xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 7fc38225363dd8f19e667ad7c77b63bc4a5c065d)
1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   The full GNU General Public License is included in this distribution in
17   the file called "COPYING".
18 
19   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
20 
21   Documentation available at:
22 	http://www.stlinux.com
23   Support available at:
24 	https://bugzilla.stlinux.com/
25 *******************************************************************************/
26 
27 #include <linux/clk.h>
28 #include <linux/kernel.h>
29 #include <linux/interrupt.h>
30 #include <linux/ip.h>
31 #include <linux/tcp.h>
32 #include <linux/skbuff.h>
33 #include <linux/ethtool.h>
34 #include <linux/if_ether.h>
35 #include <linux/crc32.h>
36 #include <linux/mii.h>
37 #include <linux/if.h>
38 #include <linux/if_vlan.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/slab.h>
41 #include <linux/prefetch.h>
42 #include <linux/pinctrl/consumer.h>
43 #ifdef CONFIG_DEBUG_FS
44 #include <linux/debugfs.h>
45 #include <linux/seq_file.h>
46 #endif /* CONFIG_DEBUG_FS */
47 #include <linux/net_tstamp.h>
48 #include <net/pkt_cls.h>
49 #include "stmmac_ptp.h"
50 #include "stmmac.h"
51 #include <linux/reset.h>
52 #include <linux/of_mdio.h>
53 #include "dwmac1000.h"
54 #include "dwxgmac2.h"
55 #include "hwif.h"
56 
57 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
58 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
59 
60 /* Module parameters */
61 #define TX_TIMEO	5000
62 static int watchdog = TX_TIMEO;
63 module_param(watchdog, int, 0644);
64 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
65 
66 static int debug = -1;
67 module_param(debug, int, 0644);
68 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
69 
70 static int phyaddr = -1;
71 module_param(phyaddr, int, 0444);
72 MODULE_PARM_DESC(phyaddr, "Physical device address");
73 
74 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
75 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
76 
77 static int flow_ctrl = FLOW_OFF;
78 module_param(flow_ctrl, int, 0644);
79 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
80 
81 static int pause = PAUSE_TIME;
82 module_param(pause, int, 0644);
83 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
84 
85 #define TC_DEFAULT 64
86 static int tc = TC_DEFAULT;
87 module_param(tc, int, 0644);
88 MODULE_PARM_DESC(tc, "DMA threshold control value");
89 
90 #define	DEFAULT_BUFSIZE	1536
91 static int buf_sz = DEFAULT_BUFSIZE;
92 module_param(buf_sz, int, 0644);
93 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
94 
95 #define	STMMAC_RX_COPYBREAK	256
96 
97 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
98 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
99 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
100 
101 #define STMMAC_DEFAULT_LPI_TIMER	1000
102 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
103 module_param(eee_timer, int, 0644);
104 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
105 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
106 
107 /* By default the driver will use the ring mode to manage tx and rx descriptors,
108  * but allow user to force to use the chain instead of the ring
109  */
110 static unsigned int chain_mode;
111 module_param(chain_mode, int, 0444);
112 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
113 
114 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
115 
116 #ifdef CONFIG_DEBUG_FS
117 static int stmmac_init_fs(struct net_device *dev);
118 static void stmmac_exit_fs(struct net_device *dev);
119 #endif
120 
121 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
122 
123 /**
124  * stmmac_verify_args - verify the driver parameters.
125  * Description: it checks the driver parameters and set a default in case of
126  * errors.
127  */
128 static void stmmac_verify_args(void)
129 {
130 	if (unlikely(watchdog < 0))
131 		watchdog = TX_TIMEO;
132 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
133 		buf_sz = DEFAULT_BUFSIZE;
134 	if (unlikely(flow_ctrl > 1))
135 		flow_ctrl = FLOW_AUTO;
136 	else if (likely(flow_ctrl < 0))
137 		flow_ctrl = FLOW_OFF;
138 	if (unlikely((pause < 0) || (pause > 0xffff)))
139 		pause = PAUSE_TIME;
140 	if (eee_timer < 0)
141 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
142 }
143 
144 /**
145  * stmmac_disable_all_queues - Disable all queues
146  * @priv: driver private structure
147  */
148 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
149 {
150 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
151 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
152 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
153 	u32 queue;
154 
155 	for (queue = 0; queue < maxq; queue++) {
156 		struct stmmac_channel *ch = &priv->channel[queue];
157 
158 		napi_disable(&ch->napi);
159 	}
160 }
161 
162 /**
163  * stmmac_enable_all_queues - Enable all queues
164  * @priv: driver private structure
165  */
166 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
167 {
168 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
169 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
170 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
171 	u32 queue;
172 
173 	for (queue = 0; queue < maxq; queue++) {
174 		struct stmmac_channel *ch = &priv->channel[queue];
175 
176 		napi_enable(&ch->napi);
177 	}
178 }
179 
180 /**
181  * stmmac_stop_all_queues - Stop all queues
182  * @priv: driver private structure
183  */
184 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
185 {
186 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
187 	u32 queue;
188 
189 	for (queue = 0; queue < tx_queues_cnt; queue++)
190 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
191 }
192 
193 /**
194  * stmmac_start_all_queues - Start all queues
195  * @priv: driver private structure
196  */
197 static void stmmac_start_all_queues(struct stmmac_priv *priv)
198 {
199 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
200 	u32 queue;
201 
202 	for (queue = 0; queue < tx_queues_cnt; queue++)
203 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
204 }
205 
206 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
207 {
208 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
209 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
210 		queue_work(priv->wq, &priv->service_task);
211 }
212 
213 static void stmmac_global_err(struct stmmac_priv *priv)
214 {
215 	netif_carrier_off(priv->dev);
216 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
217 	stmmac_service_event_schedule(priv);
218 }
219 
220 /**
221  * stmmac_clk_csr_set - dynamically set the MDC clock
222  * @priv: driver private structure
223  * Description: this is to dynamically set the MDC clock according to the csr
224  * clock input.
225  * Note:
226  *	If a specific clk_csr value is passed from the platform
227  *	this means that the CSR Clock Range selection cannot be
228  *	changed at run-time and it is fixed (as reported in the driver
229  *	documentation). Viceversa the driver will try to set the MDC
230  *	clock dynamically according to the actual clock input.
231  */
232 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
233 {
234 	u32 clk_rate;
235 
236 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
237 
238 	/* Platform provided default clk_csr would be assumed valid
239 	 * for all other cases except for the below mentioned ones.
240 	 * For values higher than the IEEE 802.3 specified frequency
241 	 * we can not estimate the proper divider as it is not known
242 	 * the frequency of clk_csr_i. So we do not change the default
243 	 * divider.
244 	 */
245 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
246 		if (clk_rate < CSR_F_35M)
247 			priv->clk_csr = STMMAC_CSR_20_35M;
248 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
249 			priv->clk_csr = STMMAC_CSR_35_60M;
250 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
251 			priv->clk_csr = STMMAC_CSR_60_100M;
252 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
253 			priv->clk_csr = STMMAC_CSR_100_150M;
254 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
255 			priv->clk_csr = STMMAC_CSR_150_250M;
256 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
257 			priv->clk_csr = STMMAC_CSR_250_300M;
258 	}
259 
260 	if (priv->plat->has_sun8i) {
261 		if (clk_rate > 160000000)
262 			priv->clk_csr = 0x03;
263 		else if (clk_rate > 80000000)
264 			priv->clk_csr = 0x02;
265 		else if (clk_rate > 40000000)
266 			priv->clk_csr = 0x01;
267 		else
268 			priv->clk_csr = 0;
269 	}
270 
271 	if (priv->plat->has_xgmac) {
272 		if (clk_rate > 400000000)
273 			priv->clk_csr = 0x5;
274 		else if (clk_rate > 350000000)
275 			priv->clk_csr = 0x4;
276 		else if (clk_rate > 300000000)
277 			priv->clk_csr = 0x3;
278 		else if (clk_rate > 250000000)
279 			priv->clk_csr = 0x2;
280 		else if (clk_rate > 150000000)
281 			priv->clk_csr = 0x1;
282 		else
283 			priv->clk_csr = 0x0;
284 	}
285 }
286 
287 static void print_pkt(unsigned char *buf, int len)
288 {
289 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
290 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
291 }
292 
293 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
294 {
295 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
296 	u32 avail;
297 
298 	if (tx_q->dirty_tx > tx_q->cur_tx)
299 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
300 	else
301 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
302 
303 	return avail;
304 }
305 
306 /**
307  * stmmac_rx_dirty - Get RX queue dirty
308  * @priv: driver private structure
309  * @queue: RX queue index
310  */
311 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
312 {
313 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
314 	u32 dirty;
315 
316 	if (rx_q->dirty_rx <= rx_q->cur_rx)
317 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
318 	else
319 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
320 
321 	return dirty;
322 }
323 
324 /**
325  * stmmac_hw_fix_mac_speed - callback for speed selection
326  * @priv: driver private structure
327  * Description: on some platforms (e.g. ST), some HW system configuration
328  * registers have to be set according to the link speed negotiated.
329  */
330 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
331 {
332 	struct net_device *ndev = priv->dev;
333 	struct phy_device *phydev = ndev->phydev;
334 
335 	if (likely(priv->plat->fix_mac_speed))
336 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
337 }
338 
339 /**
340  * stmmac_enable_eee_mode - check and enter in LPI mode
341  * @priv: driver private structure
342  * Description: this function is to verify and enter in LPI mode in case of
343  * EEE.
344  */
345 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
346 {
347 	u32 tx_cnt = priv->plat->tx_queues_to_use;
348 	u32 queue;
349 
350 	/* check if all TX queues have the work finished */
351 	for (queue = 0; queue < tx_cnt; queue++) {
352 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
353 
354 		if (tx_q->dirty_tx != tx_q->cur_tx)
355 			return; /* still unfinished work */
356 	}
357 
358 	/* Check and enter in LPI mode */
359 	if (!priv->tx_path_in_lpi_mode)
360 		stmmac_set_eee_mode(priv, priv->hw,
361 				priv->plat->en_tx_lpi_clockgating);
362 }
363 
364 /**
365  * stmmac_disable_eee_mode - disable and exit from LPI mode
366  * @priv: driver private structure
367  * Description: this function is to exit and disable EEE in case of
368  * LPI state is true. This is called by the xmit.
369  */
370 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
371 {
372 	stmmac_reset_eee_mode(priv, priv->hw);
373 	del_timer_sync(&priv->eee_ctrl_timer);
374 	priv->tx_path_in_lpi_mode = false;
375 }
376 
377 /**
378  * stmmac_eee_ctrl_timer - EEE TX SW timer.
379  * @arg : data hook
380  * Description:
381  *  if there is no data transfer and if we are not in LPI state,
382  *  then MAC Transmitter can be moved to LPI state.
383  */
384 static void stmmac_eee_ctrl_timer(struct timer_list *t)
385 {
386 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
387 
388 	stmmac_enable_eee_mode(priv);
389 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
390 }
391 
392 /**
393  * stmmac_eee_init - init EEE
394  * @priv: driver private structure
395  * Description:
396  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
397  *  can also manage EEE, this function enable the LPI state and start related
398  *  timer.
399  */
400 bool stmmac_eee_init(struct stmmac_priv *priv)
401 {
402 	struct net_device *ndev = priv->dev;
403 	int interface = priv->plat->interface;
404 	bool ret = false;
405 
406 	if ((interface != PHY_INTERFACE_MODE_MII) &&
407 	    (interface != PHY_INTERFACE_MODE_GMII) &&
408 	    !phy_interface_mode_is_rgmii(interface))
409 		goto out;
410 
411 	/* Using PCS we cannot dial with the phy registers at this stage
412 	 * so we do not support extra feature like EEE.
413 	 */
414 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
415 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
416 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
417 		goto out;
418 
419 	/* MAC core supports the EEE feature. */
420 	if (priv->dma_cap.eee) {
421 		int tx_lpi_timer = priv->tx_lpi_timer;
422 
423 		/* Check if the PHY supports EEE */
424 		if (phy_init_eee(ndev->phydev, 1)) {
425 			/* To manage at run-time if the EEE cannot be supported
426 			 * anymore (for example because the lp caps have been
427 			 * changed).
428 			 * In that case the driver disable own timers.
429 			 */
430 			mutex_lock(&priv->lock);
431 			if (priv->eee_active) {
432 				netdev_dbg(priv->dev, "disable EEE\n");
433 				del_timer_sync(&priv->eee_ctrl_timer);
434 				stmmac_set_eee_timer(priv, priv->hw, 0,
435 						tx_lpi_timer);
436 			}
437 			priv->eee_active = 0;
438 			mutex_unlock(&priv->lock);
439 			goto out;
440 		}
441 		/* Activate the EEE and start timers */
442 		mutex_lock(&priv->lock);
443 		if (!priv->eee_active) {
444 			priv->eee_active = 1;
445 			timer_setup(&priv->eee_ctrl_timer,
446 				    stmmac_eee_ctrl_timer, 0);
447 			mod_timer(&priv->eee_ctrl_timer,
448 				  STMMAC_LPI_T(eee_timer));
449 
450 			stmmac_set_eee_timer(priv, priv->hw,
451 					STMMAC_DEFAULT_LIT_LS, tx_lpi_timer);
452 		}
453 		/* Set HW EEE according to the speed */
454 		stmmac_set_eee_pls(priv, priv->hw, ndev->phydev->link);
455 
456 		ret = true;
457 		mutex_unlock(&priv->lock);
458 
459 		netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
460 	}
461 out:
462 	return ret;
463 }
464 
465 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
466  * @priv: driver private structure
467  * @p : descriptor pointer
468  * @skb : the socket buffer
469  * Description :
470  * This function will read timestamp from the descriptor & pass it to stack.
471  * and also perform some sanity checks.
472  */
473 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
474 				   struct dma_desc *p, struct sk_buff *skb)
475 {
476 	struct skb_shared_hwtstamps shhwtstamp;
477 	u64 ns;
478 
479 	if (!priv->hwts_tx_en)
480 		return;
481 
482 	/* exit if skb doesn't support hw tstamp */
483 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
484 		return;
485 
486 	/* check tx tstamp status */
487 	if (stmmac_get_tx_timestamp_status(priv, p)) {
488 		/* get the valid tstamp */
489 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
490 
491 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
492 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
493 
494 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
495 		/* pass tstamp to stack */
496 		skb_tstamp_tx(skb, &shhwtstamp);
497 	}
498 
499 	return;
500 }
501 
502 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
503  * @priv: driver private structure
504  * @p : descriptor pointer
505  * @np : next descriptor pointer
506  * @skb : the socket buffer
507  * Description :
508  * This function will read received packet's timestamp from the descriptor
509  * and pass it to stack. It also perform some sanity checks.
510  */
511 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
512 				   struct dma_desc *np, struct sk_buff *skb)
513 {
514 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
515 	struct dma_desc *desc = p;
516 	u64 ns;
517 
518 	if (!priv->hwts_rx_en)
519 		return;
520 	/* For GMAC4, the valid timestamp is from CTX next desc. */
521 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
522 		desc = np;
523 
524 	/* Check if timestamp is available */
525 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
526 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
527 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
528 		shhwtstamp = skb_hwtstamps(skb);
529 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
530 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
531 	} else  {
532 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
533 	}
534 }
535 
536 /**
537  *  stmmac_hwtstamp_set - control hardware timestamping.
538  *  @dev: device pointer.
539  *  @ifr: An IOCTL specific structure, that can contain a pointer to
540  *  a proprietary structure used to pass information to the driver.
541  *  Description:
542  *  This function configures the MAC to enable/disable both outgoing(TX)
543  *  and incoming(RX) packets time stamping based on user input.
544  *  Return Value:
545  *  0 on success and an appropriate -ve integer on failure.
