1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
139 					  u32 rxmode, u32 chan);
140 
141 #ifdef CONFIG_DEBUG_FS
142 static const struct net_device_ops stmmac_netdev_ops;
143 static void stmmac_init_fs(struct net_device *dev);
144 static void stmmac_exit_fs(struct net_device *dev);
145 #endif
146 
147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
148 
149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
150 {
151 	int ret = 0;
152 
153 	if (enabled) {
154 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
155 		if (ret)
156 			return ret;
157 		ret = clk_prepare_enable(priv->plat->pclk);
158 		if (ret) {
159 			clk_disable_unprepare(priv->plat->stmmac_clk);
160 			return ret;
161 		}
162 		if (priv->plat->clks_config) {
163 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
164 			if (ret) {
165 				clk_disable_unprepare(priv->plat->stmmac_clk);
166 				clk_disable_unprepare(priv->plat->pclk);
167 				return ret;
168 			}
169 		}
170 	} else {
171 		clk_disable_unprepare(priv->plat->stmmac_clk);
172 		clk_disable_unprepare(priv->plat->pclk);
173 		if (priv->plat->clks_config)
174 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
175 	}
176 
177 	return ret;
178 }
179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
180 
181 /**
182  * stmmac_verify_args - verify the driver parameters.
183  * Description: it checks the driver parameters and set a default in case of
184  * errors.
185  */
186 static void stmmac_verify_args(void)
187 {
188 	if (unlikely(watchdog < 0))
189 		watchdog = TX_TIMEO;
190 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
191 		buf_sz = DEFAULT_BUFSIZE;
192 	if (unlikely(flow_ctrl > 1))
193 		flow_ctrl = FLOW_AUTO;
194 	else if (likely(flow_ctrl < 0))
195 		flow_ctrl = FLOW_OFF;
196 	if (unlikely((pause < 0) || (pause > 0xffff)))
197 		pause = PAUSE_TIME;
198 	if (eee_timer < 0)
199 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
200 }
201 
202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
203 {
204 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
205 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
206 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
207 	u32 queue;
208 
209 	for (queue = 0; queue < maxq; queue++) {
210 		struct stmmac_channel *ch = &priv->channel[queue];
211 
212 		if (stmmac_xdp_is_enabled(priv) &&
213 		    test_bit(queue, priv->af_xdp_zc_qps)) {
214 			napi_disable(&ch->rxtx_napi);
215 			continue;
216 		}
217 
218 		if (queue < rx_queues_cnt)
219 			napi_disable(&ch->rx_napi);
220 		if (queue < tx_queues_cnt)
221 			napi_disable(&ch->tx_napi);
222 	}
223 }
224 
225 /**
226  * stmmac_disable_all_queues - Disable all queues
227  * @priv: driver private structure
228  */
229 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
230 {
231 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
232 	struct stmmac_rx_queue *rx_q;
233 	u32 queue;
234 
235 	/* synchronize_rcu() needed for pending XDP buffers to drain */
236 	for (queue = 0; queue < rx_queues_cnt; queue++) {
237 		rx_q = &priv->dma_conf.rx_queue[queue];
238 		if (rx_q->xsk_pool) {
239 			synchronize_rcu();
240 			break;
241 		}
242 	}
243 
244 	__stmmac_disable_all_queues(priv);
245 }
246 
247 /**
248  * stmmac_enable_all_queues - Enable all queues
249  * @priv: driver private structure
250  */
251 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
252 {
253 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
254 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
255 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
256 	u32 queue;
257 
258 	for (queue = 0; queue < maxq; queue++) {
259 		struct stmmac_channel *ch = &priv->channel[queue];
260 
261 		if (stmmac_xdp_is_enabled(priv) &&
262 		    test_bit(queue, priv->af_xdp_zc_qps)) {
263 			napi_enable(&ch->rxtx_napi);
264 			continue;
265 		}
266 
267 		if (queue < rx_queues_cnt)
268 			napi_enable(&ch->rx_napi);
269 		if (queue < tx_queues_cnt)
270 			napi_enable(&ch->tx_napi);
271 	}
272 }
273 
274 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
275 {
276 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
277 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
278 		queue_work(priv->wq, &priv->service_task);
279 }
280 
281 static void stmmac_global_err(struct stmmac_priv *priv)
282 {
283 	netif_carrier_off(priv->dev);
284 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
285 	stmmac_service_event_schedule(priv);
286 }
287 
288 /**
289  * stmmac_clk_csr_set - dynamically set the MDC clock
290  * @priv: driver private structure
291  * Description: this is to dynamically set the MDC clock according to the csr
292  * clock input.
293  * Note:
294  *	If a specific clk_csr value is passed from the platform
295  *	this means that the CSR Clock Range selection cannot be
296  *	changed at run-time and it is fixed (as reported in the driver
297  *	documentation). Viceversa the driver will try to set the MDC
298  *	clock dynamically according to the actual clock input.
