1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136 					  u32 rxmode, u32 chan);
137 
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143 
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145 
146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148 	int ret = 0;
149 
150 	if (enabled) {
151 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
152 		if (ret)
153 			return ret;
154 		ret = clk_prepare_enable(priv->plat->pclk);
155 		if (ret) {
156 			clk_disable_unprepare(priv->plat->stmmac_clk);
157 			return ret;
158 		}
159 		if (priv->plat->clks_config) {
160 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161 			if (ret) {
162 				clk_disable_unprepare(priv->plat->stmmac_clk);
163 				clk_disable_unprepare(priv->plat->pclk);
164 				return ret;
165 			}
166 		}
167 	} else {
168 		clk_disable_unprepare(priv->plat->stmmac_clk);
169 		clk_disable_unprepare(priv->plat->pclk);
170 		if (priv->plat->clks_config)
171 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172 	}
173 
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177 
178 /**
179  * stmmac_verify_args - verify the driver parameters.
180  * Description: it checks the driver parameters and set a default in case of
181  * errors.
182  */
183 static void stmmac_verify_args(void)
184 {
185 	if (unlikely(watchdog < 0))
186 		watchdog = TX_TIMEO;
187 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188 		buf_sz = DEFAULT_BUFSIZE;
189 	if (unlikely(flow_ctrl > 1))
190 		flow_ctrl = FLOW_AUTO;
191 	else if (likely(flow_ctrl < 0))
192 		flow_ctrl = FLOW_OFF;
193 	if (unlikely((pause < 0) || (pause > 0xffff)))
194 		pause = PAUSE_TIME;
195 	if (eee_timer < 0)
196 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198 
199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204 	u32 queue;
205 
206 	for (queue = 0; queue < maxq; queue++) {
207 		struct stmmac_channel *ch = &priv->channel[queue];
208 
209 		if (stmmac_xdp_is_enabled(priv) &&
210 		    test_bit(queue, priv->af_xdp_zc_qps)) {
211 			napi_disable(&ch->rxtx_napi);
212 			continue;
213 		}
214 
215 		if (queue < rx_queues_cnt)
216 			napi_disable(&ch->rx_napi);
217 		if (queue < tx_queues_cnt)
218 			napi_disable(&ch->tx_napi);
219 	}
220 }
221 
222 /**
223  * stmmac_disable_all_queues - Disable all queues
224  * @priv: driver private structure
225  */
226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229 	struct stmmac_rx_queue *rx_q;
230 	u32 queue;
231 
232 	/* synchronize_rcu() needed for pending XDP buffers to drain */
233 	for (queue = 0; queue < rx_queues_cnt; queue++) {
234 		rx_q = &priv->rx_queue[queue];
235 		if (rx_q->xsk_pool) {
236 			synchronize_rcu();
237 			break;
238 		}
239 	}
240 
241 	__stmmac_disable_all_queues(priv);
242 }
243 
244 /**
245  * stmmac_enable_all_queues - Enable all queues
246  * @priv: driver private structure
247  */
248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253 	u32 queue;
254 
255 	for (queue = 0; queue < maxq; queue++) {
256 		struct stmmac_channel *ch = &priv->channel[queue];
257 
258 		if (stmmac_xdp_is_enabled(priv) &&
259 		    test_bit(queue, priv->af_xdp_zc_qps)) {
260 			napi_enable(&ch->rxtx_napi);
261 			continue;
262 		}
263 
264 		if (queue < rx_queues_cnt)
265 			napi_enable(&ch->rx_napi);
266 		if (queue < tx_queues_cnt)
267 			napi_enable(&ch->tx_napi);
268 	}
269 }
270 
271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
274 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275 		queue_work(priv->wq, &priv->service_task);
276 }
277 
278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280 	netif_carrier_off(priv->dev);
281 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282 	stmmac_service_event_schedule(priv);
283 }
284 
285 /**
286  * stmmac_clk_csr_set - dynamically set the MDC clock
287  * @priv: driver private structure
288  * Description: this is to dynamically set the MDC clock according to the csr
289  * clock input.
290  * Note:
291  *	If a specific clk_csr value is passed from the platform
292  *	this means that the CSR Clock Range selection cannot be
293  *	changed at run-time and it is fixed (as reported in the driver
294  *	documentation). Viceversa the driver will try to set the MDC
295  *	clock dynamically according to the actual clock input.
296  */
297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299 	u32 clk_rate;
300 
301 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302 
303 	/* Platform provided default clk_csr would be assumed valid
304 	 * for all other cases except for the below mentioned ones.
305 	 * For values higher than the IEEE 802.3 specified frequency
306 	 * we can not estimate the proper divider as it is not known
307 	 * the frequency of clk_csr_i. So we do not change the default
308 	 * divider.
309 	 */
310 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311 		if (clk_rate < CSR_F_35M)
312 			priv->clk_csr = STMMAC_CSR_20_35M;
313 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314 			priv->clk_csr = STMMAC_CSR_35_60M;
315 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316 			priv->clk_csr = STMMAC_CSR_60_100M;
317 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318 			priv->clk_csr = STMMAC_CSR_100_150M;
319 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320 			priv->clk_csr = STMMAC_CSR_150_250M;
321 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322 			priv->clk_csr = STMMAC_CSR_250_300M;
323 	}
324 
325 	if (priv->plat->has_sun8i) {
326 		if (clk_rate > 160000000)
327 			priv->clk_csr = 0x03;
328 		else if (clk_rate > 80000000)
329 			priv->clk_csr = 0x02;
330 		else if (clk_rate > 40000000)
331 			priv->clk_csr = 0x01;
332 		else
333 			priv->clk_csr = 0;
334 	}
335 
336 	if (priv->plat->has_xgmac) {
337 		if (clk_rate > 400000000)
338 			priv->clk_csr = 0x5;
339 		else if (clk_rate > 350000000)
340 			priv->clk_csr = 0x4;
341 		else if (clk_rate > 300000000)
342 			priv->clk_csr = 0x3;
343 		else if (clk_rate > 250000000)
344 			priv->clk_csr = 0x2;
345 		else if (clk_rate > 150000000)
346 			priv->clk_csr = 0x1;
347 		else
348 			priv->clk_csr = 0x0;
349 	}
350 }
351 
352 static void print_pkt(unsigned char *buf, int len)
353 {
354 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357 
358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361 	u32 avail;
362 
363 	if (tx_q->dirty_tx > tx_q->cur_tx)
364 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365 	else
366 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367 
368 	return avail;
369 }
370 
371 /**
372  * stmmac_rx_dirty - Get RX queue dirty
373  * @priv: driver private structure
374  * @queue: RX queue index
375  */
376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379 	u32 dirty;
380 
381 	if (rx_q->dirty_rx <= rx_q->cur_rx)
382 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
383 	else
384 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385 
386 	return dirty;
387 }
388 
389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391 	int tx_lpi_timer;
392 
393 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
394 	priv->eee_sw_timer_en = en ? 0 : 1;
395 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
396 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398 
399 /**
400  * stmmac_enable_eee_mode - check and enter in LPI mode
401  * @priv: driver private structure
402  * Description: this function is to verify and enter in LPI mode in case of
403  * EEE.
404  */
405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407 	u32 tx_cnt = priv->plat->tx_queues_to_use;
408 	u32 queue;
409 
410 	/* check if all TX queues have the work finished */
411 	for (queue = 0; queue < tx_cnt; queue++) {
412 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413 
414 		if (tx_q->dirty_tx != tx_q->cur_tx)
415 			return -EBUSY; /* still unfinished work */
416 	}
417 
418 	/* Check and enter in LPI mode */
419 	if (!priv->tx_path_in_lpi_mode)
420 		stmmac_set_eee_mode(priv, priv->hw,
421 				priv->plat->en_tx_lpi_clockgating);
422 	return 0;
423 }
424 
425 /**
426  * stmmac_disable_eee_mode - disable and exit from LPI mode
427  * @priv: driver private structure
428  * Description: this function is to exit and disable EEE in case of
429  * LPI state is true. This is called by the xmit.
430  */
431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433 	if (!priv->eee_sw_timer_en) {
434 		stmmac_lpi_entry_timer_config(priv, 0);
435 		return;
436 	}
437 
438 	stmmac_reset_eee_mode(priv, priv->hw);
439 	del_timer_sync(&priv->eee_ctrl_timer);
440 	priv->tx_path_in_lpi_mode = false;
441 }
442 
443 /**
444  * stmmac_eee_ctrl_timer - EEE TX SW timer.
445  * @t:  timer_list struct containing private info
446  * Description:
447  *  if there is no data transfer and if we are not in LPI state,
448  *  then MAC Transmitter can be moved to LPI state.
449  */
450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453 
454 	if (stmmac_enable_eee_mode(priv))
455 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457 
458 /**
459  * stmmac_eee_init - init EEE
460  * @priv: driver private structure
461  * Description:
462  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
463  *  can also manage EEE, this function enable the LPI state and start related
464  *  timer.
465  */
466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468 	int eee_tw_timer = priv->eee_tw_timer;
469 
470 	/* Using PCS we cannot dial with the phy registers at this stage
471 	 * so we do not support extra feature like EEE.
472 	 */
473 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
474 	    priv->hw->pcs == STMMAC_PCS_RTBI)
475 		return false;
476 
477 	/* Check if MAC core supports the EEE feature. */
478 	if (!priv->dma_cap.eee)
479 		return false;
480 
481 	mutex_lock(&priv->lock);
482 
483 	/* Check if it needs to be deactivated */
484 	if (!priv->eee_active) {
485 		if (priv->eee_enabled) {
486 			netdev_dbg(priv->dev, "disable EEE\n");
487 			stmmac_lpi_entry_timer_config(priv, 0);
488 			del_timer_sync(&priv->eee_ctrl_timer);
489 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490 			if (priv->hw->xpcs)
491 				xpcs_config_eee(priv->hw->xpcs,
492 						priv->plat->mult_fact_100ns,
493 						false);
494 		}
495 		mutex_unlock(&priv->lock);
496 		return false;
497 	}
498 
499 	if (priv->eee_active && !priv->eee_enabled) {
500 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502 				     eee_tw_timer);
503 		if (priv->hw->xpcs)
504 			xpcs_config_eee(priv->hw->xpcs,
505 					priv->plat->mult_fact_100ns,
506 					true);
507 	}
508 
509 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510 		del_timer_sync(&priv->eee_ctrl_timer);
511 		priv->tx_path_in_lpi_mode = false;
512 		stmmac_lpi_entry_timer_config(priv, 1);
513 	} else {
514 		stmmac_lpi_entry_timer_config(priv, 0);
515 		mod_timer(&priv->eee_ctrl_timer,
516 			  STMMAC_LPI_T(priv->tx_lpi_timer));
517 	}
518 
519 	mutex_unlock(&priv->lock);
520 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521 	return true;
522 }
523 
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525  * @priv: driver private structure
526  * @p : descriptor pointer
527  * @skb : the socket buffer
528  * Description :
529  * This function will read timestamp from the descriptor & pass it to stack.
530  * and also perform some sanity checks.
531  */
532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533 				   struct dma_desc *p, struct sk_buff *skb)
534 {
535 	struct skb_shared_hwtstamps shhwtstamp;
536 	bool found = false;
537 	u64 ns = 0;
538 
539 	if (!priv->hwts_tx_en)
540 		return;
541 
542 	/* exit if skb doesn't support hw tstamp */
543 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544 		return;
545 
546 	/* check tx tstamp status */
547 	if (stmmac_get_tx_timestamp_status(priv, p)) {
548 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549 		found = true;
550 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551 		found = true;
552 	}
553 
554 	if (found) {
555 		ns -= priv->plat->cdc_error_adj;
556 
557 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
559 
560 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561 		/* pass tstamp to stack */
562 		skb_tstamp_tx(skb, &shhwtstamp);
563 	}
564 }
565 
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567  * @priv: driver private structure
568  * @p : descriptor pointer
569  * @np : next descriptor pointer
570  * @skb : the socket buffer
571  * Description :
572  * This function will read received packet's timestamp from the descriptor
573  * and pass it to stack. It also perform some sanity checks.
574  */
575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576 				   struct dma_desc *np, struct sk_buff *skb)
577 {
578 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
579 	struct dma_desc *desc = p;
580 	u64 ns = 0;
581 
582 	if (!priv->hwts_rx_en)
583 		return;
584 	/* For GMAC4, the valid timestamp is from CTX next desc. */
585 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586 		desc = np;
587 
588 	/* Check if timestamp is available */
589 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591 
592 		ns -= priv->plat->cdc_error_adj;
593 
594 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595 		shhwtstamp = skb_hwtstamps(skb);
596 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
598 	} else  {
599 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600 	}
601 }
602 
603 /**
604  *  stmmac_hwtstamp_set - control hardware timestamping.
605  *  @dev: device pointer.
606  *  @ifr: An IOCTL specific structure, that can contain a pointer to
607  *  a proprietary structure used to pass information to the driver.
608  *  Description:
609  *  This function configures the MAC to enable/disable both outgoing(TX)
610  *  and incoming(RX) packets time stamping based on user input.
611  *  Return Value:
612  *  0 on success and an appropriate -ve integer on failure.
613  */
614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616 	struct stmmac_priv *priv = netdev_priv(dev);
617 	struct hwtstamp_config config;
618 	u32 ptp_v2 = 0;
619 	u32 tstamp_all = 0;
620 	u32 ptp_over_ipv4_udp = 0;
621 	u32 ptp_over_ipv6_udp = 0;
622 	u32 ptp_over_ethernet = 0;
623 	u32 snap_type_sel = 0;
624 	u32 ts_master_en = 0;
625 	u32 ts_event_en = 0;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	if (config.tx_type != HWTSTAMP_TX_OFF &&
643 	    config.tx_type != HWTSTAMP_TX_ON)
644 		return -ERANGE;
645 
646 	if (priv->adv_ts) {
647 		switch (config.rx_filter) {
648 		case HWTSTAMP_FILTER_NONE:
649 			/* time stamp no incoming packet at all */
650 			config.rx_filter = HWTSTAMP_FILTER_NONE;
651 			break;
652 
653 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654 			/* PTP v1, UDP, any kind of event packet */
655 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656 			/* 'xmac' hardware can support Sync, Pdelay_Req and
657 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
658 			 * This leaves Delay_Req timestamps out.
659 			 * Enable all events *and* general purpose message
660 			 * timestamping
661 			 */
662 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665 			break;
666 
667 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668 			/* PTP v1, UDP, Sync packet */
669 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670 			/* take time stamp for SYNC messages only */
671 			ts_event_en = PTP_TCR_TSEVNTENA;
672 
673 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675 			break;
676 
677 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678 			/* PTP v1, UDP, Delay_req packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680 			/* take time stamp for Delay_Req messages only */
681 			ts_master_en = PTP_TCR_TSMSTRENA;
682 			ts_event_en = PTP_TCR_TSEVNTENA;
683 
684 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686 			break;
687 
688 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689 			/* PTP v2, UDP, any kind of event packet */
690 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691 			ptp_v2 = PTP_TCR_TSVER2ENA;
692 			/* take time stamp for all event messages */
693 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694 
695 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697 			break;
698 
699 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700 			/* PTP v2, UDP, Sync packet */
701 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702 			ptp_v2 = PTP_TCR_TSVER2ENA;
703 			/* take time stamp for SYNC messages only */
704 			ts_event_en = PTP_TCR_TSEVNTENA;
705 
706 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708 			break;
709 
710 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711 			/* PTP v2, UDP, Delay_req packet */
712 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713 			ptp_v2 = PTP_TCR_TSVER2ENA;
714 			/* take time stamp for Delay_Req messages only */
715 			ts_master_en = PTP_TCR_TSMSTRENA;
716 			ts_event_en = PTP_TCR_TSEVNTENA;
717 
718 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720 			break;
721 
722 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
723 			/* PTP v2/802.AS1 any layer, any kind of event packet */
724 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725 			ptp_v2 = PTP_TCR_TSVER2ENA;
726 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727 			if (priv->synopsys_id < DWMAC_CORE_4_10)
728 				ts_event_en = PTP_TCR_TSEVNTENA;
729 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731 			ptp_over_ethernet = PTP_TCR_TSIPENA;
732 			break;
733 
734 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
735 			/* PTP v2/802.AS1, any layer, Sync packet */
736 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737 			ptp_v2 = PTP_TCR_TSVER2ENA;
738 			/* take time stamp for SYNC messages only */
739 			ts_event_en = PTP_TCR_TSEVNTENA;
740 
741 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743 			ptp_over_ethernet = PTP_TCR_TSIPENA;
744 			break;
745 
746 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747 			/* PTP v2/802.AS1, any layer, Delay_req packet */
748 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749 			ptp_v2 = PTP_TCR_TSVER2ENA;
750 			/* take time stamp for Delay_Req messages only */
751 			ts_master_en = PTP_TCR_TSMSTRENA;
752 			ts_event_en = PTP_TCR_TSEVNTENA;
753 
754 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756 			ptp_over_ethernet = PTP_TCR_TSIPENA;
757 			break;
758 
759 		case HWTSTAMP_FILTER_NTP_ALL:
760 		case HWTSTAMP_FILTER_ALL:
761 			/* time stamp any incoming packet */
762 			config.rx_filter = HWTSTAMP_FILTER_ALL;
763 			tstamp_all = PTP_TCR_TSENALL;
764 			break;
765 
766 		default:
767 			return -ERANGE;
768 		}
769 	} else {
770 		switch (config.rx_filter) {
771 		case HWTSTAMP_FILTER_NONE:
772 			config.rx_filter = HWTSTAMP_FILTER_NONE;
773 			break;
774 		default:
775 			/* PTP v1, UDP, any kind of event packet */
776 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777 			break;
778 		}
779 	}
780 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782 
783 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
784 
785 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
786 		priv->systime_flags |= tstamp_all | ptp_v2 |
787 				       ptp_over_ethernet | ptp_over_ipv6_udp |
788 				       ptp_over_ipv4_udp | ts_event_en |
789 				       ts_master_en | snap_type_sel;
790 	}
791 
792 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793 
794 	memcpy(&priv->tstamp_config, &config, sizeof(config));
795 
796 	return copy_to_user(ifr->ifr_data, &config,
797 			    sizeof(config)) ? -EFAULT : 0;
798 }
799 
800 /**
801  *  stmmac_hwtstamp_get - read hardware timestamping.
802  *  @dev: device pointer.
803  *  @ifr: An IOCTL specific structure, that can contain a pointer to
804  *  a proprietary structure used to pass information to the driver.
805  *  Description:
806  *  This function obtain the current hardware timestamping settings
807  *  as requested.
808  */
809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811 	struct stmmac_priv *priv = netdev_priv(dev);
812 	struct hwtstamp_config *config = &priv->tstamp_config;
813 
814 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815 		return -EOPNOTSUPP;
816 
817 	return copy_to_user(ifr->ifr_data, config,
818 			    sizeof(*config)) ? -EFAULT : 0;
819 }
820 
821 /**
822  * stmmac_init_tstamp_counter - init hardware timestamping counter
823  * @priv: driver private structure
824  * @systime_flags: timestamping flags
825  * Description:
826  * Initialize hardware counter for packet timestamping.
827  * This is valid as long as the interface is open and not suspended.
828  * Will be rerun after resuming from suspend, case in which the timestamping
829  * flags updated by stmmac_hwtstamp_set() also need to be restored.
830  */
831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834 	struct timespec64 now;
835 	u32 sec_inc = 0;
836 	u64 temp = 0;
837 	int ret;
838 
839 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
840 		return -EOPNOTSUPP;
841 
842 	ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
843 	if (ret < 0) {
844 		netdev_warn(priv->dev,
845 			    "failed to enable PTP reference clock: %pe\n",
846 			    ERR_PTR(ret));
847 		return ret;
848 	}
849 
850 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
851 	priv->systime_flags = systime_flags;
852 
853 	/* program Sub Second Increment reg */
854 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
855 					   priv->plat->clk_ptp_rate,
856 					   xmac, &sec_inc);
857 	temp = div_u64(1000000000ULL, sec_inc);
858 
859 	/* Store sub second increment for later use */
860 	priv->sub_second_inc = sec_inc;
861 
862 	/* calculate default added value:
863 	 * formula is :
864 	 * addend = (2^32)/freq_div_ratio;
865 	 * where, freq_div_ratio = 1e9ns/sec_inc
866 	 */
867 	temp = (u64)(temp << 32);
868 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
869 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
870 
871 	/* initialize system time */
872 	ktime_get_real_ts64(&now);
873 
874 	/* lower 32 bits of tv_sec are safe until y2106 */
875 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
876 
877 	return 0;
878 }
879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
880 
881 /**
882  * stmmac_init_ptp - init PTP
883  * @priv: driver private structure
884  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
885  * This is done by looking at the HW cap. register.
886  * This function also registers the ptp driver.
887  */
888 static int stmmac_init_ptp(struct stmmac_priv *priv)
889 {
890 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
891 	int ret;
892 
893 	if (priv->plat->ptp_clk_freq_config)
894 		priv->plat->ptp_clk_freq_config(priv);
895 
896 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
897 	if (ret)
898 		return ret;
899 
900 	priv->adv_ts = 0;
901 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
902 	if (xmac && priv->dma_cap.atime_stamp)
903 		priv->adv_ts = 1;
904 	/* Dwmac 3.x core with extend_desc can support adv_ts */
905 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
906 		priv->adv_ts = 1;
907 
908 	if (priv->dma_cap.time_stamp)
909 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
910 
911 	if (priv->adv_ts)
912 		netdev_info(priv->dev,
913 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
914 
915 	priv->hwts_tx_en = 0;
916 	priv->hwts_rx_en = 0;
917 
918 	return 0;
919 }
920 
921 static void stmmac_release_ptp(struct stmmac_priv *priv)
922 {
923 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
924 	stmmac_ptp_unregister(priv);
925 }
926 
927 /**
928  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
929  *  @priv: driver private structure
930  *  @duplex: duplex passed to the next function
931  *  Description: It is used for configuring the flow control in all queues
932  */
933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
934 {
935 	u32 tx_cnt = priv->plat->tx_queues_to_use;
936 
937 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
938 			priv->pause, tx_cnt);
939 }
940 
941 static void stmmac_validate(struct phylink_config *config,
942 			    unsigned long *supported,
943 			    struct phylink_link_state *state)
944 {
945 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
946 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
947 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
948 	int tx_cnt = priv->plat->tx_queues_to_use;
949 	int max_speed = priv->plat->max_speed;
950 
951 	phylink_set(mac_supported, 10baseT_Half);
952 	phylink_set(mac_supported, 10baseT_Full);
953 	phylink_set(mac_supported, 100baseT_Half);
954 	phylink_set(mac_supported, 100baseT_Full);
955 	phylink_set(mac_supported, 1000baseT_Half);
956 	phylink_set(mac_supported, 1000baseT_Full);
957 	phylink_set(mac_supported, 1000baseKX_Full);
958 
959 	phylink_set(mac_supported, Autoneg);
960 	phylink_set(mac_supported, Pause);
961 	phylink_set(mac_supported, Asym_Pause);
962 	phylink_set_port_modes(mac_supported);
963 
964 	/* Cut down 1G if asked to */
965 	if ((max_speed > 0) && (max_speed < 1000)) {
966 		phylink_set(mask, 1000baseT_Full);
967 		phylink_set(mask, 1000baseX_Full);
968 	} else if (priv->plat->has_gmac4) {
969 		if (!max_speed || max_speed >= 2500) {
970 			phylink_set(mac_supported, 2500baseT_Full);
971 			phylink_set(mac_supported, 2500baseX_Full);
972 		}
973 	} else if (priv->plat->has_xgmac) {
974 		if (!max_speed || (max_speed >= 2500)) {
975 			phylink_set(mac_supported, 2500baseT_Full);
976 			phylink_set(mac_supported, 2500baseX_Full);
977 		}
978 		if (!max_speed || (max_speed >= 5000)) {
979 			phylink_set(mac_supported, 5000baseT_Full);
980 		}
981 		if (!max_speed || (max_speed >= 10000)) {
982 			phylink_set(mac_supported, 10000baseSR_Full);
983 			phylink_set(mac_supported, 10000baseLR_Full);
984 			phylink_set(mac_supported, 10000baseER_Full);
985 			phylink_set(mac_supported, 10000baseLRM_Full);
986 			phylink_set(mac_supported, 10000baseT_Full);
987 			phylink_set(mac_supported, 10000baseKX4_Full);
988 			phylink_set(mac_supported, 10000baseKR_Full);
989 		}
990 		if (!max_speed || (max_speed >= 25000)) {
991 			phylink_set(mac_supported, 25000baseCR_Full);
992 			phylink_set(mac_supported, 25000baseKR_Full);
993 			phylink_set(mac_supported, 25000baseSR_Full);
994 		}
995 		if (!max_speed || (max_speed >= 40000)) {
996 			phylink_set(mac_supported, 40000baseKR4_Full);
997 			phylink_set(mac_supported, 40000baseCR4_Full);
998 			phylink_set(mac_supported, 40000baseSR4_Full);
999 			phylink_set(mac_supported, 40000baseLR4_Full);
1000 		}
1001 		if (!max_speed || (max_speed >= 50000)) {
1002 			phylink_set(mac_supported, 50000baseCR2_Full);
1003 			phylink_set(mac_supported, 50000baseKR2_Full);
1004 			phylink_set(mac_supported, 50000baseSR2_Full);
1005 			phylink_set(mac_supported, 50000baseKR_Full);
1006 			phylink_set(mac_supported, 50000baseSR_Full);
1007 			phylink_set(mac_supported, 50000baseCR_Full);
1008 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
1009 			phylink_set(mac_supported, 50000baseDR_Full);
1010 		}
1011 		if (!max_speed || (max_speed >= 100000)) {
1012 			phylink_set(mac_supported, 100000baseKR4_Full);
1013 			phylink_set(mac_supported, 100000baseSR4_Full);
1014 			phylink_set(mac_supported, 100000baseCR4_Full);
1015 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
1016 			phylink_set(mac_supported, 100000baseKR2_Full);
1017 			phylink_set(mac_supported, 100000baseSR2_Full);
1018 			phylink_set(mac_supported, 100000baseCR2_Full);
1019 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
1020 			phylink_set(mac_supported, 100000baseDR2_Full);
1021 		}
1022 	}
1023 
1024 	/* Half-Duplex can only work with single queue */
1025 	if (tx_cnt > 1) {
1026 		phylink_set(mask, 10baseT_Half);
1027 		phylink_set(mask, 100baseT_Half);
1028 		phylink_set(mask, 1000baseT_Half);
1029 	}
1030 
1031 	linkmode_and(supported, supported, mac_supported);
1032 	linkmode_andnot(supported, supported, mask);
1033 
1034 	linkmode_and(state->advertising, state->advertising, mac_supported);
1035 	linkmode_andnot(state->advertising, state->advertising, mask);
1036 
1037 	/* If PCS is supported, check which modes it supports. */
1038 	if (priv->hw->xpcs)
1039 		xpcs_validate(priv->hw->xpcs, supported, state);
1040 }
1041 
1042 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1043 			      const struct phylink_link_state *state)
1044 {
1045 	/* Nothing to do, xpcs_config() handles everything */
1046 }
1047 
1048 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1049 {
1050 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1051 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1052 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1053 	bool *hs_enable = &fpe_cfg->hs_enable;
1054 
1055 	if (is_up && *hs_enable) {
1056 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1057 	} else {
1058 		*lo_state = FPE_STATE_OFF;
1059 		*lp_state = FPE_STATE_OFF;
1060 	}
1061 }
1062 
1063 static void stmmac_mac_link_down(struct phylink_config *config,
1064 				 unsigned int mode, phy_interface_t interface)
1065 {
1066 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1067 
1068 	stmmac_mac_set(priv, priv->ioaddr, false);
1069 	priv->eee_active = false;
1070 	priv->tx_lpi_enabled = false;
1071 	priv->eee_enabled = stmmac_eee_init(priv);
1072 	stmmac_set_eee_pls(priv, priv->hw, false);
1073 
1074 	if (priv->dma_cap.fpesel)
1075 		stmmac_fpe_link_state_handle(priv, false);
1076 }
1077 
1078 static void stmmac_mac_link_up(struct phylink_config *config,
1079 			       struct phy_device *phy,
1080 			       unsigned int mode, phy_interface_t interface,
1081 			       int speed, int duplex,
1082 			       bool tx_pause, bool rx_pause)
1083 {
1084 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1085 	u32 ctrl;
1086 
1087 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1088 	ctrl &= ~priv->hw->link.speed_mask;
1089 
1090 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1091 		switch (speed) {
1092 		case SPEED_10000:
1093 			ctrl |= priv->hw->link.xgmii.speed10000;
1094 			break;
1095 		case SPEED_5000:
1096 			ctrl |= priv->hw->link.xgmii.speed5000;
1097 			break;
1098 		case SPEED_2500:
1099 			ctrl |= priv->hw->link.xgmii.speed2500;
1100 			break;
1101 		default:
1102 			return;
1103 		}
1104 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1105 		switch (speed) {
1106 		case SPEED_100000:
1107 			ctrl |= priv->hw->link.xlgmii.speed100000;
1108 			break;
1109 		case SPEED_50000:
1110 			ctrl |= priv->hw->link.xlgmii.speed50000;
1111 			break;
1112 		case SPEED_40000:
1113 			ctrl |= priv->hw->link.xlgmii.speed40000;
1114 			break;
1115 		case SPEED_25000:
1116 			ctrl |= priv->hw->link.xlgmii.speed25000;
1117 			break;
1118 		case SPEED_10000:
1119 			ctrl |= priv->hw->link.xgmii.speed10000;
1120 			break;
1121 		case SPEED_2500:
1122 			ctrl |= priv->hw->link.speed2500;
1123 			break;
1124 		case SPEED_1000:
1125 			ctrl |= priv->hw->link.speed1000;
1126 			break;
1127 		default:
1128 			return;
1129 		}
1130 	} else {
1131 		switch (speed) {
1132 		case SPEED_2500:
1133 			ctrl |= priv->hw->link.speed2500;
1134 			break;
1135 		case SPEED_1000:
1136 			ctrl |= priv->hw->link.speed1000;
1137 			break;
1138 		case SPEED_100:
1139 			ctrl |= priv->hw->link.speed100;
1140 			break;
1141 		case SPEED_10:
1142 			ctrl |= priv->hw->link.speed10;
1143 			break;
1144 		default:
1145 			return;
1146 		}
1147 	}
1148 
1149 	priv->speed = speed;
1150 
1151 	if (priv->plat->fix_mac_speed)
1152 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1153 
1154 	if (!duplex)
1155 		ctrl &= ~priv->hw->link.duplex;
1156 	else
1157 		ctrl |= priv->hw->link.duplex;
1158 
1159 	/* Flow Control operation */
1160 	if (tx_pause && rx_pause)
1161 		stmmac_mac_flow_ctrl(priv, duplex);
1162 
1163 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1164 
1165 	stmmac_mac_set(priv, priv->ioaddr, true);
1166 	if (phy && priv->dma_cap.eee) {
1167 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1168 		priv->eee_enabled = stmmac_eee_init(priv);
1169 		priv->tx_lpi_enabled = priv->eee_enabled;
1170 		stmmac_set_eee_pls(priv, priv->hw, true);
1171 	}
1172 
1173 	if (priv->dma_cap.fpesel)
1174 		stmmac_fpe_link_state_handle(priv, true);
1175 }
1176 
1177 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1178 	.validate = stmmac_validate,
1179 	.mac_config = stmmac_mac_config,
1180 	.mac_link_down = stmmac_mac_link_down,
1181 	.mac_link_up = stmmac_mac_link_up,
1182 };
1183 
1184 /**
1185  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1186  * @priv: driver private structure
1187  * Description: this is to verify if the HW supports the PCS.
