1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 54 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 55 56 /* Module parameters */ 57 #define TX_TIMEO 5000 58 static int watchdog = TX_TIMEO; 59 module_param(watchdog, int, 0644); 60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 61 62 static int debug = -1; 63 module_param(debug, int, 0644); 64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 65 66 static int phyaddr = -1; 67 module_param(phyaddr, int, 0444); 68 MODULE_PARM_DESC(phyaddr, "Physical device address"); 69 70 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 71 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 72 73 /* Limit to make sure XDP TX and slow path can coexist */ 74 #define STMMAC_XSK_TX_BUDGET_MAX 256 75 #define STMMAC_TX_XSK_AVAIL 16 76 #define STMMAC_RX_FILL_BATCH 16 77 78 #define STMMAC_XDP_PASS 0 79 #define STMMAC_XDP_CONSUMED BIT(0) 80 #define STMMAC_XDP_TX BIT(1) 81 #define STMMAC_XDP_REDIRECT BIT(2) 82 83 static int flow_ctrl = FLOW_AUTO; 84 module_param(flow_ctrl, int, 0644); 85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 86 87 static int pause = PAUSE_TIME; 88 module_param(pause, int, 0644); 89 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 90 91 #define TC_DEFAULT 64 92 static int tc = TC_DEFAULT; 93 module_param(tc, int, 0644); 94 MODULE_PARM_DESC(tc, "DMA threshold control value"); 95 96 #define DEFAULT_BUFSIZE 1536 97 static int buf_sz = DEFAULT_BUFSIZE; 98 module_param(buf_sz, int, 0644); 99 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 100 101 #define STMMAC_RX_COPYBREAK 256 102 103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 104 NETIF_MSG_LINK | NETIF_MSG_IFUP | 105 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 106 107 #define STMMAC_DEFAULT_LPI_TIMER 1000 108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 109 module_param(eee_timer, int, 0644); 110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 112 113 /* By default the driver will use the ring mode to manage tx and rx descriptors, 114 * but allow user to force to use the chain instead of the ring 115 */ 116 static unsigned int chain_mode; 117 module_param(chain_mode, int, 0444); 118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 119 120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 121 /* For MSI interrupts handling */ 122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 128 129 #ifdef CONFIG_DEBUG_FS 130 static const struct net_device_ops stmmac_netdev_ops; 131 static void stmmac_init_fs(struct net_device *dev); 132 static void stmmac_exit_fs(struct net_device *dev); 133 #endif 134 135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 136 137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 138 { 139 int ret = 0; 140 141 if (enabled) { 142 ret = clk_prepare_enable(priv->plat->stmmac_clk); 143 if (ret) 144 return ret; 145 ret = clk_prepare_enable(priv->plat->pclk); 146 if (ret) { 147 clk_disable_unprepare(priv->plat->stmmac_clk); 148 return ret; 149 } 150 if (priv->plat->clks_config) { 151 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 152 if (ret) { 153 clk_disable_unprepare(priv->plat->stmmac_clk); 154 clk_disable_unprepare(priv->plat->pclk); 155 return ret; 156 } 157 } 158 } else { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 clk_disable_unprepare(priv->plat->pclk); 161 if (priv->plat->clks_config) 162 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 163 } 164 165 return ret; 166 } 167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 168 169 /** 170 * stmmac_verify_args - verify the driver parameters. 171 * Description: it checks the driver parameters and set a default in case of 172 * errors. 173 */ 174 static void stmmac_verify_args(void) 175 { 176 if (unlikely(watchdog < 0)) 177 watchdog = TX_TIMEO; 178 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 179 buf_sz = DEFAULT_BUFSIZE; 180 if (unlikely(flow_ctrl > 1)) 181 flow_ctrl = FLOW_AUTO; 182 else if (likely(flow_ctrl < 0)) 183 flow_ctrl = FLOW_OFF; 184 if (unlikely((pause < 0) || (pause > 0xffff))) 185 pause = PAUSE_TIME; 186 if (eee_timer < 0) 187 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 188 } 189 190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 191 { 192 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 193 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 194 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 195 u32 queue; 196 197 for (queue = 0; queue < maxq; queue++) { 198 struct stmmac_channel *ch = &priv->channel[queue]; 199 200 if (stmmac_xdp_is_enabled(priv) && 201 test_bit(queue, priv->af_xdp_zc_qps)) { 202 napi_disable(&ch->rxtx_napi); 203 continue; 204 } 205 206 if (queue < rx_queues_cnt) 207 napi_disable(&ch->rx_napi); 208 if (queue < tx_queues_cnt) 209 napi_disable(&ch->tx_napi); 210 } 211 } 212 213 /** 214 * stmmac_disable_all_queues - Disable all queues 215 * @priv: driver private structure 216 */ 217 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 218 { 219 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 220 struct stmmac_rx_queue *rx_q; 221 u32 queue; 222 223 /* synchronize_rcu() needed for pending XDP buffers to drain */ 224 for (queue = 0; queue < rx_queues_cnt; queue++) { 225 rx_q = &priv->rx_queue[queue]; 226 if (rx_q->xsk_pool) { 227 synchronize_rcu(); 228 break; 229 } 230 } 231 232 __stmmac_disable_all_queues(priv); 233 } 234 235 /** 236 * stmmac_enable_all_queues - Enable all queues 237 * @priv: driver private structure 238 */ 239 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 240 { 241 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 242 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 243 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 244 u32 queue; 245 246 for (queue = 0; queue < maxq; queue++) { 247 struct stmmac_channel *ch = &priv->channel[queue]; 248 249 if (stmmac_xdp_is_enabled(priv) && 250 test_bit(queue, priv->af_xdp_zc_qps)) { 251 napi_enable(&ch->rxtx_napi); 252 continue; 253 } 254 255 if (queue < rx_queues_cnt) 256 napi_enable(&ch->rx_napi); 257 if (queue < tx_queues_cnt) 258 napi_enable(&ch->tx_napi); 259 } 260 } 261 262 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 263 { 264 if (!test_bit(STMMAC_DOWN, &priv->state) && 265 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 266 queue_work(priv->wq, &priv->service_task); 267 } 268 269 static void stmmac_global_err(struct stmmac_priv *priv) 270 { 271 netif_carrier_off(priv->dev); 272 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 273 stmmac_service_event_schedule(priv); 274 } 275 276 /** 277 * stmmac_clk_csr_set - dynamically set the MDC clock 278 * @priv: driver private structure 279 * Description: this is to dynamically set the MDC clock according to the csr 280 * clock input. 281 * Note: 282 * If a specific clk_csr value is passed from the platform 283 * this means that the CSR Clock Range selection cannot be 284 * changed at run-time and it is fixed (as reported in the driver 285 * documentation). Viceversa the driver will try to set the MDC 286 * clock dynamically according to the actual clock input. 287 */ 288 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 289 { 290 u32 clk_rate; 291 292 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 293 294 /* Platform provided default clk_csr would be assumed valid 295 * for all other cases except for the below mentioned ones. 296 * For values higher than the IEEE 802.3 specified frequency 297 * we can not estimate the proper divider as it is not known 298 * the frequency of clk_csr_i. So we do not change the default 299 * divider. 300 */ 301 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 302 if (clk_rate < CSR_F_35M) 303 priv->clk_csr = STMMAC_CSR_20_35M; 304 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 305 priv->clk_csr = STMMAC_CSR_35_60M; 306 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 307 priv->clk_csr = STMMAC_CSR_60_100M; 308 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 309 priv->clk_csr = STMMAC_CSR_100_150M; 310 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 311 priv->clk_csr = STMMAC_CSR_150_250M; 312 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 313 priv->clk_csr = STMMAC_CSR_250_300M; 314 } 315 316 if (priv->plat->has_sun8i) { 317 if (clk_rate > 160000000) 318 priv->clk_csr = 0x03; 319 else if (clk_rate > 80000000) 320 priv->clk_csr = 0x02; 321 else if (clk_rate > 40000000) 322 priv->clk_csr = 0x01; 323 else 324 priv->clk_csr = 0; 325 } 326 327 if (priv->plat->has_xgmac) { 328 if (clk_rate > 400000000) 329 priv->clk_csr = 0x5; 330 else if (clk_rate > 350000000) 331 priv->clk_csr = 0x4; 332 else if (clk_rate > 300000000) 333 priv->clk_csr = 0x3; 334 else if (clk_rate > 250000000) 335 priv->clk_csr = 0x2; 336 else if (clk_rate > 150000000) 337 priv->clk_csr = 0x1; 338 else 339 priv->clk_csr = 0x0; 340 } 341 } 342 343 static void print_pkt(unsigned char *buf, int len) 344 { 345 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 346 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 347 } 348 349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 350 { 351 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 352 u32 avail; 353 354 if (tx_q->dirty_tx > tx_q->cur_tx) 355 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 356 else 357 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 358 359 return avail; 360 } 361 362 /** 363 * stmmac_rx_dirty - Get RX queue dirty 364 * @priv: driver private structure 365 * @queue: RX queue index 366 */ 367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 368 { 369 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 370 u32 dirty; 371 372 if (rx_q->dirty_rx <= rx_q->cur_rx) 373 dirty = rx_q->cur_rx - rx_q->dirty_rx; 374 else 375 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 376 377 return dirty; 378 } 379 380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 381 { 382 int tx_lpi_timer; 383 384 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 385 priv->eee_sw_timer_en = en ? 0 : 1; 386 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 387 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 388 } 389 390 /** 391 * stmmac_enable_eee_mode - check and enter in LPI mode 392 * @priv: driver private structure 393 * Description: this function is to verify and enter in LPI mode in case of 394 * EEE. 395 */ 396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 397 { 398 u32 tx_cnt = priv->plat->tx_queues_to_use; 399 u32 queue; 400 401 /* check if all TX queues have the work finished */ 402 for (queue = 0; queue < tx_cnt; queue++) { 403 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 404 405 if (tx_q->dirty_tx != tx_q->cur_tx) 406 return; /* still unfinished work */ 407 } 408 409 /* Check and enter in LPI mode */ 410 if (!priv->tx_path_in_lpi_mode) 411 stmmac_set_eee_mode(priv, priv->hw, 412 priv->plat->en_tx_lpi_clockgating); 413 } 414 415 /** 416 * stmmac_disable_eee_mode - disable and exit from LPI mode 417 * @priv: driver private structure 418 * Description: this function is to exit and disable EEE in case of 419 * LPI state is true. This is called by the xmit. 420 */ 421 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 422 { 423 if (!priv->eee_sw_timer_en) { 424 stmmac_lpi_entry_timer_config(priv, 0); 425 return; 426 } 427 428 stmmac_reset_eee_mode(priv, priv->hw); 429 del_timer_sync(&priv->eee_ctrl_timer); 430 priv->tx_path_in_lpi_mode = false; 431 } 432 433 /** 434 * stmmac_eee_ctrl_timer - EEE TX SW timer. 435 * @t: timer_list struct containing private info 436 * Description: 437 * if there is no data transfer and if we are not in LPI state, 438 * then MAC Transmitter can be moved to LPI state. 439 */ 440 static void stmmac_eee_ctrl_timer(struct timer_list *t) 441 { 442 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 443 444 stmmac_enable_eee_mode(priv); 445 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 446 } 447 448 /** 449 * stmmac_eee_init - init EEE 450 * @priv: driver private structure 451 * Description: 452 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 453 * can also manage EEE, this function enable the LPI state and start related 454 * timer. 455 */ 456 bool stmmac_eee_init(struct stmmac_priv *priv) 457 { 458 int eee_tw_timer = priv->eee_tw_timer; 459 460 /* Using PCS we cannot dial with the phy registers at this stage 461 * so we do not support extra feature like EEE. 462 */ 463 if (priv->hw->pcs == STMMAC_PCS_TBI || 464 priv->hw->pcs == STMMAC_PCS_RTBI) 465 return false; 466 467 /* Check if MAC core supports the EEE feature. */ 468 if (!priv->dma_cap.eee) 469 return false; 470 471 mutex_lock(&priv->lock); 472 473 /* Check if it needs to be deactivated */ 474 if (!priv->eee_active) { 475 if (priv->eee_enabled) { 476 netdev_dbg(priv->dev, "disable EEE\n"); 477 stmmac_lpi_entry_timer_config(priv, 0); 478 del_timer_sync(&priv->eee_ctrl_timer); 479 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 480 } 481 mutex_unlock(&priv->lock); 482 return false; 483 } 484 485 if (priv->eee_active && !priv->eee_enabled) { 486 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 487 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 488 eee_tw_timer); 489 } 490 491 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 492 del_timer_sync(&priv->eee_ctrl_timer); 493 priv->tx_path_in_lpi_mode = false; 494 stmmac_lpi_entry_timer_config(priv, 1); 495 } else { 496 stmmac_lpi_entry_timer_config(priv, 0); 497 mod_timer(&priv->eee_ctrl_timer, 498 STMMAC_LPI_T(priv->tx_lpi_timer)); 499 } 500 501 mutex_unlock(&priv->lock); 502 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 503 return true; 504 } 505 506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 507 * @priv: driver private structure 508 * @p : descriptor pointer 509 * @skb : the socket buffer 510 * Description : 511 * This function will read timestamp from the descriptor & pass it to stack. 512 * and also perform some sanity checks. 513 */ 514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 515 struct dma_desc *p, struct sk_buff *skb) 516 { 517 struct skb_shared_hwtstamps shhwtstamp; 518 bool found = false; 519 s64 adjust = 0; 520 u64 ns = 0; 521 522 if (!priv->hwts_tx_en) 523 return; 524 525 /* exit if skb doesn't support hw tstamp */ 526 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 527 return; 528 529 /* check tx tstamp status */ 530 if (stmmac_get_tx_timestamp_status(priv, p)) { 531 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 532 found = true; 533 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 534 found = true; 535 } 536 537 if (found) { 538 /* Correct the clk domain crossing(CDC) error */ 539 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 540 adjust += -(2 * (NSEC_PER_SEC / 541 priv->plat->clk_ptp_rate)); 542 ns += adjust; 543 } 544 545 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 546 shhwtstamp.hwtstamp = ns_to_ktime(ns); 547 548 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 549 /* pass tstamp to stack */ 550 skb_tstamp_tx(skb, &shhwtstamp); 551 } 552 } 553 554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 555 * @priv: driver private structure 556 * @p : descriptor pointer 557 * @np : next descriptor pointer 558 * @skb : the socket buffer 559 * Description : 560 * This function will read received packet's timestamp from the descriptor 561 * and pass it to stack. It also perform some sanity checks. 562 */ 563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 564 struct dma_desc *np, struct sk_buff *skb) 565 { 566 struct skb_shared_hwtstamps *shhwtstamp = NULL; 567 struct dma_desc *desc = p; 568 u64 adjust = 0; 569 u64 ns = 0; 570 571 if (!priv->hwts_rx_en) 572 return; 573 /* For GMAC4, the valid timestamp is from CTX next desc. */ 574 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 575 desc = np; 576 577 /* Check if timestamp is available */ 578 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 579 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 580 581 /* Correct the clk domain crossing(CDC) error */ 582 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 583 adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate); 584 ns -= adjust; 585 } 586 587 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 588 shhwtstamp = skb_hwtstamps(skb); 589 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 590 shhwtstamp->hwtstamp = ns_to_ktime(ns); 591 } else { 592 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 593 } 594 } 595 596 /** 597 * stmmac_hwtstamp_set - control hardware timestamping. 598 * @dev: device pointer. 599 * @ifr: An IOCTL specific structure, that can contain a pointer to 600 * a proprietary structure used to pass information to the driver. 601 * Description: 602 * This function configures the MAC to enable/disable both outgoing(TX) 603 * and incoming(RX) packets time stamping based on user input. 604 * Return Value: 605 * 0 on success and an appropriate -ve integer on failure. 606 */ 607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 608 { 609 struct stmmac_priv *priv = netdev_priv(dev); 610 struct hwtstamp_config config; 611 struct timespec64 now; 612 u64 temp = 0; 613 u32 ptp_v2 = 0; 614 u32 tstamp_all = 0; 615 u32 ptp_over_ipv4_udp = 0; 616 u32 ptp_over_ipv6_udp = 0; 617 u32 ptp_over_ethernet = 0; 618 u32 snap_type_sel = 0; 619 u32 ts_master_en = 0; 620 u32 ts_event_en = 0; 621 u32 sec_inc = 0; 622 u32 value = 0; 623 bool xmac; 624 625 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 /* reserved for future extensions */ 643 if (config.flags) 644 return -EINVAL; 645 646 if (config.tx_type != HWTSTAMP_TX_OFF && 647 config.tx_type != HWTSTAMP_TX_ON) 648 return -ERANGE; 649 650 if (priv->adv_ts) { 651 switch (config.rx_filter) { 652 case HWTSTAMP_FILTER_NONE: 653 /* time stamp no incoming packet at all */ 654 config.rx_filter = HWTSTAMP_FILTER_NONE; 655 break; 656 657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 658 /* PTP v1, UDP, any kind of event packet */ 659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 660 /* 'xmac' hardware can support Sync, Pdelay_Req and 661 * Pdelay_resp by setting bit14 and bits17/16 to 01 662 * This leaves Delay_Req timestamps out. 663 * Enable all events *and* general purpose message 664 * timestamping 665 */ 666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 669 break; 670 671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 672 /* PTP v1, UDP, Sync packet */ 673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 674 /* take time stamp for SYNC messages only */ 675 ts_event_en = PTP_TCR_TSEVNTENA; 676 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 break; 680 681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 682 /* PTP v1, UDP, Delay_req packet */ 683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 684 /* take time stamp for Delay_Req messages only */ 685 ts_master_en = PTP_TCR_TSMSTRENA; 686 ts_event_en = PTP_TCR_TSEVNTENA; 687 688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 690 break; 691 692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 693 /* PTP v2, UDP, any kind of event packet */ 694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 695 ptp_v2 = PTP_TCR_TSVER2ENA; 696 /* take time stamp for all event messages */ 697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 698 699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 701 break; 702 703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 704 /* PTP v2, UDP, Sync packet */ 705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 706 ptp_v2 = PTP_TCR_TSVER2ENA; 707 /* take time stamp for SYNC messages only */ 708 ts_event_en = PTP_TCR_TSEVNTENA; 709 710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 712 break; 713 714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 715 /* PTP v2, UDP, Delay_req packet */ 716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 717 ptp_v2 = PTP_TCR_TSVER2ENA; 718 /* take time stamp for Delay_Req messages only */ 719 ts_master_en = PTP_TCR_TSMSTRENA; 720 ts_event_en = PTP_TCR_TSEVNTENA; 721 722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 724 break; 725 726 case HWTSTAMP_FILTER_PTP_V2_EVENT: 727 /* PTP v2/802.AS1 any layer, any kind of event packet */ 728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 729 ptp_v2 = PTP_TCR_TSVER2ENA; 730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 731 if (priv->synopsys_id != DWMAC_CORE_5_10) 732 ts_event_en = PTP_TCR_TSEVNTENA; 733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 735 ptp_over_ethernet = PTP_TCR_TSIPENA; 736 break; 737 738 case HWTSTAMP_FILTER_PTP_V2_SYNC: 739 /* PTP v2/802.AS1, any layer, Sync packet */ 740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 741 ptp_v2 = PTP_TCR_TSVER2ENA; 742 /* take time stamp for SYNC messages only */ 743 ts_event_en = PTP_TCR_TSEVNTENA; 744 745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 747 ptp_over_ethernet = PTP_TCR_TSIPENA; 748 break; 749 750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 751 /* PTP v2/802.AS1, any layer, Delay_req packet */ 752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 753 ptp_v2 = PTP_TCR_TSVER2ENA; 754 /* take time stamp for Delay_Req messages only */ 755 ts_master_en = PTP_TCR_TSMSTRENA; 756 ts_event_en = PTP_TCR_TSEVNTENA; 757 758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 760 ptp_over_ethernet = PTP_TCR_TSIPENA; 761 break; 762 763 case HWTSTAMP_FILTER_NTP_ALL: 764 case HWTSTAMP_FILTER_ALL: 765 /* time stamp any incoming packet */ 766 config.rx_filter = HWTSTAMP_FILTER_ALL; 767 tstamp_all = PTP_TCR_TSENALL; 768 break; 769 770 default: 771 return -ERANGE; 772 } 773 } else { 774 switch (config.rx_filter) { 775 case HWTSTAMP_FILTER_NONE: 776 config.rx_filter = HWTSTAMP_FILTER_NONE; 777 break; 778 default: 779 /* PTP v1, UDP, any kind of event packet */ 780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 781 break; 782 } 783 } 784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 786 787 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 788 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 789 else { 790 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 791 tstamp_all | ptp_v2 | ptp_over_ethernet | 792 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 793 ts_master_en | snap_type_sel); 794 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 795 796 /* program Sub Second Increment reg */ 797 stmmac_config_sub_second_increment(priv, 798 priv->ptpaddr, priv->plat->clk_ptp_rate, 799 xmac, &sec_inc); 800 temp = div_u64(1000000000ULL, sec_inc); 801 802 /* Store sub second increment and flags for later use */ 803 priv->sub_second_inc = sec_inc; 804 priv->systime_flags = value; 805 806 /* calculate default added value: 807 * formula is : 808 * addend = (2^32)/freq_div_ratio; 809 * where, freq_div_ratio = 1e9ns/sec_inc 810 */ 811 temp = (u64)(temp << 32); 812 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 813 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 814 815 /* initialize system time */ 816 ktime_get_real_ts64(&now); 817 818 /* lower 32 bits of tv_sec are safe until y2106 */ 819 stmmac_init_systime(priv, priv->ptpaddr, 820 (u32)now.tv_sec, now.tv_nsec); 821 } 822 823 memcpy(&priv->tstamp_config, &config, sizeof(config)); 824 825 return copy_to_user(ifr->ifr_data, &config, 826 sizeof(config)) ? -EFAULT : 0; 827 } 828 829 /** 830 * stmmac_hwtstamp_get - read hardware timestamping. 831 * @dev: device pointer. 832 * @ifr: An IOCTL specific structure, that can contain a pointer to 833 * a proprietary structure used to pass information to the driver. 834 * Description: 835 * This function obtain the current hardware timestamping settings 836 * as requested. 837 */ 838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 839 { 840 struct stmmac_priv *priv = netdev_priv(dev); 841 struct hwtstamp_config *config = &priv->tstamp_config; 842 843 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 844 return -EOPNOTSUPP; 845 846 return copy_to_user(ifr->ifr_data, config, 847 sizeof(*config)) ? -EFAULT : 0; 848 } 849 850 /** 851 * stmmac_init_ptp - init PTP 852 * @priv: driver private structure 853 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 854 * This is done by looking at the HW cap. register. 855 * This function also registers the ptp driver. 