1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53 
54 #undef STMMAC_DEBUG
55 /*#define STMMAC_DEBUG*/
56 #ifdef STMMAC_DEBUG
57 #define DBG(nlevel, klevel, fmt, args...) \
58 		((void)(netif_msg_##nlevel(priv) && \
59 		printk(KERN_##klevel fmt, ## args)))
60 #else
61 #define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62 #endif
63 
64 #undef STMMAC_RX_DEBUG
65 /*#define STMMAC_RX_DEBUG*/
66 #ifdef STMMAC_RX_DEBUG
67 #define RX_DBG(fmt, args...)  printk(fmt, ## args)
68 #else
69 #define RX_DBG(fmt, args...)  do { } while (0)
70 #endif
71 
72 #undef STMMAC_XMIT_DEBUG
73 /*#define STMMAC_XMIT_DEBUG*/
74 #ifdef STMMAC_XMIT_DEBUG
75 #define TX_DBG(fmt, args...)  printk(fmt, ## args)
76 #else
77 #define TX_DBG(fmt, args...)  do { } while (0)
78 #endif
79 
80 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
81 #define JUMBO_LEN	9000
82 
83 /* Module parameters */
84 #define TX_TIMEO	5000
85 static int watchdog = TX_TIMEO;
86 module_param(watchdog, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
88 
89 static int debug = -1;
90 module_param(debug, int, S_IRUGO | S_IWUSR);
91 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
92 
93 int phyaddr = -1;
94 module_param(phyaddr, int, S_IRUGO);
95 MODULE_PARM_DESC(phyaddr, "Physical device address");
96 
97 #define DMA_TX_SIZE 256
98 static int dma_txsize = DMA_TX_SIZE;
99 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
101 
102 #define DMA_RX_SIZE 256
103 static int dma_rxsize = DMA_RX_SIZE;
104 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
105 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
106 
107 static int flow_ctrl = FLOW_OFF;
108 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
109 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
110 
111 static int pause = PAUSE_TIME;
112 module_param(pause, int, S_IRUGO | S_IWUSR);
113 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
114 
115 #define TC_DEFAULT 64
116 static int tc = TC_DEFAULT;
117 module_param(tc, int, S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(tc, "DMA threshold control value");
119 
120 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
121 static int buf_sz = DMA_BUFFER_SIZE;
122 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
123 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
124 
125 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
126 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
127 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
128 
129 #define STMMAC_DEFAULT_LPI_TIMER	1000
130 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
131 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
132 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
133 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
134 
135 /* By default the driver will use the ring mode to manage tx and rx descriptors
136  * but passing this value so user can force to use the chain instead of the ring
137  */
138 static unsigned int chain_mode;
139 module_param(chain_mode, int, S_IRUGO);
140 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
141 
142 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
143 
144 #ifdef CONFIG_STMMAC_DEBUG_FS
145 static int stmmac_init_fs(struct net_device *dev);
146 static void stmmac_exit_fs(void);
147 #endif
148 
149 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
150 
151 /**
152  * stmmac_verify_args - verify the driver parameters.
153  * Description: it verifies if some wrong parameter is passed to the driver.
154  * Note that wrong parameters are replaced with the default values.
155  */
156 static void stmmac_verify_args(void)
157 {
158 	if (unlikely(watchdog < 0))
159 		watchdog = TX_TIMEO;
160 	if (unlikely(dma_rxsize < 0))
161 		dma_rxsize = DMA_RX_SIZE;
162 	if (unlikely(dma_txsize < 0))
163 		dma_txsize = DMA_TX_SIZE;
164 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165 		buf_sz = DMA_BUFFER_SIZE;
166 	if (unlikely(flow_ctrl > 1))
167 		flow_ctrl = FLOW_AUTO;
168 	else if (likely(flow_ctrl < 0))
169 		flow_ctrl = FLOW_OFF;
170 	if (unlikely((pause < 0) || (pause > 0xffff)))
171 		pause = PAUSE_TIME;
172 	if (eee_timer < 0)
173 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
174 }
175 
176 /**
177  * stmmac_clk_csr_set - dynamically set the MDC clock
178  * @priv: driver private structure
179  * Description: this is to dynamically set the MDC clock according to the csr
180  * clock input.
181  * Note:
182  *	If a specific clk_csr value is passed from the platform
183  *	this means that the CSR Clock Range selection cannot be
184  *	changed at run-time and it is fixed (as reported in the driver
185  *	documentation). Viceversa the driver will try to set the MDC
186  *	clock dynamically according to the actual clock input.
187  */
188 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
189 {
190 	u32 clk_rate;
191 
192 	clk_rate = clk_get_rate(priv->stmmac_clk);
193 
194 	/* Platform provided default clk_csr would be assumed valid
195 	 * for all other cases except for the below mentioned ones.
196 	 * For values higher than the IEEE 802.3 specified frequency
197 	 * we can not estimate the proper divider as it is not known
198 	 * the frequency of clk_csr_i. So we do not change the default
199 	 * divider.
200 	 */
201 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
202 		if (clk_rate < CSR_F_35M)
203 			priv->clk_csr = STMMAC_CSR_20_35M;
204 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
205 			priv->clk_csr = STMMAC_CSR_35_60M;
206 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
207 			priv->clk_csr = STMMAC_CSR_60_100M;
208 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
209 			priv->clk_csr = STMMAC_CSR_100_150M;
210 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
211 			priv->clk_csr = STMMAC_CSR_150_250M;
212 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
213 			priv->clk_csr = STMMAC_CSR_250_300M;
214 	}
215 }
216 
217 #if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
218 static void print_pkt(unsigned char *buf, int len)
219 {
220 	int j;
221 	pr_info("len = %d byte, buf addr: 0x%p", len, buf);
222 	for (j = 0; j < len; j++) {
223 		if ((j % 16) == 0)
224 			pr_info("\n %03x:", j);
225 		pr_info(" %02x", buf[j]);
226 	}
227 	pr_info("\n");
228 }
229 #endif
230 
231 /* minimum number of free TX descriptors required to wake up TX process */
232 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
233 
234 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
235 {
236 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
237 }
238 
239 /**
240  * stmmac_hw_fix_mac_speed: callback for speed selection
241  * @priv: driver private structure
242  * Description: on some platforms (e.g. ST), some HW system configuraton
243  * registers have to be set according to the link speed negotiated.
244  */
245 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
246 {
247 	struct phy_device *phydev = priv->phydev;
248 
249 	if (likely(priv->plat->fix_mac_speed))
250 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
251 }
252 
253 /**
254  * stmmac_enable_eee_mode: Check and enter in LPI mode
255  * @priv: driver private structure
256  * Description: this function is to verify and enter in LPI mode for EEE.
257  */
258 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
259 {
260 	/* Check and enter in LPI mode */
261 	if ((priv->dirty_tx == priv->cur_tx) &&
262 	    (priv->tx_path_in_lpi_mode == false))
263 		priv->hw->mac->set_eee_mode(priv->ioaddr);
264 }
265 
266 /**
267  * stmmac_disable_eee_mode: disable/exit from EEE
268  * @priv: driver private structure
269  * Description: this function is to exit and disable EEE in case of
270  * LPI state is true. This is called by the xmit.
271  */
272 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
273 {
274 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
275 	del_timer_sync(&priv->eee_ctrl_timer);
276 	priv->tx_path_in_lpi_mode = false;
277 }
278 
279 /**
280  * stmmac_eee_ctrl_timer: EEE TX SW timer.
281  * @arg : data hook
282  * Description:
283  *  if there is no data transfer and if we are not in LPI state,
284  *  then MAC Transmitter can be moved to LPI state.
285  */
286 static void stmmac_eee_ctrl_timer(unsigned long arg)
287 {
288 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
289 
290 	stmmac_enable_eee_mode(priv);
291 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
292 }
293 
294 /**
295  * stmmac_eee_init: init EEE
296  * @priv: driver private structure
297  * Description:
298  *  If the EEE support has been enabled while configuring the driver,
299  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
300  *  phy can also manage EEE, so enable the LPI state and start the timer
301  *  to verify if the tx path can enter in LPI state.
302  */
303 bool stmmac_eee_init(struct stmmac_priv *priv)
304 {
305 	bool ret = false;
306 
307 	/* Using PCS we cannot dial with the phy registers at this stage
308 	 * so we do not support extra feature like EEE.
309 	 */
310 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
311 	    (priv->pcs == STMMAC_PCS_RTBI))
312 		goto out;
313 
314 	/* MAC core supports the EEE feature. */
315 	if (priv->dma_cap.eee) {
316 		/* Check if the PHY supports EEE */
317 		if (phy_init_eee(priv->phydev, 1))
318 			goto out;
319 
320 		if (!priv->eee_active) {
321 			priv->eee_active = 1;
322 			init_timer(&priv->eee_ctrl_timer);
323 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
324 			priv->eee_ctrl_timer.data = (unsigned long)priv;
325 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
326 			add_timer(&priv->eee_ctrl_timer);
327 
328 			priv->hw->mac->set_eee_timer(priv->ioaddr,
329 						     STMMAC_DEFAULT_LIT_LS,
330 						     priv->tx_lpi_timer);
331 		} else
332 			/* Set HW EEE according to the speed */
333 			priv->hw->mac->set_eee_pls(priv->ioaddr,
334 						   priv->phydev->link);
335 
336 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
337 
338 		ret = true;
339 	}
340 out:
341 	return ret;
342 }
343 
344 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
345  * @priv: driver private structure
346  * @entry : descriptor index to be used.
347  * @skb : the socket buffer
348  * Description :
349  * This function will read timestamp from the descriptor & pass it to stack.
350  * and also perform some sanity checks.
351  */
352 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
353 				   unsigned int entry, struct sk_buff *skb)
354 {
355 	struct skb_shared_hwtstamps shhwtstamp;
356 	u64 ns;
357 	void *desc = NULL;
358 
359 	if (!priv->hwts_tx_en)
360 		return;
361 
362 	/* exit if skb doesn't support hw tstamp */
363 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
364 		return;
365 
366 	if (priv->adv_ts)
367 		desc = (priv->dma_etx + entry);
368 	else
369 		desc = (priv->dma_tx + entry);
370 
371 	/* check tx tstamp status */
372 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
373 		return;
374 
375 	/* get the valid tstamp */
376 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
377 
378 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
379 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
380 	/* pass tstamp to stack */
381 	skb_tstamp_tx(skb, &shhwtstamp);
382 
383 	return;
384 }
385 
386 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
387  * @priv: driver private structure
388  * @entry : descriptor index to be used.
389  * @skb : the socket buffer
390  * Description :
391  * This function will read received packet's timestamp from the descriptor
392  * and pass it to stack. It also perform some sanity checks.
393  */
394 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
395 				   unsigned int entry, struct sk_buff *skb)
396 {
397 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
398 	u64 ns;
399 	void *desc = NULL;
400 
401 	if (!priv->hwts_rx_en)
402 		return;
403 
404 	if (priv->adv_ts)
405 		desc = (priv->dma_erx + entry);
406 	else
407 		desc = (priv->dma_rx + entry);
408 
409 	/* exit if rx tstamp is not valid */
410 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
411 		return;
412 
413 	/* get valid tstamp */
414 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
415 	shhwtstamp = skb_hwtstamps(skb);
416 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
417 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
418 }
419 
420 /**
421  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
422  *  @dev: device pointer.
423  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
424  *  a proprietary structure used to pass information to the driver.
425  *  Description:
426  *  This function configures the MAC to enable/disable both outgoing(TX)
427  *  and incoming(RX) packets time stamping based on user input.
