1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 136 u32 rxmode, u32 chan); 137 138 #ifdef CONFIG_DEBUG_FS 139 static const struct net_device_ops stmmac_netdev_ops; 140 static void stmmac_init_fs(struct net_device *dev); 141 static void stmmac_exit_fs(struct net_device *dev); 142 #endif 143 144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 145 146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 147 { 148 int ret = 0; 149 150 if (enabled) { 151 ret = clk_prepare_enable(priv->plat->stmmac_clk); 152 if (ret) 153 return ret; 154 ret = clk_prepare_enable(priv->plat->pclk); 155 if (ret) { 156 clk_disable_unprepare(priv->plat->stmmac_clk); 157 return ret; 158 } 159 if (priv->plat->clks_config) { 160 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 161 if (ret) { 162 clk_disable_unprepare(priv->plat->stmmac_clk); 163 clk_disable_unprepare(priv->plat->pclk); 164 return ret; 165 } 166 } 167 } else { 168 clk_disable_unprepare(priv->plat->stmmac_clk); 169 clk_disable_unprepare(priv->plat->pclk); 170 if (priv->plat->clks_config) 171 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 172 } 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 177 178 /** 179 * stmmac_verify_args - verify the driver parameters. 180 * Description: it checks the driver parameters and set a default in case of 181 * errors. 182 */ 183 static void stmmac_verify_args(void) 184 { 185 if (unlikely(watchdog < 0)) 186 watchdog = TX_TIMEO; 187 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 188 buf_sz = DEFAULT_BUFSIZE; 189 if (unlikely(flow_ctrl > 1)) 190 flow_ctrl = FLOW_AUTO; 191 else if (likely(flow_ctrl < 0)) 192 flow_ctrl = FLOW_OFF; 193 if (unlikely((pause < 0) || (pause > 0xffff))) 194 pause = PAUSE_TIME; 195 if (eee_timer < 0) 196 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 197 } 198 199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 200 { 201 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 202 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 203 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 204 u32 queue; 205 206 for (queue = 0; queue < maxq; queue++) { 207 struct stmmac_channel *ch = &priv->channel[queue]; 208 209 if (stmmac_xdp_is_enabled(priv) && 210 test_bit(queue, priv->af_xdp_zc_qps)) { 211 napi_disable(&ch->rxtx_napi); 212 continue; 213 } 214 215 if (queue < rx_queues_cnt) 216 napi_disable(&ch->rx_napi); 217 if (queue < tx_queues_cnt) 218 napi_disable(&ch->tx_napi); 219 } 220 } 221 222 /** 223 * stmmac_disable_all_queues - Disable all queues 224 * @priv: driver private structure 225 */ 226 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 227 { 228 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 229 struct stmmac_rx_queue *rx_q; 230 u32 queue; 231 232 /* synchronize_rcu() needed for pending XDP buffers to drain */ 233 for (queue = 0; queue < rx_queues_cnt; queue++) { 234 rx_q = &priv->rx_queue[queue]; 235 if (rx_q->xsk_pool) { 236 synchronize_rcu(); 237 break; 238 } 239 } 240 241 __stmmac_disable_all_queues(priv); 242 } 243 244 /** 245 * stmmac_enable_all_queues - Enable all queues 246 * @priv: driver private structure 247 */ 248 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 249 { 250 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 251 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 252 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 253 u32 queue; 254 255 for (queue = 0; queue < maxq; queue++) { 256 struct stmmac_channel *ch = &priv->channel[queue]; 257 258 if (stmmac_xdp_is_enabled(priv) && 259 test_bit(queue, priv->af_xdp_zc_qps)) { 260 napi_enable(&ch->rxtx_napi); 261 continue; 262 } 263 264 if (queue < rx_queues_cnt) 265 napi_enable(&ch->rx_napi); 266 if (queue < tx_queues_cnt) 267 napi_enable(&ch->tx_napi); 268 } 269 } 270 271 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 272 { 273 if (!test_bit(STMMAC_DOWN, &priv->state) && 274 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 275 queue_work(priv->wq, &priv->service_task); 276 } 277 278 static void stmmac_global_err(struct stmmac_priv *priv) 279 { 280 netif_carrier_off(priv->dev); 281 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 282 stmmac_service_event_schedule(priv); 283 } 284 285 /** 286 * stmmac_clk_csr_set - dynamically set the MDC clock 287 * @priv: driver private structure 288 * Description: this is to dynamically set the MDC clock according to the csr 289 * clock input. 290 * Note: 291 * If a specific clk_csr value is passed from the platform 292 * this means that the CSR Clock Range selection cannot be 293 * changed at run-time and it is fixed (as reported in the driver 294 * documentation). Viceversa the driver will try to set the MDC 295 * clock dynamically according to the actual clock input. 296 */ 297 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 298 { 299 u32 clk_rate; 300 301 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 302 303 /* Platform provided default clk_csr would be assumed valid 304 * for all other cases except for the below mentioned ones. 305 * For values higher than the IEEE 802.3 specified frequency 306 * we can not estimate the proper divider as it is not known 307 * the frequency of clk_csr_i. So we do not change the default 308 * divider. 309 */ 310 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 311 if (clk_rate < CSR_F_35M) 312 priv->clk_csr = STMMAC_CSR_20_35M; 313 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 314 priv->clk_csr = STMMAC_CSR_35_60M; 315 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 316 priv->clk_csr = STMMAC_CSR_60_100M; 317 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 318 priv->clk_csr = STMMAC_CSR_100_150M; 319 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 320 priv->clk_csr = STMMAC_CSR_150_250M; 321 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 322 priv->clk_csr = STMMAC_CSR_250_300M; 323 } 324 325 if (priv->plat->has_sun8i) { 326 if (clk_rate > 160000000) 327 priv->clk_csr = 0x03; 328 else if (clk_rate > 80000000) 329 priv->clk_csr = 0x02; 330 else if (clk_rate > 40000000) 331 priv->clk_csr = 0x01; 332 else 333 priv->clk_csr = 0; 334 } 335 336 if (priv->plat->has_xgmac) { 337 if (clk_rate > 400000000) 338 priv->clk_csr = 0x5; 339 else if (clk_rate > 350000000) 340 priv->clk_csr = 0x4; 341 else if (clk_rate > 300000000) 342 priv->clk_csr = 0x3; 343 else if (clk_rate > 250000000) 344 priv->clk_csr = 0x2; 345 else if (clk_rate > 150000000) 346 priv->clk_csr = 0x1; 347 else 348 priv->clk_csr = 0x0; 349 } 350 } 351 352 static void print_pkt(unsigned char *buf, int len) 353 { 354 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 355 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 356 } 357 358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 359 { 360 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 361 u32 avail; 362 363 if (tx_q->dirty_tx > tx_q->cur_tx) 364 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 365 else 366 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 367 368 return avail; 369 } 370 371 /** 372 * stmmac_rx_dirty - Get RX queue dirty 373 * @priv: driver private structure 374 * @queue: RX queue index 375 */ 376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 377 { 378 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 379 u32 dirty; 380 381 if (rx_q->dirty_rx <= rx_q->cur_rx) 382 dirty = rx_q->cur_rx - rx_q->dirty_rx; 383 else 384 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 385 386 return dirty; 387 } 388 389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 390 { 391 int tx_lpi_timer; 392 393 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 394 priv->eee_sw_timer_en = en ? 0 : 1; 395 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 396 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 397 } 398 399 /** 400 * stmmac_enable_eee_mode - check and enter in LPI mode 401 * @priv: driver private structure 402 * Description: this function is to verify and enter in LPI mode in case of 403 * EEE. 404 */ 405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 406 { 407 u32 tx_cnt = priv->plat->tx_queues_to_use; 408 u32 queue; 409 410 /* check if all TX queues have the work finished */ 411 for (queue = 0; queue < tx_cnt; queue++) { 412 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 413 414 if (tx_q->dirty_tx != tx_q->cur_tx) 415 return -EBUSY; /* still unfinished work */ 416 } 417 418 /* Check and enter in LPI mode */ 419 if (!priv->tx_path_in_lpi_mode) 420 stmmac_set_eee_mode(priv, priv->hw, 421 priv->plat->en_tx_lpi_clockgating); 422 return 0; 423 } 424 425 /** 426 * stmmac_disable_eee_mode - disable and exit from LPI mode 427 * @priv: driver private structure 428 * Description: this function is to exit and disable EEE in case of 429 * LPI state is true. This is called by the xmit. 430 */ 431 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 432 { 433 if (!priv->eee_sw_timer_en) { 434 stmmac_lpi_entry_timer_config(priv, 0); 435 return; 436 } 437 438 stmmac_reset_eee_mode(priv, priv->hw); 439 del_timer_sync(&priv->eee_ctrl_timer); 440 priv->tx_path_in_lpi_mode = false; 441 } 442 443 /** 444 * stmmac_eee_ctrl_timer - EEE TX SW timer. 445 * @t: timer_list struct containing private info 446 * Description: 447 * if there is no data transfer and if we are not in LPI state, 448 * then MAC Transmitter can be moved to LPI state. 449 */ 450 static void stmmac_eee_ctrl_timer(struct timer_list *t) 451 { 452 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 453 454 if (stmmac_enable_eee_mode(priv)) 455 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 456 } 457 458 /** 459 * stmmac_eee_init - init EEE 460 * @priv: driver private structure 461 * Description: 462 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 463 * can also manage EEE, this function enable the LPI state and start related 464 * timer. 465 */ 466 bool stmmac_eee_init(struct stmmac_priv *priv) 467 { 468 int eee_tw_timer = priv->eee_tw_timer; 469 470 /* Using PCS we cannot dial with the phy registers at this stage 471 * so we do not support extra feature like EEE. 472 */ 473 if (priv->hw->pcs == STMMAC_PCS_TBI || 474 priv->hw->pcs == STMMAC_PCS_RTBI) 475 return false; 476 477 /* Check if MAC core supports the EEE feature. */ 478 if (!priv->dma_cap.eee) 479 return false; 480 481 mutex_lock(&priv->lock); 482 483 /* Check if it needs to be deactivated */ 484 if (!priv->eee_active) { 485 if (priv->eee_enabled) { 486 netdev_dbg(priv->dev, "disable EEE\n"); 487 stmmac_lpi_entry_timer_config(priv, 0); 488 del_timer_sync(&priv->eee_ctrl_timer); 489 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 490 if (priv->hw->xpcs) 491 xpcs_config_eee(priv->hw->xpcs, 492 priv->plat->mult_fact_100ns, 493 false); 494 } 495 mutex_unlock(&priv->lock); 496 return false; 497 } 498 499 if (priv->eee_active && !priv->eee_enabled) { 500 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 501 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 502 eee_tw_timer); 503 if (priv->hw->xpcs) 504 xpcs_config_eee(priv->hw->xpcs, 505 priv->plat->mult_fact_100ns, 506 true); 507 } 508 509 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 510 del_timer_sync(&priv->eee_ctrl_timer); 511 priv->tx_path_in_lpi_mode = false; 512 stmmac_lpi_entry_timer_config(priv, 1); 513 } else { 514 stmmac_lpi_entry_timer_config(priv, 0); 515 mod_timer(&priv->eee_ctrl_timer, 516 STMMAC_LPI_T(priv->tx_lpi_timer)); 517 } 518 519 mutex_unlock(&priv->lock); 520 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 521 return true; 522 } 523 524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 525 * @priv: driver private structure 526 * @p : descriptor pointer 527 * @skb : the socket buffer 528 * Description : 529 * This function will read timestamp from the descriptor & pass it to stack. 530 * and also perform some sanity checks. 531 */ 532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 533 struct dma_desc *p, struct sk_buff *skb) 534 { 535 struct skb_shared_hwtstamps shhwtstamp; 536 bool found = false; 537 u64 ns = 0; 538 539 if (!priv->hwts_tx_en) 540 return; 541 542 /* exit if skb doesn't support hw tstamp */ 543 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 544 return; 545 546 /* check tx tstamp status */ 547 if (stmmac_get_tx_timestamp_status(priv, p)) { 548 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 549 found = true; 550 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 551 found = true; 552 } 553 554 if (found) { 555 ns -= priv->plat->cdc_error_adj; 556 557 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 558 shhwtstamp.hwtstamp = ns_to_ktime(ns); 559 560 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 561 /* pass tstamp to stack */ 562 skb_tstamp_tx(skb, &shhwtstamp); 563 } 564 } 565 566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 567 * @priv: driver private structure 568 * @p : descriptor pointer 569 * @np : next descriptor pointer 570 * @skb : the socket buffer 571 * Description : 572 * This function will read received packet's timestamp from the descriptor 573 * and pass it to stack. It also perform some sanity checks. 574 */ 575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 576 struct dma_desc *np, struct sk_buff *skb) 577 { 578 struct skb_shared_hwtstamps *shhwtstamp = NULL; 579 struct dma_desc *desc = p; 580 u64 ns = 0; 581 582 if (!priv->hwts_rx_en) 583 return; 584 /* For GMAC4, the valid timestamp is from CTX next desc. */ 585 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 586 desc = np; 587 588 /* Check if timestamp is available */ 589 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 590 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 591 592 ns -= priv->plat->cdc_error_adj; 593 594 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 595 shhwtstamp = skb_hwtstamps(skb); 596 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 597 shhwtstamp->hwtstamp = ns_to_ktime(ns); 598 } else { 599 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 600 } 601 } 602 603 /** 604 * stmmac_hwtstamp_set - control hardware timestamping. 605 * @dev: device pointer. 606 * @ifr: An IOCTL specific structure, that can contain a pointer to 607 * a proprietary structure used to pass information to the driver. 608 * Description: 609 * This function configures the MAC to enable/disable both outgoing(TX) 610 * and incoming(RX) packets time stamping based on user input. 611 * Return Value: 612 * 0 on success and an appropriate -ve integer on failure. 613 */ 614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 615 { 616 struct stmmac_priv *priv = netdev_priv(dev); 617 struct hwtstamp_config config; 618 u32 ptp_v2 = 0; 619 u32 tstamp_all = 0; 620 u32 ptp_over_ipv4_udp = 0; 621 u32 ptp_over_ipv6_udp = 0; 622 u32 ptp_over_ethernet = 0; 623 u32 snap_type_sel = 0; 624 u32 ts_master_en = 0; 625 u32 ts_event_en = 0; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 if (config.tx_type != HWTSTAMP_TX_OFF && 643 config.tx_type != HWTSTAMP_TX_ON) 644 return -ERANGE; 645 646 if (priv->adv_ts) { 647 switch (config.rx_filter) { 648 case HWTSTAMP_FILTER_NONE: 649 /* time stamp no incoming packet at all */ 650 config.rx_filter = HWTSTAMP_FILTER_NONE; 651 break; 652 653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 654 /* PTP v1, UDP, any kind of event packet */ 655 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 656 /* 'xmac' hardware can support Sync, Pdelay_Req and 657 * Pdelay_resp by setting bit14 and bits17/16 to 01 658 * This leaves Delay_Req timestamps out. 659 * Enable all events *and* general purpose message 660 * timestamping 661 */ 662 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 663 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 664 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 665 break; 666 667 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 668 /* PTP v1, UDP, Sync packet */ 669 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 670 /* take time stamp for SYNC messages only */ 671 ts_event_en = PTP_TCR_TSEVNTENA; 672 673 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 674 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 675 break; 676 677 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 678 /* PTP v1, UDP, Delay_req packet */ 679 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 680 /* take time stamp for Delay_Req messages only */ 681 ts_master_en = PTP_TCR_TSMSTRENA; 682 ts_event_en = PTP_TCR_TSEVNTENA; 683 684 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 685 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 686 break; 687 688 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 689 /* PTP v2, UDP, any kind of event packet */ 690 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 691 ptp_v2 = PTP_TCR_TSVER2ENA; 692 /* take time stamp for all event messages */ 693 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 694 695 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 696 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 697 break; 698 699 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 700 /* PTP v2, UDP, Sync packet */ 701 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 702 ptp_v2 = PTP_TCR_TSVER2ENA; 703 /* take time stamp for SYNC messages only */ 704 ts_event_en = PTP_TCR_TSEVNTENA; 705 706 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 707 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 708 break; 709 710 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 711 /* PTP v2, UDP, Delay_req packet */ 712 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 713 ptp_v2 = PTP_TCR_TSVER2ENA; 714 /* take time stamp for Delay_Req messages only */ 715 ts_master_en = PTP_TCR_TSMSTRENA; 716 ts_event_en = PTP_TCR_TSEVNTENA; 717 718 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 719 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 720 break; 721 722 case HWTSTAMP_FILTER_PTP_V2_EVENT: 723 /* PTP v2/802.AS1 any layer, any kind of event packet */ 724 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 725 ptp_v2 = PTP_TCR_TSVER2ENA; 726 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 727 if (priv->synopsys_id < DWMAC_CORE_4_10) 728 ts_event_en = PTP_TCR_TSEVNTENA; 729 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 730 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 731 ptp_over_ethernet = PTP_TCR_TSIPENA; 732 break; 733 734 case HWTSTAMP_FILTER_PTP_V2_SYNC: 735 /* PTP v2/802.AS1, any layer, Sync packet */ 736 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 737 ptp_v2 = PTP_TCR_TSVER2ENA; 738 /* take time stamp for SYNC messages only */ 739 ts_event_en = PTP_TCR_TSEVNTENA; 740 741 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 742 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 743 ptp_over_ethernet = PTP_TCR_TSIPENA; 744 break; 745 746 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 747 /* PTP v2/802.AS1, any layer, Delay_req packet */ 748 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 749 ptp_v2 = PTP_TCR_TSVER2ENA; 750 /* take time stamp for Delay_Req messages only */ 751 ts_master_en = PTP_TCR_TSMSTRENA; 752 ts_event_en = PTP_TCR_TSEVNTENA; 753 754 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 755 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 756 ptp_over_ethernet = PTP_TCR_TSIPENA; 757 break; 758 759 case HWTSTAMP_FILTER_NTP_ALL: 760 case HWTSTAMP_FILTER_ALL: 761 /* time stamp any incoming packet */ 762 config.rx_filter = HWTSTAMP_FILTER_ALL; 763 tstamp_all = PTP_TCR_TSENALL; 764 break; 765 766 default: 767 return -ERANGE; 768 } 769 } else { 770 switch (config.rx_filter) { 771 case HWTSTAMP_FILTER_NONE: 772 config.rx_filter = HWTSTAMP_FILTER_NONE; 773 break; 774 default: 775 /* PTP v1, UDP, any kind of event packet */ 776 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 777 break; 778 } 779 } 780 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 781 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 782 783 priv->systime_flags = STMMAC_HWTS_ACTIVE; 784 785 if (priv->hwts_tx_en || priv->hwts_rx_en) { 786 priv->systime_flags |= tstamp_all | ptp_v2 | 787 ptp_over_ethernet | ptp_over_ipv6_udp | 788 ptp_over_ipv4_udp | ts_event_en | 789 ts_master_en | snap_type_sel; 790 } 791 792 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 793 794 memcpy(&priv->tstamp_config, &config, sizeof(config)); 795 796 return copy_to_user(ifr->ifr_data, &config, 797 sizeof(config)) ? -EFAULT : 0; 798 } 799 800 /** 801 * stmmac_hwtstamp_get - read hardware timestamping. 802 * @dev: device pointer. 803 * @ifr: An IOCTL specific structure, that can contain a pointer to 804 * a proprietary structure used to pass information to the driver. 805 * Description: 806 * This function obtain the current hardware timestamping settings 807 * as requested. 808 */ 809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 810 { 811 struct stmmac_priv *priv = netdev_priv(dev); 812 struct hwtstamp_config *config = &priv->tstamp_config; 813 814 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 815 return -EOPNOTSUPP; 816 817 return copy_to_user(ifr->ifr_data, config, 818 sizeof(*config)) ? -EFAULT : 0; 819 } 820 821 /** 822 * stmmac_init_tstamp_counter - init hardware timestamping counter 823 * @priv: driver private structure 824 * @systime_flags: timestamping flags 825 * Description: 826 * Initialize hardware counter for packet timestamping. 827 * This is valid as long as the interface is open and not suspended. 828 * Will be rerun after resuming from suspend, case in which the timestamping 829 * flags updated by stmmac_hwtstamp_set() also need to be restored. 830 */ 831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 832 { 833 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 834 struct timespec64 now; 835 u32 sec_inc = 0; 836 u64 temp = 0; 837 int ret; 838 839 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 840 return -EOPNOTSUPP; 841 842 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 843 if (ret < 0) { 844 netdev_warn(priv->dev, 845 "failed to enable PTP reference clock: %pe\n", 846 ERR_PTR(ret)); 847 return ret; 848 } 849 850 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 851 priv->systime_flags = systime_flags; 852 853 /* program Sub Second Increment reg */ 854 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 855 priv->plat->clk_ptp_rate, 856 xmac, &sec_inc); 857 temp = div_u64(1000000000ULL, sec_inc); 858 859 /* Store sub second increment for later use */ 860 priv->sub_second_inc = sec_inc; 861 862 /* calculate default added value: 863 * formula is : 864 * addend = (2^32)/freq_div_ratio; 865 * where, freq_div_ratio = 1e9ns/sec_inc 866 */ 867 temp = (u64)(temp << 32); 868 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 869 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 870 871 /* initialize system time */ 872 ktime_get_real_ts64(&now); 873 874 /* lower 32 bits of tv_sec are safe until y2106 */ 875 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 876 877 return 0; 878 } 879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 880 881 /** 882 * stmmac_init_ptp - init PTP 883 * @priv: driver private structure 884 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 885 * This is done by looking at the HW cap. register. 886 * This function also registers the ptp driver. 887 */ 888 static int stmmac_init_ptp(struct stmmac_priv *priv) 889 { 890 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 891 int ret; 892 893 if (priv->plat->ptp_clk_freq_config) 894 priv->plat->ptp_clk_freq_config(priv); 895 896 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 897 if (ret) 898 return ret; 899 900 priv->adv_ts = 0; 901 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 902 if (xmac && priv->dma_cap.atime_stamp) 903 priv->adv_ts = 1; 904 /* Dwmac 3.x core with extend_desc can support adv_ts */ 905 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 906 priv->adv_ts = 1; 907 908 if (priv->dma_cap.time_stamp) 909 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 910 911 if (priv->adv_ts) 912 netdev_info(priv->dev, 913 "IEEE 1588-2008 Advanced Timestamp supported\n"); 914 915 priv->hwts_tx_en = 0; 916 priv->hwts_rx_en = 0; 917 918 return 0; 919 } 920 921 static void stmmac_release_ptp(struct stmmac_priv *priv) 922 { 923 clk_disable_unprepare(priv->plat->clk_ptp_ref); 924 stmmac_ptp_unregister(priv); 925 } 926 927 /** 928 * stmmac_mac_flow_ctrl - Configure flow control in all queues 929 * @priv: driver private structure 930 * @duplex: duplex passed to the next function 931 * Description: It is used for configuring the flow control in all queues 932 */ 933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 934 { 935 u32 tx_cnt = priv->plat->tx_queues_to_use; 936 937 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 938 priv->pause, tx_cnt); 939 } 940 941 static void stmmac_validate(struct phylink_config *config, 942 unsigned long *supported, 943 struct phylink_link_state *state) 944 { 945 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 946 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 947 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 948 int tx_cnt = priv->plat->tx_queues_to_use; 949 int max_speed = priv->plat->max_speed; 950 951 phylink_set(mac_supported, 10baseT_Half); 952 phylink_set(mac_supported, 10baseT_Full); 953 phylink_set(mac_supported, 100baseT_Half); 954 phylink_set(mac_supported, 100baseT_Full); 955 phylink_set(mac_supported, 1000baseT_Half); 956 phylink_set(mac_supported, 1000baseT_Full); 957 phylink_set(mac_supported, 1000baseKX_Full); 958 959 phylink_set(mac_supported, Autoneg); 960 phylink_set(mac_supported, Pause); 961 phylink_set(mac_supported, Asym_Pause); 962 phylink_set_port_modes(mac_supported); 963 964 /* Cut down 1G if asked to */ 965 if ((max_speed > 0) && (max_speed < 1000)) { 966 phylink_set(mask, 1000baseT_Full); 967 phylink_set(mask, 1000baseX_Full); 968 } else if (priv->plat->has_gmac4) { 969 if (!max_speed || max_speed >= 2500) { 970 phylink_set(mac_supported, 2500baseT_Full); 971 phylink_set(mac_supported, 2500baseX_Full); 972 } 973 } else if (priv->plat->has_xgmac) { 974 if (!max_speed || (max_speed >= 2500)) { 975 phylink_set(mac_supported, 2500baseT_Full); 976 phylink_set(mac_supported, 2500baseX_Full); 977 } 978 if (!max_speed || (max_speed >= 5000)) { 979 phylink_set(mac_supported, 5000baseT_Full); 980 } 981 if (!max_speed || (max_speed >= 10000)) { 982 phylink_set(mac_supported, 10000baseSR_Full); 983 phylink_set(mac_supported, 10000baseLR_Full); 984 phylink_set(mac_supported, 10000baseER_Full); 985 phylink_set(mac_supported, 10000baseLRM_Full); 986 phylink_set(mac_supported, 10000baseT_Full); 987 phylink_set(mac_supported, 10000baseKX4_Full); 988 phylink_set(mac_supported, 10000baseKR_Full); 989 } 990 if (!max_speed || (max_speed >= 25000)) { 991 phylink_set(mac_supported, 25000baseCR_Full); 992 phylink_set(mac_supported, 25000baseKR_Full); 993 phylink_set(mac_supported, 25000baseSR_Full); 994 } 995 if (!max_speed || (max_speed >= 40000)) { 996 phylink_set(mac_supported, 40000baseKR4_Full); 997 phylink_set(mac_supported, 40000baseCR4_Full); 998 phylink_set(mac_supported, 40000baseSR4_Full); 999 phylink_set(mac_supported, 40000baseLR4_Full); 1000 } 1001 if (!max_speed || (max_speed >= 50000)) { 1002 phylink_set(mac_supported, 50000baseCR2_Full); 1003 phylink_set(mac_supported, 50000baseKR2_Full); 1004 phylink_set(mac_supported, 50000baseSR2_Full); 1005 phylink_set(mac_supported, 50000baseKR_Full); 1006 phylink_set(mac_supported, 50000baseSR_Full); 1007 phylink_set(mac_supported, 50000baseCR_Full); 1008 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 1009 phylink_set(mac_supported, 50000baseDR_Full); 