856 */ 857 static int stmmac_init_ptp(struct stmmac_priv *priv) 858 { 859 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 860 861 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 862 return -EOPNOTSUPP; 863 864 priv->adv_ts = 0; 865 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 866 if (xmac && priv->dma_cap.atime_stamp) 867 priv->adv_ts = 1; 868 /* Dwmac 3.x core with extend_desc can support adv_ts */ 869 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 870 priv->adv_ts = 1; 871 872 if (priv->dma_cap.time_stamp) 873 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 874 875 if (priv->adv_ts) 876 netdev_info(priv->dev, 877 "IEEE 1588-2008 Advanced Timestamp supported\n"); 878 879 priv->hwts_tx_en = 0; 880 priv->hwts_rx_en = 0; 881 882 stmmac_ptp_register(priv); 883 884 return 0; 885 } 886 887 static void stmmac_release_ptp(struct stmmac_priv *priv) 888 { 889 clk_disable_unprepare(priv->plat->clk_ptp_ref); 890 stmmac_ptp_unregister(priv); 891 } 892 893 /** 894 * stmmac_mac_flow_ctrl - Configure flow control in all queues 895 * @priv: driver private structure 896 * @duplex: duplex passed to the next function 897 * Description: It is used for configuring the flow control in all queues 898 */ 899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 900 { 901 u32 tx_cnt = priv->plat->tx_queues_to_use; 902 903 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 904 priv->pause, tx_cnt); 905 } 906 907 static void stmmac_validate(struct phylink_config *config, 908 unsigned long *supported, 909 struct phylink_link_state *state) 910 { 911 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 912 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 913 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 914 int tx_cnt = priv->plat->tx_queues_to_use; 915 int max_speed = priv->plat->max_speed; 916 917 phylink_set(mac_supported, 10baseT_Half); 918 phylink_set(mac_supported, 10baseT_Full); 919 phylink_set(mac_supported, 100baseT_Half); 920 phylink_set(mac_supported, 100baseT_Full); 921 phylink_set(mac_supported, 1000baseT_Half); 922 phylink_set(mac_supported, 1000baseT_Full); 923 phylink_set(mac_supported, 1000baseKX_Full); 924 925 phylink_set(mac_supported, Autoneg); 926 phylink_set(mac_supported, Pause); 927 phylink_set(mac_supported, Asym_Pause); 928 phylink_set_port_modes(mac_supported); 929 930 /* Cut down 1G if asked to */ 931 if ((max_speed > 0) && (max_speed < 1000)) { 932 phylink_set(mask, 1000baseT_Full); 933 phylink_set(mask, 1000baseX_Full); 934 } else if (priv->plat->has_gmac4) { 935 if (!max_speed || max_speed >= 2500) { 936 phylink_set(mac_supported, 2500baseT_Full); 937 phylink_set(mac_supported, 2500baseX_Full); 938 } 939 } else if (priv->plat->has_xgmac) { 940 if (!max_speed || (max_speed >= 2500)) { 941 phylink_set(mac_supported, 2500baseT_Full); 942 phylink_set(mac_supported, 2500baseX_Full); 943 } 944 if (!max_speed || (max_speed >= 5000)) { 945 phylink_set(mac_supported, 5000baseT_Full); 946 } 947 if (!max_speed || (max_speed >= 10000)) { 948 phylink_set(mac_supported, 10000baseSR_Full); 949 phylink_set(mac_supported, 10000baseLR_Full); 950 phylink_set(mac_supported, 10000baseER_Full); 951 phylink_set(mac_supported, 10000baseLRM_Full); 952 phylink_set(mac_supported, 10000baseT_Full); 953 phylink_set(mac_supported, 10000baseKX4_Full); 954 phylink_set(mac_supported, 10000baseKR_Full); 955 } 956 if (!max_speed || (max_speed >= 25000)) { 957 phylink_set(mac_supported, 25000baseCR_Full); 958 phylink_set(mac_supported, 25000baseKR_Full); 959 phylink_set(mac_supported, 25000baseSR_Full); 960 } 961 if (!max_speed || (max_speed >= 40000)) { 962 phylink_set(mac_supported, 40000baseKR4_Full); 963 phylink_set(mac_supported, 40000baseCR4_Full); 964 phylink_set(mac_supported, 40000baseSR4_Full); 965 phylink_set(mac_supported, 40000baseLR4_Full); 966 } 967 if (!max_speed || (max_speed >= 50000)) { 968 phylink_set(mac_supported, 50000baseCR2_Full); 969 phylink_set(mac_supported, 50000baseKR2_Full); 970 phylink_set(mac_supported, 50000baseSR2_Full); 971 phylink_set(mac_supported, 50000baseKR_Full); 972 phylink_set(mac_supported, 50000baseSR_Full); 973 phylink_set(mac_supported, 50000baseCR_Full); 974 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 975 phylink_set(mac_supported, 50000baseDR_Full); 976 } 977 if (!max_speed || (max_speed >= 100000)) { 978 phylink_set(mac_supported, 100000baseKR4_Full); 979 phylink_set(mac_supported, 100000baseSR4_Full); 980 phylink_set(mac_supported, 100000baseCR4_Full); 981 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 982 phylink_set(mac_supported, 100000baseKR2_Full); 983 phylink_set(mac_supported, 100000baseSR2_Full); 984 phylink_set(mac_supported, 100000baseCR2_Full); 985 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 986 phylink_set(mac_supported, 100000baseDR2_Full); 987 } 988 } 989 990 /* Half-Duplex can only work with single queue */ 991 if (tx_cnt > 1) { 992 phylink_set(mask, 10baseT_Half); 993 phylink_set(mask, 100baseT_Half); 994 phylink_set(mask, 1000baseT_Half); 995 } 996 997 linkmode_and(supported, supported, mac_supported); 998 linkmode_andnot(supported, supported, mask); 999 1000 linkmode_and(state->advertising, state->advertising, mac_supported); 1001 linkmode_andnot(state->advertising, state->advertising, mask); 1002 1003 /* If PCS is supported, check which modes it supports. */ 1004 if (priv->hw->xpcs) 1005 xpcs_validate(priv->hw->xpcs, supported, state); 1006 } 1007 1008 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1009 const struct phylink_link_state *state) 1010 { 1011 /* Nothing to do, xpcs_config() handles everything */ 1012 } 1013 1014 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1015 { 1016 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1017 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1018 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1019 bool *hs_enable = &fpe_cfg->hs_enable; 1020 1021 if (is_up && *hs_enable) { 1022 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1023 } else { 1024 *lo_state = FPE_STATE_OFF; 1025 *lp_state = FPE_STATE_OFF; 1026 } 1027 } 1028 1029 static void stmmac_mac_link_down(struct phylink_config *config, 1030 unsigned int mode, phy_interface_t interface) 1031 { 1032 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1033 1034 stmmac_mac_set(priv, priv->ioaddr, false); 1035 priv->eee_active = false; 1036 priv->tx_lpi_enabled = false; 1037 stmmac_eee_init(priv); 1038 stmmac_set_eee_pls(priv, priv->hw, false); 1039 1040 if (priv->dma_cap.fpesel) 1041 stmmac_fpe_link_state_handle(priv, false); 1042 } 1043 1044 static void stmmac_mac_link_up(struct phylink_config *config, 1045 struct phy_device *phy, 1046 unsigned int mode, phy_interface_t interface, 1047 int speed, int duplex, 1048 bool tx_pause, bool rx_pause) 1049 { 1050 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1051 u32 ctrl; 1052 1053 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1054 ctrl &= ~priv->hw->link.speed_mask; 1055 1056 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1057 switch (speed) { 1058 case SPEED_10000: 1059 ctrl |= priv->hw->link.xgmii.speed10000; 1060 break; 1061 case SPEED_5000: 1062 ctrl |= priv->hw->link.xgmii.speed5000; 1063 break; 1064 case SPEED_2500: 1065 ctrl |= priv->hw->link.xgmii.speed2500; 1066 break; 1067 default: 1068 return; 1069 } 1070 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1071 switch (speed) { 1072 case SPEED_100000: 1073 ctrl |= priv->hw->link.xlgmii.speed100000; 1074 break; 1075 case SPEED_50000: 1076 ctrl |= priv->hw->link.xlgmii.speed50000; 1077 break; 1078 case SPEED_40000: 1079 ctrl |= priv->hw->link.xlgmii.speed40000; 1080 break; 1081 case SPEED_25000: 1082 ctrl |= priv->hw->link.xlgmii.speed25000; 1083 break; 1084 case SPEED_10000: 1085 ctrl |= priv->hw->link.xgmii.speed10000; 1086 break; 1087 case SPEED_2500: 1088 ctrl |= priv->hw->link.speed2500; 1089 break; 1090 case SPEED_1000: 1091 ctrl |= priv->hw->link.speed1000; 1092 break; 1093 default: 1094 return; 1095 } 1096 } else { 1097 switch (speed) { 1098 case SPEED_2500: 1099 ctrl |= priv->hw->link.speed2500; 1100 break; 1101 case SPEED_1000: 1102 ctrl |= priv->hw->link.speed1000; 1103 break; 1104 case SPEED_100: 1105 ctrl |= priv->hw->link.speed100; 1106 break; 1107 case SPEED_10: 1108 ctrl |= priv->hw->link.speed10; 1109 break; 1110 default: 1111 return; 1112 } 1113 } 1114 1115 priv->speed = speed; 1116 1117 if (priv->plat->fix_mac_speed) 1118 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1119 1120 if (!duplex) 1121 ctrl &= ~priv->hw->link.duplex; 1122 else 1123 ctrl |= priv->hw->link.duplex; 1124 1125 /* Flow Control operation */ 1126 if (tx_pause && rx_pause) 1127 stmmac_mac_flow_ctrl(priv, duplex); 1128 1129 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1130 1131 stmmac_mac_set(priv, priv->ioaddr, true); 1132 if (phy && priv->dma_cap.eee) { 1133 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1134 priv->eee_enabled = stmmac_eee_init(priv); 1135 priv->tx_lpi_enabled = priv->eee_enabled; 1136 stmmac_set_eee_pls(priv, priv->hw, true); 1137 } 1138 1139 if (priv->dma_cap.fpesel) 1140 stmmac_fpe_link_state_handle(priv, true); 1141 } 1142 1143 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1144 .validate = stmmac_validate, 1145 .mac_config = stmmac_mac_config, 1146 .mac_link_down = stmmac_mac_link_down, 1147 .mac_link_up = stmmac_mac_link_up, 1148 }; 1149 1150 /** 1151 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1152 * @priv: driver private structure 1153 * Description: this is to verify if the HW supports the PCS. 1154 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1155 * configured for the TBI, RTBI, or SGMII PHY interface. 1156 */ 1157 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1158 { 1159 int interface = priv->plat->interface; 1160 1161 if (priv->dma_cap.pcs) { 1162 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1163 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1164 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1165 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1166 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1167 priv->hw->pcs = STMMAC_PCS_RGMII; 1168 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1169 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1170 priv->hw->pcs = STMMAC_PCS_SGMII; 1171 } 1172 } 1173 } 1174 1175 /** 1176 * stmmac_init_phy - PHY initialization 1177 * @dev: net device structure 1178 * Description: it initializes the driver's PHY state, and attaches the PHY 1179 * to the mac driver. 1180 * Return value: 1181 * 0 on success 1182 */ 1183 static int stmmac_init_phy(struct net_device *dev) 1184 { 1185 struct stmmac_priv *priv = netdev_priv(dev); 1186 struct device_node *node; 1187 int ret; 1188 1189 node = priv->plat->phylink_node; 1190 1191 if (node) 1192 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1193 1194 /* Some DT bindings do not set-up the PHY handle. Let's try to 1195 * manually parse it 1196 */ 1197 if (!node || ret) { 1198 int addr = priv->plat->phy_addr; 1199 struct phy_device *phydev; 1200 1201 phydev = mdiobus_get_phy(priv->mii, addr); 1202 if (!phydev) { 1203 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1204 return -ENODEV; 1205 } 1206 1207 ret = phylink_connect_phy(priv->phylink, phydev); 1208 } 1209 1210 if (!priv->plat->pmt) { 1211 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1212 1213 phylink_ethtool_get_wol(priv->phylink, &wol); 1214 device_set_wakeup_capable(priv->device, !!wol.supported); 1215 } 1216 1217 return ret; 1218 } 1219 1220 static int stmmac_phy_setup(struct stmmac_priv *priv) 1221 { 1222 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1223 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1224 int mode = priv->plat->phy_interface; 1225 struct phylink *phylink; 1226 1227 priv->phylink_config.dev = &priv->dev->dev; 1228 priv->phylink_config.type = PHYLINK_NETDEV; 1229 priv->phylink_config.pcs_poll = true; 1230 if (priv->plat->mdio_bus_data) 1231 priv->phylink_config.ovr_an_inband = 1232 mdio_bus_data->xpcs_an_inband; 1233 1234 if (!fwnode) 1235 fwnode = dev_fwnode(priv->device); 1236 1237 phylink = phylink_create(&priv->phylink_config, fwnode, 1238 mode, &stmmac_phylink_mac_ops); 1239 if (IS_ERR(phylink)) 1240 return PTR_ERR(phylink); 1241 1242 if (priv->hw->xpcs) 1243 phylink_set_pcs(phylink, &priv->hw->xpcs->pcs); 1244 1245 priv->phylink = phylink; 1246 return 0; 1247 } 1248 1249 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1250 { 1251 u32 rx_cnt = priv->plat->rx_queues_to_use; 1252 unsigned int desc_size; 1253 void *head_rx; 1254 u32 queue; 1255 1256 /* Display RX rings */ 1257 for (queue = 0; queue < rx_cnt; queue++) { 1258 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1259 1260 pr_info("\tRX Queue %u rings\n", queue); 1261 1262 if (priv->extend_desc) { 1263 head_rx = (void *)rx_q->dma_erx; 1264 desc_size = sizeof(struct dma_extended_desc); 1265 } else { 1266 head_rx = (void *)rx_q->dma_rx; 1267 desc_size = sizeof(struct dma_desc); 1268 } 1269 1270 /* Display RX ring */ 1271 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1272 rx_q->dma_rx_phy, desc_size); 1273 } 1274 } 1275 1276 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1277 { 1278 u32 tx_cnt = priv->plat->tx_queues_to_use; 1279 unsigned int desc_size; 1280 void *head_tx; 1281 u32 queue; 1282 1283 /* Display TX rings */ 1284 for (queue = 0; queue < tx_cnt; queue++) { 1285 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1286 1287 pr_info("\tTX Queue %d rings\n", queue); 1288 1289 if (priv->extend_desc) { 1290 head_tx = (void *)tx_q->dma_etx; 1291 desc_size = sizeof(struct dma_extended_desc); 1292 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1293 head_tx = (void *)tx_q->dma_entx; 1294 desc_size = sizeof(struct dma_edesc); 1295 } else { 1296 head_tx = (void *)tx_q->dma_tx; 1297 desc_size = sizeof(struct dma_desc); 1298 } 1299 1300 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1301 tx_q->dma_tx_phy, desc_size); 1302 } 1303 } 1304 1305 static void stmmac_display_rings(struct stmmac_priv *priv) 1306 { 1307 /* Display RX ring */ 1308 stmmac_display_rx_rings(priv); 1309 1310 /* Display TX ring */ 1311 stmmac_display_tx_rings(priv); 1312 } 1313 1314 static int stmmac_set_bfsize(int mtu, int bufsize) 1315 { 1316 int ret = bufsize; 1317 1318 if (mtu >= BUF_SIZE_8KiB) 1319 ret = BUF_SIZE_16KiB; 1320 else if (mtu >= BUF_SIZE_4KiB) 1321 ret = BUF_SIZE_8KiB; 1322 else if (mtu >= BUF_SIZE_2KiB) 1323 ret = BUF_SIZE_4KiB; 1324 else if (mtu > DEFAULT_BUFSIZE) 1325 ret = BUF_SIZE_2KiB; 1326 else 1327 ret = DEFAULT_BUFSIZE; 1328 1329 return ret; 1330 } 1331 1332 /** 1333 * stmmac_clear_rx_descriptors - clear RX descriptors 1334 * @priv: driver private structure 1335 * @queue: RX queue index 1336 * Description: this function is called to clear the RX descriptors 1337 * in case of both basic and extended descriptors are used. 1338 */ 1339 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1340 { 1341 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1342 int i; 1343 1344 /* Clear the RX descriptors */ 1345 for (i = 0; i < priv->dma_rx_size; i++) 1346 if (priv->extend_desc) 1347 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1348 priv->use_riwt, priv->mode, 1349 (i == priv->dma_rx_size - 1), 1350 priv->dma_buf_sz); 1351 else 1352 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1353 priv->use_riwt, priv->mode, 1354 (i == priv->dma_rx_size - 1), 1355 priv->dma_buf_sz); 1356 } 1357 1358 /** 1359 * stmmac_clear_tx_descriptors - clear tx descriptors 1360 * @priv: driver private structure 1361 * @queue: TX queue index. 1362 * Description: this function is called to clear the TX descriptors 1363 * in case of both basic and extended descriptors are used. 1364 */ 1365 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1366 { 1367 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1368 int i; 1369 1370 /* Clear the TX descriptors */ 1371 for (i = 0; i < priv->dma_tx_size; i++) { 1372 int last = (i == (priv->dma_tx_size - 1)); 1373 struct dma_desc *p; 1374 1375 if (priv->extend_desc) 1376 p = &tx_q->dma_etx[i].basic; 1377 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1378 p = &tx_q->dma_entx[i].basic; 1379 else 1380 p = &tx_q->dma_tx[i]; 1381 1382 stmmac_init_tx_desc(priv, p, priv->mode, last); 1383 } 1384 } 1385 1386 /** 1387 * stmmac_clear_descriptors - clear descriptors 1388 * @priv: driver private structure 1389 * Description: this function is called to clear the TX and RX descriptors 1390 * in case of both basic and extended descriptors are used. 1391 */ 1392 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1393 { 1394 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1395 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1396 u32 queue; 1397 1398 /* Clear the RX descriptors */ 1399 for (queue = 0; queue < rx_queue_cnt; queue++) 1400 stmmac_clear_rx_descriptors(priv, queue); 1401 1402 /* Clear the TX descriptors */ 1403 for (queue = 0; queue < tx_queue_cnt; queue++) 1404 stmmac_clear_tx_descriptors(priv, queue); 1405 } 1406 1407 /** 1408 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1409 * @priv: driver private structure 1410 * @p: descriptor pointer 1411 * @i: descriptor index 1412 * @flags: gfp flag 1413 * @queue: RX queue index 1414 * Description: this function is called to allocate a receive buffer, perform 1415 * the DMA mapping and init the descriptor. 1416 */ 1417 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1418 int i, gfp_t flags, u32 queue) 1419 { 1420 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1421 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1422 1423 if (!buf->page) { 1424 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1425 if (!buf->page) 1426 return -ENOMEM; 1427 buf->page_offset = stmmac_rx_offset(priv); 1428 } 1429 1430 if (priv->sph && !buf->sec_page) { 1431 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1432 if (!buf->sec_page) 1433 return -ENOMEM; 1434 1435 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1436 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1437 } else { 1438 buf->sec_page = NULL; 1439 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1440 } 1441 1442 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1443 1444 stmmac_set_desc_addr(priv, p, buf->addr); 1445 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1446 stmmac_init_desc3(priv, p); 1447 1448 return 0; 1449 } 1450 1451 /** 1452 * stmmac_free_rx_buffer - free RX dma buffers 1453 * @priv: private structure 1454 * @queue: RX queue index 1455 * @i: buffer index. 1456 */ 1457 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1458 { 1459 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1460 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1461 1462 if (buf->page) 1463 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1464 buf->page = NULL; 1465 1466 if (buf->sec_page) 1467 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1468 buf->sec_page = NULL; 1469 } 1470 1471 /** 1472 * stmmac_free_tx_buffer - free RX dma buffers 1473 * @priv: private structure 1474 * @queue: RX queue index 1475 * @i: buffer index. 1476 */ 1477 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1478 { 1479 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1480 1481 if (tx_q->tx_skbuff_dma[i].buf && 1482 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1483 if (tx_q->tx_skbuff_dma[i].map_as_page) 1484 dma_unmap_page(priv->device, 1485 tx_q->tx_skbuff_dma[i].buf, 1486 tx_q->tx_skbuff_dma[i].len, 1487 DMA_TO_DEVICE); 1488 else 1489 dma_unmap_single(priv->device, 1490 tx_q->tx_skbuff_dma[i].buf, 1491 tx_q->tx_skbuff_dma[i].len, 1492 DMA_TO_DEVICE); 1493 } 1494 1495 if (tx_q->xdpf[i] && 1496 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1497 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1498 xdp_return_frame(tx_q->xdpf[i]); 1499 tx_q->xdpf[i] = NULL; 1500 } 1501 1502 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1503 tx_q->xsk_frames_done++; 1504 1505 if (tx_q->tx_skbuff[i] && 1506 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1507 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1508 tx_q->tx_skbuff[i] = NULL; 1509 } 1510 1511 tx_q->tx_skbuff_dma[i].buf = 0; 1512 tx_q->tx_skbuff_dma[i].map_as_page = false; 1513 } 1514 1515 /** 1516 * dma_free_rx_skbufs - free RX dma buffers 1517 * @priv: private structure 1518 * @queue: RX queue index 1519 */ 1520 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1521 { 1522 int i; 1523 1524 for (i = 0; i < priv->dma_rx_size; i++) 1525 stmmac_free_rx_buffer(priv, queue, i); 1526 } 1527 1528 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1529 gfp_t flags) 1530 { 1531 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1532 int i; 1533 1534 for (i = 0; i < priv->dma_rx_size; i++) { 1535 struct dma_desc *p; 1536 int ret; 1537 1538 if (priv->extend_desc) 1539 p = &((rx_q->dma_erx + i)->basic); 1540 else 1541 p = rx_q->dma_rx + i; 1542 1543 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1544 queue); 1545 if (ret) 1546 return ret; 1547 1548 rx_q->buf_alloc_num++; 1549 } 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1556 * @priv: private structure 1557 * @queue: RX queue index 1558 */ 1559 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1560 { 1561 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1562 int i; 1563 1564 for (i = 0; i < priv->dma_rx_size; i++) { 1565 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1566 1567 if (!buf->xdp) 1568 continue; 1569 1570 xsk_buff_free(buf->xdp); 1571 buf->xdp = NULL; 1572 } 1573 } 1574 1575 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1576 { 1577 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1578 int i; 1579 1580 for (i = 0; i < priv->dma_rx_size; i++) { 1581 struct stmmac_rx_buffer *buf; 1582 dma_addr_t dma_addr; 1583 struct dma_desc *p; 1584 1585 if (priv->extend_desc) 1586 p = (struct dma_desc *)(rx_q->dma_erx + i); 1587 else 1588 p = rx_q->dma_rx + i; 1589 1590 buf = &rx_q->buf_pool[i]; 1591 1592 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1593 if (!buf->xdp) 1594 return -ENOMEM; 1595 1596 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1597 stmmac_set_desc_addr(priv, p, dma_addr); 1598 rx_q->buf_alloc_num++; 1599 } 1600 1601 return 0; 1602 } 1603 1604 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1605 { 1606 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1607 return NULL; 1608 1609 return xsk_get_pool_from_qid(priv->dev, queue); 1610 } 1611 1612 /** 1613 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1614 * @priv: driver private structure 1615 * @queue: RX queue index 1616 * @flags: gfp flag. 1617 * Description: this function initializes the DMA RX descriptors 1618 * and allocates the socket buffers. It supports the chained and ring 1619 * modes. 1620 */ 1621 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1622 { 1623 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1624 int ret; 1625 1626 netif_dbg(priv, probe, priv->dev, 1627 "(%s) dma_rx_phy=0x%08x\n", __func__, 1628 (u32)rx_q->dma_rx_phy); 1629 1630 stmmac_clear_rx_descriptors(priv, queue); 1631 1632 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1633 1634 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1635 1636 if (rx_q->xsk_pool) { 1637 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1638 MEM_TYPE_XSK_BUFF_POOL, 1639 NULL)); 1640 netdev_info(priv->dev, 1641 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1642 rx_q->queue_index); 1643 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1644 } else { 1645 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1646 MEM_TYPE_PAGE_POOL, 1647 rx_q->page_pool)); 1648 netdev_info(priv->dev, 1649 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1650 rx_q->queue_index); 1651 } 1652 1653 if (rx_q->xsk_pool) { 1654 /* RX XDP ZC buffer pool may not be populated, e.g. 1655 * xdpsock TX-only. 1656 */ 1657 stmmac_alloc_rx_buffers_zc(priv, queue); 1658 } else { 1659 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1660 if (ret < 0) 1661 return -ENOMEM; 1662 } 1663 1664 rx_q->cur_rx = 0; 1665 rx_q->dirty_rx = 0; 1666 1667 /* Setup the chained descriptor addresses */ 1668 if (priv->mode == STMMAC_CHAIN_MODE) { 1669 if (priv->extend_desc) 1670 stmmac_mode_init(priv, rx_q->dma_erx, 1671 rx_q->dma_rx_phy, 1672 priv->dma_rx_size, 1); 1673 else 1674 stmmac_mode_init(priv, rx_q->dma_rx, 1675 rx_q->dma_rx_phy, 1676 priv->dma_rx_size, 0); 1677 } 1678 1679 return 0; 1680 } 1681 1682 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1683 { 1684 struct stmmac_priv *priv = netdev_priv(dev); 1685 u32 rx_count = priv->plat->rx_queues_to_use; 1686 u32 queue; 1687 int ret; 1688 1689 /* RX INITIALIZATION */ 1690 netif_dbg(priv, probe, priv->dev, 1691 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1692 1693 for (queue = 0; queue < rx_count; queue++) { 1694 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1695 if (ret) 1696 goto err_init_rx_buffers; 1697 } 1698 1699 return 0; 1700 1701 err_init_rx_buffers: 1702 while (queue >= 0) { 1703 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1704 1705 if (rx_q->xsk_pool) 1706 dma_free_rx_xskbufs(priv, queue); 1707 else 1708 dma_free_rx_skbufs(priv, queue); 1709 1710 rx_q->buf_alloc_num = 0; 1711 rx_q->xsk_pool = NULL; 1712 1713 if (queue == 0) 1714 break; 1715 1716 queue--; 1717 } 1718 1719 return ret; 1720 } 1721 1722 /** 1723 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1724 * @priv: driver private structure 1725 * @queue : TX queue index 1726 * Description: this function initializes the DMA TX descriptors 1727 * and allocates the socket buffers. It supports the chained and ring 1728 * modes. 1729 */ 1730 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1731 { 1732 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1733 int i; 1734 1735 netif_dbg(priv, probe, priv->dev, 1736 "(%s) dma_tx_phy=0x%08x\n", __func__, 1737 (u32)tx_q->dma_tx_phy); 1738 1739 /* Setup the chained descriptor addresses */ 1740 if (priv->mode == STMMAC_CHAIN_MODE) { 1741 if (priv->extend_desc) 1742 stmmac_mode_init(priv, tx_q->dma_etx, 1743 tx_q->dma_tx_phy, 1744 priv->dma_tx_size, 1); 1745 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1746 stmmac_mode_init(priv, tx_q->dma_tx, 1747 tx_q->dma_tx_phy, 1748 priv->dma_tx_size, 0); 1749 } 1750 1751 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1752 1753 for (i = 0; i < priv->dma_tx_size; i++) { 1754 struct dma_desc *p; 1755 1756 if (priv->extend_desc) 1757 p = &((tx_q->dma_etx + i)->basic); 1758 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1759 p = &((tx_q->dma_entx + i)->basic); 1760 else 1761 p = tx_q->dma_tx + i; 1762 1763 stmmac_clear_desc(priv, p); 1764 1765 tx_q->tx_skbuff_dma[i].buf = 0; 1766 tx_q->tx_skbuff_dma[i].map_as_page = false; 1767 tx_q->tx_skbuff_dma[i].len = 0; 1768 tx_q->tx_skbuff_dma[i].last_segment = false; 1769 tx_q->tx_skbuff[i] = NULL; 1770 } 1771 1772 tx_q->dirty_tx = 0; 1773 tx_q->cur_tx = 0; 1774 tx_q->mss = 0; 1775 1776 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1777 1778 return 0; 1779 } 1780 1781 static int init_dma_tx_desc_rings(struct net_device *dev) 1782 { 1783 struct stmmac_priv *priv = netdev_priv(dev); 1784 u32 tx_queue_cnt; 1785 u32 queue; 1786 1787 tx_queue_cnt = priv->plat->tx_queues_to_use; 1788 1789 for (queue = 0; queue < tx_queue_cnt; queue++) 1790 __init_dma_tx_desc_rings(priv, queue); 1791 1792 return 0; 1793 } 1794 1795 /** 1796 * init_dma_desc_rings - init the RX/TX descriptor rings 1797 * @dev: net device structure 1798 * @flags: gfp flag. 1799 * Description: this function initializes the DMA RX/TX descriptors 1800 * and allocates the socket buffers. It supports the chained and ring 1801 * modes. 1802 */ 1803 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1804 { 1805 struct stmmac_priv *priv = netdev_priv(dev); 1806 int ret; 1807 1808 ret = init_dma_rx_desc_rings(dev, flags); 1809 if (ret) 1810 return ret; 1811 1812 ret = init_dma_tx_desc_rings(dev); 1813 1814 stmmac_clear_descriptors(priv); 1815 1816 if (netif_msg_hw(priv)) 1817 stmmac_display_rings(priv); 1818 1819 return ret; 1820 } 1821 1822 /** 1823 * dma_free_tx_skbufs - free TX dma buffers 1824 * @priv: private structure 1825 * @queue: TX queue index 1826 */ 1827 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1828 { 1829 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1830 int i; 1831 1832 tx_q->xsk_frames_done = 0; 1833 1834 for (i = 0; i < priv->dma_tx_size; i++) 1835 stmmac_free_tx_buffer(priv, queue, i); 1836 1837 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1838 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1839 tx_q->xsk_frames_done = 0; 1840 tx_q->xsk_pool = NULL; 1841 } 1842 } 1843 1844 /** 1845 * stmmac_free_tx_skbufs - free TX skb buffers 1846 * @priv: private structure 1847 */ 1848 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1849 { 1850 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1851 u32 queue; 1852 1853 for (queue = 0; queue < tx_queue_cnt; queue++) 1854 dma_free_tx_skbufs(priv, queue); 1855 } 1856 1857 /** 1858 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1859 * @priv: private structure 1860 * @queue: RX queue index 1861 */ 1862 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1863 { 1864 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1865 1866 /* Release the DMA RX socket buffers */ 1867 if (rx_q->xsk_pool) 1868 dma_free_rx_xskbufs(priv, queue); 1869 else 1870 dma_free_rx_skbufs(priv, queue); 1871 1872 rx_q->buf_alloc_num = 0; 1873 rx_q->xsk_pool = NULL; 1874 1875 /* Free DMA regions of consistent memory previously allocated */ 1876 if (!priv->extend_desc) 1877 dma_free_coherent(priv->device, priv->dma_rx_size * 1878 sizeof(struct dma_desc), 1879 rx_q->dma_rx, rx_q->dma_rx_phy); 1880 else 1881 dma_free_coherent(priv->device, priv->dma_rx_size * 1882 sizeof(struct dma_extended_desc), 1883 rx_q->dma_erx, rx_q->dma_rx_phy); 1884 1885 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1886 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1887 1888 kfree(rx_q->buf_pool); 1889 if (rx_q->page_pool) 1890 page_pool_destroy(rx_q->page_pool); 1891 } 1892 1893 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1894 { 1895 u32 rx_count = priv->plat->rx_queues_to_use; 1896 u32 queue; 1897 1898 /* Free RX queue resources */ 1899 for (queue = 0; queue < rx_count; queue++) 1900 __free_dma_rx_desc_resources(priv, queue); 1901 } 1902 1903 /** 1904 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1905 * @priv: private structure 1906 * @queue: TX queue index 1907 */ 1908 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1909 { 1910 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1911 size_t size; 1912 void *addr; 1913 1914 /* Release the DMA TX socket buffers */ 1915 dma_free_tx_skbufs(priv, queue); 1916 1917 if (priv->extend_desc) { 1918 size = sizeof(struct dma_extended_desc); 1919 addr = tx_q->dma_etx; 1920 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1921 size = sizeof(struct dma_edesc); 1922 addr = tx_q->dma_entx; 1923 } else { 1924 size = sizeof(struct dma_desc); 1925 addr = tx_q->dma_tx; 1926 } 1927 1928 size *= priv->dma_tx_size; 1929 1930 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1931 1932 kfree(tx_q->tx_skbuff_dma); 1933 kfree(tx_q->tx_skbuff); 1934 } 1935 1936 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1937 { 1938 u32 tx_count = priv->plat->tx_queues_to_use; 1939 u32 queue; 1940 1941 /* Free TX queue resources */ 1942 for (queue = 0; queue < tx_count; queue++) 1943 __free_dma_tx_desc_resources(priv, queue); 1944 } 1945 1946 /** 1947 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1948 * @priv: private structure 1949 * @queue: RX queue index 1950 * Description: according to which descriptor can be used (extend or basic) 1951 * this function allocates the resources for TX and RX paths. In case of 1952 * reception, for example, it pre-allocated the RX socket buffer in order to 1953 * allow zero-copy mechanism. 