(eee_timer)); 319 320 priv->hw->mac->set_eee_timer(priv->hw, 321 STMMAC_DEFAULT_LIT_LS, 322 tx_lpi_timer); 323 } 324 /* Set HW EEE according to the speed */ 325 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link); 326 327 ret = true; 328 spin_unlock_irqrestore(&priv->lock, flags); 329 330 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n"); 331 } 332 out: 333 return ret; 334 } 335 336 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 337 * @priv: driver private structure 338 * @entry : descriptor index to be used. 339 * @skb : the socket buffer 340 * Description : 341 * This function will read timestamp from the descriptor & pass it to stack. 342 * and also perform some sanity checks. 343 */ 344 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 345 unsigned int entry, struct sk_buff *skb) 346 { 347 struct skb_shared_hwtstamps shhwtstamp; 348 u64 ns; 349 void *desc = NULL; 350 351 if (!priv->hwts_tx_en) 352 return; 353 354 /* exit if skb doesn't support hw tstamp */ 355 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 356 return; 357 358 if (priv->adv_ts) 359 desc = (priv->dma_etx + entry); 360 else 361 desc = (priv->dma_tx + entry); 362 363 /* check tx tstamp status */ 364 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc)) 365 return; 366 367 /* get the valid tstamp */ 368 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 369 370 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 371 shhwtstamp.hwtstamp = ns_to_ktime(ns); 372 /* pass tstamp to stack */ 373 skb_tstamp_tx(skb, &shhwtstamp); 374 375 return; 376 } 377 378 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 379 * @priv: driver private structure 380 * @entry : descriptor index to be used. 381 * @skb : the socket buffer 382 * Description : 383 * This function will read received packet's timestamp from the descriptor 384 * and pass it to stack. It also perform some sanity checks. 385 */ 386 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, 387 unsigned int entry, struct sk_buff *skb) 388 { 389 struct skb_shared_hwtstamps *shhwtstamp = NULL; 390 u64 ns; 391 void *desc = NULL; 392 393 if (!priv->hwts_rx_en) 394 return; 395 396 if (priv->adv_ts) 397 desc = (priv->dma_erx + entry); 398 else 399 desc = (priv->dma_rx + entry); 400 401 /* exit if rx tstamp is not valid */ 402 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) 403 return; 404 405 /* get valid tstamp */ 406 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 407 shhwtstamp = skb_hwtstamps(skb); 408 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 409 shhwtstamp->hwtstamp = ns_to_ktime(ns); 410 } 411 412 /** 413 * stmmac_hwtstamp_ioctl - control hardware timestamping. 414 * @dev: device pointer. 415 * @ifr: An IOCTL specefic structure, that can contain a pointer to 416 * a proprietary structure used to pass information to the driver. 417 * Description: 418 * This function configures the MAC to enable/disable both outgoing(TX) 419 * and incoming(RX) packets time stamping based on user input. 420 * Return Value: 421 * 0 on success and an appropriate -ve integer on failure. 422 */ 423 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 424 { 425 struct stmmac_priv *priv = netdev_priv(dev); 426 struct hwtstamp_config config; 427 struct timespec now; 428 u64 temp = 0; 429 u32 ptp_v2 = 0; 430 u32 tstamp_all = 0; 431 u32 ptp_over_ipv4_udp = 0; 432 u32 ptp_over_ipv6_udp = 0; 433 u32 ptp_over_ethernet = 0; 434 u32 snap_type_sel = 0; 435 u32 ts_master_en = 0; 436 u32 ts_event_en = 0; 437 u32 value = 0; 438 439 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 440 netdev_alert(priv->dev, "No support for HW time stamping\n"); 441 priv->hwts_tx_en = 0; 442 priv->hwts_rx_en = 0; 443 444 return -EOPNOTSUPP; 445 } 446 447 if (copy_from_user(&config, ifr->ifr_data, 448 sizeof(struct hwtstamp_config))) 449 return -EFAULT; 450 451 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 452 __func__, config.flags, config.tx_type, config.rx_filter); 453 454 /* reserved for future extensions */ 455 if (config.flags) 456 return -EINVAL; 457 458 if (config.tx_type != HWTSTAMP_TX_OFF && 459 config.tx_type != HWTSTAMP_TX_ON) 460 return -ERANGE; 461 462 if (priv->adv_ts) { 463 switch (config.rx_filter) { 464 case HWTSTAMP_FILTER_NONE: 465 /* time stamp no incoming packet at all */ 466 config.rx_filter = HWTSTAMP_FILTER_NONE; 467 break; 468 469 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 470 /* PTP v1, UDP, any kind of event packet */ 471 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 472 /* take time stamp for all event messages */ 473 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 474 475 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 476 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 477 break; 478 479 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 480 /* PTP v1, UDP, Sync packet */ 481 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 482 /* take time stamp for SYNC messages only */ 483 ts_event_en = PTP_TCR_TSEVNTENA; 484 485 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 486 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 487 break; 488 489 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 490 /* PTP v1, UDP, Delay_req packet */ 491 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 492 /* take time stamp for Delay_Req messages only */ 493 ts_master_en = PTP_TCR_TSMSTRENA; 494 ts_event_en = PTP_TCR_TSEVNTENA; 495 496 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 497 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 498 break; 499 500 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 501 /* PTP v2, UDP, any kind of event packet */ 502 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 503 ptp_v2 = PTP_TCR_TSVER2ENA; 504 /* take time stamp for all event messages */ 505 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 506 507 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 508 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 509 break; 510 511 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 512 /* PTP v2, UDP, Sync packet */ 513 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 514 ptp_v2 = PTP_TCR_TSVER2ENA; 515 /* take time stamp for SYNC messages only */ 516 ts_event_en = PTP_TCR_TSEVNTENA; 517 518 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 519 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 520 break; 521 522 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 523 /* PTP v2, UDP, Delay_req packet */ 524 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 525 ptp_v2 = PTP_TCR_TSVER2ENA; 526 /* take time stamp for Delay_Req messages only */ 527 ts_master_en = PTP_TCR_TSMSTRENA; 528 ts_event_en = PTP_TCR_TSEVNTENA; 529 530 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 531 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 532 break; 533 534 case HWTSTAMP_FILTER_PTP_V2_EVENT: 535 /* PTP v2/802.AS1 any layer, any kind of event packet */ 536 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 537 ptp_v2 = PTP_TCR_TSVER2ENA; 538 /* take time stamp for all event messages */ 539 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 540 541 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 542 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 543 ptp_over_ethernet = PTP_TCR_TSIPENA; 544 break; 545 546 case HWTSTAMP_FILTER_PTP_V2_SYNC: 547 /* PTP v2/802.AS1, any layer, Sync packet */ 548 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 549 ptp_v2 = PTP_TCR_TSVER2ENA; 550 /* take time stamp for SYNC messages only */ 551 ts_event_en = PTP_TCR_TSEVNTENA; 552 553 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 554 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 555 ptp_over_ethernet = PTP_TCR_TSIPENA; 556 break; 557 558 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 559 /* PTP v2/802.AS1, any layer, Delay_req packet */ 560 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 561 ptp_v2 = PTP_TCR_TSVER2ENA; 562 /* take time stamp for Delay_Req messages only */ 563 ts_master_en = PTP_TCR_TSMSTRENA; 564 ts_event_en = PTP_TCR_TSEVNTENA; 565 566 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 567 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 568 ptp_over_ethernet = PTP_TCR_TSIPENA; 569 break; 570 571 case HWTSTAMP_FILTER_ALL: 572 /* time stamp any incoming packet */ 573 config.rx_filter = HWTSTAMP_FILTER_ALL; 574 tstamp_all = PTP_TCR_TSENALL; 575 break; 576 577 default: 578 return -ERANGE; 579 } 580 } else { 581 switch (config.rx_filter) { 582 case HWTSTAMP_FILTER_NONE: 583 config.rx_filter = HWTSTAMP_FILTER_NONE; 584 break; 585 default: 586 /* PTP v1, UDP, any kind of event packet */ 587 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 588 break; 589 } 590 } 591 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 592 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 593 594 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 595 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0); 596 else { 597 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 598 tstamp_all | ptp_v2 | ptp_over_ethernet | 599 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 600 ts_master_en | snap_type_sel); 601 602 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value); 603 604 /* program Sub Second Increment reg */ 605 priv->hw->ptp->config_sub_second_increment(priv->ioaddr); 606 607 /* calculate default added value: 608 * formula is : 609 * addend = (2^32)/freq_div_ratio; 610 * where, freq_div_ratio = clk_ptp_ref_i/50MHz 611 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i; 612 * NOTE: clk_ptp_ref_i should be >= 50MHz to 613 * achieve 20ns accuracy. 614 * 615 * 2^x * y == (y << x), hence 616 * 2^32 * 50000000 ==> (50000000 << 32) 617 */ 618 temp = (u64) (50000000ULL << 32); 619 priv->default_addend = div_u64(temp, priv->clk_ptp_rate); 620 priv->hw->ptp->config_addend(priv->ioaddr, 621 priv->default_addend); 622 623 /* initialize system time */ 624 getnstimeofday(&now); 625 priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec, 626 now.tv_nsec); 627 } 628 629 return copy_to_user(ifr->ifr_data, &config, 630 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 631 } 632 633 /** 634 * stmmac_init_ptp - init PTP 635 * @priv: driver private structure 636 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 637 * This is done by looking at the HW cap. register. 638 * This function also registers the ptp driver. 