1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <net/pkt_cls.h>
42 #include "stmmac_ptp.h"
43 #include "stmmac.h"
44 #include <linux/reset.h>
45 #include <linux/of_mdio.h>
46 #include "dwmac1000.h"
47 #include "dwxgmac2.h"
48 #include "hwif.h"
49 
50 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
51 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
52 
53 /* Module parameters */
54 #define TX_TIMEO	5000
55 static int watchdog = TX_TIMEO;
56 module_param(watchdog, int, 0644);
57 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
58 
59 static int debug = -1;
60 module_param(debug, int, 0644);
61 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
62 
63 static int phyaddr = -1;
64 module_param(phyaddr, int, 0444);
65 MODULE_PARM_DESC(phyaddr, "Physical device address");
66 
67 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
68 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
69 
70 static int flow_ctrl = FLOW_AUTO;
71 module_param(flow_ctrl, int, 0644);
72 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
73 
74 static int pause = PAUSE_TIME;
75 module_param(pause, int, 0644);
76 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
77 
78 #define TC_DEFAULT 64
79 static int tc = TC_DEFAULT;
80 module_param(tc, int, 0644);
81 MODULE_PARM_DESC(tc, "DMA threshold control value");
82 
83 #define	DEFAULT_BUFSIZE	1536
84 static int buf_sz = DEFAULT_BUFSIZE;
85 module_param(buf_sz, int, 0644);
86 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
87 
88 #define	STMMAC_RX_COPYBREAK	256
89 
90 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
91 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
92 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
93 
94 #define STMMAC_DEFAULT_LPI_TIMER	1000
95 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
96 module_param(eee_timer, int, 0644);
97 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
98 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
99 
100 /* By default the driver will use the ring mode to manage tx and rx descriptors,
101  * but allow user to force to use the chain instead of the ring
102  */
103 static unsigned int chain_mode;
104 module_param(chain_mode, int, 0444);
105 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
106 
107 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
108 
109 #ifdef CONFIG_DEBUG_FS
110 static const struct net_device_ops stmmac_netdev_ops;
111 static void stmmac_init_fs(struct net_device *dev);
112 static void stmmac_exit_fs(struct net_device *dev);
113 #endif
114 
115 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
116 
117 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
118 {
119 	int ret = 0;
120 
121 	if (enabled) {
122 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
123 		if (ret)
124 			return ret;
125 		ret = clk_prepare_enable(priv->plat->pclk);
126 		if (ret) {
127 			clk_disable_unprepare(priv->plat->stmmac_clk);
128 			return ret;
129 		}
130 		if (priv->plat->clks_config) {
131 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
132 			if (ret) {
133 				clk_disable_unprepare(priv->plat->stmmac_clk);
134 				clk_disable_unprepare(priv->plat->pclk);
135 				return ret;
136 			}
137 		}
138 	} else {
139 		clk_disable_unprepare(priv->plat->stmmac_clk);
140 		clk_disable_unprepare(priv->plat->pclk);
141 		if (priv->plat->clks_config)
142 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
143 	}
144 
145 	return ret;
146 }
147 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
148 
149 /**
150  * stmmac_verify_args - verify the driver parameters.
151  * Description: it checks the driver parameters and set a default in case of
152  * errors.
153  */
154 static void stmmac_verify_args(void)
155 {
156 	if (unlikely(watchdog < 0))
157 		watchdog = TX_TIMEO;
158 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
159 		buf_sz = DEFAULT_BUFSIZE;
160 	if (unlikely(flow_ctrl > 1))
161 		flow_ctrl = FLOW_AUTO;
162 	else if (likely(flow_ctrl < 0))
163 		flow_ctrl = FLOW_OFF;
164 	if (unlikely((pause < 0) || (pause > 0xffff)))
165 		pause = PAUSE_TIME;
166 	if (eee_timer < 0)
167 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
168 }
169 
170 /**
171  * stmmac_disable_all_queues - Disable all queues
172  * @priv: driver private structure
173  */
174 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
175 {
176 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
177 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
178 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
179 	u32 queue;
180 
181 	for (queue = 0; queue < maxq; queue++) {
182 		struct stmmac_channel *ch = &priv->channel[queue];
183 
184 		if (queue < rx_queues_cnt)
185 			napi_disable(&ch->rx_napi);
186 		if (queue < tx_queues_cnt)
187 			napi_disable(&ch->tx_napi);
188 	}
189 }
190 
191 /**
192  * stmmac_enable_all_queues - Enable all queues
193  * @priv: driver private structure
194  */
195 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
196 {
197 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
198 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
199 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
200 	u32 queue;
201 
202 	for (queue = 0; queue < maxq; queue++) {
203 		struct stmmac_channel *ch = &priv->channel[queue];
204 
205 		if (queue < rx_queues_cnt)
206 			napi_enable(&ch->rx_napi);
207 		if (queue < tx_queues_cnt)
208 			napi_enable(&ch->tx_napi);
209 	}
210 }
211 
212 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
213 {
214 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
215 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
216 		queue_work(priv->wq, &priv->service_task);
217 }
218 
219 static void stmmac_global_err(struct stmmac_priv *priv)
220 {
221 	netif_carrier_off(priv->dev);
222 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
223 	stmmac_service_event_schedule(priv);
224 }
225 
226 /**
227  * stmmac_clk_csr_set - dynamically set the MDC clock
228  * @priv: driver private structure
229  * Description: this is to dynamically set the MDC clock according to the csr
230  * clock input.
231  * Note:
232  *	If a specific clk_csr value is passed from the platform
233  *	this means that the CSR Clock Range selection cannot be
234  *	changed at run-time and it is fixed (as reported in the driver
235  *	documentation). Viceversa the driver will try to set the MDC
236  *	clock dynamically according to the actual clock input.
237  */
238 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
239 {
240 	u32 clk_rate;
241 
242 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
243 
244 	/* Platform provided default clk_csr would be assumed valid
245 	 * for all other cases except for the below mentioned ones.
246 	 * For values higher than the IEEE 802.3 specified frequency
247 	 * we can not estimate the proper divider as it is not known
248 	 * the frequency of clk_csr_i. So we do not change the default
249 	 * divider.
250 	 */
251 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
252 		if (clk_rate < CSR_F_35M)
253 			priv->clk_csr = STMMAC_CSR_20_35M;
254 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
255 			priv->clk_csr = STMMAC_CSR_35_60M;
256 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
257 			priv->clk_csr = STMMAC_CSR_60_100M;
258 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
259 			priv->clk_csr = STMMAC_CSR_100_150M;
260 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
261 			priv->clk_csr = STMMAC_CSR_150_250M;
262 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
263 			priv->clk_csr = STMMAC_CSR_250_300M;
264 	}
265 
266 	if (priv->plat->has_sun8i) {
267 		if (clk_rate > 160000000)
268 			priv->clk_csr = 0x03;
269 		else if (clk_rate > 80000000)
270 			priv->clk_csr = 0x02;
271 		else if (clk_rate > 40000000)
272 			priv->clk_csr = 0x01;
273 		else
274 			priv->clk_csr = 0;
275 	}
276 
277 	if (priv->plat->has_xgmac) {
278 		if (clk_rate > 400000000)
279 			priv->clk_csr = 0x5;
280 		else if (clk_rate > 350000000)
281 			priv->clk_csr = 0x4;
282 		else if (clk_rate > 300000000)
283 			priv->clk_csr = 0x3;
284 		else if (clk_rate > 250000000)
285 			priv->clk_csr = 0x2;
286 		else if (clk_rate > 150000000)
287 			priv->clk_csr = 0x1;
288 		else
289 			priv->clk_csr = 0x0;
290 	}
291 }
292 
293 static void print_pkt(unsigned char *buf, int len)
294 {
295 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
296 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
297 }
298 
299 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
300 {
301 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
302 	u32 avail;
303 
304 	if (tx_q->dirty_tx > tx_q->cur_tx)
305 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
306 	else
307 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
308 
309 	return avail;
310 }
311 
312 /**
313  * stmmac_rx_dirty - Get RX queue dirty
314  * @priv: driver private structure
315  * @queue: RX queue index
316  */
317 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
318 {
319 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
320 	u32 dirty;
321 
322 	if (rx_q->dirty_rx <= rx_q->cur_rx)
323 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
324 	else
325 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
326 
327 	return dirty;
328 }
329 
330 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
331 {
332 	int tx_lpi_timer;
333 
334 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
335 	priv->eee_sw_timer_en = en ? 0 : 1;
336 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
337 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
338 }
339 
340 /**
341  * stmmac_enable_eee_mode - check and enter in LPI mode
342  * @priv: driver private structure
343  * Description: this function is to verify and enter in LPI mode in case of
344  * EEE.
345  */
346 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
347 {
348 	u32 tx_cnt = priv->plat->tx_queues_to_use;
349 	u32 queue;
350 
351 	/* check if all TX queues have the work finished */
352 	for (queue = 0; queue < tx_cnt; queue++) {
353 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
354 
355 		if (tx_q->dirty_tx != tx_q->cur_tx)
356 			return; /* still unfinished work */
357 	}
358 
359 	/* Check and enter in LPI mode */
360 	if (!priv->tx_path_in_lpi_mode)
361 		stmmac_set_eee_mode(priv, priv->hw,
362 				priv->plat->en_tx_lpi_clockgating);
363 }
364 
365 /**
366  * stmmac_disable_eee_mode - disable and exit from LPI mode
367  * @priv: driver private structure
368  * Description: this function is to exit and disable EEE in case of
369  * LPI state is true. This is called by the xmit.
370  */
371 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
372 {
373 	if (!priv->eee_sw_timer_en) {
374 		stmmac_lpi_entry_timer_config(priv, 0);
375 		return;
376 	}
377 
378 	stmmac_reset_eee_mode(priv, priv->hw);
379 	del_timer_sync(&priv->eee_ctrl_timer);
380 	priv->tx_path_in_lpi_mode = false;
381 }
382 
383 /**
384  * stmmac_eee_ctrl_timer - EEE TX SW timer.
385  * @t:  timer_list struct containing private info
386  * Description:
387  *  if there is no data transfer and if we are not in LPI state,
388  *  then MAC Transmitter can be moved to LPI state.
389  */
390 static void stmmac_eee_ctrl_timer(struct timer_list *t)
391 {
392 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
393 
394 	stmmac_enable_eee_mode(priv);
395 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
396 }
397 
398 /**
399  * stmmac_eee_init - init EEE
400  * @priv: driver private structure
401  * Description:
402  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
403  *  can also manage EEE, this function enable the LPI state and start related
404  *  timer.
405  */
406 bool stmmac_eee_init(struct stmmac_priv *priv)
407 {
408 	int eee_tw_timer = priv->eee_tw_timer;
409 
410 	/* Using PCS we cannot dial with the phy registers at this stage
411 	 * so we do not support extra feature like EEE.
412 	 */
413 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
414 	    priv->hw->pcs == STMMAC_PCS_RTBI)
415 		return false;
416 
417 	/* Check if MAC core supports the EEE feature. */
418 	if (!priv->dma_cap.eee)
419 		return false;
420 
421 	mutex_lock(&priv->lock);
422 
423 	/* Check if it needs to be deactivated */
424 	if (!priv->eee_active) {
425 		if (priv->eee_enabled) {
426 			netdev_dbg(priv->dev, "disable EEE\n");
427 			stmmac_lpi_entry_timer_config(priv, 0);
428 			del_timer_sync(&priv->eee_ctrl_timer);
429 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
430 		}
431 		mutex_unlock(&priv->lock);
432 		return false;
433 	}
434 
435 	if (priv->eee_active && !priv->eee_enabled) {
436 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
437 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
438 				     eee_tw_timer);
439 	}
440 
441 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
442 		del_timer_sync(&priv->eee_ctrl_timer);
443 		priv->tx_path_in_lpi_mode = false;
444 		stmmac_lpi_entry_timer_config(priv, 1);
445 	} else {
446 		stmmac_lpi_entry_timer_config(priv, 0);
447 		mod_timer(&priv->eee_ctrl_timer,
448 			  STMMAC_LPI_T(priv->tx_lpi_timer));
449 	}
450 
451 	mutex_unlock(&priv->lock);
452 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
453 	return true;
454 }
455 
456 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
457  * @priv: driver private structure
458  * @p : descriptor pointer
459  * @skb : the socket buffer
460  * Description :
461  * This function will read timestamp from the descriptor & pass it to stack.
462  * and also perform some sanity checks.
463  */
464 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
465 				   struct dma_desc *p, struct sk_buff *skb)
466 {
467 	struct skb_shared_hwtstamps shhwtstamp;
468 	bool found = false;
469 	u64 ns = 0;
470 
471 	if (!priv->hwts_tx_en)
472 		return;
473 
474 	/* exit if skb doesn't support hw tstamp */
475 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
476 		return;
477 
478 	/* check tx tstamp status */
479 	if (stmmac_get_tx_timestamp_status(priv, p)) {
480 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
481 		found = true;
482 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
483 		found = true;
484 	}
485 
486 	if (found) {
487 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
489 
490 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
491 		/* pass tstamp to stack */
492 		skb_tstamp_tx(skb, &shhwtstamp);
493 	}
494 }
495 
496 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
497  * @priv: driver private structure
498  * @p : descriptor pointer
499  * @np : next descriptor pointer
500  * @skb : the socket buffer
501  * Description :
502  * This function will read received packet's timestamp from the descriptor
503  * and pass it to stack. It also perform some sanity checks.
504  */
505 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
506 				   struct dma_desc *np, struct sk_buff *skb)
507 {
508 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
509 	struct dma_desc *desc = p;
510 	u64 ns = 0;
511 
512 	if (!priv->hwts_rx_en)
513 		return;
514 	/* For GMAC4, the valid timestamp is from CTX next desc. */
515 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
516 		desc = np;
517 
518 	/* Check if timestamp is available */
519 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
520 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
521 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
522 		shhwtstamp = skb_hwtstamps(skb);
523 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
524 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
525 	} else  {
526 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
527 	}
528 }
529 
530 /**
531  *  stmmac_hwtstamp_set - control hardware timestamping.
532  *  @dev: device pointer.
533  *  @ifr: An IOCTL specific structure, that can contain a pointer to
534  *  a proprietary structure used to pass information to the driver.
535  *  Description:
536  *  This function configures the MAC to enable/disable both outgoing(TX)
537  *  and incoming(RX) packets time stamping based on user input.
538  *  Return Value:
539  *  0 on success and an appropriate -ve integer on failure.
540  */
541 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
542 {
543 	struct stmmac_priv *priv = netdev_priv(dev);
544 	struct hwtstamp_config config;
545 	struct timespec64 now;
546 	u64 temp = 0;
547 	u32 ptp_v2 = 0;
548 	u32 tstamp_all = 0;
549 	u32 ptp_over_ipv4_udp = 0;
550 	u32 ptp_over_ipv6_udp = 0;
551 	u32 ptp_over_ethernet = 0;
552 	u32 snap_type_sel = 0;
553 	u32 ts_master_en = 0;
554 	u32 ts_event_en = 0;
555 	u32 sec_inc = 0;
556 	u32 value = 0;
557 	bool xmac;
558 
559 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
560 
561 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
562 		netdev_alert(priv->dev, "No support for HW time stamping\n");
563 		priv->hwts_tx_en = 0;
564 		priv->hwts_rx_en = 0;
565 
566 		return -EOPNOTSUPP;
567 	}
568 
569 	if (copy_from_user(&config, ifr->ifr_data,
570 			   sizeof(config)))
571 		return -EFAULT;
572 
573 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
574 		   __func__, config.flags, config.tx_type, config.rx_filter);
575 
576 	/* reserved for future extensions */
577 	if (config.flags)
578 		return -EINVAL;
579 
580 	if (config.tx_type != HWTSTAMP_TX_OFF &&
581 	    config.tx_type != HWTSTAMP_TX_ON)
582 		return -ERANGE;
583 
584 	if (priv->adv_ts) {
585 		switch (config.rx_filter) {
586 		case HWTSTAMP_FILTER_NONE:
587 			/* time stamp no incoming packet at all */
588 			config.rx_filter = HWTSTAMP_FILTER_NONE;
589 			break;
590 
591 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
592 			/* PTP v1, UDP, any kind of event packet */
593 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
594 			/* 'xmac' hardware can support Sync, Pdelay_Req and
595 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
596 			 * This leaves Delay_Req timestamps out.
597 			 * Enable all events *and* general purpose message
598 			 * timestamping
599 			 */
600 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
601 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
602 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
603 			break;
604 
605 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
606 			/* PTP v1, UDP, Sync packet */
607 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
608 			/* take time stamp for SYNC messages only */
609 			ts_event_en = PTP_TCR_TSEVNTENA;
610 
611 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
612 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
613 			break;
614 
615 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
616 			/* PTP v1, UDP, Delay_req packet */
617 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
618 			/* take time stamp for Delay_Req messages only */
619 			ts_master_en = PTP_TCR_TSMSTRENA;
620 			ts_event_en = PTP_TCR_TSEVNTENA;
621 
622 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
623 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
624 			break;
625 
626 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
627 			/* PTP v2, UDP, any kind of event packet */
628 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
629 			ptp_v2 = PTP_TCR_TSVER2ENA;
630 			/* take time stamp for all event messages */
631 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
632 
633 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
634 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
635 			break;
636 
637 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
638 			/* PTP v2, UDP, Sync packet */
639 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
640 			ptp_v2 = PTP_TCR_TSVER2ENA;
641 			/* take time stamp for SYNC messages only */
642 			ts_event_en = PTP_TCR_TSEVNTENA;
643 
644 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
645 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
646 			break;
647 
648 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
649 			/* PTP v2, UDP, Delay_req packet */
650 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
651 			ptp_v2 = PTP_TCR_TSVER2ENA;
652 			/* take time stamp for Delay_Req messages only */
653 			ts_master_en = PTP_TCR_TSMSTRENA;
654 			ts_event_en = PTP_TCR_TSEVNTENA;
655 
656 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
657 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
658 			break;
659 
660 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
661 			/* PTP v2/802.AS1 any layer, any kind of event packet */
662 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
663 			ptp_v2 = PTP_TCR_TSVER2ENA;
664 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
665 			if (priv->synopsys_id != DWMAC_CORE_5_10)
666 				ts_event_en = PTP_TCR_TSEVNTENA;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			ptp_over_ethernet = PTP_TCR_TSIPENA;
670 			break;
671 
672 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
673 			/* PTP v2/802.AS1, any layer, Sync packet */
674 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
675 			ptp_v2 = PTP_TCR_TSVER2ENA;
676 			/* take time stamp for SYNC messages only */
677 			ts_event_en = PTP_TCR_TSEVNTENA;
678 
679 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
680 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
681 			ptp_over_ethernet = PTP_TCR_TSIPENA;
682 			break;
683 
684 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
685 			/* PTP v2/802.AS1, any layer, Delay_req packet */
686 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
687 			ptp_v2 = PTP_TCR_TSVER2ENA;
688 			/* take time stamp for Delay_Req messages only */
689 			ts_master_en = PTP_TCR_TSMSTRENA;
690 			ts_event_en = PTP_TCR_TSEVNTENA;
691 
692 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
693 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
694 			ptp_over_ethernet = PTP_TCR_TSIPENA;
695 			break;
696 
697 		case HWTSTAMP_FILTER_NTP_ALL:
698 		case HWTSTAMP_FILTER_ALL:
699 			/* time stamp any incoming packet */
700 			config.rx_filter = HWTSTAMP_FILTER_ALL;
701 			tstamp_all = PTP_TCR_TSENALL;
702 			break;
703 
704 		default:
705 			return -ERANGE;
706 		}
707 	} else {
708 		switch (config.rx_filter) {
709 		case HWTSTAMP_FILTER_NONE:
710 			config.rx_filter = HWTSTAMP_FILTER_NONE;
711 			break;
712 		default:
713 			/* PTP v1, UDP, any kind of event packet */
714 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
715 			break;
716 		}
717 	}
718 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
719 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
720 
721 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
722 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
723 	else {
724 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
725 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
726 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
727 			 ts_master_en | snap_type_sel);
728 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
729 
730 		/* program Sub Second Increment reg */
731 		stmmac_config_sub_second_increment(priv,
732 				priv->ptpaddr, priv->plat->clk_ptp_rate,
733 				xmac, &sec_inc);
734 		temp = div_u64(1000000000ULL, sec_inc);
735 
736 		/* Store sub second increment and flags for later use */
737 		priv->sub_second_inc = sec_inc;
738 		priv->systime_flags = value;
739 
740 		/* calculate default added value:
741 		 * formula is :
742 		 * addend = (2^32)/freq_div_ratio;
743 		 * where, freq_div_ratio = 1e9ns/sec_inc
744 		 */
745 		temp = (u64)(temp << 32);
746 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
747 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
748 
749 		/* initialize system time */
750 		ktime_get_real_ts64(&now);
751 
752 		/* lower 32 bits of tv_sec are safe until y2106 */
753 		stmmac_init_systime(priv, priv->ptpaddr,
754 				(u32)now.tv_sec, now.tv_nsec);
755 	}
756 
757 	memcpy(&priv->tstamp_config, &config, sizeof(config));
758 
759 	return copy_to_user(ifr->ifr_data, &config,
760 			    sizeof(config)) ? -EFAULT : 0;
761 }
762 
763 /**
764  *  stmmac_hwtstamp_get - read hardware timestamping.
765  *  @dev: device pointer.
766  *  @ifr: An IOCTL specific structure, that can contain a pointer to
767  *  a proprietary structure used to pass information to the driver.
768  *  Description:
769  *  This function obtain the current hardware timestamping settings
770  *  as requested.