1954 */ 1955 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1956 { 1957 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1958 struct stmmac_channel *ch = &priv->channel[queue]; 1959 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1960 struct page_pool_params pp_params = { 0 }; 1961 unsigned int num_pages; 1962 unsigned int napi_id; 1963 int ret; 1964 1965 rx_q->queue_index = queue; 1966 rx_q->priv_data = priv; 1967 1968 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1969 pp_params.pool_size = priv->dma_rx_size; 1970 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1971 pp_params.order = ilog2(num_pages); 1972 pp_params.nid = dev_to_node(priv->device); 1973 pp_params.dev = priv->device; 1974 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1975 pp_params.offset = stmmac_rx_offset(priv); 1976 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 1977 1978 rx_q->page_pool = page_pool_create(&pp_params); 1979 if (IS_ERR(rx_q->page_pool)) { 1980 ret = PTR_ERR(rx_q->page_pool); 1981 rx_q->page_pool = NULL; 1982 return ret; 1983 } 1984 1985 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1986 sizeof(*rx_q->buf_pool), 1987 GFP_KERNEL); 1988 if (!rx_q->buf_pool) 1989 return -ENOMEM; 1990 1991 if (priv->extend_desc) { 1992 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1993 priv->dma_rx_size * 1994 sizeof(struct dma_extended_desc), 1995 &rx_q->dma_rx_phy, 1996 GFP_KERNEL); 1997 if (!rx_q->dma_erx) 1998 return -ENOMEM; 1999 2000 } else { 2001 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2002 priv->dma_rx_size * 2003 sizeof(struct dma_desc), 2004 &rx_q->dma_rx_phy, 2005 GFP_KERNEL); 2006 if (!rx_q->dma_rx) 2007 return -ENOMEM; 2008 } 2009 2010 if (stmmac_xdp_is_enabled(priv) && 2011 test_bit(queue, priv->af_xdp_zc_qps)) 2012 napi_id = ch->rxtx_napi.napi_id; 2013 else 2014 napi_id = ch->rx_napi.napi_id; 2015 2016 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2017 rx_q->queue_index, 2018 napi_id); 2019 if (ret) { 2020 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2021 return -EINVAL; 2022 } 2023 2024 return 0; 2025 } 2026 2027 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2028 { 2029 u32 rx_count = priv->plat->rx_queues_to_use; 2030 u32 queue; 2031 int ret; 2032 2033 /* RX queues buffers and DMA */ 2034 for (queue = 0; queue < rx_count; queue++) { 2035 ret = __alloc_dma_rx_desc_resources(priv, queue); 2036 if (ret) 2037 goto err_dma; 2038 } 2039 2040 return 0; 2041 2042 err_dma: 2043 free_dma_rx_desc_resources(priv); 2044 2045 return ret; 2046 } 2047 2048 /** 2049 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2050 * @priv: private structure 2051 * @queue: TX queue index 2052 * Description: according to which descriptor can be used (extend or basic) 2053 * this function allocates the resources for TX and RX paths. In case of 2054 * reception, for example, it pre-allocated the RX socket buffer in order to 2055 * allow zero-copy mechanism. 2056 */ 2057 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2058 { 2059 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2060 size_t size; 2061 void *addr; 2062 2063 tx_q->queue_index = queue; 2064 tx_q->priv_data = priv; 2065 2066 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2067 sizeof(*tx_q->tx_skbuff_dma), 2068 GFP_KERNEL); 2069 if (!tx_q->tx_skbuff_dma) 2070 return -ENOMEM; 2071 2072 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2073 sizeof(struct sk_buff *), 2074 GFP_KERNEL); 2075 if (!tx_q->tx_skbuff) 2076 return -ENOMEM; 2077 2078 if (priv->extend_desc) 2079 size = sizeof(struct dma_extended_desc); 2080 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2081 size = sizeof(struct dma_edesc); 2082 else 2083 size = sizeof(struct dma_desc); 2084 2085 size *= priv->dma_tx_size; 2086 2087 addr = dma_alloc_coherent(priv->device, size, 2088 &tx_q->dma_tx_phy, GFP_KERNEL); 2089 if (!addr) 2090 return -ENOMEM; 2091 2092 if (priv->extend_desc) 2093 tx_q->dma_etx = addr; 2094 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2095 tx_q->dma_entx = addr; 2096 else 2097 tx_q->dma_tx = addr; 2098 2099 return 0; 2100 } 2101 2102 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2103 { 2104 u32 tx_count = priv->plat->tx_queues_to_use; 2105 u32 queue; 2106 int ret; 2107 2108 /* TX queues buffers and DMA */ 2109 for (queue = 0; queue < tx_count; queue++) { 2110 ret = __alloc_dma_tx_desc_resources(priv, queue); 2111 if (ret) 2112 goto err_dma; 2113 } 2114 2115 return 0; 2116 2117 err_dma: 2118 free_dma_tx_desc_resources(priv); 2119 return ret; 2120 } 2121 2122 /** 2123 * alloc_dma_desc_resources - alloc TX/RX resources. 2124 * @priv: private structure 2125 * Description: according to which descriptor can be used (extend or basic) 2126 * this function allocates the resources for TX and RX paths. In case of 2127 * reception, for example, it pre-allocated the RX socket buffer in order to 2128 * allow zero-copy mechanism. 2129 */ 2130 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2131 { 2132 /* RX Allocation */ 2133 int ret = alloc_dma_rx_desc_resources(priv); 2134 2135 if (ret) 2136 return ret; 2137 2138 ret = alloc_dma_tx_desc_resources(priv); 2139 2140 return ret; 2141 } 2142 2143 /** 2144 * free_dma_desc_resources - free dma desc resources 2145 * @priv: private structure 2146 */ 2147 static void free_dma_desc_resources(struct stmmac_priv *priv) 2148 { 2149 /* Release the DMA TX socket buffers */ 2150 free_dma_tx_desc_resources(priv); 2151 2152 /* Release the DMA RX socket buffers later 2153 * to ensure all pending XDP_TX buffers are returned. 2154 */ 2155 free_dma_rx_desc_resources(priv); 2156 } 2157 2158 /** 2159 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2160 * @priv: driver private structure 2161 * Description: It is used for enabling the rx queues in the MAC 2162 */ 2163 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2164 { 2165 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2166 int queue; 2167 u8 mode; 2168 2169 for (queue = 0; queue < rx_queues_count; queue++) { 2170 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2171 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2172 } 2173 } 2174 2175 /** 2176 * stmmac_start_rx_dma - start RX DMA channel 2177 * @priv: driver private structure 2178 * @chan: RX channel index 2179 * Description: 2180 * This starts a RX DMA channel 2181 */ 2182 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2183 { 2184 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2185 stmmac_start_rx(priv, priv->ioaddr, chan); 2186 } 2187 2188 /** 2189 * stmmac_start_tx_dma - start TX DMA channel 2190 * @priv: driver private structure 2191 * @chan: TX channel index 2192 * Description: 2193 * This starts a TX DMA channel 2194 */ 2195 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2196 { 2197 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2198 stmmac_start_tx(priv, priv->ioaddr, chan); 2199 } 2200 2201 /** 2202 * stmmac_stop_rx_dma - stop RX DMA channel 2203 * @priv: driver private structure 2204 * @chan: RX channel index 2205 * Description: 2206 * This stops a RX DMA channel 2207 */ 2208 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2209 { 2210 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2211 stmmac_stop_rx(priv, priv->ioaddr, chan); 2212 } 2213 2214 /** 2215 * stmmac_stop_tx_dma - stop TX DMA channel 2216 * @priv: driver private structure 2217 * @chan: TX channel index 2218 * Description: 2219 * This stops a TX DMA channel 2220 */ 2221 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2222 { 2223 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2224 stmmac_stop_tx(priv, priv->ioaddr, chan); 2225 } 2226 2227 /** 2228 * stmmac_start_all_dma - start all RX and TX DMA channels 2229 * @priv: driver private structure 2230 * Description: 2231 * This starts all the RX and TX DMA channels 2232 */ 2233 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2234 { 2235 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2236 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2237 u32 chan = 0; 2238 2239 for (chan = 0; chan < rx_channels_count; chan++) 2240 stmmac_start_rx_dma(priv, chan); 2241 2242 for (chan = 0; chan < tx_channels_count; chan++) 2243 stmmac_start_tx_dma(priv, chan); 2244 } 2245 2246 /** 2247 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2248 * @priv: driver private structure 2249 * Description: 2250 * This stops the RX and TX DMA channels 2251 */ 2252 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2253 { 2254 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2255 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2256 u32 chan = 0; 2257 2258 for (chan = 0; chan < rx_channels_count; chan++) 2259 stmmac_stop_rx_dma(priv, chan); 2260 2261 for (chan = 0; chan < tx_channels_count; chan++) 2262 stmmac_stop_tx_dma(priv, chan); 2263 } 2264 2265 /** 2266 * stmmac_dma_operation_mode - HW DMA operation mode 2267 * @priv: driver private structure 2268 * Description: it is used for configuring the DMA operation mode register in 2269 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2270 */ 2271 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2272 { 2273 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2274 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2275 int rxfifosz = priv->plat->rx_fifo_size; 2276 int txfifosz = priv->plat->tx_fifo_size; 2277 u32 txmode = 0; 2278 u32 rxmode = 0; 2279 u32 chan = 0; 2280 u8 qmode = 0; 2281 2282 if (rxfifosz == 0) 2283 rxfifosz = priv->dma_cap.rx_fifo_size; 2284 if (txfifosz == 0) 2285 txfifosz = priv->dma_cap.tx_fifo_size; 2286 2287 /* Adjust for real per queue fifo size */ 2288 rxfifosz /= rx_channels_count; 2289 txfifosz /= tx_channels_count; 2290 2291 if (priv->plat->force_thresh_dma_mode) { 2292 txmode = tc; 2293 rxmode = tc; 2294 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2295 /* 2296 * In case of GMAC, SF mode can be enabled 2297 * to perform the TX COE in HW. This depends on: 2298 * 1) TX COE if actually supported 2299 * 2) There is no bugged Jumbo frame support 2300 * that needs to not insert csum in the TDES. 2301 */ 2302 txmode = SF_DMA_MODE; 2303 rxmode = SF_DMA_MODE; 2304 priv->xstats.threshold = SF_DMA_MODE; 2305 } else { 2306 txmode = tc; 2307 rxmode = SF_DMA_MODE; 2308 } 2309 2310 /* configure all channels */ 2311 for (chan = 0; chan < rx_channels_count; chan++) { 2312 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2313 u32 buf_size; 2314 2315 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2316 2317 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2318 rxfifosz, qmode); 2319 2320 if (rx_q->xsk_pool) { 2321 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2322 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2323 buf_size, 2324 chan); 2325 } else { 2326 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2327 priv->dma_buf_sz, 2328 chan); 2329 } 2330 } 2331 2332 for (chan = 0; chan < tx_channels_count; chan++) { 2333 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2334 2335 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2336 txfifosz, qmode); 2337 } 2338 } 2339 2340 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2341 { 2342 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2343 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2344 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2345 unsigned int entry = tx_q->cur_tx; 2346 struct dma_desc *tx_desc = NULL; 2347 struct xdp_desc xdp_desc; 2348 bool work_done = true; 2349 2350 /* Avoids TX time-out as we are sharing with slow path */ 2351 nq->trans_start = jiffies; 2352 2353 budget = min(budget, stmmac_tx_avail(priv, queue)); 2354 2355 while (budget-- > 0) { 2356 dma_addr_t dma_addr; 2357 bool set_ic; 2358 2359 /* We are sharing with slow path and stop XSK TX desc submission when 2360 * available TX ring is less than threshold. 2361 */ 2362 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2363 !netif_carrier_ok(priv->dev)) { 2364 work_done = false; 2365 break; 2366 } 2367 2368 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2369 break; 2370 2371 if (likely(priv->extend_desc)) 2372 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2373 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2374 tx_desc = &tx_q->dma_entx[entry].basic; 2375 else 2376 tx_desc = tx_q->dma_tx + entry; 2377 2378 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2379 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2380 2381 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2382 2383 /* To return XDP buffer to XSK pool, we simple call 2384 * xsk_tx_completed(), so we don't need to fill up 2385 * 'buf' and 'xdpf'. 2386 */ 2387 tx_q->tx_skbuff_dma[entry].buf = 0; 2388 tx_q->xdpf[entry] = NULL; 2389 2390 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2391 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2392 tx_q->tx_skbuff_dma[entry].last_segment = true; 2393 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2394 2395 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2396 2397 tx_q->tx_count_frames++; 2398 2399 if (!priv->tx_coal_frames[queue]) 2400 set_ic = false; 2401 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2402 set_ic = true; 2403 else 2404 set_ic = false; 2405 2406 if (set_ic) { 2407 tx_q->tx_count_frames = 0; 2408 stmmac_set_tx_ic(priv, tx_desc); 2409 priv->xstats.tx_set_ic_bit++; 2410 } 2411 2412 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2413 true, priv->mode, true, true, 2414 xdp_desc.len); 2415 2416 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2417 2418 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2419 entry = tx_q->cur_tx; 2420 } 2421 2422 if (tx_desc) { 2423 stmmac_flush_tx_descriptors(priv, queue); 2424 xsk_tx_release(pool); 2425 } 2426 2427 /* Return true if all of the 3 conditions are met 2428 * a) TX Budget is still available 2429 * b) work_done = true when XSK TX desc peek is empty (no more 2430 * pending XSK TX for transmission) 2431 */ 2432 return !!budget && work_done; 2433 } 2434 2435 /** 2436 * stmmac_tx_clean - to manage the transmission completion 2437 * @priv: driver private structure 2438 * @budget: napi budget limiting this functions packet handling 2439 * @queue: TX queue index 2440 * Description: it reclaims the transmit resources after transmission completes. 2441 */ 2442 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2443 { 2444 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2445 unsigned int bytes_compl = 0, pkts_compl = 0; 2446 unsigned int entry, xmits = 0, count = 0; 2447 2448 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2449 2450 priv->xstats.tx_clean++; 2451 2452 tx_q->xsk_frames_done = 0; 2453 2454 entry = tx_q->dirty_tx; 2455 2456 /* Try to clean all TX complete frame in 1 shot */ 2457 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2458 struct xdp_frame *xdpf; 2459 struct sk_buff *skb; 2460 struct dma_desc *p; 2461 int status; 2462 2463 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2464 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2465 xdpf = tx_q->xdpf[entry]; 2466 skb = NULL; 2467 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2468 xdpf = NULL; 2469 skb = tx_q->tx_skbuff[entry]; 2470 } else { 2471 xdpf = NULL; 2472 skb = NULL; 2473 } 2474 2475 if (priv->extend_desc) 2476 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2477 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2478 p = &tx_q->dma_entx[entry].basic; 2479 else 2480 p = tx_q->dma_tx + entry; 2481 2482 status = stmmac_tx_status(priv, &priv->dev->stats, 2483 &priv->xstats, p, priv->ioaddr); 2484 /* Check if the descriptor is owned by the DMA */ 2485 if (unlikely(status & tx_dma_own)) 2486 break; 2487 2488 count++; 2489 2490 /* Make sure descriptor fields are read after reading 2491 * the own bit. 2492 */ 2493 dma_rmb(); 2494 2495 /* Just consider the last segment and ...*/ 2496 if (likely(!(status & tx_not_ls))) { 2497 /* ... verify the status error condition */ 2498 if (unlikely(status & tx_err)) { 2499 priv->dev->stats.tx_errors++; 2500 } else { 2501 priv->dev->stats.tx_packets++; 2502 priv->xstats.tx_pkt_n++; 2503 priv->xstats.txq_stats[queue].tx_pkt_n++; 2504 } 2505 if (skb) 2506 stmmac_get_tx_hwtstamp(priv, p, skb); 2507 } 2508 2509 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2510 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2511 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2512 dma_unmap_page(priv->device, 2513 tx_q->tx_skbuff_dma[entry].buf, 2514 tx_q->tx_skbuff_dma[entry].len, 2515 DMA_TO_DEVICE); 2516 else 2517 dma_unmap_single(priv->device, 2518 tx_q->tx_skbuff_dma[entry].buf, 2519 tx_q->tx_skbuff_dma[entry].len, 2520 DMA_TO_DEVICE); 2521 tx_q->tx_skbuff_dma[entry].buf = 0; 2522 tx_q->tx_skbuff_dma[entry].len = 0; 2523 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2524 } 2525 2526 stmmac_clean_desc3(priv, tx_q, p); 2527 2528 tx_q->tx_skbuff_dma[entry].last_segment = false; 2529 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2530 2531 if (xdpf && 2532 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2533 xdp_return_frame_rx_napi(xdpf); 2534 tx_q->xdpf[entry] = NULL; 2535 } 2536 2537 if (xdpf && 2538 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2539 xdp_return_frame(xdpf); 2540 tx_q->xdpf[entry] = NULL; 2541 } 2542 2543 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2544 tx_q->xsk_frames_done++; 2545 2546 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2547 if (likely(skb)) { 2548 pkts_compl++; 2549 bytes_compl += skb->len; 2550 dev_consume_skb_any(skb); 2551 tx_q->tx_skbuff[entry] = NULL; 2552 } 2553 } 2554 2555 stmmac_release_tx_desc(priv, p, priv->mode); 2556 2557 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2558 } 2559 tx_q->dirty_tx = entry; 2560 2561 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2562 pkts_compl, bytes_compl); 2563 2564 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2565 queue))) && 2566 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2567 2568 netif_dbg(priv, tx_done, priv->dev, 2569 "%s: restart transmit\n", __func__); 2570 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2571 } 2572 2573 if (tx_q->xsk_pool) { 2574 bool work_done; 2575 2576 if (tx_q->xsk_frames_done) 2577 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2578 2579 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2580 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2581 2582 /* For XSK TX, we try to send as many as possible. 2583 * If XSK work done (XSK TX desc empty and budget still 2584 * available), return "budget - 1" to reenable TX IRQ. 2585 * Else, return "budget" to make NAPI continue polling. 2586 */ 2587 work_done = stmmac_xdp_xmit_zc(priv, queue, 2588 STMMAC_XSK_TX_BUDGET_MAX); 2589 if (work_done) 2590 xmits = budget - 1; 2591 else 2592 xmits = budget; 2593 } 2594 2595 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2596 priv->eee_sw_timer_en) { 2597 stmmac_enable_eee_mode(priv); 2598 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2599 } 2600 2601 /* We still have pending packets, let's call for a new scheduling */ 2602 if (tx_q->dirty_tx != tx_q->cur_tx) 2603 hrtimer_start(&tx_q->txtimer, 2604 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2605 HRTIMER_MODE_REL); 2606 2607 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2608 2609 /* Combine decisions from TX clean and XSK TX */ 2610 return max(count, xmits); 2611 } 2612 2613 /** 2614 * stmmac_tx_err - to manage the tx error 2615 * @priv: driver private structure 2616 * @chan: channel index 2617 * Description: it cleans the descriptors and restarts the transmission 2618 * in case of transmission errors. 2619 */ 2620 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2621 { 2622 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2623 2624 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2625 2626 stmmac_stop_tx_dma(priv, chan); 2627 dma_free_tx_skbufs(priv, chan); 2628 stmmac_clear_tx_descriptors(priv, chan); 2629 tx_q->dirty_tx = 0; 2630 tx_q->cur_tx = 0; 2631 tx_q->mss = 0; 2632 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2633 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2634 tx_q->dma_tx_phy, chan); 2635 stmmac_start_tx_dma(priv, chan); 2636 2637 priv->dev->stats.tx_errors++; 2638 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2639 } 2640 2641 /** 2642 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2643 * @priv: driver private structure 2644 * @txmode: TX operating mode 2645 * @rxmode: RX operating mode 2646 * @chan: channel index 2647 * Description: it is used for configuring of the DMA operation mode in 2648 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2649 * mode. 2650 */ 2651 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2652 u32 rxmode, u32 chan) 2653 { 2654 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2655 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2656 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2657 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2658 int rxfifosz = priv->plat->rx_fifo_size; 2659 int txfifosz = priv->plat->tx_fifo_size; 2660 2661 if (rxfifosz == 0) 2662 rxfifosz = priv->dma_cap.rx_fifo_size; 2663 if (txfifosz == 0) 2664 txfifosz = priv->dma_cap.tx_fifo_size; 2665 2666 /* Adjust for real per queue fifo size */ 2667 rxfifosz /= rx_channels_count; 2668 txfifosz /= tx_channels_count; 2669 2670 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2671 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2672 } 2673 2674 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2675 { 2676 int ret; 2677 2678 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2679 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2680 if (ret && (ret != -EINVAL)) { 2681 stmmac_global_err(priv); 2682 return true; 2683 } 2684 2685 return false; 2686 } 2687 2688 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2689 { 2690 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2691 &priv->xstats, chan, dir); 2692 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2693 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2694 struct stmmac_channel *ch = &priv->channel[chan]; 2695 struct napi_struct *rx_napi; 2696 struct napi_struct *tx_napi; 2697 unsigned long flags; 2698 2699 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2700 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2701 2702 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2703 if (napi_schedule_prep(rx_napi)) { 2704 spin_lock_irqsave(&ch->lock, flags); 2705 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2706 spin_unlock_irqrestore(&ch->lock, flags); 2707 __napi_schedule(rx_napi); 2708 } 2709 } 2710 2711 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2712 if (napi_schedule_prep(tx_napi)) { 2713 spin_lock_irqsave(&ch->lock, flags); 2714 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2715 spin_unlock_irqrestore(&ch->lock, flags); 2716 __napi_schedule(tx_napi); 2717 } 2718 } 2719 2720 return status; 2721 } 2722 2723 /** 2724 * stmmac_dma_interrupt - DMA ISR 2725 * @priv: driver private structure 2726 * Description: this is the DMA ISR. It is called by the main ISR. 2727 * It calls the dwmac dma routine and schedule poll method in case of some 2728 * work can be done. 2729 */ 2730 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2731 { 2732 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2733 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2734 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2735 tx_channel_count : rx_channel_count; 2736 u32 chan; 2737 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2738 2739 /* Make sure we never check beyond our status buffer. */ 2740 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2741 channels_to_check = ARRAY_SIZE(status); 2742 2743 for (chan = 0; chan < channels_to_check; chan++) 2744 status[chan] = stmmac_napi_check(priv, chan, 2745 DMA_DIR_RXTX); 2746 2747 for (chan = 0; chan < tx_channel_count; chan++) { 2748 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2749 /* Try to bump up the dma threshold on this failure */ 2750 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2751 (tc <= 256)) { 2752 tc += 64; 2753 if (priv->plat->force_thresh_dma_mode) 2754 stmmac_set_dma_operation_mode(priv, 2755 tc, 2756 tc, 2757 chan); 2758 else 2759 stmmac_set_dma_operation_mode(priv, 2760 tc, 2761 SF_DMA_MODE, 2762 chan); 2763 priv->xstats.threshold = tc; 2764 } 2765 } else if (unlikely(status[chan] == tx_hard_error)) { 2766 stmmac_tx_err(priv, chan); 2767 } 2768 } 2769 } 2770 2771 /** 2772 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2773 * @priv: driver private structure 2774 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2775 */ 2776 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2777 { 2778 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2779 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2780 2781 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2782 2783 if (priv->dma_cap.rmon) { 2784 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2785 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2786 } else 2787 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2788 } 2789 2790 /** 2791 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2792 * @priv: driver private structure 2793 * Description: 2794 * new GMAC chip generations have a new register to indicate the 2795 * presence of the optional feature/functions. 2796 * This can be also used to override the value passed through the 2797 * platform and necessary for old MAC10/100 and GMAC chips. 