1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #include <linux/pinctrl/consumer.h>
47 #ifdef CONFIG_STMMAC_DEBUG_FS
48 #include <linux/debugfs.h>
49 #include <linux/seq_file.h>
50 #endif /* CONFIG_STMMAC_DEBUG_FS */
51 #include <linux/net_tstamp.h>
52 #include "stmmac_ptp.h"
53 #include "stmmac.h"
54 #include <linux/reset.h>
55 
56 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
57 
58 /* Module parameters */
59 #define TX_TIMEO	5000
60 static int watchdog = TX_TIMEO;
61 module_param(watchdog, int, S_IRUGO | S_IWUSR);
62 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
63 
64 static int debug = -1;
65 module_param(debug, int, S_IRUGO | S_IWUSR);
66 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
67 
68 static int phyaddr = -1;
69 module_param(phyaddr, int, S_IRUGO);
70 MODULE_PARM_DESC(phyaddr, "Physical device address");
71 
72 #define DMA_TX_SIZE 256
73 static int dma_txsize = DMA_TX_SIZE;
74 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
75 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
76 
77 #define DMA_RX_SIZE 256
78 static int dma_rxsize = DMA_RX_SIZE;
79 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
80 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
81 
82 static int flow_ctrl = FLOW_OFF;
83 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
84 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
85 
86 static int pause = PAUSE_TIME;
87 module_param(pause, int, S_IRUGO | S_IWUSR);
88 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
89 
90 #define TC_DEFAULT 64
91 static int tc = TC_DEFAULT;
92 module_param(tc, int, S_IRUGO | S_IWUSR);
93 MODULE_PARM_DESC(tc, "DMA threshold control value");
94 
95 #define	DEFAULT_BUFSIZE	1536
96 static int buf_sz = DEFAULT_BUFSIZE;
97 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
98 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
99 
100 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
101 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
102 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
103 
104 #define STMMAC_DEFAULT_LPI_TIMER	1000
105 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
106 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
108 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
109 
110 /* By default the driver will use the ring mode to manage tx and rx descriptors
111  * but passing this value so user can force to use the chain instead of the ring
112  */
113 static unsigned int chain_mode;
114 module_param(chain_mode, int, S_IRUGO);
115 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
116 
117 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
118 
119 #ifdef CONFIG_STMMAC_DEBUG_FS
120 static int stmmac_init_fs(struct net_device *dev);
121 static void stmmac_exit_fs(void);
122 #endif
123 
124 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
125 
126 /**
127  * stmmac_verify_args - verify the driver parameters.
128  * Description: it verifies if some wrong parameter is passed to the driver.
129  * Note that wrong parameters are replaced with the default values.
130  */
131 static void stmmac_verify_args(void)
132 {
133 	if (unlikely(watchdog < 0))
134 		watchdog = TX_TIMEO;
135 	if (unlikely(dma_rxsize < 0))
136 		dma_rxsize = DMA_RX_SIZE;
137 	if (unlikely(dma_txsize < 0))
138 		dma_txsize = DMA_TX_SIZE;
139 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
140 		buf_sz = DEFAULT_BUFSIZE;
141 	if (unlikely(flow_ctrl > 1))
142 		flow_ctrl = FLOW_AUTO;
143 	else if (likely(flow_ctrl < 0))
144 		flow_ctrl = FLOW_OFF;
145 	if (unlikely((pause < 0) || (pause > 0xffff)))
146 		pause = PAUSE_TIME;
147 	if (eee_timer < 0)
148 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
149 }
150 
151 /**
152  * stmmac_clk_csr_set - dynamically set the MDC clock
153  * @priv: driver private structure
154  * Description: this is to dynamically set the MDC clock according to the csr
155  * clock input.
156  * Note:
157  *	If a specific clk_csr value is passed from the platform
158  *	this means that the CSR Clock Range selection cannot be
159  *	changed at run-time and it is fixed (as reported in the driver
160  *	documentation). Viceversa the driver will try to set the MDC
161  *	clock dynamically according to the actual clock input.
162  */
163 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
164 {
165 	u32 clk_rate;
166 
167 	clk_rate = clk_get_rate(priv->stmmac_clk);
168 
169 	/* Platform provided default clk_csr would be assumed valid
170 	 * for all other cases except for the below mentioned ones.
171 	 * For values higher than the IEEE 802.3 specified frequency
172 	 * we can not estimate the proper divider as it is not known
173 	 * the frequency of clk_csr_i. So we do not change the default
174 	 * divider.
175 	 */
176 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
177 		if (clk_rate < CSR_F_35M)
178 			priv->clk_csr = STMMAC_CSR_20_35M;
179 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
180 			priv->clk_csr = STMMAC_CSR_35_60M;
181 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
182 			priv->clk_csr = STMMAC_CSR_60_100M;
183 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
184 			priv->clk_csr = STMMAC_CSR_100_150M;
185 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
186 			priv->clk_csr = STMMAC_CSR_150_250M;
187 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
188 			priv->clk_csr = STMMAC_CSR_250_300M;
189 	}
190 }
191 
192 static void print_pkt(unsigned char *buf, int len)
193 {
194 	int j;
195 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
196 	for (j = 0; j < len; j++) {
197 		if ((j % 16) == 0)
198 			pr_debug("\n %03x:", j);
199 		pr_debug(" %02x", buf[j]);
200 	}
201 	pr_debug("\n");
202 }
203 
204 /* minimum number of free TX descriptors required to wake up TX process */
205 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
206 
207 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
208 {
209 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
210 }
211 
212 /**
213  * stmmac_hw_fix_mac_speed: callback for speed selection
214  * @priv: driver private structure
215  * Description: on some platforms (e.g. ST), some HW system configuraton
216  * registers have to be set according to the link speed negotiated.
217  */
218 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
219 {
220 	struct phy_device *phydev = priv->phydev;
221 
222 	if (likely(priv->plat->fix_mac_speed))
223 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
224 }
225 
226 /**
227  * stmmac_enable_eee_mode: Check and enter in LPI mode
228  * @priv: driver private structure
229  * Description: this function is to verify and enter in LPI mode for EEE.
230  */
231 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
232 {
233 	/* Check and enter in LPI mode */
234 	if ((priv->dirty_tx == priv->cur_tx) &&
235 	    (priv->tx_path_in_lpi_mode == false))
236 		priv->hw->mac->set_eee_mode(priv->hw);
237 }
238 
239 /**
240  * stmmac_disable_eee_mode: disable/exit from EEE
241  * @priv: driver private structure
242  * Description: this function is to exit and disable EEE in case of
243  * LPI state is true. This is called by the xmit.
244  */
245 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
246 {
247 	priv->hw->mac->reset_eee_mode(priv->hw);
248 	del_timer_sync(&priv->eee_ctrl_timer);
249 	priv->tx_path_in_lpi_mode = false;
250 }
251 
252 /**
253  * stmmac_eee_ctrl_timer: EEE TX SW timer.
254  * @arg : data hook
255  * Description:
256  *  if there is no data transfer and if we are not in LPI state,
257  *  then MAC Transmitter can be moved to LPI state.
258  */
259 static void stmmac_eee_ctrl_timer(unsigned long arg)
260 {
261 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
262 
263 	stmmac_enable_eee_mode(priv);
264 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
265 }
266 
267 /**
268  * stmmac_eee_init: init EEE
269  * @priv: driver private structure
270  * Description:
271  *  If the EEE support has been enabled while configuring the driver,
272  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
273  *  phy can also manage EEE, so enable the LPI state and start the timer
274  *  to verify if the tx path can enter in LPI state.
275  */
276 bool stmmac_eee_init(struct stmmac_priv *priv)
277 {
278 	char *phy_bus_name = priv->plat->phy_bus_name;
279 	unsigned long flags;
280 	bool ret = false;
281 
282 	/* Using PCS we cannot dial with the phy registers at this stage
283 	 * so we do not support extra feature like EEE.
284 	 */
285 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
286 	    (priv->pcs == STMMAC_PCS_RTBI))
287 		goto out;
288 
289 	/* Never init EEE in case of a switch is attached */
290 	if (phy_bus_name && (!strcmp(phy_bus_name, "fixed")))
291 		goto out;
292 
293 	/* MAC core supports the EEE feature. */
294 	if (priv->dma_cap.eee) {
295 		int tx_lpi_timer = priv->tx_lpi_timer;
296 
297 		/* Check if the PHY supports EEE */
298 		if (phy_init_eee(priv->phydev, 1)) {
299 			/* To manage at run-time if the EEE cannot be supported
300 			 * anymore (for example because the lp caps have been
301 			 * changed).
302 			 * In that case the driver disable own timers.
303 			 */
304 			spin_lock_irqsave(&priv->lock, flags);
305 			if (priv->eee_active) {
306 				pr_debug("stmmac: disable EEE\n");
307 				del_timer_sync(&priv->eee_ctrl_timer);
308 				priv->hw->mac->set_eee_timer(priv->hw, 0,
309 							     tx_lpi_timer);
310 			}
311 			priv->eee_active = 0;
312 			spin_unlock_irqrestore(&priv->lock, flags);
313 			goto out;
314 		}
315 		/* Activate the EEE and start timers */
316 		spin_lock_irqsave(&priv->lock, flags);
317 		if (!priv->eee_active) {
318 			priv->eee_active = 1;
319 			init_timer(&priv->eee_ctrl_timer);
320 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
321 			priv->eee_ctrl_timer.data = (unsigned long)priv;
322 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
323 			add_timer(&priv->eee_ctrl_timer);
324 
325 			priv->hw->mac->set_eee_timer(priv->hw,
326 						     STMMAC_DEFAULT_LIT_LS,
327 						     tx_lpi_timer);
328 		}
329 		/* Set HW EEE according to the speed */
330 		priv->hw->mac->set_eee_pls(priv->hw, priv->phydev->link);
331 
332 		ret = true;
333 		spin_unlock_irqrestore(&priv->lock, flags);
334 
335 		pr_debug("stmmac: Energy-Efficient Ethernet initialized\n");
336 	}
337 out:
338 	return ret;
339 }
340 
341 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
342  * @priv: driver private structure
343  * @entry : descriptor index to be used.
344  * @skb : the socket buffer
345  * Description :
346  * This function will read timestamp from the descriptor & pass it to stack.
347  * and also perform some sanity checks.
348  */
349 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
350 				   unsigned int entry, struct sk_buff *skb)
351 {
352 	struct skb_shared_hwtstamps shhwtstamp;
353 	u64 ns;
354 	void *desc = NULL;
355 
356 	if (!priv->hwts_tx_en)
357 		return;
358 
359 	/* exit if skb doesn't support hw tstamp */
360 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
361 		return;
362 
363 	if (priv->adv_ts)
364 		desc = (priv->dma_etx + entry);
365 	else
366 		desc = (priv->dma_tx + entry);
367 
368 	/* check tx tstamp status */
369 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
370 		return;
371 
372 	/* get the valid tstamp */
373 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
374 
375 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
376 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
377 	/* pass tstamp to stack */
378 	skb_tstamp_tx(skb, &shhwtstamp);
379 
380 	return;
381 }
382 
383 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
384  * @priv: driver private structure
385  * @entry : descriptor index to be used.
386  * @skb : the socket buffer
387  * Description :
388  * This function will read received packet's timestamp from the descriptor
389  * and pass it to stack. It also perform some sanity checks.
390  */
391 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
392 				   unsigned int entry, struct sk_buff *skb)
393 {
394 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
395 	u64 ns;
396 	void *desc = NULL;
397 
398 	if (!priv->hwts_rx_en)
399 		return;
400 
401 	if (priv->adv_ts)
402 		desc = (priv->dma_erx + entry);
403 	else
404 		desc = (priv->dma_rx + entry);
405 
406 	/* exit if rx tstamp is not valid */
407 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
408 		return;
409 
410 	/* get valid tstamp */
411 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
412 	shhwtstamp = skb_hwtstamps(skb);
413 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
414 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
415 }
416 
417 /**
418  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
419  *  @dev: device pointer.
420  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
421  *  a proprietary structure used to pass information to the driver.
422  *  Description:
423  *  This function configures the MAC to enable/disable both outgoing(TX)
424  *  and incoming(RX) packets time stamping based on user input.
425  *  Return Value:
426  *  0 on success and an appropriate -ve integer on failure.