1188  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1189  * configured for the TBI, RTBI, or SGMII PHY interface.
1190  */
1191 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1192 {
1193 	int interface = priv->plat->interface;
1194 
1195 	if (priv->dma_cap.pcs) {
1196 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1197 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1198 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1199 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1200 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1201 			priv->hw->pcs = STMMAC_PCS_RGMII;
1202 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1203 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1204 			priv->hw->pcs = STMMAC_PCS_SGMII;
1205 		}
1206 	}
1207 }
1208 
1209 /**
1210  * stmmac_init_phy - PHY initialization
1211  * @dev: net device structure
1212  * Description: it initializes the driver's PHY state, and attaches the PHY
1213  * to the mac driver.
1214  *  Return value:
1215  *  0 on success
1216  */
1217 static int stmmac_init_phy(struct net_device *dev)
1218 {
1219 	struct stmmac_priv *priv = netdev_priv(dev);
1220 	struct device_node *node;
1221 	int ret;
1222 
1223 	node = priv->plat->phylink_node;
1224 
1225 	if (node)
1226 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1227 
1228 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1229 	 * manually parse it
1230 	 */
1231 	if (!node || ret) {
1232 		int addr = priv->plat->phy_addr;
1233 		struct phy_device *phydev;
1234 
1235 		phydev = mdiobus_get_phy(priv->mii, addr);
1236 		if (!phydev) {
1237 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1238 			return -ENODEV;
1239 		}
1240 
1241 		ret = phylink_connect_phy(priv->phylink, phydev);
1242 	}
1243 
1244 	if (!priv->plat->pmt) {
1245 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1246 
1247 		phylink_ethtool_get_wol(priv->phylink, &wol);
1248 		device_set_wakeup_capable(priv->device, !!wol.supported);
1249 	}
1250 
1251 	return ret;
1252 }
1253 
1254 static int stmmac_phy_setup(struct stmmac_priv *priv)
1255 {
1256 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1257 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1258 	int mode = priv->plat->phy_interface;
1259 	struct phylink *phylink;
1260 
1261 	priv->phylink_config.dev = &priv->dev->dev;
1262 	priv->phylink_config.type = PHYLINK_NETDEV;
1263 	priv->phylink_config.pcs_poll = true;
1264 	if (priv->plat->mdio_bus_data)
1265 		priv->phylink_config.ovr_an_inband =
1266 			mdio_bus_data->xpcs_an_inband;
1267 
1268 	if (!fwnode)
1269 		fwnode = dev_fwnode(priv->device);
1270 
1271 	phylink = phylink_create(&priv->phylink_config, fwnode,
1272 				 mode, &stmmac_phylink_mac_ops);
1273 	if (IS_ERR(phylink))
1274 		return PTR_ERR(phylink);
1275 
1276 	if (priv->hw->xpcs)
1277 		phylink_set_pcs(phylink, &priv->hw->xpcs->pcs);
1278 
1279 	priv->phylink = phylink;
1280 	return 0;
1281 }
1282 
1283 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1284 {
1285 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1286 	unsigned int desc_size;
1287 	void *head_rx;
1288 	u32 queue;
1289 
1290 	/* Display RX rings */
1291 	for (queue = 0; queue < rx_cnt; queue++) {
1292 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1293 
1294 		pr_info("\tRX Queue %u rings\n", queue);
1295 
1296 		if (priv->extend_desc) {
1297 			head_rx = (void *)rx_q->dma_erx;
1298 			desc_size = sizeof(struct dma_extended_desc);
1299 		} else {
1300 			head_rx = (void *)rx_q->dma_rx;
1301 			desc_size = sizeof(struct dma_desc);
1302 		}
1303 
1304 		/* Display RX ring */
1305 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1306 				    rx_q->dma_rx_phy, desc_size);
1307 	}
1308 }
1309 
1310 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1311 {
1312 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1313 	unsigned int desc_size;
1314 	void *head_tx;
1315 	u32 queue;
1316 
1317 	/* Display TX rings */
1318 	for (queue = 0; queue < tx_cnt; queue++) {
1319 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1320 
1321 		pr_info("\tTX Queue %d rings\n", queue);
1322 
1323 		if (priv->extend_desc) {
1324 			head_tx = (void *)tx_q->dma_etx;
1325 			desc_size = sizeof(struct dma_extended_desc);
1326 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1327 			head_tx = (void *)tx_q->dma_entx;
1328 			desc_size = sizeof(struct dma_edesc);
1329 		} else {
1330 			head_tx = (void *)tx_q->dma_tx;
1331 			desc_size = sizeof(struct dma_desc);
1332 		}
1333 
1334 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1335 				    tx_q->dma_tx_phy, desc_size);
1336 	}
1337 }
1338 
1339 static void stmmac_display_rings(struct stmmac_priv *priv)
1340 {
1341 	/* Display RX ring */
1342 	stmmac_display_rx_rings(priv);
1343 
1344 	/* Display TX ring */
1345 	stmmac_display_tx_rings(priv);
1346 }
1347 
1348 static int stmmac_set_bfsize(int mtu, int bufsize)
1349 {
1350 	int ret = bufsize;
1351 
1352 	if (mtu >= BUF_SIZE_8KiB)
1353 		ret = BUF_SIZE_16KiB;
1354 	else if (mtu >= BUF_SIZE_4KiB)
1355 		ret = BUF_SIZE_8KiB;
1356 	else if (mtu >= BUF_SIZE_2KiB)
1357 		ret = BUF_SIZE_4KiB;
1358 	else if (mtu > DEFAULT_BUFSIZE)
1359 		ret = BUF_SIZE_2KiB;
1360 	else
1361 		ret = DEFAULT_BUFSIZE;
1362 
1363 	return ret;
1364 }
1365 
1366 /**
1367  * stmmac_clear_rx_descriptors - clear RX descriptors
1368  * @priv: driver private structure
1369  * @queue: RX queue index
1370  * Description: this function is called to clear the RX descriptors
1371  * in case of both basic and extended descriptors are used.
1372  */
1373 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1374 {
1375 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1376 	int i;
1377 
1378 	/* Clear the RX descriptors */
1379 	for (i = 0; i < priv->dma_rx_size; i++)
1380 		if (priv->extend_desc)
1381 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1382 					priv->use_riwt, priv->mode,
1383 					(i == priv->dma_rx_size - 1),
1384 					priv->dma_buf_sz);
1385 		else
1386 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1387 					priv->use_riwt, priv->mode,
1388 					(i == priv->dma_rx_size - 1),
1389 					priv->dma_buf_sz);
1390 }
1391 
1392 /**
1393  * stmmac_clear_tx_descriptors - clear tx descriptors
1394  * @priv: driver private structure
1395  * @queue: TX queue index.
1396  * Description: this function is called to clear the TX descriptors
1397  * in case of both basic and extended descriptors are used.
1398  */
1399 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1400 {
1401 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1402 	int i;
1403 
1404 	/* Clear the TX descriptors */
1405 	for (i = 0; i < priv->dma_tx_size; i++) {
1406 		int last = (i == (priv->dma_tx_size - 1));
1407 		struct dma_desc *p;
1408 
1409 		if (priv->extend_desc)
1410 			p = &tx_q->dma_etx[i].basic;
1411 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1412 			p = &tx_q->dma_entx[i].basic;
1413 		else
1414 			p = &tx_q->dma_tx[i];
1415 
1416 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1417 	}
1418 }
1419 
1420 /**
1421  * stmmac_clear_descriptors - clear descriptors
1422  * @priv: driver private structure
1423  * Description: this function is called to clear the TX and RX descriptors
1424  * in case of both basic and extended descriptors are used.
1425  */
1426 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1427 {
1428 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1429 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1430 	u32 queue;
1431 
1432 	/* Clear the RX descriptors */
1433 	for (queue = 0; queue < rx_queue_cnt; queue++)
1434 		stmmac_clear_rx_descriptors(priv, queue);
1435 
1436 	/* Clear the TX descriptors */
1437 	for (queue = 0; queue < tx_queue_cnt; queue++)
1438 		stmmac_clear_tx_descriptors(priv, queue);
1439 }
1440 
1441 /**
1442  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1443  * @priv: driver private structure
1444  * @p: descriptor pointer
1445  * @i: descriptor index
1446  * @flags: gfp flag
1447  * @queue: RX queue index
1448  * Description: this function is called to allocate a receive buffer, perform
1449  * the DMA mapping and init the descriptor.
1450  */
1451 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1452 				  int i, gfp_t flags, u32 queue)
1453 {
1454 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1455 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1456 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1457 
1458 	if (priv->dma_cap.addr64 <= 32)
1459 		gfp |= GFP_DMA32;
1460 
1461 	if (!buf->page) {
1462 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1463 		if (!buf->page)
1464 			return -ENOMEM;
1465 		buf->page_offset = stmmac_rx_offset(priv);
1466 	}
1467 
1468 	if (priv->sph && !buf->sec_page) {
1469 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1470 		if (!buf->sec_page)
1471 			return -ENOMEM;
1472 
1473 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1474 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1475 	} else {
1476 		buf->sec_page = NULL;
1477 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1478 	}
1479 
1480 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1481 
1482 	stmmac_set_desc_addr(priv, p, buf->addr);
1483 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1484 		stmmac_init_desc3(priv, p);
1485 
1486 	return 0;
1487 }
1488 
1489 /**
1490  * stmmac_free_rx_buffer - free RX dma buffers
1491  * @priv: private structure
1492  * @queue: RX queue index
1493  * @i: buffer index.
1494  */
1495 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1496 {
1497 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1498 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1499 
1500 	if (buf->page)
1501 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1502 	buf->page = NULL;
1503 
1504 	if (buf->sec_page)
1505 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1506 	buf->sec_page = NULL;
1507 }
1508 
1509 /**
1510  * stmmac_free_tx_buffer - free RX dma buffers
1511  * @priv: private structure
1512  * @queue: RX queue index
1513  * @i: buffer index.
1514  */
1515 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1516 {
1517 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1518 
1519 	if (tx_q->tx_skbuff_dma[i].buf &&
1520 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1521 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1522 			dma_unmap_page(priv->device,
1523 				       tx_q->tx_skbuff_dma[i].buf,
1524 				       tx_q->tx_skbuff_dma[i].len,
1525 				       DMA_TO_DEVICE);
1526 		else
1527 			dma_unmap_single(priv->device,
1528 					 tx_q->tx_skbuff_dma[i].buf,
1529 					 tx_q->tx_skbuff_dma[i].len,
1530 					 DMA_TO_DEVICE);
1531 	}
1532 
1533 	if (tx_q->xdpf[i] &&
1534 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1535 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1536 		xdp_return_frame(tx_q->xdpf[i]);
1537 		tx_q->xdpf[i] = NULL;
1538 	}
1539 
1540 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1541 		tx_q->xsk_frames_done++;
1542 
1543 	if (tx_q->tx_skbuff[i] &&
1544 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1545 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1546 		tx_q->tx_skbuff[i] = NULL;
1547 	}
1548 
1549 	tx_q->tx_skbuff_dma[i].buf = 0;
1550 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1551 }
1552 
1553 /**
1554  * dma_free_rx_skbufs - free RX dma buffers
1555  * @priv: private structure
1556  * @queue: RX queue index
1557  */
1558 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1559 {
1560 	int i;
1561 
1562 	for (i = 0; i < priv->dma_rx_size; i++)
1563 		stmmac_free_rx_buffer(priv, queue, i);
1564 }
1565 
1566 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1567 				   gfp_t flags)
1568 {
1569 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1570 	int i;
1571 
1572 	for (i = 0; i < priv->dma_rx_size; i++) {
1573 		struct dma_desc *p;
1574 		int ret;
1575 
1576 		if (priv->extend_desc)
1577 			p = &((rx_q->dma_erx + i)->basic);
1578 		else
1579 			p = rx_q->dma_rx + i;
1580 
1581 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1582 					     queue);
1583 		if (ret)
1584 			return ret;
1585 
1586 		rx_q->buf_alloc_num++;
1587 	}
1588 
1589 	return 0;
1590 }
1591 
1592 /**
1593  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1594  * @priv: private structure
1595  * @queue: RX queue index
1596  */
1597 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1598 {
1599 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1600 	int i;
1601 
1602 	for (i = 0; i < priv->dma_rx_size; i++) {
1603 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1604 
1605 		if (!buf->xdp)
1606 			continue;
1607 
1608 		xsk_buff_free(buf->xdp);
1609 		buf->xdp = NULL;
1610 	}
1611 }
1612 
1613 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1614 {
1615 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1616 	int i;
1617 
1618 	for (i = 0; i < priv->dma_rx_size; i++) {
1619 		struct stmmac_rx_buffer *buf;
1620 		dma_addr_t dma_addr;
1621 		struct dma_desc *p;
1622 
1623 		if (priv->extend_desc)
1624 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1625 		else
1626 			p = rx_q->dma_rx + i;
1627 
1628 		buf = &rx_q->buf_pool[i];
1629 
1630 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1631 		if (!buf->xdp)
1632 			return -ENOMEM;
1633 
1634 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1635 		stmmac_set_desc_addr(priv, p, dma_addr);
1636 		rx_q->buf_alloc_num++;
1637 	}
1638 
1639 	return 0;
1640 }
1641 
1642 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1643 {
1644 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1645 		return NULL;
1646 
1647 	return xsk_get_pool_from_qid(priv->dev, queue);
1648 }
1649 
1650 /**
1651  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1652  * @priv: driver private structure
1653  * @queue: RX queue index
1654  * @flags: gfp flag.
1655  * Description: this function initializes the DMA RX descriptors
1656  * and allocates the socket buffers. It supports the chained and ring
1657  * modes.
1658  */
1659 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1660 {
1661 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1662 	int ret;
1663 
1664 	netif_dbg(priv, probe, priv->dev,
1665 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1666 		  (u32)rx_q->dma_rx_phy);
1667 
1668 	stmmac_clear_rx_descriptors(priv, queue);
1669 
1670 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1671 
1672 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1673 
1674 	if (rx_q->xsk_pool) {
1675 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1676 						   MEM_TYPE_XSK_BUFF_POOL,
1677 						   NULL));
1678 		netdev_info(priv->dev,
1679 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1680 			    rx_q->queue_index);
1681 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1682 	} else {
1683 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1684 						   MEM_TYPE_PAGE_POOL,
1685 						   rx_q->page_pool));
1686 		netdev_info(priv->dev,
1687 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1688 			    rx_q->queue_index);
1689 	}
1690 
1691 	if (rx_q->xsk_pool) {
1692 		/* RX XDP ZC buffer pool may not be populated, e.g.
1693 		 * xdpsock TX-only.
1694 		 */
1695 		stmmac_alloc_rx_buffers_zc(priv, queue);
1696 	} else {
1697 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1698 		if (ret < 0)
1699 			return -ENOMEM;
1700 	}
1701 
1702 	rx_q->cur_rx = 0;
1703 	rx_q->dirty_rx = 0;
1704 
1705 	/* Setup the chained descriptor addresses */
1706 	if (priv->mode == STMMAC_CHAIN_MODE) {
1707 		if (priv->extend_desc)
1708 			stmmac_mode_init(priv, rx_q->dma_erx,
1709 					 rx_q->dma_rx_phy,
1710 					 priv->dma_rx_size, 1);
1711 		else
1712 			stmmac_mode_init(priv, rx_q->dma_rx,
1713 					 rx_q->dma_rx_phy,
1714 					 priv->dma_rx_size, 0);
1715 	}
1716 
1717 	return 0;
1718 }
1719 
1720 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1721 {
1722 	struct stmmac_priv *priv = netdev_priv(dev);
1723 	u32 rx_count = priv->plat->rx_queues_to_use;
1724 	u32 queue;
1725 	int ret;
1726 
1727 	/* RX INITIALIZATION */
1728 	netif_dbg(priv, probe, priv->dev,
1729 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1730 
1731 	for (queue = 0; queue < rx_count; queue++) {
1732 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1733 		if (ret)
1734 			goto err_init_rx_buffers;
1735 	}
1736 
1737 	return 0;
1738 
1739 err_init_rx_buffers:
1740 	while (queue >= 0) {
1741 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1742 
1743 		if (rx_q->xsk_pool)
1744 			dma_free_rx_xskbufs(priv, queue);
1745 		else
1746 			dma_free_rx_skbufs(priv, queue);
1747 
1748 		rx_q->buf_alloc_num = 0;
1749 		rx_q->xsk_pool = NULL;
1750 
1751 		if (queue == 0)
1752 			break;
1753 
1754 		queue--;
1755 	}
1756 
1757 	return ret;
1758 }
1759 
1760 /**
1761  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1762  * @priv: driver private structure
1763  * @queue : TX queue index
1764  * Description: this function initializes the DMA TX descriptors
1765  * and allocates the socket buffers. It supports the chained and ring
1766  * modes.
1767  */
1768 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1769 {
1770 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1771 	int i;
1772 
1773 	netif_dbg(priv, probe, priv->dev,
1774 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1775 		  (u32)tx_q->dma_tx_phy);
1776 
1777 	/* Setup the chained descriptor addresses */
1778 	if (priv->mode == STMMAC_CHAIN_MODE) {
1779 		if (priv->extend_desc)
1780 			stmmac_mode_init(priv, tx_q->dma_etx,
1781 					 tx_q->dma_tx_phy,
1782 					 priv->dma_tx_size, 1);
1783 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1784 			stmmac_mode_init(priv, tx_q->dma_tx,
1785 					 tx_q->dma_tx_phy,
1786 					 priv->dma_tx_size, 0);
1787 	}
1788 
1789 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1790 
1791 	for (i = 0; i < priv->dma_tx_size; i++) {
1792 		struct dma_desc *p;
1793 
1794 		if (priv->extend_desc)
1795 			p = &((tx_q->dma_etx + i)->basic);
1796 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1797 			p = &((tx_q->dma_entx + i)->basic);
1798 		else
1799 			p = tx_q->dma_tx + i;
1800 
1801 		stmmac_clear_desc(priv, p);
1802 
1803 		tx_q->tx_skbuff_dma[i].buf = 0;
1804 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1805 		tx_q->tx_skbuff_dma[i].len = 0;
1806 		tx_q->tx_skbuff_dma[i].last_segment = false;
1807 		tx_q->tx_skbuff[i] = NULL;
1808 	}
1809 
1810 	tx_q->dirty_tx = 0;
1811 	tx_q->cur_tx = 0;
1812 	tx_q->mss = 0;
1813 
1814 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1815 
1816 	return 0;
1817 }
1818 
1819 static int init_dma_tx_desc_rings(struct net_device *dev)
1820 {
1821 	struct stmmac_priv *priv = netdev_priv(dev);
1822 	u32 tx_queue_cnt;
1823 	u32 queue;
1824 
1825 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1826 
1827 	for (queue = 0; queue < tx_queue_cnt; queue++)
1828 		__init_dma_tx_desc_rings(priv, queue);
1829 
1830 	return 0;
1831 }
1832 
1833 /**
1834  * init_dma_desc_rings - init the RX/TX descriptor rings
1835  * @dev: net device structure
1836  * @flags: gfp flag.
1837  * Description: this function initializes the DMA RX/TX descriptors
1838  * and allocates the socket buffers. It supports the chained and ring
1839  * modes.
1840  */
1841 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1842 {
1843 	struct stmmac_priv *priv = netdev_priv(dev);
1844 	int ret;
1845 
1846 	ret = init_dma_rx_desc_rings(dev, flags);
1847 	if (ret)
1848 		return ret;
1849 
1850 	ret = init_dma_tx_desc_rings(dev);
1851 
1852 	stmmac_clear_descriptors(priv);
1853 
1854 	if (netif_msg_hw(priv))
1855 		stmmac_display_rings(priv);
1856 
1857 	return ret;
1858 }
1859 
1860 /**
1861  * dma_free_tx_skbufs - free TX dma buffers
1862  * @priv: private structure
1863  * @queue: TX queue index
1864  */
1865 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1866 {
1867 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1868 	int i;
1869 
1870 	tx_q->xsk_frames_done = 0;
1871 
1872 	for (i = 0; i < priv->dma_tx_size; i++)
1873 		stmmac_free_tx_buffer(priv, queue, i);
1874 
1875 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1876 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1877 		tx_q->xsk_frames_done = 0;
1878 		tx_q->xsk_pool = NULL;
1879 	}
1880 }
1881 
1882 /**
1883  * stmmac_free_tx_skbufs - free TX skb buffers
1884  * @priv: private structure
1885  */
1886 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1887 {
1888 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1889 	u32 queue;
1890 
1891 	for (queue = 0; queue < tx_queue_cnt; queue++)
1892 		dma_free_tx_skbufs(priv, queue);
1893 }
1894 
1895 /**
1896  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1897  * @priv: private structure
1898  * @queue: RX queue index
1899  */
1900 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1901 {
1902 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1903 
1904 	/* Release the DMA RX socket buffers */
1905 	if (rx_q->xsk_pool)
1906 		dma_free_rx_xskbufs(priv, queue);
1907 	else
1908 		dma_free_rx_skbufs(priv, queue);
1909 
1910 	rx_q->buf_alloc_num = 0;
1911 	rx_q->xsk_pool = NULL;
1912 
1913 	/* Free DMA regions of consistent memory previously allocated */
1914 	if (!priv->extend_desc)
1915 		dma_free_coherent(priv->device, priv->dma_rx_size *
1916 				  sizeof(struct dma_desc),
1917 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1918 	else
1919 		dma_free_coherent(priv->device, priv->dma_rx_size *
1920 				  sizeof(struct dma_extended_desc),
1921 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1922 
1923 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1924 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1925 
1926 	kfree(rx_q->buf_pool);
1927 	if (rx_q->page_pool)
1928 		page_pool_destroy(rx_q->page_pool);
1929 }
1930 
1931 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1932 {
1933 	u32 rx_count = priv->plat->rx_queues_to_use;
1934 	u32 queue;
1935 
1936 	/* Free RX queue resources */
1937 	for (queue = 0; queue < rx_count; queue++)
1938 		__free_dma_rx_desc_resources(priv, queue);
1939 }
1940 
1941 /**
1942  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1943  * @priv: private structure
1944  * @queue: TX queue index
1945  */
1946 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1947 {
1948 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1949 	size_t size;
1950 	void *addr;
1951 
1952 	/* Release the DMA TX socket buffers */
1953 	dma_free_tx_skbufs(priv, queue);
1954 
1955 	if (priv->extend_desc) {
1956 		size = sizeof(struct dma_extended_desc);
1957 		addr = tx_q->dma_etx;
1958 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1959 		size = sizeof(struct dma_edesc);
1960 		addr = tx_q->dma_entx;
1961 	} else {
1962 		size = sizeof(struct dma_desc);
1963 		addr = tx_q->dma_tx;
1964 	}
1965 
1966 	size *= priv->dma_tx_size;
1967 
1968 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1969 
1970 	kfree(tx_q->tx_skbuff_dma);
1971 	kfree(tx_q->tx_skbuff);
1972 }
1973 
1974 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1975 {
1976 	u32 tx_count = priv->plat->tx_queues_to_use;
1977 	u32 queue;
1978 
1979 	/* Free TX queue resources */
1980 	for (queue = 0; queue < tx_count; queue++)
1981 		__free_dma_tx_desc_resources(priv, queue);
1982 }
1983 
1984 /**
1985  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1986  * @priv: private structure
1987  * @queue: RX queue index
1988  * Description: according to which descriptor can be used (extend or basic)
1989  * this function allocates the resources for TX and RX paths. In case of
1990  * reception, for example, it pre-allocated the RX socket buffer in order to
1991  * allow zero-copy mechanism.