2798 */ 2799 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2800 { 2801 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2802 } 2803 2804 /** 2805 * stmmac_check_ether_addr - check if the MAC addr is valid 2806 * @priv: driver private structure 2807 * Description: 2808 * it is to verify if the MAC address is valid, in case of failures it 2809 * generates a random MAC address 2810 */ 2811 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2812 { 2813 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2814 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2815 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2816 eth_hw_addr_random(priv->dev); 2817 dev_info(priv->device, "device MAC address %pM\n", 2818 priv->dev->dev_addr); 2819 } 2820 } 2821 2822 /** 2823 * stmmac_init_dma_engine - DMA init. 2824 * @priv: driver private structure 2825 * Description: 2826 * It inits the DMA invoking the specific MAC/GMAC callback. 2827 * Some DMA parameters can be passed from the platform; 2828 * in case of these are not passed a default is kept for the MAC or GMAC. 2829 */ 2830 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2831 { 2832 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2833 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2834 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2835 struct stmmac_rx_queue *rx_q; 2836 struct stmmac_tx_queue *tx_q; 2837 u32 chan = 0; 2838 int atds = 0; 2839 int ret = 0; 2840 2841 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2842 dev_err(priv->device, "Invalid DMA configuration\n"); 2843 return -EINVAL; 2844 } 2845 2846 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2847 atds = 1; 2848 2849 ret = stmmac_reset(priv, priv->ioaddr); 2850 if (ret) { 2851 dev_err(priv->device, "Failed to reset the dma\n"); 2852 return ret; 2853 } 2854 2855 /* DMA Configuration */ 2856 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2857 2858 if (priv->plat->axi) 2859 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2860 2861 /* DMA CSR Channel configuration */ 2862 for (chan = 0; chan < dma_csr_ch; chan++) 2863 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2864 2865 /* DMA RX Channel Configuration */ 2866 for (chan = 0; chan < rx_channels_count; chan++) { 2867 rx_q = &priv->rx_queue[chan]; 2868 2869 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2870 rx_q->dma_rx_phy, chan); 2871 2872 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2873 (rx_q->buf_alloc_num * 2874 sizeof(struct dma_desc)); 2875 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2876 rx_q->rx_tail_addr, chan); 2877 } 2878 2879 /* DMA TX Channel Configuration */ 2880 for (chan = 0; chan < tx_channels_count; chan++) { 2881 tx_q = &priv->tx_queue[chan]; 2882 2883 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2884 tx_q->dma_tx_phy, chan); 2885 2886 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2887 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2888 tx_q->tx_tail_addr, chan); 2889 } 2890 2891 return ret; 2892 } 2893 2894 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2895 { 2896 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2897 2898 hrtimer_start(&tx_q->txtimer, 2899 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2900 HRTIMER_MODE_REL); 2901 } 2902 2903 /** 2904 * stmmac_tx_timer - mitigation sw timer for tx. 2905 * @t: data pointer 2906 * Description: 2907 * This is the timer handler to directly invoke the stmmac_tx_clean. 2908 */ 2909 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2910 { 2911 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2912 struct stmmac_priv *priv = tx_q->priv_data; 2913 struct stmmac_channel *ch; 2914 struct napi_struct *napi; 2915 2916 ch = &priv->channel[tx_q->queue_index]; 2917 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2918 2919 if (likely(napi_schedule_prep(napi))) { 2920 unsigned long flags; 2921 2922 spin_lock_irqsave(&ch->lock, flags); 2923 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2924 spin_unlock_irqrestore(&ch->lock, flags); 2925 __napi_schedule(napi); 2926 } 2927 2928 return HRTIMER_NORESTART; 2929 } 2930 2931 /** 2932 * stmmac_init_coalesce - init mitigation options. 2933 * @priv: driver private structure 2934 * Description: 2935 * This inits the coalesce parameters: i.e. timer rate, 2936 * timer handler and default threshold used for enabling the 2937 * interrupt on completion bit. 2938 */ 2939 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2940 { 2941 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2942 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2943 u32 chan; 2944 2945 for (chan = 0; chan < tx_channel_count; chan++) { 2946 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2947 2948 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2949 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2950 2951 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2952 tx_q->txtimer.function = stmmac_tx_timer; 2953 } 2954 2955 for (chan = 0; chan < rx_channel_count; chan++) 2956 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 2957 } 2958 2959 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2960 { 2961 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2962 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2963 u32 chan; 2964 2965 /* set TX ring length */ 2966 for (chan = 0; chan < tx_channels_count; chan++) 2967 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2968 (priv->dma_tx_size - 1), chan); 2969 2970 /* set RX ring length */ 2971 for (chan = 0; chan < rx_channels_count; chan++) 2972 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2973 (priv->dma_rx_size - 1), chan); 2974 } 2975 2976 /** 2977 * stmmac_set_tx_queue_weight - Set TX queue weight 2978 * @priv: driver private structure 2979 * Description: It is used for setting TX queues weight 2980 */ 2981 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2982 { 2983 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2984 u32 weight; 2985 u32 queue; 2986 2987 for (queue = 0; queue < tx_queues_count; queue++) { 2988 weight = priv->plat->tx_queues_cfg[queue].weight; 2989 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2990 } 2991 } 2992 2993 /** 2994 * stmmac_configure_cbs - Configure CBS in TX queue 2995 * @priv: driver private structure 2996 * Description: It is used for configuring CBS in AVB TX queues 2997 */ 2998 static void stmmac_configure_cbs(struct stmmac_priv *priv) 2999 { 3000 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3001 u32 mode_to_use; 3002 u32 queue; 3003 3004 /* queue 0 is reserved for legacy traffic */ 3005 for (queue = 1; queue < tx_queues_count; queue++) { 3006 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3007 if (mode_to_use == MTL_QUEUE_DCB) 3008 continue; 3009 3010 stmmac_config_cbs(priv, priv->hw, 3011 priv->plat->tx_queues_cfg[queue].send_slope, 3012 priv->plat->tx_queues_cfg[queue].idle_slope, 3013 priv->plat->tx_queues_cfg[queue].high_credit, 3014 priv->plat->tx_queues_cfg[queue].low_credit, 3015 queue); 3016 } 3017 } 3018 3019 /** 3020 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3021 * @priv: driver private structure 3022 * Description: It is used for mapping RX queues to RX dma channels 3023 */ 3024 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3025 { 3026 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3027 u32 queue; 3028 u32 chan; 3029 3030 for (queue = 0; queue < rx_queues_count; queue++) { 3031 chan = priv->plat->rx_queues_cfg[queue].chan; 3032 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3033 } 3034 } 3035 3036 /** 3037 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3038 * @priv: driver private structure 3039 * Description: It is used for configuring the RX Queue Priority 3040 */ 3041 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3042 { 3043 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3044 u32 queue; 3045 u32 prio; 3046 3047 for (queue = 0; queue < rx_queues_count; queue++) { 3048 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3049 continue; 3050 3051 prio = priv->plat->rx_queues_cfg[queue].prio; 3052 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3053 } 3054 } 3055 3056 /** 3057 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3058 * @priv: driver private structure 3059 * Description: It is used for configuring the TX Queue Priority 3060 */ 3061 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3062 { 3063 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3064 u32 queue; 3065 u32 prio; 3066 3067 for (queue = 0; queue < tx_queues_count; queue++) { 3068 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3069 continue; 3070 3071 prio = priv->plat->tx_queues_cfg[queue].prio; 3072 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3073 } 3074 } 3075 3076 /** 3077 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3078 * @priv: driver private structure 3079 * Description: It is used for configuring the RX queue routing 3080 */ 3081 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3082 { 3083 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3084 u32 queue; 3085 u8 packet; 3086 3087 for (queue = 0; queue < rx_queues_count; queue++) { 3088 /* no specific packet type routing specified for the queue */ 3089 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3090 continue; 3091 3092 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3093 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3094 } 3095 } 3096 3097 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3098 { 3099 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3100 priv->rss.enable = false; 3101 return; 3102 } 3103 3104 if (priv->dev->features & NETIF_F_RXHASH) 3105 priv->rss.enable = true; 3106 else 3107 priv->rss.enable = false; 3108 3109 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3110 priv->plat->rx_queues_to_use); 3111 } 3112 3113 /** 3114 * stmmac_mtl_configuration - Configure MTL 3115 * @priv: driver private structure 3116 * Description: It is used for configurring MTL 3117 */ 3118 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3119 { 3120 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3121 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3122 3123 if (tx_queues_count > 1) 3124 stmmac_set_tx_queue_weight(priv); 3125 3126 /* Configure MTL RX algorithms */ 3127 if (rx_queues_count > 1) 3128 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3129 priv->plat->rx_sched_algorithm); 3130 3131 /* Configure MTL TX algorithms */ 3132 if (tx_queues_count > 1) 3133 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3134 priv->plat->tx_sched_algorithm); 3135 3136 /* Configure CBS in AVB TX queues */ 3137 if (tx_queues_count > 1) 3138 stmmac_configure_cbs(priv); 3139 3140 /* Map RX MTL to DMA channels */ 3141 stmmac_rx_queue_dma_chan_map(priv); 3142 3143 /* Enable MAC RX Queues */ 3144 stmmac_mac_enable_rx_queues(priv); 3145 3146 /* Set RX priorities */ 3147 if (rx_queues_count > 1) 3148 stmmac_mac_config_rx_queues_prio(priv); 3149 3150 /* Set TX priorities */ 3151 if (tx_queues_count > 1) 3152 stmmac_mac_config_tx_queues_prio(priv); 3153 3154 /* Set RX routing */ 3155 if (rx_queues_count > 1) 3156 stmmac_mac_config_rx_queues_routing(priv); 3157 3158 /* Receive Side Scaling */ 3159 if (rx_queues_count > 1) 3160 stmmac_mac_config_rss(priv); 3161 } 3162 3163 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3164 { 3165 if (priv->dma_cap.asp) { 3166 netdev_info(priv->dev, "Enabling Safety Features\n"); 3167 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3168 priv->plat->safety_feat_cfg); 3169 } else { 3170 netdev_info(priv->dev, "No Safety Features support found\n"); 3171 } 3172 } 3173 3174 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3175 { 3176 char *name; 3177 3178 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3179 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3180 3181 name = priv->wq_name; 3182 sprintf(name, "%s-fpe", priv->dev->name); 3183 3184 priv->fpe_wq = create_singlethread_workqueue(name); 3185 if (!priv->fpe_wq) { 3186 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3187 3188 return -ENOMEM; 3189 } 3190 netdev_info(priv->dev, "FPE workqueue start"); 3191 3192 return 0; 3193 } 3194 3195 /** 3196 * stmmac_hw_setup - setup mac in a usable state. 3197 * @dev : pointer to the device structure. 3198 * @init_ptp: initialize PTP if set 3199 * Description: 3200 * this is the main function to setup the HW in a usable state because the 3201 * dma engine is reset, the core registers are configured (e.g. AXI, 3202 * Checksum features, timers). The DMA is ready to start receiving and 3203 * transmitting. 3204 * Return value: 3205 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3206 * file on failure. 3207 */ 3208 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 3209 { 3210 struct stmmac_priv *priv = netdev_priv(dev); 3211 u32 rx_cnt = priv->plat->rx_queues_to_use; 3212 u32 tx_cnt = priv->plat->tx_queues_to_use; 3213 bool sph_en; 3214 u32 chan; 3215 int ret; 3216 3217 /* DMA initialization and SW reset */ 3218 ret = stmmac_init_dma_engine(priv); 3219 if (ret < 0) { 3220 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3221 __func__); 3222 return ret; 3223 } 3224 3225 /* Copy the MAC addr into the HW */ 3226 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3227 3228 /* PS and related bits will be programmed according to the speed */ 3229 if (priv->hw->pcs) { 3230 int speed = priv->plat->mac_port_sel_speed; 3231 3232 if ((speed == SPEED_10) || (speed == SPEED_100) || 3233 (speed == SPEED_1000)) { 3234 priv->hw->ps = speed; 3235 } else { 3236 dev_warn(priv->device, "invalid port speed\n"); 3237 priv->hw->ps = 0; 3238 } 3239 } 3240 3241 /* Initialize the MAC Core */ 3242 stmmac_core_init(priv, priv->hw, dev); 3243 3244 /* Initialize MTL*/ 3245 stmmac_mtl_configuration(priv); 3246 3247 /* Initialize Safety Features */ 3248 stmmac_safety_feat_configuration(priv); 3249 3250 ret = stmmac_rx_ipc(priv, priv->hw); 3251 if (!ret) { 3252 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3253 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3254 priv->hw->rx_csum = 0; 3255 } 3256 3257 /* Enable the MAC Rx/Tx */ 3258 stmmac_mac_set(priv, priv->ioaddr, true); 3259 3260 /* Set the HW DMA mode and the COE */ 3261 stmmac_dma_operation_mode(priv); 3262 3263 stmmac_mmc_setup(priv); 3264 3265 if (init_ptp) { 3266 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3267 if (ret < 0) 3268 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 3269 3270 ret = stmmac_init_ptp(priv); 3271 if (ret == -EOPNOTSUPP) 3272 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3273 else if (ret) 3274 netdev_warn(priv->dev, "PTP init failed\n"); 3275 } 3276 3277 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3278 3279 /* Convert the timer from msec to usec */ 3280 if (!priv->tx_lpi_timer) 3281 priv->tx_lpi_timer = eee_timer * 1000; 3282 3283 if (priv->use_riwt) { 3284 u32 queue; 3285 3286 for (queue = 0; queue < rx_cnt; queue++) { 3287 if (!priv->rx_riwt[queue]) 3288 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3289 3290 stmmac_rx_watchdog(priv, priv->ioaddr, 3291 priv->rx_riwt[queue], queue); 3292 } 3293 } 3294 3295 if (priv->hw->pcs) 3296 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3297 3298 /* set TX and RX rings length */ 3299 stmmac_set_rings_length(priv); 3300 3301 /* Enable TSO */ 3302 if (priv->tso) { 3303 for (chan = 0; chan < tx_cnt; chan++) { 3304 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3305 3306 /* TSO and TBS cannot co-exist */ 3307 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3308 continue; 3309 3310 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3311 } 3312 } 3313 3314 /* Enable Split Header */ 3315 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3316 for (chan = 0; chan < rx_cnt; chan++) 3317 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3318 3319 3320 /* VLAN Tag Insertion */ 3321 if (priv->dma_cap.vlins) 3322 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3323 3324 /* TBS */ 3325 for (chan = 0; chan < tx_cnt; chan++) { 3326 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3327 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3328 3329 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3330 } 3331 3332 /* Configure real RX and TX queues */ 3333 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3334 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3335 3336 /* Start the ball rolling... */ 3337 stmmac_start_all_dma(priv); 3338 3339 if (priv->dma_cap.fpesel) { 3340 stmmac_fpe_start_wq(priv); 3341 3342 if (priv->plat->fpe_cfg->enable) 3343 stmmac_fpe_handshake(priv, true); 3344 } 3345 3346 return 0; 3347 } 3348 3349 static void stmmac_hw_teardown(struct net_device *dev) 3350 { 3351 struct stmmac_priv *priv = netdev_priv(dev); 3352 3353 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3354 } 3355 3356 static void stmmac_free_irq(struct net_device *dev, 3357 enum request_irq_err irq_err, int irq_idx) 3358 { 3359 struct stmmac_priv *priv = netdev_priv(dev); 3360 int j; 3361 3362 switch (irq_err) { 3363 case REQ_IRQ_ERR_ALL: 3364 irq_idx = priv->plat->tx_queues_to_use; 3365 fallthrough; 3366 case REQ_IRQ_ERR_TX: 3367 for (j = irq_idx - 1; j >= 0; j--) { 3368 if (priv->tx_irq[j] > 0) { 3369 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3370 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3371 } 3372 } 3373 irq_idx = priv->plat->rx_queues_to_use; 3374 fallthrough; 3375 case REQ_IRQ_ERR_RX: 3376 for (j = irq_idx - 1; j >= 0; j--) { 3377 if (priv->rx_irq[j] > 0) { 3378 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3379 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3380 } 3381 } 3382 3383 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3384 free_irq(priv->sfty_ue_irq, dev); 3385 fallthrough; 3386 case REQ_IRQ_ERR_SFTY_UE: 3387 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3388 free_irq(priv->sfty_ce_irq, dev); 3389 fallthrough; 3390 case REQ_IRQ_ERR_SFTY_CE: 3391 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3392 free_irq(priv->lpi_irq, dev); 3393 fallthrough; 3394 case REQ_IRQ_ERR_LPI: 3395 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3396 free_irq(priv->wol_irq, dev); 3397 fallthrough; 3398 case REQ_IRQ_ERR_WOL: 3399 free_irq(dev->irq, dev); 3400 fallthrough; 3401 case REQ_IRQ_ERR_MAC: 3402 case REQ_IRQ_ERR_NO: 3403 /* If MAC IRQ request error, no more IRQ to free */ 3404 break; 3405 } 3406 } 3407 3408 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3409 { 3410 struct stmmac_priv *priv = netdev_priv(dev); 3411 enum request_irq_err irq_err; 3412 cpumask_t cpu_mask; 3413 int irq_idx = 0; 3414 char *int_name; 3415 int ret; 3416 int i; 3417 3418 /* For common interrupt */ 3419 int_name = priv->int_name_mac; 3420 sprintf(int_name, "%s:%s", dev->name, "mac"); 3421 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3422 0, int_name, dev); 3423 if (unlikely(ret < 0)) { 3424 netdev_err(priv->dev, 3425 "%s: alloc mac MSI %d (error: %d)\n", 3426 __func__, dev->irq, ret); 3427 irq_err = REQ_IRQ_ERR_MAC; 3428 goto irq_error; 3429 } 3430 3431 /* Request the Wake IRQ in case of another line 3432 * is used for WoL 3433 */ 3434 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3435 int_name = priv->int_name_wol; 3436 sprintf(int_name, "%s:%s", dev->name, "wol"); 3437 ret = request_irq(priv->wol_irq, 3438 stmmac_mac_interrupt, 3439 0, int_name, dev); 3440 if (unlikely(ret < 0)) { 3441 netdev_err(priv->dev, 3442 "%s: alloc wol MSI %d (error: %d)\n", 3443 __func__, priv->wol_irq, ret); 3444 irq_err = REQ_IRQ_ERR_WOL; 3445 goto irq_error; 3446 } 3447 } 3448 3449 /* Request the LPI IRQ in case of another line 3450 * is used for LPI 3451 */ 3452 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3453 int_name = priv->int_name_lpi; 3454 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3455 ret = request_irq(priv->lpi_irq, 3456 stmmac_mac_interrupt, 3457 0, int_name, dev); 3458 if (unlikely(ret < 0)) { 3459 netdev_err(priv->dev, 3460 "%s: alloc lpi MSI %d (error: %d)\n", 3461 __func__, priv->lpi_irq, ret); 3462 irq_err = REQ_IRQ_ERR_LPI; 3463 goto irq_error; 3464 } 3465 } 3466 3467 /* Request the Safety Feature Correctible Error line in 3468 * case of another line is used 3469 */ 3470 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3471 int_name = priv->int_name_sfty_ce; 3472 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3473 ret = request_irq(priv->sfty_ce_irq, 3474 stmmac_safety_interrupt, 3475 0, int_name, dev); 3476 if (unlikely(ret < 0)) { 3477 netdev_err(priv->dev, 3478 "%s: alloc sfty ce MSI %d (error: %d)\n", 3479 __func__, priv->sfty_ce_irq, ret); 3480 irq_err = REQ_IRQ_ERR_SFTY_CE; 3481 goto irq_error; 3482 } 3483 } 3484 3485 /* Request the Safety Feature Uncorrectible Error line in 3486 * case of another line is used 3487 */ 3488 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3489 int_name = priv->int_name_sfty_ue; 3490 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3491 ret = request_irq(priv->sfty_ue_irq, 3492 stmmac_safety_interrupt, 3493 0, int_name, dev); 3494 if (unlikely(ret < 0)) { 3495 netdev_err(priv->dev, 3496 "%s: alloc sfty ue MSI %d (error: %d)\n", 3497 __func__, priv->sfty_ue_irq, ret); 3498 irq_err = REQ_IRQ_ERR_SFTY_UE; 3499 goto irq_error; 3500 } 3501 } 3502 3503 /* Request Rx MSI irq */ 3504 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3505 if (priv->rx_irq[i] == 0) 3506 continue; 3507 3508 int_name = priv->int_name_rx_irq[i]; 3509 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3510 ret = request_irq(priv->rx_irq[i], 3511 stmmac_msi_intr_rx, 3512 0, int_name, &priv->rx_queue[i]); 3513 if (unlikely(ret < 0)) { 3514 netdev_err(priv->dev, 3515 "%s: alloc rx-%d MSI %d (error: %d)\n", 3516 __func__, i, priv->rx_irq[i], ret); 3517 irq_err = REQ_IRQ_ERR_RX; 3518 irq_idx = i; 3519 goto irq_error; 3520 } 3521 cpumask_clear(&cpu_mask); 3522 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3523 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3524 } 3525 3526 /* Request Tx MSI irq */ 3527 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3528 if (priv->tx_irq[i] == 0) 3529 continue; 3530 3531 int_name = priv->int_name_tx_irq[i]; 3532 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3533 ret = request_irq(priv->tx_irq[i], 3534 stmmac_msi_intr_tx, 3535 0, int_name, &priv->tx_queue[i]); 3536 if (unlikely(ret < 0)) { 3537 netdev_err(priv->dev, 3538 "%s: alloc tx-%d MSI %d (error: %d)\n", 3539 __func__, i, priv->tx_irq[i], ret); 3540 irq_err = REQ_IRQ_ERR_TX; 3541 irq_idx = i; 3542 goto irq_error; 3543 } 3544 cpumask_clear(&cpu_mask); 3545 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3546 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3547 } 3548 3549 return 0; 3550 3551 irq_error: 3552 stmmac_free_irq(dev, irq_err, irq_idx); 3553 return ret; 3554 } 3555 3556 static int stmmac_request_irq_single(struct net_device *dev) 3557 { 3558 struct stmmac_priv *priv = netdev_priv(dev); 3559 enum request_irq_err irq_err; 3560 int ret; 3561 3562 ret = request_irq(dev->irq, stmmac_interrupt, 3563 IRQF_SHARED, dev->name, dev); 3564 if (unlikely(ret < 0)) { 3565 netdev_err(priv->dev, 3566 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3567 __func__, dev->irq, ret); 3568 irq_err = REQ_IRQ_ERR_MAC; 3569 goto irq_error; 3570 } 3571 3572 /* Request the Wake IRQ in case of another line 3573 * is used for WoL 3574 */ 3575 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3576 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3577 IRQF_SHARED, dev->name, dev); 3578 if (unlikely(ret < 0)) { 3579 netdev_err(priv->dev, 3580 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3581 __func__, priv->wol_irq, ret); 3582 irq_err = REQ_IRQ_ERR_WOL; 3583 goto irq_error; 3584 } 3585 } 3586 3587 /* Request the IRQ lines */ 3588 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3589 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3590 IRQF_SHARED, dev->name, dev); 3591 if (unlikely(ret < 0)) { 3592 netdev_err(priv->dev, 3593 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3594 __func__, priv->lpi_irq, ret); 3595 irq_err = REQ_IRQ_ERR_LPI; 3596 goto irq_error; 3597 } 3598 } 3599 3600 return 0; 3601 3602 irq_error: 3603 stmmac_free_irq(dev, irq_err, 0); 3604 return ret; 3605 } 3606 3607 static int stmmac_request_irq(struct net_device *dev) 3608 { 3609 struct stmmac_priv *priv = netdev_priv(dev); 3610 int ret; 3611 3612 /* Request the IRQ lines */ 3613 if (priv->plat->multi_msi_en) 3614 ret = stmmac_request_irq_multi_msi(dev); 3615 else 3616 ret = stmmac_request_irq_single(dev); 3617 3618 return ret; 3619 } 3620 3621 /** 3622 * stmmac_open - open entry point of the driver 3623 * @dev : pointer to the device structure. 3624 * Description: 3625 * This function is the open entry point of the driver. 3626 * Return value: 3627 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3628 * file on failure. 3629 */ 3630 int stmmac_open(struct net_device *dev) 3631 { 3632 struct stmmac_priv *priv = netdev_priv(dev); 3633 int mode = priv->plat->phy_interface; 3634 int bfsize = 0; 3635 u32 chan; 3636 int ret; 3637 3638 ret = pm_runtime_get_sync(priv->device); 3639 if (ret < 0) { 3640 pm_runtime_put_noidle(priv->device); 3641 return ret; 3642 } 3643 3644 if (priv->hw->pcs != STMMAC_PCS_TBI && 3645 priv->hw->pcs != STMMAC_PCS_RTBI && 3646 (!priv->hw->xpcs || 3647 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3648 ret = stmmac_init_phy(dev); 3649 if (ret) { 3650 netdev_err(priv->dev, 3651 "%s: Cannot attach to PHY (error: %d)\n", 3652 __func__, ret); 3653 goto init_phy_error; 3654 } 3655 } 3656 3657 /* Extra statistics */ 3658 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3659 priv->xstats.threshold = tc; 3660 3661 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3662 if (bfsize < 0) 3663 bfsize = 0; 3664 3665 if (bfsize < BUF_SIZE_16KiB) 3666 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3667 3668 priv->dma_buf_sz = bfsize; 3669 buf_sz = bfsize; 3670 3671 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3672 3673 if (!priv->dma_tx_size) 3674 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3675 if (!priv->dma_rx_size) 3676 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3677 3678 /* Earlier check for TBS */ 3679 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3680 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3681 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3682 3683 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3684 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3685 } 3686 3687 ret = alloc_dma_desc_resources(priv); 3688 if (ret < 0) { 3689 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3690 __func__); 3691 goto dma_desc_error; 3692 } 3693 3694 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3695 if (ret < 0) { 3696 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3697 __func__); 3698 goto init_error; 3699 } 3700 3701 ret = stmmac_hw_setup(dev, true); 3702 if (ret < 0) { 3703 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3704 goto init_error; 3705 } 3706 3707 stmmac_init_coalesce(priv); 3708 3709 phylink_start(priv->phylink); 3710 /* We may have called phylink_speed_down before */ 3711 phylink_speed_up(priv->phylink); 3712 3713 ret = stmmac_request_irq(dev); 3714 if (ret) 3715 goto irq_error; 3716 3717 stmmac_enable_all_queues(priv); 3718 netif_tx_start_all_queues(priv->dev); 3719 3720 return 0; 3721 3722 irq_error: 3723 phylink_stop(priv->phylink); 3724 3725 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3726 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3727 3728 stmmac_hw_teardown(dev); 3729 init_error: 3730 free_dma_desc_resources(priv); 3731 dma_desc_error: 3732 phylink_disconnect_phy(priv->phylink); 3733 init_phy_error: 3734 pm_runtime_put(priv->device); 3735 return ret; 3736 } 3737 3738 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3739 { 3740 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3741 3742 if (priv->fpe_wq) 3743 destroy_workqueue(priv->fpe_wq); 3744 3745 netdev_info(priv->dev, "FPE workqueue stop"); 3746 } 3747 3748 /** 3749 * stmmac_release - close entry point of the driver 3750 * @dev : device pointer. 