1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/page_pool/helpers.h>
43 #include <net/pkt_cls.h>
44 #include <net/xdp_sock_drv.h>
45 #include "stmmac_ptp.h"
46 #include "stmmac.h"
47 #include "stmmac_xdp.h"
48 #include <linux/reset.h>
49 #include <linux/of_mdio.h>
50 #include "dwmac1000.h"
51 #include "dwxgmac2.h"
52 #include "hwif.h"
53 
54 /* As long as the interface is active, we keep the timestamping counter enabled
55  * with fine resolution and binary rollover. This avoid non-monotonic behavior
56  * (clock jumps) when changing timestamping settings at runtime.
57  */
58 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
59 				 PTP_TCR_TSCTRLSSR)
60 
61 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
62 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
63 
64 /* Module parameters */
65 #define TX_TIMEO	5000
66 static int watchdog = TX_TIMEO;
67 module_param(watchdog, int, 0644);
68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69 
70 static int debug = -1;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73 
74 static int phyaddr = -1;
75 module_param(phyaddr, int, 0444);
76 MODULE_PARM_DESC(phyaddr, "Physical device address");
77 
78 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
79 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
80 
81 /* Limit to make sure XDP TX and slow path can coexist */
82 #define STMMAC_XSK_TX_BUDGET_MAX	256
83 #define STMMAC_TX_XSK_AVAIL		16
84 #define STMMAC_RX_FILL_BATCH		16
85 
86 #define STMMAC_XDP_PASS		0
87 #define STMMAC_XDP_CONSUMED	BIT(0)
88 #define STMMAC_XDP_TX		BIT(1)
89 #define STMMAC_XDP_REDIRECT	BIT(2)
90 
91 static int flow_ctrl = FLOW_AUTO;
92 module_param(flow_ctrl, int, 0644);
93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94 
95 static int pause = PAUSE_TIME;
96 module_param(pause, int, 0644);
97 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
98 
99 #define TC_DEFAULT 64
100 static int tc = TC_DEFAULT;
101 module_param(tc, int, 0644);
102 MODULE_PARM_DESC(tc, "DMA threshold control value");
103 
104 #define	DEFAULT_BUFSIZE	1536
105 static int buf_sz = DEFAULT_BUFSIZE;
106 module_param(buf_sz, int, 0644);
107 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108 
109 #define	STMMAC_RX_COPYBREAK	256
110 
111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
112 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
113 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114 
115 #define STMMAC_DEFAULT_LPI_TIMER	1000
116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
117 module_param(eee_timer, int, 0644);
118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120 
121 /* By default the driver will use the ring mode to manage tx and rx descriptors,
122  * but allow user to force to use the chain instead of the ring
123  */
124 static unsigned int chain_mode;
125 module_param(chain_mode, int, 0444);
126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127 
128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
129 /* For MSI interrupts handling */
130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
136 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
140 					  u32 rxmode, u32 chan);
141 
142 #ifdef CONFIG_DEBUG_FS
143 static const struct net_device_ops stmmac_netdev_ops;
144 static void stmmac_init_fs(struct net_device *dev);
145 static void stmmac_exit_fs(struct net_device *dev);
146 #endif
147 
148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149 
150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
151 {
152 	int ret = 0;
153 
154 	if (enabled) {
155 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
156 		if (ret)
157 			return ret;
158 		ret = clk_prepare_enable(priv->plat->pclk);
159 		if (ret) {
160 			clk_disable_unprepare(priv->plat->stmmac_clk);
161 			return ret;
162 		}
163 		if (priv->plat->clks_config) {
164 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 			if (ret) {
166 				clk_disable_unprepare(priv->plat->stmmac_clk);
167 				clk_disable_unprepare(priv->plat->pclk);
168 				return ret;
169 			}
170 		}
171 	} else {
172 		clk_disable_unprepare(priv->plat->stmmac_clk);
173 		clk_disable_unprepare(priv->plat->pclk);
174 		if (priv->plat->clks_config)
175 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
176 	}
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
181 
182 /**
183  * stmmac_verify_args - verify the driver parameters.
184  * Description: it checks the driver parameters and set a default in case of
185  * errors.
186  */
187 static void stmmac_verify_args(void)
188 {
189 	if (unlikely(watchdog < 0))
190 		watchdog = TX_TIMEO;
191 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
192 		buf_sz = DEFAULT_BUFSIZE;
193 	if (unlikely(flow_ctrl > 1))
194 		flow_ctrl = FLOW_AUTO;
195 	else if (likely(flow_ctrl < 0))
196 		flow_ctrl = FLOW_OFF;
197 	if (unlikely((pause < 0) || (pause > 0xffff)))
198 		pause = PAUSE_TIME;
199 	if (eee_timer < 0)
200 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
201 }
202 
203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 {
205 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
206 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
208 	u32 queue;
209 
210 	for (queue = 0; queue < maxq; queue++) {
211 		struct stmmac_channel *ch = &priv->channel[queue];
212 
213 		if (stmmac_xdp_is_enabled(priv) &&
214 		    test_bit(queue, priv->af_xdp_zc_qps)) {
215 			napi_disable(&ch->rxtx_napi);
216 			continue;
217 		}
218 
219 		if (queue < rx_queues_cnt)
220 			napi_disable(&ch->rx_napi);
221 		if (queue < tx_queues_cnt)
222 			napi_disable(&ch->tx_napi);
223 	}
224 }
225 
226 /**
227  * stmmac_disable_all_queues - Disable all queues
228  * @priv: driver private structure
229  */
230 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 {
232 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
233 	struct stmmac_rx_queue *rx_q;
234 	u32 queue;
235 
236 	/* synchronize_rcu() needed for pending XDP buffers to drain */
237 	for (queue = 0; queue < rx_queues_cnt; queue++) {
238 		rx_q = &priv->dma_conf.rx_queue[queue];
239 		if (rx_q->xsk_pool) {
240 			synchronize_rcu();
241 			break;
242 		}
243 	}
244 
245 	__stmmac_disable_all_queues(priv);
246 }
247 
248 /**
249  * stmmac_enable_all_queues - Enable all queues
250  * @priv: driver private structure
251  */
252 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 {
254 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
255 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
256 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
257 	u32 queue;
258 
259 	for (queue = 0; queue < maxq; queue++) {
260 		struct stmmac_channel *ch = &priv->channel[queue];
261 
262 		if (stmmac_xdp_is_enabled(priv) &&
263 		    test_bit(queue, priv->af_xdp_zc_qps)) {
264 			napi_enable(&ch->rxtx_napi);
265 			continue;
266 		}
267 
268 		if (queue < rx_queues_cnt)
269 			napi_enable(&ch->rx_napi);
270 		if (queue < tx_queues_cnt)
271 			napi_enable(&ch->tx_napi);
272 	}
273 }
274 
275 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 {
277 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
278 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
279 		queue_work(priv->wq, &priv->service_task);
280 }
281 
282 static void stmmac_global_err(struct stmmac_priv *priv)
283 {
284 	netif_carrier_off(priv->dev);
285 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
286 	stmmac_service_event_schedule(priv);
287 }
288 
289 /**
290  * stmmac_clk_csr_set - dynamically set the MDC clock
291  * @priv: driver private structure
292  * Description: this is to dynamically set the MDC clock according to the csr
293  * clock input.
294  * Note:
295  *	If a specific clk_csr value is passed from the platform
296  *	this means that the CSR Clock Range selection cannot be
297  *	changed at run-time and it is fixed (as reported in the driver
298  *	documentation). Viceversa the driver will try to set the MDC
299  *	clock dynamically according to the actual clock input.
300  */
301 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
302 {
303 	u32 clk_rate;
304 
305 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306 
307 	/* Platform provided default clk_csr would be assumed valid
308 	 * for all other cases except for the below mentioned ones.
309 	 * For values higher than the IEEE 802.3 specified frequency
310 	 * we can not estimate the proper divider as it is not known
311 	 * the frequency of clk_csr_i. So we do not change the default
312 	 * divider.
313 	 */
314 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
315 		if (clk_rate < CSR_F_35M)
316 			priv->clk_csr = STMMAC_CSR_20_35M;
317 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
318 			priv->clk_csr = STMMAC_CSR_35_60M;
319 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
320 			priv->clk_csr = STMMAC_CSR_60_100M;
321 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
322 			priv->clk_csr = STMMAC_CSR_100_150M;
323 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
324 			priv->clk_csr = STMMAC_CSR_150_250M;
325 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
326 			priv->clk_csr = STMMAC_CSR_250_300M;
327 	}
328 
329 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
330 		if (clk_rate > 160000000)
331 			priv->clk_csr = 0x03;
332 		else if (clk_rate > 80000000)
333 			priv->clk_csr = 0x02;
334 		else if (clk_rate > 40000000)
335 			priv->clk_csr = 0x01;
336 		else
337 			priv->clk_csr = 0;
338 	}
339 
340 	if (priv->plat->has_xgmac) {
341 		if (clk_rate > 400000000)
342 			priv->clk_csr = 0x5;
343 		else if (clk_rate > 350000000)
344 			priv->clk_csr = 0x4;
345 		else if (clk_rate > 300000000)
346 			priv->clk_csr = 0x3;
347 		else if (clk_rate > 250000000)
348 			priv->clk_csr = 0x2;
349 		else if (clk_rate > 150000000)
350 			priv->clk_csr = 0x1;
351 		else
352 			priv->clk_csr = 0x0;
353 	}
354 }
355 
356 static void print_pkt(unsigned char *buf, int len)
357 {
358 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
359 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
360 }
361 
362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 {
364 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
365 	u32 avail;
366 
367 	if (tx_q->dirty_tx > tx_q->cur_tx)
368 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 	else
370 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
371 
372 	return avail;
373 }
374 
375 /**
376  * stmmac_rx_dirty - Get RX queue dirty
377  * @priv: driver private structure
378  * @queue: RX queue index
379  */
380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 {
382 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
383 	u32 dirty;
384 
385 	if (rx_q->dirty_rx <= rx_q->cur_rx)
386 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 	else
388 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
389 
390 	return dirty;
391 }
392 
393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
394 {
395 	int tx_lpi_timer;
396 
397 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
398 	priv->eee_sw_timer_en = en ? 0 : 1;
399 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
400 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
401 }
402 
403 /**
404  * stmmac_enable_eee_mode - check and enter in LPI mode
405  * @priv: driver private structure
406  * Description: this function is to verify and enter in LPI mode in case of
407  * EEE.
408  */
409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 {
411 	u32 tx_cnt = priv->plat->tx_queues_to_use;
412 	u32 queue;
413 
414 	/* check if all TX queues have the work finished */
415 	for (queue = 0; queue < tx_cnt; queue++) {
416 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417 
418 		if (tx_q->dirty_tx != tx_q->cur_tx)
419 			return -EBUSY; /* still unfinished work */
420 	}
421 
422 	/* Check and enter in LPI mode */
423 	if (!priv->tx_path_in_lpi_mode)
424 		stmmac_set_eee_mode(priv, priv->hw,
425 			priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
426 	return 0;
427 }
428 
429 /**
430  * stmmac_disable_eee_mode - disable and exit from LPI mode
431  * @priv: driver private structure
432  * Description: this function is to exit and disable EEE in case of
433  * LPI state is true. This is called by the xmit.
434  */
435 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 {
437 	if (!priv->eee_sw_timer_en) {
438 		stmmac_lpi_entry_timer_config(priv, 0);
439 		return;
440 	}
441 
442 	stmmac_reset_eee_mode(priv, priv->hw);
443 	del_timer_sync(&priv->eee_ctrl_timer);
444 	priv->tx_path_in_lpi_mode = false;
445 }
446 
447 /**
448  * stmmac_eee_ctrl_timer - EEE TX SW timer.
449  * @t:  timer_list struct containing private info
450  * Description:
451  *  if there is no data transfer and if we are not in LPI state,
452  *  then MAC Transmitter can be moved to LPI state.
453  */
454 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 {
456 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457 
458 	if (stmmac_enable_eee_mode(priv))
459 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
460 }
461 
462 /**
463  * stmmac_eee_init - init EEE
464  * @priv: driver private structure
465  * Description:
466  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
467  *  can also manage EEE, this function enable the LPI state and start related
468  *  timer.
469  */
470 bool stmmac_eee_init(struct stmmac_priv *priv)
471 {
472 	int eee_tw_timer = priv->eee_tw_timer;
473 
474 	/* Using PCS we cannot dial with the phy registers at this stage
475 	 * so we do not support extra feature like EEE.
476 	 */
477 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
478 	    priv->hw->pcs == STMMAC_PCS_RTBI)
479 		return false;
480 
481 	/* Check if MAC core supports the EEE feature. */
482 	if (!priv->dma_cap.eee)
483 		return false;
484 
485 	mutex_lock(&priv->lock);
486 
487 	/* Check if it needs to be deactivated */
488 	if (!priv->eee_active) {
489 		if (priv->eee_enabled) {
490 			netdev_dbg(priv->dev, "disable EEE\n");
491 			stmmac_lpi_entry_timer_config(priv, 0);
492 			del_timer_sync(&priv->eee_ctrl_timer);
493 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 			if (priv->hw->xpcs)
495 				xpcs_config_eee(priv->hw->xpcs,
496 						priv->plat->mult_fact_100ns,
497 						false);
498 		}
499 		mutex_unlock(&priv->lock);
500 		return false;
501 	}
502 
503 	if (priv->eee_active && !priv->eee_enabled) {
504 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
505 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
506 				     eee_tw_timer);
507 		if (priv->hw->xpcs)
508 			xpcs_config_eee(priv->hw->xpcs,
509 					priv->plat->mult_fact_100ns,
510 					true);
511 	}
512 
513 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
514 		del_timer_sync(&priv->eee_ctrl_timer);
515 		priv->tx_path_in_lpi_mode = false;
516 		stmmac_lpi_entry_timer_config(priv, 1);
517 	} else {
518 		stmmac_lpi_entry_timer_config(priv, 0);
519 		mod_timer(&priv->eee_ctrl_timer,
520 			  STMMAC_LPI_T(priv->tx_lpi_timer));
521 	}
522 
523 	mutex_unlock(&priv->lock);
524 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
525 	return true;
526 }
527 
528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
529  * @priv: driver private structure
530  * @p : descriptor pointer
531  * @skb : the socket buffer
532  * Description :
533  * This function will read timestamp from the descriptor & pass it to stack.
534  * and also perform some sanity checks.
535  */
536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
537 				   struct dma_desc *p, struct sk_buff *skb)
538 {
539 	struct skb_shared_hwtstamps shhwtstamp;
540 	bool found = false;
541 	u64 ns = 0;
542 
543 	if (!priv->hwts_tx_en)
544 		return;
545 
546 	/* exit if skb doesn't support hw tstamp */
547 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
548 		return;
549 
550 	/* check tx tstamp status */
551 	if (stmmac_get_tx_timestamp_status(priv, p)) {
552 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 		found = true;
554 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
555 		found = true;
556 	}
557 
558 	if (found) {
559 		ns -= priv->plat->cdc_error_adj;
560 
561 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
562 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
563 
564 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
565 		/* pass tstamp to stack */
566 		skb_tstamp_tx(skb, &shhwtstamp);
567 	}
568 }
569 
570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
571  * @priv: driver private structure
572  * @p : descriptor pointer
573  * @np : next descriptor pointer
574  * @skb : the socket buffer
575  * Description :
576  * This function will read received packet's timestamp from the descriptor
577  * and pass it to stack. It also perform some sanity checks.
578  */
579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
580 				   struct dma_desc *np, struct sk_buff *skb)
581 {
582 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
583 	struct dma_desc *desc = p;
584 	u64 ns = 0;
585 
586 	if (!priv->hwts_rx_en)
587 		return;
588 	/* For GMAC4, the valid timestamp is from CTX next desc. */
589 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
590 		desc = np;
591 
592 	/* Check if timestamp is available */
593 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
594 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595 
596 		ns -= priv->plat->cdc_error_adj;
597 
598 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
599 		shhwtstamp = skb_hwtstamps(skb);
600 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
601 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 	} else  {
603 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
604 	}
605 }
606 
607 /**
608  *  stmmac_hwtstamp_set - control hardware timestamping.
609  *  @dev: device pointer.
610  *  @ifr: An IOCTL specific structure, that can contain a pointer to
611  *  a proprietary structure used to pass information to the driver.
612  *  Description:
613  *  This function configures the MAC to enable/disable both outgoing(TX)
614  *  and incoming(RX) packets time stamping based on user input.
615  *  Return Value:
616  *  0 on success and an appropriate -ve integer on failure.
617  */
618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 {
620 	struct stmmac_priv *priv = netdev_priv(dev);
621 	struct hwtstamp_config config;
622 	u32 ptp_v2 = 0;
623 	u32 tstamp_all = 0;
624 	u32 ptp_over_ipv4_udp = 0;
625 	u32 ptp_over_ipv6_udp = 0;
626 	u32 ptp_over_ethernet = 0;
627 	u32 snap_type_sel = 0;
628 	u32 ts_master_en = 0;
629 	u32 ts_event_en = 0;
630 
631 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
632 		netdev_alert(priv->dev, "No support for HW time stamping\n");
633 		priv->hwts_tx_en = 0;
634 		priv->hwts_rx_en = 0;
635 
636 		return -EOPNOTSUPP;
637 	}
638 
639 	if (copy_from_user(&config, ifr->ifr_data,
640 			   sizeof(config)))
641 		return -EFAULT;
642 
643 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
644 		   __func__, config.flags, config.tx_type, config.rx_filter);
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id < DWMAC_CORE_4_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
788 
789 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
790 		priv->systime_flags |= tstamp_all | ptp_v2 |
791 				       ptp_over_ethernet | ptp_over_ipv6_udp |
792 				       ptp_over_ipv4_udp | ts_event_en |
793 				       ts_master_en | snap_type_sel;
794 	}
795 
796 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797 
798 	memcpy(&priv->tstamp_config, &config, sizeof(config));
799 
800 	return copy_to_user(ifr->ifr_data, &config,
801 			    sizeof(config)) ? -EFAULT : 0;
802 }
803 
804 /**
805  *  stmmac_hwtstamp_get - read hardware timestamping.
806  *  @dev: device pointer.
807  *  @ifr: An IOCTL specific structure, that can contain a pointer to
808  *  a proprietary structure used to pass information to the driver.
809  *  Description:
810  *  This function obtain the current hardware timestamping settings
811  *  as requested.
812  */
813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 {
815 	struct stmmac_priv *priv = netdev_priv(dev);
816 	struct hwtstamp_config *config = &priv->tstamp_config;
817 
818 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
819 		return -EOPNOTSUPP;
820 
821 	return copy_to_user(ifr->ifr_data, config,
822 			    sizeof(*config)) ? -EFAULT : 0;
823 }
824 
825 /**
826  * stmmac_init_tstamp_counter - init hardware timestamping counter
827  * @priv: driver private structure
828  * @systime_flags: timestamping flags
829  * Description:
830  * Initialize hardware counter for packet timestamping.
831  * This is valid as long as the interface is open and not suspended.
832  * Will be rerun after resuming from suspend, case in which the timestamping
833  * flags updated by stmmac_hwtstamp_set() also need to be restored.
834  */
835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 {
837 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
838 	struct timespec64 now;
839 	u32 sec_inc = 0;
840 	u64 temp = 0;
841 
842 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
843 		return -EOPNOTSUPP;
844 
845 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
846 	priv->systime_flags = systime_flags;
847 
848 	/* program Sub Second Increment reg */
849 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
850 					   priv->plat->clk_ptp_rate,
851 					   xmac, &sec_inc);
852 	temp = div_u64(1000000000ULL, sec_inc);
853 
854 	/* Store sub second increment for later use */
855 	priv->sub_second_inc = sec_inc;
856 
857 	/* calculate default added value:
858 	 * formula is :
859 	 * addend = (2^32)/freq_div_ratio;
860 	 * where, freq_div_ratio = 1e9ns/sec_inc
861 	 */
862 	temp = (u64)(temp << 32);
863 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
864 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865 
866 	/* initialize system time */
867 	ktime_get_real_ts64(&now);
868 
869 	/* lower 32 bits of tv_sec are safe until y2106 */
870 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
875 
876 /**
877  * stmmac_init_ptp - init PTP
878  * @priv: driver private structure
879  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
880  * This is done by looking at the HW cap. register.
881  * This function also registers the ptp driver.
882  */
883 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 {
885 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
886 	int ret;
887 
888 	if (priv->plat->ptp_clk_freq_config)
889 		priv->plat->ptp_clk_freq_config(priv);
890 
891 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
892 	if (ret)
893 		return ret;
894 
895 	priv->adv_ts = 0;
896 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
897 	if (xmac && priv->dma_cap.atime_stamp)
898 		priv->adv_ts = 1;
899 	/* Dwmac 3.x core with extend_desc can support adv_ts */
900 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
901 		priv->adv_ts = 1;
902 
903 	if (priv->dma_cap.time_stamp)
904 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
905 
906 	if (priv->adv_ts)
907 		netdev_info(priv->dev,
908 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
909 
910 	priv->hwts_tx_en = 0;
911 	priv->hwts_rx_en = 0;
912 
913 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
914 		stmmac_hwtstamp_correct_latency(priv, priv);
915 
916 	return 0;
917 }
918 
919 static void stmmac_release_ptp(struct stmmac_priv *priv)
920 {
921 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
922 	stmmac_ptp_unregister(priv);
923 }
924 
925 /**
926  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
927  *  @priv: driver private structure
928  *  @duplex: duplex passed to the next function
929  *  Description: It is used for configuring the flow control in all queues
930  */
931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
932 {
933 	u32 tx_cnt = priv->plat->tx_queues_to_use;
934 
935 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
936 			priv->pause, tx_cnt);
937 }
938 
939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
940 						 phy_interface_t interface)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 
944 	if (priv->hw->xpcs)
945 		return &priv->hw->xpcs->pcs;
946 
947 	if (priv->hw->lynx_pcs)
948 		return priv->hw->lynx_pcs;
949 
950 	return NULL;
951 }
952 
953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
954 			      const struct phylink_link_state *state)
955 {
956 	/* Nothing to do, xpcs_config() handles everything */
957 }
958 
959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
960 {
961 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
962 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
963 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
964 	bool *hs_enable = &fpe_cfg->hs_enable;
965 
966 	if (is_up && *hs_enable) {
967 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg,
968 					MPACKET_VERIFY);
969 	} else {
970 		*lo_state = FPE_STATE_OFF;
971 		*lp_state = FPE_STATE_OFF;
972 	}
973 }
974 
975 static void stmmac_mac_link_down(struct phylink_config *config,
976 				 unsigned int mode, phy_interface_t interface)
977 {
978 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
979 
980 	stmmac_mac_set(priv, priv->ioaddr, false);
981 	priv->eee_active = false;
982 	priv->tx_lpi_enabled = false;
983 	priv->eee_enabled = stmmac_eee_init(priv);
984 	stmmac_set_eee_pls(priv, priv->hw, false);
985 
986 	if (priv->dma_cap.fpesel)
987 		stmmac_fpe_link_state_handle(priv, false);
988 }
989 
990 static void stmmac_mac_link_up(struct phylink_config *config,
991 			       struct phy_device *phy,
992 			       unsigned int mode, phy_interface_t interface,
993 			       int speed, int duplex,
994 			       bool tx_pause, bool rx_pause)
995 {
996 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
997 	u32 old_ctrl, ctrl;
998 
999 	if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
1000 	    priv->plat->serdes_powerup)
1001 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
1002 
1003 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1004 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1005 
1006 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1007 		switch (speed) {
1008 		case SPEED_10000:
1009 			ctrl |= priv->hw->link.xgmii.speed10000;
1010 			break;
1011 		case SPEED_5000:
1012 			ctrl |= priv->hw->link.xgmii.speed5000;
1013 			break;
1014 		case SPEED_2500:
1015 			ctrl |= priv->hw->link.xgmii.speed2500;
1016 			break;
1017 		default:
1018 			return;
1019 		}
1020 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1021 		switch (speed) {
1022 		case SPEED_100000:
1023 			ctrl |= priv->hw->link.xlgmii.speed100000;
1024 			break;
1025 		case SPEED_50000:
1026 			ctrl |= priv->hw->link.xlgmii.speed50000;
1027 			break;
1028 		case SPEED_40000:
1029 			ctrl |= priv->hw->link.xlgmii.speed40000;
1030 			break;
1031 		case SPEED_25000:
1032 			ctrl |= priv->hw->link.xlgmii.speed25000;
1033 			break;
1034 		case SPEED_10000:
1035 			ctrl |= priv->hw->link.xgmii.speed10000;
1036 			break;
1037 		case SPEED_2500:
1038 			ctrl |= priv->hw->link.speed2500;
1039 			break;
1040 		case SPEED_1000:
1041 			ctrl |= priv->hw->link.speed1000;
1042 			break;
1043 		default:
1044 			return;
1045 		}
1046 	} else {
1047 		switch (speed) {
1048 		case SPEED_2500:
1049 			ctrl |= priv->hw->link.speed2500;
1050 			break;
1051 		case SPEED_1000:
1052 			ctrl |= priv->hw->link.speed1000;
1053 			break;
1054 		case SPEED_100:
1055 			ctrl |= priv->hw->link.speed100;
1056 			break;
1057 		case SPEED_10:
1058 			ctrl |= priv->hw->link.speed10;
1059 			break;
1060 		default:
1061 			return;
1062 		}
1063 	}
1064 
1065 	priv->speed = speed;
1066 
1067 	if (priv->plat->fix_mac_speed)
1068 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
1069 
1070 	if (!duplex)
1071 		ctrl &= ~priv->hw->link.duplex;
1072 	else
1073 		ctrl |= priv->hw->link.duplex;
1074 
1075 	/* Flow Control operation */
1076 	if (rx_pause && tx_pause)
1077 		priv->flow_ctrl = FLOW_AUTO;
1078 	else if (rx_pause && !tx_pause)
1079 		priv->flow_ctrl = FLOW_RX;
1080 	else if (!rx_pause && tx_pause)
1081 		priv->flow_ctrl = FLOW_TX;
1082 	else
1083 		priv->flow_ctrl = FLOW_OFF;
1084 
1085 	stmmac_mac_flow_ctrl(priv, duplex);
1086 
1087 	if (ctrl != old_ctrl)
1088 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1089 
1090 	stmmac_mac_set(priv, priv->ioaddr, true);
1091 	if (phy && priv->dma_cap.eee) {
1092 		priv->eee_active =
1093 			phy_init_eee(phy, !(priv->plat->flags &
1094 				STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1095 		priv->eee_enabled = stmmac_eee_init(priv);
1096 		priv->tx_lpi_enabled = priv->eee_enabled;
1097 		stmmac_set_eee_pls(priv, priv->hw, true);
1098 	}
1099 
1100 	if (priv->dma_cap.fpesel)
1101 		stmmac_fpe_link_state_handle(priv, true);
1102 
1103 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
1104 		stmmac_hwtstamp_correct_latency(priv, priv);
1105 }
1106 
1107 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1108 	.mac_select_pcs = stmmac_mac_select_pcs,
1109 	.mac_config = stmmac_mac_config,
1110 	.mac_link_down = stmmac_mac_link_down,
1111 	.mac_link_up = stmmac_mac_link_up,
1112 };
1113 
1114 /**
1115  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1116  * @priv: driver private structure
1117  * Description: this is to verify if the HW supports the PCS.
1118  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1119  * configured for the TBI, RTBI, or SGMII PHY interface.
1120  */
1121 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1122 {
1123 	int interface = priv->plat->mac_interface;
1124 
1125 	if (priv->dma_cap.pcs) {
1126 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1127 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1128 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1129 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1130 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1131 			priv->hw->pcs = STMMAC_PCS_RGMII;
1132 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1133 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1134 			priv->hw->pcs = STMMAC_PCS_SGMII;
1135 		}
1136 	}
1137 }
1138 
1139 /**
1140  * stmmac_init_phy - PHY initialization
1141  * @dev: net device structure
1142  * Description: it initializes the driver's PHY state, and attaches the PHY
1143  * to the mac driver.