771  */
772 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
773 {
774 	struct stmmac_priv *priv = netdev_priv(dev);
775 	struct hwtstamp_config *config = &priv->tstamp_config;
776 
777 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
778 		return -EOPNOTSUPP;
779 
780 	return copy_to_user(ifr->ifr_data, config,
781 			    sizeof(*config)) ? -EFAULT : 0;
782 }
783 
784 /**
785  * stmmac_init_ptp - init PTP
786  * @priv: driver private structure
787  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
788  * This is done by looking at the HW cap. register.
789  * This function also registers the ptp driver.
790  */
791 static int stmmac_init_ptp(struct stmmac_priv *priv)
792 {
793 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
794 
795 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
796 		return -EOPNOTSUPP;
797 
798 	priv->adv_ts = 0;
799 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
800 	if (xmac && priv->dma_cap.atime_stamp)
801 		priv->adv_ts = 1;
802 	/* Dwmac 3.x core with extend_desc can support adv_ts */
803 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
804 		priv->adv_ts = 1;
805 
806 	if (priv->dma_cap.time_stamp)
807 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
808 
809 	if (priv->adv_ts)
810 		netdev_info(priv->dev,
811 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
812 
813 	priv->hwts_tx_en = 0;
814 	priv->hwts_rx_en = 0;
815 
816 	stmmac_ptp_register(priv);
817 
818 	return 0;
819 }
820 
821 static void stmmac_release_ptp(struct stmmac_priv *priv)
822 {
823 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
824 	stmmac_ptp_unregister(priv);
825 }
826 
827 /**
828  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
829  *  @priv: driver private structure
830  *  @duplex: duplex passed to the next function
831  *  Description: It is used for configuring the flow control in all queues
832  */
833 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
834 {
835 	u32 tx_cnt = priv->plat->tx_queues_to_use;
836 
837 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
838 			priv->pause, tx_cnt);
839 }
840 
841 static void stmmac_validate(struct phylink_config *config,
842 			    unsigned long *supported,
843 			    struct phylink_link_state *state)
844 {
845 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
846 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
847 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
848 	int tx_cnt = priv->plat->tx_queues_to_use;
849 	int max_speed = priv->plat->max_speed;
850 
851 	phylink_set(mac_supported, 10baseT_Half);
852 	phylink_set(mac_supported, 10baseT_Full);
853 	phylink_set(mac_supported, 100baseT_Half);
854 	phylink_set(mac_supported, 100baseT_Full);
855 	phylink_set(mac_supported, 1000baseT_Half);
856 	phylink_set(mac_supported, 1000baseT_Full);
857 	phylink_set(mac_supported, 1000baseKX_Full);
858 
859 	phylink_set(mac_supported, Autoneg);
860 	phylink_set(mac_supported, Pause);
861 	phylink_set(mac_supported, Asym_Pause);
862 	phylink_set_port_modes(mac_supported);
863 
864 	/* Cut down 1G if asked to */
865 	if ((max_speed > 0) && (max_speed < 1000)) {
866 		phylink_set(mask, 1000baseT_Full);
867 		phylink_set(mask, 1000baseX_Full);
868 	} else if (priv->plat->has_xgmac) {
869 		if (!max_speed || (max_speed >= 2500)) {
870 			phylink_set(mac_supported, 2500baseT_Full);
871 			phylink_set(mac_supported, 2500baseX_Full);
872 		}
873 		if (!max_speed || (max_speed >= 5000)) {
874 			phylink_set(mac_supported, 5000baseT_Full);
875 		}
876 		if (!max_speed || (max_speed >= 10000)) {
877 			phylink_set(mac_supported, 10000baseSR_Full);
878 			phylink_set(mac_supported, 10000baseLR_Full);
879 			phylink_set(mac_supported, 10000baseER_Full);
880 			phylink_set(mac_supported, 10000baseLRM_Full);
881 			phylink_set(mac_supported, 10000baseT_Full);
882 			phylink_set(mac_supported, 10000baseKX4_Full);
883 			phylink_set(mac_supported, 10000baseKR_Full);
884 		}
885 		if (!max_speed || (max_speed >= 25000)) {
886 			phylink_set(mac_supported, 25000baseCR_Full);
887 			phylink_set(mac_supported, 25000baseKR_Full);
888 			phylink_set(mac_supported, 25000baseSR_Full);
889 		}
890 		if (!max_speed || (max_speed >= 40000)) {
891 			phylink_set(mac_supported, 40000baseKR4_Full);
892 			phylink_set(mac_supported, 40000baseCR4_Full);
893 			phylink_set(mac_supported, 40000baseSR4_Full);
894 			phylink_set(mac_supported, 40000baseLR4_Full);
895 		}
896 		if (!max_speed || (max_speed >= 50000)) {
897 			phylink_set(mac_supported, 50000baseCR2_Full);
898 			phylink_set(mac_supported, 50000baseKR2_Full);
899 			phylink_set(mac_supported, 50000baseSR2_Full);
900 			phylink_set(mac_supported, 50000baseKR_Full);
901 			phylink_set(mac_supported, 50000baseSR_Full);
902 			phylink_set(mac_supported, 50000baseCR_Full);
903 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
904 			phylink_set(mac_supported, 50000baseDR_Full);
905 		}
906 		if (!max_speed || (max_speed >= 100000)) {
907 			phylink_set(mac_supported, 100000baseKR4_Full);
908 			phylink_set(mac_supported, 100000baseSR4_Full);
909 			phylink_set(mac_supported, 100000baseCR4_Full);
910 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
911 			phylink_set(mac_supported, 100000baseKR2_Full);
912 			phylink_set(mac_supported, 100000baseSR2_Full);
913 			phylink_set(mac_supported, 100000baseCR2_Full);
914 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
915 			phylink_set(mac_supported, 100000baseDR2_Full);
916 		}
917 	}
918 
919 	/* Half-Duplex can only work with single queue */
920 	if (tx_cnt > 1) {
921 		phylink_set(mask, 10baseT_Half);
922 		phylink_set(mask, 100baseT_Half);
923 		phylink_set(mask, 1000baseT_Half);
924 	}
925 
926 	linkmode_and(supported, supported, mac_supported);
927 	linkmode_andnot(supported, supported, mask);
928 
929 	linkmode_and(state->advertising, state->advertising, mac_supported);
930 	linkmode_andnot(state->advertising, state->advertising, mask);
931 
932 	/* If PCS is supported, check which modes it supports. */
933 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
934 }
935 
936 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
937 				     struct phylink_link_state *state)
938 {
939 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
940 
941 	state->link = 0;
942 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
943 }
944 
945 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
946 			      const struct phylink_link_state *state)
947 {
948 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
949 
950 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
951 }
952 
953 static void stmmac_mac_an_restart(struct phylink_config *config)
954 {
955 	/* Not Supported */
956 }
957 
958 static void stmmac_mac_link_down(struct phylink_config *config,
959 				 unsigned int mode, phy_interface_t interface)
960 {
961 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
962 
963 	stmmac_mac_set(priv, priv->ioaddr, false);
964 	priv->eee_active = false;
965 	priv->tx_lpi_enabled = false;
966 	stmmac_eee_init(priv);
967 	stmmac_set_eee_pls(priv, priv->hw, false);
968 }
969 
970 static void stmmac_mac_link_up(struct phylink_config *config,
971 			       struct phy_device *phy,
972 			       unsigned int mode, phy_interface_t interface,
973 			       int speed, int duplex,
974 			       bool tx_pause, bool rx_pause)
975 {
976 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
977 	u32 ctrl;
978 
979 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
980 
981 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
982 	ctrl &= ~priv->hw->link.speed_mask;
983 
984 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
985 		switch (speed) {
986 		case SPEED_10000:
987 			ctrl |= priv->hw->link.xgmii.speed10000;
988 			break;
989 		case SPEED_5000:
990 			ctrl |= priv->hw->link.xgmii.speed5000;
991 			break;
992 		case SPEED_2500:
993 			ctrl |= priv->hw->link.xgmii.speed2500;
994 			break;
995 		default:
996 			return;
997 		}
998 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
999 		switch (speed) {
1000 		case SPEED_100000:
1001 			ctrl |= priv->hw->link.xlgmii.speed100000;
1002 			break;
1003 		case SPEED_50000:
1004 			ctrl |= priv->hw->link.xlgmii.speed50000;
1005 			break;
1006 		case SPEED_40000:
1007 			ctrl |= priv->hw->link.xlgmii.speed40000;
1008 			break;
1009 		case SPEED_25000:
1010 			ctrl |= priv->hw->link.xlgmii.speed25000;
1011 			break;
1012 		case SPEED_10000:
1013 			ctrl |= priv->hw->link.xgmii.speed10000;
1014 			break;
1015 		case SPEED_2500:
1016 			ctrl |= priv->hw->link.speed2500;
1017 			break;
1018 		case SPEED_1000:
1019 			ctrl |= priv->hw->link.speed1000;
1020 			break;
1021 		default:
1022 			return;
1023 		}
1024 	} else {
1025 		switch (speed) {
1026 		case SPEED_2500:
1027 			ctrl |= priv->hw->link.speed2500;
1028 			break;
1029 		case SPEED_1000:
1030 			ctrl |= priv->hw->link.speed1000;
1031 			break;
1032 		case SPEED_100:
1033 			ctrl |= priv->hw->link.speed100;
1034 			break;
1035 		case SPEED_10:
1036 			ctrl |= priv->hw->link.speed10;
1037 			break;
1038 		default:
1039 			return;
1040 		}
1041 	}
1042 
1043 	priv->speed = speed;
1044 
1045 	if (priv->plat->fix_mac_speed)
1046 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1047 
1048 	if (!duplex)
1049 		ctrl &= ~priv->hw->link.duplex;
1050 	else
1051 		ctrl |= priv->hw->link.duplex;
1052 
1053 	/* Flow Control operation */
1054 	if (tx_pause && rx_pause)
1055 		stmmac_mac_flow_ctrl(priv, duplex);
1056 
1057 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1058 
1059 	stmmac_mac_set(priv, priv->ioaddr, true);
1060 	if (phy && priv->dma_cap.eee) {
1061 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1062 		priv->eee_enabled = stmmac_eee_init(priv);
1063 		priv->tx_lpi_enabled = priv->eee_enabled;
1064 		stmmac_set_eee_pls(priv, priv->hw, true);
1065 	}
1066 }
1067 
1068 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1069 	.validate = stmmac_validate,
1070 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1071 	.mac_config = stmmac_mac_config,
1072 	.mac_an_restart = stmmac_mac_an_restart,
1073 	.mac_link_down = stmmac_mac_link_down,
1074 	.mac_link_up = stmmac_mac_link_up,
1075 };
1076 
1077 /**
1078  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1079  * @priv: driver private structure
1080  * Description: this is to verify if the HW supports the PCS.
1081  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1082  * configured for the TBI, RTBI, or SGMII PHY interface.
1083  */
1084 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1085 {
1086 	int interface = priv->plat->interface;
1087 
1088 	if (priv->dma_cap.pcs) {
1089 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1090 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1091 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1092 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1093 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1094 			priv->hw->pcs = STMMAC_PCS_RGMII;
1095 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1096 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1097 			priv->hw->pcs = STMMAC_PCS_SGMII;
1098 		}
1099 	}
1100 }
1101 
1102 /**
1103  * stmmac_init_phy - PHY initialization
1104  * @dev: net device structure
1105  * Description: it initializes the driver's PHY state, and attaches the PHY
1106  * to the mac driver.
1107  *  Return value:
1108  *  0 on success
1109  */
1110 static int stmmac_init_phy(struct net_device *dev)
1111 {
1112 	struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1113 	struct stmmac_priv *priv = netdev_priv(dev);
1114 	struct device_node *node;
1115 	int ret;
1116 
1117 	node = priv->plat->phylink_node;
1118 
1119 	if (node)
1120 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1121 
1122 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1123 	 * manually parse it
1124 	 */
1125 	if (!node || ret) {
1126 		int addr = priv->plat->phy_addr;
1127 		struct phy_device *phydev;
1128 
1129 		phydev = mdiobus_get_phy(priv->mii, addr);
1130 		if (!phydev) {
1131 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1132 			return -ENODEV;
1133 		}
1134 
1135 		ret = phylink_connect_phy(priv->phylink, phydev);
1136 	}
1137 
1138 	phylink_ethtool_get_wol(priv->phylink, &wol);
1139 	device_set_wakeup_capable(priv->device, !!wol.supported);
1140 
1141 	return ret;
1142 }
1143 
1144 static int stmmac_phy_setup(struct stmmac_priv *priv)
1145 {
1146 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1147 	int mode = priv->plat->phy_interface;
1148 	struct phylink *phylink;
1149 
1150 	priv->phylink_config.dev = &priv->dev->dev;
1151 	priv->phylink_config.type = PHYLINK_NETDEV;
1152 	priv->phylink_config.pcs_poll = true;
1153 	priv->phylink_config.ovr_an_inband =
1154 		priv->plat->mdio_bus_data->xpcs_an_inband;
1155 
1156 	if (!fwnode)
1157 		fwnode = dev_fwnode(priv->device);
1158 
1159 	phylink = phylink_create(&priv->phylink_config, fwnode,
1160 				 mode, &stmmac_phylink_mac_ops);
1161 	if (IS_ERR(phylink))
1162 		return PTR_ERR(phylink);
1163 
1164 	priv->phylink = phylink;
1165 	return 0;
1166 }
1167 
1168 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1169 {
1170 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1171 	unsigned int desc_size;
1172 	void *head_rx;
1173 	u32 queue;
1174 
1175 	/* Display RX rings */
1176 	for (queue = 0; queue < rx_cnt; queue++) {
1177 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1178 
1179 		pr_info("\tRX Queue %u rings\n", queue);
1180 
1181 		if (priv->extend_desc) {
1182 			head_rx = (void *)rx_q->dma_erx;
1183 			desc_size = sizeof(struct dma_extended_desc);
1184 		} else {
1185 			head_rx = (void *)rx_q->dma_rx;
1186 			desc_size = sizeof(struct dma_desc);
1187 		}
1188 
1189 		/* Display RX ring */
1190 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1191 				    rx_q->dma_rx_phy, desc_size);
1192 	}
1193 }
1194 
1195 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1196 {
1197 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1198 	unsigned int desc_size;
1199 	void *head_tx;
1200 	u32 queue;
1201 
1202 	/* Display TX rings */
1203 	for (queue = 0; queue < tx_cnt; queue++) {
1204 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1205 
1206 		pr_info("\tTX Queue %d rings\n", queue);
1207 
1208 		if (priv->extend_desc) {
1209 			head_tx = (void *)tx_q->dma_etx;
1210 			desc_size = sizeof(struct dma_extended_desc);
1211 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1212 			head_tx = (void *)tx_q->dma_entx;
1213 			desc_size = sizeof(struct dma_edesc);
1214 		} else {
1215 			head_tx = (void *)tx_q->dma_tx;
1216 			desc_size = sizeof(struct dma_desc);
1217 		}
1218 
1219 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1220 				    tx_q->dma_tx_phy, desc_size);
1221 	}
1222 }
1223 
1224 static void stmmac_display_rings(struct stmmac_priv *priv)
1225 {
1226 	/* Display RX ring */
1227 	stmmac_display_rx_rings(priv);
1228 
1229 	/* Display TX ring */
1230 	stmmac_display_tx_rings(priv);
1231 }
1232 
1233 static int stmmac_set_bfsize(int mtu, int bufsize)
1234 {
1235 	int ret = bufsize;
1236 
1237 	if (mtu >= BUF_SIZE_8KiB)
1238 		ret = BUF_SIZE_16KiB;
1239 	else if (mtu >= BUF_SIZE_4KiB)
1240 		ret = BUF_SIZE_8KiB;
1241 	else if (mtu >= BUF_SIZE_2KiB)
1242 		ret = BUF_SIZE_4KiB;
1243 	else if (mtu > DEFAULT_BUFSIZE)
1244 		ret = BUF_SIZE_2KiB;
1245 	else
1246 		ret = DEFAULT_BUFSIZE;
1247 
1248 	return ret;
1249 }
1250 
1251 /**
1252  * stmmac_clear_rx_descriptors - clear RX descriptors
1253  * @priv: driver private structure
1254  * @queue: RX queue index
1255  * Description: this function is called to clear the RX descriptors
1256  * in case of both basic and extended descriptors are used.
1257  */
1258 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1259 {
1260 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1261 	int i;
1262 
1263 	/* Clear the RX descriptors */
1264 	for (i = 0; i < priv->dma_rx_size; i++)
1265 		if (priv->extend_desc)
1266 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1267 					priv->use_riwt, priv->mode,
1268 					(i == priv->dma_rx_size - 1),
1269 					priv->dma_buf_sz);
1270 		else
1271 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1272 					priv->use_riwt, priv->mode,
1273 					(i == priv->dma_rx_size - 1),
1274 					priv->dma_buf_sz);
1275 }
1276 
1277 /**
1278  * stmmac_clear_tx_descriptors - clear tx descriptors
1279  * @priv: driver private structure
1280  * @queue: TX queue index.
1281  * Description: this function is called to clear the TX descriptors
1282  * in case of both basic and extended descriptors are used.
1283  */
1284 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1285 {
1286 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1287 	int i;
1288 
1289 	/* Clear the TX descriptors */
1290 	for (i = 0; i < priv->dma_tx_size; i++) {
1291 		int last = (i == (priv->dma_tx_size - 1));
1292 		struct dma_desc *p;
1293 
1294 		if (priv->extend_desc)
1295 			p = &tx_q->dma_etx[i].basic;
1296 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1297 			p = &tx_q->dma_entx[i].basic;
1298 		else
1299 			p = &tx_q->dma_tx[i];
1300 
1301 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1302 	}
1303 }
1304 
1305 /**
1306  * stmmac_clear_descriptors - clear descriptors
1307  * @priv: driver private structure
1308  * Description: this function is called to clear the TX and RX descriptors
1309  * in case of both basic and extended descriptors are used.
1310  */
1311 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1312 {
1313 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1314 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1315 	u32 queue;
1316 
1317 	/* Clear the RX descriptors */
1318 	for (queue = 0; queue < rx_queue_cnt; queue++)
1319 		stmmac_clear_rx_descriptors(priv, queue);
1320 
1321 	/* Clear the TX descriptors */
1322 	for (queue = 0; queue < tx_queue_cnt; queue++)
1323 		stmmac_clear_tx_descriptors(priv, queue);
1324 }
1325 
1326 /**
1327  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1328  * @priv: driver private structure
1329  * @p: descriptor pointer
1330  * @i: descriptor index
1331  * @flags: gfp flag
1332  * @queue: RX queue index
1333  * Description: this function is called to allocate a receive buffer, perform
1334  * the DMA mapping and init the descriptor.
1335  */
1336 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1337 				  int i, gfp_t flags, u32 queue)
1338 {
1339 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1340 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1341 
1342 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1343 	if (!buf->page)
1344 		return -ENOMEM;
1345 
1346 	if (priv->sph) {
1347 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1348 		if (!buf->sec_page)
1349 			return -ENOMEM;
1350 
1351 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1352 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1353 	} else {
1354 		buf->sec_page = NULL;
1355 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1356 	}
1357 
1358 	buf->addr = page_pool_get_dma_addr(buf->page);
1359 	stmmac_set_desc_addr(priv, p, buf->addr);
1360 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1361 		stmmac_init_desc3(priv, p);
1362 
1363 	return 0;
1364 }
1365 
1366 /**
1367  * stmmac_free_rx_buffer - free RX dma buffers
1368  * @priv: private structure
1369  * @queue: RX queue index
1370  * @i: buffer index.
1371  */
1372 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1373 {
1374 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1375 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1376 
1377 	if (buf->page)
1378 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1379 	buf->page = NULL;
1380 
1381 	if (buf->sec_page)
1382 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1383 	buf->sec_page = NULL;
1384 }
1385 
1386 /**
1387  * stmmac_free_tx_buffer - free RX dma buffers
1388  * @priv: private structure
1389  * @queue: RX queue index
1390  * @i: buffer index.
1391  */
1392 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1393 {
1394 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1395 
1396 	if (tx_q->tx_skbuff_dma[i].buf) {
1397 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1398 			dma_unmap_page(priv->device,
1399 				       tx_q->tx_skbuff_dma[i].buf,
1400 				       tx_q->tx_skbuff_dma[i].len,
1401 				       DMA_TO_DEVICE);
1402 		else
1403 			dma_unmap_single(priv->device,
1404 					 tx_q->tx_skbuff_dma[i].buf,
1405 					 tx_q->tx_skbuff_dma[i].len,
1406 					 DMA_TO_DEVICE);
1407 	}
1408 
1409 	if (tx_q->tx_skbuff[i]) {
1410 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1411 		tx_q->tx_skbuff[i] = NULL;
1412 		tx_q->tx_skbuff_dma[i].buf = 0;
1413 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1414 	}
1415 }
1416 
1417 /**
1418  * stmmac_reinit_rx_buffers - reinit the RX descriptor buffer.
1419  * @priv: driver private structure
1420  * Description: this function is called to re-allocate a receive buffer, perform
1421  * the DMA mapping and init the descriptor.