639 */ 640 static int stmmac_init_ptp(struct stmmac_priv *priv) 641 { 642 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 643 return -EOPNOTSUPP; 644 645 /* Fall-back to main clock in case of no PTP ref is passed */ 646 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref"); 647 if (IS_ERR(priv->clk_ptp_ref)) { 648 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk); 649 priv->clk_ptp_ref = NULL; 650 } else { 651 clk_prepare_enable(priv->clk_ptp_ref); 652 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref); 653 } 654 655 priv->adv_ts = 0; 656 if (priv->dma_cap.atime_stamp && priv->extend_desc) 657 priv->adv_ts = 1; 658 659 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp) 660 pr_debug("IEEE 1588-2002 Time Stamp supported\n"); 661 662 if (netif_msg_hw(priv) && priv->adv_ts) 663 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n"); 664 665 priv->hw->ptp = &stmmac_ptp; 666 priv->hwts_tx_en = 0; 667 priv->hwts_rx_en = 0; 668 669 return stmmac_ptp_register(priv); 670 } 671 672 static void stmmac_release_ptp(struct stmmac_priv *priv) 673 { 674 if (priv->clk_ptp_ref) 675 clk_disable_unprepare(priv->clk_ptp_ref); 676 stmmac_ptp_unregister(priv); 677 } 678 679 /** 680 * stmmac_adjust_link - adjusts the link parameters 681 * @dev: net device structure 682 * Description: this is the helper called by the physical abstraction layer 683 * drivers to communicate the phy link status. According the speed and duplex 684 * this driver can invoke registered glue-logic as well. 685 * It also invoke the eee initialization because it could happen when switch 686 * on different networks (that are eee capable). 687 */ 688 static void stmmac_adjust_link(struct net_device *dev) 689 { 690 struct stmmac_priv *priv = netdev_priv(dev); 691 struct phy_device *phydev = priv->phydev; 692 unsigned long flags; 693 int new_state = 0; 694 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause; 695 696 if (phydev == NULL) 697 return; 698 699 spin_lock_irqsave(&priv->lock, flags); 700 701 if (phydev->link) { 702 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 703 704 /* Now we make sure that we can be in full duplex mode. 705 * If not, we operate in half-duplex mode. */ 706 if (phydev->duplex != priv->oldduplex) { 707 new_state = 1; 708 if (!(phydev->duplex)) 709 ctrl &= ~priv->hw->link.duplex; 710 else 711 ctrl |= priv->hw->link.duplex; 712 priv->oldduplex = phydev->duplex; 713 } 714 /* Flow Control operation */ 715 if (phydev->pause) 716 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex, 717 fc, pause_time); 718 719 if (phydev->speed != priv->speed) { 720 new_state = 1; 721 switch (phydev->speed) { 722 case 1000: 723 if (likely(priv->plat->has_gmac)) 724 ctrl &= ~priv->hw->link.port; 725 stmmac_hw_fix_mac_speed(priv); 726 break; 727 case 100: 728 case 10: 729 if (priv->plat->has_gmac) { 730 ctrl |= priv->hw->link.port; 731 if (phydev->speed == SPEED_100) { 732 ctrl |= priv->hw->link.speed; 733 } else { 734 ctrl &= ~(priv->hw->link.speed); 735 } 736 } else { 737 ctrl &= ~priv->hw->link.port; 738 } 739 stmmac_hw_fix_mac_speed(priv); 740 break; 741 default: 742 if (netif_msg_link(priv)) 743 pr_warn("%s: Speed (%d) not 10/100\n", 744 dev->name, phydev->speed); 745 break; 746 } 747 748 priv->speed = phydev->speed; 749 } 750 751 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 752 753 if (!priv->oldlink) { 754 new_state = 1; 755 priv->oldlink = 1; 756 } 757 } else if (priv->oldlink) { 758 new_state = 1; 759 priv->oldlink = 0; 760 priv->speed = 0; 761 priv->oldduplex = -1; 762 } 763 764 if (new_state && netif_msg_link(priv)) 765 phy_print_status(phydev); 766 767 spin_unlock_irqrestore(&priv->lock, flags); 768 769 /* At this stage, it could be needed to setup the EEE or adjust some 770 * MAC related HW registers. 771 */ 772 priv->eee_enabled = stmmac_eee_init(priv); 773 } 774 775 /** 776 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 777 * @priv: driver private structure 778 * Description: this is to verify if the HW supports the PCS. 779 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 780 * configured for the TBI, RTBI, or SGMII PHY interface. 781 */ 782 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 783 { 784 int interface = priv->plat->interface; 785 786 if (priv->dma_cap.pcs) { 787 if ((interface == PHY_INTERFACE_MODE_RGMII) || 788 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 789 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 790 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 791 pr_debug("STMMAC: PCS RGMII support enable\n"); 792 priv->pcs = STMMAC_PCS_RGMII; 793 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 794 pr_debug("STMMAC: PCS SGMII support enable\n"); 795 priv->pcs = STMMAC_PCS_SGMII; 796 } 797 } 798 } 799 800 /** 801 * stmmac_init_phy - PHY initialization 802 * @dev: net device structure 803 * Description: it initializes the driver's PHY state, and attaches the PHY 804 * to the mac driver. 805 * Return value: 806 * 0 on success 807 */ 808 static int stmmac_init_phy(struct net_device *dev) 809 { 810 struct stmmac_priv *priv = netdev_priv(dev); 811 struct phy_device *phydev; 812 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 813 char bus_id[MII_BUS_ID_SIZE]; 814 int interface = priv->plat->interface; 815 int max_speed = priv->plat->max_speed; 816 priv->oldlink = 0; 817 priv->speed = 0; 818 priv->oldduplex = -1; 819 820 if (priv->plat->phy_node) { 821 phydev = of_phy_connect(dev, priv->plat->phy_node, 822 &stmmac_adjust_link, 0, interface); 823 } else { 824 if (priv->plat->phy_bus_name) 825 snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x", 826 priv->plat->phy_bus_name, priv->plat->bus_id); 827 else 828 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 829 priv->plat->bus_id); 830 831 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 832 priv->plat->phy_addr); 833 pr_debug("stmmac_init_phy: trying to attach to %s\n", 834 phy_id_fmt); 835 836 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 837 interface); 838 } 839 840 if (IS_ERR(phydev)) { 841 pr_err("%s: Could not attach to PHY\n", dev->name); 842 return PTR_ERR(phydev); 843 } 844 845 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 846 if ((interface == PHY_INTERFACE_MODE_MII) || 847 (interface == PHY_INTERFACE_MODE_RMII) || 848 (max_speed < 1000 && max_speed > 0)) 849 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 850 SUPPORTED_1000baseT_Full); 851 852 /* 853 * Broken HW is sometimes missing the pull-up resistor on the 854 * MDIO line, which results in reads to non-existent devices returning 855 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 856 * device as well. 857 * Note: phydev->phy_id is the result of reading the UID PHY registers. 858 */ 859 if (!priv->plat->phy_node && phydev->phy_id == 0) { 860 phy_disconnect(phydev); 861 return -ENODEV; 862 } 863 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)" 864 " Link = %d\n", dev->name, phydev->phy_id, phydev->link); 865 866 priv->phydev = phydev; 867 868 return 0; 869 } 870 871 /** 872 * stmmac_display_ring - display ring 873 * @head: pointer to the head of the ring passed. 874 * @size: size of the ring. 875 * @extend_desc: to verify if extended descriptors are used. 876 * Description: display the control/status and buffer descriptors. 877 */ 878 static void stmmac_display_ring(void *head, int size, int extend_desc) 879 { 880 int i; 881 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 882 struct dma_desc *p = (struct dma_desc *)head; 883 884 for (i = 0; i < size; i++) { 885 u64 x; 886 if (extend_desc) { 887 x = *(u64 *) ep; 888 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 889 i, (unsigned int)virt_to_phys(ep), 890 (unsigned int)x, (unsigned int)(x >> 32), 891 ep->basic.des2, ep->basic.des3); 892 ep++; 893 } else { 894 x = *(u64 *) p; 895 pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x", 896 i, (unsigned int)virt_to_phys(p), 897 (unsigned int)x, (unsigned int)(x >> 32), 898 p->des2, p->des3); 899 p++; 900 } 901 pr_info("\n"); 902 } 903 } 904 905 static void stmmac_display_rings(struct stmmac_priv *priv) 906 { 907 unsigned int txsize = priv->dma_tx_size; 908 unsigned int rxsize = priv->dma_rx_size; 909 910 if (priv->extend_desc) { 911 pr_info("Extended RX descriptor ring:\n"); 912 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 913 pr_info("Extended TX descriptor ring:\n"); 914 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 915 } else { 916 pr_info("RX descriptor ring:\n"); 917 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 918 pr_info("TX descriptor ring:\n"); 919 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 920 } 921 } 922 923 static int stmmac_set_bfsize(int mtu, int bufsize) 924 { 925 int ret = bufsize; 926 927 if (mtu >= BUF_SIZE_4KiB) 928 ret = BUF_SIZE_8KiB; 929 else if (mtu >= BUF_SIZE_2KiB) 930 ret = BUF_SIZE_4KiB; 931 else if (mtu > DEFAULT_BUFSIZE) 932 ret = BUF_SIZE_2KiB; 933 else 934 ret = DEFAULT_BUFSIZE; 935 936 return ret; 937 } 938 939 /** 940 * stmmac_clear_descriptors - clear descriptors 941 * @priv: driver private structure 942 * Description: this function is called to clear the tx and rx descriptors 943 * in case of both basic and extended descriptors are used. 944 */ 945 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 946 { 947 int i; 948 unsigned int txsize = priv->dma_tx_size; 949 unsigned int rxsize = priv->dma_rx_size; 950 951 /* Clear the Rx/Tx descriptors */ 952 for (i = 0; i < rxsize; i++) 953 if (priv->extend_desc) 954 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, 955 priv->use_riwt, priv->mode, 956 (i == rxsize - 1)); 957 else 958 priv->hw->desc->init_rx_desc(&priv->dma_rx[i], 959 priv->use_riwt, priv->mode, 960 (i == rxsize - 1)); 961 for (i = 0; i < txsize; i++) 962 if (priv->extend_desc) 963 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 964 priv->mode, 965 (i == txsize - 1)); 966 else 967 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 968 priv->mode, 969 (i == txsize - 1)); 970 } 971 972 /** 973 * stmmac_init_rx_buffers - init the RX descriptor buffer. 974 * @priv: driver private structure 975 * @p: descriptor pointer 976 * @i: descriptor index 977 * @flags: gfp flag. 978 * Description: this function is called to allocate a receive buffer, perform 979 * the DMA mapping and init the descriptor. 980 */ 981 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 982 int i, gfp_t flags) 983 { 984 struct sk_buff *skb; 985 986 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 987 if (!skb) { 988 pr_err("%s: Rx init fails; skb is NULL\n", __func__); 989 return -ENOMEM; 990 } 991 priv->rx_skbuff[i] = skb; 992 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 993 priv->dma_buf_sz, 994 DMA_FROM_DEVICE); 995 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) { 996 pr_err("%s: DMA mapping error\n", __func__); 997 dev_kfree_skb_any(skb); 998 return -EINVAL; 999 } 1000 1001 p->des2 = priv->rx_skbuff_dma[i]; 1002 1003 if ((priv->hw->mode->init_desc3) && 1004 (priv->dma_buf_sz == BUF_SIZE_16KiB)) 1005 priv->hw->mode->init_desc3(p); 1006 1007 return 0; 1008 } 1009 1010 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i) 1011 { 1012 if (priv->rx_skbuff[i]) { 1013 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i], 1014 priv->dma_buf_sz, DMA_FROM_DEVICE); 1015 dev_kfree_skb_any(priv->rx_skbuff[i]); 1016 } 1017 priv->rx_skbuff[i] = NULL; 1018 } 1019 1020 /** 1021 * init_dma_desc_rings - init the RX/TX descriptor rings 1022 * @dev: net device structure 1023 * @flags: gfp flag. 1024 * Description: this function initializes the DMA RX/TX descriptors 1025 * and allocates the socket buffers. It suppors the chained and ring 1026 * modes. 