1010 } 1011 if (!max_speed || (max_speed >= 100000)) { 1012 phylink_set(mac_supported, 100000baseKR4_Full); 1013 phylink_set(mac_supported, 100000baseSR4_Full); 1014 phylink_set(mac_supported, 100000baseCR4_Full); 1015 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 1016 phylink_set(mac_supported, 100000baseKR2_Full); 1017 phylink_set(mac_supported, 100000baseSR2_Full); 1018 phylink_set(mac_supported, 100000baseCR2_Full); 1019 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 1020 phylink_set(mac_supported, 100000baseDR2_Full); 1021 } 1022 } 1023 1024 /* Half-Duplex can only work with single queue */ 1025 if (tx_cnt > 1) { 1026 phylink_set(mask, 10baseT_Half); 1027 phylink_set(mask, 100baseT_Half); 1028 phylink_set(mask, 1000baseT_Half); 1029 } 1030 1031 linkmode_and(supported, supported, mac_supported); 1032 linkmode_andnot(supported, supported, mask); 1033 1034 linkmode_and(state->advertising, state->advertising, mac_supported); 1035 linkmode_andnot(state->advertising, state->advertising, mask); 1036 1037 /* If PCS is supported, check which modes it supports. */ 1038 if (priv->hw->xpcs) 1039 xpcs_validate(priv->hw->xpcs, supported, state); 1040 } 1041 1042 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1043 const struct phylink_link_state *state) 1044 { 1045 /* Nothing to do, xpcs_config() handles everything */ 1046 } 1047 1048 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1049 { 1050 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1051 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1052 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1053 bool *hs_enable = &fpe_cfg->hs_enable; 1054 1055 if (is_up && *hs_enable) { 1056 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1057 } else { 1058 *lo_state = FPE_STATE_OFF; 1059 *lp_state = FPE_STATE_OFF; 1060 } 1061 } 1062 1063 static void stmmac_mac_link_down(struct phylink_config *config, 1064 unsigned int mode, phy_interface_t interface) 1065 { 1066 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1067 1068 stmmac_mac_set(priv, priv->ioaddr, false); 1069 priv->eee_active = false; 1070 priv->tx_lpi_enabled = false; 1071 priv->eee_enabled = stmmac_eee_init(priv); 1072 stmmac_set_eee_pls(priv, priv->hw, false); 1073 1074 if (priv->dma_cap.fpesel) 1075 stmmac_fpe_link_state_handle(priv, false); 1076 } 1077 1078 static void stmmac_mac_link_up(struct phylink_config *config, 1079 struct phy_device *phy, 1080 unsigned int mode, phy_interface_t interface, 1081 int speed, int duplex, 1082 bool tx_pause, bool rx_pause) 1083 { 1084 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1085 u32 ctrl; 1086 1087 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1088 ctrl &= ~priv->hw->link.speed_mask; 1089 1090 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1091 switch (speed) { 1092 case SPEED_10000: 1093 ctrl |= priv->hw->link.xgmii.speed10000; 1094 break; 1095 case SPEED_5000: 1096 ctrl |= priv->hw->link.xgmii.speed5000; 1097 break; 1098 case SPEED_2500: 1099 ctrl |= priv->hw->link.xgmii.speed2500; 1100 break; 1101 default: 1102 return; 1103 } 1104 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1105 switch (speed) { 1106 case SPEED_100000: 1107 ctrl |= priv->hw->link.xlgmii.speed100000; 1108 break; 1109 case SPEED_50000: 1110 ctrl |= priv->hw->link.xlgmii.speed50000; 1111 break; 1112 case SPEED_40000: 1113 ctrl |= priv->hw->link.xlgmii.speed40000; 1114 break; 1115 case SPEED_25000: 1116 ctrl |= priv->hw->link.xlgmii.speed25000; 1117 break; 1118 case SPEED_10000: 1119 ctrl |= priv->hw->link.xgmii.speed10000; 1120 break; 1121 case SPEED_2500: 1122 ctrl |= priv->hw->link.speed2500; 1123 break; 1124 case SPEED_1000: 1125 ctrl |= priv->hw->link.speed1000; 1126 break; 1127 default: 1128 return; 1129 } 1130 } else { 1131 switch (speed) { 1132 case SPEED_2500: 1133 ctrl |= priv->hw->link.speed2500; 1134 break; 1135 case SPEED_1000: 1136 ctrl |= priv->hw->link.speed1000; 1137 break; 1138 case SPEED_100: 1139 ctrl |= priv->hw->link.speed100; 1140 break; 1141 case SPEED_10: 1142 ctrl |= priv->hw->link.speed10; 1143 break; 1144 default: 1145 return; 1146 } 1147 } 1148 1149 priv->speed = speed; 1150 1151 if (priv->plat->fix_mac_speed) 1152 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1153 1154 if (!duplex) 1155 ctrl &= ~priv->hw->link.duplex; 1156 else 1157 ctrl |= priv->hw->link.duplex; 1158 1159 /* Flow Control operation */ 1160 if (tx_pause && rx_pause) 1161 stmmac_mac_flow_ctrl(priv, duplex); 1162 1163 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1164 1165 stmmac_mac_set(priv, priv->ioaddr, true); 1166 if (phy && priv->dma_cap.eee) { 1167 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1168 priv->eee_enabled = stmmac_eee_init(priv); 1169 priv->tx_lpi_enabled = priv->eee_enabled; 1170 stmmac_set_eee_pls(priv, priv->hw, true); 1171 } 1172 1173 if (priv->dma_cap.fpesel) 1174 stmmac_fpe_link_state_handle(priv, true); 1175 } 1176 1177 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1178 .validate = stmmac_validate, 1179 .mac_config = stmmac_mac_config, 1180 .mac_link_down = stmmac_mac_link_down, 1181 .mac_link_up = stmmac_mac_link_up, 1182 }; 1183 1184 /** 1185 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1186 * @priv: driver private structure 1187 * Description: this is to verify if the HW supports the PCS. 1188 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1189 * configured for the TBI, RTBI, or SGMII PHY interface. 1190 */ 1191 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1192 { 1193 int interface = priv->plat->interface; 1194 1195 if (priv->dma_cap.pcs) { 1196 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1197 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1198 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1199 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1200 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1201 priv->hw->pcs = STMMAC_PCS_RGMII; 1202 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1203 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1204 priv->hw->pcs = STMMAC_PCS_SGMII; 1205 } 1206 } 1207 } 1208 1209 /** 1210 * stmmac_init_phy - PHY initialization 1211 * @dev: net device structure 1212 * Description: it initializes the driver's PHY state, and attaches the PHY 1213 * to the mac driver. 1214 * Return value: 1215 * 0 on success 1216 */ 1217 static int stmmac_init_phy(struct net_device *dev) 1218 { 1219 struct stmmac_priv *priv = netdev_priv(dev); 1220 struct device_node *node; 1221 int ret; 1222 1223 node = priv->plat->phylink_node; 1224 1225 if (node) 1226 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1227 1228 /* Some DT bindings do not set-up the PHY handle. Let's try to 1229 * manually parse it 1230 */ 1231 if (!node || ret) { 1232 int addr = priv->plat->phy_addr; 1233 struct phy_device *phydev; 1234 1235 phydev = mdiobus_get_phy(priv->mii, addr); 1236 if (!phydev) { 1237 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1238 return -ENODEV; 1239 } 1240 1241 ret = phylink_connect_phy(priv->phylink, phydev); 1242 } 1243 1244 if (!priv->plat->pmt) { 1245 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1246 1247 phylink_ethtool_get_wol(priv->phylink, &wol); 1248 device_set_wakeup_capable(priv->device, !!wol.supported); 1249 } 1250 1251 return ret; 1252 } 1253 1254 static int stmmac_phy_setup(struct stmmac_priv *priv) 1255 { 1256 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1257 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1258 int mode = priv->plat->phy_interface; 1259 struct phylink *phylink; 1260 1261 priv->phylink_config.dev = &priv->dev->dev; 1262 priv->phylink_config.type = PHYLINK_NETDEV; 1263 priv->phylink_config.pcs_poll = true; 1264 if (priv->plat->mdio_bus_data) 1265 priv->phylink_config.ovr_an_inband = 1266 mdio_bus_data->xpcs_an_inband; 1267 1268 if (!fwnode) 1269 fwnode = dev_fwnode(priv->device); 1270 1271 phylink = phylink_create(&priv->phylink_config, fwnode, 1272 mode, &stmmac_phylink_mac_ops); 1273 if (IS_ERR(phylink)) 1274 return PTR_ERR(phylink); 1275 1276 if (priv->hw->xpcs) 1277 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs); 1278 1279 priv->phylink = phylink; 1280 return 0; 1281 } 1282 1283 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1284 { 1285 u32 rx_cnt = priv->plat->rx_queues_to_use; 1286 unsigned int desc_size; 1287 void *head_rx; 1288 u32 queue; 1289 1290 /* Display RX rings */ 1291 for (queue = 0; queue < rx_cnt; queue++) { 1292 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1293 1294 pr_info("\tRX Queue %u rings\n", queue); 1295 1296 if (priv->extend_desc) { 1297 head_rx = (void *)rx_q->dma_erx; 1298 desc_size = sizeof(struct dma_extended_desc); 1299 } else { 1300 head_rx = (void *)rx_q->dma_rx; 1301 desc_size = sizeof(struct dma_desc); 1302 } 1303 1304 /* Display RX ring */ 1305 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1306 rx_q->dma_rx_phy, desc_size); 1307 } 1308 } 1309 1310 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1311 { 1312 u32 tx_cnt = priv->plat->tx_queues_to_use; 1313 unsigned int desc_size; 1314 void *head_tx; 1315 u32 queue; 1316 1317 /* Display TX rings */ 1318 for (queue = 0; queue < tx_cnt; queue++) { 1319 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1320 1321 pr_info("\tTX Queue %d rings\n", queue); 1322 1323 if (priv->extend_desc) { 1324 head_tx = (void *)tx_q->dma_etx; 1325 desc_size = sizeof(struct dma_extended_desc); 1326 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1327 head_tx = (void *)tx_q->dma_entx; 1328 desc_size = sizeof(struct dma_edesc); 1329 } else { 1330 head_tx = (void *)tx_q->dma_tx; 1331 desc_size = sizeof(struct dma_desc); 1332 } 1333 1334 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1335 tx_q->dma_tx_phy, desc_size); 1336 } 1337 } 1338 1339 static void stmmac_display_rings(struct stmmac_priv *priv) 1340 { 1341 /* Display RX ring */ 1342 stmmac_display_rx_rings(priv); 1343 1344 /* Display TX ring */ 1345 stmmac_display_tx_rings(priv); 1346 } 1347 1348 static int stmmac_set_bfsize(int mtu, int bufsize) 1349 { 1350 int ret = bufsize; 1351 1352 if (mtu >= BUF_SIZE_8KiB) 1353 ret = BUF_SIZE_16KiB; 1354 else if (mtu >= BUF_SIZE_4KiB) 1355 ret = BUF_SIZE_8KiB; 1356 else if (mtu >= BUF_SIZE_2KiB) 1357 ret = BUF_SIZE_4KiB; 1358 else if (mtu > DEFAULT_BUFSIZE) 1359 ret = BUF_SIZE_2KiB; 1360 else 1361 ret = DEFAULT_BUFSIZE; 1362 1363 return ret; 1364 } 1365 1366 /** 1367 * stmmac_clear_rx_descriptors - clear RX descriptors 1368 * @priv: driver private structure 1369 * @queue: RX queue index 1370 * Description: this function is called to clear the RX descriptors 1371 * in case of both basic and extended descriptors are used. 1372 */ 1373 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1374 { 1375 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1376 int i; 1377 1378 /* Clear the RX descriptors */ 1379 for (i = 0; i < priv->dma_rx_size; i++) 1380 if (priv->extend_desc) 1381 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1382 priv->use_riwt, priv->mode, 1383 (i == priv->dma_rx_size - 1), 1384 priv->dma_buf_sz); 1385 else 1386 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1387 priv->use_riwt, priv->mode, 1388 (i == priv->dma_rx_size - 1), 1389 priv->dma_buf_sz); 1390 } 1391 1392 /** 1393 * stmmac_clear_tx_descriptors - clear tx descriptors 1394 * @priv: driver private structure 1395 * @queue: TX queue index. 1396 * Description: this function is called to clear the TX descriptors 1397 * in case of both basic and extended descriptors are used. 1398 */ 1399 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1400 { 1401 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1402 int i; 1403 1404 /* Clear the TX descriptors */ 1405 for (i = 0; i < priv->dma_tx_size; i++) { 1406 int last = (i == (priv->dma_tx_size - 1)); 1407 struct dma_desc *p; 1408 1409 if (priv->extend_desc) 1410 p = &tx_q->dma_etx[i].basic; 1411 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1412 p = &tx_q->dma_entx[i].basic; 1413 else 1414 p = &tx_q->dma_tx[i]; 1415 1416 stmmac_init_tx_desc(priv, p, priv->mode, last); 1417 } 1418 } 1419 1420 /** 1421 * stmmac_clear_descriptors - clear descriptors 1422 * @priv: driver private structure 1423 * Description: this function is called to clear the TX and RX descriptors 1424 * in case of both basic and extended descriptors are used. 1425 */ 1426 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1427 { 1428 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1429 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1430 u32 queue; 1431 1432 /* Clear the RX descriptors */ 1433 for (queue = 0; queue < rx_queue_cnt; queue++) 1434 stmmac_clear_rx_descriptors(priv, queue); 1435 1436 /* Clear the TX descriptors */ 1437 for (queue = 0; queue < tx_queue_cnt; queue++) 1438 stmmac_clear_tx_descriptors(priv, queue); 1439 } 1440 1441 /** 1442 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1443 * @priv: driver private structure 1444 * @p: descriptor pointer 1445 * @i: descriptor index 1446 * @flags: gfp flag 1447 * @queue: RX queue index 1448 * Description: this function is called to allocate a receive buffer, perform 1449 * the DMA mapping and init the descriptor. 1450 */ 1451 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1452 int i, gfp_t flags, u32 queue) 1453 { 1454 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1455 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1456 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1457 1458 if (priv->dma_cap.addr64 <= 32) 1459 gfp |= GFP_DMA32; 1460 1461 if (!buf->page) { 1462 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1463 if (!buf->page) 1464 return -ENOMEM; 1465 buf->page_offset = stmmac_rx_offset(priv); 1466 } 1467 1468 if (priv->sph && !buf->sec_page) { 1469 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1470 if (!buf->sec_page) 1471 return -ENOMEM; 1472 1473 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1474 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1475 } else { 1476 buf->sec_page = NULL; 1477 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1478 } 1479 1480 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1481 1482 stmmac_set_desc_addr(priv, p, buf->addr); 1483 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1484 stmmac_init_desc3(priv, p); 1485 1486 return 0; 1487 } 1488 1489 /** 1490 * stmmac_free_rx_buffer - free RX dma buffers 1491 * @priv: private structure 1492 * @queue: RX queue index 1493 * @i: buffer index. 1494 */ 1495 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1496 { 1497 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1498 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1499 1500 if (buf->page) 1501 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1502 buf->page = NULL; 1503 1504 if (buf->sec_page) 1505 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1506 buf->sec_page = NULL; 1507 } 1508 1509 /** 1510 * stmmac_free_tx_buffer - free RX dma buffers 1511 * @priv: private structure 1512 * @queue: RX queue index 1513 * @i: buffer index. 1514 */ 1515 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1516 { 1517 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1518 1519 if (tx_q->tx_skbuff_dma[i].buf && 1520 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1521 if (tx_q->tx_skbuff_dma[i].map_as_page) 1522 dma_unmap_page(priv->device, 1523 tx_q->tx_skbuff_dma[i].buf, 1524 tx_q->tx_skbuff_dma[i].len, 1525 DMA_TO_DEVICE); 1526 else 1527 dma_unmap_single(priv->device, 1528 tx_q->tx_skbuff_dma[i].buf, 1529 tx_q->tx_skbuff_dma[i].len, 1530 DMA_TO_DEVICE); 1531 } 1532 1533 if (tx_q->xdpf[i] && 1534 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1535 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1536 xdp_return_frame(tx_q->xdpf[i]); 1537 tx_q->xdpf[i] = NULL; 1538 } 1539 1540 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1541 tx_q->xsk_frames_done++; 1542 1543 if (tx_q->tx_skbuff[i] && 1544 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1545 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1546 tx_q->tx_skbuff[i] = NULL; 1547 } 1548 1549 tx_q->tx_skbuff_dma[i].buf = 0; 1550 tx_q->tx_skbuff_dma[i].map_as_page = false; 1551 } 1552 1553 /** 1554 * dma_free_rx_skbufs - free RX dma buffers 1555 * @priv: private structure 1556 * @queue: RX queue index 1557 */ 1558 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1559 { 1560 int i; 1561 1562 for (i = 0; i < priv->dma_rx_size; i++) 1563 stmmac_free_rx_buffer(priv, queue, i); 1564 } 1565 1566 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1567 gfp_t flags) 1568 { 1569 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1570 int i; 1571 1572 for (i = 0; i < priv->dma_rx_size; i++) { 1573 struct dma_desc *p; 1574 int ret; 1575 1576 if (priv->extend_desc) 1577 p = &((rx_q->dma_erx + i)->basic); 1578 else 1579 p = rx_q->dma_rx + i; 1580 1581 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1582 queue); 1583 if (ret) 1584 return ret; 1585 1586 rx_q->buf_alloc_num++; 1587 } 1588 1589 return 0; 1590 } 1591 1592 /** 1593 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1594 * @priv: private structure 1595 * @queue: RX queue index 1596 */ 1597 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1598 { 1599 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1600 int i; 1601 1602 for (i = 0; i < priv->dma_rx_size; i++) { 1603 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1604 1605 if (!buf->xdp) 1606 continue; 1607 1608 xsk_buff_free(buf->xdp); 1609 buf->xdp = NULL; 1610 } 1611 } 1612 1613 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1614 { 1615 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1616 int i; 1617 1618 for (i = 0; i < priv->dma_rx_size; i++) { 1619 struct stmmac_rx_buffer *buf; 1620 dma_addr_t dma_addr; 1621 struct dma_desc *p; 1622 1623 if (priv->extend_desc) 1624 p = (struct dma_desc *)(rx_q->dma_erx + i); 1625 else 1626 p = rx_q->dma_rx + i; 1627 1628 buf = &rx_q->buf_pool[i]; 1629 1630 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1631 if (!buf->xdp) 1632 return -ENOMEM; 1633 1634 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1635 stmmac_set_desc_addr(priv, p, dma_addr); 1636 rx_q->buf_alloc_num++; 1637 } 1638 1639 return 0; 1640 } 1641 1642 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1643 { 1644 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1645 return NULL; 1646 1647 return xsk_get_pool_from_qid(priv->dev, queue); 1648 } 1649 1650 /** 1651 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1652 * @priv: driver private structure 1653 * @queue: RX queue index 1654 * @flags: gfp flag. 1655 * Description: this function initializes the DMA RX descriptors 1656 * and allocates the socket buffers. It supports the chained and ring 1657 * modes. 1658 */ 1659 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1660 { 1661 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1662 int ret; 1663 1664 netif_dbg(priv, probe, priv->dev, 1665 "(%s) dma_rx_phy=0x%08x\n", __func__, 1666 (u32)rx_q->dma_rx_phy); 1667 1668 stmmac_clear_rx_descriptors(priv, queue); 1669 1670 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1671 1672 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1673 1674 if (rx_q->xsk_pool) { 1675 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1676 MEM_TYPE_XSK_BUFF_POOL, 1677 NULL)); 1678 netdev_info(priv->dev, 1679 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1680 rx_q->queue_index); 1681 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1682 } else { 1683 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1684 MEM_TYPE_PAGE_POOL, 1685 rx_q->page_pool)); 1686 netdev_info(priv->dev, 1687 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1688 rx_q->queue_index); 1689 } 1690 1691 if (rx_q->xsk_pool) { 1692 /* RX XDP ZC buffer pool may not be populated, e.g. 1693 * xdpsock TX-only. 1694 */ 1695 stmmac_alloc_rx_buffers_zc(priv, queue); 1696 } else { 1697 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1698 if (ret < 0) 1699 return -ENOMEM; 1700 } 1701 1702 rx_q->cur_rx = 0; 1703 rx_q->dirty_rx = 0; 1704 1705 /* Setup the chained descriptor addresses */ 1706 if (priv->mode == STMMAC_CHAIN_MODE) { 1707 if (priv->extend_desc) 1708 stmmac_mode_init(priv, rx_q->dma_erx, 1709 rx_q->dma_rx_phy, 1710 priv->dma_rx_size, 1); 1711 else 1712 stmmac_mode_init(priv, rx_q->dma_rx, 1713 rx_q->dma_rx_phy, 1714 priv->dma_rx_size, 0); 1715 } 1716 1717 return 0; 1718 } 1719 1720 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1721 { 1722 struct stmmac_priv *priv = netdev_priv(dev); 1723 u32 rx_count = priv->plat->rx_queues_to_use; 1724 u32 queue; 1725 int ret; 1726 1727 /* RX INITIALIZATION */ 1728 netif_dbg(priv, probe, priv->dev, 1729 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1730 1731 for (queue = 0; queue < rx_count; queue++) { 1732 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1733 if (ret) 1734 goto err_init_rx_buffers; 1735 } 1736 1737 return 0; 1738 1739 err_init_rx_buffers: 1740 while (queue >= 0) { 1741 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1742 1743 if (rx_q->xsk_pool) 1744 dma_free_rx_xskbufs(priv, queue); 1745 else 1746 dma_free_rx_skbufs(priv, queue); 1747 1748 rx_q->buf_alloc_num = 0; 1749 rx_q->xsk_pool = NULL; 1750 1751 if (queue == 0) 1752 break; 1753 1754 queue--; 1755 } 1756 1757 return ret; 1758 } 1759 1760 /** 1761 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1762 * @priv: driver private structure 1763 * @queue : TX queue index 1764 * Description: this function initializes the DMA TX descriptors 1765 * and allocates the socket buffers. It supports the chained and ring 1766 * modes. 1767 */ 1768 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1769 { 1770 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1771 int i; 1772 1773 netif_dbg(priv, probe, priv->dev, 1774 "(%s) dma_tx_phy=0x%08x\n", __func__, 1775 (u32)tx_q->dma_tx_phy); 1776 1777 /* Setup the chained descriptor addresses */ 1778 if (priv->mode == STMMAC_CHAIN_MODE) { 1779 if (priv->extend_desc) 1780 stmmac_mode_init(priv, tx_q->dma_etx, 1781 tx_q->dma_tx_phy, 1782 priv->dma_tx_size, 1); 1783 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1784 stmmac_mode_init(priv, tx_q->dma_tx, 1785 tx_q->dma_tx_phy, 1786 priv->dma_tx_size, 0); 1787 } 1788 1789 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1790 1791 for (i = 0; i < priv->dma_tx_size; i++) { 1792 struct dma_desc *p; 1793 1794 if (priv->extend_desc) 1795 p = &((tx_q->dma_etx + i)->basic); 1796 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1797 p = &((tx_q->dma_entx + i)->basic); 1798 else 1799 p = tx_q->dma_tx + i; 1800 1801 stmmac_clear_desc(priv, p); 1802 1803 tx_q->tx_skbuff_dma[i].buf = 0; 1804 tx_q->tx_skbuff_dma[i].map_as_page = false; 1805 tx_q->tx_skbuff_dma[i].len = 0; 1806 tx_q->tx_skbuff_dma[i].last_segment = false; 1807 tx_q->tx_skbuff[i] = NULL; 1808 } 1809 1810 tx_q->dirty_tx = 0; 1811 tx_q->cur_tx = 0; 1812 tx_q->mss = 0; 1813 1814 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1815 1816 return 0; 1817 } 1818 1819 static int init_dma_tx_desc_rings(struct net_device *dev) 1820 { 1821 struct stmmac_priv *priv = netdev_priv(dev); 1822 u32 tx_queue_cnt; 1823 u32 queue; 1824 1825 tx_queue_cnt = priv->plat->tx_queues_to_use; 1826 1827 for (queue = 0; queue < tx_queue_cnt; queue++) 1828 __init_dma_tx_desc_rings(priv, queue); 1829 1830 return 0; 1831 } 1832 1833 /** 1834 * init_dma_desc_rings - init the RX/TX descriptor rings 1835 * @dev: net device structure 1836 * @flags: gfp flag. 1837 * Description: this function initializes the DMA RX/TX descriptors 1838 * and allocates the socket buffers. It supports the chained and ring 1839 * modes. 1840 */ 1841 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1842 { 1843 struct stmmac_priv *priv = netdev_priv(dev); 1844 int ret; 1845 1846 ret = init_dma_rx_desc_rings(dev, flags); 1847 if (ret) 1848 return ret; 1849 1850 ret = init_dma_tx_desc_rings(dev); 1851 1852 stmmac_clear_descriptors(priv); 1853 1854 if (netif_msg_hw(priv)) 1855 stmmac_display_rings(priv); 1856 1857 return ret; 1858 } 1859 1860 /** 1861 * dma_free_tx_skbufs - free TX dma buffers 1862 * @priv: private structure 1863 * @queue: TX queue index 1864 */ 1865 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1866 { 1867 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1868 int i; 1869 1870 tx_q->xsk_frames_done = 0; 1871 1872 for (i = 0; i < priv->dma_tx_size; i++) 1873 stmmac_free_tx_buffer(priv, queue, i); 1874 1875 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1876 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1877 tx_q->xsk_frames_done = 0; 1878 tx_q->xsk_pool = NULL; 1879 } 1880 } 1881 1882 /** 1883 * stmmac_free_tx_skbufs - free TX skb buffers 1884 * @priv: private structure 1885 */ 1886 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1887 { 1888 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1889 u32 queue; 1890 1891 for (queue = 0; queue < tx_queue_cnt; queue++) 1892 dma_free_tx_skbufs(priv, queue); 1893 } 1894 1895 /** 1896 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1897 * @priv: private structure 1898 * @queue: RX queue index 1899 */ 1900 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1901 { 1902 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1903 1904 /* Release the DMA RX socket buffers */ 1905 if (rx_q->xsk_pool) 1906 dma_free_rx_xskbufs(priv, queue); 1907 else 1908 dma_free_rx_skbufs(priv, queue); 1909 1910 rx_q->buf_alloc_num = 0; 1911 rx_q->xsk_pool = NULL; 1912 1913 /* Free DMA regions of consistent memory previously allocated */ 1914 if (!priv->extend_desc) 1915 dma_free_coherent(priv->device, priv->dma_rx_size * 1916 sizeof(struct dma_desc), 1917 rx_q->dma_rx, rx_q->dma_rx_phy); 1918 else 1919 dma_free_coherent(priv->device, priv->dma_rx_size * 1920 sizeof(struct dma_extended_desc), 1921 rx_q->dma_erx, rx_q->dma_rx_phy); 1922 1923 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1924 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1925 1926 kfree(rx_q->buf_pool); 1927 if (rx_q->page_pool) 1928 page_pool_destroy(rx_q->page_pool); 1929 } 1930 1931 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1932 { 1933 u32 rx_count = priv->plat->rx_queues_to_use; 1934 u32 queue; 1935 1936 /* Free RX queue resources */ 1937 for (queue = 0; queue < rx_count; queue++) 1938 __free_dma_rx_desc_resources(priv, queue); 1939 } 1940 1941 /** 1942 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1943 * @priv: private structure 1944 * @queue: TX queue index 1945 */ 1946 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1947 { 1948 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1949 size_t size; 1950 void *addr; 1951 1952 /* Release the DMA TX socket buffers */ 1953 dma_free_tx_skbufs(priv, queue); 1954 1955 if (priv->extend_desc) { 1956 size = sizeof(struct dma_extended_desc); 1957 addr = tx_q->dma_etx; 1958 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1959 size = sizeof(struct dma_edesc); 1960 addr = tx_q->dma_entx; 1961 } else { 1962 size = sizeof(struct dma_desc); 1963 addr = tx_q->dma_tx; 1964 } 1965 1966 size *= priv->dma_tx_size; 1967 1968 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1969 1970 kfree(tx_q->tx_skbuff_dma); 1971 kfree(tx_q->tx_skbuff); 1972 } 1973 1974 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1975 { 1976 u32 tx_count = priv->plat->tx_queues_to_use; 1977 u32 queue; 1978 1979 /* Free TX queue resources */ 1980 for (queue = 0; queue < tx_count; queue++) 1981 __free_dma_tx_desc_resources(priv, queue); 1982 } 1983 1984 /** 1985 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1986 * @priv: private structure 1987 * @queue: RX queue index 1988 * Description: according to which descriptor can be used (extend or basic) 1989 * this function allocates the resources for TX and RX paths. In case of 1990 * reception, for example, it pre-allocated the RX socket buffer in order to 1991 * allow zero-copy mechanism. 