546  */
547 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
548 {
549 	struct stmmac_priv *priv = netdev_priv(dev);
550 	struct hwtstamp_config config;
551 	struct timespec64 now;
552 	u64 temp = 0;
553 	u32 ptp_v2 = 0;
554 	u32 tstamp_all = 0;
555 	u32 ptp_over_ipv4_udp = 0;
556 	u32 ptp_over_ipv6_udp = 0;
557 	u32 ptp_over_ethernet = 0;
558 	u32 snap_type_sel = 0;
559 	u32 ts_master_en = 0;
560 	u32 ts_event_en = 0;
561 	u32 value = 0;
562 	u32 sec_inc;
563 	bool xmac;
564 
565 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
566 
567 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
568 		netdev_alert(priv->dev, "No support for HW time stamping\n");
569 		priv->hwts_tx_en = 0;
570 		priv->hwts_rx_en = 0;
571 
572 		return -EOPNOTSUPP;
573 	}
574 
575 	if (copy_from_user(&config, ifr->ifr_data,
576 			   sizeof(config)))
577 		return -EFAULT;
578 
579 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
580 		   __func__, config.flags, config.tx_type, config.rx_filter);
581 
582 	/* reserved for future extensions */
583 	if (config.flags)
584 		return -EINVAL;
585 
586 	if (config.tx_type != HWTSTAMP_TX_OFF &&
587 	    config.tx_type != HWTSTAMP_TX_ON)
588 		return -ERANGE;
589 
590 	if (priv->adv_ts) {
591 		switch (config.rx_filter) {
592 		case HWTSTAMP_FILTER_NONE:
593 			/* time stamp no incoming packet at all */
594 			config.rx_filter = HWTSTAMP_FILTER_NONE;
595 			break;
596 
597 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
598 			/* PTP v1, UDP, any kind of event packet */
599 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
600 			/* take time stamp for all event messages */
601 			if (xmac)
602 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
603 			else
604 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
605 
606 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
607 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
608 			break;
609 
610 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
611 			/* PTP v1, UDP, Sync packet */
612 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
613 			/* take time stamp for SYNC messages only */
614 			ts_event_en = PTP_TCR_TSEVNTENA;
615 
616 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
617 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
618 			break;
619 
620 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
621 			/* PTP v1, UDP, Delay_req packet */
622 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
623 			/* take time stamp for Delay_Req messages only */
624 			ts_master_en = PTP_TCR_TSMSTRENA;
625 			ts_event_en = PTP_TCR_TSEVNTENA;
626 
627 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
628 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
629 			break;
630 
631 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
632 			/* PTP v2, UDP, any kind of event packet */
633 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
634 			ptp_v2 = PTP_TCR_TSVER2ENA;
635 			/* take time stamp for all event messages */
636 			if (xmac)
637 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
638 			else
639 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			break;
644 
645 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
646 			/* PTP v2, UDP, Sync packet */
647 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
648 			ptp_v2 = PTP_TCR_TSVER2ENA;
649 			/* take time stamp for SYNC messages only */
650 			ts_event_en = PTP_TCR_TSEVNTENA;
651 
652 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
653 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
657 			/* PTP v2, UDP, Delay_req packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
659 			ptp_v2 = PTP_TCR_TSVER2ENA;
660 			/* take time stamp for Delay_Req messages only */
661 			ts_master_en = PTP_TCR_TSMSTRENA;
662 			ts_event_en = PTP_TCR_TSEVNTENA;
663 
664 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
665 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
666 			break;
667 
668 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
669 			/* PTP v2/802.AS1 any layer, any kind of event packet */
670 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
671 			ptp_v2 = PTP_TCR_TSVER2ENA;
672 			/* take time stamp for all event messages */
673 			if (xmac)
674 				snap_type_sel = PTP_GMAC4_TCR_SNAPTYPSEL_1;
675 			else
676 				snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
677 
678 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
679 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
680 			ptp_over_ethernet = PTP_TCR_TSIPENA;
681 			break;
682 
683 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
684 			/* PTP v2/802.AS1, any layer, Sync packet */
685 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
686 			ptp_v2 = PTP_TCR_TSVER2ENA;
687 			/* take time stamp for SYNC messages only */
688 			ts_event_en = PTP_TCR_TSEVNTENA;
689 
690 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
691 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
692 			ptp_over_ethernet = PTP_TCR_TSIPENA;
693 			break;
694 
695 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
696 			/* PTP v2/802.AS1, any layer, Delay_req packet */
697 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
698 			ptp_v2 = PTP_TCR_TSVER2ENA;
699 			/* take time stamp for Delay_Req messages only */
700 			ts_master_en = PTP_TCR_TSMSTRENA;
701 			ts_event_en = PTP_TCR_TSEVNTENA;
702 
703 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
704 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
705 			ptp_over_ethernet = PTP_TCR_TSIPENA;
706 			break;
707 
708 		case HWTSTAMP_FILTER_NTP_ALL:
709 		case HWTSTAMP_FILTER_ALL:
710 			/* time stamp any incoming packet */
711 			config.rx_filter = HWTSTAMP_FILTER_ALL;
712 			tstamp_all = PTP_TCR_TSENALL;
713 			break;
714 
715 		default:
716 			return -ERANGE;
717 		}
718 	} else {
719 		switch (config.rx_filter) {
720 		case HWTSTAMP_FILTER_NONE:
721 			config.rx_filter = HWTSTAMP_FILTER_NONE;
722 			break;
723 		default:
724 			/* PTP v1, UDP, any kind of event packet */
725 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
726 			break;
727 		}
728 	}
729 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
730 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
731 
732 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
733 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
734 	else {
735 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
736 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
737 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
738 			 ts_master_en | snap_type_sel);
739 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
740 
741 		/* program Sub Second Increment reg */
742 		stmmac_config_sub_second_increment(priv,
743 				priv->ptpaddr, priv->plat->clk_ptp_rate,
744 				xmac, &sec_inc);
745 		temp = div_u64(1000000000ULL, sec_inc);
746 
747 		/* Store sub second increment and flags for later use */
748 		priv->sub_second_inc = sec_inc;
749 		priv->systime_flags = value;
750 
751 		/* calculate default added value:
752 		 * formula is :
753 		 * addend = (2^32)/freq_div_ratio;
754 		 * where, freq_div_ratio = 1e9ns/sec_inc
755 		 */
756 		temp = (u64)(temp << 32);
757 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
758 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
759 
760 		/* initialize system time */
761 		ktime_get_real_ts64(&now);
762 
763 		/* lower 32 bits of tv_sec are safe until y2106 */
764 		stmmac_init_systime(priv, priv->ptpaddr,
765 				(u32)now.tv_sec, now.tv_nsec);
766 	}
767 
768 	memcpy(&priv->tstamp_config, &config, sizeof(config));
769 
770 	return copy_to_user(ifr->ifr_data, &config,
771 			    sizeof(config)) ? -EFAULT : 0;
772 }
773 
774 /**
775  *  stmmac_hwtstamp_get - read hardware timestamping.
776  *  @dev: device pointer.
777  *  @ifr: An IOCTL specific structure, that can contain a pointer to
778  *  a proprietary structure used to pass information to the driver.
779  *  Description:
780  *  This function obtain the current hardware timestamping settings
781     as requested.
782  */
783 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
784 {
785 	struct stmmac_priv *priv = netdev_priv(dev);
786 	struct hwtstamp_config *config = &priv->tstamp_config;
787 
788 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
789 		return -EOPNOTSUPP;
790 
791 	return copy_to_user(ifr->ifr_data, config,
792 			    sizeof(*config)) ? -EFAULT : 0;
793 }
794 
795 /**
796  * stmmac_init_ptp - init PTP
797  * @priv: driver private structure
798  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
799  * This is done by looking at the HW cap. register.
800  * This function also registers the ptp driver.
801  */
802 static int stmmac_init_ptp(struct stmmac_priv *priv)
803 {
804 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
805 
806 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
807 		return -EOPNOTSUPP;
808 
809 	priv->adv_ts = 0;
810 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
811 	if (xmac && priv->dma_cap.atime_stamp)
812 		priv->adv_ts = 1;
813 	/* Dwmac 3.x core with extend_desc can support adv_ts */
814 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
815 		priv->adv_ts = 1;
816 
817 	if (priv->dma_cap.time_stamp)
818 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
819 
820 	if (priv->adv_ts)
821 		netdev_info(priv->dev,
822 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
823 
824 	priv->hwts_tx_en = 0;
825 	priv->hwts_rx_en = 0;
826 
827 	stmmac_ptp_register(priv);
828 
829 	return 0;
830 }
831 
832 static void stmmac_release_ptp(struct stmmac_priv *priv)
833 {
834 	if (priv->plat->clk_ptp_ref)
835 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
836 	stmmac_ptp_unregister(priv);
837 }
838 
839 /**
840  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
841  *  @priv: driver private structure
842  *  Description: It is used for configuring the flow control in all queues
843  */
844 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
845 {
846 	u32 tx_cnt = priv->plat->tx_queues_to_use;
847 
848 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
849 			priv->pause, tx_cnt);
850 }
851 
852 /**
853  * stmmac_adjust_link - adjusts the link parameters
854  * @dev: net device structure
855  * Description: this is the helper called by the physical abstraction layer
856  * drivers to communicate the phy link status. According the speed and duplex
857  * this driver can invoke registered glue-logic as well.
858  * It also invoke the eee initialization because it could happen when switch
859  * on different networks (that are eee capable).
860  */
861 static void stmmac_adjust_link(struct net_device *dev)
862 {
863 	struct stmmac_priv *priv = netdev_priv(dev);
864 	struct phy_device *phydev = dev->phydev;
865 	bool new_state = false;
866 
867 	if (!phydev)
868 		return;
869 
870 	mutex_lock(&priv->lock);
871 
872 	if (phydev->link) {
873 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
874 
875 		/* Now we make sure that we can be in full duplex mode.
876 		 * If not, we operate in half-duplex mode. */
877 		if (phydev->duplex != priv->oldduplex) {
878 			new_state = true;
879 			if (!phydev->duplex)
880 				ctrl &= ~priv->hw->link.duplex;
881 			else
882 				ctrl |= priv->hw->link.duplex;
883 			priv->oldduplex = phydev->duplex;
884 		}
885 		/* Flow Control operation */
886 		if (phydev->pause)
887 			stmmac_mac_flow_ctrl(priv, phydev->duplex);
888 
889 		if (phydev->speed != priv->speed) {
890 			new_state = true;
891 			ctrl &= ~priv->hw->link.speed_mask;
892 			switch (phydev->speed) {
893 			case SPEED_1000:
894 				ctrl |= priv->hw->link.speed1000;
895 				break;
896 			case SPEED_100:
897 				ctrl |= priv->hw->link.speed100;
898 				break;
899 			case SPEED_10:
900 				ctrl |= priv->hw->link.speed10;
901 				break;
902 			default:
903 				netif_warn(priv, link, priv->dev,
904 					   "broken speed: %d\n", phydev->speed);
905 				phydev->speed = SPEED_UNKNOWN;
906 				break;
907 			}
908 			if (phydev->speed != SPEED_UNKNOWN)
909 				stmmac_hw_fix_mac_speed(priv);
910 			priv->speed = phydev->speed;
911 		}
912 
913 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
914 
915 		if (!priv->oldlink) {
916 			new_state = true;
917 			priv->oldlink = true;
918 		}
919 	} else if (priv->oldlink) {
920 		new_state = true;
921 		priv->oldlink = false;
922 		priv->speed = SPEED_UNKNOWN;
923 		priv->oldduplex = DUPLEX_UNKNOWN;
924 	}
925 
926 	if (new_state && netif_msg_link(priv))
927 		phy_print_status(phydev);
928 
929 	mutex_unlock(&priv->lock);
930 
931 	if (phydev->is_pseudo_fixed_link)
932 		/* Stop PHY layer to call the hook to adjust the link in case
933 		 * of a switch is attached to the stmmac driver.
934 		 */
935 		phydev->irq = PHY_IGNORE_INTERRUPT;
936 	else
937 		/* At this stage, init the EEE if supported.
938 		 * Never called in case of fixed_link.
939 		 */
940 		priv->eee_enabled = stmmac_eee_init(priv);
941 }
942 
943 /**
944  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
945  * @priv: driver private structure
946  * Description: this is to verify if the HW supports the PCS.
947  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
948  * configured for the TBI, RTBI, or SGMII PHY interface.
949  */
950 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
951 {
952 	int interface = priv->plat->interface;
953 
954 	if (priv->dma_cap.pcs) {
955 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
956 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
957 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
958 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
959 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
960 			priv->hw->pcs = STMMAC_PCS_RGMII;
961 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
962 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
963 			priv->hw->pcs = STMMAC_PCS_SGMII;
964 		}
965 	}
966 }
967 
968 /**
969  * stmmac_init_phy - PHY initialization
970  * @dev: net device structure
971  * Description: it initializes the driver's PHY state, and attaches the PHY
972  * to the mac driver.
973  *  Return value:
974  *  0 on success
975  */
976 static int stmmac_init_phy(struct net_device *dev)
977 {
978 	struct stmmac_priv *priv = netdev_priv(dev);
979 	u32 tx_cnt = priv->plat->tx_queues_to_use;
980 	struct phy_device *phydev;
981 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
982 	char bus_id[MII_BUS_ID_SIZE];
983 	int interface = priv->plat->interface;
984 	int max_speed = priv->plat->max_speed;
985 	priv->oldlink = false;
986 	priv->speed = SPEED_UNKNOWN;
987 	priv->oldduplex = DUPLEX_UNKNOWN;
988 
989 	if (priv->plat->phy_node) {
990 		phydev = of_phy_connect(dev, priv->plat->phy_node,
991 					&stmmac_adjust_link, 0, interface);
992 	} else {
993 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
994 			 priv->plat->bus_id);
995 
996 		snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
997 			 priv->plat->phy_addr);
998 		netdev_dbg(priv->dev, "%s: trying to attach to %s\n", __func__,
999 			   phy_id_fmt);
1000 
1001 		phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link,
1002 				     interface);
1003 	}
1004 
1005 	if (IS_ERR_OR_NULL(phydev)) {
1006 		netdev_err(priv->dev, "Could not attach to PHY\n");
1007 		if (!phydev)
1008 			return -ENODEV;
1009 
1010 		return PTR_ERR(phydev);
1011 	}
1012 
1013 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
1014 	if ((interface == PHY_INTERFACE_MODE_MII) ||
1015 	    (interface == PHY_INTERFACE_MODE_RMII) ||
1016 		(max_speed < 1000 && max_speed > 0))
1017 		phy_set_max_speed(phydev, SPEED_100);
1018 
1019 	/*
1020 	 * Half-duplex mode not supported with multiqueue
1021 	 * half-duplex can only works with single queue
1022 	 */
1023 	if (tx_cnt > 1) {
1024 		phy_remove_link_mode(phydev,
1025 				     ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1026 		phy_remove_link_mode(phydev,
1027 				     ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1028 		phy_remove_link_mode(phydev,
1029 				     ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1030 	}
1031 
1032 	/*
1033 	 * Broken HW is sometimes missing the pull-up resistor on the
1034 	 * MDIO line, which results in reads to non-existent devices returning
1035 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
1036 	 * device as well.
1037 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
1038 	 */
1039 	if (!priv->plat->phy_node && phydev->phy_id == 0) {
1040 		phy_disconnect(phydev);
1041 		return -ENODEV;
1042 	}
1043 
1044 	/* stmmac_adjust_link will change this to PHY_IGNORE_INTERRUPT to avoid
1045 	 * subsequent PHY polling, make sure we force a link transition if
1046 	 * we have a UP/DOWN/UP transition
1047 	 */
1048 	if (phydev->is_pseudo_fixed_link)
1049 		phydev->irq = PHY_POLL;
1050 
1051 	phy_attached_info(phydev);
1052 	return 0;
1053 }
1054 
1055 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1056 {
1057 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1058 	void *head_rx;
1059 	u32 queue;
1060 
1061 	/* Display RX rings */
1062 	for (queue = 0; queue < rx_cnt; queue++) {
1063 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1064 
1065 		pr_info("\tRX Queue %u rings\n", queue);
1066 
1067 		if (priv->extend_desc)
1068 			head_rx = (void *)rx_q->dma_erx;
1069 		else
1070 			head_rx = (void *)rx_q->dma_rx;
1071 
1072 		/* Display RX ring */
1073 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1074 	}
1075 }
1076 
1077 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1078 {
1079 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1080 	void *head_tx;
1081 	u32 queue;
1082 
1083 	/* Display TX rings */
1084 	for (queue = 0; queue < tx_cnt; queue++) {
1085 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1086 
1087 		pr_info("\tTX Queue %d rings\n", queue);
1088 
1089 		if (priv->extend_desc)
1090 			head_tx = (void *)tx_q->dma_etx;
1091 		else
1092 			head_tx = (void *)tx_q->dma_tx;
1093 
1094 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1095 	}
1096 }
1097 
1098 static void stmmac_display_rings(struct stmmac_priv *priv)
1099 {
1100 	/* Display RX ring */
1101 	stmmac_display_rx_rings(priv);
1102 
1103 	/* Display TX ring */
1104 	stmmac_display_tx_rings(priv);
1105 }
1106 
1107 static int stmmac_set_bfsize(int mtu, int bufsize)
1108 {
1109 	int ret = bufsize;
1110 
1111 	if (mtu >= BUF_SIZE_4KiB)
1112 		ret = BUF_SIZE_8KiB;
1113 	else if (mtu >= BUF_SIZE_2KiB)
1114 		ret = BUF_SIZE_4KiB;
1115 	else if (mtu > DEFAULT_BUFSIZE)
1116 		ret = BUF_SIZE_2KiB;
1117 	else
1118 		ret = DEFAULT_BUFSIZE;
1119 
1120 	return ret;
1121 }
1122 
1123 /**
1124  * stmmac_clear_rx_descriptors - clear RX descriptors
1125  * @priv: driver private structure
1126  * @queue: RX queue index
1127  * Description: this function is called to clear the RX descriptors
1128  * in case of both basic and extended descriptors are used.
1129  */
1130 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1131 {
1132 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1133 	int i;
1134 
1135 	/* Clear the RX descriptors */
1136 	for (i = 0; i < DMA_RX_SIZE; i++)
1137 		if (priv->extend_desc)
1138 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1139 					priv->use_riwt, priv->mode,
1140 					(i == DMA_RX_SIZE - 1));
1141 		else
1142 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1143 					priv->use_riwt, priv->mode,
1144 					(i == DMA_RX_SIZE - 1));
1145 }
1146 
1147 /**
1148  * stmmac_clear_tx_descriptors - clear tx descriptors
1149  * @priv: driver private structure
1150  * @queue: TX queue index.
1151  * Description: this function is called to clear the TX descriptors
1152  * in case of both basic and extended descriptors are used.
1153  */
1154 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1155 {
1156 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1157 	int i;
1158 
1159 	/* Clear the TX descriptors */
1160 	for (i = 0; i < DMA_TX_SIZE; i++)
1161 		if (priv->extend_desc)
1162 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1163 					priv->mode, (i == DMA_TX_SIZE - 1));
1164 		else
1165 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1166 					priv->mode, (i == DMA_TX_SIZE - 1));
1167 }
1168 
1169 /**
1170  * stmmac_clear_descriptors - clear descriptors
1171  * @priv: driver private structure
1172  * Description: this function is called to clear the TX and RX descriptors
1173  * in case of both basic and extended descriptors are used.
1174  */
1175 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1176 {
1177 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1178 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1179 	u32 queue;
1180 
1181 	/* Clear the RX descriptors */
1182 	for (queue = 0; queue < rx_queue_cnt; queue++)
1183 		stmmac_clear_rx_descriptors(priv, queue);
1184 
1185 	/* Clear the TX descriptors */
1186 	for (queue = 0; queue < tx_queue_cnt; queue++)
1187 		stmmac_clear_tx_descriptors(priv, queue);
1188 }
1189 
1190 /**
1191  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1192  * @priv: driver private structure
1193  * @p: descriptor pointer
1194  * @i: descriptor index
1195  * @flags: gfp flag
1196  * @queue: RX queue index
1197  * Description: this function is called to allocate a receive buffer, perform
1198  * the DMA mapping and init the descriptor.