3751 * Description: 3752 * This is the stop entry point of the driver. 3753 */ 3754 int stmmac_release(struct net_device *dev) 3755 { 3756 struct stmmac_priv *priv = netdev_priv(dev); 3757 u32 chan; 3758 3759 if (device_may_wakeup(priv->device)) 3760 phylink_speed_down(priv->phylink, false); 3761 /* Stop and disconnect the PHY */ 3762 phylink_stop(priv->phylink); 3763 phylink_disconnect_phy(priv->phylink); 3764 3765 stmmac_disable_all_queues(priv); 3766 3767 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3768 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3769 3770 /* Free the IRQ lines */ 3771 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3772 3773 if (priv->eee_enabled) { 3774 priv->tx_path_in_lpi_mode = false; 3775 del_timer_sync(&priv->eee_ctrl_timer); 3776 } 3777 3778 /* Stop TX/RX DMA and clear the descriptors */ 3779 stmmac_stop_all_dma(priv); 3780 3781 /* Release and free the Rx/Tx resources */ 3782 free_dma_desc_resources(priv); 3783 3784 /* Disable the MAC Rx/Tx */ 3785 stmmac_mac_set(priv, priv->ioaddr, false); 3786 3787 netif_carrier_off(dev); 3788 3789 stmmac_release_ptp(priv); 3790 3791 pm_runtime_put(priv->device); 3792 3793 if (priv->dma_cap.fpesel) 3794 stmmac_fpe_stop_wq(priv); 3795 3796 return 0; 3797 } 3798 3799 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3800 struct stmmac_tx_queue *tx_q) 3801 { 3802 u16 tag = 0x0, inner_tag = 0x0; 3803 u32 inner_type = 0x0; 3804 struct dma_desc *p; 3805 3806 if (!priv->dma_cap.vlins) 3807 return false; 3808 if (!skb_vlan_tag_present(skb)) 3809 return false; 3810 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3811 inner_tag = skb_vlan_tag_get(skb); 3812 inner_type = STMMAC_VLAN_INSERT; 3813 } 3814 3815 tag = skb_vlan_tag_get(skb); 3816 3817 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3818 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3819 else 3820 p = &tx_q->dma_tx[tx_q->cur_tx]; 3821 3822 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3823 return false; 3824 3825 stmmac_set_tx_owner(priv, p); 3826 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3827 return true; 3828 } 3829 3830 /** 3831 * stmmac_tso_allocator - close entry point of the driver 3832 * @priv: driver private structure 3833 * @des: buffer start address 3834 * @total_len: total length to fill in descriptors 3835 * @last_segment: condition for the last descriptor 3836 * @queue: TX queue index 3837 * Description: 3838 * This function fills descriptor and request new descriptors according to 3839 * buffer length to fill 3840 */ 3841 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3842 int total_len, bool last_segment, u32 queue) 3843 { 3844 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3845 struct dma_desc *desc; 3846 u32 buff_size; 3847 int tmp_len; 3848 3849 tmp_len = total_len; 3850 3851 while (tmp_len > 0) { 3852 dma_addr_t curr_addr; 3853 3854 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3855 priv->dma_tx_size); 3856 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3857 3858 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3859 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3860 else 3861 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3862 3863 curr_addr = des + (total_len - tmp_len); 3864 if (priv->dma_cap.addr64 <= 32) 3865 desc->des0 = cpu_to_le32(curr_addr); 3866 else 3867 stmmac_set_desc_addr(priv, desc, curr_addr); 3868 3869 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3870 TSO_MAX_BUFF_SIZE : tmp_len; 3871 3872 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3873 0, 1, 3874 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3875 0, 0); 3876 3877 tmp_len -= TSO_MAX_BUFF_SIZE; 3878 } 3879 } 3880 3881 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3882 { 3883 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3884 int desc_size; 3885 3886 if (likely(priv->extend_desc)) 3887 desc_size = sizeof(struct dma_extended_desc); 3888 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3889 desc_size = sizeof(struct dma_edesc); 3890 else 3891 desc_size = sizeof(struct dma_desc); 3892 3893 /* The own bit must be the latest setting done when prepare the 3894 * descriptor and then barrier is needed to make sure that 3895 * all is coherent before granting the DMA engine. 3896 */ 3897 wmb(); 3898 3899 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3900 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3901 } 3902 3903 /** 3904 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3905 * @skb : the socket buffer 3906 * @dev : device pointer 3907 * Description: this is the transmit function that is called on TSO frames 3908 * (support available on GMAC4 and newer chips). 3909 * Diagram below show the ring programming in case of TSO frames: 3910 * 3911 * First Descriptor 3912 * -------- 3913 * | DES0 |---> buffer1 = L2/L3/L4 header 3914 * | DES1 |---> TCP Payload (can continue on next descr...) 3915 * | DES2 |---> buffer 1 and 2 len 3916 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3917 * -------- 3918 * | 3919 * ... 3920 * | 3921 * -------- 3922 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3923 * | DES1 | --| 3924 * | DES2 | --> buffer 1 and 2 len 3925 * | DES3 | 3926 * -------- 3927 * 3928 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3929 */ 3930 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3931 { 3932 struct dma_desc *desc, *first, *mss_desc = NULL; 3933 struct stmmac_priv *priv = netdev_priv(dev); 3934 int nfrags = skb_shinfo(skb)->nr_frags; 3935 u32 queue = skb_get_queue_mapping(skb); 3936 unsigned int first_entry, tx_packets; 3937 int tmp_pay_len = 0, first_tx; 3938 struct stmmac_tx_queue *tx_q; 3939 bool has_vlan, set_ic; 3940 u8 proto_hdr_len, hdr; 3941 u32 pay_len, mss; 3942 dma_addr_t des; 3943 int i; 3944 3945 tx_q = &priv->tx_queue[queue]; 3946 first_tx = tx_q->cur_tx; 3947 3948 /* Compute header lengths */ 3949 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3950 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3951 hdr = sizeof(struct udphdr); 3952 } else { 3953 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3954 hdr = tcp_hdrlen(skb); 3955 } 3956 3957 /* Desc availability based on threshold should be enough safe */ 3958 if (unlikely(stmmac_tx_avail(priv, queue) < 3959 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3960 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3961 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3962 queue)); 3963 /* This is a hard error, log it. */ 3964 netdev_err(priv->dev, 3965 "%s: Tx Ring full when queue awake\n", 3966 __func__); 3967 } 3968 return NETDEV_TX_BUSY; 3969 } 3970 3971 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3972 3973 mss = skb_shinfo(skb)->gso_size; 3974 3975 /* set new MSS value if needed */ 3976 if (mss != tx_q->mss) { 3977 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3978 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3979 else 3980 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3981 3982 stmmac_set_mss(priv, mss_desc, mss); 3983 tx_q->mss = mss; 3984 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3985 priv->dma_tx_size); 3986 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3987 } 3988 3989 if (netif_msg_tx_queued(priv)) { 3990 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 3991 __func__, hdr, proto_hdr_len, pay_len, mss); 3992 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 3993 skb->data_len); 3994 } 3995 3996 /* Check if VLAN can be inserted by HW */ 3997 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 3998 3999 first_entry = tx_q->cur_tx; 4000 WARN_ON(tx_q->tx_skbuff[first_entry]); 4001 4002 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4003 desc = &tx_q->dma_entx[first_entry].basic; 4004 else 4005 desc = &tx_q->dma_tx[first_entry]; 4006 first = desc; 4007 4008 if (has_vlan) 4009 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4010 4011 /* first descriptor: fill Headers on Buf1 */ 4012 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4013 DMA_TO_DEVICE); 4014 if (dma_mapping_error(priv->device, des)) 4015 goto dma_map_err; 4016 4017 tx_q->tx_skbuff_dma[first_entry].buf = des; 4018 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4019 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4020 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4021 4022 if (priv->dma_cap.addr64 <= 32) { 4023 first->des0 = cpu_to_le32(des); 4024 4025 /* Fill start of payload in buff2 of first descriptor */ 4026 if (pay_len) 4027 first->des1 = cpu_to_le32(des + proto_hdr_len); 4028 4029 /* If needed take extra descriptors to fill the remaining payload */ 4030 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4031 } else { 4032 stmmac_set_desc_addr(priv, first, des); 4033 tmp_pay_len = pay_len; 4034 des += proto_hdr_len; 4035 pay_len = 0; 4036 } 4037 4038 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4039 4040 /* Prepare fragments */ 4041 for (i = 0; i < nfrags; i++) { 4042 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4043 4044 des = skb_frag_dma_map(priv->device, frag, 0, 4045 skb_frag_size(frag), 4046 DMA_TO_DEVICE); 4047 if (dma_mapping_error(priv->device, des)) 4048 goto dma_map_err; 4049 4050 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4051 (i == nfrags - 1), queue); 4052 4053 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4054 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4055 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4056 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4057 } 4058 4059 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4060 4061 /* Only the last descriptor gets to point to the skb. */ 4062 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4063 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4064 4065 /* Manage tx mitigation */ 4066 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4067 tx_q->tx_count_frames += tx_packets; 4068 4069 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4070 set_ic = true; 4071 else if (!priv->tx_coal_frames[queue]) 4072 set_ic = false; 4073 else if (tx_packets > priv->tx_coal_frames[queue]) 4074 set_ic = true; 4075 else if ((tx_q->tx_count_frames % 4076 priv->tx_coal_frames[queue]) < tx_packets) 4077 set_ic = true; 4078 else 4079 set_ic = false; 4080 4081 if (set_ic) { 4082 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4083 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4084 else 4085 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4086 4087 tx_q->tx_count_frames = 0; 4088 stmmac_set_tx_ic(priv, desc); 4089 priv->xstats.tx_set_ic_bit++; 4090 } 4091 4092 /* We've used all descriptors we need for this skb, however, 4093 * advance cur_tx so that it references a fresh descriptor. 4094 * ndo_start_xmit will fill this descriptor the next time it's 4095 * called and stmmac_tx_clean may clean up to this descriptor. 4096 */ 4097 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4098 4099 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4100 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4101 __func__); 4102 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4103 } 4104 4105 dev->stats.tx_bytes += skb->len; 4106 priv->xstats.tx_tso_frames++; 4107 priv->xstats.tx_tso_nfrags += nfrags; 4108 4109 if (priv->sarc_type) 4110 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4111 4112 skb_tx_timestamp(skb); 4113 4114 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4115 priv->hwts_tx_en)) { 4116 /* declare that device is doing timestamping */ 4117 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4118 stmmac_enable_tx_timestamp(priv, first); 4119 } 4120 4121 /* Complete the first descriptor before granting the DMA */ 4122 stmmac_prepare_tso_tx_desc(priv, first, 1, 4123 proto_hdr_len, 4124 pay_len, 4125 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4126 hdr / 4, (skb->len - proto_hdr_len)); 4127 4128 /* If context desc is used to change MSS */ 4129 if (mss_desc) { 4130 /* Make sure that first descriptor has been completely 4131 * written, including its own bit. This is because MSS is 4132 * actually before first descriptor, so we need to make 4133 * sure that MSS's own bit is the last thing written. 4134 */ 4135 dma_wmb(); 4136 stmmac_set_tx_owner(priv, mss_desc); 4137 } 4138 4139 if (netif_msg_pktdata(priv)) { 4140 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4141 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4142 tx_q->cur_tx, first, nfrags); 4143 pr_info(">>> frame to be transmitted: "); 4144 print_pkt(skb->data, skb_headlen(skb)); 4145 } 4146 4147 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4148 4149 stmmac_flush_tx_descriptors(priv, queue); 4150 stmmac_tx_timer_arm(priv, queue); 4151 4152 return NETDEV_TX_OK; 4153 4154 dma_map_err: 4155 dev_err(priv->device, "Tx dma map failed\n"); 4156 dev_kfree_skb(skb); 4157 priv->dev->stats.tx_dropped++; 4158 return NETDEV_TX_OK; 4159 } 4160 4161 /** 4162 * stmmac_xmit - Tx entry point of the driver 4163 * @skb : the socket buffer 4164 * @dev : device pointer 4165 * Description : this is the tx entry point of the driver. 4166 * It programs the chain or the ring and supports oversized frames 4167 * and SG feature. 4168 */ 4169 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4170 { 4171 unsigned int first_entry, tx_packets, enh_desc; 4172 struct stmmac_priv *priv = netdev_priv(dev); 4173 unsigned int nopaged_len = skb_headlen(skb); 4174 int i, csum_insertion = 0, is_jumbo = 0; 4175 u32 queue = skb_get_queue_mapping(skb); 4176 int nfrags = skb_shinfo(skb)->nr_frags; 4177 int gso = skb_shinfo(skb)->gso_type; 4178 struct dma_edesc *tbs_desc = NULL; 4179 struct dma_desc *desc, *first; 4180 struct stmmac_tx_queue *tx_q; 4181 bool has_vlan, set_ic; 4182 int entry, first_tx; 4183 dma_addr_t des; 4184 4185 tx_q = &priv->tx_queue[queue]; 4186 first_tx = tx_q->cur_tx; 4187 4188 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4189 stmmac_disable_eee_mode(priv); 4190 4191 /* Manage oversized TCP frames for GMAC4 device */ 4192 if (skb_is_gso(skb) && priv->tso) { 4193 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4194 return stmmac_tso_xmit(skb, dev); 4195 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4196 return stmmac_tso_xmit(skb, dev); 4197 } 4198 4199 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4200 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4201 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4202 queue)); 4203 /* This is a hard error, log it. */ 4204 netdev_err(priv->dev, 4205 "%s: Tx Ring full when queue awake\n", 4206 __func__); 4207 } 4208 return NETDEV_TX_BUSY; 4209 } 4210 4211 /* Check if VLAN can be inserted by HW */ 4212 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4213 4214 entry = tx_q->cur_tx; 4215 first_entry = entry; 4216 WARN_ON(tx_q->tx_skbuff[first_entry]); 4217 4218 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4219 4220 if (likely(priv->extend_desc)) 4221 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4222 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4223 desc = &tx_q->dma_entx[entry].basic; 4224 else 4225 desc = tx_q->dma_tx + entry; 4226 4227 first = desc; 4228 4229 if (has_vlan) 4230 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4231 4232 enh_desc = priv->plat->enh_desc; 4233 /* To program the descriptors according to the size of the frame */ 4234 if (enh_desc) 4235 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4236 4237 if (unlikely(is_jumbo)) { 4238 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4239 if (unlikely(entry < 0) && (entry != -EINVAL)) 4240 goto dma_map_err; 4241 } 4242 4243 for (i = 0; i < nfrags; i++) { 4244 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4245 int len = skb_frag_size(frag); 4246 bool last_segment = (i == (nfrags - 1)); 4247 4248 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4249 WARN_ON(tx_q->tx_skbuff[entry]); 4250 4251 if (likely(priv->extend_desc)) 4252 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4253 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4254 desc = &tx_q->dma_entx[entry].basic; 4255 else 4256 desc = tx_q->dma_tx + entry; 4257 4258 des = skb_frag_dma_map(priv->device, frag, 0, len, 4259 DMA_TO_DEVICE); 4260 if (dma_mapping_error(priv->device, des)) 4261 goto dma_map_err; /* should reuse desc w/o issues */ 4262 4263 tx_q->tx_skbuff_dma[entry].buf = des; 4264 4265 stmmac_set_desc_addr(priv, desc, des); 4266 4267 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4268 tx_q->tx_skbuff_dma[entry].len = len; 4269 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4270 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4271 4272 /* Prepare the descriptor and set the own bit too */ 4273 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4274 priv->mode, 1, last_segment, skb->len); 4275 } 4276 4277 /* Only the last descriptor gets to point to the skb. */ 4278 tx_q->tx_skbuff[entry] = skb; 4279 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4280 4281 /* According to the coalesce parameter the IC bit for the latest 4282 * segment is reset and the timer re-started to clean the tx status. 4283 * This approach takes care about the fragments: desc is the first 4284 * element in case of no SG. 4285 */ 4286 tx_packets = (entry + 1) - first_tx; 4287 tx_q->tx_count_frames += tx_packets; 4288 4289 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4290 set_ic = true; 4291 else if (!priv->tx_coal_frames[queue]) 4292 set_ic = false; 4293 else if (tx_packets > priv->tx_coal_frames[queue]) 4294 set_ic = true; 4295 else if ((tx_q->tx_count_frames % 4296 priv->tx_coal_frames[queue]) < tx_packets) 4297 set_ic = true; 4298 else 4299 set_ic = false; 4300 4301 if (set_ic) { 4302 if (likely(priv->extend_desc)) 4303 desc = &tx_q->dma_etx[entry].basic; 4304 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4305 desc = &tx_q->dma_entx[entry].basic; 4306 else 4307 desc = &tx_q->dma_tx[entry]; 4308 4309 tx_q->tx_count_frames = 0; 4310 stmmac_set_tx_ic(priv, desc); 4311 priv->xstats.tx_set_ic_bit++; 4312 } 4313 4314 /* We've used all descriptors we need for this skb, however, 4315 * advance cur_tx so that it references a fresh descriptor. 4316 * ndo_start_xmit will fill this descriptor the next time it's 4317 * called and stmmac_tx_clean may clean up to this descriptor. 4318 */ 4319 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4320 tx_q->cur_tx = entry; 4321 4322 if (netif_msg_pktdata(priv)) { 4323 netdev_dbg(priv->dev, 4324 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4325 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4326 entry, first, nfrags); 4327 4328 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4329 print_pkt(skb->data, skb->len); 4330 } 4331 4332 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4333 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4334 __func__); 4335 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4336 } 4337 4338 dev->stats.tx_bytes += skb->len; 4339 4340 if (priv->sarc_type) 4341 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4342 4343 skb_tx_timestamp(skb); 4344 4345 /* Ready to fill the first descriptor and set the OWN bit w/o any 4346 * problems because all the descriptors are actually ready to be 4347 * passed to the DMA engine. 4348 */ 4349 if (likely(!is_jumbo)) { 4350 bool last_segment = (nfrags == 0); 4351 4352 des = dma_map_single(priv->device, skb->data, 4353 nopaged_len, DMA_TO_DEVICE); 4354 if (dma_mapping_error(priv->device, des)) 4355 goto dma_map_err; 4356 4357 tx_q->tx_skbuff_dma[first_entry].buf = des; 4358 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4359 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4360 4361 stmmac_set_desc_addr(priv, first, des); 4362 4363 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4364 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4365 4366 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4367 priv->hwts_tx_en)) { 4368 /* declare that device is doing timestamping */ 4369 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4370 stmmac_enable_tx_timestamp(priv, first); 4371 } 4372 4373 /* Prepare the first descriptor setting the OWN bit too */ 4374 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4375 csum_insertion, priv->mode, 0, last_segment, 4376 skb->len); 4377 } 4378 4379 if (tx_q->tbs & STMMAC_TBS_EN) { 4380 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4381 4382 tbs_desc = &tx_q->dma_entx[first_entry]; 4383 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4384 } 4385 4386 stmmac_set_tx_owner(priv, first); 4387 4388 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4389 4390 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4391 4392 stmmac_flush_tx_descriptors(priv, queue); 4393 stmmac_tx_timer_arm(priv, queue); 4394 4395 return NETDEV_TX_OK; 4396 4397 dma_map_err: 4398 netdev_err(priv->dev, "Tx DMA map failed\n"); 4399 dev_kfree_skb(skb); 4400 priv->dev->stats.tx_dropped++; 4401 return NETDEV_TX_OK; 4402 } 4403 4404 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4405 { 4406 struct vlan_ethhdr *veth; 4407 __be16 vlan_proto; 4408 u16 vlanid; 4409 4410 veth = (struct vlan_ethhdr *)skb->data; 4411 vlan_proto = veth->h_vlan_proto; 4412 4413 if ((vlan_proto == htons(ETH_P_8021Q) && 4414 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4415 (vlan_proto == htons(ETH_P_8021AD) && 4416 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4417 /* pop the vlan tag */ 4418 vlanid = ntohs(veth->h_vlan_TCI); 4419 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4420 skb_pull(skb, VLAN_HLEN); 4421 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4422 } 4423 } 4424 4425 /** 4426 * stmmac_rx_refill - refill used skb preallocated buffers 4427 * @priv: driver private structure 4428 * @queue: RX queue index 4429 * Description : this is to reallocate the skb for the reception process 4430 * that is based on zero-copy. 4431 */ 4432 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4433 { 4434 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4435 int dirty = stmmac_rx_dirty(priv, queue); 4436 unsigned int entry = rx_q->dirty_rx; 4437 4438 while (dirty-- > 0) { 4439 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4440 struct dma_desc *p; 4441 bool use_rx_wd; 4442 4443 if (priv->extend_desc) 4444 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4445 else 4446 p = rx_q->dma_rx + entry; 4447 4448 if (!buf->page) { 4449 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 4450 if (!buf->page) 4451 break; 4452 } 4453 4454 if (priv->sph && !buf->sec_page) { 4455 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 4456 if (!buf->sec_page) 4457 break; 4458 4459 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4460 } 4461 4462 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4463 4464 stmmac_set_desc_addr(priv, p, buf->addr); 4465 if (priv->sph) 4466 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4467 else 4468 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4469 stmmac_refill_desc3(priv, rx_q, p); 4470 4471 rx_q->rx_count_frames++; 4472 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4473 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4474 rx_q->rx_count_frames = 0; 4475 4476 use_rx_wd = !priv->rx_coal_frames[queue]; 4477 use_rx_wd |= rx_q->rx_count_frames > 0; 4478 if (!priv->use_riwt) 4479 use_rx_wd = false; 4480 4481 dma_wmb(); 4482 stmmac_set_rx_owner(priv, p, use_rx_wd); 4483 4484 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4485 } 4486 rx_q->dirty_rx = entry; 4487 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4488 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4489 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4490 } 4491 4492 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4493 struct dma_desc *p, 4494 int status, unsigned int len) 4495 { 4496 unsigned int plen = 0, hlen = 0; 4497 int coe = priv->hw->rx_csum; 4498 4499 /* Not first descriptor, buffer is always zero */ 4500 if (priv->sph && len) 4501 return 0; 4502 4503 /* First descriptor, get split header length */ 4504 stmmac_get_rx_header_len(priv, p, &hlen); 4505 if (priv->sph && hlen) { 4506 priv->xstats.rx_split_hdr_pkt_n++; 4507 return hlen; 4508 } 4509 4510 /* First descriptor, not last descriptor and not split header */ 4511 if (status & rx_not_ls) 4512 return priv->dma_buf_sz; 4513 4514 plen = stmmac_get_rx_frame_len(priv, p, coe); 4515 4516 /* First descriptor and last descriptor and not split header */ 4517 return min_t(unsigned int, priv->dma_buf_sz, plen); 4518 } 4519 4520 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4521 struct dma_desc *p, 4522 int status, unsigned int len) 4523 { 4524 int coe = priv->hw->rx_csum; 4525 unsigned int plen = 0; 4526 4527 /* Not split header, buffer is not available */ 4528 if (!priv->sph) 4529 return 0; 4530 4531 /* Not last descriptor */ 4532 if (status & rx_not_ls) 4533 return priv->dma_buf_sz; 4534 4535 plen = stmmac_get_rx_frame_len(priv, p, coe); 4536 4537 /* Last descriptor */ 4538 return plen - len; 4539 } 4540 4541 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4542 struct xdp_frame *xdpf, bool dma_map) 4543 { 4544 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4545 unsigned int entry = tx_q->cur_tx; 4546 struct dma_desc *tx_desc; 4547 dma_addr_t dma_addr; 4548 bool set_ic; 4549 4550 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4551 return STMMAC_XDP_CONSUMED; 4552 4553 if (likely(priv->extend_desc)) 4554 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4555 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4556 tx_desc = &tx_q->dma_entx[entry].basic; 4557 else 4558 tx_desc = tx_q->dma_tx + entry; 4559 4560 if (dma_map) { 4561 dma_addr = dma_map_single(priv->device, xdpf->data, 4562 xdpf->len, DMA_TO_DEVICE); 4563 if (dma_mapping_error(priv->device, dma_addr)) 4564 return STMMAC_XDP_CONSUMED; 4565 4566 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4567 } else { 4568 struct page *page = virt_to_page(xdpf->data); 4569 4570 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4571 xdpf->headroom; 4572 dma_sync_single_for_device(priv->device, dma_addr, 4573 xdpf->len, DMA_BIDIRECTIONAL); 4574 4575 