428  *  Return Value:
429  *  0 on success and an appropriate -ve integer on failure.
430  */
431 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
432 {
433 	struct stmmac_priv *priv = netdev_priv(dev);
434 	struct hwtstamp_config config;
435 	struct timespec now;
436 	u64 temp = 0;
437 	u32 ptp_v2 = 0;
438 	u32 tstamp_all = 0;
439 	u32 ptp_over_ipv4_udp = 0;
440 	u32 ptp_over_ipv6_udp = 0;
441 	u32 ptp_over_ethernet = 0;
442 	u32 snap_type_sel = 0;
443 	u32 ts_master_en = 0;
444 	u32 ts_event_en = 0;
445 	u32 value = 0;
446 
447 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
448 		netdev_alert(priv->dev, "No support for HW time stamping\n");
449 		priv->hwts_tx_en = 0;
450 		priv->hwts_rx_en = 0;
451 
452 		return -EOPNOTSUPP;
453 	}
454 
455 	if (copy_from_user(&config, ifr->ifr_data,
456 			   sizeof(struct hwtstamp_config)))
457 		return -EFAULT;
458 
459 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
460 		 __func__, config.flags, config.tx_type, config.rx_filter);
461 
462 	/* reserved for future extensions */
463 	if (config.flags)
464 		return -EINVAL;
465 
466 	switch (config.tx_type) {
467 	case HWTSTAMP_TX_OFF:
468 		priv->hwts_tx_en = 0;
469 		break;
470 	case HWTSTAMP_TX_ON:
471 		priv->hwts_tx_en = 1;
472 		break;
473 	default:
474 		return -ERANGE;
475 	}
476 
477 	if (priv->adv_ts) {
478 		switch (config.rx_filter) {
479 		case HWTSTAMP_FILTER_NONE:
480 			/* time stamp no incoming packet at all */
481 			config.rx_filter = HWTSTAMP_FILTER_NONE;
482 			break;
483 
484 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
485 			/* PTP v1, UDP, any kind of event packet */
486 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
487 			/* take time stamp for all event messages */
488 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
489 
490 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
491 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
492 			break;
493 
494 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
495 			/* PTP v1, UDP, Sync packet */
496 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
497 			/* take time stamp for SYNC messages only */
498 			ts_event_en = PTP_TCR_TSEVNTENA;
499 
500 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
501 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
502 			break;
503 
504 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
505 			/* PTP v1, UDP, Delay_req packet */
506 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
507 			/* take time stamp for Delay_Req messages only */
508 			ts_master_en = PTP_TCR_TSMSTRENA;
509 			ts_event_en = PTP_TCR_TSEVNTENA;
510 
511 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
512 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
513 			break;
514 
515 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
516 			/* PTP v2, UDP, any kind of event packet */
517 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
518 			ptp_v2 = PTP_TCR_TSVER2ENA;
519 			/* take time stamp for all event messages */
520 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
521 
522 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
523 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
524 			break;
525 
526 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
527 			/* PTP v2, UDP, Sync packet */
528 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
529 			ptp_v2 = PTP_TCR_TSVER2ENA;
530 			/* take time stamp for SYNC messages only */
531 			ts_event_en = PTP_TCR_TSEVNTENA;
532 
533 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
534 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
535 			break;
536 
537 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
538 			/* PTP v2, UDP, Delay_req packet */
539 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
540 			ptp_v2 = PTP_TCR_TSVER2ENA;
541 			/* take time stamp for Delay_Req messages only */
542 			ts_master_en = PTP_TCR_TSMSTRENA;
543 			ts_event_en = PTP_TCR_TSEVNTENA;
544 
545 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
546 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
547 			break;
548 
549 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
550 			/* PTP v2/802.AS1 any layer, any kind of event packet */
551 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
552 			ptp_v2 = PTP_TCR_TSVER2ENA;
553 			/* take time stamp for all event messages */
554 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
555 
556 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
557 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
558 			ptp_over_ethernet = PTP_TCR_TSIPENA;
559 			break;
560 
561 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
562 			/* PTP v2/802.AS1, any layer, Sync packet */
563 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
564 			ptp_v2 = PTP_TCR_TSVER2ENA;
565 			/* take time stamp for SYNC messages only */
566 			ts_event_en = PTP_TCR_TSEVNTENA;
567 
568 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 			ptp_over_ethernet = PTP_TCR_TSIPENA;
571 			break;
572 
573 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
574 			/* PTP v2/802.AS1, any layer, Delay_req packet */
575 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
576 			ptp_v2 = PTP_TCR_TSVER2ENA;
577 			/* take time stamp for Delay_Req messages only */
578 			ts_master_en = PTP_TCR_TSMSTRENA;
579 			ts_event_en = PTP_TCR_TSEVNTENA;
580 
581 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
582 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
583 			ptp_over_ethernet = PTP_TCR_TSIPENA;
584 			break;
585 
586 		case HWTSTAMP_FILTER_ALL:
587 			/* time stamp any incoming packet */
588 			config.rx_filter = HWTSTAMP_FILTER_ALL;
589 			tstamp_all = PTP_TCR_TSENALL;
590 			break;
591 
592 		default:
593 			return -ERANGE;
594 		}
595 	} else {
596 		switch (config.rx_filter) {
597 		case HWTSTAMP_FILTER_NONE:
598 			config.rx_filter = HWTSTAMP_FILTER_NONE;
599 			break;
600 		default:
601 			/* PTP v1, UDP, any kind of event packet */
602 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
603 			break;
604 		}
605 	}
606 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
607 
608 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
609 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
610 	else {
611 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
612 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
613 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
614 			 ts_master_en | snap_type_sel);
615 
616 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
617 
618 		/* program Sub Second Increment reg */
619 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
620 
621 		/* calculate default added value:
622 		 * formula is :
623 		 * addend = (2^32)/freq_div_ratio;
624 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
625 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
626 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
627 		 *       achive 20ns accuracy.
628 		 *
629 		 * 2^x * y == (y << x), hence
630 		 * 2^32 * 50000000 ==> (50000000 << 32)
631 		 */
632 		temp = (u64) (50000000ULL << 32);
633 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
634 		priv->hw->ptp->config_addend(priv->ioaddr,
635 					     priv->default_addend);
636 
637 		/* initialize system time */
638 		getnstimeofday(&now);
639 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
640 					    now.tv_nsec);
641 	}
642 
643 	return copy_to_user(ifr->ifr_data, &config,
644 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
645 }
646 
647 /**
648  * stmmac_init_ptp: init PTP
649  * @priv: driver private structure
650  * Description: this is to verify if the HW supports the PTPv1 or v2.
651  * This is done by looking at the HW cap. register.
652  * Also it registers the ptp driver.
653  */
654 static int stmmac_init_ptp(struct stmmac_priv *priv)
655 {
656 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
657 		return -EOPNOTSUPP;
658 
659 	if (netif_msg_hw(priv)) {
660 		if (priv->dma_cap.time_stamp) {
661 			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
662 			priv->adv_ts = 0;
663 		}
664 		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
665 			pr_debug
666 			    ("IEEE 1588-2008 Advanced Time Stamp supported\n");
667 			priv->adv_ts = 1;
668 		}
669 	}
670 
671 	priv->hw->ptp = &stmmac_ptp;
672 	priv->hwts_tx_en = 0;
673 	priv->hwts_rx_en = 0;
674 
675 	return stmmac_ptp_register(priv);
676 }
677 
678 static void stmmac_release_ptp(struct stmmac_priv *priv)
679 {
680 	stmmac_ptp_unregister(priv);
681 }
682 
683 /**
684  * stmmac_adjust_link
685  * @dev: net device structure
686  * Description: it adjusts the link parameters.
687  */
688 static void stmmac_adjust_link(struct net_device *dev)
689 {
690 	struct stmmac_priv *priv = netdev_priv(dev);
691 	struct phy_device *phydev = priv->phydev;
692 	unsigned long flags;
693 	int new_state = 0;
694 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
695 
696 	if (phydev == NULL)
697 		return;
698 
699 	DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
700 	    phydev->addr, phydev->link);
701 
702 	spin_lock_irqsave(&priv->lock, flags);
703 
704 	if (phydev->link) {
705 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
706 
707 		/* Now we make sure that we can be in full duplex mode.
708 		 * If not, we operate in half-duplex mode. */
709 		if (phydev->duplex != priv->oldduplex) {
710 			new_state = 1;
711 			if (!(phydev->duplex))
712 				ctrl &= ~priv->hw->link.duplex;
713 			else
714 				ctrl |= priv->hw->link.duplex;
715 			priv->oldduplex = phydev->duplex;
716 		}
717 		/* Flow Control operation */
718 		if (phydev->pause)
719 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
720 						 fc, pause_time);
721 
722 		if (phydev->speed != priv->speed) {
723 			new_state = 1;
724 			switch (phydev->speed) {
725 			case 1000:
726 				if (likely(priv->plat->has_gmac))
727 					ctrl &= ~priv->hw->link.port;
728 				stmmac_hw_fix_mac_speed(priv);
729 				break;
730 			case 100:
731 			case 10:
732 				if (priv->plat->has_gmac) {
733 					ctrl |= priv->hw->link.port;
734 					if (phydev->speed == SPEED_100) {
735 						ctrl |= priv->hw->link.speed;
736 					} else {
737 						ctrl &= ~(priv->hw->link.speed);
738 					}
739 				} else {
740 					ctrl &= ~priv->hw->link.port;
741 				}
742 				stmmac_hw_fix_mac_speed(priv);
743 				break;
744 			default:
745 				if (netif_msg_link(priv))
746 					pr_warn("%s: Speed (%d) not 10/100\n",
747 						dev->name, phydev->speed);
748 				break;
749 			}
750 
751 			priv->speed = phydev->speed;
752 		}
753 
754 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
755 
756 		if (!priv->oldlink) {
757 			new_state = 1;
758 			priv->oldlink = 1;
759 		}
760 	} else if (priv->oldlink) {
761 		new_state = 1;
762 		priv->oldlink = 0;
763 		priv->speed = 0;
764 		priv->oldduplex = -1;
765 	}
766 
767 	if (new_state && netif_msg_link(priv))
768 		phy_print_status(phydev);
769 
770 	/* At this stage, it could be needed to setup the EEE or adjust some
771 	 * MAC related HW registers.
772 	 */
773 	priv->eee_enabled = stmmac_eee_init(priv);
774 
775 	spin_unlock_irqrestore(&priv->lock, flags);
776 
777 	DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
778 }
779 
780 /**
781  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
782  * @priv: driver private structure
783  * Description: this is to verify if the HW supports the PCS.
784  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
785  * configured for the TBI, RTBI, or SGMII PHY interface.
786  */
787 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
788 {
789 	int interface = priv->plat->interface;
790 
791 	if (priv->dma_cap.pcs) {
792 		if ((interface & PHY_INTERFACE_MODE_RGMII) ||
793 		    (interface & PHY_INTERFACE_MODE_RGMII_ID) ||
794 		    (interface & PHY_INTERFACE_MODE_RGMII_RXID) ||
795 		    (interface & PHY_INTERFACE_MODE_RGMII_TXID)) {
796 			pr_debug("STMMAC: PCS RGMII support enable\n");
797 			priv->pcs = STMMAC_PCS_RGMII;
798 		} else if (interface & PHY_INTERFACE_MODE_SGMII) {
799 			pr_debug("STMMAC: PCS SGMII support enable\n");
800 			priv->pcs = STMMAC_PCS_SGMII;
801 		}
802 	}
803 }
804 
805 /**
806  * stmmac_init_phy - PHY initialization
807  * @dev: net device structure
808  * Description: it initializes the driver's PHY state, and attaches the PHY
809  * to the mac driver.