1992 */ 1993 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1994 { 1995 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1996 struct stmmac_channel *ch = &priv->channel[queue]; 1997 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1998 struct page_pool_params pp_params = { 0 }; 1999 unsigned int num_pages; 2000 unsigned int napi_id; 2001 int ret; 2002 2003 rx_q->queue_index = queue; 2004 rx_q->priv_data = priv; 2005 2006 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 2007 pp_params.pool_size = priv->dma_rx_size; 2008 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 2009 pp_params.order = ilog2(num_pages); 2010 pp_params.nid = dev_to_node(priv->device); 2011 pp_params.dev = priv->device; 2012 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 2013 pp_params.offset = stmmac_rx_offset(priv); 2014 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2015 2016 rx_q->page_pool = page_pool_create(&pp_params); 2017 if (IS_ERR(rx_q->page_pool)) { 2018 ret = PTR_ERR(rx_q->page_pool); 2019 rx_q->page_pool = NULL; 2020 return ret; 2021 } 2022 2023 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 2024 sizeof(*rx_q->buf_pool), 2025 GFP_KERNEL); 2026 if (!rx_q->buf_pool) 2027 return -ENOMEM; 2028 2029 if (priv->extend_desc) { 2030 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2031 priv->dma_rx_size * 2032 sizeof(struct dma_extended_desc), 2033 &rx_q->dma_rx_phy, 2034 GFP_KERNEL); 2035 if (!rx_q->dma_erx) 2036 return -ENOMEM; 2037 2038 } else { 2039 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2040 priv->dma_rx_size * 2041 sizeof(struct dma_desc), 2042 &rx_q->dma_rx_phy, 2043 GFP_KERNEL); 2044 if (!rx_q->dma_rx) 2045 return -ENOMEM; 2046 } 2047 2048 if (stmmac_xdp_is_enabled(priv) && 2049 test_bit(queue, priv->af_xdp_zc_qps)) 2050 napi_id = ch->rxtx_napi.napi_id; 2051 else 2052 napi_id = ch->rx_napi.napi_id; 2053 2054 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2055 rx_q->queue_index, 2056 napi_id); 2057 if (ret) { 2058 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2059 return -EINVAL; 2060 } 2061 2062 return 0; 2063 } 2064 2065 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2066 { 2067 u32 rx_count = priv->plat->rx_queues_to_use; 2068 u32 queue; 2069 int ret; 2070 2071 /* RX queues buffers and DMA */ 2072 for (queue = 0; queue < rx_count; queue++) { 2073 ret = __alloc_dma_rx_desc_resources(priv, queue); 2074 if (ret) 2075 goto err_dma; 2076 } 2077 2078 return 0; 2079 2080 err_dma: 2081 free_dma_rx_desc_resources(priv); 2082 2083 return ret; 2084 } 2085 2086 /** 2087 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2088 * @priv: private structure 2089 * @queue: TX queue index 2090 * Description: according to which descriptor can be used (extend or basic) 2091 * this function allocates the resources for TX and RX paths. In case of 2092 * reception, for example, it pre-allocated the RX socket buffer in order to 2093 * allow zero-copy mechanism. 2094 */ 2095 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2096 { 2097 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2098 size_t size; 2099 void *addr; 2100 2101 tx_q->queue_index = queue; 2102 tx_q->priv_data = priv; 2103 2104 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2105 sizeof(*tx_q->tx_skbuff_dma), 2106 GFP_KERNEL); 2107 if (!tx_q->tx_skbuff_dma) 2108 return -ENOMEM; 2109 2110 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2111 sizeof(struct sk_buff *), 2112 GFP_KERNEL); 2113 if (!tx_q->tx_skbuff) 2114 return -ENOMEM; 2115 2116 if (priv->extend_desc) 2117 size = sizeof(struct dma_extended_desc); 2118 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2119 size = sizeof(struct dma_edesc); 2120 else 2121 size = sizeof(struct dma_desc); 2122 2123 size *= priv->dma_tx_size; 2124 2125 addr = dma_alloc_coherent(priv->device, size, 2126 &tx_q->dma_tx_phy, GFP_KERNEL); 2127 if (!addr) 2128 return -ENOMEM; 2129 2130 if (priv->extend_desc) 2131 tx_q->dma_etx = addr; 2132 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2133 tx_q->dma_entx = addr; 2134 else 2135 tx_q->dma_tx = addr; 2136 2137 return 0; 2138 } 2139 2140 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2141 { 2142 u32 tx_count = priv->plat->tx_queues_to_use; 2143 u32 queue; 2144 int ret; 2145 2146 /* TX queues buffers and DMA */ 2147 for (queue = 0; queue < tx_count; queue++) { 2148 ret = __alloc_dma_tx_desc_resources(priv, queue); 2149 if (ret) 2150 goto err_dma; 2151 } 2152 2153 return 0; 2154 2155 err_dma: 2156 free_dma_tx_desc_resources(priv); 2157 return ret; 2158 } 2159 2160 /** 2161 * alloc_dma_desc_resources - alloc TX/RX resources. 2162 * @priv: private structure 2163 * Description: according to which descriptor can be used (extend or basic) 2164 * this function allocates the resources for TX and RX paths. In case of 2165 * reception, for example, it pre-allocated the RX socket buffer in order to 2166 * allow zero-copy mechanism. 2167 */ 2168 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2169 { 2170 /* RX Allocation */ 2171 int ret = alloc_dma_rx_desc_resources(priv); 2172 2173 if (ret) 2174 return ret; 2175 2176 ret = alloc_dma_tx_desc_resources(priv); 2177 2178 return ret; 2179 } 2180 2181 /** 2182 * free_dma_desc_resources - free dma desc resources 2183 * @priv: private structure 2184 */ 2185 static void free_dma_desc_resources(struct stmmac_priv *priv) 2186 { 2187 /* Release the DMA TX socket buffers */ 2188 free_dma_tx_desc_resources(priv); 2189 2190 /* Release the DMA RX socket buffers later 2191 * to ensure all pending XDP_TX buffers are returned. 2192 */ 2193 free_dma_rx_desc_resources(priv); 2194 } 2195 2196 /** 2197 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2198 * @priv: driver private structure 2199 * Description: It is used for enabling the rx queues in the MAC 2200 */ 2201 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2202 { 2203 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2204 int queue; 2205 u8 mode; 2206 2207 for (queue = 0; queue < rx_queues_count; queue++) { 2208 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2209 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2210 } 2211 } 2212 2213 /** 2214 * stmmac_start_rx_dma - start RX DMA channel 2215 * @priv: driver private structure 2216 * @chan: RX channel index 2217 * Description: 2218 * This starts a RX DMA channel 2219 */ 2220 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2221 { 2222 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2223 stmmac_start_rx(priv, priv->ioaddr, chan); 2224 } 2225 2226 /** 2227 * stmmac_start_tx_dma - start TX DMA channel 2228 * @priv: driver private structure 2229 * @chan: TX channel index 2230 * Description: 2231 * This starts a TX DMA channel 2232 */ 2233 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2234 { 2235 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2236 stmmac_start_tx(priv, priv->ioaddr, chan); 2237 } 2238 2239 /** 2240 * stmmac_stop_rx_dma - stop RX DMA channel 2241 * @priv: driver private structure 2242 * @chan: RX channel index 2243 * Description: 2244 * This stops a RX DMA channel 2245 */ 2246 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2247 { 2248 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2249 stmmac_stop_rx(priv, priv->ioaddr, chan); 2250 } 2251 2252 /** 2253 * stmmac_stop_tx_dma - stop TX DMA channel 2254 * @priv: driver private structure 2255 * @chan: TX channel index 2256 * Description: 2257 * This stops a TX DMA channel 2258 */ 2259 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2260 { 2261 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2262 stmmac_stop_tx(priv, priv->ioaddr, chan); 2263 } 2264 2265 /** 2266 * stmmac_start_all_dma - start all RX and TX DMA channels 2267 * @priv: driver private structure 2268 * Description: 2269 * This starts all the RX and TX DMA channels 2270 */ 2271 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2272 { 2273 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2274 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2275 u32 chan = 0; 2276 2277 for (chan = 0; chan < rx_channels_count; chan++) 2278 stmmac_start_rx_dma(priv, chan); 2279 2280 for (chan = 0; chan < tx_channels_count; chan++) 2281 stmmac_start_tx_dma(priv, chan); 2282 } 2283 2284 /** 2285 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2286 * @priv: driver private structure 2287 * Description: 2288 * This stops the RX and TX DMA channels 2289 */ 2290 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2291 { 2292 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2293 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2294 u32 chan = 0; 2295 2296 for (chan = 0; chan < rx_channels_count; chan++) 2297 stmmac_stop_rx_dma(priv, chan); 2298 2299 for (chan = 0; chan < tx_channels_count; chan++) 2300 stmmac_stop_tx_dma(priv, chan); 2301 } 2302 2303 /** 2304 * stmmac_dma_operation_mode - HW DMA operation mode 2305 * @priv: driver private structure 2306 * Description: it is used for configuring the DMA operation mode register in 2307 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2308 */ 2309 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2310 { 2311 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2312 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2313 int rxfifosz = priv->plat->rx_fifo_size; 2314 int txfifosz = priv->plat->tx_fifo_size; 2315 u32 txmode = 0; 2316 u32 rxmode = 0; 2317 u32 chan = 0; 2318 u8 qmode = 0; 2319 2320 if (rxfifosz == 0) 2321 rxfifosz = priv->dma_cap.rx_fifo_size; 2322 if (txfifosz == 0) 2323 txfifosz = priv->dma_cap.tx_fifo_size; 2324 2325 /* Adjust for real per queue fifo size */ 2326 rxfifosz /= rx_channels_count; 2327 txfifosz /= tx_channels_count; 2328 2329 if (priv->plat->force_thresh_dma_mode) { 2330 txmode = tc; 2331 rxmode = tc; 2332 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2333 /* 2334 * In case of GMAC, SF mode can be enabled 2335 * to perform the TX COE in HW. This depends on: 2336 * 1) TX COE if actually supported 2337 * 2) There is no bugged Jumbo frame support 2338 * that needs to not insert csum in the TDES. 2339 */ 2340 txmode = SF_DMA_MODE; 2341 rxmode = SF_DMA_MODE; 2342 priv->xstats.threshold = SF_DMA_MODE; 2343 } else { 2344 txmode = tc; 2345 rxmode = SF_DMA_MODE; 2346 } 2347 2348 /* configure all channels */ 2349 for (chan = 0; chan < rx_channels_count; chan++) { 2350 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2351 u32 buf_size; 2352 2353 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2354 2355 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2356 rxfifosz, qmode); 2357 2358 if (rx_q->xsk_pool) { 2359 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2360 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2361 buf_size, 2362 chan); 2363 } else { 2364 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2365 priv->dma_buf_sz, 2366 chan); 2367 } 2368 } 2369 2370 for (chan = 0; chan < tx_channels_count; chan++) { 2371 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2372 2373 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2374 txfifosz, qmode); 2375 } 2376 } 2377 2378 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2379 { 2380 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2381 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2382 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2383 unsigned int entry = tx_q->cur_tx; 2384 struct dma_desc *tx_desc = NULL; 2385 struct xdp_desc xdp_desc; 2386 bool work_done = true; 2387 2388 /* Avoids TX time-out as we are sharing with slow path */ 2389 txq_trans_cond_update(nq); 2390 2391 budget = min(budget, stmmac_tx_avail(priv, queue)); 2392 2393 while (budget-- > 0) { 2394 dma_addr_t dma_addr; 2395 bool set_ic; 2396 2397 /* We are sharing with slow path and stop XSK TX desc submission when 2398 * available TX ring is less than threshold. 2399 */ 2400 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2401 !netif_carrier_ok(priv->dev)) { 2402 work_done = false; 2403 break; 2404 } 2405 2406 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2407 break; 2408 2409 if (likely(priv->extend_desc)) 2410 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2411 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2412 tx_desc = &tx_q->dma_entx[entry].basic; 2413 else 2414 tx_desc = tx_q->dma_tx + entry; 2415 2416 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2417 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2418 2419 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2420 2421 /* To return XDP buffer to XSK pool, we simple call 2422 * xsk_tx_completed(), so we don't need to fill up 2423 * 'buf' and 'xdpf'. 2424 */ 2425 tx_q->tx_skbuff_dma[entry].buf = 0; 2426 tx_q->xdpf[entry] = NULL; 2427 2428 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2429 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2430 tx_q->tx_skbuff_dma[entry].last_segment = true; 2431 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2432 2433 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2434 2435 tx_q->tx_count_frames++; 2436 2437 if (!priv->tx_coal_frames[queue]) 2438 set_ic = false; 2439 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2440 set_ic = true; 2441 else 2442 set_ic = false; 2443 2444 if (set_ic) { 2445 tx_q->tx_count_frames = 0; 2446 stmmac_set_tx_ic(priv, tx_desc); 2447 priv->xstats.tx_set_ic_bit++; 2448 } 2449 2450 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2451 true, priv->mode, true, true, 2452 xdp_desc.len); 2453 2454 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2455 2456 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2457 entry = tx_q->cur_tx; 2458 } 2459 2460 if (tx_desc) { 2461 stmmac_flush_tx_descriptors(priv, queue); 2462 xsk_tx_release(pool); 2463 } 2464 2465 /* Return true if all of the 3 conditions are met 2466 * a) TX Budget is still available 2467 * b) work_done = true when XSK TX desc peek is empty (no more 2468 * pending XSK TX for transmission) 2469 */ 2470 return !!budget && work_done; 2471 } 2472 2473 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2474 { 2475 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2476 tc += 64; 2477 2478 if (priv->plat->force_thresh_dma_mode) 2479 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2480 else 2481 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2482 chan); 2483 2484 priv->xstats.threshold = tc; 2485 } 2486 } 2487 2488 /** 2489 * stmmac_tx_clean - to manage the transmission completion 2490 * @priv: driver private structure 2491 * @budget: napi budget limiting this functions packet handling 2492 * @queue: TX queue index 2493 * Description: it reclaims the transmit resources after transmission completes. 2494 */ 2495 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2496 { 2497 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2498 unsigned int bytes_compl = 0, pkts_compl = 0; 2499 unsigned int entry, xmits = 0, count = 0; 2500 2501 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2502 2503 priv->xstats.tx_clean++; 2504 2505 tx_q->xsk_frames_done = 0; 2506 2507 entry = tx_q->dirty_tx; 2508 2509 /* Try to clean all TX complete frame in 1 shot */ 2510 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2511 struct xdp_frame *xdpf; 2512 struct sk_buff *skb; 2513 struct dma_desc *p; 2514 int status; 2515 2516 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2517 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2518 xdpf = tx_q->xdpf[entry]; 2519 skb = NULL; 2520 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2521 xdpf = NULL; 2522 skb = tx_q->tx_skbuff[entry]; 2523 } else { 2524 xdpf = NULL; 2525 skb = NULL; 2526 } 2527 2528 if (priv->extend_desc) 2529 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2530 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2531 p = &tx_q->dma_entx[entry].basic; 2532 else 2533 p = tx_q->dma_tx + entry; 2534 2535 status = stmmac_tx_status(priv, &priv->dev->stats, 2536 &priv->xstats, p, priv->ioaddr); 2537 /* Check if the descriptor is owned by the DMA */ 2538 if (unlikely(status & tx_dma_own)) 2539 break; 2540 2541 count++; 2542 2543 /* Make sure descriptor fields are read after reading 2544 * the own bit. 2545 */ 2546 dma_rmb(); 2547 2548 /* Just consider the last segment and ...*/ 2549 if (likely(!(status & tx_not_ls))) { 2550 /* ... verify the status error condition */ 2551 if (unlikely(status & tx_err)) { 2552 priv->dev->stats.tx_errors++; 2553 if (unlikely(status & tx_err_bump_tc)) 2554 stmmac_bump_dma_threshold(priv, queue); 2555 } else { 2556 priv->dev->stats.tx_packets++; 2557 priv->xstats.tx_pkt_n++; 2558 priv->xstats.txq_stats[queue].tx_pkt_n++; 2559 } 2560 if (skb) 2561 stmmac_get_tx_hwtstamp(priv, p, skb); 2562 } 2563 2564 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2565 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2566 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2567 dma_unmap_page(priv->device, 2568 tx_q->tx_skbuff_dma[entry].buf, 2569 tx_q->tx_skbuff_dma[entry].len, 2570 DMA_TO_DEVICE); 2571 else 2572 dma_unmap_single(priv->device, 2573 tx_q->tx_skbuff_dma[entry].buf, 2574 tx_q->tx_skbuff_dma[entry].len, 2575 DMA_TO_DEVICE); 2576 tx_q->tx_skbuff_dma[entry].buf = 0; 2577 tx_q->tx_skbuff_dma[entry].len = 0; 2578 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2579 } 2580 2581 stmmac_clean_desc3(priv, tx_q, p); 2582 2583 tx_q->tx_skbuff_dma[entry].last_segment = false; 2584 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2585 2586 if (xdpf && 2587 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2588 xdp_return_frame_rx_napi(xdpf); 2589 tx_q->xdpf[entry] = NULL; 2590 } 2591 2592 if (xdpf && 2593 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2594 xdp_return_frame(xdpf); 2595 tx_q->xdpf[entry] = NULL; 2596 } 2597 2598 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2599 tx_q->xsk_frames_done++; 2600 2601 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2602 if (likely(skb)) { 2603 pkts_compl++; 2604 bytes_compl += skb->len; 2605 dev_consume_skb_any(skb); 2606 tx_q->tx_skbuff[entry] = NULL; 2607 } 2608 } 2609 2610 stmmac_release_tx_desc(priv, p, priv->mode); 2611 2612 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2613 } 2614 tx_q->dirty_tx = entry; 2615 2616 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2617 pkts_compl, bytes_compl); 2618 2619 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2620 queue))) && 2621 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2622 2623 netif_dbg(priv, tx_done, priv->dev, 2624 "%s: restart transmit\n", __func__); 2625 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2626 } 2627 2628 if (tx_q->xsk_pool) { 2629 bool work_done; 2630 2631 if (tx_q->xsk_frames_done) 2632 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2633 2634 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2635 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2636 2637 /* For XSK TX, we try to send as many as possible. 2638 * If XSK work done (XSK TX desc empty and budget still 2639 * available), return "budget - 1" to reenable TX IRQ. 2640 * Else, return "budget" to make NAPI continue polling. 2641 */ 2642 work_done = stmmac_xdp_xmit_zc(priv, queue, 2643 STMMAC_XSK_TX_BUDGET_MAX); 2644 if (work_done) 2645 xmits = budget - 1; 2646 else 2647 xmits = budget; 2648 } 2649 2650 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2651 priv->eee_sw_timer_en) { 2652 if (stmmac_enable_eee_mode(priv)) 2653 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2654 } 2655 2656 /* We still have pending packets, let's call for a new scheduling */ 2657 if (tx_q->dirty_tx != tx_q->cur_tx) 2658 hrtimer_start(&tx_q->txtimer, 2659 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2660 HRTIMER_MODE_REL); 2661 2662 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2663 2664 /* Combine decisions from TX clean and XSK TX */ 2665 return max(count, xmits); 2666 } 2667 2668 /** 2669 * stmmac_tx_err - to manage the tx error 2670 * @priv: driver private structure 2671 * @chan: channel index 2672 * Description: it cleans the descriptors and restarts the transmission 2673 * in case of transmission errors. 2674 */ 2675 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2676 { 2677 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2678 2679 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2680 2681 stmmac_stop_tx_dma(priv, chan); 2682 dma_free_tx_skbufs(priv, chan); 2683 stmmac_clear_tx_descriptors(priv, chan); 2684 tx_q->dirty_tx = 0; 2685 tx_q->cur_tx = 0; 2686 tx_q->mss = 0; 2687 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2688 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2689 tx_q->dma_tx_phy, chan); 2690 stmmac_start_tx_dma(priv, chan); 2691 2692 priv->dev->stats.tx_errors++; 2693 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2694 } 2695 2696 /** 2697 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2698 * @priv: driver private structure 2699 * @txmode: TX operating mode 2700 * @rxmode: RX operating mode 2701 * @chan: channel index 2702 * Description: it is used for configuring of the DMA operation mode in 2703 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2704 * mode. 2705 */ 2706 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2707 u32 rxmode, u32 chan) 2708 { 2709 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2710 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2711 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2712 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2713 int rxfifosz = priv->plat->rx_fifo_size; 2714 int txfifosz = priv->plat->tx_fifo_size; 2715 2716 if (rxfifosz == 0) 2717 rxfifosz = priv->dma_cap.rx_fifo_size; 2718 if (txfifosz == 0) 2719 txfifosz = priv->dma_cap.tx_fifo_size; 2720 2721 /* Adjust for real per queue fifo size */ 2722 rxfifosz /= rx_channels_count; 2723 txfifosz /= tx_channels_count; 2724 2725 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2726 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2727 } 2728 2729 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2730 { 2731 int ret; 2732 2733 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2734 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2735 if (ret && (ret != -EINVAL)) { 2736 stmmac_global_err(priv); 2737 return true; 2738 } 2739 2740 return false; 2741 } 2742 2743 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2744 { 2745 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2746 &priv->xstats, chan, dir); 2747 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2748 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2749 struct stmmac_channel *ch = &priv->channel[chan]; 2750 struct napi_struct *rx_napi; 2751 struct napi_struct *tx_napi; 2752 unsigned long flags; 2753 2754 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2755 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2756 2757 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2758 if (napi_schedule_prep(rx_napi)) { 2759 spin_lock_irqsave(&ch->lock, flags); 2760 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2761 spin_unlock_irqrestore(&ch->lock, flags); 2762 __napi_schedule(rx_napi); 2763 } 2764 } 2765 2766 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2767 if (napi_schedule_prep(tx_napi)) { 2768 spin_lock_irqsave(&ch->lock, flags); 2769 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2770 spin_unlock_irqrestore(&ch->lock, flags); 2771 __napi_schedule(tx_napi); 2772 } 2773 } 2774 2775 return status; 2776 } 2777 2778 /** 2779 * stmmac_dma_interrupt - DMA ISR 2780 * @priv: driver private structure 2781 * Description: this is the DMA ISR. It is called by the main ISR. 2782 * It calls the dwmac dma routine and schedule poll method in case of some 2783 * work can be done. 2784 */ 2785 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2786 { 2787 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2788 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2789 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2790 tx_channel_count : rx_channel_count; 2791 u32 chan; 2792 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2793 2794 /* Make sure we never check beyond our status buffer. */ 2795 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2796 channels_to_check = ARRAY_SIZE(status); 2797 2798 for (chan = 0; chan < channels_to_check; chan++) 2799 status[chan] = stmmac_napi_check(priv, chan, 2800 DMA_DIR_RXTX); 2801 2802 for (chan = 0; chan < tx_channel_count; chan++) { 2803 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2804 /* Try to bump up the dma threshold on this failure */ 2805 stmmac_bump_dma_threshold(priv, chan); 2806 } else if (unlikely(status[chan] == tx_hard_error)) { 2807 stmmac_tx_err(priv, chan); 2808 } 2809 } 2810 } 2811 2812 /** 2813 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2814 * @priv: driver private structure 2815 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2816 */ 2817 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2818 { 2819 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2820 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2821 2822 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2823 2824 if (priv->dma_cap.rmon) { 2825 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2826 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2827 } else 2828 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2829 } 2830 2831 /** 2832 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2833 * @priv: driver private structure 2834 * Description: 2835 * new GMAC chip generations have a new register to indicate the 2836 * presence of the optional feature/functions. 2837 * This can be also used to override the value passed through the 2838 * platform and necessary for old MAC10/100 and GMAC chips. 2839 */ 2840 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2841 { 2842 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2843 } 2844 2845 /** 2846 * stmmac_check_ether_addr - check if the MAC addr is valid 2847 * @priv: driver private structure 2848 * Description: 2849 * it is to verify if the MAC address is valid, in case of failures it 2850 * generates a random MAC address 2851 */ 2852 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2853 { 2854 u8 addr[ETH_ALEN]; 2855 2856 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2857 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2858 if (is_valid_ether_addr(addr)) 2859 eth_hw_addr_set(priv->dev, addr); 2860 else 2861 eth_hw_addr_random(priv->dev); 2862 dev_info(priv->device, "device MAC address %pM\n", 2863 priv->dev->dev_addr); 2864 } 2865 } 2866 2867 /** 2868 * stmmac_init_dma_engine - DMA init. 2869 * @priv: driver private structure 2870 * Description: 2871 * It inits the DMA invoking the specific MAC/GMAC callback. 