427  */
428 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
429 {
430 	struct stmmac_priv *priv = netdev_priv(dev);
431 	struct hwtstamp_config config;
432 	struct timespec now;
433 	u64 temp = 0;
434 	u32 ptp_v2 = 0;
435 	u32 tstamp_all = 0;
436 	u32 ptp_over_ipv4_udp = 0;
437 	u32 ptp_over_ipv6_udp = 0;
438 	u32 ptp_over_ethernet = 0;
439 	u32 snap_type_sel = 0;
440 	u32 ts_master_en = 0;
441 	u32 ts_event_en = 0;
442 	u32 value = 0;
443 
444 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
445 		netdev_alert(priv->dev, "No support for HW time stamping\n");
446 		priv->hwts_tx_en = 0;
447 		priv->hwts_rx_en = 0;
448 
449 		return -EOPNOTSUPP;
450 	}
451 
452 	if (copy_from_user(&config, ifr->ifr_data,
453 			   sizeof(struct hwtstamp_config)))
454 		return -EFAULT;
455 
456 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
457 		 __func__, config.flags, config.tx_type, config.rx_filter);
458 
459 	/* reserved for future extensions */
460 	if (config.flags)
461 		return -EINVAL;
462 
463 	if (config.tx_type != HWTSTAMP_TX_OFF &&
464 	    config.tx_type != HWTSTAMP_TX_ON)
465 		return -ERANGE;
466 
467 	if (priv->adv_ts) {
468 		switch (config.rx_filter) {
469 		case HWTSTAMP_FILTER_NONE:
470 			/* time stamp no incoming packet at all */
471 			config.rx_filter = HWTSTAMP_FILTER_NONE;
472 			break;
473 
474 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
475 			/* PTP v1, UDP, any kind of event packet */
476 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
477 			/* take time stamp for all event messages */
478 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
479 
480 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
481 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
482 			break;
483 
484 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
485 			/* PTP v1, UDP, Sync packet */
486 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
487 			/* take time stamp for SYNC messages only */
488 			ts_event_en = PTP_TCR_TSEVNTENA;
489 
490 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
491 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
492 			break;
493 
494 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
495 			/* PTP v1, UDP, Delay_req packet */
496 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
497 			/* take time stamp for Delay_Req messages only */
498 			ts_master_en = PTP_TCR_TSMSTRENA;
499 			ts_event_en = PTP_TCR_TSEVNTENA;
500 
501 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
502 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
503 			break;
504 
505 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
506 			/* PTP v2, UDP, any kind of event packet */
507 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
508 			ptp_v2 = PTP_TCR_TSVER2ENA;
509 			/* take time stamp for all event messages */
510 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
511 
512 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
513 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
514 			break;
515 
516 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
517 			/* PTP v2, UDP, Sync packet */
518 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
519 			ptp_v2 = PTP_TCR_TSVER2ENA;
520 			/* take time stamp for SYNC messages only */
521 			ts_event_en = PTP_TCR_TSEVNTENA;
522 
523 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
524 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
525 			break;
526 
527 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
528 			/* PTP v2, UDP, Delay_req packet */
529 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
530 			ptp_v2 = PTP_TCR_TSVER2ENA;
531 			/* take time stamp for Delay_Req messages only */
532 			ts_master_en = PTP_TCR_TSMSTRENA;
533 			ts_event_en = PTP_TCR_TSEVNTENA;
534 
535 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
536 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
537 			break;
538 
539 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
540 			/* PTP v2/802.AS1 any layer, any kind of event packet */
541 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
542 			ptp_v2 = PTP_TCR_TSVER2ENA;
543 			/* take time stamp for all event messages */
544 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
545 
546 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
547 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
548 			ptp_over_ethernet = PTP_TCR_TSIPENA;
549 			break;
550 
551 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
552 			/* PTP v2/802.AS1, any layer, Sync packet */
553 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
554 			ptp_v2 = PTP_TCR_TSVER2ENA;
555 			/* take time stamp for SYNC messages only */
556 			ts_event_en = PTP_TCR_TSEVNTENA;
557 
558 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
559 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
560 			ptp_over_ethernet = PTP_TCR_TSIPENA;
561 			break;
562 
563 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
564 			/* PTP v2/802.AS1, any layer, Delay_req packet */
565 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
566 			ptp_v2 = PTP_TCR_TSVER2ENA;
567 			/* take time stamp for Delay_Req messages only */
568 			ts_master_en = PTP_TCR_TSMSTRENA;
569 			ts_event_en = PTP_TCR_TSEVNTENA;
570 
571 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
572 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
573 			ptp_over_ethernet = PTP_TCR_TSIPENA;
574 			break;
575 
576 		case HWTSTAMP_FILTER_ALL:
577 			/* time stamp any incoming packet */
578 			config.rx_filter = HWTSTAMP_FILTER_ALL;
579 			tstamp_all = PTP_TCR_TSENALL;
580 			break;
581 
582 		default:
583 			return -ERANGE;
584 		}
585 	} else {
586 		switch (config.rx_filter) {
587 		case HWTSTAMP_FILTER_NONE:
588 			config.rx_filter = HWTSTAMP_FILTER_NONE;
589 			break;
590 		default:
591 			/* PTP v1, UDP, any kind of event packet */
592 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
593 			break;
594 		}
595 	}
596 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
597 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
598 
599 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
600 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
601 	else {
602 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
603 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
604 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
605 			 ts_master_en | snap_type_sel);
606 
607 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
608 
609 		/* program Sub Second Increment reg */
610 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
611 
612 		/* calculate default added value:
613 		 * formula is :
614 		 * addend = (2^32)/freq_div_ratio;
615 		 * where, freq_div_ratio = clk_ptp_ref_i/50MHz
616 		 * hence, addend = ((2^32) * 50MHz)/clk_ptp_ref_i;
617 		 * NOTE: clk_ptp_ref_i should be >= 50MHz to
618 		 *       achive 20ns accuracy.
619 		 *
620 		 * 2^x * y == (y << x), hence
621 		 * 2^32 * 50000000 ==> (50000000 << 32)
622 		 */
623 		temp = (u64) (50000000ULL << 32);
624 		priv->default_addend = div_u64(temp, priv->clk_ptp_rate);
625 		priv->hw->ptp->config_addend(priv->ioaddr,
626 					     priv->default_addend);
627 
628 		/* initialize system time */
629 		getnstimeofday(&now);
630 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
631 					    now.tv_nsec);
632 	}
633 
634 	return copy_to_user(ifr->ifr_data, &config,
635 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
636 }
637 
638 /**
639  * stmmac_init_ptp: init PTP
640  * @priv: driver private structure
641  * Description: this is to verify if the HW supports the PTPv1 or v2.
642  * This is done by looking at the HW cap. register.
643  * Also it registers the ptp driver.
644  */
645 static int stmmac_init_ptp(struct stmmac_priv *priv)
646 {
647 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
648 		return -EOPNOTSUPP;
649 
650 	/* Fall-back to main clock in case of no PTP ref is passed */
651 	priv->clk_ptp_ref = devm_clk_get(priv->device, "clk_ptp_ref");
652 	if (IS_ERR(priv->clk_ptp_ref)) {
653 		priv->clk_ptp_rate = clk_get_rate(priv->stmmac_clk);
654 		priv->clk_ptp_ref = NULL;
655 	} else {
656 		clk_prepare_enable(priv->clk_ptp_ref);
657 		priv->clk_ptp_rate = clk_get_rate(priv->clk_ptp_ref);
658 	}
659 
660 	priv->adv_ts = 0;
661 	if (priv->dma_cap.atime_stamp && priv->extend_desc)
662 		priv->adv_ts = 1;
663 
664 	if (netif_msg_hw(priv) && priv->dma_cap.time_stamp)
665 		pr_debug("IEEE 1588-2002 Time Stamp supported\n");
666 
667 	if (netif_msg_hw(priv) && priv->adv_ts)
668 		pr_debug("IEEE 1588-2008 Advanced Time Stamp supported\n");
669 
670 	priv->hw->ptp = &stmmac_ptp;
671 	priv->hwts_tx_en = 0;
672 	priv->hwts_rx_en = 0;
673 
674 	return stmmac_ptp_register(priv);
675 }
676 
677 static void stmmac_release_ptp(struct stmmac_priv *priv)
678 {
679 	if (priv->clk_ptp_ref)
680 		clk_disable_unprepare(priv->clk_ptp_ref);
681 	stmmac_ptp_unregister(priv);
682 }
683 
684 /**
685  * stmmac_adjust_link
686  * @dev: net device structure
687  * Description: it adjusts the link parameters.
688  */
689 static void stmmac_adjust_link(struct net_device *dev)
690 {
691 	struct stmmac_priv *priv = netdev_priv(dev);
692 	struct phy_device *phydev = priv->phydev;
693 	unsigned long flags;
694 	int new_state = 0;
695 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
696 
697 	if (phydev == NULL)
698 		return;
699 
700 	spin_lock_irqsave(&priv->lock, flags);
701 
702 	if (phydev->link) {
703 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
704 
705 		/* Now we make sure that we can be in full duplex mode.
706 		 * If not, we operate in half-duplex mode. */
707 		if (phydev->duplex != priv->oldduplex) {
708 			new_state = 1;
709 			if (!(phydev->duplex))
710 				ctrl &= ~priv->hw->link.duplex;
711 			else
712 				ctrl |= priv->hw->link.duplex;
713 			priv->oldduplex = phydev->duplex;
714 		}
715 		/* Flow Control operation */
716 		if (phydev->pause)
717 			priv->hw->mac->flow_ctrl(priv->hw, phydev->duplex,
718 						 fc, pause_time);
719 
720 		if (phydev->speed != priv->speed) {
721 			new_state = 1;
722 			switch (phydev->speed) {
723 			case 1000:
724 				if (likely(priv->plat->has_gmac))
725 					ctrl &= ~priv->hw->link.port;
726 				stmmac_hw_fix_mac_speed(priv);
727 				break;
728 			case 100:
729 			case 10:
730 				if (priv->plat->has_gmac) {
731 					ctrl |= priv->hw->link.port;
732 					if (phydev->speed == SPEED_100) {
733 						ctrl |= priv->hw->link.speed;
734 					} else {
735 						ctrl &= ~(priv->hw->link.speed);
736 					}
737 				} else {
738 					ctrl &= ~priv->hw->link.port;
739 				}
740 				stmmac_hw_fix_mac_speed(priv);
741 				break;
742 			default:
743 				if (netif_msg_link(priv))
744 					pr_warn("%s: Speed (%d) not 10/100\n",
745 						dev->name, phydev->speed);
746 				break;
747 			}
748 
749 			priv->speed = phydev->speed;
750 		}
751 
752 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
753 
754 		if (!priv->oldlink) {
755 			new_state = 1;
756 			priv->oldlink = 1;
757 		}
758 	} else if (priv->oldlink) {
759 		new_state = 1;
760 		priv->oldlink = 0;
761 		priv->speed = 0;
762 		priv->oldduplex = -1;
763 	}
764 
765 	if (new_state && netif_msg_link(priv))
766 		phy_print_status(phydev);
767 
768 	spin_unlock_irqrestore(&priv->lock, flags);
769 
770 	/* At this stage, it could be needed to setup the EEE or adjust some
771 	 * MAC related HW registers.
772 	 */
773 	priv->eee_enabled = stmmac_eee_init(priv);
774 }
775 
776 /**
777  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
778  * @priv: driver private structure
779  * Description: this is to verify if the HW supports the PCS.
780  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
781  * configured for the TBI, RTBI, or SGMII PHY interface.
782  */
783 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
784 {
785 	int interface = priv->plat->interface;
786 
787 	if (priv->dma_cap.pcs) {
788 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
789 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
790 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
791 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
792 			pr_debug("STMMAC: PCS RGMII support enable\n");
793 			priv->pcs = STMMAC_PCS_RGMII;
794 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
795 			pr_debug("STMMAC: PCS SGMII support enable\n");
796 			priv->pcs = STMMAC_PCS_SGMII;
797 		}
798 	}
799 }
800 
801 /**
802  * stmmac_init_phy - PHY initialization
803  * @dev: net device structure
804  * Description: it initializes the driver's PHY state, and attaches the PHY
805  * to the mac driver.
806  *  Return value:
807  *  0 on success
808  */
809 static int stmmac_init_phy(struct net_device *dev)
810 {
811 	struct stmmac_priv *priv = netdev_priv(dev);
812 	struct phy_device *phydev;
813 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
814 	char bus_id[MII_BUS_ID_SIZE];
815 	int interface = priv->plat->interface;
816 	int max_speed = priv->plat->max_speed;
817 	priv->oldlink = 0;
818 	priv->speed = 0;
819 	priv->oldduplex = -1;
820 
821 	if (priv->plat->phy_bus_name)
822 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
823 			 priv->plat->phy_bus_name, priv->plat->bus_id);
824 	else
825 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
826 			 priv->plat->bus_id);
827 
828 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
829 		 priv->plat->phy_addr);
830 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
831 
832 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
833 
834 	if (IS_ERR(phydev)) {
835 		pr_err("%s: Could not attach to PHY\n", dev->name);
836 		return PTR_ERR(phydev);
837 	}
838 
839 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
840 	if ((interface == PHY_INTERFACE_MODE_MII) ||
841 	    (interface == PHY_INTERFACE_MODE_RMII) ||
842 		(max_speed < 1000 && max_speed > 0))
843 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
844 					 SUPPORTED_1000baseT_Full);
845 
846 	/*
847 	 * Broken HW is sometimes missing the pull-up resistor on the
848 	 * MDIO line, which results in reads to non-existent devices returning
849 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
850 	 * device as well.
