1 /******************************************************************************* 2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 3 ST Ethernet IPs are built around a Synopsys IP Core. 4 5 Copyright(C) 2007-2011 STMicroelectronics Ltd 6 7 This program is free software; you can redistribute it and/or modify it 8 under the terms and conditions of the GNU General Public License, 9 version 2, as published by the Free Software Foundation. 10 11 This program is distributed in the hope it will be useful, but WITHOUT 12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 more details. 15 16 You should have received a copy of the GNU General Public License along with 17 this program; if not, write to the Free Software Foundation, Inc., 18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 19 20 The full GNU General Public License is included in this distribution in 21 the file called "COPYING". 22 23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 24 25 Documentation available at: 26 http://www.stlinux.com 27 Support available at: 28 https://bugzilla.stlinux.com/ 29 *******************************************************************************/ 30 31 #include <linux/clk.h> 32 #include <linux/kernel.h> 33 #include <linux/interrupt.h> 34 #include <linux/ip.h> 35 #include <linux/tcp.h> 36 #include <linux/skbuff.h> 37 #include <linux/ethtool.h> 38 #include <linux/if_ether.h> 39 #include <linux/crc32.h> 40 #include <linux/mii.h> 41 #include <linux/if.h> 42 #include <linux/if_vlan.h> 43 #include <linux/dma-mapping.h> 44 #include <linux/slab.h> 45 #include <linux/prefetch.h> 46 #include <linux/pinctrl/consumer.h> 47 #ifdef CONFIG_DEBUG_FS 48 #include <linux/debugfs.h> 49 #include <linux/seq_file.h> 50 #endif /* CONFIG_DEBUG_FS */ 51 #include <linux/net_tstamp.h> 52 #include "stmmac_ptp.h" 53 #include "stmmac.h" 54 #include <linux/reset.h> 55 #include <linux/of_mdio.h> 56 #include "dwmac1000.h" 57 58 #define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x) 59 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 60 61 /* Module parameters */ 62 #define TX_TIMEO 5000 63 static int watchdog = TX_TIMEO; 64 module_param(watchdog, int, S_IRUGO | S_IWUSR); 65 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 66 67 static int debug = -1; 68 module_param(debug, int, S_IRUGO | S_IWUSR); 69 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 70 71 static int phyaddr = -1; 72 module_param(phyaddr, int, S_IRUGO); 73 MODULE_PARM_DESC(phyaddr, "Physical device address"); 74 75 #define STMMAC_TX_THRESH (DMA_TX_SIZE / 4) 76 #define STMMAC_RX_THRESH (DMA_RX_SIZE / 4) 77 78 static int flow_ctrl = FLOW_OFF; 79 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR); 80 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 81 82 static int pause = PAUSE_TIME; 83 module_param(pause, int, S_IRUGO | S_IWUSR); 84 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 85 86 #define TC_DEFAULT 64 87 static int tc = TC_DEFAULT; 88 module_param(tc, int, S_IRUGO | S_IWUSR); 89 MODULE_PARM_DESC(tc, "DMA threshold control value"); 90 91 #define DEFAULT_BUFSIZE 1536 92 static int buf_sz = DEFAULT_BUFSIZE; 93 module_param(buf_sz, int, S_IRUGO | S_IWUSR); 94 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 95 96 #define STMMAC_RX_COPYBREAK 256 97 98 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 99 NETIF_MSG_LINK | NETIF_MSG_IFUP | 100 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 101 102 #define STMMAC_DEFAULT_LPI_TIMER 1000 103 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 104 module_param(eee_timer, int, S_IRUGO | S_IWUSR); 105 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 106 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x)) 107 108 /* By default the driver will use the ring mode to manage tx and rx descriptors 109 * but passing this value so user can force to use the chain instead of the ring 110 */ 111 static unsigned int chain_mode; 112 module_param(chain_mode, int, S_IRUGO); 113 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 114 115 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 116 117 #ifdef CONFIG_DEBUG_FS 118 static int stmmac_init_fs(struct net_device *dev); 119 static void stmmac_exit_fs(struct net_device *dev); 120 #endif 121 122 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x)) 123 124 /** 125 * stmmac_verify_args - verify the driver parameters. 126 * Description: it checks the driver parameters and set a default in case of 127 * errors. 128 */ 129 static void stmmac_verify_args(void) 130 { 131 if (unlikely(watchdog < 0)) 132 watchdog = TX_TIMEO; 133 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 134 buf_sz = DEFAULT_BUFSIZE; 135 if (unlikely(flow_ctrl > 1)) 136 flow_ctrl = FLOW_AUTO; 137 else if (likely(flow_ctrl < 0)) 138 flow_ctrl = FLOW_OFF; 139 if (unlikely((pause < 0) || (pause > 0xffff))) 140 pause = PAUSE_TIME; 141 if (eee_timer < 0) 142 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 143 } 144 145 /** 146 * stmmac_clk_csr_set - dynamically set the MDC clock 147 * @priv: driver private structure 148 * Description: this is to dynamically set the MDC clock according to the csr 149 * clock input. 150 * Note: 151 * If a specific clk_csr value is passed from the platform 152 * this means that the CSR Clock Range selection cannot be 153 * changed at run-time and it is fixed (as reported in the driver 154 * documentation). Viceversa the driver will try to set the MDC 155 * clock dynamically according to the actual clock input. 156 */ 157 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 158 { 159 u32 clk_rate; 160 161 clk_rate = clk_get_rate(priv->stmmac_clk); 162 163 /* Platform provided default clk_csr would be assumed valid 164 * for all other cases except for the below mentioned ones. 165 * For values higher than the IEEE 802.3 specified frequency 166 * we can not estimate the proper divider as it is not known 167 * the frequency of clk_csr_i. So we do not change the default 168 * divider. 169 */ 170 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 171 if (clk_rate < CSR_F_35M) 172 priv->clk_csr = STMMAC_CSR_20_35M; 173 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 174 priv->clk_csr = STMMAC_CSR_35_60M; 175 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 176 priv->clk_csr = STMMAC_CSR_60_100M; 177 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 178 priv->clk_csr = STMMAC_CSR_100_150M; 179 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 180 priv->clk_csr = STMMAC_CSR_150_250M; 181 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 182 priv->clk_csr = STMMAC_CSR_250_300M; 183 } 184 } 185 186 static void print_pkt(unsigned char *buf, int len) 187 { 188 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 189 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 190 } 191 192 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) 193 { 194 unsigned avail; 195 196 if (priv->dirty_tx > priv->cur_tx) 197 avail = priv->dirty_tx - priv->cur_tx - 1; 198 else 199 avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1; 200 201 return avail; 202 } 203 204 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv) 205 { 206 unsigned dirty; 207 208 if (priv->dirty_rx <= priv->cur_rx) 209 dirty = priv->cur_rx - priv->dirty_rx; 210 else 211 dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx; 212 213 return dirty; 214 } 215 216 /** 217 * stmmac_hw_fix_mac_speed - callback for speed selection 218 * @priv: driver private structure 219 * Description: on some platforms (e.g. ST), some HW system configuraton 220 * registers have to be set according to the link speed negotiated. 221 */ 222 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) 223 { 224 struct phy_device *phydev = priv->phydev; 225 226 if (likely(priv->plat->fix_mac_speed)) 227 priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed); 228 } 229 230 /** 231 * stmmac_enable_eee_mode - check and enter in LPI mode 232 * @priv: driver private structure 233 * Description: this function is to verify and enter in LPI mode in case of 234 * EEE. 235 */ 236 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 237 { 238 /* Check and enter in LPI mode */ 239 if ((priv->dirty_tx == priv->cur_tx) && 240 (priv->tx_path_in_lpi_mode == false)) 241 priv->hw->mac->set_eee_mode(priv->hw); 242 } 243 244 /** 245 * stmmac_disable_eee_mode - disable and exit from LPI mode 246 * @priv: driver private structure 247 * Description: this function is to exit and disable EEE in case of 248 * LPI state is true. This is called by the xmit. 249 */ 250 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 251 { 252 priv->hw->mac->reset_eee_mode(priv->hw); 253 del_timer_sync(&priv->eee_ctrl_timer); 254 priv->tx_path_in_lpi_mode = false; 255 } 256 257 /** 258 * stmmac_eee_ctrl_timer - EEE TX SW timer. 259 * @arg : data hook 260 * Description: 261 * if there is no data transfer and if we are not in LPI state, 262 * then MAC Transmitter can be moved to LPI state. 263 */ 264 static void stmmac_eee_ctrl_timer(unsigned long arg) 265 { 266 struct stmmac_priv *priv = (struct stmmac_priv *)arg; 267 268 stmmac_enable_eee_mode(priv); 269 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 270 } 271 272 /** 273 * stmmac_eee_init - init EEE 274 * @priv: driver private structure 275 * Description: 276 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 277 * can also manage EEE, this function enable the LPI state and start related 278 * timer. 279 */ 280 bool stmmac_eee_init(struct stmmac_priv *priv) 281 { 282 unsigned long flags; 283 bool ret = false; 284 285 /* Using PCS we cannot dial with the phy registers at this stage 286 * so we do not support extra feature like EEE. 287 */ 288 if ((priv->hw->pcs == STMMAC_PCS_RGMII) || 289 (priv->hw->pcs == STMMAC_PCS_TBI) || 290 (priv->hw->pcs == STMMAC_PCS_RTBI)) 291 goto out; 292 293 /* MAC core supports the EEE feature. */ 294 if (priv->dma_cap.eee) { 295 int tx_lpi_timer = priv->tx_lpi_timer; 296 297 /* Check if the PHY supports EEE */ 298 if (phy_init_eee(priv->phydev, 1)) { 299 /* To manage at run-time if the EEE cannot be supported 300 * anymore (for example because the lp caps have been 301 * changed). 302 * In that case the driver disable own timers. 303 */ 304 spin_lock_irqsave(&priv->lock, flags); 305 if (priv->eee_active) { 306 pr_debug("stmmac: disable EEE\n"); 307 del_timer_sync(&priv->eee_ctrl_timer); 308 priv->hw->mac->set_eee_timer(priv->hw, 0, 309 tx_lpi_timer); 310 } 311 priv->eee_active = 0; 312 spin_unlock_irqrestore(&priv->lock, flags); 313 goto out; 314 } 315 /* Activate the EEE and start timers */ 316 spin_lock_irqsave(&priv->lock, flags); 317 if (!priv->eee_active) { 318 priv->eee_active = 1; 319 setup_timer(&priv->eee_ctrl_timer, 320 stmmac_eee_ctrl_timer, 321 (unsigned long)priv); 322 mod_timer(&priv->eee_ctrl_timer, 323 STMMAC_LPI_T(eee_timer)); 324 325 priv->hw->mac->set_eee_timer(priv->hw, 326 STMMAC_DEFAULT_LIT_LS, 327 tx_lpi_timer); 328 } 329 /* Set HW EEE according to the speed */ 330 priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link); 331 332 ret = true; 333 spin_unlock_irqrestore(&priv->lock, flags); 334 335 pr_debug("stmmac: Energy-Efficient Ethernet initialized\n"); 336 } 337 out: 338 return ret; 339 } 340 341 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 342 * @priv: driver private structure 343 * @entry : descriptor index to be used. 344 * @skb : the socket buffer 345 * Description : 346 * This function will read timestamp from the descriptor & pass it to stack. 347 * and also perform some sanity checks. 348 */ 349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 350 unsigned int entry, struct sk_buff *skb) 351 { 352 struct skb_shared_hwtstamps shhwtstamp; 353 u64 ns; 354 void *desc = NULL; 355 356 if (!priv->hwts_tx_en) 357 return; 358 359 /* exit if skb doesn't support hw tstamp */ 360 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 361 return; 362 363 if (priv->adv_ts) 364 desc = (priv->dma_etx + entry); 365 else 366 desc = (priv->dma_tx + entry); 367 368 /* check tx tstamp status */ 369 if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc)) 370 return; 371 372 /* get the valid tstamp */ 373 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 374 375 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 376 shhwtstamp.hwtstamp = ns_to_ktime(ns); 377 /* pass tstamp to stack */ 378 skb_tstamp_tx(skb, &shhwtstamp); 379 380 return; 381 } 382 383 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 384 * @priv: driver private structure 385 * @entry : descriptor index to be used. 386 * @skb : the socket buffer 387 * Description : 388 * This function will read received packet's timestamp from the descriptor 389 * and pass it to stack. It also perform some sanity checks. 390 */ 391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, 392 unsigned int entry, struct sk_buff *skb) 393 { 394 struct skb_shared_hwtstamps *shhwtstamp = NULL; 395 u64 ns; 396 void *desc = NULL; 397 398 if (!priv->hwts_rx_en) 399 return; 400 401 if (priv->adv_ts) 402 desc = (priv->dma_erx + entry); 403 else 404 desc = (priv->dma_rx + entry); 405 406 /* exit if rx tstamp is not valid */ 407 if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts)) 408 return; 409 410 /* get valid tstamp */ 411 ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts); 412 shhwtstamp = skb_hwtstamps(skb); 413 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 414 shhwtstamp->hwtstamp = ns_to_ktime(ns); 415 } 416 417 /** 418 * stmmac_hwtstamp_ioctl - control hardware timestamping. 419 * @dev: device pointer. 420 * @ifr: An IOCTL specefic structure, that can contain a pointer to 421 * a proprietary structure used to pass information to the driver. 422 * Description: 423 * This function configures the MAC to enable/disable both outgoing(TX) 424 * and incoming(RX) packets time stamping based on user input. 425 * Return Value: 426 * 0 on success and an appropriate -ve integer on failure. 