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4576 } 4577 4578 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4579 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4580 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4581 tx_q->tx_skbuff_dma[entry].last_segment = true; 4582 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4583 4584 tx_q->xdpf[entry] = xdpf; 4585 4586 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4587 4588 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4589 true, priv->mode, true, true, 4590 xdpf->len); 4591 4592 tx_q->tx_count_frames++; 4593 4594 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4595 set_ic = true; 4596 else 4597 set_ic = false; 4598 4599 if (set_ic) { 4600 tx_q->tx_count_frames = 0; 4601 stmmac_set_tx_ic(priv, tx_desc); 4602 priv->xstats.tx_set_ic_bit++; 4603 } 4604 4605 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4606 4607 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4608 tx_q->cur_tx = entry; 4609 4610 return STMMAC_XDP_TX; 4611 } 4612 4613 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4614 int cpu) 4615 { 4616 int index = cpu; 4617 4618 if (unlikely(index < 0)) 4619 index = 0; 4620 4621 while (index >= priv->plat->tx_queues_to_use) 4622 index -= priv->plat->tx_queues_to_use; 4623 4624 return index; 4625 } 4626 4627 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4628 struct xdp_buff *xdp) 4629 { 4630 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4631 int cpu = smp_processor_id(); 4632 struct netdev_queue *nq; 4633 int queue; 4634 int res; 4635 4636 if (unlikely(!xdpf)) 4637 return STMMAC_XDP_CONSUMED; 4638 4639 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4640 nq = netdev_get_tx_queue(priv->dev, queue); 4641 4642 __netif_tx_lock(nq, cpu); 4643 /* Avoids TX time-out as we are sharing with slow path */ 4644 nq->trans_start = jiffies; 4645 4646 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4647 if (res == STMMAC_XDP_TX) 4648 stmmac_flush_tx_descriptors(priv, queue); 4649 4650 __netif_tx_unlock(nq); 4651 4652 return res; 4653 } 4654 4655 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4656 struct bpf_prog *prog, 4657 struct xdp_buff *xdp) 4658 { 4659 u32 act; 4660 int res; 4661 4662 act = bpf_prog_run_xdp(prog, xdp); 4663 switch (act) { 4664 case XDP_PASS: 4665 res = STMMAC_XDP_PASS; 4666 break; 4667 case XDP_TX: 4668 res = stmmac_xdp_xmit_back(priv, xdp); 4669 break; 4670 case XDP_REDIRECT: 4671 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4672 res = STMMAC_XDP_CONSUMED; 4673 else 4674 res = STMMAC_XDP_REDIRECT; 4675 break; 4676 default: 4677 bpf_warn_invalid_xdp_action(act); 4678 fallthrough; 4679 case XDP_ABORTED: 4680 trace_xdp_exception(priv->dev, prog, act); 4681 fallthrough; 4682 case XDP_DROP: 4683 res = STMMAC_XDP_CONSUMED; 4684 break; 4685 } 4686 4687 return res; 4688 } 4689 4690 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4691 struct xdp_buff *xdp) 4692 { 4693 struct bpf_prog *prog; 4694 int res; 4695 4696 prog = READ_ONCE(priv->xdp_prog); 4697 if (!prog) { 4698 res = STMMAC_XDP_PASS; 4699 goto out; 4700 } 4701 4702 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4703 out: 4704 return ERR_PTR(-res); 4705 } 4706 4707 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4708 int xdp_status) 4709 { 4710 int cpu = smp_processor_id(); 4711 int queue; 4712 4713 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4714 4715 if (xdp_status & STMMAC_XDP_TX) 4716 stmmac_tx_timer_arm(priv, queue); 4717 4718 if (xdp_status & STMMAC_XDP_REDIRECT) 4719 xdp_do_flush(); 4720 } 4721 4722 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4723 struct xdp_buff *xdp) 4724 { 4725 unsigned int metasize = xdp->data - xdp->data_meta; 4726 unsigned int datasize = xdp->data_end - xdp->data; 4727 struct sk_buff *skb; 4728 4729 skb = __napi_alloc_skb(&ch->rxtx_napi, 4730 xdp->data_end - xdp->data_hard_start, 4731 GFP_ATOMIC | __GFP_NOWARN); 4732 if (unlikely(!skb)) 4733 return NULL; 4734 4735 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4736 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4737 if (metasize) 4738 skb_metadata_set(skb, metasize); 4739 4740 return skb; 4741 } 4742 4743 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4744 struct dma_desc *p, struct dma_desc *np, 4745 struct xdp_buff *xdp) 4746 { 4747 struct stmmac_channel *ch = &priv->channel[queue]; 4748 unsigned int len = xdp->data_end - xdp->data; 4749 enum pkt_hash_types hash_type; 4750 int coe = priv->hw->rx_csum; 4751 struct sk_buff *skb; 4752 u32 hash; 4753 4754 skb = stmmac_construct_skb_zc(ch, xdp); 4755 if (!skb) { 4756 priv->dev->stats.rx_dropped++; 4757 return; 4758 } 4759 4760 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4761 stmmac_rx_vlan(priv->dev, skb); 4762 skb->protocol = eth_type_trans(skb, priv->dev); 4763 4764 if (unlikely(!coe)) 4765 skb_checksum_none_assert(skb); 4766 else 4767 skb->ip_summed = CHECKSUM_UNNECESSARY; 4768 4769 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4770 skb_set_hash(skb, hash, hash_type); 4771 4772 skb_record_rx_queue(skb, queue); 4773 napi_gro_receive(&ch->rxtx_napi, skb); 4774 4775 priv->dev->stats.rx_packets++; 4776 priv->dev->stats.rx_bytes += len; 4777 } 4778 4779 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4780 { 4781 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4782 unsigned int entry = rx_q->dirty_rx; 4783 struct dma_desc *rx_desc = NULL; 4784 bool ret = true; 4785 4786 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4787 4788 while (budget-- > 0 && entry != rx_q->cur_rx) { 4789 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4790 dma_addr_t dma_addr; 4791 bool use_rx_wd; 4792 4793 if (!buf->xdp) { 4794 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4795 if (!buf->xdp) { 4796 ret = false; 4797 break; 4798 } 4799 } 4800 4801 if (priv->extend_desc) 4802 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4803 else 4804 rx_desc = rx_q->dma_rx + entry; 4805 4806 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4807 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4808 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4809 stmmac_refill_desc3(priv, rx_q, rx_desc); 4810 4811 rx_q->rx_count_frames++; 4812 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4813 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4814 rx_q->rx_count_frames = 0; 4815 4816 use_rx_wd = !priv->rx_coal_frames[queue]; 4817 use_rx_wd |= rx_q->rx_count_frames > 0; 4818 if (!priv->use_riwt) 4819 use_rx_wd = false; 4820 4821 dma_wmb(); 4822 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4823 4824 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4825 } 4826 4827 if (rx_desc) { 4828 rx_q->dirty_rx = entry; 4829 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4830 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4831 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4832 } 4833 4834 return ret; 4835 } 4836 4837 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4838 { 4839 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4840 unsigned int count = 0, error = 0, len = 0; 4841 int dirty = stmmac_rx_dirty(priv, queue); 4842 unsigned int next_entry = rx_q->cur_rx; 4843 unsigned int desc_size; 4844 struct bpf_prog *prog; 4845 bool failure = false; 4846 int xdp_status = 0; 4847 int status = 0; 4848 4849 if (netif_msg_rx_status(priv)) { 4850 void *rx_head; 4851 4852 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4853 if (priv->extend_desc) { 4854 rx_head = (void *)rx_q->dma_erx; 4855 desc_size = sizeof(struct dma_extended_desc); 4856 } else { 4857 rx_head = (void *)rx_q->dma_rx; 4858 desc_size = sizeof(struct dma_desc); 4859 } 4860 4861 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4862 rx_q->dma_rx_phy, desc_size); 4863 } 4864 while (count < limit) { 4865 struct stmmac_rx_buffer *buf; 4866 unsigned int buf1_len = 0; 4867 struct dma_desc *np, *p; 4868 int entry; 4869 int res; 4870 4871 if (!count && rx_q->state_saved) { 4872 error = rx_q->state.error; 4873 len = rx_q->state.len; 4874 } else { 4875 rx_q->state_saved = false; 4876 error = 0; 4877 len = 0; 4878 } 4879 4880 if (count >= limit) 4881 break; 4882 4883 read_again: 4884 buf1_len = 0; 4885 entry = next_entry; 4886 buf = &rx_q->buf_pool[entry]; 4887 4888 if (dirty >= STMMAC_RX_FILL_BATCH) { 4889 failure = failure || 4890 !stmmac_rx_refill_zc(priv, queue, dirty); 4891 dirty = 0; 4892 } 4893 4894 if (priv->extend_desc) 4895 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4896 else 4897 p = rx_q->dma_rx + entry; 4898 4899 /* read the status of the incoming frame */ 4900 status = stmmac_rx_status(priv, &priv->dev->stats, 4901 &priv->xstats, p); 4902 /* check if managed by the DMA otherwise go ahead */ 4903 if (unlikely(status & dma_own)) 4904 break; 4905 4906 /* Prefetch the next RX descriptor */ 4907 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4908 priv->dma_rx_size); 4909 next_entry = rx_q->cur_rx; 4910 4911 if (priv->extend_desc) 4912 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4913 else 4914 np = rx_q->dma_rx + next_entry; 4915 4916 prefetch(np); 4917 4918 /* Ensure a valid XSK buffer before proceed */ 4919 if (!buf->xdp) 4920 break; 4921 4922 if (priv->extend_desc) 4923 stmmac_rx_extended_status(priv, &priv->dev->stats, 4924 &priv->xstats, 4925 rx_q->dma_erx + entry); 4926 if (unlikely(status == discard_frame)) { 4927 xsk_buff_free(buf->xdp); 4928 buf->xdp = NULL; 4929 dirty++; 4930 error = 1; 4931 if (!priv->hwts_rx_en) 4932 priv->dev->stats.rx_errors++; 4933 } 4934 4935 if (unlikely(error && (status & rx_not_ls))) 4936 goto read_again; 4937 if (unlikely(error)) { 4938 count++; 4939 continue; 4940 } 4941 4942 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4943 if (likely(status & rx_not_ls)) { 4944 xsk_buff_free(buf->xdp); 4945 buf->xdp = NULL; 4946 dirty++; 4947 count++; 4948 goto read_again; 4949 } 4950 4951 /* XDP ZC Frame only support primary buffers for now */ 4952 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 4953 len += buf1_len; 4954 4955 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 4956 * Type frames (LLC/LLC-SNAP) 4957 * 4958 * llc_snap is never checked in GMAC >= 4, so this ACS 4959 * feature is always disabled and packets need to be 4960 * stripped manually. 4961 */ 4962 if (likely(!(status & rx_not_ls)) && 4963 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 4964 unlikely(status != llc_snap))) { 4965 buf1_len -= ETH_FCS_LEN; 4966 len -= ETH_FCS_LEN; 4967 } 4968 4969 /* RX buffer is good and fit into a XSK pool buffer */ 4970 buf->xdp->data_end = buf->xdp->data + buf1_len; 4971 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 4972 4973 prog = READ_ONCE(priv->xdp_prog); 4974 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 4975 4976 switch (res) { 4977 case STMMAC_XDP_PASS: 4978 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 4979 xsk_buff_free(buf->xdp); 4980 break; 4981 case STMMAC_XDP_CONSUMED: 4982 xsk_buff_free(buf->xdp); 4983 priv->dev->stats.rx_dropped++; 4984 break; 4985 case STMMAC_XDP_TX: 4986 case STMMAC_XDP_REDIRECT: 4987 xdp_status |= res; 4988 break; 4989 } 4990 4991 buf->xdp = NULL; 4992 dirty++; 4993 count++; 4994 } 4995 4996 if (status & rx_not_ls) { 4997 rx_q->state_saved = true; 4998 rx_q->state.error = error; 4999 rx_q->state.len = len; 5000 } 5001 5002 stmmac_finalize_xdp_rx(priv, xdp_status); 5003 5004 priv->xstats.rx_pkt_n += count; 5005 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5006 5007 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5008 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5009 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5010 else 5011 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5012 5013 return (int)count; 5014 } 5015 5016 return failure ? limit : (int)count; 5017 } 5018 5019 /** 5020 * stmmac_rx - manage the receive process 5021 * @priv: driver private structure 5022 * @limit: napi bugget 5023 * @queue: RX queue index. 5024 * Description : this the function called by the napi poll method. 5025 * It gets all the frames inside the ring. 5026 */ 5027 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5028 { 5029 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5030 struct stmmac_channel *ch = &priv->channel[queue]; 5031 unsigned int count = 0, error = 0, len = 0; 5032 int status = 0, coe = priv->hw->rx_csum; 5033 unsigned int next_entry = rx_q->cur_rx; 5034 enum dma_data_direction dma_dir; 5035 unsigned int desc_size; 5036 struct sk_buff *skb = NULL; 5037 struct xdp_buff xdp; 5038 int xdp_status = 0; 5039 int buf_sz; 5040 5041 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5042 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5043 5044 if (netif_msg_rx_status(priv)) { 5045 void *rx_head; 5046 5047 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5048 if (priv->extend_desc) { 5049 rx_head = (void *)rx_q->dma_erx; 5050 desc_size = sizeof(struct dma_extended_desc); 5051 } else { 5052 rx_head = (void *)rx_q->dma_rx; 5053 desc_size = sizeof(struct dma_desc); 5054 } 5055 5056 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5057 rx_q->dma_rx_phy, desc_size); 5058 } 5059 while (count < limit) { 5060 unsigned int buf1_len = 0, buf2_len = 0; 5061 enum pkt_hash_types hash_type; 5062 struct stmmac_rx_buffer *buf; 5063 struct dma_desc *np, *p; 5064 int entry; 5065 u32 hash; 5066 5067 if (!count && rx_q->state_saved) { 5068 skb = rx_q->state.skb; 5069 error = rx_q->state.error; 5070 len = rx_q->state.len; 5071 } else { 5072 rx_q->state_saved = false; 5073 skb = NULL; 5074 error = 0; 5075 len = 0; 5076 } 5077 5078 if (count >= limit) 5079 break; 5080 5081 read_again: 5082 buf1_len = 0; 5083 buf2_len = 0; 5084 entry = next_entry; 5085 buf = &rx_q->buf_pool[entry]; 5086 5087 if (priv->extend_desc) 5088 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5089 else 5090 p = rx_q->dma_rx + entry; 5091 5092 /* read the status of the incoming frame */ 5093 status = stmmac_rx_status(priv, &priv->dev->stats, 5094 &priv->xstats, p); 5095 /* check if managed by the DMA otherwise go ahead */ 5096 if (unlikely(status & dma_own)) 5097 break; 5098 5099 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5100 priv->dma_rx_size); 5101 next_entry = rx_q->cur_rx; 5102 5103 if (priv->extend_desc) 5104 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5105 else 5106 np = rx_q->dma_rx + next_entry; 5107 5108 prefetch(np); 5109 5110 if (priv->extend_desc) 5111 stmmac_rx_extended_status(priv, &priv->dev->stats, 5112 &priv->xstats, rx_q->dma_erx + entry); 5113 if (unlikely(status == discard_frame)) { 5114 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5115 buf->page = NULL; 5116 error = 1; 5117 if (!priv->hwts_rx_en) 5118 priv->dev->stats.rx_errors++; 5119 } 5120 5121 if (unlikely(error && (status & rx_not_ls))) 5122 goto read_again; 5123 if (unlikely(error)) { 5124 dev_kfree_skb(skb); 5125 skb = NULL; 5126 count++; 5127 continue; 5128 } 5129 5130 /* Buffer is good. Go on. */ 5131 5132 prefetch(page_address(buf->page) + buf->page_offset); 5133 if (buf->sec_page) 5134 prefetch(page_address(buf->sec_page)); 5135 5136 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5137 len += buf1_len; 5138 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5139 len += buf2_len; 5140 5141 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5142 * Type frames (LLC/LLC-SNAP) 5143 * 5144 * llc_snap is never checked in GMAC >= 4, so this ACS 5145 * feature is always disabled and packets need to be 5146 * stripped manually. 5147 */ 5148 if (likely(!(status & rx_not_ls)) && 5149 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5150 unlikely(status != llc_snap))) { 5151 if (buf2_len) 5152 buf2_len -= ETH_FCS_LEN; 5153 else 5154 buf1_len -= ETH_FCS_LEN; 5155 5156 len -= ETH_FCS_LEN; 5157 } 5158 5159 if (!skb) { 5160 unsigned int pre_len, sync_len; 5161 5162 dma_sync_single_for_cpu(priv->device, buf->addr, 5163 buf1_len, dma_dir); 5164 5165 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5166 xdp_prepare_buff(&xdp, page_address(buf->page), 5167 buf->page_offset, buf1_len, false); 5168 5169 pre_len = xdp.data_end - xdp.data_hard_start - 5170 buf->page_offset; 5171 skb = stmmac_xdp_run_prog(priv, &xdp); 5172 /* Due xdp_adjust_tail: DMA sync for_device 5173 * cover max len CPU touch 5174 */ 5175 sync_len = xdp.data_end - xdp.data_hard_start - 5176 buf->page_offset; 5177 sync_len = max(sync_len, pre_len); 5178 5179 /* For Not XDP_PASS verdict */ 5180 if (IS_ERR(skb)) { 5181 unsigned int xdp_res = -PTR_ERR(skb); 5182 5183 if (xdp_res & STMMAC_XDP_CONSUMED) { 5184 page_pool_put_page(rx_q->page_pool, 5185 virt_to_head_page(xdp.data), 5186 sync_len, true); 5187 buf->page = NULL; 5188 priv->dev->stats.rx_dropped++; 5189 5190 /* Clear skb as it was set as 5191 * status by XDP program. 5192 */ 5193 skb = NULL; 5194 5195 if (unlikely((status & rx_not_ls))) 5196 goto read_again; 5197 5198 count++; 5199 continue; 5200 } else if (xdp_res & (STMMAC_XDP_TX | 5201 STMMAC_XDP_REDIRECT)) { 5202 xdp_status |= xdp_res; 5203 buf->page = NULL; 5204 skb = NULL; 5205 count++; 5206 continue; 5207 } 5208 } 5209 } 5210 5211 if (!skb) { 5212 /* XDP program may expand or reduce tail */ 5213 buf1_len = xdp.data_end - xdp.data; 5214 5215 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5216 if (!skb) { 5217 priv->dev->stats.rx_dropped++; 5218 count++; 5219 goto drain_data; 5220 } 5221 5222 /* XDP program may adjust header */ 5223 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5224 skb_put(skb, buf1_len); 5225 5226 /* Data payload copied into SKB, page ready for recycle */ 5227 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5228 buf->page = NULL; 5229 } else if (buf1_len) { 5230 dma_sync_single_for_cpu(priv->device, buf->addr, 5231 buf1_len, dma_dir); 5232 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5233 buf->page, buf->page_offset, buf1_len, 5234 priv->dma_buf_sz); 5235 5236 /* Data payload appended into SKB */ 5237 page_pool_release_page(rx_q->page_pool, buf->page); 5238 buf->page = NULL; 5239 } 5240 5241 if (buf2_len) { 5242 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5243 buf2_len, dma_dir); 5244 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5245 buf->sec_page, 0, buf2_len, 5246 priv->dma_buf_sz); 5247 5248 /* Data payload appended into SKB */ 5249 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5250 buf->sec_page = NULL; 5251 } 5252 5253 drain_data: 5254 if (likely(status & rx_not_ls)) 5255 goto read_again; 5256 if (!skb) 5257 continue; 5258 5259 /* Got entire packet into SKB. Finish it. */ 5260 5261 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5262 stmmac_rx_vlan(priv->dev, skb); 5263 skb->protocol = eth_type_trans(skb, priv->dev); 5264 5265 if (unlikely(!coe)) 5266 skb_checksum_none_assert(skb); 5267 else 5268 skb->ip_summed = CHECKSUM_UNNECESSARY; 5269 5270 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5271 skb_set_hash(skb, hash, hash_type); 5272 5273 skb_record_rx_queue(skb, queue); 5274 napi_gro_receive(&ch->rx_napi, skb); 5275 skb = NULL; 5276 5277 priv->dev->stats.rx_packets++; 5278 priv->dev->stats.rx_bytes += len; 5279 count++; 5280 } 5281 5282 if (status & rx_not_ls || skb) { 5283 rx_q->state_saved = true; 5284 rx_q->state.skb = skb; 5285 rx_q->state.error = error; 5286 rx_q->state.len = len; 5287 } 5288 5289 stmmac_finalize_xdp_rx(priv, xdp_status); 5290 5291 stmmac_rx_refill(priv, queue); 5292 5293 priv->xstats.rx_pkt_n += count; 5294 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5295 5296 return count; 5297 } 5298 5299 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5300 { 5301 struct stmmac_channel *ch = 5302 container_of(napi, struct stmmac_channel, rx_napi); 5303 struct stmmac_priv *priv = ch->priv_data; 5304 u32 chan = ch->index; 5305 int work_done; 5306 5307 priv->xstats.napi_poll++; 5308 5309 work_done = stmmac_rx(priv, budget, chan); 5310 if (work_done < budget && napi_complete_done(napi, work_done)) { 5311 unsigned long flags; 5312 5313 spin_lock_irqsave(&ch->lock, flags); 5314 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5315 spin_unlock_irqrestore(&ch->lock, flags); 5316 } 5317 5318 return work_done; 5319 } 5320 5321 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5322 { 5323 struct stmmac_channel *ch = 5324 container_of(napi, struct stmmac_channel, tx_napi); 5325 struct stmmac_priv *priv = ch->priv_data; 5326 u32 chan = ch->index; 5327 int work_done; 5328 5329 priv->xstats.napi_poll++; 5330 5331 work_done = stmmac_tx_clean(priv, budget, chan); 5332 work_done = min(work_done, budget); 5333 5334 if (work_done < budget && napi_complete_done(napi, work_done)) { 5335 unsigned long flags; 5336 5337 spin_lock_irqsave(&ch->lock, flags); 5338 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5339 spin_unlock_irqrestore(&ch->lock, flags); 5340 } 5341 5342 return work_done; 5343 } 5344 5345 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5346 { 5347 struct stmmac_channel *ch = 5348 container_of(napi, struct stmmac_channel, rxtx_napi); 5349 struct stmmac_priv *priv = ch->priv_data; 5350 int rx_done, tx_done, rxtx_done; 5351 u32 chan = ch->index; 5352 5353 priv->xstats.napi_poll++; 5354 5355 tx_done = stmmac_tx_clean(priv, budget, chan); 5356 tx_done = min(tx_done, budget); 5357 5358 rx_done = stmmac_rx_zc(priv, budget, chan); 5359 5360 rxtx_done = max(tx_done, rx_done); 5361 5362 /* If either TX or RX work is not complete, return budget 5363 * and keep pooling 5364 */ 5365 if (rxtx_done >= budget) 5366 return budget; 5367 5368 /* all work done, exit the polling mode */ 5369 if (napi_complete_done(napi, rxtx_done)) { 5370 unsigned long flags; 5371 5372 spin_lock_irqsave(&ch->lock, flags); 5373 /* Both RX and TX work done are compelte, 5374 * so enable both RX & TX IRQs. 5375 */ 5376 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5377 spin_unlock_irqrestore(&ch->lock, flags); 5378 } 5379 5380 return min(rxtx_done, budget - 1); 5381 } 5382 5383 /** 5384 * stmmac_tx_timeout 5385 * @dev : Pointer to net device structure 5386 * @txqueue: the index of the hanging transmit queue 5387 * Description: this function is called when a packet transmission fails to 5388 * complete within a reasonable time. The driver will mark the error in the 5389 * netdev structure and arrange for the device to be reset to a sane state 5390 * in order to transmit a new packet. 5391 */ 5392 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5393 { 5394 struct stmmac_priv *priv = netdev_priv(dev); 5395 5396 stmmac_global_err(priv); 5397 } 5398 5399 /** 5400 * stmmac_set_rx_mode - entry point for multicast addressing 5401 * @dev : pointer to the device structure 5402 * Description: 5403 * This function is a driver entry point which gets called by the kernel 5404 * whenever multicast addresses must be enabled/disabled. 5405 * Return value: 5406 * void. 5407 */ 5408 static void stmmac_set_rx_mode(struct net_device *dev) 5409 { 5410 struct stmmac_priv *priv = netdev_priv(dev); 5411 5412 stmmac_set_filter(priv, priv->hw, dev); 5413 } 5414 5415 /** 5416 * stmmac_change_mtu - entry point to change MTU size for the device. 5417 * @dev : device pointer. 5418 * @new_mtu : the new MTU size for the device. 5419 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5420 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5421 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5422 * Return value: 5423 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5424 * file on failure. 5425 */ 5426 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5427 { 5428 struct stmmac_priv *priv = netdev_priv(dev); 5429 int txfifosz = priv->plat->tx_fifo_size; 5430 const int mtu = new_mtu; 5431 5432 if (txfifosz == 0) 5433 txfifosz = priv->dma_cap.tx_fifo_size; 5434 5435 txfifosz /= priv->plat->tx_queues_to_use; 5436 5437 if (netif_running(dev)) { 5438 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5439 return -EBUSY; 5440 } 5441 5442 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5443 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5444 return -EINVAL; 5445 } 5446 5447 new_mtu = STMMAC_ALIGN(new_mtu); 5448 5449 /* If condition true, FIFO is too small or MTU too large */ 5450 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5451 return -EINVAL; 5452 5453 dev->mtu = mtu; 5454 5455 netdev_update_features(dev); 5456 5457 return 0; 5458 } 5459 5460 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5461 netdev_features_t features) 5462 { 5463 struct stmmac_priv *priv = netdev_priv(dev); 5464 5465 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5466 features &= ~NETIF_F_RXCSUM; 5467 5468 if (!priv->plat->tx_coe) 5469 features &= ~NETIF_F_CSUM_MASK; 5470 5471 /* Some GMAC devices have a bugged Jumbo frame support that 5472 * needs to have the Tx COE disabled for oversized frames 5473 * (due to limited buffer sizes). In this case we disable 5474 * the TX csum insertion in the TDES and not use SF. 5475 */ 5476 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5477 features &= ~NETIF_F_CSUM_MASK; 5478 5479 /* Disable tso if asked by ethtool */ 5480 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5481 if (features & NETIF_F_TSO) 5482 priv->tso = true; 5483 else 5484 priv->tso = false; 5485 } 5486 5487 return features; 5488 } 5489 5490 static int stmmac_set_features(struct net_device *netdev, 5491 netdev_features_t features) 5492 { 5493 struct stmmac_priv *priv = netdev_priv(netdev); 5494 bool sph_en; 5495 u32 chan; 5496 5497 /* Keep the COE Type in case of csum is supporting */ 5498 if (features & NETIF_F_RXCSUM) 5499 priv->hw->rx_csum = priv->plat->rx_coe; 5500 else 5501 priv->hw->rx_csum = 0; 5502 /* No check needed because rx_coe has been set before and it will be 5503 * fixed in case of issue. 