810  *  Return value:
811  *  0 on success
812  */
813 static int stmmac_init_phy(struct net_device *dev)
814 {
815 	struct stmmac_priv *priv = netdev_priv(dev);
816 	struct phy_device *phydev;
817 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
818 	char bus_id[MII_BUS_ID_SIZE];
819 	int interface = priv->plat->interface;
820 	priv->oldlink = 0;
821 	priv->speed = 0;
822 	priv->oldduplex = -1;
823 
824 	if (priv->plat->phy_bus_name)
825 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
826 			 priv->plat->phy_bus_name, priv->plat->bus_id);
827 	else
828 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
829 			 priv->plat->bus_id);
830 
831 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
832 		 priv->plat->phy_addr);
833 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
834 
835 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
836 
837 	if (IS_ERR(phydev)) {
838 		pr_err("%s: Could not attach to PHY\n", dev->name);
839 		return PTR_ERR(phydev);
840 	}
841 
842 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
843 	if ((interface == PHY_INTERFACE_MODE_MII) ||
844 	    (interface == PHY_INTERFACE_MODE_RMII))
845 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
846 					 SUPPORTED_1000baseT_Full);
847 
848 	/*
849 	 * Broken HW is sometimes missing the pull-up resistor on the
850 	 * MDIO line, which results in reads to non-existent devices returning
851 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
852 	 * device as well.
853 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
854 	 */
855 	if (phydev->phy_id == 0) {
856 		phy_disconnect(phydev);
857 		return -ENODEV;
858 	}
859 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
860 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
861 
862 	priv->phydev = phydev;
863 
864 	return 0;
865 }
866 
867 /**
868  * stmmac_display_ring: display ring
869  * @head: pointer to the head of the ring passed.
870  * @size: size of the ring.
871  * @extend_desc: to verify if extended descriptors are used.
872  * Description: display the control/status and buffer descriptors.
873  */
874 static void stmmac_display_ring(void *head, int size, int extend_desc)
875 {
876 	int i;
877 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
878 	struct dma_desc *p = (struct dma_desc *)head;
879 
880 	for (i = 0; i < size; i++) {
881 		u64 x;
882 		if (extend_desc) {
883 			x = *(u64 *) ep;
884 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
885 				i, (unsigned int)virt_to_phys(ep),
886 				(unsigned int)x, (unsigned int)(x >> 32),
887 				ep->basic.des2, ep->basic.des3);
888 			ep++;
889 		} else {
890 			x = *(u64 *) p;
891 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
892 				i, (unsigned int)virt_to_phys(p),
893 				(unsigned int)x, (unsigned int)(x >> 32),
894 				p->des2, p->des3);
895 			p++;
896 		}
897 		pr_info("\n");
898 	}
899 }
900 
901 static void stmmac_display_rings(struct stmmac_priv *priv)
902 {
903 	unsigned int txsize = priv->dma_tx_size;
904 	unsigned int rxsize = priv->dma_rx_size;
905 
906 	if (priv->extend_desc) {
907 		pr_info("Extended RX descriptor ring:\n");
908 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
909 		pr_info("Extended TX descriptor ring:\n");
910 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
911 	} else {
912 		pr_info("RX descriptor ring:\n");
913 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
914 		pr_info("TX descriptor ring:\n");
915 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
916 	}
917 }
918 
919 static int stmmac_set_bfsize(int mtu, int bufsize)
920 {
921 	int ret = bufsize;
922 
923 	if (mtu >= BUF_SIZE_4KiB)
924 		ret = BUF_SIZE_8KiB;
925 	else if (mtu >= BUF_SIZE_2KiB)
926 		ret = BUF_SIZE_4KiB;
927 	else if (mtu >= DMA_BUFFER_SIZE)
928 		ret = BUF_SIZE_2KiB;
929 	else
930 		ret = DMA_BUFFER_SIZE;
931 
932 	return ret;
933 }
934 
935 /**
936  * stmmac_clear_descriptors: clear descriptors
937  * @priv: driver private structure
938  * Description: this function is called to clear the tx and rx descriptors
939  * in case of both basic and extended descriptors are used.
940  */
941 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
942 {
943 	int i;
944 	unsigned int txsize = priv->dma_tx_size;
945 	unsigned int rxsize = priv->dma_rx_size;
946 
947 	/* Clear the Rx/Tx descriptors */
948 	for (i = 0; i < rxsize; i++)
949 		if (priv->extend_desc)
950 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
951 						     priv->use_riwt, priv->mode,
952 						     (i == rxsize - 1));
953 		else
954 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
955 						     priv->use_riwt, priv->mode,
956 						     (i == rxsize - 1));
957 	for (i = 0; i < txsize; i++)
958 		if (priv->extend_desc)
959 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
960 						     priv->mode,
961 						     (i == txsize - 1));
962 		else
963 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
964 						     priv->mode,
965 						     (i == txsize - 1));
966 }
967 
968 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
969 				  int i)
970 {
971 	struct sk_buff *skb;
972 
973 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
974 				 GFP_KERNEL);
975 	if (unlikely(skb == NULL)) {
976 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
977 		return 1;
978 	}
979 	skb_reserve(skb, NET_IP_ALIGN);
980 	priv->rx_skbuff[i] = skb;
981 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
982 						priv->dma_buf_sz,
983 						DMA_FROM_DEVICE);
984 
985 	p->des2 = priv->rx_skbuff_dma[i];
986 
987 	if ((priv->mode == STMMAC_RING_MODE) &&
988 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
989 		priv->hw->ring->init_desc3(p);
990 
991 	return 0;
992 }
993 
994 /**
995  * init_dma_desc_rings - init the RX/TX descriptor rings
996  * @dev: net device structure
997  * Description:  this function initializes the DMA RX/TX descriptors
998  * and allocates the socket buffers. It suppors the chained and ring
999  * modes.
1000  */
1001 static void init_dma_desc_rings(struct net_device *dev)
1002 {
1003 	int i;
1004 	struct stmmac_priv *priv = netdev_priv(dev);
1005 	unsigned int txsize = priv->dma_tx_size;
1006 	unsigned int rxsize = priv->dma_rx_size;
1007 	unsigned int bfsize = 0;
1008 
1009 	/* Set the max buffer size according to the DESC mode
1010 	 * and the MTU. Note that RING mode allows 16KiB bsize.
1011 	 */
1012 	if (priv->mode == STMMAC_RING_MODE)
1013 		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
1014 
1015 	if (bfsize < BUF_SIZE_16KiB)
1016 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1017 
1018 	DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
1019 	    txsize, rxsize, bfsize);
1020 
1021 	if (priv->extend_desc) {
1022 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1023 						   sizeof(struct
1024 							  dma_extended_desc),
1025 						   &priv->dma_rx_phy,
1026 						   GFP_KERNEL);
1027 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1028 						   sizeof(struct
1029 							  dma_extended_desc),
1030 						   &priv->dma_tx_phy,
1031 						   GFP_KERNEL);
1032 		if ((!priv->dma_erx) || (!priv->dma_etx))
1033 			return;
1034 	} else {
1035 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1036 						  sizeof(struct dma_desc),
1037 						  &priv->dma_rx_phy,
1038 						  GFP_KERNEL);
1039 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1040 						  sizeof(struct dma_desc),
1041 						  &priv->dma_tx_phy,
1042 						  GFP_KERNEL);
1043 		if ((!priv->dma_rx) || (!priv->dma_tx))
1044 			return;
1045 	}
1046 
1047 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1048 					    GFP_KERNEL);
1049 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1050 					GFP_KERNEL);
1051 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1052 					    GFP_KERNEL);
1053 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1054 					GFP_KERNEL);
1055 	if (netif_msg_drv(priv))
1056 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1057 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1058 
1059 	/* RX INITIALIZATION */
1060 	DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
1061 	for (i = 0; i < rxsize; i++) {
1062 		struct dma_desc *p;
1063 		if (priv->extend_desc)
1064 			p = &((priv->dma_erx + i)->basic);
1065 		else
1066 			p = priv->dma_rx + i;
1067 
1068 		if (stmmac_init_rx_buffers(priv, p, i))
1069 			break;
1070 
1071 		DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1072 		    priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
1073 	}
1074 	priv->cur_rx = 0;
1075 	priv->dirty_rx = (unsigned int)(i - rxsize);
1076 	priv->dma_buf_sz = bfsize;
1077 	buf_sz = bfsize;
1078 
1079 	/* Setup the chained descriptor addresses */
1080 	if (priv->mode == STMMAC_CHAIN_MODE) {
1081 		if (priv->extend_desc) {
1082 			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1083 					      rxsize, 1);
1084 			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1085 					      txsize, 1);
1086 		} else {
1087 			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1088 					      rxsize, 0);
1089 			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1090 					      txsize, 0);
1091 		}
1092 	}
1093 
1094 	/* TX INITIALIZATION */
1095 	for (i = 0; i < txsize; i++) {
1096 		struct dma_desc *p;
1097 		if (priv->extend_desc)
1098 			p = &((priv->dma_etx + i)->basic);
1099 		else
1100 			p = priv->dma_tx + i;
1101 		p->des2 = 0;
1102 		priv->tx_skbuff_dma[i] = 0;
1103 		priv->tx_skbuff[i] = NULL;
1104 	}
1105 
1106 	priv->dirty_tx = 0;
1107 	priv->cur_tx = 0;
1108 
1109 	stmmac_clear_descriptors(priv);
1110 
1111 	if (netif_msg_hw(priv))
1112 		stmmac_display_rings(priv);
1113 }
1114 
1115 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1116 {
1117 	int i;
1118 
1119 	for (i = 0; i < priv->dma_rx_size; i++) {
1120 		if (priv->rx_skbuff[i]) {
1121 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1122 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1123 			dev_kfree_skb_any(priv->rx_skbuff[i]);
1124 		}
1125 		priv->rx_skbuff[i] = NULL;
1126 	}
1127 }
1128 
1129 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < priv->dma_tx_size; i++) {
1134 		if (priv->tx_skbuff[i] != NULL) {
1135 			struct dma_desc *p;
1136 			if (priv->extend_desc)
1137 				p = &((priv->dma_etx + i)->basic);
1138 			else
1139 				p = priv->dma_tx + i;
1140 
1141 			if (priv->tx_skbuff_dma[i])
1142 				dma_unmap_single(priv->device,
1143 						 priv->tx_skbuff_dma[i],
1144 						 priv->hw->desc->get_tx_len(p),
1145 						 DMA_TO_DEVICE);
1146 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1147 			priv->tx_skbuff[i] = NULL;
1148 			priv->tx_skbuff_dma[i] = 0;
1149 		}
1150 	}
1151 }
1152 
1153 static void free_dma_desc_resources(struct stmmac_priv *priv)
1154 {
1155 	/* Release the DMA TX/RX socket buffers */
1156 	dma_free_rx_skbufs(priv);
1157 	dma_free_tx_skbufs(priv);
1158 
1159 	/* Free DMA regions of consistent memory previously allocated */
1160 	if (!priv->extend_desc) {
1161 		dma_free_coherent(priv->device,
1162 				  priv->dma_tx_size * sizeof(struct dma_desc),
1163 				  priv->dma_tx, priv->dma_tx_phy);
1164 		dma_free_coherent(priv->device,
1165 				  priv->dma_rx_size * sizeof(struct dma_desc),
1166 				  priv->dma_rx, priv->dma_rx_phy);
1167 	} else {
1168 		dma_free_coherent(priv->device, priv->dma_tx_size *
1169 				  sizeof(struct dma_extended_desc),
1170 				  priv->dma_etx, priv->dma_tx_phy);
1171 		dma_free_coherent(priv->device, priv->dma_rx_size *
1172 				  sizeof(struct dma_extended_desc),
1173 				  priv->dma_erx, priv->dma_rx_phy);
1174 	}
1175 	kfree(priv->rx_skbuff_dma);
1176 	kfree(priv->rx_skbuff);
1177 	kfree(priv->tx_skbuff_dma);
1178 	kfree(priv->tx_skbuff);
1179 }
1180 
1181 /**
1182  *  stmmac_dma_operation_mode - HW DMA operation mode
1183  *  @priv: driver private structure
1184  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1185  *  or Store-And-Forward capability.