427 */ 428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr) 429 { 430 struct stmmac_priv *priv = netdev_priv(dev); 431 struct hwtstamp_config config; 432 struct timespec64 now; 433 u64 temp = 0; 434 u32 ptp_v2 = 0; 435 u32 tstamp_all = 0; 436 u32 ptp_over_ipv4_udp = 0; 437 u32 ptp_over_ipv6_udp = 0; 438 u32 ptp_over_ethernet = 0; 439 u32 snap_type_sel = 0; 440 u32 ts_master_en = 0; 441 u32 ts_event_en = 0; 442 u32 value = 0; 443 u32 sec_inc; 444 445 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 446 netdev_alert(priv->dev, "No support for HW time stamping\n"); 447 priv->hwts_tx_en = 0; 448 priv->hwts_rx_en = 0; 449 450 return -EOPNOTSUPP; 451 } 452 453 if (copy_from_user(&config, ifr->ifr_data, 454 sizeof(struct hwtstamp_config))) 455 return -EFAULT; 456 457 pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 458 __func__, config.flags, config.tx_type, config.rx_filter); 459 460 /* reserved for future extensions */ 461 if (config.flags) 462 return -EINVAL; 463 464 if (config.tx_type != HWTSTAMP_TX_OFF && 465 config.tx_type != HWTSTAMP_TX_ON) 466 return -ERANGE; 467 468 if (priv->adv_ts) { 469 switch (config.rx_filter) { 470 case HWTSTAMP_FILTER_NONE: 471 /* time stamp no incoming packet at all */ 472 config.rx_filter = HWTSTAMP_FILTER_NONE; 473 break; 474 475 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 476 /* PTP v1, UDP, any kind of event packet */ 477 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 478 /* take time stamp for all event messages */ 479 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 480 481 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 482 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 483 break; 484 485 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 486 /* PTP v1, UDP, Sync packet */ 487 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 488 /* take time stamp for SYNC messages only */ 489 ts_event_en = PTP_TCR_TSEVNTENA; 490 491 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 492 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 493 break; 494 495 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 496 /* PTP v1, UDP, Delay_req packet */ 497 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 498 /* take time stamp for Delay_Req messages only */ 499 ts_master_en = PTP_TCR_TSMSTRENA; 500 ts_event_en = PTP_TCR_TSEVNTENA; 501 502 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 503 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 504 break; 505 506 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 507 /* PTP v2, UDP, any kind of event packet */ 508 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 509 ptp_v2 = PTP_TCR_TSVER2ENA; 510 /* take time stamp for all event messages */ 511 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 512 513 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 514 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 515 break; 516 517 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 518 /* PTP v2, UDP, Sync packet */ 519 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 520 ptp_v2 = PTP_TCR_TSVER2ENA; 521 /* take time stamp for SYNC messages only */ 522 ts_event_en = PTP_TCR_TSEVNTENA; 523 524 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 525 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 526 break; 527 528 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 529 /* PTP v2, UDP, Delay_req packet */ 530 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 531 ptp_v2 = PTP_TCR_TSVER2ENA; 532 /* take time stamp for Delay_Req messages only */ 533 ts_master_en = PTP_TCR_TSMSTRENA; 534 ts_event_en = PTP_TCR_TSEVNTENA; 535 536 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 537 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 538 break; 539 540 case HWTSTAMP_FILTER_PTP_V2_EVENT: 541 /* PTP v2/802.AS1 any layer, any kind of event packet */ 542 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 543 ptp_v2 = PTP_TCR_TSVER2ENA; 544 /* take time stamp for all event messages */ 545 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 546 547 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 548 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 549 ptp_over_ethernet = PTP_TCR_TSIPENA; 550 break; 551 552 case HWTSTAMP_FILTER_PTP_V2_SYNC: 553 /* PTP v2/802.AS1, any layer, Sync packet */ 554 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 555 ptp_v2 = PTP_TCR_TSVER2ENA; 556 /* take time stamp for SYNC messages only */ 557 ts_event_en = PTP_TCR_TSEVNTENA; 558 559 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 560 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 561 ptp_over_ethernet = PTP_TCR_TSIPENA; 562 break; 563 564 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 565 /* PTP v2/802.AS1, any layer, Delay_req packet */ 566 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 567 ptp_v2 = PTP_TCR_TSVER2ENA; 568 /* take time stamp for Delay_Req messages only */ 569 ts_master_en = PTP_TCR_TSMSTRENA; 570 ts_event_en = PTP_TCR_TSEVNTENA; 571 572 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 573 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 574 ptp_over_ethernet = PTP_TCR_TSIPENA; 575 break; 576 577 case HWTSTAMP_FILTER_ALL: 578 /* time stamp any incoming packet */ 579 config.rx_filter = HWTSTAMP_FILTER_ALL; 580 tstamp_all = PTP_TCR_TSENALL; 581 break; 582 583 default: 584 return -ERANGE; 585 } 586 } else { 587 switch (config.rx_filter) { 588 case HWTSTAMP_FILTER_NONE: 589 config.rx_filter = HWTSTAMP_FILTER_NONE; 590 break; 591 default: 592 /* PTP v1, UDP, any kind of event packet */ 593 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 594 break; 595 } 596 } 597 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 598 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 599 600 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 601 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0); 602 else { 603 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 604 tstamp_all | ptp_v2 | ptp_over_ethernet | 605 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 606 ts_master_en | snap_type_sel); 607 priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value); 608 609 /* program Sub Second Increment reg */ 610 sec_inc = priv->hw->ptp->config_sub_second_increment( 611 priv->ioaddr, priv->clk_ptp_rate); 612 temp = div_u64(1000000000ULL, sec_inc); 613 614 /* calculate default added value: 615 * formula is : 616 * addend = (2^32)/freq_div_ratio; 617 * where, freq_div_ratio = 1e9ns/sec_inc 618 */ 619 temp = (u64)(temp << 32); 620 priv->default_addend = div_u64(temp, priv->clk_ptp_rate); 621 priv->hw->ptp->config_addend(priv->ioaddr, 622 priv->default_addend); 623 624 /* initialize system time */ 625 ktime_get_real_ts64(&now); 626 627 /* lower 32 bits of tv_sec are safe until y2106 */ 628 priv->hw->ptp->init_systime(priv->ioaddr, (u32)now.tv_sec, 629 now.tv_nsec); 630 } 631 632 return copy_to_user(ifr->ifr_data, &config, 633 sizeof(struct hwtstamp_config)) ? -EFAULT : 0; 634 } 635 636 /** 637 * stmmac_init_ptp - init PTP 638 * @priv: driver private structure 639 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 640 * This is done by looking at the HW cap. register. 641 * This function also registers the ptp driver. 642 */ 643 static int stmmac_init_ptp(struct stmmac_priv *priv) 644 { 645 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 646 return -EOPNOTSUPP; 647 648 /* Fall-back to main clock in case of no PTP ref is passed */ 649 priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref"); 650 if (IS_ERR(priv->clk_ptp_ref)) { 651 priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk); 652 priv->clk_ptp_ref = NULL; 653 } else { 654 clk_prepare_enable(priv->clk_ptp_ref); 655 priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref); 656 } 657 658 priv->adv_ts = 0; 659 if (priv->dma_cap.atime_stamp && priv->extend_desc) 660 priv->adv_ts = 1; 661 662 if (netif_msg_hw(priv) && priv->dma_cap.time_stamp) 663 pr_debug("IEEE 1588-2002 Time Stamp supported\n"); 664 665 if (netif_msg_hw(priv) && priv->adv_ts) 666 pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n"); 667 668 priv->hw->ptp = &stmmac_ptp; 669 priv->hwts_tx_en = 0; 670 priv->hwts_rx_en = 0; 671 672 return stmmac_ptp_register(priv); 673 } 674 675 static void stmmac_release_ptp(struct stmmac_priv *priv) 676 { 677 if (priv->clk_ptp_ref) 678 clk_disable_unprepare(priv->clk_ptp_ref); 679 stmmac_ptp_unregister(priv); 680 } 681 682 /** 683 * stmmac_adjust_link - adjusts the link parameters 684 * @dev: net device structure 685 * Description: this is the helper called by the physical abstraction layer 686 * drivers to communicate the phy link status. According the speed and duplex 687 * this driver can invoke registered glue-logic as well. 688 * It also invoke the eee initialization because it could happen when switch 689 * on different networks (that are eee capable). 690 */ 691 static void stmmac_adjust_link(struct net_device *dev) 692 { 693 struct stmmac_priv *priv = netdev_priv(dev); 694 struct phy_device *phydev = priv->phydev; 695 unsigned long flags; 696 int new_state = 0; 697 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause; 698 699 if (phydev == NULL) 700 return; 701 702 spin_lock_irqsave(&priv->lock, flags); 703 704 if (phydev->link) { 705 u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 706 707 /* Now we make sure that we can be in full duplex mode. 708 * If not, we operate in half-duplex mode. */ 709 if (phydev->duplex != priv->oldduplex) { 710 new_state = 1; 711 if (!(phydev->duplex)) 712 ctrl &= ~priv->hw->link.duplex; 713 else 714 ctrl |= priv->hw->link.duplex; 715 priv->oldduplex = phydev->duplex; 716 } 717 /* Flow Control operation */ 718 if (phydev->pause) 719 priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex, 720 fc, pause_time); 721 722 if (phydev->speed != priv->speed) { 723 new_state = 1; 724 switch (phydev->speed) { 725 case 1000: 726 if (likely((priv->plat->has_gmac) || 727 (priv->plat->has_gmac4))) 728 ctrl &= ~priv->hw->link.port; 729 stmmac_hw_fix_mac_speed(priv); 730 break; 731 case 100: 732 case 10: 733 if (likely((priv->plat->has_gmac) || 734 (priv->plat->has_gmac4))) { 735 ctrl |= priv->hw->link.port; 736 if (phydev->speed == SPEED_100) { 737 ctrl |= priv->hw->link.speed; 738 } else { 739 ctrl &= ~(priv->hw->link.speed); 740 } 741 } else { 742 ctrl &= ~priv->hw->link.port; 743 } 744 stmmac_hw_fix_mac_speed(priv); 745 break; 746 default: 747 if (netif_msg_link(priv)) 748 pr_warn("%s: Speed (%d) not 10/100\n", 749 dev->name, phydev->speed); 750 break; 751 } 752 753 priv->speed = phydev->speed; 754 } 755 756 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 757 758 if (!priv->oldlink) { 759 new_state = 1; 760 priv->oldlink = 1; 761 } 762 } else if (priv->oldlink) { 763 new_state = 1; 764 priv->oldlink = 0; 765 priv->speed = 0; 766 priv->oldduplex = -1; 767 } 768 769 if (new_state && netif_msg_link(priv)) 770 phy_print_status(phydev); 771 772 spin_unlock_irqrestore(&priv->lock, flags); 773 774 if (phydev->is_pseudo_fixed_link) 775 /* Stop PHY layer to call the hook to adjust the link in case 776 * of a switch is attached to the stmmac driver. 777 */ 778 phydev->irq = PHY_IGNORE_INTERRUPT; 779 else 780 /* At this stage, init the EEE if supported. 781 * Never called in case of fixed_link. 782 */ 783 priv->eee_enabled = stmmac_eee_init(priv); 784 } 785 786 /** 787 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 788 * @priv: driver private structure 789 * Description: this is to verify if the HW supports the PCS. 790 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 791 * configured for the TBI, RTBI, or SGMII PHY interface. 792 */ 793 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 794 { 795 int interface = priv->plat->interface; 796 797 if (priv->dma_cap.pcs) { 798 if ((interface == PHY_INTERFACE_MODE_RGMII) || 799 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 800 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 801 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 802 pr_debug("STMMAC: PCS RGMII support enable\n"); 803 priv->hw->pcs = STMMAC_PCS_RGMII; 804 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 805 pr_debug("STMMAC: PCS SGMII support enable\n"); 806 priv->hw->pcs = STMMAC_PCS_SGMII; 807 } 808 } 809 } 810 811 /** 812 * stmmac_init_phy - PHY initialization 813 * @dev: net device structure 814 * Description: it initializes the driver's PHY state, and attaches the PHY 815 * to the mac driver. 816 * Return value: 817 * 0 on success 818 */ 819 static int stmmac_init_phy(struct net_device *dev) 820 { 821 struct stmmac_priv *priv = netdev_priv(dev); 822 struct phy_device *phydev; 823 char phy_id_fmt[MII_BUS_ID_SIZE + 3]; 824 char bus_id[MII_BUS_ID_SIZE]; 825 int interface = priv->plat->interface; 826 int max_speed = priv->plat->max_speed; 827 priv->oldlink = 0; 828 priv->speed = 0; 829 priv->oldduplex = -1; 830 831 if (priv->plat->phy_node) { 832 phydev = of_phy_connect(dev, priv->plat->phy_node, 833 &stmmac_adjust_link, 0, interface); 834 } else { 835 snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x", 836 priv->plat->bus_id); 837 838 snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id, 839 priv->plat->phy_addr); 840 pr_debug("stmmac_init_phy: trying to attach to %s\n", 841 phy_id_fmt); 842 843 phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, 844 interface); 845 } 846 847 if (IS_ERR_OR_NULL(phydev)) { 848 pr_err("%s: Could not attach to PHY\n", dev->name); 849 if (!phydev) 850 return -ENODEV; 851 852 return PTR_ERR(phydev); 853 } 854 855 /* Stop Advertising 1000BASE Capability if interface is not GMII */ 856 if ((interface == PHY_INTERFACE_MODE_MII) || 857 (interface == PHY_INTERFACE_MODE_RMII) || 858 (max_speed < 1000 && max_speed > 0)) 859 phydev->advertising &= ~(SUPPORTED_1000baseT_Half | 860 SUPPORTED_1000baseT_Full); 861 862 /* 863 * Broken HW is sometimes missing the pull-up resistor on the 864 * MDIO line, which results in reads to non-existent devices returning 865 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent 866 * device as well. 867 * Note: phydev->phy_id is the result of reading the UID PHY registers. 