5504 */ 5505 stmmac_rx_ipc(priv, priv->hw); 5506 5507 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5508 5509 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5510 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5511 5512 return 0; 5513 } 5514 5515 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5516 { 5517 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5518 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5519 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5520 bool *hs_enable = &fpe_cfg->hs_enable; 5521 5522 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5523 return; 5524 5525 /* If LP has sent verify mPacket, LP is FPE capable */ 5526 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5527 if (*lp_state < FPE_STATE_CAPABLE) 5528 *lp_state = FPE_STATE_CAPABLE; 5529 5530 /* If user has requested FPE enable, quickly response */ 5531 if (*hs_enable) 5532 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5533 MPACKET_RESPONSE); 5534 } 5535 5536 /* If Local has sent verify mPacket, Local is FPE capable */ 5537 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5538 if (*lo_state < FPE_STATE_CAPABLE) 5539 *lo_state = FPE_STATE_CAPABLE; 5540 } 5541 5542 /* If LP has sent response mPacket, LP is entering FPE ON */ 5543 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5544 *lp_state = FPE_STATE_ENTERING_ON; 5545 5546 /* If Local has sent response mPacket, Local is entering FPE ON */ 5547 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5548 *lo_state = FPE_STATE_ENTERING_ON; 5549 5550 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5551 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5552 priv->fpe_wq) { 5553 queue_work(priv->fpe_wq, &priv->fpe_task); 5554 } 5555 } 5556 5557 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5558 { 5559 u32 rx_cnt = priv->plat->rx_queues_to_use; 5560 u32 tx_cnt = priv->plat->tx_queues_to_use; 5561 u32 queues_count; 5562 u32 queue; 5563 bool xmac; 5564 5565 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5566 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5567 5568 if (priv->irq_wake) 5569 pm_wakeup_event(priv->device, 0); 5570 5571 if (priv->dma_cap.estsel) 5572 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5573 &priv->xstats, tx_cnt); 5574 5575 if (priv->dma_cap.fpesel) { 5576 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5577 priv->dev); 5578 5579 stmmac_fpe_event_status(priv, status); 5580 } 5581 5582 /* To handle GMAC own interrupts */ 5583 if ((priv->plat->has_gmac) || xmac) { 5584 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5585 5586 if (unlikely(status)) { 5587 /* For LPI we need to save the tx status */ 5588 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5589 priv->tx_path_in_lpi_mode = true; 5590 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5591 priv->tx_path_in_lpi_mode = false; 5592 } 5593 5594 for (queue = 0; queue < queues_count; queue++) { 5595 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5596 queue); 5597 } 5598 5599 /* PCS link status */ 5600 if (priv->hw->pcs) { 5601 if (priv->xstats.pcs_link) 5602 netif_carrier_on(priv->dev); 5603 else 5604 netif_carrier_off(priv->dev); 5605 } 5606 5607 stmmac_timestamp_interrupt(priv, priv); 5608 } 5609 } 5610 5611 /** 5612 * stmmac_interrupt - main ISR 5613 * @irq: interrupt number. 5614 * @dev_id: to pass the net device pointer. 5615 * Description: this is the main driver interrupt service routine. 5616 * It can call: 5617 * o DMA service routine (to manage incoming frame reception and transmission 5618 * status) 5619 * o Core interrupts to manage: remote wake-up, management counter, LPI 5620 * interrupts. 5621 */ 5622 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5623 { 5624 struct net_device *dev = (struct net_device *)dev_id; 5625 struct stmmac_priv *priv = netdev_priv(dev); 5626 5627 /* Check if adapter is up */ 5628 if (test_bit(STMMAC_DOWN, &priv->state)) 5629 return IRQ_HANDLED; 5630 5631 /* Check if a fatal error happened */ 5632 if (stmmac_safety_feat_interrupt(priv)) 5633 return IRQ_HANDLED; 5634 5635 /* To handle Common interrupts */ 5636 stmmac_common_interrupt(priv); 5637 5638 /* To handle DMA interrupts */ 5639 stmmac_dma_interrupt(priv); 5640 5641 return IRQ_HANDLED; 5642 } 5643 5644 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5645 { 5646 struct net_device *dev = (struct net_device *)dev_id; 5647 struct stmmac_priv *priv = netdev_priv(dev); 5648 5649 if (unlikely(!dev)) { 5650 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5651 return IRQ_NONE; 5652 } 5653 5654 /* Check if adapter is up */ 5655 if (test_bit(STMMAC_DOWN, &priv->state)) 5656 return IRQ_HANDLED; 5657 5658 /* To handle Common interrupts */ 5659 stmmac_common_interrupt(priv); 5660 5661 return IRQ_HANDLED; 5662 } 5663 5664 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5665 { 5666 struct net_device *dev = (struct net_device *)dev_id; 5667 struct stmmac_priv *priv = netdev_priv(dev); 5668 5669 if (unlikely(!dev)) { 5670 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5671 return IRQ_NONE; 5672 } 5673 5674 /* Check if adapter is up */ 5675 if (test_bit(STMMAC_DOWN, &priv->state)) 5676 return IRQ_HANDLED; 5677 5678 /* Check if a fatal error happened */ 5679 stmmac_safety_feat_interrupt(priv); 5680 5681 return IRQ_HANDLED; 5682 } 5683 5684 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5685 { 5686 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5687 int chan = tx_q->queue_index; 5688 struct stmmac_priv *priv; 5689 int status; 5690 5691 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5692 5693 if (unlikely(!data)) { 5694 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5695 return IRQ_NONE; 5696 } 5697 5698 /* Check if adapter is up */ 5699 if (test_bit(STMMAC_DOWN, &priv->state)) 5700 return IRQ_HANDLED; 5701 5702 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5703 5704 if (unlikely(status & tx_hard_error_bump_tc)) { 5705 /* Try to bump up the dma threshold on this failure */ 5706 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 5707 tc <= 256) { 5708 tc += 64; 5709 if (priv->plat->force_thresh_dma_mode) 5710 stmmac_set_dma_operation_mode(priv, 5711 tc, 5712 tc, 5713 chan); 5714 else 5715 stmmac_set_dma_operation_mode(priv, 5716 tc, 5717 SF_DMA_MODE, 5718 chan); 5719 priv->xstats.threshold = tc; 5720 } 5721 } else if (unlikely(status == tx_hard_error)) { 5722 stmmac_tx_err(priv, chan); 5723 } 5724 5725 return IRQ_HANDLED; 5726 } 5727 5728 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5729 { 5730 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5731 int chan = rx_q->queue_index; 5732 struct stmmac_priv *priv; 5733 5734 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5735 5736 if (unlikely(!data)) { 5737 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5738 return IRQ_NONE; 5739 } 5740 5741 /* Check if adapter is up */ 5742 if (test_bit(STMMAC_DOWN, &priv->state)) 5743 return IRQ_HANDLED; 5744 5745 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5746 5747 return IRQ_HANDLED; 5748 } 5749 5750 #ifdef CONFIG_NET_POLL_CONTROLLER 5751 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5752 * to allow network I/O with interrupts disabled. 5753 */ 5754 static void stmmac_poll_controller(struct net_device *dev) 5755 { 5756 struct stmmac_priv *priv = netdev_priv(dev); 5757 int i; 5758 5759 /* If adapter is down, do nothing */ 5760 if (test_bit(STMMAC_DOWN, &priv->state)) 5761 return; 5762 5763 if (priv->plat->multi_msi_en) { 5764 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5765 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5766 5767 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5768 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5769 } else { 5770 disable_irq(dev->irq); 5771 stmmac_interrupt(dev->irq, dev); 5772 enable_irq(dev->irq); 5773 } 5774 } 5775 #endif 5776 5777 /** 5778 * stmmac_ioctl - Entry point for the Ioctl 5779 * @dev: Device pointer. 5780 * @rq: An IOCTL specefic structure, that can contain a pointer to 5781 * a proprietary structure used to pass information to the driver. 5782 * @cmd: IOCTL command 5783 * Description: 5784 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5785 */ 5786 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5787 { 5788 struct stmmac_priv *priv = netdev_priv (dev); 5789 int ret = -EOPNOTSUPP; 5790 5791 if (!netif_running(dev)) 5792 return -EINVAL; 5793 5794 switch (cmd) { 5795 case SIOCGMIIPHY: 5796 case SIOCGMIIREG: 5797 case SIOCSMIIREG: 5798 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5799 break; 5800 case SIOCSHWTSTAMP: 5801 ret = stmmac_hwtstamp_set(dev, rq); 5802 break; 5803 case SIOCGHWTSTAMP: 5804 ret = stmmac_hwtstamp_get(dev, rq); 5805 break; 5806 default: 5807 break; 5808 } 5809 5810 return ret; 5811 } 5812 5813 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5814 void *cb_priv) 5815 { 5816 struct stmmac_priv *priv = cb_priv; 5817 int ret = -EOPNOTSUPP; 5818 5819 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5820 return ret; 5821 5822 __stmmac_disable_all_queues(priv); 5823 5824 switch (type) { 5825 case TC_SETUP_CLSU32: 5826 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5827 break; 5828 case TC_SETUP_CLSFLOWER: 5829 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5830 break; 5831 default: 5832 break; 5833 } 5834 5835 stmmac_enable_all_queues(priv); 5836 return ret; 5837 } 5838 5839 static LIST_HEAD(stmmac_block_cb_list); 5840 5841 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5842 void *type_data) 5843 { 5844 struct stmmac_priv *priv = netdev_priv(ndev); 5845 5846 switch (type) { 5847 case TC_SETUP_BLOCK: 5848 return flow_block_cb_setup_simple(type_data, 5849 &stmmac_block_cb_list, 5850 stmmac_setup_tc_block_cb, 5851 priv, priv, true); 5852 case TC_SETUP_QDISC_CBS: 5853 return stmmac_tc_setup_cbs(priv, priv, type_data); 5854 case TC_SETUP_QDISC_TAPRIO: 5855 return stmmac_tc_setup_taprio(priv, priv, type_data); 5856 case TC_SETUP_QDISC_ETF: 5857 return stmmac_tc_setup_etf(priv, priv, type_data); 5858 default: 5859 return -EOPNOTSUPP; 5860 } 5861 } 5862 5863 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5864 struct net_device *sb_dev) 5865 { 5866 int gso = skb_shinfo(skb)->gso_type; 5867 5868 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5869 /* 5870 * There is no way to determine the number of TSO/USO 5871 * capable Queues. Let's use always the Queue 0 5872 * because if TSO/USO is supported then at least this 5873 * one will be capable. 5874 */ 5875 return 0; 5876 } 5877 5878 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5879 } 5880 5881 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5882 { 5883 struct stmmac_priv *priv = netdev_priv(ndev); 5884 int ret = 0; 5885 5886 ret = pm_runtime_get_sync(priv->device); 5887 if (ret < 0) { 5888 pm_runtime_put_noidle(priv->device); 5889 return ret; 5890 } 5891 5892 ret = eth_mac_addr(ndev, addr); 5893 if (ret) 5894 goto set_mac_error; 5895 5896 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5897 5898 set_mac_error: 5899 pm_runtime_put(priv->device); 5900 5901 return ret; 5902 } 5903 5904 #ifdef CONFIG_DEBUG_FS 5905 static struct dentry *stmmac_fs_dir; 5906 5907 static void sysfs_display_ring(void *head, int size, int extend_desc, 5908 struct seq_file *seq, dma_addr_t dma_phy_addr) 5909 { 5910 int i; 5911 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5912 struct dma_desc *p = (struct dma_desc *)head; 5913 dma_addr_t dma_addr; 5914 5915 for (i = 0; i < size; i++) { 5916 if (extend_desc) { 5917 dma_addr = dma_phy_addr + i * sizeof(*ep); 5918 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5919 i, &dma_addr, 5920 le32_to_cpu(ep->basic.des0), 5921 le32_to_cpu(ep->basic.des1), 5922 le32_to_cpu(ep->basic.des2), 5923 le32_to_cpu(ep->basic.des3)); 5924 ep++; 5925 } else { 5926 dma_addr = dma_phy_addr + i * sizeof(*p); 5927 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5928 i, &dma_addr, 5929 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5930 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5931 p++; 5932 } 5933 seq_printf(seq, "\n"); 5934 } 5935 } 5936 5937 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5938 { 5939 struct net_device *dev = seq->private; 5940 struct stmmac_priv *priv = netdev_priv(dev); 5941 u32 rx_count = priv->plat->rx_queues_to_use; 5942 u32 tx_count = priv->plat->tx_queues_to_use; 5943 u32 queue; 5944 5945 if ((dev->flags & IFF_UP) == 0) 5946 return 0; 5947 5948 for (queue = 0; queue < rx_count; queue++) { 5949 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5950 5951 seq_printf(seq, "RX Queue %d:\n", queue); 5952 5953 if (priv->extend_desc) { 5954 seq_printf(seq, "Extended descriptor ring:\n"); 5955 sysfs_display_ring((void *)rx_q->dma_erx, 5956 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5957 } else { 5958 seq_printf(seq, "Descriptor ring:\n"); 5959 sysfs_display_ring((void *)rx_q->dma_rx, 5960 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5961 } 5962 } 5963 5964 for (queue = 0; queue < tx_count; queue++) { 5965 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5966 5967 seq_printf(seq, "TX Queue %d:\n", queue); 5968 5969 if (priv->extend_desc) { 5970 seq_printf(seq, "Extended descriptor ring:\n"); 5971 sysfs_display_ring((void *)tx_q->dma_etx, 5972 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 5973 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 5974 seq_printf(seq, "Descriptor ring:\n"); 5975 sysfs_display_ring((void *)tx_q->dma_tx, 5976 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 5977 } 5978 } 5979 5980 return 0; 5981 } 5982 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 5983 5984 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 5985 { 5986 struct net_device *dev = seq->private; 5987 struct stmmac_priv *priv = netdev_priv(dev); 5988 5989 if (!priv->hw_cap_support) { 5990 seq_printf(seq, "DMA HW features not supported\n"); 5991 return 0; 5992 } 5993 5994 seq_printf(seq, "==============================\n"); 5995 seq_printf(seq, "\tDMA HW features\n"); 5996 seq_printf(seq, "==============================\n"); 5997 5998 seq_printf(seq, "\t10/100 Mbps: %s\n", 5999 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6000 seq_printf(seq, "\t1000 Mbps: %s\n", 6001 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6002 seq_printf(seq, "\tHalf duplex: %s\n", 6003 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6004 seq_printf(seq, "\tHash Filter: %s\n", 6005 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6006 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6007 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6008 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6009 (priv->dma_cap.pcs) ? "Y" : "N"); 6010 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6011 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6012 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6013 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6014 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6015 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6016 seq_printf(seq, "\tRMON module: %s\n", 6017 (priv->dma_cap.rmon) ? "Y" : "N"); 6018 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6019 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6020 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6021 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6022 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6023 (priv->dma_cap.eee) ? "Y" : "N"); 6024 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6025 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6026 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6027 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6028 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6029 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6030 } else { 6031 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6032 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6033 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6034 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6035 } 6036 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6037 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6038 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6039 priv->dma_cap.number_rx_channel); 6040 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6041 priv->dma_cap.number_tx_channel); 6042 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6043 priv->dma_cap.number_rx_queues); 6044 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6045 priv->dma_cap.number_tx_queues); 6046 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6047 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6048 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6049 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6050 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6051 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6052 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6053 priv->dma_cap.pps_out_num); 6054 seq_printf(seq, "\tSafety Features: %s\n", 6055 priv->dma_cap.asp ? "Y" : "N"); 6056 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6057 priv->dma_cap.frpsel ? "Y" : "N"); 6058 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6059 priv->dma_cap.addr64); 6060 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6061 priv->dma_cap.rssen ? "Y" : "N"); 6062 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6063 priv->dma_cap.vlhash ? "Y" : "N"); 6064 seq_printf(seq, "\tSplit Header: %s\n", 6065 priv->dma_cap.sphen ? "Y" : "N"); 6066 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6067 priv->dma_cap.vlins ? "Y" : "N"); 6068 seq_printf(seq, "\tDouble VLAN: %s\n", 6069 priv->dma_cap.dvlan ? "Y" : "N"); 6070 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6071 priv->dma_cap.l3l4fnum); 6072 seq_printf(seq, "\tARP Offloading: %s\n", 6073 priv->dma_cap.arpoffsel ? "Y" : "N"); 6074 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6075 priv->dma_cap.estsel ? "Y" : "N"); 6076 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6077 priv->dma_cap.fpesel ? "Y" : "N"); 6078 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6079 priv->dma_cap.tbssel ? "Y" : "N"); 6080 return 0; 6081 } 6082 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6083 6084 /* Use network device events to rename debugfs file entries. 6085 */ 6086 static int stmmac_device_event(struct notifier_block *unused, 6087 unsigned long event, void *ptr) 6088 { 6089 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6090 struct stmmac_priv *priv = netdev_priv(dev); 6091 6092 if (dev->netdev_ops != &stmmac_netdev_ops) 6093 goto done; 6094 6095 switch (event) { 6096 case NETDEV_CHANGENAME: 6097 if (priv->dbgfs_dir) 6098 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6099 priv->dbgfs_dir, 6100 stmmac_fs_dir, 6101 dev->name); 6102 break; 6103 } 6104 done: 6105 return NOTIFY_DONE; 6106 } 6107 6108 static struct notifier_block stmmac_notifier = { 6109 .notifier_call = stmmac_device_event, 6110 }; 6111 6112 static void stmmac_init_fs(struct net_device *dev) 6113 { 6114 struct stmmac_priv *priv = netdev_priv(dev); 6115 6116 rtnl_lock(); 6117 6118 /* Create per netdev entries */ 6119 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6120 6121 /* Entry to report DMA RX/TX rings */ 6122 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6123 &stmmac_rings_status_fops); 6124 6125 /* Entry to report the DMA HW features */ 6126 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6127 &stmmac_dma_cap_fops); 6128 6129 rtnl_unlock(); 6130 } 6131 6132 static void stmmac_exit_fs(struct net_device *dev) 6133 { 6134 struct stmmac_priv *priv = netdev_priv(dev); 6135 6136 debugfs_remove_recursive(priv->dbgfs_dir); 6137 } 6138 #endif /* CONFIG_DEBUG_FS */ 6139 6140 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6141 { 6142 unsigned char *data = (unsigned char *)&vid_le; 6143 unsigned char data_byte = 0; 6144 u32 crc = ~0x0; 6145 u32 temp = 0; 6146 int i, bits; 6147 6148 bits = get_bitmask_order(VLAN_VID_MASK); 6149 for (i = 0; i < bits; i++) { 6150 if ((i % 8) == 0) 6151 data_byte = data[i / 8]; 6152 6153 temp = ((crc & 1) ^ data_byte) & 1; 6154 crc >>= 1; 6155 data_byte >>= 1; 6156 6157 if (temp) 6158 crc ^= 0xedb88320; 6159 } 6160 6161 return crc; 6162 } 6163 6164 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6165 { 6166 u32 crc, hash = 0; 6167 __le16 pmatch = 0; 6168 int count = 0; 6169 u16 vid = 0; 6170 6171 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6172 __le16 vid_le = cpu_to_le16(vid); 6173 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6174 hash |= (1 << crc); 6175 count++; 6176 } 6177 6178 if (!priv->dma_cap.vlhash) { 6179 if (count > 2) /* VID = 0 always passes filter */ 6180 return -EOPNOTSUPP; 6181 6182 pmatch = cpu_to_le16(vid); 6183 hash = 0; 6184 } 6185 6186 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6187 } 6188 6189 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6190 { 6191 struct stmmac_priv *priv = netdev_priv(ndev); 6192 bool is_double = false; 6193 int ret; 6194 6195 if (be16_to_cpu(proto) == ETH_P_8021AD) 6196 is_double = true; 6197 6198 set_bit(vid, priv->active_vlans); 6199 ret = stmmac_vlan_update(priv, is_double); 6200 if (ret) { 6201 clear_bit(vid, priv->active_vlans); 6202 return ret; 6203 } 6204 6205 if (priv->hw->num_vlan) { 6206 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6207 if (ret) 6208 return ret; 6209 } 6210 6211 return 0; 6212 } 6213 6214 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6215 { 6216 struct stmmac_priv *priv = netdev_priv(ndev); 6217 bool is_double = false; 6218 int ret; 6219 6220 ret = pm_runtime_get_sync(priv->device); 6221 if (ret < 0) { 6222 pm_runtime_put_noidle(priv->device); 6223 return ret; 6224 } 6225 6226 if (be16_to_cpu(proto) == ETH_P_8021AD) 6227 is_double = true; 6228 6229 clear_bit(vid, priv->active_vlans); 6230 6231 if (priv->hw->num_vlan) { 6232 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6233 if (ret) 6234 goto del_vlan_error; 6235 } 6236 6237 ret = stmmac_vlan_update(priv, is_double); 6238 6239 del_vlan_error: 6240 pm_runtime_put(priv->device); 6241 6242 return ret; 6243 } 6244 6245 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6246 { 6247 struct stmmac_priv *priv = netdev_priv(dev); 6248 6249 switch (bpf->command) { 6250 case XDP_SETUP_PROG: 6251 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6252 case XDP_SETUP_XSK_POOL: 6253 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6254 bpf->xsk.queue_id); 6255 default: 6256 return -EOPNOTSUPP; 6257 } 6258 } 6259 6260 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6261 struct xdp_frame **frames, u32 flags) 6262 { 6263 struct stmmac_priv *priv = netdev_priv(dev); 6264 int cpu = smp_processor_id(); 6265 struct netdev_queue *nq; 6266 int i, nxmit = 0; 6267 int queue; 6268 6269 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6270 return -ENETDOWN; 6271 6272 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6273 return -EINVAL; 6274 6275 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6276 nq = netdev_get_tx_queue(priv->dev, queue); 6277 6278 __netif_tx_lock(nq, cpu); 6279 /* Avoids TX time-out as we are sharing with slow path */ 6280 nq->trans_start = jiffies; 6281 6282 for (i = 0; i < num_frames; i++) { 6283 int res; 6284 6285 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6286 if (res == STMMAC_XDP_CONSUMED) 6287 break; 6288 6289 nxmit++; 6290 } 6291 6292 if (flags & XDP_XMIT_FLUSH) { 6293 stmmac_flush_tx_descriptors(priv, queue); 6294 stmmac_tx_timer_arm(priv, queue); 6295 } 6296 6297 __netif_tx_unlock(nq); 6298 6299 return nxmit; 6300 } 6301 6302 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6303 { 6304 struct stmmac_channel *ch = &priv->channel[queue]; 6305 unsigned long flags; 6306 6307 spin_lock_irqsave(&ch->lock, flags); 6308 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6309 spin_unlock_irqrestore(&ch->lock, flags); 6310 6311 stmmac_stop_rx_dma(priv, queue); 6312 __free_dma_rx_desc_resources(priv, queue); 6313 } 6314 6315 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6316 { 6317 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6318 struct stmmac_channel *ch = &priv->channel[queue]; 6319 unsigned long flags; 6320 u32 buf_size; 6321 int ret; 6322 6323 ret = __alloc_dma_rx_desc_resources(priv, queue); 6324 if (ret) { 6325 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6326 return; 6327 } 6328 6329 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6330 if (ret) { 6331 __free_dma_rx_desc_resources(priv, queue); 6332 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6333 return; 6334 } 6335 6336 stmmac_clear_rx_descriptors(priv, queue); 6337 6338 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6339 rx_q->dma_rx_phy, rx_q->queue_index); 6340 6341 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6342 sizeof(struct dma_desc)); 6343 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6344 rx_q->rx_tail_addr, rx_q->queue_index); 6345 6346 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6347 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6348 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6349 buf_size, 6350 rx_q->queue_index); 6351 } else { 6352 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6353 priv->dma_buf_sz, 6354 rx_q->queue_index); 6355 } 6356 6357 stmmac_start_rx_dma(priv, queue); 6358 6359 spin_lock_irqsave(&ch->lock, flags); 6360 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6361 spin_unlock_irqrestore(&ch->lock, flags); 6362 } 6363 6364 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6365 { 6366 struct stmmac_channel *ch = &priv->channel[queue]; 6367 unsigned long flags; 6368 6369 spin_lock_irqsave(&ch->lock, flags); 6370 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6371 spin_unlock_irqrestore(&ch->lock, flags); 6372 6373 stmmac_stop_tx_dma(priv, queue); 6374 __free_dma_tx_desc_resources(priv, queue); 6375 } 6376 6377 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6378 { 6379 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6380 struct stmmac_channel *ch = &priv->channel[queue]; 6381 unsigned long flags; 6382 int ret; 6383 6384 ret = __alloc_dma_tx_desc_resources(priv, queue); 6385 if (ret) { 6386 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6387 return; 6388 } 6389 6390 ret = __init_dma_tx_desc_rings(priv, queue); 6391 if (ret) { 6392 __free_dma_tx_desc_resources(priv, queue); 6393 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6394 return; 6395 } 6396 6397 stmmac_clear_tx_descriptors(priv, queue); 6398 6399 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6400 tx_q->dma_tx_phy, tx_q->queue_index); 6401 6402 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6403 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6404 6405 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6406 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6407 tx_q->tx_tail_addr, tx_q->queue_index); 6408 6409 stmmac_start_tx_dma(priv, queue); 6410 6411 spin_lock_irqsave(&ch->lock, flags); 6412 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6413 spin_unlock_irqrestore(&ch->lock, flags); 6414 } 6415 6416 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6417 { 6418 struct stmmac_priv *priv = netdev_priv(dev); 6419 struct stmmac_rx_queue *rx_q; 6420 struct stmmac_tx_queue *tx_q; 6421 struct stmmac_channel *ch; 6422 6423 if (test_bit(STMMAC_DOWN, &priv->state) || 6424 !netif_carrier_ok(priv->dev)) 6425 return -ENETDOWN; 6426 6427 if (!stmmac_xdp_is_enabled(priv)) 6428 return -ENXIO; 6429 6430 if (queue >= priv->plat->rx_queues_to_use || 6431 queue >= priv->plat->tx_queues_to_use) 6432 return -EINVAL; 6433 6434 rx_q = &priv->rx_queue[queue]; 6435 tx_q = &priv->tx_queue[queue]; 6436 ch = &priv->channel[queue]; 6437 6438 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6439 return -ENXIO; 6440 6441 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6442 /* EQoS does not have per-DMA channel SW interrupt, 6443 * so we schedule RX Napi straight-away. 6444 */ 6445 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6446 __napi_schedule(&ch->rxtx_napi); 6447 } 6448 6449 return 0; 6450 } 6451 6452 static const struct net_device_ops stmmac_netdev_ops = { 6453 .ndo_open = stmmac_open, 6454 .ndo_start_xmit = stmmac_xmit, 6455 .ndo_stop = stmmac_release, 6456 .ndo_change_mtu = stmmac_change_mtu, 6457 .ndo_fix_features = stmmac_fix_features, 6458 .ndo_set_features = stmmac_set_features, 6459 .ndo_set_rx_mode = stmmac_set_rx_mode, 6460 .ndo_tx_timeout = stmmac_tx_timeout, 6461 .ndo_eth_ioctl = stmmac_ioctl, 6462 .ndo_setup_tc = stmmac_setup_tc, 6463 .ndo_select_queue = stmmac_select_queue, 6464 #ifdef CONFIG_NET_POLL_CONTROLLER 6465 .ndo_poll_controller = stmmac_poll_controller, 6466 #endif 6467 .ndo_set_mac_address = stmmac_set_mac_address, 6468 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6469 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6470 .ndo_bpf = stmmac_bpf, 6471 .ndo_xdp_xmit = stmmac_xdp_xmit, 6472 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6473 }; 6474 6475 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6476 { 6477 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6478 return; 6479 if (test_bit(STMMAC_DOWN, &priv->state)) 6480 return; 6481 6482 netdev_err(priv->dev, "Reset adapter.