1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static void stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	bool found = false;
436 	u64 ns = 0;
437 
438 	if (!priv->hwts_tx_en)
439 		return;
440 
441 	/* exit if skb doesn't support hw tstamp */
442 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
443 		return;
444 
445 	/* check tx tstamp status */
446 	if (stmmac_get_tx_timestamp_status(priv, p)) {
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 		found = true;
449 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
450 		found = true;
451 	}
452 
453 	if (found) {
454 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
455 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
456 
457 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
458 		/* pass tstamp to stack */
459 		skb_tstamp_tx(skb, &shhwtstamp);
460 	}
461 }
462 
463 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
464  * @priv: driver private structure
465  * @p : descriptor pointer
466  * @np : next descriptor pointer
467  * @skb : the socket buffer
468  * Description :
469  * This function will read received packet's timestamp from the descriptor
470  * and pass it to stack. It also perform some sanity checks.
471  */
472 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
473 				   struct dma_desc *np, struct sk_buff *skb)
474 {
475 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
476 	struct dma_desc *desc = p;
477 	u64 ns = 0;
478 
479 	if (!priv->hwts_rx_en)
480 		return;
481 	/* For GMAC4, the valid timestamp is from CTX next desc. */
482 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
483 		desc = np;
484 
485 	/* Check if timestamp is available */
486 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
487 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
488 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
489 		shhwtstamp = skb_hwtstamps(skb);
490 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
491 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
492 	} else  {
493 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
494 	}
495 }
496 
497 /**
498  *  stmmac_hwtstamp_set - control hardware timestamping.
499  *  @dev: device pointer.
500  *  @ifr: An IOCTL specific structure, that can contain a pointer to
501  *  a proprietary structure used to pass information to the driver.
502  *  Description:
503  *  This function configures the MAC to enable/disable both outgoing(TX)
504  *  and incoming(RX) packets time stamping based on user input.
505  *  Return Value:
506  *  0 on success and an appropriate -ve integer on failure.
507  */
508 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
509 {
510 	struct stmmac_priv *priv = netdev_priv(dev);
511 	struct hwtstamp_config config;
512 	struct timespec64 now;
513 	u64 temp = 0;
514 	u32 ptp_v2 = 0;
515 	u32 tstamp_all = 0;
516 	u32 ptp_over_ipv4_udp = 0;
517 	u32 ptp_over_ipv6_udp = 0;
518 	u32 ptp_over_ethernet = 0;
519 	u32 snap_type_sel = 0;
520 	u32 ts_master_en = 0;
521 	u32 ts_event_en = 0;
522 	u32 sec_inc = 0;
523 	u32 value = 0;
524 	bool xmac;
525 
526 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
527 
528 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
529 		netdev_alert(priv->dev, "No support for HW time stamping\n");
530 		priv->hwts_tx_en = 0;
531 		priv->hwts_rx_en = 0;
532 
533 		return -EOPNOTSUPP;
534 	}
535 
536 	if (copy_from_user(&config, ifr->ifr_data,
537 			   sizeof(config)))
538 		return -EFAULT;
539 
540 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
541 		   __func__, config.flags, config.tx_type, config.rx_filter);
542 
543 	/* reserved for future extensions */
544 	if (config.flags)
545 		return -EINVAL;
546 
547 	if (config.tx_type != HWTSTAMP_TX_OFF &&
548 	    config.tx_type != HWTSTAMP_TX_ON)
549 		return -ERANGE;
550 
551 	if (priv->adv_ts) {
552 		switch (config.rx_filter) {
553 		case HWTSTAMP_FILTER_NONE:
554 			/* time stamp no incoming packet at all */
555 			config.rx_filter = HWTSTAMP_FILTER_NONE;
556 			break;
557 
558 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
559 			/* PTP v1, UDP, any kind of event packet */
560 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
561 			/* 'xmac' hardware can support Sync, Pdelay_Req and
562 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
563 			 * This leaves Delay_Req timestamps out.
564 			 * Enable all events *and* general purpose message
565 			 * timestamping
566 			 */
567 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
568 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
569 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
570 			break;
571 
572 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
573 			/* PTP v1, UDP, Sync packet */
574 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
575 			/* take time stamp for SYNC messages only */
576 			ts_event_en = PTP_TCR_TSEVNTENA;
577 
578 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
579 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
580 			break;
581 
582 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
583 			/* PTP v1, UDP, Delay_req packet */
584 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
585 			/* take time stamp for Delay_Req messages only */
586 			ts_master_en = PTP_TCR_TSMSTRENA;
587 			ts_event_en = PTP_TCR_TSEVNTENA;
588 
589 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
590 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
591 			break;
592 
593 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
594 			/* PTP v2, UDP, any kind of event packet */
595 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
596 			ptp_v2 = PTP_TCR_TSVER2ENA;
597 			/* take time stamp for all event messages */
598 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
599 
600 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
601 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
602 			break;
603 
604 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
605 			/* PTP v2, UDP, Sync packet */
606 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
607 			ptp_v2 = PTP_TCR_TSVER2ENA;
608 			/* take time stamp for SYNC messages only */
609 			ts_event_en = PTP_TCR_TSEVNTENA;
610 
611 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 			break;
614 
615 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
616 			/* PTP v2, UDP, Delay_req packet */
617 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
618 			ptp_v2 = PTP_TCR_TSVER2ENA;
619 			/* take time stamp for Delay_Req messages only */
620 			ts_master_en = PTP_TCR_TSMSTRENA;
621 			ts_event_en = PTP_TCR_TSEVNTENA;
622 
623 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
624 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
625 			break;
626 
627 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
628 			/* PTP v2/802.AS1 any layer, any kind of event packet */
629 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
630 			ptp_v2 = PTP_TCR_TSVER2ENA;
631 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
633 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
634 			ptp_over_ethernet = PTP_TCR_TSIPENA;
635 			break;
636 
637 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
638 			/* PTP v2/802.AS1, any layer, Sync packet */
639 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
640 			ptp_v2 = PTP_TCR_TSVER2ENA;
641 			/* take time stamp for SYNC messages only */
642 			ts_event_en = PTP_TCR_TSEVNTENA;
643 
644 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
645 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
646 			ptp_over_ethernet = PTP_TCR_TSIPENA;
647 			break;
648 
649 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
650 			/* PTP v2/802.AS1, any layer, Delay_req packet */
651 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
652 			ptp_v2 = PTP_TCR_TSVER2ENA;
653 			/* take time stamp for Delay_Req messages only */
654 			ts_master_en = PTP_TCR_TSMSTRENA;
655 			ts_event_en = PTP_TCR_TSEVNTENA;
656 
657 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
658 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
659 			ptp_over_ethernet = PTP_TCR_TSIPENA;
660 			break;
661 
662 		case HWTSTAMP_FILTER_NTP_ALL:
663 		case HWTSTAMP_FILTER_ALL:
664 			/* time stamp any incoming packet */
665 			config.rx_filter = HWTSTAMP_FILTER_ALL;
666 			tstamp_all = PTP_TCR_TSENALL;
667 			break;
668 
669 		default:
670 			return -ERANGE;
671 		}
672 	} else {
673 		switch (config.rx_filter) {
674 		case HWTSTAMP_FILTER_NONE:
675 			config.rx_filter = HWTSTAMP_FILTER_NONE;
676 			break;
677 		default:
678 			/* PTP v1, UDP, any kind of event packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
680 			break;
681 		}
682 	}
683 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
684 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
685 
686 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
687 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
688 	else {
689 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
690 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
691 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
692 			 ts_master_en | snap_type_sel);
693 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
694 
695 		/* program Sub Second Increment reg */
696 		stmmac_config_sub_second_increment(priv,
697 				priv->ptpaddr, priv->plat->clk_ptp_rate,
698 				xmac, &sec_inc);
699 		temp = div_u64(1000000000ULL, sec_inc);
700 
701 		/* Store sub second increment and flags for later use */
702 		priv->sub_second_inc = sec_inc;
703 		priv->systime_flags = value;
704 
705 		/* calculate default added value:
706 		 * formula is :
707 		 * addend = (2^32)/freq_div_ratio;
708 		 * where, freq_div_ratio = 1e9ns/sec_inc
709 		 */
710 		temp = (u64)(temp << 32);
711 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
712 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
713 
714 		/* initialize system time */
715 		ktime_get_real_ts64(&now);
716 
717 		/* lower 32 bits of tv_sec are safe until y2106 */
718 		stmmac_init_systime(priv, priv->ptpaddr,
719 				(u32)now.tv_sec, now.tv_nsec);
720 	}
721 
722 	memcpy(&priv->tstamp_config, &config, sizeof(config));
723 
724 	return copy_to_user(ifr->ifr_data, &config,
725 			    sizeof(config)) ? -EFAULT : 0;
726 }
727 
728 /**
729  *  stmmac_hwtstamp_get - read hardware timestamping.
730  *  @dev: device pointer.
731  *  @ifr: An IOCTL specific structure, that can contain a pointer to
732  *  a proprietary structure used to pass information to the driver.
733  *  Description:
734  *  This function obtain the current hardware timestamping settings
735     as requested.
736  */
737 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
738 {
739 	struct stmmac_priv *priv = netdev_priv(dev);
740 	struct hwtstamp_config *config = &priv->tstamp_config;
741 
742 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
743 		return -EOPNOTSUPP;
744 
745 	return copy_to_user(ifr->ifr_data, config,
746 			    sizeof(*config)) ? -EFAULT : 0;
747 }
748 
749 /**
750  * stmmac_init_ptp - init PTP
751  * @priv: driver private structure
752  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
753  * This is done by looking at the HW cap. register.
754  * This function also registers the ptp driver.
755  */
756 static int stmmac_init_ptp(struct stmmac_priv *priv)
757 {
758 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
759 
760 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
761 		return -EOPNOTSUPP;
762 
763 	priv->adv_ts = 0;
764 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
765 	if (xmac && priv->dma_cap.atime_stamp)
766 		priv->adv_ts = 1;
767 	/* Dwmac 3.x core with extend_desc can support adv_ts */
768 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
769 		priv->adv_ts = 1;
770 
771 	if (priv->dma_cap.time_stamp)
772 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
773 
774 	if (priv->adv_ts)
775 		netdev_info(priv->dev,
776 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
777 
778 	priv->hwts_tx_en = 0;
779 	priv->hwts_rx_en = 0;
780 
781 	stmmac_ptp_register(priv);
782 
783 	return 0;
784 }
785 
786 static void stmmac_release_ptp(struct stmmac_priv *priv)
787 {
788 	if (priv->plat->clk_ptp_ref)
789 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
790 	stmmac_ptp_unregister(priv);
791 }
792 
793 /**
794  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
795  *  @priv: driver private structure
796  *  Description: It is used for configuring the flow control in all queues
797  */
798 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
799 {
800 	u32 tx_cnt = priv->plat->tx_queues_to_use;
801 
802 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
803 			priv->pause, tx_cnt);
804 }
805 
806 static void stmmac_validate(struct phylink_config *config,
807 			    unsigned long *supported,
808 			    struct phylink_link_state *state)
809 {
810 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
811 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
812 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
813 	int tx_cnt = priv->plat->tx_queues_to_use;
814 	int max_speed = priv->plat->max_speed;
815 
816 	phylink_set(mac_supported, 10baseT_Half);
817 	phylink_set(mac_supported, 10baseT_Full);
818 	phylink_set(mac_supported, 100baseT_Half);
819 	phylink_set(mac_supported, 100baseT_Full);
820 	phylink_set(mac_supported, 1000baseT_Half);
821 	phylink_set(mac_supported, 1000baseT_Full);
822 	phylink_set(mac_supported, 1000baseKX_Full);
823 
824 	phylink_set(mac_supported, Autoneg);
825 	phylink_set(mac_supported, Pause);
826 	phylink_set(mac_supported, Asym_Pause);
827 	phylink_set_port_modes(mac_supported);
828 
829 	/* Cut down 1G if asked to */
830 	if ((max_speed > 0) && (max_speed < 1000)) {
831 		phylink_set(mask, 1000baseT_Full);
832 		phylink_set(mask, 1000baseX_Full);
833 	} else if (priv->plat->has_xgmac) {
834 		phylink_set(mac_supported, 2500baseT_Full);
835 		phylink_set(mac_supported, 5000baseT_Full);
836 		phylink_set(mac_supported, 10000baseSR_Full);
837 		phylink_set(mac_supported, 10000baseLR_Full);
838 		phylink_set(mac_supported, 10000baseER_Full);
839 		phylink_set(mac_supported, 10000baseLRM_Full);
840 		phylink_set(mac_supported, 10000baseT_Full);
841 		phylink_set(mac_supported, 10000baseKX4_Full);
842 		phylink_set(mac_supported, 10000baseKR_Full);
843 	}
844 
845 	/* Half-Duplex can only work with single queue */
846 	if (tx_cnt > 1) {
847 		phylink_set(mask, 10baseT_Half);
848 		phylink_set(mask, 100baseT_Half);
849 		phylink_set(mask, 1000baseT_Half);
850 	}
851 
852 	bitmap_and(supported, supported, mac_supported,
853 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
854 	bitmap_andnot(supported, supported, mask,
855 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
856 	bitmap_and(state->advertising, state->advertising, mac_supported,
857 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
858 	bitmap_andnot(state->advertising, state->advertising, mask,
859 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
860 }
861 
862 static int stmmac_mac_link_state(struct phylink_config *config,
863 				 struct phylink_link_state *state)
864 {
865 	return -EOPNOTSUPP;
866 }
867 
868 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
869 			      const struct phylink_link_state *state)
870 {
871 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
872 	u32 ctrl;
873 
874 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
875 	ctrl &= ~priv->hw->link.speed_mask;
876 
877 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
878 		switch (state->speed) {
879 		case SPEED_10000:
880 			ctrl |= priv->hw->link.xgmii.speed10000;
881 			break;
882 		case SPEED_5000:
883 			ctrl |= priv->hw->link.xgmii.speed5000;
884 			break;
885 		case SPEED_2500:
886 			ctrl |= priv->hw->link.xgmii.speed2500;
887 			break;
888 		default:
889 			return;
890 		}
891 	} else {
892 		switch (state->speed) {
893 		case SPEED_2500:
894 			ctrl |= priv->hw->link.speed2500;
895 			break;
896 		case SPEED_1000:
897 			ctrl |= priv->hw->link.speed1000;
898 			break;
899 		case SPEED_100:
900 			ctrl |= priv->hw->link.speed100;
901 			break;
902 		case SPEED_10:
903 			ctrl |= priv->hw->link.speed10;
904 			break;
905 		default:
906 			return;
907 		}
908 	}
909 
910 	priv->speed = state->speed;
911 
912 	if (priv->plat->fix_mac_speed)
913 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
914 
915 	if (!state->duplex)
916 		ctrl &= ~priv->hw->link.duplex;
917 	else
918 		ctrl |= priv->hw->link.duplex;
919 
920 	/* Flow Control operation */
921 	if (state->pause)
922 		stmmac_mac_flow_ctrl(priv, state->duplex);
923 
924 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
925 }
926 
927 static void stmmac_mac_an_restart(struct phylink_config *config)
928 {
929 	/* Not Supported */
930 }
931 
932 static void stmmac_mac_link_down(struct phylink_config *config,
933 				 unsigned int mode, phy_interface_t interface)
934 {
935 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
936 
937 	stmmac_mac_set(priv, priv->ioaddr, false);
938 	priv->eee_active = false;
939 	stmmac_eee_init(priv);
940 	stmmac_set_eee_pls(priv, priv->hw, false);
941 }
942 
943 static void stmmac_mac_link_up(struct phylink_config *config,
944 			       unsigned int mode, phy_interface_t interface,
945 			       struct phy_device *phy)
946 {
947 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
948 
949 	stmmac_mac_set(priv, priv->ioaddr, true);
950 	if (phy && priv->dma_cap.eee) {
951 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
952 		priv->eee_enabled = stmmac_eee_init(priv);
953 		stmmac_set_eee_pls(priv, priv->hw, true);
954 	}
955 }
956 
957 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
958 	.validate = stmmac_validate,
959 	.mac_link_state = stmmac_mac_link_state,
960 	.mac_config = stmmac_mac_config,
961 	.mac_an_restart = stmmac_mac_an_restart,
962 	.mac_link_down = stmmac_mac_link_down,
963 	.mac_link_up = stmmac_mac_link_up,
964 };
965 
966 /**
967  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
968  * @priv: driver private structure
969  * Description: this is to verify if the HW supports the PCS.
970  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
971  * configured for the TBI, RTBI, or SGMII PHY interface.
972  */
973 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
974 {
975 	int interface = priv->plat->interface;
976 
977 	if (priv->dma_cap.pcs) {
978 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
979 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
980 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
981 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
982 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
983 			priv->hw->pcs = STMMAC_PCS_RGMII;
984 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
985 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
986 			priv->hw->pcs = STMMAC_PCS_SGMII;
987 		}
988 	}
989 }
990 
991 /**
992  * stmmac_init_phy - PHY initialization
993  * @dev: net device structure
994  * Description: it initializes the driver's PHY state, and attaches the PHY
995  * to the mac driver.