868 */ 869 if (!priv->plat->phy_node && phydev->phy_id == 0) { 870 phy_disconnect(phydev); 871 return -ENODEV; 872 } 873 874 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)" 875 " Link = %d\n", dev->name, phydev->phy_id, phydev->link); 876 877 priv->phydev = phydev; 878 879 return 0; 880 } 881 882 static void stmmac_display_rings(struct stmmac_priv *priv) 883 { 884 void *head_rx, *head_tx; 885 886 if (priv->extend_desc) { 887 head_rx = (void *)priv->dma_erx; 888 head_tx = (void *)priv->dma_etx; 889 } else { 890 head_rx = (void *)priv->dma_rx; 891 head_tx = (void *)priv->dma_tx; 892 } 893 894 /* Display Rx ring */ 895 priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true); 896 /* Display Tx ring */ 897 priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false); 898 } 899 900 static int stmmac_set_bfsize(int mtu, int bufsize) 901 { 902 int ret = bufsize; 903 904 if (mtu >= BUF_SIZE_4KiB) 905 ret = BUF_SIZE_8KiB; 906 else if (mtu >= BUF_SIZE_2KiB) 907 ret = BUF_SIZE_4KiB; 908 else if (mtu > DEFAULT_BUFSIZE) 909 ret = BUF_SIZE_2KiB; 910 else 911 ret = DEFAULT_BUFSIZE; 912 913 return ret; 914 } 915 916 /** 917 * stmmac_clear_descriptors - clear descriptors 918 * @priv: driver private structure 919 * Description: this function is called to clear the tx and rx descriptors 920 * in case of both basic and extended descriptors are used. 921 */ 922 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 923 { 924 int i; 925 926 /* Clear the Rx/Tx descriptors */ 927 for (i = 0; i < DMA_RX_SIZE; i++) 928 if (priv->extend_desc) 929 priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, 930 priv->use_riwt, priv->mode, 931 (i == DMA_RX_SIZE - 1)); 932 else 933 priv->hw->desc->init_rx_desc(&priv->dma_rx[i], 934 priv->use_riwt, priv->mode, 935 (i == DMA_RX_SIZE - 1)); 936 for (i = 0; i < DMA_TX_SIZE; i++) 937 if (priv->extend_desc) 938 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 939 priv->mode, 940 (i == DMA_TX_SIZE - 1)); 941 else 942 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 943 priv->mode, 944 (i == DMA_TX_SIZE - 1)); 945 } 946 947 /** 948 * stmmac_init_rx_buffers - init the RX descriptor buffer. 949 * @priv: driver private structure 950 * @p: descriptor pointer 951 * @i: descriptor index 952 * @flags: gfp flag. 953 * Description: this function is called to allocate a receive buffer, perform 954 * the DMA mapping and init the descriptor. 955 */ 956 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 957 int i, gfp_t flags) 958 { 959 struct sk_buff *skb; 960 961 skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); 962 if (!skb) { 963 pr_err("%s: Rx init fails; skb is NULL\n", __func__); 964 return -ENOMEM; 965 } 966 priv->rx_skbuff[i] = skb; 967 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, 968 priv->dma_buf_sz, 969 DMA_FROM_DEVICE); 970 if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) { 971 pr_err("%s: DMA mapping error\n", __func__); 972 dev_kfree_skb_any(skb); 973 return -EINVAL; 974 } 975 976 if (priv->synopsys_id >= DWMAC_CORE_4_00) 977 p->des0 = priv->rx_skbuff_dma[i]; 978 else 979 p->des2 = priv->rx_skbuff_dma[i]; 980 981 if ((priv->hw->mode->init_desc3) && 982 (priv->dma_buf_sz == BUF_SIZE_16KiB)) 983 priv->hw->mode->init_desc3(p); 984 985 return 0; 986 } 987 988 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i) 989 { 990 if (priv->rx_skbuff[i]) { 991 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i], 992 priv->dma_buf_sz, DMA_FROM_DEVICE); 993 dev_kfree_skb_any(priv->rx_skbuff[i]); 994 } 995 priv->rx_skbuff[i] = NULL; 996 } 997 998 /** 999 * init_dma_desc_rings - init the RX/TX descriptor rings 1000 * @dev: net device structure 1001 * @flags: gfp flag. 1002 * Description: this function initializes the DMA RX/TX descriptors 1003 * and allocates the socket buffers. It suppors the chained and ring 1004 * modes. 1005 */ 1006 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1007 { 1008 int i; 1009 struct stmmac_priv *priv = netdev_priv(dev); 1010 unsigned int bfsize = 0; 1011 int ret = -ENOMEM; 1012 1013 if (priv->hw->mode->set_16kib_bfsize) 1014 bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu); 1015 1016 if (bfsize < BUF_SIZE_16KiB) 1017 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 1018 1019 priv->dma_buf_sz = bfsize; 1020 1021 if (netif_msg_probe(priv)) { 1022 pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__, 1023 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy); 1024 1025 /* RX INITIALIZATION */ 1026 pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n"); 1027 } 1028 for (i = 0; i < DMA_RX_SIZE; i++) { 1029 struct dma_desc *p; 1030 if (priv->extend_desc) 1031 p = &((priv->dma_erx + i)->basic); 1032 else 1033 p = priv->dma_rx + i; 1034 1035 ret = stmmac_init_rx_buffers(priv, p, i, flags); 1036 if (ret) 1037 goto err_init_rx_buffers; 1038 1039 if (netif_msg_probe(priv)) 1040 pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i], 1041 priv->rx_skbuff[i]->data, 1042 (unsigned int)priv->rx_skbuff_dma[i]); 1043 } 1044 priv->cur_rx = 0; 1045 priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE); 1046 buf_sz = bfsize; 1047 1048 /* Setup the chained descriptor addresses */ 1049 if (priv->mode == STMMAC_CHAIN_MODE) { 1050 if (priv->extend_desc) { 1051 priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy, 1052 DMA_RX_SIZE, 1); 1053 priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy, 1054 DMA_TX_SIZE, 1); 1055 } else { 1056 priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy, 1057 DMA_RX_SIZE, 0); 1058 priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy, 1059 DMA_TX_SIZE, 0); 1060 } 1061 } 1062 1063 /* TX INITIALIZATION */ 1064 for (i = 0; i < DMA_TX_SIZE; i++) { 1065 struct dma_desc *p; 1066 if (priv->extend_desc) 1067 p = &((priv->dma_etx + i)->basic); 1068 else 1069 p = priv->dma_tx + i; 1070 1071 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 1072 p->des0 = 0; 1073 p->des1 = 0; 1074 p->des2 = 0; 1075 p->des3 = 0; 1076 } else { 1077 p->des2 = 0; 1078 } 1079 1080 priv->tx_skbuff_dma[i].buf = 0; 1081 priv->tx_skbuff_dma[i].map_as_page = false; 1082 priv->tx_skbuff_dma[i].len = 0; 1083 priv->tx_skbuff_dma[i].last_segment = false; 1084 priv->tx_skbuff[i] = NULL; 1085 } 1086 1087 priv->dirty_tx = 0; 1088 priv->cur_tx = 0; 1089 netdev_reset_queue(priv->dev); 1090 1091 stmmac_clear_descriptors(priv); 1092 1093 if (netif_msg_hw(priv)) 1094 stmmac_display_rings(priv); 1095 1096 return 0; 1097 err_init_rx_buffers: 1098 while (--i >= 0) 1099 stmmac_free_rx_buffers(priv, i); 1100 return ret; 1101 } 1102 1103 static void dma_free_rx_skbufs(struct stmmac_priv *priv) 1104 { 1105 int i; 1106 1107 for (i = 0; i < DMA_RX_SIZE; i++) 1108 stmmac_free_rx_buffers(priv, i); 1109 } 1110 1111 static void dma_free_tx_skbufs(struct stmmac_priv *priv) 1112 { 1113 int i; 1114 1115 for (i = 0; i < DMA_TX_SIZE; i++) { 1116 struct dma_desc *p; 1117 1118 if (priv->extend_desc) 1119 p = &((priv->dma_etx + i)->basic); 1120 else 1121 p = priv->dma_tx + i; 1122 1123 if (priv->tx_skbuff_dma[i].buf) { 1124 if (priv->tx_skbuff_dma[i].map_as_page) 1125 dma_unmap_page(priv->device, 1126 priv->tx_skbuff_dma[i].buf, 1127 priv->tx_skbuff_dma[i].len, 1128 DMA_TO_DEVICE); 1129 else 1130 dma_unmap_single(priv->device, 1131 priv->tx_skbuff_dma[i].buf, 1132 priv->tx_skbuff_dma[i].len, 1133 DMA_TO_DEVICE); 1134 } 1135 1136 if (priv->tx_skbuff[i] != NULL) { 1137 dev_kfree_skb_any(priv->tx_skbuff[i]); 1138 priv->tx_skbuff[i] = NULL; 1139 priv->tx_skbuff_dma[i].buf = 0; 1140 priv->tx_skbuff_dma[i].map_as_page = false; 1141 } 1142 } 1143 } 1144 1145 /** 1146 * alloc_dma_desc_resources - alloc TX/RX resources. 1147 * @priv: private structure 1148 * Description: according to which descriptor can be used (extend or basic) 1149 * this function allocates the resources for TX and RX paths. In case of 1150 * reception, for example, it pre-allocated the RX socket buffer in order to 1151 * allow zero-copy mechanism. 1152 */ 1153 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 1154 { 1155 int ret = -ENOMEM; 1156 1157 priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t), 1158 GFP_KERNEL); 1159 if (!priv->rx_skbuff_dma) 1160 return -ENOMEM; 1161 1162 priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *), 1163 GFP_KERNEL); 1164 if (!priv->rx_skbuff) 1165 goto err_rx_skbuff; 1166 1167 priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE, 1168 sizeof(*priv->tx_skbuff_dma), 1169 GFP_KERNEL); 1170 if (!priv->tx_skbuff_dma) 1171 goto err_tx_skbuff_dma; 1172 1173 priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *), 1174 GFP_KERNEL); 1175 if (!priv->tx_skbuff) 1176 goto err_tx_skbuff; 1177 1178 if (priv->extend_desc) { 1179 priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE * 1180 sizeof(struct 1181 dma_extended_desc), 1182 &priv->dma_rx_phy, 1183 GFP_KERNEL); 1184 if (!priv->dma_erx) 1185 goto err_dma; 1186 1187 priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE * 1188 sizeof(struct 1189 dma_extended_desc), 1190 &priv->dma_tx_phy, 1191 GFP_KERNEL); 1192 if (!priv->dma_etx) { 1193 dma_free_coherent(priv->device, DMA_RX_SIZE * 1194 sizeof(struct dma_extended_desc), 1195 priv->dma_erx, priv->dma_rx_phy); 1196 goto err_dma; 1197 } 1198 } else { 1199 priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE * 1200 sizeof(struct dma_desc), 1201 &priv->dma_rx_phy, 1202 GFP_KERNEL); 1203 if (!priv->dma_rx) 1204 goto err_dma; 1205 1206 priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE * 1207 sizeof(struct dma_desc), 1208 &priv->dma_tx_phy, 1209 GFP_KERNEL); 1210 if (!priv->dma_tx) { 1211 dma_free_coherent(priv->device, DMA_RX_SIZE * 1212 sizeof(struct dma_desc), 1213 priv->dma_rx, priv->dma_rx_phy); 1214 goto err_dma; 1215 } 1216 } 1217 1218 return 0; 1219 1220 err_dma: 1221 kfree(priv->tx_skbuff); 1222 err_tx_skbuff: 1223 kfree(priv->tx_skbuff_dma); 1224 err_tx_skbuff_dma: 1225 kfree(priv->rx_skbuff); 1226 err_rx_skbuff: 1227 kfree(priv->rx_skbuff_dma); 1228 return ret; 1229 } 1230 1231 static void free_dma_desc_resources(struct stmmac_priv *priv) 1232 { 1233 /* Release the DMA TX/RX socket buffers */ 1234 dma_free_rx_skbufs(priv); 1235 dma_free_tx_skbufs(priv); 1236 1237 /* Free DMA regions of consistent memory previously allocated */ 1238 if (!priv->extend_desc) { 1239 dma_free_coherent(priv->device, 1240 DMA_TX_SIZE * sizeof(struct dma_desc), 1241 priv->dma_tx, priv->dma_tx_phy); 1242 dma_free_coherent(priv->device, 1243 DMA_RX_SIZE * sizeof(struct dma_desc), 1244 priv->dma_rx, priv->dma_rx_phy); 1245 } else { 1246 dma_free_coherent(priv->device, DMA_TX_SIZE * 1247 sizeof(struct dma_extended_desc), 1248 priv->dma_etx, priv->dma_tx_phy); 1249 dma_free_coherent(priv->device, DMA_RX_SIZE * 1250 sizeof(struct dma_extended_desc), 1251 priv->dma_erx, priv->dma_rx_phy); 1252 } 1253 kfree(priv->rx_skbuff_dma); 1254 kfree(priv->rx_skbuff); 1255 kfree(priv->tx_skbuff_dma); 1256 kfree(priv->tx_skbuff); 1257 } 1258 1259 /** 1260 * stmmac_dma_operation_mode - HW DMA operation mode 1261 * @priv: driver private structure 1262 * Description: it is used for configuring the DMA operation mode register in 1263 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 1264 */ 1265 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 1266 { 1267 int rxfifosz = priv->plat->rx_fifo_size; 1268 1269 if (priv->plat->force_thresh_dma_mode) 1270 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, rxfifosz); 1271 else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 1272 /* 1273 * In case of GMAC, SF mode can be enabled 1274 * to perform the TX COE in HW. This depends on: 1275 * 1) TX COE if actually supported 1276 * 2) There is no bugged Jumbo frame support 1277 * that needs to not insert csum in the TDES. 1278 */ 1279 priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE, 1280 rxfifosz); 1281 priv->xstats.threshold = SF_DMA_MODE; 1282 } else 1283 priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE, 1284 rxfifosz); 1285 } 1286 1287 /** 1288 * stmmac_tx_clean - to manage the transmission completion 1289 * @priv: driver private structure 1290 * Description: it reclaims the transmit resources after transmission completes. 1291 */ 1292 static void stmmac_tx_clean(struct stmmac_priv *priv) 1293 { 1294 unsigned int bytes_compl = 0, pkts_compl = 0; 1295 unsigned int entry = priv->dirty_tx; 1296 1297 spin_lock(&priv->tx_lock); 1298 1299 priv->xstats.tx_clean++; 1300 1301 while (entry != priv->cur_tx) { 1302 struct sk_buff *skb = priv->tx_skbuff[entry]; 1303 struct dma_desc *p; 1304 int status; 1305 1306 if (priv->extend_desc) 1307 p = (struct dma_desc *)(priv->dma_etx + entry); 1308 else 1309 p = priv->dma_tx + entry; 1310 1311 status = priv->hw->desc->tx_status(&priv->dev->stats, 1312 &priv->xstats, p, 1313 priv->ioaddr); 1314 /* Check if the descriptor is owned by the DMA */ 1315 if (unlikely(status & tx_dma_own)) 1316 break; 1317 1318 /* Just consider the last segment and ...*/ 1319 if (likely(!