1144  *  Return value:
1145  *  0 on success
1146  */
1147 static int stmmac_init_phy(struct net_device *dev)
1148 {
1149 	struct stmmac_priv *priv = netdev_priv(dev);
1150 	struct fwnode_handle *phy_fwnode;
1151 	struct fwnode_handle *fwnode;
1152 	int ret;
1153 
1154 	if (!phylink_expects_phy(priv->phylink))
1155 		return 0;
1156 
1157 	fwnode = priv->plat->port_node;
1158 	if (!fwnode)
1159 		fwnode = dev_fwnode(priv->device);
1160 
1161 	if (fwnode)
1162 		phy_fwnode = fwnode_get_phy_node(fwnode);
1163 	else
1164 		phy_fwnode = NULL;
1165 
1166 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1167 	 * manually parse it
1168 	 */
1169 	if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1170 		int addr = priv->plat->phy_addr;
1171 		struct phy_device *phydev;
1172 
1173 		if (addr < 0) {
1174 			netdev_err(priv->dev, "no phy found\n");
1175 			return -ENODEV;
1176 		}
1177 
1178 		phydev = mdiobus_get_phy(priv->mii, addr);
1179 		if (!phydev) {
1180 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1181 			return -ENODEV;
1182 		}
1183 
1184 		ret = phylink_connect_phy(priv->phylink, phydev);
1185 	} else {
1186 		fwnode_handle_put(phy_fwnode);
1187 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1188 	}
1189 
1190 	if (!priv->plat->pmt) {
1191 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1192 
1193 		phylink_ethtool_get_wol(priv->phylink, &wol);
1194 		device_set_wakeup_capable(priv->device, !!wol.supported);
1195 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 static void stmmac_set_half_duplex(struct stmmac_priv *priv)
1202 {
1203 	/* Half-Duplex can only work with single tx queue */
1204 	if (priv->plat->tx_queues_to_use > 1)
1205 		priv->phylink_config.mac_capabilities &=
1206 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1207 	else
1208 		priv->phylink_config.mac_capabilities |=
1209 			(MAC_10HD | MAC_100HD | MAC_1000HD);
1210 }
1211 
1212 static int stmmac_phy_setup(struct stmmac_priv *priv)
1213 {
1214 	struct stmmac_mdio_bus_data *mdio_bus_data;
1215 	int mode = priv->plat->phy_interface;
1216 	struct fwnode_handle *fwnode;
1217 	struct phylink *phylink;
1218 	int max_speed;
1219 
1220 	priv->phylink_config.dev = &priv->dev->dev;
1221 	priv->phylink_config.type = PHYLINK_NETDEV;
1222 	priv->phylink_config.mac_managed_pm = true;
1223 
1224 	mdio_bus_data = priv->plat->mdio_bus_data;
1225 	if (mdio_bus_data)
1226 		priv->phylink_config.ovr_an_inband =
1227 			mdio_bus_data->xpcs_an_inband;
1228 
1229 	/* Set the platform/firmware specified interface mode. Note, phylink
1230 	 * deals with the PHY interface mode, not the MAC interface mode.
1231 	 */
1232 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1233 
1234 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1235 	if (priv->hw->xpcs)
1236 		xpcs_get_interfaces(priv->hw->xpcs,
1237 				    priv->phylink_config.supported_interfaces);
1238 
1239 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1240 						MAC_10FD | MAC_100FD |
1241 						MAC_1000FD;
1242 
1243 	stmmac_set_half_duplex(priv);
1244 
1245 	/* Get the MAC specific capabilities */
1246 	stmmac_mac_phylink_get_caps(priv);
1247 
1248 	max_speed = priv->plat->max_speed;
1249 	if (max_speed)
1250 		phylink_limit_mac_speed(&priv->phylink_config, max_speed);
1251 
1252 	fwnode = priv->plat->port_node;
1253 	if (!fwnode)
1254 		fwnode = dev_fwnode(priv->device);
1255 
1256 	phylink = phylink_create(&priv->phylink_config, fwnode,
1257 				 mode, &stmmac_phylink_mac_ops);
1258 	if (IS_ERR(phylink))
1259 		return PTR_ERR(phylink);
1260 
1261 	priv->phylink = phylink;
1262 	return 0;
1263 }
1264 
1265 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1266 				    struct stmmac_dma_conf *dma_conf)
1267 {
1268 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1269 	unsigned int desc_size;
1270 	void *head_rx;
1271 	u32 queue;
1272 
1273 	/* Display RX rings */
1274 	for (queue = 0; queue < rx_cnt; queue++) {
1275 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1276 
1277 		pr_info("\tRX Queue %u rings\n", queue);
1278 
1279 		if (priv->extend_desc) {
1280 			head_rx = (void *)rx_q->dma_erx;
1281 			desc_size = sizeof(struct dma_extended_desc);
1282 		} else {
1283 			head_rx = (void *)rx_q->dma_rx;
1284 			desc_size = sizeof(struct dma_desc);
1285 		}
1286 
1287 		/* Display RX ring */
1288 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1289 				    rx_q->dma_rx_phy, desc_size);
1290 	}
1291 }
1292 
1293 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1294 				    struct stmmac_dma_conf *dma_conf)
1295 {
1296 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1297 	unsigned int desc_size;
1298 	void *head_tx;
1299 	u32 queue;
1300 
1301 	/* Display TX rings */
1302 	for (queue = 0; queue < tx_cnt; queue++) {
1303 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1304 
1305 		pr_info("\tTX Queue %d rings\n", queue);
1306 
1307 		if (priv->extend_desc) {
1308 			head_tx = (void *)tx_q->dma_etx;
1309 			desc_size = sizeof(struct dma_extended_desc);
1310 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1311 			head_tx = (void *)tx_q->dma_entx;
1312 			desc_size = sizeof(struct dma_edesc);
1313 		} else {
1314 			head_tx = (void *)tx_q->dma_tx;
1315 			desc_size = sizeof(struct dma_desc);
1316 		}
1317 
1318 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1319 				    tx_q->dma_tx_phy, desc_size);
1320 	}
1321 }
1322 
1323 static void stmmac_display_rings(struct stmmac_priv *priv,
1324 				 struct stmmac_dma_conf *dma_conf)
1325 {
1326 	/* Display RX ring */
1327 	stmmac_display_rx_rings(priv, dma_conf);
1328 
1329 	/* Display TX ring */
1330 	stmmac_display_tx_rings(priv, dma_conf);
1331 }
1332 
1333 static int stmmac_set_bfsize(int mtu, int bufsize)
1334 {
1335 	int ret = bufsize;
1336 
1337 	if (mtu >= BUF_SIZE_8KiB)
1338 		ret = BUF_SIZE_16KiB;
1339 	else if (mtu >= BUF_SIZE_4KiB)
1340 		ret = BUF_SIZE_8KiB;
1341 	else if (mtu >= BUF_SIZE_2KiB)
1342 		ret = BUF_SIZE_4KiB;
1343 	else if (mtu > DEFAULT_BUFSIZE)
1344 		ret = BUF_SIZE_2KiB;
1345 	else
1346 		ret = DEFAULT_BUFSIZE;
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  * stmmac_clear_rx_descriptors - clear RX descriptors
1353  * @priv: driver private structure
1354  * @dma_conf: structure to take the dma data
1355  * @queue: RX queue index
1356  * Description: this function is called to clear the RX descriptors
1357  * in case of both basic and extended descriptors are used.
1358  */
1359 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1360 					struct stmmac_dma_conf *dma_conf,
1361 					u32 queue)
1362 {
1363 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1364 	int i;
1365 
1366 	/* Clear the RX descriptors */
1367 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1368 		if (priv->extend_desc)
1369 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1370 					priv->use_riwt, priv->mode,
1371 					(i == dma_conf->dma_rx_size - 1),
1372 					dma_conf->dma_buf_sz);
1373 		else
1374 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1375 					priv->use_riwt, priv->mode,
1376 					(i == dma_conf->dma_rx_size - 1),
1377 					dma_conf->dma_buf_sz);
1378 }
1379 
1380 /**
1381  * stmmac_clear_tx_descriptors - clear tx descriptors
1382  * @priv: driver private structure
1383  * @dma_conf: structure to take the dma data
1384  * @queue: TX queue index.
1385  * Description: this function is called to clear the TX descriptors
1386  * in case of both basic and extended descriptors are used.
1387  */
1388 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1389 					struct stmmac_dma_conf *dma_conf,
1390 					u32 queue)
1391 {
1392 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1393 	int i;
1394 
1395 	/* Clear the TX descriptors */
1396 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1397 		int last = (i == (dma_conf->dma_tx_size - 1));
1398 		struct dma_desc *p;
1399 
1400 		if (priv->extend_desc)
1401 			p = &tx_q->dma_etx[i].basic;
1402 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1403 			p = &tx_q->dma_entx[i].basic;
1404 		else
1405 			p = &tx_q->dma_tx[i];
1406 
1407 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1408 	}
1409 }
1410 
1411 /**
1412  * stmmac_clear_descriptors - clear descriptors
1413  * @priv: driver private structure
1414  * @dma_conf: structure to take the dma data
1415  * Description: this function is called to clear the TX and RX descriptors
1416  * in case of both basic and extended descriptors are used.
1417  */
1418 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1419 				     struct stmmac_dma_conf *dma_conf)
1420 {
1421 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1422 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1423 	u32 queue;
1424 
1425 	/* Clear the RX descriptors */
1426 	for (queue = 0; queue < rx_queue_cnt; queue++)
1427 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1428 
1429 	/* Clear the TX descriptors */
1430 	for (queue = 0; queue < tx_queue_cnt; queue++)
1431 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1432 }
1433 
1434 /**
1435  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1436  * @priv: driver private structure
1437  * @dma_conf: structure to take the dma data
1438  * @p: descriptor pointer
1439  * @i: descriptor index
1440  * @flags: gfp flag
1441  * @queue: RX queue index
1442  * Description: this function is called to allocate a receive buffer, perform
1443  * the DMA mapping and init the descriptor.
1444  */
1445 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1446 				  struct stmmac_dma_conf *dma_conf,
1447 				  struct dma_desc *p,
1448 				  int i, gfp_t flags, u32 queue)
1449 {
1450 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1451 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1452 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1453 
1454 	if (priv->dma_cap.host_dma_width <= 32)
1455 		gfp |= GFP_DMA32;
1456 
1457 	if (!buf->page) {
1458 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1459 		if (!buf->page)
1460 			return -ENOMEM;
1461 		buf->page_offset = stmmac_rx_offset(priv);
1462 	}
1463 
1464 	if (priv->sph && !buf->sec_page) {
1465 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1466 		if (!buf->sec_page)
1467 			return -ENOMEM;
1468 
1469 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1470 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1471 	} else {
1472 		buf->sec_page = NULL;
1473 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1474 	}
1475 
1476 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1477 
1478 	stmmac_set_desc_addr(priv, p, buf->addr);
1479 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1480 		stmmac_init_desc3(priv, p);
1481 
1482 	return 0;
1483 }
1484 
1485 /**
1486  * stmmac_free_rx_buffer - free RX dma buffers
1487  * @priv: private structure
1488  * @rx_q: RX queue
1489  * @i: buffer index.
1490  */
1491 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1492 				  struct stmmac_rx_queue *rx_q,
1493 				  int i)
1494 {
1495 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1496 
1497 	if (buf->page)
1498 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1499 	buf->page = NULL;
1500 
1501 	if (buf->sec_page)
1502 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1503 	buf->sec_page = NULL;
1504 }
1505 
1506 /**
1507  * stmmac_free_tx_buffer - free RX dma buffers
1508  * @priv: private structure
1509  * @dma_conf: structure to take the dma data
1510  * @queue: RX queue index
1511  * @i: buffer index.
1512  */
1513 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1514 				  struct stmmac_dma_conf *dma_conf,
1515 				  u32 queue, int i)
1516 {
1517 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1518 
1519 	if (tx_q->tx_skbuff_dma[i].buf &&
1520 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1521 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1522 			dma_unmap_page(priv->device,
1523 				       tx_q->tx_skbuff_dma[i].buf,
1524 				       tx_q->tx_skbuff_dma[i].len,
1525 				       DMA_TO_DEVICE);
1526 		else
1527 			dma_unmap_single(priv->device,
1528 					 tx_q->tx_skbuff_dma[i].buf,
1529 					 tx_q->tx_skbuff_dma[i].len,
1530 					 DMA_TO_DEVICE);
1531 	}
1532 
1533 	if (tx_q->xdpf[i] &&
1534 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1535 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1536 		xdp_return_frame(tx_q->xdpf[i]);
1537 		tx_q->xdpf[i] = NULL;
1538 	}
1539 
1540 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1541 		tx_q->xsk_frames_done++;
1542 
1543 	if (tx_q->tx_skbuff[i] &&
1544 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1545 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1546 		tx_q->tx_skbuff[i] = NULL;
1547 	}
1548 
1549 	tx_q->tx_skbuff_dma[i].buf = 0;
1550 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1551 }
1552 
1553 /**
1554  * dma_free_rx_skbufs - free RX dma buffers
1555  * @priv: private structure
1556  * @dma_conf: structure to take the dma data
1557  * @queue: RX queue index
1558  */
1559 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1560 			       struct stmmac_dma_conf *dma_conf,
1561 			       u32 queue)
1562 {
1563 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1564 	int i;
1565 
1566 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1567 		stmmac_free_rx_buffer(priv, rx_q, i);
1568 }
1569 
1570 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1571 				   struct stmmac_dma_conf *dma_conf,
1572 				   u32 queue, gfp_t flags)
1573 {
1574 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1575 	int i;
1576 
1577 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1578 		struct dma_desc *p;
1579 		int ret;
1580 
1581 		if (priv->extend_desc)
1582 			p = &((rx_q->dma_erx + i)->basic);
1583 		else
1584 			p = rx_q->dma_rx + i;
1585 
1586 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1587 					     queue);
1588 		if (ret)
1589 			return ret;
1590 
1591 		rx_q->buf_alloc_num++;
1592 	}
1593 
1594 	return 0;
1595 }
1596 
1597 /**
1598  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1599  * @priv: private structure
1600  * @dma_conf: structure to take the dma data
1601  * @queue: RX queue index
1602  */
1603 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1604 				struct stmmac_dma_conf *dma_conf,
1605 				u32 queue)
1606 {
1607 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1608 	int i;
1609 
1610 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1611 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1612 
1613 		if (!buf->xdp)
1614 			continue;
1615 
1616 		xsk_buff_free(buf->xdp);
1617 		buf->xdp = NULL;
1618 	}
1619 }
1620 
1621 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1622 				      struct stmmac_dma_conf *dma_conf,
1623 				      u32 queue)
1624 {
1625 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1626 	int i;
1627 
1628 	/* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1629 	 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1630 	 * use this macro to make sure no size violations.
1631 	 */
1632 	XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1633 
1634 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1635 		struct stmmac_rx_buffer *buf;
1636 		dma_addr_t dma_addr;
1637 		struct dma_desc *p;
1638 
1639 		if (priv->extend_desc)
1640 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1641 		else
1642 			p = rx_q->dma_rx + i;
1643 
1644 		buf = &rx_q->buf_pool[i];
1645 
1646 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1647 		if (!buf->xdp)
1648 			return -ENOMEM;
1649 
1650 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1651 		stmmac_set_desc_addr(priv, p, dma_addr);
1652 		rx_q->buf_alloc_num++;
1653 	}
1654 
1655 	return 0;
1656 }
1657 
1658 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1659 {
1660 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1661 		return NULL;
1662 
1663 	return xsk_get_pool_from_qid(priv->dev, queue);
1664 }
1665 
1666 /**
1667  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1668  * @priv: driver private structure
1669  * @dma_conf: structure to take the dma data
1670  * @queue: RX queue index
1671  * @flags: gfp flag.
1672  * Description: this function initializes the DMA RX descriptors
1673  * and allocates the socket buffers. It supports the chained and ring
1674  * modes.
1675  */
1676 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1677 				    struct stmmac_dma_conf *dma_conf,
1678 				    u32 queue, gfp_t flags)
1679 {
1680 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1681 	int ret;
1682 
1683 	netif_dbg(priv, probe, priv->dev,
1684 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1685 		  (u32)rx_q->dma_rx_phy);
1686 
1687 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1688 
1689 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1690 
1691 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1692 
1693 	if (rx_q->xsk_pool) {
1694 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1695 						   MEM_TYPE_XSK_BUFF_POOL,
1696 						   NULL));
1697 		netdev_info(priv->dev,
1698 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1699 			    rx_q->queue_index);
1700 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1701 	} else {
1702 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1703 						   MEM_TYPE_PAGE_POOL,
1704 						   rx_q->page_pool));
1705 		netdev_info(priv->dev,
1706 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1707 			    rx_q->queue_index);
1708 	}
1709 
1710 	if (rx_q->xsk_pool) {
1711 		/* RX XDP ZC buffer pool may not be populated, e.g.
1712 		 * xdpsock TX-only.
1713 		 */
1714 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1715 	} else {
1716 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1717 		if (ret < 0)
1718 			return -ENOMEM;
1719 	}
1720 
1721 	/* Setup the chained descriptor addresses */
1722 	if (priv->mode == STMMAC_CHAIN_MODE) {
1723 		if (priv->extend_desc)
1724 			stmmac_mode_init(priv, rx_q->dma_erx,
1725 					 rx_q->dma_rx_phy,
1726 					 dma_conf->dma_rx_size, 1);
1727 		else
1728 			stmmac_mode_init(priv, rx_q->dma_rx,
1729 					 rx_q->dma_rx_phy,
1730 					 dma_conf->dma_rx_size, 0);
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static int init_dma_rx_desc_rings(struct net_device *dev,
1737 				  struct stmmac_dma_conf *dma_conf,
1738 				  gfp_t flags)
1739 {
1740 	struct stmmac_priv *priv = netdev_priv(dev);
1741 	u32 rx_count = priv->plat->rx_queues_to_use;
1742 	int queue;
1743 	int ret;
1744 
1745 	/* RX INITIALIZATION */
1746 	netif_dbg(priv, probe, priv->dev,
1747 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1748 
1749 	for (queue = 0; queue < rx_count; queue++) {
1750 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1751 		if (ret)
1752 			goto err_init_rx_buffers;
1753 	}
1754 
1755 	return 0;
1756 
1757 err_init_rx_buffers:
1758 	while (queue >= 0) {
1759 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1760 
1761 		if (rx_q->xsk_pool)
1762 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1763 		else
1764 			dma_free_rx_skbufs(priv, dma_conf, queue);
1765 
1766 		rx_q->buf_alloc_num = 0;
1767 		rx_q->xsk_pool = NULL;
1768 
1769 		queue--;
1770 	}
1771 
1772 	return ret;
1773 }
1774 
1775 /**
1776  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1777  * @priv: driver private structure
1778  * @dma_conf: structure to take the dma data
1779  * @queue: TX queue index
1780  * Description: this function initializes the DMA TX descriptors
1781  * and allocates the socket buffers. It supports the chained and ring
1782  * modes.
1783  */
1784 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1785 				    struct stmmac_dma_conf *dma_conf,
1786 				    u32 queue)
1787 {
1788 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1789 	int i;
1790 
1791 	netif_dbg(priv, probe, priv->dev,
1792 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1793 		  (u32)tx_q->dma_tx_phy);
1794 
1795 	/* Setup the chained descriptor addresses */
1796 	if (priv->mode == STMMAC_CHAIN_MODE) {
1797 		if (priv->extend_desc)
1798 			stmmac_mode_init(priv, tx_q->dma_etx,
1799 					 tx_q->dma_tx_phy,
1800 					 dma_conf->dma_tx_size, 1);
1801 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1802 			stmmac_mode_init(priv, tx_q->dma_tx,
1803 					 tx_q->dma_tx_phy,
1804 					 dma_conf->dma_tx_size, 0);
1805 	}
1806 
1807 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1808 
1809 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1810 		struct dma_desc *p;
1811 
1812 		if (priv->extend_desc)
1813 			p = &((tx_q->dma_etx + i)->basic);
1814 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1815 			p = &((tx_q->dma_entx + i)->basic);
1816 		else
1817 			p = tx_q->dma_tx + i;
1818 
1819 		stmmac_clear_desc(priv, p);
1820 
1821 		tx_q->tx_skbuff_dma[i].buf = 0;
1822 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1823 		tx_q->tx_skbuff_dma[i].len = 0;
1824 		tx_q->tx_skbuff_dma[i].last_segment = false;
1825 		tx_q->tx_skbuff[i] = NULL;
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int init_dma_tx_desc_rings(struct net_device *dev,
1832 				  struct stmmac_dma_conf *dma_conf)
1833 {
1834 	struct stmmac_priv *priv = netdev_priv(dev);
1835 	u32 tx_queue_cnt;
1836 	u32 queue;
1837 
1838 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1839 
1840 	for (queue = 0; queue < tx_queue_cnt; queue++)
1841 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * init_dma_desc_rings - init the RX/TX descriptor rings
1848  * @dev: net device structure
1849  * @dma_conf: structure to take the dma data
1850  * @flags: gfp flag.
1851  * Description: this function initializes the DMA RX/TX descriptors
1852  * and allocates the socket buffers. It supports the chained and ring
1853  * modes.
1854  */
1855 static int init_dma_desc_rings(struct net_device *dev,
1856 			       struct stmmac_dma_conf *dma_conf,
1857 			       gfp_t flags)
1858 {
1859 	struct stmmac_priv *priv = netdev_priv(dev);
1860 	int ret;
1861 
1862 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1863 	if (ret)
1864 		return ret;
1865 
1866 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1867 
1868 	stmmac_clear_descriptors(priv, dma_conf);
1869 
1870 	if (netif_msg_hw(priv))
1871 		stmmac_display_rings(priv, dma_conf);
1872 
1873 	return ret;
1874 }
1875 
1876 /**
1877  * dma_free_tx_skbufs - free TX dma buffers
1878  * @priv: private structure
1879  * @dma_conf: structure to take the dma data
1880  * @queue: TX queue index
1881  */
1882 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1883 			       struct stmmac_dma_conf *dma_conf,
1884 			       u32 queue)
1885 {
1886 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1887 	int i;
1888 
1889 	tx_q->xsk_frames_done = 0;
1890 
1891 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1892 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1893 
1894 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1895 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1896 		tx_q->xsk_frames_done = 0;
1897 		tx_q->xsk_pool = NULL;
1898 	}
1899 }
1900 
1901 /**
1902  * stmmac_free_tx_skbufs - free TX skb buffers
1903  * @priv: private structure
1904  */
1905 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1906 {
1907 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1908 	u32 queue;
1909 
1910 	for (queue = 0; queue < tx_queue_cnt; queue++)
1911 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1912 }
1913 
1914 /**
1915  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1916  * @priv: private structure
1917  * @dma_conf: structure to take the dma data
1918  * @queue: RX queue index
1919  */
1920 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1921 					 struct stmmac_dma_conf *dma_conf,
1922 					 u32 queue)
1923 {
1924 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1925 
1926 	/* Release the DMA RX socket buffers */
1927 	if (rx_q->xsk_pool)
1928 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1929 	else
1930 		dma_free_rx_skbufs(priv, dma_conf, queue);
1931 
1932 	rx_q->buf_alloc_num = 0;
1933 	rx_q->xsk_pool = NULL;
1934 
1935 	/* Free DMA regions of consistent memory previously allocated */
1936 	if (!priv->extend_desc)
1937 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1938 				  sizeof(struct dma_desc),
1939 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1940 	else
1941 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1942 				  sizeof(struct dma_extended_desc),
1943 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1944 
1945 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1946 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1947 
1948 	kfree(rx_q->buf_pool);
1949 	if (rx_q->page_pool)
1950 		page_pool_destroy(rx_q->page_pool);
1951 }
1952 
1953 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1954 				       struct stmmac_dma_conf *dma_conf)
1955 {
1956 	u32 rx_count = priv->plat->rx_queues_to_use;
1957 	u32 queue;
1958 
1959 	/* Free RX queue resources */
1960 	for (queue = 0; queue < rx_count; queue++)
1961 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1962 }
1963 
1964 /**
1965  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1966  * @priv: private structure
1967  * @dma_conf: structure to take the dma data
1968  * @queue: TX queue index
1969  */
1970 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1971 					 struct stmmac_dma_conf *dma_conf,
1972 					 u32 queue)
1973 {
1974 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1975 	size_t size;
1976 	void *addr;
1977 
1978 	/* Release the DMA TX socket buffers */
1979 	dma_free_tx_skbufs(priv, dma_conf, queue);
1980 
1981 	if (priv->extend_desc) {
1982 		size = sizeof(struct dma_extended_desc);
1983 		addr = tx_q->dma_etx;
1984 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1985 		size = sizeof(struct dma_edesc);
1986 		addr = tx_q->dma_entx;
1987 	} else {
1988 		size = sizeof(struct dma_desc);
1989 		addr = tx_q->dma_tx;
1990 	}
1991 
1992 	size *= dma_conf->dma_tx_size;
1993 
1994 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1995 
1996 	kfree(tx_q->tx_skbuff_dma);
1997 	kfree(tx_q->tx_skbuff);
1998 }
1999 
2000 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
2001 				       struct stmmac_dma_conf *dma_conf)
2002 {
2003 	u32 tx_count = priv->plat->tx_queues_to_use;
2004 	u32 queue;
2005 
2006 	/* Free TX queue resources */
2007 	for (queue = 0; queue < tx_count; queue++)
2008 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
2009 }
2010 
2011 /**
2012  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
2013  * @priv: private structure
2014  * @dma_conf: structure to take the dma data
2015  * @queue: RX queue index
2016  * Description: according to which descriptor can be used (extend or basic)
2017  * this function allocates the resources for TX and RX paths. In case of
2018  * reception, for example, it pre-allocated the RX socket buffer in order to
2019  * allow zero-copy mechanism.
2020  */
2021 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2022 					 struct stmmac_dma_conf *dma_conf,
2023 					 u32 queue)
2024 {
2025 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2026 	struct stmmac_channel *ch = &priv->channel[queue];
2027 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2028 	struct page_pool_params pp_params = { 0 };
2029 	unsigned int num_pages;
2030 	unsigned int napi_id;
2031 	int ret;
2032 
2033 	rx_q->queue_index = queue;
2034 	rx_q->priv_data = priv;
2035 
2036 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2037 	pp_params.pool_size = dma_conf->dma_rx_size;
2038 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2039 	pp_params.order = ilog2(num_pages);
2040 	pp_params.nid = dev_to_node(priv->device);
2041 	pp_params.dev = priv->device;
2042 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2043 	pp_params.offset = stmmac_rx_offset(priv);
2044 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2045 
2046 	rx_q->page_pool = page_pool_create(&pp_params);
2047 	if (IS_ERR(rx_q->page_pool)) {
2048 		ret = PTR_ERR(rx_q->page_pool);
2049 		rx_q->page_pool = NULL;
2050 		return ret;
2051 	}
2052 
2053 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2054 				 sizeof(*rx_q->buf_pool),
2055 				 GFP_KERNEL);
2056 	if (!rx_q->buf_pool)
2057 		return -ENOMEM;
2058 
2059 	if (priv->extend_desc) {
2060 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2061 						   dma_conf->dma_rx_size *
2062 						   sizeof(struct dma_extended_desc),
2063 						   &rx_q->dma_rx_phy,
2064 						   GFP_KERNEL);
2065 		if (!rx_q->dma_erx)
2066 			return -ENOMEM;
2067 
2068 	} else {
2069 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2070 						  dma_conf->dma_rx_size *
2071 						  sizeof(struct dma_desc),
2072 						  &rx_q->dma_rx_phy,
2073 						  GFP_KERNEL);
2074 		if (!rx_q->dma_rx)
2075 			return -ENOMEM;
2076 	}
2077 
2078 	if (stmmac_xdp_is_enabled(priv) &&
2079 	    test_bit(queue, priv->af_xdp_zc_qps))
2080 		napi_id = ch->rxtx_napi.napi_id;
2081 	else
2082 		napi_id = ch->rx_napi.napi_id;
2083 
2084 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2085 			       rx_q->queue_index,
2086 			       napi_id);
2087 	if (ret) {
2088 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2089 		return -EINVAL;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2096 				       struct stmmac_dma_conf *dma_conf)
2097 {
2098 	u32 rx_count = priv->plat->rx_queues_to_use;
2099 	u32 queue;
2100 	int ret;
2101 
2102 	/* RX queues buffers and DMA */
2103 	for (queue = 0; queue < rx_count; queue++) {
2104 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2105 		if (ret)
2106 			goto err_dma;
2107 	}
2108 
2109 	return 0;
2110 
2111 err_dma:
2112 	free_dma_rx_desc_resources(priv, dma_conf);
2113 
2114 	return ret;
2115 }
2116 
2117 /**
2118  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2119  * @priv: private structure
2120  * @dma_conf: structure to take the dma data
2121  * @queue: TX queue index
2122  * Description: according to which descriptor can be used (extend or basic)
2123  * this function allocates the resources for TX and RX paths. In case of
2124  * reception, for example, it pre-allocated the RX socket buffer in order to
2125  * allow zero-copy mechanism.
2126  */
2127 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2128 					 struct stmmac_dma_conf *dma_conf,
2129 					 u32 queue)
2130 {
2131 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2132 	size_t size;
2133 	void *addr;
2134 
2135 	tx_q->queue_index = queue;
2136 	tx_q->priv_data = priv;
2137 
2138 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2139 				      sizeof(*tx_q->tx_skbuff_dma),
2140 				      GFP_KERNEL);
2141 	if (!tx_q->tx_skbuff_dma)
2142 		return -ENOMEM;
2143 
2144 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2145 				  sizeof(struct sk_buff *),
2146 				  GFP_KERNEL);
2147 	if (!tx_q->tx_skbuff)
2148 		return -ENOMEM;
2149 
2150 	if (priv->extend_desc)
2151 		size = sizeof(struct dma_extended_desc);
2152 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2153 		size = sizeof(struct dma_edesc);
2154 	else
2155 		size = sizeof(struct dma_desc);
2156 
2157 	size *= dma_conf->dma_tx_size;
2158 
2159 	addr = dma_alloc_coherent(priv->device, size,
2160 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2161 	if (!addr)
2162 		return -ENOMEM;
2163 
2164 	if (priv->extend_desc)
2165 		tx_q->dma_etx = addr;
2166 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2167 		tx_q->dma_entx = addr;
2168 	else
2169 		tx_q->dma_tx = addr;
2170 
2171 	return 0;
2172 }
2173 
2174 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2175 				       struct stmmac_dma_conf *dma_conf)
2176 {
2177 	u32 tx_count = priv->plat->tx_queues_to_use;
2178 	u32 queue;
2179 	int ret;
2180 
2181 	/* TX queues buffers and DMA */
2182 	for (queue = 0; queue < tx_count; queue++) {
2183 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2184 		if (ret)
2185 			goto err_dma;
2186 	}
2187 
2188 	return 0;
2189 
2190 err_dma:
2191 	free_dma_tx_desc_resources(priv, dma_conf);
2192 	return ret;
2193 }
2194 
2195 /**
2196  * alloc_dma_desc_resources - alloc TX/RX resources.
