1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53 
54 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN	9000
56 
57 /* Module parameters */
58 #define TX_TIMEO	5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62 
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66 
67 int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70 
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75 
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80 
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84 
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88 
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93 
94 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98 
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
101 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102 
103 #define STMMAC_DEFAULT_LPI_TIMER	1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108 
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110  * but passing this value so user can force to use the chain instead of the ring
111  */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115 
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117 
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122 
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 
125 /**
126  * stmmac_verify_args - verify the driver parameters.
127  * Description: it verifies if some wrong parameter is passed to the driver.
128  * Note that wrong parameters are replaced with the default values.
129  */
130 static void stmmac_verify_args(void)
131 {
132 	if (unlikely(watchdog < 0))
133 		watchdog = TX_TIMEO;
134 	if (unlikely(dma_rxsize < 0))
135 		dma_rxsize = DMA_RX_SIZE;
136 	if (unlikely(dma_txsize < 0))
137 		dma_txsize = DMA_TX_SIZE;
138 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139 		buf_sz = DMA_BUFFER_SIZE;
140 	if (unlikely(flow_ctrl > 1))
141 		flow_ctrl = FLOW_AUTO;
142 	else if (likely(flow_ctrl < 0))
143 		flow_ctrl = FLOW_OFF;
144 	if (unlikely((pause < 0) || (pause > 0xffff)))
145 		pause = PAUSE_TIME;
146 	if (eee_timer < 0)
147 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149 
150 /**
151  * stmmac_clk_csr_set - dynamically set the MDC clock
152  * @priv: driver private structure
153  * Description: this is to dynamically set the MDC clock according to the csr
154  * clock input.
155  * Note:
156  *	If a specific clk_csr value is passed from the platform
157  *	this means that the CSR Clock Range selection cannot be
158  *	changed at run-time and it is fixed (as reported in the driver
159  *	documentation). Viceversa the driver will try to set the MDC
160  *	clock dynamically according to the actual clock input.
161  */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164 	u32 clk_rate;
165 
166 	clk_rate = clk_get_rate(priv->stmmac_clk);
167 
168 	/* Platform provided default clk_csr would be assumed valid
169 	 * for all other cases except for the below mentioned ones.
170 	 * For values higher than the IEEE 802.3 specified frequency
171 	 * we can not estimate the proper divider as it is not known
172 	 * the frequency of clk_csr_i. So we do not change the default
173 	 * divider.
174 	 */
175 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 		if (clk_rate < CSR_F_35M)
177 			priv->clk_csr = STMMAC_CSR_20_35M;
178 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 			priv->clk_csr = STMMAC_CSR_35_60M;
180 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 			priv->clk_csr = STMMAC_CSR_60_100M;
182 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 			priv->clk_csr = STMMAC_CSR_100_150M;
184 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 			priv->clk_csr = STMMAC_CSR_150_250M;
186 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 			priv->clk_csr = STMMAC_CSR_250_300M;
188 	}
189 }
190 
191 static void print_pkt(unsigned char *buf, int len)
192 {
193 	int j;
194 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195 	for (j = 0; j < len; j++) {
196 		if ((j % 16) == 0)
197 			pr_debug("\n %03x:", j);
198 		pr_debug(" %02x", buf[j]);
199 	}
200 	pr_debug("\n");
201 }
202 
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
205 
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210 
211 /**
212  * stmmac_hw_fix_mac_speed: callback for speed selection
213  * @priv: driver private structure
214  * Description: on some platforms (e.g. ST), some HW system configuraton
215  * registers have to be set according to the link speed negotiated.
216  */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219 	struct phy_device *phydev = priv->phydev;
220 
221 	if (likely(priv->plat->fix_mac_speed))
222 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224 
225 /**
226  * stmmac_enable_eee_mode: Check and enter in LPI mode
227  * @priv: driver private structure
228  * Description: this function is to verify and enter in LPI mode for EEE.
229  */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232 	/* Check and enter in LPI mode */
233 	if ((priv->dirty_tx == priv->cur_tx) &&
234 	    (priv->tx_path_in_lpi_mode == false))
235 		priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237 
238 /**
239  * stmmac_disable_eee_mode: disable/exit from EEE
240  * @priv: driver private structure
241  * Description: this function is to exit and disable EEE in case of
242  * LPI state is true. This is called by the xmit.
243  */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
247 	del_timer_sync(&priv->eee_ctrl_timer);
248 	priv->tx_path_in_lpi_mode = false;
249 }
250 
251 /**
252  * stmmac_eee_ctrl_timer: EEE TX SW timer.
253  * @arg : data hook
254  * Description:
255  *  if there is no data transfer and if we are not in LPI state,
256  *  then MAC Transmitter can be moved to LPI state.
257  */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261 
262 	stmmac_enable_eee_mode(priv);
263 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265 
266 /**
267  * stmmac_eee_init: init EEE
268  * @priv: driver private structure
269  * Description:
270  *  If the EEE support has been enabled while configuring the driver,
271  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
272  *  phy can also manage EEE, so enable the LPI state and start the timer
273  *  to verify if the tx path can enter in LPI state.
274  */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277 	bool ret = false;
278 
279 	/* Using PCS we cannot dial with the phy registers at this stage
280 	 * so we do not support extra feature like EEE.
281 	 */
282 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283 	    (priv->pcs == STMMAC_PCS_RTBI))
284 		goto out;
285 
286 	/* MAC core supports the EEE feature. */
287 	if (priv->dma_cap.eee) {
288 		/* Check if the PHY supports EEE */
289 		if (phy_init_eee(priv->phydev, 1))
290 			goto out;
291 
292 		if (!priv->eee_active) {
293 			priv->eee_active = 1;
294 			init_timer(&priv->eee_ctrl_timer);
295 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296 			priv->eee_ctrl_timer.data = (unsigned long)priv;
297 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298 			add_timer(&priv->eee_ctrl_timer);
299 
300 			priv->hw->mac->set_eee_timer(priv->ioaddr,
301 						     STMMAC_DEFAULT_LIT_LS,
302 						     priv->tx_lpi_timer);
303 		} else
304 			/* Set HW EEE according to the speed */
305 			priv->hw->mac->set_eee_pls(priv->ioaddr,
306 						   priv->phydev->link);
307 
308 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309 
310 		ret = true;
311 	}
312 out:
313 	return ret;
314 }
315 
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317  * @priv: driver private structure
318  * @entry : descriptor index to be used.
319  * @skb : the socket buffer
320  * Description :
321  * This function will read timestamp from the descriptor & pass it to stack.
322  * and also perform some sanity checks.
323  */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325 				   unsigned int entry, struct sk_buff *skb)
326 {
327 	struct skb_shared_hwtstamps shhwtstamp;
328 	u64 ns;
329 	void *desc = NULL;
330 
331 	if (!priv->hwts_tx_en)
332 		return;
333 
334 	/* exit if skb doesn't support hw tstamp */
335 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336 		return;
337 
338 	if (priv->adv_ts)
339 		desc = (priv->dma_etx + entry);
340 	else
341 		desc = (priv->dma_tx + entry);
342 
343 	/* check tx tstamp status */
344 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345 		return;
346 
347 	/* get the valid tstamp */
348 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349 
350 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
352 	/* pass tstamp to stack */
353 	skb_tstamp_tx(skb, &shhwtstamp);
354 
355 	return;
356 }
357 
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359  * @priv: driver private structure
360  * @entry : descriptor index to be used.
361  * @skb : the socket buffer
362  * Description :
363  * This function will read received packet's timestamp from the descriptor
364  * and pass it to stack. It also perform some sanity checks.
365  */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367 				   unsigned int entry, struct sk_buff *skb)
368 {
369 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
370 	u64 ns;
371 	void *desc = NULL;
372 
373 	if (!priv->hwts_rx_en)
374 		return;
375 
376 	if (priv->adv_ts)
377 		desc = (priv->dma_erx + entry);
378 	else
379 		desc = (priv->dma_rx + entry);
380 
381 	/* exit if rx tstamp is not valid */
382 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383 		return;
384 
385 	/* get valid tstamp */
386 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387 	shhwtstamp = skb_hwtstamps(skb);
388 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391 
392 /**
393  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
394  *  @dev: device pointer.
395  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
396  *  a proprietary structure used to pass information to the driver.
397  *  Description:
398  *  This function configures the MAC to enable/disable both outgoing(TX)
399  *  and incoming(RX) packets time stamping based on user input.
400  *  Return Value:
401  *  0 on success and an appropriate -ve integer on failure.
402  */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405 	struct stmmac_priv *priv = netdev_priv(dev);
406 	struct hwtstamp_config config;
407 	struct timespec now;
408 	u64 temp = 0;
409 	u32 ptp_v2 = 0;
410 	u32 tstamp_all = 0;
411 	u32 ptp_over_ipv4_udp = 0;
412 	u32 ptp_over_ipv6_udp = 0;
413 	u32 ptp_over_ethernet = 0;
414 	u32 snap_type_sel = 0;
415 	u32 ts_master_en = 0;
416 	u32 ts_event_en = 0;
417 	u32 value = 0;
418 
419 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420 		netdev_alert(priv->dev, "No support for HW time stamping\n");
421 		priv->hwts_tx_en = 0;
422 		priv->hwts_rx_en = 0;
423 
424 		return -EOPNOTSUPP;
425 	}
426 
427 	if (copy_from_user(&config, ifr->ifr_data,
428 			   sizeof(struct hwtstamp_config)))
429 		return -EFAULT;
430 
431 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432 		 __func__, config.flags, config.tx_type, config.rx_filter);
433 
434 	/* reserved for future extensions */
435 	if (config.flags)
436 		return -EINVAL;
437 
438 	if (config.tx_type != HWTSTAMP_TX_OFF &&
439 	    config.tx_type != HWTSTAMP_TX_ON)
440 		return -ERANGE;
441 
442 	if (priv->adv_ts) {
443 		switch (config.rx_filter) {
444 		case HWTSTAMP_FILTER_NONE:
445 			/* time stamp no incoming packet at all */
446 			config.rx_filter = HWTSTAMP_FILTER_NONE;
447 			break;
448 
449 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
450 			/* PTP v1, UDP, any kind of event packet */
451 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
452 			/* take time stamp for all event messages */
453 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
454 
455 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
456 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
457 			break;
458 
459 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
460 			/* PTP v1, UDP, Sync packet */
461 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
462 			/* take time stamp for SYNC messages only */
463 			ts_event_en = PTP_TCR_TSEVNTENA;
464 
465 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
466 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
467 			break;
468 
469 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
470 			/* PTP v1, UDP, Delay_req packet */
471 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
472 			/* take time stamp for Delay_Req messages only */
473 			ts_master_en = PTP_TCR_TSMSTRENA;
474 			ts_event_en = PTP_TCR_TSEVNTENA;
475 
476 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
477 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
478 			break;
479 
480 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
481 			/* PTP v2, UDP, any kind of event packet */
482 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
483 			ptp_v2 = PTP_TCR_TSVER2ENA;
484 			/* take time stamp for all event messages */
485 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
486 
487 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
488 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
489 			break;
490 
491 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
492 			/* PTP v2, UDP, Sync packet */
493 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
494 			ptp_v2 = PTP_TCR_TSVER2ENA;
495 			/* take time stamp for SYNC messages only */
496 			ts_event_en = PTP_TCR_TSEVNTENA;
497 
498 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
499 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
500 			break;
501 
502 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
503 			/* PTP v2, UDP, Delay_req packet */
504 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
505 			ptp_v2 = PTP_TCR_TSVER2ENA;
506 			/* take time stamp for Delay_Req messages only */
507 			ts_master_en = PTP_TCR_TSMSTRENA;
508 			ts_event_en = PTP_TCR_TSEVNTENA;
509 
510 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
511 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
512 			break;
513 
514 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
515 			/* PTP v2/802.AS1 any layer, any kind of event packet */
516 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
517 			ptp_v2 = PTP_TCR_TSVER2ENA;
518 			/* take time stamp for all event messages */
519 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
520 
521 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
522 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
523 			ptp_over_ethernet = PTP_TCR_TSIPENA;
524 			break;
525 
526 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
527 			/* PTP v2/802.AS1, any layer, Sync packet */
528 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
529 			ptp_v2 = PTP_TCR_TSVER2ENA;
530 			/* take time stamp for SYNC messages only */
531 			ts_event_en = PTP_TCR_TSEVNTENA;
532 
533 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
534 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
535 			ptp_over_ethernet = PTP_TCR_TSIPENA;
536 			break;
537 
538 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
539 			/* PTP v2/802.AS1, any layer, Delay_req packet */
540 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
541 			ptp_v2 = PTP_TCR_TSVER2ENA;
542 			/* take time stamp for Delay_Req messages only */
543 			ts_master_en = PTP_TCR_TSMSTRENA;
544 			ts_event_en = PTP_TCR_TSEVNTENA;
545 
546 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 			ptp_over_ethernet = PTP_TCR_TSIPENA;
549 			break;
550 
551 		case HWTSTAMP_FILTER_ALL:
552 			/* time stamp any incoming packet */
553 			config.rx_filter = HWTSTAMP_FILTER_ALL;
554 			tstamp_all = PTP_TCR_TSENALL;
555 			break;
556 
557 		default:
558 			return -ERANGE;
559 		}
560 	} else {
561 		switch (config.rx_filter) {
562 		case HWTSTAMP_FILTER_NONE:
563 			config.rx_filter = HWTSTAMP_FILTER_NONE;
564 			break;
565 		default:
566 			/* PTP v1, UDP, any kind of event packet */
567 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
568 			break;
569 		}
570 	}
571 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
572 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
573 
574 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
575 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
576 	else {
577 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
578 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
579 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
580 			 ts_master_en | snap_type_sel);
581 
582 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
583 
584 		/* program Sub Second Increment reg */
585 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
586 
587 		/* calculate default added value:
588 		 * formula is :
589 		 * addend = (2^32)/freq_div_ratio;
590 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
591 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
592 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
593 		 *       achive 20ns accuracy.