(status & tx_not_ls))) { 1320 /* ... verify the status error condition */ 1321 if (unlikely(status & tx_err)) { 1322 priv->dev->stats.tx_errors++; 1323 } else { 1324 priv->dev->stats.tx_packets++; 1325 priv->xstats.tx_pkt_n++; 1326 } 1327 stmmac_get_tx_hwtstamp(priv, entry, skb); 1328 } 1329 1330 if (likely(priv->tx_skbuff_dma[entry].buf)) { 1331 if (priv->tx_skbuff_dma[entry].map_as_page) 1332 dma_unmap_page(priv->device, 1333 priv->tx_skbuff_dma[entry].buf, 1334 priv->tx_skbuff_dma[entry].len, 1335 DMA_TO_DEVICE); 1336 else 1337 dma_unmap_single(priv->device, 1338 priv->tx_skbuff_dma[entry].buf, 1339 priv->tx_skbuff_dma[entry].len, 1340 DMA_TO_DEVICE); 1341 priv->tx_skbuff_dma[entry].buf = 0; 1342 priv->tx_skbuff_dma[entry].len = 0; 1343 priv->tx_skbuff_dma[entry].map_as_page = false; 1344 } 1345 1346 if (priv->hw->mode->clean_desc3) 1347 priv->hw->mode->clean_desc3(priv, p); 1348 1349 priv->tx_skbuff_dma[entry].last_segment = false; 1350 priv->tx_skbuff_dma[entry].is_jumbo = false; 1351 1352 if (likely(skb != NULL)) { 1353 pkts_compl++; 1354 bytes_compl += skb->len; 1355 dev_consume_skb_any(skb); 1356 priv->tx_skbuff[entry] = NULL; 1357 } 1358 1359 priv->hw->desc->release_tx_desc(p, priv->mode); 1360 1361 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 1362 } 1363 priv->dirty_tx = entry; 1364 1365 netdev_completed_queue(priv->dev, pkts_compl, bytes_compl); 1366 1367 if (unlikely(netif_queue_stopped(priv->dev) && 1368 stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) { 1369 netif_tx_lock(priv->dev); 1370 if (netif_queue_stopped(priv->dev) && 1371 stmmac_tx_avail(priv) > STMMAC_TX_THRESH) { 1372 if (netif_msg_tx_done(priv)) 1373 pr_debug("%s: restart transmit\n", __func__); 1374 netif_wake_queue(priv->dev); 1375 } 1376 netif_tx_unlock(priv->dev); 1377 } 1378 1379 if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { 1380 stmmac_enable_eee_mode(priv); 1381 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer)); 1382 } 1383 spin_unlock(&priv->tx_lock); 1384 } 1385 1386 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv) 1387 { 1388 priv->hw->dma->enable_dma_irq(priv->ioaddr); 1389 } 1390 1391 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv) 1392 { 1393 priv->hw->dma->disable_dma_irq(priv->ioaddr); 1394 } 1395 1396 /** 1397 * stmmac_tx_err - to manage the tx error 1398 * @priv: driver private structure 1399 * Description: it cleans the descriptors and restarts the transmission 1400 * in case of transmission errors. 1401 */ 1402 static void stmmac_tx_err(struct stmmac_priv *priv) 1403 { 1404 int i; 1405 netif_stop_queue(priv->dev); 1406 1407 priv->hw->dma->stop_tx(priv->ioaddr); 1408 dma_free_tx_skbufs(priv); 1409 for (i = 0; i < DMA_TX_SIZE; i++) 1410 if (priv->extend_desc) 1411 priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, 1412 priv->mode, 1413 (i == DMA_TX_SIZE - 1)); 1414 else 1415 priv->hw->desc->init_tx_desc(&priv->dma_tx[i], 1416 priv->mode, 1417 (i == DMA_TX_SIZE - 1)); 1418 priv->dirty_tx = 0; 1419 priv->cur_tx = 0; 1420 netdev_reset_queue(priv->dev); 1421 priv->hw->dma->start_tx(priv->ioaddr); 1422 1423 priv->dev->stats.tx_errors++; 1424 netif_wake_queue(priv->dev); 1425 } 1426 1427 /** 1428 * stmmac_dma_interrupt - DMA ISR 1429 * @priv: driver private structure 1430 * Description: this is the DMA ISR. It is called by the main ISR. 1431 * It calls the dwmac dma routine and schedule poll method in case of some 1432 * work can be done. 1433 */ 1434 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 1435 { 1436 int status; 1437 int rxfifosz = priv->plat->rx_fifo_size; 1438 1439 status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats); 1440 if (likely((status & handle_rx)) || (status & handle_tx)) { 1441 if (likely(napi_schedule_prep(&priv->napi))) { 1442 stmmac_disable_dma_irq(priv); 1443 __napi_schedule(&priv->napi); 1444 } 1445 } 1446 if (unlikely(status & tx_hard_error_bump_tc)) { 1447 /* Try to bump up the dma threshold on this failure */ 1448 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 1449 (tc <= 256)) { 1450 tc += 64; 1451 if (priv->plat->force_thresh_dma_mode) 1452 priv->hw->dma->dma_mode(priv->ioaddr, tc, tc, 1453 rxfifosz); 1454 else 1455 priv->hw->dma->dma_mode(priv->ioaddr, tc, 1456 SF_DMA_MODE, rxfifosz); 1457 priv->xstats.threshold = tc; 1458 } 1459 } else if (unlikely(status == tx_hard_error)) 1460 stmmac_tx_err(priv); 1461 } 1462 1463 /** 1464 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 1465 * @priv: driver private structure 1466 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 1467 */ 1468 static void stmmac_mmc_setup(struct stmmac_priv *priv) 1469 { 1470 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 1471 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 1472 1473 if (priv->synopsys_id >= DWMAC_CORE_4_00) 1474 priv->mmcaddr = priv->ioaddr + MMC_GMAC4_OFFSET; 1475 else 1476 priv->mmcaddr = priv->ioaddr + MMC_GMAC3_X_OFFSET; 1477 1478 dwmac_mmc_intr_all_mask(priv->mmcaddr); 1479 1480 if (priv->dma_cap.rmon) { 1481 dwmac_mmc_ctrl(priv->mmcaddr, mode); 1482 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 1483 } else 1484 pr_info(" No MAC Management Counters available\n"); 1485 } 1486 1487 /** 1488 * stmmac_selec_desc_mode - to select among: normal/alternate/extend descriptors 1489 * @priv: driver private structure 1490 * Description: select the Enhanced/Alternate or Normal descriptors. 1491 * In case of Enhanced/Alternate, it checks if the extended descriptors are 1492 * supported by the HW capability register. 1493 */ 1494 static void stmmac_selec_desc_mode(struct stmmac_priv *priv) 1495 { 1496 if (priv->plat->enh_desc) { 1497 pr_info(" Enhanced/Alternate descriptors\n"); 1498 1499 /* GMAC older than 3.50 has no extended descriptors */ 1500 if (priv->synopsys_id >= DWMAC_CORE_3_50) { 1501 pr_info("\tEnabled extended descriptors\n"); 1502 priv->extend_desc = 1; 1503 } else 1504 pr_warn("Extended descriptors not supported\n"); 1505 1506 priv->hw->desc = &enh_desc_ops; 1507 } else { 1508 pr_info(" Normal descriptors\n"); 1509 priv->hw->desc = &ndesc_ops; 1510 } 1511 } 1512 1513 /** 1514 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 1515 * @priv: driver private structure 1516 * Description: 1517 * new GMAC chip generations have a new register to indicate the 1518 * presence of the optional feature/functions. 1519 * This can be also used to override the value passed through the 1520 * platform and necessary for old MAC10/100 and GMAC chips. 1521 */ 1522 static int stmmac_get_hw_features(struct stmmac_priv *priv) 1523 { 1524 u32 ret = 0; 1525 1526 if (priv->hw->dma->get_hw_feature) { 1527 priv->hw->dma->get_hw_feature(priv->ioaddr, 1528 &priv->dma_cap); 1529 ret = 1; 1530 } 1531 1532 return ret; 1533 } 1534 1535 /** 1536 * stmmac_check_ether_addr - check if the MAC addr is valid 1537 * @priv: driver private structure 1538 * Description: 1539 * it is to verify if the MAC address is valid, in case of failures it 1540 * generates a random MAC address 1541 */ 1542 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 1543 { 1544 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 1545 priv->hw->mac->get_umac_addr(priv->hw, 1546 priv->dev->dev_addr, 0); 1547 if (!is_valid_ether_addr(priv->dev->dev_addr)) 1548 eth_hw_addr_random(priv->dev); 1549 pr_info("%s: device MAC address %pM\n", priv->dev->name, 1550 priv->dev->dev_addr); 1551 } 1552 } 1553 1554 /** 1555 * stmmac_init_dma_engine - DMA init. 1556 * @priv: driver private structure 1557 * Description: 1558 * It inits the DMA invoking the specific MAC/GMAC callback. 1559 * Some DMA parameters can be passed from the platform; 1560 * in case of these are not passed a default is kept for the MAC or GMAC. 1561 */ 1562 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 1563 { 1564 int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, aal = 0; 1565 int mixed_burst = 0; 1566 int atds = 0; 1567 int ret = 0; 1568 1569 if (priv->plat->dma_cfg) { 1570 pbl = priv->plat->dma_cfg->pbl; 1571 fixed_burst = priv->plat->dma_cfg->fixed_burst; 1572 mixed_burst = priv->plat->dma_cfg->mixed_burst; 1573 aal = priv->plat->dma_cfg->aal; 1574 } 1575 1576 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 1577 atds = 1; 1578 1579 ret = priv->hw->dma->reset(priv->ioaddr); 1580 if (ret) { 1581 dev_err(priv->device, "Failed to reset the dma\n"); 1582 return ret; 1583 } 1584 1585 priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst, 1586 aal, priv->dma_tx_phy, priv->dma_rx_phy, atds); 1587 1588 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 1589 priv->rx_tail_addr = priv->dma_rx_phy + 1590 (DMA_RX_SIZE * sizeof(struct dma_desc)); 1591 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->rx_tail_addr, 1592 STMMAC_CHAN0); 1593 1594 priv->tx_tail_addr = priv->dma_tx_phy + 1595 (DMA_TX_SIZE * sizeof(struct dma_desc)); 1596 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr, 1597 STMMAC_CHAN0); 1598 } 1599 1600 if (priv->plat->axi && priv->hw->dma->axi) 1601 priv->hw->dma->axi(priv->ioaddr, priv->plat->axi); 1602 1603 return ret; 1604 } 1605 1606 /** 1607 * stmmac_tx_timer - mitigation sw timer for tx. 1608 * @data: data pointer 1609 * Description: 1610 * This is the timer handler to directly invoke the stmmac_tx_clean. 1611 */ 1612 static void stmmac_tx_timer(unsigned long data) 1613 { 1614 struct stmmac_priv *priv = (struct stmmac_priv *)data; 1615 1616 stmmac_tx_clean(priv); 1617 } 1618 1619 /** 1620 * stmmac_init_tx_coalesce - init tx mitigation options. 1621 * @priv: driver private structure 1622 * Description: 1623 * This inits the transmit coalesce parameters: i.e. timer rate, 1624 * timer handler and default threshold used for enabling the 1625 * interrupt on completion bit. 1626 */ 1627 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv) 1628 { 1629 priv->tx_coal_frames = STMMAC_TX_FRAMES; 1630 priv->tx_coal_timer = STMMAC_COAL_TX_TIMER; 1631 init_timer(&priv->txtimer); 1632 priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer); 1633 priv->txtimer.data = (unsigned long)priv; 1634 priv->txtimer.function = stmmac_tx_timer; 1635 add_timer(&priv->txtimer); 1636 } 1637 1638 /** 1639 * stmmac_hw_setup - setup mac in a usable state. 1640 * @dev : pointer to the device structure. 1641 * Description: 1642 * this is the main function to setup the HW in a usable state because the 1643 * dma engine is reset, the core registers are configured (e.g. AXI, 1644 * Checksum features, timers). The DMA is ready to start receiving and 1645 * transmitting. 1646 * Return value: 1647 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1648 * file on failure. 1649 */ 1650 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 1651 { 1652 struct stmmac_priv *priv = netdev_priv(dev); 1653 int ret; 1654 1655 /* DMA initialization and SW reset */ 1656 ret = stmmac_init_dma_engine(priv); 1657 if (ret < 0) { 1658 pr_err("%s: DMA engine initialization failed\n", __func__); 1659 return ret; 1660 } 1661 1662 /* Copy the MAC addr into the HW */ 1663 priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0); 1664 1665 /* If required, perform hw setup of the bus. */ 1666 if (priv->plat->bus_setup) 1667 priv->plat->bus_setup(priv->ioaddr); 1668 1669 /* PS and related bits will be programmed according to the speed */ 1670 if (priv->hw->pcs) { 1671 int speed = priv->plat->mac_port_sel_speed; 1672 1673 if ((speed == SPEED_10) || (speed == SPEED_100) || 1674 (speed == SPEED_1000)) { 1675 priv->hw->ps = speed; 1676 } else { 1677 dev_warn(priv->device, "invalid port speed\n"); 1678 priv->hw->ps = 0; 1679 } 1680 } 1681 1682 /* Initialize the MAC Core */ 1683 priv->hw->mac->core_init(priv->hw, dev->mtu); 1684 1685 ret = priv->hw->mac->rx_ipc(priv->hw); 1686 if (!ret) { 1687 pr_warn(" RX IPC Checksum Offload disabled\n"); 1688 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 1689 priv->hw->rx_csum = 0; 1690 } 1691 1692 /* Enable the MAC Rx/Tx */ 1693 if (priv->synopsys_id >= DWMAC_CORE_4_00) 1694 stmmac_dwmac4_set_mac(priv->ioaddr, true); 1695 else 1696 stmmac_set_mac(priv->ioaddr, true); 1697 1698 /* Set the HW DMA mode and the COE */ 1699 stmmac_dma_operation_mode(priv); 1700 1701 stmmac_mmc_setup(priv); 1702 1703 if (init_ptp) { 1704 ret = stmmac_init_ptp(priv); 1705 if (ret && ret != -EOPNOTSUPP) 1706 pr_warn("%s: failed PTP initialisation\n", __func__); 1707 } 1708 1709 #ifdef CONFIG_DEBUG_FS 1710 ret = stmmac_init_fs(dev); 1711 if (ret < 0) 1712 pr_warn("%s: failed debugFS registration\n", __func__); 1713 #endif 1714 /* Start the ball rolling... */ 1715 pr_debug("%s: DMA RX/TX processes started...\n", dev->name); 1716 priv->hw->dma->start_tx(priv->ioaddr); 1717 priv->hw->dma->start_rx(priv->ioaddr); 1718 1719 /* Dump DMA/MAC registers */ 1720 if (netif_msg_hw(priv)) { 1721 priv->hw->mac->dump_regs(priv->hw); 1722 priv->hw->dma->dump_regs(priv->ioaddr); 1723 } 1724 priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS; 1725 1726 if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) { 1727 priv->rx_riwt = MAX_DMA_RIWT; 1728 priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT); 1729 } 1730 1731 if (priv->hw->pcs && priv->hw->mac->pcs_ctrl_ane) 1732 priv->hw->mac->pcs_ctrl_ane(priv->hw, 1, priv->hw->ps, 0); 1733 1734 /* set TX ring length */ 1735 if (priv->hw->dma->set_tx_ring_len) 1736 priv->hw->dma->set_tx_ring_len(priv->ioaddr, 1737 (DMA_TX_SIZE - 1)); 1738 /* set RX ring length */ 1739 if (priv->hw->dma->set_rx_ring_len) 1740 priv->hw->dma->set_rx_ring_len(priv->ioaddr, 1741 (DMA_RX_SIZE - 1)); 1742 /* Enable TSO */ 1743 if (priv->tso) 1744 priv->hw->dma->enable_tso(priv->ioaddr, 1, STMMAC_CHAN0); 1745 1746 return 0; 1747 } 1748 1749 /** 1750 * stmmac_open - open entry point of the driver 1751 * @dev : pointer to the device structure. 1752 * Description: 1753 * This function is the open entry point of the driver. 1754 * Return value: 1755 * 0 on success and an appropriate (-)ve integer as defined in errno.h 1756 * file on failure. 