1199  */
1200 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1201 				  int i, gfp_t flags, u32 queue)
1202 {
1203 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1204 	struct sk_buff *skb;
1205 
1206 	skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
1207 	if (!skb) {
1208 		netdev_err(priv->dev,
1209 			   "%s: Rx init fails; skb is NULL\n", __func__);
1210 		return -ENOMEM;
1211 	}
1212 	rx_q->rx_skbuff[i] = skb;
1213 	rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
1214 						priv->dma_buf_sz,
1215 						DMA_FROM_DEVICE);
1216 	if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
1217 		netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
1218 		dev_kfree_skb_any(skb);
1219 		return -EINVAL;
1220 	}
1221 
1222 	stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[i]);
1223 
1224 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1225 		stmmac_init_desc3(priv, p);
1226 
1227 	return 0;
1228 }
1229 
1230 /**
1231  * stmmac_free_rx_buffer - free RX dma buffers
1232  * @priv: private structure
1233  * @queue: RX queue index
1234  * @i: buffer index.
1235  */
1236 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1237 {
1238 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1239 
1240 	if (rx_q->rx_skbuff[i]) {
1241 		dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
1242 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1243 		dev_kfree_skb_any(rx_q->rx_skbuff[i]);
1244 	}
1245 	rx_q->rx_skbuff[i] = NULL;
1246 }
1247 
1248 /**
1249  * stmmac_free_tx_buffer - free RX dma buffers
1250  * @priv: private structure
1251  * @queue: RX queue index
1252  * @i: buffer index.
1253  */
1254 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1255 {
1256 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1257 
1258 	if (tx_q->tx_skbuff_dma[i].buf) {
1259 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1260 			dma_unmap_page(priv->device,
1261 				       tx_q->tx_skbuff_dma[i].buf,
1262 				       tx_q->tx_skbuff_dma[i].len,
1263 				       DMA_TO_DEVICE);
1264 		else
1265 			dma_unmap_single(priv->device,
1266 					 tx_q->tx_skbuff_dma[i].buf,
1267 					 tx_q->tx_skbuff_dma[i].len,
1268 					 DMA_TO_DEVICE);
1269 	}
1270 
1271 	if (tx_q->tx_skbuff[i]) {
1272 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1273 		tx_q->tx_skbuff[i] = NULL;
1274 		tx_q->tx_skbuff_dma[i].buf = 0;
1275 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1276 	}
1277 }
1278 
1279 /**
1280  * init_dma_rx_desc_rings - init the RX descriptor rings
1281  * @dev: net device structure
1282  * @flags: gfp flag.
1283  * Description: this function initializes the DMA RX descriptors
1284  * and allocates the socket buffers. It supports the chained and ring
1285  * modes.
1286  */
1287 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1288 {
1289 	struct stmmac_priv *priv = netdev_priv(dev);
1290 	u32 rx_count = priv->plat->rx_queues_to_use;
1291 	int ret = -ENOMEM;
1292 	int bfsize = 0;
1293 	int queue;
1294 	int i;
1295 
1296 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1297 	if (bfsize < 0)
1298 		bfsize = 0;
1299 
1300 	if (bfsize < BUF_SIZE_16KiB)
1301 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1302 
1303 	priv->dma_buf_sz = bfsize;
1304 
1305 	/* RX INITIALIZATION */
1306 	netif_dbg(priv, probe, priv->dev,
1307 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1308 
1309 	for (queue = 0; queue < rx_count; queue++) {
1310 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1311 
1312 		netif_dbg(priv, probe, priv->dev,
1313 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1314 			  (u32)rx_q->dma_rx_phy);
1315 
1316 		for (i = 0; i < DMA_RX_SIZE; i++) {
1317 			struct dma_desc *p;
1318 
1319 			if (priv->extend_desc)
1320 				p = &((rx_q->dma_erx + i)->basic);
1321 			else
1322 				p = rx_q->dma_rx + i;
1323 
1324 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1325 						     queue);
1326 			if (ret)
1327 				goto err_init_rx_buffers;
1328 
1329 			netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
1330 				  rx_q->rx_skbuff[i], rx_q->rx_skbuff[i]->data,
1331 				  (unsigned int)rx_q->rx_skbuff_dma[i]);
1332 		}
1333 
1334 		rx_q->cur_rx = 0;
1335 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1336 
1337 		stmmac_clear_rx_descriptors(priv, queue);
1338 
1339 		/* Setup the chained descriptor addresses */
1340 		if (priv->mode == STMMAC_CHAIN_MODE) {
1341 			if (priv->extend_desc)
1342 				stmmac_mode_init(priv, rx_q->dma_erx,
1343 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1344 			else
1345 				stmmac_mode_init(priv, rx_q->dma_rx,
1346 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1347 		}
1348 	}
1349 
1350 	buf_sz = bfsize;
1351 
1352 	return 0;
1353 
1354 err_init_rx_buffers:
1355 	while (queue >= 0) {
1356 		while (--i >= 0)
1357 			stmmac_free_rx_buffer(priv, queue, i);
1358 
1359 		if (queue == 0)
1360 			break;
1361 
1362 		i = DMA_RX_SIZE;
1363 		queue--;
1364 	}
1365 
1366 	return ret;
1367 }
1368 
1369 /**
1370  * init_dma_tx_desc_rings - init the TX descriptor rings
1371  * @dev: net device structure.
1372  * Description: this function initializes the DMA TX descriptors
1373  * and allocates the socket buffers. It supports the chained and ring
1374  * modes.
1375  */
1376 static int init_dma_tx_desc_rings(struct net_device *dev)
1377 {
1378 	struct stmmac_priv *priv = netdev_priv(dev);
1379 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1380 	u32 queue;
1381 	int i;
1382 
1383 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1384 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1385 
1386 		netif_dbg(priv, probe, priv->dev,
1387 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1388 			 (u32)tx_q->dma_tx_phy);
1389 
1390 		/* Setup the chained descriptor addresses */
1391 		if (priv->mode == STMMAC_CHAIN_MODE) {
1392 			if (priv->extend_desc)
1393 				stmmac_mode_init(priv, tx_q->dma_etx,
1394 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1395 			else
1396 				stmmac_mode_init(priv, tx_q->dma_tx,
1397 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1398 		}
1399 
1400 		for (i = 0; i < DMA_TX_SIZE; i++) {
1401 			struct dma_desc *p;
1402 			if (priv->extend_desc)
1403 				p = &((tx_q->dma_etx + i)->basic);
1404 			else
1405 				p = tx_q->dma_tx + i;
1406 
1407 			stmmac_clear_desc(priv, p);
1408 
1409 			tx_q->tx_skbuff_dma[i].buf = 0;
1410 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1411 			tx_q->tx_skbuff_dma[i].len = 0;
1412 			tx_q->tx_skbuff_dma[i].last_segment = false;
1413 			tx_q->tx_skbuff[i] = NULL;
1414 		}
1415 
1416 		tx_q->dirty_tx = 0;
1417 		tx_q->cur_tx = 0;
1418 		tx_q->mss = 0;
1419 
1420 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1421 	}
1422 
1423 	return 0;
1424 }
1425 
1426 /**
1427  * init_dma_desc_rings - init the RX/TX descriptor rings
1428  * @dev: net device structure
1429  * @flags: gfp flag.
1430  * Description: this function initializes the DMA RX/TX descriptors
1431  * and allocates the socket buffers. It supports the chained and ring
1432  * modes.
1433  */
1434 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1435 {
1436 	struct stmmac_priv *priv = netdev_priv(dev);
1437 	int ret;
1438 
1439 	ret = init_dma_rx_desc_rings(dev, flags);
1440 	if (ret)
1441 		return ret;
1442 
1443 	ret = init_dma_tx_desc_rings(dev);
1444 
1445 	stmmac_clear_descriptors(priv);
1446 
1447 	if (netif_msg_hw(priv))
1448 		stmmac_display_rings(priv);
1449 
1450 	return ret;
1451 }
1452 
1453 /**
1454  * dma_free_rx_skbufs - free RX dma buffers
1455  * @priv: private structure
1456  * @queue: RX queue index
1457  */
1458 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1459 {
1460 	int i;
1461 
1462 	for (i = 0; i < DMA_RX_SIZE; i++)
1463 		stmmac_free_rx_buffer(priv, queue, i);
1464 }
1465 
1466 /**
1467  * dma_free_tx_skbufs - free TX dma buffers
1468  * @priv: private structure
1469  * @queue: TX queue index
1470  */
1471 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1472 {
1473 	int i;
1474 
1475 	for (i = 0; i < DMA_TX_SIZE; i++)
1476 		stmmac_free_tx_buffer(priv, queue, i);
1477 }
1478 
1479 /**
1480  * free_dma_rx_desc_resources - free RX dma desc resources
1481  * @priv: private structure
1482  */
1483 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1484 {
1485 	u32 rx_count = priv->plat->rx_queues_to_use;
1486 	u32 queue;
1487 
1488 	/* Free RX queue resources */
1489 	for (queue = 0; queue < rx_count; queue++) {
1490 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1491 
1492 		/* Release the DMA RX socket buffers */
1493 		dma_free_rx_skbufs(priv, queue);
1494 
1495 		/* Free DMA regions of consistent memory previously allocated */
1496 		if (!priv->extend_desc)
1497 			dma_free_coherent(priv->device,
1498 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1499 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1500 		else
1501 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1502 					  sizeof(struct dma_extended_desc),
1503 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1504 
1505 		kfree(rx_q->rx_skbuff_dma);
1506 		kfree(rx_q->rx_skbuff);
1507 	}
1508 }
1509 
1510 /**
1511  * free_dma_tx_desc_resources - free TX dma desc resources
1512  * @priv: private structure
1513  */
1514 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1515 {
1516 	u32 tx_count = priv->plat->tx_queues_to_use;
1517 	u32 queue;
1518 
1519 	/* Free TX queue resources */
1520 	for (queue = 0; queue < tx_count; queue++) {
1521 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1522 
1523 		/* Release the DMA TX socket buffers */
1524 		dma_free_tx_skbufs(priv, queue);
1525 
1526 		/* Free DMA regions of consistent memory previously allocated */
1527 		if (!priv->extend_desc)
1528 			dma_free_coherent(priv->device,
1529 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1530 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1531 		else
1532 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1533 					  sizeof(struct dma_extended_desc),
1534 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1535 
1536 		kfree(tx_q->tx_skbuff_dma);
1537 		kfree(tx_q->tx_skbuff);
1538 	}
1539 }
1540 
1541 /**
1542  * alloc_dma_rx_desc_resources - alloc RX resources.
1543  * @priv: private structure
1544  * Description: according to which descriptor can be used (extend or basic)
1545  * this function allocates the resources for TX and RX paths. In case of
1546  * reception, for example, it pre-allocated the RX socket buffer in order to
1547  * allow zero-copy mechanism.
1548  */
1549 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1550 {
1551 	u32 rx_count = priv->plat->rx_queues_to_use;
1552 	int ret = -ENOMEM;
1553 	u32 queue;
1554 
1555 	/* RX queues buffers and DMA */
1556 	for (queue = 0; queue < rx_count; queue++) {
1557 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1558 
1559 		rx_q->queue_index = queue;
1560 		rx_q->priv_data = priv;
1561 
1562 		rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
1563 						    sizeof(dma_addr_t),
1564 						    GFP_KERNEL);
1565 		if (!rx_q->rx_skbuff_dma)
1566 			goto err_dma;
1567 
1568 		rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
1569 						sizeof(struct sk_buff *),
1570 						GFP_KERNEL);
1571 		if (!rx_q->rx_skbuff)
1572 			goto err_dma;
1573 
1574 		if (priv->extend_desc) {
1575 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1576 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1577 							   &rx_q->dma_rx_phy,
1578 							   GFP_KERNEL);
1579 			if (!rx_q->dma_erx)
1580 				goto err_dma;
1581 
1582 		} else {
1583 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1584 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1585 							  &rx_q->dma_rx_phy,
1586 							  GFP_KERNEL);
1587 			if (!rx_q->dma_rx)
1588 				goto err_dma;
1589 		}
1590 	}
1591 
1592 	return 0;
1593 
1594 err_dma:
1595 	free_dma_rx_desc_resources(priv);
1596 
1597 	return ret;
1598 }
1599 
1600 /**
1601  * alloc_dma_tx_desc_resources - alloc TX resources.
1602  * @priv: private structure
1603  * Description: according to which descriptor can be used (extend or basic)
1604  * this function allocates the resources for TX and RX paths. In case of
1605  * reception, for example, it pre-allocated the RX socket buffer in order to
1606  * allow zero-copy mechanism.
1607  */
1608 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1609 {
1610 	u32 tx_count = priv->plat->tx_queues_to_use;
1611 	int ret = -ENOMEM;
1612 	u32 queue;
1613 
1614 	/* TX queues buffers and DMA */
1615 	for (queue = 0; queue < tx_count; queue++) {
1616 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1617 
1618 		tx_q->queue_index = queue;
1619 		tx_q->priv_data = priv;
1620 
1621 		tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
1622 						    sizeof(*tx_q->tx_skbuff_dma),
1623 						    GFP_KERNEL);
1624 		if (!tx_q->tx_skbuff_dma)
1625 			goto err_dma;
1626 
1627 		tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
1628 						sizeof(struct sk_buff *),
1629 						GFP_KERNEL);
1630 		if (!tx_q->tx_skbuff)
1631 			goto err_dma;
1632 
1633 		if (priv->extend_desc) {
1634 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1635 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1636 							   &tx_q->dma_tx_phy,
1637 							   GFP_KERNEL);
1638 			if (!tx_q->dma_etx)
1639 				goto err_dma;
1640 		} else {
1641 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1642 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1643 							  &tx_q->dma_tx_phy,
1644 							  GFP_KERNEL);
1645 			if (!tx_q->dma_tx)
1646 				goto err_dma;
1647 		}
1648 	}
1649 
1650 	return 0;
1651 
1652 err_dma:
1653 	free_dma_tx_desc_resources(priv);
1654 
1655 	return ret;
1656 }
1657 
1658 /**
1659  * alloc_dma_desc_resources - alloc TX/RX resources.
1660  * @priv: private structure
1661  * Description: according to which descriptor can be used (extend or basic)
1662  * this function allocates the resources for TX and RX paths. In case of
1663  * reception, for example, it pre-allocated the RX socket buffer in order to
1664  * allow zero-copy mechanism.
1665  */
1666 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1667 {
1668 	/* RX Allocation */
1669 	int ret = alloc_dma_rx_desc_resources(priv);
1670 
1671 	if (ret)
1672 		return ret;
1673 
1674 	ret = alloc_dma_tx_desc_resources(priv);
1675 
1676 	return ret;
1677 }
1678 
1679 /**
1680  * free_dma_desc_resources - free dma desc resources
1681  * @priv: private structure
1682  */
1683 static void free_dma_desc_resources(struct stmmac_priv *priv)
1684 {
1685 	/* Release the DMA RX socket buffers */
1686 	free_dma_rx_desc_resources(priv);
1687 
1688 	/* Release the DMA TX socket buffers */
1689 	free_dma_tx_desc_resources(priv);
1690 }
1691 
1692 /**
1693  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1694  *  @priv: driver private structure
1695  *  Description: It is used for enabling the rx queues in the MAC
1696  */
1697 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1698 {
1699 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1700 	int queue;
1701 	u8 mode;
1702 
1703 	for (queue = 0; queue < rx_queues_count; queue++) {
1704 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1705 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1706 	}
1707 }
1708 
1709 /**
1710  * stmmac_start_rx_dma - start RX DMA channel
1711  * @priv: driver private structure
1712  * @chan: RX channel index
1713  * Description:
1714  * This starts a RX DMA channel
1715  */
1716 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1717 {
1718 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1719 	stmmac_start_rx(priv, priv->ioaddr, chan);
1720 }
1721 
1722 /**
1723  * stmmac_start_tx_dma - start TX DMA channel
1724  * @priv: driver private structure
1725  * @chan: TX channel index
1726  * Description:
1727  * This starts a TX DMA channel
1728  */
1729 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1730 {
1731 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1732 	stmmac_start_tx(priv, priv->ioaddr, chan);
1733 }
1734 
1735 /**
1736  * stmmac_stop_rx_dma - stop RX DMA channel
1737  * @priv: driver private structure
1738  * @chan: RX channel index
1739  * Description:
1740  * This stops a RX DMA channel
1741  */
1742 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1743 {
1744 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1745 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1746 }
1747 
1748 /**
1749  * stmmac_stop_tx_dma - stop TX DMA channel
1750  * @priv: driver private structure
1751  * @chan: TX channel index
1752  * Description:
1753  * This stops a TX DMA channel
1754  */
1755 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1756 {
1757 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1758 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1759 }
1760 
1761 /**
1762  * stmmac_start_all_dma - start all RX and TX DMA channels
1763  * @priv: driver private structure
1764  * Description:
1765  * This starts all the RX and TX DMA channels
1766  */
1767 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1768 {
1769 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1770 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1771 	u32 chan = 0;
1772 
1773 	for (chan = 0; chan < rx_channels_count; chan++)
1774 		stmmac_start_rx_dma(priv, chan);
1775 
1776 	for (chan = 0; chan < tx_channels_count; chan++)
1777 		stmmac_start_tx_dma(priv, chan);
1778 }
1779 
1780 /**
1781  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1782  * @priv: driver private structure
1783  * Description:
1784  * This stops the RX and TX DMA channels
1785  */
1786 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1787 {
1788 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1789 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1790 	u32 chan = 0;
1791 
1792 	for (chan = 0; chan < rx_channels_count; chan++)
1793 		stmmac_stop_rx_dma(priv, chan);
1794 
1795 	for (chan = 0; chan < tx_channels_count; chan++)
1796 		stmmac_stop_tx_dma(priv, chan);
1797 }
1798 
1799 /**
1800  *  stmmac_dma_operation_mode - HW DMA operation mode
1801  *  @priv: driver private structure
1802  *  Description: it is used for configuring the DMA operation mode register in
1803  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1804  */
1805 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1806 {
1807 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1808 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1809 	int rxfifosz = priv->plat->rx_fifo_size;
1810 	int txfifosz = priv->plat->tx_fifo_size;
1811 	u32 txmode = 0;
1812 	u32 rxmode = 0;
1813 	u32 chan = 0;
1814 	u8 qmode = 0;
1815 
1816 	if (rxfifosz == 0)
1817 		rxfifosz = priv->dma_cap.rx_fifo_size;
1818 	if (txfifosz == 0)
1819 		txfifosz = priv->dma_cap.tx_fifo_size;
1820 
1821 	/* Adjust for real per queue fifo size */
1822 	rxfifosz /= rx_channels_count;
1823 	txfifosz /= tx_channels_count;
1824 
1825 	if (priv->plat->force_thresh_dma_mode) {
1826 		txmode = tc;
1827 		rxmode = tc;
1828 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1829 		/*
1830 		 * In case of GMAC, SF mode can be enabled
1831 		 * to perform the TX COE in HW. This depends on:
1832 		 * 1) TX COE if actually supported
1833 		 * 2) There is no bugged Jumbo frame support
1834 		 *    that needs to not insert csum in the TDES.