594 		 *
595 		 * 2^x * y == (y << x), hence
596 		 * 2^32 * 50000000 ==> (50000000 << 32)
597 		 */
598 		temp = (u64) (50000000ULL << 32);
599 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
600 		priv->hw->ptp->config_addend(priv->ioaddr,
601 					     priv->default_addend);
602 
603 		/* initialize system time */
604 		getnstimeofday(&now);
605 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
606 					    now.tv_nsec);
607 	}
608 
609 	return copy_to_user(ifr->ifr_data, &config,
610 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
611 }
612 
613 /**
614  * stmmac_init_ptp: init PTP
615  * @priv: driver private structure
616  * Description: this is to verify if the HW supports the PTPv1 or v2.
617  * This is done by looking at the HW cap. register.
618  * Also it registers the ptp driver.
619  */
620 static int stmmac_init_ptp(struct stmmac_priv *priv)
621 {
622 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
623 		return -EOPNOTSUPP;
624 
625 	if (netif_msg_hw(priv)) {
626 		if (priv->dma_cap.time_stamp) {
627 			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
628 			priv->adv_ts = 0;
629 		}
630 		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
631 			pr_debug
632 			    ("IEEE 1588-2008 Advanced Time Stamp supported\n");
633 			priv->adv_ts = 1;
634 		}
635 	}
636 
637 	priv->hw->ptp = &stmmac_ptp;
638 	priv->hwts_tx_en = 0;
639 	priv->hwts_rx_en = 0;
640 
641 	return stmmac_ptp_register(priv);
642 }
643 
644 static void stmmac_release_ptp(struct stmmac_priv *priv)
645 {
646 	stmmac_ptp_unregister(priv);
647 }
648 
649 /**
650  * stmmac_adjust_link
651  * @dev: net device structure
652  * Description: it adjusts the link parameters.
653  */
654 static void stmmac_adjust_link(struct net_device *dev)
655 {
656 	struct stmmac_priv *priv = netdev_priv(dev);
657 	struct phy_device *phydev = priv->phydev;
658 	unsigned long flags;
659 	int new_state = 0;
660 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
661 
662 	if (phydev == NULL)
663 		return;
664 
665 	spin_lock_irqsave(&priv->lock, flags);
666 
667 	if (phydev->link) {
668 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
669 
670 		/* Now we make sure that we can be in full duplex mode.
671 		 * If not, we operate in half-duplex mode. */
672 		if (phydev->duplex != priv->oldduplex) {
673 			new_state = 1;
674 			if (!(phydev->duplex))
675 				ctrl &= ~priv->hw->link.duplex;
676 			else
677 				ctrl |= priv->hw->link.duplex;
678 			priv->oldduplex = phydev->duplex;
679 		}
680 		/* Flow Control operation */
681 		if (phydev->pause)
682 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
683 						 fc, pause_time);
684 
685 		if (phydev->speed != priv->speed) {
686 			new_state = 1;
687 			switch (phydev->speed) {
688 			case 1000:
689 				if (likely(priv->plat->has_gmac))
690 					ctrl &= ~priv->hw->link.port;
691 				stmmac_hw_fix_mac_speed(priv);
692 				break;
693 			case 100:
694 			case 10:
695 				if (priv->plat->has_gmac) {
696 					ctrl |= priv->hw->link.port;
697 					if (phydev->speed == SPEED_100) {
698 						ctrl |= priv->hw->link.speed;
699 					} else {
700 						ctrl &= ~(priv->hw->link.speed);
701 					}
702 				} else {
703 					ctrl &= ~priv->hw->link.port;
704 				}
705 				stmmac_hw_fix_mac_speed(priv);
706 				break;
707 			default:
708 				if (netif_msg_link(priv))
709 					pr_warn("%s: Speed (%d) not 10/100\n",
710 						dev->name, phydev->speed);
711 				break;
712 			}
713 
714 			priv->speed = phydev->speed;
715 		}
716 
717 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
718 
719 		if (!priv->oldlink) {
720 			new_state = 1;
721 			priv->oldlink = 1;
722 		}
723 	} else if (priv->oldlink) {
724 		new_state = 1;
725 		priv->oldlink = 0;
726 		priv->speed = 0;
727 		priv->oldduplex = -1;
728 	}
729 
730 	if (new_state && netif_msg_link(priv))
731 		phy_print_status(phydev);
732 
733 	/* At this stage, it could be needed to setup the EEE or adjust some
734 	 * MAC related HW registers.
735 	 */
736 	priv->eee_enabled = stmmac_eee_init(priv);
737 
738 	spin_unlock_irqrestore(&priv->lock, flags);
739 }
740 
741 /**
742  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
743  * @priv: driver private structure
744  * Description: this is to verify if the HW supports the PCS.
745  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
746  * configured for the TBI, RTBI, or SGMII PHY interface.
747  */
748 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
749 {
750 	int interface = priv->plat->interface;
751 
752 	if (priv->dma_cap.pcs) {
753 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
754 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
755 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
756 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
757 			pr_debug("STMMAC: PCS RGMII support enable\n");
758 			priv->pcs = STMMAC_PCS_RGMII;
759 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
760 			pr_debug("STMMAC: PCS SGMII support enable\n");
761 			priv->pcs = STMMAC_PCS_SGMII;
762 		}
763 	}
764 }
765 
766 /**
767  * stmmac_init_phy - PHY initialization
768  * @dev: net device structure
769  * Description: it initializes the driver's PHY state, and attaches the PHY
770  * to the mac driver.
771  *  Return value:
772  *  0 on success
773  */
774 static int stmmac_init_phy(struct net_device *dev)
775 {
776 	struct stmmac_priv *priv = netdev_priv(dev);
777 	struct phy_device *phydev;
778 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
779 	char bus_id[MII_BUS_ID_SIZE];
780 	int interface = priv->plat->interface;
781 	priv->oldlink = 0;
782 	priv->speed = 0;
783 	priv->oldduplex = -1;
784 
785 	if (priv->plat->phy_bus_name)
786 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
787 			 priv->plat->phy_bus_name, priv->plat->bus_id);
788 	else
789 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
790 			 priv->plat->bus_id);
791 
792 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
793 		 priv->plat->phy_addr);
794 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
795 
796 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
797 
798 	if (IS_ERR(phydev)) {
799 		pr_err("%s: Could not attach to PHY\n", dev->name);
800 		return PTR_ERR(phydev);
801 	}
802 
803 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
804 	if ((interface == PHY_INTERFACE_MODE_MII) ||
805 	    (interface == PHY_INTERFACE_MODE_RMII))
806 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
807 					 SUPPORTED_1000baseT_Full);
808 
809 	/*
810 	 * Broken HW is sometimes missing the pull-up resistor on the
811 	 * MDIO line, which results in reads to non-existent devices returning
812 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
813 	 * device as well.
814 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
815 	 */
816 	if (phydev->phy_id == 0) {
817 		phy_disconnect(phydev);
818 		return -ENODEV;
819 	}
820 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
821 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
822 
823 	priv->phydev = phydev;
824 
825 	return 0;
826 }
827 
828 /**
829  * stmmac_display_ring: display ring
830  * @head: pointer to the head of the ring passed.
831  * @size: size of the ring.
832  * @extend_desc: to verify if extended descriptors are used.
833  * Description: display the control/status and buffer descriptors.
834  */
835 static void stmmac_display_ring(void *head, int size, int extend_desc)
836 {
837 	int i;
838 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
839 	struct dma_desc *p = (struct dma_desc *)head;
840 
841 	for (i = 0; i < size; i++) {
842 		u64 x;
843 		if (extend_desc) {
844 			x = *(u64 *) ep;
845 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
846 				i, (unsigned int)virt_to_phys(ep),
847 				(unsigned int)x, (unsigned int)(x >> 32),
848 				ep->basic.des2, ep->basic.des3);
849 			ep++;
850 		} else {
851 			x = *(u64 *) p;
852 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
853 				i, (unsigned int)virt_to_phys(p),
854 				(unsigned int)x, (unsigned int)(x >> 32),
855 				p->des2, p->des3);
856 			p++;
857 		}
858 		pr_info("\n");
859 	}
860 }
861 
862 static void stmmac_display_rings(struct stmmac_priv *priv)
863 {
864 	unsigned int txsize = priv->dma_tx_size;
865 	unsigned int rxsize = priv->dma_rx_size;
866 
867 	if (priv->extend_desc) {
868 		pr_info("Extended RX descriptor ring:\n");
869 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
870 		pr_info("Extended TX descriptor ring:\n");
871 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
872 	} else {
873 		pr_info("RX descriptor ring:\n");
874 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
875 		pr_info("TX descriptor ring:\n");
876 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
877 	}
878 }
879 
880 static int stmmac_set_bfsize(int mtu, int bufsize)
881 {
882 	int ret = bufsize;
883 
884 	if (mtu >= BUF_SIZE_4KiB)
885 		ret = BUF_SIZE_8KiB;
886 	else if (mtu >= BUF_SIZE_2KiB)
887 		ret = BUF_SIZE_4KiB;
888 	else if (mtu >= DMA_BUFFER_SIZE)
889 		ret = BUF_SIZE_2KiB;
890 	else
891 		ret = DMA_BUFFER_SIZE;
892 
893 	return ret;
894 }
895 
896 /**
897  * stmmac_clear_descriptors: clear descriptors
898  * @priv: driver private structure
899  * Description: this function is called to clear the tx and rx descriptors
900  * in case of both basic and extended descriptors are used.