1027 */ 1028 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1029 { 1030 int i; 1031 struct stmmac_priv *priv = netdev_priv(dev); 1032 unsigned int txsize = priv->dma_tx_size; 1033 unsigned int rxsize = priv->dma_rx_size; 1034 unsigned int bfsize = 0; 1035 int ret = -ENOMEM; 1036 1037 if (priv->hw->mode->set_16kib_bfsize) 1038 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu); 1039 1040 if (bfsize < BUF_SIZE_16KiB) 1041 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1042 1043 priv->dma_buf_sz = bfsize; 1044 1045 if (netif_msg_probe(priv)) 1046 pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__, 1047 txsize, rxsize, bfsize); 1048 1049 if (netif_msg_probe(priv)) { 1050 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__, 1051 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy); 1052 1053 /* RX INITIALIZATION */ 1054 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n"); 1055 } 1056 for (i = 0; i < rxsize; i++) { 1057 struct dma_desc *p; 1058 if (priv->extend_desc) 1059 p = &((priv->dma_erx + i)->basic); 1060 else 1061 p = priv->dma_rx + i; 1062 1063 ret = stmmac_init_rx_buffers(priv, p, i, flags); 1064 if (ret) 1065 goto err_init_rx_buffers; 1066 1067 if (netif_msg_probe(priv)) 1068 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i], 1069 priv->rx_skbuff[i]->data, 1070 (unsigned int)priv->rx_skbuff_dma[i]); 1071 } 1072 priv->cur_rx = 0; 1073 priv->dirty_rx = (unsigned int)(i - rxsize); 1074 buf_sz = bfsize; 1075 1076 /* Setup the chained descriptor addresses */ 1077 if (priv->mode == STMMAC_CHAIN_MODE) { 1078 if (priv->extend_desc) { 1079 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy, 1080 rxsize, 1); 1081 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy, 1082 txsize, 1); 1083 } else { 1084 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy, 1085 rxsize, 0); 1086 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy, 1087 txsize, 0); 1088 } 1089 } 1090 1091 /* TX INITIALIZATION */ 1092 for (i = 0; i < txsize; i++) { 1093 struct dma_desc *p; 1094 if (priv->extend_desc) 1095 p = &((priv->dma_etx + i)->basic); 1096 else 1097 p = priv->dma_tx + i; 1098 p->des2 = 0; 1099 priv->tx_skbuff_dma[i].buf = 0; 1100 priv->tx_skbuff_dma[i].map_as_page = false; 1101 priv->tx_skbuff[i] = NULL; 1102 } 1103 1104 priv->dirty_tx = 0; 1105 priv->cur_tx = 0; 1106 netdev_reset_queue(priv->dev); 1107 1108 stmmac_clear_descriptors(priv); 1109 1110 if (netif_msg_hw(priv)) 1111 stmmac_display_rings(priv); 1112 1113 return 0; 1114 err_init_rx_buffers: 1115 while (--i >= 0) 1116 stmmac_free_rx_buffers(priv, i); 1117 return ret; 1118 } 1119 1120 static void dma_free_rx_skbufs(struct stmmac_priv *priv) 1121 { 1122 int i; 1123 1124 for (i = 0; i < priv->dma_rx_size; i++) 1125 stmmac_free_rx_buffers(priv, i); 1126 } 1127 1128 static void dma_free_tx_skbufs(struct stmmac_priv *priv) 1129 { 1130 int i; 1131 1132 for (i = 0; i < priv->dma_tx_size; i++) { 1133 struct dma_desc *p; 1134 1135 if (priv->extend_desc) 1136 p = &((priv->dma_etx + i)->basic); 1137 else 1138 p = priv->dma_tx + i; 1139 1140 if (priv->tx_skbuff_dma[i].buf) { 1141 if (priv->tx_skbuff_dma[i].map_as_page) 1142 dma_unmap_page(priv->device, 1143 priv->tx_skbuff_dma[i].buf, 1144 priv->hw->desc->get_tx_len(p), 1145 DMA_TO_DEVICE); 1146 else 1147 dma_unmap_single(priv->device, 1148 priv->tx_skbuff_dma[i].buf, 1149 priv->hw->desc->get_tx_len(p), 1150 DMA_TO_DEVICE); 1151 } 1152 1153 if (priv->tx_skbuff[i] != NULL) { 1154 dev_kfree_skb_any(priv->tx_skbuff[i]); 1155 priv->tx_skbuff[i] = NULL; 1156 priv->tx_skbuff_dma[i].buf = 0; 1157 priv->tx_skbuff_dma[i].map_as_page = false; 1158 } 1159 } 1160 } 1161 1162 /** 1163 * alloc_dma_desc_resources - alloc TX/RX resources. 1164 * @priv: private structure 1165 * Description: according to which descriptor can be used (extend or basic) 1166 * this function allocates the resources for TX and RX paths. In case of 1167 * reception, for example, it pre-allocated the RX socket buffer in order to 1168 * allow zero-copy mechanism. 1169 */ 1170 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1171 { 1172 unsigned int txsize = priv->dma_tx_size; 1173 unsigned int rxsize = priv->dma_rx_size; 1174 int ret = -ENOMEM; 1175 1176 priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t), 1177 GFP_KERNEL); 1178 if (!priv->rx_skbuff_dma) 1179 return -ENOMEM; 1180 1181 priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *), 1182 GFP_KERNEL); 1183 if (!priv->rx_skbuff) 1184 goto err_rx_skbuff; 1185 1186 priv->tx_skbuff_dma = kmalloc_array(txsize, 1187 sizeof(*priv->tx_skbuff_dma), 1188 GFP_KERNEL); 1189 if (!priv->tx_skbuff_dma) 1190 goto err_tx_skbuff_dma; 1191 1192 priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *), 1193 GFP_KERNEL); 1194 if (!priv->tx_skbuff) 1195 goto err_tx_skbuff; 1196 1197 if (priv->extend_desc) { 1198 priv->dma_erx = dma_zalloc_coherent(priv->device, rxsize * 1199 sizeof(struct 1200 dma_extended_desc), 1201 &priv->dma_rx_phy, 1202 GFP_KERNEL); 1203 if (!priv->dma_erx) 1204 goto err_dma; 1205 1206 priv->dma_etx = dma_zalloc_coherent(priv->device, txsize * 1207 sizeof(struct 1208 dma_extended_desc), 1209 &priv->dma_tx_phy, 1210 GFP_KERNEL); 1211 if (!priv->dma_etx) { 1212 dma_free_coherent(priv->device, priv->dma_rx_size * 1213 sizeof(struct dma_extended_desc), 1214 priv->dma_erx, priv->dma_rx_phy); 1215 goto err_dma; 1216 } 1217 } else { 1218 priv->dma_rx = dma_zalloc_coherent(priv->device, rxsize * 1219 sizeof(struct dma_desc), 1220 &priv->dma_rx_phy, 1221 GFP_KERNEL); 1222 if (!priv->dma_rx) 1223 goto err_dma; 1224 1225 priv->dma_tx = dma_zalloc_coherent(priv->device, txsize * 1226 sizeof(struct dma_desc), 1227 &priv->dma_tx_phy, 1228 GFP_KERNEL); 1229 if (!priv->dma_tx) { 1230 dma_free_coherent(priv->device, priv->dma_rx_size * 1231 sizeof(struct dma_desc), 1232 priv->dma_rx, priv->dma_rx_phy); 1233 goto err_dma; 1234 } 1235 } 1236 1237 return 0; 1238 1239 err_dma: 1240 kfree(priv->tx_skbuff); 1241 err_tx_skbuff: 1242 kfree(priv->tx_skbuff_dma); 1243 err_tx_skbuff_dma: 1244 kfree(priv->rx_skbuff); 1245 err_rx_skbuff: 1246 kfree(priv->rx_skbuff_dma); 1247 return ret; 1248 } 1249 1250 static void free_dma_desc_resources(struct stmmac_priv *priv) 1251 { 1252 /* Release the DMA TX/RX socket buffers */ 1253 dma_free_rx_skbufs(priv); 1254 dma_free_tx_skbufs(priv); 1255 1256 /* Free DMA regions of consistent memory previously allocated */ 1257 if (!priv->extend_desc) { 1258 dma_free_coherent(priv->device, 1259 priv->dma_tx_size * sizeof(struct dma_desc), 1260 priv->dma_tx, priv->dma_tx_phy); 1261 dma_free_coherent(priv->device, 1262 priv->dma_rx_size * sizeof(struct dma_desc), 1263 priv->dma_rx, priv->dma_rx_phy); 1264 } else { 1265 dma_free_coherent(priv->device, priv->dma_tx_size * 1266 sizeof(struct dma_extended_desc), 1267 priv->dma_etx, priv->dma_tx_phy); 1268 dma_free_coherent(priv->device, priv->dma_rx_size * 1269 sizeof(struct dma_extended_desc), 1270 priv->dma_erx, priv->dma_rx_phy); 1271 } 1272 kfree(priv->rx_skbuff_dma); 1273 kfree(priv->rx_skbuff); 1274 kfree(priv->tx_skbuff_dma); 1275 kfree(priv->tx_skbuff); 1276 } 1277 1278 /** 1279 * stmmac_dma_operation_mode - HW DMA operation mode 1280 * @priv: driver private structure 1281 * Description: it is used for configuring the DMA operation mode register in 1282 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1283 */ 1284 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1285 { 1286 int rxfifosz = priv->plat->rx_fifo_size; 1287 1288 if (priv->plat->force_thresh_dma_mode) 1289 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz); 1290 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1291 /* 1292 * In case of GMAC, SF mode can be enabled 1293 * to perform the TX COE in HW. This depends on: 1294 * 1) TX COE if actually supported 1295 * 2) There is no bugged Jumbo frame support 1296 * that needs to not insert csum in the TDES. 1297 */ 1298 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE, 1299 rxfifosz); 1300 priv->xstats.threshold = SF_DMA_MODE; 1301 } else 1302 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE, 1303 rxfifosz); 1304 } 1305 1306 /** 1307 * stmmac_tx_clean - to manage the transmission completion 1308 * @priv: driver private structure 1309 * Description: it reclaims the transmit resources after transmission completes. 1310 */ 1311 static void stmmac_tx_clean(struct stmmac_priv *priv) 1312 { 1313 unsigned int txsize = priv->dma_tx_size; 1314 unsigned int bytes_compl = 0, pkts_compl = 0; 1315 1316 spin_lock(&priv->tx_lock); 1317 1318 priv->xstats.tx_clean++; 1319 1320 while (priv->dirty_tx != priv->cur_tx) { 1321 int last; 1322 unsigned int entry = priv->dirty_tx % txsize; 1323 struct sk_buff *skb = priv->tx_skbuff[entry]; 1324 struct dma_desc *p; 1325 1326 if (priv->extend_desc) 1327 p = (struct dma_desc *)(priv->dma_etx + entry); 1328 else 1329 p = priv->dma_tx + entry; 1330 1331 /* Check if the descriptor is owned by the DMA. */ 1332 if (priv->hw->desc->get_tx_owner(p)) 1333 break; 1334 1335 /* Verify tx error by looking at the last segment. */ 1336 last = priv->hw->desc->get_tx_ls(p); 1337 if (likely(last)) { 1338 int tx_error = 1339 priv->hw->desc->tx_status(&priv->dev->stats, 1340 &priv->xstats, p, 1341 priv->ioaddr); 1342 if (likely(tx_error == 0)) { 1343 priv->dev->stats.tx_packets++; 1344 priv->xstats.tx_pkt_n++; 1345 } else 1346 priv->dev->stats.tx_errors++; 1347 1348 stmmac_get_tx_hwtstamp(priv, entry, skb); 1349 } 1350 if (netif_msg_tx_done(priv)) 1351 pr_debug("%s: curr %d, dirty %d\n", __func__, 1352 priv->cur_tx, priv->dirty_tx); 1353 1354 if (likely(priv->tx_skbuff_dma[entry].buf)) { 1355 if (priv->tx_skbuff_dma[entry].map_as_page) 1356 dma_unmap_page(priv->device, 1357 priv->tx_skbuff_dma[entry].buf, 1358 priv->hw->desc->get_tx_len(p), 1359 DMA_TO_DEVICE); 1360 else 1361 dma_unmap_single(priv->device, 1362 priv->tx_skbuff_dma[entry].buf, 1363 priv->hw->desc->get_tx_len(p), 1364 DMA_TO_DEVICE); 1365 priv->tx_skbuff_dma[entry].buf = 0; 1366 priv->tx_skbuff_dma[entry].map_as_page = false; 1367 } 1368 priv->hw->mode->clean_desc3(priv, p); 1369 1370 if (likely(skb != NULL)) { 1371 pkts_compl++; 1372 bytes_compl += skb->len; 1373 dev_consume_skb_any(skb); 1374 priv->tx_skbuff[entry] = NULL; 1375 } 1376 1377 priv->hw->desc->release_tx_desc(p, priv->mode); 1378 1379 priv->dirty_tx++; 1380 } 1381 1382 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl); 1383 1384 if (unlikely(netif_queue_stopped(priv->dev) && 1385 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) { 1386 netif_tx_lock(priv->dev); 1387 if (netif_queue_stopped(priv->dev) && 1388 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) { 1389 if (netif_msg_tx_done(priv)) 1390 pr_debug("%s: restart transmit\n", __func__); 1391 netif_wake_queue(priv->dev); 1392 } 1393 netif_tx_unlock(priv->dev); 1394 } 1395 1396 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1397 stmmac_enable_eee_mode(priv); 1398 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1399 } 1400 spin_unlock(&priv->tx_lock); 1401 } 1402 1403 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv) 1404 { 1405 priv->hw->dma->enable_dma_irq(priv->ioaddr); 1406 } 1407 1408 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv) 1409 { 1410 priv->hw->dma->disable_dma_irq(priv->ioaddr); 1411 } 1412 1413 /** 1414 * stmmac_tx_err - to manage the tx error 1415 * @priv: driver private structure 1416 * Description: it cleans the descriptors and restarts the transmission 1417 * in case of transmission errors. 