299  */
300 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
301 {
302 	u32 clk_rate;
303 
304 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
305 
306 	/* Platform provided default clk_csr would be assumed valid
307 	 * for all other cases except for the below mentioned ones.
308 	 * For values higher than the IEEE 802.3 specified frequency
309 	 * we can not estimate the proper divider as it is not known
310 	 * the frequency of clk_csr_i. So we do not change the default
311 	 * divider.
312 	 */
313 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
314 		if (clk_rate < CSR_F_35M)
315 			priv->clk_csr = STMMAC_CSR_20_35M;
316 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
317 			priv->clk_csr = STMMAC_CSR_35_60M;
318 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
319 			priv->clk_csr = STMMAC_CSR_60_100M;
320 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
321 			priv->clk_csr = STMMAC_CSR_100_150M;
322 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
323 			priv->clk_csr = STMMAC_CSR_150_250M;
324 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
325 			priv->clk_csr = STMMAC_CSR_250_300M;
326 	}
327 
328 	if (priv->plat->has_sun8i) {
329 		if (clk_rate > 160000000)
330 			priv->clk_csr = 0x03;
331 		else if (clk_rate > 80000000)
332 			priv->clk_csr = 0x02;
333 		else if (clk_rate > 40000000)
334 			priv->clk_csr = 0x01;
335 		else
336 			priv->clk_csr = 0;
337 	}
338 
339 	if (priv->plat->has_xgmac) {
340 		if (clk_rate > 400000000)
341 			priv->clk_csr = 0x5;
342 		else if (clk_rate > 350000000)
343 			priv->clk_csr = 0x4;
344 		else if (clk_rate > 300000000)
345 			priv->clk_csr = 0x3;
346 		else if (clk_rate > 250000000)
347 			priv->clk_csr = 0x2;
348 		else if (clk_rate > 150000000)
349 			priv->clk_csr = 0x1;
350 		else
351 			priv->clk_csr = 0x0;
352 	}
353 }
354 
355 static void print_pkt(unsigned char *buf, int len)
356 {
357 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
358 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
359 }
360 
361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
362 {
363 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
364 	u32 avail;
365 
366 	if (tx_q->dirty_tx > tx_q->cur_tx)
367 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
368 	else
369 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
370 
371 	return avail;
372 }
373 
374 /**
375  * stmmac_rx_dirty - Get RX queue dirty
376  * @priv: driver private structure
377  * @queue: RX queue index
378  */
379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
380 {
381 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
382 	u32 dirty;
383 
384 	if (rx_q->dirty_rx <= rx_q->cur_rx)
385 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
386 	else
387 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
388 
389 	return dirty;
390 }
391 
392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
393 {
394 	int tx_lpi_timer;
395 
396 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
397 	priv->eee_sw_timer_en = en ? 0 : 1;
398 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
399 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
400 }
401 
402 /**
403  * stmmac_enable_eee_mode - check and enter in LPI mode
404  * @priv: driver private structure
405  * Description: this function is to verify and enter in LPI mode in case of
406  * EEE.
407  */
408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
409 {
410 	u32 tx_cnt = priv->plat->tx_queues_to_use;
411 	u32 queue;
412 
413 	/* check if all TX queues have the work finished */
414 	for (queue = 0; queue < tx_cnt; queue++) {
415 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
416 
417 		if (tx_q->dirty_tx != tx_q->cur_tx)
418 			return -EBUSY; /* still unfinished work */
419 	}
420 
421 	/* Check and enter in LPI mode */
422 	if (!priv->tx_path_in_lpi_mode)
423 		stmmac_set_eee_mode(priv, priv->hw,
424 				priv->plat->en_tx_lpi_clockgating);
425 	return 0;
426 }
427 
428 /**
429  * stmmac_disable_eee_mode - disable and exit from LPI mode
430  * @priv: driver private structure
431  * Description: this function is to exit and disable EEE in case of
432  * LPI state is true. This is called by the xmit.
433  */
434 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
435 {
436 	if (!priv->eee_sw_timer_en) {
437 		stmmac_lpi_entry_timer_config(priv, 0);
438 		return;
439 	}
440 
441 	stmmac_reset_eee_mode(priv, priv->hw);
442 	del_timer_sync(&priv->eee_ctrl_timer);
443 	priv->tx_path_in_lpi_mode = false;
444 }
445 
446 /**
447  * stmmac_eee_ctrl_timer - EEE TX SW timer.
448  * @t:  timer_list struct containing private info
449  * Description:
450  *  if there is no data transfer and if we are not in LPI state,
451  *  then MAC Transmitter can be moved to LPI state.
452  */
453 static void stmmac_eee_ctrl_timer(struct timer_list *t)
454 {
455 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
456 
457 	if (stmmac_enable_eee_mode(priv))
458 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
459 }
460 
461 /**
462  * stmmac_eee_init - init EEE
463  * @priv: driver private structure
464  * Description:
465  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
466  *  can also manage EEE, this function enable the LPI state and start related
467  *  timer.