901  */
902 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
903 {
904 	int i;
905 	unsigned int txsize = priv->dma_tx_size;
906 	unsigned int rxsize = priv->dma_rx_size;
907 
908 	/* Clear the Rx/Tx descriptors */
909 	for (i = 0; i < rxsize; i++)
910 		if (priv->extend_desc)
911 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
912 						     priv->use_riwt, priv->mode,
913 						     (i == rxsize - 1));
914 		else
915 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
916 						     priv->use_riwt, priv->mode,
917 						     (i == rxsize - 1));
918 	for (i = 0; i < txsize; i++)
919 		if (priv->extend_desc)
920 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
921 						     priv->mode,
922 						     (i == txsize - 1));
923 		else
924 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
925 						     priv->mode,
926 						     (i == txsize - 1));
927 }
928 
929 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
930 				  int i)
931 {
932 	struct sk_buff *skb;
933 
934 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
935 				 GFP_KERNEL);
936 	if (!skb) {
937 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
938 		return -ENOMEM;
939 	}
940 	skb_reserve(skb, NET_IP_ALIGN);
941 	priv->rx_skbuff[i] = skb;
942 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
943 						priv->dma_buf_sz,
944 						DMA_FROM_DEVICE);
945 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
946 		pr_err("%s: DMA mapping error\n", __func__);
947 		dev_kfree_skb_any(skb);
948 		return -EINVAL;
949 	}
950 
951 	p->des2 = priv->rx_skbuff_dma[i];
952 
953 	if ((priv->mode == STMMAC_RING_MODE) &&
954 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
955 		priv->hw->ring->init_desc3(p);
956 
957 	return 0;
958 }
959 
960 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
961 {
962 	if (priv->rx_skbuff[i]) {
963 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
964 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
965 		dev_kfree_skb_any(priv->rx_skbuff[i]);
966 	}
967 	priv->rx_skbuff[i] = NULL;
968 }
969 
970 /**
971  * init_dma_desc_rings - init the RX/TX descriptor rings
972  * @dev: net device structure
973  * Description:  this function initializes the DMA RX/TX descriptors
974  * and allocates the socket buffers. It suppors the chained and ring
975  * modes.
976  */
977 static int init_dma_desc_rings(struct net_device *dev)
978 {
979 	int i;
980 	struct stmmac_priv *priv = netdev_priv(dev);
981 	unsigned int txsize = priv->dma_tx_size;
982 	unsigned int rxsize = priv->dma_rx_size;
983 	unsigned int bfsize = 0;
984 	int ret = -ENOMEM;
985 
986 	/* Set the max buffer size according to the DESC mode
987 	 * and the MTU. Note that RING mode allows 16KiB bsize.
988 	 */
989 	if (priv->mode == STMMAC_RING_MODE)
990 		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
991 
992 	if (bfsize < BUF_SIZE_16KiB)
993 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
994 
995 	if (netif_msg_probe(priv))
996 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
997 			 txsize, rxsize, bfsize);
998 
999 	if (priv->extend_desc) {
1000 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1001 						   sizeof(struct
1002 							  dma_extended_desc),
1003 						   &priv->dma_rx_phy,
1004 						   GFP_KERNEL);
1005 		if (!priv->dma_erx)
1006 			goto err_dma;
1007 
1008 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1009 						   sizeof(struct
1010 							  dma_extended_desc),
1011 						   &priv->dma_tx_phy,
1012 						   GFP_KERNEL);
1013 		if (!priv->dma_etx) {
1014 			dma_free_coherent(priv->device, priv->dma_rx_size *
1015 					sizeof(struct dma_extended_desc),
1016 					priv->dma_erx, priv->dma_rx_phy);
1017 			goto err_dma;
1018 		}
1019 	} else {
1020 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1021 						  sizeof(struct dma_desc),
1022 						  &priv->dma_rx_phy,
1023 						  GFP_KERNEL);
1024 		if (!priv->dma_rx)
1025 			goto err_dma;
1026 
1027 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1028 						  sizeof(struct dma_desc),
1029 						  &priv->dma_tx_phy,
1030 						  GFP_KERNEL);
1031 		if (!priv->dma_tx) {
1032 			dma_free_coherent(priv->device, priv->dma_rx_size *
1033 					sizeof(struct dma_desc),
1034 					priv->dma_rx, priv->dma_rx_phy);
1035 			goto err_dma;
1036 		}
1037 	}
1038 
1039 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1040 					    GFP_KERNEL);
1041 	if (!priv->rx_skbuff_dma)
1042 		goto err_rx_skbuff_dma;
1043 
1044 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1045 					GFP_KERNEL);
1046 	if (!priv->rx_skbuff)
1047 		goto err_rx_skbuff;
1048 
1049 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1050 					    GFP_KERNEL);
1051 	if (!priv->tx_skbuff_dma)
1052 		goto err_tx_skbuff_dma;
1053 
1054 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1055 					GFP_KERNEL);
1056 	if (!priv->tx_skbuff)
1057 		goto err_tx_skbuff;
1058 
1059 	if (netif_msg_probe(priv)) {
1060 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1061 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1062 
1063 		/* RX INITIALIZATION */
1064 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1065 	}
1066 	for (i = 0; i < rxsize; i++) {
1067 		struct dma_desc *p;
1068 		if (priv->extend_desc)
1069 			p = &((priv->dma_erx + i)->basic);
1070 		else
1071 			p = priv->dma_rx + i;
1072 
1073 		ret = stmmac_init_rx_buffers(priv, p, i);
1074 		if (ret)
1075 			goto err_init_rx_buffers;
1076 
1077 		if (netif_msg_probe(priv))
1078 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1079 				 priv->rx_skbuff[i]->data,
1080 				 (unsigned int)priv->rx_skbuff_dma[i]);
1081 	}
1082 	priv->cur_rx = 0;
1083 	priv->dirty_rx = (unsigned int)(i - rxsize);
1084 	priv->dma_buf_sz = bfsize;
1085 	buf_sz = bfsize;
1086 
1087 	/* Setup the chained descriptor addresses */
1088 	if (priv->mode == STMMAC_CHAIN_MODE) {
1089 		if (priv->extend_desc) {
1090 			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1091 					      rxsize, 1);
1092 			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1093 					      txsize, 1);
1094 		} else {
1095 			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1096 					      rxsize, 0);
1097 			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1098 					      txsize, 0);
1099 		}
1100 	}
1101 
1102 	/* TX INITIALIZATION */
1103 	for (i = 0; i < txsize; i++) {
1104 		struct dma_desc *p;
1105 		if (priv->extend_desc)
1106 			p = &((priv->dma_etx + i)->basic);
1107 		else
1108 			p = priv->dma_tx + i;
1109 		p->des2 = 0;
1110 		priv->tx_skbuff_dma[i] = 0;
1111 		priv->tx_skbuff[i] = NULL;
1112 	}
1113 
1114 	priv->dirty_tx = 0;
1115 	priv->cur_tx = 0;
1116 
1117 	stmmac_clear_descriptors(priv);
1118 
1119 	if (netif_msg_hw(priv))
1120 		stmmac_display_rings(priv);
1121 
1122 	return 0;
1123 err_init_rx_buffers:
1124 	while (--i >= 0)
1125 		stmmac_free_rx_buffers(priv, i);
1126 	kfree(priv->tx_skbuff);
1127 err_tx_skbuff:
1128 	kfree(priv->tx_skbuff_dma);
1129 err_tx_skbuff_dma:
1130 	kfree(priv->rx_skbuff);
1131 err_rx_skbuff:
1132 	kfree(priv->rx_skbuff_dma);
1133 err_rx_skbuff_dma:
1134 	if (priv->extend_desc) {
1135 		dma_free_coherent(priv->device, priv->dma_tx_size *
1136 				  sizeof(struct dma_extended_desc),
1137 				  priv->dma_etx, priv->dma_tx_phy);
1138 		dma_free_coherent(priv->device, priv->dma_rx_size *
1139 				  sizeof(struct dma_extended_desc),
1140 				  priv->dma_erx, priv->dma_rx_phy);
1141 	} else {
1142 		dma_free_coherent(priv->device,
1143 				priv->dma_tx_size * sizeof(struct dma_desc),
1144 				priv->dma_tx, priv->dma_tx_phy);
1145 		dma_free_coherent(priv->device,
1146 				priv->dma_rx_size * sizeof(struct dma_desc),
1147 				priv->dma_rx, priv->dma_rx_phy);
1148 	}
1149 err_dma:
1150 	return ret;
1151 }
1152 
1153 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1154 {
1155 	int i;
1156 
1157 	for (i = 0; i < priv->dma_rx_size; i++)
1158 		stmmac_free_rx_buffers(priv, i);
1159 }
1160 
1161 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1162 {
1163 	int i;
1164 
1165 	for (i = 0; i < priv->dma_tx_size; i++) {
1166 		if (priv->tx_skbuff[i] != NULL) {
1167 			struct dma_desc *p;
1168 			if (priv->extend_desc)
1169 				p = &((priv->dma_etx + i)->basic);
1170 			else
1171 				p = priv->dma_tx + i;
1172 
1173 			if (priv->tx_skbuff_dma[i])
1174 				dma_unmap_single(priv->device,
1175 						 priv->tx_skbuff_dma[i],
1176 						 priv->hw->desc->get_tx_len(p),
1177 						 DMA_TO_DEVICE);
1178 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1179 			priv->tx_skbuff[i] = NULL;
1180 			priv->tx_skbuff_dma[i] = 0;
1181 		}
1182 	}
1183 }
1184 
1185 static void free_dma_desc_resources(struct stmmac_priv *priv)
1186 {
1187 	/* Release the DMA TX/RX socket buffers */
1188 	dma_free_rx_skbufs(priv);
1189 	dma_free_tx_skbufs(priv);
1190 
1191 	/* Free DMA regions of consistent memory previously allocated */
1192 	if (!priv->extend_desc) {
1193 		dma_free_coherent(priv->device,
1194 				  priv->dma_tx_size * sizeof(struct dma_desc),
1195 				  priv->dma_tx, priv->dma_tx_phy);
1196 		dma_free_coherent(priv->device,
1197 				  priv->dma_rx_size * sizeof(struct dma_desc),
1198 				  priv->dma_rx, priv->dma_rx_phy);
1199 	} else {
1200 		dma_free_coherent(priv->device, priv->dma_tx_size *
1201 				  sizeof(struct dma_extended_desc),
1202 				  priv->dma_etx, priv->dma_tx_phy);
1203 		dma_free_coherent(priv->device, priv->dma_rx_size *
1204 				  sizeof(struct dma_extended_desc),
1205 				  priv->dma_erx, priv->dma_rx_phy);
1206 	}
1207 	kfree(priv->rx_skbuff_dma);
1208 	kfree(priv->rx_skbuff);
1209 	kfree(priv->tx_skbuff_dma);
1210 	kfree(priv->tx_skbuff);
1211 }
1212 
1213 /**
1214  *  stmmac_dma_operation_mode - HW DMA operation mode
1215  *  @priv: driver private structure
1216  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1217  *  or Store-And-Forward capability.