996  *  Return value:
997  *  0 on success
998  */
999 static int stmmac_init_phy(struct net_device *dev)
1000 {
1001 	struct stmmac_priv *priv = netdev_priv(dev);
1002 	struct device_node *node;
1003 	int ret;
1004 
1005 	node = priv->plat->phylink_node;
1006 
1007 	if (node)
1008 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1009 
1010 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1011 	 * manually parse it
1012 	 */
1013 	if (!node || ret) {
1014 		int addr = priv->plat->phy_addr;
1015 		struct phy_device *phydev;
1016 
1017 		phydev = mdiobus_get_phy(priv->mii, addr);
1018 		if (!phydev) {
1019 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1020 			return -ENODEV;
1021 		}
1022 
1023 		ret = phylink_connect_phy(priv->phylink, phydev);
1024 	}
1025 
1026 	return ret;
1027 }
1028 
1029 static int stmmac_phy_setup(struct stmmac_priv *priv)
1030 {
1031 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1032 	int mode = priv->plat->interface;
1033 	struct phylink *phylink;
1034 
1035 	priv->phylink_config.dev = &priv->dev->dev;
1036 	priv->phylink_config.type = PHYLINK_NETDEV;
1037 
1038 	phylink = phylink_create(&priv->phylink_config, fwnode,
1039 				 mode, &stmmac_phylink_mac_ops);
1040 	if (IS_ERR(phylink))
1041 		return PTR_ERR(phylink);
1042 
1043 	priv->phylink = phylink;
1044 	return 0;
1045 }
1046 
1047 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1048 {
1049 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1050 	void *head_rx;
1051 	u32 queue;
1052 
1053 	/* Display RX rings */
1054 	for (queue = 0; queue < rx_cnt; queue++) {
1055 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1056 
1057 		pr_info("\tRX Queue %u rings\n", queue);
1058 
1059 		if (priv->extend_desc)
1060 			head_rx = (void *)rx_q->dma_erx;
1061 		else
1062 			head_rx = (void *)rx_q->dma_rx;
1063 
1064 		/* Display RX ring */
1065 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1066 	}
1067 }
1068 
1069 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1070 {
1071 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1072 	void *head_tx;
1073 	u32 queue;
1074 
1075 	/* Display TX rings */
1076 	for (queue = 0; queue < tx_cnt; queue++) {
1077 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1078 
1079 		pr_info("\tTX Queue %d rings\n", queue);
1080 
1081 		if (priv->extend_desc)
1082 			head_tx = (void *)tx_q->dma_etx;
1083 		else
1084 			head_tx = (void *)tx_q->dma_tx;
1085 
1086 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1087 	}
1088 }
1089 
1090 static void stmmac_display_rings(struct stmmac_priv *priv)
1091 {
1092 	/* Display RX ring */
1093 	stmmac_display_rx_rings(priv);
1094 
1095 	/* Display TX ring */
1096 	stmmac_display_tx_rings(priv);
1097 }
1098 
1099 static int stmmac_set_bfsize(int mtu, int bufsize)
1100 {
1101 	int ret = bufsize;
1102 
1103 	if (mtu >= BUF_SIZE_4KiB)
1104 		ret = BUF_SIZE_8KiB;
1105 	else if (mtu >= BUF_SIZE_2KiB)
1106 		ret = BUF_SIZE_4KiB;
1107 	else if (mtu > DEFAULT_BUFSIZE)
1108 		ret = BUF_SIZE_2KiB;
1109 	else
1110 		ret = DEFAULT_BUFSIZE;
1111 
1112 	return ret;
1113 }
1114 
1115 /**
1116  * stmmac_clear_rx_descriptors - clear RX descriptors
1117  * @priv: driver private structure
1118  * @queue: RX queue index
1119  * Description: this function is called to clear the RX descriptors
1120  * in case of both basic and extended descriptors are used.
1121  */
1122 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1123 {
1124 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1125 	int i;
1126 
1127 	/* Clear the RX descriptors */
1128 	for (i = 0; i < DMA_RX_SIZE; i++)
1129 		if (priv->extend_desc)
1130 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1131 					priv->use_riwt, priv->mode,
1132 					(i == DMA_RX_SIZE - 1),
1133 					priv->dma_buf_sz);
1134 		else
1135 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1136 					priv->use_riwt, priv->mode,
1137 					(i == DMA_RX_SIZE - 1),
1138 					priv->dma_buf_sz);
1139 }
1140 
1141 /**
1142  * stmmac_clear_tx_descriptors - clear tx descriptors
1143  * @priv: driver private structure
1144  * @queue: TX queue index.
1145  * Description: this function is called to clear the TX descriptors
1146  * in case of both basic and extended descriptors are used.
1147  */
1148 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1149 {
1150 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1151 	int i;
1152 
1153 	/* Clear the TX descriptors */
1154 	for (i = 0; i < DMA_TX_SIZE; i++)
1155 		if (priv->extend_desc)
1156 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1157 					priv->mode, (i == DMA_TX_SIZE - 1));
1158 		else
1159 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1160 					priv->mode, (i == DMA_TX_SIZE - 1));
1161 }
1162 
1163 /**
1164  * stmmac_clear_descriptors - clear descriptors
1165  * @priv: driver private structure
1166  * Description: this function is called to clear the TX and RX descriptors
1167  * in case of both basic and extended descriptors are used.
1168  */
1169 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1170 {
1171 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1172 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1173 	u32 queue;
1174 
1175 	/* Clear the RX descriptors */
1176 	for (queue = 0; queue < rx_queue_cnt; queue++)
1177 		stmmac_clear_rx_descriptors(priv, queue);
1178 
1179 	/* Clear the TX descriptors */
1180 	for (queue = 0; queue < tx_queue_cnt; queue++)
1181 		stmmac_clear_tx_descriptors(priv, queue);
1182 }
1183 
1184 /**
1185  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1186  * @priv: driver private structure
1187  * @p: descriptor pointer
1188  * @i: descriptor index
1189  * @flags: gfp flag
1190  * @queue: RX queue index
1191  * Description: this function is called to allocate a receive buffer, perform
1192  * the DMA mapping and init the descriptor.
1193  */
1194 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1195 				  int i, gfp_t flags, u32 queue)
1196 {
1197 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1198 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1199 
1200 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1201 	if (!buf->page)
1202 		return -ENOMEM;
1203 
1204 	if (priv->sph) {
1205 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1206 		if (!buf->sec_page)
1207 			return -ENOMEM;
1208 
1209 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1210 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
1211 	} else {
1212 		buf->sec_page = NULL;
1213 	}
1214 
1215 	buf->addr = page_pool_get_dma_addr(buf->page);
1216 	stmmac_set_desc_addr(priv, p, buf->addr);
1217 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1218 		stmmac_init_desc3(priv, p);
1219 
1220 	return 0;
1221 }
1222 
1223 /**
1224  * stmmac_free_rx_buffer - free RX dma buffers
1225  * @priv: private structure
1226  * @queue: RX queue index
1227  * @i: buffer index.
1228  */
1229 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1230 {
1231 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1232 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1233 
1234 	if (buf->page)
1235 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1236 	buf->page = NULL;
1237 
1238 	if (buf->sec_page)
1239 		page_pool_put_page(rx_q->page_pool, buf->sec_page, false);
1240 	buf->sec_page = NULL;
1241 }
1242 
1243 /**
1244  * stmmac_free_tx_buffer - free RX dma buffers
1245  * @priv: private structure
1246  * @queue: RX queue index
1247  * @i: buffer index.
1248  */
1249 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1250 {
1251 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1252 
1253 	if (tx_q->tx_skbuff_dma[i].buf) {
1254 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1255 			dma_unmap_page(priv->device,
1256 				       tx_q->tx_skbuff_dma[i].buf,
1257 				       tx_q->tx_skbuff_dma[i].len,
1258 				       DMA_TO_DEVICE);
1259 		else
1260 			dma_unmap_single(priv->device,
1261 					 tx_q->tx_skbuff_dma[i].buf,
1262 					 tx_q->tx_skbuff_dma[i].len,
1263 					 DMA_TO_DEVICE);
1264 	}
1265 
1266 	if (tx_q->tx_skbuff[i]) {
1267 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1268 		tx_q->tx_skbuff[i] = NULL;
1269 		tx_q->tx_skbuff_dma[i].buf = 0;
1270 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1271 	}
1272 }
1273 
1274 /**
1275  * init_dma_rx_desc_rings - init the RX descriptor rings
1276  * @dev: net device structure
1277  * @flags: gfp flag.
1278  * Description: this function initializes the DMA RX descriptors
1279  * and allocates the socket buffers. It supports the chained and ring
1280  * modes.
1281  */
1282 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1283 {
1284 	struct stmmac_priv *priv = netdev_priv(dev);
1285 	u32 rx_count = priv->plat->rx_queues_to_use;
1286 	int ret = -ENOMEM;
1287 	int bfsize = 0;
1288 	int queue;
1289 	int i;
1290 
1291 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1292 	if (bfsize < 0)
1293 		bfsize = 0;
1294 
1295 	if (bfsize < BUF_SIZE_16KiB)
1296 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1297 
1298 	priv->dma_buf_sz = bfsize;
1299 
1300 	/* RX INITIALIZATION */
1301 	netif_dbg(priv, probe, priv->dev,
1302 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1303 
1304 	for (queue = 0; queue < rx_count; queue++) {
1305 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1306 
1307 		netif_dbg(priv, probe, priv->dev,
1308 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1309 			  (u32)rx_q->dma_rx_phy);
1310 
1311 		stmmac_clear_rx_descriptors(priv, queue);
1312 
1313 		for (i = 0; i < DMA_RX_SIZE; i++) {
1314 			struct dma_desc *p;
1315 
1316 			if (priv->extend_desc)
1317 				p = &((rx_q->dma_erx + i)->basic);
1318 			else
1319 				p = rx_q->dma_rx + i;
1320 
1321 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1322 						     queue);
1323 			if (ret)
1324 				goto err_init_rx_buffers;
1325 		}
1326 
1327 		rx_q->cur_rx = 0;
1328 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1329 
1330 		/* Setup the chained descriptor addresses */
1331 		if (priv->mode == STMMAC_CHAIN_MODE) {
1332 			if (priv->extend_desc)
1333 				stmmac_mode_init(priv, rx_q->dma_erx,
1334 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1335 			else
1336 				stmmac_mode_init(priv, rx_q->dma_rx,
1337 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1338 		}
1339 	}
1340 
1341 	buf_sz = bfsize;
1342 
1343 	return 0;
1344 
1345 err_init_rx_buffers:
1346 	while (queue >= 0) {
1347 		while (--i >= 0)
1348 			stmmac_free_rx_buffer(priv, queue, i);
1349 
1350 		if (queue == 0)
1351 			break;
1352 
1353 		i = DMA_RX_SIZE;
1354 		queue--;
1355 	}
1356 
1357 	return ret;
1358 }
1359 
1360 /**
1361  * init_dma_tx_desc_rings - init the TX descriptor rings
1362  * @dev: net device structure.
1363  * Description: this function initializes the DMA TX descriptors
1364  * and allocates the socket buffers. It supports the chained and ring
1365  * modes.
1366  */
1367 static int init_dma_tx_desc_rings(struct net_device *dev)
1368 {
1369 	struct stmmac_priv *priv = netdev_priv(dev);
1370 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1371 	u32 queue;
1372 	int i;
1373 
1374 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1375 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1376 
1377 		netif_dbg(priv, probe, priv->dev,
1378 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1379 			 (u32)tx_q->dma_tx_phy);
1380 
1381 		/* Setup the chained descriptor addresses */
1382 		if (priv->mode == STMMAC_CHAIN_MODE) {
1383 			if (priv->extend_desc)
1384 				stmmac_mode_init(priv, tx_q->dma_etx,
1385 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1386 			else
1387 				stmmac_mode_init(priv, tx_q->dma_tx,
1388 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1389 		}
1390 
1391 		for (i = 0; i < DMA_TX_SIZE; i++) {
1392 			struct dma_desc *p;
1393 			if (priv->extend_desc)
1394 				p = &((tx_q->dma_etx + i)->basic);
1395 			else
1396 				p = tx_q->dma_tx + i;
1397 
1398 			stmmac_clear_desc(priv, p);
1399 
1400 			tx_q->tx_skbuff_dma[i].buf = 0;
1401 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1402 			tx_q->tx_skbuff_dma[i].len = 0;
1403 			tx_q->tx_skbuff_dma[i].last_segment = false;
1404 			tx_q->tx_skbuff[i] = NULL;
1405 		}
1406 
1407 		tx_q->dirty_tx = 0;
1408 		tx_q->cur_tx = 0;
1409 		tx_q->mss = 0;
1410 
1411 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1412 	}
1413 
1414 	return 0;
1415 }
1416 
1417 /**
1418  * init_dma_desc_rings - init the RX/TX descriptor rings
1419  * @dev: net device structure
1420  * @flags: gfp flag.
1421  * Description: this function initializes the DMA RX/TX descriptors
1422  * and allocates the socket buffers. It supports the chained and ring
1423  * modes.
1424  */
1425 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1426 {
1427 	struct stmmac_priv *priv = netdev_priv(dev);
1428 	int ret;
1429 
1430 	ret = init_dma_rx_desc_rings(dev, flags);
1431 	if (ret)
1432 		return ret;
1433 
1434 	ret = init_dma_tx_desc_rings(dev);
1435 
1436 	stmmac_clear_descriptors(priv);
1437 
1438 	if (netif_msg_hw(priv))
1439 		stmmac_display_rings(priv);
1440 
1441 	return ret;
1442 }
1443 
1444 /**
1445  * dma_free_rx_skbufs - free RX dma buffers
1446  * @priv: private structure
1447  * @queue: RX queue index
1448  */
1449 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1450 {
1451 	int i;
1452 
1453 	for (i = 0; i < DMA_RX_SIZE; i++)
1454 		stmmac_free_rx_buffer(priv, queue, i);
1455 }
1456 
1457 /**
1458  * dma_free_tx_skbufs - free TX dma buffers
1459  * @priv: private structure
1460  * @queue: TX queue index
1461  */
1462 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1463 {
1464 	int i;
1465 
1466 	for (i = 0; i < DMA_TX_SIZE; i++)
1467 		stmmac_free_tx_buffer(priv, queue, i);
1468 }
1469 
1470 /**
1471  * free_dma_rx_desc_resources - free RX dma desc resources
1472  * @priv: private structure
1473  */
1474 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1475 {
1476 	u32 rx_count = priv->plat->rx_queues_to_use;
1477 	u32 queue;
1478 
1479 	/* Free RX queue resources */
1480 	for (queue = 0; queue < rx_count; queue++) {
1481 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1482 
1483 		/* Release the DMA RX socket buffers */
1484 		dma_free_rx_skbufs(priv, queue);
1485 
1486 		/* Free DMA regions of consistent memory previously allocated */
1487 		if (!priv->extend_desc)
1488 			dma_free_coherent(priv->device,
1489 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1490 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1491 		else
1492 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1493 					  sizeof(struct dma_extended_desc),
1494 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1495 
1496 		kfree(rx_q->buf_pool);
1497 		if (rx_q->page_pool) {
1498 			page_pool_request_shutdown(rx_q->page_pool);
1499 			page_pool_destroy(rx_q->page_pool);
1500 		}
1501 	}
1502 }
1503 
1504 /**
1505  * free_dma_tx_desc_resources - free TX dma desc resources
1506  * @priv: private structure
1507  */
1508 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1509 {
1510 	u32 tx_count = priv->plat->tx_queues_to_use;
1511 	u32 queue;
1512 
1513 	/* Free TX queue resources */
1514 	for (queue = 0; queue < tx_count; queue++) {
1515 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1516 
1517 		/* Release the DMA TX socket buffers */
1518 		dma_free_tx_skbufs(priv, queue);
1519 
1520 		/* Free DMA regions of consistent memory previously allocated */
1521 		if (!priv->extend_desc)
1522 			dma_free_coherent(priv->device,
1523 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1524 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1525 		else
1526 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1527 					  sizeof(struct dma_extended_desc),
1528 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1529 
1530 		kfree(tx_q->tx_skbuff_dma);
1531 		kfree(tx_q->tx_skbuff);
1532 	}
1533 }
1534 
1535 /**
1536  * alloc_dma_rx_desc_resources - alloc RX resources.
1537  * @priv: private structure
1538  * Description: according to which descriptor can be used (extend or basic)
1539  * this function allocates the resources for TX and RX paths. In case of
1540  * reception, for example, it pre-allocated the RX socket buffer in order to
1541  * allow zero-copy mechanism.