468  */
469 bool stmmac_eee_init(struct stmmac_priv *priv)
470 {
471 	int eee_tw_timer = priv->eee_tw_timer;
472 
473 	/* Using PCS we cannot dial with the phy registers at this stage
474 	 * so we do not support extra feature like EEE.
475 	 */
476 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
477 	    priv->hw->pcs == STMMAC_PCS_RTBI)
478 		return false;
479 
480 	/* Check if MAC core supports the EEE feature. */
481 	if (!priv->dma_cap.eee)
482 		return false;
483 
484 	mutex_lock(&priv->lock);
485 
486 	/* Check if it needs to be deactivated */
487 	if (!priv->eee_active) {
488 		if (priv->eee_enabled) {
489 			netdev_dbg(priv->dev, "disable EEE\n");
490 			stmmac_lpi_entry_timer_config(priv, 0);
491 			del_timer_sync(&priv->eee_ctrl_timer);
492 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
493 			if (priv->hw->xpcs)
494 				xpcs_config_eee(priv->hw->xpcs,
495 						priv->plat->mult_fact_100ns,
496 						false);
497 		}
498 		mutex_unlock(&priv->lock);
499 		return false;
500 	}
501 
502 	if (priv->eee_active && !priv->eee_enabled) {
503 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
504 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
505 				     eee_tw_timer);
506 		if (priv->hw->xpcs)
507 			xpcs_config_eee(priv->hw->xpcs,
508 					priv->plat->mult_fact_100ns,
509 					true);
510 	}
511 
512 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
513 		del_timer_sync(&priv->eee_ctrl_timer);
514 		priv->tx_path_in_lpi_mode = false;
515 		stmmac_lpi_entry_timer_config(priv, 1);
516 	} else {
517 		stmmac_lpi_entry_timer_config(priv, 0);
518 		mod_timer(&priv->eee_ctrl_timer,
519 			  STMMAC_LPI_T(priv->tx_lpi_timer));
520 	}
521 
522 	mutex_unlock(&priv->lock);
523 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
524 	return true;
525 }
526 
527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
528  * @priv: driver private structure
529  * @p : descriptor pointer
530  * @skb : the socket buffer
531  * Description :
532  * This function will read timestamp from the descriptor & pass it to stack.
533  * and also perform some sanity checks.
534  */
535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
536 				   struct dma_desc *p, struct sk_buff *skb)
537 {
538 	struct skb_shared_hwtstamps shhwtstamp;
539 	bool found = false;
540 	u64 ns = 0;
541 
542 	if (!priv->hwts_tx_en)
543 		return;
544 
545 	/* exit if skb doesn't support hw tstamp */
546 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
547 		return;
548 
549 	/* check tx tstamp status */
550 	if (stmmac_get_tx_timestamp_status(priv, p)) {
551 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
552 		found = true;
553 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
554 		found = true;
555 	}
556 
557 	if (found) {
558 		ns -= priv->plat->cdc_error_adj;
559 
560 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
561 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
562 
563 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
564 		/* pass tstamp to stack */
565 		skb_tstamp_tx(skb, &shhwtstamp);
566 	}
567 }
568 
569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
570  * @priv: driver private structure
571  * @p : descriptor pointer
572  * @np : next descriptor pointer
573  * @skb : the socket buffer
574  * Description :
575  * This function will read received packet's timestamp from the descriptor
576  * and pass it to stack. It also perform some sanity checks.
577  */
578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
579 				   struct dma_desc *np, struct sk_buff *skb)
580 {
581 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
582 	struct dma_desc *desc = p;
583 	u64 ns = 0;
584 
585 	if (!priv->hwts_rx_en)
586 		return;
587 	/* For GMAC4, the valid timestamp is from CTX next desc. */
588 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
589 		desc = np;
590 
591 	/* Check if timestamp is available */
592 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
593 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
594 
595 		ns -= priv->plat->cdc_error_adj;
596 
597 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
598 		shhwtstamp = skb_hwtstamps(skb);
599 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
600 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
601 	} else  {
602 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
603 	}
604 }
605 
606 /**
607  *  stmmac_hwtstamp_set - control hardware timestamping.
608  *  @dev: device pointer.
609  *  @ifr: An IOCTL specific structure, that can contain a pointer to
610  *  a proprietary structure used to pass information to the driver.
611  *  Description:
612  *  This function configures the MAC to enable/disable both outgoing(TX)
613  *  and incoming(RX) packets time stamping based on user input.
614  *  Return Value:
615  *  0 on success and an appropriate -ve integer on failure.