851 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
852 	 */
853 	if (phydev->phy_id == 0) {
854 		phy_disconnect(phydev);
855 		return -ENODEV;
856 	}
857 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
858 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
859 
860 	priv->phydev = phydev;
861 
862 	return 0;
863 }
864 
865 /**
866  * stmmac_display_ring: display ring
867  * @head: pointer to the head of the ring passed.
868  * @size: size of the ring.
869  * @extend_desc: to verify if extended descriptors are used.
870  * Description: display the control/status and buffer descriptors.
871  */
872 static void stmmac_display_ring(void *head, int size, int extend_desc)
873 {
874 	int i;
875 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
876 	struct dma_desc *p = (struct dma_desc *)head;
877 
878 	for (i = 0; i < size; i++) {
879 		u64 x;
880 		if (extend_desc) {
881 			x = *(u64 *) ep;
882 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
883 				i, (unsigned int)virt_to_phys(ep),
884 				(unsigned int)x, (unsigned int)(x >> 32),
885 				ep->basic.des2, ep->basic.des3);
886 			ep++;
887 		} else {
888 			x = *(u64 *) p;
889 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
890 				i, (unsigned int)virt_to_phys(p),
891 				(unsigned int)x, (unsigned int)(x >> 32),
892 				p->des2, p->des3);
893 			p++;
894 		}
895 		pr_info("\n");
896 	}
897 }
898 
899 static void stmmac_display_rings(struct stmmac_priv *priv)
900 {
901 	unsigned int txsize = priv->dma_tx_size;
902 	unsigned int rxsize = priv->dma_rx_size;
903 
904 	if (priv->extend_desc) {
905 		pr_info("Extended RX descriptor ring:\n");
906 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
907 		pr_info("Extended TX descriptor ring:\n");
908 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
909 	} else {
910 		pr_info("RX descriptor ring:\n");
911 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
912 		pr_info("TX descriptor ring:\n");
913 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
914 	}
915 }
916 
917 static int stmmac_set_bfsize(int mtu, int bufsize)
918 {
919 	int ret = bufsize;
920 
921 	if (mtu >= BUF_SIZE_4KiB)
922 		ret = BUF_SIZE_8KiB;
923 	else if (mtu >= BUF_SIZE_2KiB)
924 		ret = BUF_SIZE_4KiB;
925 	else if (mtu > DEFAULT_BUFSIZE)
926 		ret = BUF_SIZE_2KiB;
927 	else
928 		ret = DEFAULT_BUFSIZE;
929 
930 	return ret;
931 }
932 
933 /**
934  * stmmac_clear_descriptors: clear descriptors
935  * @priv: driver private structure
936  * Description: this function is called to clear the tx and rx descriptors
937  * in case of both basic and extended descriptors are used.
938  */
939 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
940 {
941 	int i;
942 	unsigned int txsize = priv->dma_tx_size;
943 	unsigned int rxsize = priv->dma_rx_size;
944 
945 	/* Clear the Rx/Tx descriptors */
946 	for (i = 0; i < rxsize; i++)
947 		if (priv->extend_desc)
948 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
949 						     priv->use_riwt, priv->mode,
950 						     (i == rxsize - 1));
951 		else
952 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
953 						     priv->use_riwt, priv->mode,
954 						     (i == rxsize - 1));
955 	for (i = 0; i < txsize; i++)
956 		if (priv->extend_desc)
957 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
958 						     priv->mode,
959 						     (i == txsize - 1));
960 		else
961 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
962 						     priv->mode,
963 						     (i == txsize - 1));
964 }
965 
966 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
967 				  int i, gfp_t flags)
968 {
969 	struct sk_buff *skb;
970 
971 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
972 				 flags);
973 	if (!skb) {
974 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
975 		return -ENOMEM;
976 	}
977 	skb_reserve(skb, NET_IP_ALIGN);
978 	priv->rx_skbuff[i] = skb;
979 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
980 						priv->dma_buf_sz,
981 						DMA_FROM_DEVICE);
982 	if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) {
983 		pr_err("%s: DMA mapping error\n", __func__);
984 		dev_kfree_skb_any(skb);
985 		return -EINVAL;
986 	}
987 
988 	p->des2 = priv->rx_skbuff_dma[i];
989 
990 	if ((priv->hw->mode->init_desc3) &&
991 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
992 		priv->hw->mode->init_desc3(p);
993 
994 	return 0;
995 }
996 
997 static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i)
998 {
999 	if (priv->rx_skbuff[i]) {
1000 		dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1001 				 priv->dma_buf_sz, DMA_FROM_DEVICE);
1002 		dev_kfree_skb_any(priv->rx_skbuff[i]);
1003 	}
1004 	priv->rx_skbuff[i] = NULL;
1005 }
1006 
1007 /**
1008  * init_dma_desc_rings - init the RX/TX descriptor rings
1009  * @dev: net device structure
1010  * Description:  this function initializes the DMA RX/TX descriptors
1011  * and allocates the socket buffers. It suppors the chained and ring
1012  * modes.
1013  */
1014 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1015 {
1016 	int i;
1017 	struct stmmac_priv *priv = netdev_priv(dev);
1018 	unsigned int txsize = priv->dma_tx_size;
1019 	unsigned int rxsize = priv->dma_rx_size;
1020 	unsigned int bfsize = 0;
1021 	int ret = -ENOMEM;
1022 
1023 	if (priv->hw->mode->set_16kib_bfsize)
1024 		bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
1025 
1026 	if (bfsize < BUF_SIZE_16KiB)
1027 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1028 
1029 	priv->dma_buf_sz = bfsize;
1030 
1031 	if (netif_msg_probe(priv))
1032 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
1033 			 txsize, rxsize, bfsize);
1034 
1035 	if (netif_msg_probe(priv)) {
1036 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1037 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1038 
1039 		/* RX INITIALIZATION */
1040 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1041 	}
1042 	for (i = 0; i < rxsize; i++) {
1043 		struct dma_desc *p;
1044 		if (priv->extend_desc)
1045 			p = &((priv->dma_erx + i)->basic);
1046 		else
1047 			p = priv->dma_rx + i;
1048 
1049 		ret = stmmac_init_rx_buffers(priv, p, i, flags);
1050 		if (ret)
1051 			goto err_init_rx_buffers;
1052 
1053 		if (netif_msg_probe(priv))
1054 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1055 				 priv->rx_skbuff[i]->data,
1056 				 (unsigned int)priv->rx_skbuff_dma[i]);
1057 	}
1058 	priv->cur_rx = 0;
1059 	priv->dirty_rx = (unsigned int)(i - rxsize);
1060 	buf_sz = bfsize;
1061 
1062 	/* Setup the chained descriptor addresses */
1063 	if (priv->mode == STMMAC_CHAIN_MODE) {
1064 		if (priv->extend_desc) {
1065 			priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy,
1066 					     rxsize, 1);
1067 			priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy,
1068 					     txsize, 1);
1069 		} else {
1070 			priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
1071 					     rxsize, 0);
1072 			priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy,
1073 					     txsize, 0);
1074 		}
1075 	}
1076 
1077 	/* TX INITIALIZATION */
1078 	for (i = 0; i < txsize; i++) {
1079 		struct dma_desc *p;
1080 		if (priv->extend_desc)
1081 			p = &((priv->dma_etx + i)->basic);
1082 		else
1083 			p = priv->dma_tx + i;
1084 		p->des2 = 0;
1085 		priv->tx_skbuff_dma[i].buf = 0;
1086 		priv->tx_skbuff_dma[i].map_as_page = false;
1087 		priv->tx_skbuff[i] = NULL;
1088 	}
1089 
1090 	priv->dirty_tx = 0;
1091 	priv->cur_tx = 0;
1092 
1093 	stmmac_clear_descriptors(priv);
1094 
1095 	if (netif_msg_hw(priv))
1096 		stmmac_display_rings(priv);
1097 
1098 	return 0;
1099 err_init_rx_buffers:
1100 	while (--i >= 0)
1101 		stmmac_free_rx_buffers(priv, i);
1102 	return ret;
1103 }
1104 
1105 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1106 {
1107 	int i;
1108 
1109 	for (i = 0; i < priv->dma_rx_size; i++)
1110 		stmmac_free_rx_buffers(priv, i);
1111 }
1112 
1113 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1114 {
1115 	int i;
1116 
1117 	for (i = 0; i < priv->dma_tx_size; i++) {
1118 		struct dma_desc *p;
1119 
1120 		if (priv->extend_desc)
1121 			p = &((priv->dma_etx + i)->basic);
1122 		else
1123 			p = priv->dma_tx + i;
1124 
1125 		if (priv->tx_skbuff_dma[i].buf) {
1126 			if (priv->tx_skbuff_dma[i].map_as_page)
1127 				dma_unmap_page(priv->device,
1128 					       priv->tx_skbuff_dma[i].buf,
1129 					       priv->hw->desc->get_tx_len(p),
1130 					       DMA_TO_DEVICE);
1131 			else
1132 				dma_unmap_single(priv->device,
1133 						 priv->tx_skbuff_dma[i].buf,
1134 						 priv->hw->desc->get_tx_len(p),
1135 						 DMA_TO_DEVICE);
1136 		}
1137 
1138 		if (priv->tx_skbuff[i] != NULL) {
1139 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1140 			priv->tx_skbuff[i] = NULL;
1141 			priv->tx_skbuff_dma[i].buf = 0;
1142 			priv->tx_skbuff_dma[i].map_as_page = false;
1143 		}
1144 	}
1145 }
1146 
1147 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1148 {
1149 	unsigned int txsize = priv->dma_tx_size;
1150 	unsigned int rxsize = priv->dma_rx_size;
1151 	int ret = -ENOMEM;
1152 
1153 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1154 					    GFP_KERNEL);
1155 	if (!priv->rx_skbuff_dma)
1156 		return -ENOMEM;
1157 
1158 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1159 					GFP_KERNEL);
1160 	if (!priv->rx_skbuff)
1161 		goto err_rx_skbuff;
1162 
1163 	priv->tx_skbuff_dma = kmalloc_array(txsize,
1164 					    sizeof(*priv->tx_skbuff_dma),
1165 					    GFP_KERNEL);
1166 	if (!priv->tx_skbuff_dma)
1167 		goto err_tx_skbuff_dma;
1168 
1169 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1170 					GFP_KERNEL);
1171 	if (!priv->tx_skbuff)
1172 		goto err_tx_skbuff;
1173 
1174 	if (priv->extend_desc) {
1175 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1176 						   sizeof(struct
1177 							  dma_extended_desc),
1178 						   &priv->dma_rx_phy,
1179 						   GFP_KERNEL);
1180 		if (!priv->dma_erx)
1181 			goto err_dma;
1182 
1183 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1184 						   sizeof(struct
1185 							  dma_extended_desc),
1186 						   &priv->dma_tx_phy,
1187 						   GFP_KERNEL);
1188 		if (!priv->dma_etx) {
1189 			dma_free_coherent(priv->device, priv->dma_rx_size *
1190 					sizeof(struct dma_extended_desc),
1191 					priv->dma_erx, priv->dma_rx_phy);
1192 			goto err_dma;
1193 		}
1194 	} else {
1195 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1196 						  sizeof(struct dma_desc),
1197 						  &priv->dma_rx_phy,
1198 						  GFP_KERNEL);
1199 		if (!priv->dma_rx)
1200 			goto err_dma;
1201 
1202 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1203 						  sizeof(struct dma_desc),
1204 						  &priv->dma_tx_phy,
1205 						  GFP_KERNEL);
1206 		if (!priv->dma_tx) {
1207 			dma_free_coherent(priv->device, priv->dma_rx_size *
1208 					sizeof(struct dma_desc),
1209 					priv->dma_rx, priv->dma_rx_phy);
1210 			goto err_dma;
1211 		}
1212 	}
1213 
1214 	return 0;
1215 
1216 err_dma:
1217 	kfree(priv->tx_skbuff);
1218 err_tx_skbuff:
1219 	kfree(priv->tx_skbuff_dma);
1220 err_tx_skbuff_dma:
1221 	kfree(priv->rx_skbuff);
1222 err_rx_skbuff:
1223 	kfree(priv->rx_skbuff_dma);
1224 	return ret;
1225 }
1226 
1227 static void free_dma_desc_resources(struct stmmac_priv *priv)
1228 {
1229 	/* Release the DMA TX/RX socket buffers */
1230 	dma_free_rx_skbufs(priv);
1231 	dma_free_tx_skbufs(priv);
1232 
1233 	/* Free DMA regions of consistent memory previously allocated */
1234 	if (!priv->extend_desc) {
1235 		dma_free_coherent(priv->device,
1236 				  priv->dma_tx_size * sizeof(struct dma_desc),
1237 				  priv->dma_tx, priv->dma_tx_phy);
1238 		dma_free_coherent(priv->device,
1239 				  priv->dma_rx_size * sizeof(struct dma_desc),
1240 				  priv->dma_rx, priv->dma_rx_phy);
1241 	} else {
1242 		dma_free_coherent(priv->device, priv->dma_tx_size *
1243 				  sizeof(struct dma_extended_desc),
1244 				  priv->dma_etx, priv->dma_tx_phy);
1245 		dma_free_coherent(priv->device, priv->dma_rx_size *
1246 				  sizeof(struct dma_extended_desc),
1247 				  priv->dma_erx, priv->dma_rx_phy);
1248 	}
1249 	kfree(priv->rx_skbuff_dma);
1250 	kfree(priv->rx_skbuff);
1251 	kfree(priv->tx_skbuff_dma);
1252 	kfree(priv->tx_skbuff);
1253 }
1254 
1255 /**
1256  *  stmmac_dma_operation_mode - HW DMA operation mode
1257  *  @priv: driver private structure
1258  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1259  *  or Store-And-Forward capability.