1542  */
1543 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1544 {
1545 	u32 rx_count = priv->plat->rx_queues_to_use;
1546 	int ret = -ENOMEM;
1547 	u32 queue;
1548 
1549 	/* RX queues buffers and DMA */
1550 	for (queue = 0; queue < rx_count; queue++) {
1551 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1552 		struct page_pool_params pp_params = { 0 };
1553 
1554 		rx_q->queue_index = queue;
1555 		rx_q->priv_data = priv;
1556 
1557 		pp_params.flags = PP_FLAG_DMA_MAP;
1558 		pp_params.pool_size = DMA_RX_SIZE;
1559 		pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1560 		pp_params.nid = dev_to_node(priv->device);
1561 		pp_params.dev = priv->device;
1562 		pp_params.dma_dir = DMA_FROM_DEVICE;
1563 
1564 		rx_q->page_pool = page_pool_create(&pp_params);
1565 		if (IS_ERR(rx_q->page_pool)) {
1566 			ret = PTR_ERR(rx_q->page_pool);
1567 			rx_q->page_pool = NULL;
1568 			goto err_dma;
1569 		}
1570 
1571 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1572 					 GFP_KERNEL);
1573 		if (!rx_q->buf_pool)
1574 			goto err_dma;
1575 
1576 		if (priv->extend_desc) {
1577 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1578 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1579 							   &rx_q->dma_rx_phy,
1580 							   GFP_KERNEL);
1581 			if (!rx_q->dma_erx)
1582 				goto err_dma;
1583 
1584 		} else {
1585 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1586 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1587 							  &rx_q->dma_rx_phy,
1588 							  GFP_KERNEL);
1589 			if (!rx_q->dma_rx)
1590 				goto err_dma;
1591 		}
1592 	}
1593 
1594 	return 0;
1595 
1596 err_dma:
1597 	free_dma_rx_desc_resources(priv);
1598 
1599 	return ret;
1600 }
1601 
1602 /**
1603  * alloc_dma_tx_desc_resources - alloc TX resources.
1604  * @priv: private structure
1605  * Description: according to which descriptor can be used (extend or basic)
1606  * this function allocates the resources for TX and RX paths. In case of
1607  * reception, for example, it pre-allocated the RX socket buffer in order to
1608  * allow zero-copy mechanism.
1609  */
1610 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1611 {
1612 	u32 tx_count = priv->plat->tx_queues_to_use;
1613 	int ret = -ENOMEM;
1614 	u32 queue;
1615 
1616 	/* TX queues buffers and DMA */
1617 	for (queue = 0; queue < tx_count; queue++) {
1618 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1619 
1620 		tx_q->queue_index = queue;
1621 		tx_q->priv_data = priv;
1622 
1623 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1624 					      sizeof(*tx_q->tx_skbuff_dma),
1625 					      GFP_KERNEL);
1626 		if (!tx_q->tx_skbuff_dma)
1627 			goto err_dma;
1628 
1629 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1630 					  sizeof(struct sk_buff *),
1631 					  GFP_KERNEL);
1632 		if (!tx_q->tx_skbuff)
1633 			goto err_dma;
1634 
1635 		if (priv->extend_desc) {
1636 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1637 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1638 							   &tx_q->dma_tx_phy,
1639 							   GFP_KERNEL);
1640 			if (!tx_q->dma_etx)
1641 				goto err_dma;
1642 		} else {
1643 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1644 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1645 							  &tx_q->dma_tx_phy,
1646 							  GFP_KERNEL);
1647 			if (!tx_q->dma_tx)
1648 				goto err_dma;
1649 		}
1650 	}
1651 
1652 	return 0;
1653 
1654 err_dma:
1655 	free_dma_tx_desc_resources(priv);
1656 
1657 	return ret;
1658 }
1659 
1660 /**
1661  * alloc_dma_desc_resources - alloc TX/RX resources.
1662  * @priv: private structure
1663  * Description: according to which descriptor can be used (extend or basic)
1664  * this function allocates the resources for TX and RX paths. In case of
1665  * reception, for example, it pre-allocated the RX socket buffer in order to
1666  * allow zero-copy mechanism.
1667  */
1668 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1669 {
1670 	/* RX Allocation */
1671 	int ret = alloc_dma_rx_desc_resources(priv);
1672 
1673 	if (ret)
1674 		return ret;
1675 
1676 	ret = alloc_dma_tx_desc_resources(priv);
1677 
1678 	return ret;
1679 }
1680 
1681 /**
1682  * free_dma_desc_resources - free dma desc resources
1683  * @priv: private structure
1684  */
1685 static void free_dma_desc_resources(struct stmmac_priv *priv)
1686 {
1687 	/* Release the DMA RX socket buffers */
1688 	free_dma_rx_desc_resources(priv);
1689 
1690 	/* Release the DMA TX socket buffers */
1691 	free_dma_tx_desc_resources(priv);
1692 }
1693 
1694 /**
1695  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1696  *  @priv: driver private structure
1697  *  Description: It is used for enabling the rx queues in the MAC
1698  */
1699 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1700 {
1701 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1702 	int queue;
1703 	u8 mode;
1704 
1705 	for (queue = 0; queue < rx_queues_count; queue++) {
1706 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1707 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1708 	}
1709 }
1710 
1711 /**
1712  * stmmac_start_rx_dma - start RX DMA channel
1713  * @priv: driver private structure
1714  * @chan: RX channel index
1715  * Description:
1716  * This starts a RX DMA channel
1717  */
1718 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1719 {
1720 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1721 	stmmac_start_rx(priv, priv->ioaddr, chan);
1722 }
1723 
1724 /**
1725  * stmmac_start_tx_dma - start TX DMA channel
1726  * @priv: driver private structure
1727  * @chan: TX channel index
1728  * Description:
1729  * This starts a TX DMA channel
1730  */
1731 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1732 {
1733 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1734 	stmmac_start_tx(priv, priv->ioaddr, chan);
1735 }
1736 
1737 /**
1738  * stmmac_stop_rx_dma - stop RX DMA channel
1739  * @priv: driver private structure
1740  * @chan: RX channel index
1741  * Description:
1742  * This stops a RX DMA channel
1743  */
1744 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1745 {
1746 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1747 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1748 }
1749 
1750 /**
1751  * stmmac_stop_tx_dma - stop TX DMA channel
1752  * @priv: driver private structure
1753  * @chan: TX channel index
1754  * Description:
1755  * This stops a TX DMA channel
1756  */
1757 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1758 {
1759 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1760 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1761 }
1762 
1763 /**
1764  * stmmac_start_all_dma - start all RX and TX DMA channels
1765  * @priv: driver private structure
1766  * Description:
1767  * This starts all the RX and TX DMA channels
1768  */
1769 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1770 {
1771 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1772 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1773 	u32 chan = 0;
1774 
1775 	for (chan = 0; chan < rx_channels_count; chan++)
1776 		stmmac_start_rx_dma(priv, chan);
1777 
1778 	for (chan = 0; chan < tx_channels_count; chan++)
1779 		stmmac_start_tx_dma(priv, chan);
1780 }
1781 
1782 /**
1783  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1784  * @priv: driver private structure
1785  * Description:
1786  * This stops the RX and TX DMA channels
1787  */
1788 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1789 {
1790 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1791 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1792 	u32 chan = 0;
1793 
1794 	for (chan = 0; chan < rx_channels_count; chan++)
1795 		stmmac_stop_rx_dma(priv, chan);
1796 
1797 	for (chan = 0; chan < tx_channels_count; chan++)
1798 		stmmac_stop_tx_dma(priv, chan);
1799 }
1800 
1801 /**
1802  *  stmmac_dma_operation_mode - HW DMA operation mode
1803  *  @priv: driver private structure
1804  *  Description: it is used for configuring the DMA operation mode register in
1805  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1806  */
1807 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1808 {
1809 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1810 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1811 	int rxfifosz = priv->plat->rx_fifo_size;
1812 	int txfifosz = priv->plat->tx_fifo_size;
1813 	u32 txmode = 0;
1814 	u32 rxmode = 0;
1815 	u32 chan = 0;
1816 	u8 qmode = 0;
1817 
1818 	if (rxfifosz == 0)
1819 		rxfifosz = priv->dma_cap.rx_fifo_size;
1820 	if (txfifosz == 0)
1821 		txfifosz = priv->dma_cap.tx_fifo_size;
1822 
1823 	/* Adjust for real per queue fifo size */
1824 	rxfifosz /= rx_channels_count;
1825 	txfifosz /= tx_channels_count;
1826 
1827 	if (priv->plat->force_thresh_dma_mode) {
1828 		txmode = tc;
1829 		rxmode = tc;
1830 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1831 		/*
1832 		 * In case of GMAC, SF mode can be enabled
1833 		 * to perform the TX COE in HW. This depends on:
1834 		 * 1) TX COE if actually supported
1835 		 * 2) There is no bugged Jumbo frame support
1836 		 *    that needs to not insert csum in the TDES.
1837 		 */
1838 		txmode = SF_DMA_MODE;
1839 		rxmode = SF_DMA_MODE;
1840 		priv->xstats.threshold = SF_DMA_MODE;
1841 	} else {
1842 		txmode = tc;
1843 		rxmode = SF_DMA_MODE;
1844 	}
1845 
1846 	/* configure all channels */
1847 	for (chan = 0; chan < rx_channels_count; chan++) {
1848 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1849 
1850 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1851 				rxfifosz, qmode);
1852 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1853 				chan);
1854 	}
1855 
1856 	for (chan = 0; chan < tx_channels_count; chan++) {
1857 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1858 
1859 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1860 				txfifosz, qmode);
1861 	}
1862 }
1863 
1864 /**
1865  * stmmac_tx_clean - to manage the transmission completion
1866  * @priv: driver private structure
1867  * @queue: TX queue index
1868  * Description: it reclaims the transmit resources after transmission completes.
1869  */
1870 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1871 {
1872 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1873 	unsigned int bytes_compl = 0, pkts_compl = 0;
1874 	unsigned int entry, count = 0;
1875 
1876 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1877 
1878 	priv->xstats.tx_clean++;
1879 
1880 	entry = tx_q->dirty_tx;
1881 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1882 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1883 		struct dma_desc *p;
1884 		int status;
1885 
1886 		if (priv->extend_desc)
1887 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1888 		else
1889 			p = tx_q->dma_tx + entry;
1890 
1891 		status = stmmac_tx_status(priv, &priv->dev->stats,
1892 				&priv->xstats, p, priv->ioaddr);
1893 		/* Check if the descriptor is owned by the DMA */
1894 		if (unlikely(status & tx_dma_own))
1895 			break;
1896 
1897 		count++;
1898 
1899 		/* Make sure descriptor fields are read after reading
1900 		 * the own bit.
1901 		 */
1902 		dma_rmb();
1903 
1904 		/* Just consider the last segment and ...*/
1905 		if (likely(!(status & tx_not_ls))) {
1906 			/* ... verify the status error condition */
1907 			if (unlikely(status & tx_err)) {
1908 				priv->dev->stats.tx_errors++;
1909 			} else {
1910 				priv->dev->stats.tx_packets++;
1911 				priv->xstats.tx_pkt_n++;
1912 			}
1913 			stmmac_get_tx_hwtstamp(priv, p, skb);
1914 		}
1915 
1916 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1917 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1918 				dma_unmap_page(priv->device,
1919 					       tx_q->tx_skbuff_dma[entry].buf,
1920 					       tx_q->tx_skbuff_dma[entry].len,
1921 					       DMA_TO_DEVICE);
1922 			else
1923 				dma_unmap_single(priv->device,
1924 						 tx_q->tx_skbuff_dma[entry].buf,
1925 						 tx_q->tx_skbuff_dma[entry].len,
1926 						 DMA_TO_DEVICE);
1927 			tx_q->tx_skbuff_dma[entry].buf = 0;
1928 			tx_q->tx_skbuff_dma[entry].len = 0;
1929 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1930 		}
1931 
1932 		stmmac_clean_desc3(priv, tx_q, p);
1933 
1934 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1935 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1936 
1937 		if (likely(skb != NULL)) {
1938 			pkts_compl++;
1939 			bytes_compl += skb->len;
1940 			dev_consume_skb_any(skb);
1941 			tx_q->tx_skbuff[entry] = NULL;
1942 		}
1943 
1944 		stmmac_release_tx_desc(priv, p, priv->mode);
1945 
1946 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1947 	}
1948 	tx_q->dirty_tx = entry;
1949 
1950 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1951 				  pkts_compl, bytes_compl);
1952 
1953 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1954 								queue))) &&
1955 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1956 
1957 		netif_dbg(priv, tx_done, priv->dev,
1958 			  "%s: restart transmit\n", __func__);
1959 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1960 	}
1961 
1962 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1963 		stmmac_enable_eee_mode(priv);
1964 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1965 	}
1966 
1967 	/* We still have pending packets, let's call for a new scheduling */
1968 	if (tx_q->dirty_tx != tx_q->cur_tx)
1969 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1970 
1971 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1972 
1973 	return count;
1974 }
1975 
1976 /**
1977  * stmmac_tx_err - to manage the tx error
1978  * @priv: driver private structure
1979  * @chan: channel index
1980  * Description: it cleans the descriptors and restarts the transmission
1981  * in case of transmission errors.
1982  */
1983 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1984 {
1985 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1986 	int i;
1987 
1988 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1989 
1990 	stmmac_stop_tx_dma(priv, chan);
1991 	dma_free_tx_skbufs(priv, chan);
1992 	for (i = 0; i < DMA_TX_SIZE; i++)
1993 		if (priv->extend_desc)
1994 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1995 					priv->mode, (i == DMA_TX_SIZE - 1));
1996 		else
1997 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1998 					priv->mode, (i == DMA_TX_SIZE - 1));
1999 	tx_q->dirty_tx = 0;
2000 	tx_q->cur_tx = 0;
2001 	tx_q->mss = 0;
2002 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2003 	stmmac_start_tx_dma(priv, chan);
2004 
2005 	priv->dev->stats.tx_errors++;
2006 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2007 }
2008 
2009 /**
2010  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2011  *  @priv: driver private structure
2012  *  @txmode: TX operating mode
2013  *  @rxmode: RX operating mode
2014  *  @chan: channel index
2015  *  Description: it is used for configuring of the DMA operation mode in
2016  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2017  *  mode.
2018  */
2019 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2020 					  u32 rxmode, u32 chan)
2021 {
2022 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2023 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2024 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2025 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2026 	int rxfifosz = priv->plat->rx_fifo_size;
2027 	int txfifosz = priv->plat->tx_fifo_size;
2028 
2029 	if (rxfifosz == 0)
2030 		rxfifosz = priv->dma_cap.rx_fifo_size;
2031 	if (txfifosz == 0)
2032 		txfifosz = priv->dma_cap.tx_fifo_size;
2033 
2034 	/* Adjust for real per queue fifo size */
2035 	rxfifosz /= rx_channels_count;
2036 	txfifosz /= tx_channels_count;
2037 
2038 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2039 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2040 }
2041 
2042 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2043 {
2044 	int ret;
2045 
2046 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2047 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2048 	if (ret && (ret != -EINVAL)) {
2049 		stmmac_global_err(priv);
2050 		return true;
2051 	}
2052 
2053 	return false;
2054 }
2055 
2056 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2057 {
2058 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2059 						 &priv->xstats, chan);
2060 	struct stmmac_channel *ch = &priv->channel[chan];
2061 
2062 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2063 		if (napi_schedule_prep(&ch->rx_napi)) {
2064 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2065 			__napi_schedule_irqoff(&ch->rx_napi);
2066 			status |= handle_tx;
2067 		}
2068 	}
2069 
2070 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2071 		napi_schedule_irqoff(&ch->tx_napi);
2072 
2073 	return status;
2074 }
2075 
2076 /**
2077  * stmmac_dma_interrupt - DMA ISR
2078  * @priv: driver private structure
2079  * Description: this is the DMA ISR. It is called by the main ISR.
2080  * It calls the dwmac dma routine and schedule poll method in case of some
2081  * work can be done.
2082  */
2083 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2084 {
2085 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2086 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2087 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2088 				tx_channel_count : rx_channel_count;
2089 	u32 chan;
2090 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2091 
2092 	/* Make sure we never check beyond our status buffer. */
2093 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2094 		channels_to_check = ARRAY_SIZE(status);
2095 
2096 	for (chan = 0; chan < channels_to_check; chan++)
2097 		status[chan] = stmmac_napi_check(priv, chan);
2098 
2099 	for (chan = 0; chan < tx_channel_count; chan++) {
2100 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2101 			/* Try to bump up the dma threshold on this failure */
2102 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2103 			    (tc <= 256)) {
2104 				tc += 64;
2105 				if (priv->plat->force_thresh_dma_mode)
2106 					stmmac_set_dma_operation_mode(priv,
2107 								      tc,
2108 								      tc,
2109 								      chan);
2110 				else
2111 					stmmac_set_dma_operation_mode(priv,
2112 								    tc,
2113 								    SF_DMA_MODE,
2114 								    chan);
2115 				priv->xstats.threshold = tc;
2116 			}
2117 		} else if (unlikely(status[chan] == tx_hard_error)) {
2118 			stmmac_tx_err(priv, chan);
2119 		}
2120 	}
2121 }
2122 
2123 /**
2124  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2125  * @priv: driver private structure
2126  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2127  */
2128 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2129 {
2130 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2131 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2132 
2133 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2134 
2135 	if (priv->dma_cap.rmon) {
2136 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2137 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2138 	} else
2139 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2140 }
2141 
2142 /**
2143  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2144  * @priv: driver private structure
2145  * Description:
2146  *  new GMAC chip generations have a new register to indicate the
2147  *  presence of the optional feature/functions.