1186  */
1187 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1188 {
1189 	if (likely(priv->plat->force_sf_dma_mode ||
1190 		   ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1191 		/*
1192 		 * In case of GMAC, SF mode can be enabled
1193 		 * to perform the TX COE in HW. This depends on:
1194 		 * 1) TX COE if actually supported
1195 		 * 2) There is no bugged Jumbo frame support
1196 		 *    that needs to not insert csum in the TDES.
1197 		 */
1198 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1199 		tc = SF_DMA_MODE;
1200 	} else
1201 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1202 }
1203 
1204 /**
1205  * stmmac_tx_clean:
1206  * @priv: driver private structure
1207  * Description: it reclaims resources after transmission completes.
1208  */
1209 static void stmmac_tx_clean(struct stmmac_priv *priv)
1210 {
1211 	unsigned int txsize = priv->dma_tx_size;
1212 
1213 	spin_lock(&priv->tx_lock);
1214 
1215 	priv->xstats.tx_clean++;
1216 
1217 	while (priv->dirty_tx != priv->cur_tx) {
1218 		int last;
1219 		unsigned int entry = priv->dirty_tx % txsize;
1220 		struct sk_buff *skb = priv->tx_skbuff[entry];
1221 		struct dma_desc *p;
1222 
1223 		if (priv->extend_desc)
1224 			p = (struct dma_desc *)(priv->dma_etx + entry);
1225 		else
1226 			p = priv->dma_tx + entry;
1227 
1228 		/* Check if the descriptor is owned by the DMA. */
1229 		if (priv->hw->desc->get_tx_owner(p))
1230 			break;
1231 
1232 		/* Verify tx error by looking at the last segment. */
1233 		last = priv->hw->desc->get_tx_ls(p);
1234 		if (likely(last)) {
1235 			int tx_error =
1236 			    priv->hw->desc->tx_status(&priv->dev->stats,
1237 						      &priv->xstats, p,
1238 						      priv->ioaddr);
1239 			if (likely(tx_error == 0)) {
1240 				priv->dev->stats.tx_packets++;
1241 				priv->xstats.tx_pkt_n++;
1242 			} else
1243 				priv->dev->stats.tx_errors++;
1244 
1245 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1246 		}
1247 		TX_DBG("%s: curr %d, dirty %d\n", __func__,
1248 		       priv->cur_tx, priv->dirty_tx);
1249 
1250 		if (likely(priv->tx_skbuff_dma[entry])) {
1251 			dma_unmap_single(priv->device,
1252 					 priv->tx_skbuff_dma[entry],
1253 					 priv->hw->desc->get_tx_len(p),
1254 					 DMA_TO_DEVICE);
1255 			priv->tx_skbuff_dma[entry] = 0;
1256 		}
1257 		priv->hw->ring->clean_desc3(priv, p);
1258 
1259 		if (likely(skb != NULL)) {
1260 			dev_kfree_skb(skb);
1261 			priv->tx_skbuff[entry] = NULL;
1262 		}
1263 
1264 		priv->hw->desc->release_tx_desc(p, priv->mode);
1265 
1266 		priv->dirty_tx++;
1267 	}
1268 	if (unlikely(netif_queue_stopped(priv->dev) &&
1269 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1270 		netif_tx_lock(priv->dev);
1271 		if (netif_queue_stopped(priv->dev) &&
1272 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1273 			TX_DBG("%s: restart transmit\n", __func__);
1274 			netif_wake_queue(priv->dev);
1275 		}
1276 		netif_tx_unlock(priv->dev);
1277 	}
1278 
1279 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1280 		stmmac_enable_eee_mode(priv);
1281 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1282 	}
1283 	spin_unlock(&priv->tx_lock);
1284 }
1285 
1286 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1287 {
1288 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1289 }
1290 
1291 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1292 {
1293 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1294 }
1295 
1296 /**
1297  * stmmac_tx_err: irq tx error mng function
1298  * @priv: driver private structure
1299  * Description: it cleans the descriptors and restarts the transmission
1300  * in case of errors.
1301  */
1302 static void stmmac_tx_err(struct stmmac_priv *priv)
1303 {
1304 	int i;
1305 	int txsize = priv->dma_tx_size;
1306 	netif_stop_queue(priv->dev);
1307 
1308 	priv->hw->dma->stop_tx(priv->ioaddr);
1309 	dma_free_tx_skbufs(priv);
1310 	for (i = 0; i < txsize; i++)
1311 		if (priv->extend_desc)
1312 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1313 						     priv->mode,
1314 						     (i == txsize - 1));
1315 		else
1316 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1317 						     priv->mode,
1318 						     (i == txsize - 1));
1319 	priv->dirty_tx = 0;
1320 	priv->cur_tx = 0;
1321 	priv->hw->dma->start_tx(priv->ioaddr);
1322 
1323 	priv->dev->stats.tx_errors++;
1324 	netif_wake_queue(priv->dev);
1325 }
1326 
1327 /**
1328  * stmmac_dma_interrupt: DMA ISR
1329  * @priv: driver private structure
1330  * Description: this is the DMA ISR. It is called by the main ISR.
1331  * It calls the dwmac dma routine to understand which type of interrupt
1332  * happened. In case of there is a Normal interrupt and either TX or RX
1333  * interrupt happened so the NAPI is scheduled.
1334  */
1335 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1336 {
1337 	int status;
1338 
1339 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1340 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1341 		if (likely(napi_schedule_prep(&priv->napi))) {
1342 			stmmac_disable_dma_irq(priv);
1343 			__napi_schedule(&priv->napi);
1344 		}
1345 	}
1346 	if (unlikely(status & tx_hard_error_bump_tc)) {
1347 		/* Try to bump up the dma threshold on this failure */
1348 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1349 			tc += 64;
1350 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1351 			priv->xstats.threshold = tc;
1352 		}
1353 	} else if (unlikely(status == tx_hard_error))
1354 		stmmac_tx_err(priv);
1355 }
1356 
1357 /**
1358  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1359  * @priv: driver private structure
1360  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1361  */
1362 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1363 {
1364 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1365 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1366 
1367 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1368 
1369 	if (priv->dma_cap.rmon) {
1370 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1371 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1372 	} else
1373 		pr_info(" No MAC Management Counters available\n");
1374 }
1375 
1376 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1377 {
1378 	u32 hwid = priv->hw->synopsys_uid;
1379 
1380 	/* Check Synopsys Id (not available on old chips) */
1381 	if (likely(hwid)) {
1382 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1383 		u32 synid = (hwid & 0x000000ff);
1384 
1385 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1386 			uid, synid);
1387 
1388 		return synid;
1389 	}
1390 	return 0;
1391 }
1392 
1393 /**
1394  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1395  * @priv: driver private structure
1396  * Description: select the Enhanced/Alternate or Normal descriptors.
1397  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1398  * supported by the HW cap. register.
1399  */
1400 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1401 {
1402 	if (priv->plat->enh_desc) {
1403 		pr_info(" Enhanced/Alternate descriptors\n");
1404 
1405 		/* GMAC older than 3.50 has no extended descriptors */
1406 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1407 			pr_info("\tEnabled extended descriptors\n");
1408 			priv->extend_desc = 1;
1409 		} else
1410 			pr_warn("Extended descriptors not supported\n");
1411 
1412 		priv->hw->desc = &enh_desc_ops;
1413 	} else {
1414 		pr_info(" Normal descriptors\n");
1415 		priv->hw->desc = &ndesc_ops;
1416 	}
1417 }
1418 
1419 /**
1420  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1421  * @priv: driver private structure
1422  * Description:
1423  *  new GMAC chip generations have a new register to indicate the
1424  *  presence of the optional feature/functions.
1425  *  This can be also used to override the value passed through the
1426  *  platform and necessary for old MAC10/100 and GMAC chips.
1427  */
1428 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1429 {
1430 	u32 hw_cap = 0;
1431 
1432 	if (priv->hw->dma->get_hw_feature) {
1433 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1434 
1435 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1436 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1437 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1438 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1439 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1440 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1441 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1442 		priv->dma_cap.pmt_remote_wake_up =
1443 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1444 		priv->dma_cap.pmt_magic_frame =
1445 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1446 		/* MMC */
1447 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1448 		/* IEEE 1588-2002 */
1449 		priv->dma_cap.time_stamp =
1450 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1451 		/* IEEE 1588-2008 */
1452 		priv->dma_cap.atime_stamp =
1453 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1454 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1455 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1456 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1457 		/* TX and RX csum */
1458 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1459 		priv->dma_cap.rx_coe_type1 =
1460 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1461 		priv->dma_cap.rx_coe_type2 =
1462 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1463 		priv->dma_cap.rxfifo_over_2048 =
1464 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1465 		/* TX and RX number of channels */
1466 		priv->dma_cap.number_rx_channel =
1467 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1468 		priv->dma_cap.number_tx_channel =
1469 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1470 		/* Alternate (enhanced) DESC mode */
1471 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1472 	}
1473 
1474 	return hw_cap;
1475 }
1476 
1477 /**
1478  * stmmac_check_ether_addr: check if the MAC addr is valid
1479  * @priv: driver private structure
1480  * Description:
1481  * it is to verify if the MAC address is valid, in case of failures it
1482  * generates a random MAC address
1483  */
1484 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1485 {
1486 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1487 		priv->hw->mac->get_umac_addr((void __iomem *)
1488 					     priv->dev->base_addr,
1489 					     priv->dev->dev_addr, 0);
1490 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1491 			eth_hw_addr_random(priv->dev);
1492 	}
1493 	pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1494 		priv->dev->dev_addr);
1495 }
1496 
1497 /**
1498  * stmmac_init_dma_engine: DMA init.
1499  * @priv: driver private structure
1500  * Description:
1501  * It inits the DMA invoking the specific MAC/GMAC callback.
1502  * Some DMA parameters can be passed from the platform;
1503  * in case of these are not passed a default is kept for the MAC or GMAC.
1504  */
1505 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1506 {
1507 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1508 	int mixed_burst = 0;
1509 	int atds = 0;
1510 
1511 	if (priv->plat->dma_cfg) {
1512 		pbl = priv->plat->dma_cfg->pbl;
1513 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1514 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1515 		burst_len = priv->plat->dma_cfg->burst_len;
1516 	}
1517 
1518 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1519 		atds = 1;
1520 
1521 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1522 				   burst_len, priv->dma_tx_phy,
1523 				   priv->dma_rx_phy, atds);
1524 }
1525 
1526 /**
1527  * stmmac_tx_timer: mitigation sw timer for tx.
1528  * @data: data pointer
1529  * Description:
1530  * This is the timer handler to directly invoke the stmmac_tx_clean.
1531  */
1532 static void stmmac_tx_timer(unsigned long data)
1533 {
1534 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1535 
1536 	stmmac_tx_clean(priv);
1537 }
1538 
1539 /**
1540  * stmmac_init_tx_coalesce: init tx mitigation options.