2872 * Some DMA parameters can be passed from the platform; 2873 * in case of these are not passed a default is kept for the MAC or GMAC. 2874 */ 2875 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2876 { 2877 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2878 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2879 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2880 struct stmmac_rx_queue *rx_q; 2881 struct stmmac_tx_queue *tx_q; 2882 u32 chan = 0; 2883 int atds = 0; 2884 int ret = 0; 2885 2886 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2887 dev_err(priv->device, "Invalid DMA configuration\n"); 2888 return -EINVAL; 2889 } 2890 2891 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2892 atds = 1; 2893 2894 ret = stmmac_reset(priv, priv->ioaddr); 2895 if (ret) { 2896 dev_err(priv->device, "Failed to reset the dma\n"); 2897 return ret; 2898 } 2899 2900 /* DMA Configuration */ 2901 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2902 2903 if (priv->plat->axi) 2904 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2905 2906 /* DMA CSR Channel configuration */ 2907 for (chan = 0; chan < dma_csr_ch; chan++) 2908 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2909 2910 /* DMA RX Channel Configuration */ 2911 for (chan = 0; chan < rx_channels_count; chan++) { 2912 rx_q = &priv->rx_queue[chan]; 2913 2914 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2915 rx_q->dma_rx_phy, chan); 2916 2917 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2918 (rx_q->buf_alloc_num * 2919 sizeof(struct dma_desc)); 2920 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2921 rx_q->rx_tail_addr, chan); 2922 } 2923 2924 /* DMA TX Channel Configuration */ 2925 for (chan = 0; chan < tx_channels_count; chan++) { 2926 tx_q = &priv->tx_queue[chan]; 2927 2928 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2929 tx_q->dma_tx_phy, chan); 2930 2931 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2932 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2933 tx_q->tx_tail_addr, chan); 2934 } 2935 2936 return ret; 2937 } 2938 2939 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2940 { 2941 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2942 2943 hrtimer_start(&tx_q->txtimer, 2944 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2945 HRTIMER_MODE_REL); 2946 } 2947 2948 /** 2949 * stmmac_tx_timer - mitigation sw timer for tx. 2950 * @t: data pointer 2951 * Description: 2952 * This is the timer handler to directly invoke the stmmac_tx_clean. 2953 */ 2954 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2955 { 2956 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2957 struct stmmac_priv *priv = tx_q->priv_data; 2958 struct stmmac_channel *ch; 2959 struct napi_struct *napi; 2960 2961 ch = &priv->channel[tx_q->queue_index]; 2962 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2963 2964 if (likely(napi_schedule_prep(napi))) { 2965 unsigned long flags; 2966 2967 spin_lock_irqsave(&ch->lock, flags); 2968 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2969 spin_unlock_irqrestore(&ch->lock, flags); 2970 __napi_schedule(napi); 2971 } 2972 2973 return HRTIMER_NORESTART; 2974 } 2975 2976 /** 2977 * stmmac_init_coalesce - init mitigation options. 2978 * @priv: driver private structure 2979 * Description: 2980 * This inits the coalesce parameters: i.e. timer rate, 2981 * timer handler and default threshold used for enabling the 2982 * interrupt on completion bit. 2983 */ 2984 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2985 { 2986 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2987 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2988 u32 chan; 2989 2990 for (chan = 0; chan < tx_channel_count; chan++) { 2991 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2992 2993 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2994 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2995 2996 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2997 tx_q->txtimer.function = stmmac_tx_timer; 2998 } 2999 3000 for (chan = 0; chan < rx_channel_count; chan++) 3001 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3002 } 3003 3004 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3005 { 3006 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3007 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3008 u32 chan; 3009 3010 /* set TX ring length */ 3011 for (chan = 0; chan < tx_channels_count; chan++) 3012 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3013 (priv->dma_tx_size - 1), chan); 3014 3015 /* set RX ring length */ 3016 for (chan = 0; chan < rx_channels_count; chan++) 3017 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3018 (priv->dma_rx_size - 1), chan); 3019 } 3020 3021 /** 3022 * stmmac_set_tx_queue_weight - Set TX queue weight 3023 * @priv: driver private structure 3024 * Description: It is used for setting TX queues weight 3025 */ 3026 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3027 { 3028 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3029 u32 weight; 3030 u32 queue; 3031 3032 for (queue = 0; queue < tx_queues_count; queue++) { 3033 weight = priv->plat->tx_queues_cfg[queue].weight; 3034 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3035 } 3036 } 3037 3038 /** 3039 * stmmac_configure_cbs - Configure CBS in TX queue 3040 * @priv: driver private structure 3041 * Description: It is used for configuring CBS in AVB TX queues 3042 */ 3043 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3044 { 3045 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3046 u32 mode_to_use; 3047 u32 queue; 3048 3049 /* queue 0 is reserved for legacy traffic */ 3050 for (queue = 1; queue < tx_queues_count; queue++) { 3051 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3052 if (mode_to_use == MTL_QUEUE_DCB) 3053 continue; 3054 3055 stmmac_config_cbs(priv, priv->hw, 3056 priv->plat->tx_queues_cfg[queue].send_slope, 3057 priv->plat->tx_queues_cfg[queue].idle_slope, 3058 priv->plat->tx_queues_cfg[queue].high_credit, 3059 priv->plat->tx_queues_cfg[queue].low_credit, 3060 queue); 3061 } 3062 } 3063 3064 /** 3065 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3066 * @priv: driver private structure 3067 * Description: It is used for mapping RX queues to RX dma channels 3068 */ 3069 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3070 { 3071 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3072 u32 queue; 3073 u32 chan; 3074 3075 for (queue = 0; queue < rx_queues_count; queue++) { 3076 chan = priv->plat->rx_queues_cfg[queue].chan; 3077 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3078 } 3079 } 3080 3081 /** 3082 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3083 * @priv: driver private structure 3084 * Description: It is used for configuring the RX Queue Priority 3085 */ 3086 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3087 { 3088 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3089 u32 queue; 3090 u32 prio; 3091 3092 for (queue = 0; queue < rx_queues_count; queue++) { 3093 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3094 continue; 3095 3096 prio = priv->plat->rx_queues_cfg[queue].prio; 3097 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3098 } 3099 } 3100 3101 /** 3102 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3103 * @priv: driver private structure 3104 * Description: It is used for configuring the TX Queue Priority 3105 */ 3106 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3107 { 3108 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3109 u32 queue; 3110 u32 prio; 3111 3112 for (queue = 0; queue < tx_queues_count; queue++) { 3113 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3114 continue; 3115 3116 prio = priv->plat->tx_queues_cfg[queue].prio; 3117 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3118 } 3119 } 3120 3121 /** 3122 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3123 * @priv: driver private structure 3124 * Description: It is used for configuring the RX queue routing 3125 */ 3126 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3127 { 3128 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3129 u32 queue; 3130 u8 packet; 3131 3132 for (queue = 0; queue < rx_queues_count; queue++) { 3133 /* no specific packet type routing specified for the queue */ 3134 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3135 continue; 3136 3137 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3138 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3139 } 3140 } 3141 3142 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3143 { 3144 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3145 priv->rss.enable = false; 3146 return; 3147 } 3148 3149 if (priv->dev->features & NETIF_F_RXHASH) 3150 priv->rss.enable = true; 3151 else 3152 priv->rss.enable = false; 3153 3154 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3155 priv->plat->rx_queues_to_use); 3156 } 3157 3158 /** 3159 * stmmac_mtl_configuration - Configure MTL 3160 * @priv: driver private structure 3161 * Description: It is used for configurring MTL 3162 */ 3163 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3164 { 3165 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3166 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3167 3168 if (tx_queues_count > 1) 3169 stmmac_set_tx_queue_weight(priv); 3170 3171 /* Configure MTL RX algorithms */ 3172 if (rx_queues_count > 1) 3173 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3174 priv->plat->rx_sched_algorithm); 3175 3176 /* Configure MTL TX algorithms */ 3177 if (tx_queues_count > 1) 3178 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3179 priv->plat->tx_sched_algorithm); 3180 3181 /* Configure CBS in AVB TX queues */ 3182 if (tx_queues_count > 1) 3183 stmmac_configure_cbs(priv); 3184 3185 /* Map RX MTL to DMA channels */ 3186 stmmac_rx_queue_dma_chan_map(priv); 3187 3188 /* Enable MAC RX Queues */ 3189 stmmac_mac_enable_rx_queues(priv); 3190 3191 /* Set RX priorities */ 3192 if (rx_queues_count > 1) 3193 stmmac_mac_config_rx_queues_prio(priv); 3194 3195 /* Set TX priorities */ 3196 if (tx_queues_count > 1) 3197 stmmac_mac_config_tx_queues_prio(priv); 3198 3199 /* Set RX routing */ 3200 if (rx_queues_count > 1) 3201 stmmac_mac_config_rx_queues_routing(priv); 3202 3203 /* Receive Side Scaling */ 3204 if (rx_queues_count > 1) 3205 stmmac_mac_config_rss(priv); 3206 } 3207 3208 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3209 { 3210 if (priv->dma_cap.asp) { 3211 netdev_info(priv->dev, "Enabling Safety Features\n"); 3212 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3213 priv->plat->safety_feat_cfg); 3214 } else { 3215 netdev_info(priv->dev, "No Safety Features support found\n"); 3216 } 3217 } 3218 3219 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3220 { 3221 char *name; 3222 3223 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3224 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3225 3226 name = priv->wq_name; 3227 sprintf(name, "%s-fpe", priv->dev->name); 3228 3229 priv->fpe_wq = create_singlethread_workqueue(name); 3230 if (!priv->fpe_wq) { 3231 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3232 3233 return -ENOMEM; 3234 } 3235 netdev_info(priv->dev, "FPE workqueue start"); 3236 3237 return 0; 3238 } 3239 3240 /** 3241 * stmmac_hw_setup - setup mac in a usable state. 3242 * @dev : pointer to the device structure. 3243 * @ptp_register: register PTP if set 3244 * Description: 3245 * this is the main function to setup the HW in a usable state because the 3246 * dma engine is reset, the core registers are configured (e.g. AXI, 3247 * Checksum features, timers). The DMA is ready to start receiving and 3248 * transmitting. 3249 * Return value: 3250 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3251 * file on failure. 3252 */ 3253 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3254 { 3255 struct stmmac_priv *priv = netdev_priv(dev); 3256 u32 rx_cnt = priv->plat->rx_queues_to_use; 3257 u32 tx_cnt = priv->plat->tx_queues_to_use; 3258 bool sph_en; 3259 u32 chan; 3260 int ret; 3261 3262 /* DMA initialization and SW reset */ 3263 ret = stmmac_init_dma_engine(priv); 3264 if (ret < 0) { 3265 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3266 __func__); 3267 return ret; 3268 } 3269 3270 /* Copy the MAC addr into the HW */ 3271 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3272 3273 /* PS and related bits will be programmed according to the speed */ 3274 if (priv->hw->pcs) { 3275 int speed = priv->plat->mac_port_sel_speed; 3276 3277 if ((speed == SPEED_10) || (speed == SPEED_100) || 3278 (speed == SPEED_1000)) { 3279 priv->hw->ps = speed; 3280 } else { 3281 dev_warn(priv->device, "invalid port speed\n"); 3282 priv->hw->ps = 0; 3283 } 3284 } 3285 3286 /* Initialize the MAC Core */ 3287 stmmac_core_init(priv, priv->hw, dev); 3288 3289 /* Initialize MTL*/ 3290 stmmac_mtl_configuration(priv); 3291 3292 /* Initialize Safety Features */ 3293 stmmac_safety_feat_configuration(priv); 3294 3295 ret = stmmac_rx_ipc(priv, priv->hw); 3296 if (!ret) { 3297 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3298 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3299 priv->hw->rx_csum = 0; 3300 } 3301 3302 /* Enable the MAC Rx/Tx */ 3303 stmmac_mac_set(priv, priv->ioaddr, true); 3304 3305 /* Set the HW DMA mode and the COE */ 3306 stmmac_dma_operation_mode(priv); 3307 3308 stmmac_mmc_setup(priv); 3309 3310 ret = stmmac_init_ptp(priv); 3311 if (ret == -EOPNOTSUPP) 3312 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3313 else if (ret) 3314 netdev_warn(priv->dev, "PTP init failed\n"); 3315 else if (ptp_register) 3316 stmmac_ptp_register(priv); 3317 3318 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3319 3320 /* Convert the timer from msec to usec */ 3321 if (!priv->tx_lpi_timer) 3322 priv->tx_lpi_timer = eee_timer * 1000; 3323 3324 if (priv->use_riwt) { 3325 u32 queue; 3326 3327 for (queue = 0; queue < rx_cnt; queue++) { 3328 if (!priv->rx_riwt[queue]) 3329 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3330 3331 stmmac_rx_watchdog(priv, priv->ioaddr, 3332 priv->rx_riwt[queue], queue); 3333 } 3334 } 3335 3336 if (priv->hw->pcs) 3337 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3338 3339 /* set TX and RX rings length */ 3340 stmmac_set_rings_length(priv); 3341 3342 /* Enable TSO */ 3343 if (priv->tso) { 3344 for (chan = 0; chan < tx_cnt; chan++) { 3345 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3346 3347 /* TSO and TBS cannot co-exist */ 3348 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3349 continue; 3350 3351 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3352 } 3353 } 3354 3355 /* Enable Split Header */ 3356 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3357 for (chan = 0; chan < rx_cnt; chan++) 3358 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3359 3360 3361 /* VLAN Tag Insertion */ 3362 if (priv->dma_cap.vlins) 3363 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3364 3365 /* TBS */ 3366 for (chan = 0; chan < tx_cnt; chan++) { 3367 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3368 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3369 3370 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3371 } 3372 3373 /* Configure real RX and TX queues */ 3374 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3375 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3376 3377 /* Start the ball rolling... */ 3378 stmmac_start_all_dma(priv); 3379 3380 if (priv->dma_cap.fpesel) { 3381 stmmac_fpe_start_wq(priv); 3382 3383 if (priv->plat->fpe_cfg->enable) 3384 stmmac_fpe_handshake(priv, true); 3385 } 3386 3387 return 0; 3388 } 3389 3390 static void stmmac_hw_teardown(struct net_device *dev) 3391 { 3392 struct stmmac_priv *priv = netdev_priv(dev); 3393 3394 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3395 } 3396 3397 static void stmmac_free_irq(struct net_device *dev, 3398 enum request_irq_err irq_err, int irq_idx) 3399 { 3400 struct stmmac_priv *priv = netdev_priv(dev); 3401 int j; 3402 3403 switch (irq_err) { 3404 case REQ_IRQ_ERR_ALL: 3405 irq_idx = priv->plat->tx_queues_to_use; 3406 fallthrough; 3407 case REQ_IRQ_ERR_TX: 3408 for (j = irq_idx - 1; j >= 0; j--) { 3409 if (priv->tx_irq[j] > 0) { 3410 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3411 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3412 } 3413 } 3414 irq_idx = priv->plat->rx_queues_to_use; 3415 fallthrough; 3416 case REQ_IRQ_ERR_RX: 3417 for (j = irq_idx - 1; j >= 0; j--) { 3418 if (priv->rx_irq[j] > 0) { 3419 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3420 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3421 } 3422 } 3423 3424 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3425 free_irq(priv->sfty_ue_irq, dev); 3426 fallthrough; 3427 case REQ_IRQ_ERR_SFTY_UE: 3428 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3429 free_irq(priv->sfty_ce_irq, dev); 3430 fallthrough; 3431 case REQ_IRQ_ERR_SFTY_CE: 3432 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3433 free_irq(priv->lpi_irq, dev); 3434 fallthrough; 3435 case REQ_IRQ_ERR_LPI: 3436 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3437 free_irq(priv->wol_irq, dev); 3438 fallthrough; 3439 case REQ_IRQ_ERR_WOL: 3440 free_irq(dev->irq, dev); 3441 fallthrough; 3442 case REQ_IRQ_ERR_MAC: 3443 case REQ_IRQ_ERR_NO: 3444 /* If MAC IRQ request error, no more IRQ to free */ 3445 break; 3446 } 3447 } 3448 3449 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3450 { 3451 struct stmmac_priv *priv = netdev_priv(dev); 3452 enum request_irq_err irq_err; 3453 cpumask_t cpu_mask; 3454 int irq_idx = 0; 3455 char *int_name; 3456 int ret; 3457 int i; 3458 3459 /* For common interrupt */ 3460 int_name = priv->int_name_mac; 3461 sprintf(int_name, "%s:%s", dev->name, "mac"); 3462 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3463 0, int_name, dev); 3464 if (unlikely(ret < 0)) { 3465 netdev_err(priv->dev, 3466 "%s: alloc mac MSI %d (error: %d)\n", 3467 __func__, dev->irq, ret); 3468 irq_err = REQ_IRQ_ERR_MAC; 3469 goto irq_error; 3470 } 3471 3472 /* Request the Wake IRQ in case of another line 3473 * is used for WoL 3474 */ 3475 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3476 int_name = priv->int_name_wol; 3477 sprintf(int_name, "%s:%s", dev->name, "wol"); 3478 ret = request_irq(priv->wol_irq, 3479 stmmac_mac_interrupt, 3480 0, int_name, dev); 3481 if (unlikely(ret < 0)) { 3482 netdev_err(priv->dev, 3483 "%s: alloc wol MSI %d (error: %d)\n", 3484 __func__, priv->wol_irq, ret); 3485 irq_err = REQ_IRQ_ERR_WOL; 3486 goto irq_error; 3487 } 3488 } 3489 3490 /* Request the LPI IRQ in case of another line 3491 * is used for LPI 3492 */ 3493 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3494 int_name = priv->int_name_lpi; 3495 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3496 ret = request_irq(priv->lpi_irq, 3497 stmmac_mac_interrupt, 3498 0, int_name, dev); 3499 if (unlikely(ret < 0)) { 3500 netdev_err(priv->dev, 3501 "%s: alloc lpi MSI %d (error: %d)\n", 3502 __func__, priv->lpi_irq, ret); 3503 irq_err = REQ_IRQ_ERR_LPI; 3504 goto irq_error; 3505 } 3506 } 3507 3508 /* Request the Safety Feature Correctible Error line in 3509 * case of another line is used 3510 */ 3511 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3512 int_name = priv->int_name_sfty_ce; 3513 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3514 ret = request_irq(priv->sfty_ce_irq, 3515 stmmac_safety_interrupt, 3516 0, int_name, dev); 3517 if (unlikely(ret < 0)) { 3518 netdev_err(priv->dev, 3519 "%s: alloc sfty ce MSI %d (error: %d)\n", 3520 __func__, priv->sfty_ce_irq, ret); 3521 irq_err = REQ_IRQ_ERR_SFTY_CE; 3522 goto irq_error; 3523 } 3524 } 3525 3526 /* Request the Safety Feature Uncorrectible Error line in 3527 * case of another line is used 3528 */ 3529 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3530 int_name = priv->int_name_sfty_ue; 3531 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3532 ret = request_irq(priv->sfty_ue_irq, 3533 stmmac_safety_interrupt, 3534 0, int_name, dev); 3535 if (unlikely(ret < 0)) { 3536 netdev_err(priv->dev, 3537 "%s: alloc sfty ue MSI %d (error: %d)\n", 3538 __func__, priv->sfty_ue_irq, ret); 3539 irq_err = REQ_IRQ_ERR_SFTY_UE; 3540 goto irq_error; 3541 } 3542 } 3543 3544 /* Request Rx MSI irq */ 3545 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3546 if (i >= MTL_MAX_RX_QUEUES) 3547 break; 3548 if (priv->rx_irq[i] == 0) 3549 continue; 3550 3551 int_name = priv->int_name_rx_irq[i]; 3552 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3553 ret = request_irq(priv->rx_irq[i], 3554 stmmac_msi_intr_rx, 3555 0, int_name, &priv->rx_queue[i]); 3556 if (unlikely(ret < 0)) { 3557 netdev_err(priv->dev, 3558 "%s: alloc rx-%d MSI %d (error: %d)\n", 3559 __func__, i, priv->rx_irq[i], ret); 3560 irq_err = REQ_IRQ_ERR_RX; 3561 irq_idx = i; 3562 goto irq_error; 3563 } 3564 cpumask_clear(&cpu_mask); 3565 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3566 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3567 } 3568 3569 /* Request Tx MSI irq */ 3570 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3571 if (i >= MTL_MAX_TX_QUEUES) 3572 break; 3573 if (priv->tx_irq[i] == 0) 3574 continue; 3575 3576 int_name = priv->int_name_tx_irq[i]; 3577 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3578 ret = request_irq(priv->tx_irq[i], 3579 stmmac_msi_intr_tx, 3580 0, int_name, &priv->tx_queue[i]); 3581 if (unlikely(ret < 0)) { 3582 netdev_err(priv->dev, 3583 "%s: alloc tx-%d MSI %d (error: %d)\n", 3584 __func__, i, priv->tx_irq[i], ret); 3585 irq_err = REQ_IRQ_ERR_TX; 3586 irq_idx = i; 3587 goto irq_error; 3588 } 3589 cpumask_clear(&cpu_mask); 3590 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3591 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3592 } 3593 3594 return 0; 3595 3596 irq_error: 3597 stmmac_free_irq(dev, irq_err, irq_idx); 3598 return ret; 3599 } 3600 3601 static int stmmac_request_irq_single(struct net_device *dev) 3602 { 3603 struct stmmac_priv *priv = netdev_priv(dev); 3604 enum request_irq_err irq_err; 3605 int ret; 3606 3607 ret = request_irq(dev->irq, stmmac_interrupt, 3608 IRQF_SHARED, dev->name, dev); 3609 if (unlikely(ret < 0)) { 3610 netdev_err(priv->dev, 3611 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3612 __func__, dev->irq, ret); 3613 irq_err = REQ_IRQ_ERR_MAC; 3614 goto irq_error; 3615 } 3616 3617 /* Request the Wake IRQ in case of another line 3618 * is used for WoL 3619 */ 3620 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3621 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3622 IRQF_SHARED, dev->name, dev); 3623 if (unlikely(ret < 0)) { 3624 netdev_err(priv->dev, 3625 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3626 __func__, priv->wol_irq, ret); 3627 irq_err = REQ_IRQ_ERR_WOL; 3628 goto irq_error; 3629 } 3630 } 3631 3632 /* Request the IRQ lines */ 3633 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3634 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3635 IRQF_SHARED, dev->name, dev); 3636 if (unlikely(ret < 0)) { 3637 netdev_err(priv->dev, 3638 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3639 __func__, priv->lpi_irq, ret); 3640 irq_err = REQ_IRQ_ERR_LPI; 3641 goto irq_error; 3642 } 3643 } 3644 3645 return 0; 3646 3647 irq_error: 3648 stmmac_free_irq(dev, irq_err, 0); 3649 return ret; 3650 } 3651 3652 static int stmmac_request_irq(struct net_device *dev) 3653 { 3654 struct stmmac_priv *priv = netdev_priv(dev); 3655 int ret; 3656 3657 /* Request the IRQ lines */ 3658 if (priv->plat->multi_msi_en) 3659 ret = stmmac_request_irq_multi_msi(dev); 3660 else 3661 ret = stmmac_request_irq_single(dev); 3662 3663 return ret; 3664 } 3665 3666 /** 3667 * stmmac_open - open entry point of the driver 3668 * @dev : pointer to the device structure. 3669 * Description: 3670 * This function is the open entry point of the driver. 3671 * Return value: 3672 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3673 * file on failure. 3674 */ 3675 static int stmmac_open(struct net_device *dev) 3676 { 3677 struct stmmac_priv *priv = netdev_priv(dev); 3678 int mode = priv->plat->phy_interface; 3679 int bfsize = 0; 3680 u32 chan; 3681 int ret; 3682 3683 ret = pm_runtime_get_sync(priv->device); 3684 if (ret < 0) { 3685 pm_runtime_put_noidle(priv->device); 3686 return ret; 3687 } 3688 3689 if (priv->hw->pcs != STMMAC_PCS_TBI && 3690 priv->hw->pcs != STMMAC_PCS_RTBI && 3691 (!priv->hw->xpcs || 3692 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3693 ret = stmmac_init_phy(dev); 3694 if (ret) { 3695 netdev_err(priv->dev, 3696 "%s: Cannot attach to PHY (error: %d)\n", 3697 __func__, ret); 3698 goto init_phy_error; 3699 } 3700 } 3701 3702 /* Extra statistics */ 3703 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3704 priv->xstats.threshold = tc; 3705 3706 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3707 if (bfsize < 0) 3708 bfsize = 0; 3709 3710 if (bfsize < BUF_SIZE_16KiB) 3711 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3712 3713 priv->dma_buf_sz = bfsize; 3714 buf_sz = bfsize; 3715 3716 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3717 3718 if (!priv->dma_tx_size) 3719 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3720 if (!priv->dma_rx_size) 3721 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3722 3723 /* Earlier check for TBS */ 3724 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3725 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3726 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3727 3728 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3729 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3730 } 3731 3732 ret = alloc_dma_desc_resources(priv); 3733 if (ret < 0) { 3734 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3735 __func__); 3736 goto dma_desc_error; 3737 } 3738 3739 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3740 if (ret < 0) { 3741 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3742 __func__); 3743 goto init_error; 3744 } 3745 3746 ret = stmmac_hw_setup(dev, true); 3747 if (ret < 0) { 3748 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3749 goto init_error; 3750 } 3751 3752 stmmac_init_coalesce(priv); 3753 3754 phylink_start(priv->phylink); 3755 /* We may have called phylink_speed_down before */ 3756 phylink_speed_up(priv->phylink); 3757 3758 ret = stmmac_request_irq(dev); 3759 if (ret) 3760 goto irq_error; 3761 3762 stmmac_enable_all_queues(priv); 3763 netif_tx_start_all_queues(priv->dev); 3764 3765 return 0; 3766 3767 irq_error: 3768 phylink_stop(priv->phylink); 3769 3770 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3771 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3772 3773 stmmac_hw_teardown(dev); 3774 init_error: 3775 free_dma_desc_resources(priv); 3776 dma_desc_error: 3777 phylink_disconnect_phy(priv->phylink); 3778 init_phy_error: 3779 pm_runtime_put(priv->device); 3780 return ret; 3781 } 3782 3783 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3784 { 3785 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3786 3787 if (priv->fpe_wq) 3788 destroy_workqueue(priv->fpe_wq); 3789 3790 netdev_info(priv->dev, "FPE workqueue stop"); 3791 } 3792 3793 /** 3794 * stmmac_release - close entry point of the driver 3795 * @dev : device pointer. 3796 * Description: 3797 * This is the stop entry point of the driver. 