2148  *  This can be also used to override the value passed through the
2149  *  platform and necessary for old MAC10/100 and GMAC chips.
2150  */
2151 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2152 {
2153 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2154 }
2155 
2156 /**
2157  * stmmac_check_ether_addr - check if the MAC addr is valid
2158  * @priv: driver private structure
2159  * Description:
2160  * it is to verify if the MAC address is valid, in case of failures it
2161  * generates a random MAC address
2162  */
2163 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2164 {
2165 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2166 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2167 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2168 			eth_hw_addr_random(priv->dev);
2169 		dev_info(priv->device, "device MAC address %pM\n",
2170 			 priv->dev->dev_addr);
2171 	}
2172 }
2173 
2174 /**
2175  * stmmac_init_dma_engine - DMA init.
2176  * @priv: driver private structure
2177  * Description:
2178  * It inits the DMA invoking the specific MAC/GMAC callback.
2179  * Some DMA parameters can be passed from the platform;
2180  * in case of these are not passed a default is kept for the MAC or GMAC.
2181  */
2182 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2183 {
2184 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2185 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2186 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2187 	struct stmmac_rx_queue *rx_q;
2188 	struct stmmac_tx_queue *tx_q;
2189 	u32 chan = 0;
2190 	int atds = 0;
2191 	int ret = 0;
2192 
2193 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2194 		dev_err(priv->device, "Invalid DMA configuration\n");
2195 		return -EINVAL;
2196 	}
2197 
2198 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2199 		atds = 1;
2200 
2201 	ret = stmmac_reset(priv, priv->ioaddr);
2202 	if (ret) {
2203 		dev_err(priv->device, "Failed to reset the dma\n");
2204 		return ret;
2205 	}
2206 
2207 	/* DMA Configuration */
2208 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2209 
2210 	if (priv->plat->axi)
2211 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2212 
2213 	/* DMA CSR Channel configuration */
2214 	for (chan = 0; chan < dma_csr_ch; chan++)
2215 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2216 
2217 	/* DMA RX Channel Configuration */
2218 	for (chan = 0; chan < rx_channels_count; chan++) {
2219 		rx_q = &priv->rx_queue[chan];
2220 
2221 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2222 				    rx_q->dma_rx_phy, chan);
2223 
2224 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2225 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2226 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2227 				       rx_q->rx_tail_addr, chan);
2228 	}
2229 
2230 	/* DMA TX Channel Configuration */
2231 	for (chan = 0; chan < tx_channels_count; chan++) {
2232 		tx_q = &priv->tx_queue[chan];
2233 
2234 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2235 				    tx_q->dma_tx_phy, chan);
2236 
2237 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2238 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2239 				       tx_q->tx_tail_addr, chan);
2240 	}
2241 
2242 	return ret;
2243 }
2244 
2245 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2246 {
2247 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2248 
2249 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2250 }
2251 
2252 /**
2253  * stmmac_tx_timer - mitigation sw timer for tx.
2254  * @data: data pointer
2255  * Description:
2256  * This is the timer handler to directly invoke the stmmac_tx_clean.
2257  */
2258 static void stmmac_tx_timer(struct timer_list *t)
2259 {
2260 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2261 	struct stmmac_priv *priv = tx_q->priv_data;
2262 	struct stmmac_channel *ch;
2263 
2264 	ch = &priv->channel[tx_q->queue_index];
2265 
2266 	/*
2267 	 * If NAPI is already running we can miss some events. Let's rearm
2268 	 * the timer and try again.
2269 	 */
2270 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2271 		__napi_schedule(&ch->tx_napi);
2272 	else
2273 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2274 }
2275 
2276 /**
2277  * stmmac_init_coalesce - init mitigation options.
2278  * @priv: driver private structure
2279  * Description:
2280  * This inits the coalesce parameters: i.e. timer rate,
2281  * timer handler and default threshold used for enabling the
2282  * interrupt on completion bit.
2283  */
2284 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2285 {
2286 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2287 	u32 chan;
2288 
2289 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2290 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2291 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2292 
2293 	for (chan = 0; chan < tx_channel_count; chan++) {
2294 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2295 
2296 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2297 	}
2298 }
2299 
2300 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2301 {
2302 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2303 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2304 	u32 chan;
2305 
2306 	/* set TX ring length */
2307 	for (chan = 0; chan < tx_channels_count; chan++)
2308 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2309 				(DMA_TX_SIZE - 1), chan);
2310 
2311 	/* set RX ring length */
2312 	for (chan = 0; chan < rx_channels_count; chan++)
2313 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2314 				(DMA_RX_SIZE - 1), chan);
2315 }
2316 
2317 /**
2318  *  stmmac_set_tx_queue_weight - Set TX queue weight
2319  *  @priv: driver private structure
2320  *  Description: It is used for setting TX queues weight
2321  */
2322 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2323 {
2324 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2325 	u32 weight;
2326 	u32 queue;
2327 
2328 	for (queue = 0; queue < tx_queues_count; queue++) {
2329 		weight = priv->plat->tx_queues_cfg[queue].weight;
2330 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2331 	}
2332 }
2333 
2334 /**
2335  *  stmmac_configure_cbs - Configure CBS in TX queue
2336  *  @priv: driver private structure
2337  *  Description: It is used for configuring CBS in AVB TX queues
2338  */
2339 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2340 {
2341 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2342 	u32 mode_to_use;
2343 	u32 queue;
2344 
2345 	/* queue 0 is reserved for legacy traffic */
2346 	for (queue = 1; queue < tx_queues_count; queue++) {
2347 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2348 		if (mode_to_use == MTL_QUEUE_DCB)
2349 			continue;
2350 
2351 		stmmac_config_cbs(priv, priv->hw,
2352 				priv->plat->tx_queues_cfg[queue].send_slope,
2353 				priv->plat->tx_queues_cfg[queue].idle_slope,
2354 				priv->plat->tx_queues_cfg[queue].high_credit,
2355 				priv->plat->tx_queues_cfg[queue].low_credit,
2356 				queue);
2357 	}
2358 }
2359 
2360 /**
2361  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2362  *  @priv: driver private structure
2363  *  Description: It is used for mapping RX queues to RX dma channels
2364  */
2365 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2366 {
2367 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2368 	u32 queue;
2369 	u32 chan;
2370 
2371 	for (queue = 0; queue < rx_queues_count; queue++) {
2372 		chan = priv->plat->rx_queues_cfg[queue].chan;
2373 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2374 	}
2375 }
2376 
2377 /**
2378  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2379  *  @priv: driver private structure
2380  *  Description: It is used for configuring the RX Queue Priority
2381  */
2382 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2383 {
2384 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2385 	u32 queue;
2386 	u32 prio;
2387 
2388 	for (queue = 0; queue < rx_queues_count; queue++) {
2389 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2390 			continue;
2391 
2392 		prio = priv->plat->rx_queues_cfg[queue].prio;
2393 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2394 	}
2395 }
2396 
2397 /**
2398  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2399  *  @priv: driver private structure
2400  *  Description: It is used for configuring the TX Queue Priority
2401  */
2402 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2403 {
2404 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2405 	u32 queue;
2406 	u32 prio;
2407 
2408 	for (queue = 0; queue < tx_queues_count; queue++) {
2409 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2410 			continue;
2411 
2412 		prio = priv->plat->tx_queues_cfg[queue].prio;
2413 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2414 	}
2415 }
2416 
2417 /**
2418  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2419  *  @priv: driver private structure
2420  *  Description: It is used for configuring the RX queue routing
2421  */
2422 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2423 {
2424 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2425 	u32 queue;
2426 	u8 packet;
2427 
2428 	for (queue = 0; queue < rx_queues_count; queue++) {
2429 		/* no specific packet type routing specified for the queue */
2430 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2431 			continue;
2432 
2433 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2434 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2435 	}
2436 }
2437 
2438 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2439 {
2440 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2441 		priv->rss.enable = false;
2442 		return;
2443 	}
2444 
2445 	if (priv->dev->features & NETIF_F_RXHASH)
2446 		priv->rss.enable = true;
2447 	else
2448 		priv->rss.enable = false;
2449 
2450 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2451 			     priv->plat->rx_queues_to_use);
2452 }
2453 
2454 /**
2455  *  stmmac_mtl_configuration - Configure MTL
2456  *  @priv: driver private structure
2457  *  Description: It is used for configurring MTL
2458  */
2459 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2460 {
2461 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2462 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2463 
2464 	if (tx_queues_count > 1)
2465 		stmmac_set_tx_queue_weight(priv);
2466 
2467 	/* Configure MTL RX algorithms */
2468 	if (rx_queues_count > 1)
2469 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2470 				priv->plat->rx_sched_algorithm);
2471 
2472 	/* Configure MTL TX algorithms */
2473 	if (tx_queues_count > 1)
2474 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2475 				priv->plat->tx_sched_algorithm);
2476 
2477 	/* Configure CBS in AVB TX queues */
2478 	if (tx_queues_count > 1)
2479 		stmmac_configure_cbs(priv);
2480 
2481 	/* Map RX MTL to DMA channels */
2482 	stmmac_rx_queue_dma_chan_map(priv);
2483 
2484 	/* Enable MAC RX Queues */
2485 	stmmac_mac_enable_rx_queues(priv);
2486 
2487 	/* Set RX priorities */
2488 	if (rx_queues_count > 1)
2489 		stmmac_mac_config_rx_queues_prio(priv);
2490 
2491 	/* Set TX priorities */
2492 	if (tx_queues_count > 1)
2493 		stmmac_mac_config_tx_queues_prio(priv);
2494 
2495 	/* Set RX routing */
2496 	if (rx_queues_count > 1)
2497 		stmmac_mac_config_rx_queues_routing(priv);
2498 
2499 	/* Receive Side Scaling */
2500 	if (rx_queues_count > 1)
2501 		stmmac_mac_config_rss(priv);
2502 }
2503 
2504 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2505 {
2506 	if (priv->dma_cap.asp) {
2507 		netdev_info(priv->dev, "Enabling Safety Features\n");
2508 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2509 	} else {
2510 		netdev_info(priv->dev, "No Safety Features support found\n");
2511 	}
2512 }
2513 
2514 /**
2515  * stmmac_hw_setup - setup mac in a usable state.
2516  *  @dev : pointer to the device structure.
2517  *  Description:
2518  *  this is the main function to setup the HW in a usable state because the
2519  *  dma engine is reset, the core registers are configured (e.g. AXI,
2520  *  Checksum features, timers). The DMA is ready to start receiving and
2521  *  transmitting.
2522  *  Return value:
2523  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2524  *  file on failure.
2525  */
2526 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2527 {
2528 	struct stmmac_priv *priv = netdev_priv(dev);
2529 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2530 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2531 	u32 chan;
2532 	int ret;
2533 
2534 	/* DMA initialization and SW reset */
2535 	ret = stmmac_init_dma_engine(priv);
2536 	if (ret < 0) {
2537 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2538 			   __func__);
2539 		return ret;
2540 	}
2541 
2542 	/* Copy the MAC addr into the HW  */
2543 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2544 
2545 	/* PS and related bits will be programmed according to the speed */
2546 	if (priv->hw->pcs) {
2547 		int speed = priv->plat->mac_port_sel_speed;
2548 
2549 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2550 		    (speed == SPEED_1000)) {
2551 			priv->hw->ps = speed;
2552 		} else {
2553 			dev_warn(priv->device, "invalid port speed\n");
2554 			priv->hw->ps = 0;
2555 		}
2556 	}
2557 
2558 	/* Initialize the MAC Core */
2559 	stmmac_core_init(priv, priv->hw, dev);
2560 
2561 	/* Initialize MTL*/
2562 	stmmac_mtl_configuration(priv);
2563 
2564 	/* Initialize Safety Features */
2565 	stmmac_safety_feat_configuration(priv);
2566 
2567 	ret = stmmac_rx_ipc(priv, priv->hw);
2568 	if (!ret) {
2569 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2570 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2571 		priv->hw->rx_csum = 0;
2572 	}
2573 
2574 	/* Enable the MAC Rx/Tx */
2575 	stmmac_mac_set(priv, priv->ioaddr, true);
2576 
2577 	/* Set the HW DMA mode and the COE */
2578 	stmmac_dma_operation_mode(priv);
2579 
2580 	stmmac_mmc_setup(priv);
2581 
2582 	if (init_ptp) {
2583 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2584 		if (ret < 0)
2585 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2586 
2587 		ret = stmmac_init_ptp(priv);
2588 		if (ret == -EOPNOTSUPP)
2589 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2590 		else if (ret)
2591 			netdev_warn(priv->dev, "PTP init failed\n");
2592 	}
2593 
2594 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2595 
2596 	if (priv->use_riwt) {
2597 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2598 		if (!ret)
2599 			priv->rx_riwt = MIN_DMA_RIWT;
2600 	}
2601 
2602 	if (priv->hw->pcs)
2603 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2604 
2605 	/* set TX and RX rings length */
2606 	stmmac_set_rings_length(priv);
2607 
2608 	/* Enable TSO */
2609 	if (priv->tso) {
2610 		for (chan = 0; chan < tx_cnt; chan++)
2611 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2612 	}
2613 
2614 	/* Enable Split Header */
2615 	if (priv->sph && priv->hw->rx_csum) {
2616 		for (chan = 0; chan < rx_cnt; chan++)
2617 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2618 	}
2619 
2620 	/* VLAN Tag Insertion */
2621 	if (priv->dma_cap.vlins)
2622 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2623 
2624 	/* Start the ball rolling... */
2625 	stmmac_start_all_dma(priv);
2626 
2627 	return 0;
2628 }
2629 
2630 static void stmmac_hw_teardown(struct net_device *dev)
2631 {
2632 	struct stmmac_priv *priv = netdev_priv(dev);
2633 
2634 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2635 }
2636 
2637 /**
2638  *  stmmac_open - open entry point of the driver
2639  *  @dev : pointer to the device structure.
2640  *  Description:
2641  *  This function is the open entry point of the driver.
2642  *  Return value:
2643  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2644  *  file on failure.
2645  */
2646 static int stmmac_open(struct net_device *dev)
2647 {
2648 	struct stmmac_priv *priv = netdev_priv(dev);
2649 	u32 chan;
2650 	int ret;
2651 
2652 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2653 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2654 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2655 		ret = stmmac_init_phy(dev);
2656 		if (ret) {
2657 			netdev_err(priv->dev,
2658 				   "%s: Cannot attach to PHY (error: %d)\n",
2659 				   __func__, ret);
2660 			return ret;
2661 		}
2662 	}
2663 
2664 	/* Extra statistics */
2665 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2666 	priv->xstats.threshold = tc;
2667 
2668 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2669 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2670 
2671 	ret = alloc_dma_desc_resources(priv);
2672 	if (ret < 0) {
2673 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2674 			   __func__);
2675 		goto dma_desc_error;
2676 	}
2677 
2678 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2679 	if (ret < 0) {
2680 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2681 			   __func__);
2682 		goto init_error;
2683 	}
2684 
2685 	ret = stmmac_hw_setup(dev, true);
2686 	if (ret < 0) {
2687 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2688 		goto init_error;
2689 	}
2690 
2691 	stmmac_init_coalesce(priv);
2692 
2693 	phylink_start(priv->phylink);
2694 
2695 	/* Request the IRQ lines */
2696 	ret = request_irq(dev->irq, stmmac_interrupt,
2697 			  IRQF_SHARED, dev->name, dev);
2698 	if (unlikely(ret < 0)) {
2699 		netdev_err(priv->dev,
2700 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2701 			   __func__, dev->irq, ret);
2702 		goto irq_error;
2703 	}
2704 
2705 	/* Request the Wake IRQ in case of another line is used for WoL */
2706 	if (priv->wol_irq != dev->irq) {
2707 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2708 				  IRQF_SHARED, dev->name, dev);
2709 		if (unlikely(ret < 0)) {
2710 			netdev_err(priv->dev,
2711 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2712 				   __func__, priv->wol_irq, ret);
2713 			goto wolirq_error;
2714 		}
2715 	}
2716 
2717 	/* Request the IRQ lines */
2718 	if (priv->lpi_irq > 0) {
2719 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2720 				  dev->name, dev);
2721 		if (unlikely(ret < 0)) {
2722 			netdev_err(priv->dev,
2723 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2724 				   __func__, priv->lpi_irq, ret);
2725 			goto lpiirq_error;
2726 		}
2727 	}
2728 
2729 	stmmac_enable_all_queues(priv);
2730 	stmmac_start_all_queues(priv);
2731 
2732 	return 0;
2733 
2734 lpiirq_error:
2735 	if (priv->wol_irq != dev->irq)
2736 		free_irq(priv->wol_irq, dev);
2737 wolirq_error:
2738 	free_irq(dev->irq, dev);
2739 irq_error:
2740 	phylink_stop(priv->phylink);
2741 
2742 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2743 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2744 
2745 	stmmac_hw_teardown(dev);
2746 init_error:
2747 	free_dma_desc_resources(priv);
2748 dma_desc_error:
2749 	phylink_disconnect_phy(priv->phylink);
2750 	return ret;
2751 }
2752 
2753 /**
2754  *  stmmac_release - close entry point of the driver
2755  *  @dev : device pointer.