1757 */ 1758 static int stmmac_open(struct net_device *dev) 1759 { 1760 struct stmmac_priv *priv = netdev_priv(dev); 1761 int ret; 1762 1763 stmmac_check_ether_addr(priv); 1764 1765 if (priv->hw->pcs != STMMAC_PCS_RGMII && 1766 priv->hw->pcs != STMMAC_PCS_TBI && 1767 priv->hw->pcs != STMMAC_PCS_RTBI) { 1768 ret = stmmac_init_phy(dev); 1769 if (ret) { 1770 pr_err("%s: Cannot attach to PHY (error: %d)\n", 1771 __func__, ret); 1772 return ret; 1773 } 1774 } 1775 1776 /* Extra statistics */ 1777 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 1778 priv->xstats.threshold = tc; 1779 1780 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz); 1781 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 1782 1783 ret = alloc_dma_desc_resources(priv); 1784 if (ret < 0) { 1785 pr_err("%s: DMA descriptors allocation failed\n", __func__); 1786 goto dma_desc_error; 1787 } 1788 1789 ret = init_dma_desc_rings(dev, GFP_KERNEL); 1790 if (ret < 0) { 1791 pr_err("%s: DMA descriptors initialization failed\n", __func__); 1792 goto init_error; 1793 } 1794 1795 ret = stmmac_hw_setup(dev, true); 1796 if (ret < 0) { 1797 pr_err("%s: Hw setup failed\n", __func__); 1798 goto init_error; 1799 } 1800 1801 stmmac_init_tx_coalesce(priv); 1802 1803 if (priv->phydev) 1804 phy_start(priv->phydev); 1805 1806 /* Request the IRQ lines */ 1807 ret = request_irq(dev->irq, stmmac_interrupt, 1808 IRQF_SHARED, dev->name, dev); 1809 if (unlikely(ret < 0)) { 1810 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n", 1811 __func__, dev->irq, ret); 1812 goto init_error; 1813 } 1814 1815 /* Request the Wake IRQ in case of another line is used for WoL */ 1816 if (priv->wol_irq != dev->irq) { 1817 ret = request_irq(priv->wol_irq, stmmac_interrupt, 1818 IRQF_SHARED, dev->name, dev); 1819 if (unlikely(ret < 0)) { 1820 pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n", 1821 __func__, priv->wol_irq, ret); 1822 goto wolirq_error; 1823 } 1824 } 1825 1826 /* Request the IRQ lines */ 1827 if (priv->lpi_irq > 0) { 1828 ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED, 1829 dev->name, dev); 1830 if (unlikely(ret < 0)) { 1831 pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n", 1832 __func__, priv->lpi_irq, ret); 1833 goto lpiirq_error; 1834 } 1835 } 1836 1837 napi_enable(&priv->napi); 1838 netif_start_queue(dev); 1839 1840 return 0; 1841 1842 lpiirq_error: 1843 if (priv->wol_irq != dev->irq) 1844 free_irq(priv->wol_irq, dev); 1845 wolirq_error: 1846 free_irq(dev->irq, dev); 1847 1848 init_error: 1849 free_dma_desc_resources(priv); 1850 dma_desc_error: 1851 if (priv->phydev) 1852 phy_disconnect(priv->phydev); 1853 1854 return ret; 1855 } 1856 1857 /** 1858 * stmmac_release - close entry point of the driver 1859 * @dev : device pointer. 1860 * Description: 1861 * This is the stop entry point of the driver. 1862 */ 1863 static int stmmac_release(struct net_device *dev) 1864 { 1865 struct stmmac_priv *priv = netdev_priv(dev); 1866 1867 if (priv->eee_enabled) 1868 del_timer_sync(&priv->eee_ctrl_timer); 1869 1870 /* Stop and disconnect the PHY */ 1871 if (priv->phydev) { 1872 phy_stop(priv->phydev); 1873 phy_disconnect(priv->phydev); 1874 priv->phydev = NULL; 1875 } 1876 1877 netif_stop_queue(dev); 1878 1879 napi_disable(&priv->napi); 1880 1881 del_timer_sync(&priv->txtimer); 1882 1883 /* Free the IRQ lines */ 1884 free_irq(dev->irq, dev); 1885 if (priv->wol_irq != dev->irq) 1886 free_irq(priv->wol_irq, dev); 1887 if (priv->lpi_irq > 0) 1888 free_irq(priv->lpi_irq, dev); 1889 1890 /* Stop TX/RX DMA and clear the descriptors */ 1891 priv->hw->dma->stop_tx(priv->ioaddr); 1892 priv->hw->dma->stop_rx(priv->ioaddr); 1893 1894 /* Release and free the Rx/Tx resources */ 1895 free_dma_desc_resources(priv); 1896 1897 /* Disable the MAC Rx/Tx */ 1898 stmmac_set_mac(priv->ioaddr, false); 1899 1900 netif_carrier_off(dev); 1901 1902 #ifdef CONFIG_DEBUG_FS 1903 stmmac_exit_fs(dev); 1904 #endif 1905 1906 stmmac_release_ptp(priv); 1907 1908 return 0; 1909 } 1910 1911 /** 1912 * stmmac_tso_allocator - close entry point of the driver 1913 * @priv: driver private structure 1914 * @des: buffer start address 1915 * @total_len: total length to fill in descriptors 1916 * @last_segmant: condition for the last descriptor 1917 * Description: 1918 * This function fills descriptor and request new descriptors according to 1919 * buffer length to fill 1920 */ 1921 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, 1922 int total_len, bool last_segment) 1923 { 1924 struct dma_desc *desc; 1925 int tmp_len; 1926 u32 buff_size; 1927 1928 tmp_len = total_len; 1929 1930 while (tmp_len > 0) { 1931 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE); 1932 desc = priv->dma_tx + priv->cur_tx; 1933 1934 desc->des0 = des + (total_len - tmp_len); 1935 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 1936 TSO_MAX_BUFF_SIZE : tmp_len; 1937 1938 priv->hw->desc->prepare_tso_tx_desc(desc, 0, buff_size, 1939 0, 1, 1940 (last_segment) && (buff_size < TSO_MAX_BUFF_SIZE), 1941 0, 0); 1942 1943 tmp_len -= TSO_MAX_BUFF_SIZE; 1944 } 1945 } 1946 1947 /** 1948 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 1949 * @skb : the socket buffer 1950 * @dev : device pointer 1951 * Description: this is the transmit function that is called on TSO frames 1952 * (support available on GMAC4 and newer chips). 1953 * Diagram below show the ring programming in case of TSO frames: 1954 * 1955 * First Descriptor 1956 * -------- 1957 * | DES0 |---> buffer1 = L2/L3/L4 header 1958 * | DES1 |---> TCP Payload (can continue on next descr...) 1959 * | DES2 |---> buffer 1 and 2 len 1960 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 1961 * -------- 1962 * | 1963 * ... 1964 * | 1965 * -------- 1966 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 1967 * | DES1 | --| 1968 * | DES2 | --> buffer 1 and 2 len 1969 * | DES3 | 1970 * -------- 1971 * 1972 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 1973 */ 1974 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 1975 { 1976 u32 pay_len, mss; 1977 int tmp_pay_len = 0; 1978 struct stmmac_priv *priv = netdev_priv(dev); 1979 int nfrags = skb_shinfo(skb)->nr_frags; 1980 unsigned int first_entry, des; 1981 struct dma_desc *desc, *first, *mss_desc = NULL; 1982 u8 proto_hdr_len; 1983 int i; 1984 1985 spin_lock(&priv->tx_lock); 1986 1987 /* Compute header lengths */ 1988 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 1989 1990 /* Desc availability based on threshold should be enough safe */ 1991 if (unlikely(stmmac_tx_avail(priv) < 1992 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 1993 if (!netif_queue_stopped(dev)) { 1994 netif_stop_queue(dev); 1995 /* This is a hard error, log it. */ 1996 pr_err("%s: Tx Ring full when queue awake\n", __func__); 1997 } 1998 spin_unlock(&priv->tx_lock); 1999 return NETDEV_TX_BUSY; 2000 } 2001 2002 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 2003 2004 mss = skb_shinfo(skb)->gso_size; 2005 2006 /* set new MSS value if needed */ 2007 if (mss != priv->mss) { 2008 mss_desc = priv->dma_tx + priv->cur_tx; 2009 priv->hw->desc->set_mss(mss_desc, mss); 2010 priv->mss = mss; 2011 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE); 2012 } 2013 2014 if (netif_msg_tx_queued(priv)) { 2015 pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 2016 __func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss); 2017 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 2018 skb->data_len); 2019 } 2020 2021 first_entry = priv->cur_tx; 2022 2023 desc = priv->dma_tx + first_entry; 2024 first = desc; 2025 2026 /* first descriptor: fill Headers on Buf1 */ 2027 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 2028 DMA_TO_DEVICE); 2029 if (dma_mapping_error(priv->device, des)) 2030 goto dma_map_err; 2031 2032 priv->tx_skbuff_dma[first_entry].buf = des; 2033 priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 2034 priv->tx_skbuff[first_entry] = skb; 2035 2036 first->des0 = des; 2037 2038 /* Fill start of payload in buff2 of first descriptor */ 2039 if (pay_len) 2040 first->des1 = des + proto_hdr_len; 2041 2042 /* If needed take extra descriptors to fill the remaining payload */ 2043 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 2044 2045 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0)); 2046 2047 /* Prepare fragments */ 2048 for (i = 0; i < nfrags; i++) { 2049 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2050 2051 des = skb_frag_dma_map(priv->device, frag, 0, 2052 skb_frag_size(frag), 2053 DMA_TO_DEVICE); 2054 2055 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 2056 (i == nfrags - 1)); 2057 2058 priv->tx_skbuff_dma[priv->cur_tx].buf = des; 2059 priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag); 2060 priv->tx_skbuff[priv->cur_tx] = NULL; 2061 priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true; 2062 } 2063 2064 priv->tx_skbuff_dma[priv->cur_tx].last_segment = true; 2065 2066 priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE); 2067 2068 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 2069 if (netif_msg_hw(priv)) 2070 pr_debug("%s: stop transmitted packets\n", __func__); 2071 netif_stop_queue(dev); 2072 } 2073 2074 dev->stats.tx_bytes += skb->len; 2075 priv->xstats.tx_tso_frames++; 2076 priv->xstats.tx_tso_nfrags += nfrags; 2077 2078 /* Manage tx mitigation */ 2079 priv->tx_count_frames += nfrags + 1; 2080 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) { 2081 mod_timer(&priv->txtimer, 2082 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2083 } else { 2084 priv->tx_count_frames = 0; 2085 priv->hw->desc->set_tx_ic(desc); 2086 priv->xstats.tx_set_ic_bit++; 2087 } 2088 2089 if (!priv->hwts_tx_en) 2090 skb_tx_timestamp(skb); 2091 2092 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2093 priv->hwts_tx_en)) { 2094 /* declare that device is doing timestamping */ 2095 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2096 priv->hw->desc->enable_tx_timestamp(first); 2097 } 2098 2099 /* Complete the first descriptor before granting the DMA */ 2100 priv->hw->desc->prepare_tso_tx_desc(first, 1, 2101 proto_hdr_len, 2102 pay_len, 2103 1, priv->tx_skbuff_dma[first_entry].last_segment, 2104 tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); 2105 2106 /* If context desc is used to change MSS */ 2107 if (mss_desc) 2108 priv->hw->desc->set_tx_owner(mss_desc); 2109 2110 /* The own bit must be the latest setting done when prepare the 2111 * descriptor and then barrier is needed to make sure that 2112 * all is coherent before granting the DMA engine. 2113 */ 2114 smp_wmb(); 2115 2116 if (netif_msg_pktdata(priv)) { 2117 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 2118 __func__, priv->cur_tx, priv->dirty_tx, first_entry, 2119 priv->cur_tx, first, nfrags); 2120 2121 priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 2122 0); 2123 2124 pr_info(">>> frame to be transmitted: "); 2125 print_pkt(skb->data, skb_headlen(skb)); 2126 } 2127 2128 netdev_sent_queue(dev, skb->len); 2129 2130 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr, 2131 STMMAC_CHAN0); 2132 2133 spin_unlock(&priv->tx_lock); 2134 return NETDEV_TX_OK; 2135 2136 dma_map_err: 2137 spin_unlock(&priv->tx_lock); 2138 dev_err(priv->device, "Tx dma map failed\n"); 2139 dev_kfree_skb(skb); 2140 priv->dev->stats.tx_dropped++; 2141 return NETDEV_TX_OK; 2142 } 2143 2144 /** 2145 * stmmac_xmit - Tx entry point of the driver 2146 * @skb : the socket buffer 2147 * @dev : device pointer 2148 * Description : this is the tx entry point of the driver. 2149 * It programs the chain or the ring and supports oversized frames 2150 * and SG feature. 2151 */ 2152 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 2153 { 2154 struct stmmac_priv *priv = netdev_priv(dev); 2155 unsigned int nopaged_len = skb_headlen(skb); 2156 int i, csum_insertion = 0, is_jumbo = 0; 2157 int nfrags = skb_shinfo(skb)->nr_frags; 2158 unsigned int entry, first_entry; 2159 struct dma_desc *desc, *first; 2160 unsigned int enh_desc; 2161 unsigned int des; 2162 2163 /* Manage oversized TCP frames for GMAC4 device */ 2164 if (skb_is_gso(skb) && priv->tso) { 2165 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 2166 return stmmac_tso_xmit(skb, dev); 2167 } 2168 2169 spin_lock(&priv->tx_lock); 2170 2171 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { 2172 spin_unlock(&priv->tx_lock); 2173 if (!netif_queue_stopped(dev)) { 2174 netif_stop_queue(dev); 2175 /* This is a hard error, log it. */ 2176 pr_err("%s: Tx Ring full when queue awake\n", __func__); 2177 } 2178 return NETDEV_TX_BUSY; 2179 } 2180 2181 if (priv->tx_path_in_lpi_mode) 2182 stmmac_disable_eee_mode(priv); 2183 2184 entry = priv->cur_tx; 2185 first_entry = entry; 2186 2187 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 2188 2189 if (likely(priv->extend_desc)) 2190 desc = (struct dma_desc *)(priv->dma_etx + entry); 2191 else 2192 desc = priv->dma_tx + entry; 2193 2194 first = desc; 2195 2196 priv->tx_skbuff[first_entry] = skb; 2197 2198 enh_desc = priv->plat->enh_desc; 2199 /* To program the descriptors according to the size of the frame */ 2200 if (enh_desc) 2201 is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc); 2202 2203 if (unlikely(is_jumbo) && likely(priv->synopsys_id < 2204 DWMAC_CORE_4_00)) { 2205 entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion); 2206 if (unlikely(entry < 0)) 2207 goto dma_map_err; 2208 } 2209 2210 for (i = 0; i < nfrags; i++) { 2211 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2212 int len = skb_frag_size(frag); 2213 bool last_segment = (i == (nfrags - 1)); 2214 2215 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 2216 2217 if (likely(priv->extend_desc)) 2218 desc = (struct dma_desc *)(priv->dma_etx + entry); 2219 else 2220 desc = priv->dma_tx + entry; 2221 2222 des = skb_frag_dma_map(priv->device, frag, 0, len, 2223 DMA_TO_DEVICE); 2224 if (dma_mapping_error(priv->device, des)) 2225 goto dma_map_err; /* should reuse desc w/o issues */ 2226 2227 priv->tx_skbuff[entry] = NULL; 2228 2229 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) { 2230 desc->des0 = des; 2231 priv->tx_skbuff_dma[entry].buf = desc->des0; 2232 } else { 2233 desc->des2 = des; 2234 priv->tx_skbuff_dma[entry].buf = desc->des2; 2235 } 2236 2237 priv->tx_skbuff_dma[entry].map_as_page = true; 2238 priv->tx_skbuff_dma[entry].len = len; 2239 priv->tx_skbuff_dma[entry].last_segment = last_segment; 2240 2241 /* Prepare the descriptor and set the own bit too */ 2242 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, 2243 priv->mode, 1, last_segment); 2244 } 2245 2246 entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); 2247 2248 priv->cur_tx = entry; 2249 2250 if (netif_msg_pktdata(priv)) { 2251 void *tx_head; 2252 2253 pr_debug("%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 2254 __func__, priv->cur_tx, priv->dirty_tx, first_entry, 2255 entry, first, nfrags); 2256 2257 if (priv->extend_desc) 2258 tx_head = (void *)priv->dma_etx; 2259 else 2260 tx_head = (void *)priv->dma_tx; 2261 2262 priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false); 2263 2264 pr_debug(">>> frame to be transmitted: "); 2265 print_pkt(skb->data, skb->len); 2266 } 2267 2268 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { 2269 if (netif_msg_hw(priv)) 2270 pr_debug("%s: stop transmitted packets\n", __func__); 2271 netif_stop_queue(dev); 2272 } 2273 2274 dev->stats.tx_bytes += skb->len; 2275 2276 /* According to the coalesce parameter the IC bit for the latest 2277 * segment is reset and the timer re-started to clean the tx status. 