1218  */
1219 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1220 {
1221 	if (priv->plat->force_thresh_dma_mode)
1222 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1223 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1224 		/*
1225 		 * In case of GMAC, SF mode can be enabled
1226 		 * to perform the TX COE in HW. This depends on:
1227 		 * 1) TX COE if actually supported
1228 		 * 2) There is no bugged Jumbo frame support
1229 		 *    that needs to not insert csum in the TDES.
1230 		 */
1231 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1232 		tc = SF_DMA_MODE;
1233 	} else
1234 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1235 }
1236 
1237 /**
1238  * stmmac_tx_clean:
1239  * @priv: driver private structure
1240  * Description: it reclaims resources after transmission completes.
1241  */
1242 static void stmmac_tx_clean(struct stmmac_priv *priv)
1243 {
1244 	unsigned int txsize = priv->dma_tx_size;
1245 
1246 	spin_lock(&priv->tx_lock);
1247 
1248 	priv->xstats.tx_clean++;
1249 
1250 	while (priv->dirty_tx != priv->cur_tx) {
1251 		int last;
1252 		unsigned int entry = priv->dirty_tx % txsize;
1253 		struct sk_buff *skb = priv->tx_skbuff[entry];
1254 		struct dma_desc *p;
1255 
1256 		if (priv->extend_desc)
1257 			p = (struct dma_desc *)(priv->dma_etx + entry);
1258 		else
1259 			p = priv->dma_tx + entry;
1260 
1261 		/* Check if the descriptor is owned by the DMA. */
1262 		if (priv->hw->desc->get_tx_owner(p))
1263 			break;
1264 
1265 		/* Verify tx error by looking at the last segment. */
1266 		last = priv->hw->desc->get_tx_ls(p);
1267 		if (likely(last)) {
1268 			int tx_error =
1269 			    priv->hw->desc->tx_status(&priv->dev->stats,
1270 						      &priv->xstats, p,
1271 						      priv->ioaddr);
1272 			if (likely(tx_error == 0)) {
1273 				priv->dev->stats.tx_packets++;
1274 				priv->xstats.tx_pkt_n++;
1275 			} else
1276 				priv->dev->stats.tx_errors++;
1277 
1278 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1279 		}
1280 		if (netif_msg_tx_done(priv))
1281 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1282 				 priv->cur_tx, priv->dirty_tx);
1283 
1284 		if (likely(priv->tx_skbuff_dma[entry])) {
1285 			dma_unmap_single(priv->device,
1286 					 priv->tx_skbuff_dma[entry],
1287 					 priv->hw->desc->get_tx_len(p),
1288 					 DMA_TO_DEVICE);
1289 			priv->tx_skbuff_dma[entry] = 0;
1290 		}
1291 		priv->hw->ring->clean_desc3(priv, p);
1292 
1293 		if (likely(skb != NULL)) {
1294 			dev_kfree_skb(skb);
1295 			priv->tx_skbuff[entry] = NULL;
1296 		}
1297 
1298 		priv->hw->desc->release_tx_desc(p, priv->mode);
1299 
1300 		priv->dirty_tx++;
1301 	}
1302 	if (unlikely(netif_queue_stopped(priv->dev) &&
1303 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1304 		netif_tx_lock(priv->dev);
1305 		if (netif_queue_stopped(priv->dev) &&
1306 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1307 			if (netif_msg_tx_done(priv))
1308 				pr_debug("%s: restart transmit\n", __func__);
1309 			netif_wake_queue(priv->dev);
1310 		}
1311 		netif_tx_unlock(priv->dev);
1312 	}
1313 
1314 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1315 		stmmac_enable_eee_mode(priv);
1316 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1317 	}
1318 	spin_unlock(&priv->tx_lock);
1319 }
1320 
1321 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1322 {
1323 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1324 }
1325 
1326 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1327 {
1328 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1329 }
1330 
1331 /**
1332  * stmmac_tx_err: irq tx error mng function
1333  * @priv: driver private structure
1334  * Description: it cleans the descriptors and restarts the transmission
1335  * in case of errors.
1336  */
1337 static void stmmac_tx_err(struct stmmac_priv *priv)
1338 {
1339 	int i;
1340 	int txsize = priv->dma_tx_size;
1341 	netif_stop_queue(priv->dev);
1342 
1343 	priv->hw->dma->stop_tx(priv->ioaddr);
1344 	dma_free_tx_skbufs(priv);
1345 	for (i = 0; i < txsize; i++)
1346 		if (priv->extend_desc)
1347 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1348 						     priv->mode,
1349 						     (i == txsize - 1));
1350 		else
1351 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1352 						     priv->mode,
1353 						     (i == txsize - 1));
1354 	priv->dirty_tx = 0;
1355 	priv->cur_tx = 0;
1356 	priv->hw->dma->start_tx(priv->ioaddr);
1357 
1358 	priv->dev->stats.tx_errors++;
1359 	netif_wake_queue(priv->dev);
1360 }
1361 
1362 /**
1363  * stmmac_dma_interrupt: DMA ISR
1364  * @priv: driver private structure
1365  * Description: this is the DMA ISR. It is called by the main ISR.
1366  * It calls the dwmac dma routine to understand which type of interrupt
1367  * happened. In case of there is a Normal interrupt and either TX or RX
1368  * interrupt happened so the NAPI is scheduled.
1369  */
1370 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1371 {
1372 	int status;
1373 
1374 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1375 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1376 		if (likely(napi_schedule_prep(&priv->napi))) {
1377 			stmmac_disable_dma_irq(priv);
1378 			__napi_schedule(&priv->napi);
1379 		}
1380 	}
1381 	if (unlikely(status & tx_hard_error_bump_tc)) {
1382 		/* Try to bump up the dma threshold on this failure */
1383 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1384 			tc += 64;
1385 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1386 			priv->xstats.threshold = tc;
1387 		}
1388 	} else if (unlikely(status == tx_hard_error))
1389 		stmmac_tx_err(priv);
1390 }
1391 
1392 /**
1393  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1394  * @priv: driver private structure
1395  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1396  */
1397 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1398 {
1399 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1400 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1401 
1402 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1403 
1404 	if (priv->dma_cap.rmon) {
1405 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1406 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1407 	} else
1408 		pr_info(" No MAC Management Counters available\n");
1409 }
1410 
1411 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1412 {
1413 	u32 hwid = priv->hw->synopsys_uid;
1414 
1415 	/* Check Synopsys Id (not available on old chips) */
1416 	if (likely(hwid)) {
1417 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1418 		u32 synid = (hwid & 0x000000ff);
1419 
1420 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1421 			uid, synid);
1422 
1423 		return synid;
1424 	}
1425 	return 0;
1426 }
1427 
1428 /**
1429  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1430  * @priv: driver private structure
1431  * Description: select the Enhanced/Alternate or Normal descriptors.
1432  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1433  * supported by the HW cap. register.
1434  */
1435 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1436 {
1437 	if (priv->plat->enh_desc) {
1438 		pr_info(" Enhanced/Alternate descriptors\n");
1439 
1440 		/* GMAC older than 3.50 has no extended descriptors */
1441 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1442 			pr_info("\tEnabled extended descriptors\n");
1443 			priv->extend_desc = 1;
1444 		} else
1445 			pr_warn("Extended descriptors not supported\n");
1446 
1447 		priv->hw->desc = &enh_desc_ops;
1448 	} else {
1449 		pr_info(" Normal descriptors\n");
1450 		priv->hw->desc = &ndesc_ops;
1451 	}
1452 }
1453 
1454 /**
1455  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1456  * @priv: driver private structure
1457  * Description:
1458  *  new GMAC chip generations have a new register to indicate the
1459  *  presence of the optional feature/functions.
1460  *  This can be also used to override the value passed through the
1461  *  platform and necessary for old MAC10/100 and GMAC chips.
1462  */
1463 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1464 {
1465 	u32 hw_cap = 0;
1466 
1467 	if (priv->hw->dma->get_hw_feature) {
1468 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1469 
1470 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1471 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1472 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1473 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1474 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1475 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1476 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1477 		priv->dma_cap.pmt_remote_wake_up =
1478 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1479 		priv->dma_cap.pmt_magic_frame =
1480 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1481 		/* MMC */
1482 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1483 		/* IEEE 1588-2002 */
1484 		priv->dma_cap.time_stamp =
1485 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1486 		/* IEEE 1588-2008 */
1487 		priv->dma_cap.atime_stamp =
1488 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1489 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1490 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1491 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1492 		/* TX and RX csum */
1493 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1494 		priv->dma_cap.rx_coe_type1 =
1495 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1496 		priv->dma_cap.rx_coe_type2 =
1497 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1498 		priv->dma_cap.rxfifo_over_2048 =
1499 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1500 		/* TX and RX number of channels */
1501 		priv->dma_cap.number_rx_channel =
1502 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1503 		priv->dma_cap.number_tx_channel =
1504 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1505 		/* Alternate (enhanced) DESC mode */
1506 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1507 	}
1508 
1509 	return hw_cap;
1510 }
1511 
1512 /**
1513  * stmmac_check_ether_addr: check if the MAC addr is valid
1514  * @priv: driver private structure
1515  * Description:
1516  * it is to verify if the MAC address is valid, in case of failures it
1517  * generates a random MAC address
1518  */
1519 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1520 {
1521 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1522 		priv->hw->mac->get_umac_addr((void __iomem *)
1523 					     priv->dev->base_addr,
1524 					     priv->dev->dev_addr, 0);
1525 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1526 			eth_hw_addr_random(priv->dev);
1527 	}
1528 	pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1529 		priv->dev->dev_addr);
1530 }
1531 
1532 /**
1533  * stmmac_init_dma_engine: DMA init.
1534  * @priv: driver private structure
1535  * Description:
1536  * It inits the DMA invoking the specific MAC/GMAC callback.
1537  * Some DMA parameters can be passed from the platform;
1538  * in case of these are not passed a default is kept for the MAC or GMAC.
1539  */
1540 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1541 {
1542 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1543 	int mixed_burst = 0;
1544 	int atds = 0;
1545 
1546 	if (priv->plat->dma_cfg) {
1547 		pbl = priv->plat->dma_cfg->pbl;
1548 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1549 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1550 		burst_len = priv->plat->dma_cfg->burst_len;
1551 	}
1552 
1553 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1554 		atds = 1;
1555 
1556 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1557 				   burst_len, priv->dma_tx_phy,
1558 				   priv->dma_rx_phy, atds);
1559 }
1560 
1561 /**
1562  * stmmac_tx_timer: mitigation sw timer for tx.
1563  * @data: data pointer
1564  * Description:
1565  * This is the timer handler to directly invoke the stmmac_tx_clean.
1566  */
1567 static void stmmac_tx_timer(unsigned long data)
1568 {
1569 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1570 
1571 	stmmac_tx_clean(priv);
1572 }
1573 
1574 /**
1575  * stmmac_init_tx_coalesce: init tx mitigation options.