3798 */ 3799 static int stmmac_release(struct net_device *dev) 3800 { 3801 struct stmmac_priv *priv = netdev_priv(dev); 3802 u32 chan; 3803 3804 netif_tx_disable(dev); 3805 3806 if (device_may_wakeup(priv->device)) 3807 phylink_speed_down(priv->phylink, false); 3808 /* Stop and disconnect the PHY */ 3809 phylink_stop(priv->phylink); 3810 phylink_disconnect_phy(priv->phylink); 3811 3812 stmmac_disable_all_queues(priv); 3813 3814 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3815 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3816 3817 /* Free the IRQ lines */ 3818 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3819 3820 if (priv->eee_enabled) { 3821 priv->tx_path_in_lpi_mode = false; 3822 del_timer_sync(&priv->eee_ctrl_timer); 3823 } 3824 3825 /* Stop TX/RX DMA and clear the descriptors */ 3826 stmmac_stop_all_dma(priv); 3827 3828 /* Release and free the Rx/Tx resources */ 3829 free_dma_desc_resources(priv); 3830 3831 /* Disable the MAC Rx/Tx */ 3832 stmmac_mac_set(priv, priv->ioaddr, false); 3833 3834 netif_carrier_off(dev); 3835 3836 stmmac_release_ptp(priv); 3837 3838 pm_runtime_put(priv->device); 3839 3840 if (priv->dma_cap.fpesel) 3841 stmmac_fpe_stop_wq(priv); 3842 3843 return 0; 3844 } 3845 3846 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3847 struct stmmac_tx_queue *tx_q) 3848 { 3849 u16 tag = 0x0, inner_tag = 0x0; 3850 u32 inner_type = 0x0; 3851 struct dma_desc *p; 3852 3853 if (!priv->dma_cap.vlins) 3854 return false; 3855 if (!skb_vlan_tag_present(skb)) 3856 return false; 3857 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3858 inner_tag = skb_vlan_tag_get(skb); 3859 inner_type = STMMAC_VLAN_INSERT; 3860 } 3861 3862 tag = skb_vlan_tag_get(skb); 3863 3864 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3865 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3866 else 3867 p = &tx_q->dma_tx[tx_q->cur_tx]; 3868 3869 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3870 return false; 3871 3872 stmmac_set_tx_owner(priv, p); 3873 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3874 return true; 3875 } 3876 3877 /** 3878 * stmmac_tso_allocator - close entry point of the driver 3879 * @priv: driver private structure 3880 * @des: buffer start address 3881 * @total_len: total length to fill in descriptors 3882 * @last_segment: condition for the last descriptor 3883 * @queue: TX queue index 3884 * Description: 3885 * This function fills descriptor and request new descriptors according to 3886 * buffer length to fill 3887 */ 3888 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3889 int total_len, bool last_segment, u32 queue) 3890 { 3891 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3892 struct dma_desc *desc; 3893 u32 buff_size; 3894 int tmp_len; 3895 3896 tmp_len = total_len; 3897 3898 while (tmp_len > 0) { 3899 dma_addr_t curr_addr; 3900 3901 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3902 priv->dma_tx_size); 3903 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3904 3905 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3906 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3907 else 3908 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3909 3910 curr_addr = des + (total_len - tmp_len); 3911 if (priv->dma_cap.addr64 <= 32) 3912 desc->des0 = cpu_to_le32(curr_addr); 3913 else 3914 stmmac_set_desc_addr(priv, desc, curr_addr); 3915 3916 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3917 TSO_MAX_BUFF_SIZE : tmp_len; 3918 3919 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3920 0, 1, 3921 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3922 0, 0); 3923 3924 tmp_len -= TSO_MAX_BUFF_SIZE; 3925 } 3926 } 3927 3928 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3929 { 3930 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3931 int desc_size; 3932 3933 if (likely(priv->extend_desc)) 3934 desc_size = sizeof(struct dma_extended_desc); 3935 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3936 desc_size = sizeof(struct dma_edesc); 3937 else 3938 desc_size = sizeof(struct dma_desc); 3939 3940 /* The own bit must be the latest setting done when prepare the 3941 * descriptor and then barrier is needed to make sure that 3942 * all is coherent before granting the DMA engine. 3943 */ 3944 wmb(); 3945 3946 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3947 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3948 } 3949 3950 /** 3951 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3952 * @skb : the socket buffer 3953 * @dev : device pointer 3954 * Description: this is the transmit function that is called on TSO frames 3955 * (support available on GMAC4 and newer chips). 3956 * Diagram below show the ring programming in case of TSO frames: 3957 * 3958 * First Descriptor 3959 * -------- 3960 * | DES0 |---> buffer1 = L2/L3/L4 header 3961 * | DES1 |---> TCP Payload (can continue on next descr...) 3962 * | DES2 |---> buffer 1 and 2 len 3963 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3964 * -------- 3965 * | 3966 * ... 3967 * | 3968 * -------- 3969 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3970 * | DES1 | --| 3971 * | DES2 | --> buffer 1 and 2 len 3972 * | DES3 | 3973 * -------- 3974 * 3975 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3976 */ 3977 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3978 { 3979 struct dma_desc *desc, *first, *mss_desc = NULL; 3980 struct stmmac_priv *priv = netdev_priv(dev); 3981 int nfrags = skb_shinfo(skb)->nr_frags; 3982 u32 queue = skb_get_queue_mapping(skb); 3983 unsigned int first_entry, tx_packets; 3984 int tmp_pay_len = 0, first_tx; 3985 struct stmmac_tx_queue *tx_q; 3986 bool has_vlan, set_ic; 3987 u8 proto_hdr_len, hdr; 3988 u32 pay_len, mss; 3989 dma_addr_t des; 3990 int i; 3991 3992 tx_q = &priv->tx_queue[queue]; 3993 first_tx = tx_q->cur_tx; 3994 3995 /* Compute header lengths */ 3996 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3997 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3998 hdr = sizeof(struct udphdr); 3999 } else { 4000 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 4001 hdr = tcp_hdrlen(skb); 4002 } 4003 4004 /* Desc availability based on threshold should be enough safe */ 4005 if (unlikely(stmmac_tx_avail(priv, queue) < 4006 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4007 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4008 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4009 queue)); 4010 /* This is a hard error, log it. */ 4011 netdev_err(priv->dev, 4012 "%s: Tx Ring full when queue awake\n", 4013 __func__); 4014 } 4015 return NETDEV_TX_BUSY; 4016 } 4017 4018 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4019 4020 mss = skb_shinfo(skb)->gso_size; 4021 4022 /* set new MSS value if needed */ 4023 if (mss != tx_q->mss) { 4024 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4025 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4026 else 4027 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4028 4029 stmmac_set_mss(priv, mss_desc, mss); 4030 tx_q->mss = mss; 4031 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4032 priv->dma_tx_size); 4033 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4034 } 4035 4036 if (netif_msg_tx_queued(priv)) { 4037 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4038 __func__, hdr, proto_hdr_len, pay_len, mss); 4039 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4040 skb->data_len); 4041 } 4042 4043 /* Check if VLAN can be inserted by HW */ 4044 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4045 4046 first_entry = tx_q->cur_tx; 4047 WARN_ON(tx_q->tx_skbuff[first_entry]); 4048 4049 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4050 desc = &tx_q->dma_entx[first_entry].basic; 4051 else 4052 desc = &tx_q->dma_tx[first_entry]; 4053 first = desc; 4054 4055 if (has_vlan) 4056 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4057 4058 /* first descriptor: fill Headers on Buf1 */ 4059 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4060 DMA_TO_DEVICE); 4061 if (dma_mapping_error(priv->device, des)) 4062 goto dma_map_err; 4063 4064 tx_q->tx_skbuff_dma[first_entry].buf = des; 4065 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4066 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4067 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4068 4069 if (priv->dma_cap.addr64 <= 32) { 4070 first->des0 = cpu_to_le32(des); 4071 4072 /* Fill start of payload in buff2 of first descriptor */ 4073 if (pay_len) 4074 first->des1 = cpu_to_le32(des + proto_hdr_len); 4075 4076 /* If needed take extra descriptors to fill the remaining payload */ 4077 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4078 } else { 4079 stmmac_set_desc_addr(priv, first, des); 4080 tmp_pay_len = pay_len; 4081 des += proto_hdr_len; 4082 pay_len = 0; 4083 } 4084 4085 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4086 4087 /* Prepare fragments */ 4088 for (i = 0; i < nfrags; i++) { 4089 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4090 4091 des = skb_frag_dma_map(priv->device, frag, 0, 4092 skb_frag_size(frag), 4093 DMA_TO_DEVICE); 4094 if (dma_mapping_error(priv->device, des)) 4095 goto dma_map_err; 4096 4097 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4098 (i == nfrags - 1), queue); 4099 4100 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4101 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4102 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4103 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4104 } 4105 4106 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4107 4108 /* Only the last descriptor gets to point to the skb. */ 4109 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4110 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4111 4112 /* Manage tx mitigation */ 4113 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4114 tx_q->tx_count_frames += tx_packets; 4115 4116 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4117 set_ic = true; 4118 else if (!priv->tx_coal_frames[queue]) 4119 set_ic = false; 4120 else if (tx_packets > priv->tx_coal_frames[queue]) 4121 set_ic = true; 4122 else if ((tx_q->tx_count_frames % 4123 priv->tx_coal_frames[queue]) < tx_packets) 4124 set_ic = true; 4125 else 4126 set_ic = false; 4127 4128 if (set_ic) { 4129 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4130 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4131 else 4132 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4133 4134 tx_q->tx_count_frames = 0; 4135 stmmac_set_tx_ic(priv, desc); 4136 priv->xstats.tx_set_ic_bit++; 4137 } 4138 4139 /* We've used all descriptors we need for this skb, however, 4140 * advance cur_tx so that it references a fresh descriptor. 4141 * ndo_start_xmit will fill this descriptor the next time it's 4142 * called and stmmac_tx_clean may clean up to this descriptor. 4143 */ 4144 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4145 4146 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4147 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4148 __func__); 4149 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4150 } 4151 4152 dev->stats.tx_bytes += skb->len; 4153 priv->xstats.tx_tso_frames++; 4154 priv->xstats.tx_tso_nfrags += nfrags; 4155 4156 if (priv->sarc_type) 4157 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4158 4159 skb_tx_timestamp(skb); 4160 4161 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4162 priv->hwts_tx_en)) { 4163 /* declare that device is doing timestamping */ 4164 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4165 stmmac_enable_tx_timestamp(priv, first); 4166 } 4167 4168 /* Complete the first descriptor before granting the DMA */ 4169 stmmac_prepare_tso_tx_desc(priv, first, 1, 4170 proto_hdr_len, 4171 pay_len, 4172 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4173 hdr / 4, (skb->len - proto_hdr_len)); 4174 4175 /* If context desc is used to change MSS */ 4176 if (mss_desc) { 4177 /* Make sure that first descriptor has been completely 4178 * written, including its own bit. This is because MSS is 4179 * actually before first descriptor, so we need to make 4180 * sure that MSS's own bit is the last thing written. 4181 */ 4182 dma_wmb(); 4183 stmmac_set_tx_owner(priv, mss_desc); 4184 } 4185 4186 if (netif_msg_pktdata(priv)) { 4187 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4188 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4189 tx_q->cur_tx, first, nfrags); 4190 pr_info(">>> frame to be transmitted: "); 4191 print_pkt(skb->data, skb_headlen(skb)); 4192 } 4193 4194 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4195 4196 stmmac_flush_tx_descriptors(priv, queue); 4197 stmmac_tx_timer_arm(priv, queue); 4198 4199 return NETDEV_TX_OK; 4200 4201 dma_map_err: 4202 dev_err(priv->device, "Tx dma map failed\n"); 4203 dev_kfree_skb(skb); 4204 priv->dev->stats.tx_dropped++; 4205 return NETDEV_TX_OK; 4206 } 4207 4208 /** 4209 * stmmac_xmit - Tx entry point of the driver 4210 * @skb : the socket buffer 4211 * @dev : device pointer 4212 * Description : this is the tx entry point of the driver. 4213 * It programs the chain or the ring and supports oversized frames 4214 * and SG feature. 4215 */ 4216 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4217 { 4218 unsigned int first_entry, tx_packets, enh_desc; 4219 struct stmmac_priv *priv = netdev_priv(dev); 4220 unsigned int nopaged_len = skb_headlen(skb); 4221 int i, csum_insertion = 0, is_jumbo = 0; 4222 u32 queue = skb_get_queue_mapping(skb); 4223 int nfrags = skb_shinfo(skb)->nr_frags; 4224 int gso = skb_shinfo(skb)->gso_type; 4225 struct dma_edesc *tbs_desc = NULL; 4226 struct dma_desc *desc, *first; 4227 struct stmmac_tx_queue *tx_q; 4228 bool has_vlan, set_ic; 4229 int entry, first_tx; 4230 dma_addr_t des; 4231 4232 tx_q = &priv->tx_queue[queue]; 4233 first_tx = tx_q->cur_tx; 4234 4235 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4236 stmmac_disable_eee_mode(priv); 4237 4238 /* Manage oversized TCP frames for GMAC4 device */ 4239 if (skb_is_gso(skb) && priv->tso) { 4240 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4241 return stmmac_tso_xmit(skb, dev); 4242 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4243 return stmmac_tso_xmit(skb, dev); 4244 } 4245 4246 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4247 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4248 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4249 queue)); 4250 /* This is a hard error, log it. */ 4251 netdev_err(priv->dev, 4252 "%s: Tx Ring full when queue awake\n", 4253 __func__); 4254 } 4255 return NETDEV_TX_BUSY; 4256 } 4257 4258 /* Check if VLAN can be inserted by HW */ 4259 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4260 4261 entry = tx_q->cur_tx; 4262 first_entry = entry; 4263 WARN_ON(tx_q->tx_skbuff[first_entry]); 4264 4265 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4266 4267 if (likely(priv->extend_desc)) 4268 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4269 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4270 desc = &tx_q->dma_entx[entry].basic; 4271 else 4272 desc = tx_q->dma_tx + entry; 4273 4274 first = desc; 4275 4276 if (has_vlan) 4277 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4278 4279 enh_desc = priv->plat->enh_desc; 4280 /* To program the descriptors according to the size of the frame */ 4281 if (enh_desc) 4282 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4283 4284 if (unlikely(is_jumbo)) { 4285 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4286 if (unlikely(entry < 0) && (entry != -EINVAL)) 4287 goto dma_map_err; 4288 } 4289 4290 for (i = 0; i < nfrags; i++) { 4291 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4292 int len = skb_frag_size(frag); 4293 bool last_segment = (i == (nfrags - 1)); 4294 4295 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4296 WARN_ON(tx_q->tx_skbuff[entry]); 4297 4298 if (likely(priv->extend_desc)) 4299 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4300 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4301 desc = &tx_q->dma_entx[entry].basic; 4302 else 4303 desc = tx_q->dma_tx + entry; 4304 4305 des = skb_frag_dma_map(priv->device, frag, 0, len, 4306 DMA_TO_DEVICE); 4307 if (dma_mapping_error(priv->device, des)) 4308 goto dma_map_err; /* should reuse desc w/o issues */ 4309 4310 tx_q->tx_skbuff_dma[entry].buf = des; 4311 4312 stmmac_set_desc_addr(priv, desc, des); 4313 4314 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4315 tx_q->tx_skbuff_dma[entry].len = len; 4316 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4317 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4318 4319 /* Prepare the descriptor and set the own bit too */ 4320 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4321 priv->mode, 1, last_segment, skb->len); 4322 } 4323 4324 /* Only the last descriptor gets to point to the skb. */ 4325 tx_q->tx_skbuff[entry] = skb; 4326 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4327 4328 /* According to the coalesce parameter the IC bit for the latest 4329 * segment is reset and the timer re-started to clean the tx status. 4330 * This approach takes care about the fragments: desc is the first 4331 * element in case of no SG. 4332 */ 4333 tx_packets = (entry + 1) - first_tx; 4334 tx_q->tx_count_frames += tx_packets; 4335 4336 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4337 set_ic = true; 4338 else if (!priv->tx_coal_frames[queue]) 4339 set_ic = false; 4340 else if (tx_packets > priv->tx_coal_frames[queue]) 4341 set_ic = true; 4342 else if ((tx_q->tx_count_frames % 4343 priv->tx_coal_frames[queue]) < tx_packets) 4344 set_ic = true; 4345 else 4346 set_ic = false; 4347 4348 if (set_ic) { 4349 if (likely(priv->extend_desc)) 4350 desc = &tx_q->dma_etx[entry].basic; 4351 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4352 desc = &tx_q->dma_entx[entry].basic; 4353 else 4354 desc = &tx_q->dma_tx[entry]; 4355 4356 tx_q->tx_count_frames = 0; 4357 stmmac_set_tx_ic(priv, desc); 4358 priv->xstats.tx_set_ic_bit++; 4359 } 4360 4361 /* We've used all descriptors we need for this skb, however, 4362 * advance cur_tx so that it references a fresh descriptor. 4363 * ndo_start_xmit will fill this descriptor the next time it's 4364 * called and stmmac_tx_clean may clean up to this descriptor. 4365 */ 4366 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4367 tx_q->cur_tx = entry; 4368 4369 if (netif_msg_pktdata(priv)) { 4370 netdev_dbg(priv->dev, 4371 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4372 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4373 entry, first, nfrags); 4374 4375 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4376 print_pkt(skb->data, skb->len); 4377 } 4378 4379 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4380 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4381 __func__); 4382 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4383 } 4384 4385 dev->stats.tx_bytes += skb->len; 4386 4387 if (priv->sarc_type) 4388 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4389 4390 skb_tx_timestamp(skb); 4391 4392 /* Ready to fill the first descriptor and set the OWN bit w/o any 4393 * problems because all the descriptors are actually ready to be 4394 * passed to the DMA engine. 4395 */ 4396 if (likely(!is_jumbo)) { 4397 bool last_segment = (nfrags == 0); 4398 4399 des = dma_map_single(priv->device, skb->data, 4400 nopaged_len, DMA_TO_DEVICE); 4401 if (dma_mapping_error(priv->device, des)) 4402 goto dma_map_err; 4403 4404 tx_q->tx_skbuff_dma[first_entry].buf = des; 4405 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4406 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4407 4408 stmmac_set_desc_addr(priv, first, des); 4409 4410 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4411 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4412 4413 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4414 priv->hwts_tx_en)) { 4415 /* declare that device is doing timestamping */ 4416 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4417 stmmac_enable_tx_timestamp(priv, first); 4418 } 4419 4420 /* Prepare the first descriptor setting the OWN bit too */ 4421 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4422 csum_insertion, priv->mode, 0, last_segment, 4423 skb->len); 4424 } 4425 4426 if (tx_q->tbs & STMMAC_TBS_EN) { 4427 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4428 4429 tbs_desc = &tx_q->dma_entx[first_entry]; 4430 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4431 } 4432 4433 stmmac_set_tx_owner(priv, first); 4434 4435 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4436 4437 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4438 4439 stmmac_flush_tx_descriptors(priv, queue); 4440 stmmac_tx_timer_arm(priv, queue); 4441 4442 return NETDEV_TX_OK; 4443 4444 dma_map_err: 4445 netdev_err(priv->dev, "Tx DMA map failed\n"); 4446 dev_kfree_skb(skb); 4447 priv->dev->stats.tx_dropped++; 4448 return NETDEV_TX_OK; 4449 } 4450 4451 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4452 { 4453 struct vlan_ethhdr *veth; 4454 __be16 vlan_proto; 4455 u16 vlanid; 4456 4457 veth = (struct vlan_ethhdr *)skb->data; 4458 vlan_proto = veth->h_vlan_proto; 4459 4460 if ((vlan_proto == htons(ETH_P_8021Q) && 4461 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4462 (vlan_proto == htons(ETH_P_8021AD) && 4463 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4464 /* pop the vlan tag */ 4465 vlanid = ntohs(veth->h_vlan_TCI); 4466 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4467 skb_pull(skb, VLAN_HLEN); 4468 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4469 } 4470 } 4471 4472 /** 4473 * stmmac_rx_refill - refill used skb preallocated buffers 4474 * @priv: driver private structure 4475 * @queue: RX queue index 4476 * Description : this is to reallocate the skb for the reception process 4477 * that is based on zero-copy. 4478 */ 4479 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4480 { 4481 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4482 int dirty = stmmac_rx_dirty(priv, queue); 4483 unsigned int entry = rx_q->dirty_rx; 4484 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4485 4486 if (priv->dma_cap.addr64 <= 32) 4487 gfp |= GFP_DMA32; 4488 4489 while (dirty-- > 0) { 4490 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4491 struct dma_desc *p; 4492 bool use_rx_wd; 4493 4494 if (priv->extend_desc) 4495 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4496 else 4497 p = rx_q->dma_rx + entry; 4498 4499 if (!buf->page) { 4500 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4501 if (!buf->page) 4502 break; 4503 } 4504 4505 if (priv->sph && !buf->sec_page) { 4506 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4507 if (!buf->sec_page) 4508 break; 4509 4510 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4511 } 4512 4513 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4514 4515 stmmac_set_desc_addr(priv, p, buf->addr); 4516 if (priv->sph) 4517 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4518 else 4519 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4520 stmmac_refill_desc3(priv, rx_q, p); 4521 4522 rx_q->rx_count_frames++; 4523 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4524 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4525 rx_q->rx_count_frames = 0; 4526 4527 use_rx_wd = !priv->rx_coal_frames[queue]; 4528 use_rx_wd |= rx_q->rx_count_frames > 0; 4529 if (!priv->use_riwt) 4530 use_rx_wd = false; 4531 4532 dma_wmb(); 4533 stmmac_set_rx_owner(priv, p, use_rx_wd); 4534 4535 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4536 } 4537 rx_q->dirty_rx = entry; 4538 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4539 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4540 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4541 } 4542 4543 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4544 struct dma_desc *p, 4545 int status, unsigned int len) 4546 { 4547 unsigned int plen = 0, hlen = 0; 4548 int coe = priv->hw->rx_csum; 4549 4550 /* Not first descriptor, buffer is always zero */ 4551 if (priv->sph && len) 4552 return 0; 4553 4554 /* First descriptor, get split header length */ 4555 stmmac_get_rx_header_len(priv, p, &hlen); 4556 if (priv->sph && hlen) { 4557 priv->xstats.rx_split_hdr_pkt_n++; 4558 return hlen; 4559 } 4560 4561 /* First descriptor, not last descriptor and not split header */ 4562 if (status & rx_not_ls) 4563 return priv->dma_buf_sz; 4564 4565 plen = stmmac_get_rx_frame_len(priv, p, coe); 4566 4567 /* First descriptor and last descriptor and not split header */ 4568 return min_t(unsigned int, priv->dma_buf_sz, plen); 4569 } 4570 4571 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4572 struct dma_desc *p, 4573 int status, unsigned int len) 4574 { 4575 int coe = priv->hw->rx_csum; 4576 unsigned int plen = 0; 4577 4578 /* Not split header, buffer is not available */ 4579 if (!priv->sph) 4580 return 0; 4581 4582 /* Not last descriptor */ 4583 if (status & rx_not_ls) 4584 return priv->dma_buf_sz; 4585 4586 plen = stmmac_get_rx_frame_len(priv, p, coe); 4587 4588 /* Last descriptor */ 4589 return plen - len; 4590 } 4591 4592 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4593 struct xdp_frame *xdpf, bool dma_map) 4594 { 4595 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4596 unsigned int entry = tx_q->cur_tx; 4597 struct dma_desc *tx_desc; 4598 dma_addr_t dma_addr; 4599 bool set_ic; 4600 4601 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4602 return STMMAC_XDP_CONSUMED; 4603 4604 if (likely(priv->extend_desc)) 4605 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4606 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4607 tx_desc = &tx_q->dma_entx[entry].basic; 4608 else 4609 tx_desc = tx_q->dma_tx + entry; 4610 4611 if (dma_map) { 4612 dma_addr = dma_map_single(priv->device, xdpf->data, 4613 xdpf->len, DMA_TO_DEVICE); 4614 if (dma_mapping_error(priv->device, dma_addr)) 4615 return STMMAC_XDP_CONSUMED; 4616 4617 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4618 } else { 4619 struct page *page = virt_to_page(xdpf->data); 4620 4621 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4622 xdpf->headroom; 4623 dma_sync_single_for_device(priv->device, dma_addr, 4624 xdpf->len, DMA_BIDIRECTIONAL); 4625 4626 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4627 } 4628 4629 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4630 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4631 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4632 tx_q->tx_skbuff_dma[entry].last_segment = true; 4633 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4634 4635 tx_q->xdpf[entry] = xdpf; 4636 4637 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4638 4639 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4640 true, priv->mode, true, true, 4641 xdpf->len); 4642 4643 tx_q->tx_count_frames++; 4644 4645 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4646 set_ic = true; 4647 else 4648 set_ic = false; 4649 4650 if (set_ic) { 4651 tx_q->tx_count_frames = 0; 4652 stmmac_set_tx_ic(priv, tx_desc); 4653 priv->xstats.tx_set_ic_bit++; 4654 } 4655 4656 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4657 4658 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4659 tx_q->cur_tx = entry; 4660 4661 return STMMAC_XDP_TX; 4662 } 4663 4664 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4665 int cpu) 4666 { 4667 int index = cpu; 4668 4669 if (unlikely(index < 0)) 4670 index = 0; 4671 4672 while (index >= priv->plat->tx_queues_to_use) 4673 index -= priv->plat->tx_queues_to_use; 4674 4675 return index; 4676 } 4677 4678 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4679 struct xdp_buff *xdp) 4680 { 4681 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4682 int cpu = smp_processor_id(); 4683 struct netdev_queue *nq; 4684 int queue; 4685 int res; 4686 4687 if (unlikely(!xdpf)) 4688 return STMMAC_XDP_CONSUMED; 4689 4690 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4691 nq = netdev_get_tx_queue(priv->dev, queue); 4692 4693 __netif_tx_lock(nq, cpu); 4694 /* Avoids TX time-out as we are sharing with slow path */ 4695 txq_trans_cond_update(nq); 4696 4697 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4698 if (res == STMMAC_XDP_TX) 4699 stmmac_flush_tx_descriptors(priv, queue); 4700 4701 __netif_tx_unlock(nq); 4702 4703 return res; 4704 } 4705 4706 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4707 struct bpf_prog *prog, 4708 