2278 * This approach takes care about the fragments: desc is the first 2279 * element in case of no SG. 2280 */ 2281 priv->tx_count_frames += nfrags + 1; 2282 if (likely(priv->tx_coal_frames > priv->tx_count_frames)) { 2283 mod_timer(&priv->txtimer, 2284 STMMAC_COAL_TIMER(priv->tx_coal_timer)); 2285 } else { 2286 priv->tx_count_frames = 0; 2287 priv->hw->desc->set_tx_ic(desc); 2288 priv->xstats.tx_set_ic_bit++; 2289 } 2290 2291 if (!priv->hwts_tx_en) 2292 skb_tx_timestamp(skb); 2293 2294 /* Ready to fill the first descriptor and set the OWN bit w/o any 2295 * problems because all the descriptors are actually ready to be 2296 * passed to the DMA engine. 2297 */ 2298 if (likely(!is_jumbo)) { 2299 bool last_segment = (nfrags == 0); 2300 2301 des = dma_map_single(priv->device, skb->data, 2302 nopaged_len, DMA_TO_DEVICE); 2303 if (dma_mapping_error(priv->device, des)) 2304 goto dma_map_err; 2305 2306 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) { 2307 first->des0 = des; 2308 priv->tx_skbuff_dma[first_entry].buf = first->des0; 2309 } else { 2310 first->des2 = des; 2311 priv->tx_skbuff_dma[first_entry].buf = first->des2; 2312 } 2313 2314 priv->tx_skbuff_dma[first_entry].len = nopaged_len; 2315 priv->tx_skbuff_dma[first_entry].last_segment = last_segment; 2316 2317 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 2318 priv->hwts_tx_en)) { 2319 /* declare that device is doing timestamping */ 2320 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2321 priv->hw->desc->enable_tx_timestamp(first); 2322 } 2323 2324 /* Prepare the first descriptor setting the OWN bit too */ 2325 priv->hw->desc->prepare_tx_desc(first, 1, nopaged_len, 2326 csum_insertion, priv->mode, 1, 2327 last_segment); 2328 2329 /* The own bit must be the latest setting done when prepare the 2330 * descriptor and then barrier is needed to make sure that 2331 * all is coherent before granting the DMA engine. 2332 */ 2333 smp_wmb(); 2334 } 2335 2336 netdev_sent_queue(dev, skb->len); 2337 2338 if (priv->synopsys_id < DWMAC_CORE_4_00) 2339 priv->hw->dma->enable_dma_transmission(priv->ioaddr); 2340 else 2341 priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr, 2342 STMMAC_CHAN0); 2343 2344 spin_unlock(&priv->tx_lock); 2345 return NETDEV_TX_OK; 2346 2347 dma_map_err: 2348 spin_unlock(&priv->tx_lock); 2349 dev_err(priv->device, "Tx dma map failed\n"); 2350 dev_kfree_skb(skb); 2351 priv->dev->stats.tx_dropped++; 2352 return NETDEV_TX_OK; 2353 } 2354 2355 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 2356 { 2357 struct ethhdr *ehdr; 2358 u16 vlanid; 2359 2360 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) == 2361 NETIF_F_HW_VLAN_CTAG_RX && 2362 !__vlan_get_tag(skb, &vlanid)) { 2363 /* pop the vlan tag */ 2364 ehdr = (struct ethhdr *)skb->data; 2365 memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2); 2366 skb_pull(skb, VLAN_HLEN); 2367 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid); 2368 } 2369 } 2370 2371 2372 static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv) 2373 { 2374 if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH) 2375 return 0; 2376 2377 return 1; 2378 } 2379 2380 /** 2381 * stmmac_rx_refill - refill used skb preallocated buffers 2382 * @priv: driver private structure 2383 * Description : this is to reallocate the skb for the reception process 2384 * that is based on zero-copy. 2385 */ 2386 static inline void stmmac_rx_refill(struct stmmac_priv *priv) 2387 { 2388 int bfsize = priv->dma_buf_sz; 2389 unsigned int entry = priv->dirty_rx; 2390 int dirty = stmmac_rx_dirty(priv); 2391 2392 while (dirty-- > 0) { 2393 struct dma_desc *p; 2394 2395 if (priv->extend_desc) 2396 p = (struct dma_desc *)(priv->dma_erx + entry); 2397 else 2398 p = priv->dma_rx + entry; 2399 2400 if (likely(priv->rx_skbuff[entry] == NULL)) { 2401 struct sk_buff *skb; 2402 2403 skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); 2404 if (unlikely(!skb)) { 2405 /* so for a while no zero-copy! */ 2406 priv->rx_zeroc_thresh = STMMAC_RX_THRESH; 2407 if (unlikely(net_ratelimit())) 2408 dev_err(priv->device, 2409 "fail to alloc skb entry %d\n", 2410 entry); 2411 break; 2412 } 2413 2414 priv->rx_skbuff[entry] = skb; 2415 priv->rx_skbuff_dma[entry] = 2416 dma_map_single(priv->device, skb->data, bfsize, 2417 DMA_FROM_DEVICE); 2418 if (dma_mapping_error(priv->device, 2419 priv->rx_skbuff_dma[entry])) { 2420 dev_err(priv->device, "Rx dma map failed\n"); 2421 dev_kfree_skb(skb); 2422 break; 2423 } 2424 2425 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) { 2426 p->des0 = priv->rx_skbuff_dma[entry]; 2427 p->des1 = 0; 2428 } else { 2429 p->des2 = priv->rx_skbuff_dma[entry]; 2430 } 2431 if (priv->hw->mode->refill_desc3) 2432 priv->hw->mode->refill_desc3(priv, p); 2433 2434 if (priv->rx_zeroc_thresh > 0) 2435 priv->rx_zeroc_thresh--; 2436 2437 if (netif_msg_rx_status(priv)) 2438 pr_debug("\trefill entry #%d\n", entry); 2439 } 2440 wmb(); 2441 2442 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) 2443 priv->hw->desc->init_rx_desc(p, priv->use_riwt, 0, 0); 2444 else 2445 priv->hw->desc->set_rx_owner(p); 2446 2447 wmb(); 2448 2449 entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); 2450 } 2451 priv->dirty_rx = entry; 2452 } 2453 2454 /** 2455 * stmmac_rx - manage the receive process 2456 * @priv: driver private structure 2457 * @limit: napi bugget. 2458 * Description : this the function called by the napi poll method. 2459 * It gets all the frames inside the ring. 2460 */ 2461 static int stmmac_rx(struct stmmac_priv *priv, int limit) 2462 { 2463 unsigned int entry = priv->cur_rx; 2464 unsigned int next_entry; 2465 unsigned int count = 0; 2466 int coe = priv->hw->rx_csum; 2467 2468 if (netif_msg_rx_status(priv)) { 2469 void *rx_head; 2470 2471 pr_debug("%s: descriptor ring:\n", __func__); 2472 if (priv->extend_desc) 2473 rx_head = (void *)priv->dma_erx; 2474 else 2475 rx_head = (void *)priv->dma_rx; 2476 2477 priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true); 2478 } 2479 while (count < limit) { 2480 int status; 2481 struct dma_desc *p; 2482 2483 if (priv->extend_desc) 2484 p = (struct dma_desc *)(priv->dma_erx + entry); 2485 else 2486 p = priv->dma_rx + entry; 2487 2488 /* read the status of the incoming frame */ 2489 status = priv->hw->desc->rx_status(&priv->dev->stats, 2490 &priv->xstats, p); 2491 /* check if managed by the DMA otherwise go ahead */ 2492 if (unlikely(status & dma_own)) 2493 break; 2494 2495 count++; 2496 2497 priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE); 2498 next_entry = priv->cur_rx; 2499 2500 if (priv->extend_desc) 2501 prefetch(priv->dma_erx + next_entry); 2502 else 2503 prefetch(priv->dma_rx + next_entry); 2504 2505 if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) 2506 priv->hw->desc->rx_extended_status(&priv->dev->stats, 2507 &priv->xstats, 2508 priv->dma_erx + 2509 entry); 2510 if (unlikely(status == discard_frame)) { 2511 priv->dev->stats.rx_errors++; 2512 if (priv->hwts_rx_en && !priv->extend_desc) { 2513 /* DESC2 & DESC3 will be overwitten by device 2514 * with timestamp value, hence reinitialize 2515 * them in stmmac_rx_refill() function so that 2516 * device can reuse it. 2517 */ 2518 priv->rx_skbuff[entry] = NULL; 2519 dma_unmap_single(priv->device, 2520 priv->rx_skbuff_dma[entry], 2521 priv->dma_buf_sz, 2522 DMA_FROM_DEVICE); 2523 } 2524 } else { 2525 struct sk_buff *skb; 2526 int frame_len; 2527 unsigned int des; 2528 2529 if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) 2530 des = p->des0; 2531 else 2532 des = p->des2; 2533 2534 frame_len = priv->hw->desc->get_rx_frame_len(p, coe); 2535 2536 /* If frame length is greather than skb buffer size 2537 * (preallocated during init) then the packet is 2538 * ignored 2539 */ 2540 if (frame_len > priv->dma_buf_sz) { 2541 pr_err("%s: len %d larger than size (%d)\n", 2542 priv->dev->name, frame_len, 2543 priv->dma_buf_sz); 2544 priv->dev->stats.rx_length_errors++; 2545 break; 2546 } 2547 2548 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 2549 * Type frames (LLC/LLC-SNAP) 2550 */ 2551 if (unlikely(status != llc_snap)) 2552 frame_len -= ETH_FCS_LEN; 2553 2554 if (netif_msg_rx_status(priv)) { 2555 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n", 2556 p, entry, des); 2557 if (frame_len > ETH_FRAME_LEN) 2558 pr_debug("\tframe size %d, COE: %d\n", 2559 frame_len, status); 2560 } 2561 2562 /* The zero-copy is always used for all the sizes 2563 * in case of GMAC4 because it needs 2564 * to refill the used descriptors, always. 2565 */ 2566 if (unlikely(!priv->plat->has_gmac4 && 2567 ((frame_len < priv->rx_copybreak) || 2568 stmmac_rx_threshold_count(priv)))) { 2569 skb = netdev_alloc_skb_ip_align(priv->dev, 2570 frame_len); 2571 if (unlikely(!skb)) { 2572 if (net_ratelimit()) 2573 dev_warn(priv->device, 2574 "packet dropped\n"); 2575 priv->dev->stats.rx_dropped++; 2576 break; 2577 } 2578 2579 dma_sync_single_for_cpu(priv->device, 2580 priv->rx_skbuff_dma 2581 [entry], frame_len, 2582 DMA_FROM_DEVICE); 2583 skb_copy_to_linear_data(skb, 2584 priv-> 2585 rx_skbuff[entry]->data, 2586 frame_len); 2587 2588 skb_put(skb, frame_len); 2589 dma_sync_single_for_device(priv->device, 2590 priv->rx_skbuff_dma 2591 [entry], frame_len, 2592 DMA_FROM_DEVICE); 2593 } else { 2594 skb = priv->rx_skbuff[entry]; 2595 if (unlikely(!skb)) { 2596 pr_err("%s: Inconsistent Rx chain\n", 2597 priv->dev->name); 2598 priv->dev->stats.rx_dropped++; 2599 break; 2600 } 2601 prefetch(skb->data - NET_IP_ALIGN); 2602 priv->rx_skbuff[entry] = NULL; 2603 priv->rx_zeroc_thresh++; 2604 2605 skb_put(skb, frame_len); 2606 dma_unmap_single(priv->device, 2607 priv->rx_skbuff_dma[entry], 2608 priv->dma_buf_sz, 2609 DMA_FROM_DEVICE); 2610 } 2611 2612 stmmac_get_rx_hwtstamp(priv, entry, skb); 2613 2614 if (netif_msg_pktdata(priv)) { 2615 pr_debug("frame received (%dbytes)", frame_len); 2616 print_pkt(skb->data, frame_len); 2617 } 2618 2619 stmmac_rx_vlan(priv->dev, skb); 2620 2621 skb->protocol = eth_type_trans(skb, priv->dev); 2622 2623 if (unlikely(!coe)) 2624 skb_checksum_none_assert(skb); 2625 else 2626 skb->ip_summed = CHECKSUM_UNNECESSARY; 2627 2628 napi_gro_receive(&priv->napi, skb); 2629 2630 priv->dev->stats.rx_packets++; 2631 priv->dev->stats.rx_bytes += frame_len; 2632 } 2633 entry = next_entry; 2634 } 2635 2636 stmmac_rx_refill(priv); 2637 2638 priv->xstats.rx_pkt_n += count; 2639 2640 return count; 2641 } 2642 2643 /** 2644 * stmmac_poll - stmmac poll method (NAPI) 2645 * @napi : pointer to the napi structure. 2646 * @budget : maximum number of packets that the current CPU can receive from 2647 * all interfaces. 2648 * Description : 2649 * To look at the incoming frames and clear the tx resources. 2650 */ 2651 static int stmmac_poll(struct napi_struct *napi, int budget) 2652 { 2653 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); 2654 int work_done = 0; 2655 2656 priv->xstats.napi_poll++; 2657 stmmac_tx_clean(priv); 2658 2659 work_done = stmmac_rx(priv, budget); 2660 if (work_done < budget) { 2661 napi_complete(napi); 2662 stmmac_enable_dma_irq(priv); 2663 } 2664 return work_done; 2665 } 2666 2667 /** 2668 * stmmac_tx_timeout 2669 * @dev : Pointer to net device structure 2670 * Description: this function is called when a packet transmission fails to 2671 * complete within a reasonable time. The driver will mark the error in the 2672 * netdev structure and arrange for the device to be reset to a sane state 2673 * in order to transmit a new packet. 2674 */ 2675 static void stmmac_tx_timeout(struct net_device *dev) 2676 { 2677 struct stmmac_priv *priv = netdev_priv(dev); 2678 2679 /* Clear Tx resources and restart transmitting again */ 2680 stmmac_tx_err(priv); 2681 } 2682 2683 /** 2684 * stmmac_set_rx_mode - entry point for multicast addressing 2685 * @dev : pointer to the device structure 2686 * Description: 2687 * This function is a driver entry point which gets called by the kernel 2688 * whenever multicast addresses must be enabled/disabled. 2689 * Return value: 2690 * void. 2691 */ 2692 static void stmmac_set_rx_mode(struct net_device *dev) 2693 { 2694 struct stmmac_priv *priv = netdev_priv(dev); 2695 2696 priv->hw->mac->set_filter(priv->hw, dev); 2697 } 2698 2699 /** 2700 * stmmac_change_mtu - entry point to change MTU size for the device. 2701 * @dev : device pointer. 2702 * @new_mtu : the new MTU size for the device. 2703 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 2704 * to drive packet transmission. Ethernet has an MTU of 1500 octets 2705 * (ETH_DATA_LEN). This value can be changed with ifconfig. 2706 * Return value: 2707 * 0 on success and an appropriate (-)ve integer as defined in errno.h 2708 * file on failure. 