2756  *  Description:
2757  *  This is the stop entry point of the driver.
2758  */
2759 static int stmmac_release(struct net_device *dev)
2760 {
2761 	struct stmmac_priv *priv = netdev_priv(dev);
2762 	u32 chan;
2763 
2764 	if (priv->eee_enabled)
2765 		del_timer_sync(&priv->eee_ctrl_timer);
2766 
2767 	/* Stop and disconnect the PHY */
2768 	phylink_stop(priv->phylink);
2769 	phylink_disconnect_phy(priv->phylink);
2770 
2771 	stmmac_stop_all_queues(priv);
2772 
2773 	stmmac_disable_all_queues(priv);
2774 
2775 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2776 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2777 
2778 	/* Free the IRQ lines */
2779 	free_irq(dev->irq, dev);
2780 	if (priv->wol_irq != dev->irq)
2781 		free_irq(priv->wol_irq, dev);
2782 	if (priv->lpi_irq > 0)
2783 		free_irq(priv->lpi_irq, dev);
2784 
2785 	/* Stop TX/RX DMA and clear the descriptors */
2786 	stmmac_stop_all_dma(priv);
2787 
2788 	/* Release and free the Rx/Tx resources */
2789 	free_dma_desc_resources(priv);
2790 
2791 	/* Disable the MAC Rx/Tx */
2792 	stmmac_mac_set(priv, priv->ioaddr, false);
2793 
2794 	netif_carrier_off(dev);
2795 
2796 	stmmac_release_ptp(priv);
2797 
2798 	return 0;
2799 }
2800 
2801 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
2802 			       struct stmmac_tx_queue *tx_q)
2803 {
2804 	u16 tag = 0x0, inner_tag = 0x0;
2805 	u32 inner_type = 0x0;
2806 	struct dma_desc *p;
2807 
2808 	if (!priv->dma_cap.vlins)
2809 		return false;
2810 	if (!skb_vlan_tag_present(skb))
2811 		return false;
2812 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
2813 		inner_tag = skb_vlan_tag_get(skb);
2814 		inner_type = STMMAC_VLAN_INSERT;
2815 	}
2816 
2817 	tag = skb_vlan_tag_get(skb);
2818 
2819 	p = tx_q->dma_tx + tx_q->cur_tx;
2820 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
2821 		return false;
2822 
2823 	stmmac_set_tx_owner(priv, p);
2824 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2825 	return true;
2826 }
2827 
2828 /**
2829  *  stmmac_tso_allocator - close entry point of the driver
2830  *  @priv: driver private structure
2831  *  @des: buffer start address
2832  *  @total_len: total length to fill in descriptors
2833  *  @last_segmant: condition for the last descriptor
2834  *  @queue: TX queue index
2835  *  Description:
2836  *  This function fills descriptor and request new descriptors according to
2837  *  buffer length to fill
2838  */
2839 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2840 				 int total_len, bool last_segment, u32 queue)
2841 {
2842 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2843 	struct dma_desc *desc;
2844 	u32 buff_size;
2845 	int tmp_len;
2846 
2847 	tmp_len = total_len;
2848 
2849 	while (tmp_len > 0) {
2850 		dma_addr_t curr_addr;
2851 
2852 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2853 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2854 		desc = tx_q->dma_tx + tx_q->cur_tx;
2855 
2856 		curr_addr = des + (total_len - tmp_len);
2857 		if (priv->dma_cap.addr64 <= 32)
2858 			desc->des0 = cpu_to_le32(curr_addr);
2859 		else
2860 			stmmac_set_desc_addr(priv, desc, curr_addr);
2861 
2862 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2863 			    TSO_MAX_BUFF_SIZE : tmp_len;
2864 
2865 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2866 				0, 1,
2867 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2868 				0, 0);
2869 
2870 		tmp_len -= TSO_MAX_BUFF_SIZE;
2871 	}
2872 }
2873 
2874 /**
2875  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2876  *  @skb : the socket buffer
2877  *  @dev : device pointer
2878  *  Description: this is the transmit function that is called on TSO frames
2879  *  (support available on GMAC4 and newer chips).
2880  *  Diagram below show the ring programming in case of TSO frames:
2881  *
2882  *  First Descriptor
2883  *   --------
2884  *   | DES0 |---> buffer1 = L2/L3/L4 header
2885  *   | DES1 |---> TCP Payload (can continue on next descr...)
2886  *   | DES2 |---> buffer 1 and 2 len
2887  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2888  *   --------
2889  *	|
2890  *     ...
2891  *	|
2892  *   --------
2893  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2894  *   | DES1 | --|
2895  *   | DES2 | --> buffer 1 and 2 len
2896  *   | DES3 |
2897  *   --------
2898  *
2899  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2900  */
2901 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2902 {
2903 	struct dma_desc *desc, *first, *mss_desc = NULL;
2904 	struct stmmac_priv *priv = netdev_priv(dev);
2905 	int nfrags = skb_shinfo(skb)->nr_frags;
2906 	u32 queue = skb_get_queue_mapping(skb);
2907 	struct stmmac_tx_queue *tx_q;
2908 	unsigned int first_entry;
2909 	int tmp_pay_len = 0;
2910 	u32 pay_len, mss;
2911 	u8 proto_hdr_len;
2912 	dma_addr_t des;
2913 	bool has_vlan;
2914 	int i;
2915 
2916 	tx_q = &priv->tx_queue[queue];
2917 
2918 	/* Compute header lengths */
2919 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2920 
2921 	/* Desc availability based on threshold should be enough safe */
2922 	if (unlikely(stmmac_tx_avail(priv, queue) <
2923 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2924 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2925 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2926 								queue));
2927 			/* This is a hard error, log it. */
2928 			netdev_err(priv->dev,
2929 				   "%s: Tx Ring full when queue awake\n",
2930 				   __func__);
2931 		}
2932 		return NETDEV_TX_BUSY;
2933 	}
2934 
2935 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2936 
2937 	mss = skb_shinfo(skb)->gso_size;
2938 
2939 	/* set new MSS value if needed */
2940 	if (mss != tx_q->mss) {
2941 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2942 		stmmac_set_mss(priv, mss_desc, mss);
2943 		tx_q->mss = mss;
2944 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2945 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2946 	}
2947 
2948 	if (netif_msg_tx_queued(priv)) {
2949 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2950 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2951 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2952 			skb->data_len);
2953 	}
2954 
2955 	/* Check if VLAN can be inserted by HW */
2956 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
2957 
2958 	first_entry = tx_q->cur_tx;
2959 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2960 
2961 	desc = tx_q->dma_tx + first_entry;
2962 	first = desc;
2963 
2964 	if (has_vlan)
2965 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
2966 
2967 	/* first descriptor: fill Headers on Buf1 */
2968 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2969 			     DMA_TO_DEVICE);
2970 	if (dma_mapping_error(priv->device, des))
2971 		goto dma_map_err;
2972 
2973 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2974 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2975 
2976 	if (priv->dma_cap.addr64 <= 32) {
2977 		first->des0 = cpu_to_le32(des);
2978 
2979 		/* Fill start of payload in buff2 of first descriptor */
2980 		if (pay_len)
2981 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2982 
2983 		/* If needed take extra descriptors to fill the remaining payload */
2984 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2985 	} else {
2986 		stmmac_set_desc_addr(priv, first, des);
2987 		tmp_pay_len = pay_len;
2988 	}
2989 
2990 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2991 
2992 	/* Prepare fragments */
2993 	for (i = 0; i < nfrags; i++) {
2994 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2995 
2996 		des = skb_frag_dma_map(priv->device, frag, 0,
2997 				       skb_frag_size(frag),
2998 				       DMA_TO_DEVICE);
2999 		if (dma_mapping_error(priv->device, des))
3000 			goto dma_map_err;
3001 
3002 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3003 				     (i == nfrags - 1), queue);
3004 
3005 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3006 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3007 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3008 	}
3009 
3010 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3011 
3012 	/* Only the last descriptor gets to point to the skb. */
3013 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3014 
3015 	/* We've used all descriptors we need for this skb, however,
3016 	 * advance cur_tx so that it references a fresh descriptor.
3017 	 * ndo_start_xmit will fill this descriptor the next time it's
3018 	 * called and stmmac_tx_clean may clean up to this descriptor.
3019 	 */
3020 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
3021 
3022 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3023 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3024 			  __func__);
3025 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3026 	}
3027 
3028 	dev->stats.tx_bytes += skb->len;
3029 	priv->xstats.tx_tso_frames++;
3030 	priv->xstats.tx_tso_nfrags += nfrags;
3031 
3032 	/* Manage tx mitigation */
3033 	tx_q->tx_count_frames += nfrags + 1;
3034 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3035 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3036 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3037 	    priv->hwts_tx_en)) {
3038 		stmmac_tx_timer_arm(priv, queue);
3039 	} else {
3040 		tx_q->tx_count_frames = 0;
3041 		stmmac_set_tx_ic(priv, desc);
3042 		priv->xstats.tx_set_ic_bit++;
3043 	}
3044 
3045 	if (priv->sarc_type)
3046 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3047 
3048 	skb_tx_timestamp(skb);
3049 
3050 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3051 		     priv->hwts_tx_en)) {
3052 		/* declare that device is doing timestamping */
3053 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3054 		stmmac_enable_tx_timestamp(priv, first);
3055 	}
3056 
3057 	/* Complete the first descriptor before granting the DMA */
3058 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3059 			proto_hdr_len,
3060 			pay_len,
3061 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3062 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
3063 
3064 	/* If context desc is used to change MSS */
3065 	if (mss_desc) {
3066 		/* Make sure that first descriptor has been completely
3067 		 * written, including its own bit. This is because MSS is
3068 		 * actually before first descriptor, so we need to make
3069 		 * sure that MSS's own bit is the last thing written.
3070 		 */
3071 		dma_wmb();
3072 		stmmac_set_tx_owner(priv, mss_desc);
3073 	}
3074 
3075 	/* The own bit must be the latest setting done when prepare the
3076 	 * descriptor and then barrier is needed to make sure that
3077 	 * all is coherent before granting the DMA engine.
3078 	 */
3079 	wmb();
3080 
3081 	if (netif_msg_pktdata(priv)) {
3082 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3083 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3084 			tx_q->cur_tx, first, nfrags);
3085 
3086 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3087 
3088 		pr_info(">>> frame to be transmitted: ");
3089 		print_pkt(skb->data, skb_headlen(skb));
3090 	}
3091 
3092 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3093 
3094 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3095 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3096 
3097 	return NETDEV_TX_OK;
3098 
3099 dma_map_err:
3100 	dev_err(priv->device, "Tx dma map failed\n");
3101 	dev_kfree_skb(skb);
3102 	priv->dev->stats.tx_dropped++;
3103 	return NETDEV_TX_OK;
3104 }
3105 
3106 /**
3107  *  stmmac_xmit - Tx entry point of the driver
3108  *  @skb : the socket buffer
3109  *  @dev : device pointer
3110  *  Description : this is the tx entry point of the driver.
3111  *  It programs the chain or the ring and supports oversized frames
3112  *  and SG feature.
3113  */
3114 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3115 {
3116 	struct stmmac_priv *priv = netdev_priv(dev);
3117 	unsigned int nopaged_len = skb_headlen(skb);
3118 	int i, csum_insertion = 0, is_jumbo = 0;
3119 	u32 queue = skb_get_queue_mapping(skb);
3120 	int nfrags = skb_shinfo(skb)->nr_frags;
3121 	struct dma_desc *desc, *first;
3122 	struct stmmac_tx_queue *tx_q;
3123 	unsigned int first_entry;
3124 	unsigned int enh_desc;
3125 	dma_addr_t des;
3126 	bool has_vlan;
3127 	int entry;
3128 
3129 	tx_q = &priv->tx_queue[queue];
3130 
3131 	if (priv->tx_path_in_lpi_mode)
3132 		stmmac_disable_eee_mode(priv);
3133 
3134 	/* Manage oversized TCP frames for GMAC4 device */
3135 	if (skb_is_gso(skb) && priv->tso) {
3136 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3137 			return stmmac_tso_xmit(skb, dev);
3138 	}
3139 
3140 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3141 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3142 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3143 								queue));
3144 			/* This is a hard error, log it. */
3145 			netdev_err(priv->dev,
3146 				   "%s: Tx Ring full when queue awake\n",
3147 				   __func__);
3148 		}
3149 		return NETDEV_TX_BUSY;
3150 	}
3151 
3152 	/* Check if VLAN can be inserted by HW */
3153 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3154 
3155 	entry = tx_q->cur_tx;
3156 	first_entry = entry;
3157 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3158 
3159 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3160 
3161 	if (likely(priv->extend_desc))
3162 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3163 	else
3164 		desc = tx_q->dma_tx + entry;
3165 
3166 	first = desc;
3167 
3168 	if (has_vlan)
3169 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3170 
3171 	enh_desc = priv->plat->enh_desc;
3172 	/* To program the descriptors according to the size of the frame */
3173 	if (enh_desc)
3174 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3175 
3176 	if (unlikely(is_jumbo)) {
3177 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3178 		if (unlikely(entry < 0) && (entry != -EINVAL))
3179 			goto dma_map_err;
3180 	}
3181 
3182 	for (i = 0; i < nfrags; i++) {
3183 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3184 		int len = skb_frag_size(frag);
3185 		bool last_segment = (i == (nfrags - 1));
3186 
3187 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3188 		WARN_ON(tx_q->tx_skbuff[entry]);
3189 
3190 		if (likely(priv->extend_desc))
3191 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3192 		else
3193 			desc = tx_q->dma_tx + entry;
3194 
3195 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3196 				       DMA_TO_DEVICE);
3197 		if (dma_mapping_error(priv->device, des))
3198 			goto dma_map_err; /* should reuse desc w/o issues */
3199 
3200 		tx_q->tx_skbuff_dma[entry].buf = des;
3201 
3202 		stmmac_set_desc_addr(priv, desc, des);
3203 
3204 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3205 		tx_q->tx_skbuff_dma[entry].len = len;
3206 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3207 
3208 		/* Prepare the descriptor and set the own bit too */
3209 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3210 				priv->mode, 1, last_segment, skb->len);
3211 	}
3212 
3213 	/* Only the last descriptor gets to point to the skb. */
3214 	tx_q->tx_skbuff[entry] = skb;
3215 
3216 	/* We've used all descriptors we need for this skb, however,
3217 	 * advance cur_tx so that it references a fresh descriptor.
3218 	 * ndo_start_xmit will fill this descriptor the next time it's
3219 	 * called and stmmac_tx_clean may clean up to this descriptor.
3220 	 */
3221 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3222 	tx_q->cur_tx = entry;
3223 
3224 	if (netif_msg_pktdata(priv)) {
3225 		void *tx_head;
3226 
3227 		netdev_dbg(priv->dev,
3228 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3229 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3230 			   entry, first, nfrags);
3231 
3232 		if (priv->extend_desc)
3233 			tx_head = (void *)tx_q->dma_etx;
3234 		else
3235 			tx_head = (void *)tx_q->dma_tx;
3236 
3237 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3238 
3239 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3240 		print_pkt(skb->data, skb->len);
3241 	}
3242 
3243 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3244 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3245 			  __func__);
3246 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3247 	}
3248 
3249 	dev->stats.tx_bytes += skb->len;
3250 
3251 	/* According to the coalesce parameter the IC bit for the latest
3252 	 * segment is reset and the timer re-started to clean the tx status.
3253 	 * This approach takes care about the fragments: desc is the first
3254 	 * element in case of no SG.
3255 	 */
3256 	tx_q->tx_count_frames += nfrags + 1;
3257 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3258 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3259 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3260 	    priv->hwts_tx_en)) {
3261 		stmmac_tx_timer_arm(priv, queue);
3262 	} else {
3263 		tx_q->tx_count_frames = 0;
3264 		stmmac_set_tx_ic(priv, desc);
3265 		priv->xstats.tx_set_ic_bit++;
3266 	}
3267 
3268 	if (priv->sarc_type)
3269 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3270 
3271 	skb_tx_timestamp(skb);
3272 
3273 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3274 	 * problems because all the descriptors are actually ready to be
3275 	 * passed to the DMA engine.