1422  */
1423 static void stmmac_reinit_rx_buffers(struct stmmac_priv *priv)
1424 {
1425 	u32 rx_count = priv->plat->rx_queues_to_use;
1426 	u32 queue;
1427 	int i;
1428 
1429 	for (queue = 0; queue < rx_count; queue++) {
1430 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1431 
1432 		for (i = 0; i < priv->dma_rx_size; i++) {
1433 			struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1434 
1435 			if (buf->page) {
1436 				page_pool_recycle_direct(rx_q->page_pool, buf->page);
1437 				buf->page = NULL;
1438 			}
1439 
1440 			if (priv->sph && buf->sec_page) {
1441 				page_pool_recycle_direct(rx_q->page_pool, buf->sec_page);
1442 				buf->sec_page = NULL;
1443 			}
1444 		}
1445 	}
1446 
1447 	for (queue = 0; queue < rx_count; queue++) {
1448 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1449 
1450 		for (i = 0; i < priv->dma_rx_size; i++) {
1451 			struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1452 			struct dma_desc *p;
1453 
1454 			if (priv->extend_desc)
1455 				p = &((rx_q->dma_erx + i)->basic);
1456 			else
1457 				p = rx_q->dma_rx + i;
1458 
1459 			if (!buf->page) {
1460 				buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1461 				if (!buf->page)
1462 					goto err_reinit_rx_buffers;
1463 
1464 				buf->addr = page_pool_get_dma_addr(buf->page);
1465 			}
1466 
1467 			if (priv->sph && !buf->sec_page) {
1468 				buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1469 				if (!buf->sec_page)
1470 					goto err_reinit_rx_buffers;
1471 
1472 				buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1473 			}
1474 
1475 			stmmac_set_desc_addr(priv, p, buf->addr);
1476 			if (priv->sph)
1477 				stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1478 			else
1479 				stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1480 			if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1481 				stmmac_init_desc3(priv, p);
1482 		}
1483 	}
1484 
1485 	return;
1486 
1487 err_reinit_rx_buffers:
1488 	do {
1489 		while (--i >= 0)
1490 			stmmac_free_rx_buffer(priv, queue, i);
1491 
1492 		if (queue == 0)
1493 			break;
1494 
1495 		i = priv->dma_rx_size;
1496 	} while (queue-- > 0);
1497 }
1498 
1499 /**
1500  * init_dma_rx_desc_rings - init the RX descriptor rings
1501  * @dev: net device structure
1502  * @flags: gfp flag.
1503  * Description: this function initializes the DMA RX descriptors
1504  * and allocates the socket buffers. It supports the chained and ring
1505  * modes.
1506  */
1507 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1508 {
1509 	struct stmmac_priv *priv = netdev_priv(dev);
1510 	u32 rx_count = priv->plat->rx_queues_to_use;
1511 	int ret = -ENOMEM;
1512 	int queue;
1513 	int i;
1514 
1515 	/* RX INITIALIZATION */
1516 	netif_dbg(priv, probe, priv->dev,
1517 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1518 
1519 	for (queue = 0; queue < rx_count; queue++) {
1520 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1521 
1522 		netif_dbg(priv, probe, priv->dev,
1523 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1524 			  (u32)rx_q->dma_rx_phy);
1525 
1526 		stmmac_clear_rx_descriptors(priv, queue);
1527 
1528 		for (i = 0; i < priv->dma_rx_size; i++) {
1529 			struct dma_desc *p;
1530 
1531 			if (priv->extend_desc)
1532 				p = &((rx_q->dma_erx + i)->basic);
1533 			else
1534 				p = rx_q->dma_rx + i;
1535 
1536 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1537 						     queue);
1538 			if (ret)
1539 				goto err_init_rx_buffers;
1540 		}
1541 
1542 		rx_q->cur_rx = 0;
1543 		rx_q->dirty_rx = (unsigned int)(i - priv->dma_rx_size);
1544 
1545 		/* Setup the chained descriptor addresses */
1546 		if (priv->mode == STMMAC_CHAIN_MODE) {
1547 			if (priv->extend_desc)
1548 				stmmac_mode_init(priv, rx_q->dma_erx,
1549 						 rx_q->dma_rx_phy,
1550 						 priv->dma_rx_size, 1);
1551 			else
1552 				stmmac_mode_init(priv, rx_q->dma_rx,
1553 						 rx_q->dma_rx_phy,
1554 						 priv->dma_rx_size, 0);
1555 		}
1556 	}
1557 
1558 	return 0;
1559 
1560 err_init_rx_buffers:
1561 	while (queue >= 0) {
1562 		while (--i >= 0)
1563 			stmmac_free_rx_buffer(priv, queue, i);
1564 
1565 		if (queue == 0)
1566 			break;
1567 
1568 		i = priv->dma_rx_size;
1569 		queue--;
1570 	}
1571 
1572 	return ret;
1573 }
1574 
1575 /**
1576  * init_dma_tx_desc_rings - init the TX descriptor rings
1577  * @dev: net device structure.
1578  * Description: this function initializes the DMA TX descriptors
1579  * and allocates the socket buffers. It supports the chained and ring
1580  * modes.
1581  */
1582 static int init_dma_tx_desc_rings(struct net_device *dev)
1583 {
1584 	struct stmmac_priv *priv = netdev_priv(dev);
1585 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1586 	u32 queue;
1587 	int i;
1588 
1589 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1590 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1591 
1592 		netif_dbg(priv, probe, priv->dev,
1593 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1594 			 (u32)tx_q->dma_tx_phy);
1595 
1596 		/* Setup the chained descriptor addresses */
1597 		if (priv->mode == STMMAC_CHAIN_MODE) {
1598 			if (priv->extend_desc)
1599 				stmmac_mode_init(priv, tx_q->dma_etx,
1600 						 tx_q->dma_tx_phy,
1601 						 priv->dma_tx_size, 1);
1602 			else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1603 				stmmac_mode_init(priv, tx_q->dma_tx,
1604 						 tx_q->dma_tx_phy,
1605 						 priv->dma_tx_size, 0);
1606 		}
1607 
1608 		for (i = 0; i < priv->dma_tx_size; i++) {
1609 			struct dma_desc *p;
1610 			if (priv->extend_desc)
1611 				p = &((tx_q->dma_etx + i)->basic);
1612 			else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1613 				p = &((tx_q->dma_entx + i)->basic);
1614 			else
1615 				p = tx_q->dma_tx + i;
1616 
1617 			stmmac_clear_desc(priv, p);
1618 
1619 			tx_q->tx_skbuff_dma[i].buf = 0;
1620 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1621 			tx_q->tx_skbuff_dma[i].len = 0;
1622 			tx_q->tx_skbuff_dma[i].last_segment = false;
1623 			tx_q->tx_skbuff[i] = NULL;
1624 		}
1625 
1626 		tx_q->dirty_tx = 0;
1627 		tx_q->cur_tx = 0;
1628 		tx_q->mss = 0;
1629 
1630 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 /**
1637  * init_dma_desc_rings - init the RX/TX descriptor rings
1638  * @dev: net device structure
1639  * @flags: gfp flag.
1640  * Description: this function initializes the DMA RX/TX descriptors
1641  * and allocates the socket buffers. It supports the chained and ring
1642  * modes.
1643  */
1644 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1645 {
1646 	struct stmmac_priv *priv = netdev_priv(dev);
1647 	int ret;
1648 
1649 	ret = init_dma_rx_desc_rings(dev, flags);
1650 	if (ret)
1651 		return ret;
1652 
1653 	ret = init_dma_tx_desc_rings(dev);
1654 
1655 	stmmac_clear_descriptors(priv);
1656 
1657 	if (netif_msg_hw(priv))
1658 		stmmac_display_rings(priv);
1659 
1660 	return ret;
1661 }
1662 
1663 /**
1664  * dma_free_rx_skbufs - free RX dma buffers
1665  * @priv: private structure
1666  * @queue: RX queue index
1667  */
1668 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1669 {
1670 	int i;
1671 
1672 	for (i = 0; i < priv->dma_rx_size; i++)
1673 		stmmac_free_rx_buffer(priv, queue, i);
1674 }
1675 
1676 /**
1677  * dma_free_tx_skbufs - free TX dma buffers
1678  * @priv: private structure
1679  * @queue: TX queue index
1680  */
1681 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1682 {
1683 	int i;
1684 
1685 	for (i = 0; i < priv->dma_tx_size; i++)
1686 		stmmac_free_tx_buffer(priv, queue, i);
1687 }
1688 
1689 /**
1690  * stmmac_free_tx_skbufs - free TX skb buffers
1691  * @priv: private structure
1692  */
1693 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1694 {
1695 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1696 	u32 queue;
1697 
1698 	for (queue = 0; queue < tx_queue_cnt; queue++)
1699 		dma_free_tx_skbufs(priv, queue);
1700 }
1701 
1702 /**
1703  * free_dma_rx_desc_resources - free RX dma desc resources
1704  * @priv: private structure
1705  */
1706 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1707 {
1708 	u32 rx_count = priv->plat->rx_queues_to_use;
1709 	u32 queue;
1710 
1711 	/* Free RX queue resources */
1712 	for (queue = 0; queue < rx_count; queue++) {
1713 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1714 
1715 		/* Release the DMA RX socket buffers */
1716 		dma_free_rx_skbufs(priv, queue);
1717 
1718 		/* Free DMA regions of consistent memory previously allocated */
1719 		if (!priv->extend_desc)
1720 			dma_free_coherent(priv->device, priv->dma_rx_size *
1721 					  sizeof(struct dma_desc),
1722 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1723 		else
1724 			dma_free_coherent(priv->device, priv->dma_rx_size *
1725 					  sizeof(struct dma_extended_desc),
1726 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1727 
1728 		kfree(rx_q->buf_pool);
1729 		if (rx_q->page_pool)
1730 			page_pool_destroy(rx_q->page_pool);
1731 	}
1732 }
1733 
1734 /**
1735  * free_dma_tx_desc_resources - free TX dma desc resources
1736  * @priv: private structure
1737  */
1738 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1739 {
1740 	u32 tx_count = priv->plat->tx_queues_to_use;
1741 	u32 queue;
1742 
1743 	/* Free TX queue resources */
1744 	for (queue = 0; queue < tx_count; queue++) {
1745 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1746 		size_t size;
1747 		void *addr;
1748 
1749 		/* Release the DMA TX socket buffers */
1750 		dma_free_tx_skbufs(priv, queue);
1751 
1752 		if (priv->extend_desc) {
1753 			size = sizeof(struct dma_extended_desc);
1754 			addr = tx_q->dma_etx;
1755 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1756 			size = sizeof(struct dma_edesc);
1757 			addr = tx_q->dma_entx;
1758 		} else {
1759 			size = sizeof(struct dma_desc);
1760 			addr = tx_q->dma_tx;
1761 		}
1762 
1763 		size *= priv->dma_tx_size;
1764 
1765 		dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1766 
1767 		kfree(tx_q->tx_skbuff_dma);
1768 		kfree(tx_q->tx_skbuff);
1769 	}
1770 }
1771 
1772 /**
1773  * alloc_dma_rx_desc_resources - alloc RX resources.
1774  * @priv: private structure
1775  * Description: according to which descriptor can be used (extend or basic)
1776  * this function allocates the resources for TX and RX paths. In case of
1777  * reception, for example, it pre-allocated the RX socket buffer in order to
1778  * allow zero-copy mechanism.
1779  */
1780 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1781 {
1782 	u32 rx_count = priv->plat->rx_queues_to_use;
1783 	int ret = -ENOMEM;
1784 	u32 queue;
1785 
1786 	/* RX queues buffers and DMA */
1787 	for (queue = 0; queue < rx_count; queue++) {
1788 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1789 		struct page_pool_params pp_params = { 0 };
1790 		unsigned int num_pages;
1791 
1792 		rx_q->queue_index = queue;
1793 		rx_q->priv_data = priv;
1794 
1795 		pp_params.flags = PP_FLAG_DMA_MAP;
1796 		pp_params.pool_size = priv->dma_rx_size;
1797 		num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1798 		pp_params.order = ilog2(num_pages);
1799 		pp_params.nid = dev_to_node(priv->device);
1800 		pp_params.dev = priv->device;
1801 		pp_params.dma_dir = DMA_FROM_DEVICE;
1802 
1803 		rx_q->page_pool = page_pool_create(&pp_params);
1804 		if (IS_ERR(rx_q->page_pool)) {
1805 			ret = PTR_ERR(rx_q->page_pool);
1806 			rx_q->page_pool = NULL;
1807 			goto err_dma;
1808 		}
1809 
1810 		rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1811 					 sizeof(*rx_q->buf_pool),
1812 					 GFP_KERNEL);
1813 		if (!rx_q->buf_pool)
1814 			goto err_dma;
1815 
1816 		if (priv->extend_desc) {
1817 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1818 							   priv->dma_rx_size *
1819 							   sizeof(struct dma_extended_desc),
1820 							   &rx_q->dma_rx_phy,
1821 							   GFP_KERNEL);
1822 			if (!rx_q->dma_erx)
1823 				goto err_dma;
1824 
1825 		} else {
1826 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1827 							  priv->dma_rx_size *
1828 							  sizeof(struct dma_desc),
1829 							  &rx_q->dma_rx_phy,
1830 							  GFP_KERNEL);
1831 			if (!rx_q->dma_rx)
1832 				goto err_dma;
1833 		}
1834 	}
1835 
1836 	return 0;
1837 
1838 err_dma:
1839 	free_dma_rx_desc_resources(priv);
1840 
1841 	return ret;
1842 }
1843 
1844 /**
1845  * alloc_dma_tx_desc_resources - alloc TX resources.
1846  * @priv: private structure
1847  * Description: according to which descriptor can be used (extend or basic)
1848  * this function allocates the resources for TX and RX paths. In case of
1849  * reception, for example, it pre-allocated the RX socket buffer in order to
1850  * allow zero-copy mechanism.
1851  */
1852 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1853 {
1854 	u32 tx_count = priv->plat->tx_queues_to_use;
1855 	int ret = -ENOMEM;
1856 	u32 queue;
1857 
1858 	/* TX queues buffers and DMA */
1859 	for (queue = 0; queue < tx_count; queue++) {
1860 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1861 		size_t size;
1862 		void *addr;
1863 
1864 		tx_q->queue_index = queue;
1865 		tx_q->priv_data = priv;
1866 
1867 		tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
1868 					      sizeof(*tx_q->tx_skbuff_dma),
1869 					      GFP_KERNEL);
1870 		if (!tx_q->tx_skbuff_dma)
1871 			goto err_dma;
1872 
1873 		tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
1874 					  sizeof(struct sk_buff *),
1875 					  GFP_KERNEL);
1876 		if (!tx_q->tx_skbuff)
1877 			goto err_dma;
1878 
1879 		if (priv->extend_desc)
1880 			size = sizeof(struct dma_extended_desc);
1881 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1882 			size = sizeof(struct dma_edesc);
1883 		else
1884 			size = sizeof(struct dma_desc);
1885 
1886 		size *= priv->dma_tx_size;
1887 
1888 		addr = dma_alloc_coherent(priv->device, size,
1889 					  &tx_q->dma_tx_phy, GFP_KERNEL);
1890 		if (!addr)
1891 			goto err_dma;
1892 
1893 		if (priv->extend_desc)
1894 			tx_q->dma_etx = addr;
1895 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1896 			tx_q->dma_entx = addr;
1897 		else
1898 			tx_q->dma_tx = addr;
1899 	}
1900 
1901 	return 0;
1902 
1903 err_dma:
1904 	free_dma_tx_desc_resources(priv);
1905 	return ret;
1906 }
1907 
1908 /**
1909  * alloc_dma_desc_resources - alloc TX/RX resources.
1910  * @priv: private structure
1911  * Description: according to which descriptor can be used (extend or basic)
1912  * this function allocates the resources for TX and RX paths. In case of
1913  * reception, for example, it pre-allocated the RX socket buffer in order to
1914  * allow zero-copy mechanism.
1915  */
1916 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1917 {
1918 	/* RX Allocation */
1919 	int ret = alloc_dma_rx_desc_resources(priv);
1920 
1921 	if (ret)
1922 		return ret;
1923 
1924 	ret = alloc_dma_tx_desc_resources(priv);
1925 
1926 	return ret;
1927 }
1928 
1929 /**
1930  * free_dma_desc_resources - free dma desc resources
1931  * @priv: private structure
1932  */
1933 static void free_dma_desc_resources(struct stmmac_priv *priv)
1934 {
1935 	/* Release the DMA RX socket buffers */
1936 	free_dma_rx_desc_resources(priv);
1937 
1938 	/* Release the DMA TX socket buffers */
1939 	free_dma_tx_desc_resources(priv);
1940 }
1941 
1942 /**
1943  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1944  *  @priv: driver private structure
1945  *  Description: It is used for enabling the rx queues in the MAC
1946  */
1947 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1948 {
1949 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1950 	int queue;
1951 	u8 mode;
1952 
1953 	for (queue = 0; queue < rx_queues_count; queue++) {
1954 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1955 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1956 	}
1957 }
1958 
1959 /**
1960  * stmmac_start_rx_dma - start RX DMA channel
1961  * @priv: driver private structure
1962  * @chan: RX channel index
1963  * Description:
1964  * This starts a RX DMA channel
1965  */
1966 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1967 {
1968 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1969 	stmmac_start_rx(priv, priv->ioaddr, chan);
1970 }
1971 
1972 /**
1973  * stmmac_start_tx_dma - start TX DMA channel
1974  * @priv: driver private structure
1975  * @chan: TX channel index
1976  * Description:
1977  * This starts a TX DMA channel
1978  */
1979 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1980 {
1981 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1982 	stmmac_start_tx(priv, priv->ioaddr, chan);
1983 }
1984 
1985 /**
1986  * stmmac_stop_rx_dma - stop RX DMA channel
1987  * @priv: driver private structure
1988  * @chan: RX channel index
1989  * Description:
1990  * This stops a RX DMA channel
1991  */
1992 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1993 {
1994 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1995 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1996 }
1997 
1998 /**
1999  * stmmac_stop_tx_dma - stop TX DMA channel
2000  * @priv: driver private structure
2001  * @chan: TX channel index
2002  * Description:
2003  * This stops a TX DMA channel
2004  */
2005 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2006 {
2007 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2008 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2009 }
2010 
2011 /**
2012  * stmmac_start_all_dma - start all RX and TX DMA channels
2013  * @priv: driver private structure
2014  * Description:
2015  * This starts all the RX and TX DMA channels
2016  */
2017 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2018 {
2019 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2020 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2021 	u32 chan = 0;
2022 
2023 	for (chan = 0; chan < rx_channels_count; chan++)
2024 		stmmac_start_rx_dma(priv, chan);
2025 
2026 	for (chan = 0; chan < tx_channels_count; chan++)
2027 		stmmac_start_tx_dma(priv, chan);
2028 }
2029 
2030 /**
2031  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2032  * @priv: driver private structure
2033  * Description:
2034  * This stops the RX and TX DMA channels
2035  */
2036 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2037 {
2038 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2039 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2040 	u32 chan = 0;
2041 
2042 	for (chan = 0; chan < rx_channels_count; chan++)
2043 		stmmac_stop_rx_dma(priv, chan);
2044 
2045 	for (chan = 0; chan < tx_channels_count; chan++)
2046 		stmmac_stop_tx_dma(priv, chan);
2047 }
2048 
2049 /**
2050  *  stmmac_dma_operation_mode - HW DMA operation mode
2051  *  @priv: driver private structure
2052  *  Description: it is used for configuring the DMA operation mode register in
2053  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2054  */
2055 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2056 {
2057 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2058 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2059 	int rxfifosz = priv->plat->rx_fifo_size;
2060 	int txfifosz = priv->plat->tx_fifo_size;
2061 	u32 txmode = 0;
2062 	u32 rxmode = 0;
2063 	u32 chan = 0;
2064 	u8 qmode = 0;
2065 
2066 	if (rxfifosz == 0)
2067 		rxfifosz = priv->dma_cap.rx_fifo_size;
2068 	if (txfifosz == 0)
2069 		txfifosz = priv->dma_cap.tx_fifo_size;
2070 
2071 	/* Adjust for real per queue fifo size */
2072 	rxfifosz /= rx_channels_count;
2073 	txfifosz /= tx_channels_count;
2074 
2075 	if (priv->plat->force_thresh_dma_mode) {
2076 		txmode = tc;
2077 		rxmode = tc;
2078 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2079 		/*
2080 		 * In case of GMAC, SF mode can be enabled
2081 		 * to perform the TX COE in HW. This depends on:
2082 		 * 1) TX COE if actually supported
2083 		 * 2) There is no bugged Jumbo frame support
2084 		 *    that needs to not insert csum in the TDES.
2085 		 */
2086 		txmode = SF_DMA_MODE;
2087 		rxmode = SF_DMA_MODE;
2088 		priv->xstats.threshold = SF_DMA_MODE;
2089 	} else {
2090 		txmode = tc;
2091 		rxmode = SF_DMA_MODE;
2092 	}
2093 
2094 	/* configure all channels */
2095 	for (chan = 0; chan < rx_channels_count; chan++) {
2096 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2097 
2098 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2099 				rxfifosz, qmode);
2100 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
2101 				chan);
2102 	}
2103 
2104 	for (chan = 0; chan < tx_channels_count; chan++) {
2105 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2106 
2107 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2108 				txfifosz, qmode);
2109 	}
2110 }
2111 
2112 /**
2113  * stmmac_tx_clean - to manage the transmission completion
2114  * @priv: driver private structure
2115  * @budget: napi budget limiting this functions packet handling
2116  * @queue: TX queue index
2117  * Description: it reclaims the transmit resources after transmission completes.
2118  */
2119 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2120 {
2121 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2122 	unsigned int bytes_compl = 0, pkts_compl = 0;
2123 	unsigned int entry, count = 0;
2124 
2125 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2126 
2127 	priv->xstats.tx_clean++;
2128 
2129 	entry = tx_q->dirty_tx;
2130 	while ((entry != tx_q->cur_tx) && (count < budget)) {
2131 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
2132 		struct dma_desc *p;
2133 		int status;
2134 
2135 		if (priv->extend_desc)
2136 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2137 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2138 			p = &tx_q->dma_entx[entry].basic;
2139 		else
2140 			p = tx_q->dma_tx + entry;
2141 
2142 		status = stmmac_tx_status(priv, &priv->dev->stats,
2143 				&priv->xstats, p, priv->ioaddr);
2144 		/* Check if the descriptor is owned by the DMA */
2145 		if (unlikely(status & tx_dma_own))
2146 			break;
2147 
2148 		count++;
2149 
2150 		/* Make sure descriptor fields are read after reading
2151 		 * the own bit.