616  */
617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
618 {
619 	struct stmmac_priv *priv = netdev_priv(dev);
620 	struct hwtstamp_config config;
621 	u32 ptp_v2 = 0;
622 	u32 tstamp_all = 0;
623 	u32 ptp_over_ipv4_udp = 0;
624 	u32 ptp_over_ipv6_udp = 0;
625 	u32 ptp_over_ethernet = 0;
626 	u32 snap_type_sel = 0;
627 	u32 ts_master_en = 0;
628 	u32 ts_event_en = 0;
629 
630 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
631 		netdev_alert(priv->dev, "No support for HW time stamping\n");
632 		priv->hwts_tx_en = 0;
633 		priv->hwts_rx_en = 0;
634 
635 		return -EOPNOTSUPP;
636 	}
637 
638 	if (copy_from_user(&config, ifr->ifr_data,
639 			   sizeof(config)))
640 		return -EFAULT;
641 
642 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
643 		   __func__, config.flags, config.tx_type, config.rx_filter);
644 
645 	if (config.tx_type != HWTSTAMP_TX_OFF &&
646 	    config.tx_type != HWTSTAMP_TX_ON)
647 		return -ERANGE;
648 
649 	if (priv->adv_ts) {
650 		switch (config.rx_filter) {
651 		case HWTSTAMP_FILTER_NONE:
652 			/* time stamp no incoming packet at all */
653 			config.rx_filter = HWTSTAMP_FILTER_NONE;
654 			break;
655 
656 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
657 			/* PTP v1, UDP, any kind of event packet */
658 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
659 			/* 'xmac' hardware can support Sync, Pdelay_Req and
660 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
661 			 * This leaves Delay_Req timestamps out.
662 			 * Enable all events *and* general purpose message
663 			 * timestamping
664 			 */
665 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
666 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
667 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
668 			break;
669 
670 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
671 			/* PTP v1, UDP, Sync packet */
672 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
673 			/* take time stamp for SYNC messages only */
674 			ts_event_en = PTP_TCR_TSEVNTENA;
675 
676 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
677 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
678 			break;
679 
680 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
681 			/* PTP v1, UDP, Delay_req packet */
682 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
683 			/* take time stamp for Delay_Req messages only */
684 			ts_master_en = PTP_TCR_TSMSTRENA;
685 			ts_event_en = PTP_TCR_TSEVNTENA;
686 
687 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
688 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
689 			break;
690 
691 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
692 			/* PTP v2, UDP, any kind of event packet */
693 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
694 			ptp_v2 = PTP_TCR_TSVER2ENA;
695 			/* take time stamp for all event messages */
696 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
697 
698 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
699 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
700 			break;
701 
702 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
703 			/* PTP v2, UDP, Sync packet */
704 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
705 			ptp_v2 = PTP_TCR_TSVER2ENA;
706 			/* take time stamp for SYNC messages only */
707 			ts_event_en = PTP_TCR_TSEVNTENA;
708 
709 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
710 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
711 			break;
712 
713 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
714 			/* PTP v2, UDP, Delay_req packet */
715 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
716 			ptp_v2 = PTP_TCR_TSVER2ENA;
717 			/* take time stamp for Delay_Req messages only */
718 			ts_master_en = PTP_TCR_TSMSTRENA;
719 			ts_event_en = PTP_TCR_TSEVNTENA;
720 
721 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
722 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
723 			break;
724 
725 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
726 			/* PTP v2/802.AS1 any layer, any kind of event packet */
727 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
728 			ptp_v2 = PTP_TCR_TSVER2ENA;
729 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
730 			if (priv->synopsys_id < DWMAC_CORE_4_10)
731 				ts_event_en = PTP_TCR_TSEVNTENA;
732 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
733 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
734 			ptp_over_ethernet = PTP_TCR_TSIPENA;
735 			break;
736 
737 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
738 			/* PTP v2/802.AS1, any layer, Sync packet */
739 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
740 			ptp_v2 = PTP_TCR_TSVER2ENA;
741 			/* take time stamp for SYNC messages only */
742 			ts_event_en = PTP_TCR_TSEVNTENA;
743 
744 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
745 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
746 			ptp_over_ethernet = PTP_TCR_TSIPENA;
747 			break;
748 
749 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
750 			/* PTP v2/802.AS1, any layer, Delay_req packet */
751 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
752 			ptp_v2 = PTP_TCR_TSVER2ENA;
753 			/* take time stamp for Delay_Req messages only */
754 			ts_master_en = PTP_TCR_TSMSTRENA;
755 			ts_event_en = PTP_TCR_TSEVNTENA;
756 
757 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
758 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
759 			ptp_over_ethernet = PTP_TCR_TSIPENA;
760 			break;
761 
762 		case HWTSTAMP_FILTER_NTP_ALL:
763 		case HWTSTAMP_FILTER_ALL:
764 			/* time stamp any incoming packet */
765 			config.rx_filter = HWTSTAMP_FILTER_ALL;
766 			tstamp_all = PTP_TCR_TSENALL;
767 			break;
768 
769 		default:
770 			return -ERANGE;
771 		}
772 	} else {
773 		switch (config.rx_filter) {
774 		case HWTSTAMP_FILTER_NONE:
775 			config.rx_filter = HWTSTAMP_FILTER_NONE;
776 			break;
777 		default:
778 			/* PTP v1, UDP, any kind of event packet */
779 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
780 			break;
781 		}
782 	}
783 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
784 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
785 
786 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
787 
788 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
789 		priv->systime_flags |= tstamp_all | ptp_v2 |
790 				       ptp_over_ethernet | ptp_over_ipv6_udp |
791 				       ptp_over_ipv4_udp | ts_event_en |
792 				       ts_master_en | snap_type_sel;
793 	}
794 
795 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
796 
797 	memcpy(&priv->tstamp_config, &config, sizeof(config));
798 
799 	return copy_to_user(ifr->ifr_data, &config,
800 			    sizeof(config)) ? -EFAULT : 0;
801 }
802 
803 /**
804  *  stmmac_hwtstamp_get - read hardware timestamping.