1541  * @priv: driver private structure
1542  * Description:
1543  * This inits the transmit coalesce parameters: i.e. timer rate,
1544  * timer handler and default threshold used for enabling the
1545  * interrupt on completion bit.
1546  */
1547 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1548 {
1549 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1550 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1551 	init_timer(&priv->txtimer);
1552 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1553 	priv->txtimer.data = (unsigned long)priv;
1554 	priv->txtimer.function = stmmac_tx_timer;
1555 	add_timer(&priv->txtimer);
1556 }
1557 
1558 /**
1559  *  stmmac_open - open entry point of the driver
1560  *  @dev : pointer to the device structure.
1561  *  Description:
1562  *  This function is the open entry point of the driver.
1563  *  Return value:
1564  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1565  *  file on failure.
1566  */
1567 static int stmmac_open(struct net_device *dev)
1568 {
1569 	struct stmmac_priv *priv = netdev_priv(dev);
1570 	int ret;
1571 
1572 	clk_prepare_enable(priv->stmmac_clk);
1573 
1574 	stmmac_check_ether_addr(priv);
1575 
1576 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1577 	    priv->pcs != STMMAC_PCS_RTBI) {
1578 		ret = stmmac_init_phy(dev);
1579 		if (ret) {
1580 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1581 			       __func__, ret);
1582 			goto open_error;
1583 		}
1584 	}
1585 
1586 	/* Create and initialize the TX/RX descriptors chains. */
1587 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1588 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1589 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1590 	init_dma_desc_rings(dev);
1591 
1592 	/* DMA initialization and SW reset */
1593 	ret = stmmac_init_dma_engine(priv);
1594 	if (ret < 0) {
1595 		pr_err("%s: DMA initialization failed\n", __func__);
1596 		goto open_error;
1597 	}
1598 
1599 	/* Copy the MAC addr into the HW  */
1600 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1601 
1602 	/* If required, perform hw setup of the bus. */
1603 	if (priv->plat->bus_setup)
1604 		priv->plat->bus_setup(priv->ioaddr);
1605 
1606 	/* Initialize the MAC Core */
1607 	priv->hw->mac->core_init(priv->ioaddr);
1608 
1609 	/* Request the IRQ lines */
1610 	ret = request_irq(dev->irq, stmmac_interrupt,
1611 			  IRQF_SHARED, dev->name, dev);
1612 	if (unlikely(ret < 0)) {
1613 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1614 		       __func__, dev->irq, ret);
1615 		goto open_error;
1616 	}
1617 
1618 	/* Request the Wake IRQ in case of another line is used for WoL */
1619 	if (priv->wol_irq != dev->irq) {
1620 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1621 				  IRQF_SHARED, dev->name, dev);
1622 		if (unlikely(ret < 0)) {
1623 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1624 			       __func__, priv->wol_irq, ret);
1625 			goto open_error_wolirq;
1626 		}
1627 	}
1628 
1629 	/* Request the IRQ lines */
1630 	if (priv->lpi_irq != -ENXIO) {
1631 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1632 				  dev->name, dev);
1633 		if (unlikely(ret < 0)) {
1634 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1635 			       __func__, priv->lpi_irq, ret);
1636 			goto open_error_lpiirq;
1637 		}
1638 	}
1639 
1640 	/* Enable the MAC Rx/Tx */
1641 	stmmac_set_mac(priv->ioaddr, true);
1642 
1643 	/* Set the HW DMA mode and the COE */
1644 	stmmac_dma_operation_mode(priv);
1645 
1646 	/* Extra statistics */
1647 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1648 	priv->xstats.threshold = tc;
1649 
1650 	stmmac_mmc_setup(priv);
1651 
1652 	ret = stmmac_init_ptp(priv);
1653 	if (ret)
1654 		pr_warn("%s: failed PTP initialisation\n", __func__);
1655 
1656 #ifdef CONFIG_STMMAC_DEBUG_FS
1657 	ret = stmmac_init_fs(dev);
1658 	if (ret < 0)
1659 		pr_warn("%s: failed debugFS registration\n", __func__);
1660 #endif
1661 	/* Start the ball rolling... */
1662 	DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1663 	priv->hw->dma->start_tx(priv->ioaddr);
1664 	priv->hw->dma->start_rx(priv->ioaddr);
1665 
1666 	/* Dump DMA/MAC registers */
1667 	if (netif_msg_hw(priv)) {
1668 		priv->hw->mac->dump_regs(priv->ioaddr);
1669 		priv->hw->dma->dump_regs(priv->ioaddr);
1670 	}
1671 
1672 	if (priv->phydev)
1673 		phy_start(priv->phydev);
1674 
1675 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1676 
1677 	priv->eee_enabled = stmmac_eee_init(priv);
1678 
1679 	stmmac_init_tx_coalesce(priv);
1680 
1681 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1682 		priv->rx_riwt = MAX_DMA_RIWT;
1683 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1684 	}
1685 
1686 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1687 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1688 
1689 	napi_enable(&priv->napi);
1690 	netif_start_queue(dev);
1691 
1692 	return 0;
1693 
1694 open_error_lpiirq:
1695 	if (priv->wol_irq != dev->irq)
1696 		free_irq(priv->wol_irq, dev);
1697 
1698 open_error_wolirq:
1699 	free_irq(dev->irq, dev);
1700 
1701 open_error:
1702 	if (priv->phydev)
1703 		phy_disconnect(priv->phydev);
1704 
1705 	clk_disable_unprepare(priv->stmmac_clk);
1706 
1707 	return ret;
1708 }
1709 
1710 /**
1711  *  stmmac_release - close entry point of the driver
1712  *  @dev : device pointer.
1713  *  Description:
1714  *  This is the stop entry point of the driver.
1715  */
1716 static int stmmac_release(struct net_device *dev)
1717 {
1718 	struct stmmac_priv *priv = netdev_priv(dev);
1719 
1720 	if (priv->eee_enabled)
1721 		del_timer_sync(&priv->eee_ctrl_timer);
1722 
1723 	/* Stop and disconnect the PHY */
1724 	if (priv->phydev) {
1725 		phy_stop(priv->phydev);
1726 		phy_disconnect(priv->phydev);
1727 		priv->phydev = NULL;
1728 	}
1729 
1730 	netif_stop_queue(dev);
1731 
1732 	napi_disable(&priv->napi);
1733 
1734 	del_timer_sync(&priv->txtimer);
1735 
1736 	/* Free the IRQ lines */
1737 	free_irq(dev->irq, dev);
1738 	if (priv->wol_irq != dev->irq)
1739 		free_irq(priv->wol_irq, dev);
1740 	if (priv->lpi_irq != -ENXIO)
1741 		free_irq(priv->lpi_irq, dev);
1742 
1743 	/* Stop TX/RX DMA and clear the descriptors */
1744 	priv->hw->dma->stop_tx(priv->ioaddr);
1745 	priv->hw->dma->stop_rx(priv->ioaddr);
1746 
1747 	/* Release and free the Rx/Tx resources */
1748 	free_dma_desc_resources(priv);
1749 
1750 	/* Disable the MAC Rx/Tx */
1751 	stmmac_set_mac(priv->ioaddr, false);
1752 
1753 	netif_carrier_off(dev);
1754 
1755 #ifdef CONFIG_STMMAC_DEBUG_FS
1756 	stmmac_exit_fs();
1757 #endif
1758 	clk_disable_unprepare(priv->stmmac_clk);
1759 
1760 	stmmac_release_ptp(priv);
1761 
1762 	return 0;
1763 }
1764 
1765 /**
1766  *  stmmac_xmit: Tx entry point of the driver
1767  *  @skb : the socket buffer
1768  *  @dev : device pointer
1769  *  Description : this is the tx entry point of the driver.
1770  *  It programs the chain or the ring and supports oversized frames
1771  *  and SG feature.
1772  */
1773 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 	struct stmmac_priv *priv = netdev_priv(dev);
1776 	unsigned int txsize = priv->dma_tx_size;
1777 	unsigned int entry;
1778 	int i, csum_insertion = 0, is_jumbo = 0;
1779 	int nfrags = skb_shinfo(skb)->nr_frags;
1780 	struct dma_desc *desc, *first;
1781 	unsigned int nopaged_len = skb_headlen(skb);
1782 
1783 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1784 		if (!netif_queue_stopped(dev)) {
1785 			netif_stop_queue(dev);
1786 			/* This is a hard error, log it. */
1787 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1788 		}
1789 		return NETDEV_TX_BUSY;
1790 	}
1791 
1792 	spin_lock(&priv->tx_lock);
1793 
1794 	if (priv->tx_path_in_lpi_mode)
1795 		stmmac_disable_eee_mode(priv);
1796 
1797 	entry = priv->cur_tx % txsize;
1798 
1799 #ifdef STMMAC_XMIT_DEBUG
1800 	if ((skb->len > ETH_FRAME_LEN) || nfrags)
1801 		pr_debug("%s: [entry %d]: skb addr %p len: %d nopagedlen: %d\n"
1802 			 "\tn_frags: %d - ip_summed: %d - %s gso\n"
1803 			 "\ttx_count_frames %d\n", __func__, entry,
1804 			 skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1805 			 !skb_is_gso(skb) ? "isn't" : "is",
1806 			 priv->tx_count_frames);
1807 #endif
1808 
1809 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1810 
1811 	if (priv->extend_desc)
1812 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1813 	else
1814 		desc = priv->dma_tx + entry;
1815 
1816 	first = desc;
1817 
1818 #ifdef STMMAC_XMIT_DEBUG
1819 	if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1820 		pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1821 			 "\t\tn_frags: %d, ip_summed: %d\n",
1822 			 skb->len, nopaged_len, nfrags, skb->ip_summed);
1823 #endif
1824 	priv->tx_skbuff[entry] = skb;
1825 
1826 	/* To program the descriptors according to the size of the frame */
1827 	if (priv->mode == STMMAC_RING_MODE) {
1828 		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1829 							priv->plat->enh_desc);
1830 		if (unlikely(is_jumbo))
1831 			entry = priv->hw->ring->jumbo_frm(priv, skb,
1832 							  csum_insertion);
1833 	} else {
1834 		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1835 							 priv->plat->enh_desc);
1836 		if (unlikely(is_jumbo))
1837 			entry = priv->hw->chain->jumbo_frm(priv, skb,
1838 							   csum_insertion);
1839 	}
1840 	if (likely(!is_jumbo)) {
1841 		desc->des2 = dma_map_single(priv->device, skb->data,
1842 					    nopaged_len, DMA_TO_DEVICE);
1843 		priv->tx_skbuff_dma[entry] = desc->des2;
1844 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1845 						csum_insertion, priv->mode);
1846 	} else
1847 		desc = first;
1848 
1849 	for (i = 0; i < nfrags; i++) {
1850 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1851 		int len = skb_frag_size(frag);
1852 
1853 		entry = (++priv->cur_tx) % txsize;
1854 		if (priv->extend_desc)
1855 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1856 		else
1857 			desc = priv->dma_tx + entry;
1858 
1859 		TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1860 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1861 					      DMA_TO_DEVICE);
1862 		priv->tx_skbuff_dma[entry] = desc->des2;
1863 		priv->tx_skbuff[entry] = NULL;
1864 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1865 						priv->mode);
1866 		wmb();
1867 		priv->hw->desc->set_tx_owner(desc);
1868 		wmb();
1869 	}
1870 
1871 	/* Finalize the latest segment. */
1872 	priv->hw->desc->close_tx_desc(desc);
1873 
1874 	wmb();
1875 	/* According to the coalesce parameter the IC bit for the latest
1876 	 * segment could be reset and the timer re-started to invoke the
1877 	 * stmmac_tx function. This approach takes care about the fragments.