2152 		 */
2153 		dma_rmb();
2154 
2155 		/* Just consider the last segment and ...*/
2156 		if (likely(!(status & tx_not_ls))) {
2157 			/* ... verify the status error condition */
2158 			if (unlikely(status & tx_err)) {
2159 				priv->dev->stats.tx_errors++;
2160 			} else {
2161 				priv->dev->stats.tx_packets++;
2162 				priv->xstats.tx_pkt_n++;
2163 			}
2164 			stmmac_get_tx_hwtstamp(priv, p, skb);
2165 		}
2166 
2167 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
2168 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2169 				dma_unmap_page(priv->device,
2170 					       tx_q->tx_skbuff_dma[entry].buf,
2171 					       tx_q->tx_skbuff_dma[entry].len,
2172 					       DMA_TO_DEVICE);
2173 			else
2174 				dma_unmap_single(priv->device,
2175 						 tx_q->tx_skbuff_dma[entry].buf,
2176 						 tx_q->tx_skbuff_dma[entry].len,
2177 						 DMA_TO_DEVICE);
2178 			tx_q->tx_skbuff_dma[entry].buf = 0;
2179 			tx_q->tx_skbuff_dma[entry].len = 0;
2180 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2181 		}
2182 
2183 		stmmac_clean_desc3(priv, tx_q, p);
2184 
2185 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2186 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2187 
2188 		if (likely(skb != NULL)) {
2189 			pkts_compl++;
2190 			bytes_compl += skb->len;
2191 			dev_consume_skb_any(skb);
2192 			tx_q->tx_skbuff[entry] = NULL;
2193 		}
2194 
2195 		stmmac_release_tx_desc(priv, p, priv->mode);
2196 
2197 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2198 	}
2199 	tx_q->dirty_tx = entry;
2200 
2201 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2202 				  pkts_compl, bytes_compl);
2203 
2204 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2205 								queue))) &&
2206 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2207 
2208 		netif_dbg(priv, tx_done, priv->dev,
2209 			  "%s: restart transmit\n", __func__);
2210 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2211 	}
2212 
2213 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2214 	    priv->eee_sw_timer_en) {
2215 		stmmac_enable_eee_mode(priv);
2216 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2217 	}
2218 
2219 	/* We still have pending packets, let's call for a new scheduling */
2220 	if (tx_q->dirty_tx != tx_q->cur_tx)
2221 		hrtimer_start(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer),
2222 			      HRTIMER_MODE_REL);
2223 
2224 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2225 
2226 	return count;
2227 }
2228 
2229 /**
2230  * stmmac_tx_err - to manage the tx error
2231  * @priv: driver private structure
2232  * @chan: channel index
2233  * Description: it cleans the descriptors and restarts the transmission
2234  * in case of transmission errors.
2235  */
2236 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2237 {
2238 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2239 
2240 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2241 
2242 	stmmac_stop_tx_dma(priv, chan);
2243 	dma_free_tx_skbufs(priv, chan);
2244 	stmmac_clear_tx_descriptors(priv, chan);
2245 	tx_q->dirty_tx = 0;
2246 	tx_q->cur_tx = 0;
2247 	tx_q->mss = 0;
2248 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2249 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2250 			    tx_q->dma_tx_phy, chan);
2251 	stmmac_start_tx_dma(priv, chan);
2252 
2253 	priv->dev->stats.tx_errors++;
2254 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2255 }
2256 
2257 /**
2258  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2259  *  @priv: driver private structure
2260  *  @txmode: TX operating mode
2261  *  @rxmode: RX operating mode
2262  *  @chan: channel index
2263  *  Description: it is used for configuring of the DMA operation mode in
2264  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2265  *  mode.
2266  */
2267 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2268 					  u32 rxmode, u32 chan)
2269 {
2270 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2271 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2272 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2273 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2274 	int rxfifosz = priv->plat->rx_fifo_size;
2275 	int txfifosz = priv->plat->tx_fifo_size;
2276 
2277 	if (rxfifosz == 0)
2278 		rxfifosz = priv->dma_cap.rx_fifo_size;
2279 	if (txfifosz == 0)
2280 		txfifosz = priv->dma_cap.tx_fifo_size;
2281 
2282 	/* Adjust for real per queue fifo size */
2283 	rxfifosz /= rx_channels_count;
2284 	txfifosz /= tx_channels_count;
2285 
2286 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2287 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2288 }
2289 
2290 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2291 {
2292 	int ret;
2293 
2294 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2295 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2296 	if (ret && (ret != -EINVAL)) {
2297 		stmmac_global_err(priv);
2298 		return true;
2299 	}
2300 
2301 	return false;
2302 }
2303 
2304 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2305 {
2306 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2307 						 &priv->xstats, chan);
2308 	struct stmmac_channel *ch = &priv->channel[chan];
2309 	unsigned long flags;
2310 
2311 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2312 		if (napi_schedule_prep(&ch->rx_napi)) {
2313 			spin_lock_irqsave(&ch->lock, flags);
2314 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2315 			spin_unlock_irqrestore(&ch->lock, flags);
2316 			__napi_schedule(&ch->rx_napi);
2317 		}
2318 	}
2319 
2320 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2321 		if (napi_schedule_prep(&ch->tx_napi)) {
2322 			spin_lock_irqsave(&ch->lock, flags);
2323 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2324 			spin_unlock_irqrestore(&ch->lock, flags);
2325 			__napi_schedule(&ch->tx_napi);
2326 		}
2327 	}
2328 
2329 	return status;
2330 }
2331 
2332 /**
2333  * stmmac_dma_interrupt - DMA ISR
2334  * @priv: driver private structure
2335  * Description: this is the DMA ISR. It is called by the main ISR.
2336  * It calls the dwmac dma routine and schedule poll method in case of some
2337  * work can be done.
2338  */
2339 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2340 {
2341 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2342 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2343 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2344 				tx_channel_count : rx_channel_count;
2345 	u32 chan;
2346 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2347 
2348 	/* Make sure we never check beyond our status buffer. */
2349 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2350 		channels_to_check = ARRAY_SIZE(status);
2351 
2352 	for (chan = 0; chan < channels_to_check; chan++)
2353 		status[chan] = stmmac_napi_check(priv, chan);
2354 
2355 	for (chan = 0; chan < tx_channel_count; chan++) {
2356 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2357 			/* Try to bump up the dma threshold on this failure */
2358 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2359 			    (tc <= 256)) {
2360 				tc += 64;
2361 				if (priv->plat->force_thresh_dma_mode)
2362 					stmmac_set_dma_operation_mode(priv,
2363 								      tc,
2364 								      tc,
2365 								      chan);
2366 				else
2367 					stmmac_set_dma_operation_mode(priv,
2368 								    tc,
2369 								    SF_DMA_MODE,
2370 								    chan);
2371 				priv->xstats.threshold = tc;
2372 			}
2373 		} else if (unlikely(status[chan] == tx_hard_error)) {
2374 			stmmac_tx_err(priv, chan);
2375 		}
2376 	}
2377 }
2378 
2379 /**
2380  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2381  * @priv: driver private structure
2382  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2383  */
2384 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2385 {
2386 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2387 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2388 
2389 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2390 
2391 	if (priv->dma_cap.rmon) {
2392 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2393 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2394 	} else
2395 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2396 }
2397 
2398 /**
2399  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2400  * @priv: driver private structure
2401  * Description:
2402  *  new GMAC chip generations have a new register to indicate the
2403  *  presence of the optional feature/functions.
2404  *  This can be also used to override the value passed through the
2405  *  platform and necessary for old MAC10/100 and GMAC chips.
2406  */
2407 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2408 {
2409 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2410 }
2411 
2412 /**
2413  * stmmac_check_ether_addr - check if the MAC addr is valid
2414  * @priv: driver private structure
2415  * Description:
2416  * it is to verify if the MAC address is valid, in case of failures it
2417  * generates a random MAC address
2418  */
2419 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2420 {
2421 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2422 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2423 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2424 			eth_hw_addr_random(priv->dev);
2425 		dev_info(priv->device, "device MAC address %pM\n",
2426 			 priv->dev->dev_addr);
2427 	}
2428 }
2429 
2430 /**
2431  * stmmac_init_dma_engine - DMA init.
2432  * @priv: driver private structure
2433  * Description:
2434  * It inits the DMA invoking the specific MAC/GMAC callback.
2435  * Some DMA parameters can be passed from the platform;
2436  * in case of these are not passed a default is kept for the MAC or GMAC.
2437  */
2438 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2439 {
2440 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2441 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2442 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2443 	struct stmmac_rx_queue *rx_q;
2444 	struct stmmac_tx_queue *tx_q;
2445 	u32 chan = 0;
2446 	int atds = 0;
2447 	int ret = 0;
2448 
2449 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2450 		dev_err(priv->device, "Invalid DMA configuration\n");
2451 		return -EINVAL;
2452 	}
2453 
2454 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2455 		atds = 1;
2456 
2457 	ret = stmmac_reset(priv, priv->ioaddr);
2458 	if (ret) {
2459 		dev_err(priv->device, "Failed to reset the dma\n");
2460 		return ret;
2461 	}
2462 
2463 	/* DMA Configuration */
2464 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2465 
2466 	if (priv->plat->axi)
2467 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2468 
2469 	/* DMA CSR Channel configuration */
2470 	for (chan = 0; chan < dma_csr_ch; chan++)
2471 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2472 
2473 	/* DMA RX Channel Configuration */
2474 	for (chan = 0; chan < rx_channels_count; chan++) {
2475 		rx_q = &priv->rx_queue[chan];
2476 
2477 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2478 				    rx_q->dma_rx_phy, chan);
2479 
2480 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2481 				     (priv->dma_rx_size *
2482 				      sizeof(struct dma_desc));
2483 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2484 				       rx_q->rx_tail_addr, chan);
2485 	}
2486 
2487 	/* DMA TX Channel Configuration */
2488 	for (chan = 0; chan < tx_channels_count; chan++) {
2489 		tx_q = &priv->tx_queue[chan];
2490 
2491 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2492 				    tx_q->dma_tx_phy, chan);
2493 
2494 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2495 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2496 				       tx_q->tx_tail_addr, chan);
2497 	}
2498 
2499 	return ret;
2500 }
2501 
2502 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2503 {
2504 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2505 
2506 	hrtimer_start(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer),
2507 		      HRTIMER_MODE_REL);
2508 }
2509 
2510 /**
2511  * stmmac_tx_timer - mitigation sw timer for tx.
2512  * @t: data pointer
2513  * Description:
2514  * This is the timer handler to directly invoke the stmmac_tx_clean.
2515  */
2516 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2517 {
2518 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2519 	struct stmmac_priv *priv = tx_q->priv_data;
2520 	struct stmmac_channel *ch;
2521 
2522 	ch = &priv->channel[tx_q->queue_index];
2523 
2524 	if (likely(napi_schedule_prep(&ch->tx_napi))) {
2525 		unsigned long flags;
2526 
2527 		spin_lock_irqsave(&ch->lock, flags);
2528 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2529 		spin_unlock_irqrestore(&ch->lock, flags);
2530 		__napi_schedule(&ch->tx_napi);
2531 	}
2532 
2533 	return HRTIMER_NORESTART;
2534 }
2535 
2536 /**
2537  * stmmac_init_coalesce - init mitigation options.
2538  * @priv: driver private structure
2539  * Description:
2540  * This inits the coalesce parameters: i.e. timer rate,
2541  * timer handler and default threshold used for enabling the
2542  * interrupt on completion bit.
2543  */
2544 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2545 {
2546 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2547 	u32 chan;
2548 
2549 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2550 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2551 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2552 
2553 	for (chan = 0; chan < tx_channel_count; chan++) {
2554 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2555 
2556 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2557 		tx_q->txtimer.function = stmmac_tx_timer;
2558 	}
2559 }
2560 
2561 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2562 {
2563 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2564 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2565 	u32 chan;
2566 
2567 	/* set TX ring length */
2568 	for (chan = 0; chan < tx_channels_count; chan++)
2569 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2570 				       (priv->dma_tx_size - 1), chan);
2571 
2572 	/* set RX ring length */
2573 	for (chan = 0; chan < rx_channels_count; chan++)
2574 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2575 				       (priv->dma_rx_size - 1), chan);
2576 }
2577 
2578 /**
2579  *  stmmac_set_tx_queue_weight - Set TX queue weight
2580  *  @priv: driver private structure
2581  *  Description: It is used for setting TX queues weight
2582  */
2583 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2584 {
2585 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2586 	u32 weight;
2587 	u32 queue;
2588 
2589 	for (queue = 0; queue < tx_queues_count; queue++) {
2590 		weight = priv->plat->tx_queues_cfg[queue].weight;
2591 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2592 	}
2593 }
2594 
2595 /**
2596  *  stmmac_configure_cbs - Configure CBS in TX queue
2597  *  @priv: driver private structure
2598  *  Description: It is used for configuring CBS in AVB TX queues
2599  */
2600 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2601 {
2602 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2603 	u32 mode_to_use;
2604 	u32 queue;
2605 
2606 	/* queue 0 is reserved for legacy traffic */
2607 	for (queue = 1; queue < tx_queues_count; queue++) {
2608 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2609 		if (mode_to_use == MTL_QUEUE_DCB)
2610 			continue;
2611 
2612 		stmmac_config_cbs(priv, priv->hw,
2613 				priv->plat->tx_queues_cfg[queue].send_slope,
2614 				priv->plat->tx_queues_cfg[queue].idle_slope,
2615 				priv->plat->tx_queues_cfg[queue].high_credit,
2616 				priv->plat->tx_queues_cfg[queue].low_credit,
2617 				queue);
2618 	}
2619 }
2620 
2621 /**
2622  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2623  *  @priv: driver private structure
2624  *  Description: It is used for mapping RX queues to RX dma channels
2625  */
2626 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2627 {
2628 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2629 	u32 queue;
2630 	u32 chan;
2631 
2632 	for (queue = 0; queue < rx_queues_count; queue++) {
2633 		chan = priv->plat->rx_queues_cfg[queue].chan;
2634 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2635 	}
2636 }
2637 
2638 /**
2639  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2640  *  @priv: driver private structure
2641  *  Description: It is used for configuring the RX Queue Priority
2642  */
2643 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2644 {
2645 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2646 	u32 queue;
2647 	u32 prio;
2648 
2649 	for (queue = 0; queue < rx_queues_count; queue++) {
2650 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2651 			continue;
2652 
2653 		prio = priv->plat->rx_queues_cfg[queue].prio;
2654 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2655 	}
2656 }
2657 
2658 /**
2659  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2660  *  @priv: driver private structure
2661  *  Description: It is used for configuring the TX Queue Priority
2662  */
2663 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2664 {
2665 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2666 	u32 queue;
2667 	u32 prio;
2668 
2669 	for (queue = 0; queue < tx_queues_count; queue++) {
2670 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2671 			continue;
2672 
2673 		prio = priv->plat->tx_queues_cfg[queue].prio;
2674 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2675 	}
2676 }
2677 
2678 /**
2679  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2680  *  @priv: driver private structure
2681  *  Description: It is used for configuring the RX queue routing
2682  */
2683 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2684 {
2685 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2686 	u32 queue;
2687 	u8 packet;
2688 
2689 	for (queue = 0; queue < rx_queues_count; queue++) {
2690 		/* no specific packet type routing specified for the queue */
2691 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2692 			continue;
2693 
2694 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2695 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2696 	}
2697 }
2698 
2699 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
2700 {
2701 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
2702 		priv->rss.enable = false;
2703 		return;
2704 	}
2705 
2706 	if (priv->dev->features & NETIF_F_RXHASH)
2707 		priv->rss.enable = true;
2708 	else
2709 		priv->rss.enable = false;
2710 
2711 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
2712 			     priv->plat->rx_queues_to_use);
2713 }
2714 
2715 /**
2716  *  stmmac_mtl_configuration - Configure MTL
2717  *  @priv: driver private structure
2718  *  Description: It is used for configurring MTL
2719  */
2720 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2721 {
2722 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2723 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2724 
2725 	if (tx_queues_count > 1)
2726 		stmmac_set_tx_queue_weight(priv);
2727 
2728 	/* Configure MTL RX algorithms */
2729 	if (rx_queues_count > 1)
2730 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2731 				priv->plat->rx_sched_algorithm);
2732 
2733 	/* Configure MTL TX algorithms */
2734 	if (tx_queues_count > 1)
2735 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2736 				priv->plat->tx_sched_algorithm);
2737 
2738 	/* Configure CBS in AVB TX queues */
2739 	if (tx_queues_count > 1)
2740 		stmmac_configure_cbs(priv);
2741 
2742 	/* Map RX MTL to DMA channels */
2743 	stmmac_rx_queue_dma_chan_map(priv);
2744 
2745 	/* Enable MAC RX Queues */
2746 	stmmac_mac_enable_rx_queues(priv);
2747 
2748 	/* Set RX priorities */
2749 	if (rx_queues_count > 1)
2750 		stmmac_mac_config_rx_queues_prio(priv);
2751 
2752 	/* Set TX priorities */
2753 	if (tx_queues_count > 1)
2754 		stmmac_mac_config_tx_queues_prio(priv);
2755 
2756 	/* Set RX routing */
2757 	if (rx_queues_count > 1)
2758 		stmmac_mac_config_rx_queues_routing(priv);
2759 
2760 	/* Receive Side Scaling */
2761 	if (rx_queues_count > 1)
2762 		stmmac_mac_config_rss(priv);
2763 }
2764 
2765 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2766 {
2767 	if (priv->dma_cap.asp) {
2768 		netdev_info(priv->dev, "Enabling Safety Features\n");
2769 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2770 	} else {
2771 		netdev_info(priv->dev, "No Safety Features support found\n");
2772 	}
2773 }
2774 
2775 /**
2776  * stmmac_hw_setup - setup mac in a usable state.
2777  *  @dev : pointer to the device structure.
2778  *  @init_ptp: initialize PTP if set
2779  *  Description:
2780  *  this is the main function to setup the HW in a usable state because the
2781  *  dma engine is reset, the core registers are configured (e.g. AXI,
2782  *  Checksum features, timers). The DMA is ready to start receiving and
2783  *  transmitting.
2784  *  Return value:
2785  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2786  *  file on failure.
2787  */
2788 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2789 {
2790 	struct stmmac_priv *priv = netdev_priv(dev);
2791 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2792 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2793 	u32 chan;
2794 	int ret;
2795 
2796 	/* DMA initialization and SW reset */
2797 	ret = stmmac_init_dma_engine(priv);
2798 	if (ret < 0) {
2799 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2800 			   __func__);
2801 		return ret;
2802 	}
2803 
2804 	/* Copy the MAC addr into the HW  */
2805 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2806 
2807 	/* PS and related bits will be programmed according to the speed */
2808 	if (priv->hw->pcs) {
2809 		int speed = priv->plat->mac_port_sel_speed;
2810 
2811 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2812 		    (speed == SPEED_1000)) {
2813 			priv->hw->ps = speed;
2814 		} else {
2815 			dev_warn(priv->device, "invalid port speed\n");
2816 			priv->hw->ps = 0;
2817 		}
2818 	}
2819 
2820 	/* Initialize the MAC Core */
2821 	stmmac_core_init(priv, priv->hw, dev);
2822 
2823 	/* Initialize MTL*/
2824 	stmmac_mtl_configuration(priv);
2825 
2826 	/* Initialize Safety Features */
2827 	stmmac_safety_feat_configuration(priv);
2828 
2829 	ret = stmmac_rx_ipc(priv, priv->hw);
2830 	if (!ret) {
2831 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2832 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2833 		priv->hw->rx_csum = 0;
2834 	}
2835 
2836 	/* Enable the MAC Rx/Tx */
2837 	stmmac_mac_set(priv, priv->ioaddr, true);
2838 
2839 	/* Set the HW DMA mode and the COE */
2840 	stmmac_dma_operation_mode(priv);
2841 
2842 	stmmac_mmc_setup(priv);
2843 
2844 	if (init_ptp) {
2845 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2846 		if (ret < 0)
2847 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2848 
2849 		ret = stmmac_init_ptp(priv);
2850 		if (ret == -EOPNOTSUPP)
2851 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2852 		else if (ret)
2853 			netdev_warn(priv->dev, "PTP init failed\n");
2854 	}
2855 
2856 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
2857 
2858 	/* Convert the timer from msec to usec */
2859 	if (!priv->tx_lpi_timer)
2860 		priv->tx_lpi_timer = eee_timer * 1000;
2861 
2862 	if (priv->use_riwt) {
2863 		if (!priv->rx_riwt)
2864 			priv->rx_riwt = DEF_DMA_RIWT;
2865 
2866 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, priv->rx_riwt, rx_cnt);
2867 	}
2868 
2869 	if (priv->hw->pcs)
2870 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
2871 
2872 	/* set TX and RX rings length */
2873 	stmmac_set_rings_length(priv);
2874 
2875 	/* Enable TSO */
2876 	if (priv->tso) {
2877 		for (chan = 0; chan < tx_cnt; chan++)
2878 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2879 	}
2880 
2881 	/* Enable Split Header */
2882 	if (priv->sph && priv->hw->rx_csum) {
2883 		for (chan = 0; chan < rx_cnt; chan++)
2884 			stmmac_enable_sph(priv, priv->ioaddr, 1, chan);
2885 	}
2886 
2887 	/* VLAN Tag Insertion */
2888 	if (priv->dma_cap.vlins)
2889 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
2890 
2891 	/* TBS */
2892 	for (chan = 0; chan < tx_cnt; chan++) {
2893 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2894 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
2895 
2896 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
2897 	}
2898 
2899 	/* Configure real RX and TX queues */
2900 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
2901 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
2902 
2903 	/* Start the ball rolling... */
2904 	stmmac_start_all_dma(priv);
2905 
2906 	return 0;
2907 }
2908 
2909 static void stmmac_hw_teardown(struct net_device *dev)
2910 {
2911 	struct stmmac_priv *priv = netdev_priv(dev);
2912 
2913 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2914 }
2915 
2916 /**
2917  *  stmmac_open - open entry point of the driver
2918  *  @dev : pointer to the device structure.