1992  */
1993 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1994 {
1995 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1996 	struct stmmac_channel *ch = &priv->channel[queue];
1997 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1998 	struct page_pool_params pp_params = { 0 };
1999 	unsigned int num_pages;
2000 	unsigned int napi_id;
2001 	int ret;
2002 
2003 	rx_q->queue_index = queue;
2004 	rx_q->priv_data = priv;
2005 
2006 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2007 	pp_params.pool_size = priv->dma_rx_size;
2008 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
2009 	pp_params.order = ilog2(num_pages);
2010 	pp_params.nid = dev_to_node(priv->device);
2011 	pp_params.dev = priv->device;
2012 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2013 	pp_params.offset = stmmac_rx_offset(priv);
2014 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2015 
2016 	rx_q->page_pool = page_pool_create(&pp_params);
2017 	if (IS_ERR(rx_q->page_pool)) {
2018 		ret = PTR_ERR(rx_q->page_pool);
2019 		rx_q->page_pool = NULL;
2020 		return ret;
2021 	}
2022 
2023 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
2024 				 sizeof(*rx_q->buf_pool),
2025 				 GFP_KERNEL);
2026 	if (!rx_q->buf_pool)
2027 		return -ENOMEM;
2028 
2029 	if (priv->extend_desc) {
2030 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2031 						   priv->dma_rx_size *
2032 						   sizeof(struct dma_extended_desc),
2033 						   &rx_q->dma_rx_phy,
2034 						   GFP_KERNEL);
2035 		if (!rx_q->dma_erx)
2036 			return -ENOMEM;
2037 
2038 	} else {
2039 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2040 						  priv->dma_rx_size *
2041 						  sizeof(struct dma_desc),
2042 						  &rx_q->dma_rx_phy,
2043 						  GFP_KERNEL);
2044 		if (!rx_q->dma_rx)
2045 			return -ENOMEM;
2046 	}
2047 
2048 	if (stmmac_xdp_is_enabled(priv) &&
2049 	    test_bit(queue, priv->af_xdp_zc_qps))
2050 		napi_id = ch->rxtx_napi.napi_id;
2051 	else
2052 		napi_id = ch->rx_napi.napi_id;
2053 
2054 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2055 			       rx_q->queue_index,
2056 			       napi_id);
2057 	if (ret) {
2058 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2059 		return -EINVAL;
2060 	}
2061 
2062 	return 0;
2063 }
2064 
2065 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2066 {
2067 	u32 rx_count = priv->plat->rx_queues_to_use;
2068 	u32 queue;
2069 	int ret;
2070 
2071 	/* RX queues buffers and DMA */
2072 	for (queue = 0; queue < rx_count; queue++) {
2073 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2074 		if (ret)
2075 			goto err_dma;
2076 	}
2077 
2078 	return 0;
2079 
2080 err_dma:
2081 	free_dma_rx_desc_resources(priv);
2082 
2083 	return ret;
2084 }
2085 
2086 /**
2087  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2088  * @priv: private structure
2089  * @queue: TX queue index
2090  * Description: according to which descriptor can be used (extend or basic)
2091  * this function allocates the resources for TX and RX paths. In case of
2092  * reception, for example, it pre-allocated the RX socket buffer in order to
2093  * allow zero-copy mechanism.
2094  */
2095 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2096 {
2097 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2098 	size_t size;
2099 	void *addr;
2100 
2101 	tx_q->queue_index = queue;
2102 	tx_q->priv_data = priv;
2103 
2104 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2105 				      sizeof(*tx_q->tx_skbuff_dma),
2106 				      GFP_KERNEL);
2107 	if (!tx_q->tx_skbuff_dma)
2108 		return -ENOMEM;
2109 
2110 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2111 				  sizeof(struct sk_buff *),
2112 				  GFP_KERNEL);
2113 	if (!tx_q->tx_skbuff)
2114 		return -ENOMEM;
2115 
2116 	if (priv->extend_desc)
2117 		size = sizeof(struct dma_extended_desc);
2118 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2119 		size = sizeof(struct dma_edesc);
2120 	else
2121 		size = sizeof(struct dma_desc);
2122 
2123 	size *= priv->dma_tx_size;
2124 
2125 	addr = dma_alloc_coherent(priv->device, size,
2126 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2127 	if (!addr)
2128 		return -ENOMEM;
2129 
2130 	if (priv->extend_desc)
2131 		tx_q->dma_etx = addr;
2132 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2133 		tx_q->dma_entx = addr;
2134 	else
2135 		tx_q->dma_tx = addr;
2136 
2137 	return 0;
2138 }
2139 
2140 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2141 {
2142 	u32 tx_count = priv->plat->tx_queues_to_use;
2143 	u32 queue;
2144 	int ret;
2145 
2146 	/* TX queues buffers and DMA */
2147 	for (queue = 0; queue < tx_count; queue++) {
2148 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2149 		if (ret)
2150 			goto err_dma;
2151 	}
2152 
2153 	return 0;
2154 
2155 err_dma:
2156 	free_dma_tx_desc_resources(priv);
2157 	return ret;
2158 }
2159 
2160 /**
2161  * alloc_dma_desc_resources - alloc TX/RX resources.
2162  * @priv: private structure
2163  * Description: according to which descriptor can be used (extend or basic)
2164  * this function allocates the resources for TX and RX paths. In case of
2165  * reception, for example, it pre-allocated the RX socket buffer in order to
2166  * allow zero-copy mechanism.
2167  */
2168 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2169 {
2170 	/* RX Allocation */
2171 	int ret = alloc_dma_rx_desc_resources(priv);
2172 
2173 	if (ret)
2174 		return ret;
2175 
2176 	ret = alloc_dma_tx_desc_resources(priv);
2177 
2178 	return ret;
2179 }
2180 
2181 /**
2182  * free_dma_desc_resources - free dma desc resources
2183  * @priv: private structure
2184  */
2185 static void free_dma_desc_resources(struct stmmac_priv *priv)
2186 {
2187 	/* Release the DMA TX socket buffers */
2188 	free_dma_tx_desc_resources(priv);
2189 
2190 	/* Release the DMA RX socket buffers later
2191 	 * to ensure all pending XDP_TX buffers are returned.
2192 	 */
2193 	free_dma_rx_desc_resources(priv);
2194 }
2195 
2196 /**
2197  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2198  *  @priv: driver private structure
2199  *  Description: It is used for enabling the rx queues in the MAC
2200  */
2201 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2202 {
2203 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2204 	int queue;
2205 	u8 mode;
2206 
2207 	for (queue = 0; queue < rx_queues_count; queue++) {
2208 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2209 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2210 	}
2211 }
2212 
2213 /**
2214  * stmmac_start_rx_dma - start RX DMA channel
2215  * @priv: driver private structure
2216  * @chan: RX channel index
2217  * Description:
2218  * This starts a RX DMA channel
2219  */
2220 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2221 {
2222 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2223 	stmmac_start_rx(priv, priv->ioaddr, chan);
2224 }
2225 
2226 /**
2227  * stmmac_start_tx_dma - start TX DMA channel
2228  * @priv: driver private structure
2229  * @chan: TX channel index
2230  * Description:
2231  * This starts a TX DMA channel
2232  */
2233 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2234 {
2235 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2236 	stmmac_start_tx(priv, priv->ioaddr, chan);
2237 }
2238 
2239 /**
2240  * stmmac_stop_rx_dma - stop RX DMA channel
2241  * @priv: driver private structure
2242  * @chan: RX channel index
2243  * Description:
2244  * This stops a RX DMA channel
2245  */
2246 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2247 {
2248 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2249 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2250 }
2251 
2252 /**
2253  * stmmac_stop_tx_dma - stop TX DMA channel
2254  * @priv: driver private structure
2255  * @chan: TX channel index
2256  * Description:
2257  * This stops a TX DMA channel
2258  */
2259 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2260 {
2261 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2262 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2263 }
2264 
2265 /**
2266  * stmmac_start_all_dma - start all RX and TX DMA channels
2267  * @priv: driver private structure
2268  * Description:
2269  * This starts all the RX and TX DMA channels
2270  */
2271 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2272 {
2273 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2274 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2275 	u32 chan = 0;
2276 
2277 	for (chan = 0; chan < rx_channels_count; chan++)
2278 		stmmac_start_rx_dma(priv, chan);
2279 
2280 	for (chan = 0; chan < tx_channels_count; chan++)
2281 		stmmac_start_tx_dma(priv, chan);
2282 }
2283 
2284 /**
2285  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2286  * @priv: driver private structure
2287  * Description:
2288  * This stops the RX and TX DMA channels
2289  */
2290 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2291 {
2292 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2293 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2294 	u32 chan = 0;
2295 
2296 	for (chan = 0; chan < rx_channels_count; chan++)
2297 		stmmac_stop_rx_dma(priv, chan);
2298 
2299 	for (chan = 0; chan < tx_channels_count; chan++)
2300 		stmmac_stop_tx_dma(priv, chan);
2301 }
2302 
2303 /**
2304  *  stmmac_dma_operation_mode - HW DMA operation mode
2305  *  @priv: driver private structure
2306  *  Description: it is used for configuring the DMA operation mode register in
2307  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2308  */
2309 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2310 {
2311 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2312 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2313 	int rxfifosz = priv->plat->rx_fifo_size;
2314 	int txfifosz = priv->plat->tx_fifo_size;
2315 	u32 txmode = 0;
2316 	u32 rxmode = 0;
2317 	u32 chan = 0;
2318 	u8 qmode = 0;
2319 
2320 	if (rxfifosz == 0)
2321 		rxfifosz = priv->dma_cap.rx_fifo_size;
2322 	if (txfifosz == 0)
2323 		txfifosz = priv->dma_cap.tx_fifo_size;
2324 
2325 	/* Adjust for real per queue fifo size */
2326 	rxfifosz /= rx_channels_count;
2327 	txfifosz /= tx_channels_count;
2328 
2329 	if (priv->plat->force_thresh_dma_mode) {
2330 		txmode = tc;
2331 		rxmode = tc;
2332 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2333 		/*
2334 		 * In case of GMAC, SF mode can be enabled
2335 		 * to perform the TX COE in HW. This depends on:
2336 		 * 1) TX COE if actually supported
2337 		 * 2) There is no bugged Jumbo frame support
2338 		 *    that needs to not insert csum in the TDES.
2339 		 */
2340 		txmode = SF_DMA_MODE;
2341 		rxmode = SF_DMA_MODE;
2342 		priv->xstats.threshold = SF_DMA_MODE;
2343 	} else {
2344 		txmode = tc;
2345 		rxmode = SF_DMA_MODE;
2346 	}
2347 
2348 	/* configure all channels */
2349 	for (chan = 0; chan < rx_channels_count; chan++) {
2350 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2351 		u32 buf_size;
2352 
2353 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2354 
2355 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2356 				rxfifosz, qmode);
2357 
2358 		if (rx_q->xsk_pool) {
2359 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2360 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2361 					      buf_size,
2362 					      chan);
2363 		} else {
2364 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2365 					      priv->dma_buf_sz,
2366 					      chan);
2367 		}
2368 	}
2369 
2370 	for (chan = 0; chan < tx_channels_count; chan++) {
2371 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2372 
2373 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2374 				txfifosz, qmode);
2375 	}
2376 }
2377 
2378 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2379 {
2380 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2381 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2382 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2383 	unsigned int entry = tx_q->cur_tx;
2384 	struct dma_desc *tx_desc = NULL;
2385 	struct xdp_desc xdp_desc;
2386 	bool work_done = true;
2387 
2388 	/* Avoids TX time-out as we are sharing with slow path */
2389 	txq_trans_cond_update(nq);
2390 
2391 	budget = min(budget, stmmac_tx_avail(priv, queue));
2392 
2393 	while (budget-- > 0) {
2394 		dma_addr_t dma_addr;
2395 		bool set_ic;
2396 
2397 		/* We are sharing with slow path and stop XSK TX desc submission when
2398 		 * available TX ring is less than threshold.
2399 		 */
2400 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2401 		    !netif_carrier_ok(priv->dev)) {
2402 			work_done = false;
2403 			break;
2404 		}
2405 
2406 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2407 			break;
2408 
2409 		if (likely(priv->extend_desc))
2410 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2411 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2412 			tx_desc = &tx_q->dma_entx[entry].basic;
2413 		else
2414 			tx_desc = tx_q->dma_tx + entry;
2415 
2416 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2417 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2418 
2419 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2420 
2421 		/* To return XDP buffer to XSK pool, we simple call
2422 		 * xsk_tx_completed(), so we don't need to fill up
2423 		 * 'buf' and 'xdpf'.
2424 		 */
2425 		tx_q->tx_skbuff_dma[entry].buf = 0;
2426 		tx_q->xdpf[entry] = NULL;
2427 
2428 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2429 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2430 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2431 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2432 
2433 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2434 
2435 		tx_q->tx_count_frames++;
2436 
2437 		if (!priv->tx_coal_frames[queue])
2438 			set_ic = false;
2439 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2440 			set_ic = true;
2441 		else
2442 			set_ic = false;
2443 
2444 		if (set_ic) {
2445 			tx_q->tx_count_frames = 0;
2446 			stmmac_set_tx_ic(priv, tx_desc);
2447 			priv->xstats.tx_set_ic_bit++;
2448 		}
2449 
2450 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2451 				       true, priv->mode, true, true,
2452 				       xdp_desc.len);
2453 
2454 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2455 
2456 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2457 		entry = tx_q->cur_tx;
2458 	}
2459 
2460 	if (tx_desc) {
2461 		stmmac_flush_tx_descriptors(priv, queue);
2462 		xsk_tx_release(pool);
2463 	}
2464 
2465 	/* Return true if all of the 3 conditions are met
2466 	 *  a) TX Budget is still available
2467 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2468 	 *     pending XSK TX for transmission)
2469 	 */
2470 	return !!budget && work_done;
2471 }
2472 
2473 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2474 {
2475 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2476 		tc += 64;
2477 
2478 		if (priv->plat->force_thresh_dma_mode)
2479 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2480 		else
2481 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2482 						      chan);
2483 
2484 		priv->xstats.threshold = tc;
2485 	}
2486 }
2487 
2488 /**
2489  * stmmac_tx_clean - to manage the transmission completion
2490  * @priv: driver private structure
2491  * @budget: napi budget limiting this functions packet handling
2492  * @queue: TX queue index
2493  * Description: it reclaims the transmit resources after transmission completes.
2494  */
2495 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2496 {
2497 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2498 	unsigned int bytes_compl = 0, pkts_compl = 0;
2499 	unsigned int entry, xmits = 0, count = 0;
2500 
2501 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2502 
2503 	priv->xstats.tx_clean++;
2504 
2505 	tx_q->xsk_frames_done = 0;
2506 
2507 	entry = tx_q->dirty_tx;
2508 
2509 	/* Try to clean all TX complete frame in 1 shot */
2510 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2511 		struct xdp_frame *xdpf;
2512 		struct sk_buff *skb;
2513 		struct dma_desc *p;
2514 		int status;
2515 
2516 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2517 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2518 			xdpf = tx_q->xdpf[entry];
2519 			skb = NULL;
2520 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2521 			xdpf = NULL;
2522 			skb = tx_q->tx_skbuff[entry];
2523 		} else {
2524 			xdpf = NULL;
2525 			skb = NULL;
2526 		}
2527 
2528 		if (priv->extend_desc)
2529 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2530 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2531 			p = &tx_q->dma_entx[entry].basic;
2532 		else
2533 			p = tx_q->dma_tx + entry;
2534 
2535 		status = stmmac_tx_status(priv, &priv->dev->stats,
2536 				&priv->xstats, p, priv->ioaddr);
2537 		/* Check if the descriptor is owned by the DMA */
2538 		if (unlikely(status & tx_dma_own))
2539 			break;
2540 
2541 		count++;
2542 
2543 		/* Make sure descriptor fields are read after reading
2544 		 * the own bit.
2545 		 */
2546 		dma_rmb();
2547 
2548 		/* Just consider the last segment and ...*/
2549 		if (likely(!(status & tx_not_ls))) {
2550 			/* ... verify the status error condition */
2551 			if (unlikely(status & tx_err)) {
2552 				priv->dev->stats.tx_errors++;
2553 				if (unlikely(status & tx_err_bump_tc))
2554 					stmmac_bump_dma_threshold(priv, queue);
2555 			} else {
2556 				priv->dev->stats.tx_packets++;
2557 				priv->xstats.tx_pkt_n++;
2558 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2559 			}
2560 			if (skb)
2561 				stmmac_get_tx_hwtstamp(priv, p, skb);
2562 		}
2563 
2564 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2565 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2566 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2567 				dma_unmap_page(priv->device,
2568 					       tx_q->tx_skbuff_dma[entry].buf,
2569 					       tx_q->tx_skbuff_dma[entry].len,
2570 					       DMA_TO_DEVICE);
2571 			else
2572 				dma_unmap_single(priv->device,
2573 						 tx_q->tx_skbuff_dma[entry].buf,
2574 						 tx_q->tx_skbuff_dma[entry].len,
2575 						 DMA_TO_DEVICE);
2576 			tx_q->tx_skbuff_dma[entry].buf = 0;
2577 			tx_q->tx_skbuff_dma[entry].len = 0;
2578 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2579 		}
2580 
2581 		stmmac_clean_desc3(priv, tx_q, p);
2582 
2583 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2584 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2585 
2586 		if (xdpf &&
2587 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2588 			xdp_return_frame_rx_napi(xdpf);
2589 			tx_q->xdpf[entry] = NULL;
2590 		}
2591 
2592 		if (xdpf &&
2593 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2594 			xdp_return_frame(xdpf);
2595 			tx_q->xdpf[entry] = NULL;
2596 		}
2597 
2598 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2599 			tx_q->xsk_frames_done++;
2600 
2601 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2602 			if (likely(skb)) {
2603 				pkts_compl++;
2604 				bytes_compl += skb->len;
2605 				dev_consume_skb_any(skb);
2606 				tx_q->tx_skbuff[entry] = NULL;
2607 			}
2608 		}
2609 
2610 		stmmac_release_tx_desc(priv, p, priv->mode);
2611 
2612 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2613 	}
2614 	tx_q->dirty_tx = entry;
2615 
2616 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2617 				  pkts_compl, bytes_compl);
2618 
2619 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2620 								queue))) &&
2621 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2622 
2623 		netif_dbg(priv, tx_done, priv->dev,
2624 			  "%s: restart transmit\n", __func__);
2625 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2626 	}
2627 
2628 	if (tx_q->xsk_pool) {
2629 		bool work_done;
2630 
2631 		if (tx_q->xsk_frames_done)
2632 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2633 
2634 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2635 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2636 
2637 		/* For XSK TX, we try to send as many as possible.
2638 		 * If XSK work done (XSK TX desc empty and budget still
2639 		 * available), return "budget - 1" to reenable TX IRQ.
2640 		 * Else, return "budget" to make NAPI continue polling.
2641 		 */
2642 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2643 					       STMMAC_XSK_TX_BUDGET_MAX);
2644 		if (work_done)
2645 			xmits = budget - 1;
2646 		else
2647 			xmits = budget;
2648 	}
2649 
2650 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2651 	    priv->eee_sw_timer_en) {
2652 		if (stmmac_enable_eee_mode(priv))
2653 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2654 	}
2655 
2656 	/* We still have pending packets, let's call for a new scheduling */
2657 	if (tx_q->dirty_tx != tx_q->cur_tx)
2658 		hrtimer_start(&tx_q->txtimer,
2659 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2660 			      HRTIMER_MODE_REL);
2661 
2662 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2663 
2664 	/* Combine decisions from TX clean and XSK TX */
2665 	return max(count, xmits);
2666 }
2667 
2668 /**
2669  * stmmac_tx_err - to manage the tx error
2670  * @priv: driver private structure
2671  * @chan: channel index
2672  * Description: it cleans the descriptors and restarts the transmission
2673  * in case of transmission errors.
2674  */
2675 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2676 {
2677 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2678 
2679 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2680 
2681 	stmmac_stop_tx_dma(priv, chan);
2682 	dma_free_tx_skbufs(priv, chan);
2683 	stmmac_clear_tx_descriptors(priv, chan);
2684 	tx_q->dirty_tx = 0;
2685 	tx_q->cur_tx = 0;
2686 	tx_q->mss = 0;
2687 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2688 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2689 			    tx_q->dma_tx_phy, chan);
2690 	stmmac_start_tx_dma(priv, chan);
2691 
2692 	priv->dev->stats.tx_errors++;
2693 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2694 }
2695 
2696 /**
2697  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2698  *  @priv: driver private structure
2699  *  @txmode: TX operating mode
2700  *  @rxmode: RX operating mode
2701  *  @chan: channel index
2702  *  Description: it is used for configuring of the DMA operation mode in
2703  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2704  *  mode.
2705  */
2706 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2707 					  u32 rxmode, u32 chan)
2708 {
2709 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2710 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2711 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2712 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2713 	int rxfifosz = priv->plat->rx_fifo_size;
2714 	int txfifosz = priv->plat->tx_fifo_size;
2715 
2716 	if (rxfifosz == 0)
2717 		rxfifosz = priv->dma_cap.rx_fifo_size;
2718 	if (txfifosz == 0)
2719 		txfifosz = priv->dma_cap.tx_fifo_size;
2720 
2721 	/* Adjust for real per queue fifo size */
2722 	rxfifosz /= rx_channels_count;
2723 	txfifosz /= tx_channels_count;
2724 
2725 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2726 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2727 }
2728 
2729 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2730 {
2731 	int ret;
2732 
2733 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2734 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2735 	if (ret && (ret != -EINVAL)) {
2736 		stmmac_global_err(priv);
2737 		return true;
2738 	}
2739 
2740 	return false;
2741 }
2742 
2743 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2744 {
2745 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2746 						 &priv->xstats, chan, dir);
2747 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2748 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2749 	struct stmmac_channel *ch = &priv->channel[chan];
2750 	struct napi_struct *rx_napi;
2751 	struct napi_struct *tx_napi;
2752 	unsigned long flags;
2753 
2754 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2755 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2756 
2757 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2758 		if (napi_schedule_prep(rx_napi)) {
2759 			spin_lock_irqsave(&ch->lock, flags);
2760 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2761 			spin_unlock_irqrestore(&ch->lock, flags);
2762 			__napi_schedule(rx_napi);
2763 		}
2764 	}
2765 
2766 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2767 		if (napi_schedule_prep(tx_napi)) {
2768 			spin_lock_irqsave(&ch->lock, flags);
2769 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2770 			spin_unlock_irqrestore(&ch->lock, flags);
2771 			__napi_schedule(tx_napi);
2772 		}
2773 	}
2774 
2775 	return status;
2776 }
2777 
2778 /**
2779  * stmmac_dma_interrupt - DMA ISR
2780  * @priv: driver private structure
2781  * Description: this is the DMA ISR. It is called by the main ISR.
2782  * It calls the dwmac dma routine and schedule poll method in case of some
2783  * work can be done.
2784  */
2785 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2786 {
2787 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2788 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2789 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2790 				tx_channel_count : rx_channel_count;
2791 	u32 chan;
2792 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2793 
2794 	/* Make sure we never check beyond our status buffer. */
2795 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2796 		channels_to_check = ARRAY_SIZE(status);
2797 
2798 	for (chan = 0; chan < channels_to_check; chan++)
2799 		status[chan] = stmmac_napi_check(priv, chan,
2800 						 DMA_DIR_RXTX);
2801 
2802 	for (chan = 0; chan < tx_channel_count; chan++) {
2803 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2804 			/* Try to bump up the dma threshold on this failure */
2805 			stmmac_bump_dma_threshold(priv, chan);
2806 		} else if (unlikely(status[chan] == tx_hard_error)) {
2807 			stmmac_tx_err(priv, chan);
2808 		}
2809 	}
2810 }
2811 
2812 /**
2813  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2814  * @priv: driver private structure
2815  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2816  */
2817 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2818 {
2819 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2820 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2821 
2822 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2823 
2824 	if (priv->dma_cap.rmon) {
2825 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2826 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2827 	} else
2828 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2829 }
2830 
2831 /**
2832  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2833  * @priv: driver private structure
2834  * Description:
2835  *  new GMAC chip generations have a new register to indicate the
2836  *  presence of the optional feature/functions.
2837  *  This can be also used to override the value passed through the
2838  *  platform and necessary for old MAC10/100 and GMAC chips.
2839  */
2840 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2841 {
2842 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2843 }
2844 
2845 /**
2846  * stmmac_check_ether_addr - check if the MAC addr is valid
2847  * @priv: driver private structure
2848  * Description:
2849  * it is to verify if the MAC address is valid, in case of failures it
2850  * generates a random MAC address
2851  */
2852 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2853 {
2854 	u8 addr[ETH_ALEN];
2855 
2856 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2857 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2858 		if (is_valid_ether_addr(addr))
2859 			eth_hw_addr_set(priv->dev, addr);
2860 		else
2861 			eth_hw_addr_random(priv->dev);
2862 		dev_info(priv->device, "device MAC address %pM\n",
2863 			 priv->dev->dev_addr);
2864 	}
2865 }
2866 
2867 /**
2868  * stmmac_init_dma_engine - DMA init.
2869  * @priv: driver private structure
2870  * Description:
2871  * It inits the DMA invoking the specific MAC/GMAC callback.
2872  * Some DMA parameters can be passed from the platform;
2873  * in case of these are not passed a default is kept for the MAC or GMAC.
2874  */
2875 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2876 {
2877 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2878 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2879 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2880 	struct stmmac_rx_queue *rx_q;
2881 	struct stmmac_tx_queue *tx_q;
2882 	u32 chan = 0;
2883 	int atds = 0;
2884 	int ret = 0;
2885 
2886 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2887 		dev_err(priv->device, "Invalid DMA configuration\n");
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2892 		atds = 1;
2893 
2894 	ret = stmmac_reset(priv, priv->ioaddr);
2895 	if (ret) {
2896 		dev_err(priv->device, "Failed to reset the dma\n");
2897 		return ret;
2898 	}
2899 
2900 	/* DMA Configuration */
2901 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2902 
2903 	if (priv->plat->axi)
2904 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2905 
2906 	/* DMA CSR Channel configuration */
2907 	for (chan = 0; chan < dma_csr_ch; chan++)
2908 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2909 
2910 	/* DMA RX Channel Configuration */
2911 	for (chan = 0; chan < rx_channels_count; chan++) {
2912 		rx_q = &priv->rx_queue[chan];
2913 
2914 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2915 				    rx_q->dma_rx_phy, chan);
2916 
2917 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2918 				     (rx_q->buf_alloc_num *
2919 				      sizeof(struct dma_desc));
2920 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2921 				       rx_q->rx_tail_addr, chan);
2922 	}
2923 
2924 	/* DMA TX Channel Configuration */
2925 	for (chan = 0; chan < tx_channels_count; chan++) {
2926 		tx_q = &priv->tx_queue[chan];
2927 
2928 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2929 				    tx_q->dma_tx_phy, chan);
2930 
2931 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2932 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2933 				       tx_q->tx_tail_addr, chan);
2934 	}
2935 
2936 	return ret;
2937 }
2938 
2939 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2940 {
2941 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2942 
2943 	hrtimer_start(&tx_q->txtimer,
2944 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2945 		      HRTIMER_MODE_REL);
2946 }
2947 
2948 /**
2949  * stmmac_tx_timer - mitigation sw timer for tx.
2950  * @t: data pointer
2951  * Description:
2952  * This is the timer handler to directly invoke the stmmac_tx_clean.