2197  * @priv: private structure
2198  * @dma_conf: structure to take the dma data
2199  * Description: according to which descriptor can be used (extend or basic)
2200  * this function allocates the resources for TX and RX paths. In case of
2201  * reception, for example, it pre-allocated the RX socket buffer in order to
2202  * allow zero-copy mechanism.
2203  */
2204 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2205 				    struct stmmac_dma_conf *dma_conf)
2206 {
2207 	/* RX Allocation */
2208 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2209 
2210 	if (ret)
2211 		return ret;
2212 
2213 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2214 
2215 	return ret;
2216 }
2217 
2218 /**
2219  * free_dma_desc_resources - free dma desc resources
2220  * @priv: private structure
2221  * @dma_conf: structure to take the dma data
2222  */
2223 static void free_dma_desc_resources(struct stmmac_priv *priv,
2224 				    struct stmmac_dma_conf *dma_conf)
2225 {
2226 	/* Release the DMA TX socket buffers */
2227 	free_dma_tx_desc_resources(priv, dma_conf);
2228 
2229 	/* Release the DMA RX socket buffers later
2230 	 * to ensure all pending XDP_TX buffers are returned.
2231 	 */
2232 	free_dma_rx_desc_resources(priv, dma_conf);
2233 }
2234 
2235 /**
2236  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2237  *  @priv: driver private structure
2238  *  Description: It is used for enabling the rx queues in the MAC
2239  */
2240 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2241 {
2242 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2243 	int queue;
2244 	u8 mode;
2245 
2246 	for (queue = 0; queue < rx_queues_count; queue++) {
2247 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2248 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2249 	}
2250 }
2251 
2252 /**
2253  * stmmac_start_rx_dma - start RX DMA channel
2254  * @priv: driver private structure
2255  * @chan: RX channel index
2256  * Description:
2257  * This starts a RX DMA channel
2258  */
2259 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2260 {
2261 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2262 	stmmac_start_rx(priv, priv->ioaddr, chan);
2263 }
2264 
2265 /**
2266  * stmmac_start_tx_dma - start TX DMA channel
2267  * @priv: driver private structure
2268  * @chan: TX channel index
2269  * Description:
2270  * This starts a TX DMA channel
2271  */
2272 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2273 {
2274 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2275 	stmmac_start_tx(priv, priv->ioaddr, chan);
2276 }
2277 
2278 /**
2279  * stmmac_stop_rx_dma - stop RX DMA channel
2280  * @priv: driver private structure
2281  * @chan: RX channel index
2282  * Description:
2283  * This stops a RX DMA channel
2284  */
2285 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2286 {
2287 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2288 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2289 }
2290 
2291 /**
2292  * stmmac_stop_tx_dma - stop TX DMA channel
2293  * @priv: driver private structure
2294  * @chan: TX channel index
2295  * Description:
2296  * This stops a TX DMA channel
2297  */
2298 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2299 {
2300 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2301 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2302 }
2303 
2304 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2305 {
2306 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2307 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2308 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2309 	u32 chan;
2310 
2311 	for (chan = 0; chan < dma_csr_ch; chan++) {
2312 		struct stmmac_channel *ch = &priv->channel[chan];
2313 		unsigned long flags;
2314 
2315 		spin_lock_irqsave(&ch->lock, flags);
2316 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2317 		spin_unlock_irqrestore(&ch->lock, flags);
2318 	}
2319 }
2320 
2321 /**
2322  * stmmac_start_all_dma - start all RX and TX DMA channels
2323  * @priv: driver private structure
2324  * Description:
2325  * This starts all the RX and TX DMA channels
2326  */
2327 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2328 {
2329 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2330 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2331 	u32 chan = 0;
2332 
2333 	for (chan = 0; chan < rx_channels_count; chan++)
2334 		stmmac_start_rx_dma(priv, chan);
2335 
2336 	for (chan = 0; chan < tx_channels_count; chan++)
2337 		stmmac_start_tx_dma(priv, chan);
2338 }
2339 
2340 /**
2341  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2342  * @priv: driver private structure
2343  * Description:
2344  * This stops the RX and TX DMA channels
2345  */
2346 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2347 {
2348 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2349 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2350 	u32 chan = 0;
2351 
2352 	for (chan = 0; chan < rx_channels_count; chan++)
2353 		stmmac_stop_rx_dma(priv, chan);
2354 
2355 	for (chan = 0; chan < tx_channels_count; chan++)
2356 		stmmac_stop_tx_dma(priv, chan);
2357 }
2358 
2359 /**
2360  *  stmmac_dma_operation_mode - HW DMA operation mode
2361  *  @priv: driver private structure
2362  *  Description: it is used for configuring the DMA operation mode register in
2363  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2364  */
2365 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2366 {
2367 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2368 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2369 	int rxfifosz = priv->plat->rx_fifo_size;
2370 	int txfifosz = priv->plat->tx_fifo_size;
2371 	u32 txmode = 0;
2372 	u32 rxmode = 0;
2373 	u32 chan = 0;
2374 	u8 qmode = 0;
2375 
2376 	if (rxfifosz == 0)
2377 		rxfifosz = priv->dma_cap.rx_fifo_size;
2378 	if (txfifosz == 0)
2379 		txfifosz = priv->dma_cap.tx_fifo_size;
2380 
2381 	/* Adjust for real per queue fifo size */
2382 	rxfifosz /= rx_channels_count;
2383 	txfifosz /= tx_channels_count;
2384 
2385 	if (priv->plat->force_thresh_dma_mode) {
2386 		txmode = tc;
2387 		rxmode = tc;
2388 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2389 		/*
2390 		 * In case of GMAC, SF mode can be enabled
2391 		 * to perform the TX COE in HW. This depends on:
2392 		 * 1) TX COE if actually supported
2393 		 * 2) There is no bugged Jumbo frame support
2394 		 *    that needs to not insert csum in the TDES.
2395 		 */
2396 		txmode = SF_DMA_MODE;
2397 		rxmode = SF_DMA_MODE;
2398 		priv->xstats.threshold = SF_DMA_MODE;
2399 	} else {
2400 		txmode = tc;
2401 		rxmode = SF_DMA_MODE;
2402 	}
2403 
2404 	/* configure all channels */
2405 	for (chan = 0; chan < rx_channels_count; chan++) {
2406 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2407 		u32 buf_size;
2408 
2409 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2410 
2411 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2412 				rxfifosz, qmode);
2413 
2414 		if (rx_q->xsk_pool) {
2415 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2416 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2417 					      buf_size,
2418 					      chan);
2419 		} else {
2420 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2421 					      priv->dma_conf.dma_buf_sz,
2422 					      chan);
2423 		}
2424 	}
2425 
2426 	for (chan = 0; chan < tx_channels_count; chan++) {
2427 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2428 
2429 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2430 				txfifosz, qmode);
2431 	}
2432 }
2433 
2434 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2435 {
2436 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2437 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2438 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2439 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2440 	unsigned int entry = tx_q->cur_tx;
2441 	struct dma_desc *tx_desc = NULL;
2442 	struct xdp_desc xdp_desc;
2443 	bool work_done = true;
2444 	u32 tx_set_ic_bit = 0;
2445 	unsigned long flags;
2446 
2447 	/* Avoids TX time-out as we are sharing with slow path */
2448 	txq_trans_cond_update(nq);
2449 
2450 	budget = min(budget, stmmac_tx_avail(priv, queue));
2451 
2452 	while (budget-- > 0) {
2453 		dma_addr_t dma_addr;
2454 		bool set_ic;
2455 
2456 		/* We are sharing with slow path and stop XSK TX desc submission when
2457 		 * available TX ring is less than threshold.
2458 		 */
2459 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2460 		    !netif_carrier_ok(priv->dev)) {
2461 			work_done = false;
2462 			break;
2463 		}
2464 
2465 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2466 			break;
2467 
2468 		if (likely(priv->extend_desc))
2469 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2470 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2471 			tx_desc = &tx_q->dma_entx[entry].basic;
2472 		else
2473 			tx_desc = tx_q->dma_tx + entry;
2474 
2475 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2476 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2477 
2478 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2479 
2480 		/* To return XDP buffer to XSK pool, we simple call
2481 		 * xsk_tx_completed(), so we don't need to fill up
2482 		 * 'buf' and 'xdpf'.
2483 		 */
2484 		tx_q->tx_skbuff_dma[entry].buf = 0;
2485 		tx_q->xdpf[entry] = NULL;
2486 
2487 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2488 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2489 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2490 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2491 
2492 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2493 
2494 		tx_q->tx_count_frames++;
2495 
2496 		if (!priv->tx_coal_frames[queue])
2497 			set_ic = false;
2498 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2499 			set_ic = true;
2500 		else
2501 			set_ic = false;
2502 
2503 		if (set_ic) {
2504 			tx_q->tx_count_frames = 0;
2505 			stmmac_set_tx_ic(priv, tx_desc);
2506 			tx_set_ic_bit++;
2507 		}
2508 
2509 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2510 				       true, priv->mode, true, true,
2511 				       xdp_desc.len);
2512 
2513 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2514 
2515 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2516 		entry = tx_q->cur_tx;
2517 	}
2518 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
2519 	txq_stats->tx_set_ic_bit += tx_set_ic_bit;
2520 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
2521 
2522 	if (tx_desc) {
2523 		stmmac_flush_tx_descriptors(priv, queue);
2524 		xsk_tx_release(pool);
2525 	}
2526 
2527 	/* Return true if all of the 3 conditions are met
2528 	 *  a) TX Budget is still available
2529 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2530 	 *     pending XSK TX for transmission)
2531 	 */
2532 	return !!budget && work_done;
2533 }
2534 
2535 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2536 {
2537 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2538 		tc += 64;
2539 
2540 		if (priv->plat->force_thresh_dma_mode)
2541 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2542 		else
2543 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2544 						      chan);
2545 
2546 		priv->xstats.threshold = tc;
2547 	}
2548 }
2549 
2550 /**
2551  * stmmac_tx_clean - to manage the transmission completion
2552  * @priv: driver private structure
2553  * @budget: napi budget limiting this functions packet handling
2554  * @queue: TX queue index
2555  * Description: it reclaims the transmit resources after transmission completes.
2556  */
2557 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2558 {
2559 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2560 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2561 	unsigned int bytes_compl = 0, pkts_compl = 0;
2562 	unsigned int entry, xmits = 0, count = 0;
2563 	u32 tx_packets = 0, tx_errors = 0;
2564 	unsigned long flags;
2565 
2566 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2567 
2568 	tx_q->xsk_frames_done = 0;
2569 
2570 	entry = tx_q->dirty_tx;
2571 
2572 	/* Try to clean all TX complete frame in 1 shot */
2573 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2574 		struct xdp_frame *xdpf;
2575 		struct sk_buff *skb;
2576 		struct dma_desc *p;
2577 		int status;
2578 
2579 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2580 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2581 			xdpf = tx_q->xdpf[entry];
2582 			skb = NULL;
2583 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2584 			xdpf = NULL;
2585 			skb = tx_q->tx_skbuff[entry];
2586 		} else {
2587 			xdpf = NULL;
2588 			skb = NULL;
2589 		}
2590 
2591 		if (priv->extend_desc)
2592 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2593 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2594 			p = &tx_q->dma_entx[entry].basic;
2595 		else
2596 			p = tx_q->dma_tx + entry;
2597 
2598 		status = stmmac_tx_status(priv,	&priv->xstats, p, priv->ioaddr);
2599 		/* Check if the descriptor is owned by the DMA */
2600 		if (unlikely(status & tx_dma_own))
2601 			break;
2602 
2603 		count++;
2604 
2605 		/* Make sure descriptor fields are read after reading
2606 		 * the own bit.
2607 		 */
2608 		dma_rmb();
2609 
2610 		/* Just consider the last segment and ...*/
2611 		if (likely(!(status & tx_not_ls))) {
2612 			/* ... verify the status error condition */
2613 			if (unlikely(status & tx_err)) {
2614 				tx_errors++;
2615 				if (unlikely(status & tx_err_bump_tc))
2616 					stmmac_bump_dma_threshold(priv, queue);
2617 			} else {
2618 				tx_packets++;
2619 			}
2620 			if (skb)
2621 				stmmac_get_tx_hwtstamp(priv, p, skb);
2622 		}
2623 
2624 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2625 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2626 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2627 				dma_unmap_page(priv->device,
2628 					       tx_q->tx_skbuff_dma[entry].buf,
2629 					       tx_q->tx_skbuff_dma[entry].len,
2630 					       DMA_TO_DEVICE);
2631 			else
2632 				dma_unmap_single(priv->device,
2633 						 tx_q->tx_skbuff_dma[entry].buf,
2634 						 tx_q->tx_skbuff_dma[entry].len,
2635 						 DMA_TO_DEVICE);
2636 			tx_q->tx_skbuff_dma[entry].buf = 0;
2637 			tx_q->tx_skbuff_dma[entry].len = 0;
2638 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2639 		}
2640 
2641 		stmmac_clean_desc3(priv, tx_q, p);
2642 
2643 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2644 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2645 
2646 		if (xdpf &&
2647 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2648 			xdp_return_frame_rx_napi(xdpf);
2649 			tx_q->xdpf[entry] = NULL;
2650 		}
2651 
2652 		if (xdpf &&
2653 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2654 			xdp_return_frame(xdpf);
2655 			tx_q->xdpf[entry] = NULL;
2656 		}
2657 
2658 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2659 			tx_q->xsk_frames_done++;
2660 
2661 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2662 			if (likely(skb)) {
2663 				pkts_compl++;
2664 				bytes_compl += skb->len;
2665 				dev_consume_skb_any(skb);
2666 				tx_q->tx_skbuff[entry] = NULL;
2667 			}
2668 		}
2669 
2670 		stmmac_release_tx_desc(priv, p, priv->mode);
2671 
2672 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2673 	}
2674 	tx_q->dirty_tx = entry;
2675 
2676 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2677 				  pkts_compl, bytes_compl);
2678 
2679 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2680 								queue))) &&
2681 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2682 
2683 		netif_dbg(priv, tx_done, priv->dev,
2684 			  "%s: restart transmit\n", __func__);
2685 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2686 	}
2687 
2688 	if (tx_q->xsk_pool) {
2689 		bool work_done;
2690 
2691 		if (tx_q->xsk_frames_done)
2692 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2693 
2694 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2695 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2696 
2697 		/* For XSK TX, we try to send as many as possible.
2698 		 * If XSK work done (XSK TX desc empty and budget still
2699 		 * available), return "budget - 1" to reenable TX IRQ.
2700 		 * Else, return "budget" to make NAPI continue polling.
2701 		 */
2702 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2703 					       STMMAC_XSK_TX_BUDGET_MAX);
2704 		if (work_done)
2705 			xmits = budget - 1;
2706 		else
2707 			xmits = budget;
2708 	}
2709 
2710 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2711 	    priv->eee_sw_timer_en) {
2712 		if (stmmac_enable_eee_mode(priv))
2713 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2714 	}
2715 
2716 	/* We still have pending packets, let's call for a new scheduling */
2717 	if (tx_q->dirty_tx != tx_q->cur_tx)
2718 		stmmac_tx_timer_arm(priv, queue);
2719 
2720 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
2721 	txq_stats->tx_packets += tx_packets;
2722 	txq_stats->tx_pkt_n += tx_packets;
2723 	txq_stats->tx_clean++;
2724 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
2725 
2726 	priv->xstats.tx_errors += tx_errors;
2727 
2728 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2729 
2730 	/* Combine decisions from TX clean and XSK TX */
2731 	return max(count, xmits);
2732 }
2733 
2734 /**
2735  * stmmac_tx_err - to manage the tx error
2736  * @priv: driver private structure
2737  * @chan: channel index
2738  * Description: it cleans the descriptors and restarts the transmission
2739  * in case of transmission errors.
2740  */
2741 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2742 {
2743 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2744 
2745 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2746 
2747 	stmmac_stop_tx_dma(priv, chan);
2748 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2749 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2750 	stmmac_reset_tx_queue(priv, chan);
2751 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2752 			    tx_q->dma_tx_phy, chan);
2753 	stmmac_start_tx_dma(priv, chan);
2754 
2755 	priv->xstats.tx_errors++;
2756 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2757 }
2758 
2759 /**
2760  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2761  *  @priv: driver private structure
2762  *  @txmode: TX operating mode
2763  *  @rxmode: RX operating mode
2764  *  @chan: channel index
2765  *  Description: it is used for configuring of the DMA operation mode in
2766  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2767  *  mode.
2768  */
2769 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2770 					  u32 rxmode, u32 chan)
2771 {
2772 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2773 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2774 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2775 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2776 	int rxfifosz = priv->plat->rx_fifo_size;
2777 	int txfifosz = priv->plat->tx_fifo_size;
2778 
2779 	if (rxfifosz == 0)
2780 		rxfifosz = priv->dma_cap.rx_fifo_size;
2781 	if (txfifosz == 0)
2782 		txfifosz = priv->dma_cap.tx_fifo_size;
2783 
2784 	/* Adjust for real per queue fifo size */
2785 	rxfifosz /= rx_channels_count;
2786 	txfifosz /= tx_channels_count;
2787 
2788 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2789 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2790 }
2791 
2792 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2793 {
2794 	int ret;
2795 
2796 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2797 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2798 	if (ret && (ret != -EINVAL)) {
2799 		stmmac_global_err(priv);
2800 		return true;
2801 	}
2802 
2803 	return false;
2804 }
2805 
2806 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2807 {
2808 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2809 						 &priv->xstats, chan, dir);
2810 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2811 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2812 	struct stmmac_channel *ch = &priv->channel[chan];
2813 	struct napi_struct *rx_napi;
2814 	struct napi_struct *tx_napi;
2815 	unsigned long flags;
2816 
2817 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2818 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2819 
2820 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2821 		if (napi_schedule_prep(rx_napi)) {
2822 			spin_lock_irqsave(&ch->lock, flags);
2823 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2824 			spin_unlock_irqrestore(&ch->lock, flags);
2825 			__napi_schedule(rx_napi);
2826 		}
2827 	}
2828 
2829 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2830 		if (napi_schedule_prep(tx_napi)) {
2831 			spin_lock_irqsave(&ch->lock, flags);
2832 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2833 			spin_unlock_irqrestore(&ch->lock, flags);
2834 			__napi_schedule(tx_napi);
2835 		}
2836 	}
2837 
2838 	return status;
2839 }
2840 
2841 /**
2842  * stmmac_dma_interrupt - DMA ISR
2843  * @priv: driver private structure
2844  * Description: this is the DMA ISR. It is called by the main ISR.
2845  * It calls the dwmac dma routine and schedule poll method in case of some
2846  * work can be done.
2847  */
2848 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2849 {
2850 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2851 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2852 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2853 				tx_channel_count : rx_channel_count;
2854 	u32 chan;
2855 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2856 
2857 	/* Make sure we never check beyond our status buffer. */
2858 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2859 		channels_to_check = ARRAY_SIZE(status);
2860 
2861 	for (chan = 0; chan < channels_to_check; chan++)
2862 		status[chan] = stmmac_napi_check(priv, chan,
2863 						 DMA_DIR_RXTX);
2864 
2865 	for (chan = 0; chan < tx_channel_count; chan++) {
2866 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2867 			/* Try to bump up the dma threshold on this failure */
2868 			stmmac_bump_dma_threshold(priv, chan);
2869 		} else if (unlikely(status[chan] == tx_hard_error)) {
2870 			stmmac_tx_err(priv, chan);
2871 		}
2872 	}
2873 }
2874 
2875 /**
2876  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2877  * @priv: driver private structure
2878  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2879  */
2880 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2881 {
2882 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2883 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2884 
2885 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2886 
2887 	if (priv->dma_cap.rmon) {
2888 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2889 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2890 	} else
2891 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2892 }
2893 
2894 /**
2895  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2896  * @priv: driver private structure
2897  * Description:
2898  *  new GMAC chip generations have a new register to indicate the
2899  *  presence of the optional feature/functions.
2900  *  This can be also used to override the value passed through the
2901  *  platform and necessary for old MAC10/100 and GMAC chips.
2902  */
2903 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2904 {
2905 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2906 }
2907 
2908 /**
2909  * stmmac_check_ether_addr - check if the MAC addr is valid
2910  * @priv: driver private structure
2911  * Description:
2912  * it is to verify if the MAC address is valid, in case of failures it
2913  * generates a random MAC address
2914  */
2915 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2916 {
2917 	u8 addr[ETH_ALEN];
2918 
2919 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2920 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2921 		if (is_valid_ether_addr(addr))
2922 			eth_hw_addr_set(priv->dev, addr);
2923 		else
2924 			eth_hw_addr_random(priv->dev);
2925 		dev_info(priv->device, "device MAC address %pM\n",
2926 			 priv->dev->dev_addr);
2927 	}
2928 }
2929 
2930 /**
2931  * stmmac_init_dma_engine - DMA init.
2932  * @priv: driver private structure
2933  * Description:
2934  * It inits the DMA invoking the specific MAC/GMAC callback.
2935  * Some DMA parameters can be passed from the platform;
2936  * in case of these are not passed a default is kept for the MAC or GMAC.
2937  */
2938 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2939 {
2940 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2941 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2942 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2943 	struct stmmac_rx_queue *rx_q;
2944 	struct stmmac_tx_queue *tx_q;
2945 	u32 chan = 0;
2946 	int atds = 0;
2947 	int ret = 0;
2948 
2949 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2950 		dev_err(priv->device, "Invalid DMA configuration\n");
2951 		return -EINVAL;
2952 	}
2953 
2954 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2955 		atds = 1;
2956 
2957 	ret = stmmac_reset(priv, priv->ioaddr);
2958 	if (ret) {
2959 		dev_err(priv->device, "Failed to reset the dma\n");
2960 		return ret;
2961 	}
2962 
2963 	/* DMA Configuration */
2964 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2965 
2966 	if (priv->plat->axi)
2967 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2968 
2969 	/* DMA CSR Channel configuration */
2970 	for (chan = 0; chan < dma_csr_ch; chan++) {
2971 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2972 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2973 	}
2974 
2975 	/* DMA RX Channel Configuration */
2976 	for (chan = 0; chan < rx_channels_count; chan++) {
2977 		rx_q = &priv->dma_conf.rx_queue[chan];
2978 
2979 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2980 				    rx_q->dma_rx_phy, chan);
2981 
2982 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2983 				     (rx_q->buf_alloc_num *
2984 				      sizeof(struct dma_desc));
2985 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2986 				       rx_q->rx_tail_addr, chan);
2987 	}
2988 
2989 	/* DMA TX Channel Configuration */
2990 	for (chan = 0; chan < tx_channels_count; chan++) {
2991 		tx_q = &priv->dma_conf.tx_queue[chan];
2992 
2993 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2994 				    tx_q->dma_tx_phy, chan);
2995 
2996 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2997 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2998 				       tx_q->tx_tail_addr, chan);
2999 	}
3000 
3001 	return ret;
3002 }
3003 
3004 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
3005 {
3006 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3007 	u32 tx_coal_timer = priv->tx_coal_timer[queue];
3008 
3009 	if (!tx_coal_timer)
3010 		return;
3011 
3012 	hrtimer_start(&tx_q->txtimer,
3013 		      STMMAC_COAL_TIMER(tx_coal_timer),
3014 		      HRTIMER_MODE_REL);
3015 }
3016 
3017 /**
3018  * stmmac_tx_timer - mitigation sw timer for tx.
3019  * @t: data pointer
3020  * Description:
3021  * This is the timer handler to directly invoke the stmmac_tx_clean.
3022  */
3023 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3024 {
3025 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3026 	struct stmmac_priv *priv = tx_q->priv_data;
3027 	struct stmmac_channel *ch;
3028 	struct napi_struct *napi;
3029 
3030 	ch = &priv->channel[tx_q->queue_index];
3031 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3032 
3033 	if (likely(napi_schedule_prep(napi))) {
3034 		unsigned long flags;
3035 
3036 		spin_lock_irqsave(&ch->lock, flags);
3037 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3038 		spin_unlock_irqrestore(&ch->lock, flags);
3039 		__napi_schedule(napi);
3040 	}
3041 
3042 	return HRTIMER_NORESTART;
3043 }
3044 
3045 /**
3046  * stmmac_init_coalesce - init mitigation options.
3047  * @priv: driver private structure
3048  * Description:
3049  * This inits the coalesce parameters: i.e. timer rate,
3050  * timer handler and default threshold used for enabling the
3051  * interrupt on completion bit.
3052  */
3053 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3054 {
3055 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3056 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3057 	u32 chan;
3058 
3059 	for (chan = 0; chan < tx_channel_count; chan++) {
3060 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3061 
3062 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3063 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3064 
3065 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3066 		tx_q->txtimer.function = stmmac_tx_timer;
3067 	}
3068 
3069 	for (chan = 0; chan < rx_channel_count; chan++)
3070 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3071 }
3072 
3073 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3074 {
3075 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3076 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3077 	u32 chan;
3078 
3079 	/* set TX ring length */
3080 	for (chan = 0; chan < tx_channels_count; chan++)
3081 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3082 				       (priv->dma_conf.dma_tx_size - 1), chan);
3083 
3084 	/* set RX ring length */
3085 	for (chan = 0; chan < rx_channels_count; chan++)
3086 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3087 				       (priv->dma_conf.dma_rx_size - 1), chan);
3088 }
3089 
3090 /**
3091  *  stmmac_set_tx_queue_weight - Set TX queue weight
3092  *  @priv: driver private structure
3093  *  Description: It is used for setting TX queues weight
3094  */
3095 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3096 {
3097 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3098 	u32 weight;
3099 	u32 queue;
3100 
3101 	for (queue = 0; queue < tx_queues_count; queue++) {
3102 		weight = priv->plat->tx_queues_cfg[queue].weight;
3103 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3104 	}
3105 }
3106 
3107 /**
3108  *  stmmac_configure_cbs - Configure CBS in TX queue
3109  *  @priv: driver private structure
3110  *  Description: It is used for configuring CBS in AVB TX queues
3111  */
3112 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3113 {
3114 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3115 	u32 mode_to_use;
3116 	u32 queue;
3117 
3118 	/* queue 0 is reserved for legacy traffic */
3119 	for (queue = 1; queue < tx_queues_count; queue++) {
3120 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3121 		if (mode_to_use == MTL_QUEUE_DCB)
3122 			continue;
3123 
3124 		stmmac_config_cbs(priv, priv->hw,
3125 				priv->plat->tx_queues_cfg[queue].send_slope,
3126 				priv->plat->tx_queues_cfg[queue].idle_slope,
3127 				priv->plat->tx_queues_cfg[queue].high_credit,
3128 				priv->plat->tx_queues_cfg[queue].low_credit,
3129 				queue);
3130 	}
3131 }
3132 
3133 /**
3134  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3135  *  @priv: driver private structure
3136  *  Description: It is used for mapping RX queues to RX dma channels
3137  */
3138 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3139 {
3140 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3141 	u32 queue;
3142 	u32 chan;
3143 
3144 	for (queue = 0; queue < rx_queues_count; queue++) {
3145 		chan = priv->plat->rx_queues_cfg[queue].chan;
3146 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3147 	}
3148 }
3149 
3150 /**
3151  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3152  *  @priv: driver private structure
3153  *  Description: It is used for configuring the RX Queue Priority
3154  */
3155 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3156 {
3157 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3158 	u32 queue;
3159 	u32 prio;
3160 
3161 	for (queue = 0; queue < rx_queues_count; queue++) {
3162 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3163 			continue;
3164 
3165 		prio = priv->plat->rx_queues_cfg[queue].prio;
3166 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3167 	}
3168 }
3169 
3170 /**
3171  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3172  *  @priv: driver private structure
3173  *  Description: It is used for configuring the TX Queue Priority
3174  */
3175 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3176 {
3177 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3178 	u32 queue;
3179 	u32 prio;
3180 
3181 	for (queue = 0; queue < tx_queues_count; queue++) {
3182 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3183 			continue;
3184 
3185 		prio = priv->plat->tx_queues_cfg[queue].prio;
3186 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3187 	}
3188 }
3189 
3190 /**
3191  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3192  *  @priv: driver private structure
3193  *  Description: It is used for configuring the RX queue routing
3194  */
3195 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3196 {
3197 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3198 	u32 queue;
3199 	u8 packet;
3200 
3201 	for (queue = 0; queue < rx_queues_count; queue++) {
3202 		/* no specific packet type routing specified for the queue */
3203 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3204 			continue;
3205 
3206 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3207 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3208 	}
3209 }
3210 
3211 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3212 {
3213 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3214 		priv->rss.enable = false;
3215 		return;
3216 	}
3217 
3218 	if (priv->dev->features & NETIF_F_RXHASH)
3219 		priv->rss.enable = true;
3220 	else
3221 		priv->rss.enable = false;
3222 
3223 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3224 			     priv->plat->rx_queues_to_use);
3225 }
3226 
3227 /**
3228  *  stmmac_mtl_configuration - Configure MTL
3229  *  @priv: driver private structure
3230  *  Description: It is used for configurring MTL
3231  */
3232 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3233 {
3234 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3235 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3236 
3237 	if (tx_queues_count > 1)
3238 		stmmac_set_tx_queue_weight(priv);
3239 
3240 	/* Configure MTL RX algorithms */
3241 	if (rx_queues_count > 1)
3242 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3243 				priv->plat->rx_sched_algorithm);
3244 
3245 	/* Configure MTL TX algorithms */
3246 	if (tx_queues_count > 1)
3247 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3248 				priv->plat->tx_sched_algorithm);
3249 
3250 	/* Configure CBS in AVB TX queues */
3251 	if (tx_queues_count > 1)
3252 		stmmac_configure_cbs(priv);
3253 
3254 	/* Map RX MTL to DMA channels */
3255 	stmmac_rx_queue_dma_chan_map(priv);
3256 
3257 	/* Enable MAC RX Queues */
3258 	stmmac_mac_enable_rx_queues(priv);
3259 
3260 	/* Set RX priorities */
3261 	if (rx_queues_count > 1)
3262 		stmmac_mac_config_rx_queues_prio(priv);
3263 
3264 	/* Set TX priorities */
3265 	if (tx_queues_count > 1)
3266 		stmmac_mac_config_tx_queues_prio(priv);
3267 
3268 	/* Set RX routing */
3269 	if (rx_queues_count > 1)
3270 		stmmac_mac_config_rx_queues_routing(priv);
3271 
3272 	/* Receive Side Scaling */
3273 	if (rx_queues_count > 1)
3274 		stmmac_mac_config_rss(priv);
3275 }
3276 
3277 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3278 {
3279 	if (priv->dma_cap.asp) {
3280 		netdev_info(priv->dev, "Enabling Safety Features\n");
3281 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3282 					  priv->plat->safety_feat_cfg);
3283 	} else {
3284 		netdev_info(priv->dev, "No Safety Features support found\n");
3285 	}
3286 }
3287 
3288 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3289 {
3290 	char *name;
3291 
3292 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3293 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3294 
3295 	name = priv->wq_name;
3296 	sprintf(name, "%s-fpe", priv->dev->name);
3297 
3298 	priv->fpe_wq = create_singlethread_workqueue(name);
3299 	if (!priv->fpe_wq) {
3300 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3301 
3302 		return -ENOMEM;
3303 	}
3304 	netdev_info(priv->dev, "FPE workqueue start");
3305 
3306 	return 0;
3307 }
3308 
3309 /**
3310  * stmmac_hw_setup - setup mac in a usable state.