2709 */ 2710 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 2711 { 2712 struct stmmac_priv *priv = netdev_priv(dev); 2713 int max_mtu; 2714 2715 if (netif_running(dev)) { 2716 pr_err("%s: must be stopped to change its MTU\n", dev->name); 2717 return -EBUSY; 2718 } 2719 2720 if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 2721 max_mtu = JUMBO_LEN; 2722 else 2723 max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 2724 2725 if (priv->plat->maxmtu < max_mtu) 2726 max_mtu = priv->plat->maxmtu; 2727 2728 if ((new_mtu < 46) || (new_mtu > max_mtu)) { 2729 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu); 2730 return -EINVAL; 2731 } 2732 2733 dev->mtu = new_mtu; 2734 2735 netdev_update_features(dev); 2736 2737 return 0; 2738 } 2739 2740 static netdev_features_t stmmac_fix_features(struct net_device *dev, 2741 netdev_features_t features) 2742 { 2743 struct stmmac_priv *priv = netdev_priv(dev); 2744 2745 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 2746 features &= ~NETIF_F_RXCSUM; 2747 2748 if (!priv->plat->tx_coe) 2749 features &= ~NETIF_F_CSUM_MASK; 2750 2751 /* Some GMAC devices have a bugged Jumbo frame support that 2752 * needs to have the Tx COE disabled for oversized frames 2753 * (due to limited buffer sizes). In this case we disable 2754 * the TX csum insertionin the TDES and not use SF. 2755 */ 2756 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 2757 features &= ~NETIF_F_CSUM_MASK; 2758 2759 /* Disable tso if asked by ethtool */ 2760 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 2761 if (features & NETIF_F_TSO) 2762 priv->tso = true; 2763 else 2764 priv->tso = false; 2765 } 2766 2767 return features; 2768 } 2769 2770 static int stmmac_set_features(struct net_device *netdev, 2771 netdev_features_t features) 2772 { 2773 struct stmmac_priv *priv = netdev_priv(netdev); 2774 2775 /* Keep the COE Type in case of csum is supporting */ 2776 if (features & NETIF_F_RXCSUM) 2777 priv->hw->rx_csum = priv->plat->rx_coe; 2778 else 2779 priv->hw->rx_csum = 0; 2780 /* No check needed because rx_coe has been set before and it will be 2781 * fixed in case of issue. 2782 */ 2783 priv->hw->mac->rx_ipc(priv->hw); 2784 2785 return 0; 2786 } 2787 2788 /** 2789 * stmmac_interrupt - main ISR 2790 * @irq: interrupt number. 2791 * @dev_id: to pass the net device pointer. 2792 * Description: this is the main driver interrupt service routine. 2793 * It can call: 2794 * o DMA service routine (to manage incoming frame reception and transmission 2795 * status) 2796 * o Core interrupts to manage: remote wake-up, management counter, LPI 2797 * interrupts. 2798 */ 2799 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 2800 { 2801 struct net_device *dev = (struct net_device *)dev_id; 2802 struct stmmac_priv *priv = netdev_priv(dev); 2803 2804 if (priv->irq_wake) 2805 pm_wakeup_event(priv->device, 0); 2806 2807 if (unlikely(!dev)) { 2808 pr_err("%s: invalid dev pointer\n", __func__); 2809 return IRQ_NONE; 2810 } 2811 2812 /* To handle GMAC own interrupts */ 2813 if ((priv->plat->has_gmac) || (priv->plat->has_gmac4)) { 2814 int status = priv->hw->mac->host_irq_status(priv->hw, 2815 &priv->xstats); 2816 if (unlikely(status)) { 2817 /* For LPI we need to save the tx status */ 2818 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 2819 priv->tx_path_in_lpi_mode = true; 2820 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 2821 priv->tx_path_in_lpi_mode = false; 2822 if (status & CORE_IRQ_MTL_RX_OVERFLOW && priv->hw->dma->set_rx_tail_ptr) 2823 priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, 2824 priv->rx_tail_addr, 2825 STMMAC_CHAN0); 2826 } 2827 2828 /* PCS link status */ 2829 if (priv->hw->pcs) { 2830 if (priv->xstats.pcs_link) 2831 netif_carrier_on(dev); 2832 else 2833 netif_carrier_off(dev); 2834 } 2835 } 2836 2837 /* To handle DMA interrupts */ 2838 stmmac_dma_interrupt(priv); 2839 2840 return IRQ_HANDLED; 2841 } 2842 2843 #ifdef CONFIG_NET_POLL_CONTROLLER 2844 /* Polling receive - used by NETCONSOLE and other diagnostic tools 2845 * to allow network I/O with interrupts disabled. 2846 */ 2847 static void stmmac_poll_controller(struct net_device *dev) 2848 { 2849 disable_irq(dev->irq); 2850 stmmac_interrupt(dev->irq, dev); 2851 enable_irq(dev->irq); 2852 } 2853 #endif 2854 2855 /** 2856 * stmmac_ioctl - Entry point for the Ioctl 2857 * @dev: Device pointer. 2858 * @rq: An IOCTL specefic structure, that can contain a pointer to 2859 * a proprietary structure used to pass information to the driver. 2860 * @cmd: IOCTL command 2861 * Description: 2862 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 2863 */ 2864 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2865 { 2866 struct stmmac_priv *priv = netdev_priv(dev); 2867 int ret = -EOPNOTSUPP; 2868 2869 if (!netif_running(dev)) 2870 return -EINVAL; 2871 2872 switch (cmd) { 2873 case SIOCGMIIPHY: 2874 case SIOCGMIIREG: 2875 case SIOCSMIIREG: 2876 if (!priv->phydev) 2877 return -EINVAL; 2878 ret = phy_mii_ioctl(priv->phydev, rq, cmd); 2879 break; 2880 case SIOCSHWTSTAMP: 2881 ret = stmmac_hwtstamp_ioctl(dev, rq); 2882 break; 2883 default: 2884 break; 2885 } 2886 2887 return ret; 2888 } 2889 2890 #ifdef CONFIG_DEBUG_FS 2891 static struct dentry *stmmac_fs_dir; 2892 2893 static void sysfs_display_ring(void *head, int size, int extend_desc, 2894 struct seq_file *seq) 2895 { 2896 int i; 2897 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 2898 struct dma_desc *p = (struct dma_desc *)head; 2899 2900 for (i = 0; i < size; i++) { 2901 u64 x; 2902 if (extend_desc) { 2903 x = *(u64 *) ep; 2904 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2905 i, (unsigned int)virt_to_phys(ep), 2906 ep->basic.des0, ep->basic.des1, 2907 ep->basic.des2, ep->basic.des3); 2908 ep++; 2909 } else { 2910 x = *(u64 *) p; 2911 seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n", 2912 i, (unsigned int)virt_to_phys(ep), 2913 p->des0, p->des1, p->des2, p->des3); 2914 p++; 2915 } 2916 seq_printf(seq, "\n"); 2917 } 2918 } 2919 2920 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) 2921 { 2922 struct net_device *dev = seq->private; 2923 struct stmmac_priv *priv = netdev_priv(dev); 2924 2925 if (priv->extend_desc) { 2926 seq_printf(seq, "Extended RX descriptor ring:\n"); 2927 sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq); 2928 seq_printf(seq, "Extended TX descriptor ring:\n"); 2929 sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq); 2930 } else { 2931 seq_printf(seq, "RX descriptor ring:\n"); 2932 sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq); 2933 seq_printf(seq, "TX descriptor ring:\n"); 2934 sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq); 2935 } 2936 2937 return 0; 2938 } 2939 2940 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file) 2941 { 2942 return single_open(file, stmmac_sysfs_ring_read, inode->i_private); 2943 } 2944 2945 static const struct file_operations stmmac_rings_status_fops = { 2946 .owner = THIS_MODULE, 2947 .open = stmmac_sysfs_ring_open, 2948 .read = seq_read, 2949 .llseek = seq_lseek, 2950 .release = single_release, 2951 }; 2952 2953 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v) 2954 { 2955 struct net_device *dev = seq->private; 2956 struct stmmac_priv *priv = netdev_priv(dev); 2957 2958 if (!priv->hw_cap_support) { 2959 seq_printf(seq, "DMA HW features not supported\n"); 2960 return 0; 2961 } 2962 2963 seq_printf(seq, "==============================\n"); 2964 seq_printf(seq, "\tDMA HW features\n"); 2965 seq_printf(seq, "==============================\n"); 2966 2967 seq_printf(seq, "\t10/100 Mbps %s\n", 2968 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 2969 seq_printf(seq, "\t1000 Mbps %s\n", 2970 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 2971 seq_printf(seq, "\tHalf duple %s\n", 2972 (priv->dma_cap.half_duplex) ? "Y" : "N"); 2973 seq_printf(seq, "\tHash Filter: %s\n", 2974 (priv->dma_cap.hash_filter) ? "Y" : "N"); 2975 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 2976 (priv->dma_cap.multi_addr) ? "Y" : "N"); 2977 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n", 2978 (priv->dma_cap.pcs) ? "Y" : "N"); 2979 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 2980 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 2981 seq_printf(seq, "\tPMT Remote wake up: %s\n", 2982 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 2983 seq_printf(seq, "\tPMT Magic Frame: %s\n", 2984 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 2985 seq_printf(seq, "\tRMON module: %s\n", 2986 (priv->dma_cap.rmon) ? "Y" : "N"); 2987 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 2988 (priv->dma_cap.time_stamp) ? "Y" : "N"); 2989 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n", 2990 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 2991 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n", 2992 (priv->dma_cap.eee) ? "Y" : "N"); 2993 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 2994 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 2995 (priv->dma_cap.tx_coe) ? "Y" : "N"); 2996 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 2997 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 2998 (priv->dma_cap.rx_coe) ? "Y" : "N"); 2999 } else { 3000 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 3001 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 3002 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 3003 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 3004 } 3005 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 3006 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 3007 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 3008 priv->dma_cap.number_rx_channel); 3009 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 3010 priv->dma_cap.number_tx_channel); 3011 seq_printf(seq, "\tEnhanced descriptors: %s\n", 3012 (priv->dma_cap.enh_desc) ? "Y" : "N"); 3013 3014 return 0; 3015 } 3016 3017 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file) 3018 { 3019 return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private); 3020 } 3021 3022 static const struct file_operations stmmac_dma_cap_fops = { 3023 .owner = THIS_MODULE, 3024 .open = stmmac_sysfs_dma_cap_open, 3025 .read = seq_read, 3026 .llseek = seq_lseek, 3027 .release = single_release, 3028 }; 3029 3030 static int stmmac_init_fs(struct net_device *dev) 3031 { 3032 struct stmmac_priv *priv = netdev_priv(dev); 3033 3034 /* Create per netdev entries */ 3035 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 3036 3037 if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) { 3038 pr_err("ERROR %s/%s, debugfs create directory failed\n", 3039 STMMAC_RESOURCE_NAME, dev->name); 3040 3041 return -ENOMEM; 3042 } 3043 3044 /* Entry to report DMA RX/TX rings */ 3045 priv->dbgfs_rings_status = 3046 debugfs_create_file("descriptors_status", S_IRUGO, 3047 priv->dbgfs_dir, dev, 3048 &stmmac_rings_status_fops); 3049 3050 if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) { 3051 pr_info("ERROR creating stmmac ring debugfs file\n"); 3052 debugfs_remove_recursive(priv->dbgfs_dir); 3053 3054 return -ENOMEM; 3055 } 3056 3057 /* Entry to report the DMA HW features */ 3058 priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, 3059 priv->dbgfs_dir, 3060 dev, &stmmac_dma_cap_fops); 3061 3062 if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) { 3063 pr_info("ERROR creating stmmac MMC debugfs file\n"); 3064 debugfs_remove_recursive(priv->dbgfs_dir); 3065 3066 return -ENOMEM; 3067 } 3068 3069 return 0; 3070 } 3071 3072 static void stmmac_exit_fs(struct net_device *dev) 3073 { 3074 struct stmmac_priv *priv = netdev_priv(dev); 3075 3076 debugfs_remove_recursive(priv->dbgfs_dir); 3077 } 3078 #endif /* CONFIG_DEBUG_FS */ 3079 3080 static const struct net_device_ops stmmac_netdev_ops = { 3081 .ndo_open = stmmac_open, 3082 .ndo_start_xmit = stmmac_xmit, 3083 .ndo_stop = stmmac_release, 3084 .ndo_change_mtu = stmmac_change_mtu, 3085 .ndo_fix_features = stmmac_fix_features, 3086 .ndo_set_features = stmmac_set_features, 3087 .ndo_set_rx_mode = stmmac_set_rx_mode, 3088 .ndo_tx_timeout = stmmac_tx_timeout, 3089 .ndo_do_ioctl = stmmac_ioctl, 3090 #ifdef CONFIG_NET_POLL_CONTROLLER 3091 .ndo_poll_controller = stmmac_poll_controller, 3092 #endif 3093 .ndo_set_mac_address = eth_mac_addr, 3094 }; 3095 3096 /** 3097 * stmmac_hw_init - Init the MAC device 3098 * @priv: driver private structure 3099 * Description: this function is to configure the MAC device according to 3100 * some platform parameters or the HW capability register. It prepares the 3101 * driver to use either ring or chain modes and to setup either enhanced or 3102 * normal descriptors. 3103 */ 3104 static int stmmac_hw_init(struct stmmac_priv *priv) 3105 { 3106 struct mac_device_info *mac; 3107 3108 /* Identify the MAC HW device */ 3109 if (priv->plat->has_gmac) { 3110 priv->dev->priv_flags |= IFF_UNICAST_FLT; 3111 mac = dwmac1000_setup(priv->ioaddr, 3112 priv->plat->multicast_filter_bins, 3113 priv->plat->unicast_filter_entries, 3114 &priv->synopsys_id); 3115 } else if (priv->plat->has_gmac4) { 3116 priv->dev->priv_flags |= IFF_UNICAST_FLT; 3117 mac = dwmac4_setup(priv->ioaddr, 3118 priv->plat->multicast_filter_bins, 3119 priv->plat->unicast_filter_entries, 3120 &priv->synopsys_id); 3121 } else { 3122 mac = dwmac100_setup(priv->ioaddr, &priv->synopsys_id); 3123 } 3124 if (!mac) 3125 return -ENOMEM; 3126 3127 priv->hw = mac; 3128 3129 /* To use the chained or ring mode */ 3130 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 3131 priv->hw->mode = &dwmac4_ring_mode_ops; 3132 } else { 3133 if (chain_mode) { 3134 priv->hw->mode = &chain_mode_ops; 3135 pr_info(" Chain mode enabled\n"); 3136 priv->mode = STMMAC_CHAIN_MODE; 3137 } else { 3138 priv->hw->mode = &ring_mode_ops; 3139 pr_info(" Ring mode enabled\n"); 3140 priv->mode = STMMAC_RING_MODE; 3141 } 3142 } 3143 3144 /* Get the HW capability (new GMAC newer than 3.50a) */ 3145 priv->hw_cap_support = stmmac_get_hw_features(priv); 3146 if (priv->hw_cap_support) { 3147 pr_info(" DMA HW capability register supported"); 3148 3149 /* We can override some gmac/dma configuration fields: e.g. 3150 * enh_desc, tx_coe (e.g. that are passed through the 3151 * platform) with the values from the HW capability 3152 * register (if supported). 