805  *  @dev: device pointer.
806  *  @ifr: An IOCTL specific structure, that can contain a pointer to
807  *  a proprietary structure used to pass information to the driver.
808  *  Description:
809  *  This function obtain the current hardware timestamping settings
810  *  as requested.
811  */
812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
813 {
814 	struct stmmac_priv *priv = netdev_priv(dev);
815 	struct hwtstamp_config *config = &priv->tstamp_config;
816 
817 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
818 		return -EOPNOTSUPP;
819 
820 	return copy_to_user(ifr->ifr_data, config,
821 			    sizeof(*config)) ? -EFAULT : 0;
822 }
823 
824 /**
825  * stmmac_init_tstamp_counter - init hardware timestamping counter
826  * @priv: driver private structure
827  * @systime_flags: timestamping flags
828  * Description:
829  * Initialize hardware counter for packet timestamping.
830  * This is valid as long as the interface is open and not suspended.
831  * Will be rerun after resuming from suspend, case in which the timestamping
832  * flags updated by stmmac_hwtstamp_set() also need to be restored.
833  */
834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
835 {
836 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
837 	struct timespec64 now;
838 	u32 sec_inc = 0;
839 	u64 temp = 0;
840 
841 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
842 		return -EOPNOTSUPP;
843 
844 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
845 	priv->systime_flags = systime_flags;
846 
847 	/* program Sub Second Increment reg */
848 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
849 					   priv->plat->clk_ptp_rate,
850 					   xmac, &sec_inc);
851 	temp = div_u64(1000000000ULL, sec_inc);
852 
853 	/* Store sub second increment for later use */
854 	priv->sub_second_inc = sec_inc;
855 
856 	/* calculate default added value:
857 	 * formula is :
858 	 * addend = (2^32)/freq_div_ratio;
859 	 * where, freq_div_ratio = 1e9ns/sec_inc
860 	 */
861 	temp = (u64)(temp << 32);
862 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
863 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
864 
865 	/* initialize system time */
866 	ktime_get_real_ts64(&now);
867 
868 	/* lower 32 bits of tv_sec are safe until y2106 */
869 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
870 
871 	return 0;
872 }
873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
874 
875 /**
876  * stmmac_init_ptp - init PTP
877  * @priv: driver private structure
878  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
879  * This is done by looking at the HW cap. register.
880  * This function also registers the ptp driver.
881  */
882 static int stmmac_init_ptp(struct stmmac_priv *priv)
883 {
884 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
885 	int ret;
886 
887 	if (priv->plat->ptp_clk_freq_config)
888 		priv->plat->ptp_clk_freq_config(priv);
889 
890 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
891 	if (ret)
892 		return ret;
893 
894 	priv->adv_ts = 0;
895 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
896 	if (xmac && priv->dma_cap.atime_stamp)
897 		priv->adv_ts = 1;
898 	/* Dwmac 3.x core with extend_desc can support adv_ts */
899 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
900 		priv->adv_ts = 1;
901 
902 	if (priv->dma_cap.time_stamp)
903 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
904 
905 	if (priv->adv_ts)
906 		netdev_info(priv->dev,
907 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
908 
909 	priv->hwts_tx_en = 0;
910 	priv->hwts_rx_en = 0;
911 
912 	return 0;
913 }
914 
915 static void stmmac_release_ptp(struct stmmac_priv *priv)
916 {
917 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
918 	stmmac_ptp_unregister(priv);
919 }
920 
921 /**
922  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
923  *  @priv: driver private structure
924  *  @duplex: duplex passed to the next function
925  *  Description: It is used for configuring the flow control in all queues
926  */
927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
928 {
929 	u32 tx_cnt = priv->plat->tx_queues_to_use;
930 
931 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
932 			priv->pause, tx_cnt);
933 }
934 
935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
936 						 phy_interface_t interface)
937 {
938 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
939 
940 	if (!priv->hw->xpcs)
941 		return NULL;
942 
943 	return &priv->hw->xpcs->pcs;
944 }
945 
946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
947 			      const struct phylink_link_state *state)
948 {
949 	/* Nothing to do, xpcs_config() handles everything */
950 }
951 
952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
953 {
954 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
955 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
956 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
957 	bool *hs_enable = &fpe_cfg->hs_enable;