3311  *  @dev : pointer to the device structure.
3312  *  @ptp_register: register PTP if set
3313  *  Description:
3314  *  this is the main function to setup the HW in a usable state because the
3315  *  dma engine is reset, the core registers are configured (e.g. AXI,
3316  *  Checksum features, timers). The DMA is ready to start receiving and
3317  *  transmitting.
3318  *  Return value:
3319  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3320  *  file on failure.
3321  */
3322 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3323 {
3324 	struct stmmac_priv *priv = netdev_priv(dev);
3325 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3326 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3327 	bool sph_en;
3328 	u32 chan;
3329 	int ret;
3330 
3331 	/* DMA initialization and SW reset */
3332 	ret = stmmac_init_dma_engine(priv);
3333 	if (ret < 0) {
3334 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3335 			   __func__);
3336 		return ret;
3337 	}
3338 
3339 	/* Copy the MAC addr into the HW  */
3340 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3341 
3342 	/* PS and related bits will be programmed according to the speed */
3343 	if (priv->hw->pcs) {
3344 		int speed = priv->plat->mac_port_sel_speed;
3345 
3346 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3347 		    (speed == SPEED_1000)) {
3348 			priv->hw->ps = speed;
3349 		} else {
3350 			dev_warn(priv->device, "invalid port speed\n");
3351 			priv->hw->ps = 0;
3352 		}
3353 	}
3354 
3355 	/* Initialize the MAC Core */
3356 	stmmac_core_init(priv, priv->hw, dev);
3357 
3358 	/* Initialize MTL*/
3359 	stmmac_mtl_configuration(priv);
3360 
3361 	/* Initialize Safety Features */
3362 	stmmac_safety_feat_configuration(priv);
3363 
3364 	ret = stmmac_rx_ipc(priv, priv->hw);
3365 	if (!ret) {
3366 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3367 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3368 		priv->hw->rx_csum = 0;
3369 	}
3370 
3371 	/* Enable the MAC Rx/Tx */
3372 	stmmac_mac_set(priv, priv->ioaddr, true);
3373 
3374 	/* Set the HW DMA mode and the COE */
3375 	stmmac_dma_operation_mode(priv);
3376 
3377 	stmmac_mmc_setup(priv);
3378 
3379 	if (ptp_register) {
3380 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3381 		if (ret < 0)
3382 			netdev_warn(priv->dev,
3383 				    "failed to enable PTP reference clock: %pe\n",
3384 				    ERR_PTR(ret));
3385 	}
3386 
3387 	ret = stmmac_init_ptp(priv);
3388 	if (ret == -EOPNOTSUPP)
3389 		netdev_info(priv->dev, "PTP not supported by HW\n");
3390 	else if (ret)
3391 		netdev_warn(priv->dev, "PTP init failed\n");
3392 	else if (ptp_register)
3393 		stmmac_ptp_register(priv);
3394 
3395 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3396 
3397 	/* Convert the timer from msec to usec */
3398 	if (!priv->tx_lpi_timer)
3399 		priv->tx_lpi_timer = eee_timer * 1000;
3400 
3401 	if (priv->use_riwt) {
3402 		u32 queue;
3403 
3404 		for (queue = 0; queue < rx_cnt; queue++) {
3405 			if (!priv->rx_riwt[queue])
3406 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3407 
3408 			stmmac_rx_watchdog(priv, priv->ioaddr,
3409 					   priv->rx_riwt[queue], queue);
3410 		}
3411 	}
3412 
3413 	if (priv->hw->pcs)
3414 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3415 
3416 	/* set TX and RX rings length */
3417 	stmmac_set_rings_length(priv);
3418 
3419 	/* Enable TSO */
3420 	if (priv->tso) {
3421 		for (chan = 0; chan < tx_cnt; chan++) {
3422 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3423 
3424 			/* TSO and TBS cannot co-exist */
3425 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3426 				continue;
3427 
3428 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3429 		}
3430 	}
3431 
3432 	/* Enable Split Header */
3433 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3434 	for (chan = 0; chan < rx_cnt; chan++)
3435 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3436 
3437 
3438 	/* VLAN Tag Insertion */
3439 	if (priv->dma_cap.vlins)
3440 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3441 
3442 	/* TBS */
3443 	for (chan = 0; chan < tx_cnt; chan++) {
3444 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3445 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3446 
3447 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3448 	}
3449 
3450 	/* Configure real RX and TX queues */
3451 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3452 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3453 
3454 	/* Start the ball rolling... */
3455 	stmmac_start_all_dma(priv);
3456 
3457 	if (priv->dma_cap.fpesel) {
3458 		stmmac_fpe_start_wq(priv);
3459 
3460 		if (priv->plat->fpe_cfg->enable)
3461 			stmmac_fpe_handshake(priv, true);
3462 	}
3463 
3464 	return 0;
3465 }
3466 
3467 static void stmmac_hw_teardown(struct net_device *dev)
3468 {
3469 	struct stmmac_priv *priv = netdev_priv(dev);
3470 
3471 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3472 }
3473 
3474 static void stmmac_free_irq(struct net_device *dev,
3475 			    enum request_irq_err irq_err, int irq_idx)
3476 {
3477 	struct stmmac_priv *priv = netdev_priv(dev);
3478 	int j;
3479 
3480 	switch (irq_err) {
3481 	case REQ_IRQ_ERR_ALL:
3482 		irq_idx = priv->plat->tx_queues_to_use;
3483 		fallthrough;
3484 	case REQ_IRQ_ERR_TX:
3485 		for (j = irq_idx - 1; j >= 0; j--) {
3486 			if (priv->tx_irq[j] > 0) {
3487 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3488 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3489 			}
3490 		}
3491 		irq_idx = priv->plat->rx_queues_to_use;
3492 		fallthrough;
3493 	case REQ_IRQ_ERR_RX:
3494 		for (j = irq_idx - 1; j >= 0; j--) {
3495 			if (priv->rx_irq[j] > 0) {
3496 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3497 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3498 			}
3499 		}
3500 
3501 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3502 			free_irq(priv->sfty_ue_irq, dev);
3503 		fallthrough;
3504 	case REQ_IRQ_ERR_SFTY_UE:
3505 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3506 			free_irq(priv->sfty_ce_irq, dev);
3507 		fallthrough;
3508 	case REQ_IRQ_ERR_SFTY_CE:
3509 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3510 			free_irq(priv->lpi_irq, dev);
3511 		fallthrough;
3512 	case REQ_IRQ_ERR_LPI:
3513 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3514 			free_irq(priv->wol_irq, dev);
3515 		fallthrough;
3516 	case REQ_IRQ_ERR_WOL:
3517 		free_irq(dev->irq, dev);
3518 		fallthrough;
3519 	case REQ_IRQ_ERR_MAC:
3520 	case REQ_IRQ_ERR_NO:
3521 		/* If MAC IRQ request error, no more IRQ to free */
3522 		break;
3523 	}
3524 }
3525 
3526 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3527 {
3528 	struct stmmac_priv *priv = netdev_priv(dev);
3529 	enum request_irq_err irq_err;
3530 	cpumask_t cpu_mask;
3531 	int irq_idx = 0;
3532 	char *int_name;
3533 	int ret;
3534 	int i;
3535 
3536 	/* For common interrupt */
3537 	int_name = priv->int_name_mac;
3538 	sprintf(int_name, "%s:%s", dev->name, "mac");
3539 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3540 			  0, int_name, dev);
3541 	if (unlikely(ret < 0)) {
3542 		netdev_err(priv->dev,
3543 			   "%s: alloc mac MSI %d (error: %d)\n",
3544 			   __func__, dev->irq, ret);
3545 		irq_err = REQ_IRQ_ERR_MAC;
3546 		goto irq_error;
3547 	}
3548 
3549 	/* Request the Wake IRQ in case of another line
3550 	 * is used for WoL
3551 	 */
3552 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3553 		int_name = priv->int_name_wol;
3554 		sprintf(int_name, "%s:%s", dev->name, "wol");
3555 		ret = request_irq(priv->wol_irq,
3556 				  stmmac_mac_interrupt,
3557 				  0, int_name, dev);
3558 		if (unlikely(ret < 0)) {
3559 			netdev_err(priv->dev,
3560 				   "%s: alloc wol MSI %d (error: %d)\n",
3561 				   __func__, priv->wol_irq, ret);
3562 			irq_err = REQ_IRQ_ERR_WOL;
3563 			goto irq_error;
3564 		}
3565 	}
3566 
3567 	/* Request the LPI IRQ in case of another line
3568 	 * is used for LPI
3569 	 */
3570 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3571 		int_name = priv->int_name_lpi;
3572 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3573 		ret = request_irq(priv->lpi_irq,
3574 				  stmmac_mac_interrupt,
3575 				  0, int_name, dev);
3576 		if (unlikely(ret < 0)) {
3577 			netdev_err(priv->dev,
3578 				   "%s: alloc lpi MSI %d (error: %d)\n",
3579 				   __func__, priv->lpi_irq, ret);
3580 			irq_err = REQ_IRQ_ERR_LPI;
3581 			goto irq_error;
3582 		}
3583 	}
3584 
3585 	/* Request the Safety Feature Correctible Error line in
3586 	 * case of another line is used
3587 	 */
3588 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3589 		int_name = priv->int_name_sfty_ce;
3590 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3591 		ret = request_irq(priv->sfty_ce_irq,
3592 				  stmmac_safety_interrupt,
3593 				  0, int_name, dev);
3594 		if (unlikely(ret < 0)) {
3595 			netdev_err(priv->dev,
3596 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3597 				   __func__, priv->sfty_ce_irq, ret);
3598 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3599 			goto irq_error;
3600 		}
3601 	}
3602 
3603 	/* Request the Safety Feature Uncorrectible Error line in
3604 	 * case of another line is used
3605 	 */
3606 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3607 		int_name = priv->int_name_sfty_ue;
3608 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3609 		ret = request_irq(priv->sfty_ue_irq,
3610 				  stmmac_safety_interrupt,
3611 				  0, int_name, dev);
3612 		if (unlikely(ret < 0)) {
3613 			netdev_err(priv->dev,
3614 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3615 				   __func__, priv->sfty_ue_irq, ret);
3616 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3617 			goto irq_error;
3618 		}
3619 	}
3620 
3621 	/* Request Rx MSI irq */
3622 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3623 		if (i >= MTL_MAX_RX_QUEUES)
3624 			break;
3625 		if (priv->rx_irq[i] == 0)
3626 			continue;
3627 
3628 		int_name = priv->int_name_rx_irq[i];
3629 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3630 		ret = request_irq(priv->rx_irq[i],
3631 				  stmmac_msi_intr_rx,
3632 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3633 		if (unlikely(ret < 0)) {
3634 			netdev_err(priv->dev,
3635 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3636 				   __func__, i, priv->rx_irq[i], ret);
3637 			irq_err = REQ_IRQ_ERR_RX;
3638 			irq_idx = i;
3639 			goto irq_error;
3640 		}
3641 		cpumask_clear(&cpu_mask);
3642 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3643 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3644 	}
3645 
3646 	/* Request Tx MSI irq */
3647 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3648 		if (i >= MTL_MAX_TX_QUEUES)
3649 			break;
3650 		if (priv->tx_irq[i] == 0)
3651 			continue;
3652 
3653 		int_name = priv->int_name_tx_irq[i];
3654 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3655 		ret = request_irq(priv->tx_irq[i],
3656 				  stmmac_msi_intr_tx,
3657 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3658 		if (unlikely(ret < 0)) {
3659 			netdev_err(priv->dev,
3660 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3661 				   __func__, i, priv->tx_irq[i], ret);
3662 			irq_err = REQ_IRQ_ERR_TX;
3663 			irq_idx = i;
3664 			goto irq_error;
3665 		}
3666 		cpumask_clear(&cpu_mask);
3667 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3668 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3669 	}
3670 
3671 	return 0;
3672 
3673 irq_error:
3674 	stmmac_free_irq(dev, irq_err, irq_idx);
3675 	return ret;
3676 }
3677 
3678 static int stmmac_request_irq_single(struct net_device *dev)
3679 {
3680 	struct stmmac_priv *priv = netdev_priv(dev);
3681 	enum request_irq_err irq_err;
3682 	int ret;
3683 
3684 	ret = request_irq(dev->irq, stmmac_interrupt,
3685 			  IRQF_SHARED, dev->name, dev);
3686 	if (unlikely(ret < 0)) {
3687 		netdev_err(priv->dev,
3688 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3689 			   __func__, dev->irq, ret);
3690 		irq_err = REQ_IRQ_ERR_MAC;
3691 		goto irq_error;
3692 	}
3693 
3694 	/* Request the Wake IRQ in case of another line
3695 	 * is used for WoL
3696 	 */
3697 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3698 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3699 				  IRQF_SHARED, dev->name, dev);
3700 		if (unlikely(ret < 0)) {
3701 			netdev_err(priv->dev,
3702 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3703 				   __func__, priv->wol_irq, ret);
3704 			irq_err = REQ_IRQ_ERR_WOL;
3705 			goto irq_error;
3706 		}
3707 	}
3708 
3709 	/* Request the IRQ lines */
3710 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3711 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3712 				  IRQF_SHARED, dev->name, dev);
3713 		if (unlikely(ret < 0)) {
3714 			netdev_err(priv->dev,
3715 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3716 				   __func__, priv->lpi_irq, ret);
3717 			irq_err = REQ_IRQ_ERR_LPI;
3718 			goto irq_error;
3719 		}
3720 	}
3721 
3722 	return 0;
3723 
3724 irq_error:
3725 	stmmac_free_irq(dev, irq_err, 0);
3726 	return ret;
3727 }
3728 
3729 static int stmmac_request_irq(struct net_device *dev)
3730 {
3731 	struct stmmac_priv *priv = netdev_priv(dev);
3732 	int ret;
3733 
3734 	/* Request the IRQ lines */
3735 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3736 		ret = stmmac_request_irq_multi_msi(dev);
3737 	else
3738 		ret = stmmac_request_irq_single(dev);
3739 
3740 	return ret;
3741 }
3742 
3743 /**
3744  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3745  *  @priv: driver private structure
3746  *  @mtu: MTU to setup the dma queue and buf with
3747  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3748  *  Allocate the Tx/Rx DMA queue and init them.
3749  *  Return value:
3750  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3751  */
3752 static struct stmmac_dma_conf *
3753 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3754 {
3755 	struct stmmac_dma_conf *dma_conf;
3756 	int chan, bfsize, ret;
3757 
3758 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3759 	if (!dma_conf) {
3760 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3761 			   __func__);
3762 		return ERR_PTR(-ENOMEM);
3763 	}
3764 
3765 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3766 	if (bfsize < 0)
3767 		bfsize = 0;
3768 
3769 	if (bfsize < BUF_SIZE_16KiB)
3770 		bfsize = stmmac_set_bfsize(mtu, 0);
3771 
3772 	dma_conf->dma_buf_sz = bfsize;
3773 	/* Chose the tx/rx size from the already defined one in the
3774 	 * priv struct. (if defined)
3775 	 */
3776 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3777 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3778 
3779 	if (!dma_conf->dma_tx_size)
3780 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3781 	if (!dma_conf->dma_rx_size)
3782 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3783 
3784 	/* Earlier check for TBS */
3785 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3786 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3787 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3788 
3789 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3790 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3791 	}
3792 
3793 	ret = alloc_dma_desc_resources(priv, dma_conf);
3794 	if (ret < 0) {
3795 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3796 			   __func__);
3797 		goto alloc_error;
3798 	}
3799 
3800 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3801 	if (ret < 0) {
3802 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3803 			   __func__);
3804 		goto init_error;
3805 	}
3806 
3807 	return dma_conf;
3808 
3809 init_error:
3810 	free_dma_desc_resources(priv, dma_conf);
3811 alloc_error:
3812 	kfree(dma_conf);
3813 	return ERR_PTR(ret);
3814 }
3815 
3816 /**
3817  *  __stmmac_open - open entry point of the driver
3818  *  @dev : pointer to the device structure.
3819  *  @dma_conf :  structure to take the dma data
3820  *  Description:
3821  *  This function is the open entry point of the driver.
3822  *  Return value:
3823  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3824  *  file on failure.
3825  */
3826 static int __stmmac_open(struct net_device *dev,
3827 			 struct stmmac_dma_conf *dma_conf)
3828 {
3829 	struct stmmac_priv *priv = netdev_priv(dev);
3830 	int mode = priv->plat->phy_interface;
3831 	u32 chan;
3832 	int ret;
3833 
3834 	ret = pm_runtime_resume_and_get(priv->device);
3835 	if (ret < 0)
3836 		return ret;
3837 
3838 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3839 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3840 	    (!priv->hw->xpcs ||
3841 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3842 	    !priv->hw->lynx_pcs) {
3843 		ret = stmmac_init_phy(dev);
3844 		if (ret) {
3845 			netdev_err(priv->dev,
3846 				   "%s: Cannot attach to PHY (error: %d)\n",
3847 				   __func__, ret);
3848 			goto init_phy_error;
3849 		}
3850 	}
3851 
3852 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3853 
3854 	buf_sz = dma_conf->dma_buf_sz;
3855 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3856 
3857 	stmmac_reset_queues_param(priv);
3858 
3859 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3860 	    priv->plat->serdes_powerup) {
3861 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3862 		if (ret < 0) {
3863 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3864 				   __func__);
3865 			goto init_error;
3866 		}
3867 	}
3868 
3869 	ret = stmmac_hw_setup(dev, true);
3870 	if (ret < 0) {
3871 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3872 		goto init_error;
3873 	}
3874 
3875 	stmmac_init_coalesce(priv);
3876 
3877 	phylink_start(priv->phylink);
3878 	/* We may have called phylink_speed_down before */
3879 	phylink_speed_up(priv->phylink);
3880 
3881 	ret = stmmac_request_irq(dev);
3882 	if (ret)
3883 		goto irq_error;
3884 
3885 	stmmac_enable_all_queues(priv);
3886 	netif_tx_start_all_queues(priv->dev);
3887 	stmmac_enable_all_dma_irq(priv);
3888 
3889 	return 0;
3890 
3891 irq_error:
3892 	phylink_stop(priv->phylink);
3893 
3894 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3895 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3896 
3897 	stmmac_hw_teardown(dev);
3898 init_error:
3899 	phylink_disconnect_phy(priv->phylink);
3900 init_phy_error:
3901 	pm_runtime_put(priv->device);
3902 	return ret;
3903 }
3904 
3905 static int stmmac_open(struct net_device *dev)
3906 {
3907 	struct stmmac_priv *priv = netdev_priv(dev);
3908 	struct stmmac_dma_conf *dma_conf;
3909 	int ret;
3910 
3911 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3912 	if (IS_ERR(dma_conf))
3913 		return PTR_ERR(dma_conf);
3914 
3915 	ret = __stmmac_open(dev, dma_conf);
3916 	if (ret)
3917 		free_dma_desc_resources(priv, dma_conf);
3918 
3919 	kfree(dma_conf);
3920 	return ret;
3921 }
3922 
3923 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3924 {
3925 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3926 
3927 	if (priv->fpe_wq)
3928 		destroy_workqueue(priv->fpe_wq);
3929 
3930 	netdev_info(priv->dev, "FPE workqueue stop");
3931 }
3932 
3933 /**
3934  *  stmmac_release - close entry point of the driver
3935  *  @dev : device pointer.
3936  *  Description:
3937  *  This is the stop entry point of the driver.
3938  */
3939 static int stmmac_release(struct net_device *dev)
3940 {
3941 	struct stmmac_priv *priv = netdev_priv(dev);
3942 	u32 chan;
3943 
3944 	if (device_may_wakeup(priv->device))
3945 		phylink_speed_down(priv->phylink, false);
3946 	/* Stop and disconnect the PHY */
3947 	phylink_stop(priv->phylink);
3948 	phylink_disconnect_phy(priv->phylink);
3949 
3950 	stmmac_disable_all_queues(priv);
3951 
3952 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3953 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3954 
3955 	netif_tx_disable(dev);
3956 
3957 	/* Free the IRQ lines */
3958 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3959 
3960 	if (priv->eee_enabled) {
3961 		priv->tx_path_in_lpi_mode = false;
3962 		del_timer_sync(&priv->eee_ctrl_timer);
3963 	}
3964 
3965 	/* Stop TX/RX DMA and clear the descriptors */
3966 	stmmac_stop_all_dma(priv);
3967 
3968 	/* Release and free the Rx/Tx resources */
3969 	free_dma_desc_resources(priv, &priv->dma_conf);
3970 
3971 	/* Disable the MAC Rx/Tx */
3972 	stmmac_mac_set(priv, priv->ioaddr, false);
3973 
3974 	/* Powerdown Serdes if there is */
3975 	if (priv->plat->serdes_powerdown)
3976 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3977 
3978 	netif_carrier_off(dev);
3979 
3980 	stmmac_release_ptp(priv);
3981 
3982 	pm_runtime_put(priv->device);
3983 
3984 	if (priv->dma_cap.fpesel)
3985 		stmmac_fpe_stop_wq(priv);
3986 
3987 	return 0;
3988 }
3989 
3990 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3991 			       struct stmmac_tx_queue *tx_q)
3992 {
3993 	u16 tag = 0x0, inner_tag = 0x0;
3994 	u32 inner_type = 0x0;
3995 	struct dma_desc *p;
3996 
3997 	if (!priv->dma_cap.vlins)
3998 		return false;
3999 	if (!skb_vlan_tag_present(skb))
4000 		return false;
4001 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
4002 		inner_tag = skb_vlan_tag_get(skb);
4003 		inner_type = STMMAC_VLAN_INSERT;
4004 	}
4005 
4006 	tag = skb_vlan_tag_get(skb);
4007 
4008 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4009 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
4010 	else
4011 		p = &tx_q->dma_tx[tx_q->cur_tx];
4012 
4013 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4014 		return false;
4015 
4016 	stmmac_set_tx_owner(priv, p);
4017 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4018 	return true;
4019 }
4020 
4021 /**
4022  *  stmmac_tso_allocator - close entry point of the driver
4023  *  @priv: driver private structure
4024  *  @des: buffer start address
4025  *  @total_len: total length to fill in descriptors
4026  *  @last_segment: condition for the last descriptor
4027  *  @queue: TX queue index
4028  *  Description:
4029  *  This function fills descriptor and request new descriptors according to
4030  *  buffer length to fill
4031  */
4032 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4033 				 int total_len, bool last_segment, u32 queue)
4034 {
4035 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4036 	struct dma_desc *desc;
4037 	u32 buff_size;
4038 	int tmp_len;
4039 
4040 	tmp_len = total_len;
4041 
4042 	while (tmp_len > 0) {
4043 		dma_addr_t curr_addr;
4044 
4045 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4046 						priv->dma_conf.dma_tx_size);
4047 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4048 
4049 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4050 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4051 		else
4052 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4053 
4054 		curr_addr = des + (total_len - tmp_len);
4055 		if (priv->dma_cap.addr64 <= 32)
4056 			desc->des0 = cpu_to_le32(curr_addr);
4057 		else
4058 			stmmac_set_desc_addr(priv, desc, curr_addr);
4059 
4060 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4061 			    TSO_MAX_BUFF_SIZE : tmp_len;
4062 
4063 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4064 				0, 1,
4065 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4066 				0, 0);
4067 
4068 		tmp_len -= TSO_MAX_BUFF_SIZE;
4069 	}
4070 }
4071 
4072 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4073 {
4074 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4075 	int desc_size;
4076 
4077 	if (likely(priv->extend_desc))
4078 		desc_size = sizeof(struct dma_extended_desc);
4079 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4080 		desc_size = sizeof(struct dma_edesc);
4081 	else
4082 		desc_size = sizeof(struct dma_desc);
4083 
4084 	/* The own bit must be the latest setting done when prepare the
4085 	 * descriptor and then barrier is needed to make sure that
4086 	 * all is coherent before granting the DMA engine.
4087 	 */
4088 	wmb();
4089 
4090 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4091 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4092 }
4093 
4094 /**
4095  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4096  *  @skb : the socket buffer
4097  *  @dev : device pointer
4098  *  Description: this is the transmit function that is called on TSO frames
4099  *  (support available on GMAC4 and newer chips).
4100  *  Diagram below show the ring programming in case of TSO frames:
4101  *
4102  *  First Descriptor
4103  *   --------
4104  *   | DES0 |---> buffer1 = L2/L3/L4 header
4105  *   | DES1 |---> TCP Payload (can continue on next descr...)
4106  *   | DES2 |---> buffer 1 and 2 len
4107  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4108  *   --------
4109  *	|
4110  *     ...