1835 		 */
1836 		txmode = SF_DMA_MODE;
1837 		rxmode = SF_DMA_MODE;
1838 		priv->xstats.threshold = SF_DMA_MODE;
1839 	} else {
1840 		txmode = tc;
1841 		rxmode = SF_DMA_MODE;
1842 	}
1843 
1844 	/* configure all channels */
1845 	for (chan = 0; chan < rx_channels_count; chan++) {
1846 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1847 
1848 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1849 				rxfifosz, qmode);
1850 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1851 				chan);
1852 	}
1853 
1854 	for (chan = 0; chan < tx_channels_count; chan++) {
1855 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1856 
1857 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1858 				txfifosz, qmode);
1859 	}
1860 }
1861 
1862 /**
1863  * stmmac_tx_clean - to manage the transmission completion
1864  * @priv: driver private structure
1865  * @queue: TX queue index
1866  * Description: it reclaims the transmit resources after transmission completes.
1867  */
1868 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1869 {
1870 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1871 	unsigned int bytes_compl = 0, pkts_compl = 0;
1872 	unsigned int entry, count = 0;
1873 
1874 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1875 
1876 	priv->xstats.tx_clean++;
1877 
1878 	entry = tx_q->dirty_tx;
1879 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1880 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1881 		struct dma_desc *p;
1882 		int status;
1883 
1884 		if (priv->extend_desc)
1885 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1886 		else
1887 			p = tx_q->dma_tx + entry;
1888 
1889 		status = stmmac_tx_status(priv, &priv->dev->stats,
1890 				&priv->xstats, p, priv->ioaddr);
1891 		/* Check if the descriptor is owned by the DMA */
1892 		if (unlikely(status & tx_dma_own))
1893 			break;
1894 
1895 		count++;
1896 
1897 		/* Make sure descriptor fields are read after reading
1898 		 * the own bit.
1899 		 */
1900 		dma_rmb();
1901 
1902 		/* Just consider the last segment and ...*/
1903 		if (likely(!(status & tx_not_ls))) {
1904 			/* ... verify the status error condition */
1905 			if (unlikely(status & tx_err)) {
1906 				priv->dev->stats.tx_errors++;
1907 			} else {
1908 				priv->dev->stats.tx_packets++;
1909 				priv->xstats.tx_pkt_n++;
1910 			}
1911 			stmmac_get_tx_hwtstamp(priv, p, skb);
1912 		}
1913 
1914 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1915 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1916 				dma_unmap_page(priv->device,
1917 					       tx_q->tx_skbuff_dma[entry].buf,
1918 					       tx_q->tx_skbuff_dma[entry].len,
1919 					       DMA_TO_DEVICE);
1920 			else
1921 				dma_unmap_single(priv->device,
1922 						 tx_q->tx_skbuff_dma[entry].buf,
1923 						 tx_q->tx_skbuff_dma[entry].len,
1924 						 DMA_TO_DEVICE);
1925 			tx_q->tx_skbuff_dma[entry].buf = 0;
1926 			tx_q->tx_skbuff_dma[entry].len = 0;
1927 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1928 		}
1929 
1930 		stmmac_clean_desc3(priv, tx_q, p);
1931 
1932 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1933 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1934 
1935 		if (likely(skb != NULL)) {
1936 			pkts_compl++;
1937 			bytes_compl += skb->len;
1938 			dev_consume_skb_any(skb);
1939 			tx_q->tx_skbuff[entry] = NULL;
1940 		}
1941 
1942 		stmmac_release_tx_desc(priv, p, priv->mode);
1943 
1944 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1945 	}
1946 	tx_q->dirty_tx = entry;
1947 
1948 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1949 				  pkts_compl, bytes_compl);
1950 
1951 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1952 								queue))) &&
1953 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1954 
1955 		netif_dbg(priv, tx_done, priv->dev,
1956 			  "%s: restart transmit\n", __func__);
1957 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1958 	}
1959 
1960 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1961 		stmmac_enable_eee_mode(priv);
1962 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1963 	}
1964 
1965 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1966 
1967 	return count;
1968 }
1969 
1970 /**
1971  * stmmac_tx_err - to manage the tx error
1972  * @priv: driver private structure
1973  * @chan: channel index
1974  * Description: it cleans the descriptors and restarts the transmission
1975  * in case of transmission errors.
1976  */
1977 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1978 {
1979 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1980 	int i;
1981 
1982 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1983 
1984 	stmmac_stop_tx_dma(priv, chan);
1985 	dma_free_tx_skbufs(priv, chan);
1986 	for (i = 0; i < DMA_TX_SIZE; i++)
1987 		if (priv->extend_desc)
1988 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1989 					priv->mode, (i == DMA_TX_SIZE - 1));
1990 		else
1991 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1992 					priv->mode, (i == DMA_TX_SIZE - 1));
1993 	tx_q->dirty_tx = 0;
1994 	tx_q->cur_tx = 0;
1995 	tx_q->mss = 0;
1996 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1997 	stmmac_start_tx_dma(priv, chan);
1998 
1999 	priv->dev->stats.tx_errors++;
2000 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2001 }
2002 
2003 /**
2004  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2005  *  @priv: driver private structure
2006  *  @txmode: TX operating mode
2007  *  @rxmode: RX operating mode
2008  *  @chan: channel index
2009  *  Description: it is used for configuring of the DMA operation mode in
2010  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2011  *  mode.
2012  */
2013 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2014 					  u32 rxmode, u32 chan)
2015 {
2016 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2017 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2018 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2019 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2020 	int rxfifosz = priv->plat->rx_fifo_size;
2021 	int txfifosz = priv->plat->tx_fifo_size;
2022 
2023 	if (rxfifosz == 0)
2024 		rxfifosz = priv->dma_cap.rx_fifo_size;
2025 	if (txfifosz == 0)
2026 		txfifosz = priv->dma_cap.tx_fifo_size;
2027 
2028 	/* Adjust for real per queue fifo size */
2029 	rxfifosz /= rx_channels_count;
2030 	txfifosz /= tx_channels_count;
2031 
2032 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2033 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2034 }
2035 
2036 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2037 {
2038 	int ret;
2039 
2040 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2041 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2042 	if (ret && (ret != -EINVAL)) {
2043 		stmmac_global_err(priv);
2044 		return true;
2045 	}
2046 
2047 	return false;
2048 }
2049 
2050 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2051 {
2052 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2053 						 &priv->xstats, chan);
2054 	struct stmmac_channel *ch = &priv->channel[chan];
2055 	bool needs_work = false;
2056 
2057 	if ((status & handle_rx) && ch->has_rx) {
2058 		needs_work = true;
2059 	} else {
2060 		status &= ~handle_rx;
2061 	}
2062 
2063 	if ((status & handle_tx) && ch->has_tx) {
2064 		needs_work = true;
2065 	} else {
2066 		status &= ~handle_tx;
2067 	}
2068 
2069 	if (needs_work && napi_schedule_prep(&ch->napi)) {
2070 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2071 		__napi_schedule(&ch->napi);
2072 	}
2073 
2074 	return status;
2075 }
2076 
2077 /**
2078  * stmmac_dma_interrupt - DMA ISR
2079  * @priv: driver private structure
2080  * Description: this is the DMA ISR. It is called by the main ISR.
2081  * It calls the dwmac dma routine and schedule poll method in case of some
2082  * work can be done.
2083  */
2084 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2085 {
2086 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2087 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2088 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2089 				tx_channel_count : rx_channel_count;
2090 	u32 chan;
2091 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2092 
2093 	/* Make sure we never check beyond our status buffer. */
2094 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2095 		channels_to_check = ARRAY_SIZE(status);
2096 
2097 	for (chan = 0; chan < channels_to_check; chan++)
2098 		status[chan] = stmmac_napi_check(priv, chan);
2099 
2100 	for (chan = 0; chan < tx_channel_count; chan++) {
2101 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2102 			/* Try to bump up the dma threshold on this failure */
2103 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2104 			    (tc <= 256)) {
2105 				tc += 64;
2106 				if (priv->plat->force_thresh_dma_mode)
2107 					stmmac_set_dma_operation_mode(priv,
2108 								      tc,
2109 								      tc,
2110 								      chan);
2111 				else
2112 					stmmac_set_dma_operation_mode(priv,
2113 								    tc,
2114 								    SF_DMA_MODE,
2115 								    chan);
2116 				priv->xstats.threshold = tc;
2117 			}
2118 		} else if (unlikely(status[chan] == tx_hard_error)) {
2119 			stmmac_tx_err(priv, chan);
2120 		}
2121 	}
2122 }
2123 
2124 /**
2125  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2126  * @priv: driver private structure
2127  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2128  */
2129 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2130 {
2131 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2132 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2133 
2134 	dwmac_mmc_intr_all_mask(priv->mmcaddr);
2135 
2136 	if (priv->dma_cap.rmon) {
2137 		dwmac_mmc_ctrl(priv->mmcaddr, mode);
2138 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2139 	} else
2140 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2141 }
2142 
2143 /**
2144  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2145  * @priv: driver private structure
2146  * Description:
2147  *  new GMAC chip generations have a new register to indicate the
2148  *  presence of the optional feature/functions.
2149  *  This can be also used to override the value passed through the
2150  *  platform and necessary for old MAC10/100 and GMAC chips.
2151  */
2152 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2153 {
2154 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2155 }
2156 
2157 /**
2158  * stmmac_check_ether_addr - check if the MAC addr is valid
2159  * @priv: driver private structure
2160  * Description:
2161  * it is to verify if the MAC address is valid, in case of failures it
2162  * generates a random MAC address
2163  */
2164 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2165 {
2166 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2167 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2168 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2169 			eth_hw_addr_random(priv->dev);
2170 		netdev_info(priv->dev, "device MAC address %pM\n",
2171 			    priv->dev->dev_addr);
2172 	}
2173 }
2174 
2175 /**
2176  * stmmac_init_dma_engine - DMA init.
2177  * @priv: driver private structure
2178  * Description:
2179  * It inits the DMA invoking the specific MAC/GMAC callback.
2180  * Some DMA parameters can be passed from the platform;
2181  * in case of these are not passed a default is kept for the MAC or GMAC.
2182  */
2183 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2184 {
2185 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2186 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2187 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2188 	struct stmmac_rx_queue *rx_q;
2189 	struct stmmac_tx_queue *tx_q;
2190 	u32 chan = 0;
2191 	int atds = 0;
2192 	int ret = 0;
2193 
2194 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2195 		dev_err(priv->device, "Invalid DMA configuration\n");
2196 		return -EINVAL;
2197 	}
2198 
2199 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2200 		atds = 1;
2201 
2202 	ret = stmmac_reset(priv, priv->ioaddr);
2203 	if (ret) {
2204 		dev_err(priv->device, "Failed to reset the dma\n");
2205 		return ret;
2206 	}
2207 
2208 	/* DMA Configuration */
2209 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2210 
2211 	if (priv->plat->axi)
2212 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2213 
2214 	/* DMA RX Channel Configuration */
2215 	for (chan = 0; chan < rx_channels_count; chan++) {
2216 		rx_q = &priv->rx_queue[chan];
2217 
2218 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2219 				    rx_q->dma_rx_phy, chan);
2220 
2221 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2222 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2223 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2224 				       rx_q->rx_tail_addr, chan);
2225 	}
2226 
2227 	/* DMA TX Channel Configuration */
2228 	for (chan = 0; chan < tx_channels_count; chan++) {
2229 		tx_q = &priv->tx_queue[chan];
2230 
2231 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2232 				    tx_q->dma_tx_phy, chan);
2233 
2234 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2235 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2236 				       tx_q->tx_tail_addr, chan);
2237 	}
2238 
2239 	/* DMA CSR Channel configuration */
2240 	for (chan = 0; chan < dma_csr_ch; chan++)
2241 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2242 
2243 	return ret;
2244 }
2245 
2246 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2247 {
2248 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2249 
2250 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2251 }
2252 
2253 /**
2254  * stmmac_tx_timer - mitigation sw timer for tx.
2255  * @data: data pointer
2256  * Description:
2257  * This is the timer handler to directly invoke the stmmac_tx_clean.
2258  */
2259 static void stmmac_tx_timer(struct timer_list *t)
2260 {
2261 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2262 	struct stmmac_priv *priv = tx_q->priv_data;
2263 	struct stmmac_channel *ch;
2264 
2265 	ch = &priv->channel[tx_q->queue_index];
2266 
2267 	if (likely(napi_schedule_prep(&ch->napi)))
2268 		__napi_schedule(&ch->napi);
2269 }
2270 
2271 /**
2272  * stmmac_init_tx_coalesce - init tx mitigation options.
2273  * @priv: driver private structure
2274  * Description:
2275  * This inits the transmit coalesce parameters: i.e. timer rate,
2276  * timer handler and default threshold used for enabling the
2277  * interrupt on completion bit.
2278  */
2279 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
2280 {
2281 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2282 	u32 chan;
2283 
2284 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2285 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2286 
2287 	for (chan = 0; chan < tx_channel_count; chan++) {
2288 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2289 
2290 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2291 	}
2292 }
2293 
2294 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2295 {
2296 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2297 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2298 	u32 chan;
2299 
2300 	/* set TX ring length */
2301 	for (chan = 0; chan < tx_channels_count; chan++)
2302 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2303 				(DMA_TX_SIZE - 1), chan);
2304 
2305 	/* set RX ring length */
2306 	for (chan = 0; chan < rx_channels_count; chan++)
2307 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2308 				(DMA_RX_SIZE - 1), chan);
2309 }
2310 
2311 /**
2312  *  stmmac_set_tx_queue_weight - Set TX queue weight
2313  *  @priv: driver private structure
2314  *  Description: It is used for setting TX queues weight
2315  */
2316 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2317 {
2318 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2319 	u32 weight;
2320 	u32 queue;
2321 
2322 	for (queue = 0; queue < tx_queues_count; queue++) {
2323 		weight = priv->plat->tx_queues_cfg[queue].weight;
2324 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2325 	}
2326 }
2327 
2328 /**
2329  *  stmmac_configure_cbs - Configure CBS in TX queue
2330  *  @priv: driver private structure
2331  *  Description: It is used for configuring CBS in AVB TX queues
2332  */
2333 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2334 {
2335 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2336 	u32 mode_to_use;
2337 	u32 queue;
2338 
2339 	/* queue 0 is reserved for legacy traffic */
2340 	for (queue = 1; queue < tx_queues_count; queue++) {
2341 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2342 		if (mode_to_use == MTL_QUEUE_DCB)
2343 			continue;
2344 
2345 		stmmac_config_cbs(priv, priv->hw,
2346 				priv->plat->tx_queues_cfg[queue].send_slope,
2347 				priv->plat->tx_queues_cfg[queue].idle_slope,
2348 				priv->plat->tx_queues_cfg[queue].high_credit,
2349 				priv->plat->tx_queues_cfg[queue].low_credit,
2350 				queue);
2351 	}
2352 }
2353 
2354 /**
2355  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2356  *  @priv: driver private structure
2357  *  Description: It is used for mapping RX queues to RX dma channels
2358  */
2359 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2360 {
2361 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2362 	u32 queue;
2363 	u32 chan;
2364 
2365 	for (queue = 0; queue < rx_queues_count; queue++) {
2366 		chan = priv->plat->rx_queues_cfg[queue].chan;
2367 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2368 	}
2369 }
2370 
2371 /**
2372  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2373  *  @priv: driver private structure
2374  *  Description: It is used for configuring the RX Queue Priority
2375  */
2376 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2377 {
2378 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2379 	u32 queue;
2380 	u32 prio;
2381 
2382 	for (queue = 0; queue < rx_queues_count; queue++) {
2383 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2384 			continue;
2385 
2386 		prio = priv->plat->rx_queues_cfg[queue].prio;
2387 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2388 	}
2389 }
2390 
2391 /**
2392  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2393  *  @priv: driver private structure
2394  *  Description: It is used for configuring the TX Queue Priority
2395  */
2396 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2397 {
2398 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2399 	u32 queue;
2400 	u32 prio;
2401 
2402 	for (queue = 0; queue < tx_queues_count; queue++) {
2403 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2404 			continue;
2405 
2406 		prio = priv->plat->tx_queues_cfg[queue].prio;
2407 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2408 	}
2409 }
2410 
2411 /**
2412  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2413  *  @priv: driver private structure
2414  *  Description: It is used for configuring the RX queue routing
2415  */
2416 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2417 {
2418 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2419 	u32 queue;
2420 	u8 packet;
2421 
2422 	for (queue = 0; queue < rx_queues_count; queue++) {
2423 		/* no specific packet type routing specified for the queue */
2424 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2425 			continue;
2426 
2427 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2428 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2429 	}
2430 }
2431 
2432 /**
2433  *  stmmac_mtl_configuration - Configure MTL
2434  *  @priv: driver private structure
2435  *  Description: It is used for configurring MTL
2436  */
2437 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2438 {
2439 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2440 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2441 
2442 	if (tx_queues_count > 1)
2443 		stmmac_set_tx_queue_weight(priv);
2444 
2445 	/* Configure MTL RX algorithms */
2446 	if (rx_queues_count > 1)
2447 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2448 				priv->plat->rx_sched_algorithm);
2449 
2450 	/* Configure MTL TX algorithms */
2451 	if (tx_queues_count > 1)
2452 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2453 				priv->plat->tx_sched_algorithm);
2454 
2455 	/* Configure CBS in AVB TX queues */
2456 	if (tx_queues_count > 1)
2457 		stmmac_configure_cbs(priv);
2458 
2459 	/* Map RX MTL to DMA channels */
2460 	stmmac_rx_queue_dma_chan_map(priv);
2461 
2462 	/* Enable MAC RX Queues */
2463 	stmmac_mac_enable_rx_queues(priv);
2464 
2465 	/* Set RX priorities */
2466 	if (rx_queues_count > 1)
2467 		stmmac_mac_config_rx_queues_prio(priv);
2468 
2469 	/* Set TX priorities */
2470 	if (tx_queues_count > 1)
2471 		stmmac_mac_config_tx_queues_prio(priv);
2472 
2473 	/* Set RX routing */
2474 	if (rx_queues_count > 1)
2475 		stmmac_mac_config_rx_queues_routing(priv);
2476 }
2477 
2478 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2479 {
2480 	if (priv->dma_cap.asp) {
2481 		netdev_info(priv->dev, "Enabling Safety Features\n");
2482 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2483 	} else {
2484 		netdev_info(priv->dev, "No Safety Features support found\n");
2485 	}
2486 }
2487 
2488 /**
2489  * stmmac_hw_setup - setup mac in a usable state.