\n"); 6483 6484 rtnl_lock(); 6485 netif_trans_update(priv->dev); 6486 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6487 usleep_range(1000, 2000); 6488 6489 set_bit(STMMAC_DOWN, &priv->state); 6490 dev_close(priv->dev); 6491 dev_open(priv->dev, NULL); 6492 clear_bit(STMMAC_DOWN, &priv->state); 6493 clear_bit(STMMAC_RESETING, &priv->state); 6494 rtnl_unlock(); 6495 } 6496 6497 static void stmmac_service_task(struct work_struct *work) 6498 { 6499 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6500 service_task); 6501 6502 stmmac_reset_subtask(priv); 6503 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6504 } 6505 6506 /** 6507 * stmmac_hw_init - Init the MAC device 6508 * @priv: driver private structure 6509 * Description: this function is to configure the MAC device according to 6510 * some platform parameters or the HW capability register. It prepares the 6511 * driver to use either ring or chain modes and to setup either enhanced or 6512 * normal descriptors. 6513 */ 6514 static int stmmac_hw_init(struct stmmac_priv *priv) 6515 { 6516 int ret; 6517 6518 /* dwmac-sun8i only work in chain mode */ 6519 if (priv->plat->has_sun8i) 6520 chain_mode = 1; 6521 priv->chain_mode = chain_mode; 6522 6523 /* Initialize HW Interface */ 6524 ret = stmmac_hwif_init(priv); 6525 if (ret) 6526 return ret; 6527 6528 /* Get the HW capability (new GMAC newer than 3.50a) */ 6529 priv->hw_cap_support = stmmac_get_hw_features(priv); 6530 if (priv->hw_cap_support) { 6531 dev_info(priv->device, "DMA HW capability register supported\n"); 6532 6533 /* We can override some gmac/dma configuration fields: e.g. 6534 * enh_desc, tx_coe (e.g. that are passed through the 6535 * platform) with the values from the HW capability 6536 * register (if supported). 6537 */ 6538 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6539 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6540 !priv->plat->use_phy_wol; 6541 priv->hw->pmt = priv->plat->pmt; 6542 if (priv->dma_cap.hash_tb_sz) { 6543 priv->hw->multicast_filter_bins = 6544 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6545 priv->hw->mcast_bits_log2 = 6546 ilog2(priv->hw->multicast_filter_bins); 6547 } 6548 6549 /* TXCOE doesn't work in thresh DMA mode */ 6550 if (priv->plat->force_thresh_dma_mode) 6551 priv->plat->tx_coe = 0; 6552 else 6553 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6554 6555 /* In case of GMAC4 rx_coe is from HW cap register. */ 6556 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6557 6558 if (priv->dma_cap.rx_coe_type2) 6559 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6560 else if (priv->dma_cap.rx_coe_type1) 6561 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6562 6563 } else { 6564 dev_info(priv->device, "No HW DMA feature register supported\n"); 6565 } 6566 6567 if (priv->plat->rx_coe) { 6568 priv->hw->rx_csum = priv->plat->rx_coe; 6569 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6570 if (priv->synopsys_id < DWMAC_CORE_4_00) 6571 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6572 } 6573 if (priv->plat->tx_coe) 6574 dev_info(priv->device, "TX Checksum insertion supported\n"); 6575 6576 if (priv->plat->pmt) { 6577 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6578 device_set_wakeup_capable(priv->device, 1); 6579 } 6580 6581 if (priv->dma_cap.tsoen) 6582 dev_info(priv->device, "TSO supported\n"); 6583 6584 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6585 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6586 6587 /* Run HW quirks, if any */ 6588 if (priv->hwif_quirks) { 6589 ret = priv->hwif_quirks(priv); 6590 if (ret) 6591 return ret; 6592 } 6593 6594 /* Rx Watchdog is available in the COREs newer than the 3.40. 6595 * In some case, for example on bugged HW this feature 6596 * has to be disable and this can be done by passing the 6597 * riwt_off field from the platform. 6598 */ 6599 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6600 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6601 priv->use_riwt = 1; 6602 dev_info(priv->device, 6603 "Enable RX Mitigation via HW Watchdog Timer\n"); 6604 } 6605 6606 return 0; 6607 } 6608 6609 static void stmmac_napi_add(struct net_device *dev) 6610 { 6611 struct stmmac_priv *priv = netdev_priv(dev); 6612 u32 queue, maxq; 6613 6614 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6615 6616 for (queue = 0; queue < maxq; queue++) { 6617 struct stmmac_channel *ch = &priv->channel[queue]; 6618 6619 ch->priv_data = priv; 6620 ch->index = queue; 6621 spin_lock_init(&ch->lock); 6622 6623 if (queue < priv->plat->rx_queues_to_use) { 6624 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6625 NAPI_POLL_WEIGHT); 6626 } 6627 if (queue < priv->plat->tx_queues_to_use) { 6628 netif_tx_napi_add(dev, &ch->tx_napi, 6629 stmmac_napi_poll_tx, 6630 NAPI_POLL_WEIGHT); 6631 } 6632 if (queue < priv->plat->rx_queues_to_use && 6633 queue < priv->plat->tx_queues_to_use) { 6634 netif_napi_add(dev, &ch->rxtx_napi, 6635 stmmac_napi_poll_rxtx, 6636 NAPI_POLL_WEIGHT); 6637 } 6638 } 6639 } 6640 6641 static void stmmac_napi_del(struct net_device *dev) 6642 { 6643 struct stmmac_priv *priv = netdev_priv(dev); 6644 u32 queue, maxq; 6645 6646 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6647 6648 for (queue = 0; queue < maxq; queue++) { 6649 struct stmmac_channel *ch = &priv->channel[queue]; 6650 6651 if (queue < priv->plat->rx_queues_to_use) 6652 netif_napi_del(&ch->rx_napi); 6653 if (queue < priv->plat->tx_queues_to_use) 6654 netif_napi_del(&ch->tx_napi); 6655 if (queue < priv->plat->rx_queues_to_use && 6656 queue < priv->plat->tx_queues_to_use) { 6657 netif_napi_del(&ch->rxtx_napi); 6658 } 6659 } 6660 } 6661 6662 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6663 { 6664 struct stmmac_priv *priv = netdev_priv(dev); 6665 int ret = 0; 6666 6667 if (netif_running(dev)) 6668 stmmac_release(dev); 6669 6670 stmmac_napi_del(dev); 6671 6672 priv->plat->rx_queues_to_use = rx_cnt; 6673 priv->plat->tx_queues_to_use = tx_cnt; 6674 6675 stmmac_napi_add(dev); 6676 6677 if (netif_running(dev)) 6678 ret = stmmac_open(dev); 6679 6680 return ret; 6681 } 6682 6683 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6684 { 6685 struct stmmac_priv *priv = netdev_priv(dev); 6686 int ret = 0; 6687 6688 if (netif_running(dev)) 6689 stmmac_release(dev); 6690 6691 priv->dma_rx_size = rx_size; 6692 priv->dma_tx_size = tx_size; 6693 6694 if (netif_running(dev)) 6695 ret = stmmac_open(dev); 6696 6697 return ret; 6698 } 6699 6700 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6701 static void stmmac_fpe_lp_task(struct work_struct *work) 6702 { 6703 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6704 fpe_task); 6705 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6706 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6707 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6708 bool *hs_enable = &fpe_cfg->hs_enable; 6709 bool *enable = &fpe_cfg->enable; 6710 int retries = 20; 6711 6712 while (retries-- > 0) { 6713 /* Bail out immediately if FPE handshake is OFF */ 6714 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6715 break; 6716 6717 if (*lo_state == FPE_STATE_ENTERING_ON && 6718 *lp_state == FPE_STATE_ENTERING_ON) { 6719 stmmac_fpe_configure(priv, priv->ioaddr, 6720 priv->plat->tx_queues_to_use, 6721 priv->plat->rx_queues_to_use, 6722 *enable); 6723 6724 netdev_info(priv->dev, "configured FPE\n"); 6725 6726 *lo_state = FPE_STATE_ON; 6727 *lp_state = FPE_STATE_ON; 6728 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6729 break; 6730 } 6731 6732 if ((*lo_state == FPE_STATE_CAPABLE || 6733 *lo_state == FPE_STATE_ENTERING_ON) && 6734 *lp_state != FPE_STATE_ON) { 6735 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6736 *lo_state, *lp_state); 6737 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6738 MPACKET_VERIFY); 6739 } 6740 /* Sleep then retry */ 6741 msleep(500); 6742 } 6743 6744 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6745 } 6746 6747 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6748 { 6749 if (priv->plat->fpe_cfg->hs_enable != enable) { 6750 if (enable) { 6751 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6752 MPACKET_VERIFY); 6753 } else { 6754 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6755 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6756 } 6757 6758 priv->plat->fpe_cfg->hs_enable = enable; 6759 } 6760 } 6761 6762 /** 6763 * stmmac_dvr_probe 6764 * @device: device pointer 6765 * @plat_dat: platform data pointer 6766 * @res: stmmac resource pointer 6767 * Description: this is the main probe function used to 6768 * call the alloc_etherdev, allocate the priv structure. 6769 * Return: 6770 * returns 0 on success, otherwise errno. 6771 */ 6772 int stmmac_dvr_probe(struct device *device, 6773 struct plat_stmmacenet_data *plat_dat, 6774 struct stmmac_resources *res) 6775 { 6776 struct net_device *ndev = NULL; 6777 struct stmmac_priv *priv; 6778 u32 rxq; 6779 int i, ret = 0; 6780 6781 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6782 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6783 if (!ndev) 6784 return -ENOMEM; 6785 6786 SET_NETDEV_DEV(ndev, device); 6787 6788 priv = netdev_priv(ndev); 6789 priv->device = device; 6790 priv->dev = ndev; 6791 6792 stmmac_set_ethtool_ops(ndev); 6793 priv->pause = pause; 6794 priv->plat = plat_dat; 6795 priv->ioaddr = res->addr; 6796 priv->dev->base_addr = (unsigned long)res->addr; 6797 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6798 6799 priv->dev->irq = res->irq; 6800 priv->wol_irq = res->wol_irq; 6801 priv->lpi_irq = res->lpi_irq; 6802 priv->sfty_ce_irq = res->sfty_ce_irq; 6803 priv->sfty_ue_irq = res->sfty_ue_irq; 6804 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6805 priv->rx_irq[i] = res->rx_irq[i]; 6806 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6807 priv->tx_irq[i] = res->tx_irq[i]; 6808 6809 if (!is_zero_ether_addr(res->mac)) 6810 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 6811 6812 dev_set_drvdata(device, priv->dev); 6813 6814 /* Verify driver arguments */ 6815 stmmac_verify_args(); 6816 6817 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6818 if (!priv->af_xdp_zc_qps) 6819 return -ENOMEM; 6820 6821 /* Allocate workqueue */ 6822 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6823 if (!priv->wq) { 6824 dev_err(priv->device, "failed to create workqueue\n"); 6825 return -ENOMEM; 6826 } 6827 6828 INIT_WORK(&priv->service_task, stmmac_service_task); 6829 6830 /* Initialize Link Partner FPE workqueue */ 6831 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6832 6833 /* Override with kernel parameters if supplied XXX CRS XXX 6834 * this needs to have multiple instances 6835 */ 6836 if ((phyaddr >= 0) && (phyaddr <= 31)) 6837 priv->plat->phy_addr = phyaddr; 6838 6839 if (priv->plat->stmmac_rst) { 6840 ret = reset_control_assert(priv->plat->stmmac_rst); 6841 reset_control_deassert(priv->plat->stmmac_rst); 6842 /* Some reset controllers have only reset callback instead of 6843 * assert + deassert callbacks pair. 6844 */ 6845 if (ret == -ENOTSUPP) 6846 reset_control_reset(priv->plat->stmmac_rst); 6847 } 6848 6849 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 6850 if (ret == -ENOTSUPP) 6851 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 6852 ERR_PTR(ret)); 6853 6854 /* Init MAC and get the capabilities */ 6855 ret = stmmac_hw_init(priv); 6856 if (ret) 6857 goto error_hw_init; 6858 6859 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 6860 */ 6861 if (priv->synopsys_id < DWMAC_CORE_5_20) 6862 priv->plat->dma_cfg->dche = false; 6863 6864 stmmac_check_ether_addr(priv); 6865 6866 ndev->netdev_ops = &stmmac_netdev_ops; 6867 6868 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6869 NETIF_F_RXCSUM; 6870 6871 ret = stmmac_tc_init(priv, priv); 6872 if (!ret) { 6873 ndev->hw_features |= NETIF_F_HW_TC; 6874 } 6875 6876 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 6877 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 6878 if (priv->plat->has_gmac4) 6879 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 6880 priv->tso = true; 6881 dev_info(priv->device, "TSO feature enabled\n"); 6882 } 6883 6884 if (priv->dma_cap.sphen) { 6885 ndev->hw_features |= NETIF_F_GRO; 6886 priv->sph_cap = true; 6887 priv->sph = priv->sph_cap; 6888 dev_info(priv->device, "SPH feature enabled\n"); 6889 } 6890 6891 /* The current IP register MAC_HW_Feature1[ADDR64] only define 6892 * 32/40/64 bit width, but some SOC support others like i.MX8MP 6893 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 6894 * So overwrite dma_cap.addr64 according to HW real design. 6895 */ 6896 if (priv->plat->addr64) 6897 priv->dma_cap.addr64 = priv->plat->addr64; 6898 6899 if (priv->dma_cap.addr64) { 6900 ret = dma_set_mask_and_coherent(device, 6901 DMA_BIT_MASK(priv->dma_cap.addr64)); 6902 if (!ret) { 6903 dev_info(priv->device, "Using %d bits DMA width\n", 6904 priv->dma_cap.addr64); 6905 6906 /* 6907 * If more than 32 bits can be addressed, make sure to 6908 * enable enhanced addressing mode. 6909 */ 6910 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 6911 priv->plat->dma_cfg->eame = true; 6912 } else { 6913 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 6914 if (ret) { 6915 dev_err(priv->device, "Failed to set DMA Mask\n"); 6916 goto error_hw_init; 6917 } 6918 6919 priv->dma_cap.addr64 = 32; 6920 } 6921 } 6922 6923 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 6924 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 6925 #ifdef STMMAC_VLAN_TAG_USED 6926 /* Both mac100 and gmac support receive VLAN tag detection */ 6927 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 6928 if (priv->dma_cap.vlhash) { 6929 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6930 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 6931 } 6932 if (priv->dma_cap.vlins) { 6933 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 6934 if (priv->dma_cap.dvlan) 6935 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 6936 } 6937 #endif 6938 priv->msg_enable = netif_msg_init(debug, default_msg_level); 6939 6940 /* Initialize RSS */ 6941 rxq = priv->plat->rx_queues_to_use; 6942 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 6943 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 6944 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 6945 6946 if (priv->dma_cap.rssen && priv->plat->rss_en) 6947 ndev->features |= NETIF_F_RXHASH; 6948 6949 /* MTU range: 46 - hw-specific max */ 6950 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 6951 if (priv->plat->has_xgmac) 6952 ndev->max_mtu = XGMAC_JUMBO_LEN; 6953 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 6954 ndev->max_mtu = JUMBO_LEN; 6955 else 6956 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 6957 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 6958 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 6959 */ 6960 if ((priv->plat->maxmtu < ndev->max_mtu) && 6961 (priv->plat->maxmtu >= ndev->min_mtu)) 6962 ndev->max_mtu = priv->plat->maxmtu; 6963 else if (priv->plat->maxmtu < ndev->min_mtu) 6964 dev_warn(priv->device, 6965 "%s: warning: maxmtu having invalid value (%d)\n", 6966 __func__, priv->plat->maxmtu); 6967 6968 if (flow_ctrl) 6969 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 6970 6971 /* Setup channels NAPI */ 6972 stmmac_napi_add(ndev); 6973 6974 mutex_init(&priv->lock); 6975 6976 /* If a specific clk_csr value is passed from the platform 6977 * this means that the CSR Clock Range selection cannot be 6978 * changed at run-time and it is fixed. Viceversa the driver'll try to 6979 * set the MDC clock dynamically according to the csr actual 6980 * clock input. 6981 */ 6982 if (priv->plat->clk_csr >= 0) 6983 priv->clk_csr = priv->plat->clk_csr; 6984 else 6985 stmmac_clk_csr_set(priv); 6986 6987 stmmac_check_pcs_mode(priv); 6988 6989 pm_runtime_get_noresume(device); 6990 pm_runtime_set_active(device); 6991 pm_runtime_enable(device); 6992 6993 if (priv->hw->pcs != STMMAC_PCS_TBI && 6994 priv->hw->pcs != STMMAC_PCS_RTBI) { 6995 /* MDIO bus Registration */ 6996 ret = stmmac_mdio_register(ndev); 6997 if (ret < 0) { 6998 dev_err(priv->device, 6999 "%s: MDIO bus (id: %d) registration failed", 7000 __func__, priv->plat->bus_id); 7001 goto error_mdio_register; 7002 } 7003 } 7004 7005 if (priv->plat->speed_mode_2500) 7006 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7007 7008 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7009 ret = stmmac_xpcs_setup(priv->mii); 7010 if (ret) 7011 goto error_xpcs_setup; 7012 } 7013 7014 ret = stmmac_phy_setup(priv); 7015 if (ret) { 7016 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7017 goto error_phy_setup; 7018 } 7019 7020 ret = register_netdev(ndev); 7021 if (ret) { 7022 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7023 __func__, ret); 7024 goto error_netdev_register; 7025 } 7026 7027 if (priv->plat->serdes_powerup) { 7028 ret = priv->plat->serdes_powerup(ndev, 7029 priv->plat->bsp_priv); 7030 7031 if (ret < 0) 7032 goto error_serdes_powerup; 7033 } 7034 7035 #ifdef CONFIG_DEBUG_FS 7036 stmmac_init_fs(ndev); 7037 #endif 7038 7039 /* Let pm_runtime_put() disable the clocks. 7040 * If CONFIG_PM is not enabled, the clocks will stay powered. 7041 */ 7042 pm_runtime_put(device); 7043 7044 return ret; 7045 7046 error_serdes_powerup: 7047 unregister_netdev(ndev); 7048 error_netdev_register: 7049 phylink_destroy(priv->phylink); 7050 error_xpcs_setup: 7051 error_phy_setup: 7052 if (priv->hw->pcs != STMMAC_PCS_TBI && 7053 priv->hw->pcs != STMMAC_PCS_RTBI) 7054 stmmac_mdio_unregister(ndev); 7055 error_mdio_register: 7056 stmmac_napi_del(ndev); 7057 error_hw_init: 7058 destroy_workqueue(priv->wq); 7059 bitmap_free(priv->af_xdp_zc_qps); 7060 7061 return ret; 7062 } 7063 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7064 7065 /** 7066 * stmmac_dvr_remove 7067 * @dev: device pointer 7068 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7069 * changes the link status, releases the DMA descriptor rings. 7070 */ 7071 int stmmac_dvr_remove(struct device *dev) 7072 { 7073 struct net_device *ndev = dev_get_drvdata(dev); 7074 struct stmmac_priv *priv = netdev_priv(ndev); 7075 7076 netdev_info(priv->dev, "%s: removing driver", __func__); 7077 7078 stmmac_stop_all_dma(priv); 7079 stmmac_mac_set(priv, priv->ioaddr, false); 7080 netif_carrier_off(ndev); 7081 unregister_netdev(ndev); 7082 7083 /* Serdes power down needs to happen after VLAN filter 7084 * is deleted that is triggered by unregister_netdev(). 7085 */ 7086 if (priv->plat->serdes_powerdown) 7087 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7088 7089 #ifdef CONFIG_DEBUG_FS 7090 stmmac_exit_fs(ndev); 7091 #endif 7092 phylink_destroy(priv->phylink); 7093 if (priv->plat->stmmac_rst) 7094 reset_control_assert(priv->plat->stmmac_rst); 7095 reset_control_assert(priv->plat->stmmac_ahb_rst); 7096 pm_runtime_put(dev); 7097 pm_runtime_disable(dev); 7098 if (priv->hw->pcs != STMMAC_PCS_TBI && 7099 priv->hw->pcs != STMMAC_PCS_RTBI) 7100 stmmac_mdio_unregister(ndev); 7101 destroy_workqueue(priv->wq); 7102 mutex_destroy(&priv->lock); 7103 bitmap_free(priv->af_xdp_zc_qps); 7104 7105 return 0; 7106 } 7107 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7108 7109 /** 7110 * stmmac_suspend - suspend callback 7111 * @dev: device pointer 7112 * Description: this is the function to suspend the device and it is called 7113 * by the platform driver to stop the network queue, release the resources, 7114 * program the PMT register (for WoL), clean and release driver resources. 7115 */ 7116 int stmmac_suspend(struct device *dev) 7117 { 7118 struct net_device *ndev = dev_get_drvdata(dev); 7119 struct stmmac_priv *priv = netdev_priv(ndev); 7120 u32 chan; 7121 int ret; 7122 7123 if (!ndev || !netif_running(ndev)) 7124 return 0; 7125 7126 mutex_lock(&priv->lock); 7127 7128 netif_device_detach(ndev); 7129 7130 stmmac_disable_all_queues(priv); 7131 7132 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7133 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7134 7135 if (priv->eee_enabled) { 7136 priv->tx_path_in_lpi_mode = false; 7137 del_timer_sync(&priv->eee_ctrl_timer); 7138 } 7139 7140 /* Stop TX/RX DMA */ 7141 stmmac_stop_all_dma(priv); 7142 7143 if (priv->plat->serdes_powerdown) 7144 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7145 7146 /* Enable Power down mode by programming the PMT regs */ 7147 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7148 stmmac_pmt(priv, priv->hw, priv->wolopts); 7149 priv->irq_wake = 1; 7150 } else { 7151 stmmac_mac_set(priv, priv->ioaddr, false); 7152 pinctrl_pm_select_sleep_state(priv->device); 7153 /* Disable clock in case of PWM is off */ 7154 clk_disable_unprepare(priv->plat->clk_ptp_ref); 7155 ret = pm_runtime_force_suspend(dev); 7156 if (ret) { 7157 mutex_unlock(&priv->lock); 7158 return ret; 7159 } 7160 } 7161 7162 mutex_unlock(&priv->lock); 7163 7164 rtnl_lock(); 7165 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7166 phylink_suspend(priv->phylink, true); 7167 } else { 7168 if (device_may_wakeup(priv->device)) 7169 phylink_speed_down(priv->phylink, false); 7170 phylink_suspend(priv->phylink, false); 7171 } 7172 rtnl_unlock(); 7173 7174 if (priv->dma_cap.fpesel) { 7175 /* Disable FPE */ 7176 stmmac_fpe_configure(priv, priv->ioaddr, 7177 priv->plat->tx_queues_to_use, 7178 priv->plat->rx_queues_to_use, false); 7179 7180 stmmac_fpe_handshake(priv, false); 7181 stmmac_fpe_stop_wq(priv); 7182 } 7183 7184 priv->speed = SPEED_UNKNOWN; 7185 return 0; 7186 } 7187 EXPORT_SYMBOL_GPL(stmmac_suspend); 7188 7189 /** 7190 * stmmac_reset_queues_param - reset queue parameters 7191 * @priv: device pointer 7192 */ 7193 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7194 { 7195 u32 rx_cnt = priv->plat->rx_queues_to_use; 7196 u32 tx_cnt = priv->plat->tx_queues_to_use; 7197 u32 queue; 7198 7199 for (queue = 0; queue < rx_cnt; queue++) { 7200 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7201 7202 rx_q->cur_rx = 0; 7203 rx_q->dirty_rx = 0; 7204 } 7205 7206 for (queue = 0; queue < tx_cnt; queue++) { 7207 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7208 7209 tx_q->cur_tx = 0; 7210 tx_q->dirty_tx = 0; 7211 tx_q->mss = 0; 7212 7213 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7214 } 7215 } 7216 7217 /** 7218 * stmmac_resume - resume callback 7219 * @dev: device pointer 7220 * Description: when resume this function is invoked to setup the DMA and CORE 7221 * in a usable state. 7222 */ 7223 int stmmac_resume(struct device *dev) 7224 { 7225 struct net_device *ndev = dev_get_drvdata(dev); 7226 struct stmmac_priv *priv = netdev_priv(ndev); 7227 int ret; 7228 7229 if (!netif_running(ndev)) 7230 return 0; 7231 7232 /* Power Down bit, into the PM register, is cleared 7233 * automatically as soon as a magic packet or a Wake-up frame 7234 * is received. Anyway, it's better to manually clear 7235 * this bit because it can generate problems while resuming 7236 * from another devices (e.g. serial console). 7237 */ 7238 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7239 mutex_lock(&priv->lock); 7240 stmmac_pmt(priv, priv->hw, 0); 7241 mutex_unlock(&priv->lock); 7242 priv->irq_wake = 0; 7243 } else { 7244 pinctrl_pm_select_default_state(priv->device); 7245 /* enable the clk previously disabled */ 7246 ret = pm_runtime_force_resume(dev); 7247 if (ret) 7248 return ret; 7249 if (priv->plat->clk_ptp_ref) 7250 clk_prepare_enable(priv->plat->clk_ptp_ref); 7251 /* reset the phy so that it's ready */ 7252 if (priv->mii) 7253 stmmac_mdio_reset(priv->mii); 7254 } 7255 7256 if (priv->plat->serdes_powerup) { 7257 ret = priv->plat->serdes_powerup(ndev, 7258 priv->plat->bsp_priv); 7259 7260 if (ret < 0) 7261 return ret; 7262 } 7263 7264 rtnl_lock(); 7265 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7266 phylink_resume(priv->phylink); 7267 } else { 7268 phylink_resume(priv->phylink); 7269 if (device_may_wakeup(priv->device)) 7270 phylink_speed_up(priv->phylink); 7271 } 7272 rtnl_unlock(); 7273 7274 rtnl_lock(); 7275 mutex_lock(&priv->lock); 7276 7277 stmmac_reset_queues_param(priv); 7278 7279 stmmac_free_tx_skbufs(priv); 7280 stmmac_clear_descriptors(priv); 7281 7282 stmmac_hw_setup(ndev, false); 7283 stmmac_init_coalesce(priv); 7284 stmmac_set_rx_mode(ndev); 7285 7286 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7287 7288 stmmac_enable_all_queues(priv); 7289 7290 mutex_unlock(&priv->lock); 7291 rtnl_unlock(); 7292 7293 netif_device_attach(ndev); 7294 7295 return 0; 7296 } 7297 EXPORT_SYMBOL_GPL(stmmac_resume); 7298 7299 #ifndef MODULE 7300 static int __init stmmac_cmdline_opt(char *str) 7301 { 7302 char *opt; 7303 7304 if (!str || !*str) 7305 return -EINVAL; 7306 while ((opt = strsep(&str, ",")) != NULL) { 7307 if (!strncmp(opt, "debug:", 6)) { 7308 if (kstrtoint(opt + 6, 0, &debug)) 7309 goto err; 7310 } else if (!strncmp(opt, "phyaddr:", 8)) { 7311 if (kstrtoint(opt + 8, 0, &phyaddr)) 7312 goto err; 7313 } else if (!strncmp(opt, "buf_sz:", 7)) { 7314 if (kstrtoint(opt + 7, 0, &buf_sz)) 7315 goto err; 7316 } else if (!strncmp(opt, "tc:", 3)) { 7317 if (kstrtoint(opt + 3, 0, &tc)) 7318 goto err; 7319 } else if (!strncmp(opt, "watchdog:", 9)) { 7320 if (kstrtoint(opt + 9, 0, &watchdog)) 7321 goto err; 7322 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7323 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7324 goto err; 7325 } else if (!strncmp(opt, "pause:", 6)) { 7326 if (kstrtoint(opt + 6, 0, &pause)) 7327 goto err; 7328 } else if (!strncmp(opt, "eee_timer:", 10)) { 7329 if (kstrtoint(opt + 10, 0, &eee_timer)) 7330 goto err; 7331 } else if (!strncmp(opt, "chain_mode:", 11)) { 7332 if (kstrtoint(opt + 11, 0, &chain_mode)) 7333 goto err; 7334 } 7335 } 7336 return 0; 7337 7338 err: 7339 pr_err("%s: ERROR broken module parameter conversion", __func__); 7340 return -EINVAL; 7341 } 7342 7343 __setup("stmmaceth=", stmmac_cmdline_opt); 7344 #endif /* MODULE */ 7345 7346 static int __init stmmac_init(void) 7347 { 7348 #ifdef CONFIG_DEBUG_FS 7349 /* Create debugfs main directory if it doesn't exist yet */ 7350 if (!stmmac_fs_dir) 7351 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7352 register_netdevice_notifier(&stmmac_notifier); 7353 #endif 7354 7355 return 0; 7356 } 7357 7358 static void __exit stmmac_exit(void) 7359 { 7360 #ifdef CONFIG_DEBUG_FS 7361 unregister_netdevice_notifier(&stmmac_notifier); 7362 debugfs_remove_recursive(stmmac_fs_dir); 7363 #endif 7364 } 7365 7366 module_init(stmmac_init) 7367 module_exit(stmmac_exit) 7368 7369 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7370 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7371 MODULE_LICENSE("GPL"); 7372