4111  *	|
4112  *   --------
4113  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4114  *   | DES1 | --|
4115  *   | DES2 | --> buffer 1 and 2 len
4116  *   | DES3 |
4117  *   --------
4118  *
4119  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4120  */
4121 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4122 {
4123 	struct dma_desc *desc, *first, *mss_desc = NULL;
4124 	struct stmmac_priv *priv = netdev_priv(dev);
4125 	int nfrags = skb_shinfo(skb)->nr_frags;
4126 	u32 queue = skb_get_queue_mapping(skb);
4127 	unsigned int first_entry, tx_packets;
4128 	struct stmmac_txq_stats *txq_stats;
4129 	int tmp_pay_len = 0, first_tx;
4130 	struct stmmac_tx_queue *tx_q;
4131 	bool has_vlan, set_ic;
4132 	u8 proto_hdr_len, hdr;
4133 	unsigned long flags;
4134 	u32 pay_len, mss;
4135 	dma_addr_t des;
4136 	int i;
4137 
4138 	tx_q = &priv->dma_conf.tx_queue[queue];
4139 	txq_stats = &priv->xstats.txq_stats[queue];
4140 	first_tx = tx_q->cur_tx;
4141 
4142 	/* Compute header lengths */
4143 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4144 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4145 		hdr = sizeof(struct udphdr);
4146 	} else {
4147 		proto_hdr_len = skb_tcp_all_headers(skb);
4148 		hdr = tcp_hdrlen(skb);
4149 	}
4150 
4151 	/* Desc availability based on threshold should be enough safe */
4152 	if (unlikely(stmmac_tx_avail(priv, queue) <
4153 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4154 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4155 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4156 								queue));
4157 			/* This is a hard error, log it. */
4158 			netdev_err(priv->dev,
4159 				   "%s: Tx Ring full when queue awake\n",
4160 				   __func__);
4161 		}
4162 		return NETDEV_TX_BUSY;
4163 	}
4164 
4165 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4166 
4167 	mss = skb_shinfo(skb)->gso_size;
4168 
4169 	/* set new MSS value if needed */
4170 	if (mss != tx_q->mss) {
4171 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4172 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4173 		else
4174 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4175 
4176 		stmmac_set_mss(priv, mss_desc, mss);
4177 		tx_q->mss = mss;
4178 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4179 						priv->dma_conf.dma_tx_size);
4180 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4181 	}
4182 
4183 	if (netif_msg_tx_queued(priv)) {
4184 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4185 			__func__, hdr, proto_hdr_len, pay_len, mss);
4186 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4187 			skb->data_len);
4188 	}
4189 
4190 	/* Check if VLAN can be inserted by HW */
4191 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4192 
4193 	first_entry = tx_q->cur_tx;
4194 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4195 
4196 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4197 		desc = &tx_q->dma_entx[first_entry].basic;
4198 	else
4199 		desc = &tx_q->dma_tx[first_entry];
4200 	first = desc;
4201 
4202 	if (has_vlan)
4203 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4204 
4205 	/* first descriptor: fill Headers on Buf1 */
4206 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4207 			     DMA_TO_DEVICE);
4208 	if (dma_mapping_error(priv->device, des))
4209 		goto dma_map_err;
4210 
4211 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4212 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4213 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4214 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4215 
4216 	if (priv->dma_cap.addr64 <= 32) {
4217 		first->des0 = cpu_to_le32(des);
4218 
4219 		/* Fill start of payload in buff2 of first descriptor */
4220 		if (pay_len)
4221 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4222 
4223 		/* If needed take extra descriptors to fill the remaining payload */
4224 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4225 	} else {
4226 		stmmac_set_desc_addr(priv, first, des);
4227 		tmp_pay_len = pay_len;
4228 		des += proto_hdr_len;
4229 		pay_len = 0;
4230 	}
4231 
4232 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4233 
4234 	/* Prepare fragments */
4235 	for (i = 0; i < nfrags; i++) {
4236 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4237 
4238 		des = skb_frag_dma_map(priv->device, frag, 0,
4239 				       skb_frag_size(frag),
4240 				       DMA_TO_DEVICE);
4241 		if (dma_mapping_error(priv->device, des))
4242 			goto dma_map_err;
4243 
4244 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4245 				     (i == nfrags - 1), queue);
4246 
4247 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4248 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4249 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4250 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4251 	}
4252 
4253 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4254 
4255 	/* Only the last descriptor gets to point to the skb. */
4256 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4257 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4258 
4259 	/* Manage tx mitigation */
4260 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4261 	tx_q->tx_count_frames += tx_packets;
4262 
4263 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4264 		set_ic = true;
4265 	else if (!priv->tx_coal_frames[queue])
4266 		set_ic = false;
4267 	else if (tx_packets > priv->tx_coal_frames[queue])
4268 		set_ic = true;
4269 	else if ((tx_q->tx_count_frames %
4270 		  priv->tx_coal_frames[queue]) < tx_packets)
4271 		set_ic = true;
4272 	else
4273 		set_ic = false;
4274 
4275 	if (set_ic) {
4276 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4277 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4278 		else
4279 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4280 
4281 		tx_q->tx_count_frames = 0;
4282 		stmmac_set_tx_ic(priv, desc);
4283 	}
4284 
4285 	/* We've used all descriptors we need for this skb, however,
4286 	 * advance cur_tx so that it references a fresh descriptor.
4287 	 * ndo_start_xmit will fill this descriptor the next time it's
4288 	 * called and stmmac_tx_clean may clean up to this descriptor.
4289 	 */
4290 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4291 
4292 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4293 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4294 			  __func__);
4295 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4296 	}
4297 
4298 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4299 	txq_stats->tx_bytes += skb->len;
4300 	txq_stats->tx_tso_frames++;
4301 	txq_stats->tx_tso_nfrags += nfrags;
4302 	if (set_ic)
4303 		txq_stats->tx_set_ic_bit++;
4304 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4305 
4306 	if (priv->sarc_type)
4307 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4308 
4309 	skb_tx_timestamp(skb);
4310 
4311 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4312 		     priv->hwts_tx_en)) {
4313 		/* declare that device is doing timestamping */
4314 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4315 		stmmac_enable_tx_timestamp(priv, first);
4316 	}
4317 
4318 	/* Complete the first descriptor before granting the DMA */
4319 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4320 			proto_hdr_len,
4321 			pay_len,
4322 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4323 			hdr / 4, (skb->len - proto_hdr_len));
4324 
4325 	/* If context desc is used to change MSS */
4326 	if (mss_desc) {
4327 		/* Make sure that first descriptor has been completely
4328 		 * written, including its own bit. This is because MSS is
4329 		 * actually before first descriptor, so we need to make
4330 		 * sure that MSS's own bit is the last thing written.
4331 		 */
4332 		dma_wmb();
4333 		stmmac_set_tx_owner(priv, mss_desc);
4334 	}
4335 
4336 	if (netif_msg_pktdata(priv)) {
4337 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4338 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4339 			tx_q->cur_tx, first, nfrags);
4340 		pr_info(">>> frame to be transmitted: ");
4341 		print_pkt(skb->data, skb_headlen(skb));
4342 	}
4343 
4344 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4345 
4346 	stmmac_flush_tx_descriptors(priv, queue);
4347 	stmmac_tx_timer_arm(priv, queue);
4348 
4349 	return NETDEV_TX_OK;
4350 
4351 dma_map_err:
4352 	dev_err(priv->device, "Tx dma map failed\n");
4353 	dev_kfree_skb(skb);
4354 	priv->xstats.tx_dropped++;
4355 	return NETDEV_TX_OK;
4356 }
4357 
4358 /**
4359  *  stmmac_xmit - Tx entry point of the driver
4360  *  @skb : the socket buffer
4361  *  @dev : device pointer
4362  *  Description : this is the tx entry point of the driver.
4363  *  It programs the chain or the ring and supports oversized frames
4364  *  and SG feature.
4365  */
4366 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4367 {
4368 	unsigned int first_entry, tx_packets, enh_desc;
4369 	struct stmmac_priv *priv = netdev_priv(dev);
4370 	unsigned int nopaged_len = skb_headlen(skb);
4371 	int i, csum_insertion = 0, is_jumbo = 0;
4372 	u32 queue = skb_get_queue_mapping(skb);
4373 	int nfrags = skb_shinfo(skb)->nr_frags;
4374 	int gso = skb_shinfo(skb)->gso_type;
4375 	struct stmmac_txq_stats *txq_stats;
4376 	struct dma_edesc *tbs_desc = NULL;
4377 	struct dma_desc *desc, *first;
4378 	struct stmmac_tx_queue *tx_q;
4379 	bool has_vlan, set_ic;
4380 	int entry, first_tx;
4381 	unsigned long flags;
4382 	dma_addr_t des;
4383 
4384 	tx_q = &priv->dma_conf.tx_queue[queue];
4385 	txq_stats = &priv->xstats.txq_stats[queue];
4386 	first_tx = tx_q->cur_tx;
4387 
4388 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4389 		stmmac_disable_eee_mode(priv);
4390 
4391 	/* Manage oversized TCP frames for GMAC4 device */
4392 	if (skb_is_gso(skb) && priv->tso) {
4393 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4394 			return stmmac_tso_xmit(skb, dev);
4395 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4396 			return stmmac_tso_xmit(skb, dev);
4397 	}
4398 
4399 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4400 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4401 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4402 								queue));
4403 			/* This is a hard error, log it. */
4404 			netdev_err(priv->dev,
4405 				   "%s: Tx Ring full when queue awake\n",
4406 				   __func__);
4407 		}
4408 		return NETDEV_TX_BUSY;
4409 	}
4410 
4411 	/* Check if VLAN can be inserted by HW */
4412 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4413 
4414 	entry = tx_q->cur_tx;
4415 	first_entry = entry;
4416 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4417 
4418 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4419 
4420 	if (likely(priv->extend_desc))
4421 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4422 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4423 		desc = &tx_q->dma_entx[entry].basic;
4424 	else
4425 		desc = tx_q->dma_tx + entry;
4426 
4427 	first = desc;
4428 
4429 	if (has_vlan)
4430 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4431 
4432 	enh_desc = priv->plat->enh_desc;
4433 	/* To program the descriptors according to the size of the frame */
4434 	if (enh_desc)
4435 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4436 
4437 	if (unlikely(is_jumbo)) {
4438 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4439 		if (unlikely(entry < 0) && (entry != -EINVAL))
4440 			goto dma_map_err;
4441 	}
4442 
4443 	for (i = 0; i < nfrags; i++) {
4444 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4445 		int len = skb_frag_size(frag);
4446 		bool last_segment = (i == (nfrags - 1));
4447 
4448 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4449 		WARN_ON(tx_q->tx_skbuff[entry]);
4450 
4451 		if (likely(priv->extend_desc))
4452 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4453 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4454 			desc = &tx_q->dma_entx[entry].basic;
4455 		else
4456 			desc = tx_q->dma_tx + entry;
4457 
4458 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4459 				       DMA_TO_DEVICE);
4460 		if (dma_mapping_error(priv->device, des))
4461 			goto dma_map_err; /* should reuse desc w/o issues */
4462 
4463 		tx_q->tx_skbuff_dma[entry].buf = des;
4464 
4465 		stmmac_set_desc_addr(priv, desc, des);
4466 
4467 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4468 		tx_q->tx_skbuff_dma[entry].len = len;
4469 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4470 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4471 
4472 		/* Prepare the descriptor and set the own bit too */
4473 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4474 				priv->mode, 1, last_segment, skb->len);
4475 	}
4476 
4477 	/* Only the last descriptor gets to point to the skb. */
4478 	tx_q->tx_skbuff[entry] = skb;
4479 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4480 
4481 	/* According to the coalesce parameter the IC bit for the latest
4482 	 * segment is reset and the timer re-started to clean the tx status.
4483 	 * This approach takes care about the fragments: desc is the first
4484 	 * element in case of no SG.
4485 	 */
4486 	tx_packets = (entry + 1) - first_tx;
4487 	tx_q->tx_count_frames += tx_packets;
4488 
4489 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4490 		set_ic = true;
4491 	else if (!priv->tx_coal_frames[queue])
4492 		set_ic = false;
4493 	else if (tx_packets > priv->tx_coal_frames[queue])
4494 		set_ic = true;
4495 	else if ((tx_q->tx_count_frames %
4496 		  priv->tx_coal_frames[queue]) < tx_packets)
4497 		set_ic = true;
4498 	else
4499 		set_ic = false;
4500 
4501 	if (set_ic) {
4502 		if (likely(priv->extend_desc))
4503 			desc = &tx_q->dma_etx[entry].basic;
4504 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4505 			desc = &tx_q->dma_entx[entry].basic;
4506 		else
4507 			desc = &tx_q->dma_tx[entry];
4508 
4509 		tx_q->tx_count_frames = 0;
4510 		stmmac_set_tx_ic(priv, desc);
4511 	}
4512 
4513 	/* We've used all descriptors we need for this skb, however,
4514 	 * advance cur_tx so that it references a fresh descriptor.
4515 	 * ndo_start_xmit will fill this descriptor the next time it's
4516 	 * called and stmmac_tx_clean may clean up to this descriptor.
4517 	 */
4518 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4519 	tx_q->cur_tx = entry;
4520 
4521 	if (netif_msg_pktdata(priv)) {
4522 		netdev_dbg(priv->dev,
4523 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4524 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4525 			   entry, first, nfrags);
4526 
4527 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4528 		print_pkt(skb->data, skb->len);
4529 	}
4530 
4531 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4532 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4533 			  __func__);
4534 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4535 	}
4536 
4537 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4538 	txq_stats->tx_bytes += skb->len;
4539 	if (set_ic)
4540 		txq_stats->tx_set_ic_bit++;
4541 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4542 
4543 	if (priv->sarc_type)
4544 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4545 
4546 	skb_tx_timestamp(skb);
4547 
4548 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4549 	 * problems because all the descriptors are actually ready to be
4550 	 * passed to the DMA engine.
4551 	 */
4552 	if (likely(!is_jumbo)) {
4553 		bool last_segment = (nfrags == 0);
4554 
4555 		des = dma_map_single(priv->device, skb->data,
4556 				     nopaged_len, DMA_TO_DEVICE);
4557 		if (dma_mapping_error(priv->device, des))
4558 			goto dma_map_err;
4559 
4560 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4561 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4562 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4563 
4564 		stmmac_set_desc_addr(priv, first, des);
4565 
4566 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4567 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4568 
4569 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4570 			     priv->hwts_tx_en)) {
4571 			/* declare that device is doing timestamping */
4572 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4573 			stmmac_enable_tx_timestamp(priv, first);
4574 		}
4575 
4576 		/* Prepare the first descriptor setting the OWN bit too */
4577 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4578 				csum_insertion, priv->mode, 0, last_segment,
4579 				skb->len);
4580 	}
4581 
4582 	if (tx_q->tbs & STMMAC_TBS_EN) {
4583 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4584 
4585 		tbs_desc = &tx_q->dma_entx[first_entry];
4586 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4587 	}
4588 
4589 	stmmac_set_tx_owner(priv, first);
4590 
4591 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4592 
4593 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4594 
4595 	stmmac_flush_tx_descriptors(priv, queue);
4596 	stmmac_tx_timer_arm(priv, queue);
4597 
4598 	return NETDEV_TX_OK;
4599 
4600 dma_map_err:
4601 	netdev_err(priv->dev, "Tx DMA map failed\n");
4602 	dev_kfree_skb(skb);
4603 	priv->xstats.tx_dropped++;
4604 	return NETDEV_TX_OK;
4605 }
4606 
4607 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4608 {
4609 	struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4610 	__be16 vlan_proto = veth->h_vlan_proto;
4611 	u16 vlanid;
4612 
4613 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4614 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4615 	    (vlan_proto == htons(ETH_P_8021AD) &&
4616 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4617 		/* pop the vlan tag */
4618 		vlanid = ntohs(veth->h_vlan_TCI);
4619 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4620 		skb_pull(skb, VLAN_HLEN);
4621 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4622 	}
4623 }
4624 
4625 /**
4626  * stmmac_rx_refill - refill used skb preallocated buffers
4627  * @priv: driver private structure
4628  * @queue: RX queue index
4629  * Description : this is to reallocate the skb for the reception process
4630  * that is based on zero-copy.
4631  */
4632 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4633 {
4634 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4635 	int dirty = stmmac_rx_dirty(priv, queue);
4636 	unsigned int entry = rx_q->dirty_rx;
4637 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4638 
4639 	if (priv->dma_cap.host_dma_width <= 32)
4640 		gfp |= GFP_DMA32;
4641 
4642 	while (dirty-- > 0) {
4643 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4644 		struct dma_desc *p;
4645 		bool use_rx_wd;
4646 
4647 		if (priv->extend_desc)
4648 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4649 		else
4650 			p = rx_q->dma_rx + entry;
4651 
4652 		if (!buf->page) {
4653 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4654 			if (!buf->page)
4655 				break;
4656 		}
4657 
4658 		if (priv->sph && !buf->sec_page) {
4659 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4660 			if (!buf->sec_page)
4661 				break;
4662 
4663 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4664 		}
4665 
4666 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4667 
4668 		stmmac_set_desc_addr(priv, p, buf->addr);
4669 		if (priv->sph)
4670 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4671 		else
4672 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4673 		stmmac_refill_desc3(priv, rx_q, p);
4674 
4675 		rx_q->rx_count_frames++;
4676 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4677 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4678 			rx_q->rx_count_frames = 0;
4679 
4680 		use_rx_wd = !priv->rx_coal_frames[queue];
4681 		use_rx_wd |= rx_q->rx_count_frames > 0;
4682 		if (!priv->use_riwt)
4683 			use_rx_wd = false;
4684 
4685 		dma_wmb();
4686 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4687 
4688 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4689 	}
4690 	rx_q->dirty_rx = entry;
4691 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4692 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4693 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4694 }
4695 
4696 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4697 				       struct dma_desc *p,
4698 				       int status, unsigned int len)
4699 {
4700 	unsigned int plen = 0, hlen = 0;
4701 	int coe = priv->hw->rx_csum;
4702 
4703 	/* Not first descriptor, buffer is always zero */
4704 	if (priv->sph && len)
4705 		return 0;
4706 
4707 	/* First descriptor, get split header length */
4708 	stmmac_get_rx_header_len(priv, p, &hlen);
4709 	if (priv->sph && hlen) {
4710 		priv->xstats.rx_split_hdr_pkt_n++;
4711 		return hlen;
4712 	}
4713 
4714 	/* First descriptor, not last descriptor and not split header */
4715 	if (status & rx_not_ls)
4716 		return priv->dma_conf.dma_buf_sz;
4717 
4718 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4719 
4720 	/* First descriptor and last descriptor and not split header */
4721 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4722 }
4723 
4724 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4725 				       struct dma_desc *p,
4726 				       int status, unsigned int len)
4727 {
4728 	int coe = priv->hw->rx_csum;
4729 	unsigned int plen = 0;
4730 
4731 	/* Not split header, buffer is not available */
4732 	if (!priv->sph)
4733 		return 0;
4734 
4735 	/* Not last descriptor */
4736 	if (status & rx_not_ls)
4737 		return priv->dma_conf.dma_buf_sz;
4738 
4739 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4740 
4741 	/* Last descriptor */
4742 	return plen - len;
4743 }
4744 
4745 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4746 				struct xdp_frame *xdpf, bool dma_map)
4747 {
4748 	struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
4749 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4750 	unsigned int entry = tx_q->cur_tx;
4751 	struct dma_desc *tx_desc;
4752 	dma_addr_t dma_addr;
4753 	bool set_ic;
4754 
4755 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4756 		return STMMAC_XDP_CONSUMED;
4757 
4758 	if (likely(priv->extend_desc))
4759 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4760 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4761 		tx_desc = &tx_q->dma_entx[entry].basic;
4762 	else
4763 		tx_desc = tx_q->dma_tx + entry;
4764 
4765 	if (dma_map) {
4766 		dma_addr = dma_map_single(priv->device, xdpf->data,
4767 					  xdpf->len, DMA_TO_DEVICE);
4768 		if (dma_mapping_error(priv->device, dma_addr))
4769 			return STMMAC_XDP_CONSUMED;
4770 
4771 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4772 	} else {
4773 		struct page *page = virt_to_page(xdpf->data);
4774 
4775 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4776 			   xdpf->headroom;
4777 		dma_sync_single_for_device(priv->device, dma_addr,
4778 					   xdpf->len, DMA_BIDIRECTIONAL);
4779 
4780 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4781 	}
4782 
4783 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4784 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4785 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4786 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4787 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4788 
4789 	tx_q->xdpf[entry] = xdpf;
4790 
4791 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4792 
4793 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4794 			       true, priv->mode, true, true,
4795 			       xdpf->len);
4796 
4797 	tx_q->tx_count_frames++;
4798 
4799 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4800 		set_ic = true;
4801 	else
4802 		set_ic = false;
4803 
4804 	if (set_ic) {
4805 		unsigned long flags;
4806 		tx_q->tx_count_frames = 0;
4807 		stmmac_set_tx_ic(priv, tx_desc);
4808 		flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
4809 		txq_stats->tx_set_ic_bit++;
4810 		u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
4811 	}
4812 
4813 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4814 
4815 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4816 	tx_q->cur_tx = entry;
4817 
4818 	return STMMAC_XDP_TX;
4819 }
4820 
4821 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4822 				   int cpu)
4823 {
4824 	int index = cpu;
4825 
4826 	if (unlikely(index < 0))
4827 		index = 0;
4828 
4829 	while (index >= priv->plat->tx_queues_to_use)
4830 		index -= priv->plat->tx_queues_to_use;
4831 
4832 	return index;
4833 }
4834 
4835 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4836 				struct xdp_buff *xdp)
4837 {
4838 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4839 	int cpu = smp_processor_id();
4840 	struct netdev_queue *nq;
4841 	int queue;
4842 	int res;
4843 
4844 	if (unlikely(!xdpf))
4845 		return STMMAC_XDP_CONSUMED;
4846 
4847 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4848 	nq = netdev_get_tx_queue(priv->dev, queue);
4849 
4850 	__netif_tx_lock(nq, cpu);
4851 	/* Avoids TX time-out as we are sharing with slow path */
4852 	txq_trans_cond_update(nq);
4853 
4854 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4855 	if (res == STMMAC_XDP_TX)
4856 		stmmac_flush_tx_descriptors(priv, queue);
4857 
4858 	__netif_tx_unlock(nq);
4859 
4860 	return res;
4861 }
4862 
4863 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4864 				 struct bpf_prog *prog,
4865 				 struct xdp_buff *xdp)
4866 {
4867 	u32 act;
4868 	int res;
4869 
4870 	act = bpf_prog_run_xdp(prog, xdp);
4871 	switch (act) {
4872 	case XDP_PASS:
4873 		res = STMMAC_XDP_PASS;
4874 		break;
4875 	case XDP_TX:
4876 		res = stmmac_xdp_xmit_back(priv, xdp);
4877 		break;
4878 	case XDP_REDIRECT:
4879 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4880 			res = STMMAC_XDP_CONSUMED;
4881 		else
4882 			res = STMMAC_XDP_REDIRECT;
4883 		break;
4884 	default:
4885 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4886 		fallthrough;
4887 	case XDP_ABORTED:
4888 		trace_xdp_exception(priv->dev, prog, act);
4889 		fallthrough;
4890 	case XDP_DROP:
4891 		res = STMMAC_XDP_CONSUMED;
4892 		break;
4893 	}
4894 
4895 	return res;
4896 }
4897 
4898 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4899 					   struct xdp_buff *xdp)
4900 {
4901 	struct bpf_prog *prog;
4902 	int res;
4903 
4904 	prog = READ_ONCE(priv->xdp_prog);
4905 	if (!prog) {
4906 		res = STMMAC_XDP_PASS;
4907 		goto out;
4908 	}
4909 
4910 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4911 out:
4912 	return ERR_PTR(-res);
4913 }
4914 
4915 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4916 				   int xdp_status)
4917 {
4918 	int cpu = smp_processor_id();
4919 	int queue;
4920 
4921 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4922 
4923 	if (xdp_status & STMMAC_XDP_TX)
4924 		stmmac_tx_timer_arm(priv, queue);
4925 
4926 	if (xdp_status & STMMAC_XDP_REDIRECT)
4927 		xdp_do_flush();
4928 }
4929 
4930 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4931 					       struct xdp_buff *xdp)
4932 {
4933 	unsigned int metasize = xdp->data - xdp->data_meta;
4934 	unsigned int datasize = xdp->data_end - xdp->data;
4935 	struct sk_buff *skb;
4936 
4937 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4938 			       xdp->data_end - xdp->data_hard_start,
4939 			       GFP_ATOMIC | __GFP_NOWARN);
4940 	if (unlikely(!skb))
4941 		return NULL;
4942 
4943 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4944 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4945 	if (metasize)
4946 		skb_metadata_set(skb, metasize);
4947 
4948 	return skb;
4949 }
4950 
4951 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4952 				   struct dma_desc *p, struct dma_desc *np,
4953 				   struct xdp_buff *xdp)
4954 {
4955 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
4956 	struct stmmac_channel *ch = &priv->channel[queue];
4957 	unsigned int len = xdp->data_end - xdp->data;
4958 	enum pkt_hash_types hash_type;
4959 	int coe = priv->hw->rx_csum;
4960 	unsigned long flags;
4961 	struct sk_buff *skb;
4962 	u32 hash;
4963 
4964 	skb = stmmac_construct_skb_zc(ch, xdp);
4965 	if (!skb) {
4966 		priv->xstats.rx_dropped++;
4967 		return;
4968 	}
4969 
4970 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4971 	stmmac_rx_vlan(priv->dev, skb);
4972 	skb->protocol = eth_type_trans(skb, priv->dev);
4973 
4974 	if (unlikely(!coe))
4975 		skb_checksum_none_assert(skb);
4976 	else
4977 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4978 
4979 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4980 		skb_set_hash(skb, hash, hash_type);
4981 
4982 	skb_record_rx_queue(skb, queue);
4983 	napi_gro_receive(&ch->rxtx_napi, skb);
4984 
4985 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
4986 	rxq_stats->rx_pkt_n++;
4987 	rxq_stats->rx_bytes += len;
4988 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
4989 }
4990 
4991 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4992 {
4993 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4994 	unsigned int entry = rx_q->dirty_rx;
4995 	struct dma_desc *rx_desc = NULL;
4996 	bool ret = true;
4997 
4998 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4999 
5000 	while (budget-- > 0 && entry != rx_q->cur_rx) {
5001 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
5002 		dma_addr_t dma_addr;
5003 		bool use_rx_wd;
5004 
5005 		if (!buf->xdp) {
5006 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
5007 			if (!buf->xdp) {
5008 				ret = false;
5009 				break;
5010 			}
5011 		}
5012 
5013 		if (priv->extend_desc)
5014 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5015 		else
5016 			rx_desc = rx_q->dma_rx + entry;
5017 
5018 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5019 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5020 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5021 		stmmac_refill_desc3(priv, rx_q, rx_desc);
5022 
5023 		rx_q->rx_count_frames++;
5024 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5025 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5026 			rx_q->rx_count_frames = 0;
5027 
5028 		use_rx_wd = !priv->rx_coal_frames[queue];
5029 		use_rx_wd |= rx_q->rx_count_frames > 0;
5030 		if (!priv->use_riwt)
5031 			use_rx_wd = false;
5032 
5033 		dma_wmb();
5034 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5035 
5036 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5037 	}
5038 
5039 	if (rx_desc) {
5040 		rx_q->dirty_rx = entry;
5041 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5042 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
5043 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5044 	}
5045 
5046 	return ret;
5047 }
5048 
5049 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5050 {
5051 	/* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5052 	 * to represent incoming packet, whereas cb field in the same structure
5053 	 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5054 	 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5055 	 */
5056 	return (struct stmmac_xdp_buff *)xdp;
5057 }
5058 
5059 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5060 {
5061 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5062 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5063 	unsigned int count = 0, error = 0, len = 0;
5064 	int dirty = stmmac_rx_dirty(priv, queue);
5065 	unsigned int next_entry = rx_q->cur_rx;
5066 	u32 rx_errors = 0, rx_dropped = 0;
5067 	unsigned int desc_size;
5068 	struct bpf_prog *prog;
5069 	bool failure = false;
5070 	unsigned long flags;
5071 	int xdp_status = 0;
5072 	int status = 0;
5073 
5074 	if (netif_msg_rx_status(priv)) {
5075 		void *rx_head;
5076 
5077 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5078 		if (priv->extend_desc) {
5079 			rx_head = (void *)rx_q->dma_erx;
5080 			desc_size = sizeof(struct dma_extended_desc);
5081 		} else {
5082 			rx_head = (void *)rx_q->dma_rx;
5083 			desc_size = sizeof(struct dma_desc);
5084 		}
5085 
5086 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5087 				    rx_q->dma_rx_phy, desc_size);
5088 	}
5089 	while (count < limit) {
5090 		struct stmmac_rx_buffer *buf;
5091 		struct stmmac_xdp_buff *ctx;
5092 		unsigned int buf1_len = 0;
5093 		struct dma_desc *np, *p;
5094 		int entry;
5095 		int res;
5096 
5097 		if (!count && rx_q->state_saved) {
5098 			error = rx_q->state.error;
5099 			len = rx_q->state.len;
5100 		} else {
5101 			rx_q->state_saved = false;
5102 			error = 0;
5103 			len = 0;
5104 		}
5105 
5106 		if (count >= limit)
5107 			break;
5108 
5109 read_again:
5110 		buf1_len = 0;
5111 		entry = next_entry;
5112 		buf = &rx_q->buf_pool[entry];
5113 
5114 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5115 			failure = failure ||
5116 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5117 			dirty = 0;
5118 		}
5119 
5120 		if (priv->extend_desc)
5121 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5122 		else
5123 			p = rx_q->dma_rx + entry;
5124 
5125 		/* read the status of the incoming frame */
5126 		status = stmmac_rx_status(priv, &priv->xstats, p);
5127 		/* check if managed by the DMA otherwise go ahead */
5128 		if (unlikely(status & dma_own))
5129 			break;
5130 
5131 		/* Prefetch the next RX descriptor */
5132 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5133 						priv->dma_conf.dma_rx_size);
5134 		next_entry = rx_q->cur_rx;
5135 
5136 		if (priv->extend_desc)
5137 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5138 		else
5139 			np = rx_q->dma_rx + next_entry;
5140 
5141 		prefetch(np);
5142 
5143 		/* Ensure a valid XSK buffer before proceed */
5144 		if (!buf->xdp)
5145 			break;
5146 
5147 		if (priv->extend_desc)
5148 			stmmac_rx_extended_status(priv, &priv->xstats,
5149 						  rx_q->dma_erx + entry);
5150 		if (unlikely(status == discard_frame)) {
5151 			xsk_buff_free(buf->xdp);
5152 			buf->xdp = NULL;
5153 			dirty++;
5154 			error = 1;
5155 			if (!priv->hwts_rx_en)
5156 				rx_errors++;
5157 		}
5158 
5159 		if (unlikely(error && (status & rx_not_ls)))
5160 			goto read_again;
5161 		if (unlikely(error)) {
5162 			count++;
5163 			continue;
5164 		}
5165 
5166 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5167 		if (likely(status & rx_not_ls)) {
5168 			xsk_buff_free(buf->xdp);
5169 			buf->xdp = NULL;
5170 			dirty++;
5171 			count++;
5172 			goto read_again;
5173 		}
5174 
5175 		ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5176 		ctx->priv = priv;
5177 		ctx->desc = p;
5178 		ctx->ndesc = np;
5179 
5180 		/* XDP ZC Frame only support primary buffers for now */
5181 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5182 		len += buf1_len;
5183 
5184 		/* ACS is disabled; strip manually. */
5185 		if (likely(!(status & rx_not_ls))) {
5186 			buf1_len -= ETH_FCS_LEN;
5187 			len -= ETH_FCS_LEN;
5188 		}
5189 
5190 		/* RX buffer is good and fit into a XSK pool buffer */
5191 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5192 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5193 
5194 		prog = READ_ONCE(priv->xdp_prog);
5195 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5196 
5197 		switch (res) {
5198 		case STMMAC_XDP_PASS:
5199 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5200 			xsk_buff_free(buf->xdp);
5201 			break;
5202 		case STMMAC_XDP_CONSUMED:
5203 			xsk_buff_free(buf->xdp);
5204 			rx_dropped++;
5205 			break;
5206 		case STMMAC_XDP_TX:
5207 		case STMMAC_XDP_REDIRECT:
5208 			xdp_status |= res;
5209 			break;
5210 		}
5211 
5212 		buf->xdp = NULL;
5213 		dirty++;
5214 		count++;
5215 	}
5216 
5217 	if (status & rx_not_ls) {
5218 		rx_q->state_saved = true;
5219 		rx_q->state.error = error;
5220 		rx_q->state.len = len;
5221 	}
5222 
5223 	stmmac_finalize_xdp_rx(priv, xdp_status);
5224 
5225 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5226 	rxq_stats->rx_pkt_n += count;
5227 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5228 
5229 	priv->xstats.rx_dropped += rx_dropped;
5230 	priv->xstats.rx_errors += rx_errors;
5231 
5232 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5233 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5234 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5235 		else
5236 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5237 
5238 		return (int)count;
5239 	}
5240 
5241 	return failure ? limit : (int)count;
5242 }
5243 
5244 /**
5245  * stmmac_rx - manage the receive process
5246  * @priv: driver private structure
5247  * @limit: napi bugget
5248  * @queue: RX queue index.