2490  *  @dev : pointer to the device structure.
2491  *  Description:
2492  *  this is the main function to setup the HW in a usable state because the
2493  *  dma engine is reset, the core registers are configured (e.g. AXI,
2494  *  Checksum features, timers). The DMA is ready to start receiving and
2495  *  transmitting.
2496  *  Return value:
2497  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2498  *  file on failure.
2499  */
2500 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2501 {
2502 	struct stmmac_priv *priv = netdev_priv(dev);
2503 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2504 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2505 	u32 chan;
2506 	int ret;
2507 
2508 	/* DMA initialization and SW reset */
2509 	ret = stmmac_init_dma_engine(priv);
2510 	if (ret < 0) {
2511 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2512 			   __func__);
2513 		return ret;
2514 	}
2515 
2516 	/* Copy the MAC addr into the HW  */
2517 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2518 
2519 	/* PS and related bits will be programmed according to the speed */
2520 	if (priv->hw->pcs) {
2521 		int speed = priv->plat->mac_port_sel_speed;
2522 
2523 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2524 		    (speed == SPEED_1000)) {
2525 			priv->hw->ps = speed;
2526 		} else {
2527 			dev_warn(priv->device, "invalid port speed\n");
2528 			priv->hw->ps = 0;
2529 		}
2530 	}
2531 
2532 	/* Initialize the MAC Core */
2533 	stmmac_core_init(priv, priv->hw, dev);
2534 
2535 	/* Initialize MTL*/
2536 	stmmac_mtl_configuration(priv);
2537 
2538 	/* Initialize Safety Features */
2539 	stmmac_safety_feat_configuration(priv);
2540 
2541 	ret = stmmac_rx_ipc(priv, priv->hw);
2542 	if (!ret) {
2543 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2544 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2545 		priv->hw->rx_csum = 0;
2546 	}
2547 
2548 	/* Enable the MAC Rx/Tx */
2549 	stmmac_mac_set(priv, priv->ioaddr, true);
2550 
2551 	/* Set the HW DMA mode and the COE */
2552 	stmmac_dma_operation_mode(priv);
2553 
2554 	stmmac_mmc_setup(priv);
2555 
2556 	if (init_ptp) {
2557 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2558 		if (ret < 0)
2559 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2560 
2561 		ret = stmmac_init_ptp(priv);
2562 		if (ret == -EOPNOTSUPP)
2563 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2564 		else if (ret)
2565 			netdev_warn(priv->dev, "PTP init failed\n");
2566 	}
2567 
2568 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2569 
2570 	if (priv->use_riwt) {
2571 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MAX_DMA_RIWT, rx_cnt);
2572 		if (!ret)
2573 			priv->rx_riwt = MAX_DMA_RIWT;
2574 	}
2575 
2576 	if (priv->hw->pcs)
2577 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2578 
2579 	/* set TX and RX rings length */
2580 	stmmac_set_rings_length(priv);
2581 
2582 	/* Enable TSO */
2583 	if (priv->tso) {
2584 		for (chan = 0; chan < tx_cnt; chan++)
2585 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2586 	}
2587 
2588 	/* Start the ball rolling... */
2589 	stmmac_start_all_dma(priv);
2590 
2591 	return 0;
2592 }
2593 
2594 static void stmmac_hw_teardown(struct net_device *dev)
2595 {
2596 	struct stmmac_priv *priv = netdev_priv(dev);
2597 
2598 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2599 }
2600 
2601 /**
2602  *  stmmac_open - open entry point of the driver
2603  *  @dev : pointer to the device structure.
2604  *  Description:
2605  *  This function is the open entry point of the driver.
2606  *  Return value:
2607  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2608  *  file on failure.
2609  */
2610 static int stmmac_open(struct net_device *dev)
2611 {
2612 	struct stmmac_priv *priv = netdev_priv(dev);
2613 	u32 chan;
2614 	int ret;
2615 
2616 	stmmac_check_ether_addr(priv);
2617 
2618 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2619 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2620 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2621 		ret = stmmac_init_phy(dev);
2622 		if (ret) {
2623 			netdev_err(priv->dev,
2624 				   "%s: Cannot attach to PHY (error: %d)\n",
2625 				   __func__, ret);
2626 			return ret;
2627 		}
2628 	}
2629 
2630 	/* Extra statistics */
2631 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2632 	priv->xstats.threshold = tc;
2633 
2634 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2635 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2636 
2637 	ret = alloc_dma_desc_resources(priv);
2638 	if (ret < 0) {
2639 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2640 			   __func__);
2641 		goto dma_desc_error;
2642 	}
2643 
2644 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2645 	if (ret < 0) {
2646 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2647 			   __func__);
2648 		goto init_error;
2649 	}
2650 
2651 	ret = stmmac_hw_setup(dev, true);
2652 	if (ret < 0) {
2653 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2654 		goto init_error;
2655 	}
2656 
2657 	stmmac_init_tx_coalesce(priv);
2658 
2659 	if (dev->phydev)
2660 		phy_start(dev->phydev);
2661 
2662 	/* Request the IRQ lines */
2663 	ret = request_irq(dev->irq, stmmac_interrupt,
2664 			  IRQF_SHARED, dev->name, dev);
2665 	if (unlikely(ret < 0)) {
2666 		netdev_err(priv->dev,
2667 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2668 			   __func__, dev->irq, ret);
2669 		goto irq_error;
2670 	}
2671 
2672 	/* Request the Wake IRQ in case of another line is used for WoL */
2673 	if (priv->wol_irq != dev->irq) {
2674 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2675 				  IRQF_SHARED, dev->name, dev);
2676 		if (unlikely(ret < 0)) {
2677 			netdev_err(priv->dev,
2678 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2679 				   __func__, priv->wol_irq, ret);
2680 			goto wolirq_error;
2681 		}
2682 	}
2683 
2684 	/* Request the IRQ lines */
2685 	if (priv->lpi_irq > 0) {
2686 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2687 				  dev->name, dev);
2688 		if (unlikely(ret < 0)) {
2689 			netdev_err(priv->dev,
2690 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2691 				   __func__, priv->lpi_irq, ret);
2692 			goto lpiirq_error;
2693 		}
2694 	}
2695 
2696 	stmmac_enable_all_queues(priv);
2697 	stmmac_start_all_queues(priv);
2698 
2699 	return 0;
2700 
2701 lpiirq_error:
2702 	if (priv->wol_irq != dev->irq)
2703 		free_irq(priv->wol_irq, dev);
2704 wolirq_error:
2705 	free_irq(dev->irq, dev);
2706 irq_error:
2707 	if (dev->phydev)
2708 		phy_stop(dev->phydev);
2709 
2710 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2711 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2712 
2713 	stmmac_hw_teardown(dev);
2714 init_error:
2715 	free_dma_desc_resources(priv);
2716 dma_desc_error:
2717 	if (dev->phydev)
2718 		phy_disconnect(dev->phydev);
2719 
2720 	return ret;
2721 }
2722 
2723 /**
2724  *  stmmac_release - close entry point of the driver
2725  *  @dev : device pointer.
2726  *  Description:
2727  *  This is the stop entry point of the driver.
2728  */
2729 static int stmmac_release(struct net_device *dev)
2730 {
2731 	struct stmmac_priv *priv = netdev_priv(dev);
2732 	u32 chan;
2733 
2734 	if (priv->eee_enabled)
2735 		del_timer_sync(&priv->eee_ctrl_timer);
2736 
2737 	/* Stop and disconnect the PHY */
2738 	if (dev->phydev) {
2739 		phy_stop(dev->phydev);
2740 		phy_disconnect(dev->phydev);
2741 	}
2742 
2743 	stmmac_stop_all_queues(priv);
2744 
2745 	stmmac_disable_all_queues(priv);
2746 
2747 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2748 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2749 
2750 	/* Free the IRQ lines */
2751 	free_irq(dev->irq, dev);
2752 	if (priv->wol_irq != dev->irq)
2753 		free_irq(priv->wol_irq, dev);
2754 	if (priv->lpi_irq > 0)
2755 		free_irq(priv->lpi_irq, dev);
2756 
2757 	/* Stop TX/RX DMA and clear the descriptors */
2758 	stmmac_stop_all_dma(priv);
2759 
2760 	/* Release and free the Rx/Tx resources */
2761 	free_dma_desc_resources(priv);
2762 
2763 	/* Disable the MAC Rx/Tx */
2764 	stmmac_mac_set(priv, priv->ioaddr, false);
2765 
2766 	netif_carrier_off(dev);
2767 
2768 	stmmac_release_ptp(priv);
2769 
2770 	return 0;
2771 }
2772 
2773 /**
2774  *  stmmac_tso_allocator - close entry point of the driver
2775  *  @priv: driver private structure
2776  *  @des: buffer start address
2777  *  @total_len: total length to fill in descriptors
2778  *  @last_segmant: condition for the last descriptor
2779  *  @queue: TX queue index
2780  *  Description:
2781  *  This function fills descriptor and request new descriptors according to
2782  *  buffer length to fill
2783  */
2784 static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
2785 				 int total_len, bool last_segment, u32 queue)
2786 {
2787 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2788 	struct dma_desc *desc;
2789 	u32 buff_size;
2790 	int tmp_len;
2791 
2792 	tmp_len = total_len;
2793 
2794 	while (tmp_len > 0) {
2795 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2796 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2797 		desc = tx_q->dma_tx + tx_q->cur_tx;
2798 
2799 		desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
2800 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2801 			    TSO_MAX_BUFF_SIZE : tmp_len;
2802 
2803 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2804 				0, 1,
2805 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2806 				0, 0);
2807 
2808 		tmp_len -= TSO_MAX_BUFF_SIZE;
2809 	}
2810 }
2811 
2812 /**
2813  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2814  *  @skb : the socket buffer
2815  *  @dev : device pointer
2816  *  Description: this is the transmit function that is called on TSO frames
2817  *  (support available on GMAC4 and newer chips).
2818  *  Diagram below show the ring programming in case of TSO frames:
2819  *
2820  *  First Descriptor
2821  *   --------
2822  *   | DES0 |---> buffer1 = L2/L3/L4 header
2823  *   | DES1 |---> TCP Payload (can continue on next descr...)
2824  *   | DES2 |---> buffer 1 and 2 len
2825  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2826  *   --------
2827  *	|
2828  *     ...
2829  *	|
2830  *   --------
2831  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2832  *   | DES1 | --|
2833  *   | DES2 | --> buffer 1 and 2 len
2834  *   | DES3 |
2835  *   --------
2836  *
2837  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2838  */
2839 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2840 {
2841 	struct dma_desc *desc, *first, *mss_desc = NULL;
2842 	struct stmmac_priv *priv = netdev_priv(dev);
2843 	int nfrags = skb_shinfo(skb)->nr_frags;
2844 	u32 queue = skb_get_queue_mapping(skb);
2845 	unsigned int first_entry, des;
2846 	struct stmmac_tx_queue *tx_q;
2847 	int tmp_pay_len = 0;
2848 	u32 pay_len, mss;
2849 	u8 proto_hdr_len;
2850 	int i;
2851 
2852 	tx_q = &priv->tx_queue[queue];
2853 
2854 	/* Compute header lengths */
2855 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2856 
2857 	/* Desc availability based on threshold should be enough safe */
2858 	if (unlikely(stmmac_tx_avail(priv, queue) <
2859 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2860 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2861 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2862 								queue));
2863 			/* This is a hard error, log it. */
2864 			netdev_err(priv->dev,
2865 				   "%s: Tx Ring full when queue awake\n",
2866 				   __func__);
2867 		}
2868 		return NETDEV_TX_BUSY;
2869 	}
2870 
2871 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2872 
2873 	mss = skb_shinfo(skb)->gso_size;
2874 
2875 	/* set new MSS value if needed */
2876 	if (mss != tx_q->mss) {
2877 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2878 		stmmac_set_mss(priv, mss_desc, mss);
2879 		tx_q->mss = mss;
2880 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2881 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2882 	}
2883 
2884 	if (netif_msg_tx_queued(priv)) {
2885 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2886 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2887 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2888 			skb->data_len);
2889 	}
2890 
2891 	first_entry = tx_q->cur_tx;
2892 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2893 
2894 	desc = tx_q->dma_tx + first_entry;
2895 	first = desc;
2896 
2897 	/* first descriptor: fill Headers on Buf1 */
2898 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2899 			     DMA_TO_DEVICE);
2900 	if (dma_mapping_error(priv->device, des))
2901 		goto dma_map_err;
2902 
2903 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2904 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2905 
2906 	first->des0 = cpu_to_le32(des);
2907 
2908 	/* Fill start of payload in buff2 of first descriptor */
2909 	if (pay_len)
2910 		first->des1 = cpu_to_le32(des + proto_hdr_len);
2911 
2912 	/* If needed take extra descriptors to fill the remaining payload */
2913 	tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2914 
2915 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2916 
2917 	/* Prepare fragments */
2918 	for (i = 0; i < nfrags; i++) {
2919 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2920 
2921 		des = skb_frag_dma_map(priv->device, frag, 0,
2922 				       skb_frag_size(frag),
2923 				       DMA_TO_DEVICE);
2924 		if (dma_mapping_error(priv->device, des))
2925 			goto dma_map_err;
2926 
2927 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2928 				     (i == nfrags - 1), queue);
2929 
2930 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2931 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2932 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2933 	}
2934 
2935 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2936 
2937 	/* Only the last descriptor gets to point to the skb. */
2938 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2939 
2940 	/* We've used all descriptors we need for this skb, however,
2941 	 * advance cur_tx so that it references a fresh descriptor.
2942 	 * ndo_start_xmit will fill this descriptor the next time it's
2943 	 * called and stmmac_tx_clean may clean up to this descriptor.
2944 	 */
2945 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2946 
2947 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2948 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2949 			  __func__);
2950 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2951 	}
2952 
2953 	dev->stats.tx_bytes += skb->len;
2954 	priv->xstats.tx_tso_frames++;
2955 	priv->xstats.tx_tso_nfrags += nfrags;
2956 
2957 	/* Manage tx mitigation */
2958 	tx_q->tx_count_frames += nfrags + 1;
2959 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
2960 		stmmac_set_tx_ic(priv, desc);
2961 		priv->xstats.tx_set_ic_bit++;
2962 		tx_q->tx_count_frames = 0;
2963 	} else {
2964 		stmmac_tx_timer_arm(priv, queue);
2965 	}
2966 
2967 	skb_tx_timestamp(skb);
2968 
2969 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2970 		     priv->hwts_tx_en)) {
2971 		/* declare that device is doing timestamping */
2972 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2973 		stmmac_enable_tx_timestamp(priv, first);
2974 	}
2975 
2976 	/* Complete the first descriptor before granting the DMA */
2977 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2978 			proto_hdr_len,
2979 			pay_len,
2980 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2981 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2982 
2983 	/* If context desc is used to change MSS */
2984 	if (mss_desc) {
2985 		/* Make sure that first descriptor has been completely
2986 		 * written, including its own bit. This is because MSS is
2987 		 * actually before first descriptor, so we need to make
2988 		 * sure that MSS's own bit is the last thing written.
2989 		 */
2990 		dma_wmb();
2991 		stmmac_set_tx_owner(priv, mss_desc);
2992 	}
2993 
2994 	/* The own bit must be the latest setting done when prepare the
2995 	 * descriptor and then barrier is needed to make sure that
2996 	 * all is coherent before granting the DMA engine.