1260  */
1261 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1262 {
1263 	if (priv->plat->force_thresh_dma_mode)
1264 		priv->hw->dma->dma_mode(priv->ioaddr, tc, tc);
1265 	else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1266 		/*
1267 		 * In case of GMAC, SF mode can be enabled
1268 		 * to perform the TX COE in HW. This depends on:
1269 		 * 1) TX COE if actually supported
1270 		 * 2) There is no bugged Jumbo frame support
1271 		 *    that needs to not insert csum in the TDES.
1272 		 */
1273 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1274 		tc = SF_DMA_MODE;
1275 	} else
1276 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1277 }
1278 
1279 /**
1280  * stmmac_tx_clean:
1281  * @priv: driver private structure
1282  * Description: it reclaims resources after transmission completes.
1283  */
1284 static void stmmac_tx_clean(struct stmmac_priv *priv)
1285 {
1286 	unsigned int txsize = priv->dma_tx_size;
1287 
1288 	spin_lock(&priv->tx_lock);
1289 
1290 	priv->xstats.tx_clean++;
1291 
1292 	while (priv->dirty_tx != priv->cur_tx) {
1293 		int last;
1294 		unsigned int entry = priv->dirty_tx % txsize;
1295 		struct sk_buff *skb = priv->tx_skbuff[entry];
1296 		struct dma_desc *p;
1297 
1298 		if (priv->extend_desc)
1299 			p = (struct dma_desc *)(priv->dma_etx + entry);
1300 		else
1301 			p = priv->dma_tx + entry;
1302 
1303 		/* Check if the descriptor is owned by the DMA. */
1304 		if (priv->hw->desc->get_tx_owner(p))
1305 			break;
1306 
1307 		/* Verify tx error by looking at the last segment. */
1308 		last = priv->hw->desc->get_tx_ls(p);
1309 		if (likely(last)) {
1310 			int tx_error =
1311 			    priv->hw->desc->tx_status(&priv->dev->stats,
1312 						      &priv->xstats, p,
1313 						      priv->ioaddr);
1314 			if (likely(tx_error == 0)) {
1315 				priv->dev->stats.tx_packets++;
1316 				priv->xstats.tx_pkt_n++;
1317 			} else
1318 				priv->dev->stats.tx_errors++;
1319 
1320 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1321 		}
1322 		if (netif_msg_tx_done(priv))
1323 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1324 				 priv->cur_tx, priv->dirty_tx);
1325 
1326 		if (likely(priv->tx_skbuff_dma[entry].buf)) {
1327 			if (priv->tx_skbuff_dma[entry].map_as_page)
1328 				dma_unmap_page(priv->device,
1329 					       priv->tx_skbuff_dma[entry].buf,
1330 					       priv->hw->desc->get_tx_len(p),
1331 					       DMA_TO_DEVICE);
1332 			else
1333 				dma_unmap_single(priv->device,
1334 						 priv->tx_skbuff_dma[entry].buf,
1335 						 priv->hw->desc->get_tx_len(p),
1336 						 DMA_TO_DEVICE);
1337 			priv->tx_skbuff_dma[entry].buf = 0;
1338 			priv->tx_skbuff_dma[entry].map_as_page = false;
1339 		}
1340 		priv->hw->mode->clean_desc3(priv, p);
1341 
1342 		if (likely(skb != NULL)) {
1343 			dev_consume_skb_any(skb);
1344 			priv->tx_skbuff[entry] = NULL;
1345 		}
1346 
1347 		priv->hw->desc->release_tx_desc(p, priv->mode);
1348 
1349 		priv->dirty_tx++;
1350 	}
1351 	if (unlikely(netif_queue_stopped(priv->dev) &&
1352 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1353 		netif_tx_lock(priv->dev);
1354 		if (netif_queue_stopped(priv->dev) &&
1355 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1356 			if (netif_msg_tx_done(priv))
1357 				pr_debug("%s: restart transmit\n", __func__);
1358 			netif_wake_queue(priv->dev);
1359 		}
1360 		netif_tx_unlock(priv->dev);
1361 	}
1362 
1363 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1364 		stmmac_enable_eee_mode(priv);
1365 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1366 	}
1367 	spin_unlock(&priv->tx_lock);
1368 }
1369 
1370 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1371 {
1372 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1373 }
1374 
1375 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1376 {
1377 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1378 }
1379 
1380 /**
1381  * stmmac_tx_err: irq tx error mng function
1382  * @priv: driver private structure
1383  * Description: it cleans the descriptors and restarts the transmission
1384  * in case of errors.
1385  */
1386 static void stmmac_tx_err(struct stmmac_priv *priv)
1387 {
1388 	int i;
1389 	int txsize = priv->dma_tx_size;
1390 	netif_stop_queue(priv->dev);
1391 
1392 	priv->hw->dma->stop_tx(priv->ioaddr);
1393 	dma_free_tx_skbufs(priv);
1394 	for (i = 0; i < txsize; i++)
1395 		if (priv->extend_desc)
1396 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1397 						     priv->mode,
1398 						     (i == txsize - 1));
1399 		else
1400 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1401 						     priv->mode,
1402 						     (i == txsize - 1));
1403 	priv->dirty_tx = 0;
1404 	priv->cur_tx = 0;
1405 	priv->hw->dma->start_tx(priv->ioaddr);
1406 
1407 	priv->dev->stats.tx_errors++;
1408 	netif_wake_queue(priv->dev);
1409 }
1410 
1411 /**
1412  * stmmac_dma_interrupt: DMA ISR
1413  * @priv: driver private structure
1414  * Description: this is the DMA ISR. It is called by the main ISR.
1415  * It calls the dwmac dma routine to understand which type of interrupt
1416  * happened. In case of there is a Normal interrupt and either TX or RX
1417  * interrupt happened so the NAPI is scheduled.
1418  */
1419 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1420 {
1421 	int status;
1422 
1423 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1424 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1425 		if (likely(napi_schedule_prep(&priv->napi))) {
1426 			stmmac_disable_dma_irq(priv);
1427 			__napi_schedule(&priv->napi);
1428 		}
1429 	}
1430 	if (unlikely(status & tx_hard_error_bump_tc)) {
1431 		/* Try to bump up the dma threshold on this failure */
1432 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1433 			tc += 64;
1434 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1435 			priv->xstats.threshold = tc;
1436 		}
1437 	} else if (unlikely(status == tx_hard_error))
1438 		stmmac_tx_err(priv);
1439 }
1440 
1441 /**
1442  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1443  * @priv: driver private structure
1444  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1445  */
1446 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1447 {
1448 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1449 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1450 
1451 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1452 
1453 	if (priv->dma_cap.rmon) {
1454 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1455 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1456 	} else
1457 		pr_info(" No MAC Management Counters available\n");
1458 }
1459 
1460 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1461 {
1462 	u32 hwid = priv->hw->synopsys_uid;
1463 
1464 	/* Check Synopsys Id (not available on old chips) */
1465 	if (likely(hwid)) {
1466 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1467 		u32 synid = (hwid & 0x000000ff);
1468 
1469 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1470 			uid, synid);
1471 
1472 		return synid;
1473 	}
1474 	return 0;
1475 }
1476 
1477 /**
1478  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1479  * @priv: driver private structure
1480  * Description: select the Enhanced/Alternate or Normal descriptors.
1481  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1482  * supported by the HW cap. register.
1483  */
1484 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1485 {
1486 	if (priv->plat->enh_desc) {
1487 		pr_info(" Enhanced/Alternate descriptors\n");
1488 
1489 		/* GMAC older than 3.50 has no extended descriptors */
1490 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1491 			pr_info("\tEnabled extended descriptors\n");
1492 			priv->extend_desc = 1;
1493 		} else
1494 			pr_warn("Extended descriptors not supported\n");
1495 
1496 		priv->hw->desc = &enh_desc_ops;
1497 	} else {
1498 		pr_info(" Normal descriptors\n");
1499 		priv->hw->desc = &ndesc_ops;
1500 	}
1501 }
1502 
1503 /**
1504  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1505  * @priv: driver private structure
1506  * Description:
1507  *  new GMAC chip generations have a new register to indicate the
1508  *  presence of the optional feature/functions.
1509  *  This can be also used to override the value passed through the
1510  *  platform and necessary for old MAC10/100 and GMAC chips.
1511  */
1512 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1513 {
1514 	u32 hw_cap = 0;
1515 
1516 	if (priv->hw->dma->get_hw_feature) {
1517 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1518 
1519 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1520 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1521 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1522 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1523 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1524 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1525 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1526 		priv->dma_cap.pmt_remote_wake_up =
1527 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1528 		priv->dma_cap.pmt_magic_frame =
1529 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1530 		/* MMC */
1531 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1532 		/* IEEE 1588-2002 */
1533 		priv->dma_cap.time_stamp =
1534 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1535 		/* IEEE 1588-2008 */
1536 		priv->dma_cap.atime_stamp =
1537 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1538 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1539 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1540 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1541 		/* TX and RX csum */
1542 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1543 		priv->dma_cap.rx_coe_type1 =
1544 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1545 		priv->dma_cap.rx_coe_type2 =
1546 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1547 		priv->dma_cap.rxfifo_over_2048 =
1548 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1549 		/* TX and RX number of channels */
1550 		priv->dma_cap.number_rx_channel =
1551 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1552 		priv->dma_cap.number_tx_channel =
1553 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1554 		/* Alternate (enhanced) DESC mode */
1555 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1556 	}
1557 
1558 	return hw_cap;
1559 }
1560 
1561 /**
1562  * stmmac_check_ether_addr: check if the MAC addr is valid
1563  * @priv: driver private structure
1564  * Description:
1565  * it is to verify if the MAC address is valid, in case of failures it
1566  * generates a random MAC address
1567  */
1568 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1569 {
1570 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1571 		priv->hw->mac->get_umac_addr(priv->hw,
1572 					     priv->dev->dev_addr, 0);
1573 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1574 			eth_hw_addr_random(priv->dev);
1575 		pr_info("%s: device MAC address %pM\n", priv->dev->name,
1576 			priv->dev->dev_addr);
1577 	}
1578 }
1579 
1580 /**
1581  * stmmac_init_dma_engine: DMA init.
1582  * @priv: driver private structure
1583  * Description:
1584  * It inits the DMA invoking the specific MAC/GMAC callback.
1585  * Some DMA parameters can be passed from the platform;
1586  * in case of these are not passed a default is kept for the MAC or GMAC.
1587  */
1588 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1589 {
1590 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1591 	int mixed_burst = 0;
1592 	int atds = 0;
1593 
1594 	if (priv->plat->dma_cfg) {
1595 		pbl = priv->plat->dma_cfg->pbl;
1596 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1597 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1598 		burst_len = priv->plat->dma_cfg->burst_len;
1599 	}
1600 
1601 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1602 		atds = 1;
1603 
1604 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1605 				   burst_len, priv->dma_tx_phy,
1606 				   priv->dma_rx_phy, atds);
1607 }
1608 
1609 /**
1610  * stmmac_tx_timer: mitigation sw timer for tx.