5249  * Description :  this the function called by the napi poll method.
5250  * It gets all the frames inside the ring.
5251  */
5252 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5253 {
5254 	u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5255 	struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5256 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5257 	struct stmmac_channel *ch = &priv->channel[queue];
5258 	unsigned int count = 0, error = 0, len = 0;
5259 	int status = 0, coe = priv->hw->rx_csum;
5260 	unsigned int next_entry = rx_q->cur_rx;
5261 	enum dma_data_direction dma_dir;
5262 	unsigned int desc_size;
5263 	struct sk_buff *skb = NULL;
5264 	struct stmmac_xdp_buff ctx;
5265 	unsigned long flags;
5266 	int xdp_status = 0;
5267 	int buf_sz;
5268 
5269 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5270 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5271 	limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit);
5272 
5273 	if (netif_msg_rx_status(priv)) {
5274 		void *rx_head;
5275 
5276 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5277 		if (priv->extend_desc) {
5278 			rx_head = (void *)rx_q->dma_erx;
5279 			desc_size = sizeof(struct dma_extended_desc);
5280 		} else {
5281 			rx_head = (void *)rx_q->dma_rx;
5282 			desc_size = sizeof(struct dma_desc);
5283 		}
5284 
5285 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5286 				    rx_q->dma_rx_phy, desc_size);
5287 	}
5288 	while (count < limit) {
5289 		unsigned int buf1_len = 0, buf2_len = 0;
5290 		enum pkt_hash_types hash_type;
5291 		struct stmmac_rx_buffer *buf;
5292 		struct dma_desc *np, *p;
5293 		int entry;
5294 		u32 hash;
5295 
5296 		if (!count && rx_q->state_saved) {
5297 			skb = rx_q->state.skb;
5298 			error = rx_q->state.error;
5299 			len = rx_q->state.len;
5300 		} else {
5301 			rx_q->state_saved = false;
5302 			skb = NULL;
5303 			error = 0;
5304 			len = 0;
5305 		}
5306 
5307 read_again:
5308 		if (count >= limit)
5309 			break;
5310 
5311 		buf1_len = 0;
5312 		buf2_len = 0;
5313 		entry = next_entry;
5314 		buf = &rx_q->buf_pool[entry];
5315 
5316 		if (priv->extend_desc)
5317 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5318 		else
5319 			p = rx_q->dma_rx + entry;
5320 
5321 		/* read the status of the incoming frame */
5322 		status = stmmac_rx_status(priv, &priv->xstats, p);
5323 		/* check if managed by the DMA otherwise go ahead */
5324 		if (unlikely(status & dma_own))
5325 			break;
5326 
5327 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5328 						priv->dma_conf.dma_rx_size);
5329 		next_entry = rx_q->cur_rx;
5330 
5331 		if (priv->extend_desc)
5332 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5333 		else
5334 			np = rx_q->dma_rx + next_entry;
5335 
5336 		prefetch(np);
5337 
5338 		if (priv->extend_desc)
5339 			stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5340 		if (unlikely(status == discard_frame)) {
5341 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5342 			buf->page = NULL;
5343 			error = 1;
5344 			if (!priv->hwts_rx_en)
5345 				rx_errors++;
5346 		}
5347 
5348 		if (unlikely(error && (status & rx_not_ls)))
5349 			goto read_again;
5350 		if (unlikely(error)) {
5351 			dev_kfree_skb(skb);
5352 			skb = NULL;
5353 			count++;
5354 			continue;
5355 		}
5356 
5357 		/* Buffer is good. Go on. */
5358 
5359 		prefetch(page_address(buf->page) + buf->page_offset);
5360 		if (buf->sec_page)
5361 			prefetch(page_address(buf->sec_page));
5362 
5363 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5364 		len += buf1_len;
5365 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5366 		len += buf2_len;
5367 
5368 		/* ACS is disabled; strip manually. */
5369 		if (likely(!(status & rx_not_ls))) {
5370 			if (buf2_len) {
5371 				buf2_len -= ETH_FCS_LEN;
5372 				len -= ETH_FCS_LEN;
5373 			} else if (buf1_len) {
5374 				buf1_len -= ETH_FCS_LEN;
5375 				len -= ETH_FCS_LEN;
5376 			}
5377 		}
5378 
5379 		if (!skb) {
5380 			unsigned int pre_len, sync_len;
5381 
5382 			dma_sync_single_for_cpu(priv->device, buf->addr,
5383 						buf1_len, dma_dir);
5384 
5385 			xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5386 			xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5387 					 buf->page_offset, buf1_len, true);
5388 
5389 			pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5390 				  buf->page_offset;
5391 
5392 			ctx.priv = priv;
5393 			ctx.desc = p;
5394 			ctx.ndesc = np;
5395 
5396 			skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5397 			/* Due xdp_adjust_tail: DMA sync for_device
5398 			 * cover max len CPU touch
5399 			 */
5400 			sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5401 				   buf->page_offset;
5402 			sync_len = max(sync_len, pre_len);
5403 
5404 			/* For Not XDP_PASS verdict */
5405 			if (IS_ERR(skb)) {
5406 				unsigned int xdp_res = -PTR_ERR(skb);
5407 
5408 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5409 					page_pool_put_page(rx_q->page_pool,
5410 							   virt_to_head_page(ctx.xdp.data),
5411 							   sync_len, true);
5412 					buf->page = NULL;
5413 					rx_dropped++;
5414 
5415 					/* Clear skb as it was set as
5416 					 * status by XDP program.
5417 					 */
5418 					skb = NULL;
5419 
5420 					if (unlikely((status & rx_not_ls)))
5421 						goto read_again;
5422 
5423 					count++;
5424 					continue;
5425 				} else if (xdp_res & (STMMAC_XDP_TX |
5426 						      STMMAC_XDP_REDIRECT)) {
5427 					xdp_status |= xdp_res;
5428 					buf->page = NULL;
5429 					skb = NULL;
5430 					count++;
5431 					continue;
5432 				}
5433 			}
5434 		}
5435 
5436 		if (!skb) {
5437 			/* XDP program may expand or reduce tail */
5438 			buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5439 
5440 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5441 			if (!skb) {
5442 				rx_dropped++;
5443 				count++;
5444 				goto drain_data;
5445 			}
5446 
5447 			/* XDP program may adjust header */
5448 			skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5449 			skb_put(skb, buf1_len);
5450 
5451 			/* Data payload copied into SKB, page ready for recycle */
5452 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5453 			buf->page = NULL;
5454 		} else if (buf1_len) {
5455 			dma_sync_single_for_cpu(priv->device, buf->addr,
5456 						buf1_len, dma_dir);
5457 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5458 					buf->page, buf->page_offset, buf1_len,
5459 					priv->dma_conf.dma_buf_sz);
5460 
5461 			/* Data payload appended into SKB */
5462 			skb_mark_for_recycle(skb);
5463 			buf->page = NULL;
5464 		}
5465 
5466 		if (buf2_len) {
5467 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5468 						buf2_len, dma_dir);
5469 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5470 					buf->sec_page, 0, buf2_len,
5471 					priv->dma_conf.dma_buf_sz);
5472 
5473 			/* Data payload appended into SKB */
5474 			skb_mark_for_recycle(skb);
5475 			buf->sec_page = NULL;
5476 		}
5477 
5478 drain_data:
5479 		if (likely(status & rx_not_ls))
5480 			goto read_again;
5481 		if (!skb)
5482 			continue;
5483 
5484 		/* Got entire packet into SKB. Finish it. */
5485 
5486 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5487 		stmmac_rx_vlan(priv->dev, skb);
5488 		skb->protocol = eth_type_trans(skb, priv->dev);
5489 
5490 		if (unlikely(!coe))
5491 			skb_checksum_none_assert(skb);
5492 		else
5493 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5494 
5495 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5496 			skb_set_hash(skb, hash, hash_type);
5497 
5498 		skb_record_rx_queue(skb, queue);
5499 		napi_gro_receive(&ch->rx_napi, skb);
5500 		skb = NULL;
5501 
5502 		rx_packets++;
5503 		rx_bytes += len;
5504 		count++;
5505 	}
5506 
5507 	if (status & rx_not_ls || skb) {
5508 		rx_q->state_saved = true;
5509 		rx_q->state.skb = skb;
5510 		rx_q->state.error = error;
5511 		rx_q->state.len = len;
5512 	}
5513 
5514 	stmmac_finalize_xdp_rx(priv, xdp_status);
5515 
5516 	stmmac_rx_refill(priv, queue);
5517 
5518 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5519 	rxq_stats->rx_packets += rx_packets;
5520 	rxq_stats->rx_bytes += rx_bytes;
5521 	rxq_stats->rx_pkt_n += count;
5522 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5523 
5524 	priv->xstats.rx_dropped += rx_dropped;
5525 	priv->xstats.rx_errors += rx_errors;
5526 
5527 	return count;
5528 }
5529 
5530 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5531 {
5532 	struct stmmac_channel *ch =
5533 		container_of(napi, struct stmmac_channel, rx_napi);
5534 	struct stmmac_priv *priv = ch->priv_data;
5535 	struct stmmac_rxq_stats *rxq_stats;
5536 	u32 chan = ch->index;
5537 	unsigned long flags;
5538 	int work_done;
5539 
5540 	rxq_stats = &priv->xstats.rxq_stats[chan];
5541 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5542 	rxq_stats->napi_poll++;
5543 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5544 
5545 	work_done = stmmac_rx(priv, budget, chan);
5546 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5547 		unsigned long flags;
5548 
5549 		spin_lock_irqsave(&ch->lock, flags);
5550 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5551 		spin_unlock_irqrestore(&ch->lock, flags);
5552 	}
5553 
5554 	return work_done;
5555 }
5556 
5557 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5558 {
5559 	struct stmmac_channel *ch =
5560 		container_of(napi, struct stmmac_channel, tx_napi);
5561 	struct stmmac_priv *priv = ch->priv_data;
5562 	struct stmmac_txq_stats *txq_stats;
5563 	u32 chan = ch->index;
5564 	unsigned long flags;
5565 	int work_done;
5566 
5567 	txq_stats = &priv->xstats.txq_stats[chan];
5568 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
5569 	txq_stats->napi_poll++;
5570 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
5571 
5572 	work_done = stmmac_tx_clean(priv, budget, chan);
5573 	work_done = min(work_done, budget);
5574 
5575 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5576 		unsigned long flags;
5577 
5578 		spin_lock_irqsave(&ch->lock, flags);
5579 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5580 		spin_unlock_irqrestore(&ch->lock, flags);
5581 	}
5582 
5583 	return work_done;
5584 }
5585 
5586 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5587 {
5588 	struct stmmac_channel *ch =
5589 		container_of(napi, struct stmmac_channel, rxtx_napi);
5590 	struct stmmac_priv *priv = ch->priv_data;
5591 	int rx_done, tx_done, rxtx_done;
5592 	struct stmmac_rxq_stats *rxq_stats;
5593 	struct stmmac_txq_stats *txq_stats;
5594 	u32 chan = ch->index;
5595 	unsigned long flags;
5596 
5597 	rxq_stats = &priv->xstats.rxq_stats[chan];
5598 	flags = u64_stats_update_begin_irqsave(&rxq_stats->syncp);
5599 	rxq_stats->napi_poll++;
5600 	u64_stats_update_end_irqrestore(&rxq_stats->syncp, flags);
5601 
5602 	txq_stats = &priv->xstats.txq_stats[chan];
5603 	flags = u64_stats_update_begin_irqsave(&txq_stats->syncp);
5604 	txq_stats->napi_poll++;
5605 	u64_stats_update_end_irqrestore(&txq_stats->syncp, flags);
5606 
5607 	tx_done = stmmac_tx_clean(priv, budget, chan);
5608 	tx_done = min(tx_done, budget);
5609 
5610 	rx_done = stmmac_rx_zc(priv, budget, chan);
5611 
5612 	rxtx_done = max(tx_done, rx_done);
5613 
5614 	/* If either TX or RX work is not complete, return budget
5615 	 * and keep pooling
5616 	 */
5617 	if (rxtx_done >= budget)
5618 		return budget;
5619 
5620 	/* all work done, exit the polling mode */
5621 	if (napi_complete_done(napi, rxtx_done)) {
5622 		unsigned long flags;
5623 
5624 		spin_lock_irqsave(&ch->lock, flags);
5625 		/* Both RX and TX work done are compelte,
5626 		 * so enable both RX & TX IRQs.
5627 		 */
5628 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5629 		spin_unlock_irqrestore(&ch->lock, flags);
5630 	}
5631 
5632 	return min(rxtx_done, budget - 1);
5633 }
5634 
5635 /**
5636  *  stmmac_tx_timeout
5637  *  @dev : Pointer to net device structure
5638  *  @txqueue: the index of the hanging transmit queue
5639  *  Description: this function is called when a packet transmission fails to
5640  *   complete within a reasonable time. The driver will mark the error in the
5641  *   netdev structure and arrange for the device to be reset to a sane state
5642  *   in order to transmit a new packet.
5643  */
5644 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5645 {
5646 	struct stmmac_priv *priv = netdev_priv(dev);
5647 
5648 	stmmac_global_err(priv);
5649 }
5650 
5651 /**
5652  *  stmmac_set_rx_mode - entry point for multicast addressing
5653  *  @dev : pointer to the device structure
5654  *  Description:
5655  *  This function is a driver entry point which gets called by the kernel
5656  *  whenever multicast addresses must be enabled/disabled.
5657  *  Return value:
5658  *  void.
5659  */
5660 static void stmmac_set_rx_mode(struct net_device *dev)
5661 {
5662 	struct stmmac_priv *priv = netdev_priv(dev);
5663 
5664 	stmmac_set_filter(priv, priv->hw, dev);
5665 }
5666 
5667 /**
5668  *  stmmac_change_mtu - entry point to change MTU size for the device.
5669  *  @dev : device pointer.
5670  *  @new_mtu : the new MTU size for the device.
5671  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5672  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5673  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5674  *  Return value:
5675  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5676  *  file on failure.
5677  */
5678 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5679 {
5680 	struct stmmac_priv *priv = netdev_priv(dev);
5681 	int txfifosz = priv->plat->tx_fifo_size;
5682 	struct stmmac_dma_conf *dma_conf;
5683 	const int mtu = new_mtu;
5684 	int ret;
5685 
5686 	if (txfifosz == 0)
5687 		txfifosz = priv->dma_cap.tx_fifo_size;
5688 
5689 	txfifosz /= priv->plat->tx_queues_to_use;
5690 
5691 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5692 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5693 		return -EINVAL;
5694 	}
5695 
5696 	new_mtu = STMMAC_ALIGN(new_mtu);
5697 
5698 	/* If condition true, FIFO is too small or MTU too large */
5699 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5700 		return -EINVAL;
5701 
5702 	if (netif_running(dev)) {
5703 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5704 		/* Try to allocate the new DMA conf with the new mtu */
5705 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5706 		if (IS_ERR(dma_conf)) {
5707 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5708 				   mtu);
5709 			return PTR_ERR(dma_conf);
5710 		}
5711 
5712 		stmmac_release(dev);
5713 
5714 		ret = __stmmac_open(dev, dma_conf);
5715 		if (ret) {
5716 			free_dma_desc_resources(priv, dma_conf);
5717 			kfree(dma_conf);
5718 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5719 			return ret;
5720 		}
5721 
5722 		kfree(dma_conf);
5723 
5724 		stmmac_set_rx_mode(dev);
5725 	}
5726 
5727 	dev->mtu = mtu;
5728 	netdev_update_features(dev);
5729 
5730 	return 0;
5731 }
5732 
5733 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5734 					     netdev_features_t features)
5735 {
5736 	struct stmmac_priv *priv = netdev_priv(dev);
5737 
5738 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5739 		features &= ~NETIF_F_RXCSUM;
5740 
5741 	if (!priv->plat->tx_coe)
5742 		features &= ~NETIF_F_CSUM_MASK;
5743 
5744 	/* Some GMAC devices have a bugged Jumbo frame support that
5745 	 * needs to have the Tx COE disabled for oversized frames
5746 	 * (due to limited buffer sizes). In this case we disable
5747 	 * the TX csum insertion in the TDES and not use SF.
5748 	 */
5749 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5750 		features &= ~NETIF_F_CSUM_MASK;
5751 
5752 	/* Disable tso if asked by ethtool */
5753 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5754 		if (features & NETIF_F_TSO)
5755 			priv->tso = true;
5756 		else
5757 			priv->tso = false;
5758 	}
5759 
5760 	return features;
5761 }
5762 
5763 static int stmmac_set_features(struct net_device *netdev,
5764 			       netdev_features_t features)
5765 {
5766 	struct stmmac_priv *priv = netdev_priv(netdev);
5767 
5768 	/* Keep the COE Type in case of csum is supporting */
5769 	if (features & NETIF_F_RXCSUM)
5770 		priv->hw->rx_csum = priv->plat->rx_coe;
5771 	else
5772 		priv->hw->rx_csum = 0;
5773 	/* No check needed because rx_coe has been set before and it will be
5774 	 * fixed in case of issue.
5775 	 */
5776 	stmmac_rx_ipc(priv, priv->hw);
5777 
5778 	if (priv->sph_cap) {
5779 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5780 		u32 chan;
5781 
5782 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5783 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5784 	}
5785 
5786 	return 0;
5787 }
5788 
5789 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5790 {
5791 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5792 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5793 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5794 	bool *hs_enable = &fpe_cfg->hs_enable;
5795 
5796 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5797 		return;
5798 
5799 	/* If LP has sent verify mPacket, LP is FPE capable */
5800 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5801 		if (*lp_state < FPE_STATE_CAPABLE)
5802 			*lp_state = FPE_STATE_CAPABLE;
5803 
5804 		/* If user has requested FPE enable, quickly response */
5805 		if (*hs_enable)
5806 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5807 						fpe_cfg,
5808 						MPACKET_RESPONSE);
5809 	}
5810 
5811 	/* If Local has sent verify mPacket, Local is FPE capable */
5812 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5813 		if (*lo_state < FPE_STATE_CAPABLE)
5814 			*lo_state = FPE_STATE_CAPABLE;
5815 	}
5816 
5817 	/* If LP has sent response mPacket, LP is entering FPE ON */
5818 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5819 		*lp_state = FPE_STATE_ENTERING_ON;
5820 
5821 	/* If Local has sent response mPacket, Local is entering FPE ON */
5822 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5823 		*lo_state = FPE_STATE_ENTERING_ON;
5824 
5825 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5826 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5827 	    priv->fpe_wq) {
5828 		queue_work(priv->fpe_wq, &priv->fpe_task);
5829 	}
5830 }
5831 
5832 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5833 {
5834 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5835 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5836 	u32 queues_count;
5837 	u32 queue;
5838 	bool xmac;
5839 
5840 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5841 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5842 
5843 	if (priv->irq_wake)
5844 		pm_wakeup_event(priv->device, 0);
5845 
5846 	if (priv->dma_cap.estsel)
5847 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5848 				      &priv->xstats, tx_cnt);
5849 
5850 	if (priv->dma_cap.fpesel) {
5851 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5852 						   priv->dev);
5853 
5854 		stmmac_fpe_event_status(priv, status);
5855 	}
5856 
5857 	/* To handle GMAC own interrupts */
5858 	if ((priv->plat->has_gmac) || xmac) {
5859 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5860 
5861 		if (unlikely(status)) {
5862 			/* For LPI we need to save the tx status */
5863 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5864 				priv->tx_path_in_lpi_mode = true;
5865 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5866 				priv->tx_path_in_lpi_mode = false;
5867 		}
5868 
5869 		for (queue = 0; queue < queues_count; queue++) {
5870 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5871 							    queue);
5872 		}
5873 
5874 		/* PCS link status */
5875 		if (priv->hw->pcs &&
5876 		    !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5877 			if (priv->xstats.pcs_link)
5878 				netif_carrier_on(priv->dev);
5879 			else
5880 				netif_carrier_off(priv->dev);
5881 		}
5882 
5883 		stmmac_timestamp_interrupt(priv, priv);
5884 	}
5885 }
5886 
5887 /**
5888  *  stmmac_interrupt - main ISR
5889  *  @irq: interrupt number.
5890  *  @dev_id: to pass the net device pointer.
5891  *  Description: this is the main driver interrupt service routine.
5892  *  It can call:
5893  *  o DMA service routine (to manage incoming frame reception and transmission
5894  *    status)
5895  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5896  *    interrupts.
5897  */
5898 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5899 {
5900 	struct net_device *dev = (struct net_device *)dev_id;
5901 	struct stmmac_priv *priv = netdev_priv(dev);
5902 
5903 	/* Check if adapter is up */
5904 	if (test_bit(STMMAC_DOWN, &priv->state))
5905 		return IRQ_HANDLED;
5906 
5907 	/* Check if a fatal error happened */
5908 	if (stmmac_safety_feat_interrupt(priv))
5909 		return IRQ_HANDLED;
5910 
5911 	/* To handle Common interrupts */
5912 	stmmac_common_interrupt(priv);
5913 
5914 	/* To handle DMA interrupts */
5915 	stmmac_dma_interrupt(priv);
5916 
5917 	return IRQ_HANDLED;
5918 }
5919 
5920 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5921 {
5922 	struct net_device *dev = (struct net_device *)dev_id;
5923 	struct stmmac_priv *priv = netdev_priv(dev);
5924 
5925 	if (unlikely(!dev)) {
5926 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5927 		return IRQ_NONE;
5928 	}
5929 
5930 	/* Check if adapter is up */
5931 	if (test_bit(STMMAC_DOWN, &priv->state))
5932 		return IRQ_HANDLED;
5933 
5934 	/* To handle Common interrupts */
5935 	stmmac_common_interrupt(priv);
5936 
5937 	return IRQ_HANDLED;
5938 }
5939 
5940 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5941 {
5942 	struct net_device *dev = (struct net_device *)dev_id;
5943 	struct stmmac_priv *priv = netdev_priv(dev);
5944 
5945 	if (unlikely(!dev)) {
5946 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5947 		return IRQ_NONE;
5948 	}
5949 
5950 	/* Check if adapter is up */
5951 	if (test_bit(STMMAC_DOWN, &priv->state))
5952 		return IRQ_HANDLED;
5953 
5954 	/* Check if a fatal error happened */
5955 	stmmac_safety_feat_interrupt(priv);
5956 
5957 	return IRQ_HANDLED;
5958 }
5959 
5960 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5961 {
5962 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5963 	struct stmmac_dma_conf *dma_conf;
5964 	int chan = tx_q->queue_index;
5965 	struct stmmac_priv *priv;
5966 	int status;
5967 
5968 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5969 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5970 
5971 	if (unlikely(!data)) {
5972 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5973 		return IRQ_NONE;
5974 	}
5975 
5976 	/* Check if adapter is up */
5977 	if (test_bit(STMMAC_DOWN, &priv->state))
5978 		return IRQ_HANDLED;
5979 
5980 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5981 
5982 	if (unlikely(status & tx_hard_error_bump_tc)) {
5983 		/* Try to bump up the dma threshold on this failure */
5984 		stmmac_bump_dma_threshold(priv, chan);
5985 	} else if (unlikely(status == tx_hard_error)) {
5986 		stmmac_tx_err(priv, chan);
5987 	}
5988 
5989 	return IRQ_HANDLED;
5990 }
5991 
5992 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5993 {
5994 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5995 	struct stmmac_dma_conf *dma_conf;
5996 	int chan = rx_q->queue_index;
5997 	struct stmmac_priv *priv;
5998 
5999 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
6000 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6001 
6002 	if (unlikely(!data)) {
6003 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
6004 		return IRQ_NONE;
6005 	}
6006 
6007 	/* Check if adapter is up */
6008 	if (test_bit(STMMAC_DOWN, &priv->state))
6009 		return IRQ_HANDLED;
6010 
6011 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
6012 
6013 	return IRQ_HANDLED;
6014 }
6015 
6016 /**
6017  *  stmmac_ioctl - Entry point for the Ioctl
6018  *  @dev: Device pointer.
6019  *  @rq: An IOCTL specefic structure, that can contain a pointer to
6020  *  a proprietary structure used to pass information to the driver.
6021  *  @cmd: IOCTL command
6022  *  Description:
6023  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6024  */
6025 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6026 {
6027 	struct stmmac_priv *priv = netdev_priv (dev);
6028 	int ret = -EOPNOTSUPP;
6029 
6030 	if (!netif_running(dev))
6031 		return -EINVAL;
6032 
6033 	switch (cmd) {
6034 	case SIOCGMIIPHY:
6035 	case SIOCGMIIREG:
6036 	case SIOCSMIIREG:
6037 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6038 		break;
6039 	case SIOCSHWTSTAMP:
6040 		ret = stmmac_hwtstamp_set(dev, rq);
6041 		break;
6042 	case SIOCGHWTSTAMP:
6043 		ret = stmmac_hwtstamp_get(dev, rq);
6044 		break;
6045 	default:
6046 		break;
6047 	}
6048 
6049 	return ret;
6050 }
6051 
6052 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6053 				    void *cb_priv)
6054 {
6055 	struct stmmac_priv *priv = cb_priv;
6056 	int ret = -EOPNOTSUPP;
6057 
6058 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6059 		return ret;
6060 
6061 	__stmmac_disable_all_queues(priv);
6062 
6063 	switch (type) {
6064 	case TC_SETUP_CLSU32:
6065 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6066 		break;
6067 	case TC_SETUP_CLSFLOWER:
6068 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
6069 		break;
6070 	default:
6071 		break;
6072 	}
6073 
6074 	stmmac_enable_all_queues(priv);
6075 	return ret;
6076 }
6077 
6078 static LIST_HEAD(stmmac_block_cb_list);
6079 
6080 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6081 			   void *type_data)
6082 {
6083 	struct stmmac_priv *priv = netdev_priv(ndev);
6084 
6085 	switch (type) {
6086 	case TC_QUERY_CAPS:
6087 		return stmmac_tc_query_caps(priv, priv, type_data);
6088 	case TC_SETUP_BLOCK:
6089 		return flow_block_cb_setup_simple(type_data,
6090 						  &stmmac_block_cb_list,
6091 						  stmmac_setup_tc_block_cb,
6092 						  priv, priv, true);
6093 	case TC_SETUP_QDISC_CBS:
6094 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6095 	case TC_SETUP_QDISC_TAPRIO:
6096 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6097 	case TC_SETUP_QDISC_ETF:
6098 		return stmmac_tc_setup_etf(priv, priv, type_data);
6099 	default:
6100 		return -EOPNOTSUPP;
6101 	}
6102 }
6103 
6104 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6105 			       struct net_device *sb_dev)
6106 {
6107 	int gso = skb_shinfo(skb)->gso_type;
6108 
6109 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6110 		/*
6111 		 * There is no way to determine the number of TSO/USO
6112 		 * capable Queues. Let's use always the Queue 0
6113 		 * because if TSO/USO is supported then at least this
6114 		 * one will be capable.