2997 	 */
2998 	wmb();
2999 
3000 	if (netif_msg_pktdata(priv)) {
3001 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3002 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3003 			tx_q->cur_tx, first, nfrags);
3004 
3005 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3006 
3007 		pr_info(">>> frame to be transmitted: ");
3008 		print_pkt(skb->data, skb_headlen(skb));
3009 	}
3010 
3011 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3012 
3013 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3014 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3015 
3016 	return NETDEV_TX_OK;
3017 
3018 dma_map_err:
3019 	dev_err(priv->device, "Tx dma map failed\n");
3020 	dev_kfree_skb(skb);
3021 	priv->dev->stats.tx_dropped++;
3022 	return NETDEV_TX_OK;
3023 }
3024 
3025 /**
3026  *  stmmac_xmit - Tx entry point of the driver
3027  *  @skb : the socket buffer
3028  *  @dev : device pointer
3029  *  Description : this is the tx entry point of the driver.
3030  *  It programs the chain or the ring and supports oversized frames
3031  *  and SG feature.
3032  */
3033 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3034 {
3035 	struct stmmac_priv *priv = netdev_priv(dev);
3036 	unsigned int nopaged_len = skb_headlen(skb);
3037 	int i, csum_insertion = 0, is_jumbo = 0;
3038 	u32 queue = skb_get_queue_mapping(skb);
3039 	int nfrags = skb_shinfo(skb)->nr_frags;
3040 	int entry;
3041 	unsigned int first_entry;
3042 	struct dma_desc *desc, *first;
3043 	struct stmmac_tx_queue *tx_q;
3044 	unsigned int enh_desc;
3045 	unsigned int des;
3046 
3047 	tx_q = &priv->tx_queue[queue];
3048 
3049 	/* Manage oversized TCP frames for GMAC4 device */
3050 	if (skb_is_gso(skb) && priv->tso) {
3051 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3052 			return stmmac_tso_xmit(skb, dev);
3053 	}
3054 
3055 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3056 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3057 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3058 								queue));
3059 			/* This is a hard error, log it. */
3060 			netdev_err(priv->dev,
3061 				   "%s: Tx Ring full when queue awake\n",
3062 				   __func__);
3063 		}
3064 		return NETDEV_TX_BUSY;
3065 	}
3066 
3067 	if (priv->tx_path_in_lpi_mode)
3068 		stmmac_disable_eee_mode(priv);
3069 
3070 	entry = tx_q->cur_tx;
3071 	first_entry = entry;
3072 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3073 
3074 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3075 
3076 	if (likely(priv->extend_desc))
3077 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3078 	else
3079 		desc = tx_q->dma_tx + entry;
3080 
3081 	first = desc;
3082 
3083 	enh_desc = priv->plat->enh_desc;
3084 	/* To program the descriptors according to the size of the frame */
3085 	if (enh_desc)
3086 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3087 
3088 	if (unlikely(is_jumbo)) {
3089 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3090 		if (unlikely(entry < 0) && (entry != -EINVAL))
3091 			goto dma_map_err;
3092 	}
3093 
3094 	for (i = 0; i < nfrags; i++) {
3095 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3096 		int len = skb_frag_size(frag);
3097 		bool last_segment = (i == (nfrags - 1));
3098 
3099 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3100 		WARN_ON(tx_q->tx_skbuff[entry]);
3101 
3102 		if (likely(priv->extend_desc))
3103 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3104 		else
3105 			desc = tx_q->dma_tx + entry;
3106 
3107 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3108 				       DMA_TO_DEVICE);
3109 		if (dma_mapping_error(priv->device, des))
3110 			goto dma_map_err; /* should reuse desc w/o issues */
3111 
3112 		tx_q->tx_skbuff_dma[entry].buf = des;
3113 
3114 		stmmac_set_desc_addr(priv, desc, des);
3115 
3116 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3117 		tx_q->tx_skbuff_dma[entry].len = len;
3118 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3119 
3120 		/* Prepare the descriptor and set the own bit too */
3121 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3122 				priv->mode, 1, last_segment, skb->len);
3123 	}
3124 
3125 	/* Only the last descriptor gets to point to the skb. */
3126 	tx_q->tx_skbuff[entry] = skb;
3127 
3128 	/* We've used all descriptors we need for this skb, however,
3129 	 * advance cur_tx so that it references a fresh descriptor.
3130 	 * ndo_start_xmit will fill this descriptor the next time it's
3131 	 * called and stmmac_tx_clean may clean up to this descriptor.
3132 	 */
3133 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3134 	tx_q->cur_tx = entry;
3135 
3136 	if (netif_msg_pktdata(priv)) {
3137 		void *tx_head;
3138 
3139 		netdev_dbg(priv->dev,
3140 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3141 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3142 			   entry, first, nfrags);
3143 
3144 		if (priv->extend_desc)
3145 			tx_head = (void *)tx_q->dma_etx;
3146 		else
3147 			tx_head = (void *)tx_q->dma_tx;
3148 
3149 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3150 
3151 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3152 		print_pkt(skb->data, skb->len);
3153 	}
3154 
3155 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3156 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3157 			  __func__);
3158 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3159 	}
3160 
3161 	dev->stats.tx_bytes += skb->len;
3162 
3163 	/* According to the coalesce parameter the IC bit for the latest
3164 	 * segment is reset and the timer re-started to clean the tx status.
3165 	 * This approach takes care about the fragments: desc is the first
3166 	 * element in case of no SG.
3167 	 */
3168 	tx_q->tx_count_frames += nfrags + 1;
3169 	if (priv->tx_coal_frames <= tx_q->tx_count_frames) {
3170 		stmmac_set_tx_ic(priv, desc);
3171 		priv->xstats.tx_set_ic_bit++;
3172 		tx_q->tx_count_frames = 0;
3173 	} else {
3174 		stmmac_tx_timer_arm(priv, queue);
3175 	}
3176 
3177 	skb_tx_timestamp(skb);
3178 
3179 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3180 	 * problems because all the descriptors are actually ready to be
3181 	 * passed to the DMA engine.
3182 	 */
3183 	if (likely(!is_jumbo)) {
3184 		bool last_segment = (nfrags == 0);
3185 
3186 		des = dma_map_single(priv->device, skb->data,
3187 				     nopaged_len, DMA_TO_DEVICE);
3188 		if (dma_mapping_error(priv->device, des))
3189 			goto dma_map_err;
3190 
3191 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3192 
3193 		stmmac_set_desc_addr(priv, first, des);
3194 
3195 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3196 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3197 
3198 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3199 			     priv->hwts_tx_en)) {
3200 			/* declare that device is doing timestamping */
3201 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3202 			stmmac_enable_tx_timestamp(priv, first);
3203 		}
3204 
3205 		/* Prepare the first descriptor setting the OWN bit too */
3206 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3207 				csum_insertion, priv->mode, 1, last_segment,
3208 				skb->len);
3209 
3210 		/* The own bit must be the latest setting done when prepare the
3211 		 * descriptor and then barrier is needed to make sure that
3212 		 * all is coherent before granting the DMA engine.
3213 		 */
3214 		wmb();
3215 	}
3216 
3217 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3218 
3219 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3220 
3221 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3222 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3223 
3224 	return NETDEV_TX_OK;
3225 
3226 dma_map_err:
3227 	netdev_err(priv->dev, "Tx DMA map failed\n");
3228 	dev_kfree_skb(skb);
3229 	priv->dev->stats.tx_dropped++;
3230 	return NETDEV_TX_OK;
3231 }
3232 
3233 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3234 {
3235 	struct vlan_ethhdr *veth;
3236 	__be16 vlan_proto;
3237 	u16 vlanid;
3238 
3239 	veth = (struct vlan_ethhdr *)skb->data;
3240 	vlan_proto = veth->h_vlan_proto;
3241 
3242 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3243 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3244 	    (vlan_proto == htons(ETH_P_8021AD) &&
3245 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3246 		/* pop the vlan tag */
3247 		vlanid = ntohs(veth->h_vlan_TCI);
3248 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3249 		skb_pull(skb, VLAN_HLEN);
3250 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3251 	}
3252 }
3253 
3254 
3255 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3256 {
3257 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3258 		return 0;
3259 
3260 	return 1;
3261 }
3262 
3263 /**
3264  * stmmac_rx_refill - refill used skb preallocated buffers
3265  * @priv: driver private structure
3266  * @queue: RX queue index
3267  * Description : this is to reallocate the skb for the reception process
3268  * that is based on zero-copy.
3269  */
3270 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3271 {
3272 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3273 	int dirty = stmmac_rx_dirty(priv, queue);
3274 	unsigned int entry = rx_q->dirty_rx;
3275 
3276 	int bfsize = priv->dma_buf_sz;
3277 
3278 	while (dirty-- > 0) {
3279 		struct dma_desc *p;
3280 
3281 		if (priv->extend_desc)
3282 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3283 		else
3284 			p = rx_q->dma_rx + entry;
3285 
3286 		if (likely(!rx_q->rx_skbuff[entry])) {
3287 			struct sk_buff *skb;
3288 
3289 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
3290 			if (unlikely(!skb)) {
3291 				/* so for a while no zero-copy! */
3292 				rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
3293 				if (unlikely(net_ratelimit()))
3294 					dev_err(priv->device,
3295 						"fail to alloc skb entry %d\n",
3296 						entry);
3297 				break;
3298 			}
3299 
3300 			rx_q->rx_skbuff[entry] = skb;
3301 			rx_q->rx_skbuff_dma[entry] =
3302 			    dma_map_single(priv->device, skb->data, bfsize,
3303 					   DMA_FROM_DEVICE);
3304 			if (dma_mapping_error(priv->device,
3305 					      rx_q->rx_skbuff_dma[entry])) {
3306 				netdev_err(priv->dev, "Rx DMA map failed\n");
3307 				dev_kfree_skb(skb);
3308 				break;
3309 			}
3310 
3311 			stmmac_set_desc_addr(priv, p, rx_q->rx_skbuff_dma[entry]);
3312 			stmmac_refill_desc3(priv, rx_q, p);
3313 
3314 			if (rx_q->rx_zeroc_thresh > 0)
3315 				rx_q->rx_zeroc_thresh--;
3316 
3317 			netif_dbg(priv, rx_status, priv->dev,
3318 				  "refill entry #%d\n", entry);
3319 		}
3320 		dma_wmb();
3321 
3322 		stmmac_set_rx_owner(priv, p, priv->use_riwt);
3323 
3324 		dma_wmb();
3325 
3326 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3327 	}
3328 	rx_q->dirty_rx = entry;
3329 }
3330 
3331 /**
3332  * stmmac_rx - manage the receive process
3333  * @priv: driver private structure
3334  * @limit: napi bugget
3335  * @queue: RX queue index.
3336  * Description :  this the function called by the napi poll method.
3337  * It gets all the frames inside the ring.
3338  */
3339 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3340 {
3341 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3342 	struct stmmac_channel *ch = &priv->channel[queue];
3343 	unsigned int entry = rx_q->cur_rx;
3344 	int coe = priv->hw->rx_csum;
3345 	unsigned int next_entry;
3346 	unsigned int count = 0;
3347 	bool xmac;
3348 
3349 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3350 
3351 	if (netif_msg_rx_status(priv)) {
3352 		void *rx_head;
3353 
3354 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3355 		if (priv->extend_desc)
3356 			rx_head = (void *)rx_q->dma_erx;
3357 		else
3358 			rx_head = (void *)rx_q->dma_rx;
3359 
3360 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3361 	}
3362 	while (count < limit) {
3363 		int status;
3364 		struct dma_desc *p;
3365 		struct dma_desc *np;
3366 
3367 		if (priv->extend_desc)
3368 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3369 		else
3370 			p = rx_q->dma_rx + entry;
3371 
3372 		/* read the status of the incoming frame */
3373 		status = stmmac_rx_status(priv, &priv->dev->stats,
3374 				&priv->xstats, p);
3375 		/* check if managed by the DMA otherwise go ahead */
3376 		if (unlikely(status & dma_own))
3377 			break;
3378 
3379 		count++;
3380 
3381 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3382 		next_entry = rx_q->cur_rx;
3383 
3384 		if (priv->extend_desc)
3385 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3386 		else
3387 			np = rx_q->dma_rx + next_entry;
3388 
3389 		prefetch(np);
3390 
3391 		if (priv->extend_desc)
3392 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3393 					&priv->xstats, rx_q->dma_erx + entry);
3394 		if (unlikely(status == discard_frame)) {
3395 			priv->dev->stats.rx_errors++;
3396 			if (priv->hwts_rx_en && !priv->extend_desc) {
3397 				/* DESC2 & DESC3 will be overwritten by device
3398 				 * with timestamp value, hence reinitialize
3399 				 * them in stmmac_rx_refill() function so that
3400 				 * device can reuse it.
3401 				 */
3402 				dev_kfree_skb_any(rx_q->rx_skbuff[entry]);
3403 				rx_q->rx_skbuff[entry] = NULL;
3404 				dma_unmap_single(priv->device,
3405 						 rx_q->rx_skbuff_dma[entry],
3406 						 priv->dma_buf_sz,
3407 						 DMA_FROM_DEVICE);
3408 			}
3409 		} else {
3410 			struct sk_buff *skb;
3411 			int frame_len;
3412 			unsigned int des;
3413 
3414 			stmmac_get_desc_addr(priv, p, &des);
3415 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3416 
3417 			/*  If frame length is greater than skb buffer size
3418 			 *  (preallocated during init) then the packet is
3419 			 *  ignored
3420 			 */
3421 			if (frame_len > priv->dma_buf_sz) {
3422 				netdev_err(priv->dev,
3423 					   "len %d larger than size (%d)\n",
3424 					   frame_len, priv->dma_buf_sz);
3425 				priv->dev->stats.rx_length_errors++;
3426 				break;
3427 			}
3428 
3429 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3430 			 * Type frames (LLC/LLC-SNAP)
3431 			 *
3432 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3433 			 * feature is always disabled and packets need to be
3434 			 * stripped manually.
3435 			 */
3436 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3437 			    unlikely(status != llc_snap))
3438 				frame_len -= ETH_FCS_LEN;
3439 
3440 			if (netif_msg_rx_status(priv)) {
3441 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3442 					   p, entry, des);
3443 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3444 					   frame_len, status);
3445 			}
3446 
3447 			/* The zero-copy is always used for all the sizes
3448 			 * in case of GMAC4 because it needs
3449 			 * to refill the used descriptors, always.
3450 			 */
3451 			if (unlikely(!xmac &&
3452 				     ((frame_len < priv->rx_copybreak) ||
3453 				     stmmac_rx_threshold_count(rx_q)))) {
3454 				skb = netdev_alloc_skb_ip_align(priv->dev,
3455 								frame_len);
3456 				if (unlikely(!skb)) {
3457 					if (net_ratelimit())
3458 						dev_warn(priv->device,
3459 							 "packet dropped\n");
3460 					priv->dev->stats.rx_dropped++;
3461 					break;
3462 				}
3463 
3464 				dma_sync_single_for_cpu(priv->device,
3465 							rx_q->rx_skbuff_dma
3466 							[entry], frame_len,
3467 							DMA_FROM_DEVICE);
3468 				skb_copy_to_linear_data(skb,
3469 							rx_q->
3470 							rx_skbuff[entry]->data,
3471 							frame_len);
3472 
3473 				skb_put(skb, frame_len);
3474 				dma_sync_single_for_device(priv->device,
3475 							   rx_q->rx_skbuff_dma
3476 							   [entry], frame_len,
3477 							   DMA_FROM_DEVICE);
3478 			} else {
3479 				skb = rx_q->rx_skbuff[entry];
3480 				if (unlikely(!skb)) {
3481 					netdev_err(priv->dev,
3482 						   "%s: Inconsistent Rx chain\n",
3483 						   priv->dev->name);
3484 					priv->dev->stats.rx_dropped++;
3485 					break;
3486 				}
3487 				prefetch(skb->data - NET_IP_ALIGN);
3488 				rx_q->rx_skbuff[entry] = NULL;
3489 				rx_q->rx_zeroc_thresh++;
3490 
3491 				skb_put(skb, frame_len);
3492 				dma_unmap_single(priv->device,
3493 						 rx_q->rx_skbuff_dma[entry],
3494 						 priv->dma_buf_sz,
3495 						 DMA_FROM_DEVICE);
3496 			}
3497 
3498 			if (netif_msg_pktdata(priv)) {
3499 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3500 					   frame_len);
3501 				print_pkt(skb->data, frame_len);
3502 			}
3503 
3504 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3505 
3506 			stmmac_rx_vlan(priv->dev, skb);
3507 
3508 			skb->protocol = eth_type_trans(skb, priv->dev);
3509 
3510 			if (unlikely(!coe))
3511 				skb_checksum_none_assert(skb);
3512 			else
3513 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3514 
3515 			napi_gro_receive(&ch->napi, skb);
3516 
3517 			priv->dev->stats.rx_packets++;
3518 			priv->dev->stats.rx_bytes += frame_len;
3519 		}
3520 		entry = next_entry;
3521 	}
3522 
3523 	stmmac_rx_refill(priv, queue);
3524 
3525 	priv->xstats.rx_pkt_n += count;
3526 
3527 	return count;
3528 }
3529 
3530 /**
3531  *  stmmac_poll - stmmac poll method (NAPI)
3532  *  @napi : pointer to the napi structure.
3533  *  @budget : maximum number of packets that the current CPU can receive from
3534  *	      all interfaces.
3535  *  Description :
3536  *  To look at the incoming frames and clear the tx resources.