958 
959 	if (is_up && *hs_enable) {
960 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
961 	} else {
962 		*lo_state = FPE_STATE_OFF;
963 		*lp_state = FPE_STATE_OFF;
964 	}
965 }
966 
967 static void stmmac_mac_link_down(struct phylink_config *config,
968 				 unsigned int mode, phy_interface_t interface)
969 {
970 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
971 
972 	stmmac_mac_set(priv, priv->ioaddr, false);
973 	priv->eee_active = false;
974 	priv->tx_lpi_enabled = false;
975 	priv->eee_enabled = stmmac_eee_init(priv);
976 	stmmac_set_eee_pls(priv, priv->hw, false);
977 
978 	if (priv->dma_cap.fpesel)
979 		stmmac_fpe_link_state_handle(priv, false);
980 }
981 
982 static void stmmac_mac_link_up(struct phylink_config *config,
983 			       struct phy_device *phy,
984 			       unsigned int mode, phy_interface_t interface,
985 			       int speed, int duplex,
986 			       bool tx_pause, bool rx_pause)
987 {
988 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
989 	u32 ctrl;
990 
991 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
992 	ctrl &= ~priv->hw->link.speed_mask;
993 
994 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
995 		switch (speed) {
996 		case SPEED_10000:
997 			ctrl |= priv->hw->link.xgmii.speed10000;
998 			break;
999 		case SPEED_5000:
1000 			ctrl |= priv->hw->link.xgmii.speed5000;
1001 			break;
1002 		case SPEED_2500:
1003 			ctrl |= priv->hw->link.xgmii.speed2500;
1004 			break;
1005 		default:
1006 			return;
1007 		}
1008 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1009 		switch (speed) {
1010 		case SPEED_100000:
1011 			ctrl |= priv->hw->link.xlgmii.speed100000;
1012 			break;
1013 		case SPEED_50000:
1014 			ctrl |= priv->hw->link.xlgmii.speed50000;
1015 			break;
1016 		case SPEED_40000:
1017 			ctrl |= priv->hw->link.xlgmii.speed40000;
1018 			break;
1019 		case SPEED_25000:
1020 			ctrl |= priv->hw->link.xlgmii.speed25000;
1021 			break;
1022 		case SPEED_10000:
1023 			ctrl |= priv->hw->link.xgmii.speed10000;
1024 			break;
1025 		case SPEED_2500:
1026 			ctrl |= priv->hw->link.speed2500;
1027 			break;
1028 		case SPEED_1000:
1029 			ctrl |= priv->hw->link.speed1000;
1030 			break;
1031 		default:
1032 			return;
1033 		}
1034 	} else {
1035 		switch (speed) {
1036 		case SPEED_2500:
1037 			ctrl |= priv->hw->link.speed2500;
1038 			break;
1039 		case SPEED_1000:
1040 			ctrl |= priv->hw->link.speed1000;
1041 			break;
1042 		case SPEED_100:
1043 			ctrl |= priv->hw->link.speed100;
1044 			break;
1045 		case SPEED_10:
1046 			ctrl |= priv->hw->link.speed10;
1047 			break;
1048 		default:
1049 			return;
1050 		}
1051 	}
1052 
1053 	priv->speed = speed;
1054 
1055 	if (priv->plat->fix_mac_speed)
1056 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1057 
1058 	if (!duplex)
1059 		ctrl &= ~priv->hw->link.duplex;
1060 	else
1061 		ctrl |= priv->hw->link.duplex;
1062 
1063 	/* Flow Control operation */
1064 	if (tx_pause && rx_pause)
1065 		stmmac_mac_flow_ctrl(priv, duplex);
1066 
1067 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1068 
1069 	stmmac_mac_set(priv, priv->ioaddr, true);
1070 	if (phy && priv->dma_cap.eee) {
1071 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1072 		priv->eee_enabled = stmmac_eee_init(priv);
1073 		priv->tx_lpi_enabled = priv->eee_enabled;
1074 		stmmac_set_eee_pls(priv, priv->hw, true);
1075 	}
1076 
1077 	if (priv->dma_cap.fpesel)
1078 		stmmac_fpe_link_state_handle(priv, true);
1079 }
1080 
1081 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1082 	.validate = phylink_generic_validate,
1083 	.mac_select_pcs = stmmac_mac_select_pcs,
1084 	.mac_config = stmmac_mac_config,
1085 	.mac_link_down = stmmac_mac_link_down,
1086 	.mac_link_up = stmmac_mac_link_up,
1087 };
1088 
1089 /**
1090  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1091  * @priv: driver private structure
1092  * Description: this is to verify if the HW supports the PCS.
1093  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1094  * configured for the TBI, RTBI, or SGMII PHY interface.
1095  */
1096 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1097 {
1098 	int interface = priv->plat->interface;
1099 
1100 	if (priv->dma_cap.pcs) {
1101 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1102 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1103 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1104 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1105 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1106 			priv->hw->pcs = STMMAC_PCS_RGMII;
1107 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1108 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1109 			priv->hw->pcs = STMMAC_PCS_SGMII;
1110 		}
1111 	}
1112 }
1113 
1114 /**
1115  * stmmac_init_phy - PHY initialization
1116  * @dev: net device structure
1117  * Description: it initializes the driver's PHY state, and attaches the PHY
1118  * to the mac driver.