1418 */ 1419 static void stmmac_tx_err(struct stmmac_priv *priv) 1420 { 1421 int i; 1422 int txsize = priv->dma_tx_size; 1423 netif_stop_queue(priv->dev); 1424 1425 priv->hw->dma->stop_tx(priv->ioaddr); 1426 dma_free_tx_skbufs(priv); 1427 for (i = 0; i < txsize; i++) 1428 if (priv->extend_desc) 1429 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 1430 priv->mode, 1431 (i == txsize - 1)); 1432 else 1433 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 1434 priv->mode, 1435 (i == txsize - 1)); 1436 priv->dirty_tx = 0; 1437 priv->cur_tx = 0; 1438 netdev_reset_queue(priv->dev); 1439 priv->hw->dma->start_tx(priv->ioaddr); 1440 1441 priv->dev->stats.tx_errors++; 1442 netif_wake_queue(priv->dev); 1443 } 1444 1445 /** 1446 * stmmac_dma_interrupt - DMA ISR 1447 * @priv: driver private structure 1448 * Description: this is the DMA ISR. It is called by the main ISR. 1449 * It calls the dwmac dma routine and schedule poll method in case of some 1450 * work can be done. 1451 */ 1452 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 1453 { 1454 int status; 1455 int rxfifosz = priv->plat->rx_fifo_size; 1456 1457 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats); 1458 if (likely((status & handle_rx)) || (status & handle_tx)) { 1459 if (likely(napi_schedule_prep(&priv->napi))) { 1460 stmmac_disable_dma_irq(priv); 1461 __napi_schedule(&priv->napi); 1462 } 1463 } 1464 if (unlikely(status & tx_hard_error_bump_tc)) { 1465 /* Try to bump up the dma threshold on this failure */ 1466 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 1467 (tc <= 256)) { 1468 tc += 64; 1469 if (priv->plat->force_thresh_dma_mode) 1470 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, 1471 rxfifosz); 1472 else 1473 priv->hw->dma->dma_mode(priv->ioaddr, tc, 1474 SF_DMA_MODE, rxfifosz); 1475 priv->xstats.threshold = tc; 1476 } 1477 } else if (unlikely(status == tx_hard_error)) 1478 stmmac_tx_err(priv); 1479 } 1480 1481 /** 1482 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 1483 * @priv: driver private structure 1484 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 1485 */ 1486 static void stmmac_mmc_setup(struct stmmac_priv *priv) 1487 { 1488 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 1489 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 1490 1491 dwmac_mmc_intr_all_mask(priv->ioaddr); 1492 1493 if (priv->dma_cap.rmon) { 1494 dwmac_mmc_ctrl(priv->ioaddr, mode); 1495 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 1496 } else 1497 pr_info(" No MAC Management Counters available\n"); 1498 } 1499 1500 /** 1501 * stmmac_get_synopsys_id - return the SYINID. 1502 * @priv: driver private structure 1503 * Description: this simple function is to decode and return the SYINID 1504 * starting from the HW core register. 1505 */ 1506 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv) 1507 { 1508 u32 hwid = priv->hw->synopsys_uid; 1509 1510 /* Check Synopsys Id (not available on old chips) */ 1511 if (likely(hwid)) { 1512 u32 uid = ((hwid & 0x0000ff00) >> 8); 1513 u32 synid = (hwid & 0x000000ff); 1514 1515 pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n", 1516 uid, synid); 1517 1518 return synid; 1519 } 1520 return 0; 1521 } 1522 1523 /** 1524 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors 1525 * @priv: driver private structure 1526 * Description: select the Enhanced/Alternate or Normal descriptors. 1527 * In case of Enhanced/Alternate, it checks if the extended descriptors are 1528 * supported by the HW capability register. 1529 */ 1530 static void stmmac_selec_desc_mode(struct stmmac_priv *priv) 1531 { 1532 if (priv->plat->enh_desc) { 1533 pr_info(" Enhanced/Alternate descriptors\n"); 1534 1535 /* GMAC older than 3.50 has no extended descriptors */ 1536 if (priv->synopsys_id >= DWMAC_CORE_3_50) { 1537 pr_info("\tEnabled extended descriptors\n"); 1538 priv->extend_desc = 1; 1539 } else 1540 pr_warn("Extended descriptors not supported\n"); 1541 1542 priv->hw->desc = &enh_desc_ops; 1543 } else { 1544 pr_info(" Normal descriptors\n"); 1545 priv->hw->desc = &ndesc_ops; 1546 } 1547 } 1548 1549 /** 1550 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 1551 * @priv: driver private structure 1552 * Description: 1553 * new GMAC chip generations have a new register to indicate the 1554 * presence of the optional feature/functions. 1555 * This can be also used to override the value passed through the 1556 * platform and necessary for old MAC10/100 and GMAC chips. 1557 */ 1558 static int stmmac_get_hw_features(struct stmmac_priv *priv) 1559 { 1560 u32 hw_cap = 0; 1561 1562 if (priv->hw->dma->get_hw_feature) { 1563 hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr); 1564 1565 priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL); 1566 priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1; 1567 priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2; 1568 priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4; 1569 priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5; 1570 priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6; 1571 priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8; 1572 priv->dma_cap.pmt_remote_wake_up = 1573 (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9; 1574 priv->dma_cap.pmt_magic_frame = 1575 (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10; 1576 /* MMC */ 1577 priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11; 1578 /* IEEE 1588-2002 */ 1579 priv->dma_cap.time_stamp = 1580 (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12; 1581 /* IEEE 1588-2008 */ 1582 priv->dma_cap.atime_stamp = 1583 (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13; 1584 /* 802.3az - Energy-Efficient Ethernet (EEE) */ 1585 priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14; 1586 priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15; 1587 /* TX and RX csum */ 1588 priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16; 1589 priv->dma_cap.rx_coe_type1 = 1590 (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17; 1591 priv->dma_cap.rx_coe_type2 = 1592 (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18; 1593 priv->dma_cap.rxfifo_over_2048 = 1594 (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19; 1595 /* TX and RX number of channels */ 1596 priv->dma_cap.number_rx_channel = 1597 (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20; 1598 priv->dma_cap.number_tx_channel = 1599 (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22; 1600 /* Alternate (enhanced) DESC mode */ 1601 priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24; 1602 } 1603 1604 return hw_cap; 1605 } 1606 1607 /** 1608 * stmmac_check_ether_addr - check if the MAC addr is valid 1609 * @priv: driver private structure 1610 * Description: 1611 * it is to verify if the MAC address is valid, in case of failures it 1612 * generates a random MAC address 1613 */ 1614 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 1615 { 1616 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 1617 priv->hw->mac->get_umac_addr(priv->hw, 1618 priv->dev->dev_addr, 0); 1619 if (!is_valid_ether_addr(priv->dev->dev_addr)) 1620 eth_hw_addr_random(priv->dev); 1621 pr_info("%s: device MAC address %pM\n", priv->dev->name, 1622 priv->dev->dev_addr); 1623 } 1624 } 1625 1626 /** 1627 * stmmac_init_dma_engine - DMA init. 1628 * @priv: driver private structure 1629 * Description: 1630 * It inits the DMA invoking the specific MAC/GMAC callback. 1631 * Some DMA parameters can be passed from the platform; 1632 * in case of these are not passed a default is kept for the MAC or GMAC. 1633 */ 1634 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 1635 { 1636 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0; 1637 int mixed_burst = 0; 1638 int atds = 0; 1639 1640 if (priv->plat->dma_cfg) { 1641 pbl = priv->plat->dma_cfg->pbl; 1642 fixed_burst = priv->plat->dma_cfg->fixed_burst; 1643 mixed_burst = priv->plat->dma_cfg->mixed_burst; 1644 burst_len = priv->plat->dma_cfg->burst_len; 1645 } 1646 1647 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 1648 atds = 1; 1649 1650 return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst, 1651 burst_len, priv->dma_tx_phy, 1652 priv->dma_rx_phy, atds); 1653 } 1654 1655 /** 1656 * stmmac_tx_timer - mitigation sw timer for tx. 1657 * @data: data pointer 1658 * Description: 1659 * This is the timer handler to directly invoke the stmmac_tx_clean. 1660 */ 1661 static void stmmac_tx_timer(unsigned long data) 1662 { 1663 struct stmmac_priv *priv = (struct stmmac_priv *)data; 1664 1665 stmmac_tx_clean(priv); 1666 } 1667 1668 /** 1669 * stmmac_init_tx_coalesce - init tx mitigation options. 1670 * @priv: driver private structure 1671 * Description: 1672 * This inits the transmit coalesce parameters: i.e. timer rate, 1673 * timer handler and default threshold used for enabling the 1674 * interrupt on completion bit. 1675 */ 1676 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 1677 { 1678 priv->tx_coal_frames = STMMAC_TX_FRAMES; 1679 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 1680 init_timer(&priv->txtimer); 1681 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 1682 priv->txtimer.data = (unsigned long)priv; 1683 priv->txtimer.function = stmmac_tx_timer; 1684 add_timer(&priv->txtimer); 1685 } 1686 1687 /** 1688 * stmmac_hw_setup - setup mac in a usable state. 1689 * @dev : pointer to the device structure. 1690 * Description: 1691 * this is the main function to setup the HW in a usable state because the 1692 * dma engine is reset, the core registers are configured (e.g. AXI, 1693 * Checksum features, timers). The DMA is ready to start receiving and 1694 * transmitting. 1695 * Return value: 1696 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1697 * file on failure. 1698 */ 1699 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 1700 { 1701 struct stmmac_priv *priv = netdev_priv(dev); 1702 int ret; 1703 1704 /* DMA initialization and SW reset */ 1705 ret = stmmac_init_dma_engine(priv); 1706 if (ret < 0) { 1707 pr_err("%s: DMA engine initialization failed\n", __func__); 1708 return ret; 1709 } 1710 1711 /* Copy the MAC addr into the HW */ 1712 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0); 1713 1714 /* If required, perform hw setup of the bus. */ 1715 if (priv->plat->bus_setup) 1716 priv->plat->bus_setup(priv->ioaddr); 1717 1718 /* Initialize the MAC Core */ 1719 priv->hw->mac->core_init(priv->hw, dev->mtu); 1720 1721 ret = priv->hw->mac->rx_ipc(priv->hw); 1722 if (!ret) { 1723 pr_warn(" RX IPC Checksum Offload disabled\n"); 1724 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 1725 priv->hw->rx_csum = 0; 1726 } 1727 1728 /* Enable the MAC Rx/Tx */ 1729 stmmac_set_mac(priv->ioaddr, true); 1730 1731 /* Set the HW DMA mode and the COE */ 1732 stmmac_dma_operation_mode(priv); 1733 1734 stmmac_mmc_setup(priv); 1735 1736 if (init_ptp) { 1737 ret = stmmac_init_ptp(priv); 1738 if (ret && ret != -EOPNOTSUPP) 1739 pr_warn("%s: failed PTP initialisation\n", __func__); 1740 } 1741 1742 #ifdef CONFIG_DEBUG_FS 1743 ret = stmmac_init_fs(dev); 1744 if (ret < 0) 1745 pr_warn("%s: failed debugFS registration\n", __func__); 1746 #endif 1747 /* Start the ball rolling... */ 1748 pr_debug("%s: DMA RX/TX processes started...