1611  * @data: data pointer
1612  * Description:
1613  * This is the timer handler to directly invoke the stmmac_tx_clean.
1614  */
1615 static void stmmac_tx_timer(unsigned long data)
1616 {
1617 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1618 
1619 	stmmac_tx_clean(priv);
1620 }
1621 
1622 /**
1623  * stmmac_init_tx_coalesce: init tx mitigation options.
1624  * @priv: driver private structure
1625  * Description:
1626  * This inits the transmit coalesce parameters: i.e. timer rate,
1627  * timer handler and default threshold used for enabling the
1628  * interrupt on completion bit.
1629  */
1630 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1631 {
1632 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1633 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1634 	init_timer(&priv->txtimer);
1635 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1636 	priv->txtimer.data = (unsigned long)priv;
1637 	priv->txtimer.function = stmmac_tx_timer;
1638 	add_timer(&priv->txtimer);
1639 }
1640 
1641 /**
1642  * stmmac_hw_setup: setup mac in a usable state.
1643  *  @dev : pointer to the device structure.
1644  *  Description:
1645  *  This function sets up the ip in a usable state.
1646  *  Return value:
1647  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1648  *  file on failure.
1649  */
1650 static int stmmac_hw_setup(struct net_device *dev)
1651 {
1652 	struct stmmac_priv *priv = netdev_priv(dev);
1653 	int ret;
1654 
1655 	/* DMA initialization and SW reset */
1656 	ret = stmmac_init_dma_engine(priv);
1657 	if (ret < 0) {
1658 		pr_err("%s: DMA engine initialization failed\n", __func__);
1659 		return ret;
1660 	}
1661 
1662 	/* Copy the MAC addr into the HW  */
1663 	priv->hw->mac->set_umac_addr(priv->hw, dev->dev_addr, 0);
1664 
1665 	/* If required, perform hw setup of the bus. */
1666 	if (priv->plat->bus_setup)
1667 		priv->plat->bus_setup(priv->ioaddr);
1668 
1669 	/* Initialize the MAC Core */
1670 	priv->hw->mac->core_init(priv->hw, dev->mtu);
1671 
1672 	ret = priv->hw->mac->rx_ipc(priv->hw);
1673 	if (!ret) {
1674 		pr_warn(" RX IPC Checksum Offload disabled\n");
1675 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
1676 		priv->hw->rx_csum = 0;
1677 	}
1678 
1679 	/* Enable the MAC Rx/Tx */
1680 	stmmac_set_mac(priv->ioaddr, true);
1681 
1682 	/* Set the HW DMA mode and the COE */
1683 	stmmac_dma_operation_mode(priv);
1684 
1685 	stmmac_mmc_setup(priv);
1686 
1687 	ret = stmmac_init_ptp(priv);
1688 	if (ret && ret != -EOPNOTSUPP)
1689 		pr_warn("%s: failed PTP initialisation\n", __func__);
1690 
1691 #ifdef CONFIG_STMMAC_DEBUG_FS
1692 	ret = stmmac_init_fs(dev);
1693 	if (ret < 0)
1694 		pr_warn("%s: failed debugFS registration\n", __func__);
1695 #endif
1696 	/* Start the ball rolling... */
1697 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1698 	priv->hw->dma->start_tx(priv->ioaddr);
1699 	priv->hw->dma->start_rx(priv->ioaddr);
1700 
1701 	/* Dump DMA/MAC registers */
1702 	if (netif_msg_hw(priv)) {
1703 		priv->hw->mac->dump_regs(priv->hw);
1704 		priv->hw->dma->dump_regs(priv->ioaddr);
1705 	}
1706 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1707 
1708 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1709 		priv->rx_riwt = MAX_DMA_RIWT;
1710 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1711 	}
1712 
1713 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1714 		priv->hw->mac->ctrl_ane(priv->hw, 0);
1715 
1716 	return 0;
1717 }
1718 
1719 /**
1720  *  stmmac_open - open entry point of the driver
1721  *  @dev : pointer to the device structure.
1722  *  Description:
1723  *  This function is the open entry point of the driver.
1724  *  Return value:
1725  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1726  *  file on failure.
1727  */
1728 static int stmmac_open(struct net_device *dev)
1729 {
1730 	struct stmmac_priv *priv = netdev_priv(dev);
1731 	int ret;
1732 
1733 	stmmac_check_ether_addr(priv);
1734 
1735 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1736 	    priv->pcs != STMMAC_PCS_RTBI) {
1737 		ret = stmmac_init_phy(dev);
1738 		if (ret) {
1739 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1740 			       __func__, ret);
1741 			return ret;
1742 		}
1743 	}
1744 
1745 	/* Extra statistics */
1746 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1747 	priv->xstats.threshold = tc;
1748 
1749 	/* Create and initialize the TX/RX descriptors chains. */
1750 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1751 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1752 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1753 
1754 	ret = alloc_dma_desc_resources(priv);
1755 	if (ret < 0) {
1756 		pr_err("%s: DMA descriptors allocation failed\n", __func__);
1757 		goto dma_desc_error;
1758 	}
1759 
1760 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
1761 	if (ret < 0) {
1762 		pr_err("%s: DMA descriptors initialization failed\n", __func__);
1763 		goto init_error;
1764 	}
1765 
1766 	ret = stmmac_hw_setup(dev);
1767 	if (ret < 0) {
1768 		pr_err("%s: Hw setup failed\n", __func__);
1769 		goto init_error;
1770 	}
1771 
1772 	stmmac_init_tx_coalesce(priv);
1773 
1774 	if (priv->phydev)
1775 		phy_start(priv->phydev);
1776 
1777 	/* Request the IRQ lines */
1778 	ret = request_irq(dev->irq, stmmac_interrupt,
1779 			  IRQF_SHARED, dev->name, dev);
1780 	if (unlikely(ret < 0)) {
1781 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1782 		       __func__, dev->irq, ret);
1783 		goto init_error;
1784 	}
1785 
1786 	/* Request the Wake IRQ in case of another line is used for WoL */
1787 	if (priv->wol_irq != dev->irq) {
1788 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1789 				  IRQF_SHARED, dev->name, dev);
1790 		if (unlikely(ret < 0)) {
1791 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1792 			       __func__, priv->wol_irq, ret);
1793 			goto wolirq_error;
1794 		}
1795 	}
1796 
1797 	/* Request the IRQ lines */
1798 	if (priv->lpi_irq > 0) {
1799 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1800 				  dev->name, dev);
1801 		if (unlikely(ret < 0)) {
1802 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1803 			       __func__, priv->lpi_irq, ret);
1804 			goto lpiirq_error;
1805 		}
1806 	}
1807 
1808 	napi_enable(&priv->napi);
1809 	netif_start_queue(dev);
1810 
1811 	return 0;
1812 
1813 lpiirq_error:
1814 	if (priv->wol_irq != dev->irq)
1815 		free_irq(priv->wol_irq, dev);
1816 wolirq_error:
1817 	free_irq(dev->irq, dev);
1818 
1819 init_error:
1820 	free_dma_desc_resources(priv);
1821 dma_desc_error:
1822 	if (priv->phydev)
1823 		phy_disconnect(priv->phydev);
1824 
1825 	return ret;
1826 }
1827 
1828 /**
1829  *  stmmac_release - close entry point of the driver
1830  *  @dev : device pointer.
1831  *  Description:
1832  *  This is the stop entry point of the driver.
1833  */
1834 static int stmmac_release(struct net_device *dev)
1835 {
1836 	struct stmmac_priv *priv = netdev_priv(dev);
1837 
1838 	if (priv->eee_enabled)
1839 		del_timer_sync(&priv->eee_ctrl_timer);
1840 
1841 	/* Stop and disconnect the PHY */
1842 	if (priv->phydev) {
1843 		phy_stop(priv->phydev);
1844 		phy_disconnect(priv->phydev);
1845 		priv->phydev = NULL;
1846 	}
1847 
1848 	netif_stop_queue(dev);
1849 
1850 	napi_disable(&priv->napi);
1851 
1852 	del_timer_sync(&priv->txtimer);
1853 
1854 	/* Free the IRQ lines */
1855 	free_irq(dev->irq, dev);
1856 	if (priv->wol_irq != dev->irq)
1857 		free_irq(priv->wol_irq, dev);
1858 	if (priv->lpi_irq > 0)
1859 		free_irq(priv->lpi_irq, dev);
1860 
1861 	/* Stop TX/RX DMA and clear the descriptors */
1862 	priv->hw->dma->stop_tx(priv->ioaddr);
1863 	priv->hw->dma->stop_rx(priv->ioaddr);
1864 
1865 	/* Release and free the Rx/Tx resources */
1866 	free_dma_desc_resources(priv);
1867 
1868 	/* Disable the MAC Rx/Tx */
1869 	stmmac_set_mac(priv->ioaddr, false);
1870 
1871 	netif_carrier_off(dev);
1872 
1873 #ifdef CONFIG_STMMAC_DEBUG_FS
1874 	stmmac_exit_fs();
1875 #endif
1876 
1877 	stmmac_release_ptp(priv);
1878 
1879 	return 0;
1880 }
1881 
1882 /**
1883  *  stmmac_xmit: Tx entry point of the driver
1884  *  @skb : the socket buffer
1885  *  @dev : device pointer
1886  *  Description : this is the tx entry point of the driver.
1887  *  It programs the chain or the ring and supports oversized frames
1888  *  and SG feature.
1889  */
1890 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1891 {
1892 	struct stmmac_priv *priv = netdev_priv(dev);
1893 	unsigned int txsize = priv->dma_tx_size;
1894 	unsigned int entry;
1895 	int i, csum_insertion = 0, is_jumbo = 0;
1896 	int nfrags = skb_shinfo(skb)->nr_frags;
1897 	struct dma_desc *desc, *first;
1898 	unsigned int nopaged_len = skb_headlen(skb);
1899 	unsigned int enh_desc = priv->plat->enh_desc;
1900 
1901 	spin_lock(&priv->tx_lock);
1902 
1903 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1904 		spin_unlock(&priv->tx_lock);
1905 		if (!netif_queue_stopped(dev)) {
1906 			netif_stop_queue(dev);
1907 			/* This is a hard error, log it. */
1908 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1909 		}
1910 		return NETDEV_TX_BUSY;
1911 	}
1912 
1913 	if (priv->tx_path_in_lpi_mode)
1914 		stmmac_disable_eee_mode(priv);
1915 
1916 	entry = priv->cur_tx % txsize;
1917 
1918 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1919 
1920 	if (priv->extend_desc)
1921 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1922 	else
1923 		desc = priv->dma_tx + entry;
1924 
1925 	first = desc;
1926 
1927 	/* To program the descriptors according to the size of the frame */
1928 	if (enh_desc)
1929 		is_jumbo = priv->hw->mode->is_jumbo_frm(skb->len, enh_desc);
1930 
1931 	if (likely(!is_jumbo)) {
1932 		desc->des2 = dma_map_single(priv->device, skb->data,
1933 					    nopaged_len, DMA_TO_DEVICE);
1934 		if (dma_mapping_error(priv->device, desc->des2))
1935 			goto dma_map_err;
1936 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1937 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1938 						csum_insertion, priv->mode);
1939 	} else {
1940 		desc = first;
1941 		entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion);
1942 		if (unlikely(entry < 0))
1943 			goto dma_map_err;
1944 	}
1945 
1946 	for (i = 0; i < nfrags; i++) {
1947 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1948 		int len = skb_frag_size(frag);
1949 
1950 		priv->tx_skbuff[entry] = NULL;
1951 		entry = (++priv->cur_tx) % txsize;
1952 		if (priv->extend_desc)
1953 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1954 		else
1955 			desc = priv->dma_tx + entry;
1956 
1957 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1958 					      DMA_TO_DEVICE);
1959 		if (dma_mapping_error(priv->device, desc->des2))
1960 			goto dma_map_err; /* should reuse desc w/o issues */
1961 
1962 		priv->tx_skbuff_dma[entry].buf = desc->des2;
1963 		priv->tx_skbuff_dma[entry].map_as_page = true;
1964 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1965 						priv->mode);
1966 		wmb();
1967 		priv->hw->desc->set_tx_owner(desc);
1968 		wmb();
1969 	}
1970 
1971 	priv->tx_skbuff[entry] = skb;
1972 
1973 	/* Finalize the latest segment. */
1974 	priv->hw->desc->close_tx_desc(desc);
1975 
1976 	wmb();
1977 	/* According to the coalesce parameter the IC bit for the latest
1978 	 * segment could be reset and the timer re-started to invoke the
1979 	 * stmmac_tx function. This approach takes care about the fragments.