struct xdp_buff *xdp) 4709 { 4710 u32 act; 4711 int res; 4712 4713 act = bpf_prog_run_xdp(prog, xdp); 4714 switch (act) { 4715 case XDP_PASS: 4716 res = STMMAC_XDP_PASS; 4717 break; 4718 case XDP_TX: 4719 res = stmmac_xdp_xmit_back(priv, xdp); 4720 break; 4721 case XDP_REDIRECT: 4722 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4723 res = STMMAC_XDP_CONSUMED; 4724 else 4725 res = STMMAC_XDP_REDIRECT; 4726 break; 4727 default: 4728 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4729 fallthrough; 4730 case XDP_ABORTED: 4731 trace_xdp_exception(priv->dev, prog, act); 4732 fallthrough; 4733 case XDP_DROP: 4734 res = STMMAC_XDP_CONSUMED; 4735 break; 4736 } 4737 4738 return res; 4739 } 4740 4741 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4742 struct xdp_buff *xdp) 4743 { 4744 struct bpf_prog *prog; 4745 int res; 4746 4747 prog = READ_ONCE(priv->xdp_prog); 4748 if (!prog) { 4749 res = STMMAC_XDP_PASS; 4750 goto out; 4751 } 4752 4753 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4754 out: 4755 return ERR_PTR(-res); 4756 } 4757 4758 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4759 int xdp_status) 4760 { 4761 int cpu = smp_processor_id(); 4762 int queue; 4763 4764 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4765 4766 if (xdp_status & STMMAC_XDP_TX) 4767 stmmac_tx_timer_arm(priv, queue); 4768 4769 if (xdp_status & STMMAC_XDP_REDIRECT) 4770 xdp_do_flush(); 4771 } 4772 4773 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4774 struct xdp_buff *xdp) 4775 { 4776 unsigned int metasize = xdp->data - xdp->data_meta; 4777 unsigned int datasize = xdp->data_end - xdp->data; 4778 struct sk_buff *skb; 4779 4780 skb = __napi_alloc_skb(&ch->rxtx_napi, 4781 xdp->data_end - xdp->data_hard_start, 4782 GFP_ATOMIC | __GFP_NOWARN); 4783 if (unlikely(!skb)) 4784 return NULL; 4785 4786 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4787 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4788 if (metasize) 4789 skb_metadata_set(skb, metasize); 4790 4791 return skb; 4792 } 4793 4794 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4795 struct dma_desc *p, struct dma_desc *np, 4796 struct xdp_buff *xdp) 4797 { 4798 struct stmmac_channel *ch = &priv->channel[queue]; 4799 unsigned int len = xdp->data_end - xdp->data; 4800 enum pkt_hash_types hash_type; 4801 int coe = priv->hw->rx_csum; 4802 struct sk_buff *skb; 4803 u32 hash; 4804 4805 skb = stmmac_construct_skb_zc(ch, xdp); 4806 if (!skb) { 4807 priv->dev->stats.rx_dropped++; 4808 return; 4809 } 4810 4811 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4812 stmmac_rx_vlan(priv->dev, skb); 4813 skb->protocol = eth_type_trans(skb, priv->dev); 4814 4815 if (unlikely(!coe)) 4816 skb_checksum_none_assert(skb); 4817 else 4818 skb->ip_summed = CHECKSUM_UNNECESSARY; 4819 4820 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4821 skb_set_hash(skb, hash, hash_type); 4822 4823 skb_record_rx_queue(skb, queue); 4824 napi_gro_receive(&ch->rxtx_napi, skb); 4825 4826 priv->dev->stats.rx_packets++; 4827 priv->dev->stats.rx_bytes += len; 4828 } 4829 4830 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4831 { 4832 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4833 unsigned int entry = rx_q->dirty_rx; 4834 struct dma_desc *rx_desc = NULL; 4835 bool ret = true; 4836 4837 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4838 4839 while (budget-- > 0 && entry != rx_q->cur_rx) { 4840 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4841 dma_addr_t dma_addr; 4842 bool use_rx_wd; 4843 4844 if (!buf->xdp) { 4845 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4846 if (!buf->xdp) { 4847 ret = false; 4848 break; 4849 } 4850 } 4851 4852 if (priv->extend_desc) 4853 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4854 else 4855 rx_desc = rx_q->dma_rx + entry; 4856 4857 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4858 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4859 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4860 stmmac_refill_desc3(priv, rx_q, rx_desc); 4861 4862 rx_q->rx_count_frames++; 4863 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4864 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4865 rx_q->rx_count_frames = 0; 4866 4867 use_rx_wd = !priv->rx_coal_frames[queue]; 4868 use_rx_wd |= rx_q->rx_count_frames > 0; 4869 if (!priv->use_riwt) 4870 use_rx_wd = false; 4871 4872 dma_wmb(); 4873 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4874 4875 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4876 } 4877 4878 if (rx_desc) { 4879 rx_q->dirty_rx = entry; 4880 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4881 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4882 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4883 } 4884 4885 return ret; 4886 } 4887 4888 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4889 { 4890 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4891 unsigned int count = 0, error = 0, len = 0; 4892 int dirty = stmmac_rx_dirty(priv, queue); 4893 unsigned int next_entry = rx_q->cur_rx; 4894 unsigned int desc_size; 4895 struct bpf_prog *prog; 4896 bool failure = false; 4897 int xdp_status = 0; 4898 int status = 0; 4899 4900 if (netif_msg_rx_status(priv)) { 4901 void *rx_head; 4902 4903 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4904 if (priv->extend_desc) { 4905 rx_head = (void *)rx_q->dma_erx; 4906 desc_size = sizeof(struct dma_extended_desc); 4907 } else { 4908 rx_head = (void *)rx_q->dma_rx; 4909 desc_size = sizeof(struct dma_desc); 4910 } 4911 4912 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4913 rx_q->dma_rx_phy, desc_size); 4914 } 4915 while (count < limit) { 4916 struct stmmac_rx_buffer *buf; 4917 unsigned int buf1_len = 0; 4918 struct dma_desc *np, *p; 4919 int entry; 4920 int res; 4921 4922 if (!count && rx_q->state_saved) { 4923 error = rx_q->state.error; 4924 len = rx_q->state.len; 4925 } else { 4926 rx_q->state_saved = false; 4927 error = 0; 4928 len = 0; 4929 } 4930 4931 if (count >= limit) 4932 break; 4933 4934 read_again: 4935 buf1_len = 0; 4936 entry = next_entry; 4937 buf = &rx_q->buf_pool[entry]; 4938 4939 if (dirty >= STMMAC_RX_FILL_BATCH) { 4940 failure = failure || 4941 !stmmac_rx_refill_zc(priv, queue, dirty); 4942 dirty = 0; 4943 } 4944 4945 if (priv->extend_desc) 4946 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4947 else 4948 p = rx_q->dma_rx + entry; 4949 4950 /* read the status of the incoming frame */ 4951 status = stmmac_rx_status(priv, &priv->dev->stats, 4952 &priv->xstats, p); 4953 /* check if managed by the DMA otherwise go ahead */ 4954 if (unlikely(status & dma_own)) 4955 break; 4956 4957 /* Prefetch the next RX descriptor */ 4958 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4959 priv->dma_rx_size); 4960 next_entry = rx_q->cur_rx; 4961 4962 if (priv->extend_desc) 4963 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4964 else 4965 np = rx_q->dma_rx + next_entry; 4966 4967 prefetch(np); 4968 4969 /* Ensure a valid XSK buffer before proceed */ 4970 if (!buf->xdp) 4971 break; 4972 4973 if (priv->extend_desc) 4974 stmmac_rx_extended_status(priv, &priv->dev->stats, 4975 &priv->xstats, 4976 rx_q->dma_erx + entry); 4977 if (unlikely(status == discard_frame)) { 4978 xsk_buff_free(buf->xdp); 4979 buf->xdp = NULL; 4980 dirty++; 4981 error = 1; 4982 if (!priv->hwts_rx_en) 4983 priv->dev->stats.rx_errors++; 4984 } 4985 4986 if (unlikely(error && (status & rx_not_ls))) 4987 goto read_again; 4988 if (unlikely(error)) { 4989 count++; 4990 continue; 4991 } 4992 4993 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4994 if (likely(status & rx_not_ls)) { 4995 xsk_buff_free(buf->xdp); 4996 buf->xdp = NULL; 4997 dirty++; 4998 count++; 4999 goto read_again; 5000 } 5001 5002 /* XDP ZC Frame only support primary buffers for now */ 5003 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5004 len += buf1_len; 5005 5006 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5007 * Type frames (LLC/LLC-SNAP) 5008 * 5009 * llc_snap is never checked in GMAC >= 4, so this ACS 5010 * feature is always disabled and packets need to be 5011 * stripped manually. 5012 */ 5013 if (likely(!(status & rx_not_ls)) && 5014 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5015 unlikely(status != llc_snap))) { 5016 buf1_len -= ETH_FCS_LEN; 5017 len -= ETH_FCS_LEN; 5018 } 5019 5020 /* RX buffer is good and fit into a XSK pool buffer */ 5021 buf->xdp->data_end = buf->xdp->data + buf1_len; 5022 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5023 5024 prog = READ_ONCE(priv->xdp_prog); 5025 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5026 5027 switch (res) { 5028 case STMMAC_XDP_PASS: 5029 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5030 xsk_buff_free(buf->xdp); 5031 break; 5032 case STMMAC_XDP_CONSUMED: 5033 xsk_buff_free(buf->xdp); 5034 priv->dev->stats.rx_dropped++; 5035 break; 5036 case STMMAC_XDP_TX: 5037 case STMMAC_XDP_REDIRECT: 5038 xdp_status |= res; 5039 break; 5040 } 5041 5042 buf->xdp = NULL; 5043 dirty++; 5044 count++; 5045 } 5046 5047 if (status & rx_not_ls) { 5048 rx_q->state_saved = true; 5049 rx_q->state.error = error; 5050 rx_q->state.len = len; 5051 } 5052 5053 stmmac_finalize_xdp_rx(priv, xdp_status); 5054 5055 priv->xstats.rx_pkt_n += count; 5056 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5057 5058 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5059 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5060 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5061 else 5062 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5063 5064 return (int)count; 5065 } 5066 5067 return failure ? limit : (int)count; 5068 } 5069 5070 /** 5071 * stmmac_rx - manage the receive process 5072 * @priv: driver private structure 5073 * @limit: napi bugget 5074 * @queue: RX queue index. 5075 * Description : this the function called by the napi poll method. 5076 * It gets all the frames inside the ring. 5077 */ 5078 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5079 { 5080 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5081 struct stmmac_channel *ch = &priv->channel[queue]; 5082 unsigned int count = 0, error = 0, len = 0; 5083 int status = 0, coe = priv->hw->rx_csum; 5084 unsigned int next_entry = rx_q->cur_rx; 5085 enum dma_data_direction dma_dir; 5086 unsigned int desc_size; 5087 struct sk_buff *skb = NULL; 5088 struct xdp_buff xdp; 5089 int xdp_status = 0; 5090 int buf_sz; 5091 5092 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5093 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5094 5095 if (netif_msg_rx_status(priv)) { 5096 void *rx_head; 5097 5098 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5099 if (priv->extend_desc) { 5100 rx_head = (void *)rx_q->dma_erx; 5101 desc_size = sizeof(struct dma_extended_desc); 5102 } else { 5103 rx_head = (void *)rx_q->dma_rx; 5104 desc_size = sizeof(struct dma_desc); 5105 } 5106 5107 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5108 rx_q->dma_rx_phy, desc_size); 5109 } 5110 while (count < limit) { 5111 unsigned int buf1_len = 0, buf2_len = 0; 5112 enum pkt_hash_types hash_type; 5113 struct stmmac_rx_buffer *buf; 5114 struct dma_desc *np, *p; 5115 int entry; 5116 u32 hash; 5117 5118 if (!count && rx_q->state_saved) { 5119 skb = rx_q->state.skb; 5120 error = rx_q->state.error; 5121 len = rx_q->state.len; 5122 } else { 5123 rx_q->state_saved = false; 5124 skb = NULL; 5125 error = 0; 5126 len = 0; 5127 } 5128 5129 if (count >= limit) 5130 break; 5131 5132 read_again: 5133 buf1_len = 0; 5134 buf2_len = 0; 5135 entry = next_entry; 5136 buf = &rx_q->buf_pool[entry]; 5137 5138 if (priv->extend_desc) 5139 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5140 else 5141 p = rx_q->dma_rx + entry; 5142 5143 /* read the status of the incoming frame */ 5144 status = stmmac_rx_status(priv, &priv->dev->stats, 5145 &priv->xstats, p); 5146 /* check if managed by the DMA otherwise go ahead */ 5147 if (unlikely(status & dma_own)) 5148 break; 5149 5150 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5151 priv->dma_rx_size); 5152 next_entry = rx_q->cur_rx; 5153 5154 if (priv->extend_desc) 5155 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5156 else 5157 np = rx_q->dma_rx + next_entry; 5158 5159 prefetch(np); 5160 5161 if (priv->extend_desc) 5162 stmmac_rx_extended_status(priv, &priv->dev->stats, 5163 &priv->xstats, rx_q->dma_erx + entry); 5164 if (unlikely(status == discard_frame)) { 5165 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5166 buf->page = NULL; 5167 error = 1; 5168 if (!priv->hwts_rx_en) 5169 priv->dev->stats.rx_errors++; 5170 } 5171 5172 if (unlikely(error && (status & rx_not_ls))) 5173 goto read_again; 5174 if (unlikely(error)) { 5175 dev_kfree_skb(skb); 5176 skb = NULL; 5177 count++; 5178 continue; 5179 } 5180 5181 /* Buffer is good. Go on. */ 5182 5183 prefetch(page_address(buf->page) + buf->page_offset); 5184 if (buf->sec_page) 5185 prefetch(page_address(buf->sec_page)); 5186 5187 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5188 len += buf1_len; 5189 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5190 len += buf2_len; 5191 5192 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5193 * Type frames (LLC/LLC-SNAP) 5194 * 5195 * llc_snap is never checked in GMAC >= 4, so this ACS 5196 * feature is always disabled and packets need to be 5197 * stripped manually. 5198 */ 5199 if (likely(!(status & rx_not_ls)) && 5200 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5201 unlikely(status != llc_snap))) { 5202 if (buf2_len) { 5203 buf2_len -= ETH_FCS_LEN; 5204 len -= ETH_FCS_LEN; 5205 } else if (buf1_len) { 5206 buf1_len -= ETH_FCS_LEN; 5207 len -= ETH_FCS_LEN; 5208 } 5209 } 5210 5211 if (!skb) { 5212 unsigned int pre_len, sync_len; 5213 5214 dma_sync_single_for_cpu(priv->device, buf->addr, 5215 buf1_len, dma_dir); 5216 5217 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5218 xdp_prepare_buff(&xdp, page_address(buf->page), 5219 buf->page_offset, buf1_len, false); 5220 5221 pre_len = xdp.data_end - xdp.data_hard_start - 5222 buf->page_offset; 5223 skb = stmmac_xdp_run_prog(priv, &xdp); 5224 /* Due xdp_adjust_tail: DMA sync for_device 5225 * cover max len CPU touch 5226 */ 5227 sync_len = xdp.data_end - xdp.data_hard_start - 5228 buf->page_offset; 5229 sync_len = max(sync_len, pre_len); 5230 5231 /* For Not XDP_PASS verdict */ 5232 if (IS_ERR(skb)) { 5233 unsigned int xdp_res = -PTR_ERR(skb); 5234 5235 if (xdp_res & STMMAC_XDP_CONSUMED) { 5236 page_pool_put_page(rx_q->page_pool, 5237 virt_to_head_page(xdp.data), 5238 sync_len, true); 5239 buf->page = NULL; 5240 priv->dev->stats.rx_dropped++; 5241 5242 /* Clear skb as it was set as 5243 * status by XDP program. 5244 */ 5245 skb = NULL; 5246 5247 if (unlikely((status & rx_not_ls))) 5248 goto read_again; 5249 5250 count++; 5251 continue; 5252 } else if (xdp_res & (STMMAC_XDP_TX | 5253 STMMAC_XDP_REDIRECT)) { 5254 xdp_status |= xdp_res; 5255 buf->page = NULL; 5256 skb = NULL; 5257 count++; 5258 continue; 5259 } 5260 } 5261 } 5262 5263 if (!skb) { 5264 /* XDP program may expand or reduce tail */ 5265 buf1_len = xdp.data_end - xdp.data; 5266 5267 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5268 if (!skb) { 5269 priv->dev->stats.rx_dropped++; 5270 count++; 5271 goto drain_data; 5272 } 5273 5274 /* XDP program may adjust header */ 5275 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5276 skb_put(skb, buf1_len); 5277 5278 /* Data payload copied into SKB, page ready for recycle */ 5279 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5280 buf->page = NULL; 5281 } else if (buf1_len) { 5282 dma_sync_single_for_cpu(priv->device, buf->addr, 5283 buf1_len, dma_dir); 5284 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5285 buf->page, buf->page_offset, buf1_len, 5286 priv->dma_buf_sz); 5287 5288 /* Data payload appended into SKB */ 5289 page_pool_release_page(rx_q->page_pool, buf->page); 5290 buf->page = NULL; 5291 } 5292 5293 if (buf2_len) { 5294 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5295 buf2_len, dma_dir); 5296 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5297 buf->sec_page, 0, buf2_len, 5298 priv->dma_buf_sz); 5299 5300 /* Data payload appended into SKB */ 5301 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5302 buf->sec_page = NULL; 5303 } 5304 5305 drain_data: 5306 if (likely(status & rx_not_ls)) 5307 goto read_again; 5308 if (!skb) 5309 continue; 5310 5311 /* Got entire packet into SKB. Finish it. */ 5312 5313 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5314 stmmac_rx_vlan(priv->dev, skb); 5315 skb->protocol = eth_type_trans(skb, priv->dev); 5316 5317 if (unlikely(!coe)) 5318 skb_checksum_none_assert(skb); 5319 else 5320 skb->ip_summed = CHECKSUM_UNNECESSARY; 5321 5322 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5323 skb_set_hash(skb, hash, hash_type); 5324 5325 skb_record_rx_queue(skb, queue); 5326 napi_gro_receive(&ch->rx_napi, skb); 5327 skb = NULL; 5328 5329 priv->dev->stats.rx_packets++; 5330 priv->dev->stats.rx_bytes += len; 5331 count++; 5332 } 5333 5334 if (status & rx_not_ls || skb) { 5335 rx_q->state_saved = true; 5336 rx_q->state.skb = skb; 5337 rx_q->state.error = error; 5338 rx_q->state.len = len; 5339 } 5340 5341 stmmac_finalize_xdp_rx(priv, xdp_status); 5342 5343 stmmac_rx_refill(priv, queue); 5344 5345 priv->xstats.rx_pkt_n += count; 5346 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5347 5348 return count; 5349 } 5350 5351 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5352 { 5353 struct stmmac_channel *ch = 5354 container_of(napi, struct stmmac_channel, rx_napi); 5355 struct stmmac_priv *priv = ch->priv_data; 5356 u32 chan = ch->index; 5357 int work_done; 5358 5359 priv->xstats.napi_poll++; 5360 5361 work_done = stmmac_rx(priv, budget, chan); 5362 if (work_done < budget && napi_complete_done(napi, work_done)) { 5363 unsigned long flags; 5364 5365 spin_lock_irqsave(&ch->lock, flags); 5366 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5367 spin_unlock_irqrestore(&ch->lock, flags); 5368 } 5369 5370 return work_done; 5371 } 5372 5373 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5374 { 5375 struct stmmac_channel *ch = 5376 container_of(napi, struct stmmac_channel, tx_napi); 5377 struct stmmac_priv *priv = ch->priv_data; 5378 u32 chan = ch->index; 5379 int work_done; 5380 5381 priv->xstats.napi_poll++; 5382 5383 work_done = stmmac_tx_clean(priv, budget, chan); 5384 work_done = min(work_done, budget); 5385 5386 if (work_done < budget && napi_complete_done(napi, work_done)) { 5387 unsigned long flags; 5388 5389 spin_lock_irqsave(&ch->lock, flags); 5390 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5391 spin_unlock_irqrestore(&ch->lock, flags); 5392 } 5393 5394 return work_done; 5395 } 5396 5397 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5398 { 5399 struct stmmac_channel *ch = 5400 container_of(napi, struct stmmac_channel, rxtx_napi); 5401 struct stmmac_priv *priv = ch->priv_data; 5402 int rx_done, tx_done, rxtx_done; 5403 u32 chan = ch->index; 5404 5405 priv->xstats.napi_poll++; 5406 5407 tx_done = stmmac_tx_clean(priv, budget, chan); 5408 tx_done = min(tx_done, budget); 5409 5410 rx_done = stmmac_rx_zc(priv, budget, chan); 5411 5412 rxtx_done = max(tx_done, rx_done); 5413 5414 /* If either TX or RX work is not complete, return budget 5415 * and keep pooling 5416 */ 5417 if (rxtx_done >= budget) 5418 return budget; 5419 5420 /* all work done, exit the polling mode */ 5421 if (napi_complete_done(napi, rxtx_done)) { 5422 unsigned long flags; 5423 5424 spin_lock_irqsave(&ch->lock, flags); 5425 /* Both RX and TX work done are compelte, 5426 * so enable both RX & TX IRQs. 5427 */ 5428 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5429 spin_unlock_irqrestore(&ch->lock, flags); 5430 } 5431 5432 return min(rxtx_done, budget - 1); 5433 } 5434 5435 /** 5436 * stmmac_tx_timeout 5437 * @dev : Pointer to net device structure 5438 * @txqueue: the index of the hanging transmit queue 5439 * Description: this function is called when a packet transmission fails to 5440 * complete within a reasonable time. The driver will mark the error in the 5441 * netdev structure and arrange for the device to be reset to a sane state 5442 * in order to transmit a new packet. 5443 */ 5444 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5445 { 5446 struct stmmac_priv *priv = netdev_priv(dev); 5447 5448 stmmac_global_err(priv); 5449 } 5450 5451 /** 5452 * stmmac_set_rx_mode - entry point for multicast addressing 5453 * @dev : pointer to the device structure 5454 * Description: 5455 * This function is a driver entry point which gets called by the kernel 5456 * whenever multicast addresses must be enabled/disabled. 5457 * Return value: 5458 * void. 5459 */ 5460 static void stmmac_set_rx_mode(struct net_device *dev) 5461 { 5462 struct stmmac_priv *priv = netdev_priv(dev); 5463 5464 stmmac_set_filter(priv, priv->hw, dev); 5465 } 5466 5467 /** 5468 * stmmac_change_mtu - entry point to change MTU size for the device. 5469 * @dev : device pointer. 5470 * @new_mtu : the new MTU size for the device. 5471 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5472 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5473 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5474 * Return value: 5475 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5476 * file on failure. 5477 */ 5478 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5479 { 5480 struct stmmac_priv *priv = netdev_priv(dev); 5481 int txfifosz = priv->plat->tx_fifo_size; 5482 const int mtu = new_mtu; 5483 5484 if (txfifosz == 0) 5485 txfifosz = priv->dma_cap.tx_fifo_size; 5486 5487 txfifosz /= priv->plat->tx_queues_to_use; 5488 5489 if (netif_running(dev)) { 5490 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5491 return -EBUSY; 5492 } 5493 5494 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5495 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5496 return -EINVAL; 5497 } 5498 5499 new_mtu = STMMAC_ALIGN(new_mtu); 5500 5501 /* If condition true, FIFO is too small or MTU too large */ 5502 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5503 return -EINVAL; 5504 5505 dev->mtu = mtu; 5506 5507 netdev_update_features(dev); 5508 5509 return 0; 5510 } 5511 5512 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5513 netdev_features_t features) 5514 { 5515 struct stmmac_priv *priv = netdev_priv(dev); 5516 5517 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5518 features &= ~NETIF_F_RXCSUM; 5519 5520 if (!priv->plat->tx_coe) 5521 features &= ~NETIF_F_CSUM_MASK; 5522 5523 /* Some GMAC devices have a bugged Jumbo frame support that 5524 * needs to have the Tx COE disabled for oversized frames 5525 * (due to limited buffer sizes). In this case we disable 5526 * the TX csum insertion in the TDES and not use SF. 5527 */ 5528 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5529 features &= ~NETIF_F_CSUM_MASK; 5530 5531 /* Disable tso if asked by ethtool */ 5532 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5533 if (features & NETIF_F_TSO) 5534 priv->tso = true; 5535 else 5536 priv->tso = false; 5537 } 5538 5539 return features; 5540 } 5541 5542 static int stmmac_set_features(struct net_device *netdev, 5543 netdev_features_t features) 5544 { 5545 struct stmmac_priv *priv = netdev_priv(netdev); 5546 5547 /* Keep the COE Type in case of csum is supporting */ 5548 if (features & NETIF_F_RXCSUM) 5549 priv->hw->rx_csum = priv->plat->rx_coe; 5550 else 5551 priv->hw->rx_csum = 0; 5552 /* No check needed because rx_coe has been set before and it will be 5553 * fixed in case of issue. 5554 */ 5555 stmmac_rx_ipc(priv, priv->hw); 5556 5557 if (priv->sph_cap) { 5558 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5559 u32 chan; 5560 5561 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5562 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5563 } 5564 5565 return 0; 5566 } 5567 5568 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5569 { 5570 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5571 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5572 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5573 bool *hs_enable = &fpe_cfg->hs_enable; 5574 5575 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5576 return; 5577 5578 /* If LP has sent verify mPacket, LP is FPE capable */ 5579 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5580 if (*lp_state < FPE_STATE_CAPABLE) 5581 *lp_state = FPE_STATE_CAPABLE; 5582 5583 /* If user has requested FPE enable, quickly response */ 5584 if (*hs_enable) 5585 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5586 MPACKET_RESPONSE); 5587 } 5588 5589 /* If Local has sent verify mPacket, Local is FPE capable */ 5590 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5591 if (*lo_state < FPE_STATE_CAPABLE) 5592 *lo_state = FPE_STATE_CAPABLE; 5593 } 5594 5595 /* If LP has sent response mPacket, LP is entering FPE ON */ 5596 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5597 *lp_state = FPE_STATE_ENTERING_ON; 5598 5599 /* If Local has sent response mPacket, Local is entering FPE ON */ 5600 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5601 *lo_state = FPE_STATE_ENTERING_ON; 5602 5603 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5604 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5605 priv->fpe_wq) { 5606 queue_work(priv->fpe_wq, &priv->fpe_task); 5607 } 5608 } 5609 5610 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5611 { 5612 u32 rx_cnt = priv->plat->rx_queues_to_use; 5613 u32 tx_cnt = priv->plat->tx_queues_to_use; 5614 u32 queues_count; 5615 u32 queue; 5616 bool xmac; 5617 5618 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5619 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5620 5621 if (priv->irq_wake) 5622 pm_wakeup_event(priv->device, 0); 5623 5624 if (priv->dma_cap.estsel) 5625 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5626 &priv->xstats, tx_cnt); 5627 5628 if (priv->dma_cap.fpesel) { 5629 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5630 priv->dev); 5631 5632 stmmac_fpe_event_status(priv, status); 5633 } 5634 5635 /* To handle GMAC own interrupts */ 5636 if ((priv->plat->has_gmac) || xmac) { 5637 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5638 5639 if (unlikely(status)) { 5640 /* For LPI we need to save the tx status */ 5641 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5642 priv->tx_path_in_lpi_mode = true; 5643 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5644 priv->tx_path_in_lpi_mode = false; 5645 } 5646 5647 for (queue = 0; queue < queues_count; queue++) { 5648 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5649 queue); 5650 } 5651 5652 /* PCS link status */ 5653 if (priv->hw->pcs) { 5654 if (priv->xstats.pcs_link) 5655 netif_carrier_on(priv->dev); 5656 else 5657 netif_carrier_off(priv->dev); 5658 } 5659 5660 stmmac_timestamp_interrupt(priv, priv); 5661 } 5662 } 5663 5664 /** 5665 * stmmac_interrupt - main ISR 5666 * @irq: interrupt number. 5667 * @dev_id: to pass the net device pointer. 5668 * Description: this is the main driver interrupt service routine. 5669 * It can call: 5670 * o DMA service routine (to manage incoming frame reception and transmission 5671 * status) 5672 * o Core interrupts to manage: remote wake-up, management counter, LPI 5673 * interrupts. 