1878 	 */
1879 	priv->tx_count_frames += nfrags + 1;
1880 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1881 		priv->hw->desc->clear_tx_ic(desc);
1882 		priv->xstats.tx_reset_ic_bit++;
1883 		TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1884 		       priv->tx_count_frames);
1885 		mod_timer(&priv->txtimer,
1886 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1887 	} else
1888 		priv->tx_count_frames = 0;
1889 
1890 	/* To avoid raise condition */
1891 	priv->hw->desc->set_tx_owner(first);
1892 	wmb();
1893 
1894 	priv->cur_tx++;
1895 
1896 #ifdef STMMAC_XMIT_DEBUG
1897 	if (netif_msg_pktdata(priv)) {
1898 		pr_info("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1899 			__func__, (priv->cur_tx % txsize),
1900 			(priv->dirty_tx % txsize), entry, first, nfrags);
1901 		if (priv->extend_desc)
1902 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1903 		else
1904 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1905 
1906 		pr_info(">>> frame to be transmitted: ");
1907 		print_pkt(skb->data, skb->len);
1908 	}
1909 #endif
1910 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1911 		TX_DBG("%s: stop transmitted packets\n", __func__);
1912 		netif_stop_queue(dev);
1913 	}
1914 
1915 	dev->stats.tx_bytes += skb->len;
1916 
1917 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1918 		     priv->hwts_tx_en)) {
1919 		/* declare that device is doing timestamping */
1920 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1921 		priv->hw->desc->enable_tx_timestamp(first);
1922 	}
1923 
1924 	if (!priv->hwts_tx_en)
1925 		skb_tx_timestamp(skb);
1926 
1927 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1928 
1929 	spin_unlock(&priv->tx_lock);
1930 
1931 	return NETDEV_TX_OK;
1932 }
1933 
1934 /**
1935  * stmmac_rx_refill: refill used skb preallocated buffers
1936  * @priv: driver private structure
1937  * Description : this is to reallocate the skb for the reception process
1938  * that is based on zero-copy.
1939  */
1940 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1941 {
1942 	unsigned int rxsize = priv->dma_rx_size;
1943 	int bfsize = priv->dma_buf_sz;
1944 
1945 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1946 		unsigned int entry = priv->dirty_rx % rxsize;
1947 		struct dma_desc *p;
1948 
1949 		if (priv->extend_desc)
1950 			p = (struct dma_desc *)(priv->dma_erx + entry);
1951 		else
1952 			p = priv->dma_rx + entry;
1953 
1954 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1955 			struct sk_buff *skb;
1956 
1957 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1958 
1959 			if (unlikely(skb == NULL))
1960 				break;
1961 
1962 			priv->rx_skbuff[entry] = skb;
1963 			priv->rx_skbuff_dma[entry] =
1964 			    dma_map_single(priv->device, skb->data, bfsize,
1965 					   DMA_FROM_DEVICE);
1966 
1967 			p->des2 = priv->rx_skbuff_dma[entry];
1968 
1969 			priv->hw->ring->refill_desc3(priv, p);
1970 
1971 			RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1972 		}
1973 		wmb();
1974 		priv->hw->desc->set_rx_owner(p);
1975 		wmb();
1976 	}
1977 }
1978 
1979 /**
1980  * stmmac_rx_refill: refill used skb preallocated buffers
1981  * @priv: driver private structure
1982  * @limit: napi bugget.
1983  * Description :  this the function called by the napi poll method.
1984  * It gets all the frames inside the ring.
1985  */
1986 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1987 {
1988 	unsigned int rxsize = priv->dma_rx_size;
1989 	unsigned int entry = priv->cur_rx % rxsize;
1990 	unsigned int next_entry;
1991 	unsigned int count = 0;
1992 	int coe = priv->plat->rx_coe;
1993 
1994 #ifdef STMMAC_RX_DEBUG
1995 	if (netif_msg_hw(priv)) {
1996 		pr_debug(">>> stmmac_rx: descriptor ring:\n");
1997 		if (priv->extend_desc)
1998 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
1999 		else
2000 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2001 	}
2002 #endif
2003 	while (count < limit) {
2004 		int status;
2005 		struct dma_desc *p;
2006 
2007 		if (priv->extend_desc)
2008 			p = (struct dma_desc *)(priv->dma_erx + entry);
2009 		else
2010 			p = priv->dma_rx + entry;
2011 
2012 		if (priv->hw->desc->get_rx_owner(p))
2013 			break;
2014 
2015 		count++;
2016 
2017 		next_entry = (++priv->cur_rx) % rxsize;
2018 		if (priv->extend_desc)
2019 			prefetch(priv->dma_erx + next_entry);
2020 		else
2021 			prefetch(priv->dma_rx + next_entry);
2022 
2023 		/* read the status of the incoming frame */
2024 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2025 						   &priv->xstats, p);
2026 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2027 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2028 							   &priv->xstats,
2029 							   priv->dma_erx +
2030 							   entry);
2031 		if (unlikely(status == discard_frame)) {
2032 			priv->dev->stats.rx_errors++;
2033 			if (priv->hwts_rx_en && !priv->extend_desc) {
2034 				/* DESC2 & DESC3 will be overwitten by device
2035 				 * with timestamp value, hence reinitialize
2036 				 * them in stmmac_rx_refill() function so that
2037 				 * device can reuse it.
2038 				 */
2039 				priv->rx_skbuff[entry] = NULL;
2040 				dma_unmap_single(priv->device,
2041 						 priv->rx_skbuff_dma[entry],
2042 						 priv->dma_buf_sz,
2043 						 DMA_FROM_DEVICE);
2044 			}
2045 		} else {
2046 			struct sk_buff *skb;
2047 			int frame_len;
2048 
2049 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2050 
2051 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2052 			 * Type frames (LLC/LLC-SNAP)
2053 			 */
2054 			if (unlikely(status != llc_snap))
2055 				frame_len -= ETH_FCS_LEN;
2056 #ifdef STMMAC_RX_DEBUG
2057 			if (frame_len > ETH_FRAME_LEN)
2058 				pr_debug("\tRX frame size %d, COE status: %d\n",
2059 					 frame_len, status);
2060 
2061 			if (netif_msg_hw(priv))
2062 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2063 					 p, entry, p->des2);
2064 #endif
2065 			skb = priv->rx_skbuff[entry];
2066 			if (unlikely(!skb)) {
2067 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2068 				       priv->dev->name);
2069 				priv->dev->stats.rx_dropped++;
2070 				break;
2071 			}
2072 			prefetch(skb->data - NET_IP_ALIGN);
2073 			priv->rx_skbuff[entry] = NULL;
2074 
2075 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2076 
2077 			skb_put(skb, frame_len);
2078 			dma_unmap_single(priv->device,
2079 					 priv->rx_skbuff_dma[entry],
2080 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2081 #ifdef STMMAC_RX_DEBUG
2082 			if (netif_msg_pktdata(priv)) {
2083 				pr_info(" frame received (%dbytes)", frame_len);
2084 				print_pkt(skb->data, frame_len);
2085 			}
2086 #endif
2087 			skb->protocol = eth_type_trans(skb, priv->dev);
2088 
2089 			if (unlikely(!coe))
2090 				skb_checksum_none_assert(skb);
2091 			else
2092 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2093 
2094 			napi_gro_receive(&priv->napi, skb);
2095 
2096 			priv->dev->stats.rx_packets++;
2097 			priv->dev->stats.rx_bytes += frame_len;
2098 		}
2099 		entry = next_entry;
2100 	}
2101 
2102 	stmmac_rx_refill(priv);
2103 
2104 	priv->xstats.rx_pkt_n += count;
2105 
2106 	return count;
2107 }
2108 
2109 /**
2110  *  stmmac_poll - stmmac poll method (NAPI)
2111  *  @napi : pointer to the napi structure.
2112  *  @budget : maximum number of packets that the current CPU can receive from
2113  *	      all interfaces.
2114  *  Description :
2115  *  To look at the incoming frames and clear the tx resources.
2116  */
2117 static int stmmac_poll(struct napi_struct *napi, int budget)
2118 {
2119 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2120 	int work_done = 0;
2121 
2122 	priv->xstats.napi_poll++;
2123 	stmmac_tx_clean(priv);
2124 
2125 	work_done = stmmac_rx(priv, budget);
2126 	if (work_done < budget) {
2127 		napi_complete(napi);
2128 		stmmac_enable_dma_irq(priv);
2129 	}
2130 	return work_done;
2131 }
2132 
2133 /**
2134  *  stmmac_tx_timeout
2135  *  @dev : Pointer to net device structure
2136  *  Description: this function is called when a packet transmission fails to
2137  *   complete within a reasonable time. The driver will mark the error in the
2138  *   netdev structure and arrange for the device to be reset to a sane state
2139  *   in order to transmit a new packet.
2140  */
2141 static void stmmac_tx_timeout(struct net_device *dev)
2142 {
2143 	struct stmmac_priv *priv = netdev_priv(dev);
2144 
2145 	/* Clear Tx resources and restart transmitting again */
2146 	stmmac_tx_err(priv);
2147 }
2148 
2149 /* Configuration changes (passed on by ifconfig) */
2150 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2151 {
2152 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2153 		return -EBUSY;
2154 
2155 	/* Don't allow changing the I/O address */
2156 	if (map->base_addr != dev->base_addr) {
2157 		pr_warn("%s: can't change I/O address\n", dev->name);
2158 		return -EOPNOTSUPP;
2159 	}
2160 
2161 	/* Don't allow changing the IRQ */
2162 	if (map->irq != dev->irq) {
2163 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2164 		return -EOPNOTSUPP;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
2170 /**
2171  *  stmmac_set_rx_mode - entry point for multicast addressing
2172  *  @dev : pointer to the device structure
2173  *  Description:
2174  *  This function is a driver entry point which gets called by the kernel
2175  *  whenever multicast addresses must be enabled/disabled.
2176  *  Return value:
2177  *  void.
2178  */
2179 static void stmmac_set_rx_mode(struct net_device *dev)
2180 {
2181 	struct stmmac_priv *priv = netdev_priv(dev);
2182 
2183 	spin_lock(&priv->lock);
2184 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2185 	spin_unlock(&priv->lock);
2186 }
2187 
2188 /**
2189  *  stmmac_change_mtu - entry point to change MTU size for the device.
2190  *  @dev : device pointer.
2191  *  @new_mtu : the new MTU size for the device.
2192  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2193  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2194  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2195  *  Return value:
2196  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2197  *  file on failure.
2198  */
2199 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2200 {
2201 	struct stmmac_priv *priv = netdev_priv(dev);
2202 	int max_mtu;
2203 
2204 	if (netif_running(dev)) {
2205 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2206 		return -EBUSY;
2207 	}
2208 
2209 	if (priv->plat->enh_desc)
2210 		max_mtu = JUMBO_LEN;
2211 	else
2212 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2213 
2214 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2215 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2216 		return -EINVAL;
2217 	}
2218 
2219 	dev->mtu = new_mtu;
2220 	netdev_update_features(dev);
2221 
2222 	return 0;
2223 }
2224 
2225 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2226 					     netdev_features_t features)
2227 {
2228 	struct stmmac_priv *priv = netdev_priv(dev);
2229 
2230 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2231 		features &= ~NETIF_F_RXCSUM;
2232 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2233 		features &= ~NETIF_F_IPV6_CSUM;
2234 	if (!priv->plat->tx_coe)
2235 		features &= ~NETIF_F_ALL_CSUM;
2236 
2237 	/* Some GMAC devices have a bugged Jumbo frame support that
2238 	 * needs to have the Tx COE disabled for oversized frames
2239 	 * (due to limited buffer sizes). In this case we disable
2240 	 * the TX csum insertionin the TDES and not use SF.