3537  */
3538 static int stmmac_napi_poll(struct napi_struct *napi, int budget)
3539 {
3540 	struct stmmac_channel *ch =
3541 		container_of(napi, struct stmmac_channel, napi);
3542 	struct stmmac_priv *priv = ch->priv_data;
3543 	int work_done, rx_done = 0, tx_done = 0;
3544 	u32 chan = ch->index;
3545 
3546 	priv->xstats.napi_poll++;
3547 
3548 	if (ch->has_tx)
3549 		tx_done = stmmac_tx_clean(priv, budget, chan);
3550 	if (ch->has_rx)
3551 		rx_done = stmmac_rx(priv, budget, chan);
3552 
3553 	work_done = max(rx_done, tx_done);
3554 	work_done = min(work_done, budget);
3555 
3556 	if (work_done < budget && napi_complete_done(napi, work_done)) {
3557 		int stat;
3558 
3559 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3560 		stat = stmmac_dma_interrupt_status(priv, priv->ioaddr,
3561 						   &priv->xstats, chan);
3562 		if (stat && napi_reschedule(napi))
3563 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
3564 	}
3565 
3566 	return work_done;
3567 }
3568 
3569 /**
3570  *  stmmac_tx_timeout
3571  *  @dev : Pointer to net device structure
3572  *  Description: this function is called when a packet transmission fails to
3573  *   complete within a reasonable time. The driver will mark the error in the
3574  *   netdev structure and arrange for the device to be reset to a sane state
3575  *   in order to transmit a new packet.
3576  */
3577 static void stmmac_tx_timeout(struct net_device *dev)
3578 {
3579 	struct stmmac_priv *priv = netdev_priv(dev);
3580 
3581 	stmmac_global_err(priv);
3582 }
3583 
3584 /**
3585  *  stmmac_set_rx_mode - entry point for multicast addressing
3586  *  @dev : pointer to the device structure
3587  *  Description:
3588  *  This function is a driver entry point which gets called by the kernel
3589  *  whenever multicast addresses must be enabled/disabled.
3590  *  Return value:
3591  *  void.
3592  */
3593 static void stmmac_set_rx_mode(struct net_device *dev)
3594 {
3595 	struct stmmac_priv *priv = netdev_priv(dev);
3596 
3597 	stmmac_set_filter(priv, priv->hw, dev);
3598 }
3599 
3600 /**
3601  *  stmmac_change_mtu - entry point to change MTU size for the device.
3602  *  @dev : device pointer.
3603  *  @new_mtu : the new MTU size for the device.
3604  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3605  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3606  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3607  *  Return value:
3608  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3609  *  file on failure.
3610  */
3611 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3612 {
3613 	struct stmmac_priv *priv = netdev_priv(dev);
3614 
3615 	if (netif_running(dev)) {
3616 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3617 		return -EBUSY;
3618 	}
3619 
3620 	dev->mtu = new_mtu;
3621 
3622 	netdev_update_features(dev);
3623 
3624 	return 0;
3625 }
3626 
3627 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3628 					     netdev_features_t features)
3629 {
3630 	struct stmmac_priv *priv = netdev_priv(dev);
3631 
3632 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3633 		features &= ~NETIF_F_RXCSUM;
3634 
3635 	if (!priv->plat->tx_coe)
3636 		features &= ~NETIF_F_CSUM_MASK;
3637 
3638 	/* Some GMAC devices have a bugged Jumbo frame support that
3639 	 * needs to have the Tx COE disabled for oversized frames
3640 	 * (due to limited buffer sizes). In this case we disable
3641 	 * the TX csum insertion in the TDES and not use SF.
3642 	 */
3643 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3644 		features &= ~NETIF_F_CSUM_MASK;
3645 
3646 	/* Disable tso if asked by ethtool */
3647 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3648 		if (features & NETIF_F_TSO)
3649 			priv->tso = true;
3650 		else
3651 			priv->tso = false;
3652 	}
3653 
3654 	return features;
3655 }
3656 
3657 static int stmmac_set_features(struct net_device *netdev,
3658 			       netdev_features_t features)
3659 {
3660 	struct stmmac_priv *priv = netdev_priv(netdev);
3661 
3662 	/* Keep the COE Type in case of csum is supporting */
3663 	if (features & NETIF_F_RXCSUM)
3664 		priv->hw->rx_csum = priv->plat->rx_coe;
3665 	else
3666 		priv->hw->rx_csum = 0;
3667 	/* No check needed because rx_coe has been set before and it will be
3668 	 * fixed in case of issue.
3669 	 */
3670 	stmmac_rx_ipc(priv, priv->hw);
3671 
3672 	return 0;
3673 }
3674 
3675 /**
3676  *  stmmac_interrupt - main ISR
3677  *  @irq: interrupt number.
3678  *  @dev_id: to pass the net device pointer.
3679  *  Description: this is the main driver interrupt service routine.
3680  *  It can call:
3681  *  o DMA service routine (to manage incoming frame reception and transmission
3682  *    status)
3683  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3684  *    interrupts.
3685  */
3686 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3687 {
3688 	struct net_device *dev = (struct net_device *)dev_id;
3689 	struct stmmac_priv *priv = netdev_priv(dev);
3690 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3691 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3692 	u32 queues_count;
3693 	u32 queue;
3694 	bool xmac;
3695 
3696 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3697 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3698 
3699 	if (priv->irq_wake)
3700 		pm_wakeup_event(priv->device, 0);
3701 
3702 	if (unlikely(!dev)) {
3703 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3704 		return IRQ_NONE;
3705 	}
3706 
3707 	/* Check if adapter is up */
3708 	if (test_bit(STMMAC_DOWN, &priv->state))
3709 		return IRQ_HANDLED;
3710 	/* Check if a fatal error happened */
3711 	if (stmmac_safety_feat_interrupt(priv))
3712 		return IRQ_HANDLED;
3713 
3714 	/* To handle GMAC own interrupts */
3715 	if ((priv->plat->has_gmac) || xmac) {
3716 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3717 		int mtl_status;
3718 
3719 		if (unlikely(status)) {
3720 			/* For LPI we need to save the tx status */
3721 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3722 				priv->tx_path_in_lpi_mode = true;
3723 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3724 				priv->tx_path_in_lpi_mode = false;
3725 		}
3726 
3727 		for (queue = 0; queue < queues_count; queue++) {
3728 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3729 
3730 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3731 								queue);
3732 			if (mtl_status != -EINVAL)
3733 				status |= mtl_status;
3734 
3735 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3736 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3737 						       rx_q->rx_tail_addr,
3738 						       queue);
3739 		}
3740 
3741 		/* PCS link status */
3742 		if (priv->hw->pcs) {
3743 			if (priv->xstats.pcs_link)
3744 				netif_carrier_on(dev);
3745 			else
3746 				netif_carrier_off(dev);
3747 		}
3748 	}
3749 
3750 	/* To handle DMA interrupts */
3751 	stmmac_dma_interrupt(priv);
3752 
3753 	return IRQ_HANDLED;
3754 }
3755 
3756 #ifdef CONFIG_NET_POLL_CONTROLLER
3757 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3758  * to allow network I/O with interrupts disabled.
3759  */
3760 static void stmmac_poll_controller(struct net_device *dev)
3761 {
3762 	disable_irq(dev->irq);
3763 	stmmac_interrupt(dev->irq, dev);
3764 	enable_irq(dev->irq);
3765 }
3766 #endif
3767 
3768 /**
3769  *  stmmac_ioctl - Entry point for the Ioctl
3770  *  @dev: Device pointer.
3771  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3772  *  a proprietary structure used to pass information to the driver.
3773  *  @cmd: IOCTL command
3774  *  Description:
3775  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3776  */
3777 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3778 {
3779 	int ret = -EOPNOTSUPP;
3780 
3781 	if (!netif_running(dev))
3782 		return -EINVAL;
3783 
3784 	switch (cmd) {
3785 	case SIOCGMIIPHY:
3786 	case SIOCGMIIREG:
3787 	case SIOCSMIIREG:
3788 		if (!dev->phydev)
3789 			return -EINVAL;
3790 		ret = phy_mii_ioctl(dev->phydev, rq, cmd);
3791 		break;
3792 	case SIOCSHWTSTAMP:
3793 		ret = stmmac_hwtstamp_set(dev, rq);
3794 		break;
3795 	case SIOCGHWTSTAMP:
3796 		ret = stmmac_hwtstamp_get(dev, rq);
3797 		break;
3798 	default:
3799 		break;
3800 	}
3801 
3802 	return ret;
3803 }
3804 
3805 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3806 				    void *cb_priv)
3807 {
3808 	struct stmmac_priv *priv = cb_priv;
3809 	int ret = -EOPNOTSUPP;
3810 
3811 	stmmac_disable_all_queues(priv);
3812 
3813 	switch (type) {
3814 	case TC_SETUP_CLSU32:
3815 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3816 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3817 		break;
3818 	default:
3819 		break;
3820 	}
3821 
3822 	stmmac_enable_all_queues(priv);
3823 	return ret;
3824 }
3825 
3826 static int stmmac_setup_tc_block(struct stmmac_priv *priv,
3827 				 struct tc_block_offload *f)
3828 {
3829 	if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3830 		return -EOPNOTSUPP;
3831 
3832 	switch (f->command) {
3833 	case TC_BLOCK_BIND:
3834 		return tcf_block_cb_register(f->block, stmmac_setup_tc_block_cb,
3835 				priv, priv, f->extack);
3836 	case TC_BLOCK_UNBIND:
3837 		tcf_block_cb_unregister(f->block, stmmac_setup_tc_block_cb, priv);
3838 		return 0;
3839 	default:
3840 		return -EOPNOTSUPP;
3841 	}
3842 }
3843 
3844 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3845 			   void *type_data)
3846 {
3847 	struct stmmac_priv *priv = netdev_priv(ndev);
3848 
3849 	switch (type) {
3850 	case TC_SETUP_BLOCK:
3851 		return stmmac_setup_tc_block(priv, type_data);
3852 	case TC_SETUP_QDISC_CBS:
3853 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3854 	default:
3855 		return -EOPNOTSUPP;
3856 	}
3857 }
3858 
3859 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3860 {
3861 	struct stmmac_priv *priv = netdev_priv(ndev);
3862 	int ret = 0;
3863 
3864 	ret = eth_mac_addr(ndev, addr);
3865 	if (ret)
3866 		return ret;
3867 
3868 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3869 
3870 	return ret;
3871 }
3872 
3873 #ifdef CONFIG_DEBUG_FS
3874 static struct dentry *stmmac_fs_dir;
3875 
3876 static void sysfs_display_ring(void *head, int size, int extend_desc,
3877 			       struct seq_file *seq)
3878 {
3879 	int i;
3880 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3881 	struct dma_desc *p = (struct dma_desc *)head;
3882 
3883 	for (i = 0; i < size; i++) {
3884 		if (extend_desc) {
3885 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3886 				   i, (unsigned int)virt_to_phys(ep),
3887 				   le32_to_cpu(ep->basic.des0),
3888 				   le32_to_cpu(ep->basic.des1),
3889 				   le32_to_cpu(ep->basic.des2),
3890 				   le32_to_cpu(ep->basic.des3));
3891 			ep++;
3892 		} else {
3893 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3894 				   i, (unsigned int)virt_to_phys(p),
3895 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3896 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3897 			p++;
3898 		}
3899 		seq_printf(seq, "\n");
3900 	}
3901 }
3902 
3903 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3904 {
3905 	struct net_device *dev = seq->private;
3906 	struct stmmac_priv *priv = netdev_priv(dev);
3907 	u32 rx_count = priv->plat->rx_queues_to_use;
3908 	u32 tx_count = priv->plat->tx_queues_to_use;
3909 	u32 queue;
3910 
3911 	if ((dev->flags & IFF_UP) == 0)
3912 		return 0;
3913 
3914 	for (queue = 0; queue < rx_count; queue++) {
3915 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3916 
3917 		seq_printf(seq, "RX Queue %d:\n", queue);
3918 
3919 		if (priv->extend_desc) {
3920 			seq_printf(seq, "Extended descriptor ring:\n");
3921 			sysfs_display_ring((void *)rx_q->dma_erx,
3922 					   DMA_RX_SIZE, 1, seq);
3923 		} else {
3924 			seq_printf(seq, "Descriptor ring:\n");
3925 			sysfs_display_ring((void *)rx_q->dma_rx,
3926 					   DMA_RX_SIZE, 0, seq);
3927 		}
3928 	}
3929 
3930 	for (queue = 0; queue < tx_count; queue++) {
3931 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3932 
3933 		seq_printf(seq, "TX Queue %d:\n", queue);
3934 
3935 		if (priv->extend_desc) {
3936 			seq_printf(seq, "Extended descriptor ring:\n");
3937 			sysfs_display_ring((void *)tx_q->dma_etx,
3938 					   DMA_TX_SIZE, 1, seq);
3939 		} else {
3940 			seq_printf(seq, "Descriptor ring:\n");
3941 			sysfs_display_ring((void *)tx_q->dma_tx,
3942 					   DMA_TX_SIZE, 0, seq);
3943 		}
3944 	}
3945 
3946 	return 0;
3947 }
3948 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3949 
3950 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3951 {
3952 	struct net_device *dev = seq->private;
3953 	struct stmmac_priv *priv = netdev_priv(dev);
3954 
3955 	if (!priv->hw_cap_support) {
3956 		seq_printf(seq, "DMA HW features not supported\n");
3957 		return 0;
3958 	}
3959 
3960 	seq_printf(seq, "==============================\n");
3961 	seq_printf(seq, "\tDMA HW features\n");
3962 	seq_printf(seq, "==============================\n");
3963 
3964 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3965 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3966 	seq_printf(seq, "\t1000 Mbps: %s\n",
3967 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3968 	seq_printf(seq, "\tHalf duplex: %s\n",
3969 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3970 	seq_printf(seq, "\tHash Filter: %s\n",
3971 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3972 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3973 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3974 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3975 		   (priv->dma_cap.pcs) ? "Y" : "N");
3976 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3977 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3978 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3979 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3980 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3981 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3982 	seq_printf(seq, "\tRMON module: %s\n",
3983 		   (priv->dma_cap.rmon) ? "Y" : "N");
3984 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3985 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3986 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3987 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3988 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3989 		   (priv->dma_cap.eee) ? "Y" : "N");
3990 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3991 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3992 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3993 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3994 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3995 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3996 	} else {
3997 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3998 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3999 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4000 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4001 	}
4002 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4003 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4004 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4005 		   priv->dma_cap.number_rx_channel);
4006 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4007 		   priv->dma_cap.number_tx_channel);
4008 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4009 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4010 
4011 	return 0;
4012 }
4013 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4014 
4015 static int stmmac_init_fs(struct net_device *dev)
4016 {
4017 	struct stmmac_priv *priv = netdev_priv(dev);
4018 
4019 	/* Create per netdev entries */
4020 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4021 
4022 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
4023 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
4024 
4025 		return -ENOMEM;
4026 	}
4027 
4028 	/* Entry to report DMA RX/TX rings */
4029 	priv->dbgfs_rings_status =
4030 		debugfs_create_file("descriptors_status", 0444,
4031 				    priv->dbgfs_dir, dev,
4032 				    &stmmac_rings_status_fops);
4033 
4034 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
4035 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
4036 		debugfs_remove_recursive(priv->dbgfs_dir);
4037 
4038 		return -ENOMEM;
4039 	}
4040 
4041 	/* Entry to report the DMA HW features */
4042 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
4043 						  priv->dbgfs_dir,
4044 						  dev, &stmmac_dma_cap_fops);
4045 
4046 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
4047 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
4048 		debugfs_remove_recursive(priv->dbgfs_dir);
4049 
4050 		return -ENOMEM;
4051 	}
4052 
4053 	return 0;
4054 }
4055 
4056 static void stmmac_exit_fs(struct net_device *dev)
4057 {
4058 	struct stmmac_priv *priv = netdev_priv(dev);
4059 
4060 	debugfs_remove_recursive(priv->dbgfs_dir);
4061 }
4062 #endif /* CONFIG_DEBUG_FS */
4063 
4064 static const struct net_device_ops stmmac_netdev_ops = {
4065 	.ndo_open = stmmac_open,
4066 	.ndo_start_xmit = stmmac_xmit,
4067 	.ndo_stop = stmmac_release,
4068 	.ndo_change_mtu = stmmac_change_mtu,
4069 	.ndo_fix_features = stmmac_fix_features,
4070 	.ndo_set_features = stmmac_set_features,
4071 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4072 	.ndo_tx_timeout = stmmac_tx_timeout,
4073 	.ndo_do_ioctl = stmmac_ioctl,
4074 	.ndo_setup_tc = stmmac_setup_tc,
4075 #ifdef CONFIG_NET_POLL_CONTROLLER
4076 	.ndo_poll_controller = stmmac_poll_controller,
4077 #endif
4078 	.ndo_set_mac_address = stmmac_set_mac_address,
4079 };
4080 
4081 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4082 {
4083 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4084 		return;
4085 	if (test_bit(STMMAC_DOWN, &priv->state))
4086 		return;
4087 
4088 	netdev_err(priv->dev, "Reset adapter.\n");
4089 
4090 	rtnl_lock();
4091 	netif_trans_update(priv->dev);
4092 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4093 		usleep_range(1000, 2000);
4094 
4095 	set_bit(STMMAC_DOWN, &priv->state);
4096 	dev_close(priv->dev);
4097 	dev_open(priv->dev, NULL);
4098 	clear_bit(STMMAC_DOWN, &priv->state);
4099 	clear_bit(STMMAC_RESETING, &priv->state);
4100 	rtnl_unlock();
4101 }
4102 
4103 static void stmmac_service_task(struct work_struct *work)
4104 {
4105 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4106 			service_task);
4107 
4108 	stmmac_reset_subtask(priv);
4109 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4110 }
4111 
4112 /**
4113  *  stmmac_hw_init - Init the MAC device
4114  *  @priv: driver private structure
4115  *  Description: this function is to configure the MAC device according to
4116  *  some platform parameters or the HW capability register. It prepares the
4117  *  driver to use either ring or chain modes and to setup either enhanced or
4118  *  normal descriptors.