\n", dev->name); 1749 priv->hw->dma->start_tx(priv->ioaddr); 1750 priv->hw->dma->start_rx(priv->ioaddr); 1751 1752 /* Dump DMA/MAC registers */ 1753 if (netif_msg_hw(priv)) { 1754 priv->hw->mac->dump_regs(priv->hw); 1755 priv->hw->dma->dump_regs(priv->ioaddr); 1756 } 1757 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 1758 1759 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1760 priv->rx_riwt = MAX_DMA_RIWT; 1761 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT); 1762 } 1763 1764 if (priv->pcs && priv->hw->mac->ctrl_ane) 1765 priv->hw->mac->ctrl_ane(priv->hw, 0); 1766 1767 return 0; 1768 } 1769 1770 /** 1771 * stmmac_open - open entry point of the driver 1772 * @dev : pointer to the device structure. 1773 * Description: 1774 * This function is the open entry point of the driver. 1775 * Return value: 1776 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1777 * file on failure. 1778 */ 1779 static int stmmac_open(struct net_device *dev) 1780 { 1781 struct stmmac_priv *priv = netdev_priv(dev); 1782 int ret; 1783 1784 stmmac_check_ether_addr(priv); 1785 1786 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 1787 priv->pcs != STMMAC_PCS_RTBI) { 1788 ret = stmmac_init_phy(dev); 1789 if (ret) { 1790 pr_err("%s: Cannot attach to PHY (error: %d)\n", 1791 __func__, ret); 1792 return ret; 1793 } 1794 } 1795 1796 /* Extra statistics */ 1797 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 1798 priv->xstats.threshold = tc; 1799 1800 /* Create and initialize the TX/RX descriptors chains. */ 1801 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize); 1802 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize); 1803 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 1804 1805 ret = alloc_dma_desc_resources(priv); 1806 if (ret < 0) { 1807 pr_err("%s: DMA descriptors allocation failed\n", __func__); 1808 goto dma_desc_error; 1809 } 1810 1811 ret = init_dma_desc_rings(dev, GFP_KERNEL); 1812 if (ret < 0) { 1813 pr_err("%s: DMA descriptors initialization failed\n", __func__); 1814 goto init_error; 1815 } 1816 1817 ret = stmmac_hw_setup(dev, true); 1818 if (ret < 0) { 1819 pr_err("%s: Hw setup failed\n", __func__); 1820 goto init_error; 1821 } 1822 1823 stmmac_init_tx_coalesce(priv); 1824 1825 if (priv->phydev) 1826 phy_start(priv->phydev); 1827 1828 /* Request the IRQ lines */ 1829 ret = request_irq(dev->irq, stmmac_interrupt, 1830 IRQF_SHARED, dev->name, dev); 1831 if (unlikely(ret < 0)) { 1832 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n", 1833 __func__, dev->irq, ret); 1834 goto init_error; 1835 } 1836 1837 /* Request the Wake IRQ in case of another line is used for WoL */ 1838 if (priv->wol_irq != dev->irq) { 1839 ret = request_irq(priv->wol_irq, stmmac_interrupt, 1840 IRQF_SHARED, dev->name, dev); 1841 if (unlikely(ret < 0)) { 1842 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n", 1843 __func__, priv->wol_irq, ret); 1844 goto wolirq_error; 1845 } 1846 } 1847 1848 /* Request the IRQ lines */ 1849 if (priv->lpi_irq > 0) { 1850 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 1851 dev->name, dev); 1852 if (unlikely(ret < 0)) { 1853 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1854 __func__, priv->lpi_irq, ret); 1855 goto lpiirq_error; 1856 } 1857 } 1858 1859 napi_enable(&priv->napi); 1860 netif_start_queue(dev); 1861 1862 return 0; 1863 1864 lpiirq_error: 1865 if (priv->wol_irq != dev->irq) 1866 free_irq(priv->wol_irq, dev); 1867 wolirq_error: 1868 free_irq(dev->irq, dev); 1869 1870 init_error: 1871 free_dma_desc_resources(priv); 1872 dma_desc_error: 1873 if (priv->phydev) 1874 phy_disconnect(priv->phydev); 1875 1876 return ret; 1877 } 1878 1879 /** 1880 * stmmac_release - close entry point of the driver 1881 * @dev : device pointer. 1882 * Description: 1883 * This is the stop entry point of the driver. 1884 */ 1885 static int stmmac_release(struct net_device *dev) 1886 { 1887 struct stmmac_priv *priv = netdev_priv(dev); 1888 1889 if (priv->eee_enabled) 1890 del_timer_sync(&priv->eee_ctrl_timer); 1891 1892 /* Stop and disconnect the PHY */ 1893 if (priv->phydev) { 1894 phy_stop(priv->phydev); 1895 phy_disconnect(priv->phydev); 1896 priv->phydev = NULL; 1897 } 1898 1899 netif_stop_queue(dev); 1900 1901 napi_disable(&priv->napi); 1902 1903 del_timer_sync(&priv->txtimer); 1904 1905 /* Free the IRQ lines */ 1906 free_irq(dev->irq, dev); 1907 if (priv->wol_irq != dev->irq) 1908 free_irq(priv->wol_irq, dev); 1909 if (priv->lpi_irq > 0) 1910 free_irq(priv->lpi_irq, dev); 1911 1912 /* Stop TX/RX DMA and clear the descriptors */ 1913 priv->hw->dma->stop_tx(priv->ioaddr); 1914 priv->hw->dma->stop_rx(priv->ioaddr); 1915 1916 /* Release and free the Rx/Tx resources */ 1917 free_dma_desc_resources(priv); 1918 1919 /* Disable the MAC Rx/Tx */ 1920 stmmac_set_mac(priv->ioaddr, false); 1921 1922 netif_carrier_off(dev); 1923 1924 #ifdef CONFIG_DEBUG_FS 1925 stmmac_exit_fs(dev); 1926 #endif 1927 1928 stmmac_release_ptp(priv); 1929 1930 return 0; 1931 } 1932 1933 /** 1934 * stmmac_xmit - Tx entry point of the driver 1935 * @skb : the socket buffer 1936 * @dev : device pointer 1937 * Description : this is the tx entry point of the driver. 1938 * It programs the chain or the ring and supports oversized frames 1939 * and SG feature. 1940 */ 1941 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 1942 { 1943 struct stmmac_priv *priv = netdev_priv(dev); 1944 unsigned int txsize = priv->dma_tx_size; 1945 unsigned int entry; 1946 int i, csum_insertion = 0, is_jumbo = 0; 1947 int nfrags = skb_shinfo(skb)->nr_frags; 1948 struct dma_desc *desc, *first; 1949 unsigned int nopaged_len = skb_headlen(skb); 1950 unsigned int enh_desc = priv->plat->enh_desc; 1951 1952 spin_lock(&priv->tx_lock); 1953 1954 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { 1955 spin_unlock(&priv->tx_lock); 1956 if (!netif_queue_stopped(dev)) { 1957 netif_stop_queue(dev); 1958 /* This is a hard error, log it. */ 1959 pr_err("%s: Tx Ring full when queue awake\n", __func__); 1960 } 1961 return NETDEV_TX_BUSY; 1962 } 1963 1964 if (priv->tx_path_in_lpi_mode) 1965 stmmac_disable_eee_mode(priv); 1966 1967 entry = priv->cur_tx % txsize; 1968 1969 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 1970 1971 if (priv->extend_desc) 1972 desc = (struct dma_desc *)(priv->dma_etx + entry); 1973 else 1974 desc = priv->dma_tx + entry; 1975 1976 first = desc; 1977 1978 /* To program the descriptors according to the size of the frame */ 1979 if (enh_desc) 1980 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc); 1981 1982 if (likely(!is_jumbo)) { 1983 desc->des2 = dma_map_single(priv->device, skb->data, 1984 nopaged_len, DMA_TO_DEVICE); 1985 if (dma_mapping_error(priv->device, desc->des2)) 1986 goto dma_map_err; 1987 priv->tx_skbuff_dma[entry].buf = desc->des2; 1988 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, 1989 csum_insertion, priv->mode); 1990 } else { 1991 desc = first; 1992 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion); 1993 if (unlikely(entry < 0)) 1994 goto dma_map_err; 1995 } 1996 1997 for (i = 0; i < nfrags; i++) { 1998 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1999 int len = skb_frag_size(frag); 2000 2001 priv->tx_skbuff[entry] = NULL; 2002 entry = (++priv->cur_tx) % txsize; 2003 if (priv->extend_desc) 2004 desc = (struct dma_desc *)(priv->dma_etx + entry); 2005 else 2006 desc = priv->dma_tx + entry; 2007 2008 desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len, 2009 DMA_TO_DEVICE); 2010 if (dma_mapping_error(priv->device, desc->des2)) 2011 goto dma_map_err; /* should reuse desc w/o issues */ 2012 2013 priv->tx_skbuff_dma[entry].buf = desc->des2; 2014 priv->tx_skbuff_dma[entry].map_as_page = true; 2015 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, 2016 priv->mode); 2017 wmb(); 2018 priv->hw->desc->set_tx_owner(desc); 2019 wmb(); 2020 } 2021 2022 priv->tx_skbuff[entry] = skb; 2023 2024 /* Finalize the latest segment. */ 2025 priv->hw->desc->close_tx_desc(desc); 2026 2027 wmb(); 2028 /* According to the coalesce parameter the IC bit for the latest 2029 * segment could be reset and the timer re-started to invoke the 2030 * stmmac_tx function. This approach takes care about the fragments. 2031 */ 2032 priv->tx_count_frames += nfrags + 1; 2033 if (priv->tx_coal_frames > priv->tx_count_frames) { 2034 priv->hw->desc->clear_tx_ic(desc); 2035 priv->xstats.tx_reset_ic_bit++; 2036 mod_timer(&priv->txtimer, 2037 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2038 } else 2039 priv->tx_count_frames = 0; 2040 2041 /* To avoid raise condition */ 2042 priv->hw->desc->set_tx_owner(first); 2043 wmb(); 2044 2045 priv->cur_tx++; 2046 2047 if (netif_msg_pktdata(priv)) { 2048 pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d", 2049 __func__, (priv->cur_tx % txsize), 2050 (priv->dirty_tx % txsize), entry, first, nfrags); 2051 2052 if (priv->extend_desc) 2053 stmmac_display_ring((void *)priv->dma_etx, txsize, 1); 2054 else 2055 stmmac_display_ring((void *)priv->dma_tx, txsize, 0); 2056 2057 pr_debug(">>> frame to be transmitted: "); 2058 print_pkt(skb->data, skb->len); 2059 } 2060 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 2061 if (netif_msg_hw(priv)) 2062 pr_debug("%s: stop transmitted packets\n", __func__); 2063 netif_stop_queue(dev); 2064 } 2065 2066 dev->stats.tx_bytes += skb->len; 2067 2068 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2069 priv->hwts_tx_en)) { 2070 /* declare that device is doing timestamping */ 2071 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2072 priv->hw->desc->enable_tx_timestamp(first); 2073 } 2074 2075 if (!priv->hwts_tx_en) 2076 skb_tx_timestamp(skb); 2077 2078 netdev_sent_queue(dev, skb->len); 2079 priv->hw->dma->enable_dma_transmission(priv->ioaddr); 2080 2081 spin_unlock(&priv->tx_lock); 2082 return NETDEV_TX_OK; 2083 2084 dma_map_err: 2085 spin_unlock(&priv->tx_lock); 2086 dev_err(priv->device, "Tx dma map failed\n"); 2087 dev_kfree_skb(skb); 2088 priv->dev->stats.tx_dropped++; 2089 return NETDEV_TX_OK; 2090 } 2091 2092 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 2093 { 2094 struct ethhdr *ehdr; 2095 u16 vlanid; 2096 2097 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) == 2098 NETIF_F_HW_VLAN_CTAG_RX && 2099 !