2241 	 */
2242 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2243 		features &= ~NETIF_F_ALL_CSUM;
2244 
2245 	return features;
2246 }
2247 
2248 /**
2249  *  stmmac_interrupt - main ISR
2250  *  @irq: interrupt number.
2251  *  @dev_id: to pass the net device pointer.
2252  *  Description: this is the main driver interrupt service routine.
2253  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2254  *  interrupts.
2255  */
2256 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2257 {
2258 	struct net_device *dev = (struct net_device *)dev_id;
2259 	struct stmmac_priv *priv = netdev_priv(dev);
2260 
2261 	if (unlikely(!dev)) {
2262 		pr_err("%s: invalid dev pointer\n", __func__);
2263 		return IRQ_NONE;
2264 	}
2265 
2266 	/* To handle GMAC own interrupts */
2267 	if (priv->plat->has_gmac) {
2268 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2269 							    dev->base_addr,
2270 							    &priv->xstats);
2271 		if (unlikely(status)) {
2272 			/* For LPI we need to save the tx status */
2273 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2274 				priv->tx_path_in_lpi_mode = true;
2275 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2276 				priv->tx_path_in_lpi_mode = false;
2277 		}
2278 	}
2279 
2280 	/* To handle DMA interrupts */
2281 	stmmac_dma_interrupt(priv);
2282 
2283 	return IRQ_HANDLED;
2284 }
2285 
2286 #ifdef CONFIG_NET_POLL_CONTROLLER
2287 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2288  * to allow network I/O with interrupts disabled.
2289  */
2290 static void stmmac_poll_controller(struct net_device *dev)
2291 {
2292 	disable_irq(dev->irq);
2293 	stmmac_interrupt(dev->irq, dev);
2294 	enable_irq(dev->irq);
2295 }
2296 #endif
2297 
2298 /**
2299  *  stmmac_ioctl - Entry point for the Ioctl
2300  *  @dev: Device pointer.
2301  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2302  *  a proprietary structure used to pass information to the driver.
2303  *  @cmd: IOCTL command
2304  *  Description:
2305  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2306  */
2307 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2308 {
2309 	struct stmmac_priv *priv = netdev_priv(dev);
2310 	int ret = -EOPNOTSUPP;
2311 
2312 	if (!netif_running(dev))
2313 		return -EINVAL;
2314 
2315 	switch (cmd) {
2316 	case SIOCGMIIPHY:
2317 	case SIOCGMIIREG:
2318 	case SIOCSMIIREG:
2319 		if (!priv->phydev)
2320 			return -EINVAL;
2321 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2322 		break;
2323 	case SIOCSHWTSTAMP:
2324 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2325 		break;
2326 	default:
2327 		break;
2328 	}
2329 
2330 	return ret;
2331 }
2332 
2333 #ifdef CONFIG_STMMAC_DEBUG_FS
2334 static struct dentry *stmmac_fs_dir;
2335 static struct dentry *stmmac_rings_status;
2336 static struct dentry *stmmac_dma_cap;
2337 
2338 static void sysfs_display_ring(void *head, int size, int extend_desc,
2339 			       struct seq_file *seq)
2340 {
2341 	int i;
2342 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2343 	struct dma_desc *p = (struct dma_desc *)head;
2344 
2345 	for (i = 0; i < size; i++) {
2346 		u64 x;
2347 		if (extend_desc) {
2348 			x = *(u64 *) ep;
2349 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2350 				   i, (unsigned int)virt_to_phys(ep),
2351 				   (unsigned int)x, (unsigned int)(x >> 32),
2352 				   ep->basic.des2, ep->basic.des3);
2353 			ep++;
2354 		} else {
2355 			x = *(u64 *) p;
2356 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2357 				   i, (unsigned int)virt_to_phys(ep),
2358 				   (unsigned int)x, (unsigned int)(x >> 32),
2359 				   p->des2, p->des3);
2360 			p++;
2361 		}
2362 		seq_printf(seq, "\n");
2363 	}
2364 }
2365 
2366 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2367 {
2368 	struct net_device *dev = seq->private;
2369 	struct stmmac_priv *priv = netdev_priv(dev);
2370 	unsigned int txsize = priv->dma_tx_size;
2371 	unsigned int rxsize = priv->dma_rx_size;
2372 
2373 	if (priv->extend_desc) {
2374 		seq_printf(seq, "Extended RX descriptor ring:\n");
2375 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2376 		seq_printf(seq, "Extended TX descriptor ring:\n");
2377 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2378 	} else {
2379 		seq_printf(seq, "RX descriptor ring:\n");
2380 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2381 		seq_printf(seq, "TX descriptor ring:\n");
2382 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2383 	}
2384 
2385 	return 0;
2386 }
2387 
2388 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2389 {
2390 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2391 }
2392 
2393 static const struct file_operations stmmac_rings_status_fops = {
2394 	.owner = THIS_MODULE,
2395 	.open = stmmac_sysfs_ring_open,
2396 	.read = seq_read,
2397 	.llseek = seq_lseek,
2398 	.release = single_release,
2399 };
2400 
2401 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2402 {
2403 	struct net_device *dev = seq->private;
2404 	struct stmmac_priv *priv = netdev_priv(dev);
2405 
2406 	if (!priv->hw_cap_support) {
2407 		seq_printf(seq, "DMA HW features not supported\n");
2408 		return 0;
2409 	}
2410 
2411 	seq_printf(seq, "==============================\n");
2412 	seq_printf(seq, "\tDMA HW features\n");
2413 	seq_printf(seq, "==============================\n");
2414 
2415 	seq_printf(seq, "\t10/100 Mbps %s\n",
2416 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2417 	seq_printf(seq, "\t1000 Mbps %s\n",
2418 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2419 	seq_printf(seq, "\tHalf duple %s\n",
2420 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2421 	seq_printf(seq, "\tHash Filter: %s\n",
2422 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2423 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2424 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2425 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2426 		   (priv->dma_cap.pcs) ? "Y" : "N");
2427 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2428 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2429 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2430 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2431 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2432 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2433 	seq_printf(seq, "\tRMON module: %s\n",
2434 		   (priv->dma_cap.rmon) ? "Y" : "N");
2435 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2436 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2437 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2438 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2439 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2440 		   (priv->dma_cap.eee) ? "Y" : "N");
2441 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2442 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2443 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2444 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2445 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2446 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2447 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2448 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2449 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2450 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2451 		   priv->dma_cap.number_rx_channel);
2452 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2453 		   priv->dma_cap.number_tx_channel);
2454 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2455 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2456 
2457 	return 0;
2458 }
2459 
2460 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2461 {
2462 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2463 }
2464 
2465 static const struct file_operations stmmac_dma_cap_fops = {
2466 	.owner = THIS_MODULE,
2467 	.open = stmmac_sysfs_dma_cap_open,
2468 	.read = seq_read,
2469 	.llseek = seq_lseek,
2470 	.release = single_release,
2471 };
2472 
2473 static int stmmac_init_fs(struct net_device *dev)
2474 {
2475 	/* Create debugfs entries */
2476 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2477 
2478 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2479 		pr_err("ERROR %s, debugfs create directory failed\n",
2480 		       STMMAC_RESOURCE_NAME);
2481 
2482 		return -ENOMEM;
2483 	}
2484 
2485 	/* Entry to report DMA RX/TX rings */
2486 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2487 						  S_IRUGO, stmmac_fs_dir, dev,
2488 						  &stmmac_rings_status_fops);
2489 
2490 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2491 		pr_info("ERROR creating stmmac ring debugfs file\n");
2492 		debugfs_remove(stmmac_fs_dir);
2493 
2494 		return -ENOMEM;
2495 	}
2496 
2497 	/* Entry to report the DMA HW features */
2498 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2499 					     dev, &stmmac_dma_cap_fops);
2500 
2501 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2502 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2503 		debugfs_remove(stmmac_rings_status);
2504 		debugfs_remove(stmmac_fs_dir);
2505 
2506 		return -ENOMEM;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static void stmmac_exit_fs(void)
2513 {
2514 	debugfs_remove(stmmac_rings_status);
2515 	debugfs_remove(stmmac_dma_cap);
2516 	debugfs_remove(stmmac_fs_dir);
2517 }
2518 #endif /* CONFIG_STMMAC_DEBUG_FS */
2519 
2520 static const struct net_device_ops stmmac_netdev_ops = {
2521 	.ndo_open = stmmac_open,
2522 	.ndo_start_xmit = stmmac_xmit,
2523 	.ndo_stop = stmmac_release,
2524 	.ndo_change_mtu = stmmac_change_mtu,
2525 	.ndo_fix_features = stmmac_fix_features,
2526 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2527 	.ndo_tx_timeout = stmmac_tx_timeout,
2528 	.ndo_do_ioctl = stmmac_ioctl,
2529 	.ndo_set_config = stmmac_config,
2530 #ifdef CONFIG_NET_POLL_CONTROLLER
2531 	.ndo_poll_controller = stmmac_poll_controller,
2532 #endif
2533 	.ndo_set_mac_address = eth_mac_addr,
2534 };
2535 
2536 /**
2537  *  stmmac_hw_init - Init the MAC device
2538  *  @priv: driver private structure
2539  *  Description: this function detects which MAC device
2540  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2541  *  (if supported) and sets the driver's features (for example
2542  *  to use the ring or chaine mode or support the normal/enh
2543  *  descriptor structure).
2544  */
2545 static int stmmac_hw_init(struct stmmac_priv *priv)
2546 {
2547 	int ret;
2548 	struct mac_device_info *mac;
2549 
2550 	/* Identify the MAC HW device */
2551 	if (priv->plat->has_gmac) {
2552 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2553 		mac = dwmac1000_setup(priv->ioaddr);
2554 	} else {
2555 		mac = dwmac100_setup(priv->ioaddr);
2556 	}
2557 	if (!mac)
2558 		return -ENOMEM;
2559 
2560 	priv->hw = mac;
2561 
2562 	/* Get and dump the chip ID */
2563 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2564 
2565 	/* To use alternate (extended) or normal descriptor structures */
2566 	stmmac_selec_desc_mode(priv);
2567 
2568 	/* To use the chained or ring mode */
2569 	if (chain_mode) {
2570 		priv->hw->chain = &chain_mode_ops;
2571 		pr_info(" Chain mode enabled\n");
2572 		priv->mode = STMMAC_CHAIN_MODE;
2573 	} else {
2574 		priv->hw->ring = &ring_mode_ops;
2575 		pr_info(" Ring mode enabled\n");
2576 		priv->mode = STMMAC_RING_MODE;
2577 	}
2578 
2579 	/* Get the HW capability (new GMAC newer than 3.50a) */
2580 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2581 	if (priv->hw_cap_support) {
2582 		pr_info(" DMA HW capability register supported");
2583 
2584 		/* We can override some gmac/dma configuration fields: e.g.
2585 		 * enh_desc, tx_coe (e.g. that are passed through the
2586 		 * platform) with the values from the HW capability
2587 		 * register (if supported).