3276 	 */
3277 	if (likely(!is_jumbo)) {
3278 		bool last_segment = (nfrags == 0);
3279 
3280 		des = dma_map_single(priv->device, skb->data,
3281 				     nopaged_len, DMA_TO_DEVICE);
3282 		if (dma_mapping_error(priv->device, des))
3283 			goto dma_map_err;
3284 
3285 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3286 
3287 		stmmac_set_desc_addr(priv, first, des);
3288 
3289 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3290 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3291 
3292 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3293 			     priv->hwts_tx_en)) {
3294 			/* declare that device is doing timestamping */
3295 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3296 			stmmac_enable_tx_timestamp(priv, first);
3297 		}
3298 
3299 		/* Prepare the first descriptor setting the OWN bit too */
3300 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3301 				csum_insertion, priv->mode, 1, last_segment,
3302 				skb->len);
3303 	} else {
3304 		stmmac_set_tx_owner(priv, first);
3305 	}
3306 
3307 	/* The own bit must be the latest setting done when prepare the
3308 	 * descriptor and then barrier is needed to make sure that
3309 	 * all is coherent before granting the DMA engine.
3310 	 */
3311 	wmb();
3312 
3313 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3314 
3315 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3316 
3317 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3318 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3319 
3320 	return NETDEV_TX_OK;
3321 
3322 dma_map_err:
3323 	netdev_err(priv->dev, "Tx DMA map failed\n");
3324 	dev_kfree_skb(skb);
3325 	priv->dev->stats.tx_dropped++;
3326 	return NETDEV_TX_OK;
3327 }
3328 
3329 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3330 {
3331 	struct vlan_ethhdr *veth;
3332 	__be16 vlan_proto;
3333 	u16 vlanid;
3334 
3335 	veth = (struct vlan_ethhdr *)skb->data;
3336 	vlan_proto = veth->h_vlan_proto;
3337 
3338 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3339 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3340 	    (vlan_proto == htons(ETH_P_8021AD) &&
3341 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3342 		/* pop the vlan tag */
3343 		vlanid = ntohs(veth->h_vlan_TCI);
3344 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3345 		skb_pull(skb, VLAN_HLEN);
3346 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3347 	}
3348 }
3349 
3350 
3351 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3352 {
3353 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3354 		return 0;
3355 
3356 	return 1;
3357 }
3358 
3359 /**
3360  * stmmac_rx_refill - refill used skb preallocated buffers
3361  * @priv: driver private structure
3362  * @queue: RX queue index
3363  * Description : this is to reallocate the skb for the reception process
3364  * that is based on zero-copy.
3365  */
3366 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3367 {
3368 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3369 	int len, dirty = stmmac_rx_dirty(priv, queue);
3370 	unsigned int entry = rx_q->dirty_rx;
3371 
3372 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3373 
3374 	while (dirty-- > 0) {
3375 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3376 		struct dma_desc *p;
3377 		bool use_rx_wd;
3378 
3379 		if (priv->extend_desc)
3380 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3381 		else
3382 			p = rx_q->dma_rx + entry;
3383 
3384 		if (!buf->page) {
3385 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3386 			if (!buf->page)
3387 				break;
3388 		}
3389 
3390 		if (priv->sph && !buf->sec_page) {
3391 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3392 			if (!buf->sec_page)
3393 				break;
3394 
3395 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3396 
3397 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3398 						   len, DMA_FROM_DEVICE);
3399 		}
3400 
3401 		buf->addr = page_pool_get_dma_addr(buf->page);
3402 
3403 		/* Sync whole allocation to device. This will invalidate old
3404 		 * data.
3405 		 */
3406 		dma_sync_single_for_device(priv->device, buf->addr, len,
3407 					   DMA_FROM_DEVICE);
3408 
3409 		stmmac_set_desc_addr(priv, p, buf->addr);
3410 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr);
3411 		stmmac_refill_desc3(priv, rx_q, p);
3412 
3413 		rx_q->rx_count_frames++;
3414 		rx_q->rx_count_frames %= priv->rx_coal_frames;
3415 		use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3416 
3417 		dma_wmb();
3418 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3419 
3420 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3421 	}
3422 	rx_q->dirty_rx = entry;
3423 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3424 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3425 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3426 }
3427 
3428 /**
3429  * stmmac_rx - manage the receive process
3430  * @priv: driver private structure
3431  * @limit: napi bugget
3432  * @queue: RX queue index.
3433  * Description :  this the function called by the napi poll method.
3434  * It gets all the frames inside the ring.
3435  */
3436 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3437 {
3438 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3439 	struct stmmac_channel *ch = &priv->channel[queue];
3440 	unsigned int count = 0, error = 0, len = 0;
3441 	int status = 0, coe = priv->hw->rx_csum;
3442 	unsigned int next_entry = rx_q->cur_rx;
3443 	struct sk_buff *skb = NULL;
3444 
3445 	if (netif_msg_rx_status(priv)) {
3446 		void *rx_head;
3447 
3448 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3449 		if (priv->extend_desc)
3450 			rx_head = (void *)rx_q->dma_erx;
3451 		else
3452 			rx_head = (void *)rx_q->dma_rx;
3453 
3454 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3455 	}
3456 	while (count < limit) {
3457 		unsigned int hlen = 0, prev_len = 0;
3458 		enum pkt_hash_types hash_type;
3459 		struct stmmac_rx_buffer *buf;
3460 		struct dma_desc *np, *p;
3461 		unsigned int sec_len;
3462 		int entry;
3463 		u32 hash;
3464 
3465 		if (!count && rx_q->state_saved) {
3466 			skb = rx_q->state.skb;
3467 			error = rx_q->state.error;
3468 			len = rx_q->state.len;
3469 		} else {
3470 			rx_q->state_saved = false;
3471 			skb = NULL;
3472 			error = 0;
3473 			len = 0;
3474 		}
3475 
3476 		if (count >= limit)
3477 			break;
3478 
3479 read_again:
3480 		sec_len = 0;
3481 		entry = next_entry;
3482 		buf = &rx_q->buf_pool[entry];
3483 
3484 		if (priv->extend_desc)
3485 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3486 		else
3487 			p = rx_q->dma_rx + entry;
3488 
3489 		/* read the status of the incoming frame */
3490 		status = stmmac_rx_status(priv, &priv->dev->stats,
3491 				&priv->xstats, p);
3492 		/* check if managed by the DMA otherwise go ahead */
3493 		if (unlikely(status & dma_own))
3494 			break;
3495 
3496 		count++;
3497 
3498 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3499 		next_entry = rx_q->cur_rx;
3500 
3501 		if (priv->extend_desc)
3502 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3503 		else
3504 			np = rx_q->dma_rx + next_entry;
3505 
3506 		prefetch(np);
3507 		prefetch(page_address(buf->page));
3508 
3509 		if (priv->extend_desc)
3510 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3511 					&priv->xstats, rx_q->dma_erx + entry);
3512 		if (unlikely(status == discard_frame)) {
3513 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3514 			priv->dev->stats.rx_errors++;
3515 			buf->page = NULL;
3516 			error = 1;
3517 		}
3518 
3519 		if (unlikely(error && (status & rx_not_ls)))
3520 			goto read_again;
3521 		if (unlikely(error)) {
3522 			dev_kfree_skb(skb);
3523 			continue;
3524 		}
3525 
3526 		/* Buffer is good. Go on. */
3527 
3528 		if (likely(status & rx_not_ls)) {
3529 			len += priv->dma_buf_sz;
3530 		} else {
3531 			prev_len = len;
3532 			len = stmmac_get_rx_frame_len(priv, p, coe);
3533 
3534 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3535 			 * Type frames (LLC/LLC-SNAP)
3536 			 *
3537 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3538 			 * feature is always disabled and packets need to be
3539 			 * stripped manually.
3540 			 */
3541 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3542 			    unlikely(status != llc_snap))
3543 				len -= ETH_FCS_LEN;
3544 		}
3545 
3546 		if (!skb) {
3547 			int ret = stmmac_get_rx_header_len(priv, p, &hlen);
3548 
3549 			if (priv->sph && !ret && (hlen > 0)) {
3550 				sec_len = len;
3551 				if (!(status & rx_not_ls))
3552 					sec_len = sec_len - hlen;
3553 				len = hlen;
3554 
3555 				prefetch(page_address(buf->sec_page));
3556 				priv->xstats.rx_split_hdr_pkt_n++;
3557 			}
3558 
3559 			skb = napi_alloc_skb(&ch->rx_napi, len);
3560 			if (!skb) {
3561 				priv->dev->stats.rx_dropped++;
3562 				continue;
3563 			}
3564 
3565 			dma_sync_single_for_cpu(priv->device, buf->addr, len,
3566 						DMA_FROM_DEVICE);
3567 			skb_copy_to_linear_data(skb, page_address(buf->page),
3568 						len);
3569 			skb_put(skb, len);
3570 
3571 			/* Data payload copied into SKB, page ready for recycle */
3572 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3573 			buf->page = NULL;
3574 		} else {
3575 			unsigned int buf_len = len - prev_len;
3576 
3577 			if (likely(status & rx_not_ls))
3578 				buf_len = priv->dma_buf_sz;
3579 
3580 			dma_sync_single_for_cpu(priv->device, buf->addr,
3581 						buf_len, DMA_FROM_DEVICE);
3582 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3583 					buf->page, 0, buf_len,
3584 					priv->dma_buf_sz);
3585 
3586 			/* Data payload appended into SKB */
3587 			page_pool_release_page(rx_q->page_pool, buf->page);
3588 			buf->page = NULL;
3589 		}
3590 
3591 		if (sec_len > 0) {
3592 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
3593 						sec_len, DMA_FROM_DEVICE);
3594 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
3595 					buf->sec_page, 0, sec_len,
3596 					priv->dma_buf_sz);
3597 
3598 			len += sec_len;
3599 
3600 			/* Data payload appended into SKB */
3601 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
3602 			buf->sec_page = NULL;
3603 		}
3604 
3605 		if (likely(status & rx_not_ls))
3606 			goto read_again;
3607 
3608 		/* Got entire packet into SKB. Finish it. */
3609 
3610 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
3611 		stmmac_rx_vlan(priv->dev, skb);
3612 		skb->protocol = eth_type_trans(skb, priv->dev);
3613 
3614 		if (unlikely(!coe))
3615 			skb_checksum_none_assert(skb);
3616 		else
3617 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3618 
3619 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
3620 			skb_set_hash(skb, hash, hash_type);
3621 
3622 		skb_record_rx_queue(skb, queue);
3623 		napi_gro_receive(&ch->rx_napi, skb);
3624 
3625 		priv->dev->stats.rx_packets++;
3626 		priv->dev->stats.rx_bytes += len;
3627 	}
3628 
3629 	if (status & rx_not_ls) {
3630 		rx_q->state_saved = true;
3631 		rx_q->state.skb = skb;
3632 		rx_q->state.error = error;
3633 		rx_q->state.len = len;
3634 	}
3635 
3636 	stmmac_rx_refill(priv, queue);
3637 
3638 	priv->xstats.rx_pkt_n += count;
3639 
3640 	return count;
3641 }
3642 
3643 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3644 {
3645 	struct stmmac_channel *ch =
3646 		container_of(napi, struct stmmac_channel, rx_napi);
3647 	struct stmmac_priv *priv = ch->priv_data;
3648 	u32 chan = ch->index;
3649 	int work_done;
3650 
3651 	priv->xstats.napi_poll++;
3652 
3653 	work_done = stmmac_rx(priv, budget, chan);
3654 	if (work_done < budget && napi_complete_done(napi, work_done))
3655 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3656 	return work_done;
3657 }
3658 
3659 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3660 {
3661 	struct stmmac_channel *ch =
3662 		container_of(napi, struct stmmac_channel, tx_napi);
3663 	struct stmmac_priv *priv = ch->priv_data;
3664 	struct stmmac_tx_queue *tx_q;
3665 	u32 chan = ch->index;
3666 	int work_done;
3667 
3668 	priv->xstats.napi_poll++;
3669 
3670 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3671 	work_done = min(work_done, budget);
3672 
3673 	if (work_done < budget)
3674 		napi_complete_done(napi, work_done);
3675 
3676 	/* Force transmission restart */
3677 	tx_q = &priv->tx_queue[chan];
3678 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3679 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3680 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3681 				       chan);
3682 	}
3683 
3684 	return work_done;
3685 }
3686 
3687 /**
3688  *  stmmac_tx_timeout
3689  *  @dev : Pointer to net device structure
3690  *  Description: this function is called when a packet transmission fails to
3691  *   complete within a reasonable time. The driver will mark the error in the
3692  *   netdev structure and arrange for the device to be reset to a sane state
3693  *   in order to transmit a new packet.
3694  */
3695 static void stmmac_tx_timeout(struct net_device *dev)
3696 {
3697 	struct stmmac_priv *priv = netdev_priv(dev);
3698 
3699 	stmmac_global_err(priv);
3700 }
3701 
3702 /**
3703  *  stmmac_set_rx_mode - entry point for multicast addressing
3704  *  @dev : pointer to the device structure
3705  *  Description:
3706  *  This function is a driver entry point which gets called by the kernel
3707  *  whenever multicast addresses must be enabled/disabled.
3708  *  Return value:
3709  *  void.
3710  */
3711 static void stmmac_set_rx_mode(struct net_device *dev)
3712 {
3713 	struct stmmac_priv *priv = netdev_priv(dev);
3714 
3715 	stmmac_set_filter(priv, priv->hw, dev);
3716 }
3717 
3718 /**
3719  *  stmmac_change_mtu - entry point to change MTU size for the device.
3720  *  @dev : device pointer.
3721  *  @new_mtu : the new MTU size for the device.
3722  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3723  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3724  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3725  *  Return value:
3726  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3727  *  file on failure.
3728  */
3729 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3730 {
3731 	struct stmmac_priv *priv = netdev_priv(dev);
3732 
3733 	if (netif_running(dev)) {
3734 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3735 		return -EBUSY;
3736 	}
3737 
3738 	dev->mtu = new_mtu;
3739 
3740 	netdev_update_features(dev);
3741 
3742 	return 0;
3743 }
3744 
3745 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3746 					     netdev_features_t features)
3747 {
3748 	struct stmmac_priv *priv = netdev_priv(dev);
3749 
3750 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3751 		features &= ~NETIF_F_RXCSUM;
3752 
3753 	if (!priv->plat->tx_coe)
3754 		features &= ~NETIF_F_CSUM_MASK;
3755 
3756 	/* Some GMAC devices have a bugged Jumbo frame support that
3757 	 * needs to have the Tx COE disabled for oversized frames
3758 	 * (due to limited buffer sizes). In this case we disable
3759 	 * the TX csum insertion in the TDES and not use SF.
3760 	 */
3761 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3762 		features &= ~NETIF_F_CSUM_MASK;
3763 
3764 	/* Disable tso if asked by ethtool */
3765 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3766 		if (features & NETIF_F_TSO)
3767 			priv->tso = true;
3768 		else
3769 			priv->tso = false;
3770 	}
3771 
3772 	return features;
3773 }
3774 
3775 static int stmmac_set_features(struct net_device *netdev,
3776 			       netdev_features_t features)
3777 {
3778 	struct stmmac_priv *priv = netdev_priv(netdev);
3779 	bool sph_en;
3780 	u32 chan;
3781 
3782 	/* Keep the COE Type in case of csum is supporting */
3783 	if (features & NETIF_F_RXCSUM)
3784 		priv->hw->rx_csum = priv->plat->rx_coe;
3785 	else
3786 		priv->hw->rx_csum = 0;
3787 	/* No check needed because rx_coe has been set before and it will be
3788 	 * fixed in case of issue.
3789 	 */
3790 	stmmac_rx_ipc(priv, priv->hw);
3791 
3792 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3793 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
3794 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3795 
3796 	return 0;
3797 }
3798 
3799 /**
3800  *  stmmac_interrupt - main ISR
3801  *  @irq: interrupt number.
3802  *  @dev_id: to pass the net device pointer.
3803  *  Description: this is the main driver interrupt service routine.
3804  *  It can call:
3805  *  o DMA service routine (to manage incoming frame reception and transmission
3806  *    status)
3807  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3808  *    interrupts.