__vlan_get_tag(skb, &vlanid)) { 2100 /* pop the vlan tag */ 2101 ehdr = (struct ethhdr *)skb->data; 2102 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2); 2103 skb_pull(skb, VLAN_HLEN); 2104 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid); 2105 } 2106 } 2107 2108 2109 /** 2110 * stmmac_rx_refill - refill used skb preallocated buffers 2111 * @priv: driver private structure 2112 * Description : this is to reallocate the skb for the reception process 2113 * that is based on zero-copy. 2114 */ 2115 static inline void stmmac_rx_refill(struct stmmac_priv *priv) 2116 { 2117 unsigned int rxsize = priv->dma_rx_size; 2118 int bfsize = priv->dma_buf_sz; 2119 2120 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) { 2121 unsigned int entry = priv->dirty_rx % rxsize; 2122 struct dma_desc *p; 2123 2124 if (priv->extend_desc) 2125 p = (struct dma_desc *)(priv->dma_erx + entry); 2126 else 2127 p = priv->dma_rx + entry; 2128 2129 if (likely(priv->rx_skbuff[entry] == NULL)) { 2130 struct sk_buff *skb; 2131 2132 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 2133 2134 if (unlikely(skb == NULL)) 2135 break; 2136 2137 priv->rx_skbuff[entry] = skb; 2138 priv->rx_skbuff_dma[entry] = 2139 dma_map_single(priv->device, skb->data, bfsize, 2140 DMA_FROM_DEVICE); 2141 if (dma_mapping_error(priv->device, 2142 priv->rx_skbuff_dma[entry])) { 2143 dev_err(priv->device, "Rx dma map failed\n"); 2144 dev_kfree_skb(skb); 2145 break; 2146 } 2147 p->des2 = priv->rx_skbuff_dma[entry]; 2148 2149 priv->hw->mode->refill_desc3(priv, p); 2150 2151 if (netif_msg_rx_status(priv)) 2152 pr_debug("\trefill entry #%d\n", entry); 2153 } 2154 wmb(); 2155 priv->hw->desc->set_rx_owner(p); 2156 wmb(); 2157 } 2158 } 2159 2160 /** 2161 * stmmac_rx - manage the receive process 2162 * @priv: driver private structure 2163 * @limit: napi bugget. 2164 * Description : this the function called by the napi poll method. 2165 * It gets all the frames inside the ring. 2166 */ 2167 static int stmmac_rx(struct stmmac_priv *priv, int limit) 2168 { 2169 unsigned int rxsize = priv->dma_rx_size; 2170 unsigned int entry = priv->cur_rx % rxsize; 2171 unsigned int next_entry; 2172 unsigned int count = 0; 2173 int coe = priv->hw->rx_csum; 2174 2175 if (netif_msg_rx_status(priv)) { 2176 pr_debug("%s: descriptor ring:\n", __func__); 2177 if (priv->extend_desc) 2178 stmmac_display_ring((void *)priv->dma_erx, rxsize, 1); 2179 else 2180 stmmac_display_ring((void *)priv->dma_rx, rxsize, 0); 2181 } 2182 while (count < limit) { 2183 int status; 2184 struct dma_desc *p; 2185 2186 if (priv->extend_desc) 2187 p = (struct dma_desc *)(priv->dma_erx + entry); 2188 else 2189 p = priv->dma_rx + entry; 2190 2191 if (priv->hw->desc->get_rx_owner(p)) 2192 break; 2193 2194 count++; 2195 2196 next_entry = (++priv->cur_rx) % rxsize; 2197 if (priv->extend_desc) 2198 prefetch(priv->dma_erx + next_entry); 2199 else 2200 prefetch(priv->dma_rx + next_entry); 2201 2202 /* read the status of the incoming frame */ 2203 status = priv->hw->desc->rx_status(&priv->dev->stats, 2204 &priv->xstats, p); 2205 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) 2206 priv->hw->desc->rx_extended_status(&priv->dev->stats, 2207 &priv->xstats, 2208 priv->dma_erx + 2209 entry); 2210 if (unlikely(status == discard_frame)) { 2211 priv->dev->stats.rx_errors++; 2212 if (priv->hwts_rx_en && !priv->extend_desc) { 2213 /* DESC2 & DESC3 will be overwitten by device 2214 * with timestamp value, hence reinitialize 2215 * them in stmmac_rx_refill() function so that 2216 * device can reuse it. 2217 */ 2218 priv->rx_skbuff[entry] = NULL; 2219 dma_unmap_single(priv->device, 2220 priv->rx_skbuff_dma[entry], 2221 priv->dma_buf_sz, 2222 DMA_FROM_DEVICE); 2223 } 2224 } else { 2225 struct sk_buff *skb; 2226 int frame_len; 2227 2228 frame_len = priv->hw->desc->get_rx_frame_len(p, coe); 2229 2230 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 2231 * Type frames (LLC/LLC-SNAP) 2232 */ 2233 if (unlikely(status != llc_snap)) 2234 frame_len -= ETH_FCS_LEN; 2235 2236 if (netif_msg_rx_status(priv)) { 2237 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n", 2238 p, entry, p->des2); 2239 if (frame_len > ETH_FRAME_LEN) 2240 pr_debug("\tframe size %d, COE: %d\n", 2241 frame_len, status); 2242 } 2243 skb = priv->rx_skbuff[entry]; 2244 if (unlikely(!skb)) { 2245 pr_err("%s: Inconsistent Rx descriptor chain\n", 2246 priv->dev->name); 2247 priv->dev->stats.rx_dropped++; 2248 break; 2249 } 2250 prefetch(skb->data - NET_IP_ALIGN); 2251 priv->rx_skbuff[entry] = NULL; 2252 2253 stmmac_get_rx_hwtstamp(priv, entry, skb); 2254 2255 skb_put(skb, frame_len); 2256 dma_unmap_single(priv->device, 2257 priv->rx_skbuff_dma[entry], 2258 priv->dma_buf_sz, DMA_FROM_DEVICE); 2259 2260 if (netif_msg_pktdata(priv)) { 2261 pr_debug("frame received (%dbytes)", frame_len); 2262 print_pkt(skb->data, frame_len); 2263 } 2264 2265 stmmac_rx_vlan(priv->dev, skb); 2266 2267 skb->protocol = eth_type_trans(skb, priv->dev); 2268 2269 if (unlikely(!coe)) 2270 skb_checksum_none_assert(skb); 2271 else 2272 skb->ip_summed = CHECKSUM_UNNECESSARY; 2273 2274 napi_gro_receive(&priv->napi, skb); 2275 2276 priv->dev->stats.rx_packets++; 2277 priv->dev->stats.rx_bytes += frame_len; 2278 } 2279 entry = next_entry; 2280 } 2281 2282 stmmac_rx_refill(priv); 2283 2284 priv->xstats.rx_pkt_n += count; 2285 2286 return count; 2287 } 2288 2289 /** 2290 * stmmac_poll - stmmac poll method (NAPI) 2291 * @napi : pointer to the napi structure. 2292 * @budget : maximum number of packets that the current CPU can receive from 2293 * all interfaces. 2294 * Description : 2295 * To look at the incoming frames and clear the tx resources. 2296 */ 2297 static int stmmac_poll(struct napi_struct *napi, int budget) 2298 { 2299 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); 2300 int work_done = 0; 2301 2302 priv->xstats.napi_poll++; 2303 stmmac_tx_clean(priv); 2304 2305 work_done = stmmac_rx(priv, budget); 2306 if (work_done < budget) { 2307 napi_complete(napi); 2308 stmmac_enable_dma_irq(priv); 2309 } 2310 return work_done; 2311 } 2312 2313 /** 2314 * stmmac_tx_timeout 2315 * @dev : Pointer to net device structure 2316 * Description: this function is called when a packet transmission fails to 2317 * complete within a reasonable time. The driver will mark the error in the 2318 * netdev structure and arrange for the device to be reset to a sane state 2319 * in order to transmit a new packet. 2320 */ 2321 static void stmmac_tx_timeout(struct net_device *dev) 2322 { 2323 struct stmmac_priv *priv = netdev_priv(dev); 2324 2325 /* Clear Tx resources and restart transmitting again */ 2326 stmmac_tx_err(priv); 2327 } 2328 2329 /** 2330 * stmmac_set_rx_mode - entry point for multicast addressing 2331 * @dev : pointer to the device structure 2332 * Description: 2333 * This function is a driver entry point which gets called by the kernel 2334 * whenever multicast addresses must be enabled/disabled. 2335 * Return value: 2336 * void. 2337 */ 2338 static void stmmac_set_rx_mode(struct net_device *dev) 2339 { 2340 struct stmmac_priv *priv = netdev_priv(dev); 2341 2342 priv->hw->mac->set_filter(priv->hw, dev); 2343 } 2344 2345 /** 2346 * stmmac_change_mtu - entry point to change MTU size for the device. 2347 * @dev : device pointer. 2348 * @new_mtu : the new MTU size for the device. 2349 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 2350 * to drive packet transmission. Ethernet has an MTU of 1500 octets 2351 * (ETH_DATA_LEN). This value can be changed with ifconfig. 2352 * Return value: 2353 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2354 * file on failure. 2355 */ 2356 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 2357 { 2358 struct stmmac_priv *priv = netdev_priv(dev); 2359 int max_mtu; 2360 2361 if (netif_running(dev)) { 2362 pr_err("%s: must be stopped to change its MTU\n", dev->name); 2363 return -EBUSY; 2364 } 2365 2366 if (priv->plat->enh_desc) 2367 max_mtu = JUMBO_LEN; 2368 else 2369 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 2370 2371 if (priv->plat->maxmtu < max_mtu) 2372 max_mtu = priv->plat->maxmtu; 2373 2374 if ((new_mtu < 46) || (new_mtu > max_mtu)) { 2375 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu); 2376 return -EINVAL; 2377 } 2378 2379 dev->mtu = new_mtu; 2380 netdev_update_features(dev); 2381 2382 return 0; 2383 } 2384 2385 static netdev_features_t stmmac_fix_features(struct net_device *dev, 2386 netdev_features_t features) 2387 { 2388 struct stmmac_priv *priv = netdev_priv(dev); 2389 2390 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 2391 features &= ~NETIF_F_RXCSUM; 2392 2393 if (!priv->plat->tx_coe) 2394 features &= ~NETIF_F_ALL_CSUM; 2395 2396 /* Some GMAC devices have a bugged Jumbo frame support that 2397 * needs to have the Tx COE disabled for oversized frames 2398 * (due to limited buffer sizes). In this case we disable 2399 * the TX csum insertionin the TDES and not use SF. 2400 */ 2401 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 2402 features &= ~NETIF_F_ALL_CSUM; 2403 2404 return features; 2405 } 2406 2407 static int stmmac_set_features(struct net_device *netdev, 2408 netdev_features_t features) 2409 { 2410 struct stmmac_priv *priv = netdev_priv(netdev); 2411 2412 /* Keep the COE Type in case of csum is supporting */ 2413 if (features & NETIF_F_RXCSUM) 2414 priv->hw->rx_csum = priv->plat->rx_coe; 2415 else 2416 priv->hw->rx_csum = 0; 2417 /* No check needed because rx_coe has been set before and it will be 2418 * fixed in case of issue. 2419 */ 2420 priv->hw->mac->rx_ipc(priv->hw); 2421 2422 return 0; 2423 } 2424 2425 /** 2426 * stmmac_interrupt - main ISR 2427 * @irq: interrupt number. 2428 * @dev_id: to pass the net device pointer. 2429 * Description: this is the main driver interrupt service routine. 2430 * It can call: 2431 * o DMA service routine (to manage incoming frame reception and transmission 2432 * status) 2433 * o Core interrupts to manage: remote wake-up, management counter, LPI 2434 * interrupts. 2435 */ 2436 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 2437 { 2438 struct net_device *dev = (struct net_device *)dev_id; 2439 struct stmmac_priv *priv = netdev_priv(dev); 2440 2441 if (priv->irq_wake) 2442 pm_wakeup_event(priv->device, 0); 2443 2444 if (unlikely(!dev)) { 2445 pr_err("%s: invalid dev pointer\n", __func__); 2446 return IRQ_NONE; 2447 } 2448 2449 /* To handle GMAC own interrupts */ 2450 if (priv->plat->has_gmac) { 2451 int status = priv->hw->mac->host_irq_status(priv->hw, 2452 &priv->xstats); 2453 if (unlikely(status)) { 2454 /* For LPI we need to save the tx status */ 2455 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 2456 priv->tx_path_in_lpi_mode = true; 2457 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 2458 priv->tx_path_in_lpi_mode = false; 2459 } 2460 } 2461 2462 /* To handle DMA interrupts */ 2463 stmmac_dma_interrupt(priv); 2464 2465 return IRQ_HANDLED; 2466 } 2467 2468 #ifdef CONFIG_NET_POLL_CONTROLLER 2469 /* Polling receive - used by NETCONSOLE and other diagnostic tools 2470 * to allow network I/O with interrupts disabled. 2471 */ 2472 static void stmmac_poll_controller(struct net_device *dev) 2473 { 2474 disable_irq(dev->irq); 2475 stmmac_interrupt(dev->irq, dev); 2476 enable_irq(dev->irq); 2477 } 2478 #endif 2479 2480 /** 2481 * stmmac_ioctl - Entry point for the Ioctl 2482 * @dev: Device pointer. 2483 * @rq: An IOCTL specefic structure, that can contain a pointer to 2484 * a proprietary structure used to pass information to the driver. 