5674 */ 5675 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5676 { 5677 struct net_device *dev = (struct net_device *)dev_id; 5678 struct stmmac_priv *priv = netdev_priv(dev); 5679 5680 /* Check if adapter is up */ 5681 if (test_bit(STMMAC_DOWN, &priv->state)) 5682 return IRQ_HANDLED; 5683 5684 /* Check if a fatal error happened */ 5685 if (stmmac_safety_feat_interrupt(priv)) 5686 return IRQ_HANDLED; 5687 5688 /* To handle Common interrupts */ 5689 stmmac_common_interrupt(priv); 5690 5691 /* To handle DMA interrupts */ 5692 stmmac_dma_interrupt(priv); 5693 5694 return IRQ_HANDLED; 5695 } 5696 5697 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5698 { 5699 struct net_device *dev = (struct net_device *)dev_id; 5700 struct stmmac_priv *priv = netdev_priv(dev); 5701 5702 if (unlikely(!dev)) { 5703 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5704 return IRQ_NONE; 5705 } 5706 5707 /* Check if adapter is up */ 5708 if (test_bit(STMMAC_DOWN, &priv->state)) 5709 return IRQ_HANDLED; 5710 5711 /* To handle Common interrupts */ 5712 stmmac_common_interrupt(priv); 5713 5714 return IRQ_HANDLED; 5715 } 5716 5717 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5718 { 5719 struct net_device *dev = (struct net_device *)dev_id; 5720 struct stmmac_priv *priv = netdev_priv(dev); 5721 5722 if (unlikely(!dev)) { 5723 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5724 return IRQ_NONE; 5725 } 5726 5727 /* Check if adapter is up */ 5728 if (test_bit(STMMAC_DOWN, &priv->state)) 5729 return IRQ_HANDLED; 5730 5731 /* Check if a fatal error happened */ 5732 stmmac_safety_feat_interrupt(priv); 5733 5734 return IRQ_HANDLED; 5735 } 5736 5737 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5738 { 5739 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5740 int chan = tx_q->queue_index; 5741 struct stmmac_priv *priv; 5742 int status; 5743 5744 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5745 5746 if (unlikely(!data)) { 5747 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5748 return IRQ_NONE; 5749 } 5750 5751 /* Check if adapter is up */ 5752 if (test_bit(STMMAC_DOWN, &priv->state)) 5753 return IRQ_HANDLED; 5754 5755 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5756 5757 if (unlikely(status & tx_hard_error_bump_tc)) { 5758 /* Try to bump up the dma threshold on this failure */ 5759 stmmac_bump_dma_threshold(priv, chan); 5760 } else if (unlikely(status == tx_hard_error)) { 5761 stmmac_tx_err(priv, chan); 5762 } 5763 5764 return IRQ_HANDLED; 5765 } 5766 5767 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5768 { 5769 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5770 int chan = rx_q->queue_index; 5771 struct stmmac_priv *priv; 5772 5773 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5774 5775 if (unlikely(!data)) { 5776 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5777 return IRQ_NONE; 5778 } 5779 5780 /* Check if adapter is up */ 5781 if (test_bit(STMMAC_DOWN, &priv->state)) 5782 return IRQ_HANDLED; 5783 5784 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5785 5786 return IRQ_HANDLED; 5787 } 5788 5789 #ifdef CONFIG_NET_POLL_CONTROLLER 5790 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5791 * to allow network I/O with interrupts disabled. 5792 */ 5793 static void stmmac_poll_controller(struct net_device *dev) 5794 { 5795 struct stmmac_priv *priv = netdev_priv(dev); 5796 int i; 5797 5798 /* If adapter is down, do nothing */ 5799 if (test_bit(STMMAC_DOWN, &priv->state)) 5800 return; 5801 5802 if (priv->plat->multi_msi_en) { 5803 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5804 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5805 5806 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5807 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5808 } else { 5809 disable_irq(dev->irq); 5810 stmmac_interrupt(dev->irq, dev); 5811 enable_irq(dev->irq); 5812 } 5813 } 5814 #endif 5815 5816 /** 5817 * stmmac_ioctl - Entry point for the Ioctl 5818 * @dev: Device pointer. 5819 * @rq: An IOCTL specefic structure, that can contain a pointer to 5820 * a proprietary structure used to pass information to the driver. 5821 * @cmd: IOCTL command 5822 * Description: 5823 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5824 */ 5825 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5826 { 5827 struct stmmac_priv *priv = netdev_priv (dev); 5828 int ret = -EOPNOTSUPP; 5829 5830 if (!netif_running(dev)) 5831 return -EINVAL; 5832 5833 switch (cmd) { 5834 case SIOCGMIIPHY: 5835 case SIOCGMIIREG: 5836 case SIOCSMIIREG: 5837 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5838 break; 5839 case SIOCSHWTSTAMP: 5840 ret = stmmac_hwtstamp_set(dev, rq); 5841 break; 5842 case SIOCGHWTSTAMP: 5843 ret = stmmac_hwtstamp_get(dev, rq); 5844 break; 5845 default: 5846 break; 5847 } 5848 5849 return ret; 5850 } 5851 5852 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5853 void *cb_priv) 5854 { 5855 struct stmmac_priv *priv = cb_priv; 5856 int ret = -EOPNOTSUPP; 5857 5858 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5859 return ret; 5860 5861 __stmmac_disable_all_queues(priv); 5862 5863 switch (type) { 5864 case TC_SETUP_CLSU32: 5865 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5866 break; 5867 case TC_SETUP_CLSFLOWER: 5868 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5869 break; 5870 default: 5871 break; 5872 } 5873 5874 stmmac_enable_all_queues(priv); 5875 return ret; 5876 } 5877 5878 static LIST_HEAD(stmmac_block_cb_list); 5879 5880 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5881 void *type_data) 5882 { 5883 struct stmmac_priv *priv = netdev_priv(ndev); 5884 5885 switch (type) { 5886 case TC_SETUP_BLOCK: 5887 return flow_block_cb_setup_simple(type_data, 5888 &stmmac_block_cb_list, 5889 stmmac_setup_tc_block_cb, 5890 priv, priv, true); 5891 case TC_SETUP_QDISC_CBS: 5892 return stmmac_tc_setup_cbs(priv, priv, type_data); 5893 case TC_SETUP_QDISC_TAPRIO: 5894 return stmmac_tc_setup_taprio(priv, priv, type_data); 5895 case TC_SETUP_QDISC_ETF: 5896 return stmmac_tc_setup_etf(priv, priv, type_data); 5897 default: 5898 return -EOPNOTSUPP; 5899 } 5900 } 5901 5902 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5903 struct net_device *sb_dev) 5904 { 5905 int gso = skb_shinfo(skb)->gso_type; 5906 5907 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5908 /* 5909 * There is no way to determine the number of TSO/USO 5910 * capable Queues. Let's use always the Queue 0 5911 * because if TSO/USO is supported then at least this 5912 * one will be capable. 5913 */ 5914 return 0; 5915 } 5916 5917 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5918 } 5919 5920 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5921 { 5922 struct stmmac_priv *priv = netdev_priv(ndev); 5923 int ret = 0; 5924 5925 ret = pm_runtime_get_sync(priv->device); 5926 if (ret < 0) { 5927 pm_runtime_put_noidle(priv->device); 5928 return ret; 5929 } 5930 5931 ret = eth_mac_addr(ndev, addr); 5932 if (ret) 5933 goto set_mac_error; 5934 5935 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5936 5937 set_mac_error: 5938 pm_runtime_put(priv->device); 5939 5940 return ret; 5941 } 5942 5943 #ifdef CONFIG_DEBUG_FS 5944 static struct dentry *stmmac_fs_dir; 5945 5946 static void sysfs_display_ring(void *head, int size, int extend_desc, 5947 struct seq_file *seq, dma_addr_t dma_phy_addr) 5948 { 5949 int i; 5950 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5951 struct dma_desc *p = (struct dma_desc *)head; 5952 dma_addr_t dma_addr; 5953 5954 for (i = 0; i < size; i++) { 5955 if (extend_desc) { 5956 dma_addr = dma_phy_addr + i * sizeof(*ep); 5957 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5958 i, &dma_addr, 5959 le32_to_cpu(ep->basic.des0), 5960 le32_to_cpu(ep->basic.des1), 5961 le32_to_cpu(ep->basic.des2), 5962 le32_to_cpu(ep->basic.des3)); 5963 ep++; 5964 } else { 5965 dma_addr = dma_phy_addr + i * sizeof(*p); 5966 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5967 i, &dma_addr, 5968 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5969 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5970 p++; 5971 } 5972 seq_printf(seq, "\n"); 5973 } 5974 } 5975 5976 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5977 { 5978 struct net_device *dev = seq->private; 5979 struct stmmac_priv *priv = netdev_priv(dev); 5980 u32 rx_count = priv->plat->rx_queues_to_use; 5981 u32 tx_count = priv->plat->tx_queues_to_use; 5982 u32 queue; 5983 5984 if ((dev->flags & IFF_UP) == 0) 5985 return 0; 5986 5987 for (queue = 0; queue < rx_count; queue++) { 5988 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5989 5990 seq_printf(seq, "RX Queue %d:\n", queue); 5991 5992 if (priv->extend_desc) { 5993 seq_printf(seq, "Extended descriptor ring:\n"); 5994 sysfs_display_ring((void *)rx_q->dma_erx, 5995 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5996 } else { 5997 seq_printf(seq, "Descriptor ring:\n"); 5998 sysfs_display_ring((void *)rx_q->dma_rx, 5999 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6000 } 6001 } 6002 6003 for (queue = 0; queue < tx_count; queue++) { 6004 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6005 6006 seq_printf(seq, "TX Queue %d:\n", queue); 6007 6008 if (priv->extend_desc) { 6009 seq_printf(seq, "Extended descriptor ring:\n"); 6010 sysfs_display_ring((void *)tx_q->dma_etx, 6011 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6012 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6013 seq_printf(seq, "Descriptor ring:\n"); 6014 sysfs_display_ring((void *)tx_q->dma_tx, 6015 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6016 } 6017 } 6018 6019 return 0; 6020 } 6021 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6022 6023 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6024 { 6025 struct net_device *dev = seq->private; 6026 struct stmmac_priv *priv = netdev_priv(dev); 6027 6028 if (!priv->hw_cap_support) { 6029 seq_printf(seq, "DMA HW features not supported\n"); 6030 return 0; 6031 } 6032 6033 seq_printf(seq, "==============================\n"); 6034 seq_printf(seq, "\tDMA HW features\n"); 6035 seq_printf(seq, "==============================\n"); 6036 6037 seq_printf(seq, "\t10/100 Mbps: %s\n", 6038 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6039 seq_printf(seq, "\t1000 Mbps: %s\n", 6040 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6041 seq_printf(seq, "\tHalf duplex: %s\n", 6042 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6043 seq_printf(seq, "\tHash Filter: %s\n", 6044 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6045 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6046 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6047 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6048 (priv->dma_cap.pcs) ? "Y" : "N"); 6049 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6050 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6051 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6052 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6053 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6054 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6055 seq_printf(seq, "\tRMON module: %s\n", 6056 (priv->dma_cap.rmon) ? "Y" : "N"); 6057 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6058 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6059 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6060 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6061 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6062 (priv->dma_cap.eee) ? "Y" : "N"); 6063 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6064 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6065 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6066 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6067 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6068 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6069 } else { 6070 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6071 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6072 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6073 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6074 } 6075 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6076 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6077 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6078 priv->dma_cap.number_rx_channel); 6079 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6080 priv->dma_cap.number_tx_channel); 6081 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6082 priv->dma_cap.number_rx_queues); 6083 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6084 priv->dma_cap.number_tx_queues); 6085 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6086 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6087 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6088 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6089 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6090 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6091 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6092 priv->dma_cap.pps_out_num); 6093 seq_printf(seq, "\tSafety Features: %s\n", 6094 priv->dma_cap.asp ? "Y" : "N"); 6095 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6096 priv->dma_cap.frpsel ? "Y" : "N"); 6097 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6098 priv->dma_cap.addr64); 6099 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6100 priv->dma_cap.rssen ? "Y" : "N"); 6101 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6102 priv->dma_cap.vlhash ? "Y" : "N"); 6103 seq_printf(seq, "\tSplit Header: %s\n", 6104 priv->dma_cap.sphen ? "Y" : "N"); 6105 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6106 priv->dma_cap.vlins ? "Y" : "N"); 6107 seq_printf(seq, "\tDouble VLAN: %s\n", 6108 priv->dma_cap.dvlan ? "Y" : "N"); 6109 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6110 priv->dma_cap.l3l4fnum); 6111 seq_printf(seq, "\tARP Offloading: %s\n", 6112 priv->dma_cap.arpoffsel ? "Y" : "N"); 6113 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6114 priv->dma_cap.estsel ? "Y" : "N"); 6115 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6116 priv->dma_cap.fpesel ? "Y" : "N"); 6117 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6118 priv->dma_cap.tbssel ? "Y" : "N"); 6119 return 0; 6120 } 6121 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6122 6123 /* Use network device events to rename debugfs file entries. 6124 */ 6125 static int stmmac_device_event(struct notifier_block *unused, 6126 unsigned long event, void *ptr) 6127 { 6128 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6129 struct stmmac_priv *priv = netdev_priv(dev); 6130 6131 if (dev->netdev_ops != &stmmac_netdev_ops) 6132 goto done; 6133 6134 switch (event) { 6135 case NETDEV_CHANGENAME: 6136 if (priv->dbgfs_dir) 6137 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6138 priv->dbgfs_dir, 6139 stmmac_fs_dir, 6140 dev->name); 6141 break; 6142 } 6143 done: 6144 return NOTIFY_DONE; 6145 } 6146 6147 static struct notifier_block stmmac_notifier = { 6148 .notifier_call = stmmac_device_event, 6149 }; 6150 6151 static void stmmac_init_fs(struct net_device *dev) 6152 { 6153 struct stmmac_priv *priv = netdev_priv(dev); 6154 6155 rtnl_lock(); 6156 6157 /* Create per netdev entries */ 6158 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6159 6160 /* Entry to report DMA RX/TX rings */ 6161 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6162 &stmmac_rings_status_fops); 6163 6164 /* Entry to report the DMA HW features */ 6165 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6166 &stmmac_dma_cap_fops); 6167 6168 rtnl_unlock(); 6169 } 6170 6171 static void stmmac_exit_fs(struct net_device *dev) 6172 { 6173 struct stmmac_priv *priv = netdev_priv(dev); 6174 6175 debugfs_remove_recursive(priv->dbgfs_dir); 6176 } 6177 #endif /* CONFIG_DEBUG_FS */ 6178 6179 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6180 { 6181 unsigned char *data = (unsigned char *)&vid_le; 6182 unsigned char data_byte = 0; 6183 u32 crc = ~0x0; 6184 u32 temp = 0; 6185 int i, bits; 6186 6187 bits = get_bitmask_order(VLAN_VID_MASK); 6188 for (i = 0; i < bits; i++) { 6189 if ((i % 8) == 0) 6190 data_byte = data[i / 8]; 6191 6192 temp = ((crc & 1) ^ data_byte) & 1; 6193 crc >>= 1; 6194 data_byte >>= 1; 6195 6196 if (temp) 6197 crc ^= 0xedb88320; 6198 } 6199 6200 return crc; 6201 } 6202 6203 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6204 { 6205 u32 crc, hash = 0; 6206 __le16 pmatch = 0; 6207 int count = 0; 6208 u16 vid = 0; 6209 6210 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6211 __le16 vid_le = cpu_to_le16(vid); 6212 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6213 hash |= (1 << crc); 6214 count++; 6215 } 6216 6217 if (!priv->dma_cap.vlhash) { 6218 if (count > 2) /* VID = 0 always passes filter */ 6219 return -EOPNOTSUPP; 6220 6221 pmatch = cpu_to_le16(vid); 6222 hash = 0; 6223 } 6224 6225 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6226 } 6227 6228 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6229 { 6230 struct stmmac_priv *priv = netdev_priv(ndev); 6231 bool is_double = false; 6232 int ret; 6233 6234 if (be16_to_cpu(proto) == ETH_P_8021AD) 6235 is_double = true; 6236 6237 set_bit(vid, priv->active_vlans); 6238 ret = stmmac_vlan_update(priv, is_double); 6239 if (ret) { 6240 clear_bit(vid, priv->active_vlans); 6241 return ret; 6242 } 6243 6244 if (priv->hw->num_vlan) { 6245 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6246 if (ret) 6247 return ret; 6248 } 6249 6250 return 0; 6251 } 6252 6253 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6254 { 6255 struct stmmac_priv *priv = netdev_priv(ndev); 6256 bool is_double = false; 6257 int ret; 6258 6259 ret = pm_runtime_get_sync(priv->device); 6260 if (ret < 0) { 6261 pm_runtime_put_noidle(priv->device); 6262 return ret; 6263 } 6264 6265 if (be16_to_cpu(proto) == ETH_P_8021AD) 6266 is_double = true; 6267 6268 clear_bit(vid, priv->active_vlans); 6269 6270 if (priv->hw->num_vlan) { 6271 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6272 if (ret) 6273 goto del_vlan_error; 6274 } 6275 6276 ret = stmmac_vlan_update(priv, is_double); 6277 6278 del_vlan_error: 6279 pm_runtime_put(priv->device); 6280 6281 return ret; 6282 } 6283 6284 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6285 { 6286 struct stmmac_priv *priv = netdev_priv(dev); 6287 6288 switch (bpf->command) { 6289 case XDP_SETUP_PROG: 6290 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6291 case XDP_SETUP_XSK_POOL: 6292 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6293 bpf->xsk.queue_id); 6294 default: 6295 return -EOPNOTSUPP; 6296 } 6297 } 6298 6299 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6300 struct xdp_frame **frames, u32 flags) 6301 { 6302 struct stmmac_priv *priv = netdev_priv(dev); 6303 int cpu = smp_processor_id(); 6304 struct netdev_queue *nq; 6305 int i, nxmit = 0; 6306 int queue; 6307 6308 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6309 return -ENETDOWN; 6310 6311 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6312 return -EINVAL; 6313 6314 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6315 nq = netdev_get_tx_queue(priv->dev, queue); 6316 6317 __netif_tx_lock(nq, cpu); 6318 /* Avoids TX time-out as we are sharing with slow path */ 6319 txq_trans_cond_update(nq); 6320 6321 for (i = 0; i < num_frames; i++) { 6322 int res; 6323 6324 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6325 if (res == STMMAC_XDP_CONSUMED) 6326 break; 6327 6328 nxmit++; 6329 } 6330 6331 if (flags & XDP_XMIT_FLUSH) { 6332 stmmac_flush_tx_descriptors(priv, queue); 6333 stmmac_tx_timer_arm(priv, queue); 6334 } 6335 6336 __netif_tx_unlock(nq); 6337 6338 return nxmit; 6339 } 6340 6341 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6342 { 6343 struct stmmac_channel *ch = &priv->channel[queue]; 6344 unsigned long flags; 6345 6346 spin_lock_irqsave(&ch->lock, flags); 6347 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6348 spin_unlock_irqrestore(&ch->lock, flags); 6349 6350 stmmac_stop_rx_dma(priv, queue); 6351 __free_dma_rx_desc_resources(priv, queue); 6352 } 6353 6354 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6355 { 6356 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6357 struct stmmac_channel *ch = &priv->channel[queue]; 6358 unsigned long flags; 6359 u32 buf_size; 6360 int ret; 6361 6362 ret = __alloc_dma_rx_desc_resources(priv, queue); 6363 if (ret) { 6364 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6365 return; 6366 } 6367 6368 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6369 if (ret) { 6370 __free_dma_rx_desc_resources(priv, queue); 6371 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6372 return; 6373 } 6374 6375 stmmac_clear_rx_descriptors(priv, queue); 6376 6377 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6378 rx_q->dma_rx_phy, rx_q->queue_index); 6379 6380 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6381 sizeof(struct dma_desc)); 6382 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6383 rx_q->rx_tail_addr, rx_q->queue_index); 6384 6385 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6386 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6387 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6388 buf_size, 6389 rx_q->queue_index); 6390 } else { 6391 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6392 priv->dma_buf_sz, 6393 rx_q->queue_index); 6394 } 6395 6396 stmmac_start_rx_dma(priv, queue); 6397 6398 spin_lock_irqsave(&ch->lock, flags); 6399 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6400 spin_unlock_irqrestore(&ch->lock, flags); 6401 } 6402 6403 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6404 { 6405 struct stmmac_channel *ch = &priv->channel[queue]; 6406 unsigned long flags; 6407 6408 spin_lock_irqsave(&ch->lock, flags); 6409 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6410 spin_unlock_irqrestore(&ch->lock, flags); 6411 6412 stmmac_stop_tx_dma(priv, queue); 6413 __free_dma_tx_desc_resources(priv, queue); 6414 } 6415 6416 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6417 { 6418 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6419 struct stmmac_channel *ch = &priv->channel[queue]; 6420 unsigned long flags; 6421 int ret; 6422 6423 ret = __alloc_dma_tx_desc_resources(priv, queue); 6424 if (ret) { 6425 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6426 return; 6427 } 6428 6429 ret = __init_dma_tx_desc_rings(priv, queue); 6430 if (ret) { 6431 __free_dma_tx_desc_resources(priv, queue); 6432 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6433 return; 6434 } 6435 6436 stmmac_clear_tx_descriptors(priv, queue); 6437 6438 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6439 tx_q->dma_tx_phy, tx_q->queue_index); 6440 6441 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6442 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6443 6444 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6445 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6446 tx_q->tx_tail_addr, tx_q->queue_index); 6447 6448 stmmac_start_tx_dma(priv, queue); 6449 6450 spin_lock_irqsave(&ch->lock, flags); 6451 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6452 spin_unlock_irqrestore(&ch->lock, flags); 6453 } 6454 6455 void stmmac_xdp_release(struct net_device *dev) 6456 { 6457 struct stmmac_priv *priv = netdev_priv(dev); 6458 u32 chan; 6459 6460 /* Disable NAPI process */ 6461 stmmac_disable_all_queues(priv); 6462 6463 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6464 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6465 6466 /* Free the IRQ lines */ 6467 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6468 6469 /* Stop TX/RX DMA channels */ 6470 stmmac_stop_all_dma(priv); 6471 6472 /* Release and free the Rx/Tx resources */ 6473 free_dma_desc_resources(priv); 6474 6475 /* Disable the MAC Rx/Tx */ 6476 stmmac_mac_set(priv, priv->ioaddr, false); 6477 6478 /* set trans_start so we don't get spurious 6479 * watchdogs during reset 6480 */ 6481 netif_trans_update(dev); 6482 netif_carrier_off(dev); 6483 } 6484 6485 int stmmac_xdp_open(struct net_device *dev) 6486 { 6487 struct stmmac_priv *priv = netdev_priv(dev); 6488 u32 rx_cnt = priv->plat->rx_queues_to_use; 6489 u32 tx_cnt = priv->plat->tx_queues_to_use; 6490 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6491 struct stmmac_rx_queue *rx_q; 6492 struct stmmac_tx_queue *tx_q; 6493 u32 buf_size; 6494 bool sph_en; 6495 u32 chan; 6496 int ret; 6497 6498 ret = alloc_dma_desc_resources(priv); 6499 if (ret < 0) { 6500 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6501 __func__); 6502 goto dma_desc_error; 6503 } 6504 6505 ret = init_dma_desc_rings(dev, GFP_KERNEL); 6506 if (ret < 0) { 6507 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6508 __func__); 6509 goto init_error; 6510 } 6511 6512 /* DMA CSR Channel configuration */ 6513 for (chan = 0; chan < dma_csr_ch; chan++) 6514 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6515 6516 /* Adjust Split header */ 6517 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6518 6519 /* DMA RX Channel Configuration */ 6520 for (chan = 0; chan < rx_cnt; chan++) { 6521 rx_q = &priv->rx_queue[chan]; 6522 6523 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6524 rx_q->dma_rx_phy, chan); 6525 6526 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6527 (rx_q->buf_alloc_num * 6528 sizeof(struct dma_desc)); 6529 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6530 rx_q->rx_tail_addr, chan); 6531 6532 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6533 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6534 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6535 buf_size, 6536 rx_q->queue_index); 6537 } else { 6538 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6539 priv->dma_buf_sz, 6540 rx_q->queue_index); 6541 } 6542 6543 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6544 } 6545 6546 /* DMA TX Channel Configuration */ 6547 for (chan = 0; chan < tx_cnt; chan++) { 6548 tx_q = &priv->tx_queue[chan]; 6549 6550 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6551 tx_q->dma_tx_phy, chan); 6552 6553 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6554 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6555 tx_q->tx_tail_addr, chan); 6556 6557 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6558 tx_q->txtimer.function = stmmac_tx_timer; 6559 } 6560 6561 /* Enable the MAC Rx/Tx */ 6562 stmmac_mac_set(priv, priv->ioaddr, true); 6563 6564 /* Start Rx & Tx DMA Channels */ 6565 stmmac_start_all_dma(priv); 6566 6567 ret = stmmac_request_irq(dev); 6568 if (ret) 6569 goto irq_error; 6570 6571 /* Enable NAPI process*/ 6572 stmmac_enable_all_queues(priv); 6573 netif_carrier_on(dev); 6574 netif_tx_start_all_queues(dev); 6575 6576 return 0; 6577 6578 irq_error: 6579 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6580 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6581 6582 stmmac_hw_teardown(dev); 6583 init_error: 6584 free_dma_desc_resources(priv); 6585 dma_desc_error: 6586 return ret; 6587 } 6588 6589 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6590 { 6591 struct stmmac_priv *priv = netdev_priv(dev); 6592 struct stmmac_rx_queue *rx_q; 6593 struct stmmac_tx_queue *tx_q; 6594 struct stmmac_channel *ch; 6595 6596 if (test_bit(STMMAC_DOWN, &priv->state) || 6597 !netif_carrier_ok(priv->dev)) 6598 return -ENETDOWN; 6599 6600 if (!stmmac_xdp_is_enabled(priv)) 6601 return -ENXIO; 6602 6603 if (queue >= priv->plat->rx_queues_to_use || 6604 queue >= priv->plat->tx_queues_to_use) 6605 return -EINVAL; 6606 6607 rx_q = &priv->rx_queue[queue]; 6608 tx_q = &priv->tx_queue[queue]; 6609 ch = &priv->channel[queue]; 6610 6611 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6612 return -ENXIO; 6613 6614 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6615 /* EQoS does not have per-DMA channel SW interrupt, 6616 * so we schedule RX Napi straight-away. 6617 */ 6618 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6619 __napi_schedule(&ch->rxtx_napi); 6620 } 6621 6622 return 0; 6623 } 6624 6625 static const struct net_device_ops stmmac_netdev_ops = { 6626 .ndo_open = stmmac_open, 6627 .ndo_start_xmit = stmmac_xmit, 6628 .ndo_stop = stmmac_release, 6629 .ndo_change_mtu = stmmac_change_mtu, 6630 .ndo_fix_features = stmmac_fix_features, 6631 .ndo_set_features = stmmac_set_features, 6632 .ndo_set_rx_mode = stmmac_set_rx_mode, 6633 .ndo_tx_timeout = stmmac_tx_timeout, 6634 .ndo_eth_ioctl = stmmac_ioctl, 6635 .ndo_setup_tc = stmmac_setup_tc, 6636 .ndo_select_queue = stmmac_select_queue, 6637 #ifdef CONFIG_NET_POLL_CONTROLLER 6638 .ndo_poll_controller = stmmac_poll_controller, 6639 #endif 6640 .ndo_set_mac_address = stmmac_set_mac_address, 6641 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6642 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6643 .ndo_bpf = stmmac_bpf, 6644 .ndo_xdp_xmit = stmmac_xdp_xmit, 6645 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6646 }; 6647 6648 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6649 { 6650 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6651 return; 6652 if (test_bit(STMMAC_DOWN, &priv->state)) 6653 return; 6654 6655 netdev_err(priv->dev, "Reset adapter.