2919  *  Description:
2920  *  This function is the open entry point of the driver.
2921  *  Return value:
2922  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2923  *  file on failure.
2924  */
2925 static int stmmac_open(struct net_device *dev)
2926 {
2927 	struct stmmac_priv *priv = netdev_priv(dev);
2928 	int bfsize = 0;
2929 	u32 chan;
2930 	int ret;
2931 
2932 	ret = pm_runtime_get_sync(priv->device);
2933 	if (ret < 0) {
2934 		pm_runtime_put_noidle(priv->device);
2935 		return ret;
2936 	}
2937 
2938 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
2939 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
2940 	    priv->hw->xpcs_args.an_mode != DW_AN_C73) {
2941 		ret = stmmac_init_phy(dev);
2942 		if (ret) {
2943 			netdev_err(priv->dev,
2944 				   "%s: Cannot attach to PHY (error: %d)\n",
2945 				   __func__, ret);
2946 			goto init_phy_error;
2947 		}
2948 	}
2949 
2950 	/* Extra statistics */
2951 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2952 	priv->xstats.threshold = tc;
2953 
2954 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
2955 	if (bfsize < 0)
2956 		bfsize = 0;
2957 
2958 	if (bfsize < BUF_SIZE_16KiB)
2959 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
2960 
2961 	priv->dma_buf_sz = bfsize;
2962 	buf_sz = bfsize;
2963 
2964 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2965 
2966 	if (!priv->dma_tx_size)
2967 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
2968 	if (!priv->dma_rx_size)
2969 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
2970 
2971 	/* Earlier check for TBS */
2972 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
2973 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2974 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
2975 
2976 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
2977 		if (stmmac_enable_tbs(priv, priv->ioaddr, tbs_en, chan))
2978 			tx_q->tbs &= ~STMMAC_TBS_AVAIL;
2979 	}
2980 
2981 	ret = alloc_dma_desc_resources(priv);
2982 	if (ret < 0) {
2983 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2984 			   __func__);
2985 		goto dma_desc_error;
2986 	}
2987 
2988 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2989 	if (ret < 0) {
2990 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2991 			   __func__);
2992 		goto init_error;
2993 	}
2994 
2995 	ret = stmmac_hw_setup(dev, true);
2996 	if (ret < 0) {
2997 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2998 		goto init_error;
2999 	}
3000 
3001 	stmmac_init_coalesce(priv);
3002 
3003 	phylink_start(priv->phylink);
3004 	/* We may have called phylink_speed_down before */
3005 	phylink_speed_up(priv->phylink);
3006 
3007 	/* Request the IRQ lines */
3008 	ret = request_irq(dev->irq, stmmac_interrupt,
3009 			  IRQF_SHARED, dev->name, dev);
3010 	if (unlikely(ret < 0)) {
3011 		netdev_err(priv->dev,
3012 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3013 			   __func__, dev->irq, ret);
3014 		goto irq_error;
3015 	}
3016 
3017 	/* Request the Wake IRQ in case of another line is used for WoL */
3018 	if (priv->wol_irq != dev->irq) {
3019 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3020 				  IRQF_SHARED, dev->name, dev);
3021 		if (unlikely(ret < 0)) {
3022 			netdev_err(priv->dev,
3023 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3024 				   __func__, priv->wol_irq, ret);
3025 			goto wolirq_error;
3026 		}
3027 	}
3028 
3029 	/* Request the IRQ lines */
3030 	if (priv->lpi_irq > 0) {
3031 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
3032 				  dev->name, dev);
3033 		if (unlikely(ret < 0)) {
3034 			netdev_err(priv->dev,
3035 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3036 				   __func__, priv->lpi_irq, ret);
3037 			goto lpiirq_error;
3038 		}
3039 	}
3040 
3041 	stmmac_enable_all_queues(priv);
3042 	netif_tx_start_all_queues(priv->dev);
3043 
3044 	return 0;
3045 
3046 lpiirq_error:
3047 	if (priv->wol_irq != dev->irq)
3048 		free_irq(priv->wol_irq, dev);
3049 wolirq_error:
3050 	free_irq(dev->irq, dev);
3051 irq_error:
3052 	phylink_stop(priv->phylink);
3053 
3054 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3055 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3056 
3057 	stmmac_hw_teardown(dev);
3058 init_error:
3059 	free_dma_desc_resources(priv);
3060 dma_desc_error:
3061 	phylink_disconnect_phy(priv->phylink);
3062 init_phy_error:
3063 	pm_runtime_put(priv->device);
3064 	return ret;
3065 }
3066 
3067 /**
3068  *  stmmac_release - close entry point of the driver
3069  *  @dev : device pointer.
3070  *  Description:
3071  *  This is the stop entry point of the driver.
3072  */
3073 static int stmmac_release(struct net_device *dev)
3074 {
3075 	struct stmmac_priv *priv = netdev_priv(dev);
3076 	u32 chan;
3077 
3078 	if (device_may_wakeup(priv->device))
3079 		phylink_speed_down(priv->phylink, false);
3080 	/* Stop and disconnect the PHY */
3081 	phylink_stop(priv->phylink);
3082 	phylink_disconnect_phy(priv->phylink);
3083 
3084 	stmmac_disable_all_queues(priv);
3085 
3086 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3087 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3088 
3089 	/* Free the IRQ lines */
3090 	free_irq(dev->irq, dev);
3091 	if (priv->wol_irq != dev->irq)
3092 		free_irq(priv->wol_irq, dev);
3093 	if (priv->lpi_irq > 0)
3094 		free_irq(priv->lpi_irq, dev);
3095 
3096 	if (priv->eee_enabled) {
3097 		priv->tx_path_in_lpi_mode = false;
3098 		del_timer_sync(&priv->eee_ctrl_timer);
3099 	}
3100 
3101 	/* Stop TX/RX DMA and clear the descriptors */
3102 	stmmac_stop_all_dma(priv);
3103 
3104 	/* Release and free the Rx/Tx resources */
3105 	free_dma_desc_resources(priv);
3106 
3107 	/* Disable the MAC Rx/Tx */
3108 	stmmac_mac_set(priv, priv->ioaddr, false);
3109 
3110 	netif_carrier_off(dev);
3111 
3112 	stmmac_release_ptp(priv);
3113 
3114 	pm_runtime_put(priv->device);
3115 
3116 	return 0;
3117 }
3118 
3119 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3120 			       struct stmmac_tx_queue *tx_q)
3121 {
3122 	u16 tag = 0x0, inner_tag = 0x0;
3123 	u32 inner_type = 0x0;
3124 	struct dma_desc *p;
3125 
3126 	if (!priv->dma_cap.vlins)
3127 		return false;
3128 	if (!skb_vlan_tag_present(skb))
3129 		return false;
3130 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3131 		inner_tag = skb_vlan_tag_get(skb);
3132 		inner_type = STMMAC_VLAN_INSERT;
3133 	}
3134 
3135 	tag = skb_vlan_tag_get(skb);
3136 
3137 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3138 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3139 	else
3140 		p = &tx_q->dma_tx[tx_q->cur_tx];
3141 
3142 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3143 		return false;
3144 
3145 	stmmac_set_tx_owner(priv, p);
3146 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3147 	return true;
3148 }
3149 
3150 /**
3151  *  stmmac_tso_allocator - close entry point of the driver
3152  *  @priv: driver private structure
3153  *  @des: buffer start address
3154  *  @total_len: total length to fill in descriptors
3155  *  @last_segment: condition for the last descriptor
3156  *  @queue: TX queue index
3157  *  Description:
3158  *  This function fills descriptor and request new descriptors according to
3159  *  buffer length to fill
3160  */
3161 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3162 				 int total_len, bool last_segment, u32 queue)
3163 {
3164 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3165 	struct dma_desc *desc;
3166 	u32 buff_size;
3167 	int tmp_len;
3168 
3169 	tmp_len = total_len;
3170 
3171 	while (tmp_len > 0) {
3172 		dma_addr_t curr_addr;
3173 
3174 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3175 						priv->dma_tx_size);
3176 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3177 
3178 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3179 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3180 		else
3181 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3182 
3183 		curr_addr = des + (total_len - tmp_len);
3184 		if (priv->dma_cap.addr64 <= 32)
3185 			desc->des0 = cpu_to_le32(curr_addr);
3186 		else
3187 			stmmac_set_desc_addr(priv, desc, curr_addr);
3188 
3189 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3190 			    TSO_MAX_BUFF_SIZE : tmp_len;
3191 
3192 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3193 				0, 1,
3194 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3195 				0, 0);
3196 
3197 		tmp_len -= TSO_MAX_BUFF_SIZE;
3198 	}
3199 }
3200 
3201 /**
3202  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3203  *  @skb : the socket buffer
3204  *  @dev : device pointer
3205  *  Description: this is the transmit function that is called on TSO frames
3206  *  (support available on GMAC4 and newer chips).
3207  *  Diagram below show the ring programming in case of TSO frames:
3208  *
3209  *  First Descriptor
3210  *   --------
3211  *   | DES0 |---> buffer1 = L2/L3/L4 header
3212  *   | DES1 |---> TCP Payload (can continue on next descr...)
3213  *   | DES2 |---> buffer 1 and 2 len
3214  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3215  *   --------
3216  *	|
3217  *     ...
3218  *	|
3219  *   --------
3220  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3221  *   | DES1 | --|
3222  *   | DES2 | --> buffer 1 and 2 len
3223  *   | DES3 |
3224  *   --------
3225  *
3226  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3227  */
3228 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3229 {
3230 	struct dma_desc *desc, *first, *mss_desc = NULL;
3231 	struct stmmac_priv *priv = netdev_priv(dev);
3232 	int desc_size, tmp_pay_len = 0, first_tx;
3233 	int nfrags = skb_shinfo(skb)->nr_frags;
3234 	u32 queue = skb_get_queue_mapping(skb);
3235 	unsigned int first_entry, tx_packets;
3236 	struct stmmac_tx_queue *tx_q;
3237 	bool has_vlan, set_ic;
3238 	u8 proto_hdr_len, hdr;
3239 	u32 pay_len, mss;
3240 	dma_addr_t des;
3241 	int i;
3242 
3243 	tx_q = &priv->tx_queue[queue];
3244 	first_tx = tx_q->cur_tx;
3245 
3246 	/* Compute header lengths */
3247 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3248 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3249 		hdr = sizeof(struct udphdr);
3250 	} else {
3251 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3252 		hdr = tcp_hdrlen(skb);
3253 	}
3254 
3255 	/* Desc availability based on threshold should be enough safe */
3256 	if (unlikely(stmmac_tx_avail(priv, queue) <
3257 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3258 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3259 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3260 								queue));
3261 			/* This is a hard error, log it. */
3262 			netdev_err(priv->dev,
3263 				   "%s: Tx Ring full when queue awake\n",
3264 				   __func__);
3265 		}
3266 		return NETDEV_TX_BUSY;
3267 	}
3268 
3269 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3270 
3271 	mss = skb_shinfo(skb)->gso_size;
3272 
3273 	/* set new MSS value if needed */
3274 	if (mss != tx_q->mss) {
3275 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3276 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3277 		else
3278 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3279 
3280 		stmmac_set_mss(priv, mss_desc, mss);
3281 		tx_q->mss = mss;
3282 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3283 						priv->dma_tx_size);
3284 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3285 	}
3286 
3287 	if (netif_msg_tx_queued(priv)) {
3288 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3289 			__func__, hdr, proto_hdr_len, pay_len, mss);
3290 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3291 			skb->data_len);
3292 	}
3293 
3294 	/* Check if VLAN can be inserted by HW */
3295 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3296 
3297 	first_entry = tx_q->cur_tx;
3298 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3299 
3300 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3301 		desc = &tx_q->dma_entx[first_entry].basic;
3302 	else
3303 		desc = &tx_q->dma_tx[first_entry];
3304 	first = desc;
3305 
3306 	if (has_vlan)
3307 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3308 
3309 	/* first descriptor: fill Headers on Buf1 */
3310 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
3311 			     DMA_TO_DEVICE);
3312 	if (dma_mapping_error(priv->device, des))
3313 		goto dma_map_err;
3314 
3315 	tx_q->tx_skbuff_dma[first_entry].buf = des;
3316 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
3317 
3318 	if (priv->dma_cap.addr64 <= 32) {
3319 		first->des0 = cpu_to_le32(des);
3320 
3321 		/* Fill start of payload in buff2 of first descriptor */
3322 		if (pay_len)
3323 			first->des1 = cpu_to_le32(des + proto_hdr_len);
3324 
3325 		/* If needed take extra descriptors to fill the remaining payload */
3326 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
3327 	} else {
3328 		stmmac_set_desc_addr(priv, first, des);
3329 		tmp_pay_len = pay_len;
3330 		des += proto_hdr_len;
3331 		pay_len = 0;
3332 	}
3333 
3334 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
3335 
3336 	/* Prepare fragments */
3337 	for (i = 0; i < nfrags; i++) {
3338 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3339 
3340 		des = skb_frag_dma_map(priv->device, frag, 0,
3341 				       skb_frag_size(frag),
3342 				       DMA_TO_DEVICE);
3343 		if (dma_mapping_error(priv->device, des))
3344 			goto dma_map_err;
3345 
3346 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
3347 				     (i == nfrags - 1), queue);
3348 
3349 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
3350 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
3351 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
3352 	}
3353 
3354 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
3355 
3356 	/* Only the last descriptor gets to point to the skb. */
3357 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
3358 
3359 	/* Manage tx mitigation */
3360 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
3361 	tx_q->tx_count_frames += tx_packets;
3362 
3363 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3364 		set_ic = true;
3365 	else if (!priv->tx_coal_frames)
3366 		set_ic = false;
3367 	else if (tx_packets > priv->tx_coal_frames)
3368 		set_ic = true;
3369 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3370 		set_ic = true;
3371 	else
3372 		set_ic = false;
3373 
3374 	if (set_ic) {
3375 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3376 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3377 		else
3378 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3379 
3380 		tx_q->tx_count_frames = 0;
3381 		stmmac_set_tx_ic(priv, desc);
3382 		priv->xstats.tx_set_ic_bit++;
3383 	}
3384 
3385 	/* We've used all descriptors we need for this skb, however,
3386 	 * advance cur_tx so that it references a fresh descriptor.
3387 	 * ndo_start_xmit will fill this descriptor the next time it's
3388 	 * called and stmmac_tx_clean may clean up to this descriptor.
3389 	 */
3390 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3391 
3392 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3393 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3394 			  __func__);
3395 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3396 	}
3397 
3398 	dev->stats.tx_bytes += skb->len;
3399 	priv->xstats.tx_tso_frames++;
3400 	priv->xstats.tx_tso_nfrags += nfrags;
3401 
3402 	if (priv->sarc_type)
3403 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3404 
3405 	skb_tx_timestamp(skb);
3406 
3407 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3408 		     priv->hwts_tx_en)) {
3409 		/* declare that device is doing timestamping */
3410 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3411 		stmmac_enable_tx_timestamp(priv, first);
3412 	}
3413 
3414 	/* Complete the first descriptor before granting the DMA */
3415 	stmmac_prepare_tso_tx_desc(priv, first, 1,
3416 			proto_hdr_len,
3417 			pay_len,
3418 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
3419 			hdr / 4, (skb->len - proto_hdr_len));
3420 
3421 	/* If context desc is used to change MSS */
3422 	if (mss_desc) {
3423 		/* Make sure that first descriptor has been completely
3424 		 * written, including its own bit. This is because MSS is
3425 		 * actually before first descriptor, so we need to make
3426 		 * sure that MSS's own bit is the last thing written.
3427 		 */
3428 		dma_wmb();
3429 		stmmac_set_tx_owner(priv, mss_desc);
3430 	}
3431 
3432 	/* The own bit must be the latest setting done when prepare the
3433 	 * descriptor and then barrier is needed to make sure that
3434 	 * all is coherent before granting the DMA engine.
3435 	 */
3436 	wmb();
3437 
3438 	if (netif_msg_pktdata(priv)) {
3439 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
3440 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3441 			tx_q->cur_tx, first, nfrags);
3442 		pr_info(">>> frame to be transmitted: ");
3443 		print_pkt(skb->data, skb_headlen(skb));
3444 	}
3445 
3446 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3447 
3448 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3449 		desc_size = sizeof(struct dma_edesc);
3450 	else
3451 		desc_size = sizeof(struct dma_desc);
3452 
3453 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3454 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3455 	stmmac_tx_timer_arm(priv, queue);
3456 
3457 	return NETDEV_TX_OK;
3458 
3459 dma_map_err:
3460 	dev_err(priv->device, "Tx dma map failed\n");
3461 	dev_kfree_skb(skb);
3462 	priv->dev->stats.tx_dropped++;
3463 	return NETDEV_TX_OK;
3464 }
3465 
3466 /**
3467  *  stmmac_xmit - Tx entry point of the driver
3468  *  @skb : the socket buffer
3469  *  @dev : device pointer
3470  *  Description : this is the tx entry point of the driver.
3471  *  It programs the chain or the ring and supports oversized frames
3472  *  and SG feature.
3473  */
3474 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3475 {
3476 	unsigned int first_entry, tx_packets, enh_desc;
3477 	struct stmmac_priv *priv = netdev_priv(dev);
3478 	unsigned int nopaged_len = skb_headlen(skb);
3479 	int i, csum_insertion = 0, is_jumbo = 0;
3480 	u32 queue = skb_get_queue_mapping(skb);
3481 	int nfrags = skb_shinfo(skb)->nr_frags;
3482 	int gso = skb_shinfo(skb)->gso_type;
3483 	struct dma_edesc *tbs_desc = NULL;
3484 	int entry, desc_size, first_tx;
3485 	struct dma_desc *desc, *first;
3486 	struct stmmac_tx_queue *tx_q;
3487 	bool has_vlan, set_ic;
3488 	dma_addr_t des;
3489 
3490 	tx_q = &priv->tx_queue[queue];
3491 	first_tx = tx_q->cur_tx;
3492 
3493 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
3494 		stmmac_disable_eee_mode(priv);
3495 
3496 	/* Manage oversized TCP frames for GMAC4 device */
3497 	if (skb_is_gso(skb) && priv->tso) {
3498 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3499 			return stmmac_tso_xmit(skb, dev);
3500 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
3501 			return stmmac_tso_xmit(skb, dev);
3502 	}
3503 
3504 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3505 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3506 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3507 								queue));
3508 			/* This is a hard error, log it. */
3509 			netdev_err(priv->dev,
3510 				   "%s: Tx Ring full when queue awake\n",
3511 				   __func__);
3512 		}
3513 		return NETDEV_TX_BUSY;
3514 	}
3515 
3516 	/* Check if VLAN can be inserted by HW */
3517 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
3518 
3519 	entry = tx_q->cur_tx;
3520 	first_entry = entry;
3521 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3522 
3523 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3524 
3525 	if (likely(priv->extend_desc))
3526 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3527 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3528 		desc = &tx_q->dma_entx[entry].basic;
3529 	else
3530 		desc = tx_q->dma_tx + entry;
3531 
3532 	first = desc;
3533 
3534 	if (has_vlan)
3535 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
3536 
3537 	enh_desc = priv->plat->enh_desc;
3538 	/* To program the descriptors according to the size of the frame */
3539 	if (enh_desc)
3540 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3541 
3542 	if (unlikely(is_jumbo)) {
3543 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3544 		if (unlikely(entry < 0) && (entry != -EINVAL))
3545 			goto dma_map_err;
3546 	}
3547 
3548 	for (i = 0; i < nfrags; i++) {
3549 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3550 		int len = skb_frag_size(frag);
3551 		bool last_segment = (i == (nfrags - 1));
3552 
3553 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3554 		WARN_ON(tx_q->tx_skbuff[entry]);
3555 
3556 		if (likely(priv->extend_desc))
3557 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3558 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3559 			desc = &tx_q->dma_entx[entry].basic;
3560 		else
3561 			desc = tx_q->dma_tx + entry;
3562 
3563 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3564 				       DMA_TO_DEVICE);
3565 		if (dma_mapping_error(priv->device, des))
3566 			goto dma_map_err; /* should reuse desc w/o issues */
3567 
3568 		tx_q->tx_skbuff_dma[entry].buf = des;
3569 
3570 		stmmac_set_desc_addr(priv, desc, des);
3571 
3572 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3573 		tx_q->tx_skbuff_dma[entry].len = len;
3574 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3575 
3576 		/* Prepare the descriptor and set the own bit too */
3577 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3578 				priv->mode, 1, last_segment, skb->len);
3579 	}
3580 
3581 	/* Only the last descriptor gets to point to the skb. */
3582 	tx_q->tx_skbuff[entry] = skb;
3583 
3584 	/* According to the coalesce parameter the IC bit for the latest
3585 	 * segment is reset and the timer re-started to clean the tx status.
3586 	 * This approach takes care about the fragments: desc is the first
3587 	 * element in case of no SG.