1576  * @priv: driver private structure
1577  * Description:
1578  * This inits the transmit coalesce parameters: i.e. timer rate,
1579  * timer handler and default threshold used for enabling the
1580  * interrupt on completion bit.
1581  */
1582 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1583 {
1584 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1585 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1586 	init_timer(&priv->txtimer);
1587 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1588 	priv->txtimer.data = (unsigned long)priv;
1589 	priv->txtimer.function = stmmac_tx_timer;
1590 	add_timer(&priv->txtimer);
1591 }
1592 
1593 /**
1594  *  stmmac_open - open entry point of the driver
1595  *  @dev : pointer to the device structure.
1596  *  Description:
1597  *  This function is the open entry point of the driver.
1598  *  Return value:
1599  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1600  *  file on failure.
1601  */
1602 static int stmmac_open(struct net_device *dev)
1603 {
1604 	struct stmmac_priv *priv = netdev_priv(dev);
1605 	int ret;
1606 
1607 	clk_prepare_enable(priv->stmmac_clk);
1608 
1609 	stmmac_check_ether_addr(priv);
1610 
1611 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1612 	    priv->pcs != STMMAC_PCS_RTBI) {
1613 		ret = stmmac_init_phy(dev);
1614 		if (ret) {
1615 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1616 			       __func__, ret);
1617 			goto phy_error;
1618 		}
1619 	}
1620 
1621 	/* Create and initialize the TX/RX descriptors chains. */
1622 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1623 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1624 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1625 
1626 	ret = init_dma_desc_rings(dev);
1627 	if (ret < 0) {
1628 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1629 		goto dma_desc_error;
1630 	}
1631 
1632 	/* DMA initialization and SW reset */
1633 	ret = stmmac_init_dma_engine(priv);
1634 	if (ret < 0) {
1635 		pr_err("%s: DMA engine initialization failed\n", __func__);
1636 		goto init_error;
1637 	}
1638 
1639 	/* Copy the MAC addr into the HW  */
1640 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1641 
1642 	/* If required, perform hw setup of the bus. */
1643 	if (priv->plat->bus_setup)
1644 		priv->plat->bus_setup(priv->ioaddr);
1645 
1646 	/* Initialize the MAC Core */
1647 	priv->hw->mac->core_init(priv->ioaddr);
1648 
1649 	/* Request the IRQ lines */
1650 	ret = request_irq(dev->irq, stmmac_interrupt,
1651 			  IRQF_SHARED, dev->name, dev);
1652 	if (unlikely(ret < 0)) {
1653 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1654 		       __func__, dev->irq, ret);
1655 		goto init_error;
1656 	}
1657 
1658 	/* Request the Wake IRQ in case of another line is used for WoL */
1659 	if (priv->wol_irq != dev->irq) {
1660 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1661 				  IRQF_SHARED, dev->name, dev);
1662 		if (unlikely(ret < 0)) {
1663 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1664 			       __func__, priv->wol_irq, ret);
1665 			goto wolirq_error;
1666 		}
1667 	}
1668 
1669 	/* Request the IRQ lines */
1670 	if (priv->lpi_irq != -ENXIO) {
1671 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1672 				  dev->name, dev);
1673 		if (unlikely(ret < 0)) {
1674 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1675 			       __func__, priv->lpi_irq, ret);
1676 			goto lpiirq_error;
1677 		}
1678 	}
1679 
1680 	/* Enable the MAC Rx/Tx */
1681 	stmmac_set_mac(priv->ioaddr, true);
1682 
1683 	/* Set the HW DMA mode and the COE */
1684 	stmmac_dma_operation_mode(priv);
1685 
1686 	/* Extra statistics */
1687 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1688 	priv->xstats.threshold = tc;
1689 
1690 	stmmac_mmc_setup(priv);
1691 
1692 	ret = stmmac_init_ptp(priv);
1693 	if (ret)
1694 		pr_warn("%s: failed PTP initialisation\n", __func__);
1695 
1696 #ifdef CONFIG_STMMAC_DEBUG_FS
1697 	ret = stmmac_init_fs(dev);
1698 	if (ret < 0)
1699 		pr_warn("%s: failed debugFS registration\n", __func__);
1700 #endif
1701 	/* Start the ball rolling... */
1702 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1703 	priv->hw->dma->start_tx(priv->ioaddr);
1704 	priv->hw->dma->start_rx(priv->ioaddr);
1705 
1706 	/* Dump DMA/MAC registers */
1707 	if (netif_msg_hw(priv)) {
1708 		priv->hw->mac->dump_regs(priv->ioaddr);
1709 		priv->hw->dma->dump_regs(priv->ioaddr);
1710 	}
1711 
1712 	if (priv->phydev)
1713 		phy_start(priv->phydev);
1714 
1715 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1716 
1717 	priv->eee_enabled = stmmac_eee_init(priv);
1718 
1719 	stmmac_init_tx_coalesce(priv);
1720 
1721 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1722 		priv->rx_riwt = MAX_DMA_RIWT;
1723 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1724 	}
1725 
1726 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1727 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1728 
1729 	napi_enable(&priv->napi);
1730 	netif_start_queue(dev);
1731 
1732 	return 0;
1733 
1734 lpiirq_error:
1735 	if (priv->wol_irq != dev->irq)
1736 		free_irq(priv->wol_irq, dev);
1737 wolirq_error:
1738 	free_irq(dev->irq, dev);
1739 
1740 init_error:
1741 	free_dma_desc_resources(priv);
1742 dma_desc_error:
1743 	if (priv->phydev)
1744 		phy_disconnect(priv->phydev);
1745 phy_error:
1746 	clk_disable_unprepare(priv->stmmac_clk);
1747 
1748 	return ret;
1749 }
1750 
1751 /**
1752  *  stmmac_release - close entry point of the driver
1753  *  @dev : device pointer.
1754  *  Description:
1755  *  This is the stop entry point of the driver.
1756  */
1757 static int stmmac_release(struct net_device *dev)
1758 {
1759 	struct stmmac_priv *priv = netdev_priv(dev);
1760 
1761 	if (priv->eee_enabled)
1762 		del_timer_sync(&priv->eee_ctrl_timer);
1763 
1764 	/* Stop and disconnect the PHY */
1765 	if (priv->phydev) {
1766 		phy_stop(priv->phydev);
1767 		phy_disconnect(priv->phydev);
1768 		priv->phydev = NULL;
1769 	}
1770 
1771 	netif_stop_queue(dev);
1772 
1773 	napi_disable(&priv->napi);
1774 
1775 	del_timer_sync(&priv->txtimer);
1776 
1777 	/* Free the IRQ lines */
1778 	free_irq(dev->irq, dev);
1779 	if (priv->wol_irq != dev->irq)
1780 		free_irq(priv->wol_irq, dev);
1781 	if (priv->lpi_irq != -ENXIO)
1782 		free_irq(priv->lpi_irq, dev);
1783 
1784 	/* Stop TX/RX DMA and clear the descriptors */
1785 	priv->hw->dma->stop_tx(priv->ioaddr);
1786 	priv->hw->dma->stop_rx(priv->ioaddr);
1787 
1788 	/* Release and free the Rx/Tx resources */
1789 	free_dma_desc_resources(priv);
1790 
1791 	/* Disable the MAC Rx/Tx */
1792 	stmmac_set_mac(priv->ioaddr, false);
1793 
1794 	netif_carrier_off(dev);
1795 
1796 #ifdef CONFIG_STMMAC_DEBUG_FS
1797 	stmmac_exit_fs();
1798 #endif
1799 	clk_disable_unprepare(priv->stmmac_clk);
1800 
1801 	stmmac_release_ptp(priv);
1802 
1803 	return 0;
1804 }
1805 
1806 /**
1807  *  stmmac_xmit: Tx entry point of the driver
1808  *  @skb : the socket buffer
1809  *  @dev : device pointer
1810  *  Description : this is the tx entry point of the driver.
1811  *  It programs the chain or the ring and supports oversized frames
1812  *  and SG feature.
1813  */
1814 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1815 {
1816 	struct stmmac_priv *priv = netdev_priv(dev);
1817 	unsigned int txsize = priv->dma_tx_size;
1818 	unsigned int entry;
1819 	int i, csum_insertion = 0, is_jumbo = 0;
1820 	int nfrags = skb_shinfo(skb)->nr_frags;
1821 	struct dma_desc *desc, *first;
1822 	unsigned int nopaged_len = skb_headlen(skb);
1823 
1824 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1825 		if (!netif_queue_stopped(dev)) {
1826 			netif_stop_queue(dev);
1827 			/* This is a hard error, log it. */
1828 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1829 		}
1830 		return NETDEV_TX_BUSY;
1831 	}
1832 
1833 	spin_lock(&priv->tx_lock);
1834 
1835 	if (priv->tx_path_in_lpi_mode)
1836 		stmmac_disable_eee_mode(priv);
1837 
1838 	entry = priv->cur_tx % txsize;
1839 
1840 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1841 
1842 	if (priv->extend_desc)
1843 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1844 	else
1845 		desc = priv->dma_tx + entry;
1846 
1847 	first = desc;
1848 
1849 	priv->tx_skbuff[entry] = skb;
1850 
1851 	/* To program the descriptors according to the size of the frame */
1852 	if (priv->mode == STMMAC_RING_MODE) {
1853 		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1854 							priv->plat->enh_desc);
1855 		if (unlikely(is_jumbo))
1856 			entry = priv->hw->ring->jumbo_frm(priv, skb,
1857 							  csum_insertion);
1858 	} else {
1859 		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1860 							 priv->plat->enh_desc);
1861 		if (unlikely(is_jumbo))
1862 			entry = priv->hw->chain->jumbo_frm(priv, skb,
1863 							   csum_insertion);
1864 	}
1865 	if (likely(!is_jumbo)) {
1866 		desc->des2 = dma_map_single(priv->device, skb->data,
1867 					    nopaged_len, DMA_TO_DEVICE);
1868 		priv->tx_skbuff_dma[entry] = desc->des2;
1869 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1870 						csum_insertion, priv->mode);
1871 	} else
1872 		desc = first;
1873 
1874 	for (i = 0; i < nfrags; i++) {
1875 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1876 		int len = skb_frag_size(frag);
1877 
1878 		entry = (++priv->cur_tx) % txsize;
1879 		if (priv->extend_desc)
1880 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1881 		else
1882 			desc = priv->dma_tx + entry;
1883 
1884 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1885 					      DMA_TO_DEVICE);
1886 		priv->tx_skbuff_dma[entry] = desc->des2;
1887 		priv->tx_skbuff[entry] = NULL;
1888 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1889 						priv->mode);
1890 		wmb();
1891 		priv->hw->desc->set_tx_owner(desc);
1892 		wmb();
1893 	}
1894 
1895 	/* Finalize the latest segment. */
1896 	priv->hw->desc->close_tx_desc(desc);
1897 
1898 	wmb();
1899 	/* According to the coalesce parameter the IC bit for the latest
1900 	 * segment could be reset and the timer re-started to invoke the
1901 	 * stmmac_tx function. This approach takes care about the fragments.