\n"); 6656 6657 rtnl_lock(); 6658 netif_trans_update(priv->dev); 6659 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6660 usleep_range(1000, 2000); 6661 6662 set_bit(STMMAC_DOWN, &priv->state); 6663 dev_close(priv->dev); 6664 dev_open(priv->dev, NULL); 6665 clear_bit(STMMAC_DOWN, &priv->state); 6666 clear_bit(STMMAC_RESETING, &priv->state); 6667 rtnl_unlock(); 6668 } 6669 6670 static void stmmac_service_task(struct work_struct *work) 6671 { 6672 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6673 service_task); 6674 6675 stmmac_reset_subtask(priv); 6676 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6677 } 6678 6679 /** 6680 * stmmac_hw_init - Init the MAC device 6681 * @priv: driver private structure 6682 * Description: this function is to configure the MAC device according to 6683 * some platform parameters or the HW capability register. It prepares the 6684 * driver to use either ring or chain modes and to setup either enhanced or 6685 * normal descriptors. 6686 */ 6687 static int stmmac_hw_init(struct stmmac_priv *priv) 6688 { 6689 int ret; 6690 6691 /* dwmac-sun8i only work in chain mode */ 6692 if (priv->plat->has_sun8i) 6693 chain_mode = 1; 6694 priv->chain_mode = chain_mode; 6695 6696 /* Initialize HW Interface */ 6697 ret = stmmac_hwif_init(priv); 6698 if (ret) 6699 return ret; 6700 6701 /* Get the HW capability (new GMAC newer than 3.50a) */ 6702 priv->hw_cap_support = stmmac_get_hw_features(priv); 6703 if (priv->hw_cap_support) { 6704 dev_info(priv->device, "DMA HW capability register supported\n"); 6705 6706 /* We can override some gmac/dma configuration fields: e.g. 6707 * enh_desc, tx_coe (e.g. that are passed through the 6708 * platform) with the values from the HW capability 6709 * register (if supported). 6710 */ 6711 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6712 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6713 !priv->plat->use_phy_wol; 6714 priv->hw->pmt = priv->plat->pmt; 6715 if (priv->dma_cap.hash_tb_sz) { 6716 priv->hw->multicast_filter_bins = 6717 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6718 priv->hw->mcast_bits_log2 = 6719 ilog2(priv->hw->multicast_filter_bins); 6720 } 6721 6722 /* TXCOE doesn't work in thresh DMA mode */ 6723 if (priv->plat->force_thresh_dma_mode) 6724 priv->plat->tx_coe = 0; 6725 else 6726 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6727 6728 /* In case of GMAC4 rx_coe is from HW cap register. */ 6729 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6730 6731 if (priv->dma_cap.rx_coe_type2) 6732 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6733 else if (priv->dma_cap.rx_coe_type1) 6734 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6735 6736 } else { 6737 dev_info(priv->device, "No HW DMA feature register supported\n"); 6738 } 6739 6740 if (priv->plat->rx_coe) { 6741 priv->hw->rx_csum = priv->plat->rx_coe; 6742 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6743 if (priv->synopsys_id < DWMAC_CORE_4_00) 6744 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6745 } 6746 if (priv->plat->tx_coe) 6747 dev_info(priv->device, "TX Checksum insertion supported\n"); 6748 6749 if (priv->plat->pmt) { 6750 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6751 device_set_wakeup_capable(priv->device, 1); 6752 } 6753 6754 if (priv->dma_cap.tsoen) 6755 dev_info(priv->device, "TSO supported\n"); 6756 6757 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6758 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6759 6760 /* Run HW quirks, if any */ 6761 if (priv->hwif_quirks) { 6762 ret = priv->hwif_quirks(priv); 6763 if (ret) 6764 return ret; 6765 } 6766 6767 /* Rx Watchdog is available in the COREs newer than the 3.40. 6768 * In some case, for example on bugged HW this feature 6769 * has to be disable and this can be done by passing the 6770 * riwt_off field from the platform. 6771 */ 6772 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6773 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6774 priv->use_riwt = 1; 6775 dev_info(priv->device, 6776 "Enable RX Mitigation via HW Watchdog Timer\n"); 6777 } 6778 6779 return 0; 6780 } 6781 6782 static void stmmac_napi_add(struct net_device *dev) 6783 { 6784 struct stmmac_priv *priv = netdev_priv(dev); 6785 u32 queue, maxq; 6786 6787 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6788 6789 for (queue = 0; queue < maxq; queue++) { 6790 struct stmmac_channel *ch = &priv->channel[queue]; 6791 6792 ch->priv_data = priv; 6793 ch->index = queue; 6794 spin_lock_init(&ch->lock); 6795 6796 if (queue < priv->plat->rx_queues_to_use) { 6797 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6798 NAPI_POLL_WEIGHT); 6799 } 6800 if (queue < priv->plat->tx_queues_to_use) { 6801 netif_tx_napi_add(dev, &ch->tx_napi, 6802 stmmac_napi_poll_tx, 6803 NAPI_POLL_WEIGHT); 6804 } 6805 if (queue < priv->plat->rx_queues_to_use && 6806 queue < priv->plat->tx_queues_to_use) { 6807 netif_napi_add(dev, &ch->rxtx_napi, 6808 stmmac_napi_poll_rxtx, 6809 NAPI_POLL_WEIGHT); 6810 } 6811 } 6812 } 6813 6814 static void stmmac_napi_del(struct net_device *dev) 6815 { 6816 struct stmmac_priv *priv = netdev_priv(dev); 6817 u32 queue, maxq; 6818 6819 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6820 6821 for (queue = 0; queue < maxq; queue++) { 6822 struct stmmac_channel *ch = &priv->channel[queue]; 6823 6824 if (queue < priv->plat->rx_queues_to_use) 6825 netif_napi_del(&ch->rx_napi); 6826 if (queue < priv->plat->tx_queues_to_use) 6827 netif_napi_del(&ch->tx_napi); 6828 if (queue < priv->plat->rx_queues_to_use && 6829 queue < priv->plat->tx_queues_to_use) { 6830 netif_napi_del(&ch->rxtx_napi); 6831 } 6832 } 6833 } 6834 6835 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6836 { 6837 struct stmmac_priv *priv = netdev_priv(dev); 6838 int ret = 0; 6839 6840 if (netif_running(dev)) 6841 stmmac_release(dev); 6842 6843 stmmac_napi_del(dev); 6844 6845 priv->plat->rx_queues_to_use = rx_cnt; 6846 priv->plat->tx_queues_to_use = tx_cnt; 6847 6848 stmmac_napi_add(dev); 6849 6850 if (netif_running(dev)) 6851 ret = stmmac_open(dev); 6852 6853 return ret; 6854 } 6855 6856 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6857 { 6858 struct stmmac_priv *priv = netdev_priv(dev); 6859 int ret = 0; 6860 6861 if (netif_running(dev)) 6862 stmmac_release(dev); 6863 6864 priv->dma_rx_size = rx_size; 6865 priv->dma_tx_size = tx_size; 6866 6867 if (netif_running(dev)) 6868 ret = stmmac_open(dev); 6869 6870 return ret; 6871 } 6872 6873 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6874 static void stmmac_fpe_lp_task(struct work_struct *work) 6875 { 6876 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6877 fpe_task); 6878 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6879 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6880 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6881 bool *hs_enable = &fpe_cfg->hs_enable; 6882 bool *enable = &fpe_cfg->enable; 6883 int retries = 20; 6884 6885 while (retries-- > 0) { 6886 /* Bail out immediately if FPE handshake is OFF */ 6887 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6888 break; 6889 6890 if (*lo_state == FPE_STATE_ENTERING_ON && 6891 *lp_state == FPE_STATE_ENTERING_ON) { 6892 stmmac_fpe_configure(priv, priv->ioaddr, 6893 priv->plat->tx_queues_to_use, 6894 priv->plat->rx_queues_to_use, 6895 *enable); 6896 6897 netdev_info(priv->dev, "configured FPE\n"); 6898 6899 *lo_state = FPE_STATE_ON; 6900 *lp_state = FPE_STATE_ON; 6901 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6902 break; 6903 } 6904 6905 if ((*lo_state == FPE_STATE_CAPABLE || 6906 *lo_state == FPE_STATE_ENTERING_ON) && 6907 *lp_state != FPE_STATE_ON) { 6908 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6909 *lo_state, *lp_state); 6910 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6911 MPACKET_VERIFY); 6912 } 6913 /* Sleep then retry */ 6914 msleep(500); 6915 } 6916 6917 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6918 } 6919 6920 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6921 { 6922 if (priv->plat->fpe_cfg->hs_enable != enable) { 6923 if (enable) { 6924 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6925 MPACKET_VERIFY); 6926 } else { 6927 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6928 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6929 } 6930 6931 priv->plat->fpe_cfg->hs_enable = enable; 6932 } 6933 } 6934 6935 /** 6936 * stmmac_dvr_probe 6937 * @device: device pointer 6938 * @plat_dat: platform data pointer 6939 * @res: stmmac resource pointer 6940 * Description: this is the main probe function used to 6941 * call the alloc_etherdev, allocate the priv structure. 6942 * Return: 6943 * returns 0 on success, otherwise errno. 6944 */ 6945 int stmmac_dvr_probe(struct device *device, 6946 struct plat_stmmacenet_data *plat_dat, 6947 struct stmmac_resources *res) 6948 { 6949 struct net_device *ndev = NULL; 6950 struct stmmac_priv *priv; 6951 u32 rxq; 6952 int i, ret = 0; 6953 6954 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6955 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6956 if (!ndev) 6957 return -ENOMEM; 6958 6959 SET_NETDEV_DEV(ndev, device); 6960 6961 priv = netdev_priv(ndev); 6962 priv->device = device; 6963 priv->dev = ndev; 6964 6965 stmmac_set_ethtool_ops(ndev); 6966 priv->pause = pause; 6967 priv->plat = plat_dat; 6968 priv->ioaddr = res->addr; 6969 priv->dev->base_addr = (unsigned long)res->addr; 6970 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6971 6972 priv->dev->irq = res->irq; 6973 priv->wol_irq = res->wol_irq; 6974 priv->lpi_irq = res->lpi_irq; 6975 priv->sfty_ce_irq = res->sfty_ce_irq; 6976 priv->sfty_ue_irq = res->sfty_ue_irq; 6977 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6978 priv->rx_irq[i] = res->rx_irq[i]; 6979 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6980 priv->tx_irq[i] = res->tx_irq[i]; 6981 6982 if (!is_zero_ether_addr(res->mac)) 6983 eth_hw_addr_set(priv->dev, res->mac); 6984 6985 dev_set_drvdata(device, priv->dev); 6986 6987 /* Verify driver arguments */ 6988 stmmac_verify_args(); 6989 6990 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6991 if (!priv->af_xdp_zc_qps) 6992 return -ENOMEM; 6993 6994 /* Allocate workqueue */ 6995 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6996 if (!priv->wq) { 6997 dev_err(priv->device, "failed to create workqueue\n"); 6998 return -ENOMEM; 6999 } 7000 7001 INIT_WORK(&priv->service_task, stmmac_service_task); 7002 7003 /* Initialize Link Partner FPE workqueue */ 7004 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7005 7006 /* Override with kernel parameters if supplied XXX CRS XXX 7007 * this needs to have multiple instances 7008 */ 7009 if ((phyaddr >= 0) && (phyaddr <= 31)) 7010 priv->plat->phy_addr = phyaddr; 7011 7012 if (priv->plat->stmmac_rst) { 7013 ret = reset_control_assert(priv->plat->stmmac_rst); 7014 reset_control_deassert(priv->plat->stmmac_rst); 7015 /* Some reset controllers have only reset callback instead of 7016 * assert + deassert callbacks pair. 7017 */ 7018 if (ret == -ENOTSUPP) 7019 reset_control_reset(priv->plat->stmmac_rst); 7020 } 7021 7022 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7023 if (ret == -ENOTSUPP) 7024 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7025 ERR_PTR(ret)); 7026 7027 /* Init MAC and get the capabilities */ 7028 ret = stmmac_hw_init(priv); 7029 if (ret) 7030 goto error_hw_init; 7031 7032 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7033 */ 7034 if (priv->synopsys_id < DWMAC_CORE_5_20) 7035 priv->plat->dma_cfg->dche = false; 7036 7037 stmmac_check_ether_addr(priv); 7038 7039 ndev->netdev_ops = &stmmac_netdev_ops; 7040 7041 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7042 NETIF_F_RXCSUM; 7043 7044 ret = stmmac_tc_init(priv, priv); 7045 if (!ret) { 7046 ndev->hw_features |= NETIF_F_HW_TC; 7047 } 7048 7049 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7050 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7051 if (priv->plat->has_gmac4) 7052 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7053 priv->tso = true; 7054 dev_info(priv->device, "TSO feature enabled\n"); 7055 } 7056 7057 if (priv->dma_cap.sphen) { 7058 ndev->hw_features |= NETIF_F_GRO; 7059 priv->sph_cap = true; 7060 priv->sph = priv->sph_cap; 7061 dev_info(priv->device, "SPH feature enabled\n"); 7062 } 7063 7064 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7065 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7066 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7067 * So overwrite dma_cap.addr64 according to HW real design. 7068 */ 7069 if (priv->plat->addr64) 7070 priv->dma_cap.addr64 = priv->plat->addr64; 7071 7072 if (priv->dma_cap.addr64) { 7073 ret = dma_set_mask_and_coherent(device, 7074 DMA_BIT_MASK(priv->dma_cap.addr64)); 7075 if (!ret) { 7076 dev_info(priv->device, "Using %d bits DMA width\n", 7077 priv->dma_cap.addr64); 7078 7079 /* 7080 * If more than 32 bits can be addressed, make sure to 7081 * enable enhanced addressing mode. 7082 */ 7083 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7084 priv->plat->dma_cfg->eame = true; 7085 } else { 7086 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7087 if (ret) { 7088 dev_err(priv->device, "Failed to set DMA Mask\n"); 7089 goto error_hw_init; 7090 } 7091 7092 priv->dma_cap.addr64 = 32; 7093 } 7094 } 7095 7096 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7097 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7098 #ifdef STMMAC_VLAN_TAG_USED 7099 /* Both mac100 and gmac support receive VLAN tag detection */ 7100 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7101 if (priv->dma_cap.vlhash) { 7102 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7103 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7104 } 7105 if (priv->dma_cap.vlins) { 7106 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7107 if (priv->dma_cap.dvlan) 7108 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7109 } 7110 #endif 7111 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7112 7113 /* Initialize RSS */ 7114 rxq = priv->plat->rx_queues_to_use; 7115 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7116 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7117 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7118 7119 if (priv->dma_cap.rssen && priv->plat->rss_en) 7120 ndev->features |= NETIF_F_RXHASH; 7121 7122 /* MTU range: 46 - hw-specific max */ 7123 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7124 if (priv->plat->has_xgmac) 7125 ndev->max_mtu = XGMAC_JUMBO_LEN; 7126 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7127 ndev->max_mtu = JUMBO_LEN; 7128 else 7129 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7130 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7131 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7132 */ 7133 if ((priv->plat->maxmtu < ndev->max_mtu) && 7134 (priv->plat->maxmtu >= ndev->min_mtu)) 7135 ndev->max_mtu = priv->plat->maxmtu; 7136 else if (priv->plat->maxmtu < ndev->min_mtu) 7137 dev_warn(priv->device, 7138 "%s: warning: maxmtu having invalid value (%d)\n", 7139 __func__, priv->plat->maxmtu); 7140 7141 if (flow_ctrl) 7142 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7143 7144 /* Setup channels NAPI */ 7145 stmmac_napi_add(ndev); 7146 7147 mutex_init(&priv->lock); 7148 7149 /* If a specific clk_csr value is passed from the platform 7150 * this means that the CSR Clock Range selection cannot be 7151 * changed at run-time and it is fixed. Viceversa the driver'll try to 7152 * set the MDC clock dynamically according to the csr actual 7153 * clock input. 7154 */ 7155 if (priv->plat->clk_csr >= 0) 7156 priv->clk_csr = priv->plat->clk_csr; 7157 else 7158 stmmac_clk_csr_set(priv); 7159 7160 stmmac_check_pcs_mode(priv); 7161 7162 pm_runtime_get_noresume(device); 7163 pm_runtime_set_active(device); 7164 if (!pm_runtime_enabled(device)) 7165 pm_runtime_enable(device); 7166 7167 if (priv->hw->pcs != STMMAC_PCS_TBI && 7168 priv->hw->pcs != STMMAC_PCS_RTBI) { 7169 /* MDIO bus Registration */ 7170 ret = stmmac_mdio_register(ndev); 7171 if (ret < 0) { 7172 dev_err(priv->device, 7173 "%s: MDIO bus (id: %d) registration failed", 7174 __func__, priv->plat->bus_id); 7175 goto error_mdio_register; 7176 } 7177 } 7178 7179 if (priv->plat->speed_mode_2500) 7180 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7181 7182 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7183 ret = stmmac_xpcs_setup(priv->mii); 7184 if (ret) 7185 goto error_xpcs_setup; 7186 } 7187 7188 ret = stmmac_phy_setup(priv); 7189 if (ret) { 7190 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7191 goto error_phy_setup; 7192 } 7193 7194 ret = register_netdev(ndev); 7195 if (ret) { 7196 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7197 __func__, ret); 7198 goto error_netdev_register; 7199 } 7200 7201 if (priv->plat->serdes_powerup) { 7202 ret = priv->plat->serdes_powerup(ndev, 7203 priv->plat->bsp_priv); 7204 7205 if (ret < 0) 7206 goto error_serdes_powerup; 7207 } 7208 7209 #ifdef CONFIG_DEBUG_FS 7210 stmmac_init_fs(ndev); 7211 #endif 7212 7213 if (priv->plat->dump_debug_regs) 7214 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7215 7216 /* Let pm_runtime_put() disable the clocks. 7217 * If CONFIG_PM is not enabled, the clocks will stay powered. 7218 */ 7219 pm_runtime_put(device); 7220 7221 return ret; 7222 7223 error_serdes_powerup: 7224 unregister_netdev(ndev); 7225 error_netdev_register: 7226 phylink_destroy(priv->phylink); 7227 error_xpcs_setup: 7228 error_phy_setup: 7229 if (priv->hw->pcs != STMMAC_PCS_TBI && 7230 priv->hw->pcs != STMMAC_PCS_RTBI) 7231 stmmac_mdio_unregister(ndev); 7232 error_mdio_register: 7233 stmmac_napi_del(ndev); 7234 error_hw_init: 7235 destroy_workqueue(priv->wq); 7236 bitmap_free(priv->af_xdp_zc_qps); 7237 7238 return ret; 7239 } 7240 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7241 7242 /** 7243 * stmmac_dvr_remove 7244 * @dev: device pointer 7245 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7246 * changes the link status, releases the DMA descriptor rings. 7247 */ 7248 int stmmac_dvr_remove(struct device *dev) 7249 { 7250 struct net_device *ndev = dev_get_drvdata(dev); 7251 struct stmmac_priv *priv = netdev_priv(ndev); 7252 7253 netdev_info(priv->dev, "%s: removing driver", __func__); 7254 7255 pm_runtime_get_sync(dev); 7256 pm_runtime_disable(dev); 7257 pm_runtime_put_noidle(dev); 7258 7259 stmmac_stop_all_dma(priv); 7260 stmmac_mac_set(priv, priv->ioaddr, false); 7261 netif_carrier_off(ndev); 7262 unregister_netdev(ndev); 7263 7264 /* Serdes power down needs to happen after VLAN filter 7265 * is deleted that is triggered by unregister_netdev(). 7266 */ 7267 if (priv->plat->serdes_powerdown) 7268 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7269 7270 #ifdef CONFIG_DEBUG_FS 7271 stmmac_exit_fs(ndev); 7272 #endif 7273 phylink_destroy(priv->phylink); 7274 if (priv->plat->stmmac_rst) 7275 reset_control_assert(priv->plat->stmmac_rst); 7276 reset_control_assert(priv->plat->stmmac_ahb_rst); 7277 if (priv->hw->pcs != STMMAC_PCS_TBI && 7278 priv->hw->pcs != STMMAC_PCS_RTBI) 7279 stmmac_mdio_unregister(ndev); 7280 destroy_workqueue(priv->wq); 7281 mutex_destroy(&priv->lock); 7282 bitmap_free(priv->af_xdp_zc_qps); 7283 7284 return 0; 7285 } 7286 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7287 7288 /** 7289 * stmmac_suspend - suspend callback 7290 * @dev: device pointer 7291 * Description: this is the function to suspend the device and it is called 7292 * by the platform driver to stop the network queue, release the resources, 7293 * program the PMT register (for WoL), clean and release driver resources. 7294 */ 7295 int stmmac_suspend(struct device *dev) 7296 { 7297 struct net_device *ndev = dev_get_drvdata(dev); 7298 struct stmmac_priv *priv = netdev_priv(ndev); 7299 u32 chan; 7300 7301 if (!ndev || !netif_running(ndev)) 7302 return 0; 7303 7304 mutex_lock(&priv->lock); 7305 7306 netif_device_detach(ndev); 7307 7308 stmmac_disable_all_queues(priv); 7309 7310 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7311 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7312 7313 if (priv->eee_enabled) { 7314 priv->tx_path_in_lpi_mode = false; 7315 del_timer_sync(&priv->eee_ctrl_timer); 7316 } 7317 7318 /* Stop TX/RX DMA */ 7319 stmmac_stop_all_dma(priv); 7320 7321 if (priv->plat->serdes_powerdown) 7322 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7323 7324 /* Enable Power down mode by programming the PMT regs */ 7325 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7326 stmmac_pmt(priv, priv->hw, priv->wolopts); 7327 priv->irq_wake = 1; 7328 } else { 7329 stmmac_mac_set(priv, priv->ioaddr, false); 7330 pinctrl_pm_select_sleep_state(priv->device); 7331 } 7332 7333 mutex_unlock(&priv->lock); 7334 7335 rtnl_lock(); 7336 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7337 phylink_suspend(priv->phylink, true); 7338 } else { 7339 if (device_may_wakeup(priv->device)) 7340 phylink_speed_down(priv->phylink, false); 7341 phylink_suspend(priv->phylink, false); 7342 } 7343 rtnl_unlock(); 7344 7345 if (priv->dma_cap.fpesel) { 7346 /* Disable FPE */ 7347 stmmac_fpe_configure(priv, priv->ioaddr, 7348 priv->plat->tx_queues_to_use, 7349 priv->plat->rx_queues_to_use, false); 7350 7351 stmmac_fpe_handshake(priv, false); 7352 stmmac_fpe_stop_wq(priv); 7353 } 7354 7355 priv->speed = SPEED_UNKNOWN; 7356 return 0; 7357 } 7358 EXPORT_SYMBOL_GPL(stmmac_suspend); 7359 7360 /** 7361 * stmmac_reset_queues_param - reset queue parameters 7362 * @priv: device pointer 7363 */ 7364 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7365 { 7366 u32 rx_cnt = priv->plat->rx_queues_to_use; 7367 u32 tx_cnt = priv->plat->tx_queues_to_use; 7368 u32 queue; 7369 7370 for (queue = 0; queue < rx_cnt; queue++) { 7371 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7372 7373 rx_q->cur_rx = 0; 7374 rx_q->dirty_rx = 0; 7375 } 7376 7377 for (queue = 0; queue < tx_cnt; queue++) { 7378 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7379 7380 tx_q->cur_tx = 0; 7381 tx_q->dirty_tx = 0; 7382 tx_q->mss = 0; 7383 7384 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7385 } 7386 } 7387 7388 /** 7389 * stmmac_resume - resume callback 7390 * @dev: device pointer 7391 * Description: when resume this function is invoked to setup the DMA and CORE 7392 * in a usable state. 7393 */ 7394 int stmmac_resume(struct device *dev) 7395 { 7396 struct net_device *ndev = dev_get_drvdata(dev); 7397 struct stmmac_priv *priv = netdev_priv(ndev); 7398 int ret; 7399 7400 if (!netif_running(ndev)) 7401 return 0; 7402 7403 /* Power Down bit, into the PM register, is cleared 7404 * automatically as soon as a magic packet or a Wake-up frame 7405 * is received. Anyway, it's better to manually clear 7406 * this bit because it can generate problems while resuming 7407 * from another devices (e.g. serial console). 7408 */ 7409 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7410 mutex_lock(&priv->lock); 7411 stmmac_pmt(priv, priv->hw, 0); 7412 mutex_unlock(&priv->lock); 7413 priv->irq_wake = 0; 7414 } else { 7415 pinctrl_pm_select_default_state(priv->device); 7416 /* reset the phy so that it's ready */ 7417 if (priv->mii) 7418 stmmac_mdio_reset(priv->mii); 7419 } 7420 7421 if (priv->plat->serdes_powerup) { 7422 ret = priv->plat->serdes_powerup(ndev, 7423 priv->plat->bsp_priv); 7424 7425 if (ret < 0) 7426 return ret; 7427 } 7428 7429 rtnl_lock(); 7430 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7431 phylink_resume(priv->phylink); 7432 } else { 7433 phylink_resume(priv->phylink); 7434 if (device_may_wakeup(priv->device)) 7435 phylink_speed_up(priv->phylink); 7436 } 7437 rtnl_unlock(); 7438 7439 rtnl_lock(); 7440 mutex_lock(&priv->lock); 7441 7442 stmmac_reset_queues_param(priv); 7443 7444 stmmac_free_tx_skbufs(priv); 7445 stmmac_clear_descriptors(priv); 7446 7447 stmmac_hw_setup(ndev, false); 7448 stmmac_init_coalesce(priv); 7449 stmmac_set_rx_mode(ndev); 7450 7451 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7452 7453 stmmac_enable_all_queues(priv); 7454 7455 mutex_unlock(&priv->lock); 7456 rtnl_unlock(); 7457 7458 netif_device_attach(ndev); 7459 7460 return 0; 7461 } 7462 EXPORT_SYMBOL_GPL(stmmac_resume); 7463 7464 #ifndef MODULE 7465 static int __init stmmac_cmdline_opt(char *str) 7466 { 7467 char *opt; 7468 7469 if (!str || !*str) 7470 return -EINVAL; 7471 while ((opt = strsep(&str, ",")) != NULL) { 7472 if (!strncmp(opt, "debug:", 6)) { 7473 if (kstrtoint(opt + 6, 0, &debug)) 7474 goto err; 7475 } else if (!strncmp(opt, "phyaddr:", 8)) { 7476 if (kstrtoint(opt + 8, 0, &phyaddr)) 7477 goto err; 7478 } else if (!strncmp(opt, "buf_sz:", 7)) { 7479 if (kstrtoint(opt + 7, 0, &buf_sz)) 7480 goto err; 7481 } else if (!strncmp(opt, "tc:", 3)) { 7482 if (kstrtoint(opt + 3, 0, &tc)) 7483 goto err; 7484 } else if (!strncmp(opt, "watchdog:", 9)) { 7485 if (kstrtoint(opt + 9, 0, &watchdog)) 7486 goto err; 7487 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7488 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7489 goto err; 7490 } else if (!strncmp(opt, "pause:", 6)) { 7491 if (kstrtoint(opt + 6, 0, &pause)) 7492 goto err; 7493 } else if (!strncmp(opt, "eee_timer:", 10)) { 7494 if (kstrtoint(opt + 10, 0, &eee_timer)) 7495 goto err; 7496 } else if (!strncmp(opt, "chain_mode:", 11)) { 7497 if (kstrtoint(opt + 11, 0, &chain_mode)) 7498 goto err; 7499 } 7500 } 7501 return 0; 7502 7503 err: 7504 pr_err("%s: ERROR broken module parameter conversion", __func__); 7505 return -EINVAL; 7506 } 7507 7508 __setup("stmmaceth=", stmmac_cmdline_opt); 7509 #endif /* MODULE */ 7510 7511 static int __init stmmac_init(void) 7512 { 7513 #ifdef CONFIG_DEBUG_FS 7514 /* Create debugfs main directory if it doesn't exist yet */ 7515 if (!stmmac_fs_dir) 7516 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7517 register_netdevice_notifier(&stmmac_notifier); 7518 #endif 7519 7520 return 0; 7521 } 7522 7523 static void __exit stmmac_exit(void) 7524 { 7525 #ifdef CONFIG_DEBUG_FS 7526 unregister_netdevice_notifier(&stmmac_notifier); 7527 debugfs_remove_recursive(stmmac_fs_dir); 7528 #endif 7529 } 7530 7531 module_init(stmmac_init) 7532 module_exit(stmmac_exit) 7533 7534 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7535 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7536 MODULE_LICENSE("GPL"); 7537