2485 * @cmd: IOCTL command 2486 * Description: 2487 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 2488 */ 2489 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2490 { 2491 struct stmmac_priv *priv = netdev_priv(dev); 2492 int ret = -EOPNOTSUPP; 2493 2494 if (!netif_running(dev)) 2495 return -EINVAL; 2496 2497 switch (cmd) { 2498 case SIOCGMIIPHY: 2499 case SIOCGMIIREG: 2500 case SIOCSMIIREG: 2501 if (!priv->phydev) 2502 return -EINVAL; 2503 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 2504 break; 2505 case SIOCSHWTSTAMP: 2506 ret = stmmac_hwtstamp_ioctl(dev, rq); 2507 break; 2508 default: 2509 break; 2510 } 2511 2512 return ret; 2513 } 2514 2515 #ifdef CONFIG_DEBUG_FS 2516 static struct dentry *stmmac_fs_dir; 2517 2518 static void sysfs_display_ring(void *head, int size, int extend_desc, 2519 struct seq_file *seq) 2520 { 2521 int i; 2522 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 2523 struct dma_desc *p = (struct dma_desc *)head; 2524 2525 for (i = 0; i < size; i++) { 2526 u64 x; 2527 if (extend_desc) { 2528 x = *(u64 *) ep; 2529 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2530 i, (unsigned int)virt_to_phys(ep), 2531 (unsigned int)x, (unsigned int)(x >> 32), 2532 ep->basic.des2, ep->basic.des3); 2533 ep++; 2534 } else { 2535 x = *(u64 *) p; 2536 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2537 i, (unsigned int)virt_to_phys(ep), 2538 (unsigned int)x, (unsigned int)(x >> 32), 2539 p->des2, p->des3); 2540 p++; 2541 } 2542 seq_printf(seq, "\n"); 2543 } 2544 } 2545 2546 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 2547 { 2548 struct net_device *dev = seq->private; 2549 struct stmmac_priv *priv = netdev_priv(dev); 2550 unsigned int txsize = priv->dma_tx_size; 2551 unsigned int rxsize = priv->dma_rx_size; 2552 2553 if (priv->extend_desc) { 2554 seq_printf(seq, "Extended RX descriptor ring:\n"); 2555 sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq); 2556 seq_printf(seq, "Extended TX descriptor ring:\n"); 2557 sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq); 2558 } else { 2559 seq_printf(seq, "RX descriptor ring:\n"); 2560 sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq); 2561 seq_printf(seq, "TX descriptor ring:\n"); 2562 sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq); 2563 } 2564 2565 return 0; 2566 } 2567 2568 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 2569 { 2570 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 2571 } 2572 2573 static const struct file_operations stmmac_rings_status_fops = { 2574 .owner = THIS_MODULE, 2575 .open = stmmac_sysfs_ring_open, 2576 .read = seq_read, 2577 .llseek = seq_lseek, 2578 .release = single_release, 2579 }; 2580 2581 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 2582 { 2583 struct net_device *dev = seq->private; 2584 struct stmmac_priv *priv = netdev_priv(dev); 2585 2586 if (!priv->hw_cap_support) { 2587 seq_printf(seq, "DMA HW features not supported\n"); 2588 return 0; 2589 } 2590 2591 seq_printf(seq, "==============================\n"); 2592 seq_printf(seq, "\tDMA HW features\n"); 2593 seq_printf(seq, "==============================\n"); 2594 2595 seq_printf(seq, "\t10/100 Mbps %s\n", 2596 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 2597 seq_printf(seq, "\t1000 Mbps %s\n", 2598 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 2599 seq_printf(seq, "\tHalf duple %s\n", 2600 (priv->dma_cap.half_duplex) ? "Y" : "N"); 2601 seq_printf(seq, "\tHash Filter: %s\n", 2602 (priv->dma_cap.hash_filter) ? "Y" : "N"); 2603 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 2604 (priv->dma_cap.multi_addr) ? "Y" : "N"); 2605 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n", 2606 (priv->dma_cap.pcs) ? "Y" : "N"); 2607 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 2608 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 2609 seq_printf(seq, "\tPMT Remote wake up: %s\n", 2610 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 2611 seq_printf(seq, "\tPMT Magic Frame: %s\n", 2612 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 2613 seq_printf(seq, "\tRMON module: %s\n", 2614 (priv->dma_cap.rmon) ? "Y" : "N"); 2615 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 2616 (priv->dma_cap.time_stamp) ? "Y" : "N"); 2617 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n", 2618 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 2619 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n", 2620 (priv->dma_cap.eee) ? "Y" : "N"); 2621 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 2622 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 2623 (priv->dma_cap.tx_coe) ? "Y" : "N"); 2624 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 2625 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 2626 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 2627 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 2628 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 2629 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 2630 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 2631 priv->dma_cap.number_rx_channel); 2632 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 2633 priv->dma_cap.number_tx_channel); 2634 seq_printf(seq, "\tEnhanced descriptors: %s\n", 2635 (priv->dma_cap.enh_desc) ? "Y" : "N"); 2636 2637 return 0; 2638 } 2639 2640 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 2641 { 2642 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 2643 } 2644 2645 static const struct file_operations stmmac_dma_cap_fops = { 2646 .owner = THIS_MODULE, 2647 .open = stmmac_sysfs_dma_cap_open, 2648 .read = seq_read, 2649 .llseek = seq_lseek, 2650 .release = single_release, 2651 }; 2652 2653 static int stmmac_init_fs(struct net_device *dev) 2654 { 2655 struct stmmac_priv *priv = netdev_priv(dev); 2656 2657 /* Create per netdev entries */ 2658 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 2659 2660 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 2661 pr_err("ERROR %s/%s, debugfs create directory failed\n", 2662 STMMAC_RESOURCE_NAME, dev->name); 2663 2664 return -ENOMEM; 2665 } 2666 2667 /* Entry to report DMA RX/TX rings */ 2668 priv->dbgfs_rings_status = 2669 debugfs_create_file("descriptors_status", S_IRUGO, 2670 priv->dbgfs_dir, dev, 2671 &stmmac_rings_status_fops); 2672 2673 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 2674 pr_info("ERROR creating stmmac ring debugfs file\n"); 2675 debugfs_remove_recursive(priv->dbgfs_dir); 2676 2677 return -ENOMEM; 2678 } 2679 2680 /* Entry to report the DMA HW features */ 2681 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, 2682 priv->dbgfs_dir, 2683 dev, &stmmac_dma_cap_fops); 2684 2685 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 2686 pr_info("ERROR creating stmmac MMC debugfs file\n"); 2687 debugfs_remove_recursive(priv->dbgfs_dir); 2688 2689 return -ENOMEM; 2690 } 2691 2692 return 0; 2693 } 2694 2695 static void stmmac_exit_fs(struct net_device *dev) 2696 { 2697 struct stmmac_priv *priv = netdev_priv(dev); 2698 2699 debugfs_remove_recursive(priv->dbgfs_dir); 2700 } 2701 #endif /* CONFIG_DEBUG_FS */ 2702 2703 static const struct net_device_ops stmmac_netdev_ops = { 2704 .ndo_open = stmmac_open, 2705 .ndo_start_xmit = stmmac_xmit, 2706 .ndo_stop = stmmac_release, 2707 .ndo_change_mtu = stmmac_change_mtu, 2708 .ndo_fix_features = stmmac_fix_features, 2709 .ndo_set_features = stmmac_set_features, 2710 .ndo_set_rx_mode = stmmac_set_rx_mode, 2711 .ndo_tx_timeout = stmmac_tx_timeout, 2712 .ndo_do_ioctl = stmmac_ioctl, 2713 #ifdef CONFIG_NET_POLL_CONTROLLER 2714 .ndo_poll_controller = stmmac_poll_controller, 2715 #endif 2716 .ndo_set_mac_address = eth_mac_addr, 2717 }; 2718 2719 /** 2720 * stmmac_hw_init - Init the MAC device 2721 * @priv: driver private structure 2722 * Description: this function is to configure the MAC device according to 2723 * some platform parameters or the HW capability register. It prepares the 2724 * driver to use either ring or chain modes and to setup either enhanced or 2725 * normal descriptors. 2726 */ 2727 static int stmmac_hw_init(struct stmmac_priv *priv) 2728 { 2729 struct mac_device_info *mac; 2730 2731 /* Identify the MAC HW device */ 2732 if (priv->plat->has_gmac) { 2733 priv->dev->priv_flags |= IFF_UNICAST_FLT; 2734 mac = dwmac1000_setup(priv->ioaddr, 2735 priv->plat->multicast_filter_bins, 2736 priv->plat->unicast_filter_entries); 2737 } else { 2738 mac = dwmac100_setup(priv->ioaddr); 2739 } 2740 if (!mac) 2741 return -ENOMEM; 2742 2743 priv->hw = mac; 2744 2745 /* Get and dump the chip ID */ 2746 priv->synopsys_id = stmmac_get_synopsys_id(priv); 2747 2748 /* To use the chained or ring mode */ 2749 if (chain_mode) { 2750 priv->hw->mode = &chain_mode_ops; 2751 pr_info(" Chain mode enabled\n"); 2752 priv->mode = STMMAC_CHAIN_MODE; 2753 } else { 2754 priv->hw->mode = &ring_mode_ops; 2755 pr_info(" Ring mode enabled\n"); 2756 priv->mode = STMMAC_RING_MODE; 2757 } 2758 2759 /* Get the HW capability (new GMAC newer than 3.50a) */ 2760 priv->hw_cap_support = stmmac_get_hw_features(priv); 2761 if (priv->hw_cap_support) { 2762 pr_info(" DMA HW capability register supported"); 2763 2764 /* We can override some gmac/dma configuration fields: e.g. 2765 * enh_desc, tx_coe (e.g. that are passed through the 2766 * platform) with the values from the HW capability 2767 * register (if supported). 2768 */ 2769 priv->plat->enh_desc = priv->dma_cap.enh_desc; 2770 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 2771 2772 /* TXCOE doesn't work in thresh DMA mode */ 2773 if (priv->plat->force_thresh_dma_mode) 2774 priv->plat->tx_coe = 0; 2775 else 2776 priv->plat->tx_coe = priv->dma_cap.tx_coe; 2777 2778 if (priv->dma_cap.rx_coe_type2) 2779 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 2780 else if (priv->dma_cap.rx_coe_type1) 2781 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 2782 2783 } else 2784 pr_info(" No HW DMA feature register supported"); 2785 2786 /* To use alternate (extended) or normal descriptor structures */ 2787 stmmac_selec_desc_mode(priv); 2788 2789 if (priv->plat->rx_coe) { 2790 priv->hw->rx_csum = priv->plat->rx_coe; 2791 pr_info(" RX Checksum Offload Engine supported (type %d)\n", 2792 priv->plat->rx_coe); 2793 } 2794 if (priv->plat->tx_coe) 2795 pr_info(" TX Checksum insertion supported\n"); 2796 2797 if (priv->plat->pmt) { 2798 pr_info(" Wake-Up On Lan supported\n"); 2799 device_set_wakeup_capable(priv->device, 1); 2800 } 2801 2802 return 0; 2803 } 2804 2805 /** 2806 * stmmac_dvr_probe 2807 * @device: device pointer 2808 * @plat_dat: platform data pointer 2809 * @res: stmmac resource pointer 2810 * Description: this is the main probe function used to 2811 * call the alloc_etherdev, allocate the priv structure. 2812 * Return: 2813 * returns 0 on success, otherwise errno. 