4119  */
4120 static int stmmac_hw_init(struct stmmac_priv *priv)
4121 {
4122 	int ret;
4123 
4124 	/* dwmac-sun8i only work in chain mode */
4125 	if (priv->plat->has_sun8i)
4126 		chain_mode = 1;
4127 	priv->chain_mode = chain_mode;
4128 
4129 	/* Initialize HW Interface */
4130 	ret = stmmac_hwif_init(priv);
4131 	if (ret)
4132 		return ret;
4133 
4134 	/* Get the HW capability (new GMAC newer than 3.50a) */
4135 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4136 	if (priv->hw_cap_support) {
4137 		dev_info(priv->device, "DMA HW capability register supported\n");
4138 
4139 		/* We can override some gmac/dma configuration fields: e.g.
4140 		 * enh_desc, tx_coe (e.g. that are passed through the
4141 		 * platform) with the values from the HW capability
4142 		 * register (if supported).
4143 		 */
4144 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4145 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4146 		priv->hw->pmt = priv->plat->pmt;
4147 
4148 		/* TXCOE doesn't work in thresh DMA mode */
4149 		if (priv->plat->force_thresh_dma_mode)
4150 			priv->plat->tx_coe = 0;
4151 		else
4152 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4153 
4154 		/* In case of GMAC4 rx_coe is from HW cap register. */
4155 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4156 
4157 		if (priv->dma_cap.rx_coe_type2)
4158 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4159 		else if (priv->dma_cap.rx_coe_type1)
4160 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4161 
4162 	} else {
4163 		dev_info(priv->device, "No HW DMA feature register supported\n");
4164 	}
4165 
4166 	if (priv->plat->rx_coe) {
4167 		priv->hw->rx_csum = priv->plat->rx_coe;
4168 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4169 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4170 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4171 	}
4172 	if (priv->plat->tx_coe)
4173 		dev_info(priv->device, "TX Checksum insertion supported\n");
4174 
4175 	if (priv->plat->pmt) {
4176 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4177 		device_set_wakeup_capable(priv->device, 1);
4178 	}
4179 
4180 	if (priv->dma_cap.tsoen)
4181 		dev_info(priv->device, "TSO supported\n");
4182 
4183 	/* Run HW quirks, if any */
4184 	if (priv->hwif_quirks) {
4185 		ret = priv->hwif_quirks(priv);
4186 		if (ret)
4187 			return ret;
4188 	}
4189 
4190 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4191 	 * In some case, for example on bugged HW this feature
4192 	 * has to be disable and this can be done by passing the
4193 	 * riwt_off field from the platform.
4194 	 */
4195 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4196 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4197 		priv->use_riwt = 1;
4198 		dev_info(priv->device,
4199 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4200 	}
4201 
4202 	return 0;
4203 }
4204 
4205 /**
4206  * stmmac_dvr_probe
4207  * @device: device pointer
4208  * @plat_dat: platform data pointer
4209  * @res: stmmac resource pointer
4210  * Description: this is the main probe function used to
4211  * call the alloc_etherdev, allocate the priv structure.
4212  * Return:
4213  * returns 0 on success, otherwise errno.
4214  */
4215 int stmmac_dvr_probe(struct device *device,
4216 		     struct plat_stmmacenet_data *plat_dat,
4217 		     struct stmmac_resources *res)
4218 {
4219 	struct net_device *ndev = NULL;
4220 	struct stmmac_priv *priv;
4221 	u32 queue, maxq;
4222 	int ret = 0;
4223 
4224 	ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
4225 				  MTL_MAX_TX_QUEUES,
4226 				  MTL_MAX_RX_QUEUES);
4227 	if (!ndev)
4228 		return -ENOMEM;
4229 
4230 	SET_NETDEV_DEV(ndev, device);
4231 
4232 	priv = netdev_priv(ndev);
4233 	priv->device = device;
4234 	priv->dev = ndev;
4235 
4236 	stmmac_set_ethtool_ops(ndev);
4237 	priv->pause = pause;
4238 	priv->plat = plat_dat;
4239 	priv->ioaddr = res->addr;
4240 	priv->dev->base_addr = (unsigned long)res->addr;
4241 
4242 	priv->dev->irq = res->irq;
4243 	priv->wol_irq = res->wol_irq;
4244 	priv->lpi_irq = res->lpi_irq;
4245 
4246 	if (res->mac)
4247 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4248 
4249 	dev_set_drvdata(device, priv->dev);
4250 
4251 	/* Verify driver arguments */
4252 	stmmac_verify_args();
4253 
4254 	/* Allocate workqueue */
4255 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4256 	if (!priv->wq) {
4257 		dev_err(priv->device, "failed to create workqueue\n");
4258 		ret = -ENOMEM;
4259 		goto error_wq;
4260 	}
4261 
4262 	INIT_WORK(&priv->service_task, stmmac_service_task);
4263 
4264 	/* Override with kernel parameters if supplied XXX CRS XXX
4265 	 * this needs to have multiple instances
4266 	 */
4267 	if ((phyaddr >= 0) && (phyaddr <= 31))
4268 		priv->plat->phy_addr = phyaddr;
4269 
4270 	if (priv->plat->stmmac_rst) {
4271 		ret = reset_control_assert(priv->plat->stmmac_rst);
4272 		reset_control_deassert(priv->plat->stmmac_rst);
4273 		/* Some reset controllers have only reset callback instead of
4274 		 * assert + deassert callbacks pair.
4275 		 */
4276 		if (ret == -ENOTSUPP)
4277 			reset_control_reset(priv->plat->stmmac_rst);
4278 	}
4279 
4280 	/* Init MAC and get the capabilities */
4281 	ret = stmmac_hw_init(priv);
4282 	if (ret)
4283 		goto error_hw_init;
4284 
4285 	/* Configure real RX and TX queues */
4286 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4287 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4288 
4289 	ndev->netdev_ops = &stmmac_netdev_ops;
4290 
4291 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4292 			    NETIF_F_RXCSUM;
4293 
4294 	ret = stmmac_tc_init(priv, priv);
4295 	if (!ret) {
4296 		ndev->hw_features |= NETIF_F_HW_TC;
4297 	}
4298 
4299 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4300 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4301 		priv->tso = true;
4302 		dev_info(priv->device, "TSO feature enabled\n");
4303 	}
4304 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4305 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4306 #ifdef STMMAC_VLAN_TAG_USED
4307 	/* Both mac100 and gmac support receive VLAN tag detection */
4308 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4309 #endif
4310 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4311 
4312 	/* MTU range: 46 - hw-specific max */
4313 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4314 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4315 		ndev->max_mtu = JUMBO_LEN;
4316 	else if (priv->plat->has_xgmac)
4317 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4318 	else
4319 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4320 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4321 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4322 	 */
4323 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4324 	    (priv->plat->maxmtu >= ndev->min_mtu))
4325 		ndev->max_mtu = priv->plat->maxmtu;
4326 	else if (priv->plat->maxmtu < ndev->min_mtu)
4327 		dev_warn(priv->device,
4328 			 "%s: warning: maxmtu having invalid value (%d)\n",
4329 			 __func__, priv->plat->maxmtu);
4330 
4331 	if (flow_ctrl)
4332 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4333 
4334 	/* Setup channels NAPI */
4335 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4336 
4337 	for (queue = 0; queue < maxq; queue++) {
4338 		struct stmmac_channel *ch = &priv->channel[queue];
4339 
4340 		ch->priv_data = priv;
4341 		ch->index = queue;
4342 
4343 		if (queue < priv->plat->rx_queues_to_use)
4344 			ch->has_rx = true;
4345 		if (queue < priv->plat->tx_queues_to_use)
4346 			ch->has_tx = true;
4347 
4348 		netif_napi_add(ndev, &ch->napi, stmmac_napi_poll,
4349 			       NAPI_POLL_WEIGHT);
4350 	}
4351 
4352 	mutex_init(&priv->lock);
4353 
4354 	/* If a specific clk_csr value is passed from the platform
4355 	 * this means that the CSR Clock Range selection cannot be
4356 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4357 	 * set the MDC clock dynamically according to the csr actual
4358 	 * clock input.
4359 	 */
4360 	if (!priv->plat->clk_csr)
4361 		stmmac_clk_csr_set(priv);
4362 	else
4363 		priv->clk_csr = priv->plat->clk_csr;
4364 
4365 	stmmac_check_pcs_mode(priv);
4366 
4367 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4368 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4369 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4370 		/* MDIO bus Registration */
4371 		ret = stmmac_mdio_register(ndev);
4372 		if (ret < 0) {
4373 			dev_err(priv->device,
4374 				"%s: MDIO bus (id: %d) registration failed",
4375 				__func__, priv->plat->bus_id);
4376 			goto error_mdio_register;
4377 		}
4378 	}
4379 
4380 	ret = register_netdev(ndev);
4381 	if (ret) {
4382 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4383 			__func__, ret);
4384 		goto error_netdev_register;
4385 	}
4386 
4387 #ifdef CONFIG_DEBUG_FS
4388 	ret = stmmac_init_fs(ndev);
4389 	if (ret < 0)
4390 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4391 			    __func__);
4392 #endif
4393 
4394 	return ret;
4395 
4396 error_netdev_register:
4397 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4398 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4399 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4400 		stmmac_mdio_unregister(ndev);
4401 error_mdio_register:
4402 	for (queue = 0; queue < maxq; queue++) {
4403 		struct stmmac_channel *ch = &priv->channel[queue];
4404 
4405 		netif_napi_del(&ch->napi);
4406 	}
4407 error_hw_init:
4408 	destroy_workqueue(priv->wq);
4409 error_wq:
4410 	free_netdev(ndev);
4411 
4412 	return ret;
4413 }
4414 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4415 
4416 /**
4417  * stmmac_dvr_remove
4418  * @dev: device pointer
4419  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4420  * changes the link status, releases the DMA descriptor rings.
4421  */
4422 int stmmac_dvr_remove(struct device *dev)
4423 {
4424 	struct net_device *ndev = dev_get_drvdata(dev);
4425 	struct stmmac_priv *priv = netdev_priv(ndev);
4426 
4427 	netdev_info(priv->dev, "%s: removing driver", __func__);
4428 
4429 #ifdef CONFIG_DEBUG_FS
4430 	stmmac_exit_fs(ndev);
4431 #endif
4432 	stmmac_stop_all_dma(priv);
4433 
4434 	stmmac_mac_set(priv, priv->ioaddr, false);
4435 	netif_carrier_off(ndev);
4436 	unregister_netdev(ndev);
4437 	if (priv->plat->stmmac_rst)
4438 		reset_control_assert(priv->plat->stmmac_rst);
4439 	clk_disable_unprepare(priv->plat->pclk);
4440 	clk_disable_unprepare(priv->plat->stmmac_clk);
4441 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4442 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4443 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4444 		stmmac_mdio_unregister(ndev);
4445 	destroy_workqueue(priv->wq);
4446 	mutex_destroy(&priv->lock);
4447 	free_netdev(ndev);
4448 
4449 	return 0;
4450 }
4451 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4452 
4453 /**
4454  * stmmac_suspend - suspend callback
4455  * @dev: device pointer
4456  * Description: this is the function to suspend the device and it is called
4457  * by the platform driver to stop the network queue, release the resources,
4458  * program the PMT register (for WoL), clean and release driver resources.
4459  */
4460 int stmmac_suspend(struct device *dev)
4461 {
4462 	struct net_device *ndev = dev_get_drvdata(dev);
4463 	struct stmmac_priv *priv = netdev_priv(ndev);
4464 
4465 	if (!ndev || !netif_running(ndev))
4466 		return 0;
4467 
4468 	if (ndev->phydev)
4469 		phy_stop(ndev->phydev);
4470 
4471 	mutex_lock(&priv->lock);
4472 
4473 	netif_device_detach(ndev);
4474 	stmmac_stop_all_queues(priv);
4475 
4476 	stmmac_disable_all_queues(priv);
4477 
4478 	/* Stop TX/RX DMA */
4479 	stmmac_stop_all_dma(priv);
4480 
4481 	/* Enable Power down mode by programming the PMT regs */
4482 	if (device_may_wakeup(priv->device)) {
4483 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4484 		priv->irq_wake = 1;
4485 	} else {
4486 		stmmac_mac_set(priv, priv->ioaddr, false);
4487 		pinctrl_pm_select_sleep_state(priv->device);
4488 		/* Disable clock in case of PWM is off */
4489 		clk_disable(priv->plat->pclk);
4490 		clk_disable(priv->plat->stmmac_clk);
4491 	}
4492 	mutex_unlock(&priv->lock);
4493 
4494 	priv->oldlink = false;
4495 	priv->speed = SPEED_UNKNOWN;
4496 	priv->oldduplex = DUPLEX_UNKNOWN;
4497 	return 0;
4498 }
4499 EXPORT_SYMBOL_GPL(stmmac_suspend);
4500 
4501 /**
4502  * stmmac_reset_queues_param - reset queue parameters
4503  * @dev: device pointer
4504  */
4505 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4506 {
4507 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4508 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4509 	u32 queue;
4510 
4511 	for (queue = 0; queue < rx_cnt; queue++) {
4512 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4513 
4514 		rx_q->cur_rx = 0;
4515 		rx_q->dirty_rx = 0;
4516 	}
4517 
4518 	for (queue = 0; queue < tx_cnt; queue++) {
4519 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4520 
4521 		tx_q->cur_tx = 0;
4522 		tx_q->dirty_tx = 0;
4523 		tx_q->mss = 0;
4524 	}
4525 }
4526 
4527 /**
4528  * stmmac_resume - resume callback
4529  * @dev: device pointer
4530  * Description: when resume this function is invoked to setup the DMA and CORE
4531  * in a usable state.
4532  */
4533 int stmmac_resume(struct device *dev)
4534 {
4535 	struct net_device *ndev = dev_get_drvdata(dev);
4536 	struct stmmac_priv *priv = netdev_priv(ndev);
4537 
4538 	if (!netif_running(ndev))
4539 		return 0;
4540 
4541 	/* Power Down bit, into the PM register, is cleared
4542 	 * automatically as soon as a magic packet or a Wake-up frame
4543 	 * is received. Anyway, it's better to manually clear
4544 	 * this bit because it can generate problems while resuming
4545 	 * from another devices (e.g. serial console).
4546 	 */
4547 	if (device_may_wakeup(priv->device)) {
4548 		mutex_lock(&priv->lock);
4549 		stmmac_pmt(priv, priv->hw, 0);
4550 		mutex_unlock(&priv->lock);
4551 		priv->irq_wake = 0;
4552 	} else {
4553 		pinctrl_pm_select_default_state(priv->device);
4554 		/* enable the clk previously disabled */
4555 		clk_enable(priv->plat->stmmac_clk);
4556 		clk_enable(priv->plat->pclk);
4557 		/* reset the phy so that it's ready */
4558 		if (priv->mii)
4559 			stmmac_mdio_reset(priv->mii);
4560 	}
4561 
4562 	netif_device_attach(ndev);
4563 
4564 	mutex_lock(&priv->lock);
4565 
4566 	stmmac_reset_queues_param(priv);
4567 
4568 	stmmac_clear_descriptors(priv);
4569 
4570 	stmmac_hw_setup(ndev, false);
4571 	stmmac_init_tx_coalesce(priv);
4572 	stmmac_set_rx_mode(ndev);
4573 
4574 	stmmac_enable_all_queues(priv);
4575 
4576 	stmmac_start_all_queues(priv);
4577 
4578 	mutex_unlock(&priv->lock);
4579 
4580 	if (ndev->phydev)
4581 		phy_start(ndev->phydev);
4582 
4583 	return 0;
4584 }
4585 EXPORT_SYMBOL_GPL(stmmac_resume);
4586 
4587 #ifndef MODULE
4588 static int __init stmmac_cmdline_opt(char *str)
4589 {
4590 	char *opt;
4591 
4592 	if (!str || !*str)
4593 		return -EINVAL;
4594 	while ((opt = strsep(&str, ",")) != NULL) {
4595 		if (!strncmp(opt, "debug:", 6)) {
4596 			if (kstrtoint(opt + 6, 0, &debug))
4597 				goto err;
4598 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4599 			if (kstrtoint(opt + 8, 0, &phyaddr))
4600 				goto err;
4601 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4602 			if (kstrtoint(opt + 7, 0, &buf_sz))
4603 				goto err;
4604 		} else if (!strncmp(opt, "tc:", 3)) {
4605 			if (kstrtoint(opt + 3, 0, &tc))
4606 				goto err;
4607 		} else if (!strncmp(opt, "watchdog:", 9)) {
4608 			if (kstrtoint(opt + 9, 0, &watchdog))
4609 				goto err;
4610 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4611 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4612 				goto err;
4613 		} else if (!strncmp(opt, "pause:", 6)) {
4614 			if (kstrtoint(opt + 6, 0, &pause))
4615 				goto err;
4616 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4617 			if (kstrtoint(opt + 10, 0, &eee_timer))
4618 				goto err;
4619 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4620 			if (kstrtoint(opt + 11, 0, &chain_mode))
4621 				goto err;
4622 		}
4623 	}
4624 	return 0;
4625 
4626 err:
4627 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4628 	return -EINVAL;
4629 }
4630 
4631 __setup("stmmaceth=", stmmac_cmdline_opt);
4632 #endif /* MODULE */
4633 
4634 static int __init stmmac_init(void)
4635 {
4636 #ifdef CONFIG_DEBUG_FS
4637 	/* Create debugfs main directory if it doesn't exist yet */
4638 	if (!stmmac_fs_dir) {
4639 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4640 
4641 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4642 			pr_err("ERROR %s, debugfs create directory failed\n",
4643 			       STMMAC_RESOURCE_NAME);
4644 
4645 			return -ENOMEM;
4646 		}
4647 	}
4648 #endif
4649 
4650 	return 0;
4651 }
4652 
4653 static void __exit stmmac_exit(void)
4654 {
4655 #ifdef CONFIG_DEBUG_FS
4656 	debugfs_remove_recursive(stmmac_fs_dir);
4657 #endif
4658 }
4659 
4660 module_init(stmmac_init)
4661 module_exit(stmmac_exit)
4662 
4663 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4664 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4665 MODULE_LICENSE("GPL");
4666