3809  */
3810 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3811 {
3812 	struct net_device *dev = (struct net_device *)dev_id;
3813 	struct stmmac_priv *priv = netdev_priv(dev);
3814 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3815 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3816 	u32 queues_count;
3817 	u32 queue;
3818 	bool xmac;
3819 
3820 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3821 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3822 
3823 	if (priv->irq_wake)
3824 		pm_wakeup_event(priv->device, 0);
3825 
3826 	if (unlikely(!dev)) {
3827 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3828 		return IRQ_NONE;
3829 	}
3830 
3831 	/* Check if adapter is up */
3832 	if (test_bit(STMMAC_DOWN, &priv->state))
3833 		return IRQ_HANDLED;
3834 	/* Check if a fatal error happened */
3835 	if (stmmac_safety_feat_interrupt(priv))
3836 		return IRQ_HANDLED;
3837 
3838 	/* To handle GMAC own interrupts */
3839 	if ((priv->plat->has_gmac) || xmac) {
3840 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3841 		int mtl_status;
3842 
3843 		if (unlikely(status)) {
3844 			/* For LPI we need to save the tx status */
3845 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3846 				priv->tx_path_in_lpi_mode = true;
3847 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3848 				priv->tx_path_in_lpi_mode = false;
3849 		}
3850 
3851 		for (queue = 0; queue < queues_count; queue++) {
3852 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3853 
3854 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3855 								queue);
3856 			if (mtl_status != -EINVAL)
3857 				status |= mtl_status;
3858 
3859 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3860 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3861 						       rx_q->rx_tail_addr,
3862 						       queue);
3863 		}
3864 
3865 		/* PCS link status */
3866 		if (priv->hw->pcs) {
3867 			if (priv->xstats.pcs_link)
3868 				netif_carrier_on(dev);
3869 			else
3870 				netif_carrier_off(dev);
3871 		}
3872 	}
3873 
3874 	/* To handle DMA interrupts */
3875 	stmmac_dma_interrupt(priv);
3876 
3877 	return IRQ_HANDLED;
3878 }
3879 
3880 #ifdef CONFIG_NET_POLL_CONTROLLER
3881 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3882  * to allow network I/O with interrupts disabled.
3883  */
3884 static void stmmac_poll_controller(struct net_device *dev)
3885 {
3886 	disable_irq(dev->irq);
3887 	stmmac_interrupt(dev->irq, dev);
3888 	enable_irq(dev->irq);
3889 }
3890 #endif
3891 
3892 /**
3893  *  stmmac_ioctl - Entry point for the Ioctl
3894  *  @dev: Device pointer.
3895  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3896  *  a proprietary structure used to pass information to the driver.
3897  *  @cmd: IOCTL command
3898  *  Description:
3899  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3900  */
3901 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3902 {
3903 	struct stmmac_priv *priv = netdev_priv (dev);
3904 	int ret = -EOPNOTSUPP;
3905 
3906 	if (!netif_running(dev))
3907 		return -EINVAL;
3908 
3909 	switch (cmd) {
3910 	case SIOCGMIIPHY:
3911 	case SIOCGMIIREG:
3912 	case SIOCSMIIREG:
3913 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3914 		break;
3915 	case SIOCSHWTSTAMP:
3916 		ret = stmmac_hwtstamp_set(dev, rq);
3917 		break;
3918 	case SIOCGHWTSTAMP:
3919 		ret = stmmac_hwtstamp_get(dev, rq);
3920 		break;
3921 	default:
3922 		break;
3923 	}
3924 
3925 	return ret;
3926 }
3927 
3928 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3929 				    void *cb_priv)
3930 {
3931 	struct stmmac_priv *priv = cb_priv;
3932 	int ret = -EOPNOTSUPP;
3933 
3934 	stmmac_disable_all_queues(priv);
3935 
3936 	switch (type) {
3937 	case TC_SETUP_CLSU32:
3938 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3939 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3940 		break;
3941 	default:
3942 		break;
3943 	}
3944 
3945 	stmmac_enable_all_queues(priv);
3946 	return ret;
3947 }
3948 
3949 static LIST_HEAD(stmmac_block_cb_list);
3950 
3951 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3952 			   void *type_data)
3953 {
3954 	struct stmmac_priv *priv = netdev_priv(ndev);
3955 
3956 	switch (type) {
3957 	case TC_SETUP_BLOCK:
3958 		return flow_block_cb_setup_simple(type_data,
3959 						  &stmmac_block_cb_list,
3960 						  stmmac_setup_tc_block_cb,
3961 						  priv, priv, true);
3962 	case TC_SETUP_QDISC_CBS:
3963 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3964 	default:
3965 		return -EOPNOTSUPP;
3966 	}
3967 }
3968 
3969 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3970 			       struct net_device *sb_dev)
3971 {
3972 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3973 		/*
3974 		 * There is no way to determine the number of TSO
3975 		 * capable Queues. Let's use always the Queue 0
3976 		 * because if TSO is supported then at least this
3977 		 * one will be capable.
3978 		 */
3979 		return 0;
3980 	}
3981 
3982 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
3983 }
3984 
3985 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3986 {
3987 	struct stmmac_priv *priv = netdev_priv(ndev);
3988 	int ret = 0;
3989 
3990 	ret = eth_mac_addr(ndev, addr);
3991 	if (ret)
3992 		return ret;
3993 
3994 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3995 
3996 	return ret;
3997 }
3998 
3999 #ifdef CONFIG_DEBUG_FS
4000 static struct dentry *stmmac_fs_dir;
4001 
4002 static void sysfs_display_ring(void *head, int size, int extend_desc,
4003 			       struct seq_file *seq)
4004 {
4005 	int i;
4006 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4007 	struct dma_desc *p = (struct dma_desc *)head;
4008 
4009 	for (i = 0; i < size; i++) {
4010 		if (extend_desc) {
4011 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4012 				   i, (unsigned int)virt_to_phys(ep),
4013 				   le32_to_cpu(ep->basic.des0),
4014 				   le32_to_cpu(ep->basic.des1),
4015 				   le32_to_cpu(ep->basic.des2),
4016 				   le32_to_cpu(ep->basic.des3));
4017 			ep++;
4018 		} else {
4019 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
4020 				   i, (unsigned int)virt_to_phys(p),
4021 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4022 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4023 			p++;
4024 		}
4025 		seq_printf(seq, "\n");
4026 	}
4027 }
4028 
4029 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4030 {
4031 	struct net_device *dev = seq->private;
4032 	struct stmmac_priv *priv = netdev_priv(dev);
4033 	u32 rx_count = priv->plat->rx_queues_to_use;
4034 	u32 tx_count = priv->plat->tx_queues_to_use;
4035 	u32 queue;
4036 
4037 	if ((dev->flags & IFF_UP) == 0)
4038 		return 0;
4039 
4040 	for (queue = 0; queue < rx_count; queue++) {
4041 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4042 
4043 		seq_printf(seq, "RX Queue %d:\n", queue);
4044 
4045 		if (priv->extend_desc) {
4046 			seq_printf(seq, "Extended descriptor ring:\n");
4047 			sysfs_display_ring((void *)rx_q->dma_erx,
4048 					   DMA_RX_SIZE, 1, seq);
4049 		} else {
4050 			seq_printf(seq, "Descriptor ring:\n");
4051 			sysfs_display_ring((void *)rx_q->dma_rx,
4052 					   DMA_RX_SIZE, 0, seq);
4053 		}
4054 	}
4055 
4056 	for (queue = 0; queue < tx_count; queue++) {
4057 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4058 
4059 		seq_printf(seq, "TX Queue %d:\n", queue);
4060 
4061 		if (priv->extend_desc) {
4062 			seq_printf(seq, "Extended descriptor ring:\n");
4063 			sysfs_display_ring((void *)tx_q->dma_etx,
4064 					   DMA_TX_SIZE, 1, seq);
4065 		} else {
4066 			seq_printf(seq, "Descriptor ring:\n");
4067 			sysfs_display_ring((void *)tx_q->dma_tx,
4068 					   DMA_TX_SIZE, 0, seq);
4069 		}
4070 	}
4071 
4072 	return 0;
4073 }
4074 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4075 
4076 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4077 {
4078 	struct net_device *dev = seq->private;
4079 	struct stmmac_priv *priv = netdev_priv(dev);
4080 
4081 	if (!priv->hw_cap_support) {
4082 		seq_printf(seq, "DMA HW features not supported\n");
4083 		return 0;
4084 	}
4085 
4086 	seq_printf(seq, "==============================\n");
4087 	seq_printf(seq, "\tDMA HW features\n");
4088 	seq_printf(seq, "==============================\n");
4089 
4090 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4091 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4092 	seq_printf(seq, "\t1000 Mbps: %s\n",
4093 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4094 	seq_printf(seq, "\tHalf duplex: %s\n",
4095 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4096 	seq_printf(seq, "\tHash Filter: %s\n",
4097 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4098 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4099 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4100 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4101 		   (priv->dma_cap.pcs) ? "Y" : "N");
4102 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4103 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4104 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4105 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4106 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4107 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4108 	seq_printf(seq, "\tRMON module: %s\n",
4109 		   (priv->dma_cap.rmon) ? "Y" : "N");
4110 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4111 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4112 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4113 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4114 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4115 		   (priv->dma_cap.eee) ? "Y" : "N");
4116 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4117 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4118 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4119 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4120 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4121 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4122 	} else {
4123 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4124 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4125 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4126 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4127 	}
4128 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4129 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4130 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4131 		   priv->dma_cap.number_rx_channel);
4132 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4133 		   priv->dma_cap.number_tx_channel);
4134 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4135 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4136 
4137 	return 0;
4138 }
4139 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4140 
4141 static void stmmac_init_fs(struct net_device *dev)
4142 {
4143 	struct stmmac_priv *priv = netdev_priv(dev);
4144 
4145 	/* Create per netdev entries */
4146 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4147 
4148 	/* Entry to report DMA RX/TX rings */
4149 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4150 			    &stmmac_rings_status_fops);
4151 
4152 	/* Entry to report the DMA HW features */
4153 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4154 			    &stmmac_dma_cap_fops);
4155 }
4156 
4157 static void stmmac_exit_fs(struct net_device *dev)
4158 {
4159 	struct stmmac_priv *priv = netdev_priv(dev);
4160 
4161 	debugfs_remove_recursive(priv->dbgfs_dir);
4162 }
4163 #endif /* CONFIG_DEBUG_FS */
4164 
4165 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4166 {
4167 	unsigned char *data = (unsigned char *)&vid_le;
4168 	unsigned char data_byte = 0;
4169 	u32 crc = ~0x0;
4170 	u32 temp = 0;
4171 	int i, bits;
4172 
4173 	bits = get_bitmask_order(VLAN_VID_MASK);
4174 	for (i = 0; i < bits; i++) {
4175 		if ((i % 8) == 0)
4176 			data_byte = data[i / 8];
4177 
4178 		temp = ((crc & 1) ^ data_byte) & 1;
4179 		crc >>= 1;
4180 		data_byte >>= 1;
4181 
4182 		if (temp)
4183 			crc ^= 0xedb88320;
4184 	}
4185 
4186 	return crc;
4187 }
4188 
4189 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4190 {
4191 	u32 crc, hash = 0;
4192 	u16 vid;
4193 
4194 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4195 		__le16 vid_le = cpu_to_le16(vid);
4196 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4197 		hash |= (1 << crc);
4198 	}
4199 
4200 	return stmmac_update_vlan_hash(priv, priv->hw, hash, is_double);
4201 }
4202 
4203 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4204 {
4205 	struct stmmac_priv *priv = netdev_priv(ndev);
4206 	bool is_double = false;
4207 	int ret;
4208 
4209 	if (!priv->dma_cap.vlhash)
4210 		return -EOPNOTSUPP;
4211 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4212 		is_double = true;
4213 
4214 	set_bit(vid, priv->active_vlans);
4215 	ret = stmmac_vlan_update(priv, is_double);
4216 	if (ret) {
4217 		clear_bit(vid, priv->active_vlans);
4218 		return ret;
4219 	}
4220 
4221 	return ret;
4222 }
4223 
4224 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4225 {
4226 	struct stmmac_priv *priv = netdev_priv(ndev);
4227 	bool is_double = false;
4228 
4229 	if (!priv->dma_cap.vlhash)
4230 		return -EOPNOTSUPP;
4231 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4232 		is_double = true;
4233 
4234 	clear_bit(vid, priv->active_vlans);
4235 	return stmmac_vlan_update(priv, is_double);
4236 }
4237 
4238 static const struct net_device_ops stmmac_netdev_ops = {
4239 	.ndo_open = stmmac_open,
4240 	.ndo_start_xmit = stmmac_xmit,
4241 	.ndo_stop = stmmac_release,
4242 	.ndo_change_mtu = stmmac_change_mtu,
4243 	.ndo_fix_features = stmmac_fix_features,
4244 	.ndo_set_features = stmmac_set_features,
4245 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4246 	.ndo_tx_timeout = stmmac_tx_timeout,
4247 	.ndo_do_ioctl = stmmac_ioctl,
4248 	.ndo_setup_tc = stmmac_setup_tc,
4249 	.ndo_select_queue = stmmac_select_queue,
4250 #ifdef CONFIG_NET_POLL_CONTROLLER
4251 	.ndo_poll_controller = stmmac_poll_controller,
4252 #endif
4253 	.ndo_set_mac_address = stmmac_set_mac_address,
4254 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4255 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4256 };
4257 
4258 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4259 {
4260 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4261 		return;
4262 	if (test_bit(STMMAC_DOWN, &priv->state))
4263 		return;
4264 
4265 	netdev_err(priv->dev, "Reset adapter.\n");
4266 
4267 	rtnl_lock();
4268 	netif_trans_update(priv->dev);
4269 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4270 		usleep_range(1000, 2000);
4271 
4272 	set_bit(STMMAC_DOWN, &priv->state);
4273 	dev_close(priv->dev);
4274 	dev_open(priv->dev, NULL);
4275 	clear_bit(STMMAC_DOWN, &priv->state);
4276 	clear_bit(STMMAC_RESETING, &priv->state);
4277 	rtnl_unlock();
4278 }
4279 
4280 static void stmmac_service_task(struct work_struct *work)
4281 {
4282 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4283 			service_task);
4284 
4285 	stmmac_reset_subtask(priv);
4286 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4287 }
4288 
4289 /**
4290  *  stmmac_hw_init - Init the MAC device
4291  *  @priv: driver private structure
4292  *  Description: this function is to configure the MAC device according to
4293  *  some platform parameters or the HW capability register. It prepares the
4294  *  driver to use either ring or chain modes and to setup either enhanced or
4295  *  normal descriptors.
4296  */
4297 static int stmmac_hw_init(struct stmmac_priv *priv)
4298 {
4299 	int ret;
4300 
4301 	/* dwmac-sun8i only work in chain mode */
4302 	if (priv->plat->has_sun8i)
4303 		chain_mode = 1;
4304 	priv->chain_mode = chain_mode;
4305 
4306 	/* Initialize HW Interface */
4307 	ret = stmmac_hwif_init(priv);
4308 	if (ret)
4309 		return ret;
4310 
4311 	/* Get the HW capability (new GMAC newer than 3.50a) */
4312 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4313 	if (priv->hw_cap_support) {
4314 		dev_info(priv->device, "DMA HW capability register supported\n");
4315 
4316 		/* We can override some gmac/dma configuration fields: e.g.
4317 		 * enh_desc, tx_coe (e.g. that are passed through the
4318 		 * platform) with the values from the HW capability
4319 		 * register (if supported).
4320 		 */
4321 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4322 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4323 		priv->hw->pmt = priv->plat->pmt;
4324 		if (priv->dma_cap.hash_tb_sz) {
4325 			priv->hw->multicast_filter_bins =
4326 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4327 			priv->hw->mcast_bits_log2 =
4328 					ilog2(priv->hw->multicast_filter_bins);
4329 		}
4330 
4331 		/* TXCOE doesn't work in thresh DMA mode */
4332 		if (priv->plat->force_thresh_dma_mode)
4333 			priv->plat->tx_coe = 0;
4334 		else
4335 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4336 
4337 		/* In case of GMAC4 rx_coe is from HW cap register. */
4338 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4339 
4340 		if (priv->dma_cap.rx_coe_type2)
4341 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4342 		else if (priv->dma_cap.rx_coe_type1)
4343 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4344 
4345 	} else {
4346 		dev_info(priv->device, "No HW DMA feature register supported\n");
4347 	}
4348 
4349 	if (priv->plat->rx_coe) {
4350 		priv->hw->rx_csum = priv->plat->rx_coe;
4351 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4352 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4353 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4354 	}
4355 	if (priv->plat->tx_coe)
4356 		dev_info(priv->device, "TX Checksum insertion supported\n");
4357 
4358 	if (priv->plat->pmt) {
4359 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4360 		device_set_wakeup_capable(priv->device, 1);
4361 	}
4362 
4363 	if (priv->dma_cap.tsoen)
4364 		dev_info(priv->device, "TSO supported\n");
4365 
4366 	/* Run HW quirks, if any */
4367 	if (priv->hwif_quirks) {
4368 		ret = priv->hwif_quirks(priv);
4369 		if (ret)
4370 			return ret;
4371 	}
4372 
4373 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4374 	 * In some case, for example on bugged HW this feature
4375 	 * has to be disable and this can be done by passing the
4376 	 * riwt_off field from the platform.