1902 	 */
1903 	priv->tx_count_frames += nfrags + 1;
1904 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1905 		priv->hw->desc->clear_tx_ic(desc);
1906 		priv->xstats.tx_reset_ic_bit++;
1907 		mod_timer(&priv->txtimer,
1908 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1909 	} else
1910 		priv->tx_count_frames = 0;
1911 
1912 	/* To avoid raise condition */
1913 	priv->hw->desc->set_tx_owner(first);
1914 	wmb();
1915 
1916 	priv->cur_tx++;
1917 
1918 	if (netif_msg_pktdata(priv)) {
1919 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1920 			__func__, (priv->cur_tx % txsize),
1921 			(priv->dirty_tx % txsize), entry, first, nfrags);
1922 
1923 		if (priv->extend_desc)
1924 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1925 		else
1926 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1927 
1928 		pr_debug(">>> frame to be transmitted: ");
1929 		print_pkt(skb->data, skb->len);
1930 	}
1931 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1932 		if (netif_msg_hw(priv))
1933 			pr_debug("%s: stop transmitted packets\n", __func__);
1934 		netif_stop_queue(dev);
1935 	}
1936 
1937 	dev->stats.tx_bytes += skb->len;
1938 
1939 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1940 		     priv->hwts_tx_en)) {
1941 		/* declare that device is doing timestamping */
1942 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1943 		priv->hw->desc->enable_tx_timestamp(first);
1944 	}
1945 
1946 	if (!priv->hwts_tx_en)
1947 		skb_tx_timestamp(skb);
1948 
1949 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1950 
1951 	spin_unlock(&priv->tx_lock);
1952 
1953 	return NETDEV_TX_OK;
1954 }
1955 
1956 /**
1957  * stmmac_rx_refill: refill used skb preallocated buffers
1958  * @priv: driver private structure
1959  * Description : this is to reallocate the skb for the reception process
1960  * that is based on zero-copy.
1961  */
1962 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1963 {
1964 	unsigned int rxsize = priv->dma_rx_size;
1965 	int bfsize = priv->dma_buf_sz;
1966 
1967 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1968 		unsigned int entry = priv->dirty_rx % rxsize;
1969 		struct dma_desc *p;
1970 
1971 		if (priv->extend_desc)
1972 			p = (struct dma_desc *)(priv->dma_erx + entry);
1973 		else
1974 			p = priv->dma_rx + entry;
1975 
1976 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1977 			struct sk_buff *skb;
1978 
1979 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1980 
1981 			if (unlikely(skb == NULL))
1982 				break;
1983 
1984 			priv->rx_skbuff[entry] = skb;
1985 			priv->rx_skbuff_dma[entry] =
1986 			    dma_map_single(priv->device, skb->data, bfsize,
1987 					   DMA_FROM_DEVICE);
1988 
1989 			p->des2 = priv->rx_skbuff_dma[entry];
1990 
1991 			priv->hw->ring->refill_desc3(priv, p);
1992 
1993 			if (netif_msg_rx_status(priv))
1994 				pr_debug("\trefill entry #%d\n", entry);
1995 		}
1996 		wmb();
1997 		priv->hw->desc->set_rx_owner(p);
1998 		wmb();
1999 	}
2000 }
2001 
2002 /**
2003  * stmmac_rx_refill: refill used skb preallocated buffers
2004  * @priv: driver private structure
2005  * @limit: napi bugget.
2006  * Description :  this the function called by the napi poll method.
2007  * It gets all the frames inside the ring.
2008  */
2009 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2010 {
2011 	unsigned int rxsize = priv->dma_rx_size;
2012 	unsigned int entry = priv->cur_rx % rxsize;
2013 	unsigned int next_entry;
2014 	unsigned int count = 0;
2015 	int coe = priv->plat->rx_coe;
2016 
2017 	if (netif_msg_rx_status(priv)) {
2018 		pr_debug("%s: descriptor ring:\n", __func__);
2019 		if (priv->extend_desc)
2020 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2021 		else
2022 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2023 	}
2024 	while (count < limit) {
2025 		int status;
2026 		struct dma_desc *p;
2027 
2028 		if (priv->extend_desc)
2029 			p = (struct dma_desc *)(priv->dma_erx + entry);
2030 		else
2031 			p = priv->dma_rx + entry;
2032 
2033 		if (priv->hw->desc->get_rx_owner(p))
2034 			break;
2035 
2036 		count++;
2037 
2038 		next_entry = (++priv->cur_rx) % rxsize;
2039 		if (priv->extend_desc)
2040 			prefetch(priv->dma_erx + next_entry);
2041 		else
2042 			prefetch(priv->dma_rx + next_entry);
2043 
2044 		/* read the status of the incoming frame */
2045 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2046 						   &priv->xstats, p);
2047 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2048 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2049 							   &priv->xstats,
2050 							   priv->dma_erx +
2051 							   entry);
2052 		if (unlikely(status == discard_frame)) {
2053 			priv->dev->stats.rx_errors++;
2054 			if (priv->hwts_rx_en && !priv->extend_desc) {
2055 				/* DESC2 & DESC3 will be overwitten by device
2056 				 * with timestamp value, hence reinitialize
2057 				 * them in stmmac_rx_refill() function so that
2058 				 * device can reuse it.
2059 				 */
2060 				priv->rx_skbuff[entry] = NULL;
2061 				dma_unmap_single(priv->device,
2062 						 priv->rx_skbuff_dma[entry],
2063 						 priv->dma_buf_sz,
2064 						 DMA_FROM_DEVICE);
2065 			}
2066 		} else {
2067 			struct sk_buff *skb;
2068 			int frame_len;
2069 
2070 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2071 
2072 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2073 			 * Type frames (LLC/LLC-SNAP)
2074 			 */
2075 			if (unlikely(status != llc_snap))
2076 				frame_len -= ETH_FCS_LEN;
2077 
2078 			if (netif_msg_rx_status(priv)) {
2079 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2080 					 p, entry, p->des2);
2081 				if (frame_len > ETH_FRAME_LEN)
2082 					pr_debug("\tframe size %d, COE: %d\n",
2083 						 frame_len, status);
2084 			}
2085 			skb = priv->rx_skbuff[entry];
2086 			if (unlikely(!skb)) {
2087 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2088 				       priv->dev->name);
2089 				priv->dev->stats.rx_dropped++;
2090 				break;
2091 			}
2092 			prefetch(skb->data - NET_IP_ALIGN);
2093 			priv->rx_skbuff[entry] = NULL;
2094 
2095 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2096 
2097 			skb_put(skb, frame_len);
2098 			dma_unmap_single(priv->device,
2099 					 priv->rx_skbuff_dma[entry],
2100 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2101 
2102 			if (netif_msg_pktdata(priv)) {
2103 				pr_debug("frame received (%dbytes)", frame_len);
2104 				print_pkt(skb->data, frame_len);
2105 			}
2106 
2107 			skb->protocol = eth_type_trans(skb, priv->dev);
2108 
2109 			if (unlikely(!coe))
2110 				skb_checksum_none_assert(skb);
2111 			else
2112 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2113 
2114 			napi_gro_receive(&priv->napi, skb);
2115 
2116 			priv->dev->stats.rx_packets++;
2117 			priv->dev->stats.rx_bytes += frame_len;
2118 		}
2119 		entry = next_entry;
2120 	}
2121 
2122 	stmmac_rx_refill(priv);
2123 
2124 	priv->xstats.rx_pkt_n += count;
2125 
2126 	return count;
2127 }
2128 
2129 /**
2130  *  stmmac_poll - stmmac poll method (NAPI)
2131  *  @napi : pointer to the napi structure.
2132  *  @budget : maximum number of packets that the current CPU can receive from
2133  *	      all interfaces.
2134  *  Description :
2135  *  To look at the incoming frames and clear the tx resources.
2136  */
2137 static int stmmac_poll(struct napi_struct *napi, int budget)
2138 {
2139 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2140 	int work_done = 0;
2141 
2142 	priv->xstats.napi_poll++;
2143 	stmmac_tx_clean(priv);
2144 
2145 	work_done = stmmac_rx(priv, budget);
2146 	if (work_done < budget) {
2147 		napi_complete(napi);
2148 		stmmac_enable_dma_irq(priv);
2149 	}
2150 	return work_done;
2151 }
2152 
2153 /**
2154  *  stmmac_tx_timeout
2155  *  @dev : Pointer to net device structure
2156  *  Description: this function is called when a packet transmission fails to
2157  *   complete within a reasonable time. The driver will mark the error in the
2158  *   netdev structure and arrange for the device to be reset to a sane state
2159  *   in order to transmit a new packet.
2160  */
2161 static void stmmac_tx_timeout(struct net_device *dev)
2162 {
2163 	struct stmmac_priv *priv = netdev_priv(dev);
2164 
2165 	/* Clear Tx resources and restart transmitting again */
2166 	stmmac_tx_err(priv);
2167 }
2168 
2169 /* Configuration changes (passed on by ifconfig) */
2170 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2171 {
2172 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2173 		return -EBUSY;
2174 
2175 	/* Don't allow changing the I/O address */
2176 	if (map->base_addr != dev->base_addr) {
2177 		pr_warn("%s: can't change I/O address\n", dev->name);
2178 		return -EOPNOTSUPP;
2179 	}
2180 
2181 	/* Don't allow changing the IRQ */
2182 	if (map->irq != dev->irq) {
2183 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2184 		return -EOPNOTSUPP;
2185 	}
2186 
2187 	return 0;
2188 }
2189 
2190 /**
2191  *  stmmac_set_rx_mode - entry point for multicast addressing
2192  *  @dev : pointer to the device structure
2193  *  Description:
2194  *  This function is a driver entry point which gets called by the kernel
2195  *  whenever multicast addresses must be enabled/disabled.
2196  *  Return value:
2197  *  void.
2198  */
2199 static void stmmac_set_rx_mode(struct net_device *dev)
2200 {
2201 	struct stmmac_priv *priv = netdev_priv(dev);
2202 
2203 	spin_lock(&priv->lock);
2204 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2205 	spin_unlock(&priv->lock);
2206 }
2207 
2208 /**
2209  *  stmmac_change_mtu - entry point to change MTU size for the device.
2210  *  @dev : device pointer.
2211  *  @new_mtu : the new MTU size for the device.
2212  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2213  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2214  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2215  *  Return value:
2216  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2217  *  file on failure.
2218  */
2219 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2220 {
2221 	struct stmmac_priv *priv = netdev_priv(dev);
2222 	int max_mtu;
2223 
2224 	if (netif_running(dev)) {
2225 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2226 		return -EBUSY;
2227 	}
2228 
2229 	if (priv->plat->enh_desc)
2230 		max_mtu = JUMBO_LEN;
2231 	else
2232 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2233 
2234 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2235 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2236 		return -EINVAL;
2237 	}
2238 
2239 	dev->mtu = new_mtu;
2240 	netdev_update_features(dev);
2241 
2242 	return 0;
2243 }
2244 
2245 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2246 					     netdev_features_t features)
2247 {
2248 	struct stmmac_priv *priv = netdev_priv(dev);
2249 
2250 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2251 		features &= ~NETIF_F_RXCSUM;
2252 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2253 		features &= ~NETIF_F_IPV6_CSUM;
2254 	if (!priv->plat->tx_coe)
2255 		features &= ~NETIF_F_ALL_CSUM;
2256 
2257 	/* Some GMAC devices have a bugged Jumbo frame support that
2258 	 * needs to have the Tx COE disabled for oversized frames
2259 	 * (due to limited buffer sizes). In this case we disable
2260 	 * the TX csum insertionin the TDES and not use SF.