2953  */
2954 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2955 {
2956 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2957 	struct stmmac_priv *priv = tx_q->priv_data;
2958 	struct stmmac_channel *ch;
2959 	struct napi_struct *napi;
2960 
2961 	ch = &priv->channel[tx_q->queue_index];
2962 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2963 
2964 	if (likely(napi_schedule_prep(napi))) {
2965 		unsigned long flags;
2966 
2967 		spin_lock_irqsave(&ch->lock, flags);
2968 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2969 		spin_unlock_irqrestore(&ch->lock, flags);
2970 		__napi_schedule(napi);
2971 	}
2972 
2973 	return HRTIMER_NORESTART;
2974 }
2975 
2976 /**
2977  * stmmac_init_coalesce - init mitigation options.
2978  * @priv: driver private structure
2979  * Description:
2980  * This inits the coalesce parameters: i.e. timer rate,
2981  * timer handler and default threshold used for enabling the
2982  * interrupt on completion bit.
2983  */
2984 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2985 {
2986 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2987 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2988 	u32 chan;
2989 
2990 	for (chan = 0; chan < tx_channel_count; chan++) {
2991 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2992 
2993 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2994 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2995 
2996 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2997 		tx_q->txtimer.function = stmmac_tx_timer;
2998 	}
2999 
3000 	for (chan = 0; chan < rx_channel_count; chan++)
3001 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3002 }
3003 
3004 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3005 {
3006 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3007 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3008 	u32 chan;
3009 
3010 	/* set TX ring length */
3011 	for (chan = 0; chan < tx_channels_count; chan++)
3012 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3013 				       (priv->dma_tx_size - 1), chan);
3014 
3015 	/* set RX ring length */
3016 	for (chan = 0; chan < rx_channels_count; chan++)
3017 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3018 				       (priv->dma_rx_size - 1), chan);
3019 }
3020 
3021 /**
3022  *  stmmac_set_tx_queue_weight - Set TX queue weight
3023  *  @priv: driver private structure
3024  *  Description: It is used for setting TX queues weight
3025  */
3026 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3027 {
3028 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3029 	u32 weight;
3030 	u32 queue;
3031 
3032 	for (queue = 0; queue < tx_queues_count; queue++) {
3033 		weight = priv->plat->tx_queues_cfg[queue].weight;
3034 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3035 	}
3036 }
3037 
3038 /**
3039  *  stmmac_configure_cbs - Configure CBS in TX queue
3040  *  @priv: driver private structure
3041  *  Description: It is used for configuring CBS in AVB TX queues
3042  */
3043 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3044 {
3045 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3046 	u32 mode_to_use;
3047 	u32 queue;
3048 
3049 	/* queue 0 is reserved for legacy traffic */
3050 	for (queue = 1; queue < tx_queues_count; queue++) {
3051 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3052 		if (mode_to_use == MTL_QUEUE_DCB)
3053 			continue;
3054 
3055 		stmmac_config_cbs(priv, priv->hw,
3056 				priv->plat->tx_queues_cfg[queue].send_slope,
3057 				priv->plat->tx_queues_cfg[queue].idle_slope,
3058 				priv->plat->tx_queues_cfg[queue].high_credit,
3059 				priv->plat->tx_queues_cfg[queue].low_credit,
3060 				queue);
3061 	}
3062 }
3063 
3064 /**
3065  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3066  *  @priv: driver private structure
3067  *  Description: It is used for mapping RX queues to RX dma channels
3068  */
3069 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3070 {
3071 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3072 	u32 queue;
3073 	u32 chan;
3074 
3075 	for (queue = 0; queue < rx_queues_count; queue++) {
3076 		chan = priv->plat->rx_queues_cfg[queue].chan;
3077 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3078 	}
3079 }
3080 
3081 /**
3082  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3083  *  @priv: driver private structure
3084  *  Description: It is used for configuring the RX Queue Priority
3085  */
3086 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3087 {
3088 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3089 	u32 queue;
3090 	u32 prio;
3091 
3092 	for (queue = 0; queue < rx_queues_count; queue++) {
3093 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3094 			continue;
3095 
3096 		prio = priv->plat->rx_queues_cfg[queue].prio;
3097 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3098 	}
3099 }
3100 
3101 /**
3102  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3103  *  @priv: driver private structure
3104  *  Description: It is used for configuring the TX Queue Priority
3105  */
3106 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3107 {
3108 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3109 	u32 queue;
3110 	u32 prio;
3111 
3112 	for (queue = 0; queue < tx_queues_count; queue++) {
3113 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3114 			continue;
3115 
3116 		prio = priv->plat->tx_queues_cfg[queue].prio;
3117 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3118 	}
3119 }
3120 
3121 /**
3122  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3123  *  @priv: driver private structure
3124  *  Description: It is used for configuring the RX queue routing
3125  */
3126 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3127 {
3128 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3129 	u32 queue;
3130 	u8 packet;
3131 
3132 	for (queue = 0; queue < rx_queues_count; queue++) {
3133 		/* no specific packet type routing specified for the queue */
3134 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3135 			continue;
3136 
3137 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3138 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3139 	}
3140 }
3141 
3142 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3143 {
3144 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3145 		priv->rss.enable = false;
3146 		return;
3147 	}
3148 
3149 	if (priv->dev->features & NETIF_F_RXHASH)
3150 		priv->rss.enable = true;
3151 	else
3152 		priv->rss.enable = false;
3153 
3154 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3155 			     priv->plat->rx_queues_to_use);
3156 }
3157 
3158 /**
3159  *  stmmac_mtl_configuration - Configure MTL
3160  *  @priv: driver private structure
3161  *  Description: It is used for configurring MTL
3162  */
3163 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3164 {
3165 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3166 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3167 
3168 	if (tx_queues_count > 1)
3169 		stmmac_set_tx_queue_weight(priv);
3170 
3171 	/* Configure MTL RX algorithms */
3172 	if (rx_queues_count > 1)
3173 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3174 				priv->plat->rx_sched_algorithm);
3175 
3176 	/* Configure MTL TX algorithms */
3177 	if (tx_queues_count > 1)
3178 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3179 				priv->plat->tx_sched_algorithm);
3180 
3181 	/* Configure CBS in AVB TX queues */
3182 	if (tx_queues_count > 1)
3183 		stmmac_configure_cbs(priv);
3184 
3185 	/* Map RX MTL to DMA channels */
3186 	stmmac_rx_queue_dma_chan_map(priv);
3187 
3188 	/* Enable MAC RX Queues */
3189 	stmmac_mac_enable_rx_queues(priv);
3190 
3191 	/* Set RX priorities */
3192 	if (rx_queues_count > 1)
3193 		stmmac_mac_config_rx_queues_prio(priv);
3194 
3195 	/* Set TX priorities */
3196 	if (tx_queues_count > 1)
3197 		stmmac_mac_config_tx_queues_prio(priv);
3198 
3199 	/* Set RX routing */
3200 	if (rx_queues_count > 1)
3201 		stmmac_mac_config_rx_queues_routing(priv);
3202 
3203 	/* Receive Side Scaling */
3204 	if (rx_queues_count > 1)
3205 		stmmac_mac_config_rss(priv);
3206 }
3207 
3208 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3209 {
3210 	if (priv->dma_cap.asp) {
3211 		netdev_info(priv->dev, "Enabling Safety Features\n");
3212 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3213 					  priv->plat->safety_feat_cfg);
3214 	} else {
3215 		netdev_info(priv->dev, "No Safety Features support found\n");
3216 	}
3217 }
3218 
3219 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3220 {
3221 	char *name;
3222 
3223 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3224 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3225 
3226 	name = priv->wq_name;
3227 	sprintf(name, "%s-fpe", priv->dev->name);
3228 
3229 	priv->fpe_wq = create_singlethread_workqueue(name);
3230 	if (!priv->fpe_wq) {
3231 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3232 
3233 		return -ENOMEM;
3234 	}
3235 	netdev_info(priv->dev, "FPE workqueue start");
3236 
3237 	return 0;
3238 }
3239 
3240 /**
3241  * stmmac_hw_setup - setup mac in a usable state.
3242  *  @dev : pointer to the device structure.
3243  *  @ptp_register: register PTP if set
3244  *  Description:
3245  *  this is the main function to setup the HW in a usable state because the
3246  *  dma engine is reset, the core registers are configured (e.g. AXI,
3247  *  Checksum features, timers). The DMA is ready to start receiving and
3248  *  transmitting.
3249  *  Return value:
3250  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3251  *  file on failure.
3252  */
3253 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3254 {
3255 	struct stmmac_priv *priv = netdev_priv(dev);
3256 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3257 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3258 	bool sph_en;
3259 	u32 chan;
3260 	int ret;
3261 
3262 	/* DMA initialization and SW reset */
3263 	ret = stmmac_init_dma_engine(priv);
3264 	if (ret < 0) {
3265 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3266 			   __func__);
3267 		return ret;
3268 	}
3269 
3270 	/* Copy the MAC addr into the HW  */
3271 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3272 
3273 	/* PS and related bits will be programmed according to the speed */
3274 	if (priv->hw->pcs) {
3275 		int speed = priv->plat->mac_port_sel_speed;
3276 
3277 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3278 		    (speed == SPEED_1000)) {
3279 			priv->hw->ps = speed;
3280 		} else {
3281 			dev_warn(priv->device, "invalid port speed\n");
3282 			priv->hw->ps = 0;
3283 		}
3284 	}
3285 
3286 	/* Initialize the MAC Core */
3287 	stmmac_core_init(priv, priv->hw, dev);
3288 
3289 	/* Initialize MTL*/
3290 	stmmac_mtl_configuration(priv);
3291 
3292 	/* Initialize Safety Features */
3293 	stmmac_safety_feat_configuration(priv);
3294 
3295 	ret = stmmac_rx_ipc(priv, priv->hw);
3296 	if (!ret) {
3297 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3298 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3299 		priv->hw->rx_csum = 0;
3300 	}
3301 
3302 	/* Enable the MAC Rx/Tx */
3303 	stmmac_mac_set(priv, priv->ioaddr, true);
3304 
3305 	/* Set the HW DMA mode and the COE */
3306 	stmmac_dma_operation_mode(priv);
3307 
3308 	stmmac_mmc_setup(priv);
3309 
3310 	ret = stmmac_init_ptp(priv);
3311 	if (ret == -EOPNOTSUPP)
3312 		netdev_warn(priv->dev, "PTP not supported by HW\n");
3313 	else if (ret)
3314 		netdev_warn(priv->dev, "PTP init failed\n");
3315 	else if (ptp_register)
3316 		stmmac_ptp_register(priv);
3317 
3318 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3319 
3320 	/* Convert the timer from msec to usec */
3321 	if (!priv->tx_lpi_timer)
3322 		priv->tx_lpi_timer = eee_timer * 1000;
3323 
3324 	if (priv->use_riwt) {
3325 		u32 queue;
3326 
3327 		for (queue = 0; queue < rx_cnt; queue++) {
3328 			if (!priv->rx_riwt[queue])
3329 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3330 
3331 			stmmac_rx_watchdog(priv, priv->ioaddr,
3332 					   priv->rx_riwt[queue], queue);
3333 		}
3334 	}
3335 
3336 	if (priv->hw->pcs)
3337 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3338 
3339 	/* set TX and RX rings length */
3340 	stmmac_set_rings_length(priv);
3341 
3342 	/* Enable TSO */
3343 	if (priv->tso) {
3344 		for (chan = 0; chan < tx_cnt; chan++) {
3345 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3346 
3347 			/* TSO and TBS cannot co-exist */
3348 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3349 				continue;
3350 
3351 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3352 		}
3353 	}
3354 
3355 	/* Enable Split Header */
3356 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3357 	for (chan = 0; chan < rx_cnt; chan++)
3358 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3359 
3360 
3361 	/* VLAN Tag Insertion */
3362 	if (priv->dma_cap.vlins)
3363 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3364 
3365 	/* TBS */
3366 	for (chan = 0; chan < tx_cnt; chan++) {
3367 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3368 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3369 
3370 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3371 	}
3372 
3373 	/* Configure real RX and TX queues */
3374 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3375 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3376 
3377 	/* Start the ball rolling... */
3378 	stmmac_start_all_dma(priv);
3379 
3380 	if (priv->dma_cap.fpesel) {
3381 		stmmac_fpe_start_wq(priv);
3382 
3383 		if (priv->plat->fpe_cfg->enable)
3384 			stmmac_fpe_handshake(priv, true);
3385 	}
3386 
3387 	return 0;
3388 }
3389 
3390 static void stmmac_hw_teardown(struct net_device *dev)
3391 {
3392 	struct stmmac_priv *priv = netdev_priv(dev);
3393 
3394 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3395 }
3396 
3397 static void stmmac_free_irq(struct net_device *dev,
3398 			    enum request_irq_err irq_err, int irq_idx)
3399 {
3400 	struct stmmac_priv *priv = netdev_priv(dev);
3401 	int j;
3402 
3403 	switch (irq_err) {
3404 	case REQ_IRQ_ERR_ALL:
3405 		irq_idx = priv->plat->tx_queues_to_use;
3406 		fallthrough;
3407 	case REQ_IRQ_ERR_TX:
3408 		for (j = irq_idx - 1; j >= 0; j--) {
3409 			if (priv->tx_irq[j] > 0) {
3410 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3411 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3412 			}
3413 		}
3414 		irq_idx = priv->plat->rx_queues_to_use;
3415 		fallthrough;
3416 	case REQ_IRQ_ERR_RX:
3417 		for (j = irq_idx - 1; j >= 0; j--) {
3418 			if (priv->rx_irq[j] > 0) {
3419 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3420 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3421 			}
3422 		}
3423 
3424 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3425 			free_irq(priv->sfty_ue_irq, dev);
3426 		fallthrough;
3427 	case REQ_IRQ_ERR_SFTY_UE:
3428 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3429 			free_irq(priv->sfty_ce_irq, dev);
3430 		fallthrough;
3431 	case REQ_IRQ_ERR_SFTY_CE:
3432 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3433 			free_irq(priv->lpi_irq, dev);
3434 		fallthrough;
3435 	case REQ_IRQ_ERR_LPI:
3436 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3437 			free_irq(priv->wol_irq, dev);
3438 		fallthrough;
3439 	case REQ_IRQ_ERR_WOL:
3440 		free_irq(dev->irq, dev);
3441 		fallthrough;
3442 	case REQ_IRQ_ERR_MAC:
3443 	case REQ_IRQ_ERR_NO:
3444 		/* If MAC IRQ request error, no more IRQ to free */
3445 		break;
3446 	}
3447 }
3448 
3449 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3450 {
3451 	struct stmmac_priv *priv = netdev_priv(dev);
3452 	enum request_irq_err irq_err;
3453 	cpumask_t cpu_mask;
3454 	int irq_idx = 0;
3455 	char *int_name;
3456 	int ret;
3457 	int i;
3458 
3459 	/* For common interrupt */
3460 	int_name = priv->int_name_mac;
3461 	sprintf(int_name, "%s:%s", dev->name, "mac");
3462 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3463 			  0, int_name, dev);
3464 	if (unlikely(ret < 0)) {
3465 		netdev_err(priv->dev,
3466 			   "%s: alloc mac MSI %d (error: %d)\n",
3467 			   __func__, dev->irq, ret);
3468 		irq_err = REQ_IRQ_ERR_MAC;
3469 		goto irq_error;
3470 	}
3471 
3472 	/* Request the Wake IRQ in case of another line
3473 	 * is used for WoL
3474 	 */
3475 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3476 		int_name = priv->int_name_wol;
3477 		sprintf(int_name, "%s:%s", dev->name, "wol");
3478 		ret = request_irq(priv->wol_irq,
3479 				  stmmac_mac_interrupt,
3480 				  0, int_name, dev);
3481 		if (unlikely(ret < 0)) {
3482 			netdev_err(priv->dev,
3483 				   "%s: alloc wol MSI %d (error: %d)\n",
3484 				   __func__, priv->wol_irq, ret);
3485 			irq_err = REQ_IRQ_ERR_WOL;
3486 			goto irq_error;
3487 		}
3488 	}
3489 
3490 	/* Request the LPI IRQ in case of another line
3491 	 * is used for LPI
3492 	 */
3493 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3494 		int_name = priv->int_name_lpi;
3495 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3496 		ret = request_irq(priv->lpi_irq,
3497 				  stmmac_mac_interrupt,
3498 				  0, int_name, dev);
3499 		if (unlikely(ret < 0)) {
3500 			netdev_err(priv->dev,
3501 				   "%s: alloc lpi MSI %d (error: %d)\n",
3502 				   __func__, priv->lpi_irq, ret);
3503 			irq_err = REQ_IRQ_ERR_LPI;
3504 			goto irq_error;
3505 		}
3506 	}
3507 
3508 	/* Request the Safety Feature Correctible Error line in
3509 	 * case of another line is used
3510 	 */
3511 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3512 		int_name = priv->int_name_sfty_ce;
3513 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3514 		ret = request_irq(priv->sfty_ce_irq,
3515 				  stmmac_safety_interrupt,
3516 				  0, int_name, dev);
3517 		if (unlikely(ret < 0)) {
3518 			netdev_err(priv->dev,
3519 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3520 				   __func__, priv->sfty_ce_irq, ret);
3521 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3522 			goto irq_error;
3523 		}
3524 	}
3525 
3526 	/* Request the Safety Feature Uncorrectible Error line in
3527 	 * case of another line is used
3528 	 */
3529 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3530 		int_name = priv->int_name_sfty_ue;
3531 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3532 		ret = request_irq(priv->sfty_ue_irq,
3533 				  stmmac_safety_interrupt,
3534 				  0, int_name, dev);
3535 		if (unlikely(ret < 0)) {
3536 			netdev_err(priv->dev,
3537 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3538 				   __func__, priv->sfty_ue_irq, ret);
3539 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3540 			goto irq_error;
3541 		}
3542 	}
3543 
3544 	/* Request Rx MSI irq */
3545 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3546 		if (i >= MTL_MAX_RX_QUEUES)
3547 			break;
3548 		if (priv->rx_irq[i] == 0)
3549 			continue;
3550 
3551 		int_name = priv->int_name_rx_irq[i];
3552 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3553 		ret = request_irq(priv->rx_irq[i],
3554 				  stmmac_msi_intr_rx,
3555 				  0, int_name, &priv->rx_queue[i]);
3556 		if (unlikely(ret < 0)) {
3557 			netdev_err(priv->dev,
3558 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3559 				   __func__, i, priv->rx_irq[i], ret);
3560 			irq_err = REQ_IRQ_ERR_RX;
3561 			irq_idx = i;
3562 			goto irq_error;
3563 		}
3564 		cpumask_clear(&cpu_mask);
3565 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3566 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3567 	}
3568 
3569 	/* Request Tx MSI irq */
3570 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3571 		if (i >= MTL_MAX_TX_QUEUES)
3572 			break;
3573 		if (priv->tx_irq[i] == 0)
3574 			continue;
3575 
3576 		int_name = priv->int_name_tx_irq[i];
3577 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3578 		ret = request_irq(priv->tx_irq[i],
3579 				  stmmac_msi_intr_tx,
3580 				  0, int_name, &priv->tx_queue[i]);
3581 		if (unlikely(ret < 0)) {
3582 			netdev_err(priv->dev,
3583 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3584 				   __func__, i, priv->tx_irq[i], ret);
3585 			irq_err = REQ_IRQ_ERR_TX;
3586 			irq_idx = i;
3587 			goto irq_error;
3588 		}
3589 		cpumask_clear(&cpu_mask);
3590 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3591 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3592 	}
3593 
3594 	return 0;
3595 
3596 irq_error:
3597 	stmmac_free_irq(dev, irq_err, irq_idx);
3598 	return ret;
3599 }
3600 
3601 static int stmmac_request_irq_single(struct net_device *dev)
3602 {
3603 	struct stmmac_priv *priv = netdev_priv(dev);
3604 	enum request_irq_err irq_err;
3605 	int ret;
3606 
3607 	ret = request_irq(dev->irq, stmmac_interrupt,
3608 			  IRQF_SHARED, dev->name, dev);
3609 	if (unlikely(ret < 0)) {
3610 		netdev_err(priv->dev,
3611 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3612 			   __func__, dev->irq, ret);
3613 		irq_err = REQ_IRQ_ERR_MAC;
3614 		goto irq_error;
3615 	}
3616 
3617 	/* Request the Wake IRQ in case of another line
3618 	 * is used for WoL
3619 	 */
3620 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3621 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3622 				  IRQF_SHARED, dev->name, dev);
3623 		if (unlikely(ret < 0)) {
3624 			netdev_err(priv->dev,
3625 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3626 				   __func__, priv->wol_irq, ret);
3627 			irq_err = REQ_IRQ_ERR_WOL;
3628 			goto irq_error;
3629 		}
3630 	}
3631 
3632 	/* Request the IRQ lines */
3633 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3634 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3635 				  IRQF_SHARED, dev->name, dev);
3636 		if (unlikely(ret < 0)) {
3637 			netdev_err(priv->dev,
3638 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3639 				   __func__, priv->lpi_irq, ret);
3640 			irq_err = REQ_IRQ_ERR_LPI;
3641 			goto irq_error;
3642 		}
3643 	}
3644 
3645 	return 0;
3646 
3647 irq_error:
3648 	stmmac_free_irq(dev, irq_err, 0);
3649 	return ret;
3650 }
3651 
3652 static int stmmac_request_irq(struct net_device *dev)
3653 {
3654 	struct stmmac_priv *priv = netdev_priv(dev);
3655 	int ret;
3656 
3657 	/* Request the IRQ lines */
3658 	if (priv->plat->multi_msi_en)
3659 		ret = stmmac_request_irq_multi_msi(dev);
3660 	else
3661 		ret = stmmac_request_irq_single(dev);
3662 
3663 	return ret;
3664 }
3665 
3666 /**
3667  *  stmmac_open - open entry point of the driver
3668  *  @dev : pointer to the device structure.
3669  *  Description:
3670  *  This function is the open entry point of the driver.
3671  *  Return value:
3672  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3673  *  file on failure.
3674  */
3675 static int stmmac_open(struct net_device *dev)
3676 {
3677 	struct stmmac_priv *priv = netdev_priv(dev);
3678 	int mode = priv->plat->phy_interface;
3679 	int bfsize = 0;
3680 	u32 chan;
3681 	int ret;
3682 
3683 	ret = pm_runtime_get_sync(priv->device);
3684 	if (ret < 0) {
3685 		pm_runtime_put_noidle(priv->device);
3686 		return ret;
3687 	}
3688 
3689 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3690 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3691 	    (!priv->hw->xpcs ||
3692 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3693 		ret = stmmac_init_phy(dev);
3694 		if (ret) {
3695 			netdev_err(priv->dev,
3696 				   "%s: Cannot attach to PHY (error: %d)\n",
3697 				   __func__, ret);
3698 			goto init_phy_error;
3699 		}
3700 	}
3701 
3702 	/* Extra statistics */
3703 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3704 	priv->xstats.threshold = tc;
3705 
3706 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3707 	if (bfsize < 0)
3708 		bfsize = 0;
3709 
3710 	if (bfsize < BUF_SIZE_16KiB)
3711 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3712 
3713 	priv->dma_buf_sz = bfsize;
3714 	buf_sz = bfsize;
3715 
3716 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3717 
3718 	if (!priv->dma_tx_size)
3719 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3720 	if (!priv->dma_rx_size)
3721 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3722 
3723 	/* Earlier check for TBS */
3724 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3725 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3726 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3727 
3728 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3729 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3730 	}
3731 
3732 	ret = alloc_dma_desc_resources(priv);
3733 	if (ret < 0) {
3734 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3735 			   __func__);
3736 		goto dma_desc_error;
3737 	}
3738 
3739 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3740 	if (ret < 0) {
3741 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3742 			   __func__);
3743 		goto init_error;
3744 	}
3745 
3746 	ret = stmmac_hw_setup(dev, true);
3747 	if (ret < 0) {
3748 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3749 		goto init_error;
3750 	}
3751 
3752 	stmmac_init_coalesce(priv);
3753 
3754 	phylink_start(priv->phylink);
3755 	/* We may have called phylink_speed_down before */
3756 	phylink_speed_up(priv->phylink);
3757 
3758 	ret = stmmac_request_irq(dev);
3759 	if (ret)
3760 		goto irq_error;
3761 
3762 	stmmac_enable_all_queues(priv);
3763 	netif_tx_start_all_queues(priv->dev);
3764 
3765 	return 0;
3766 
3767 irq_error:
3768 	phylink_stop(priv->phylink);
3769 
3770 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3771 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3772 
3773 	stmmac_hw_teardown(dev);
3774 init_error:
3775 	free_dma_desc_resources(priv);
3776 dma_desc_error:
3777 	phylink_disconnect_phy(priv->phylink);
3778 init_phy_error:
3779 	pm_runtime_put(priv->device);
3780 	return ret;
3781 }
3782 
3783 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3784 {
3785 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3786 
3787 	if (priv->fpe_wq)
3788 		destroy_workqueue(priv->fpe_wq);
3789 
3790 	netdev_info(priv->dev, "FPE workqueue stop");
3791 }
3792 
3793 /**
3794  *  stmmac_release - close entry point of the driver
3795  *  @dev : device pointer.
3796  *  Description:
3797  *  This is the stop entry point of the driver.
3798  */
3799 static int stmmac_release(struct net_device *dev)
3800 {
3801 	struct stmmac_priv *priv = netdev_priv(dev);
3802 	u32 chan;
3803 
3804 	netif_tx_disable(dev);
3805 
3806 	if (device_may_wakeup(priv->device))
3807 		phylink_speed_down(priv->phylink, false);
3808 	/* Stop and disconnect the PHY */
3809 	phylink_stop(priv->phylink);
3810 	phylink_disconnect_phy(priv->phylink);
3811 
3812 	stmmac_disable_all_queues(priv);
3813 
3814 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3815 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3816 
3817 	/* Free the IRQ lines */
3818 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3819 
3820 	if (priv->eee_enabled) {
3821 		priv->tx_path_in_lpi_mode = false;
3822 		del_timer_sync(&priv->eee_ctrl_timer);
3823 	}
3824 
3825 	/* Stop TX/RX DMA and clear the descriptors */
3826 	stmmac_stop_all_dma(priv);
3827 
3828 	/* Release and free the Rx/Tx resources */
3829 	free_dma_desc_resources(priv);
3830 
3831 	/* Disable the MAC Rx/Tx */
3832 	stmmac_mac_set(priv, priv->ioaddr, false);
3833 
3834 	netif_carrier_off(dev);
3835 
3836 	stmmac_release_ptp(priv);
3837 
3838 	pm_runtime_put(priv->device);
3839 
3840 	if (priv->dma_cap.fpesel)
3841 		stmmac_fpe_stop_wq(priv);
3842 
3843 	return 0;
3844 }
3845 
3846 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3847 			       struct stmmac_tx_queue *tx_q)
3848 {
3849 	u16 tag = 0x0, inner_tag = 0x0;
3850 	u32 inner_type = 0x0;
3851 	struct dma_desc *p;
3852 
3853 	if (!priv->dma_cap.vlins)
3854 		return false;
3855 	if (!skb_vlan_tag_present(skb))
3856 		return false;
3857 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3858 		inner_tag = skb_vlan_tag_get(skb);
3859 		inner_type = STMMAC_VLAN_INSERT;
3860 	}
3861 
3862 	tag = skb_vlan_tag_get(skb);
3863 
3864 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3865 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3866 	else
3867 		p = &tx_q->dma_tx[tx_q->cur_tx];
3868 
3869 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3870 		return false;
3871 
3872 	stmmac_set_tx_owner(priv, p);
3873 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3874 	return true;
3875 }
3876 
3877 /**
3878  *  stmmac_tso_allocator - close entry point of the driver
3879  *  @priv: driver private structure
3880  *  @des: buffer start address
3881  *  @total_len: total length to fill in descriptors
3882  *  @last_segment: condition for the last descriptor
3883  *  @queue: TX queue index
3884  *  Description:
3885  *  This function fills descriptor and request new descriptors according to
3886  *  buffer length to fill
3887  */
3888 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3889 				 int total_len, bool last_segment, u32 queue)
3890 {
3891 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3892 	struct dma_desc *desc;
3893 	u32 buff_size;
3894 	int tmp_len;
3895 
3896 	tmp_len = total_len;
3897 
3898 	while (tmp_len > 0) {
3899 		dma_addr_t curr_addr;
3900 
3901 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3902 						priv->dma_tx_size);
3903 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3904 
3905 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3906 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3907 		else
3908 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3909 
3910 		curr_addr = des + (total_len - tmp_len);
3911 		if (priv->dma_cap.addr64 <= 32)
3912 			desc->des0 = cpu_to_le32(curr_addr);
3913 		else
3914 			stmmac_set_desc_addr(priv, desc, curr_addr);
3915 
3916 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3917 			    TSO_MAX_BUFF_SIZE : tmp_len;
3918 
3919 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3920 				0, 1,
3921 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3922 				0, 0);
3923 
3924 		tmp_len -= TSO_MAX_BUFF_SIZE;
3925 	}
3926 }
3927 
3928 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3929 {
3930 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3931 	int desc_size;
3932 
3933 	if (likely(priv->extend_desc))
3934 		desc_size = sizeof(struct dma_extended_desc);
3935 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3936 		desc_size = sizeof(struct dma_edesc);
3937 	else
3938 		desc_size = sizeof(struct dma_desc);
3939 
3940 	/* The own bit must be the latest setting done when prepare the
3941 	 * descriptor and then barrier is needed to make sure that
3942 	 * all is coherent before granting the DMA engine.