6115 		 */
6116 		return 0;
6117 	}
6118 
6119 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6120 }
6121 
6122 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6123 {
6124 	struct stmmac_priv *priv = netdev_priv(ndev);
6125 	int ret = 0;
6126 
6127 	ret = pm_runtime_resume_and_get(priv->device);
6128 	if (ret < 0)
6129 		return ret;
6130 
6131 	ret = eth_mac_addr(ndev, addr);
6132 	if (ret)
6133 		goto set_mac_error;
6134 
6135 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6136 
6137 set_mac_error:
6138 	pm_runtime_put(priv->device);
6139 
6140 	return ret;
6141 }
6142 
6143 #ifdef CONFIG_DEBUG_FS
6144 static struct dentry *stmmac_fs_dir;
6145 
6146 static void sysfs_display_ring(void *head, int size, int extend_desc,
6147 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6148 {
6149 	int i;
6150 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6151 	struct dma_desc *p = (struct dma_desc *)head;
6152 	dma_addr_t dma_addr;
6153 
6154 	for (i = 0; i < size; i++) {
6155 		if (extend_desc) {
6156 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6157 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6158 				   i, &dma_addr,
6159 				   le32_to_cpu(ep->basic.des0),
6160 				   le32_to_cpu(ep->basic.des1),
6161 				   le32_to_cpu(ep->basic.des2),
6162 				   le32_to_cpu(ep->basic.des3));
6163 			ep++;
6164 		} else {
6165 			dma_addr = dma_phy_addr + i * sizeof(*p);
6166 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6167 				   i, &dma_addr,
6168 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6169 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6170 			p++;
6171 		}
6172 		seq_printf(seq, "\n");
6173 	}
6174 }
6175 
6176 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6177 {
6178 	struct net_device *dev = seq->private;
6179 	struct stmmac_priv *priv = netdev_priv(dev);
6180 	u32 rx_count = priv->plat->rx_queues_to_use;
6181 	u32 tx_count = priv->plat->tx_queues_to_use;
6182 	u32 queue;
6183 
6184 	if ((dev->flags & IFF_UP) == 0)
6185 		return 0;
6186 
6187 	for (queue = 0; queue < rx_count; queue++) {
6188 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6189 
6190 		seq_printf(seq, "RX Queue %d:\n", queue);
6191 
6192 		if (priv->extend_desc) {
6193 			seq_printf(seq, "Extended descriptor ring:\n");
6194 			sysfs_display_ring((void *)rx_q->dma_erx,
6195 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6196 		} else {
6197 			seq_printf(seq, "Descriptor ring:\n");
6198 			sysfs_display_ring((void *)rx_q->dma_rx,
6199 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6200 		}
6201 	}
6202 
6203 	for (queue = 0; queue < tx_count; queue++) {
6204 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6205 
6206 		seq_printf(seq, "TX Queue %d:\n", queue);
6207 
6208 		if (priv->extend_desc) {
6209 			seq_printf(seq, "Extended descriptor ring:\n");
6210 			sysfs_display_ring((void *)tx_q->dma_etx,
6211 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6212 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6213 			seq_printf(seq, "Descriptor ring:\n");
6214 			sysfs_display_ring((void *)tx_q->dma_tx,
6215 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6216 		}
6217 	}
6218 
6219 	return 0;
6220 }
6221 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6222 
6223 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6224 {
6225 	static const char * const dwxgmac_timestamp_source[] = {
6226 		"None",
6227 		"Internal",
6228 		"External",
6229 		"Both",
6230 	};
6231 	static const char * const dwxgmac_safety_feature_desc[] = {
6232 		"No",
6233 		"All Safety Features with ECC and Parity",
6234 		"All Safety Features without ECC or Parity",
6235 		"All Safety Features with Parity Only",
6236 		"ECC Only",
6237 		"UNDEFINED",
6238 		"UNDEFINED",
6239 		"UNDEFINED",
6240 	};
6241 	struct net_device *dev = seq->private;
6242 	struct stmmac_priv *priv = netdev_priv(dev);
6243 
6244 	if (!priv->hw_cap_support) {
6245 		seq_printf(seq, "DMA HW features not supported\n");
6246 		return 0;
6247 	}
6248 
6249 	seq_printf(seq, "==============================\n");
6250 	seq_printf(seq, "\tDMA HW features\n");
6251 	seq_printf(seq, "==============================\n");
6252 
6253 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6254 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6255 	seq_printf(seq, "\t1000 Mbps: %s\n",
6256 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6257 	seq_printf(seq, "\tHalf duplex: %s\n",
6258 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6259 	if (priv->plat->has_xgmac) {
6260 		seq_printf(seq,
6261 			   "\tNumber of Additional MAC address registers: %d\n",
6262 			   priv->dma_cap.multi_addr);
6263 	} else {
6264 		seq_printf(seq, "\tHash Filter: %s\n",
6265 			   (priv->dma_cap.hash_filter) ? "Y" : "N");
6266 		seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6267 			   (priv->dma_cap.multi_addr) ? "Y" : "N");
6268 	}
6269 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6270 		   (priv->dma_cap.pcs) ? "Y" : "N");
6271 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6272 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6273 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6274 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6275 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6276 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6277 	seq_printf(seq, "\tRMON module: %s\n",
6278 		   (priv->dma_cap.rmon) ? "Y" : "N");
6279 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6280 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6281 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6282 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6283 	if (priv->plat->has_xgmac)
6284 		seq_printf(seq, "\tTimestamp System Time Source: %s\n",
6285 			   dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
6286 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6287 		   (priv->dma_cap.eee) ? "Y" : "N");
6288 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6289 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6290 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6291 	if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
6292 	    priv->plat->has_xgmac) {
6293 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6294 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6295 	} else {
6296 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6297 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6298 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6299 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6300 		seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6301 			   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6302 	}
6303 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6304 		   priv->dma_cap.number_rx_channel);
6305 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6306 		   priv->dma_cap.number_tx_channel);
6307 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6308 		   priv->dma_cap.number_rx_queues);
6309 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6310 		   priv->dma_cap.number_tx_queues);
6311 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6312 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6313 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6314 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6315 	seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ?
6316 		   (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0);
6317 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6318 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6319 		   priv->dma_cap.pps_out_num);
6320 	seq_printf(seq, "\tSafety Features: %s\n",
6321 		   dwxgmac_safety_feature_desc[priv->dma_cap.asp]);
6322 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6323 		   priv->dma_cap.frpsel ? "Y" : "N");
6324 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6325 		   priv->dma_cap.host_dma_width);
6326 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6327 		   priv->dma_cap.rssen ? "Y" : "N");
6328 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6329 		   priv->dma_cap.vlhash ? "Y" : "N");
6330 	seq_printf(seq, "\tSplit Header: %s\n",
6331 		   priv->dma_cap.sphen ? "Y" : "N");
6332 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6333 		   priv->dma_cap.vlins ? "Y" : "N");
6334 	seq_printf(seq, "\tDouble VLAN: %s\n",
6335 		   priv->dma_cap.dvlan ? "Y" : "N");
6336 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6337 		   priv->dma_cap.l3l4fnum);
6338 	seq_printf(seq, "\tARP Offloading: %s\n",
6339 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6340 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6341 		   priv->dma_cap.estsel ? "Y" : "N");
6342 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6343 		   priv->dma_cap.fpesel ? "Y" : "N");
6344 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6345 		   priv->dma_cap.tbssel ? "Y" : "N");
6346 	seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n",
6347 		   priv->dma_cap.tbs_ch_num);
6348 	seq_printf(seq, "\tPer-Stream Filtering: %s\n",
6349 		   priv->dma_cap.sgfsel ? "Y" : "N");
6350 	seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n",
6351 		   BIT(priv->dma_cap.ttsfd) >> 1);
6352 	seq_printf(seq, "\tNumber of Traffic Classes: %d\n",
6353 		   priv->dma_cap.numtc);
6354 	seq_printf(seq, "\tDCB Feature: %s\n",
6355 		   priv->dma_cap.dcben ? "Y" : "N");
6356 	seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n",
6357 		   priv->dma_cap.advthword ? "Y" : "N");
6358 	seq_printf(seq, "\tPTP Offload: %s\n",
6359 		   priv->dma_cap.ptoen ? "Y" : "N");
6360 	seq_printf(seq, "\tOne-Step Timestamping: %s\n",
6361 		   priv->dma_cap.osten ? "Y" : "N");
6362 	seq_printf(seq, "\tPriority-Based Flow Control: %s\n",
6363 		   priv->dma_cap.pfcen ? "Y" : "N");
6364 	seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n",
6365 		   BIT(priv->dma_cap.frpes) << 6);
6366 	seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n",
6367 		   BIT(priv->dma_cap.frpbs) << 6);
6368 	seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n",
6369 		   priv->dma_cap.frppipe_num);
6370 	seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n",
6371 		   priv->dma_cap.nrvf_num ?
6372 		   (BIT(priv->dma_cap.nrvf_num) << 1) : 0);
6373 	seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n",
6374 		   priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0);
6375 	seq_printf(seq, "\tDepth of GCL: %lu\n",
6376 		   priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0);
6377 	seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n",
6378 		   priv->dma_cap.cbtisel ? "Y" : "N");
6379 	seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n",
6380 		   priv->dma_cap.aux_snapshot_n);
6381 	seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n",
6382 		   priv->dma_cap.pou_ost_en ? "Y" : "N");
6383 	seq_printf(seq, "\tEnhanced DMA: %s\n",
6384 		   priv->dma_cap.edma ? "Y" : "N");
6385 	seq_printf(seq, "\tDifferent Descriptor Cache: %s\n",
6386 		   priv->dma_cap.ediffc ? "Y" : "N");
6387 	seq_printf(seq, "\tVxLAN/NVGRE: %s\n",
6388 		   priv->dma_cap.vxn ? "Y" : "N");
6389 	seq_printf(seq, "\tDebug Memory Interface: %s\n",
6390 		   priv->dma_cap.dbgmem ? "Y" : "N");
6391 	seq_printf(seq, "\tNumber of Policing Counters: %lu\n",
6392 		   priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0);
6393 	return 0;
6394 }
6395 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6396 
6397 /* Use network device events to rename debugfs file entries.
6398  */
6399 static int stmmac_device_event(struct notifier_block *unused,
6400 			       unsigned long event, void *ptr)
6401 {
6402 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6403 	struct stmmac_priv *priv = netdev_priv(dev);
6404 
6405 	if (dev->netdev_ops != &stmmac_netdev_ops)
6406 		goto done;
6407 
6408 	switch (event) {
6409 	case NETDEV_CHANGENAME:
6410 		if (priv->dbgfs_dir)
6411 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6412 							 priv->dbgfs_dir,
6413 							 stmmac_fs_dir,
6414 							 dev->name);
6415 		break;
6416 	}
6417 done:
6418 	return NOTIFY_DONE;
6419 }
6420 
6421 static struct notifier_block stmmac_notifier = {
6422 	.notifier_call = stmmac_device_event,
6423 };
6424 
6425 static void stmmac_init_fs(struct net_device *dev)
6426 {
6427 	struct stmmac_priv *priv = netdev_priv(dev);
6428 
6429 	rtnl_lock();
6430 
6431 	/* Create per netdev entries */
6432 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6433 
6434 	/* Entry to report DMA RX/TX rings */
6435 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6436 			    &stmmac_rings_status_fops);
6437 
6438 	/* Entry to report the DMA HW features */
6439 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6440 			    &stmmac_dma_cap_fops);
6441 
6442 	rtnl_unlock();
6443 }
6444 
6445 static void stmmac_exit_fs(struct net_device *dev)
6446 {
6447 	struct stmmac_priv *priv = netdev_priv(dev);
6448 
6449 	debugfs_remove_recursive(priv->dbgfs_dir);
6450 }
6451 #endif /* CONFIG_DEBUG_FS */
6452 
6453 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6454 {
6455 	unsigned char *data = (unsigned char *)&vid_le;
6456 	unsigned char data_byte = 0;
6457 	u32 crc = ~0x0;
6458 	u32 temp = 0;
6459 	int i, bits;
6460 
6461 	bits = get_bitmask_order(VLAN_VID_MASK);
6462 	for (i = 0; i < bits; i++) {
6463 		if ((i % 8) == 0)
6464 			data_byte = data[i / 8];
6465 
6466 		temp = ((crc & 1) ^ data_byte) & 1;
6467 		crc >>= 1;
6468 		data_byte >>= 1;
6469 
6470 		if (temp)
6471 			crc ^= 0xedb88320;
6472 	}
6473 
6474 	return crc;
6475 }
6476 
6477 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6478 {
6479 	u32 crc, hash = 0;
6480 	__le16 pmatch = 0;
6481 	int count = 0;
6482 	u16 vid = 0;
6483 
6484 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6485 		__le16 vid_le = cpu_to_le16(vid);
6486 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6487 		hash |= (1 << crc);
6488 		count++;
6489 	}
6490 
6491 	if (!priv->dma_cap.vlhash) {
6492 		if (count > 2) /* VID = 0 always passes filter */
6493 			return -EOPNOTSUPP;
6494 
6495 		pmatch = cpu_to_le16(vid);
6496 		hash = 0;
6497 	}
6498 
6499 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6500 }
6501 
6502 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6503 {
6504 	struct stmmac_priv *priv = netdev_priv(ndev);
6505 	bool is_double = false;
6506 	int ret;
6507 
6508 	ret = pm_runtime_resume_and_get(priv->device);
6509 	if (ret < 0)
6510 		return ret;
6511 
6512 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6513 		is_double = true;
6514 
6515 	set_bit(vid, priv->active_vlans);
6516 	ret = stmmac_vlan_update(priv, is_double);
6517 	if (ret) {
6518 		clear_bit(vid, priv->active_vlans);
6519 		goto err_pm_put;
6520 	}
6521 
6522 	if (priv->hw->num_vlan) {
6523 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6524 		if (ret)
6525 			goto err_pm_put;
6526 	}
6527 err_pm_put:
6528 	pm_runtime_put(priv->device);
6529 
6530 	return ret;
6531 }
6532 
6533 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6534 {
6535 	struct stmmac_priv *priv = netdev_priv(ndev);
6536 	bool is_double = false;
6537 	int ret;
6538 
6539 	ret = pm_runtime_resume_and_get(priv->device);
6540 	if (ret < 0)
6541 		return ret;
6542 
6543 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6544 		is_double = true;
6545 
6546 	clear_bit(vid, priv->active_vlans);
6547 
6548 	if (priv->hw->num_vlan) {
6549 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6550 		if (ret)
6551 			goto del_vlan_error;
6552 	}
6553 
6554 	ret = stmmac_vlan_update(priv, is_double);
6555 
6556 del_vlan_error:
6557 	pm_runtime_put(priv->device);
6558 
6559 	return ret;
6560 }
6561 
6562 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6563 {
6564 	struct stmmac_priv *priv = netdev_priv(dev);
6565 
6566 	switch (bpf->command) {
6567 	case XDP_SETUP_PROG:
6568 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6569 	case XDP_SETUP_XSK_POOL:
6570 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6571 					     bpf->xsk.queue_id);
6572 	default:
6573 		return -EOPNOTSUPP;
6574 	}
6575 }
6576 
6577 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6578 			   struct xdp_frame **frames, u32 flags)
6579 {
6580 	struct stmmac_priv *priv = netdev_priv(dev);
6581 	int cpu = smp_processor_id();
6582 	struct netdev_queue *nq;
6583 	int i, nxmit = 0;
6584 	int queue;
6585 
6586 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6587 		return -ENETDOWN;
6588 
6589 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6590 		return -EINVAL;
6591 
6592 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6593 	nq = netdev_get_tx_queue(priv->dev, queue);
6594 
6595 	__netif_tx_lock(nq, cpu);
6596 	/* Avoids TX time-out as we are sharing with slow path */
6597 	txq_trans_cond_update(nq);
6598 
6599 	for (i = 0; i < num_frames; i++) {
6600 		int res;
6601 
6602 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6603 		if (res == STMMAC_XDP_CONSUMED)
6604 			break;
6605 
6606 		nxmit++;
6607 	}
6608 
6609 	if (flags & XDP_XMIT_FLUSH) {
6610 		stmmac_flush_tx_descriptors(priv, queue);
6611 		stmmac_tx_timer_arm(priv, queue);
6612 	}
6613 
6614 	__netif_tx_unlock(nq);
6615 
6616 	return nxmit;
6617 }
6618 
6619 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6620 {
6621 	struct stmmac_channel *ch = &priv->channel[queue];
6622 	unsigned long flags;
6623 
6624 	spin_lock_irqsave(&ch->lock, flags);
6625 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6626 	spin_unlock_irqrestore(&ch->lock, flags);
6627 
6628 	stmmac_stop_rx_dma(priv, queue);
6629 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6630 }
6631 
6632 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6633 {
6634 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6635 	struct stmmac_channel *ch = &priv->channel[queue];
6636 	unsigned long flags;
6637 	u32 buf_size;
6638 	int ret;
6639 
6640 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6641 	if (ret) {
6642 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6643 		return;
6644 	}
6645 
6646 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6647 	if (ret) {
6648 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6649 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6650 		return;
6651 	}
6652 
6653 	stmmac_reset_rx_queue(priv, queue);
6654 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6655 
6656 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6657 			    rx_q->dma_rx_phy, rx_q->queue_index);
6658 
6659 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6660 			     sizeof(struct dma_desc));
6661 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6662 			       rx_q->rx_tail_addr, rx_q->queue_index);
6663 
6664 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6665 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6666 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6667 				      buf_size,
6668 				      rx_q->queue_index);
6669 	} else {
6670 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6671 				      priv->dma_conf.dma_buf_sz,
6672 				      rx_q->queue_index);
6673 	}
6674 
6675 	stmmac_start_rx_dma(priv, queue);
6676 
6677 	spin_lock_irqsave(&ch->lock, flags);
6678 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6679 	spin_unlock_irqrestore(&ch->lock, flags);
6680 }
6681 
6682 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6683 {
6684 	struct stmmac_channel *ch = &priv->channel[queue];
6685 	unsigned long flags;
6686 
6687 	spin_lock_irqsave(&ch->lock, flags);
6688 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6689 	spin_unlock_irqrestore(&ch->lock, flags);
6690 
6691 	stmmac_stop_tx_dma(priv, queue);
6692 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6693 }
6694 
6695 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6696 {
6697 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6698 	struct stmmac_channel *ch = &priv->channel[queue];
6699 	unsigned long flags;
6700 	int ret;
6701 
6702 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6703 	if (ret) {
6704 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6705 		return;
6706 	}
6707 
6708 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6709 	if (ret) {
6710 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6711 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6712 		return;
6713 	}
6714 
6715 	stmmac_reset_tx_queue(priv, queue);
6716 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6717 
6718 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6719 			    tx_q->dma_tx_phy, tx_q->queue_index);
6720 
6721 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6722 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6723 
6724 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6725 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6726 			       tx_q->tx_tail_addr, tx_q->queue_index);
6727 
6728 	stmmac_start_tx_dma(priv, queue);
6729 
6730 	spin_lock_irqsave(&ch->lock, flags);
6731 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6732 	spin_unlock_irqrestore(&ch->lock, flags);
6733 }
6734 
6735 void stmmac_xdp_release(struct net_device *dev)
6736 {
6737 	struct stmmac_priv *priv = netdev_priv(dev);
6738 	u32 chan;
6739 
6740 	/* Ensure tx function is not running */
6741 	netif_tx_disable(dev);
6742 
6743 	/* Disable NAPI process */
6744 	stmmac_disable_all_queues(priv);
6745 
6746 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6747 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6748 
6749 	/* Free the IRQ lines */
6750 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6751 
6752 	/* Stop TX/RX DMA channels */
6753 	stmmac_stop_all_dma(priv);
6754 
6755 	/* Release and free the Rx/Tx resources */
6756 	free_dma_desc_resources(priv, &priv->dma_conf);
6757 
6758 	/* Disable the MAC Rx/Tx */
6759 	stmmac_mac_set(priv, priv->ioaddr, false);
6760 
6761 	/* set trans_start so we don't get spurious
6762 	 * watchdogs during reset
6763 	 */
6764 	netif_trans_update(dev);
6765 	netif_carrier_off(dev);
6766 }
6767 
6768 int stmmac_xdp_open(struct net_device *dev)
6769 {
6770 	struct stmmac_priv *priv = netdev_priv(dev);
6771 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6772 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6773 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6774 	struct stmmac_rx_queue *rx_q;
6775 	struct stmmac_tx_queue *tx_q;
6776 	u32 buf_size;
6777 	bool sph_en;
6778 	u32 chan;
6779 	int ret;
6780 
6781 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6782 	if (ret < 0) {
6783 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6784 			   __func__);
6785 		goto dma_desc_error;
6786 	}
6787 
6788 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6789 	if (ret < 0) {
6790 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6791 			   __func__);
6792 		goto init_error;
6793 	}
6794 
6795 	stmmac_reset_queues_param(priv);
6796 
6797 	/* DMA CSR Channel configuration */
6798 	for (chan = 0; chan < dma_csr_ch; chan++) {
6799 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6800 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6801 	}
6802 
6803 	/* Adjust Split header */
6804 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6805 
6806 	/* DMA RX Channel Configuration */
6807 	for (chan = 0; chan < rx_cnt; chan++) {
6808 		rx_q = &priv->dma_conf.rx_queue[chan];
6809 
6810 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6811 				    rx_q->dma_rx_phy, chan);
6812 
6813 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6814 				     (rx_q->buf_alloc_num *
6815 				      sizeof(struct dma_desc));
6816 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6817 				       rx_q->rx_tail_addr, chan);
6818 
6819 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6820 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6821 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6822 					      buf_size,
6823 					      rx_q->queue_index);
6824 		} else {
6825 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6826 					      priv->dma_conf.dma_buf_sz,
6827 					      rx_q->queue_index);
6828 		}
6829 
6830 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6831 	}
6832 
6833 	/* DMA TX Channel Configuration */
6834 	for (chan = 0; chan < tx_cnt; chan++) {
6835 		tx_q = &priv->dma_conf.tx_queue[chan];
6836 
6837 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6838 				    tx_q->dma_tx_phy, chan);
6839 
6840 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6841 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6842 				       tx_q->tx_tail_addr, chan);
6843 
6844 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6845 		tx_q->txtimer.function = stmmac_tx_timer;
6846 	}
6847 
6848 	/* Enable the MAC Rx/Tx */
6849 	stmmac_mac_set(priv, priv->ioaddr, true);
6850 
6851 	/* Start Rx & Tx DMA Channels */
6852 	stmmac_start_all_dma(priv);
6853 
6854 	ret = stmmac_request_irq(dev);
6855 	if (ret)
6856 		goto irq_error;
6857 
6858 	/* Enable NAPI process*/
6859 	stmmac_enable_all_queues(priv);
6860 	netif_carrier_on(dev);
6861 	netif_tx_start_all_queues(dev);
6862 	stmmac_enable_all_dma_irq(priv);
6863 
6864 	return 0;
6865 
6866 irq_error:
6867 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6868 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6869 
6870 	stmmac_hw_teardown(dev);
6871 init_error:
6872 	free_dma_desc_resources(priv, &priv->dma_conf);
6873 dma_desc_error:
6874 	return ret;
6875 }
6876 
6877 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6878 {
6879 	struct stmmac_priv *priv = netdev_priv(dev);
6880 	struct stmmac_rx_queue *rx_q;
6881 	struct stmmac_tx_queue *tx_q;
6882 	struct stmmac_channel *ch;
6883 
6884 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6885 	    !netif_carrier_ok(priv->dev))
6886 		return -ENETDOWN;
6887 
6888 	if (!stmmac_xdp_is_enabled(priv))
6889 		return -EINVAL;
6890 
6891 	if (queue >= priv->plat->rx_queues_to_use ||
6892 	    queue >= priv->plat->tx_queues_to_use)
6893 		return -EINVAL;
6894 
6895 	rx_q = &priv->dma_conf.rx_queue[queue];
6896 	tx_q = &priv->dma_conf.tx_queue[queue];
6897 	ch = &priv->channel[queue];
6898 
6899 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6900 		return -EINVAL;
6901 
6902 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6903 		/* EQoS does not have per-DMA channel SW interrupt,
6904 		 * so we schedule RX Napi straight-away.
6905 		 */
6906 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6907 			__napi_schedule(&ch->rxtx_napi);
6908 	}
6909 
6910 	return 0;
6911 }
6912 
6913 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6914 {
6915 	struct stmmac_priv *priv = netdev_priv(dev);
6916 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6917 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6918 	unsigned int start;
6919 	int q;
6920 
6921 	for (q = 0; q < tx_cnt; q++) {
6922 		struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q];
6923 		u64 tx_packets;
6924 		u64 tx_bytes;
6925 
6926 		do {
6927 			start = u64_stats_fetch_begin(&txq_stats->syncp);
6928 			tx_packets = txq_stats->tx_packets;
6929 			tx_bytes   = txq_stats->tx_bytes;
6930 		} while (u64_stats_fetch_retry(&txq_stats->syncp, start));
6931 
6932 		stats->tx_packets += tx_packets;
6933 		stats->tx_bytes += tx_bytes;
6934 	}
6935 
6936 	for (q = 0; q < rx_cnt; q++) {
6937 		struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q];
6938 		u64 rx_packets;
6939 		u64 rx_bytes;
6940 
6941 		do {
6942 			start = u64_stats_fetch_begin(&rxq_stats->syncp);
6943 			rx_packets = rxq_stats->rx_packets;
6944 			rx_bytes   = rxq_stats->rx_bytes;
6945 		} while (u64_stats_fetch_retry(&rxq_stats->syncp, start));
6946 
6947 		stats->rx_packets += rx_packets;
6948 		stats->rx_bytes += rx_bytes;
6949 	}
6950 
6951 	stats->rx_dropped = priv->xstats.rx_dropped;
6952 	stats->rx_errors = priv->xstats.rx_errors;
6953 	stats->tx_dropped = priv->xstats.tx_dropped;
6954 	stats->tx_errors = priv->xstats.tx_errors;
6955 	stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6956 	stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6957 	stats->rx_length_errors = priv->xstats.rx_length;
6958 	stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6959 	stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6960 	stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6961 }
6962 
6963 static const struct net_device_ops stmmac_netdev_ops = {
6964 	.ndo_open = stmmac_open,
6965 	.ndo_start_xmit = stmmac_xmit,
6966 	.ndo_stop = stmmac_release,
6967 	.ndo_change_mtu = stmmac_change_mtu,
6968 	.ndo_fix_features = stmmac_fix_features,
6969 	.ndo_set_features = stmmac_set_features,
6970 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6971 	.ndo_tx_timeout = stmmac_tx_timeout,
6972 	.ndo_eth_ioctl = stmmac_ioctl,
6973 	.ndo_get_stats64 = stmmac_get_stats64,
6974 	.ndo_setup_tc = stmmac_setup_tc,
6975 	.ndo_select_queue = stmmac_select_queue,
6976 	.ndo_set_mac_address = stmmac_set_mac_address,
6977 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6978 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6979 	.ndo_bpf = stmmac_bpf,
6980 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6981 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6982 };
6983 
6984 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6985 {
6986 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6987 		return;
6988 	if (test_bit(STMMAC_DOWN, &priv->state))
6989 		return;
6990 
6991 	netdev_err(priv->dev, "Reset adapter.\n");
6992 
6993 	rtnl_lock();
6994 	netif_trans_update(priv->dev);
6995 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6996 		usleep_range(1000, 2000);
6997 
6998 	set_bit(STMMAC_DOWN, &priv->state);
6999 	dev_close(priv->dev);
7000 	dev_open(priv->dev, NULL);
7001 	clear_bit(STMMAC_DOWN, &priv->state);
7002 	clear_bit(STMMAC_RESETING, &priv->state);
7003 	rtnl_unlock();
7004 }
7005 
7006 static void stmmac_service_task(struct work_struct *work)
7007 {
7008 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7009 			service_task);
7010 
7011 	stmmac_reset_subtask(priv);
7012 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
7013 }
7014 
7015 /**
7016  *  stmmac_hw_init - Init the MAC device
7017  *  @priv: driver private structure
7018  *  Description: this function is to configure the MAC device according to
7019  *  some platform parameters or the HW capability register. It prepares the
7020  *  driver to use either ring or chain modes and to setup either enhanced or
7021  *  normal descriptors.