3588 	 */
3589 	tx_packets = (entry + 1) - first_tx;
3590 	tx_q->tx_count_frames += tx_packets;
3591 
3592 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
3593 		set_ic = true;
3594 	else if (!priv->tx_coal_frames)
3595 		set_ic = false;
3596 	else if (tx_packets > priv->tx_coal_frames)
3597 		set_ic = true;
3598 	else if ((tx_q->tx_count_frames % priv->tx_coal_frames) < tx_packets)
3599 		set_ic = true;
3600 	else
3601 		set_ic = false;
3602 
3603 	if (set_ic) {
3604 		if (likely(priv->extend_desc))
3605 			desc = &tx_q->dma_etx[entry].basic;
3606 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3607 			desc = &tx_q->dma_entx[entry].basic;
3608 		else
3609 			desc = &tx_q->dma_tx[entry];
3610 
3611 		tx_q->tx_count_frames = 0;
3612 		stmmac_set_tx_ic(priv, desc);
3613 		priv->xstats.tx_set_ic_bit++;
3614 	}
3615 
3616 	/* We've used all descriptors we need for this skb, however,
3617 	 * advance cur_tx so that it references a fresh descriptor.
3618 	 * ndo_start_xmit will fill this descriptor the next time it's
3619 	 * called and stmmac_tx_clean may clean up to this descriptor.
3620 	 */
3621 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
3622 	tx_q->cur_tx = entry;
3623 
3624 	if (netif_msg_pktdata(priv)) {
3625 		netdev_dbg(priv->dev,
3626 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3627 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3628 			   entry, first, nfrags);
3629 
3630 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3631 		print_pkt(skb->data, skb->len);
3632 	}
3633 
3634 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3635 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3636 			  __func__);
3637 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3638 	}
3639 
3640 	dev->stats.tx_bytes += skb->len;
3641 
3642 	if (priv->sarc_type)
3643 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
3644 
3645 	skb_tx_timestamp(skb);
3646 
3647 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3648 	 * problems because all the descriptors are actually ready to be
3649 	 * passed to the DMA engine.
3650 	 */
3651 	if (likely(!is_jumbo)) {
3652 		bool last_segment = (nfrags == 0);
3653 
3654 		des = dma_map_single(priv->device, skb->data,
3655 				     nopaged_len, DMA_TO_DEVICE);
3656 		if (dma_mapping_error(priv->device, des))
3657 			goto dma_map_err;
3658 
3659 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3660 
3661 		stmmac_set_desc_addr(priv, first, des);
3662 
3663 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3664 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3665 
3666 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3667 			     priv->hwts_tx_en)) {
3668 			/* declare that device is doing timestamping */
3669 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3670 			stmmac_enable_tx_timestamp(priv, first);
3671 		}
3672 
3673 		/* Prepare the first descriptor setting the OWN bit too */
3674 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3675 				csum_insertion, priv->mode, 0, last_segment,
3676 				skb->len);
3677 	}
3678 
3679 	if (tx_q->tbs & STMMAC_TBS_EN) {
3680 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
3681 
3682 		tbs_desc = &tx_q->dma_entx[first_entry];
3683 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
3684 	}
3685 
3686 	stmmac_set_tx_owner(priv, first);
3687 
3688 	/* The own bit must be the latest setting done when prepare the
3689 	 * descriptor and then barrier is needed to make sure that
3690 	 * all is coherent before granting the DMA engine.
3691 	 */
3692 	wmb();
3693 
3694 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3695 
3696 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3697 
3698 	if (likely(priv->extend_desc))
3699 		desc_size = sizeof(struct dma_extended_desc);
3700 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3701 		desc_size = sizeof(struct dma_edesc);
3702 	else
3703 		desc_size = sizeof(struct dma_desc);
3704 
3705 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3706 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3707 	stmmac_tx_timer_arm(priv, queue);
3708 
3709 	return NETDEV_TX_OK;
3710 
3711 dma_map_err:
3712 	netdev_err(priv->dev, "Tx DMA map failed\n");
3713 	dev_kfree_skb(skb);
3714 	priv->dev->stats.tx_dropped++;
3715 	return NETDEV_TX_OK;
3716 }
3717 
3718 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3719 {
3720 	struct vlan_ethhdr *veth;
3721 	__be16 vlan_proto;
3722 	u16 vlanid;
3723 
3724 	veth = (struct vlan_ethhdr *)skb->data;
3725 	vlan_proto = veth->h_vlan_proto;
3726 
3727 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3728 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3729 	    (vlan_proto == htons(ETH_P_8021AD) &&
3730 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3731 		/* pop the vlan tag */
3732 		vlanid = ntohs(veth->h_vlan_TCI);
3733 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3734 		skb_pull(skb, VLAN_HLEN);
3735 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3736 	}
3737 }
3738 
3739 /**
3740  * stmmac_rx_refill - refill used skb preallocated buffers
3741  * @priv: driver private structure
3742  * @queue: RX queue index
3743  * Description : this is to reallocate the skb for the reception process
3744  * that is based on zero-copy.
3745  */
3746 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3747 {
3748 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3749 	int len, dirty = stmmac_rx_dirty(priv, queue);
3750 	unsigned int entry = rx_q->dirty_rx;
3751 
3752 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3753 
3754 	while (dirty-- > 0) {
3755 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3756 		struct dma_desc *p;
3757 		bool use_rx_wd;
3758 
3759 		if (priv->extend_desc)
3760 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3761 		else
3762 			p = rx_q->dma_rx + entry;
3763 
3764 		if (!buf->page) {
3765 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3766 			if (!buf->page)
3767 				break;
3768 		}
3769 
3770 		if (priv->sph && !buf->sec_page) {
3771 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
3772 			if (!buf->sec_page)
3773 				break;
3774 
3775 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
3776 
3777 			dma_sync_single_for_device(priv->device, buf->sec_addr,
3778 						   len, DMA_FROM_DEVICE);
3779 		}
3780 
3781 		buf->addr = page_pool_get_dma_addr(buf->page);
3782 
3783 		/* Sync whole allocation to device. This will invalidate old
3784 		 * data.
3785 		 */
3786 		dma_sync_single_for_device(priv->device, buf->addr, len,
3787 					   DMA_FROM_DEVICE);
3788 
3789 		stmmac_set_desc_addr(priv, p, buf->addr);
3790 		if (priv->sph)
3791 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
3792 		else
3793 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
3794 		stmmac_refill_desc3(priv, rx_q, p);
3795 
3796 		rx_q->rx_count_frames++;
3797 		rx_q->rx_count_frames += priv->rx_coal_frames;
3798 		if (rx_q->rx_count_frames > priv->rx_coal_frames)
3799 			rx_q->rx_count_frames = 0;
3800 
3801 		use_rx_wd = !priv->rx_coal_frames;
3802 		use_rx_wd |= rx_q->rx_count_frames > 0;
3803 		if (!priv->use_riwt)
3804 			use_rx_wd = false;
3805 
3806 		dma_wmb();
3807 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3808 
3809 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
3810 	}
3811 	rx_q->dirty_rx = entry;
3812 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3813 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3814 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3815 }
3816 
3817 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
3818 				       struct dma_desc *p,
3819 				       int status, unsigned int len)
3820 {
3821 	unsigned int plen = 0, hlen = 0;
3822 	int coe = priv->hw->rx_csum;
3823 
3824 	/* Not first descriptor, buffer is always zero */
3825 	if (priv->sph && len)
3826 		return 0;
3827 
3828 	/* First descriptor, get split header length */
3829 	stmmac_get_rx_header_len(priv, p, &hlen);
3830 	if (priv->sph && hlen) {
3831 		priv->xstats.rx_split_hdr_pkt_n++;
3832 		return hlen;
3833 	}
3834 
3835 	/* First descriptor, not last descriptor and not split header */
3836 	if (status & rx_not_ls)
3837 		return priv->dma_buf_sz;
3838 
3839 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3840 
3841 	/* First descriptor and last descriptor and not split header */
3842 	return min_t(unsigned int, priv->dma_buf_sz, plen);
3843 }
3844 
3845 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
3846 				       struct dma_desc *p,
3847 				       int status, unsigned int len)
3848 {
3849 	int coe = priv->hw->rx_csum;
3850 	unsigned int plen = 0;
3851 
3852 	/* Not split header, buffer is not available */
3853 	if (!priv->sph)
3854 		return 0;
3855 
3856 	/* Not last descriptor */
3857 	if (status & rx_not_ls)
3858 		return priv->dma_buf_sz;
3859 
3860 	plen = stmmac_get_rx_frame_len(priv, p, coe);
3861 
3862 	/* Last descriptor */
3863 	return plen - len;
3864 }
3865 
3866 /**
3867  * stmmac_rx - manage the receive process
3868  * @priv: driver private structure
3869  * @limit: napi bugget
3870  * @queue: RX queue index.
3871  * Description :  this the function called by the napi poll method.
3872  * It gets all the frames inside the ring.
3873  */
3874 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3875 {
3876 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3877 	struct stmmac_channel *ch = &priv->channel[queue];
3878 	unsigned int count = 0, error = 0, len = 0;
3879 	int status = 0, coe = priv->hw->rx_csum;
3880 	unsigned int next_entry = rx_q->cur_rx;
3881 	unsigned int desc_size;
3882 	struct sk_buff *skb = NULL;
3883 
3884 	if (netif_msg_rx_status(priv)) {
3885 		void *rx_head;
3886 
3887 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3888 		if (priv->extend_desc) {
3889 			rx_head = (void *)rx_q->dma_erx;
3890 			desc_size = sizeof(struct dma_extended_desc);
3891 		} else {
3892 			rx_head = (void *)rx_q->dma_rx;
3893 			desc_size = sizeof(struct dma_desc);
3894 		}
3895 
3896 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
3897 				    rx_q->dma_rx_phy, desc_size);
3898 	}
3899 	while (count < limit) {
3900 		unsigned int buf1_len = 0, buf2_len = 0;
3901 		enum pkt_hash_types hash_type;
3902 		struct stmmac_rx_buffer *buf;
3903 		struct dma_desc *np, *p;
3904 		int entry;
3905 		u32 hash;
3906 
3907 		if (!count && rx_q->state_saved) {
3908 			skb = rx_q->state.skb;
3909 			error = rx_q->state.error;
3910 			len = rx_q->state.len;
3911 		} else {
3912 			rx_q->state_saved = false;
3913 			skb = NULL;
3914 			error = 0;
3915 			len = 0;
3916 		}
3917 
3918 		if (count >= limit)
3919 			break;
3920 
3921 read_again:
3922 		buf1_len = 0;
3923 		buf2_len = 0;
3924 		entry = next_entry;
3925 		buf = &rx_q->buf_pool[entry];
3926 
3927 		if (priv->extend_desc)
3928 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3929 		else
3930 			p = rx_q->dma_rx + entry;
3931 
3932 		/* read the status of the incoming frame */
3933 		status = stmmac_rx_status(priv, &priv->dev->stats,
3934 				&priv->xstats, p);
3935 		/* check if managed by the DMA otherwise go ahead */
3936 		if (unlikely(status & dma_own))
3937 			break;
3938 
3939 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
3940 						priv->dma_rx_size);
3941 		next_entry = rx_q->cur_rx;
3942 
3943 		if (priv->extend_desc)
3944 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3945 		else
3946 			np = rx_q->dma_rx + next_entry;
3947 
3948 		prefetch(np);
3949 
3950 		if (priv->extend_desc)
3951 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3952 					&priv->xstats, rx_q->dma_erx + entry);
3953 		if (unlikely(status == discard_frame)) {
3954 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3955 			buf->page = NULL;
3956 			error = 1;
3957 			if (!priv->hwts_rx_en)
3958 				priv->dev->stats.rx_errors++;
3959 		}
3960 
3961 		if (unlikely(error && (status & rx_not_ls)))
3962 			goto read_again;
3963 		if (unlikely(error)) {
3964 			dev_kfree_skb(skb);
3965 			skb = NULL;
3966 			count++;
3967 			continue;
3968 		}
3969 
3970 		/* Buffer is good. Go on. */
3971 
3972 		prefetch(page_address(buf->page));
3973 		if (buf->sec_page)
3974 			prefetch(page_address(buf->sec_page));
3975 
3976 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
3977 		len += buf1_len;
3978 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
3979 		len += buf2_len;
3980 
3981 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3982 		 * Type frames (LLC/LLC-SNAP)
3983 		 *
3984 		 * llc_snap is never checked in GMAC >= 4, so this ACS
3985 		 * feature is always disabled and packets need to be
3986 		 * stripped manually.
3987 		 */
3988 		if (likely(!(status & rx_not_ls)) &&
3989 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3990 		     unlikely(status != llc_snap))) {
3991 			if (buf2_len)
3992 				buf2_len -= ETH_FCS_LEN;
3993 			else
3994 				buf1_len -= ETH_FCS_LEN;
3995 
3996 			len -= ETH_FCS_LEN;
3997 		}
3998 
3999 		if (!skb) {
4000 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
4001 			if (!skb) {
4002 				priv->dev->stats.rx_dropped++;
4003 				count++;
4004 				goto drain_data;
4005 			}
4006 
4007 			dma_sync_single_for_cpu(priv->device, buf->addr,
4008 						buf1_len, DMA_FROM_DEVICE);
4009 			skb_copy_to_linear_data(skb, page_address(buf->page),
4010 						buf1_len);
4011 			skb_put(skb, buf1_len);
4012 
4013 			/* Data payload copied into SKB, page ready for recycle */
4014 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
4015 			buf->page = NULL;
4016 		} else if (buf1_len) {
4017 			dma_sync_single_for_cpu(priv->device, buf->addr,
4018 						buf1_len, DMA_FROM_DEVICE);
4019 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
4020 					buf->page, 0, buf1_len,
4021 					priv->dma_buf_sz);
4022 
4023 			/* Data payload appended into SKB */
4024 			page_pool_release_page(rx_q->page_pool, buf->page);
4025 			buf->page = NULL;
4026 		}
4027 
4028 		if (buf2_len) {
4029 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
4030 						buf2_len, DMA_FROM_DEVICE);
4031 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
4032 					buf->sec_page, 0, buf2_len,
4033 					priv->dma_buf_sz);
4034 
4035 			/* Data payload appended into SKB */
4036 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
4037 			buf->sec_page = NULL;
4038 		}
4039 
4040 drain_data:
4041 		if (likely(status & rx_not_ls))
4042 			goto read_again;
4043 		if (!skb)
4044 			continue;
4045 
4046 		/* Got entire packet into SKB. Finish it. */
4047 
4048 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
4049 		stmmac_rx_vlan(priv->dev, skb);
4050 		skb->protocol = eth_type_trans(skb, priv->dev);
4051 
4052 		if (unlikely(!coe))
4053 			skb_checksum_none_assert(skb);
4054 		else
4055 			skb->ip_summed = CHECKSUM_UNNECESSARY;
4056 
4057 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4058 			skb_set_hash(skb, hash, hash_type);
4059 
4060 		skb_record_rx_queue(skb, queue);
4061 		napi_gro_receive(&ch->rx_napi, skb);
4062 		skb = NULL;
4063 
4064 		priv->dev->stats.rx_packets++;
4065 		priv->dev->stats.rx_bytes += len;
4066 		count++;
4067 	}
4068 
4069 	if (status & rx_not_ls || skb) {
4070 		rx_q->state_saved = true;
4071 		rx_q->state.skb = skb;
4072 		rx_q->state.error = error;
4073 		rx_q->state.len = len;
4074 	}
4075 
4076 	stmmac_rx_refill(priv, queue);
4077 
4078 	priv->xstats.rx_pkt_n += count;
4079 
4080 	return count;
4081 }
4082 
4083 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
4084 {
4085 	struct stmmac_channel *ch =
4086 		container_of(napi, struct stmmac_channel, rx_napi);
4087 	struct stmmac_priv *priv = ch->priv_data;
4088 	u32 chan = ch->index;
4089 	int work_done;
4090 
4091 	priv->xstats.napi_poll++;
4092 
4093 	work_done = stmmac_rx(priv, budget, chan);
4094 	if (work_done < budget && napi_complete_done(napi, work_done)) {
4095 		unsigned long flags;
4096 
4097 		spin_lock_irqsave(&ch->lock, flags);
4098 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
4099 		spin_unlock_irqrestore(&ch->lock, flags);
4100 	}
4101 
4102 	return work_done;
4103 }
4104 
4105 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
4106 {
4107 	struct stmmac_channel *ch =
4108 		container_of(napi, struct stmmac_channel, tx_napi);
4109 	struct stmmac_priv *priv = ch->priv_data;
4110 	u32 chan = ch->index;
4111 	int work_done;
4112 
4113 	priv->xstats.napi_poll++;
4114 
4115 	work_done = stmmac_tx_clean(priv, priv->dma_tx_size, chan);
4116 	work_done = min(work_done, budget);
4117 
4118 	if (work_done < budget && napi_complete_done(napi, work_done)) {
4119 		unsigned long flags;
4120 
4121 		spin_lock_irqsave(&ch->lock, flags);
4122 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
4123 		spin_unlock_irqrestore(&ch->lock, flags);
4124 	}
4125 
4126 	return work_done;
4127 }
4128 
4129 /**
4130  *  stmmac_tx_timeout
4131  *  @dev : Pointer to net device structure
4132  *  @txqueue: the index of the hanging transmit queue
4133  *  Description: this function is called when a packet transmission fails to
4134  *   complete within a reasonable time. The driver will mark the error in the
4135  *   netdev structure and arrange for the device to be reset to a sane state
4136  *   in order to transmit a new packet.
4137  */
4138 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
4139 {
4140 	struct stmmac_priv *priv = netdev_priv(dev);
4141 
4142 	stmmac_global_err(priv);
4143 }
4144 
4145 /**
4146  *  stmmac_set_rx_mode - entry point for multicast addressing
4147  *  @dev : pointer to the device structure
4148  *  Description:
4149  *  This function is a driver entry point which gets called by the kernel
4150  *  whenever multicast addresses must be enabled/disabled.
4151  *  Return value:
4152  *  void.
4153  */
4154 static void stmmac_set_rx_mode(struct net_device *dev)
4155 {
4156 	struct stmmac_priv *priv = netdev_priv(dev);
4157 
4158 	stmmac_set_filter(priv, priv->hw, dev);
4159 }
4160 
4161 /**
4162  *  stmmac_change_mtu - entry point to change MTU size for the device.
4163  *  @dev : device pointer.
4164  *  @new_mtu : the new MTU size for the device.
4165  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
4166  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
4167  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
4168  *  Return value:
4169  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4170  *  file on failure.
4171  */
4172 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
4173 {
4174 	struct stmmac_priv *priv = netdev_priv(dev);
4175 	int txfifosz = priv->plat->tx_fifo_size;
4176 	const int mtu = new_mtu;
4177 
4178 	if (txfifosz == 0)
4179 		txfifosz = priv->dma_cap.tx_fifo_size;
4180 
4181 	txfifosz /= priv->plat->tx_queues_to_use;
4182 
4183 	if (netif_running(dev)) {
4184 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
4185 		return -EBUSY;
4186 	}
4187 
4188 	new_mtu = STMMAC_ALIGN(new_mtu);
4189 
4190 	/* If condition true, FIFO is too small or MTU too large */
4191 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
4192 		return -EINVAL;
4193 
4194 	dev->mtu = mtu;
4195 
4196 	netdev_update_features(dev);
4197 
4198 	return 0;
4199 }
4200 
4201 static netdev_features_t stmmac_fix_features(struct net_device *dev,
4202 					     netdev_features_t features)
4203 {
4204 	struct stmmac_priv *priv = netdev_priv(dev);
4205 
4206 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
4207 		features &= ~NETIF_F_RXCSUM;
4208 
4209 	if (!priv->plat->tx_coe)
4210 		features &= ~NETIF_F_CSUM_MASK;
4211 
4212 	/* Some GMAC devices have a bugged Jumbo frame support that
4213 	 * needs to have the Tx COE disabled for oversized frames
4214 	 * (due to limited buffer sizes). In this case we disable
4215 	 * the TX csum insertion in the TDES and not use SF.
4216 	 */
4217 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
4218 		features &= ~NETIF_F_CSUM_MASK;
4219 
4220 	/* Disable tso if asked by ethtool */
4221 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4222 		if (features & NETIF_F_TSO)
4223 			priv->tso = true;
4224 		else
4225 			priv->tso = false;
4226 	}
4227 
4228 	return features;
4229 }
4230 
4231 static int stmmac_set_features(struct net_device *netdev,
4232 			       netdev_features_t features)
4233 {
4234 	struct stmmac_priv *priv = netdev_priv(netdev);
4235 	bool sph_en;
4236 	u32 chan;
4237 
4238 	/* Keep the COE Type in case of csum is supporting */
4239 	if (features & NETIF_F_RXCSUM)
4240 		priv->hw->rx_csum = priv->plat->rx_coe;
4241 	else
4242 		priv->hw->rx_csum = 0;
4243 	/* No check needed because rx_coe has been set before and it will be
4244 	 * fixed in case of issue.
4245 	 */
4246 	stmmac_rx_ipc(priv, priv->hw);
4247 
4248 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
4249 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
4250 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
4251 
4252 	return 0;
4253 }
4254 
4255 /**
4256  *  stmmac_interrupt - main ISR
4257  *  @irq: interrupt number.
4258  *  @dev_id: to pass the net device pointer (must be valid).
4259  *  Description: this is the main driver interrupt service routine.
4260  *  It can call:
4261  *  o DMA service routine (to manage incoming frame reception and transmission
4262  *    status)
4263  *  o Core interrupts to manage: remote wake-up, management counter, LPI
4264  *    interrupts.