1119  *  Return value:
1120  *  0 on success
1121  */
1122 static int stmmac_init_phy(struct net_device *dev)
1123 {
1124 	struct stmmac_priv *priv = netdev_priv(dev);
1125 	struct fwnode_handle *fwnode;
1126 	int ret;
1127 
1128 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1129 	if (!fwnode)
1130 		fwnode = dev_fwnode(priv->device);
1131 
1132 	if (fwnode)
1133 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1134 
1135 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1136 	 * manually parse it
1137 	 */
1138 	if (!fwnode || ret) {
1139 		int addr = priv->plat->phy_addr;
1140 		struct phy_device *phydev;
1141 
1142 		phydev = mdiobus_get_phy(priv->mii, addr);
1143 		if (!phydev) {
1144 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1145 			return -ENODEV;
1146 		}
1147 
1148 		ret = phylink_connect_phy(priv->phylink, phydev);
1149 	}
1150 
1151 	if (!priv->plat->pmt) {
1152 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1153 
1154 		phylink_ethtool_get_wol(priv->phylink, &wol);
1155 		device_set_wakeup_capable(priv->device, !!wol.supported);
1156 	}
1157 
1158 	return ret;
1159 }
1160 
1161 static int stmmac_phy_setup(struct stmmac_priv *priv)
1162 {
1163 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1164 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1165 	int max_speed = priv->plat->max_speed;
1166 	int mode = priv->plat->phy_interface;
1167 	struct phylink *phylink;
1168 
1169 	priv->phylink_config.dev = &priv->dev->dev;
1170 	priv->phylink_config.type = PHYLINK_NETDEV;
1171 	if (priv->plat->mdio_bus_data)
1172 		priv->phylink_config.ovr_an_inband =
1173 			mdio_bus_data->xpcs_an_inband;
1174 
1175 	if (!fwnode)
1176 		fwnode = dev_fwnode(priv->device);
1177 
1178 	/* Set the platform/firmware specified interface mode */
1179 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1180 
1181 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1182 	if (priv->hw->xpcs)
1183 		xpcs_get_interfaces(priv->hw->xpcs,
1184 				    priv->phylink_config.supported_interfaces);
1185 
1186 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1187 		MAC_10 | MAC_100;
1188 
1189 	if (!max_speed || max_speed >= 1000)
1190 		priv->phylink_config.mac_capabilities |= MAC_1000;
1191 
1192 	if (priv->plat->has_gmac4) {
1193 		if (!max_speed || max_speed >= 2500)
1194 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1195 	} else if (priv->plat->has_xgmac) {
1196 		if (!max_speed || max_speed >= 2500)
1197 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1198 		if (!max_speed || max_speed >= 5000)
1199 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1200 		if (!max_speed || max_speed >= 10000)
1201 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1202 		if (!max_speed || max_speed >= 25000)
1203 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1204 		if (!max_speed || max_speed >= 40000)
1205 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1206 		if (!max_speed || max_speed >= 50000)
1207 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1208 		if (!max_speed || max_speed >= 100000)
1209 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1210 	}
1211 
1212 	/* Half-Duplex can only work with single queue */
1213 	if (priv->plat->tx_queues_to_use > 1)
1214 		priv->phylink_config.mac_capabilities &=
1215 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1216 
1217 	phylink = phylink_create(&priv->phylink_config, fwnode,
1218 				 mode, &stmmac_phylink_mac_ops);
1219 	if (IS_ERR(phylink))
1220 		return PTR_ERR(phylink);
1221 
1222 	priv->phylink = phylink;
1223 	return 0;
1224 }
1225 
1226 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1227 				    struct stmmac_dma_conf *dma_conf)
1228 {
1229 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1230 	unsigned int desc_size;
1231 	void *head_rx;
1232 	u32 queue;
1233 
1234 	/* Display RX rings */
1235 	for (queue = 0; queue < rx_cnt; queue++) {
1236 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1237 
1238 		pr_info("\tRX Queue %u rings\n", queue);
1239 
1240 		if (priv->extend_desc) {
1241 			head_rx = (void *)rx_q->dma_erx;
1242 			desc_size = sizeof(struct dma_extended_desc);
1243 		} else {
1244 			head_rx = (void *)rx_q->dma_rx;
1245 			desc_size = sizeof(struct dma_desc);
1246 		}
1247 
1248 		/* Display RX ring */
1249 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1250 				    rx_q->dma_rx_phy, desc_size);
1251 	}
1252 }
1253 
1254 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1255 				    struct stmmac_dma_conf *dma_conf)
1256 {
1257 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1258 	unsigned int desc_size;
1259 	void *head_tx;
1260 	u32 queue;
1261 
1262 	/* Display TX rings */
1263 	for (queue = 0; queue < tx_cnt; queue++) {
1264 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1265 
1266 		pr_info("\tTX Queue %d rings\n", queue);
1267 
1268 		if (priv->extend_desc) {
1269 			head_tx = (void *)tx_q->dma_etx;