2588 		 */
2589 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2590 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2591 
2592 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2593 
2594 		if (priv->dma_cap.rx_coe_type2)
2595 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2596 		else if (priv->dma_cap.rx_coe_type1)
2597 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2598 
2599 	} else
2600 		pr_info(" No HW DMA feature register supported");
2601 
2602 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2603 	if (!ret) {
2604 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2605 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2606 	}
2607 
2608 	if (priv->plat->rx_coe)
2609 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2610 			priv->plat->rx_coe);
2611 	if (priv->plat->tx_coe)
2612 		pr_info(" TX Checksum insertion supported\n");
2613 
2614 	if (priv->plat->pmt) {
2615 		pr_info(" Wake-Up On Lan supported\n");
2616 		device_set_wakeup_capable(priv->device, 1);
2617 	}
2618 
2619 	return 0;
2620 }
2621 
2622 /**
2623  * stmmac_dvr_probe
2624  * @device: device pointer
2625  * @plat_dat: platform data pointer
2626  * @addr: iobase memory address
2627  * Description: this is the main probe function used to
2628  * call the alloc_etherdev, allocate the priv structure.
2629  */
2630 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2631 				     struct plat_stmmacenet_data *plat_dat,
2632 				     void __iomem *addr)
2633 {
2634 	int ret = 0;
2635 	struct net_device *ndev = NULL;
2636 	struct stmmac_priv *priv;
2637 
2638 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2639 	if (!ndev)
2640 		return NULL;
2641 
2642 	SET_NETDEV_DEV(ndev, device);
2643 
2644 	priv = netdev_priv(ndev);
2645 	priv->device = device;
2646 	priv->dev = ndev;
2647 
2648 	ether_setup(ndev);
2649 
2650 	stmmac_set_ethtool_ops(ndev);
2651 	priv->pause = pause;
2652 	priv->plat = plat_dat;
2653 	priv->ioaddr = addr;
2654 	priv->dev->base_addr = (unsigned long)addr;
2655 
2656 	/* Verify driver arguments */
2657 	stmmac_verify_args();
2658 
2659 	/* Override with kernel parameters if supplied XXX CRS XXX
2660 	 * this needs to have multiple instances
2661 	 */
2662 	if ((phyaddr >= 0) && (phyaddr <= 31))
2663 		priv->plat->phy_addr = phyaddr;
2664 
2665 	/* Init MAC and get the capabilities */
2666 	ret = stmmac_hw_init(priv);
2667 	if (ret)
2668 		goto error_free_netdev;
2669 
2670 	ndev->netdev_ops = &stmmac_netdev_ops;
2671 
2672 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2673 			    NETIF_F_RXCSUM;
2674 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2675 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2676 #ifdef STMMAC_VLAN_TAG_USED
2677 	/* Both mac100 and gmac support receive VLAN tag detection */
2678 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2679 #endif
2680 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2681 
2682 	if (flow_ctrl)
2683 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2684 
2685 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2686 	 * In some case, for example on bugged HW this feature
2687 	 * has to be disable and this can be done by passing the
2688 	 * riwt_off field from the platform.
2689 	 */
2690 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2691 		priv->use_riwt = 1;
2692 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2693 	}
2694 
2695 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2696 
2697 	spin_lock_init(&priv->lock);
2698 	spin_lock_init(&priv->tx_lock);
2699 
2700 	ret = register_netdev(ndev);
2701 	if (ret) {
2702 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2703 		goto error_netdev_register;
2704 	}
2705 
2706 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2707 	if (IS_ERR(priv->stmmac_clk)) {
2708 		pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2709 		goto error_clk_get;
2710 	}
2711 
2712 	/* If a specific clk_csr value is passed from the platform
2713 	 * this means that the CSR Clock Range selection cannot be
2714 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2715 	 * set the MDC clock dynamically according to the csr actual
2716 	 * clock input.
2717 	 */
2718 	if (!priv->plat->clk_csr)
2719 		stmmac_clk_csr_set(priv);
2720 	else
2721 		priv->clk_csr = priv->plat->clk_csr;
2722 
2723 	stmmac_check_pcs_mode(priv);
2724 
2725 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2726 	    priv->pcs != STMMAC_PCS_RTBI) {
2727 		/* MDIO bus Registration */
2728 		ret = stmmac_mdio_register(ndev);
2729 		if (ret < 0) {
2730 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2731 				 __func__, priv->plat->bus_id);
2732 			goto error_mdio_register;
2733 		}
2734 	}
2735 
2736 	return priv;
2737 
2738 error_mdio_register:
2739 	clk_put(priv->stmmac_clk);
2740 error_clk_get:
2741 	unregister_netdev(ndev);
2742 error_netdev_register:
2743 	netif_napi_del(&priv->napi);
2744 error_free_netdev:
2745 	free_netdev(ndev);
2746 
2747 	return NULL;
2748 }
2749 
2750 /**
2751  * stmmac_dvr_remove
2752  * @ndev: net device pointer
2753  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2754  * changes the link status, releases the DMA descriptor rings.
2755  */
2756 int stmmac_dvr_remove(struct net_device *ndev)
2757 {
2758 	struct stmmac_priv *priv = netdev_priv(ndev);
2759 
2760 	pr_info("%s:\n\tremoving driver", __func__);
2761 
2762 	priv->hw->dma->stop_rx(priv->ioaddr);
2763 	priv->hw->dma->stop_tx(priv->ioaddr);
2764 
2765 	stmmac_set_mac(priv->ioaddr, false);
2766 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2767 	    priv->pcs != STMMAC_PCS_RTBI)
2768 		stmmac_mdio_unregister(ndev);
2769 	netif_carrier_off(ndev);
2770 	unregister_netdev(ndev);
2771 	free_netdev(ndev);
2772 
2773 	return 0;
2774 }
2775 
2776 #ifdef CONFIG_PM
2777 int stmmac_suspend(struct net_device *ndev)
2778 {
2779 	struct stmmac_priv *priv = netdev_priv(ndev);
2780 	unsigned long flags;
2781 
2782 	if (!ndev || !netif_running(ndev))
2783 		return 0;
2784 
2785 	if (priv->phydev)
2786 		phy_stop(priv->phydev);
2787 
2788 	spin_lock_irqsave(&priv->lock, flags);
2789 
2790 	netif_device_detach(ndev);
2791 	netif_stop_queue(ndev);
2792 
2793 	napi_disable(&priv->napi);
2794 
2795 	/* Stop TX/RX DMA */
2796 	priv->hw->dma->stop_tx(priv->ioaddr);
2797 	priv->hw->dma->stop_rx(priv->ioaddr);
2798 
2799 	stmmac_clear_descriptors(priv);
2800 
2801 	/* Enable Power down mode by programming the PMT regs */
2802 	if (device_may_wakeup(priv->device))
2803 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2804 	else {
2805 		stmmac_set_mac(priv->ioaddr, false);
2806 		/* Disable clock in case of PWM is off */
2807 		clk_disable_unprepare(priv->stmmac_clk);
2808 	}
2809 	spin_unlock_irqrestore(&priv->lock, flags);
2810 	return 0;
2811 }
2812 
2813 int stmmac_resume(struct net_device *ndev)
2814 {
2815 	struct stmmac_priv *priv = netdev_priv(ndev);
2816 	unsigned long flags;
2817 
2818 	if (!netif_running(ndev))
2819 		return 0;
2820 
2821 	spin_lock_irqsave(&priv->lock, flags);
2822 
2823 	/* Power Down bit, into the PM register, is cleared
2824 	 * automatically as soon as a magic packet or a Wake-up frame
2825 	 * is received. Anyway, it's better to manually clear
2826 	 * this bit because it can generate problems while resuming
2827 	 * from another devices (e.g. serial console).
2828 	 */
2829 	if (device_may_wakeup(priv->device))
2830 		priv->hw->mac->pmt(priv->ioaddr, 0);
2831 	else
2832 		/* enable the clk prevously disabled */
2833 		clk_prepare_enable(priv->stmmac_clk);
2834 
2835 	netif_device_attach(ndev);
2836 
2837 	/* Enable the MAC and DMA */
2838 	stmmac_set_mac(priv->ioaddr, true);
2839 	priv->hw->dma->start_tx(priv->ioaddr);
2840 	priv->hw->dma->start_rx(priv->ioaddr);
2841 
2842 	napi_enable(&priv->napi);
2843 
2844 	netif_start_queue(ndev);
2845 
2846 	spin_unlock_irqrestore(&priv->lock, flags);
2847 
2848 	if (priv->phydev)
2849 		phy_start(priv->phydev);
2850 
2851 	return 0;
2852 }
2853 
2854 int stmmac_freeze(struct net_device *ndev)
2855 {
2856 	if (!ndev || !netif_running(ndev))
2857 		return 0;
2858 
2859 	return stmmac_release(ndev);
2860 }
2861 
2862 int stmmac_restore(struct net_device *ndev)
2863 {
2864 	if (!ndev || !netif_running(ndev))
2865 		return 0;
2866 
2867 	return stmmac_open(ndev);
2868 }
2869 #endif /* CONFIG_PM */
2870 
2871 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2872  * depending on the configuration selected.
2873  */
2874 static int __init stmmac_init(void)
2875 {
2876 	int ret;
2877 
2878 	ret = stmmac_register_platform();
2879 	if (ret)
2880 		goto err;
2881 	ret = stmmac_register_pci();
2882 	if (ret)
2883 		goto err_pci;
2884 	return 0;
2885 err_pci:
2886 	stmmac_unregister_platform();
2887 err:
2888 	pr_err("stmmac: driver registration failed\n");
2889 	return ret;
2890 }
2891 
2892 static void __exit stmmac_exit(void)
2893 {
2894 	stmmac_unregister_platform();
2895 	stmmac_unregister_pci();
2896 }
2897 
2898 module_init(stmmac_init);
2899 module_exit(stmmac_exit);
2900 
2901 #ifndef MODULE
2902 static int __init stmmac_cmdline_opt(char *str)
2903 {
2904 	char *opt;
2905 
2906 	if (!str || !*str)
2907 		return -EINVAL;
2908 	while ((opt = strsep(&str, ",")) != NULL) {
2909 		if (!strncmp(opt, "debug:", 6)) {
2910 			if (kstrtoint(opt + 6, 0, &debug))
2911 				goto err;
2912 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2913 			if (kstrtoint(opt + 8, 0, &phyaddr))
2914 				goto err;
2915 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2916 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2917 				goto err;
2918 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2919 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2920 				goto err;
2921 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2922 			if (kstrtoint(opt + 7, 0, &buf_sz))
2923 				goto err;
2924 		} else if (!strncmp(opt, "tc:", 3)) {
2925 			if (kstrtoint(opt + 3, 0, &tc))
2926 				goto err;
2927 		} else if (!strncmp(opt, "watchdog:", 9)) {
2928 			if (kstrtoint(opt + 9, 0, &watchdog))
2929 				goto err;
2930 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2931 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2932 				goto err;
2933 		} else if (!strncmp(opt, "pause:", 6)) {
2934 			if (kstrtoint(opt + 6, 0, &pause))
2935 				goto err;
2936 		} else if (!strncmp(opt, "eee_timer:", 10)) {
2937 			if (kstrtoint(opt + 10, 0, &eee_timer))
2938 				goto err;
2939 		} else if (!strncmp(opt, "chain_mode:", 11)) {
2940 			if (kstrtoint(opt + 11, 0, &chain_mode))
2941 				goto err;
2942 		}
2943 	}
2944 	return 0;
2945 
2946 err:
2947 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2948 	return -EINVAL;
2949 }
2950 
2951 __setup("stmmaceth=", stmmac_cmdline_opt);
2952 #endif /* MODULE */
2953 
2954 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2955 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2956 MODULE_LICENSE("GPL");
2957