3943 	 */
3944 	wmb();
3945 
3946 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3947 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3948 }
3949 
3950 /**
3951  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3952  *  @skb : the socket buffer
3953  *  @dev : device pointer
3954  *  Description: this is the transmit function that is called on TSO frames
3955  *  (support available on GMAC4 and newer chips).
3956  *  Diagram below show the ring programming in case of TSO frames:
3957  *
3958  *  First Descriptor
3959  *   --------
3960  *   | DES0 |---> buffer1 = L2/L3/L4 header
3961  *   | DES1 |---> TCP Payload (can continue on next descr...)
3962  *   | DES2 |---> buffer 1 and 2 len
3963  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3964  *   --------
3965  *	|
3966  *     ...
3967  *	|
3968  *   --------
3969  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3970  *   | DES1 | --|
3971  *   | DES2 | --> buffer 1 and 2 len
3972  *   | DES3 |
3973  *   --------
3974  *
3975  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3976  */
3977 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3978 {
3979 	struct dma_desc *desc, *first, *mss_desc = NULL;
3980 	struct stmmac_priv *priv = netdev_priv(dev);
3981 	int nfrags = skb_shinfo(skb)->nr_frags;
3982 	u32 queue = skb_get_queue_mapping(skb);
3983 	unsigned int first_entry, tx_packets;
3984 	int tmp_pay_len = 0, first_tx;
3985 	struct stmmac_tx_queue *tx_q;
3986 	bool has_vlan, set_ic;
3987 	u8 proto_hdr_len, hdr;
3988 	u32 pay_len, mss;
3989 	dma_addr_t des;
3990 	int i;
3991 
3992 	tx_q = &priv->tx_queue[queue];
3993 	first_tx = tx_q->cur_tx;
3994 
3995 	/* Compute header lengths */
3996 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3997 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3998 		hdr = sizeof(struct udphdr);
3999 	} else {
4000 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4001 		hdr = tcp_hdrlen(skb);
4002 	}
4003 
4004 	/* Desc availability based on threshold should be enough safe */
4005 	if (unlikely(stmmac_tx_avail(priv, queue) <
4006 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4007 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4008 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4009 								queue));
4010 			/* This is a hard error, log it. */
4011 			netdev_err(priv->dev,
4012 				   "%s: Tx Ring full when queue awake\n",
4013 				   __func__);
4014 		}
4015 		return NETDEV_TX_BUSY;
4016 	}
4017 
4018 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4019 
4020 	mss = skb_shinfo(skb)->gso_size;
4021 
4022 	/* set new MSS value if needed */
4023 	if (mss != tx_q->mss) {
4024 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4025 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4026 		else
4027 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4028 
4029 		stmmac_set_mss(priv, mss_desc, mss);
4030 		tx_q->mss = mss;
4031 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4032 						priv->dma_tx_size);
4033 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4034 	}
4035 
4036 	if (netif_msg_tx_queued(priv)) {
4037 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4038 			__func__, hdr, proto_hdr_len, pay_len, mss);
4039 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4040 			skb->data_len);
4041 	}
4042 
4043 	/* Check if VLAN can be inserted by HW */
4044 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4045 
4046 	first_entry = tx_q->cur_tx;
4047 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4048 
4049 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4050 		desc = &tx_q->dma_entx[first_entry].basic;
4051 	else
4052 		desc = &tx_q->dma_tx[first_entry];
4053 	first = desc;
4054 
4055 	if (has_vlan)
4056 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4057 
4058 	/* first descriptor: fill Headers on Buf1 */
4059 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4060 			     DMA_TO_DEVICE);
4061 	if (dma_mapping_error(priv->device, des))
4062 		goto dma_map_err;
4063 
4064 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4065 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4066 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4067 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4068 
4069 	if (priv->dma_cap.addr64 <= 32) {
4070 		first->des0 = cpu_to_le32(des);
4071 
4072 		/* Fill start of payload in buff2 of first descriptor */
4073 		if (pay_len)
4074 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4075 
4076 		/* If needed take extra descriptors to fill the remaining payload */
4077 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4078 	} else {
4079 		stmmac_set_desc_addr(priv, first, des);
4080 		tmp_pay_len = pay_len;
4081 		des += proto_hdr_len;
4082 		pay_len = 0;
4083 	}
4084 
4085 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4086 
4087 	/* Prepare fragments */
4088 	for (i = 0; i < nfrags; i++) {
4089 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4090 
4091 		des = skb_frag_dma_map(priv->device, frag, 0,
4092 				       skb_frag_size(frag),
4093 				       DMA_TO_DEVICE);
4094 		if (dma_mapping_error(priv->device, des))
4095 			goto dma_map_err;
4096 
4097 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4098 				     (i == nfrags - 1), queue);
4099 
4100 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4101 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4102 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4103 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4104 	}
4105 
4106 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4107 
4108 	/* Only the last descriptor gets to point to the skb. */
4109 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4110 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4111 
4112 	/* Manage tx mitigation */
4113 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4114 	tx_q->tx_count_frames += tx_packets;
4115 
4116 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4117 		set_ic = true;
4118 	else if (!priv->tx_coal_frames[queue])
4119 		set_ic = false;
4120 	else if (tx_packets > priv->tx_coal_frames[queue])
4121 		set_ic = true;
4122 	else if ((tx_q->tx_count_frames %
4123 		  priv->tx_coal_frames[queue]) < tx_packets)
4124 		set_ic = true;
4125 	else
4126 		set_ic = false;
4127 
4128 	if (set_ic) {
4129 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4130 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4131 		else
4132 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4133 
4134 		tx_q->tx_count_frames = 0;
4135 		stmmac_set_tx_ic(priv, desc);
4136 		priv->xstats.tx_set_ic_bit++;
4137 	}
4138 
4139 	/* We've used all descriptors we need for this skb, however,
4140 	 * advance cur_tx so that it references a fresh descriptor.
4141 	 * ndo_start_xmit will fill this descriptor the next time it's
4142 	 * called and stmmac_tx_clean may clean up to this descriptor.
4143 	 */
4144 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4145 
4146 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4147 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4148 			  __func__);
4149 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4150 	}
4151 
4152 	dev->stats.tx_bytes += skb->len;
4153 	priv->xstats.tx_tso_frames++;
4154 	priv->xstats.tx_tso_nfrags += nfrags;
4155 
4156 	if (priv->sarc_type)
4157 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4158 
4159 	skb_tx_timestamp(skb);
4160 
4161 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4162 		     priv->hwts_tx_en)) {
4163 		/* declare that device is doing timestamping */
4164 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4165 		stmmac_enable_tx_timestamp(priv, first);
4166 	}
4167 
4168 	/* Complete the first descriptor before granting the DMA */
4169 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4170 			proto_hdr_len,
4171 			pay_len,
4172 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4173 			hdr / 4, (skb->len - proto_hdr_len));
4174 
4175 	/* If context desc is used to change MSS */
4176 	if (mss_desc) {
4177 		/* Make sure that first descriptor has been completely
4178 		 * written, including its own bit. This is because MSS is
4179 		 * actually before first descriptor, so we need to make
4180 		 * sure that MSS's own bit is the last thing written.
4181 		 */
4182 		dma_wmb();
4183 		stmmac_set_tx_owner(priv, mss_desc);
4184 	}
4185 
4186 	if (netif_msg_pktdata(priv)) {
4187 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4188 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4189 			tx_q->cur_tx, first, nfrags);
4190 		pr_info(">>> frame to be transmitted: ");
4191 		print_pkt(skb->data, skb_headlen(skb));
4192 	}
4193 
4194 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4195 
4196 	stmmac_flush_tx_descriptors(priv, queue);
4197 	stmmac_tx_timer_arm(priv, queue);
4198 
4199 	return NETDEV_TX_OK;
4200 
4201 dma_map_err:
4202 	dev_err(priv->device, "Tx dma map failed\n");
4203 	dev_kfree_skb(skb);
4204 	priv->dev->stats.tx_dropped++;
4205 	return NETDEV_TX_OK;
4206 }
4207 
4208 /**
4209  *  stmmac_xmit - Tx entry point of the driver
4210  *  @skb : the socket buffer
4211  *  @dev : device pointer
4212  *  Description : this is the tx entry point of the driver.
4213  *  It programs the chain or the ring and supports oversized frames
4214  *  and SG feature.
4215  */
4216 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4217 {
4218 	unsigned int first_entry, tx_packets, enh_desc;
4219 	struct stmmac_priv *priv = netdev_priv(dev);
4220 	unsigned int nopaged_len = skb_headlen(skb);
4221 	int i, csum_insertion = 0, is_jumbo = 0;
4222 	u32 queue = skb_get_queue_mapping(skb);
4223 	int nfrags = skb_shinfo(skb)->nr_frags;
4224 	int gso = skb_shinfo(skb)->gso_type;
4225 	struct dma_edesc *tbs_desc = NULL;
4226 	struct dma_desc *desc, *first;
4227 	struct stmmac_tx_queue *tx_q;
4228 	bool has_vlan, set_ic;
4229 	int entry, first_tx;
4230 	dma_addr_t des;
4231 
4232 	tx_q = &priv->tx_queue[queue];
4233 	first_tx = tx_q->cur_tx;
4234 
4235 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4236 		stmmac_disable_eee_mode(priv);
4237 
4238 	/* Manage oversized TCP frames for GMAC4 device */
4239 	if (skb_is_gso(skb) && priv->tso) {
4240 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4241 			return stmmac_tso_xmit(skb, dev);
4242 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4243 			return stmmac_tso_xmit(skb, dev);
4244 	}
4245 
4246 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4247 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4248 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4249 								queue));
4250 			/* This is a hard error, log it. */
4251 			netdev_err(priv->dev,
4252 				   "%s: Tx Ring full when queue awake\n",
4253 				   __func__);
4254 		}
4255 		return NETDEV_TX_BUSY;
4256 	}
4257 
4258 	/* Check if VLAN can be inserted by HW */
4259 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4260 
4261 	entry = tx_q->cur_tx;
4262 	first_entry = entry;
4263 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4264 
4265 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4266 
4267 	if (likely(priv->extend_desc))
4268 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4269 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4270 		desc = &tx_q->dma_entx[entry].basic;
4271 	else
4272 		desc = tx_q->dma_tx + entry;
4273 
4274 	first = desc;
4275 
4276 	if (has_vlan)
4277 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4278 
4279 	enh_desc = priv->plat->enh_desc;
4280 	/* To program the descriptors according to the size of the frame */
4281 	if (enh_desc)
4282 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4283 
4284 	if (unlikely(is_jumbo)) {
4285 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4286 		if (unlikely(entry < 0) && (entry != -EINVAL))
4287 			goto dma_map_err;
4288 	}
4289 
4290 	for (i = 0; i < nfrags; i++) {
4291 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4292 		int len = skb_frag_size(frag);
4293 		bool last_segment = (i == (nfrags - 1));
4294 
4295 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4296 		WARN_ON(tx_q->tx_skbuff[entry]);
4297 
4298 		if (likely(priv->extend_desc))
4299 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4300 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4301 			desc = &tx_q->dma_entx[entry].basic;
4302 		else
4303 			desc = tx_q->dma_tx + entry;
4304 
4305 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4306 				       DMA_TO_DEVICE);
4307 		if (dma_mapping_error(priv->device, des))
4308 			goto dma_map_err; /* should reuse desc w/o issues */
4309 
4310 		tx_q->tx_skbuff_dma[entry].buf = des;
4311 
4312 		stmmac_set_desc_addr(priv, desc, des);
4313 
4314 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4315 		tx_q->tx_skbuff_dma[entry].len = len;
4316 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4317 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4318 
4319 		/* Prepare the descriptor and set the own bit too */
4320 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4321 				priv->mode, 1, last_segment, skb->len);
4322 	}
4323 
4324 	/* Only the last descriptor gets to point to the skb. */
4325 	tx_q->tx_skbuff[entry] = skb;
4326 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4327 
4328 	/* According to the coalesce parameter the IC bit for the latest
4329 	 * segment is reset and the timer re-started to clean the tx status.
4330 	 * This approach takes care about the fragments: desc is the first
4331 	 * element in case of no SG.
4332 	 */
4333 	tx_packets = (entry + 1) - first_tx;
4334 	tx_q->tx_count_frames += tx_packets;
4335 
4336 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4337 		set_ic = true;
4338 	else if (!priv->tx_coal_frames[queue])
4339 		set_ic = false;
4340 	else if (tx_packets > priv->tx_coal_frames[queue])
4341 		set_ic = true;
4342 	else if ((tx_q->tx_count_frames %
4343 		  priv->tx_coal_frames[queue]) < tx_packets)
4344 		set_ic = true;
4345 	else
4346 		set_ic = false;
4347 
4348 	if (set_ic) {
4349 		if (likely(priv->extend_desc))
4350 			desc = &tx_q->dma_etx[entry].basic;
4351 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4352 			desc = &tx_q->dma_entx[entry].basic;
4353 		else
4354 			desc = &tx_q->dma_tx[entry];
4355 
4356 		tx_q->tx_count_frames = 0;
4357 		stmmac_set_tx_ic(priv, desc);
4358 		priv->xstats.tx_set_ic_bit++;
4359 	}
4360 
4361 	/* We've used all descriptors we need for this skb, however,
4362 	 * advance cur_tx so that it references a fresh descriptor.
4363 	 * ndo_start_xmit will fill this descriptor the next time it's
4364 	 * called and stmmac_tx_clean may clean up to this descriptor.
4365 	 */
4366 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4367 	tx_q->cur_tx = entry;
4368 
4369 	if (netif_msg_pktdata(priv)) {
4370 		netdev_dbg(priv->dev,
4371 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4372 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4373 			   entry, first, nfrags);
4374 
4375 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4376 		print_pkt(skb->data, skb->len);
4377 	}
4378 
4379 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4380 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4381 			  __func__);
4382 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4383 	}
4384 
4385 	dev->stats.tx_bytes += skb->len;
4386 
4387 	if (priv->sarc_type)
4388 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4389 
4390 	skb_tx_timestamp(skb);
4391 
4392 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4393 	 * problems because all the descriptors are actually ready to be
4394 	 * passed to the DMA engine.
4395 	 */
4396 	if (likely(!is_jumbo)) {
4397 		bool last_segment = (nfrags == 0);
4398 
4399 		des = dma_map_single(priv->device, skb->data,
4400 				     nopaged_len, DMA_TO_DEVICE);
4401 		if (dma_mapping_error(priv->device, des))
4402 			goto dma_map_err;
4403 
4404 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4405 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4406 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4407 
4408 		stmmac_set_desc_addr(priv, first, des);
4409 
4410 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4411 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4412 
4413 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4414 			     priv->hwts_tx_en)) {
4415 			/* declare that device is doing timestamping */
4416 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4417 			stmmac_enable_tx_timestamp(priv, first);
4418 		}
4419 
4420 		/* Prepare the first descriptor setting the OWN bit too */
4421 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4422 				csum_insertion, priv->mode, 0, last_segment,
4423 				skb->len);
4424 	}
4425 
4426 	if (tx_q->tbs & STMMAC_TBS_EN) {
4427 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4428 
4429 		tbs_desc = &tx_q->dma_entx[first_entry];
4430 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4431 	}
4432 
4433 	stmmac_set_tx_owner(priv, first);
4434 
4435 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4436 
4437 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4438 
4439 	stmmac_flush_tx_descriptors(priv, queue);
4440 	stmmac_tx_timer_arm(priv, queue);
4441 
4442 	return NETDEV_TX_OK;
4443 
4444 dma_map_err:
4445 	netdev_err(priv->dev, "Tx DMA map failed\n");
4446 	dev_kfree_skb(skb);
4447 	priv->dev->stats.tx_dropped++;
4448 	return NETDEV_TX_OK;
4449 }
4450 
4451 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4452 {
4453 	struct vlan_ethhdr *veth;
4454 	__be16 vlan_proto;
4455 	u16 vlanid;
4456 
4457 	veth = (struct vlan_ethhdr *)skb->data;
4458 	vlan_proto = veth->h_vlan_proto;
4459 
4460 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4461 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4462 	    (vlan_proto == htons(ETH_P_8021AD) &&
4463 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4464 		/* pop the vlan tag */
4465 		vlanid = ntohs(veth->h_vlan_TCI);
4466 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4467 		skb_pull(skb, VLAN_HLEN);
4468 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4469 	}
4470 }
4471 
4472 /**
4473  * stmmac_rx_refill - refill used skb preallocated buffers
4474  * @priv: driver private structure
4475  * @queue: RX queue index
4476  * Description : this is to reallocate the skb for the reception process
4477  * that is based on zero-copy.
4478  */
4479 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4480 {
4481 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4482 	int dirty = stmmac_rx_dirty(priv, queue);
4483 	unsigned int entry = rx_q->dirty_rx;
4484 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4485 
4486 	if (priv->dma_cap.addr64 <= 32)
4487 		gfp |= GFP_DMA32;
4488 
4489 	while (dirty-- > 0) {
4490 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4491 		struct dma_desc *p;
4492 		bool use_rx_wd;
4493 
4494 		if (priv->extend_desc)
4495 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4496 		else
4497 			p = rx_q->dma_rx + entry;
4498 
4499 		if (!buf->page) {
4500 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4501 			if (!buf->page)
4502 				break;
4503 		}
4504 
4505 		if (priv->sph && !buf->sec_page) {
4506 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4507 			if (!buf->sec_page)
4508 				break;
4509 
4510 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4511 		}
4512 
4513 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4514 
4515 		stmmac_set_desc_addr(priv, p, buf->addr);
4516 		if (priv->sph)
4517 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4518 		else
4519 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4520 		stmmac_refill_desc3(priv, rx_q, p);
4521 
4522 		rx_q->rx_count_frames++;
4523 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4524 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4525 			rx_q->rx_count_frames = 0;
4526 
4527 		use_rx_wd = !priv->rx_coal_frames[queue];
4528 		use_rx_wd |= rx_q->rx_count_frames > 0;
4529 		if (!priv->use_riwt)
4530 			use_rx_wd = false;
4531 
4532 		dma_wmb();
4533 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4534 
4535 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4536 	}
4537 	rx_q->dirty_rx = entry;
4538 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4539 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4540 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4541 }
4542 
4543 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4544 				       struct dma_desc *p,
4545 				       int status, unsigned int len)
4546 {
4547 	unsigned int plen = 0, hlen = 0;
4548 	int coe = priv->hw->rx_csum;
4549 
4550 	/* Not first descriptor, buffer is always zero */
4551 	if (priv->sph && len)
4552 		return 0;
4553 
4554 	/* First descriptor, get split header length */
4555 	stmmac_get_rx_header_len(priv, p, &hlen);
4556 	if (priv->sph && hlen) {
4557 		priv->xstats.rx_split_hdr_pkt_n++;
4558 		return hlen;
4559 	}
4560 
4561 	/* First descriptor, not last descriptor and not split header */
4562 	if (status & rx_not_ls)
4563 		return priv->dma_buf_sz;
4564 
4565 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4566 
4567 	/* First descriptor and last descriptor and not split header */
4568 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4569 }
4570 
4571 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4572 				       struct dma_desc *p,
4573 				       int status, unsigned int len)
4574 {
4575 	int coe = priv->hw->rx_csum;
4576 	unsigned int plen = 0;
4577 
4578 	/* Not split header, buffer is not available */
4579 	if (!priv->sph)
4580 		return 0;
4581 
4582 	/* Not last descriptor */
4583 	if (status & rx_not_ls)
4584 		return priv->dma_buf_sz;
4585 
4586 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4587 
4588 	/* Last descriptor */
4589 	return plen - len;
4590 }
4591 
4592 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4593 				struct xdp_frame *xdpf, bool dma_map)
4594 {
4595 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4596 	unsigned int entry = tx_q->cur_tx;
4597 	struct dma_desc *tx_desc;
4598 	dma_addr_t dma_addr;
4599 	bool set_ic;
4600 
4601 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4602 		return STMMAC_XDP_CONSUMED;
4603 
4604 	if (likely(priv->extend_desc))
4605 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4606 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4607 		tx_desc = &tx_q->dma_entx[entry].basic;
4608 	else
4609 		tx_desc = tx_q->dma_tx + entry;
4610 
4611 	if (dma_map) {
4612 		dma_addr = dma_map_single(priv->device, xdpf->data,
4613 					  xdpf->len, DMA_TO_DEVICE);
4614 		if (dma_mapping_error(priv->device, dma_addr))
4615 			return STMMAC_XDP_CONSUMED;
4616 
4617 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4618 	} else {
4619 		struct page *page = virt_to_page(xdpf->data);
4620 
4621 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4622 			   xdpf->headroom;
4623 		dma_sync_single_for_device(priv->device, dma_addr,
4624 					   xdpf->len, DMA_BIDIRECTIONAL);
4625 
4626 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4627 	}
4628 
4629 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4630 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4631 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4632 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4633 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4634 
4635 	tx_q->xdpf[entry] = xdpf;
4636 
4637 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4638 
4639 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4640 			       true, priv->mode, true, true,
4641 			       xdpf->len);
4642 
4643 	tx_q->tx_count_frames++;
4644 
4645 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4646 		set_ic = true;
4647 	else
4648 		set_ic = false;
4649 
4650 	if (set_ic) {
4651 		tx_q->tx_count_frames = 0;
4652 		stmmac_set_tx_ic(priv, tx_desc);
4653 		priv->xstats.tx_set_ic_bit++;
4654 	}
4655 
4656 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4657 
4658 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4659 	tx_q->cur_tx = entry;
4660 
4661 	return STMMAC_XDP_TX;
4662 }
4663 
4664 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4665 				   int cpu)
4666 {
4667 	int index = cpu;
4668 
4669 	if (unlikely(index < 0))
4670 		index = 0;
4671 
4672 	while (index >= priv->plat->tx_queues_to_use)
4673 		index -= priv->plat->tx_queues_to_use;
4674 
4675 	return index;
4676 }
4677 
4678 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4679 				struct xdp_buff *xdp)
4680 {
4681 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4682 	int cpu = smp_processor_id();
4683 	struct netdev_queue *nq;
4684 	int queue;
4685 	int res;
4686 
4687 	if (unlikely(!xdpf))
4688 		return STMMAC_XDP_CONSUMED;
4689 
4690 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4691 	nq = netdev_get_tx_queue(priv->dev, queue);
4692 
4693 	__netif_tx_lock(nq, cpu);
4694 	/* Avoids TX time-out as we are sharing with slow path */
4695 	txq_trans_cond_update(nq);
4696 
4697 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4698 	if (res == STMMAC_XDP_TX)
4699 		stmmac_flush_tx_descriptors(priv, queue);
4700 
4701 	__netif_tx_unlock(nq);
4702 
4703 	return res;
4704 }
4705 
4706 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4707 				 struct bpf_prog *prog,
4708 				 struct xdp_buff *xdp)
4709 {
4710 	u32 act;
4711 	int res;
4712 
4713 	act = bpf_prog_run_xdp(prog, xdp);
4714 	switch (act) {
4715 	case XDP_PASS:
4716 		res = STMMAC_XDP_PASS;
4717 		break;
4718 	case XDP_TX:
4719 		res = stmmac_xdp_xmit_back(priv, xdp);
4720 		break;
4721 	case XDP_REDIRECT:
4722 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4723 			res = STMMAC_XDP_CONSUMED;
4724 		else
4725 			res = STMMAC_XDP_REDIRECT;
4726 		break;
4727 	default:
4728 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4729 		fallthrough;
4730 	case XDP_ABORTED:
4731 		trace_xdp_exception(priv->dev, prog, act);
4732 		fallthrough;
4733 	case XDP_DROP:
4734 		res = STMMAC_XDP_CONSUMED;
4735 		break;
4736 	}
4737 
4738 	return res;
4739 }
4740 
4741 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4742 					   struct xdp_buff *xdp)
4743 {
4744 	struct bpf_prog *prog;
4745 	int res;
4746 
4747 	prog = READ_ONCE(priv->xdp_prog);
4748 	if (!prog) {
4749 		res = STMMAC_XDP_PASS;
4750 		goto out;
4751 	}
4752 
4753 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4754 out:
4755 	return ERR_PTR(-res);
4756 }
4757 
4758 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4759 				   int xdp_status)
4760 {
4761 	int cpu = smp_processor_id();
4762 	int queue;
4763 
4764 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4765 
4766 	if (xdp_status & STMMAC_XDP_TX)
4767 		stmmac_tx_timer_arm(priv, queue);
4768 
4769 	if (xdp_status & STMMAC_XDP_REDIRECT)
4770 		xdp_do_flush();
4771 }
4772 
4773 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4774 					       struct xdp_buff *xdp)
4775 {
4776 	unsigned int metasize = xdp->data - xdp->data_meta;
4777 	unsigned int datasize = xdp->data_end - xdp->data;
4778 	struct sk_buff *skb;
4779 
4780 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4781 			       xdp->data_end - xdp->data_hard_start,
4782 			       GFP_ATOMIC | __GFP_NOWARN);
4783 	if (unlikely(!skb))
4784 		return NULL;
4785 
4786 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4787 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4788 	if (metasize)
4789 		skb_metadata_set(skb, metasize);
4790 
4791 	return skb;
4792 }
4793 
4794 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4795 				   struct dma_desc *p, struct dma_desc *np,
4796 				   struct xdp_buff *xdp)
4797 {
4798 	struct stmmac_channel *ch = &priv->channel[queue];
4799 	unsigned int len = xdp->data_end - xdp->data;
4800 	enum pkt_hash_types hash_type;
4801 	int coe = priv->hw->rx_csum;
4802 	struct sk_buff *skb;
4803 	u32 hash;
4804 
4805 	skb = stmmac_construct_skb_zc(ch, xdp);
4806 	if (!skb) {
4807 		priv->dev->stats.rx_dropped++;
4808 		return;
4809 	}
4810 
4811 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4812 	stmmac_rx_vlan(priv->dev, skb);
4813 	skb->protocol = eth_type_trans(skb, priv->dev);
4814 
4815 	if (unlikely(!coe))
4816 		skb_checksum_none_assert(skb);
4817 	else
4818 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4819 
4820 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4821 		skb_set_hash(skb, hash, hash_type);
4822 
4823 	skb_record_rx_queue(skb, queue);
4824 	napi_gro_receive(&ch->rxtx_napi, skb);
4825 
4826 	priv->dev->stats.rx_packets++;
4827 	priv->dev->stats.rx_bytes += len;
4828 }
4829 
4830 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4831 {
4832 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4833 	unsigned int entry = rx_q->dirty_rx;
4834 	struct dma_desc *rx_desc = NULL;
4835 	bool ret = true;
4836 
4837 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4838 
4839 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4840 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4841 		dma_addr_t dma_addr;
4842 		bool use_rx_wd;
4843 
4844 		if (!buf->xdp) {
4845 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4846 			if (!buf->xdp) {
4847 				ret = false;
4848 				break;
4849 			}
4850 		}
4851 
4852 		if (priv->extend_desc)
4853 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4854 		else
4855 			rx_desc = rx_q->dma_rx + entry;
4856 
4857 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4858 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4859 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4860 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4861 
4862 		rx_q->rx_count_frames++;
4863 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4864 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4865 			rx_q->rx_count_frames = 0;
4866 
4867 		use_rx_wd = !priv->rx_coal_frames[queue];
4868 		use_rx_wd |= rx_q->rx_count_frames > 0;
4869 		if (!priv->use_riwt)
4870 			use_rx_wd = false;
4871 
4872 		dma_wmb();
4873 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4874 
4875 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4876 	}
4877 
4878 	if (rx_desc) {
4879 		rx_q->dirty_rx = entry;
4880 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4881 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4882 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4883 	}
4884 
4885 	return ret;
4886 }
4887 
4888 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4889 {
4890 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4891 	unsigned int count = 0, error = 0, len = 0;
4892 	int dirty = stmmac_rx_dirty(priv, queue);
4893 	unsigned int next_entry = rx_q->cur_rx;
4894 	unsigned int desc_size;
4895 	struct bpf_prog *prog;
4896 	bool failure = false;
4897 	int xdp_status = 0;
4898 	int status = 0;
4899 
4900 	if (netif_msg_rx_status(priv)) {
4901 		void *rx_head;
4902 
4903 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4904 		if (priv->extend_desc) {
4905 			rx_head = (void *)rx_q->dma_erx;
4906 			desc_size = sizeof(struct dma_extended_desc);
4907 		} else {
4908 			rx_head = (void *)rx_q->dma_rx;
4909 			desc_size = sizeof(struct dma_desc);
4910 		}
4911 
4912 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4913 				    rx_q->dma_rx_phy, desc_size);
4914 	}
4915 	while (count < limit) {
4916 		struct stmmac_rx_buffer *buf;
4917 		unsigned int buf1_len = 0;
4918 		struct dma_desc *np, *p;
4919 		int entry;
4920 		int res;
4921 
4922 		if (!count && rx_q->state_saved) {
4923 			error = rx_q->state.error;
4924 			len = rx_q->state.len;
4925 		} else {
4926 			rx_q->state_saved = false;
4927 			error = 0;
4928 			len = 0;
4929 		}
4930 
4931 		if (count >= limit)
4932 			break;
4933 
4934 read_again:
4935 		buf1_len = 0;
4936 		entry = next_entry;
4937 		buf = &rx_q->buf_pool[entry];
4938 
4939 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4940 			failure = failure ||
4941 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4942 			dirty = 0;
4943 		}
4944 
4945 		if (priv->extend_desc)
4946 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4947 		else
4948 			p = rx_q->dma_rx + entry;
4949 
4950 		/* read the status of the incoming frame */
4951 		status = stmmac_rx_status(priv, &priv->dev->stats,
4952 					  &priv->xstats, p);
4953 		/* check if managed by the DMA otherwise go ahead */
4954 		if (unlikely(status & dma_own))
4955 			break;
4956 
4957 		/* Prefetch the next RX descriptor */
4958 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4959 						priv->dma_rx_size);
4960 		next_entry = rx_q->cur_rx;
4961 
4962 		if (priv->extend_desc)
4963 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4964 		else
4965 			np = rx_q->dma_rx + next_entry;
4966 
4967 		prefetch(np);
4968 
4969 		/* Ensure a valid XSK buffer before proceed */
4970 		if (!buf->xdp)
4971 			break;
4972 
4973 		if (priv->extend_desc)
4974 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4975 						  &priv->xstats,
4976 						  rx_q->dma_erx + entry);
4977 		if (unlikely(status == discard_frame)) {
4978 			xsk_buff_free(buf->xdp);
4979 			buf->xdp = NULL;
4980 			dirty++;
4981 			error = 1;
4982 			if (!priv->hwts_rx_en)
4983 				priv->dev->stats.rx_errors++;
4984 		}
4985 
4986 		if (unlikely(error && (status & rx_not_ls)))
4987 			goto read_again;
4988 		if (unlikely(error)) {
4989 			count++;
4990 			continue;
4991 		}
4992 
4993 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4994 		if (likely(status & rx_not_ls)) {
4995 			xsk_buff_free(buf->xdp);
4996 			buf->xdp = NULL;
4997 			dirty++;
4998 			count++;
4999 			goto read_again;
5000 		}
5001 
5002 		/* XDP ZC Frame only support primary buffers for now */
5003 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5004 		len += buf1_len;
5005 
5006 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5007 		 * Type frames (LLC/LLC-SNAP)
5008 		 *
5009 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5010 		 * feature is always disabled and packets need to be
5011 		 * stripped manually.