4377 	 */
4378 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4379 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4380 		priv->use_riwt = 1;
4381 		dev_info(priv->device,
4382 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4383 	}
4384 
4385 	return 0;
4386 }
4387 
4388 /**
4389  * stmmac_dvr_probe
4390  * @device: device pointer
4391  * @plat_dat: platform data pointer
4392  * @res: stmmac resource pointer
4393  * Description: this is the main probe function used to
4394  * call the alloc_etherdev, allocate the priv structure.
4395  * Return:
4396  * returns 0 on success, otherwise errno.
4397  */
4398 int stmmac_dvr_probe(struct device *device,
4399 		     struct plat_stmmacenet_data *plat_dat,
4400 		     struct stmmac_resources *res)
4401 {
4402 	struct net_device *ndev = NULL;
4403 	struct stmmac_priv *priv;
4404 	u32 queue, rxq, maxq;
4405 	int i, ret = 0;
4406 
4407 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4408 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4409 	if (!ndev)
4410 		return -ENOMEM;
4411 
4412 	SET_NETDEV_DEV(ndev, device);
4413 
4414 	priv = netdev_priv(ndev);
4415 	priv->device = device;
4416 	priv->dev = ndev;
4417 
4418 	stmmac_set_ethtool_ops(ndev);
4419 	priv->pause = pause;
4420 	priv->plat = plat_dat;
4421 	priv->ioaddr = res->addr;
4422 	priv->dev->base_addr = (unsigned long)res->addr;
4423 
4424 	priv->dev->irq = res->irq;
4425 	priv->wol_irq = res->wol_irq;
4426 	priv->lpi_irq = res->lpi_irq;
4427 
4428 	if (!IS_ERR_OR_NULL(res->mac))
4429 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4430 
4431 	dev_set_drvdata(device, priv->dev);
4432 
4433 	/* Verify driver arguments */
4434 	stmmac_verify_args();
4435 
4436 	/* Allocate workqueue */
4437 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4438 	if (!priv->wq) {
4439 		dev_err(priv->device, "failed to create workqueue\n");
4440 		return -ENOMEM;
4441 	}
4442 
4443 	INIT_WORK(&priv->service_task, stmmac_service_task);
4444 
4445 	/* Override with kernel parameters if supplied XXX CRS XXX
4446 	 * this needs to have multiple instances
4447 	 */
4448 	if ((phyaddr >= 0) && (phyaddr <= 31))
4449 		priv->plat->phy_addr = phyaddr;
4450 
4451 	if (priv->plat->stmmac_rst) {
4452 		ret = reset_control_assert(priv->plat->stmmac_rst);
4453 		reset_control_deassert(priv->plat->stmmac_rst);
4454 		/* Some reset controllers have only reset callback instead of
4455 		 * assert + deassert callbacks pair.
4456 		 */
4457 		if (ret == -ENOTSUPP)
4458 			reset_control_reset(priv->plat->stmmac_rst);
4459 	}
4460 
4461 	/* Init MAC and get the capabilities */
4462 	ret = stmmac_hw_init(priv);
4463 	if (ret)
4464 		goto error_hw_init;
4465 
4466 	stmmac_check_ether_addr(priv);
4467 
4468 	/* Configure real RX and TX queues */
4469 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4470 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4471 
4472 	ndev->netdev_ops = &stmmac_netdev_ops;
4473 
4474 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4475 			    NETIF_F_RXCSUM;
4476 
4477 	ret = stmmac_tc_init(priv, priv);
4478 	if (!ret) {
4479 		ndev->hw_features |= NETIF_F_HW_TC;
4480 	}
4481 
4482 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4483 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4484 		priv->tso = true;
4485 		dev_info(priv->device, "TSO feature enabled\n");
4486 	}
4487 
4488 	if (priv->dma_cap.sphen) {
4489 		ndev->hw_features |= NETIF_F_GRO;
4490 		priv->sph = true;
4491 		dev_info(priv->device, "SPH feature enabled\n");
4492 	}
4493 
4494 	if (priv->dma_cap.addr64) {
4495 		ret = dma_set_mask_and_coherent(device,
4496 				DMA_BIT_MASK(priv->dma_cap.addr64));
4497 		if (!ret) {
4498 			dev_info(priv->device, "Using %d bits DMA width\n",
4499 				 priv->dma_cap.addr64);
4500 		} else {
4501 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4502 			if (ret) {
4503 				dev_err(priv->device, "Failed to set DMA Mask\n");
4504 				goto error_hw_init;
4505 			}
4506 
4507 			priv->dma_cap.addr64 = 32;
4508 		}
4509 	}
4510 
4511 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4512 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4513 #ifdef STMMAC_VLAN_TAG_USED
4514 	/* Both mac100 and gmac support receive VLAN tag detection */
4515 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4516 	if (priv->dma_cap.vlhash) {
4517 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
4518 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
4519 	}
4520 	if (priv->dma_cap.vlins) {
4521 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
4522 		if (priv->dma_cap.dvlan)
4523 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
4524 	}
4525 #endif
4526 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4527 
4528 	/* Initialize RSS */
4529 	rxq = priv->plat->rx_queues_to_use;
4530 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
4531 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
4532 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
4533 
4534 	if (priv->dma_cap.rssen && priv->plat->rss_en)
4535 		ndev->features |= NETIF_F_RXHASH;
4536 
4537 	/* MTU range: 46 - hw-specific max */
4538 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4539 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4540 		ndev->max_mtu = JUMBO_LEN;
4541 	else if (priv->plat->has_xgmac)
4542 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4543 	else
4544 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4545 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4546 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4547 	 */
4548 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4549 	    (priv->plat->maxmtu >= ndev->min_mtu))
4550 		ndev->max_mtu = priv->plat->maxmtu;
4551 	else if (priv->plat->maxmtu < ndev->min_mtu)
4552 		dev_warn(priv->device,
4553 			 "%s: warning: maxmtu having invalid value (%d)\n",
4554 			 __func__, priv->plat->maxmtu);
4555 
4556 	if (flow_ctrl)
4557 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4558 
4559 	/* Setup channels NAPI */
4560 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4561 
4562 	for (queue = 0; queue < maxq; queue++) {
4563 		struct stmmac_channel *ch = &priv->channel[queue];
4564 
4565 		ch->priv_data = priv;
4566 		ch->index = queue;
4567 
4568 		if (queue < priv->plat->rx_queues_to_use) {
4569 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4570 				       NAPI_POLL_WEIGHT);
4571 		}
4572 		if (queue < priv->plat->tx_queues_to_use) {
4573 			netif_tx_napi_add(ndev, &ch->tx_napi,
4574 					  stmmac_napi_poll_tx,
4575 					  NAPI_POLL_WEIGHT);
4576 		}
4577 	}
4578 
4579 	mutex_init(&priv->lock);
4580 
4581 	/* If a specific clk_csr value is passed from the platform
4582 	 * this means that the CSR Clock Range selection cannot be
4583 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4584 	 * set the MDC clock dynamically according to the csr actual
4585 	 * clock input.
4586 	 */
4587 	if (priv->plat->clk_csr >= 0)
4588 		priv->clk_csr = priv->plat->clk_csr;
4589 	else
4590 		stmmac_clk_csr_set(priv);
4591 
4592 	stmmac_check_pcs_mode(priv);
4593 
4594 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4595 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4596 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4597 		/* MDIO bus Registration */
4598 		ret = stmmac_mdio_register(ndev);
4599 		if (ret < 0) {
4600 			dev_err(priv->device,
4601 				"%s: MDIO bus (id: %d) registration failed",
4602 				__func__, priv->plat->bus_id);
4603 			goto error_mdio_register;
4604 		}
4605 	}
4606 
4607 	ret = stmmac_phy_setup(priv);
4608 	if (ret) {
4609 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4610 		goto error_phy_setup;
4611 	}
4612 
4613 	ret = register_netdev(ndev);
4614 	if (ret) {
4615 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4616 			__func__, ret);
4617 		goto error_netdev_register;
4618 	}
4619 
4620 #ifdef CONFIG_DEBUG_FS
4621 	stmmac_init_fs(ndev);
4622 #endif
4623 
4624 	return ret;
4625 
4626 error_netdev_register:
4627 	phylink_destroy(priv->phylink);
4628 error_phy_setup:
4629 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4630 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4631 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4632 		stmmac_mdio_unregister(ndev);
4633 error_mdio_register:
4634 	for (queue = 0; queue < maxq; queue++) {
4635 		struct stmmac_channel *ch = &priv->channel[queue];
4636 
4637 		if (queue < priv->plat->rx_queues_to_use)
4638 			netif_napi_del(&ch->rx_napi);
4639 		if (queue < priv->plat->tx_queues_to_use)
4640 			netif_napi_del(&ch->tx_napi);
4641 	}
4642 error_hw_init:
4643 	destroy_workqueue(priv->wq);
4644 
4645 	return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4648 
4649 /**
4650  * stmmac_dvr_remove
4651  * @dev: device pointer
4652  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4653  * changes the link status, releases the DMA descriptor rings.
4654  */
4655 int stmmac_dvr_remove(struct device *dev)
4656 {
4657 	struct net_device *ndev = dev_get_drvdata(dev);
4658 	struct stmmac_priv *priv = netdev_priv(ndev);
4659 
4660 	netdev_info(priv->dev, "%s: removing driver", __func__);
4661 
4662 #ifdef CONFIG_DEBUG_FS
4663 	stmmac_exit_fs(ndev);
4664 #endif
4665 	stmmac_stop_all_dma(priv);
4666 
4667 	stmmac_mac_set(priv, priv->ioaddr, false);
4668 	netif_carrier_off(ndev);
4669 	unregister_netdev(ndev);
4670 	phylink_destroy(priv->phylink);
4671 	if (priv->plat->stmmac_rst)
4672 		reset_control_assert(priv->plat->stmmac_rst);
4673 	clk_disable_unprepare(priv->plat->pclk);
4674 	clk_disable_unprepare(priv->plat->stmmac_clk);
4675 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4676 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4677 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4678 		stmmac_mdio_unregister(ndev);
4679 	destroy_workqueue(priv->wq);
4680 	mutex_destroy(&priv->lock);
4681 
4682 	return 0;
4683 }
4684 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4685 
4686 /**
4687  * stmmac_suspend - suspend callback
4688  * @dev: device pointer
4689  * Description: this is the function to suspend the device and it is called
4690  * by the platform driver to stop the network queue, release the resources,
4691  * program the PMT register (for WoL), clean and release driver resources.
4692  */
4693 int stmmac_suspend(struct device *dev)
4694 {
4695 	struct net_device *ndev = dev_get_drvdata(dev);
4696 	struct stmmac_priv *priv = netdev_priv(ndev);
4697 
4698 	if (!ndev || !netif_running(ndev))
4699 		return 0;
4700 
4701 	phylink_stop(priv->phylink);
4702 
4703 	mutex_lock(&priv->lock);
4704 
4705 	netif_device_detach(ndev);
4706 	stmmac_stop_all_queues(priv);
4707 
4708 	stmmac_disable_all_queues(priv);
4709 
4710 	/* Stop TX/RX DMA */
4711 	stmmac_stop_all_dma(priv);
4712 
4713 	/* Enable Power down mode by programming the PMT regs */
4714 	if (device_may_wakeup(priv->device)) {
4715 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4716 		priv->irq_wake = 1;
4717 	} else {
4718 		stmmac_mac_set(priv, priv->ioaddr, false);
4719 		pinctrl_pm_select_sleep_state(priv->device);
4720 		/* Disable clock in case of PWM is off */
4721 		clk_disable(priv->plat->pclk);
4722 		clk_disable(priv->plat->stmmac_clk);
4723 	}
4724 	mutex_unlock(&priv->lock);
4725 
4726 	priv->speed = SPEED_UNKNOWN;
4727 	return 0;
4728 }
4729 EXPORT_SYMBOL_GPL(stmmac_suspend);
4730 
4731 /**
4732  * stmmac_reset_queues_param - reset queue parameters
4733  * @dev: device pointer
4734  */
4735 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4736 {
4737 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4738 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4739 	u32 queue;
4740 
4741 	for (queue = 0; queue < rx_cnt; queue++) {
4742 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4743 
4744 		rx_q->cur_rx = 0;
4745 		rx_q->dirty_rx = 0;
4746 	}
4747 
4748 	for (queue = 0; queue < tx_cnt; queue++) {
4749 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4750 
4751 		tx_q->cur_tx = 0;
4752 		tx_q->dirty_tx = 0;
4753 		tx_q->mss = 0;
4754 	}
4755 }
4756 
4757 /**
4758  * stmmac_resume - resume callback
4759  * @dev: device pointer
4760  * Description: when resume this function is invoked to setup the DMA and CORE
4761  * in a usable state.
4762  */
4763 int stmmac_resume(struct device *dev)
4764 {
4765 	struct net_device *ndev = dev_get_drvdata(dev);
4766 	struct stmmac_priv *priv = netdev_priv(ndev);
4767 
4768 	if (!netif_running(ndev))
4769 		return 0;
4770 
4771 	/* Power Down bit, into the PM register, is cleared
4772 	 * automatically as soon as a magic packet or a Wake-up frame
4773 	 * is received. Anyway, it's better to manually clear
4774 	 * this bit because it can generate problems while resuming
4775 	 * from another devices (e.g. serial console).
4776 	 */
4777 	if (device_may_wakeup(priv->device)) {
4778 		mutex_lock(&priv->lock);
4779 		stmmac_pmt(priv, priv->hw, 0);
4780 		mutex_unlock(&priv->lock);
4781 		priv->irq_wake = 0;
4782 	} else {
4783 		pinctrl_pm_select_default_state(priv->device);
4784 		/* enable the clk previously disabled */
4785 		clk_enable(priv->plat->stmmac_clk);
4786 		clk_enable(priv->plat->pclk);
4787 		/* reset the phy so that it's ready */
4788 		if (priv->mii)
4789 			stmmac_mdio_reset(priv->mii);
4790 	}
4791 
4792 	netif_device_attach(ndev);
4793 
4794 	mutex_lock(&priv->lock);
4795 
4796 	stmmac_reset_queues_param(priv);
4797 
4798 	stmmac_clear_descriptors(priv);
4799 
4800 	stmmac_hw_setup(ndev, false);
4801 	stmmac_init_coalesce(priv);
4802 	stmmac_set_rx_mode(ndev);
4803 
4804 	stmmac_enable_all_queues(priv);
4805 
4806 	stmmac_start_all_queues(priv);
4807 
4808 	mutex_unlock(&priv->lock);
4809 
4810 	phylink_start(priv->phylink);
4811 
4812 	return 0;
4813 }
4814 EXPORT_SYMBOL_GPL(stmmac_resume);
4815 
4816 #ifndef MODULE
4817 static int __init stmmac_cmdline_opt(char *str)
4818 {
4819 	char *opt;
4820 
4821 	if (!str || !*str)
4822 		return -EINVAL;
4823 	while ((opt = strsep(&str, ",")) != NULL) {
4824 		if (!strncmp(opt, "debug:", 6)) {
4825 			if (kstrtoint(opt + 6, 0, &debug))
4826 				goto err;
4827 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4828 			if (kstrtoint(opt + 8, 0, &phyaddr))
4829 				goto err;
4830 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4831 			if (kstrtoint(opt + 7, 0, &buf_sz))
4832 				goto err;
4833 		} else if (!strncmp(opt, "tc:", 3)) {
4834 			if (kstrtoint(opt + 3, 0, &tc))
4835 				goto err;
4836 		} else if (!strncmp(opt, "watchdog:", 9)) {
4837 			if (kstrtoint(opt + 9, 0, &watchdog))
4838 				goto err;
4839 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4840 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4841 				goto err;
4842 		} else if (!strncmp(opt, "pause:", 6)) {
4843 			if (kstrtoint(opt + 6, 0, &pause))
4844 				goto err;
4845 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4846 			if (kstrtoint(opt + 10, 0, &eee_timer))
4847 				goto err;
4848 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4849 			if (kstrtoint(opt + 11, 0, &chain_mode))
4850 				goto err;
4851 		}
4852 	}
4853 	return 0;
4854 
4855 err:
4856 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4857 	return -EINVAL;
4858 }
4859 
4860 __setup("stmmaceth=", stmmac_cmdline_opt);
4861 #endif /* MODULE */
4862 
4863 static int __init stmmac_init(void)
4864 {
4865 #ifdef CONFIG_DEBUG_FS
4866 	/* Create debugfs main directory if it doesn't exist yet */
4867 	if (!stmmac_fs_dir)
4868 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4869 #endif
4870 
4871 	return 0;
4872 }
4873 
4874 static void __exit stmmac_exit(void)
4875 {
4876 #ifdef CONFIG_DEBUG_FS
4877 	debugfs_remove_recursive(stmmac_fs_dir);
4878 #endif
4879 }
4880 
4881 module_init(stmmac_init)
4882 module_exit(stmmac_exit)
4883 
4884 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4885 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4886 MODULE_LICENSE("GPL");
4887