4265  */
4266 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
4267 {
4268 	struct net_device *dev = (struct net_device *)dev_id;
4269 	struct stmmac_priv *priv = netdev_priv(dev);
4270 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4271 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4272 	u32 queues_count;
4273 	u32 queue;
4274 	bool xmac;
4275 
4276 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
4277 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
4278 
4279 	if (priv->irq_wake)
4280 		pm_wakeup_event(priv->device, 0);
4281 
4282 	/* Check if adapter is up */
4283 	if (test_bit(STMMAC_DOWN, &priv->state))
4284 		return IRQ_HANDLED;
4285 	/* Check if a fatal error happened */
4286 	if (stmmac_safety_feat_interrupt(priv))
4287 		return IRQ_HANDLED;
4288 
4289 	/* To handle GMAC own interrupts */
4290 	if ((priv->plat->has_gmac) || xmac) {
4291 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
4292 		int mtl_status;
4293 
4294 		if (unlikely(status)) {
4295 			/* For LPI we need to save the tx status */
4296 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
4297 				priv->tx_path_in_lpi_mode = true;
4298 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
4299 				priv->tx_path_in_lpi_mode = false;
4300 		}
4301 
4302 		for (queue = 0; queue < queues_count; queue++) {
4303 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4304 
4305 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
4306 								queue);
4307 			if (mtl_status != -EINVAL)
4308 				status |= mtl_status;
4309 
4310 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
4311 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
4312 						       rx_q->rx_tail_addr,
4313 						       queue);
4314 		}
4315 
4316 		/* PCS link status */
4317 		if (priv->hw->pcs) {
4318 			if (priv->xstats.pcs_link)
4319 				netif_carrier_on(dev);
4320 			else
4321 				netif_carrier_off(dev);
4322 		}
4323 	}
4324 
4325 	/* To handle DMA interrupts */
4326 	stmmac_dma_interrupt(priv);
4327 
4328 	return IRQ_HANDLED;
4329 }
4330 
4331 #ifdef CONFIG_NET_POLL_CONTROLLER
4332 /* Polling receive - used by NETCONSOLE and other diagnostic tools
4333  * to allow network I/O with interrupts disabled.
4334  */
4335 static void stmmac_poll_controller(struct net_device *dev)
4336 {
4337 	disable_irq(dev->irq);
4338 	stmmac_interrupt(dev->irq, dev);
4339 	enable_irq(dev->irq);
4340 }
4341 #endif
4342 
4343 /**
4344  *  stmmac_ioctl - Entry point for the Ioctl
4345  *  @dev: Device pointer.
4346  *  @rq: An IOCTL specefic structure, that can contain a pointer to
4347  *  a proprietary structure used to pass information to the driver.
4348  *  @cmd: IOCTL command
4349  *  Description:
4350  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
4351  */
4352 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
4353 {
4354 	struct stmmac_priv *priv = netdev_priv (dev);
4355 	int ret = -EOPNOTSUPP;
4356 
4357 	if (!netif_running(dev))
4358 		return -EINVAL;
4359 
4360 	switch (cmd) {
4361 	case SIOCGMIIPHY:
4362 	case SIOCGMIIREG:
4363 	case SIOCSMIIREG:
4364 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
4365 		break;
4366 	case SIOCSHWTSTAMP:
4367 		ret = stmmac_hwtstamp_set(dev, rq);
4368 		break;
4369 	case SIOCGHWTSTAMP:
4370 		ret = stmmac_hwtstamp_get(dev, rq);
4371 		break;
4372 	default:
4373 		break;
4374 	}
4375 
4376 	return ret;
4377 }
4378 
4379 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
4380 				    void *cb_priv)
4381 {
4382 	struct stmmac_priv *priv = cb_priv;
4383 	int ret = -EOPNOTSUPP;
4384 
4385 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
4386 		return ret;
4387 
4388 	stmmac_disable_all_queues(priv);
4389 
4390 	switch (type) {
4391 	case TC_SETUP_CLSU32:
4392 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
4393 		break;
4394 	case TC_SETUP_CLSFLOWER:
4395 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
4396 		break;
4397 	default:
4398 		break;
4399 	}
4400 
4401 	stmmac_enable_all_queues(priv);
4402 	return ret;
4403 }
4404 
4405 static LIST_HEAD(stmmac_block_cb_list);
4406 
4407 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
4408 			   void *type_data)
4409 {
4410 	struct stmmac_priv *priv = netdev_priv(ndev);
4411 
4412 	switch (type) {
4413 	case TC_SETUP_BLOCK:
4414 		return flow_block_cb_setup_simple(type_data,
4415 						  &stmmac_block_cb_list,
4416 						  stmmac_setup_tc_block_cb,
4417 						  priv, priv, true);
4418 	case TC_SETUP_QDISC_CBS:
4419 		return stmmac_tc_setup_cbs(priv, priv, type_data);
4420 	case TC_SETUP_QDISC_TAPRIO:
4421 		return stmmac_tc_setup_taprio(priv, priv, type_data);
4422 	case TC_SETUP_QDISC_ETF:
4423 		return stmmac_tc_setup_etf(priv, priv, type_data);
4424 	default:
4425 		return -EOPNOTSUPP;
4426 	}
4427 }
4428 
4429 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
4430 			       struct net_device *sb_dev)
4431 {
4432 	int gso = skb_shinfo(skb)->gso_type;
4433 
4434 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
4435 		/*
4436 		 * There is no way to determine the number of TSO/USO
4437 		 * capable Queues. Let's use always the Queue 0
4438 		 * because if TSO/USO is supported then at least this
4439 		 * one will be capable.
4440 		 */
4441 		return 0;
4442 	}
4443 
4444 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
4445 }
4446 
4447 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
4448 {
4449 	struct stmmac_priv *priv = netdev_priv(ndev);
4450 	int ret = 0;
4451 
4452 	ret = eth_mac_addr(ndev, addr);
4453 	if (ret)
4454 		return ret;
4455 
4456 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
4457 
4458 	return ret;
4459 }
4460 
4461 #ifdef CONFIG_DEBUG_FS
4462 static struct dentry *stmmac_fs_dir;
4463 
4464 static void sysfs_display_ring(void *head, int size, int extend_desc,
4465 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
4466 {
4467 	int i;
4468 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
4469 	struct dma_desc *p = (struct dma_desc *)head;
4470 	dma_addr_t dma_addr;
4471 
4472 	for (i = 0; i < size; i++) {
4473 		if (extend_desc) {
4474 			dma_addr = dma_phy_addr + i * sizeof(*ep);
4475 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4476 				   i, &dma_addr,
4477 				   le32_to_cpu(ep->basic.des0),
4478 				   le32_to_cpu(ep->basic.des1),
4479 				   le32_to_cpu(ep->basic.des2),
4480 				   le32_to_cpu(ep->basic.des3));
4481 			ep++;
4482 		} else {
4483 			dma_addr = dma_phy_addr + i * sizeof(*p);
4484 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
4485 				   i, &dma_addr,
4486 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
4487 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
4488 			p++;
4489 		}
4490 		seq_printf(seq, "\n");
4491 	}
4492 }
4493 
4494 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
4495 {
4496 	struct net_device *dev = seq->private;
4497 	struct stmmac_priv *priv = netdev_priv(dev);
4498 	u32 rx_count = priv->plat->rx_queues_to_use;
4499 	u32 tx_count = priv->plat->tx_queues_to_use;
4500 	u32 queue;
4501 
4502 	if ((dev->flags & IFF_UP) == 0)
4503 		return 0;
4504 
4505 	for (queue = 0; queue < rx_count; queue++) {
4506 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4507 
4508 		seq_printf(seq, "RX Queue %d:\n", queue);
4509 
4510 		if (priv->extend_desc) {
4511 			seq_printf(seq, "Extended descriptor ring:\n");
4512 			sysfs_display_ring((void *)rx_q->dma_erx,
4513 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
4514 		} else {
4515 			seq_printf(seq, "Descriptor ring:\n");
4516 			sysfs_display_ring((void *)rx_q->dma_rx,
4517 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
4518 		}
4519 	}
4520 
4521 	for (queue = 0; queue < tx_count; queue++) {
4522 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4523 
4524 		seq_printf(seq, "TX Queue %d:\n", queue);
4525 
4526 		if (priv->extend_desc) {
4527 			seq_printf(seq, "Extended descriptor ring:\n");
4528 			sysfs_display_ring((void *)tx_q->dma_etx,
4529 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
4530 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
4531 			seq_printf(seq, "Descriptor ring:\n");
4532 			sysfs_display_ring((void *)tx_q->dma_tx,
4533 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
4534 		}
4535 	}
4536 
4537 	return 0;
4538 }
4539 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
4540 
4541 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
4542 {
4543 	struct net_device *dev = seq->private;
4544 	struct stmmac_priv *priv = netdev_priv(dev);
4545 
4546 	if (!priv->hw_cap_support) {
4547 		seq_printf(seq, "DMA HW features not supported\n");
4548 		return 0;
4549 	}
4550 
4551 	seq_printf(seq, "==============================\n");
4552 	seq_printf(seq, "\tDMA HW features\n");
4553 	seq_printf(seq, "==============================\n");
4554 
4555 	seq_printf(seq, "\t10/100 Mbps: %s\n",
4556 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
4557 	seq_printf(seq, "\t1000 Mbps: %s\n",
4558 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
4559 	seq_printf(seq, "\tHalf duplex: %s\n",
4560 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
4561 	seq_printf(seq, "\tHash Filter: %s\n",
4562 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
4563 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
4564 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
4565 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
4566 		   (priv->dma_cap.pcs) ? "Y" : "N");
4567 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
4568 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
4569 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
4570 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
4571 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
4572 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
4573 	seq_printf(seq, "\tRMON module: %s\n",
4574 		   (priv->dma_cap.rmon) ? "Y" : "N");
4575 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
4576 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
4577 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
4578 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
4579 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
4580 		   (priv->dma_cap.eee) ? "Y" : "N");
4581 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
4582 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
4583 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
4584 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
4585 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
4586 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
4587 	} else {
4588 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
4589 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
4590 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
4591 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
4592 	}
4593 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
4594 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
4595 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
4596 		   priv->dma_cap.number_rx_channel);
4597 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
4598 		   priv->dma_cap.number_tx_channel);
4599 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
4600 		   priv->dma_cap.number_rx_queues);
4601 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
4602 		   priv->dma_cap.number_tx_queues);
4603 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
4604 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
4605 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
4606 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
4607 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
4608 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
4609 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
4610 		   priv->dma_cap.pps_out_num);
4611 	seq_printf(seq, "\tSafety Features: %s\n",
4612 		   priv->dma_cap.asp ? "Y" : "N");
4613 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
4614 		   priv->dma_cap.frpsel ? "Y" : "N");
4615 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
4616 		   priv->dma_cap.addr64);
4617 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
4618 		   priv->dma_cap.rssen ? "Y" : "N");
4619 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
4620 		   priv->dma_cap.vlhash ? "Y" : "N");
4621 	seq_printf(seq, "\tSplit Header: %s\n",
4622 		   priv->dma_cap.sphen ? "Y" : "N");
4623 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
4624 		   priv->dma_cap.vlins ? "Y" : "N");
4625 	seq_printf(seq, "\tDouble VLAN: %s\n",
4626 		   priv->dma_cap.dvlan ? "Y" : "N");
4627 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
4628 		   priv->dma_cap.l3l4fnum);
4629 	seq_printf(seq, "\tARP Offloading: %s\n",
4630 		   priv->dma_cap.arpoffsel ? "Y" : "N");
4631 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
4632 		   priv->dma_cap.estsel ? "Y" : "N");
4633 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
4634 		   priv->dma_cap.fpesel ? "Y" : "N");
4635 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
4636 		   priv->dma_cap.tbssel ? "Y" : "N");
4637 	return 0;
4638 }
4639 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
4640 
4641 /* Use network device events to rename debugfs file entries.
4642  */
4643 static int stmmac_device_event(struct notifier_block *unused,
4644 			       unsigned long event, void *ptr)
4645 {
4646 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
4647 	struct stmmac_priv *priv = netdev_priv(dev);
4648 
4649 	if (dev->netdev_ops != &stmmac_netdev_ops)
4650 		goto done;
4651 
4652 	switch (event) {
4653 	case NETDEV_CHANGENAME:
4654 		if (priv->dbgfs_dir)
4655 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
4656 							 priv->dbgfs_dir,
4657 							 stmmac_fs_dir,
4658 							 dev->name);
4659 		break;
4660 	}
4661 done:
4662 	return NOTIFY_DONE;
4663 }
4664 
4665 static struct notifier_block stmmac_notifier = {
4666 	.notifier_call = stmmac_device_event,
4667 };
4668 
4669 static void stmmac_init_fs(struct net_device *dev)
4670 {
4671 	struct stmmac_priv *priv = netdev_priv(dev);
4672 
4673 	rtnl_lock();
4674 
4675 	/* Create per netdev entries */
4676 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
4677 
4678 	/* Entry to report DMA RX/TX rings */
4679 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
4680 			    &stmmac_rings_status_fops);
4681 
4682 	/* Entry to report the DMA HW features */
4683 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
4684 			    &stmmac_dma_cap_fops);
4685 
4686 	rtnl_unlock();
4687 }
4688 
4689 static void stmmac_exit_fs(struct net_device *dev)
4690 {
4691 	struct stmmac_priv *priv = netdev_priv(dev);
4692 
4693 	debugfs_remove_recursive(priv->dbgfs_dir);
4694 }
4695 #endif /* CONFIG_DEBUG_FS */
4696 
4697 static u32 stmmac_vid_crc32_le(__le16 vid_le)
4698 {
4699 	unsigned char *data = (unsigned char *)&vid_le;
4700 	unsigned char data_byte = 0;
4701 	u32 crc = ~0x0;
4702 	u32 temp = 0;
4703 	int i, bits;
4704 
4705 	bits = get_bitmask_order(VLAN_VID_MASK);
4706 	for (i = 0; i < bits; i++) {
4707 		if ((i % 8) == 0)
4708 			data_byte = data[i / 8];
4709 
4710 		temp = ((crc & 1) ^ data_byte) & 1;
4711 		crc >>= 1;
4712 		data_byte >>= 1;
4713 
4714 		if (temp)
4715 			crc ^= 0xedb88320;
4716 	}
4717 
4718 	return crc;
4719 }
4720 
4721 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
4722 {
4723 	u32 crc, hash = 0;
4724 	__le16 pmatch = 0;
4725 	int count = 0;
4726 	u16 vid = 0;
4727 
4728 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
4729 		__le16 vid_le = cpu_to_le16(vid);
4730 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
4731 		hash |= (1 << crc);
4732 		count++;
4733 	}
4734 
4735 	if (!priv->dma_cap.vlhash) {
4736 		if (count > 2) /* VID = 0 always passes filter */
4737 			return -EOPNOTSUPP;
4738 
4739 		pmatch = cpu_to_le16(vid);
4740 		hash = 0;
4741 	}
4742 
4743 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
4744 }
4745 
4746 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
4747 {
4748 	struct stmmac_priv *priv = netdev_priv(ndev);
4749 	bool is_double = false;
4750 	int ret;
4751 
4752 	ret = pm_runtime_get_sync(priv->device);
4753 	if (ret < 0) {
4754 		pm_runtime_put_noidle(priv->device);
4755 		return ret;
4756 	}
4757 
4758 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4759 		is_double = true;
4760 
4761 	set_bit(vid, priv->active_vlans);
4762 	ret = stmmac_vlan_update(priv, is_double);
4763 	if (ret) {
4764 		clear_bit(vid, priv->active_vlans);
4765 		return ret;
4766 	}
4767 
4768 	if (priv->hw->num_vlan) {
4769 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4770 		if (ret)
4771 			return ret;
4772 	}
4773 
4774 	return 0;
4775 }
4776 
4777 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
4778 {
4779 	struct stmmac_priv *priv = netdev_priv(ndev);
4780 	bool is_double = false;
4781 	int ret;
4782 
4783 	if (be16_to_cpu(proto) == ETH_P_8021AD)
4784 		is_double = true;
4785 
4786 	clear_bit(vid, priv->active_vlans);
4787 
4788 	if (priv->hw->num_vlan) {
4789 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
4790 		if (ret)
4791 			goto del_vlan_error;
4792 	}
4793 
4794 	ret = stmmac_vlan_update(priv, is_double);
4795 
4796 del_vlan_error:
4797 	pm_runtime_put(priv->device);
4798 
4799 	return ret;
4800 }
4801 
4802 static const struct net_device_ops stmmac_netdev_ops = {
4803 	.ndo_open = stmmac_open,
4804 	.ndo_start_xmit = stmmac_xmit,
4805 	.ndo_stop = stmmac_release,
4806 	.ndo_change_mtu = stmmac_change_mtu,
4807 	.ndo_fix_features = stmmac_fix_features,
4808 	.ndo_set_features = stmmac_set_features,
4809 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4810 	.ndo_tx_timeout = stmmac_tx_timeout,
4811 	.ndo_do_ioctl = stmmac_ioctl,
4812 	.ndo_setup_tc = stmmac_setup_tc,
4813 	.ndo_select_queue = stmmac_select_queue,
4814 #ifdef CONFIG_NET_POLL_CONTROLLER
4815 	.ndo_poll_controller = stmmac_poll_controller,
4816 #endif
4817 	.ndo_set_mac_address = stmmac_set_mac_address,
4818 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
4819 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
4820 };
4821 
4822 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4823 {
4824 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4825 		return;
4826 	if (test_bit(STMMAC_DOWN, &priv->state))
4827 		return;
4828 
4829 	netdev_err(priv->dev, "Reset adapter.\n");
4830 
4831 	rtnl_lock();
4832 	netif_trans_update(priv->dev);
4833 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4834 		usleep_range(1000, 2000);
4835 
4836 	set_bit(STMMAC_DOWN, &priv->state);
4837 	dev_close(priv->dev);
4838 	dev_open(priv->dev, NULL);
4839 	clear_bit(STMMAC_DOWN, &priv->state);
4840 	clear_bit(STMMAC_RESETING, &priv->state);
4841 	rtnl_unlock();
4842 }
4843 
4844 static void stmmac_service_task(struct work_struct *work)
4845 {
4846 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4847 			service_task);
4848 
4849 	stmmac_reset_subtask(priv);
4850 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4851 }
4852 
4853 /**
4854  *  stmmac_hw_init - Init the MAC device
4855  *  @priv: driver private structure
4856  *  Description: this function is to configure the MAC device according to
4857  *  some platform parameters or the HW capability register. It prepares the
4858  *  driver to use either ring or chain modes and to setup either enhanced or
4859  *  normal descriptors.
4860  */
4861 static int stmmac_hw_init(struct stmmac_priv *priv)
4862 {
4863 	int ret;
4864 
4865 	/* dwmac-sun8i only work in chain mode */
4866 	if (priv->plat->has_sun8i)
4867 		chain_mode = 1;
4868 	priv->chain_mode = chain_mode;
4869 
4870 	/* Initialize HW Interface */
4871 	ret = stmmac_hwif_init(priv);
4872 	if (ret)
4873 		return ret;
4874 
4875 	/* Get the HW capability (new GMAC newer than 3.50a) */
4876 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4877 	if (priv->hw_cap_support) {
4878 		dev_info(priv->device, "DMA HW capability register supported\n");
4879 
4880 		/* We can override some gmac/dma configuration fields: e.g.
4881 		 * enh_desc, tx_coe (e.g. that are passed through the
4882 		 * platform) with the values from the HW capability
4883 		 * register (if supported).
4884 		 */
4885 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4886 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4887 		priv->hw->pmt = priv->plat->pmt;
4888 		if (priv->dma_cap.hash_tb_sz) {
4889 			priv->hw->multicast_filter_bins =
4890 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4891 			priv->hw->mcast_bits_log2 =
4892 					ilog2(priv->hw->multicast_filter_bins);
4893 		}
4894 
4895 		/* TXCOE doesn't work in thresh DMA mode */
4896 		if (priv->plat->force_thresh_dma_mode)
4897 			priv->plat->tx_coe = 0;
4898 		else
4899 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4900 
4901 		/* In case of GMAC4 rx_coe is from HW cap register. */
4902 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4903 
4904 		if (priv->dma_cap.rx_coe_type2)
4905 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4906 		else if (priv->dma_cap.rx_coe_type1)
4907 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4908 
4909 	} else {
4910 		dev_info(priv->device, "No HW DMA feature register supported\n");
4911 	}
4912 
4913 	if (priv->plat->rx_coe) {
4914 		priv->hw->rx_csum = priv->plat->rx_coe;
4915 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4916 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4917 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4918 	}
4919 	if (priv->plat->tx_coe)
4920 		dev_info(priv->device, "TX Checksum insertion supported\n");
4921 
4922 	if (priv->plat->pmt) {
4923 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4924 		device_set_wakeup_capable(priv->device, 1);
4925 	}
4926 
4927 	if (priv->dma_cap.tsoen)
4928 		dev_info(priv->device, "TSO supported\n");
4929 
4930 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
4931 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
4932 
4933 	/* Run HW quirks, if any */
4934 	if (priv->hwif_quirks) {
4935 		ret = priv->hwif_quirks(priv);
4936 		if (ret)
4937 			return ret;
4938 	}
4939 
4940 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4941 	 * In some case, for example on bugged HW this feature
4942 	 * has to be disable and this can be done by passing the
4943 	 * riwt_off field from the platform.