1980 	 */
1981 	priv->tx_count_frames += nfrags + 1;
1982 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1983 		priv->hw->desc->clear_tx_ic(desc);
1984 		priv->xstats.tx_reset_ic_bit++;
1985 		mod_timer(&priv->txtimer,
1986 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1987 	} else
1988 		priv->tx_count_frames = 0;
1989 
1990 	/* To avoid raise condition */
1991 	priv->hw->desc->set_tx_owner(first);
1992 	wmb();
1993 
1994 	priv->cur_tx++;
1995 
1996 	if (netif_msg_pktdata(priv)) {
1997 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1998 			__func__, (priv->cur_tx % txsize),
1999 			(priv->dirty_tx % txsize), entry, first, nfrags);
2000 
2001 		if (priv->extend_desc)
2002 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
2003 		else
2004 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
2005 
2006 		pr_debug(">>> frame to be transmitted: ");
2007 		print_pkt(skb->data, skb->len);
2008 	}
2009 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
2010 		if (netif_msg_hw(priv))
2011 			pr_debug("%s: stop transmitted packets\n", __func__);
2012 		netif_stop_queue(dev);
2013 	}
2014 
2015 	dev->stats.tx_bytes += skb->len;
2016 
2017 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2018 		     priv->hwts_tx_en)) {
2019 		/* declare that device is doing timestamping */
2020 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2021 		priv->hw->desc->enable_tx_timestamp(first);
2022 	}
2023 
2024 	if (!priv->hwts_tx_en)
2025 		skb_tx_timestamp(skb);
2026 
2027 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
2028 
2029 	spin_unlock(&priv->tx_lock);
2030 	return NETDEV_TX_OK;
2031 
2032 dma_map_err:
2033 	spin_unlock(&priv->tx_lock);
2034 	dev_err(priv->device, "Tx dma map failed\n");
2035 	dev_kfree_skb(skb);
2036 	priv->dev->stats.tx_dropped++;
2037 	return NETDEV_TX_OK;
2038 }
2039 
2040 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
2041 {
2042 	struct ethhdr *ehdr;
2043 	u16 vlanid;
2044 
2045 	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) ==
2046 	    NETIF_F_HW_VLAN_CTAG_RX &&
2047 	    !__vlan_get_tag(skb, &vlanid)) {
2048 		/* pop the vlan tag */
2049 		ehdr = (struct ethhdr *)skb->data;
2050 		memmove(skb->data + VLAN_HLEN, ehdr, ETH_ALEN * 2);
2051 		skb_pull(skb, VLAN_HLEN);
2052 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlanid);
2053 	}
2054 }
2055 
2056 
2057 /**
2058  * stmmac_rx_refill: refill used skb preallocated buffers
2059  * @priv: driver private structure
2060  * Description : this is to reallocate the skb for the reception process
2061  * that is based on zero-copy.
2062  */
2063 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
2064 {
2065 	unsigned int rxsize = priv->dma_rx_size;
2066 	int bfsize = priv->dma_buf_sz;
2067 
2068 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
2069 		unsigned int entry = priv->dirty_rx % rxsize;
2070 		struct dma_desc *p;
2071 
2072 		if (priv->extend_desc)
2073 			p = (struct dma_desc *)(priv->dma_erx + entry);
2074 		else
2075 			p = priv->dma_rx + entry;
2076 
2077 		if (likely(priv->rx_skbuff[entry] == NULL)) {
2078 			struct sk_buff *skb;
2079 
2080 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
2081 
2082 			if (unlikely(skb == NULL))
2083 				break;
2084 
2085 			priv->rx_skbuff[entry] = skb;
2086 			priv->rx_skbuff_dma[entry] =
2087 			    dma_map_single(priv->device, skb->data, bfsize,
2088 					   DMA_FROM_DEVICE);
2089 			if (dma_mapping_error(priv->device,
2090 					      priv->rx_skbuff_dma[entry])) {
2091 				dev_err(priv->device, "Rx dma map failed\n");
2092 				dev_kfree_skb(skb);
2093 				break;
2094 			}
2095 			p->des2 = priv->rx_skbuff_dma[entry];
2096 
2097 			priv->hw->mode->refill_desc3(priv, p);
2098 
2099 			if (netif_msg_rx_status(priv))
2100 				pr_debug("\trefill entry #%d\n", entry);
2101 		}
2102 		wmb();
2103 		priv->hw->desc->set_rx_owner(p);
2104 		wmb();
2105 	}
2106 }
2107 
2108 /**
2109  * stmmac_rx_refill: refill used skb preallocated buffers
2110  * @priv: driver private structure
2111  * @limit: napi bugget.
2112  * Description :  this the function called by the napi poll method.
2113  * It gets all the frames inside the ring.
2114  */
2115 static int stmmac_rx(struct stmmac_priv *priv, int limit)
2116 {
2117 	unsigned int rxsize = priv->dma_rx_size;
2118 	unsigned int entry = priv->cur_rx % rxsize;
2119 	unsigned int next_entry;
2120 	unsigned int count = 0;
2121 	int coe = priv->hw->rx_csum;
2122 
2123 	if (netif_msg_rx_status(priv)) {
2124 		pr_debug("%s: descriptor ring:\n", __func__);
2125 		if (priv->extend_desc)
2126 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
2127 		else
2128 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2129 	}
2130 	while (count < limit) {
2131 		int status;
2132 		struct dma_desc *p;
2133 
2134 		if (priv->extend_desc)
2135 			p = (struct dma_desc *)(priv->dma_erx + entry);
2136 		else
2137 			p = priv->dma_rx + entry;
2138 
2139 		if (priv->hw->desc->get_rx_owner(p))
2140 			break;
2141 
2142 		count++;
2143 
2144 		next_entry = (++priv->cur_rx) % rxsize;
2145 		if (priv->extend_desc)
2146 			prefetch(priv->dma_erx + next_entry);
2147 		else
2148 			prefetch(priv->dma_rx + next_entry);
2149 
2150 		/* read the status of the incoming frame */
2151 		status = priv->hw->desc->rx_status(&priv->dev->stats,
2152 						   &priv->xstats, p);
2153 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2154 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
2155 							   &priv->xstats,
2156 							   priv->dma_erx +
2157 							   entry);
2158 		if (unlikely(status == discard_frame)) {
2159 			priv->dev->stats.rx_errors++;
2160 			if (priv->hwts_rx_en && !priv->extend_desc) {
2161 				/* DESC2 & DESC3 will be overwitten by device
2162 				 * with timestamp value, hence reinitialize
2163 				 * them in stmmac_rx_refill() function so that
2164 				 * device can reuse it.
2165 				 */
2166 				priv->rx_skbuff[entry] = NULL;
2167 				dma_unmap_single(priv->device,
2168 						 priv->rx_skbuff_dma[entry],
2169 						 priv->dma_buf_sz,
2170 						 DMA_FROM_DEVICE);
2171 			}
2172 		} else {
2173 			struct sk_buff *skb;
2174 			int frame_len;
2175 
2176 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2177 
2178 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2179 			 * Type frames (LLC/LLC-SNAP)
2180 			 */
2181 			if (unlikely(status != llc_snap))
2182 				frame_len -= ETH_FCS_LEN;
2183 
2184 			if (netif_msg_rx_status(priv)) {
2185 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2186 					 p, entry, p->des2);
2187 				if (frame_len > ETH_FRAME_LEN)
2188 					pr_debug("\tframe size %d, COE: %d\n",
2189 						 frame_len, status);
2190 			}
2191 			skb = priv->rx_skbuff[entry];
2192 			if (unlikely(!skb)) {
2193 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2194 				       priv->dev->name);
2195 				priv->dev->stats.rx_dropped++;
2196 				break;
2197 			}
2198 			prefetch(skb->data - NET_IP_ALIGN);
2199 			priv->rx_skbuff[entry] = NULL;
2200 
2201 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2202 
2203 			skb_put(skb, frame_len);
2204 			dma_unmap_single(priv->device,
2205 					 priv->rx_skbuff_dma[entry],
2206 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2207 
2208 			if (netif_msg_pktdata(priv)) {
2209 				pr_debug("frame received (%dbytes)", frame_len);
2210 				print_pkt(skb->data, frame_len);
2211 			}
2212 
2213 			stmmac_rx_vlan(priv->dev, skb);
2214 
2215 			skb->protocol = eth_type_trans(skb, priv->dev);
2216 
2217 			if (unlikely(!coe))
2218 				skb_checksum_none_assert(skb);
2219 			else
2220 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2221 
2222 			napi_gro_receive(&priv->napi, skb);
2223 
2224 			priv->dev->stats.rx_packets++;
2225 			priv->dev->stats.rx_bytes += frame_len;
2226 		}
2227 		entry = next_entry;
2228 	}
2229 
2230 	stmmac_rx_refill(priv);
2231 
2232 	priv->xstats.rx_pkt_n += count;
2233 
2234 	return count;
2235 }
2236 
2237 /**
2238  *  stmmac_poll - stmmac poll method (NAPI)
2239  *  @napi : pointer to the napi structure.
2240  *  @budget : maximum number of packets that the current CPU can receive from
2241  *	      all interfaces.
2242  *  Description :
2243  *  To look at the incoming frames and clear the tx resources.
2244  */
2245 static int stmmac_poll(struct napi_struct *napi, int budget)
2246 {
2247 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2248 	int work_done = 0;
2249 
2250 	priv->xstats.napi_poll++;
2251 	stmmac_tx_clean(priv);
2252 
2253 	work_done = stmmac_rx(priv, budget);
2254 	if (work_done < budget) {
2255 		napi_complete(napi);
2256 		stmmac_enable_dma_irq(priv);
2257 	}
2258 	return work_done;
2259 }
2260 
2261 /**
2262  *  stmmac_tx_timeout
2263  *  @dev : Pointer to net device structure
2264  *  Description: this function is called when a packet transmission fails to
2265  *   complete within a reasonable time. The driver will mark the error in the
2266  *   netdev structure and arrange for the device to be reset to a sane state
2267  *   in order to transmit a new packet.
2268  */
2269 static void stmmac_tx_timeout(struct net_device *dev)
2270 {
2271 	struct stmmac_priv *priv = netdev_priv(dev);
2272 
2273 	/* Clear Tx resources and restart transmitting again */
2274 	stmmac_tx_err(priv);
2275 }
2276 
2277 /**
2278  *  stmmac_set_rx_mode - entry point for multicast addressing
2279  *  @dev : pointer to the device structure
2280  *  Description:
2281  *  This function is a driver entry point which gets called by the kernel
2282  *  whenever multicast addresses must be enabled/disabled.
2283  *  Return value:
2284  *  void.
2285  */
2286 static void stmmac_set_rx_mode(struct net_device *dev)
2287 {
2288 	struct stmmac_priv *priv = netdev_priv(dev);
2289 
2290 	priv->hw->mac->set_filter(priv->hw, dev);
2291 }
2292 
2293 /**
2294  *  stmmac_change_mtu - entry point to change MTU size for the device.
2295  *  @dev : device pointer.
2296  *  @new_mtu : the new MTU size for the device.
2297  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2298  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2299  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2300  *  Return value:
2301  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2302  *  file on failure.
2303  */
2304 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2305 {
2306 	struct stmmac_priv *priv = netdev_priv(dev);
2307 	int max_mtu;
2308 
2309 	if (netif_running(dev)) {
2310 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2311 		return -EBUSY;
2312 	}
2313 
2314 	if (priv->plat->enh_desc)
2315 		max_mtu = JUMBO_LEN;
2316 	else
2317 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2318 
2319 	if (priv->plat->maxmtu < max_mtu)
2320 		max_mtu = priv->plat->maxmtu;
2321 
2322 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2323 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2324 		return -EINVAL;
2325 	}
2326 
2327 	dev->mtu = new_mtu;
2328 	netdev_update_features(dev);
2329 
2330 	return 0;
2331 }
2332 
2333 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2334 					     netdev_features_t features)
2335 {
2336 	struct stmmac_priv *priv = netdev_priv(dev);
2337 
2338 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2339 		features &= ~NETIF_F_RXCSUM;
2340 
2341 	if (!priv->plat->tx_coe)
2342 		features &= ~NETIF_F_ALL_CSUM;
2343 
2344 	/* Some GMAC devices have a bugged Jumbo frame support that
2345 	 * needs to have the Tx COE disabled for oversized frames
2346 	 * (due to limited buffer sizes). In this case we disable
2347 	 * the TX csum insertionin the TDES and not use SF.