5012 		 */
5013 		if (likely(!(status & rx_not_ls)) &&
5014 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5015 		     unlikely(status != llc_snap))) {
5016 			buf1_len -= ETH_FCS_LEN;
5017 			len -= ETH_FCS_LEN;
5018 		}
5019 
5020 		/* RX buffer is good and fit into a XSK pool buffer */
5021 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5022 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5023 
5024 		prog = READ_ONCE(priv->xdp_prog);
5025 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5026 
5027 		switch (res) {
5028 		case STMMAC_XDP_PASS:
5029 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5030 			xsk_buff_free(buf->xdp);
5031 			break;
5032 		case STMMAC_XDP_CONSUMED:
5033 			xsk_buff_free(buf->xdp);
5034 			priv->dev->stats.rx_dropped++;
5035 			break;
5036 		case STMMAC_XDP_TX:
5037 		case STMMAC_XDP_REDIRECT:
5038 			xdp_status |= res;
5039 			break;
5040 		}
5041 
5042 		buf->xdp = NULL;
5043 		dirty++;
5044 		count++;
5045 	}
5046 
5047 	if (status & rx_not_ls) {
5048 		rx_q->state_saved = true;
5049 		rx_q->state.error = error;
5050 		rx_q->state.len = len;
5051 	}
5052 
5053 	stmmac_finalize_xdp_rx(priv, xdp_status);
5054 
5055 	priv->xstats.rx_pkt_n += count;
5056 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5057 
5058 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5059 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5060 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5061 		else
5062 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5063 
5064 		return (int)count;
5065 	}
5066 
5067 	return failure ? limit : (int)count;
5068 }
5069 
5070 /**
5071  * stmmac_rx - manage the receive process
5072  * @priv: driver private structure
5073  * @limit: napi bugget
5074  * @queue: RX queue index.
5075  * Description :  this the function called by the napi poll method.
5076  * It gets all the frames inside the ring.
5077  */
5078 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5079 {
5080 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5081 	struct stmmac_channel *ch = &priv->channel[queue];
5082 	unsigned int count = 0, error = 0, len = 0;
5083 	int status = 0, coe = priv->hw->rx_csum;
5084 	unsigned int next_entry = rx_q->cur_rx;
5085 	enum dma_data_direction dma_dir;
5086 	unsigned int desc_size;
5087 	struct sk_buff *skb = NULL;
5088 	struct xdp_buff xdp;
5089 	int xdp_status = 0;
5090 	int buf_sz;
5091 
5092 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5093 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5094 
5095 	if (netif_msg_rx_status(priv)) {
5096 		void *rx_head;
5097 
5098 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5099 		if (priv->extend_desc) {
5100 			rx_head = (void *)rx_q->dma_erx;
5101 			desc_size = sizeof(struct dma_extended_desc);
5102 		} else {
5103 			rx_head = (void *)rx_q->dma_rx;
5104 			desc_size = sizeof(struct dma_desc);
5105 		}
5106 
5107 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5108 				    rx_q->dma_rx_phy, desc_size);
5109 	}
5110 	while (count < limit) {
5111 		unsigned int buf1_len = 0, buf2_len = 0;
5112 		enum pkt_hash_types hash_type;
5113 		struct stmmac_rx_buffer *buf;
5114 		struct dma_desc *np, *p;
5115 		int entry;
5116 		u32 hash;
5117 
5118 		if (!count && rx_q->state_saved) {
5119 			skb = rx_q->state.skb;
5120 			error = rx_q->state.error;
5121 			len = rx_q->state.len;
5122 		} else {
5123 			rx_q->state_saved = false;
5124 			skb = NULL;
5125 			error = 0;
5126 			len = 0;
5127 		}
5128 
5129 		if (count >= limit)
5130 			break;
5131 
5132 read_again:
5133 		buf1_len = 0;
5134 		buf2_len = 0;
5135 		entry = next_entry;
5136 		buf = &rx_q->buf_pool[entry];
5137 
5138 		if (priv->extend_desc)
5139 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5140 		else
5141 			p = rx_q->dma_rx + entry;
5142 
5143 		/* read the status of the incoming frame */
5144 		status = stmmac_rx_status(priv, &priv->dev->stats,
5145 				&priv->xstats, p);
5146 		/* check if managed by the DMA otherwise go ahead */
5147 		if (unlikely(status & dma_own))
5148 			break;
5149 
5150 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5151 						priv->dma_rx_size);
5152 		next_entry = rx_q->cur_rx;
5153 
5154 		if (priv->extend_desc)
5155 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5156 		else
5157 			np = rx_q->dma_rx + next_entry;
5158 
5159 		prefetch(np);
5160 
5161 		if (priv->extend_desc)
5162 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5163 					&priv->xstats, rx_q->dma_erx + entry);
5164 		if (unlikely(status == discard_frame)) {
5165 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5166 			buf->page = NULL;
5167 			error = 1;
5168 			if (!priv->hwts_rx_en)
5169 				priv->dev->stats.rx_errors++;
5170 		}
5171 
5172 		if (unlikely(error && (status & rx_not_ls)))
5173 			goto read_again;
5174 		if (unlikely(error)) {
5175 			dev_kfree_skb(skb);
5176 			skb = NULL;
5177 			count++;
5178 			continue;
5179 		}
5180 
5181 		/* Buffer is good. Go on. */
5182 
5183 		prefetch(page_address(buf->page) + buf->page_offset);
5184 		if (buf->sec_page)
5185 			prefetch(page_address(buf->sec_page));
5186 
5187 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5188 		len += buf1_len;
5189 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5190 		len += buf2_len;
5191 
5192 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5193 		 * Type frames (LLC/LLC-SNAP)
5194 		 *
5195 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5196 		 * feature is always disabled and packets need to be
5197 		 * stripped manually.
5198 		 */
5199 		if (likely(!(status & rx_not_ls)) &&
5200 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5201 		     unlikely(status != llc_snap))) {
5202 			if (buf2_len) {
5203 				buf2_len -= ETH_FCS_LEN;
5204 				len -= ETH_FCS_LEN;
5205 			} else if (buf1_len) {
5206 				buf1_len -= ETH_FCS_LEN;
5207 				len -= ETH_FCS_LEN;
5208 			}
5209 		}
5210 
5211 		if (!skb) {
5212 			unsigned int pre_len, sync_len;
5213 
5214 			dma_sync_single_for_cpu(priv->device, buf->addr,
5215 						buf1_len, dma_dir);
5216 
5217 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5218 			xdp_prepare_buff(&xdp, page_address(buf->page),
5219 					 buf->page_offset, buf1_len, false);
5220 
5221 			pre_len = xdp.data_end - xdp.data_hard_start -
5222 				  buf->page_offset;
5223 			skb = stmmac_xdp_run_prog(priv, &xdp);
5224 			/* Due xdp_adjust_tail: DMA sync for_device
5225 			 * cover max len CPU touch
5226 			 */
5227 			sync_len = xdp.data_end - xdp.data_hard_start -
5228 				   buf->page_offset;
5229 			sync_len = max(sync_len, pre_len);
5230 
5231 			/* For Not XDP_PASS verdict */
5232 			if (IS_ERR(skb)) {
5233 				unsigned int xdp_res = -PTR_ERR(skb);
5234 
5235 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5236 					page_pool_put_page(rx_q->page_pool,
5237 							   virt_to_head_page(xdp.data),
5238 							   sync_len, true);
5239 					buf->page = NULL;
5240 					priv->dev->stats.rx_dropped++;
5241 
5242 					/* Clear skb as it was set as
5243 					 * status by XDP program.
5244 					 */
5245 					skb = NULL;
5246 
5247 					if (unlikely((status & rx_not_ls)))
5248 						goto read_again;
5249 
5250 					count++;
5251 					continue;
5252 				} else if (xdp_res & (STMMAC_XDP_TX |
5253 						      STMMAC_XDP_REDIRECT)) {
5254 					xdp_status |= xdp_res;
5255 					buf->page = NULL;
5256 					skb = NULL;
5257 					count++;
5258 					continue;
5259 				}
5260 			}
5261 		}
5262 
5263 		if (!skb) {
5264 			/* XDP program may expand or reduce tail */
5265 			buf1_len = xdp.data_end - xdp.data;
5266 
5267 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5268 			if (!skb) {
5269 				priv->dev->stats.rx_dropped++;
5270 				count++;
5271 				goto drain_data;
5272 			}
5273 
5274 			/* XDP program may adjust header */
5275 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5276 			skb_put(skb, buf1_len);
5277 
5278 			/* Data payload copied into SKB, page ready for recycle */
5279 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5280 			buf->page = NULL;
5281 		} else if (buf1_len) {
5282 			dma_sync_single_for_cpu(priv->device, buf->addr,
5283 						buf1_len, dma_dir);
5284 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5285 					buf->page, buf->page_offset, buf1_len,
5286 					priv->dma_buf_sz);
5287 
5288 			/* Data payload appended into SKB */
5289 			page_pool_release_page(rx_q->page_pool, buf->page);
5290 			buf->page = NULL;
5291 		}
5292 
5293 		if (buf2_len) {
5294 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5295 						buf2_len, dma_dir);
5296 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5297 					buf->sec_page, 0, buf2_len,
5298 					priv->dma_buf_sz);
5299 
5300 			/* Data payload appended into SKB */
5301 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5302 			buf->sec_page = NULL;
5303 		}
5304 
5305 drain_data:
5306 		if (likely(status & rx_not_ls))
5307 			goto read_again;
5308 		if (!skb)
5309 			continue;
5310 
5311 		/* Got entire packet into SKB. Finish it. */
5312 
5313 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5314 		stmmac_rx_vlan(priv->dev, skb);
5315 		skb->protocol = eth_type_trans(skb, priv->dev);
5316 
5317 		if (unlikely(!coe))
5318 			skb_checksum_none_assert(skb);
5319 		else
5320 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5321 
5322 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5323 			skb_set_hash(skb, hash, hash_type);
5324 
5325 		skb_record_rx_queue(skb, queue);
5326 		napi_gro_receive(&ch->rx_napi, skb);
5327 		skb = NULL;
5328 
5329 		priv->dev->stats.rx_packets++;
5330 		priv->dev->stats.rx_bytes += len;
5331 		count++;
5332 	}
5333 
5334 	if (status & rx_not_ls || skb) {
5335 		rx_q->state_saved = true;
5336 		rx_q->state.skb = skb;
5337 		rx_q->state.error = error;
5338 		rx_q->state.len = len;
5339 	}
5340 
5341 	stmmac_finalize_xdp_rx(priv, xdp_status);
5342 
5343 	stmmac_rx_refill(priv, queue);
5344 
5345 	priv->xstats.rx_pkt_n += count;
5346 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5347 
5348 	return count;
5349 }
5350 
5351 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5352 {
5353 	struct stmmac_channel *ch =
5354 		container_of(napi, struct stmmac_channel, rx_napi);
5355 	struct stmmac_priv *priv = ch->priv_data;
5356 	u32 chan = ch->index;
5357 	int work_done;
5358 
5359 	priv->xstats.napi_poll++;
5360 
5361 	work_done = stmmac_rx(priv, budget, chan);
5362 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5363 		unsigned long flags;
5364 
5365 		spin_lock_irqsave(&ch->lock, flags);
5366 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5367 		spin_unlock_irqrestore(&ch->lock, flags);
5368 	}
5369 
5370 	return work_done;
5371 }
5372 
5373 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5374 {
5375 	struct stmmac_channel *ch =
5376 		container_of(napi, struct stmmac_channel, tx_napi);
5377 	struct stmmac_priv *priv = ch->priv_data;
5378 	u32 chan = ch->index;
5379 	int work_done;
5380 
5381 	priv->xstats.napi_poll++;
5382 
5383 	work_done = stmmac_tx_clean(priv, budget, chan);
5384 	work_done = min(work_done, budget);
5385 
5386 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5387 		unsigned long flags;
5388 
5389 		spin_lock_irqsave(&ch->lock, flags);
5390 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5391 		spin_unlock_irqrestore(&ch->lock, flags);
5392 	}
5393 
5394 	return work_done;
5395 }
5396 
5397 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5398 {
5399 	struct stmmac_channel *ch =
5400 		container_of(napi, struct stmmac_channel, rxtx_napi);
5401 	struct stmmac_priv *priv = ch->priv_data;
5402 	int rx_done, tx_done, rxtx_done;
5403 	u32 chan = ch->index;
5404 
5405 	priv->xstats.napi_poll++;
5406 
5407 	tx_done = stmmac_tx_clean(priv, budget, chan);
5408 	tx_done = min(tx_done, budget);
5409 
5410 	rx_done = stmmac_rx_zc(priv, budget, chan);
5411 
5412 	rxtx_done = max(tx_done, rx_done);
5413 
5414 	/* If either TX or RX work is not complete, return budget
5415 	 * and keep pooling
5416 	 */
5417 	if (rxtx_done >= budget)
5418 		return budget;
5419 
5420 	/* all work done, exit the polling mode */
5421 	if (napi_complete_done(napi, rxtx_done)) {
5422 		unsigned long flags;
5423 
5424 		spin_lock_irqsave(&ch->lock, flags);
5425 		/* Both RX and TX work done are compelte,
5426 		 * so enable both RX & TX IRQs.
5427 		 */
5428 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5429 		spin_unlock_irqrestore(&ch->lock, flags);
5430 	}
5431 
5432 	return min(rxtx_done, budget - 1);
5433 }
5434 
5435 /**
5436  *  stmmac_tx_timeout
5437  *  @dev : Pointer to net device structure
5438  *  @txqueue: the index of the hanging transmit queue
5439  *  Description: this function is called when a packet transmission fails to
5440  *   complete within a reasonable time. The driver will mark the error in the
5441  *   netdev structure and arrange for the device to be reset to a sane state
5442  *   in order to transmit a new packet.
5443  */
5444 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5445 {
5446 	struct stmmac_priv *priv = netdev_priv(dev);
5447 
5448 	stmmac_global_err(priv);
5449 }
5450 
5451 /**
5452  *  stmmac_set_rx_mode - entry point for multicast addressing
5453  *  @dev : pointer to the device structure
5454  *  Description:
5455  *  This function is a driver entry point which gets called by the kernel
5456  *  whenever multicast addresses must be enabled/disabled.
5457  *  Return value:
5458  *  void.
5459  */
5460 static void stmmac_set_rx_mode(struct net_device *dev)
5461 {
5462 	struct stmmac_priv *priv = netdev_priv(dev);
5463 
5464 	stmmac_set_filter(priv, priv->hw, dev);
5465 }
5466 
5467 /**
5468  *  stmmac_change_mtu - entry point to change MTU size for the device.
5469  *  @dev : device pointer.
5470  *  @new_mtu : the new MTU size for the device.
5471  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5472  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5473  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5474  *  Return value:
5475  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5476  *  file on failure.
5477  */
5478 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5479 {
5480 	struct stmmac_priv *priv = netdev_priv(dev);
5481 	int txfifosz = priv->plat->tx_fifo_size;
5482 	const int mtu = new_mtu;
5483 
5484 	if (txfifosz == 0)
5485 		txfifosz = priv->dma_cap.tx_fifo_size;
5486 
5487 	txfifosz /= priv->plat->tx_queues_to_use;
5488 
5489 	if (netif_running(dev)) {
5490 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5491 		return -EBUSY;
5492 	}
5493 
5494 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5495 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5496 		return -EINVAL;
5497 	}
5498 
5499 	new_mtu = STMMAC_ALIGN(new_mtu);
5500 
5501 	/* If condition true, FIFO is too small or MTU too large */
5502 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5503 		return -EINVAL;
5504 
5505 	dev->mtu = mtu;
5506 
5507 	netdev_update_features(dev);
5508 
5509 	return 0;
5510 }
5511 
5512 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5513 					     netdev_features_t features)
5514 {
5515 	struct stmmac_priv *priv = netdev_priv(dev);
5516 
5517 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5518 		features &= ~NETIF_F_RXCSUM;
5519 
5520 	if (!priv->plat->tx_coe)
5521 		features &= ~NETIF_F_CSUM_MASK;
5522 
5523 	/* Some GMAC devices have a bugged Jumbo frame support that
5524 	 * needs to have the Tx COE disabled for oversized frames
5525 	 * (due to limited buffer sizes). In this case we disable
5526 	 * the TX csum insertion in the TDES and not use SF.
5527 	 */
5528 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5529 		features &= ~NETIF_F_CSUM_MASK;
5530 
5531 	/* Disable tso if asked by ethtool */
5532 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5533 		if (features & NETIF_F_TSO)
5534 			priv->tso = true;
5535 		else
5536 			priv->tso = false;
5537 	}
5538 
5539 	return features;
5540 }
5541 
5542 static int stmmac_set_features(struct net_device *netdev,
5543 			       netdev_features_t features)
5544 {
5545 	struct stmmac_priv *priv = netdev_priv(netdev);
5546 
5547 	/* Keep the COE Type in case of csum is supporting */
5548 	if (features & NETIF_F_RXCSUM)
5549 		priv->hw->rx_csum = priv->plat->rx_coe;
5550 	else
5551 		priv->hw->rx_csum = 0;
5552 	/* No check needed because rx_coe has been set before and it will be
5553 	 * fixed in case of issue.
5554 	 */
5555 	stmmac_rx_ipc(priv, priv->hw);
5556 
5557 	if (priv->sph_cap) {
5558 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5559 		u32 chan;
5560 
5561 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5562 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5563 	}
5564 
5565 	return 0;
5566 }
5567 
5568 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5569 {
5570 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5571 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5572 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5573 	bool *hs_enable = &fpe_cfg->hs_enable;
5574 
5575 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5576 		return;
5577 
5578 	/* If LP has sent verify mPacket, LP is FPE capable */
5579 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5580 		if (*lp_state < FPE_STATE_CAPABLE)
5581 			*lp_state = FPE_STATE_CAPABLE;
5582 
5583 		/* If user has requested FPE enable, quickly response */
5584 		if (*hs_enable)
5585 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5586 						MPACKET_RESPONSE);
5587 	}
5588 
5589 	/* If Local has sent verify mPacket, Local is FPE capable */
5590 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5591 		if (*lo_state < FPE_STATE_CAPABLE)
5592 			*lo_state = FPE_STATE_CAPABLE;
5593 	}
5594 
5595 	/* If LP has sent response mPacket, LP is entering FPE ON */
5596 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5597 		*lp_state = FPE_STATE_ENTERING_ON;
5598 
5599 	/* If Local has sent response mPacket, Local is entering FPE ON */
5600 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5601 		*lo_state = FPE_STATE_ENTERING_ON;
5602 
5603 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5604 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5605 	    priv->fpe_wq) {
5606 		queue_work(priv->fpe_wq, &priv->fpe_task);
5607 	}
5608 }
5609 
5610 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5611 {
5612 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5613 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5614 	u32 queues_count;
5615 	u32 queue;
5616 	bool xmac;
5617 
5618 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5619 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5620 
5621 	if (priv->irq_wake)
5622 		pm_wakeup_event(priv->device, 0);
5623 
5624 	if (priv->dma_cap.estsel)
5625 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5626 				      &priv->xstats, tx_cnt);
5627 
5628 	if (priv->dma_cap.fpesel) {
5629 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5630 						   priv->dev);
5631 
5632 		stmmac_fpe_event_status(priv, status);
5633 	}
5634 
5635 	/* To handle GMAC own interrupts */
5636 	if ((priv->plat->has_gmac) || xmac) {
5637 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5638 
5639 		if (unlikely(status)) {
5640 			/* For LPI we need to save the tx status */
5641 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5642 				priv->tx_path_in_lpi_mode = true;
5643 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5644 				priv->tx_path_in_lpi_mode = false;
5645 		}
5646 
5647 		for (queue = 0; queue < queues_count; queue++) {
5648 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5649 							    queue);
5650 		}
5651 
5652 		/* PCS link status */
5653 		if (priv->hw->pcs) {
5654 			if (priv->xstats.pcs_link)
5655 				netif_carrier_on(priv->dev);
5656 			else
5657 				netif_carrier_off(priv->dev);
5658 		}
5659 
5660 		stmmac_timestamp_interrupt(priv, priv);
5661 	}
5662 }
5663 
5664 /**
5665  *  stmmac_interrupt - main ISR
5666  *  @irq: interrupt number.
5667  *  @dev_id: to pass the net device pointer.
5668  *  Description: this is the main driver interrupt service routine.
5669  *  It can call:
5670  *  o DMA service routine (to manage incoming frame reception and transmission
5671  *    status)
5672  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5673  *    interrupts.