4944 	 */
4945 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4946 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4947 		priv->use_riwt = 1;
4948 		dev_info(priv->device,
4949 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4950 	}
4951 
4952 	return 0;
4953 }
4954 
4955 static void stmmac_napi_add(struct net_device *dev)
4956 {
4957 	struct stmmac_priv *priv = netdev_priv(dev);
4958 	u32 queue, maxq;
4959 
4960 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4961 
4962 	for (queue = 0; queue < maxq; queue++) {
4963 		struct stmmac_channel *ch = &priv->channel[queue];
4964 
4965 		ch->priv_data = priv;
4966 		ch->index = queue;
4967 		spin_lock_init(&ch->lock);
4968 
4969 		if (queue < priv->plat->rx_queues_to_use) {
4970 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
4971 				       NAPI_POLL_WEIGHT);
4972 		}
4973 		if (queue < priv->plat->tx_queues_to_use) {
4974 			netif_tx_napi_add(dev, &ch->tx_napi,
4975 					  stmmac_napi_poll_tx,
4976 					  NAPI_POLL_WEIGHT);
4977 		}
4978 	}
4979 }
4980 
4981 static void stmmac_napi_del(struct net_device *dev)
4982 {
4983 	struct stmmac_priv *priv = netdev_priv(dev);
4984 	u32 queue, maxq;
4985 
4986 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4987 
4988 	for (queue = 0; queue < maxq; queue++) {
4989 		struct stmmac_channel *ch = &priv->channel[queue];
4990 
4991 		if (queue < priv->plat->rx_queues_to_use)
4992 			netif_napi_del(&ch->rx_napi);
4993 		if (queue < priv->plat->tx_queues_to_use)
4994 			netif_napi_del(&ch->tx_napi);
4995 	}
4996 }
4997 
4998 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
4999 {
5000 	struct stmmac_priv *priv = netdev_priv(dev);
5001 	int ret = 0;
5002 
5003 	if (netif_running(dev))
5004 		stmmac_release(dev);
5005 
5006 	stmmac_napi_del(dev);
5007 
5008 	priv->plat->rx_queues_to_use = rx_cnt;
5009 	priv->plat->tx_queues_to_use = tx_cnt;
5010 
5011 	stmmac_napi_add(dev);
5012 
5013 	if (netif_running(dev))
5014 		ret = stmmac_open(dev);
5015 
5016 	return ret;
5017 }
5018 
5019 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
5020 {
5021 	struct stmmac_priv *priv = netdev_priv(dev);
5022 	int ret = 0;
5023 
5024 	if (netif_running(dev))
5025 		stmmac_release(dev);
5026 
5027 	priv->dma_rx_size = rx_size;
5028 	priv->dma_tx_size = tx_size;
5029 
5030 	if (netif_running(dev))
5031 		ret = stmmac_open(dev);
5032 
5033 	return ret;
5034 }
5035 
5036 /**
5037  * stmmac_dvr_probe
5038  * @device: device pointer
5039  * @plat_dat: platform data pointer
5040  * @res: stmmac resource pointer
5041  * Description: this is the main probe function used to
5042  * call the alloc_etherdev, allocate the priv structure.
5043  * Return:
5044  * returns 0 on success, otherwise errno.
5045  */
5046 int stmmac_dvr_probe(struct device *device,
5047 		     struct plat_stmmacenet_data *plat_dat,
5048 		     struct stmmac_resources *res)
5049 {
5050 	struct net_device *ndev = NULL;
5051 	struct stmmac_priv *priv;
5052 	u32 rxq;
5053 	int i, ret = 0;
5054 
5055 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
5056 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
5057 	if (!ndev)
5058 		return -ENOMEM;
5059 
5060 	SET_NETDEV_DEV(ndev, device);
5061 
5062 	priv = netdev_priv(ndev);
5063 	priv->device = device;
5064 	priv->dev = ndev;
5065 
5066 	stmmac_set_ethtool_ops(ndev);
5067 	priv->pause = pause;
5068 	priv->plat = plat_dat;
5069 	priv->ioaddr = res->addr;
5070 	priv->dev->base_addr = (unsigned long)res->addr;
5071 
5072 	priv->dev->irq = res->irq;
5073 	priv->wol_irq = res->wol_irq;
5074 	priv->lpi_irq = res->lpi_irq;
5075 
5076 	if (!IS_ERR_OR_NULL(res->mac))
5077 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
5078 
5079 	dev_set_drvdata(device, priv->dev);
5080 
5081 	/* Verify driver arguments */
5082 	stmmac_verify_args();
5083 
5084 	/* Allocate workqueue */
5085 	priv->wq = create_singlethread_workqueue("stmmac_wq");
5086 	if (!priv->wq) {
5087 		dev_err(priv->device, "failed to create workqueue\n");
5088 		return -ENOMEM;
5089 	}
5090 
5091 	INIT_WORK(&priv->service_task, stmmac_service_task);
5092 
5093 	/* Override with kernel parameters if supplied XXX CRS XXX
5094 	 * this needs to have multiple instances
5095 	 */
5096 	if ((phyaddr >= 0) && (phyaddr <= 31))
5097 		priv->plat->phy_addr = phyaddr;
5098 
5099 	if (priv->plat->stmmac_rst) {
5100 		ret = reset_control_assert(priv->plat->stmmac_rst);
5101 		reset_control_deassert(priv->plat->stmmac_rst);
5102 		/* Some reset controllers have only reset callback instead of
5103 		 * assert + deassert callbacks pair.
5104 		 */
5105 		if (ret == -ENOTSUPP)
5106 			reset_control_reset(priv->plat->stmmac_rst);
5107 	}
5108 
5109 	/* Init MAC and get the capabilities */
5110 	ret = stmmac_hw_init(priv);
5111 	if (ret)
5112 		goto error_hw_init;
5113 
5114 	stmmac_check_ether_addr(priv);
5115 
5116 	ndev->netdev_ops = &stmmac_netdev_ops;
5117 
5118 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5119 			    NETIF_F_RXCSUM;
5120 
5121 	ret = stmmac_tc_init(priv, priv);
5122 	if (!ret) {
5123 		ndev->hw_features |= NETIF_F_HW_TC;
5124 	}
5125 
5126 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5127 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
5128 		if (priv->plat->has_gmac4)
5129 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
5130 		priv->tso = true;
5131 		dev_info(priv->device, "TSO feature enabled\n");
5132 	}
5133 
5134 	if (priv->dma_cap.sphen) {
5135 		ndev->hw_features |= NETIF_F_GRO;
5136 		priv->sph = true;
5137 		dev_info(priv->device, "SPH feature enabled\n");
5138 	}
5139 
5140 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
5141 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
5142 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
5143 	 * So overwrite dma_cap.addr64 according to HW real design.
5144 	 */
5145 	if (priv->plat->addr64)
5146 		priv->dma_cap.addr64 = priv->plat->addr64;
5147 
5148 	if (priv->dma_cap.addr64) {
5149 		ret = dma_set_mask_and_coherent(device,
5150 				DMA_BIT_MASK(priv->dma_cap.addr64));
5151 		if (!ret) {
5152 			dev_info(priv->device, "Using %d bits DMA width\n",
5153 				 priv->dma_cap.addr64);
5154 
5155 			/*
5156 			 * If more than 32 bits can be addressed, make sure to
5157 			 * enable enhanced addressing mode.
5158 			 */
5159 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
5160 				priv->plat->dma_cfg->eame = true;
5161 		} else {
5162 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
5163 			if (ret) {
5164 				dev_err(priv->device, "Failed to set DMA Mask\n");
5165 				goto error_hw_init;
5166 			}
5167 
5168 			priv->dma_cap.addr64 = 32;
5169 		}
5170 	}
5171 
5172 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
5173 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
5174 #ifdef STMMAC_VLAN_TAG_USED
5175 	/* Both mac100 and gmac support receive VLAN tag detection */
5176 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
5177 	if (priv->dma_cap.vlhash) {
5178 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5179 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
5180 	}
5181 	if (priv->dma_cap.vlins) {
5182 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
5183 		if (priv->dma_cap.dvlan)
5184 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
5185 	}
5186 #endif
5187 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
5188 
5189 	/* Initialize RSS */
5190 	rxq = priv->plat->rx_queues_to_use;
5191 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
5192 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
5193 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
5194 
5195 	if (priv->dma_cap.rssen && priv->plat->rss_en)
5196 		ndev->features |= NETIF_F_RXHASH;
5197 
5198 	/* MTU range: 46 - hw-specific max */
5199 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
5200 	if (priv->plat->has_xgmac)
5201 		ndev->max_mtu = XGMAC_JUMBO_LEN;
5202 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
5203 		ndev->max_mtu = JUMBO_LEN;
5204 	else
5205 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
5206 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
5207 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
5208 	 */
5209 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
5210 	    (priv->plat->maxmtu >= ndev->min_mtu))
5211 		ndev->max_mtu = priv->plat->maxmtu;
5212 	else if (priv->plat->maxmtu < ndev->min_mtu)
5213 		dev_warn(priv->device,
5214 			 "%s: warning: maxmtu having invalid value (%d)\n",
5215 			 __func__, priv->plat->maxmtu);
5216 
5217 	if (flow_ctrl)
5218 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
5219 
5220 	/* Setup channels NAPI */
5221 	stmmac_napi_add(ndev);
5222 
5223 	mutex_init(&priv->lock);
5224 
5225 	/* If a specific clk_csr value is passed from the platform
5226 	 * this means that the CSR Clock Range selection cannot be
5227 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
5228 	 * set the MDC clock dynamically according to the csr actual
5229 	 * clock input.
5230 	 */
5231 	if (priv->plat->clk_csr >= 0)
5232 		priv->clk_csr = priv->plat->clk_csr;
5233 	else
5234 		stmmac_clk_csr_set(priv);
5235 
5236 	stmmac_check_pcs_mode(priv);
5237 
5238 	pm_runtime_get_noresume(device);
5239 	pm_runtime_set_active(device);
5240 	pm_runtime_enable(device);
5241 
5242 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5243 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
5244 		/* MDIO bus Registration */
5245 		ret = stmmac_mdio_register(ndev);
5246 		if (ret < 0) {
5247 			dev_err(priv->device,
5248 				"%s: MDIO bus (id: %d) registration failed",
5249 				__func__, priv->plat->bus_id);
5250 			goto error_mdio_register;
5251 		}
5252 	}
5253 
5254 	ret = stmmac_phy_setup(priv);
5255 	if (ret) {
5256 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
5257 		goto error_phy_setup;
5258 	}
5259 
5260 	ret = register_netdev(ndev);
5261 	if (ret) {
5262 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
5263 			__func__, ret);
5264 		goto error_netdev_register;
5265 	}
5266 
5267 	if (priv->plat->serdes_powerup) {
5268 		ret = priv->plat->serdes_powerup(ndev,
5269 						 priv->plat->bsp_priv);
5270 
5271 		if (ret < 0)
5272 			goto error_serdes_powerup;
5273 	}
5274 
5275 #ifdef CONFIG_DEBUG_FS
5276 	stmmac_init_fs(ndev);
5277 #endif
5278 
5279 	/* Let pm_runtime_put() disable the clocks.
5280 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
5281 	 */
5282 	pm_runtime_put(device);
5283 
5284 	return ret;
5285 
5286 error_serdes_powerup:
5287 	unregister_netdev(ndev);
5288 error_netdev_register:
5289 	phylink_destroy(priv->phylink);
5290 error_phy_setup:
5291 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5292 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5293 		stmmac_mdio_unregister(ndev);
5294 error_mdio_register:
5295 	stmmac_napi_del(ndev);
5296 error_hw_init:
5297 	destroy_workqueue(priv->wq);
5298 	stmmac_bus_clks_config(priv, false);
5299 
5300 	return ret;
5301 }
5302 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
5303 
5304 /**
5305  * stmmac_dvr_remove
5306  * @dev: device pointer
5307  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
5308  * changes the link status, releases the DMA descriptor rings.
5309  */
5310 int stmmac_dvr_remove(struct device *dev)
5311 {
5312 	struct net_device *ndev = dev_get_drvdata(dev);
5313 	struct stmmac_priv *priv = netdev_priv(ndev);
5314 
5315 	netdev_info(priv->dev, "%s: removing driver", __func__);
5316 
5317 	stmmac_stop_all_dma(priv);
5318 	stmmac_mac_set(priv, priv->ioaddr, false);
5319 	netif_carrier_off(ndev);
5320 	unregister_netdev(ndev);
5321 
5322 	/* Serdes power down needs to happen after VLAN filter
5323 	 * is deleted that is triggered by unregister_netdev().
5324 	 */
5325 	if (priv->plat->serdes_powerdown)
5326 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5327 
5328 #ifdef CONFIG_DEBUG_FS
5329 	stmmac_exit_fs(ndev);
5330 #endif
5331 	phylink_destroy(priv->phylink);
5332 	if (priv->plat->stmmac_rst)
5333 		reset_control_assert(priv->plat->stmmac_rst);
5334 	pm_runtime_put(dev);
5335 	pm_runtime_disable(dev);
5336 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
5337 	    priv->hw->pcs != STMMAC_PCS_RTBI)
5338 		stmmac_mdio_unregister(ndev);
5339 	destroy_workqueue(priv->wq);
5340 	mutex_destroy(&priv->lock);
5341 
5342 	return 0;
5343 }
5344 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
5345 
5346 /**
5347  * stmmac_suspend - suspend callback
5348  * @dev: device pointer
5349  * Description: this is the function to suspend the device and it is called
5350  * by the platform driver to stop the network queue, release the resources,
5351  * program the PMT register (for WoL), clean and release driver resources.
5352  */
5353 int stmmac_suspend(struct device *dev)
5354 {
5355 	struct net_device *ndev = dev_get_drvdata(dev);
5356 	struct stmmac_priv *priv = netdev_priv(ndev);
5357 	u32 chan;
5358 	int ret;
5359 
5360 	if (!ndev || !netif_running(ndev))
5361 		return 0;
5362 
5363 	phylink_mac_change(priv->phylink, false);
5364 
5365 	mutex_lock(&priv->lock);
5366 
5367 	netif_device_detach(ndev);
5368 
5369 	stmmac_disable_all_queues(priv);
5370 
5371 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
5372 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
5373 
5374 	if (priv->eee_enabled) {
5375 		priv->tx_path_in_lpi_mode = false;
5376 		del_timer_sync(&priv->eee_ctrl_timer);
5377 	}
5378 
5379 	/* Stop TX/RX DMA */
5380 	stmmac_stop_all_dma(priv);
5381 
5382 	if (priv->plat->serdes_powerdown)
5383 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
5384 
5385 	/* Enable Power down mode by programming the PMT regs */
5386 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5387 		stmmac_pmt(priv, priv->hw, priv->wolopts);
5388 		priv->irq_wake = 1;
5389 	} else {
5390 		mutex_unlock(&priv->lock);
5391 		rtnl_lock();
5392 		if (device_may_wakeup(priv->device))
5393 			phylink_speed_down(priv->phylink, false);
5394 		phylink_stop(priv->phylink);
5395 		rtnl_unlock();
5396 		mutex_lock(&priv->lock);
5397 
5398 		stmmac_mac_set(priv, priv->ioaddr, false);
5399 		pinctrl_pm_select_sleep_state(priv->device);
5400 		/* Disable clock in case of PWM is off */
5401 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
5402 		ret = pm_runtime_force_suspend(dev);
5403 		if (ret)
5404 			return ret;
5405 	}
5406 	mutex_unlock(&priv->lock);
5407 
5408 	priv->speed = SPEED_UNKNOWN;
5409 	return 0;
5410 }
5411 EXPORT_SYMBOL_GPL(stmmac_suspend);
5412 
5413 /**
5414  * stmmac_reset_queues_param - reset queue parameters
5415  * @priv: device pointer
5416  */
5417 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
5418 {
5419 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5420 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5421 	u32 queue;
5422 
5423 	for (queue = 0; queue < rx_cnt; queue++) {
5424 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5425 
5426 		rx_q->cur_rx = 0;
5427 		rx_q->dirty_rx = 0;
5428 	}
5429 
5430 	for (queue = 0; queue < tx_cnt; queue++) {
5431 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5432 
5433 		tx_q->cur_tx = 0;
5434 		tx_q->dirty_tx = 0;
5435 		tx_q->mss = 0;
5436 
5437 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
5438 	}
5439 }
5440 
5441 /**
5442  * stmmac_resume - resume callback
5443  * @dev: device pointer
5444  * Description: when resume this function is invoked to setup the DMA and CORE
5445  * in a usable state.
5446  */
5447 int stmmac_resume(struct device *dev)
5448 {
5449 	struct net_device *ndev = dev_get_drvdata(dev);
5450 	struct stmmac_priv *priv = netdev_priv(ndev);
5451 	int ret;
5452 
5453 	if (!netif_running(ndev))
5454 		return 0;
5455 
5456 	/* Power Down bit, into the PM register, is cleared
5457 	 * automatically as soon as a magic packet or a Wake-up frame
5458 	 * is received. Anyway, it's better to manually clear
5459 	 * this bit because it can generate problems while resuming
5460 	 * from another devices (e.g. serial console).
5461 	 */
5462 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
5463 		mutex_lock(&priv->lock);
5464 		stmmac_pmt(priv, priv->hw, 0);
5465 		mutex_unlock(&priv->lock);
5466 		priv->irq_wake = 0;
5467 	} else {
5468 		pinctrl_pm_select_default_state(priv->device);
5469 		/* enable the clk previously disabled */
5470 		ret = pm_runtime_force_resume(dev);
5471 		if (ret)
5472 			return ret;
5473 		if (priv->plat->clk_ptp_ref)
5474 			clk_prepare_enable(priv->plat->clk_ptp_ref);
5475 		/* reset the phy so that it's ready */
5476 		if (priv->mii)
5477 			stmmac_mdio_reset(priv->mii);
5478 	}
5479 
5480 	if (priv->plat->serdes_powerup) {
5481 		ret = priv->plat->serdes_powerup(ndev,
5482 						 priv->plat->bsp_priv);
5483 
5484 		if (ret < 0)
5485 			return ret;
5486 	}
5487 
5488 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
5489 		rtnl_lock();
5490 		phylink_start(priv->phylink);
5491 		/* We may have called phylink_speed_down before */
5492 		phylink_speed_up(priv->phylink);
5493 		rtnl_unlock();
5494 	}
5495 
5496 	rtnl_lock();
5497 	mutex_lock(&priv->lock);
5498 
5499 	stmmac_reset_queues_param(priv);
5500 	stmmac_reinit_rx_buffers(priv);
5501 	stmmac_free_tx_skbufs(priv);
5502 	stmmac_clear_descriptors(priv);
5503 
5504 	stmmac_hw_setup(ndev, false);
5505 	stmmac_init_coalesce(priv);
5506 	stmmac_set_rx_mode(ndev);
5507 
5508 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
5509 
5510 	stmmac_enable_all_queues(priv);
5511 
5512 	mutex_unlock(&priv->lock);
5513 	rtnl_unlock();
5514 
5515 	phylink_mac_change(priv->phylink, true);
5516 
5517 	netif_device_attach(ndev);
5518 
5519 	return 0;
5520 }
5521 EXPORT_SYMBOL_GPL(stmmac_resume);
5522 
5523 #ifndef MODULE
5524 static int __init stmmac_cmdline_opt(char *str)
5525 {
5526 	char *opt;
5527 
5528 	if (!str || !*str)
5529 		return -EINVAL;
5530 	while ((opt = strsep(&str, ",")) != NULL) {
5531 		if (!strncmp(opt, "debug:", 6)) {
5532 			if (kstrtoint(opt + 6, 0, &debug))
5533 				goto err;
5534 		} else if (!strncmp(opt, "phyaddr:", 8)) {
5535 			if (kstrtoint(opt + 8, 0, &phyaddr))
5536 				goto err;
5537 		} else if (!strncmp(opt, "buf_sz:", 7)) {
5538 			if (kstrtoint(opt + 7, 0, &buf_sz))
5539 				goto err;
5540 		} else if (!strncmp(opt, "tc:", 3)) {
5541 			if (kstrtoint(opt + 3, 0, &tc))
5542 				goto err;
5543 		} else if (!strncmp(opt, "watchdog:", 9)) {
5544 			if (kstrtoint(opt + 9, 0, &watchdog))
5545 				goto err;
5546 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
5547 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
5548 				goto err;
5549 		} else if (!strncmp(opt, "pause:", 6)) {
5550 			if (kstrtoint(opt + 6, 0, &pause))
5551 				goto err;
5552 		} else if (!strncmp(opt, "eee_timer:", 10)) {
5553 			if (kstrtoint(opt + 10, 0, &eee_timer))
5554 				goto err;
5555 		} else if (!strncmp(opt, "chain_mode:", 11)) {
5556 			if (kstrtoint(opt + 11, 0, &chain_mode))
5557 				goto err;
5558 		}
5559 	}
5560 	return 0;
5561 
5562 err:
5563 	pr_err("%s: ERROR broken module parameter conversion", __func__);
5564 	return -EINVAL;
5565 }
5566 
5567 __setup("stmmaceth=", stmmac_cmdline_opt);
5568 #endif /* MODULE */
5569 
5570 static int __init stmmac_init(void)
5571 {
5572 #ifdef CONFIG_DEBUG_FS
5573 	/* Create debugfs main directory if it doesn't exist yet */
5574 	if (!stmmac_fs_dir)
5575 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
5576 	register_netdevice_notifier(&stmmac_notifier);
5577 #endif
5578 
5579 	return 0;
5580 }
5581 
5582 static void __exit stmmac_exit(void)
5583 {
5584 #ifdef CONFIG_DEBUG_FS
5585 	unregister_netdevice_notifier(&stmmac_notifier);
5586 	debugfs_remove_recursive(stmmac_fs_dir);
5587 #endif
5588 }
5589 
5590 module_init(stmmac_init)
5591 module_exit(stmmac_exit)
5592 
5593 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
5594 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
5595 MODULE_LICENSE("GPL");
5596