2348 	 */
2349 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2350 		features &= ~NETIF_F_ALL_CSUM;
2351 
2352 	return features;
2353 }
2354 
2355 static int stmmac_set_features(struct net_device *netdev,
2356 			       netdev_features_t features)
2357 {
2358 	struct stmmac_priv *priv = netdev_priv(netdev);
2359 
2360 	/* Keep the COE Type in case of csum is supporting */
2361 	if (features & NETIF_F_RXCSUM)
2362 		priv->hw->rx_csum = priv->plat->rx_coe;
2363 	else
2364 		priv->hw->rx_csum = 0;
2365 	/* No check needed because rx_coe has been set before and it will be
2366 	 * fixed in case of issue.
2367 	 */
2368 	priv->hw->mac->rx_ipc(priv->hw);
2369 
2370 	return 0;
2371 }
2372 
2373 /**
2374  *  stmmac_interrupt - main ISR
2375  *  @irq: interrupt number.
2376  *  @dev_id: to pass the net device pointer.
2377  *  Description: this is the main driver interrupt service routine.
2378  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2379  *  interrupts.
2380  */
2381 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2382 {
2383 	struct net_device *dev = (struct net_device *)dev_id;
2384 	struct stmmac_priv *priv = netdev_priv(dev);
2385 
2386 	if (priv->irq_wake)
2387 		pm_wakeup_event(priv->device, 0);
2388 
2389 	if (unlikely(!dev)) {
2390 		pr_err("%s: invalid dev pointer\n", __func__);
2391 		return IRQ_NONE;
2392 	}
2393 
2394 	/* To handle GMAC own interrupts */
2395 	if (priv->plat->has_gmac) {
2396 		int status = priv->hw->mac->host_irq_status(priv->hw,
2397 							    &priv->xstats);
2398 		if (unlikely(status)) {
2399 			/* For LPI we need to save the tx status */
2400 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2401 				priv->tx_path_in_lpi_mode = true;
2402 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2403 				priv->tx_path_in_lpi_mode = false;
2404 		}
2405 	}
2406 
2407 	/* To handle DMA interrupts */
2408 	stmmac_dma_interrupt(priv);
2409 
2410 	return IRQ_HANDLED;
2411 }
2412 
2413 #ifdef CONFIG_NET_POLL_CONTROLLER
2414 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2415  * to allow network I/O with interrupts disabled.
2416  */
2417 static void stmmac_poll_controller(struct net_device *dev)
2418 {
2419 	disable_irq(dev->irq);
2420 	stmmac_interrupt(dev->irq, dev);
2421 	enable_irq(dev->irq);
2422 }
2423 #endif
2424 
2425 /**
2426  *  stmmac_ioctl - Entry point for the Ioctl
2427  *  @dev: Device pointer.
2428  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2429  *  a proprietary structure used to pass information to the driver.
2430  *  @cmd: IOCTL command
2431  *  Description:
2432  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2433  */
2434 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2435 {
2436 	struct stmmac_priv *priv = netdev_priv(dev);
2437 	int ret = -EOPNOTSUPP;
2438 
2439 	if (!netif_running(dev))
2440 		return -EINVAL;
2441 
2442 	switch (cmd) {
2443 	case SIOCGMIIPHY:
2444 	case SIOCGMIIREG:
2445 	case SIOCSMIIREG:
2446 		if (!priv->phydev)
2447 			return -EINVAL;
2448 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2449 		break;
2450 	case SIOCSHWTSTAMP:
2451 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2452 		break;
2453 	default:
2454 		break;
2455 	}
2456 
2457 	return ret;
2458 }
2459 
2460 #ifdef CONFIG_STMMAC_DEBUG_FS
2461 static struct dentry *stmmac_fs_dir;
2462 static struct dentry *stmmac_rings_status;
2463 static struct dentry *stmmac_dma_cap;
2464 
2465 static void sysfs_display_ring(void *head, int size, int extend_desc,
2466 			       struct seq_file *seq)
2467 {
2468 	int i;
2469 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2470 	struct dma_desc *p = (struct dma_desc *)head;
2471 
2472 	for (i = 0; i < size; i++) {
2473 		u64 x;
2474 		if (extend_desc) {
2475 			x = *(u64 *) ep;
2476 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2477 				   i, (unsigned int)virt_to_phys(ep),
2478 				   (unsigned int)x, (unsigned int)(x >> 32),
2479 				   ep->basic.des2, ep->basic.des3);
2480 			ep++;
2481 		} else {
2482 			x = *(u64 *) p;
2483 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2484 				   i, (unsigned int)virt_to_phys(ep),
2485 				   (unsigned int)x, (unsigned int)(x >> 32),
2486 				   p->des2, p->des3);
2487 			p++;
2488 		}
2489 		seq_printf(seq, "\n");
2490 	}
2491 }
2492 
2493 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2494 {
2495 	struct net_device *dev = seq->private;
2496 	struct stmmac_priv *priv = netdev_priv(dev);
2497 	unsigned int txsize = priv->dma_tx_size;
2498 	unsigned int rxsize = priv->dma_rx_size;
2499 
2500 	if (priv->extend_desc) {
2501 		seq_printf(seq, "Extended RX descriptor ring:\n");
2502 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2503 		seq_printf(seq, "Extended TX descriptor ring:\n");
2504 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2505 	} else {
2506 		seq_printf(seq, "RX descriptor ring:\n");
2507 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2508 		seq_printf(seq, "TX descriptor ring:\n");
2509 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2516 {
2517 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2518 }
2519 
2520 static const struct file_operations stmmac_rings_status_fops = {
2521 	.owner = THIS_MODULE,
2522 	.open = stmmac_sysfs_ring_open,
2523 	.read = seq_read,
2524 	.llseek = seq_lseek,
2525 	.release = single_release,
2526 };
2527 
2528 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2529 {
2530 	struct net_device *dev = seq->private;
2531 	struct stmmac_priv *priv = netdev_priv(dev);
2532 
2533 	if (!priv->hw_cap_support) {
2534 		seq_printf(seq, "DMA HW features not supported\n");
2535 		return 0;
2536 	}
2537 
2538 	seq_printf(seq, "==============================\n");
2539 	seq_printf(seq, "\tDMA HW features\n");
2540 	seq_printf(seq, "==============================\n");
2541 
2542 	seq_printf(seq, "\t10/100 Mbps %s\n",
2543 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2544 	seq_printf(seq, "\t1000 Mbps %s\n",
2545 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2546 	seq_printf(seq, "\tHalf duple %s\n",
2547 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2548 	seq_printf(seq, "\tHash Filter: %s\n",
2549 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2550 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2551 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2552 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2553 		   (priv->dma_cap.pcs) ? "Y" : "N");
2554 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2555 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2556 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2557 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2558 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2559 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2560 	seq_printf(seq, "\tRMON module: %s\n",
2561 		   (priv->dma_cap.rmon) ? "Y" : "N");
2562 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2563 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2564 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2565 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2566 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2567 		   (priv->dma_cap.eee) ? "Y" : "N");
2568 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2569 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2570 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2571 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2572 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2573 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2574 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2575 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2576 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2577 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2578 		   priv->dma_cap.number_rx_channel);
2579 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2580 		   priv->dma_cap.number_tx_channel);
2581 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2582 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2583 
2584 	return 0;
2585 }
2586 
2587 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2588 {
2589 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2590 }
2591 
2592 static const struct file_operations stmmac_dma_cap_fops = {
2593 	.owner = THIS_MODULE,
2594 	.open = stmmac_sysfs_dma_cap_open,
2595 	.read = seq_read,
2596 	.llseek = seq_lseek,
2597 	.release = single_release,
2598 };
2599 
2600 static int stmmac_init_fs(struct net_device *dev)
2601 {
2602 	/* Create debugfs entries */
2603 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2604 
2605 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2606 		pr_err("ERROR %s, debugfs create directory failed\n",
2607 		       STMMAC_RESOURCE_NAME);
2608 
2609 		return -ENOMEM;
2610 	}
2611 
2612 	/* Entry to report DMA RX/TX rings */
2613 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2614 						  S_IRUGO, stmmac_fs_dir, dev,
2615 						  &stmmac_rings_status_fops);
2616 
2617 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2618 		pr_info("ERROR creating stmmac ring debugfs file\n");
2619 		debugfs_remove(stmmac_fs_dir);
2620 
2621 		return -ENOMEM;
2622 	}
2623 
2624 	/* Entry to report the DMA HW features */
2625 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2626 					     dev, &stmmac_dma_cap_fops);
2627 
2628 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2629 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2630 		debugfs_remove(stmmac_rings_status);
2631 		debugfs_remove(stmmac_fs_dir);
2632 
2633 		return -ENOMEM;
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 static void stmmac_exit_fs(void)
2640 {
2641 	debugfs_remove(stmmac_rings_status);
2642 	debugfs_remove(stmmac_dma_cap);
2643 	debugfs_remove(stmmac_fs_dir);
2644 }
2645 #endif /* CONFIG_STMMAC_DEBUG_FS */
2646 
2647 static const struct net_device_ops stmmac_netdev_ops = {
2648 	.ndo_open = stmmac_open,
2649 	.ndo_start_xmit = stmmac_xmit,
2650 	.ndo_stop = stmmac_release,
2651 	.ndo_change_mtu = stmmac_change_mtu,
2652 	.ndo_fix_features = stmmac_fix_features,
2653 	.ndo_set_features = stmmac_set_features,
2654 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2655 	.ndo_tx_timeout = stmmac_tx_timeout,
2656 	.ndo_do_ioctl = stmmac_ioctl,
2657 #ifdef CONFIG_NET_POLL_CONTROLLER
2658 	.ndo_poll_controller = stmmac_poll_controller,
2659 #endif
2660 	.ndo_set_mac_address = eth_mac_addr,
2661 };
2662 
2663 /**
2664  *  stmmac_hw_init - Init the MAC device
2665  *  @priv: driver private structure
2666  *  Description: this function detects which MAC device
2667  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2668  *  (if supported) and sets the driver's features (for example
2669  *  to use the ring or chaine mode or support the normal/enh
2670  *  descriptor structure).
2671  */
2672 static int stmmac_hw_init(struct stmmac_priv *priv)
2673 {
2674 	struct mac_device_info *mac;
2675 
2676 	/* Identify the MAC HW device */
2677 	if (priv->plat->has_gmac) {
2678 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2679 		mac = dwmac1000_setup(priv->ioaddr,
2680 				      priv->plat->multicast_filter_bins,
2681 				      priv->plat->unicast_filter_entries);
2682 	} else {
2683 		mac = dwmac100_setup(priv->ioaddr);
2684 	}
2685 	if (!mac)
2686 		return -ENOMEM;
2687 
2688 	priv->hw = mac;
2689 
2690 	/* Get and dump the chip ID */
2691 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2692 
2693 	/* To use the chained or ring mode */
2694 	if (chain_mode) {
2695 		priv->hw->mode = &chain_mode_ops;
2696 		pr_info(" Chain mode enabled\n");
2697 		priv->mode = STMMAC_CHAIN_MODE;
2698 	} else {
2699 		priv->hw->mode = &ring_mode_ops;
2700 		pr_info(" Ring mode enabled\n");
2701 		priv->mode = STMMAC_RING_MODE;
2702 	}
2703 
2704 	/* Get the HW capability (new GMAC newer than 3.50a) */
2705 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2706 	if (priv->hw_cap_support) {
2707 		pr_info(" DMA HW capability register supported");
2708 
2709 		/* We can override some gmac/dma configuration fields: e.g.
2710 		 * enh_desc, tx_coe (e.g. that are passed through the
2711 		 * platform) with the values from the HW capability
2712 		 * register (if supported).
2713 		 */
2714 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2715 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2716 
2717 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2718 
2719 		if (priv->dma_cap.rx_coe_type2)
2720 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2721 		else if (priv->dma_cap.rx_coe_type1)
2722 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2723 
2724 	} else
2725 		pr_info(" No HW DMA feature register supported");
2726 
2727 	/* To use alternate (extended) or normal descriptor structures */
2728 	stmmac_selec_desc_mode(priv);
2729 
2730 	if (priv->plat->rx_coe) {
2731 		priv->hw->rx_csum = priv->plat->rx_coe;
2732 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2733 			priv->plat->rx_coe);
2734 	}
2735 	if (priv->plat->tx_coe)
2736 		pr_info(" TX Checksum insertion supported\n");
2737 
2738 	if (priv->plat->pmt) {
2739 		pr_info(" Wake-Up On Lan supported\n");
2740 		device_set_wakeup_capable(priv->device, 1);
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 /**
2747  * stmmac_dvr_probe
2748  * @device: device pointer
2749  * @plat_dat: platform data pointer
2750  * @addr: iobase memory address
2751  * Description: this is the main probe function used to
2752  * call the alloc_etherdev, allocate the priv structure.