5674  */
5675 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5676 {
5677 	struct net_device *dev = (struct net_device *)dev_id;
5678 	struct stmmac_priv *priv = netdev_priv(dev);
5679 
5680 	/* Check if adapter is up */
5681 	if (test_bit(STMMAC_DOWN, &priv->state))
5682 		return IRQ_HANDLED;
5683 
5684 	/* Check if a fatal error happened */
5685 	if (stmmac_safety_feat_interrupt(priv))
5686 		return IRQ_HANDLED;
5687 
5688 	/* To handle Common interrupts */
5689 	stmmac_common_interrupt(priv);
5690 
5691 	/* To handle DMA interrupts */
5692 	stmmac_dma_interrupt(priv);
5693 
5694 	return IRQ_HANDLED;
5695 }
5696 
5697 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5698 {
5699 	struct net_device *dev = (struct net_device *)dev_id;
5700 	struct stmmac_priv *priv = netdev_priv(dev);
5701 
5702 	if (unlikely(!dev)) {
5703 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5704 		return IRQ_NONE;
5705 	}
5706 
5707 	/* Check if adapter is up */
5708 	if (test_bit(STMMAC_DOWN, &priv->state))
5709 		return IRQ_HANDLED;
5710 
5711 	/* To handle Common interrupts */
5712 	stmmac_common_interrupt(priv);
5713 
5714 	return IRQ_HANDLED;
5715 }
5716 
5717 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5718 {
5719 	struct net_device *dev = (struct net_device *)dev_id;
5720 	struct stmmac_priv *priv = netdev_priv(dev);
5721 
5722 	if (unlikely(!dev)) {
5723 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5724 		return IRQ_NONE;
5725 	}
5726 
5727 	/* Check if adapter is up */
5728 	if (test_bit(STMMAC_DOWN, &priv->state))
5729 		return IRQ_HANDLED;
5730 
5731 	/* Check if a fatal error happened */
5732 	stmmac_safety_feat_interrupt(priv);
5733 
5734 	return IRQ_HANDLED;
5735 }
5736 
5737 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5738 {
5739 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5740 	int chan = tx_q->queue_index;
5741 	struct stmmac_priv *priv;
5742 	int status;
5743 
5744 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5745 
5746 	if (unlikely(!data)) {
5747 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5748 		return IRQ_NONE;
5749 	}
5750 
5751 	/* Check if adapter is up */
5752 	if (test_bit(STMMAC_DOWN, &priv->state))
5753 		return IRQ_HANDLED;
5754 
5755 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5756 
5757 	if (unlikely(status & tx_hard_error_bump_tc)) {
5758 		/* Try to bump up the dma threshold on this failure */
5759 		stmmac_bump_dma_threshold(priv, chan);
5760 	} else if (unlikely(status == tx_hard_error)) {
5761 		stmmac_tx_err(priv, chan);
5762 	}
5763 
5764 	return IRQ_HANDLED;
5765 }
5766 
5767 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5768 {
5769 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5770 	int chan = rx_q->queue_index;
5771 	struct stmmac_priv *priv;
5772 
5773 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5774 
5775 	if (unlikely(!data)) {
5776 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5777 		return IRQ_NONE;
5778 	}
5779 
5780 	/* Check if adapter is up */
5781 	if (test_bit(STMMAC_DOWN, &priv->state))
5782 		return IRQ_HANDLED;
5783 
5784 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5785 
5786 	return IRQ_HANDLED;
5787 }
5788 
5789 #ifdef CONFIG_NET_POLL_CONTROLLER
5790 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5791  * to allow network I/O with interrupts disabled.
5792  */
5793 static void stmmac_poll_controller(struct net_device *dev)
5794 {
5795 	struct stmmac_priv *priv = netdev_priv(dev);
5796 	int i;
5797 
5798 	/* If adapter is down, do nothing */
5799 	if (test_bit(STMMAC_DOWN, &priv->state))
5800 		return;
5801 
5802 	if (priv->plat->multi_msi_en) {
5803 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5804 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5805 
5806 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5807 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5808 	} else {
5809 		disable_irq(dev->irq);
5810 		stmmac_interrupt(dev->irq, dev);
5811 		enable_irq(dev->irq);
5812 	}
5813 }
5814 #endif
5815 
5816 /**
5817  *  stmmac_ioctl - Entry point for the Ioctl
5818  *  @dev: Device pointer.
5819  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5820  *  a proprietary structure used to pass information to the driver.
5821  *  @cmd: IOCTL command
5822  *  Description:
5823  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5824  */
5825 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5826 {
5827 	struct stmmac_priv *priv = netdev_priv (dev);
5828 	int ret = -EOPNOTSUPP;
5829 
5830 	if (!netif_running(dev))
5831 		return -EINVAL;
5832 
5833 	switch (cmd) {
5834 	case SIOCGMIIPHY:
5835 	case SIOCGMIIREG:
5836 	case SIOCSMIIREG:
5837 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5838 		break;
5839 	case SIOCSHWTSTAMP:
5840 		ret = stmmac_hwtstamp_set(dev, rq);
5841 		break;
5842 	case SIOCGHWTSTAMP:
5843 		ret = stmmac_hwtstamp_get(dev, rq);
5844 		break;
5845 	default:
5846 		break;
5847 	}
5848 
5849 	return ret;
5850 }
5851 
5852 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5853 				    void *cb_priv)
5854 {
5855 	struct stmmac_priv *priv = cb_priv;
5856 	int ret = -EOPNOTSUPP;
5857 
5858 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5859 		return ret;
5860 
5861 	__stmmac_disable_all_queues(priv);
5862 
5863 	switch (type) {
5864 	case TC_SETUP_CLSU32:
5865 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5866 		break;
5867 	case TC_SETUP_CLSFLOWER:
5868 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5869 		break;
5870 	default:
5871 		break;
5872 	}
5873 
5874 	stmmac_enable_all_queues(priv);
5875 	return ret;
5876 }
5877 
5878 static LIST_HEAD(stmmac_block_cb_list);
5879 
5880 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5881 			   void *type_data)
5882 {
5883 	struct stmmac_priv *priv = netdev_priv(ndev);
5884 
5885 	switch (type) {
5886 	case TC_SETUP_BLOCK:
5887 		return flow_block_cb_setup_simple(type_data,
5888 						  &stmmac_block_cb_list,
5889 						  stmmac_setup_tc_block_cb,
5890 						  priv, priv, true);
5891 	case TC_SETUP_QDISC_CBS:
5892 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5893 	case TC_SETUP_QDISC_TAPRIO:
5894 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5895 	case TC_SETUP_QDISC_ETF:
5896 		return stmmac_tc_setup_etf(priv, priv, type_data);
5897 	default:
5898 		return -EOPNOTSUPP;
5899 	}
5900 }
5901 
5902 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5903 			       struct net_device *sb_dev)
5904 {
5905 	int gso = skb_shinfo(skb)->gso_type;
5906 
5907 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5908 		/*
5909 		 * There is no way to determine the number of TSO/USO
5910 		 * capable Queues. Let's use always the Queue 0
5911 		 * because if TSO/USO is supported then at least this
5912 		 * one will be capable.
5913 		 */
5914 		return 0;
5915 	}
5916 
5917 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5918 }
5919 
5920 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5921 {
5922 	struct stmmac_priv *priv = netdev_priv(ndev);
5923 	int ret = 0;
5924 
5925 	ret = pm_runtime_get_sync(priv->device);
5926 	if (ret < 0) {
5927 		pm_runtime_put_noidle(priv->device);
5928 		return ret;
5929 	}
5930 
5931 	ret = eth_mac_addr(ndev, addr);
5932 	if (ret)
5933 		goto set_mac_error;
5934 
5935 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5936 
5937 set_mac_error:
5938 	pm_runtime_put(priv->device);
5939 
5940 	return ret;
5941 }
5942 
5943 #ifdef CONFIG_DEBUG_FS
5944 static struct dentry *stmmac_fs_dir;
5945 
5946 static void sysfs_display_ring(void *head, int size, int extend_desc,
5947 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5948 {
5949 	int i;
5950 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5951 	struct dma_desc *p = (struct dma_desc *)head;
5952 	dma_addr_t dma_addr;
5953 
5954 	for (i = 0; i < size; i++) {
5955 		if (extend_desc) {
5956 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5957 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5958 				   i, &dma_addr,
5959 				   le32_to_cpu(ep->basic.des0),
5960 				   le32_to_cpu(ep->basic.des1),
5961 				   le32_to_cpu(ep->basic.des2),
5962 				   le32_to_cpu(ep->basic.des3));
5963 			ep++;
5964 		} else {
5965 			dma_addr = dma_phy_addr + i * sizeof(*p);
5966 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5967 				   i, &dma_addr,
5968 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5969 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5970 			p++;
5971 		}
5972 		seq_printf(seq, "\n");
5973 	}
5974 }
5975 
5976 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5977 {
5978 	struct net_device *dev = seq->private;
5979 	struct stmmac_priv *priv = netdev_priv(dev);
5980 	u32 rx_count = priv->plat->rx_queues_to_use;
5981 	u32 tx_count = priv->plat->tx_queues_to_use;
5982 	u32 queue;
5983 
5984 	if ((dev->flags & IFF_UP) == 0)
5985 		return 0;
5986 
5987 	for (queue = 0; queue < rx_count; queue++) {
5988 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5989 
5990 		seq_printf(seq, "RX Queue %d:\n", queue);
5991 
5992 		if (priv->extend_desc) {
5993 			seq_printf(seq, "Extended descriptor ring:\n");
5994 			sysfs_display_ring((void *)rx_q->dma_erx,
5995 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5996 		} else {
5997 			seq_printf(seq, "Descriptor ring:\n");
5998 			sysfs_display_ring((void *)rx_q->dma_rx,
5999 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6000 		}
6001 	}
6002 
6003 	for (queue = 0; queue < tx_count; queue++) {
6004 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6005 
6006 		seq_printf(seq, "TX Queue %d:\n", queue);
6007 
6008 		if (priv->extend_desc) {
6009 			seq_printf(seq, "Extended descriptor ring:\n");
6010 			sysfs_display_ring((void *)tx_q->dma_etx,
6011 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6012 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6013 			seq_printf(seq, "Descriptor ring:\n");
6014 			sysfs_display_ring((void *)tx_q->dma_tx,
6015 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6016 		}
6017 	}
6018 
6019 	return 0;
6020 }
6021 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6022 
6023 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6024 {
6025 	struct net_device *dev = seq->private;
6026 	struct stmmac_priv *priv = netdev_priv(dev);
6027 
6028 	if (!priv->hw_cap_support) {
6029 		seq_printf(seq, "DMA HW features not supported\n");
6030 		return 0;
6031 	}
6032 
6033 	seq_printf(seq, "==============================\n");
6034 	seq_printf(seq, "\tDMA HW features\n");
6035 	seq_printf(seq, "==============================\n");
6036 
6037 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6038 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6039 	seq_printf(seq, "\t1000 Mbps: %s\n",
6040 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6041 	seq_printf(seq, "\tHalf duplex: %s\n",
6042 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6043 	seq_printf(seq, "\tHash Filter: %s\n",
6044 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6045 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6046 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6047 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6048 		   (priv->dma_cap.pcs) ? "Y" : "N");
6049 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6050 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6051 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6052 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6053 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6054 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6055 	seq_printf(seq, "\tRMON module: %s\n",
6056 		   (priv->dma_cap.rmon) ? "Y" : "N");
6057 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6058 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6059 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6060 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6061 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6062 		   (priv->dma_cap.eee) ? "Y" : "N");
6063 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6064 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6065 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6066 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6067 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6068 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6069 	} else {
6070 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6071 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6072 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6073 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6074 	}
6075 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6076 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6077 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6078 		   priv->dma_cap.number_rx_channel);
6079 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6080 		   priv->dma_cap.number_tx_channel);
6081 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6082 		   priv->dma_cap.number_rx_queues);
6083 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6084 		   priv->dma_cap.number_tx_queues);
6085 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6086 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6087 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6088 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6089 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6090 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6091 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6092 		   priv->dma_cap.pps_out_num);
6093 	seq_printf(seq, "\tSafety Features: %s\n",
6094 		   priv->dma_cap.asp ? "Y" : "N");
6095 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6096 		   priv->dma_cap.frpsel ? "Y" : "N");
6097 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6098 		   priv->dma_cap.addr64);
6099 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6100 		   priv->dma_cap.rssen ? "Y" : "N");
6101 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6102 		   priv->dma_cap.vlhash ? "Y" : "N");
6103 	seq_printf(seq, "\tSplit Header: %s\n",
6104 		   priv->dma_cap.sphen ? "Y" : "N");
6105 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6106 		   priv->dma_cap.vlins ? "Y" : "N");
6107 	seq_printf(seq, "\tDouble VLAN: %s\n",
6108 		   priv->dma_cap.dvlan ? "Y" : "N");
6109 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6110 		   priv->dma_cap.l3l4fnum);
6111 	seq_printf(seq, "\tARP Offloading: %s\n",
6112 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6113 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6114 		   priv->dma_cap.estsel ? "Y" : "N");
6115 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6116 		   priv->dma_cap.fpesel ? "Y" : "N");
6117 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6118 		   priv->dma_cap.tbssel ? "Y" : "N");
6119 	return 0;
6120 }
6121 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6122 
6123 /* Use network device events to rename debugfs file entries.
6124  */
6125 static int stmmac_device_event(struct notifier_block *unused,
6126 			       unsigned long event, void *ptr)
6127 {
6128 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6129 	struct stmmac_priv *priv = netdev_priv(dev);
6130 
6131 	if (dev->netdev_ops != &stmmac_netdev_ops)
6132 		goto done;
6133 
6134 	switch (event) {
6135 	case NETDEV_CHANGENAME:
6136 		if (priv->dbgfs_dir)
6137 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6138 							 priv->dbgfs_dir,
6139 							 stmmac_fs_dir,
6140 							 dev->name);
6141 		break;
6142 	}
6143 done:
6144 	return NOTIFY_DONE;
6145 }
6146 
6147 static struct notifier_block stmmac_notifier = {
6148 	.notifier_call = stmmac_device_event,
6149 };
6150 
6151 static void stmmac_init_fs(struct net_device *dev)
6152 {
6153 	struct stmmac_priv *priv = netdev_priv(dev);
6154 
6155 	rtnl_lock();
6156 
6157 	/* Create per netdev entries */
6158 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6159 
6160 	/* Entry to report DMA RX/TX rings */
6161 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6162 			    &stmmac_rings_status_fops);
6163 
6164 	/* Entry to report the DMA HW features */
6165 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6166 			    &stmmac_dma_cap_fops);
6167 
6168 	rtnl_unlock();
6169 }
6170 
6171 static void stmmac_exit_fs(struct net_device *dev)
6172 {
6173 	struct stmmac_priv *priv = netdev_priv(dev);
6174 
6175 	debugfs_remove_recursive(priv->dbgfs_dir);
6176 }
6177 #endif /* CONFIG_DEBUG_FS */
6178 
6179 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6180 {
6181 	unsigned char *data = (unsigned char *)&vid_le;
6182 	unsigned char data_byte = 0;
6183 	u32 crc = ~0x0;
6184 	u32 temp = 0;
6185 	int i, bits;
6186 
6187 	bits = get_bitmask_order(VLAN_VID_MASK);
6188 	for (i = 0; i < bits; i++) {
6189 		if ((i % 8) == 0)
6190 			data_byte = data[i / 8];
6191 
6192 		temp = ((crc & 1) ^ data_byte) & 1;
6193 		crc >>= 1;
6194 		data_byte >>= 1;
6195 
6196 		if (temp)
6197 			crc ^= 0xedb88320;
6198 	}
6199 
6200 	return crc;
6201 }
6202 
6203 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6204 {
6205 	u32 crc, hash = 0;
6206 	__le16 pmatch = 0;
6207 	int count = 0;
6208 	u16 vid = 0;
6209 
6210 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6211 		__le16 vid_le = cpu_to_le16(vid);
6212 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6213 		hash |= (1 << crc);
6214 		count++;
6215 	}
6216 
6217 	if (!priv->dma_cap.vlhash) {
6218 		if (count > 2) /* VID = 0 always passes filter */
6219 			return -EOPNOTSUPP;
6220 
6221 		pmatch = cpu_to_le16(vid);
6222 		hash = 0;
6223 	}
6224 
6225 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6226 }
6227 
6228 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6229 {
6230 	struct stmmac_priv *priv = netdev_priv(ndev);
6231 	bool is_double = false;
6232 	int ret;
6233 
6234 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6235 		is_double = true;
6236 
6237 	set_bit(vid, priv->active_vlans);
6238 	ret = stmmac_vlan_update(priv, is_double);
6239 	if (ret) {
6240 		clear_bit(vid, priv->active_vlans);
6241 		return ret;
6242 	}
6243 
6244 	if (priv->hw->num_vlan) {
6245 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6246 		if (ret)
6247 			return ret;
6248 	}
6249 
6250 	return 0;
6251 }
6252 
6253 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6254 {
6255 	struct stmmac_priv *priv = netdev_priv(ndev);
6256 	bool is_double = false;
6257 	int ret;
6258 
6259 	ret = pm_runtime_get_sync(priv->device);
6260 	if (ret < 0) {
6261 		pm_runtime_put_noidle(priv->device);
6262 		return ret;
6263 	}
6264 
6265 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6266 		is_double = true;
6267 
6268 	clear_bit(vid, priv->active_vlans);
6269 
6270 	if (priv->hw->num_vlan) {
6271 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6272 		if (ret)
6273 			goto del_vlan_error;
6274 	}
6275 
6276 	ret = stmmac_vlan_update(priv, is_double);
6277 
6278 del_vlan_error:
6279 	pm_runtime_put(priv->device);
6280 
6281 	return ret;
6282 }
6283 
6284 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6285 {
6286 	struct stmmac_priv *priv = netdev_priv(dev);
6287 
6288 	switch (bpf->command) {
6289 	case XDP_SETUP_PROG:
6290 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6291 	case XDP_SETUP_XSK_POOL:
6292 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6293 					     bpf->xsk.queue_id);
6294 	default:
6295 		return -EOPNOTSUPP;
6296 	}
6297 }
6298 
6299 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6300 			   struct xdp_frame **frames, u32 flags)
6301 {
6302 	struct stmmac_priv *priv = netdev_priv(dev);
6303 	int cpu = smp_processor_id();
6304 	struct netdev_queue *nq;
6305 	int i, nxmit = 0;
6306 	int queue;
6307 
6308 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6309 		return -ENETDOWN;
6310 
6311 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6312 		return -EINVAL;
6313 
6314 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6315 	nq = netdev_get_tx_queue(priv->dev, queue);
6316 
6317 	__netif_tx_lock(nq, cpu);
6318 	/* Avoids TX time-out as we are sharing with slow path */
6319 	txq_trans_cond_update(nq);
6320 
6321 	for (i = 0; i < num_frames; i++) {
6322 		int res;
6323 
6324 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6325 		if (res == STMMAC_XDP_CONSUMED)
6326 			break;
6327 
6328 		nxmit++;
6329 	}
6330 
6331 	if (flags & XDP_XMIT_FLUSH) {
6332 		stmmac_flush_tx_descriptors(priv, queue);
6333 		stmmac_tx_timer_arm(priv, queue);
6334 	}
6335 
6336 	__netif_tx_unlock(nq);
6337 
6338 	return nxmit;
6339 }
6340 
6341 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6342 {
6343 	struct stmmac_channel *ch = &priv->channel[queue];
6344 	unsigned long flags;
6345 
6346 	spin_lock_irqsave(&ch->lock, flags);
6347 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6348 	spin_unlock_irqrestore(&ch->lock, flags);
6349 
6350 	stmmac_stop_rx_dma(priv, queue);
6351 	__free_dma_rx_desc_resources(priv, queue);
6352 }
6353 
6354 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6355 {
6356 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6357 	struct stmmac_channel *ch = &priv->channel[queue];
6358 	unsigned long flags;
6359 	u32 buf_size;
6360 	int ret;
6361 
6362 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6363 	if (ret) {
6364 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6365 		return;
6366 	}
6367 
6368 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6369 	if (ret) {
6370 		__free_dma_rx_desc_resources(priv, queue);
6371 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6372 		return;
6373 	}
6374 
6375 	stmmac_clear_rx_descriptors(priv, queue);
6376 
6377 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6378 			    rx_q->dma_rx_phy, rx_q->queue_index);
6379 
6380 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6381 			     sizeof(struct dma_desc));
6382 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6383 			       rx_q->rx_tail_addr, rx_q->queue_index);
6384 
6385 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6386 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6387 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6388 				      buf_size,
6389 				      rx_q->queue_index);
6390 	} else {
6391 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6392 				      priv->dma_buf_sz,
6393 				      rx_q->queue_index);
6394 	}
6395 
6396 	stmmac_start_rx_dma(priv, queue);
6397 
6398 	spin_lock_irqsave(&ch->lock, flags);
6399 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6400 	spin_unlock_irqrestore(&ch->lock, flags);
6401 }
6402 
6403 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6404 {
6405 	struct stmmac_channel *ch = &priv->channel[queue];
6406 	unsigned long flags;
6407 
6408 	spin_lock_irqsave(&ch->lock, flags);
6409 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6410 	spin_unlock_irqrestore(&ch->lock, flags);
6411 
6412 	stmmac_stop_tx_dma(priv, queue);
6413 	__free_dma_tx_desc_resources(priv, queue);
6414 }
6415 
6416 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6417 {
6418 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6419 	struct stmmac_channel *ch = &priv->channel[queue];
6420 	unsigned long flags;
6421 	int ret;
6422 
6423 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6424 	if (ret) {
6425 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6426 		return;
6427 	}
6428 
6429 	ret = __init_dma_tx_desc_rings(priv, queue);
6430 	if (ret) {
6431 		__free_dma_tx_desc_resources(priv, queue);
6432 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6433 		return;
6434 	}
6435 
6436 	stmmac_clear_tx_descriptors(priv, queue);
6437 
6438 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6439 			    tx_q->dma_tx_phy, tx_q->queue_index);
6440 
6441 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6442 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6443 
6444 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6445 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6446 			       tx_q->tx_tail_addr, tx_q->queue_index);
6447 
6448 	stmmac_start_tx_dma(priv, queue);
6449 
6450 	spin_lock_irqsave(&ch->lock, flags);
6451 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6452 	spin_unlock_irqrestore(&ch->lock, flags);
6453 }
6454 
6455 void stmmac_xdp_release(struct net_device *dev)
6456 {
6457 	struct stmmac_priv *priv = netdev_priv(dev);
6458 	u32 chan;
6459 
6460 	/* Disable NAPI process */
6461 	stmmac_disable_all_queues(priv);
6462 
6463 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6464 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6465 
6466 	/* Free the IRQ lines */
6467 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6468 
6469 	/* Stop TX/RX DMA channels */
6470 	stmmac_stop_all_dma(priv);
6471 
6472 	/* Release and free the Rx/Tx resources */
6473 	free_dma_desc_resources(priv);
6474 
6475 	/* Disable the MAC Rx/Tx */
6476 	stmmac_mac_set(priv, priv->ioaddr, false);
6477 
6478 	/* set trans_start so we don't get spurious
6479 	 * watchdogs during reset
6480 	 */
6481 	netif_trans_update(dev);
6482 	netif_carrier_off(dev);
6483 }
6484 
6485 int stmmac_xdp_open(struct net_device *dev)
6486 {
6487 	struct stmmac_priv *priv = netdev_priv(dev);
6488 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6489 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6490 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6491 	struct stmmac_rx_queue *rx_q;
6492 	struct stmmac_tx_queue *tx_q;
6493 	u32 buf_size;
6494 	bool sph_en;
6495 	u32 chan;
6496 	int ret;
6497 
6498 	ret = alloc_dma_desc_resources(priv);
6499 	if (ret < 0) {
6500 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6501 			   __func__);
6502 		goto dma_desc_error;
6503 	}
6504 
6505 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
6506 	if (ret < 0) {
6507 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6508 			   __func__);
6509 		goto init_error;
6510 	}
6511 
6512 	/* DMA CSR Channel configuration */
6513 	for (chan = 0; chan < dma_csr_ch; chan++)
6514 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6515 
6516 	/* Adjust Split header */
6517 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6518 
6519 	/* DMA RX Channel Configuration */
6520 	for (chan = 0; chan < rx_cnt; chan++) {
6521 		rx_q = &priv->rx_queue[chan];
6522 
6523 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6524 				    rx_q->dma_rx_phy, chan);
6525 
6526 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6527 				     (rx_q->buf_alloc_num *
6528 				      sizeof(struct dma_desc));
6529 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6530 				       rx_q->rx_tail_addr, chan);
6531 
6532 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6533 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6534 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6535 					      buf_size,
6536 					      rx_q->queue_index);
6537 		} else {
6538 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6539 					      priv->dma_buf_sz,
6540 					      rx_q->queue_index);
6541 		}
6542 
6543 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6544 	}
6545 
6546 	/* DMA TX Channel Configuration */
6547 	for (chan = 0; chan < tx_cnt; chan++) {
6548 		tx_q = &priv->tx_queue[chan];
6549 
6550 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6551 				    tx_q->dma_tx_phy, chan);
6552 
6553 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6554 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6555 				       tx_q->tx_tail_addr, chan);
6556 
6557 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6558 		tx_q->txtimer.function = stmmac_tx_timer;
6559 	}
6560 
6561 	/* Enable the MAC Rx/Tx */
6562 	stmmac_mac_set(priv, priv->ioaddr, true);
6563 
6564 	/* Start Rx & Tx DMA Channels */
6565 	stmmac_start_all_dma(priv);
6566 
6567 	ret = stmmac_request_irq(dev);
6568 	if (ret)
6569 		goto irq_error;
6570 
6571 	/* Enable NAPI process*/
6572 	stmmac_enable_all_queues(priv);
6573 	netif_carrier_on(dev);
6574 	netif_tx_start_all_queues(dev);
6575 
6576 	return 0;
6577 
6578 irq_error:
6579 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6580 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6581 
6582 	stmmac_hw_teardown(dev);
6583 init_error:
6584 	free_dma_desc_resources(priv);
6585 dma_desc_error:
6586 	return ret;
6587 }
6588 
6589 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6590 {
6591 	struct stmmac_priv *priv = netdev_priv(dev);
6592 	struct stmmac_rx_queue *rx_q;
6593 	struct stmmac_tx_queue *tx_q;
6594 	struct stmmac_channel *ch;
6595 
6596 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6597 	    !netif_carrier_ok(priv->dev))
6598 		return -ENETDOWN;
6599 
6600 	if (!stmmac_xdp_is_enabled(priv))
6601 		return -ENXIO;
6602 
6603 	if (queue >= priv->plat->rx_queues_to_use ||
6604 	    queue >= priv->plat->tx_queues_to_use)
6605 		return -EINVAL;
6606 
6607 	rx_q = &priv->rx_queue[queue];
6608 	tx_q = &priv->tx_queue[queue];
6609 	ch = &priv->channel[queue];
6610 
6611 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6612 		return -ENXIO;
6613 
6614 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6615 		/* EQoS does not have per-DMA channel SW interrupt,
6616 		 * so we schedule RX Napi straight-away.
6617 		 */
6618 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6619 			__napi_schedule(&ch->rxtx_napi);
6620 	}
6621 
6622 	return 0;
6623 }
6624 
6625 static const struct net_device_ops stmmac_netdev_ops = {
6626 	.ndo_open = stmmac_open,
6627 	.ndo_start_xmit = stmmac_xmit,
6628 	.ndo_stop = stmmac_release,
6629 	.ndo_change_mtu = stmmac_change_mtu,
6630 	.ndo_fix_features = stmmac_fix_features,
6631 	.ndo_set_features = stmmac_set_features,
6632 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6633 	.ndo_tx_timeout = stmmac_tx_timeout,
6634 	.ndo_eth_ioctl = stmmac_ioctl,
6635 	.ndo_setup_tc = stmmac_setup_tc,
6636 	.ndo_select_queue = stmmac_select_queue,
6637 #ifdef CONFIG_NET_POLL_CONTROLLER
6638 	.ndo_poll_controller = stmmac_poll_controller,
6639 #endif
6640 	.ndo_set_mac_address = stmmac_set_mac_address,
6641 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6642 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6643 	.ndo_bpf = stmmac_bpf,
6644 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6645 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6646 };
6647 
6648 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6649 {
6650 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6651 		return;
6652 	if (test_bit(STMMAC_DOWN, &priv->state))
6653 		return;
6654 
6655 	netdev_err(priv->dev, "Reset adapter.\n");
6656 
6657 	rtnl_lock();
6658 	netif_trans_update(priv->dev);
6659 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6660 		usleep_range(1000, 2000);
6661 
6662 	set_bit(STMMAC_DOWN, &priv->state);
6663 	dev_close(priv->dev);
6664 	dev_open(priv->dev, NULL);
6665 	clear_bit(STMMAC_DOWN, &priv->state);
6666 	clear_bit(STMMAC_RESETING, &priv->state);
6667 	rtnl_unlock();
6668 }
6669 
6670 static void stmmac_service_task(struct work_struct *work)
6671 {
6672 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6673 			service_task);
6674 
6675 	stmmac_reset_subtask(priv);
6676 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6677 }
6678 
6679 /**
6680  *  stmmac_hw_init - Init the MAC device
6681  *  @priv: driver private structure
6682  *  Description: this function is to configure the MAC device according to
6683  *  some platform parameters or the HW capability register. It prepares the
6684  *  driver to use either ring or chain modes and to setup either enhanced or
6685  *  normal descriptors.