2814 */ 2815 int stmmac_dvr_probe(struct device *device, 2816 struct plat_stmmacenet_data *plat_dat, 2817 struct stmmac_resources *res) 2818 { 2819 int ret = 0; 2820 struct net_device *ndev = NULL; 2821 struct stmmac_priv *priv; 2822 2823 ndev = alloc_etherdev(sizeof(struct stmmac_priv)); 2824 if (!ndev) 2825 return -ENOMEM; 2826 2827 SET_NETDEV_DEV(ndev, device); 2828 2829 priv = netdev_priv(ndev); 2830 priv->device = device; 2831 priv->dev = ndev; 2832 2833 stmmac_set_ethtool_ops(ndev); 2834 priv->pause = pause; 2835 priv->plat = plat_dat; 2836 priv->ioaddr = res->addr; 2837 priv->dev->base_addr = (unsigned long)res->addr; 2838 2839 priv->dev->irq = res->irq; 2840 priv->wol_irq = res->wol_irq; 2841 priv->lpi_irq = res->lpi_irq; 2842 2843 if (res->mac) 2844 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 2845 2846 dev_set_drvdata(device, priv->dev); 2847 2848 /* Verify driver arguments */ 2849 stmmac_verify_args(); 2850 2851 /* Override with kernel parameters if supplied XXX CRS XXX 2852 * this needs to have multiple instances 2853 */ 2854 if ((phyaddr >= 0) && (phyaddr <= 31)) 2855 priv->plat->phy_addr = phyaddr; 2856 2857 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME); 2858 if (IS_ERR(priv->stmmac_clk)) { 2859 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n", 2860 __func__); 2861 /* If failed to obtain stmmac_clk and specific clk_csr value 2862 * is NOT passed from the platform, probe fail. 2863 */ 2864 if (!priv->plat->clk_csr) { 2865 ret = PTR_ERR(priv->stmmac_clk); 2866 goto error_clk_get; 2867 } else { 2868 priv->stmmac_clk = NULL; 2869 } 2870 } 2871 clk_prepare_enable(priv->stmmac_clk); 2872 2873 priv->pclk = devm_clk_get(priv->device, "pclk"); 2874 if (IS_ERR(priv->pclk)) { 2875 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) { 2876 ret = -EPROBE_DEFER; 2877 goto error_pclk_get; 2878 } 2879 priv->pclk = NULL; 2880 } 2881 clk_prepare_enable(priv->pclk); 2882 2883 priv->stmmac_rst = devm_reset_control_get(priv->device, 2884 STMMAC_RESOURCE_NAME); 2885 if (IS_ERR(priv->stmmac_rst)) { 2886 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) { 2887 ret = -EPROBE_DEFER; 2888 goto error_hw_init; 2889 } 2890 dev_info(priv->device, "no reset control found\n"); 2891 priv->stmmac_rst = NULL; 2892 } 2893 if (priv->stmmac_rst) 2894 reset_control_deassert(priv->stmmac_rst); 2895 2896 /* Init MAC and get the capabilities */ 2897 ret = stmmac_hw_init(priv); 2898 if (ret) 2899 goto error_hw_init; 2900 2901 ndev->netdev_ops = &stmmac_netdev_ops; 2902 2903 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2904 NETIF_F_RXCSUM; 2905 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 2906 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 2907 #ifdef STMMAC_VLAN_TAG_USED 2908 /* Both mac100 and gmac support receive VLAN tag detection */ 2909 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 2910 #endif 2911 priv->msg_enable = netif_msg_init(debug, default_msg_level); 2912 2913 if (flow_ctrl) 2914 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 2915 2916 /* Rx Watchdog is available in the COREs newer than the 3.40. 2917 * In some case, for example on bugged HW this feature 2918 * has to be disable and this can be done by passing the 2919 * riwt_off field from the platform. 2920 */ 2921 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) { 2922 priv->use_riwt = 1; 2923 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n"); 2924 } 2925 2926 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); 2927 2928 spin_lock_init(&priv->lock); 2929 spin_lock_init(&priv->tx_lock); 2930 2931 ret = register_netdev(ndev); 2932 if (ret) { 2933 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 2934 goto error_netdev_register; 2935 } 2936 2937 /* If a specific clk_csr value is passed from the platform 2938 * this means that the CSR Clock Range selection cannot be 2939 * changed at run-time and it is fixed. Viceversa the driver'll try to 2940 * set the MDC clock dynamically according to the csr actual 2941 * clock input. 2942 */ 2943 if (!priv->plat->clk_csr) 2944 stmmac_clk_csr_set(priv); 2945 else 2946 priv->clk_csr = priv->plat->clk_csr; 2947 2948 stmmac_check_pcs_mode(priv); 2949 2950 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 2951 priv->pcs != STMMAC_PCS_RTBI) { 2952 /* MDIO bus Registration */ 2953 ret = stmmac_mdio_register(ndev); 2954 if (ret < 0) { 2955 pr_debug("%s: MDIO bus (id: %d) registration failed", 2956 __func__, priv->plat->bus_id); 2957 goto error_mdio_register; 2958 } 2959 } 2960 2961 return 0; 2962 2963 error_mdio_register: 2964 unregister_netdev(ndev); 2965 error_netdev_register: 2966 netif_napi_del(&priv->napi); 2967 error_hw_init: 2968 clk_disable_unprepare(priv->pclk); 2969 error_pclk_get: 2970 clk_disable_unprepare(priv->stmmac_clk); 2971 error_clk_get: 2972 free_netdev(ndev); 2973 2974 return ret; 2975 } 2976 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 2977 2978 /** 2979 * stmmac_dvr_remove 2980 * @ndev: net device pointer 2981 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 2982 * changes the link status, releases the DMA descriptor rings. 2983 */ 2984 int stmmac_dvr_remove(struct net_device *ndev) 2985 { 2986 struct stmmac_priv *priv = netdev_priv(ndev); 2987 2988 pr_info("%s:\n\tremoving driver", __func__); 2989 2990 priv->hw->dma->stop_rx(priv->ioaddr); 2991 priv->hw->dma->stop_tx(priv->ioaddr); 2992 2993 stmmac_set_mac(priv->ioaddr, false); 2994 netif_carrier_off(ndev); 2995 unregister_netdev(ndev); 2996 if (priv->stmmac_rst) 2997 reset_control_assert(priv->stmmac_rst); 2998 clk_disable_unprepare(priv->pclk); 2999 clk_disable_unprepare(priv->stmmac_clk); 3000 if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI && 3001 priv->pcs != STMMAC_PCS_RTBI) 3002 stmmac_mdio_unregister(ndev); 3003 free_netdev(ndev); 3004 3005 return 0; 3006 } 3007 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 3008 3009 /** 3010 * stmmac_suspend - suspend callback 3011 * @ndev: net device pointer 3012 * Description: this is the function to suspend the device and it is called 3013 * by the platform driver to stop the network queue, release the resources, 3014 * program the PMT register (for WoL), clean and release driver resources. 3015 */ 3016 int stmmac_suspend(struct net_device *ndev) 3017 { 3018 struct stmmac_priv *priv = netdev_priv(ndev); 3019 unsigned long flags; 3020 3021 if (!ndev || !netif_running(ndev)) 3022 return 0; 3023 3024 if (priv->phydev) 3025 phy_stop(priv->phydev); 3026 3027 spin_lock_irqsave(&priv->lock, flags); 3028 3029 netif_device_detach(ndev); 3030 netif_stop_queue(ndev); 3031 3032 napi_disable(&priv->napi); 3033 3034 /* Stop TX/RX DMA */ 3035 priv->hw->dma->stop_tx(priv->ioaddr); 3036 priv->hw->dma->stop_rx(priv->ioaddr); 3037 3038 stmmac_clear_descriptors(priv); 3039 3040 /* Enable Power down mode by programming the PMT regs */ 3041 if (device_may_wakeup(priv->device)) { 3042 priv->hw->mac->pmt(priv->hw, priv->wolopts); 3043 priv->irq_wake = 1; 3044 } else { 3045 stmmac_set_mac(priv->ioaddr, false); 3046 pinctrl_pm_select_sleep_state(priv->device); 3047 /* Disable clock in case of PWM is off */ 3048 clk_disable(priv->pclk); 3049 clk_disable(priv->stmmac_clk); 3050 } 3051 spin_unlock_irqrestore(&priv->lock, flags); 3052 3053 priv->oldlink = 0; 3054 priv->speed = 0; 3055 priv->oldduplex = -1; 3056 return 0; 3057 } 3058 EXPORT_SYMBOL_GPL(stmmac_suspend); 3059 3060 /** 3061 * stmmac_resume - resume callback 3062 * @ndev: net device pointer 3063 * Description: when resume this function is invoked to setup the DMA and CORE 3064 * in a usable state. 3065 */ 3066 int stmmac_resume(struct net_device *ndev) 3067 { 3068 struct stmmac_priv *priv = netdev_priv(ndev); 3069 unsigned long flags; 3070 3071 if (!netif_running(ndev)) 3072 return 0; 3073 3074 spin_lock_irqsave(&priv->lock, flags); 3075 3076 /* Power Down bit, into the PM register, is cleared 3077 * automatically as soon as a magic packet or a Wake-up frame 3078 * is received. Anyway, it's better to manually clear 3079 * this bit because it can generate problems while resuming 3080 * from another devices (e.g. serial console). 3081 */ 3082 if (device_may_wakeup(priv->device)) { 3083 priv->hw->mac->pmt(priv->hw, 0); 3084 priv->irq_wake = 0; 3085 } else { 3086 pinctrl_pm_select_default_state(priv->device); 3087 /* enable the clk prevously disabled */ 3088 clk_enable(priv->stmmac_clk); 3089 clk_enable(priv->pclk); 3090 /* reset the phy so that it's ready */ 3091 if (priv->mii) 3092 stmmac_mdio_reset(priv->mii); 3093 } 3094 3095 netif_device_attach(ndev); 3096 3097 init_dma_desc_rings(ndev, GFP_ATOMIC); 3098 stmmac_hw_setup(ndev, false); 3099 stmmac_init_tx_coalesce(priv); 3100 3101 napi_enable(&priv->napi); 3102 3103 netif_start_queue(ndev); 3104 3105 spin_unlock_irqrestore(&priv->lock, flags); 3106 3107 if (priv->phydev) 3108 phy_start(priv->phydev); 3109 3110 return 0; 3111 } 3112 EXPORT_SYMBOL_GPL(stmmac_resume); 3113 3114 #ifndef MODULE 3115 static int __init stmmac_cmdline_opt(char *str) 3116 { 3117 char *opt; 3118 3119 if (!str || !*str) 3120 return -EINVAL; 3121 while ((opt = strsep(&str, ",")) != NULL) { 3122 if (!strncmp(opt, "debug:", 6)) { 3123 if (kstrtoint(opt + 6, 0, &debug)) 3124 goto err; 3125 } else if (!strncmp(opt, "phyaddr:", 8)) { 3126 if (kstrtoint(opt + 8, 0, &phyaddr)) 3127 goto err; 3128 } else if (!strncmp(opt, "dma_txsize:", 11)) { 3129 if (kstrtoint(opt + 11, 0, &dma_txsize)) 3130 goto err; 3131 } else if (!strncmp(opt, "dma_rxsize:", 11)) { 3132 if (kstrtoint(opt + 11, 0, &dma_rxsize)) 3133 goto err; 3134 } else if (!strncmp(opt, "buf_sz:", 7)) { 3135 if (kstrtoint(opt + 7, 0, &buf_sz)) 3136 goto err; 3137 } else if (!strncmp(opt, "tc:", 3)) { 3138 if (kstrtoint(opt + 3, 0, &tc)) 3139 goto err; 3140 } else if (!strncmp(opt, "watchdog:", 9)) { 3141 if (kstrtoint(opt + 9, 0, &watchdog)) 3142 goto err; 3143 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 3144 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 3145 goto err; 3146 } else if (!strncmp(opt, "pause:", 6)) { 3147 if (kstrtoint(opt + 6, 0, &pause)) 3148 goto err; 3149 } else if (!strncmp(opt, "eee_timer:", 10)) { 3150 if (kstrtoint(opt + 10, 0, &eee_timer)) 3151 goto err; 3152 } else if (!strncmp(opt, "chain_mode:", 11)) { 3153 if (kstrtoint(opt + 11, 0, &chain_mode)) 3154 goto err; 3155 } 3156 } 3157 return 0; 3158 3159 err: 3160 pr_err("%s: ERROR broken module parameter conversion", __func__); 3161 return -EINVAL; 3162 } 3163 3164 __setup("stmmaceth=", stmmac_cmdline_opt); 3165 #endif /* MODULE */ 3166 3167 static int __init stmmac_init(void) 3168 { 3169 #ifdef CONFIG_DEBUG_FS 3170 /* Create debugfs main directory if it doesn't exist yet */ 3171 if (!stmmac_fs_dir) { 3172 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 3173 3174 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 3175 pr_err("ERROR %s, debugfs create directory failed\n", 3176 STMMAC_RESOURCE_NAME); 3177 3178 return -ENOMEM; 3179 } 3180 } 3181 #endif 3182 3183 return 0; 3184 } 3185 3186 static void __exit stmmac_exit(void) 3187 { 3188 #ifdef CONFIG_DEBUG_FS 3189 debugfs_remove_recursive(stmmac_fs_dir); 3190 #endif 3191 } 3192 3193 module_init(stmmac_init) 3194 module_exit(stmmac_exit) 3195 3196 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 3197 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 3198 MODULE_LICENSE("GPL"); 3199