3153 */ 3154 priv->plat->enh_desc = priv->dma_cap.enh_desc; 3155 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 3156 priv->hw->pmt = priv->plat->pmt; 3157 3158 /* TXCOE doesn't work in thresh DMA mode */ 3159 if (priv->plat->force_thresh_dma_mode) 3160 priv->plat->tx_coe = 0; 3161 else 3162 priv->plat->tx_coe = priv->dma_cap.tx_coe; 3163 3164 /* In case of GMAC4 rx_coe is from HW cap register. */ 3165 priv->plat->rx_coe = priv->dma_cap.rx_coe; 3166 3167 if (priv->dma_cap.rx_coe_type2) 3168 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 3169 else if (priv->dma_cap.rx_coe_type1) 3170 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 3171 3172 } else 3173 pr_info(" No HW DMA feature register supported"); 3174 3175 /* To use alternate (extended), normal or GMAC4 descriptor structures */ 3176 if (priv->synopsys_id >= DWMAC_CORE_4_00) 3177 priv->hw->desc = &dwmac4_desc_ops; 3178 else 3179 stmmac_selec_desc_mode(priv); 3180 3181 if (priv->plat->rx_coe) { 3182 priv->hw->rx_csum = priv->plat->rx_coe; 3183 pr_info(" RX Checksum Offload Engine supported\n"); 3184 if (priv->synopsys_id < DWMAC_CORE_4_00) 3185 pr_info("\tCOE Type %d\n", priv->hw->rx_csum); 3186 } 3187 if (priv->plat->tx_coe) 3188 pr_info(" TX Checksum insertion supported\n"); 3189 3190 if (priv->plat->pmt) { 3191 pr_info(" Wake-Up On Lan supported\n"); 3192 device_set_wakeup_capable(priv->device, 1); 3193 } 3194 3195 if (priv->dma_cap.tsoen) 3196 pr_info(" TSO supported\n"); 3197 3198 return 0; 3199 } 3200 3201 /** 3202 * stmmac_dvr_probe 3203 * @device: device pointer 3204 * @plat_dat: platform data pointer 3205 * @res: stmmac resource pointer 3206 * Description: this is the main probe function used to 3207 * call the alloc_etherdev, allocate the priv structure. 3208 * Return: 3209 * returns 0 on success, otherwise errno. 3210 */ 3211 int stmmac_dvr_probe(struct device *device, 3212 struct plat_stmmacenet_data *plat_dat, 3213 struct stmmac_resources *res) 3214 { 3215 int ret = 0; 3216 struct net_device *ndev = NULL; 3217 struct stmmac_priv *priv; 3218 3219 ndev = alloc_etherdev(sizeof(struct stmmac_priv)); 3220 if (!ndev) 3221 return -ENOMEM; 3222 3223 SET_NETDEV_DEV(ndev, device); 3224 3225 priv = netdev_priv(ndev); 3226 priv->device = device; 3227 priv->dev = ndev; 3228 3229 stmmac_set_ethtool_ops(ndev); 3230 priv->pause = pause; 3231 priv->plat = plat_dat; 3232 priv->ioaddr = res->addr; 3233 priv->dev->base_addr = (unsigned long)res->addr; 3234 3235 priv->dev->irq = res->irq; 3236 priv->wol_irq = res->wol_irq; 3237 priv->lpi_irq = res->lpi_irq; 3238 3239 if (res->mac) 3240 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 3241 3242 dev_set_drvdata(device, priv->dev); 3243 3244 /* Verify driver arguments */ 3245 stmmac_verify_args(); 3246 3247 /* Override with kernel parameters if supplied XXX CRS XXX 3248 * this needs to have multiple instances 3249 */ 3250 if ((phyaddr >= 0) && (phyaddr <= 31)) 3251 priv->plat->phy_addr = phyaddr; 3252 3253 priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME); 3254 if (IS_ERR(priv->stmmac_clk)) { 3255 dev_warn(priv->device, "%s: warning: cannot get CSR clock\n", 3256 __func__); 3257 /* If failed to obtain stmmac_clk and specific clk_csr value 3258 * is NOT passed from the platform, probe fail. 3259 */ 3260 if (!priv->plat->clk_csr) { 3261 ret = PTR_ERR(priv->stmmac_clk); 3262 goto error_clk_get; 3263 } else { 3264 priv->stmmac_clk = NULL; 3265 } 3266 } 3267 clk_prepare_enable(priv->stmmac_clk); 3268 3269 priv->pclk = devm_clk_get(priv->device, "pclk"); 3270 if (IS_ERR(priv->pclk)) { 3271 if (PTR_ERR(priv->pclk) == -EPROBE_DEFER) { 3272 ret = -EPROBE_DEFER; 3273 goto error_pclk_get; 3274 } 3275 priv->pclk = NULL; 3276 } 3277 clk_prepare_enable(priv->pclk); 3278 3279 priv->stmmac_rst = devm_reset_control_get(priv->device, 3280 STMMAC_RESOURCE_NAME); 3281 if (IS_ERR(priv->stmmac_rst)) { 3282 if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) { 3283 ret = -EPROBE_DEFER; 3284 goto error_hw_init; 3285 } 3286 dev_info(priv->device, "no reset control found\n"); 3287 priv->stmmac_rst = NULL; 3288 } 3289 if (priv->stmmac_rst) 3290 reset_control_deassert(priv->stmmac_rst); 3291 3292 /* Init MAC and get the capabilities */ 3293 ret = stmmac_hw_init(priv); 3294 if (ret) 3295 goto error_hw_init; 3296 3297 ndev->netdev_ops = &stmmac_netdev_ops; 3298 3299 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 3300 NETIF_F_RXCSUM; 3301 3302 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 3303 ndev->hw_features |= NETIF_F_TSO; 3304 priv->tso = true; 3305 pr_info(" TSO feature enabled\n"); 3306 } 3307 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 3308 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 3309 #ifdef STMMAC_VLAN_TAG_USED 3310 /* Both mac100 and gmac support receive VLAN tag detection */ 3311 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX; 3312 #endif 3313 priv->msg_enable = netif_msg_init(debug, default_msg_level); 3314 3315 if (flow_ctrl) 3316 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 3317 3318 /* Rx Watchdog is available in the COREs newer than the 3.40. 3319 * In some case, for example on bugged HW this feature 3320 * has to be disable and this can be done by passing the 3321 * riwt_off field from the platform. 3322 */ 3323 if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) { 3324 priv->use_riwt = 1; 3325 pr_info(" Enable RX Mitigation via HW Watchdog Timer\n"); 3326 } 3327 3328 netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); 3329 3330 spin_lock_init(&priv->lock); 3331 spin_lock_init(&priv->tx_lock); 3332 3333 ret = register_netdev(ndev); 3334 if (ret) { 3335 pr_err("%s: ERROR %i registering the device\n", __func__, ret); 3336 goto error_netdev_register; 3337 } 3338 3339 /* If a specific clk_csr value is passed from the platform 3340 * this means that the CSR Clock Range selection cannot be 3341 * changed at run-time and it is fixed. Viceversa the driver'll try to 3342 * set the MDC clock dynamically according to the csr actual 3343 * clock input. 3344 */ 3345 if (!priv->plat->clk_csr) 3346 stmmac_clk_csr_set(priv); 3347 else 3348 priv->clk_csr = priv->plat->clk_csr; 3349 3350 stmmac_check_pcs_mode(priv); 3351 3352 if (priv->hw->pcs != STMMAC_PCS_RGMII && 3353 priv->hw->pcs != STMMAC_PCS_TBI && 3354 priv->hw->pcs != STMMAC_PCS_RTBI) { 3355 /* MDIO bus Registration */ 3356 ret = stmmac_mdio_register(ndev); 3357 if (ret < 0) { 3358 pr_debug("%s: MDIO bus (id: %d) registration failed", 3359 __func__, priv->plat->bus_id); 3360 goto error_mdio_register; 3361 } 3362 } 3363 3364 return 0; 3365 3366 error_mdio_register: 3367 unregister_netdev(ndev); 3368 error_netdev_register: 3369 netif_napi_del(&priv->napi); 3370 error_hw_init: 3371 clk_disable_unprepare(priv->pclk); 3372 error_pclk_get: 3373 clk_disable_unprepare(priv->stmmac_clk); 3374 error_clk_get: 3375 free_netdev(ndev); 3376 3377 return ret; 3378 } 3379 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 3380 3381 /** 3382 * stmmac_dvr_remove 3383 * @dev: device pointer 3384 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 3385 * changes the link status, releases the DMA descriptor rings. 3386 */ 3387 int stmmac_dvr_remove(struct device *dev) 3388 { 3389 struct net_device *ndev = dev_get_drvdata(dev); 3390 struct stmmac_priv *priv = netdev_priv(ndev); 3391 3392 pr_info("%s:\n\tremoving driver", __func__); 3393 3394 priv->hw->dma->stop_rx(priv->ioaddr); 3395 priv->hw->dma->stop_tx(priv->ioaddr); 3396 3397 stmmac_set_mac(priv->ioaddr, false); 3398 netif_carrier_off(ndev); 3399 unregister_netdev(ndev); 3400 of_node_put(priv->plat->phy_node); 3401 if (priv->stmmac_rst) 3402 reset_control_assert(priv->stmmac_rst); 3403 clk_disable_unprepare(priv->pclk); 3404 clk_disable_unprepare(priv->stmmac_clk); 3405 if (priv->hw->pcs != STMMAC_PCS_RGMII && 3406 priv->hw->pcs != STMMAC_PCS_TBI && 3407 priv->hw->pcs != STMMAC_PCS_RTBI) 3408 stmmac_mdio_unregister(ndev); 3409 free_netdev(ndev); 3410 3411 return 0; 3412 } 3413 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 3414 3415 /** 3416 * stmmac_suspend - suspend callback 3417 * @dev: device pointer 3418 * Description: this is the function to suspend the device and it is called 3419 * by the platform driver to stop the network queue, release the resources, 3420 * program the PMT register (for WoL), clean and release driver resources. 3421 */ 3422 int stmmac_suspend(struct device *dev) 3423 { 3424 struct net_device *ndev = dev_get_drvdata(dev); 3425 struct stmmac_priv *priv = netdev_priv(ndev); 3426 unsigned long flags; 3427 3428 if (!ndev || !netif_running(ndev)) 3429 return 0; 3430 3431 if (priv->phydev) 3432 phy_stop(priv->phydev); 3433 3434 spin_lock_irqsave(&priv->lock, flags); 3435 3436 netif_device_detach(ndev); 3437 netif_stop_queue(ndev); 3438 3439 napi_disable(&priv->napi); 3440 3441 /* Stop TX/RX DMA */ 3442 priv->hw->dma->stop_tx(priv->ioaddr); 3443 priv->hw->dma->stop_rx(priv->ioaddr); 3444 3445 /* Enable Power down mode by programming the PMT regs */ 3446 if (device_may_wakeup(priv->device)) { 3447 priv->hw->mac->pmt(priv->hw, priv->wolopts); 3448 priv->irq_wake = 1; 3449 } else { 3450 stmmac_set_mac(priv->ioaddr, false); 3451 pinctrl_pm_select_sleep_state(priv->device); 3452 /* Disable clock in case of PWM is off */ 3453 clk_disable(priv->pclk); 3454 clk_disable(priv->stmmac_clk); 3455 } 3456 spin_unlock_irqrestore(&priv->lock, flags); 3457 3458 priv->oldlink = 0; 3459 priv->speed = 0; 3460 priv->oldduplex = -1; 3461 return 0; 3462 } 3463 EXPORT_SYMBOL_GPL(stmmac_suspend); 3464 3465 /** 3466 * stmmac_resume - resume callback 3467 * @dev: device pointer 3468 * Description: when resume this function is invoked to setup the DMA and CORE 3469 * in a usable state. 3470 */ 3471 int stmmac_resume(struct device *dev) 3472 { 3473 struct net_device *ndev = dev_get_drvdata(dev); 3474 struct stmmac_priv *priv = netdev_priv(ndev); 3475 unsigned long flags; 3476 3477 if (!netif_running(ndev)) 3478 return 0; 3479 3480 /* Power Down bit, into the PM register, is cleared 3481 * automatically as soon as a magic packet or a Wake-up frame 3482 * is received. Anyway, it's better to manually clear 3483 * this bit because it can generate problems while resuming 3484 * from another devices (e.g. serial console). 3485 */ 3486 if (device_may_wakeup(priv->device)) { 3487 spin_lock_irqsave(&priv->lock, flags); 3488 priv->hw->mac->pmt(priv->hw, 0); 3489 spin_unlock_irqrestore(&priv->lock, flags); 3490 priv->irq_wake = 0; 3491 } else { 3492 pinctrl_pm_select_default_state(priv->device); 3493 /* enable the clk prevously disabled */ 3494 clk_enable(priv->stmmac_clk); 3495 clk_enable(priv->pclk); 3496 /* reset the phy so that it's ready */ 3497 if (priv->mii) 3498 stmmac_mdio_reset(priv->mii); 3499 } 3500 3501 netif_device_attach(ndev); 3502 3503 spin_lock_irqsave(&priv->lock, flags); 3504 3505 priv->cur_rx = 0; 3506 priv->dirty_rx = 0; 3507 priv->dirty_tx = 0; 3508 priv->cur_tx = 0; 3509 /* reset private mss value to force mss context settings at 3510 * next tso xmit (only used for gmac4). 3511 */ 3512 priv->mss = 0; 3513 3514 stmmac_clear_descriptors(priv); 3515 3516 stmmac_hw_setup(ndev, false); 3517 stmmac_init_tx_coalesce(priv); 3518 stmmac_set_rx_mode(ndev); 3519 3520 napi_enable(&priv->napi); 3521 3522 netif_start_queue(ndev); 3523 3524 spin_unlock_irqrestore(&priv->lock, flags); 3525 3526 if (priv->phydev) 3527 phy_start(priv->phydev); 3528 3529 return 0; 3530 } 3531 EXPORT_SYMBOL_GPL(stmmac_resume); 3532 3533 #ifndef MODULE 3534 static int __init stmmac_cmdline_opt(char *str) 3535 { 3536 char *opt; 3537 3538 if (!str || !*str) 3539 return -EINVAL; 3540 while ((opt = strsep(&str, ",")) != NULL) { 3541 if (!strncmp(opt, "debug:", 6)) { 3542 if (kstrtoint(opt + 6, 0, &debug)) 3543 goto err; 3544 } else if (!strncmp(opt, "phyaddr:", 8)) { 3545 if (kstrtoint(opt + 8, 0, &phyaddr)) 3546 goto err; 3547 } else if (!strncmp(opt, "buf_sz:", 7)) { 3548 if (kstrtoint(opt + 7, 0, &buf_sz)) 3549 goto err; 3550 } else if (!strncmp(opt, "tc:", 3)) { 3551 if (kstrtoint(opt + 3, 0, &tc)) 3552 goto err; 3553 } else if (!strncmp(opt, "watchdog:", 9)) { 3554 if (kstrtoint(opt + 9, 0, &watchdog)) 3555 goto err; 3556 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 3557 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 3558 goto err; 3559 } else if (!strncmp(opt, "pause:", 6)) { 3560 if (kstrtoint(opt + 6, 0, &pause)) 3561 goto err; 3562 } else if (!strncmp(opt, "eee_timer:", 10)) { 3563 if (kstrtoint(opt + 10, 0, &eee_timer)) 3564 goto err; 3565 } else if (!strncmp(opt, "chain_mode:", 11)) { 3566 if (kstrtoint(opt + 11, 0, &chain_mode)) 3567 goto err; 3568 } 3569 } 3570 return 0; 3571 3572 err: 3573 pr_err("%s: ERROR broken module parameter conversion", __func__); 3574 return -EINVAL; 3575 } 3576 3577 __setup("stmmaceth=", stmmac_cmdline_opt); 3578 #endif /* MODULE */ 3579 3580 static int __init stmmac_init(void) 3581 { 3582 #ifdef CONFIG_DEBUG_FS 3583 /* Create debugfs main directory if it doesn't exist yet */ 3584 if (!stmmac_fs_dir) { 3585 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 3586 3587 if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) { 3588 pr_err("ERROR %s, debugfs create directory failed\n", 3589 STMMAC_RESOURCE_NAME); 3590 3591 return -ENOMEM; 3592 } 3593 } 3594 #endif 3595 3596 return 0; 3597 } 3598 3599 static void __exit stmmac_exit(void) 3600 { 3601 #ifdef CONFIG_DEBUG_FS 3602 debugfs_remove_recursive(stmmac_fs_dir); 3603 #endif 3604 } 3605 3606 module_init(stmmac_init) 3607 module_exit(stmmac_exit) 3608 3609 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 3610 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 3611 MODULE_LICENSE("GPL"); 3612