6686  */
6687 static int stmmac_hw_init(struct stmmac_priv *priv)
6688 {
6689 	int ret;
6690 
6691 	/* dwmac-sun8i only work in chain mode */
6692 	if (priv->plat->has_sun8i)
6693 		chain_mode = 1;
6694 	priv->chain_mode = chain_mode;
6695 
6696 	/* Initialize HW Interface */
6697 	ret = stmmac_hwif_init(priv);
6698 	if (ret)
6699 		return ret;
6700 
6701 	/* Get the HW capability (new GMAC newer than 3.50a) */
6702 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6703 	if (priv->hw_cap_support) {
6704 		dev_info(priv->device, "DMA HW capability register supported\n");
6705 
6706 		/* We can override some gmac/dma configuration fields: e.g.
6707 		 * enh_desc, tx_coe (e.g. that are passed through the
6708 		 * platform) with the values from the HW capability
6709 		 * register (if supported).
6710 		 */
6711 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6712 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6713 				!priv->plat->use_phy_wol;
6714 		priv->hw->pmt = priv->plat->pmt;
6715 		if (priv->dma_cap.hash_tb_sz) {
6716 			priv->hw->multicast_filter_bins =
6717 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6718 			priv->hw->mcast_bits_log2 =
6719 					ilog2(priv->hw->multicast_filter_bins);
6720 		}
6721 
6722 		/* TXCOE doesn't work in thresh DMA mode */
6723 		if (priv->plat->force_thresh_dma_mode)
6724 			priv->plat->tx_coe = 0;
6725 		else
6726 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6727 
6728 		/* In case of GMAC4 rx_coe is from HW cap register. */
6729 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6730 
6731 		if (priv->dma_cap.rx_coe_type2)
6732 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6733 		else if (priv->dma_cap.rx_coe_type1)
6734 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6735 
6736 	} else {
6737 		dev_info(priv->device, "No HW DMA feature register supported\n");
6738 	}
6739 
6740 	if (priv->plat->rx_coe) {
6741 		priv->hw->rx_csum = priv->plat->rx_coe;
6742 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6743 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6744 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6745 	}
6746 	if (priv->plat->tx_coe)
6747 		dev_info(priv->device, "TX Checksum insertion supported\n");
6748 
6749 	if (priv->plat->pmt) {
6750 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6751 		device_set_wakeup_capable(priv->device, 1);
6752 	}
6753 
6754 	if (priv->dma_cap.tsoen)
6755 		dev_info(priv->device, "TSO supported\n");
6756 
6757 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6758 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6759 
6760 	/* Run HW quirks, if any */
6761 	if (priv->hwif_quirks) {
6762 		ret = priv->hwif_quirks(priv);
6763 		if (ret)
6764 			return ret;
6765 	}
6766 
6767 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6768 	 * In some case, for example on bugged HW this feature
6769 	 * has to be disable and this can be done by passing the
6770 	 * riwt_off field from the platform.
6771 	 */
6772 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6773 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6774 		priv->use_riwt = 1;
6775 		dev_info(priv->device,
6776 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6777 	}
6778 
6779 	return 0;
6780 }
6781 
6782 static void stmmac_napi_add(struct net_device *dev)
6783 {
6784 	struct stmmac_priv *priv = netdev_priv(dev);
6785 	u32 queue, maxq;
6786 
6787 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6788 
6789 	for (queue = 0; queue < maxq; queue++) {
6790 		struct stmmac_channel *ch = &priv->channel[queue];
6791 
6792 		ch->priv_data = priv;
6793 		ch->index = queue;
6794 		spin_lock_init(&ch->lock);
6795 
6796 		if (queue < priv->plat->rx_queues_to_use) {
6797 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6798 				       NAPI_POLL_WEIGHT);
6799 		}
6800 		if (queue < priv->plat->tx_queues_to_use) {
6801 			netif_tx_napi_add(dev, &ch->tx_napi,
6802 					  stmmac_napi_poll_tx,
6803 					  NAPI_POLL_WEIGHT);
6804 		}
6805 		if (queue < priv->plat->rx_queues_to_use &&
6806 		    queue < priv->plat->tx_queues_to_use) {
6807 			netif_napi_add(dev, &ch->rxtx_napi,
6808 				       stmmac_napi_poll_rxtx,
6809 				       NAPI_POLL_WEIGHT);
6810 		}
6811 	}
6812 }
6813 
6814 static void stmmac_napi_del(struct net_device *dev)
6815 {
6816 	struct stmmac_priv *priv = netdev_priv(dev);
6817 	u32 queue, maxq;
6818 
6819 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6820 
6821 	for (queue = 0; queue < maxq; queue++) {
6822 		struct stmmac_channel *ch = &priv->channel[queue];
6823 
6824 		if (queue < priv->plat->rx_queues_to_use)
6825 			netif_napi_del(&ch->rx_napi);
6826 		if (queue < priv->plat->tx_queues_to_use)
6827 			netif_napi_del(&ch->tx_napi);
6828 		if (queue < priv->plat->rx_queues_to_use &&
6829 		    queue < priv->plat->tx_queues_to_use) {
6830 			netif_napi_del(&ch->rxtx_napi);
6831 		}
6832 	}
6833 }
6834 
6835 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6836 {
6837 	struct stmmac_priv *priv = netdev_priv(dev);
6838 	int ret = 0;
6839 
6840 	if (netif_running(dev))
6841 		stmmac_release(dev);
6842 
6843 	stmmac_napi_del(dev);
6844 
6845 	priv->plat->rx_queues_to_use = rx_cnt;
6846 	priv->plat->tx_queues_to_use = tx_cnt;
6847 
6848 	stmmac_napi_add(dev);
6849 
6850 	if (netif_running(dev))
6851 		ret = stmmac_open(dev);
6852 
6853 	return ret;
6854 }
6855 
6856 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6857 {
6858 	struct stmmac_priv *priv = netdev_priv(dev);
6859 	int ret = 0;
6860 
6861 	if (netif_running(dev))
6862 		stmmac_release(dev);
6863 
6864 	priv->dma_rx_size = rx_size;
6865 	priv->dma_tx_size = tx_size;
6866 
6867 	if (netif_running(dev))
6868 		ret = stmmac_open(dev);
6869 
6870 	return ret;
6871 }
6872 
6873 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6874 static void stmmac_fpe_lp_task(struct work_struct *work)
6875 {
6876 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6877 						fpe_task);
6878 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6879 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6880 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6881 	bool *hs_enable = &fpe_cfg->hs_enable;
6882 	bool *enable = &fpe_cfg->enable;
6883 	int retries = 20;
6884 
6885 	while (retries-- > 0) {
6886 		/* Bail out immediately if FPE handshake is OFF */
6887 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6888 			break;
6889 
6890 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6891 		    *lp_state == FPE_STATE_ENTERING_ON) {
6892 			stmmac_fpe_configure(priv, priv->ioaddr,
6893 					     priv->plat->tx_queues_to_use,
6894 					     priv->plat->rx_queues_to_use,
6895 					     *enable);
6896 
6897 			netdev_info(priv->dev, "configured FPE\n");
6898 
6899 			*lo_state = FPE_STATE_ON;
6900 			*lp_state = FPE_STATE_ON;
6901 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6902 			break;
6903 		}
6904 
6905 		if ((*lo_state == FPE_STATE_CAPABLE ||
6906 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6907 		     *lp_state != FPE_STATE_ON) {
6908 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6909 				    *lo_state, *lp_state);
6910 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6911 						MPACKET_VERIFY);
6912 		}
6913 		/* Sleep then retry */
6914 		msleep(500);
6915 	}
6916 
6917 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6918 }
6919 
6920 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6921 {
6922 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6923 		if (enable) {
6924 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6925 						MPACKET_VERIFY);
6926 		} else {
6927 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6928 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6929 		}
6930 
6931 		priv->plat->fpe_cfg->hs_enable = enable;
6932 	}
6933 }
6934 
6935 /**
6936  * stmmac_dvr_probe
6937  * @device: device pointer
6938  * @plat_dat: platform data pointer
6939  * @res: stmmac resource pointer
6940  * Description: this is the main probe function used to
6941  * call the alloc_etherdev, allocate the priv structure.
6942  * Return:
6943  * returns 0 on success, otherwise errno.
6944  */
6945 int stmmac_dvr_probe(struct device *device,
6946 		     struct plat_stmmacenet_data *plat_dat,
6947 		     struct stmmac_resources *res)
6948 {
6949 	struct net_device *ndev = NULL;
6950 	struct stmmac_priv *priv;
6951 	u32 rxq;
6952 	int i, ret = 0;
6953 
6954 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6955 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6956 	if (!ndev)
6957 		return -ENOMEM;
6958 
6959 	SET_NETDEV_DEV(ndev, device);
6960 
6961 	priv = netdev_priv(ndev);
6962 	priv->device = device;
6963 	priv->dev = ndev;
6964 
6965 	stmmac_set_ethtool_ops(ndev);
6966 	priv->pause = pause;
6967 	priv->plat = plat_dat;
6968 	priv->ioaddr = res->addr;
6969 	priv->dev->base_addr = (unsigned long)res->addr;
6970 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6971 
6972 	priv->dev->irq = res->irq;
6973 	priv->wol_irq = res->wol_irq;
6974 	priv->lpi_irq = res->lpi_irq;
6975 	priv->sfty_ce_irq = res->sfty_ce_irq;
6976 	priv->sfty_ue_irq = res->sfty_ue_irq;
6977 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6978 		priv->rx_irq[i] = res->rx_irq[i];
6979 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6980 		priv->tx_irq[i] = res->tx_irq[i];
6981 
6982 	if (!is_zero_ether_addr(res->mac))
6983 		eth_hw_addr_set(priv->dev, res->mac);
6984 
6985 	dev_set_drvdata(device, priv->dev);
6986 
6987 	/* Verify driver arguments */
6988 	stmmac_verify_args();
6989 
6990 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6991 	if (!priv->af_xdp_zc_qps)
6992 		return -ENOMEM;
6993 
6994 	/* Allocate workqueue */
6995 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6996 	if (!priv->wq) {
6997 		dev_err(priv->device, "failed to create workqueue\n");
6998 		return -ENOMEM;
6999 	}
7000 
7001 	INIT_WORK(&priv->service_task, stmmac_service_task);
7002 
7003 	/* Initialize Link Partner FPE workqueue */
7004 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7005 
7006 	/* Override with kernel parameters if supplied XXX CRS XXX
7007 	 * this needs to have multiple instances
7008 	 */
7009 	if ((phyaddr >= 0) && (phyaddr <= 31))
7010 		priv->plat->phy_addr = phyaddr;
7011 
7012 	if (priv->plat->stmmac_rst) {
7013 		ret = reset_control_assert(priv->plat->stmmac_rst);
7014 		reset_control_deassert(priv->plat->stmmac_rst);
7015 		/* Some reset controllers have only reset callback instead of
7016 		 * assert + deassert callbacks pair.
7017 		 */
7018 		if (ret == -ENOTSUPP)
7019 			reset_control_reset(priv->plat->stmmac_rst);
7020 	}
7021 
7022 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7023 	if (ret == -ENOTSUPP)
7024 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7025 			ERR_PTR(ret));
7026 
7027 	/* Init MAC and get the capabilities */
7028 	ret = stmmac_hw_init(priv);
7029 	if (ret)
7030 		goto error_hw_init;
7031 
7032 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7033 	 */
7034 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7035 		priv->plat->dma_cfg->dche = false;
7036 
7037 	stmmac_check_ether_addr(priv);
7038 
7039 	ndev->netdev_ops = &stmmac_netdev_ops;
7040 
7041 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7042 			    NETIF_F_RXCSUM;
7043 
7044 	ret = stmmac_tc_init(priv, priv);
7045 	if (!ret) {
7046 		ndev->hw_features |= NETIF_F_HW_TC;
7047 	}
7048 
7049 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7050 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7051 		if (priv->plat->has_gmac4)
7052 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7053 		priv->tso = true;
7054 		dev_info(priv->device, "TSO feature enabled\n");
7055 	}
7056 
7057 	if (priv->dma_cap.sphen) {
7058 		ndev->hw_features |= NETIF_F_GRO;
7059 		priv->sph_cap = true;
7060 		priv->sph = priv->sph_cap;
7061 		dev_info(priv->device, "SPH feature enabled\n");
7062 	}
7063 
7064 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7065 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7066 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7067 	 * So overwrite dma_cap.addr64 according to HW real design.
7068 	 */
7069 	if (priv->plat->addr64)
7070 		priv->dma_cap.addr64 = priv->plat->addr64;
7071 
7072 	if (priv->dma_cap.addr64) {
7073 		ret = dma_set_mask_and_coherent(device,
7074 				DMA_BIT_MASK(priv->dma_cap.addr64));
7075 		if (!ret) {
7076 			dev_info(priv->device, "Using %d bits DMA width\n",
7077 				 priv->dma_cap.addr64);
7078 
7079 			/*
7080 			 * If more than 32 bits can be addressed, make sure to
7081 			 * enable enhanced addressing mode.
7082 			 */
7083 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7084 				priv->plat->dma_cfg->eame = true;
7085 		} else {
7086 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7087 			if (ret) {
7088 				dev_err(priv->device, "Failed to set DMA Mask\n");
7089 				goto error_hw_init;
7090 			}
7091 
7092 			priv->dma_cap.addr64 = 32;
7093 		}
7094 	}
7095 
7096 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7097 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7098 #ifdef STMMAC_VLAN_TAG_USED
7099 	/* Both mac100 and gmac support receive VLAN tag detection */
7100 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7101 	if (priv->dma_cap.vlhash) {
7102 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7103 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7104 	}
7105 	if (priv->dma_cap.vlins) {
7106 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7107 		if (priv->dma_cap.dvlan)
7108 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7109 	}
7110 #endif
7111 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7112 
7113 	/* Initialize RSS */
7114 	rxq = priv->plat->rx_queues_to_use;
7115 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7116 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7117 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7118 
7119 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7120 		ndev->features |= NETIF_F_RXHASH;
7121 
7122 	/* MTU range: 46 - hw-specific max */
7123 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7124 	if (priv->plat->has_xgmac)
7125 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7126 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7127 		ndev->max_mtu = JUMBO_LEN;
7128 	else
7129 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7130 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7131 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7132 	 */
7133 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7134 	    (priv->plat->maxmtu >= ndev->min_mtu))
7135 		ndev->max_mtu = priv->plat->maxmtu;
7136 	else if (priv->plat->maxmtu < ndev->min_mtu)
7137 		dev_warn(priv->device,
7138 			 "%s: warning: maxmtu having invalid value (%d)\n",
7139 			 __func__, priv->plat->maxmtu);
7140 
7141 	if (flow_ctrl)
7142 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7143 
7144 	/* Setup channels NAPI */
7145 	stmmac_napi_add(ndev);
7146 
7147 	mutex_init(&priv->lock);
7148 
7149 	/* If a specific clk_csr value is passed from the platform
7150 	 * this means that the CSR Clock Range selection cannot be
7151 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7152 	 * set the MDC clock dynamically according to the csr actual
7153 	 * clock input.
7154 	 */
7155 	if (priv->plat->clk_csr >= 0)
7156 		priv->clk_csr = priv->plat->clk_csr;
7157 	else
7158 		stmmac_clk_csr_set(priv);
7159 
7160 	stmmac_check_pcs_mode(priv);
7161 
7162 	pm_runtime_get_noresume(device);
7163 	pm_runtime_set_active(device);
7164 	if (!pm_runtime_enabled(device))
7165 		pm_runtime_enable(device);
7166 
7167 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7168 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7169 		/* MDIO bus Registration */
7170 		ret = stmmac_mdio_register(ndev);
7171 		if (ret < 0) {
7172 			dev_err(priv->device,
7173 				"%s: MDIO bus (id: %d) registration failed",
7174 				__func__, priv->plat->bus_id);
7175 			goto error_mdio_register;
7176 		}
7177 	}
7178 
7179 	if (priv->plat->speed_mode_2500)
7180 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7181 
7182 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7183 		ret = stmmac_xpcs_setup(priv->mii);
7184 		if (ret)
7185 			goto error_xpcs_setup;
7186 	}
7187 
7188 	ret = stmmac_phy_setup(priv);
7189 	if (ret) {
7190 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7191 		goto error_phy_setup;
7192 	}
7193 
7194 	ret = register_netdev(ndev);
7195 	if (ret) {
7196 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7197 			__func__, ret);
7198 		goto error_netdev_register;
7199 	}
7200 
7201 	if (priv->plat->serdes_powerup) {
7202 		ret = priv->plat->serdes_powerup(ndev,
7203 						 priv->plat->bsp_priv);
7204 
7205 		if (ret < 0)
7206 			goto error_serdes_powerup;
7207 	}
7208 
7209 #ifdef CONFIG_DEBUG_FS
7210 	stmmac_init_fs(ndev);
7211 #endif
7212 
7213 	if (priv->plat->dump_debug_regs)
7214 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7215 
7216 	/* Let pm_runtime_put() disable the clocks.
7217 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7218 	 */
7219 	pm_runtime_put(device);
7220 
7221 	return ret;
7222 
7223 error_serdes_powerup:
7224 	unregister_netdev(ndev);
7225 error_netdev_register:
7226 	phylink_destroy(priv->phylink);
7227 error_xpcs_setup:
7228 error_phy_setup:
7229 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7230 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7231 		stmmac_mdio_unregister(ndev);
7232 error_mdio_register:
7233 	stmmac_napi_del(ndev);
7234 error_hw_init:
7235 	destroy_workqueue(priv->wq);
7236 	bitmap_free(priv->af_xdp_zc_qps);
7237 
7238 	return ret;
7239 }
7240 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7241 
7242 /**
7243  * stmmac_dvr_remove
7244  * @dev: device pointer
7245  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7246  * changes the link status, releases the DMA descriptor rings.
7247  */
7248 int stmmac_dvr_remove(struct device *dev)
7249 {
7250 	struct net_device *ndev = dev_get_drvdata(dev);
7251 	struct stmmac_priv *priv = netdev_priv(ndev);
7252 
7253 	netdev_info(priv->dev, "%s: removing driver", __func__);
7254 
7255 	pm_runtime_get_sync(dev);
7256 	pm_runtime_disable(dev);
7257 	pm_runtime_put_noidle(dev);
7258 
7259 	stmmac_stop_all_dma(priv);
7260 	stmmac_mac_set(priv, priv->ioaddr, false);
7261 	netif_carrier_off(ndev);
7262 	unregister_netdev(ndev);
7263 
7264 	/* Serdes power down needs to happen after VLAN filter
7265 	 * is deleted that is triggered by unregister_netdev().
7266 	 */
7267 	if (priv->plat->serdes_powerdown)
7268 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7269 
7270 #ifdef CONFIG_DEBUG_FS
7271 	stmmac_exit_fs(ndev);
7272 #endif
7273 	phylink_destroy(priv->phylink);
7274 	if (priv->plat->stmmac_rst)
7275 		reset_control_assert(priv->plat->stmmac_rst);
7276 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7277 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7278 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7279 		stmmac_mdio_unregister(ndev);
7280 	destroy_workqueue(priv->wq);
7281 	mutex_destroy(&priv->lock);
7282 	bitmap_free(priv->af_xdp_zc_qps);
7283 
7284 	return 0;
7285 }
7286 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7287 
7288 /**
7289  * stmmac_suspend - suspend callback
7290  * @dev: device pointer
7291  * Description: this is the function to suspend the device and it is called
7292  * by the platform driver to stop the network queue, release the resources,
7293  * program the PMT register (for WoL), clean and release driver resources.
7294  */
7295 int stmmac_suspend(struct device *dev)
7296 {
7297 	struct net_device *ndev = dev_get_drvdata(dev);
7298 	struct stmmac_priv *priv = netdev_priv(ndev);
7299 	u32 chan;
7300 
7301 	if (!ndev || !netif_running(ndev))
7302 		return 0;
7303 
7304 	mutex_lock(&priv->lock);
7305 
7306 	netif_device_detach(ndev);
7307 
7308 	stmmac_disable_all_queues(priv);
7309 
7310 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7311 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7312 
7313 	if (priv->eee_enabled) {
7314 		priv->tx_path_in_lpi_mode = false;
7315 		del_timer_sync(&priv->eee_ctrl_timer);
7316 	}
7317 
7318 	/* Stop TX/RX DMA */
7319 	stmmac_stop_all_dma(priv);
7320 
7321 	if (priv->plat->serdes_powerdown)
7322 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7323 
7324 	/* Enable Power down mode by programming the PMT regs */
7325 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7326 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7327 		priv->irq_wake = 1;
7328 	} else {
7329 		stmmac_mac_set(priv, priv->ioaddr, false);
7330 		pinctrl_pm_select_sleep_state(priv->device);
7331 	}
7332 
7333 	mutex_unlock(&priv->lock);
7334 
7335 	rtnl_lock();
7336 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7337 		phylink_suspend(priv->phylink, true);
7338 	} else {
7339 		if (device_may_wakeup(priv->device))
7340 			phylink_speed_down(priv->phylink, false);
7341 		phylink_suspend(priv->phylink, false);
7342 	}
7343 	rtnl_unlock();
7344 
7345 	if (priv->dma_cap.fpesel) {
7346 		/* Disable FPE */
7347 		stmmac_fpe_configure(priv, priv->ioaddr,
7348 				     priv->plat->tx_queues_to_use,
7349 				     priv->plat->rx_queues_to_use, false);
7350 
7351 		stmmac_fpe_handshake(priv, false);
7352 		stmmac_fpe_stop_wq(priv);
7353 	}
7354 
7355 	priv->speed = SPEED_UNKNOWN;
7356 	return 0;
7357 }
7358 EXPORT_SYMBOL_GPL(stmmac_suspend);
7359 
7360 /**
7361  * stmmac_reset_queues_param - reset queue parameters
7362  * @priv: device pointer
7363  */
7364 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7365 {
7366 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7367 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7368 	u32 queue;
7369 
7370 	for (queue = 0; queue < rx_cnt; queue++) {
7371 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7372 
7373 		rx_q->cur_rx = 0;
7374 		rx_q->dirty_rx = 0;
7375 	}
7376 
7377 	for (queue = 0; queue < tx_cnt; queue++) {
7378 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7379 
7380 		tx_q->cur_tx = 0;
7381 		tx_q->dirty_tx = 0;
7382 		tx_q->mss = 0;
7383 
7384 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7385 	}
7386 }
7387 
7388 /**
7389  * stmmac_resume - resume callback
7390  * @dev: device pointer
7391  * Description: when resume this function is invoked to setup the DMA and CORE
7392  * in a usable state.
7393  */
7394 int stmmac_resume(struct device *dev)
7395 {
7396 	struct net_device *ndev = dev_get_drvdata(dev);
7397 	struct stmmac_priv *priv = netdev_priv(ndev);
7398 	int ret;
7399 
7400 	if (!netif_running(ndev))
7401 		return 0;
7402 
7403 	/* Power Down bit, into the PM register, is cleared
7404 	 * automatically as soon as a magic packet or a Wake-up frame
7405 	 * is received. Anyway, it's better to manually clear
7406 	 * this bit because it can generate problems while resuming
7407 	 * from another devices (e.g. serial console).
7408 	 */
7409 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7410 		mutex_lock(&priv->lock);
7411 		stmmac_pmt(priv, priv->hw, 0);
7412 		mutex_unlock(&priv->lock);
7413 		priv->irq_wake = 0;
7414 	} else {
7415 		pinctrl_pm_select_default_state(priv->device);
7416 		/* reset the phy so that it's ready */
7417 		if (priv->mii)
7418 			stmmac_mdio_reset(priv->mii);
7419 	}
7420 
7421 	if (priv->plat->serdes_powerup) {
7422 		ret = priv->plat->serdes_powerup(ndev,
7423 						 priv->plat->bsp_priv);
7424 
7425 		if (ret < 0)
7426 			return ret;
7427 	}
7428 
7429 	rtnl_lock();
7430 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7431 		phylink_resume(priv->phylink);
7432 	} else {
7433 		phylink_resume(priv->phylink);
7434 		if (device_may_wakeup(priv->device))
7435 			phylink_speed_up(priv->phylink);
7436 	}
7437 	rtnl_unlock();
7438 
7439 	rtnl_lock();
7440 	mutex_lock(&priv->lock);
7441 
7442 	stmmac_reset_queues_param(priv);
7443 
7444 	stmmac_free_tx_skbufs(priv);
7445 	stmmac_clear_descriptors(priv);
7446 
7447 	stmmac_hw_setup(ndev, false);
7448 	stmmac_init_coalesce(priv);
7449 	stmmac_set_rx_mode(ndev);
7450 
7451 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7452 
7453 	stmmac_enable_all_queues(priv);
7454 
7455 	mutex_unlock(&priv->lock);
7456 	rtnl_unlock();
7457 
7458 	netif_device_attach(ndev);
7459 
7460 	return 0;
7461 }
7462 EXPORT_SYMBOL_GPL(stmmac_resume);
7463 
7464 #ifndef MODULE
7465 static int __init stmmac_cmdline_opt(char *str)
7466 {
7467 	char *opt;
7468 
7469 	if (!str || !*str)
7470 		return -EINVAL;
7471 	while ((opt = strsep(&str, ",")) != NULL) {
7472 		if (!strncmp(opt, "debug:", 6)) {
7473 			if (kstrtoint(opt + 6, 0, &debug))
7474 				goto err;
7475 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7476 			if (kstrtoint(opt + 8, 0, &phyaddr))
7477 				goto err;
7478 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7479 			if (kstrtoint(opt + 7, 0, &buf_sz))
7480 				goto err;
7481 		} else if (!strncmp(opt, "tc:", 3)) {
7482 			if (kstrtoint(opt + 3, 0, &tc))
7483 				goto err;
7484 		} else if (!strncmp(opt, "watchdog:", 9)) {
7485 			if (kstrtoint(opt + 9, 0, &watchdog))
7486 				goto err;
7487 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7488 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7489 				goto err;
7490 		} else if (!strncmp(opt, "pause:", 6)) {
7491 			if (kstrtoint(opt + 6, 0, &pause))
7492 				goto err;
7493 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7494 			if (kstrtoint(opt + 10, 0, &eee_timer))
7495 				goto err;
7496 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7497 			if (kstrtoint(opt + 11, 0, &chain_mode))
7498 				goto err;
7499 		}
7500 	}
7501 	return 0;
7502 
7503 err:
7504 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7505 	return -EINVAL;
7506 }
7507 
7508 __setup("stmmaceth=", stmmac_cmdline_opt);
7509 #endif /* MODULE */
7510 
7511 static int __init stmmac_init(void)
7512 {
7513 #ifdef CONFIG_DEBUG_FS
7514 	/* Create debugfs main directory if it doesn't exist yet */
7515 	if (!stmmac_fs_dir)
7516 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7517 	register_netdevice_notifier(&stmmac_notifier);
7518 #endif
7519 
7520 	return 0;
7521 }
7522 
7523 static void __exit stmmac_exit(void)
7524 {
7525 #ifdef CONFIG_DEBUG_FS
7526 	unregister_netdevice_notifier(&stmmac_notifier);
7527 	debugfs_remove_recursive(stmmac_fs_dir);
7528 #endif
7529 }
7530 
7531 module_init(stmmac_init)
7532 module_exit(stmmac_exit)
7533 
7534 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7535 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7536 MODULE_LICENSE("GPL");
7537