2261 	 */
2262 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2263 		features &= ~NETIF_F_ALL_CSUM;
2264 
2265 	return features;
2266 }
2267 
2268 /**
2269  *  stmmac_interrupt - main ISR
2270  *  @irq: interrupt number.
2271  *  @dev_id: to pass the net device pointer.
2272  *  Description: this is the main driver interrupt service routine.
2273  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2274  *  interrupts.
2275  */
2276 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2277 {
2278 	struct net_device *dev = (struct net_device *)dev_id;
2279 	struct stmmac_priv *priv = netdev_priv(dev);
2280 
2281 	if (unlikely(!dev)) {
2282 		pr_err("%s: invalid dev pointer\n", __func__);
2283 		return IRQ_NONE;
2284 	}
2285 
2286 	/* To handle GMAC own interrupts */
2287 	if (priv->plat->has_gmac) {
2288 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2289 							    dev->base_addr,
2290 							    &priv->xstats);
2291 		if (unlikely(status)) {
2292 			/* For LPI we need to save the tx status */
2293 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2294 				priv->tx_path_in_lpi_mode = true;
2295 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2296 				priv->tx_path_in_lpi_mode = false;
2297 		}
2298 	}
2299 
2300 	/* To handle DMA interrupts */
2301 	stmmac_dma_interrupt(priv);
2302 
2303 	return IRQ_HANDLED;
2304 }
2305 
2306 #ifdef CONFIG_NET_POLL_CONTROLLER
2307 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2308  * to allow network I/O with interrupts disabled.
2309  */
2310 static void stmmac_poll_controller(struct net_device *dev)
2311 {
2312 	disable_irq(dev->irq);
2313 	stmmac_interrupt(dev->irq, dev);
2314 	enable_irq(dev->irq);
2315 }
2316 #endif
2317 
2318 /**
2319  *  stmmac_ioctl - Entry point for the Ioctl
2320  *  @dev: Device pointer.
2321  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2322  *  a proprietary structure used to pass information to the driver.
2323  *  @cmd: IOCTL command
2324  *  Description:
2325  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2326  */
2327 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2328 {
2329 	struct stmmac_priv *priv = netdev_priv(dev);
2330 	int ret = -EOPNOTSUPP;
2331 
2332 	if (!netif_running(dev))
2333 		return -EINVAL;
2334 
2335 	switch (cmd) {
2336 	case SIOCGMIIPHY:
2337 	case SIOCGMIIREG:
2338 	case SIOCSMIIREG:
2339 		if (!priv->phydev)
2340 			return -EINVAL;
2341 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2342 		break;
2343 	case SIOCSHWTSTAMP:
2344 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2345 		break;
2346 	default:
2347 		break;
2348 	}
2349 
2350 	return ret;
2351 }
2352 
2353 #ifdef CONFIG_STMMAC_DEBUG_FS
2354 static struct dentry *stmmac_fs_dir;
2355 static struct dentry *stmmac_rings_status;
2356 static struct dentry *stmmac_dma_cap;
2357 
2358 static void sysfs_display_ring(void *head, int size, int extend_desc,
2359 			       struct seq_file *seq)
2360 {
2361 	int i;
2362 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2363 	struct dma_desc *p = (struct dma_desc *)head;
2364 
2365 	for (i = 0; i < size; i++) {
2366 		u64 x;
2367 		if (extend_desc) {
2368 			x = *(u64 *) ep;
2369 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2370 				   i, (unsigned int)virt_to_phys(ep),
2371 				   (unsigned int)x, (unsigned int)(x >> 32),
2372 				   ep->basic.des2, ep->basic.des3);
2373 			ep++;
2374 		} else {
2375 			x = *(u64 *) p;
2376 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2377 				   i, (unsigned int)virt_to_phys(ep),
2378 				   (unsigned int)x, (unsigned int)(x >> 32),
2379 				   p->des2, p->des3);
2380 			p++;
2381 		}
2382 		seq_printf(seq, "\n");
2383 	}
2384 }
2385 
2386 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2387 {
2388 	struct net_device *dev = seq->private;
2389 	struct stmmac_priv *priv = netdev_priv(dev);
2390 	unsigned int txsize = priv->dma_tx_size;
2391 	unsigned int rxsize = priv->dma_rx_size;
2392 
2393 	if (priv->extend_desc) {
2394 		seq_printf(seq, "Extended RX descriptor ring:\n");
2395 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2396 		seq_printf(seq, "Extended TX descriptor ring:\n");
2397 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2398 	} else {
2399 		seq_printf(seq, "RX descriptor ring:\n");
2400 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2401 		seq_printf(seq, "TX descriptor ring:\n");
2402 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2409 {
2410 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2411 }
2412 
2413 static const struct file_operations stmmac_rings_status_fops = {
2414 	.owner = THIS_MODULE,
2415 	.open = stmmac_sysfs_ring_open,
2416 	.read = seq_read,
2417 	.llseek = seq_lseek,
2418 	.release = single_release,
2419 };
2420 
2421 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2422 {
2423 	struct net_device *dev = seq->private;
2424 	struct stmmac_priv *priv = netdev_priv(dev);
2425 
2426 	if (!priv->hw_cap_support) {
2427 		seq_printf(seq, "DMA HW features not supported\n");
2428 		return 0;
2429 	}
2430 
2431 	seq_printf(seq, "==============================\n");
2432 	seq_printf(seq, "\tDMA HW features\n");
2433 	seq_printf(seq, "==============================\n");
2434 
2435 	seq_printf(seq, "\t10/100 Mbps %s\n",
2436 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2437 	seq_printf(seq, "\t1000 Mbps %s\n",
2438 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2439 	seq_printf(seq, "\tHalf duple %s\n",
2440 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2441 	seq_printf(seq, "\tHash Filter: %s\n",
2442 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2443 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2444 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2445 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2446 		   (priv->dma_cap.pcs) ? "Y" : "N");
2447 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2448 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2449 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2450 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2451 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2452 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2453 	seq_printf(seq, "\tRMON module: %s\n",
2454 		   (priv->dma_cap.rmon) ? "Y" : "N");
2455 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2456 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2457 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2458 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2459 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2460 		   (priv->dma_cap.eee) ? "Y" : "N");
2461 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2462 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2463 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2464 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2465 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2466 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2467 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2468 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2469 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2470 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2471 		   priv->dma_cap.number_rx_channel);
2472 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2473 		   priv->dma_cap.number_tx_channel);
2474 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2475 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2476 
2477 	return 0;
2478 }
2479 
2480 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2481 {
2482 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2483 }
2484 
2485 static const struct file_operations stmmac_dma_cap_fops = {
2486 	.owner = THIS_MODULE,
2487 	.open = stmmac_sysfs_dma_cap_open,
2488 	.read = seq_read,
2489 	.llseek = seq_lseek,
2490 	.release = single_release,
2491 };
2492 
2493 static int stmmac_init_fs(struct net_device *dev)
2494 {
2495 	/* Create debugfs entries */
2496 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2497 
2498 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2499 		pr_err("ERROR %s, debugfs create directory failed\n",
2500 		       STMMAC_RESOURCE_NAME);
2501 
2502 		return -ENOMEM;
2503 	}
2504 
2505 	/* Entry to report DMA RX/TX rings */
2506 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2507 						  S_IRUGO, stmmac_fs_dir, dev,
2508 						  &stmmac_rings_status_fops);
2509 
2510 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2511 		pr_info("ERROR creating stmmac ring debugfs file\n");
2512 		debugfs_remove(stmmac_fs_dir);
2513 
2514 		return -ENOMEM;
2515 	}
2516 
2517 	/* Entry to report the DMA HW features */
2518 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2519 					     dev, &stmmac_dma_cap_fops);
2520 
2521 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2522 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2523 		debugfs_remove(stmmac_rings_status);
2524 		debugfs_remove(stmmac_fs_dir);
2525 
2526 		return -ENOMEM;
2527 	}
2528 
2529 	return 0;
2530 }
2531 
2532 static void stmmac_exit_fs(void)
2533 {
2534 	debugfs_remove(stmmac_rings_status);
2535 	debugfs_remove(stmmac_dma_cap);
2536 	debugfs_remove(stmmac_fs_dir);
2537 }
2538 #endif /* CONFIG_STMMAC_DEBUG_FS */
2539 
2540 static const struct net_device_ops stmmac_netdev_ops = {
2541 	.ndo_open = stmmac_open,
2542 	.ndo_start_xmit = stmmac_xmit,
2543 	.ndo_stop = stmmac_release,
2544 	.ndo_change_mtu = stmmac_change_mtu,
2545 	.ndo_fix_features = stmmac_fix_features,
2546 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2547 	.ndo_tx_timeout = stmmac_tx_timeout,
2548 	.ndo_do_ioctl = stmmac_ioctl,
2549 	.ndo_set_config = stmmac_config,
2550 #ifdef CONFIG_NET_POLL_CONTROLLER
2551 	.ndo_poll_controller = stmmac_poll_controller,
2552 #endif
2553 	.ndo_set_mac_address = eth_mac_addr,
2554 };
2555 
2556 /**
2557  *  stmmac_hw_init - Init the MAC device
2558  *  @priv: driver private structure
2559  *  Description: this function detects which MAC device
2560  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2561  *  (if supported) and sets the driver's features (for example
2562  *  to use the ring or chaine mode or support the normal/enh
2563  *  descriptor structure).
2564  */
2565 static int stmmac_hw_init(struct stmmac_priv *priv)
2566 {
2567 	int ret;
2568 	struct mac_device_info *mac;
2569 
2570 	/* Identify the MAC HW device */
2571 	if (priv->plat->has_gmac) {
2572 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2573 		mac = dwmac1000_setup(priv->ioaddr);
2574 	} else {
2575 		mac = dwmac100_setup(priv->ioaddr);
2576 	}
2577 	if (!mac)
2578 		return -ENOMEM;
2579 
2580 	priv->hw = mac;
2581 
2582 	/* Get and dump the chip ID */
2583 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2584 
2585 	/* To use the chained or ring mode */
2586 	if (chain_mode) {
2587 		priv->hw->chain = &chain_mode_ops;
2588 		pr_info(" Chain mode enabled\n");
2589 		priv->mode = STMMAC_CHAIN_MODE;
2590 	} else {
2591 		priv->hw->ring = &ring_mode_ops;
2592 		pr_info(" Ring mode enabled\n");
2593 		priv->mode = STMMAC_RING_MODE;
2594 	}
2595 
2596 	/* Get the HW capability (new GMAC newer than 3.50a) */
2597 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2598 	if (priv->hw_cap_support) {
2599 		pr_info(" DMA HW capability register supported");
2600 
2601 		/* We can override some gmac/dma configuration fields: e.g.
2602 		 * enh_desc, tx_coe (e.g. that are passed through the
2603 		 * platform) with the values from the HW capability
2604 		 * register (if supported).