7022  */
7023 static int stmmac_hw_init(struct stmmac_priv *priv)
7024 {
7025 	int ret;
7026 
7027 	/* dwmac-sun8i only work in chain mode */
7028 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
7029 		chain_mode = 1;
7030 	priv->chain_mode = chain_mode;
7031 
7032 	/* Initialize HW Interface */
7033 	ret = stmmac_hwif_init(priv);
7034 	if (ret)
7035 		return ret;
7036 
7037 	/* Get the HW capability (new GMAC newer than 3.50a) */
7038 	priv->hw_cap_support = stmmac_get_hw_features(priv);
7039 	if (priv->hw_cap_support) {
7040 		dev_info(priv->device, "DMA HW capability register supported\n");
7041 
7042 		/* We can override some gmac/dma configuration fields: e.g.
7043 		 * enh_desc, tx_coe (e.g. that are passed through the
7044 		 * platform) with the values from the HW capability
7045 		 * register (if supported).
7046 		 */
7047 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
7048 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
7049 				!(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
7050 		priv->hw->pmt = priv->plat->pmt;
7051 		if (priv->dma_cap.hash_tb_sz) {
7052 			priv->hw->multicast_filter_bins =
7053 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
7054 			priv->hw->mcast_bits_log2 =
7055 					ilog2(priv->hw->multicast_filter_bins);
7056 		}
7057 
7058 		/* TXCOE doesn't work in thresh DMA mode */
7059 		if (priv->plat->force_thresh_dma_mode)
7060 			priv->plat->tx_coe = 0;
7061 		else
7062 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
7063 
7064 		/* In case of GMAC4 rx_coe is from HW cap register. */
7065 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
7066 
7067 		if (priv->dma_cap.rx_coe_type2)
7068 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7069 		else if (priv->dma_cap.rx_coe_type1)
7070 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7071 
7072 	} else {
7073 		dev_info(priv->device, "No HW DMA feature register supported\n");
7074 	}
7075 
7076 	if (priv->plat->rx_coe) {
7077 		priv->hw->rx_csum = priv->plat->rx_coe;
7078 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7079 		if (priv->synopsys_id < DWMAC_CORE_4_00)
7080 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7081 	}
7082 	if (priv->plat->tx_coe)
7083 		dev_info(priv->device, "TX Checksum insertion supported\n");
7084 
7085 	if (priv->plat->pmt) {
7086 		dev_info(priv->device, "Wake-Up On Lan supported\n");
7087 		device_set_wakeup_capable(priv->device, 1);
7088 	}
7089 
7090 	if (priv->dma_cap.tsoen)
7091 		dev_info(priv->device, "TSO supported\n");
7092 
7093 	priv->hw->vlan_fail_q_en =
7094 		(priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7095 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7096 
7097 	/* Run HW quirks, if any */
7098 	if (priv->hwif_quirks) {
7099 		ret = priv->hwif_quirks(priv);
7100 		if (ret)
7101 			return ret;
7102 	}
7103 
7104 	/* Rx Watchdog is available in the COREs newer than the 3.40.
7105 	 * In some case, for example on bugged HW this feature
7106 	 * has to be disable and this can be done by passing the
7107 	 * riwt_off field from the platform.
7108 	 */
7109 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7110 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7111 		priv->use_riwt = 1;
7112 		dev_info(priv->device,
7113 			 "Enable RX Mitigation via HW Watchdog Timer\n");
7114 	}
7115 
7116 	return 0;
7117 }
7118 
7119 static void stmmac_napi_add(struct net_device *dev)
7120 {
7121 	struct stmmac_priv *priv = netdev_priv(dev);
7122 	u32 queue, maxq;
7123 
7124 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7125 
7126 	for (queue = 0; queue < maxq; queue++) {
7127 		struct stmmac_channel *ch = &priv->channel[queue];
7128 
7129 		ch->priv_data = priv;
7130 		ch->index = queue;
7131 		spin_lock_init(&ch->lock);
7132 
7133 		if (queue < priv->plat->rx_queues_to_use) {
7134 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7135 		}
7136 		if (queue < priv->plat->tx_queues_to_use) {
7137 			netif_napi_add_tx(dev, &ch->tx_napi,
7138 					  stmmac_napi_poll_tx);
7139 		}
7140 		if (queue < priv->plat->rx_queues_to_use &&
7141 		    queue < priv->plat->tx_queues_to_use) {
7142 			netif_napi_add(dev, &ch->rxtx_napi,
7143 				       stmmac_napi_poll_rxtx);
7144 		}
7145 	}
7146 }
7147 
7148 static void stmmac_napi_del(struct net_device *dev)
7149 {
7150 	struct stmmac_priv *priv = netdev_priv(dev);
7151 	u32 queue, maxq;
7152 
7153 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7154 
7155 	for (queue = 0; queue < maxq; queue++) {
7156 		struct stmmac_channel *ch = &priv->channel[queue];
7157 
7158 		if (queue < priv->plat->rx_queues_to_use)
7159 			netif_napi_del(&ch->rx_napi);
7160 		if (queue < priv->plat->tx_queues_to_use)
7161 			netif_napi_del(&ch->tx_napi);
7162 		if (queue < priv->plat->rx_queues_to_use &&
7163 		    queue < priv->plat->tx_queues_to_use) {
7164 			netif_napi_del(&ch->rxtx_napi);
7165 		}
7166 	}
7167 }
7168 
7169 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7170 {
7171 	struct stmmac_priv *priv = netdev_priv(dev);
7172 	int ret = 0, i;
7173 
7174 	if (netif_running(dev))
7175 		stmmac_release(dev);
7176 
7177 	stmmac_napi_del(dev);
7178 
7179 	priv->plat->rx_queues_to_use = rx_cnt;
7180 	priv->plat->tx_queues_to_use = tx_cnt;
7181 	if (!netif_is_rxfh_configured(dev))
7182 		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7183 			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7184 									rx_cnt);
7185 
7186 	stmmac_set_half_duplex(priv);
7187 	stmmac_napi_add(dev);
7188 
7189 	if (netif_running(dev))
7190 		ret = stmmac_open(dev);
7191 
7192 	return ret;
7193 }
7194 
7195 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7196 {
7197 	struct stmmac_priv *priv = netdev_priv(dev);
7198 	int ret = 0;
7199 
7200 	if (netif_running(dev))
7201 		stmmac_release(dev);
7202 
7203 	priv->dma_conf.dma_rx_size = rx_size;
7204 	priv->dma_conf.dma_tx_size = tx_size;
7205 
7206 	if (netif_running(dev))
7207 		ret = stmmac_open(dev);
7208 
7209 	return ret;
7210 }
7211 
7212 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7213 static void stmmac_fpe_lp_task(struct work_struct *work)
7214 {
7215 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7216 						fpe_task);
7217 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7218 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7219 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7220 	bool *hs_enable = &fpe_cfg->hs_enable;
7221 	bool *enable = &fpe_cfg->enable;
7222 	int retries = 20;
7223 
7224 	while (retries-- > 0) {
7225 		/* Bail out immediately if FPE handshake is OFF */
7226 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7227 			break;
7228 
7229 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7230 		    *lp_state == FPE_STATE_ENTERING_ON) {
7231 			stmmac_fpe_configure(priv, priv->ioaddr,
7232 					     fpe_cfg,
7233 					     priv->plat->tx_queues_to_use,
7234 					     priv->plat->rx_queues_to_use,
7235 					     *enable);
7236 
7237 			netdev_info(priv->dev, "configured FPE\n");
7238 
7239 			*lo_state = FPE_STATE_ON;
7240 			*lp_state = FPE_STATE_ON;
7241 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7242 			break;
7243 		}
7244 
7245 		if ((*lo_state == FPE_STATE_CAPABLE ||
7246 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7247 		     *lp_state != FPE_STATE_ON) {
7248 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7249 				    *lo_state, *lp_state);
7250 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7251 						fpe_cfg,
7252 						MPACKET_VERIFY);
7253 		}
7254 		/* Sleep then retry */
7255 		msleep(500);
7256 	}
7257 
7258 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7259 }
7260 
7261 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7262 {
7263 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7264 		if (enable) {
7265 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7266 						priv->plat->fpe_cfg,
7267 						MPACKET_VERIFY);
7268 		} else {
7269 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7270 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7271 		}
7272 
7273 		priv->plat->fpe_cfg->hs_enable = enable;
7274 	}
7275 }
7276 
7277 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7278 {
7279 	const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7280 	struct dma_desc *desc_contains_ts = ctx->desc;
7281 	struct stmmac_priv *priv = ctx->priv;
7282 	struct dma_desc *ndesc = ctx->ndesc;
7283 	struct dma_desc *desc = ctx->desc;
7284 	u64 ns = 0;
7285 
7286 	if (!priv->hwts_rx_en)
7287 		return -ENODATA;
7288 
7289 	/* For GMAC4, the valid timestamp is from CTX next desc. */
7290 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7291 		desc_contains_ts = ndesc;
7292 
7293 	/* Check if timestamp is available */
7294 	if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7295 		stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7296 		ns -= priv->plat->cdc_error_adj;
7297 		*timestamp = ns_to_ktime(ns);
7298 		return 0;
7299 	}
7300 
7301 	return -ENODATA;
7302 }
7303 
7304 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7305 	.xmo_rx_timestamp		= stmmac_xdp_rx_timestamp,
7306 };
7307 
7308 /**
7309  * stmmac_dvr_probe
7310  * @device: device pointer
7311  * @plat_dat: platform data pointer
7312  * @res: stmmac resource pointer
7313  * Description: this is the main probe function used to
7314  * call the alloc_etherdev, allocate the priv structure.
7315  * Return:
7316  * returns 0 on success, otherwise errno.
7317  */
7318 int stmmac_dvr_probe(struct device *device,
7319 		     struct plat_stmmacenet_data *plat_dat,
7320 		     struct stmmac_resources *res)
7321 {
7322 	struct net_device *ndev = NULL;
7323 	struct stmmac_priv *priv;
7324 	u32 rxq;
7325 	int i, ret = 0;
7326 
7327 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7328 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7329 	if (!ndev)
7330 		return -ENOMEM;
7331 
7332 	SET_NETDEV_DEV(ndev, device);
7333 
7334 	priv = netdev_priv(ndev);
7335 	priv->device = device;
7336 	priv->dev = ndev;
7337 
7338 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7339 		u64_stats_init(&priv->xstats.rxq_stats[i].syncp);
7340 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7341 		u64_stats_init(&priv->xstats.txq_stats[i].syncp);
7342 
7343 	stmmac_set_ethtool_ops(ndev);
7344 	priv->pause = pause;
7345 	priv->plat = plat_dat;
7346 	priv->ioaddr = res->addr;
7347 	priv->dev->base_addr = (unsigned long)res->addr;
7348 	priv->plat->dma_cfg->multi_msi_en =
7349 		(priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7350 
7351 	priv->dev->irq = res->irq;
7352 	priv->wol_irq = res->wol_irq;
7353 	priv->lpi_irq = res->lpi_irq;
7354 	priv->sfty_ce_irq = res->sfty_ce_irq;
7355 	priv->sfty_ue_irq = res->sfty_ue_irq;
7356 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7357 		priv->rx_irq[i] = res->rx_irq[i];
7358 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7359 		priv->tx_irq[i] = res->tx_irq[i];
7360 
7361 	if (!is_zero_ether_addr(res->mac))
7362 		eth_hw_addr_set(priv->dev, res->mac);
7363 
7364 	dev_set_drvdata(device, priv->dev);
7365 
7366 	/* Verify driver arguments */
7367 	stmmac_verify_args();
7368 
7369 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7370 	if (!priv->af_xdp_zc_qps)
7371 		return -ENOMEM;
7372 
7373 	/* Allocate workqueue */
7374 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7375 	if (!priv->wq) {
7376 		dev_err(priv->device, "failed to create workqueue\n");
7377 		ret = -ENOMEM;
7378 		goto error_wq_init;
7379 	}
7380 
7381 	INIT_WORK(&priv->service_task, stmmac_service_task);
7382 
7383 	/* Initialize Link Partner FPE workqueue */
7384 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7385 
7386 	/* Override with kernel parameters if supplied XXX CRS XXX
7387 	 * this needs to have multiple instances
7388 	 */
7389 	if ((phyaddr >= 0) && (phyaddr <= 31))
7390 		priv->plat->phy_addr = phyaddr;
7391 
7392 	if (priv->plat->stmmac_rst) {
7393 		ret = reset_control_assert(priv->plat->stmmac_rst);
7394 		reset_control_deassert(priv->plat->stmmac_rst);
7395 		/* Some reset controllers have only reset callback instead of
7396 		 * assert + deassert callbacks pair.
7397 		 */
7398 		if (ret == -ENOTSUPP)
7399 			reset_control_reset(priv->plat->stmmac_rst);
7400 	}
7401 
7402 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7403 	if (ret == -ENOTSUPP)
7404 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7405 			ERR_PTR(ret));
7406 
7407 	/* Init MAC and get the capabilities */
7408 	ret = stmmac_hw_init(priv);
7409 	if (ret)
7410 		goto error_hw_init;
7411 
7412 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7413 	 */
7414 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7415 		priv->plat->dma_cfg->dche = false;
7416 
7417 	stmmac_check_ether_addr(priv);
7418 
7419 	ndev->netdev_ops = &stmmac_netdev_ops;
7420 
7421 	ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7422 
7423 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7424 			    NETIF_F_RXCSUM;
7425 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7426 			     NETDEV_XDP_ACT_XSK_ZEROCOPY;
7427 
7428 	ret = stmmac_tc_init(priv, priv);
7429 	if (!ret) {
7430 		ndev->hw_features |= NETIF_F_HW_TC;
7431 	}
7432 
7433 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7434 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7435 		if (priv->plat->has_gmac4)
7436 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7437 		priv->tso = true;
7438 		dev_info(priv->device, "TSO feature enabled\n");
7439 	}
7440 
7441 	if (priv->dma_cap.sphen &&
7442 	    !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7443 		ndev->hw_features |= NETIF_F_GRO;
7444 		priv->sph_cap = true;
7445 		priv->sph = priv->sph_cap;
7446 		dev_info(priv->device, "SPH feature enabled\n");
7447 	}
7448 
7449 	/* Ideally our host DMA address width is the same as for the
7450 	 * device. However, it may differ and then we have to use our
7451 	 * host DMA width for allocation and the device DMA width for
7452 	 * register handling.
7453 	 */
7454 	if (priv->plat->host_dma_width)
7455 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7456 	else
7457 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7458 
7459 	if (priv->dma_cap.host_dma_width) {
7460 		ret = dma_set_mask_and_coherent(device,
7461 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7462 		if (!ret) {
7463 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7464 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7465 
7466 			/*
7467 			 * If more than 32 bits can be addressed, make sure to
7468 			 * enable enhanced addressing mode.
7469 			 */
7470 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7471 				priv->plat->dma_cfg->eame = true;
7472 		} else {
7473 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7474 			if (ret) {
7475 				dev_err(priv->device, "Failed to set DMA Mask\n");
7476 				goto error_hw_init;
7477 			}
7478 
7479 			priv->dma_cap.host_dma_width = 32;
7480 		}
7481 	}
7482 
7483 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7484 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7485 #ifdef STMMAC_VLAN_TAG_USED
7486 	/* Both mac100 and gmac support receive VLAN tag detection */
7487 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7488 	if (priv->dma_cap.vlhash) {
7489 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7490 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7491 	}
7492 	if (priv->dma_cap.vlins) {
7493 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7494 		if (priv->dma_cap.dvlan)
7495 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7496 	}
7497 #endif
7498 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7499 
7500 	priv->xstats.threshold = tc;
7501 
7502 	/* Initialize RSS */
7503 	rxq = priv->plat->rx_queues_to_use;
7504 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7505 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7506 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7507 
7508 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7509 		ndev->features |= NETIF_F_RXHASH;
7510 
7511 	ndev->vlan_features |= ndev->features;
7512 	/* TSO doesn't work on VLANs yet */
7513 	ndev->vlan_features &= ~NETIF_F_TSO;
7514 
7515 	/* MTU range: 46 - hw-specific max */
7516 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7517 	if (priv->plat->has_xgmac)
7518 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7519 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7520 		ndev->max_mtu = JUMBO_LEN;
7521 	else
7522 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7523 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7524 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7525 	 */
7526 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7527 	    (priv->plat->maxmtu >= ndev->min_mtu))
7528 		ndev->max_mtu = priv->plat->maxmtu;
7529 	else if (priv->plat->maxmtu < ndev->min_mtu)
7530 		dev_warn(priv->device,
7531 			 "%s: warning: maxmtu having invalid value (%d)\n",
7532 			 __func__, priv->plat->maxmtu);
7533 
7534 	if (flow_ctrl)
7535 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7536 
7537 	ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7538 
7539 	/* Setup channels NAPI */
7540 	stmmac_napi_add(ndev);
7541 
7542 	mutex_init(&priv->lock);
7543 
7544 	/* If a specific clk_csr value is passed from the platform
7545 	 * this means that the CSR Clock Range selection cannot be
7546 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7547 	 * set the MDC clock dynamically according to the csr actual
7548 	 * clock input.
7549 	 */
7550 	if (priv->plat->clk_csr >= 0)
7551 		priv->clk_csr = priv->plat->clk_csr;
7552 	else
7553 		stmmac_clk_csr_set(priv);
7554 
7555 	stmmac_check_pcs_mode(priv);
7556 
7557 	pm_runtime_get_noresume(device);
7558 	pm_runtime_set_active(device);
7559 	if (!pm_runtime_enabled(device))
7560 		pm_runtime_enable(device);
7561 
7562 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7563 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7564 		/* MDIO bus Registration */
7565 		ret = stmmac_mdio_register(ndev);
7566 		if (ret < 0) {
7567 			dev_err_probe(priv->device, ret,
7568 				      "%s: MDIO bus (id: %d) registration failed\n",
7569 				      __func__, priv->plat->bus_id);
7570 			goto error_mdio_register;
7571 		}
7572 	}
7573 
7574 	if (priv->plat->speed_mode_2500)
7575 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7576 
7577 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7578 		ret = stmmac_xpcs_setup(priv->mii);
7579 		if (ret)
7580 			goto error_xpcs_setup;
7581 	}
7582 
7583 	ret = stmmac_phy_setup(priv);
7584 	if (ret) {
7585 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7586 		goto error_phy_setup;
7587 	}
7588 
7589 	ret = register_netdev(ndev);
7590 	if (ret) {
7591 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7592 			__func__, ret);
7593 		goto error_netdev_register;
7594 	}
7595 
7596 #ifdef CONFIG_DEBUG_FS
7597 	stmmac_init_fs(ndev);
7598 #endif
7599 
7600 	if (priv->plat->dump_debug_regs)
7601 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7602 
7603 	/* Let pm_runtime_put() disable the clocks.
7604 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7605 	 */
7606 	pm_runtime_put(device);
7607 
7608 	return ret;
7609 
7610 error_netdev_register:
7611 	phylink_destroy(priv->phylink);
7612 error_xpcs_setup:
7613 error_phy_setup:
7614 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7615 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7616 		stmmac_mdio_unregister(ndev);
7617 error_mdio_register:
7618 	stmmac_napi_del(ndev);
7619 error_hw_init:
7620 	destroy_workqueue(priv->wq);
7621 error_wq_init:
7622 	bitmap_free(priv->af_xdp_zc_qps);
7623 
7624 	return ret;
7625 }
7626 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7627 
7628 /**
7629  * stmmac_dvr_remove
7630  * @dev: device pointer
7631  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7632  * changes the link status, releases the DMA descriptor rings.
7633  */
7634 void stmmac_dvr_remove(struct device *dev)
7635 {
7636 	struct net_device *ndev = dev_get_drvdata(dev);
7637 	struct stmmac_priv *priv = netdev_priv(ndev);
7638 
7639 	netdev_info(priv->dev, "%s: removing driver", __func__);
7640 
7641 	pm_runtime_get_sync(dev);
7642 
7643 	stmmac_stop_all_dma(priv);
7644 	stmmac_mac_set(priv, priv->ioaddr, false);
7645 	netif_carrier_off(ndev);
7646 	unregister_netdev(ndev);
7647 
7648 #ifdef CONFIG_DEBUG_FS
7649 	stmmac_exit_fs(ndev);
7650 #endif
7651 	phylink_destroy(priv->phylink);
7652 	if (priv->plat->stmmac_rst)
7653 		reset_control_assert(priv->plat->stmmac_rst);
7654 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7655 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7656 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7657 		stmmac_mdio_unregister(ndev);
7658 	destroy_workqueue(priv->wq);
7659 	mutex_destroy(&priv->lock);
7660 	bitmap_free(priv->af_xdp_zc_qps);
7661 
7662 	pm_runtime_disable(dev);
7663 	pm_runtime_put_noidle(dev);
7664 }
7665 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7666 
7667 /**
7668  * stmmac_suspend - suspend callback
7669  * @dev: device pointer
7670  * Description: this is the function to suspend the device and it is called
7671  * by the platform driver to stop the network queue, release the resources,
7672  * program the PMT register (for WoL), clean and release driver resources.
7673  */
7674 int stmmac_suspend(struct device *dev)
7675 {
7676 	struct net_device *ndev = dev_get_drvdata(dev);
7677 	struct stmmac_priv *priv = netdev_priv(ndev);
7678 	u32 chan;
7679 
7680 	if (!ndev || !netif_running(ndev))
7681 		return 0;
7682 
7683 	mutex_lock(&priv->lock);
7684 
7685 	netif_device_detach(ndev);
7686 
7687 	stmmac_disable_all_queues(priv);
7688 
7689 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7690 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7691 
7692 	if (priv->eee_enabled) {
7693 		priv->tx_path_in_lpi_mode = false;
7694 		del_timer_sync(&priv->eee_ctrl_timer);
7695 	}
7696 
7697 	/* Stop TX/RX DMA */
7698 	stmmac_stop_all_dma(priv);
7699 
7700 	if (priv->plat->serdes_powerdown)
7701 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7702 
7703 	/* Enable Power down mode by programming the PMT regs */
7704 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7705 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7706 		priv->irq_wake = 1;
7707 	} else {
7708 		stmmac_mac_set(priv, priv->ioaddr, false);
7709 		pinctrl_pm_select_sleep_state(priv->device);
7710 	}
7711 
7712 	mutex_unlock(&priv->lock);
7713 
7714 	rtnl_lock();
7715 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7716 		phylink_suspend(priv->phylink, true);
7717 	} else {
7718 		if (device_may_wakeup(priv->device))
7719 			phylink_speed_down(priv->phylink, false);
7720 		phylink_suspend(priv->phylink, false);
7721 	}
7722 	rtnl_unlock();
7723 
7724 	if (priv->dma_cap.fpesel) {
7725 		/* Disable FPE */
7726 		stmmac_fpe_configure(priv, priv->ioaddr,
7727 				     priv->plat->fpe_cfg,
7728 				     priv->plat->tx_queues_to_use,
7729 				     priv->plat->rx_queues_to_use, false);
7730 
7731 		stmmac_fpe_handshake(priv, false);
7732 		stmmac_fpe_stop_wq(priv);
7733 	}
7734 
7735 	priv->speed = SPEED_UNKNOWN;
7736 	return 0;
7737 }
7738 EXPORT_SYMBOL_GPL(stmmac_suspend);
7739 
7740 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7741 {
7742 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7743 
7744 	rx_q->cur_rx = 0;
7745 	rx_q->dirty_rx = 0;
7746 }
7747 
7748 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7749 {
7750 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7751 
7752 	tx_q->cur_tx = 0;
7753 	tx_q->dirty_tx = 0;
7754 	tx_q->mss = 0;
7755 
7756 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7757 }
7758 
7759 /**
7760  * stmmac_reset_queues_param - reset queue parameters
7761  * @priv: device pointer
7762  */
7763 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7764 {
7765 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7766 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7767 	u32 queue;
7768 
7769 	for (queue = 0; queue < rx_cnt; queue++)
7770 		stmmac_reset_rx_queue(priv, queue);
7771 
7772 	for (queue = 0; queue < tx_cnt; queue++)
7773 		stmmac_reset_tx_queue(priv, queue);
7774 }
7775 
7776 /**
7777  * stmmac_resume - resume callback
7778  * @dev: device pointer
7779  * Description: when resume this function is invoked to setup the DMA and CORE
7780  * in a usable state.
7781  */
7782 int stmmac_resume(struct device *dev)
7783 {
7784 	struct net_device *ndev = dev_get_drvdata(dev);
7785 	struct stmmac_priv *priv = netdev_priv(ndev);
7786 	int ret;
7787 
7788 	if (!netif_running(ndev))
7789 		return 0;
7790 
7791 	/* Power Down bit, into the PM register, is cleared
7792 	 * automatically as soon as a magic packet or a Wake-up frame
7793 	 * is received. Anyway, it's better to manually clear
7794 	 * this bit because it can generate problems while resuming
7795 	 * from another devices (e.g. serial console).
7796 	 */
7797 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7798 		mutex_lock(&priv->lock);
7799 		stmmac_pmt(priv, priv->hw, 0);
7800 		mutex_unlock(&priv->lock);
7801 		priv->irq_wake = 0;
7802 	} else {
7803 		pinctrl_pm_select_default_state(priv->device);
7804 		/* reset the phy so that it's ready */
7805 		if (priv->mii)
7806 			stmmac_mdio_reset(priv->mii);
7807 	}
7808 
7809 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7810 	    priv->plat->serdes_powerup) {
7811 		ret = priv->plat->serdes_powerup(ndev,
7812 						 priv->plat->bsp_priv);
7813 
7814 		if (ret < 0)
7815 			return ret;
7816 	}
7817 
7818 	rtnl_lock();
7819 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7820 		phylink_resume(priv->phylink);
7821 	} else {
7822 		phylink_resume(priv->phylink);
7823 		if (device_may_wakeup(priv->device))
7824 			phylink_speed_up(priv->phylink);
7825 	}
7826 	rtnl_unlock();
7827 
7828 	rtnl_lock();
7829 	mutex_lock(&priv->lock);
7830 
7831 	stmmac_reset_queues_param(priv);
7832 
7833 	stmmac_free_tx_skbufs(priv);
7834 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7835 
7836 	stmmac_hw_setup(ndev, false);
7837 	stmmac_init_coalesce(priv);
7838 	stmmac_set_rx_mode(ndev);
7839 
7840 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7841 
7842 	stmmac_enable_all_queues(priv);
7843 	stmmac_enable_all_dma_irq(priv);
7844 
7845 	mutex_unlock(&priv->lock);
7846 	rtnl_unlock();
7847 
7848 	netif_device_attach(ndev);
7849 
7850 	return 0;
7851 }
7852 EXPORT_SYMBOL_GPL(stmmac_resume);
7853 
7854 #ifndef MODULE
7855 static int __init stmmac_cmdline_opt(char *str)
7856 {
7857 	char *opt;
7858 
7859 	if (!str || !*str)
7860 		return 1;
7861 	while ((opt = strsep(&str, ",")) != NULL) {
7862 		if (!strncmp(opt, "debug:", 6)) {
7863 			if (kstrtoint(opt + 6, 0, &debug))
7864 				goto err;
7865 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7866 			if (kstrtoint(opt + 8, 0, &phyaddr))
7867 				goto err;
7868 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7869 			if (kstrtoint(opt + 7, 0, &buf_sz))
7870 				goto err;
7871 		} else if (!strncmp(opt, "tc:", 3)) {
7872 			if (kstrtoint(opt + 3, 0, &tc))
7873 				goto err;
7874 		} else if (!strncmp(opt, "watchdog:", 9)) {
7875 			if (kstrtoint(opt + 9, 0, &watchdog))
7876 				goto err;
7877 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7878 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7879 				goto err;
7880 		} else if (!strncmp(opt, "pause:", 6)) {
7881 			if (kstrtoint(opt + 6, 0, &pause))
7882 				goto err;
7883 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7884 			if (kstrtoint(opt + 10, 0, &eee_timer))
7885 				goto err;
7886 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7887 			if (kstrtoint(opt + 11, 0, &chain_mode))
7888 				goto err;
7889 		}
7890 	}
7891 	return 1;
7892 
7893 err:
7894 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7895 	return 1;
7896 }
7897 
7898 __setup("stmmaceth=", stmmac_cmdline_opt);
7899 #endif /* MODULE */
7900 
7901 static int __init stmmac_init(void)
7902 {
7903 #ifdef CONFIG_DEBUG_FS
7904 	/* Create debugfs main directory if it doesn't exist yet */
7905 	if (!stmmac_fs_dir)
7906 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7907 	register_netdevice_notifier(&stmmac_notifier);
7908 #endif
7909 
7910 	return 0;
7911 }
7912 
7913 static void __exit stmmac_exit(void)
7914 {
7915 #ifdef CONFIG_DEBUG_FS
7916 	unregister_netdevice_notifier(&stmmac_notifier);
7917 	debugfs_remove_recursive(stmmac_fs_dir);
7918 #endif
7919 }
7920 
7921 module_init(stmmac_init)
7922 module_exit(stmmac_exit)
7923 
7924 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7925 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7926 MODULE_LICENSE("GPL");
7927