2753  */
2754 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2755 				     struct plat_stmmacenet_data *plat_dat,
2756 				     void __iomem *addr)
2757 {
2758 	int ret = 0;
2759 	struct net_device *ndev = NULL;
2760 	struct stmmac_priv *priv;
2761 
2762 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2763 	if (!ndev)
2764 		return NULL;
2765 
2766 	SET_NETDEV_DEV(ndev, device);
2767 
2768 	priv = netdev_priv(ndev);
2769 	priv->device = device;
2770 	priv->dev = ndev;
2771 
2772 	stmmac_set_ethtool_ops(ndev);
2773 	priv->pause = pause;
2774 	priv->plat = plat_dat;
2775 	priv->ioaddr = addr;
2776 	priv->dev->base_addr = (unsigned long)addr;
2777 
2778 	/* Verify driver arguments */
2779 	stmmac_verify_args();
2780 
2781 	/* Override with kernel parameters if supplied XXX CRS XXX
2782 	 * this needs to have multiple instances
2783 	 */
2784 	if ((phyaddr >= 0) && (phyaddr <= 31))
2785 		priv->plat->phy_addr = phyaddr;
2786 
2787 	priv->stmmac_clk = devm_clk_get(priv->device, STMMAC_RESOURCE_NAME);
2788 	if (IS_ERR(priv->stmmac_clk)) {
2789 		dev_warn(priv->device, "%s: warning: cannot get CSR clock\n",
2790 			 __func__);
2791 		/* If failed to obtain stmmac_clk and specific clk_csr value
2792 		 * is NOT passed from the platform, probe fail.
2793 		 */
2794 		if (!priv->plat->clk_csr) {
2795 			ret = PTR_ERR(priv->stmmac_clk);
2796 			goto error_clk_get;
2797 		} else {
2798 			priv->stmmac_clk = NULL;
2799 		}
2800 	}
2801 	clk_prepare_enable(priv->stmmac_clk);
2802 
2803 	priv->stmmac_rst = devm_reset_control_get(priv->device,
2804 						  STMMAC_RESOURCE_NAME);
2805 	if (IS_ERR(priv->stmmac_rst)) {
2806 		if (PTR_ERR(priv->stmmac_rst) == -EPROBE_DEFER) {
2807 			ret = -EPROBE_DEFER;
2808 			goto error_hw_init;
2809 		}
2810 		dev_info(priv->device, "no reset control found\n");
2811 		priv->stmmac_rst = NULL;
2812 	}
2813 	if (priv->stmmac_rst)
2814 		reset_control_deassert(priv->stmmac_rst);
2815 
2816 	/* Init MAC and get the capabilities */
2817 	ret = stmmac_hw_init(priv);
2818 	if (ret)
2819 		goto error_hw_init;
2820 
2821 	ndev->netdev_ops = &stmmac_netdev_ops;
2822 
2823 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2824 			    NETIF_F_RXCSUM;
2825 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2826 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2827 #ifdef STMMAC_VLAN_TAG_USED
2828 	/* Both mac100 and gmac support receive VLAN tag detection */
2829 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2830 #endif
2831 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2832 
2833 	if (flow_ctrl)
2834 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2835 
2836 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2837 	 * In some case, for example on bugged HW this feature
2838 	 * has to be disable and this can be done by passing the
2839 	 * riwt_off field from the platform.
2840 	 */
2841 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2842 		priv->use_riwt = 1;
2843 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2844 	}
2845 
2846 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2847 
2848 	spin_lock_init(&priv->lock);
2849 	spin_lock_init(&priv->tx_lock);
2850 
2851 	ret = register_netdev(ndev);
2852 	if (ret) {
2853 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2854 		goto error_netdev_register;
2855 	}
2856 
2857 	/* If a specific clk_csr value is passed from the platform
2858 	 * this means that the CSR Clock Range selection cannot be
2859 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2860 	 * set the MDC clock dynamically according to the csr actual
2861 	 * clock input.
2862 	 */
2863 	if (!priv->plat->clk_csr)
2864 		stmmac_clk_csr_set(priv);
2865 	else
2866 		priv->clk_csr = priv->plat->clk_csr;
2867 
2868 	stmmac_check_pcs_mode(priv);
2869 
2870 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2871 	    priv->pcs != STMMAC_PCS_RTBI) {
2872 		/* MDIO bus Registration */
2873 		ret = stmmac_mdio_register(ndev);
2874 		if (ret < 0) {
2875 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2876 				 __func__, priv->plat->bus_id);
2877 			goto error_mdio_register;
2878 		}
2879 	}
2880 
2881 	return priv;
2882 
2883 error_mdio_register:
2884 	unregister_netdev(ndev);
2885 error_netdev_register:
2886 	netif_napi_del(&priv->napi);
2887 error_hw_init:
2888 	clk_disable_unprepare(priv->stmmac_clk);
2889 error_clk_get:
2890 	free_netdev(ndev);
2891 
2892 	return ERR_PTR(ret);
2893 }
2894 
2895 /**
2896  * stmmac_dvr_remove
2897  * @ndev: net device pointer
2898  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2899  * changes the link status, releases the DMA descriptor rings.
2900  */
2901 int stmmac_dvr_remove(struct net_device *ndev)
2902 {
2903 	struct stmmac_priv *priv = netdev_priv(ndev);
2904 
2905 	pr_info("%s:\n\tremoving driver", __func__);
2906 
2907 	priv->hw->dma->stop_rx(priv->ioaddr);
2908 	priv->hw->dma->stop_tx(priv->ioaddr);
2909 
2910 	stmmac_set_mac(priv->ioaddr, false);
2911 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2912 	    priv->pcs != STMMAC_PCS_RTBI)
2913 		stmmac_mdio_unregister(ndev);
2914 	netif_carrier_off(ndev);
2915 	unregister_netdev(ndev);
2916 	if (priv->stmmac_rst)
2917 		reset_control_assert(priv->stmmac_rst);
2918 	clk_disable_unprepare(priv->stmmac_clk);
2919 	free_netdev(ndev);
2920 
2921 	return 0;
2922 }
2923 
2924 #ifdef CONFIG_PM
2925 int stmmac_suspend(struct net_device *ndev)
2926 {
2927 	struct stmmac_priv *priv = netdev_priv(ndev);
2928 	unsigned long flags;
2929 
2930 	if (!ndev || !netif_running(ndev))
2931 		return 0;
2932 
2933 	if (priv->phydev)
2934 		phy_stop(priv->phydev);
2935 
2936 	spin_lock_irqsave(&priv->lock, flags);
2937 
2938 	netif_device_detach(ndev);
2939 	netif_stop_queue(ndev);
2940 
2941 	napi_disable(&priv->napi);
2942 
2943 	/* Stop TX/RX DMA */
2944 	priv->hw->dma->stop_tx(priv->ioaddr);
2945 	priv->hw->dma->stop_rx(priv->ioaddr);
2946 
2947 	stmmac_clear_descriptors(priv);
2948 
2949 	/* Enable Power down mode by programming the PMT regs */
2950 	if (device_may_wakeup(priv->device)) {
2951 		priv->hw->mac->pmt(priv->hw, priv->wolopts);
2952 		priv->irq_wake = 1;
2953 	} else {
2954 		stmmac_set_mac(priv->ioaddr, false);
2955 		pinctrl_pm_select_sleep_state(priv->device);
2956 		/* Disable clock in case of PWM is off */
2957 		clk_disable(priv->stmmac_clk);
2958 	}
2959 	spin_unlock_irqrestore(&priv->lock, flags);
2960 
2961 	priv->oldlink = 0;
2962 	priv->speed = 0;
2963 	priv->oldduplex = -1;
2964 	return 0;
2965 }
2966 
2967 int stmmac_resume(struct net_device *ndev)
2968 {
2969 	struct stmmac_priv *priv = netdev_priv(ndev);
2970 	unsigned long flags;
2971 
2972 	if (!netif_running(ndev))
2973 		return 0;
2974 
2975 	spin_lock_irqsave(&priv->lock, flags);
2976 
2977 	/* Power Down bit, into the PM register, is cleared
2978 	 * automatically as soon as a magic packet or a Wake-up frame
2979 	 * is received. Anyway, it's better to manually clear
2980 	 * this bit because it can generate problems while resuming
2981 	 * from another devices (e.g. serial console).
2982 	 */
2983 	if (device_may_wakeup(priv->device)) {
2984 		priv->hw->mac->pmt(priv->hw, 0);
2985 		priv->irq_wake = 0;
2986 	} else {
2987 		pinctrl_pm_select_default_state(priv->device);
2988 		/* enable the clk prevously disabled */
2989 		clk_enable(priv->stmmac_clk);
2990 		/* reset the phy so that it's ready */
2991 		if (priv->mii)
2992 			stmmac_mdio_reset(priv->mii);
2993 	}
2994 
2995 	netif_device_attach(ndev);
2996 
2997 	init_dma_desc_rings(ndev, GFP_ATOMIC);
2998 	stmmac_hw_setup(ndev);
2999 	stmmac_init_tx_coalesce(priv);
3000 
3001 	napi_enable(&priv->napi);
3002 
3003 	netif_start_queue(ndev);
3004 
3005 	spin_unlock_irqrestore(&priv->lock, flags);
3006 
3007 	if (priv->phydev)
3008 		phy_start(priv->phydev);
3009 
3010 	return 0;
3011 }
3012 #endif /* CONFIG_PM */
3013 
3014 /* Driver can be configured w/ and w/ both PCI and Platf drivers
3015  * depending on the configuration selected.
3016  */
3017 static int __init stmmac_init(void)
3018 {
3019 	int ret;
3020 
3021 	ret = stmmac_register_platform();
3022 	if (ret)
3023 		goto err;
3024 	ret = stmmac_register_pci();
3025 	if (ret)
3026 		goto err_pci;
3027 	return 0;
3028 err_pci:
3029 	stmmac_unregister_platform();
3030 err:
3031 	pr_err("stmmac: driver registration failed\n");
3032 	return ret;
3033 }
3034 
3035 static void __exit stmmac_exit(void)
3036 {
3037 	stmmac_unregister_platform();
3038 	stmmac_unregister_pci();
3039 }
3040 
3041 module_init(stmmac_init);
3042 module_exit(stmmac_exit);
3043 
3044 #ifndef MODULE
3045 static int __init stmmac_cmdline_opt(char *str)
3046 {
3047 	char *opt;
3048 
3049 	if (!str || !*str)
3050 		return -EINVAL;
3051 	while ((opt = strsep(&str, ",")) != NULL) {
3052 		if (!strncmp(opt, "debug:", 6)) {
3053 			if (kstrtoint(opt + 6, 0, &debug))
3054 				goto err;
3055 		} else if (!strncmp(opt, "phyaddr:", 8)) {
3056 			if (kstrtoint(opt + 8, 0, &phyaddr))
3057 				goto err;
3058 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
3059 			if (kstrtoint(opt + 11, 0, &dma_txsize))
3060 				goto err;
3061 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
3062 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
3063 				goto err;
3064 		} else if (!strncmp(opt, "buf_sz:", 7)) {
3065 			if (kstrtoint(opt + 7, 0, &buf_sz))
3066 				goto err;
3067 		} else if (!strncmp(opt, "tc:", 3)) {
3068 			if (kstrtoint(opt + 3, 0, &tc))
3069 				goto err;
3070 		} else if (!strncmp(opt, "watchdog:", 9)) {
3071 			if (kstrtoint(opt + 9, 0, &watchdog))
3072 				goto err;
3073 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
3074 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
3075 				goto err;
3076 		} else if (!strncmp(opt, "pause:", 6)) {
3077 			if (kstrtoint(opt + 6, 0, &pause))
3078 				goto err;
3079 		} else if (!strncmp(opt, "eee_timer:", 10)) {
3080 			if (kstrtoint(opt + 10, 0, &eee_timer))
3081 				goto err;
3082 		} else if (!strncmp(opt, "chain_mode:", 11)) {
3083 			if (kstrtoint(opt + 11, 0, &chain_mode))
3084 				goto err;
3085 		}
3086 	}
3087 	return 0;
3088 
3089 err:
3090 	pr_err("%s: ERROR broken module parameter conversion", __func__);
3091 	return -EINVAL;
3092 }
3093 
3094 __setup("stmmaceth=", stmmac_cmdline_opt);
3095 #endif /* MODULE */
3096 
3097 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
3098 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
3099 MODULE_LICENSE("GPL");
3100