2605 		 */
2606 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2607 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2608 
2609 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2610 
2611 		if (priv->dma_cap.rx_coe_type2)
2612 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2613 		else if (priv->dma_cap.rx_coe_type1)
2614 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2615 
2616 	} else
2617 		pr_info(" No HW DMA feature register supported");
2618 
2619 	/* To use alternate (extended) or normal descriptor structures */
2620 	stmmac_selec_desc_mode(priv);
2621 
2622 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2623 	if (!ret) {
2624 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2625 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2626 	}
2627 
2628 	if (priv->plat->rx_coe)
2629 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2630 			priv->plat->rx_coe);
2631 	if (priv->plat->tx_coe)
2632 		pr_info(" TX Checksum insertion supported\n");
2633 
2634 	if (priv->plat->pmt) {
2635 		pr_info(" Wake-Up On Lan supported\n");
2636 		device_set_wakeup_capable(priv->device, 1);
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 /**
2643  * stmmac_dvr_probe
2644  * @device: device pointer
2645  * @plat_dat: platform data pointer
2646  * @addr: iobase memory address
2647  * Description: this is the main probe function used to
2648  * call the alloc_etherdev, allocate the priv structure.
2649  */
2650 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2651 				     struct plat_stmmacenet_data *plat_dat,
2652 				     void __iomem *addr)
2653 {
2654 	int ret = 0;
2655 	struct net_device *ndev = NULL;
2656 	struct stmmac_priv *priv;
2657 
2658 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2659 	if (!ndev)
2660 		return NULL;
2661 
2662 	SET_NETDEV_DEV(ndev, device);
2663 
2664 	priv = netdev_priv(ndev);
2665 	priv->device = device;
2666 	priv->dev = ndev;
2667 
2668 	ether_setup(ndev);
2669 
2670 	stmmac_set_ethtool_ops(ndev);
2671 	priv->pause = pause;
2672 	priv->plat = plat_dat;
2673 	priv->ioaddr = addr;
2674 	priv->dev->base_addr = (unsigned long)addr;
2675 
2676 	/* Verify driver arguments */
2677 	stmmac_verify_args();
2678 
2679 	/* Override with kernel parameters if supplied XXX CRS XXX
2680 	 * this needs to have multiple instances
2681 	 */
2682 	if ((phyaddr >= 0) && (phyaddr <= 31))
2683 		priv->plat->phy_addr = phyaddr;
2684 
2685 	/* Init MAC and get the capabilities */
2686 	ret = stmmac_hw_init(priv);
2687 	if (ret)
2688 		goto error_free_netdev;
2689 
2690 	ndev->netdev_ops = &stmmac_netdev_ops;
2691 
2692 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2693 			    NETIF_F_RXCSUM;
2694 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2695 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2696 #ifdef STMMAC_VLAN_TAG_USED
2697 	/* Both mac100 and gmac support receive VLAN tag detection */
2698 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2699 #endif
2700 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2701 
2702 	if (flow_ctrl)
2703 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2704 
2705 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2706 	 * In some case, for example on bugged HW this feature
2707 	 * has to be disable and this can be done by passing the
2708 	 * riwt_off field from the platform.
2709 	 */
2710 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2711 		priv->use_riwt = 1;
2712 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2713 	}
2714 
2715 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2716 
2717 	spin_lock_init(&priv->lock);
2718 	spin_lock_init(&priv->tx_lock);
2719 
2720 	ret = register_netdev(ndev);
2721 	if (ret) {
2722 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2723 		goto error_netdev_register;
2724 	}
2725 
2726 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2727 	if (IS_ERR(priv->stmmac_clk)) {
2728 		pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2729 		goto error_clk_get;
2730 	}
2731 
2732 	/* If a specific clk_csr value is passed from the platform
2733 	 * this means that the CSR Clock Range selection cannot be
2734 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2735 	 * set the MDC clock dynamically according to the csr actual
2736 	 * clock input.
2737 	 */
2738 	if (!priv->plat->clk_csr)
2739 		stmmac_clk_csr_set(priv);
2740 	else
2741 		priv->clk_csr = priv->plat->clk_csr;
2742 
2743 	stmmac_check_pcs_mode(priv);
2744 
2745 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2746 	    priv->pcs != STMMAC_PCS_RTBI) {
2747 		/* MDIO bus Registration */
2748 		ret = stmmac_mdio_register(ndev);
2749 		if (ret < 0) {
2750 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2751 				 __func__, priv->plat->bus_id);
2752 			goto error_mdio_register;
2753 		}
2754 	}
2755 
2756 	return priv;
2757 
2758 error_mdio_register:
2759 	clk_put(priv->stmmac_clk);
2760 error_clk_get:
2761 	unregister_netdev(ndev);
2762 error_netdev_register:
2763 	netif_napi_del(&priv->napi);
2764 error_free_netdev:
2765 	free_netdev(ndev);
2766 
2767 	return NULL;
2768 }
2769 
2770 /**
2771  * stmmac_dvr_remove
2772  * @ndev: net device pointer
2773  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2774  * changes the link status, releases the DMA descriptor rings.
2775  */
2776 int stmmac_dvr_remove(struct net_device *ndev)
2777 {
2778 	struct stmmac_priv *priv = netdev_priv(ndev);
2779 
2780 	pr_info("%s:\n\tremoving driver", __func__);
2781 
2782 	priv->hw->dma->stop_rx(priv->ioaddr);
2783 	priv->hw->dma->stop_tx(priv->ioaddr);
2784 
2785 	stmmac_set_mac(priv->ioaddr, false);
2786 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2787 	    priv->pcs != STMMAC_PCS_RTBI)
2788 		stmmac_mdio_unregister(ndev);
2789 	netif_carrier_off(ndev);
2790 	unregister_netdev(ndev);
2791 	free_netdev(ndev);
2792 
2793 	return 0;
2794 }
2795 
2796 #ifdef CONFIG_PM
2797 int stmmac_suspend(struct net_device *ndev)
2798 {
2799 	struct stmmac_priv *priv = netdev_priv(ndev);
2800 	unsigned long flags;
2801 
2802 	if (!ndev || !netif_running(ndev))
2803 		return 0;
2804 
2805 	if (priv->phydev)
2806 		phy_stop(priv->phydev);
2807 
2808 	spin_lock_irqsave(&priv->lock, flags);
2809 
2810 	netif_device_detach(ndev);
2811 	netif_stop_queue(ndev);
2812 
2813 	napi_disable(&priv->napi);
2814 
2815 	/* Stop TX/RX DMA */
2816 	priv->hw->dma->stop_tx(priv->ioaddr);
2817 	priv->hw->dma->stop_rx(priv->ioaddr);
2818 
2819 	stmmac_clear_descriptors(priv);
2820 
2821 	/* Enable Power down mode by programming the PMT regs */
2822 	if (device_may_wakeup(priv->device))
2823 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2824 	else {
2825 		stmmac_set_mac(priv->ioaddr, false);
2826 		/* Disable clock in case of PWM is off */
2827 		clk_disable_unprepare(priv->stmmac_clk);
2828 	}
2829 	spin_unlock_irqrestore(&priv->lock, flags);
2830 	return 0;
2831 }
2832 
2833 int stmmac_resume(struct net_device *ndev)
2834 {
2835 	struct stmmac_priv *priv = netdev_priv(ndev);
2836 	unsigned long flags;
2837 
2838 	if (!netif_running(ndev))
2839 		return 0;
2840 
2841 	spin_lock_irqsave(&priv->lock, flags);
2842 
2843 	/* Power Down bit, into the PM register, is cleared
2844 	 * automatically as soon as a magic packet or a Wake-up frame
2845 	 * is received. Anyway, it's better to manually clear
2846 	 * this bit because it can generate problems while resuming
2847 	 * from another devices (e.g. serial console).
2848 	 */
2849 	if (device_may_wakeup(priv->device))
2850 		priv->hw->mac->pmt(priv->ioaddr, 0);
2851 	else
2852 		/* enable the clk prevously disabled */
2853 		clk_prepare_enable(priv->stmmac_clk);
2854 
2855 	netif_device_attach(ndev);
2856 
2857 	/* Enable the MAC and DMA */
2858 	stmmac_set_mac(priv->ioaddr, true);
2859 	priv->hw->dma->start_tx(priv->ioaddr);
2860 	priv->hw->dma->start_rx(priv->ioaddr);
2861 
2862 	napi_enable(&priv->napi);
2863 
2864 	netif_start_queue(ndev);
2865 
2866 	spin_unlock_irqrestore(&priv->lock, flags);
2867 
2868 	if (priv->phydev)
2869 		phy_start(priv->phydev);
2870 
2871 	return 0;
2872 }
2873 
2874 int stmmac_freeze(struct net_device *ndev)
2875 {
2876 	if (!ndev || !netif_running(ndev))
2877 		return 0;
2878 
2879 	return stmmac_release(ndev);
2880 }
2881 
2882 int stmmac_restore(struct net_device *ndev)
2883 {
2884 	if (!ndev || !netif_running(ndev))
2885 		return 0;
2886 
2887 	return stmmac_open(ndev);
2888 }
2889 #endif /* CONFIG_PM */
2890 
2891 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2892  * depending on the configuration selected.
2893  */
2894 static int __init stmmac_init(void)
2895 {
2896 	int ret;
2897 
2898 	ret = stmmac_register_platform();
2899 	if (ret)
2900 		goto err;
2901 	ret = stmmac_register_pci();
2902 	if (ret)
2903 		goto err_pci;
2904 	return 0;
2905 err_pci:
2906 	stmmac_unregister_platform();
2907 err:
2908 	pr_err("stmmac: driver registration failed\n");
2909 	return ret;
2910 }
2911 
2912 static void __exit stmmac_exit(void)
2913 {
2914 	stmmac_unregister_platform();
2915 	stmmac_unregister_pci();
2916 }
2917 
2918 module_init(stmmac_init);
2919 module_exit(stmmac_exit);
2920 
2921 #ifndef MODULE
2922 static int __init stmmac_cmdline_opt(char *str)
2923 {
2924 	char *opt;
2925 
2926 	if (!str || !*str)
2927 		return -EINVAL;
2928 	while ((opt = strsep(&str, ",")) != NULL) {
2929 		if (!strncmp(opt, "debug:", 6)) {
2930 			if (kstrtoint(opt + 6, 0, &debug))
2931 				goto err;
2932 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2933 			if (kstrtoint(opt + 8, 0, &phyaddr))
2934 				goto err;
2935 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2936 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2937 				goto err;
2938 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2939 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2940 				goto err;
2941 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2942 			if (kstrtoint(opt + 7, 0, &buf_sz))
2943 				goto err;
2944 		} else if (!strncmp(opt, "tc:", 3)) {
2945 			if (kstrtoint(opt + 3, 0, &tc))
2946 				goto err;
2947 		} else if (!strncmp(opt, "watchdog:", 9)) {
2948 			if (kstrtoint(opt + 9, 0, &watchdog))
2949 				goto err;
2950 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2951 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2952 				goto err;
2953 		} else if (!strncmp(opt, "pause:", 6)) {
2954 			if (kstrtoint(opt + 6, 0, &pause))
2955 				goto err;
2956 		} else if (!strncmp(opt, "eee_timer:", 10)) {
2957 			if (kstrtoint(opt + 10, 0, &eee_timer))
2958 				goto err;
2959 		} else if (!strncmp(opt, "chain_mode:", 11)) {
2960 			if (kstrtoint(opt + 11, 0, &chain_mode))
2961 				goto err;
2962 		}
2963 	}
2964 	return 0;
2965 
2966 err:
2967 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2968 	return -EINVAL;
2969 }
2970 
2971 __setup("stmmaceth=", stmmac_cmdline_opt);
2972 #endif /* MODULE */
2973 
2974 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2975 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2976 MODULE_LICENSE("GPL");
2977