1270 			desc_size = sizeof(struct dma_extended_desc);
1271 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1272 			head_tx = (void *)tx_q->dma_entx;
1273 			desc_size = sizeof(struct dma_edesc);
1274 		} else {
1275 			head_tx = (void *)tx_q->dma_tx;
1276 			desc_size = sizeof(struct dma_desc);
1277 		}
1278 
1279 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1280 				    tx_q->dma_tx_phy, desc_size);
1281 	}
1282 }
1283 
1284 static void stmmac_display_rings(struct stmmac_priv *priv,
1285 				 struct stmmac_dma_conf *dma_conf)
1286 {
1287 	/* Display RX ring */
1288 	stmmac_display_rx_rings(priv, dma_conf);
1289 
1290 	/* Display TX ring */
1291 	stmmac_display_tx_rings(priv, dma_conf);
1292 }
1293 
1294 static int stmmac_set_bfsize(int mtu, int bufsize)
1295 {
1296 	int ret = bufsize;
1297 
1298 	if (mtu >= BUF_SIZE_8KiB)
1299 		ret = BUF_SIZE_16KiB;
1300 	else if (mtu >= BUF_SIZE_4KiB)
1301 		ret = BUF_SIZE_8KiB;
1302 	else if (mtu >= BUF_SIZE_2KiB)
1303 		ret = BUF_SIZE_4KiB;
1304 	else if (mtu > DEFAULT_BUFSIZE)
1305 		ret = BUF_SIZE_2KiB;
1306 	else
1307 		ret = DEFAULT_BUFSIZE;
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  * stmmac_clear_rx_descriptors - clear RX descriptors
1314  * @priv: driver private structure
1315  * @dma_conf: structure to take the dma data
1316  * @queue: RX queue index
1317  * Description: this function is called to clear the RX descriptors
1318  * in case of both basic and extended descriptors are used.
1319  */
1320 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1321 					struct stmmac_dma_conf *dma_conf,
1322 					u32 queue)
1323 {
1324 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1325 	int i;
1326 
1327 	/* Clear the RX descriptors */
1328 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1329 		if (priv->extend_desc)
1330 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1331 					priv->use_riwt, priv->mode,
1332 					(i == dma_conf->dma_rx_size - 1),
1333 					dma_conf->dma_buf_sz);
1334 		else
1335 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1336 					priv->use_riwt, priv->mode,
1337 					(i == dma_conf->dma_rx_size - 1),
1338 					dma_conf->dma_buf_sz);
1339 }
1340 
1341 /**
1342  * stmmac_clear_tx_descriptors - clear tx descriptors
1343  * @priv: driver private structure
1344  * @dma_conf: structure to take the dma data
1345  * @queue: TX queue index.
1346  * Description: this function is called to clear the TX descriptors
1347  * in case of both basic and extended descriptors are used.
1348  */
1349 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1350 					struct stmmac_dma_conf *dma_conf,
1351 					u32 queue)
1352 {
1353 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1354 	int i;
1355 
1356 	/* Clear the TX descriptors */
1357 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1358 		int last = (i == (dma_conf->dma_tx_size - 1));
1359 		struct dma_desc *p;
1360 
1361 		if (priv->extend_desc)
1362 			p = &tx_q->dma_etx[i].basic;
1363 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1364 			p = &tx_q->dma_entx[i].basic;
1365 		else
1366 			p = &tx_q->dma_tx[i];
1367 
1368 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1369 	}
1370 }
1371 
1372 /**
1373  * stmmac_clear_descriptors - clear descriptors
1374  * @priv: driver private structure
1375  * @dma_conf: structure to take the dma data
1376  * Description: this function is called to clear the TX and RX descriptors
1377  * in case of both basic and extended descriptors are used.
1378  */
1379 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1380 				     struct stmmac_dma_conf *dma_conf)
1381 {
1382 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1383 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1384 	u32 queue;
1385 
1386 	/* Clear the RX descriptors */
1387 	for (queue = 0; queue < rx_queue_cnt; queue++)
1388 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1389 
1390 	/* Clear the TX descriptors */
1391 	for (queue = 0; queue < tx_queue_cnt; queue++)
1392 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1393 }
1394 
1395 /**
1396  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1397  * @priv: driver private structure
1398  * @dma_conf: structure to take the dma data
1399  * @p: descriptor pointer
1400  * @i: descriptor index
1401  * @flags: gfp flag
1402  * @queue: RX queue index
1403  * Description: this function is called to allocate a receive buffer, perform
1404  * the DMA mapping and init the descriptor.
1405  */
1406 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1407 				  struct stmmac_dma_conf *dma_conf,
1408 				  struct dma_desc *p,
1409 				  int i, gfp_t flags, u32 queue)
1410 {
1411 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1412 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1413 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1414 
1415 	if (priv->dma_cap.addr64 <= 32)
1416 		gfp |= GFP_DMA32;
1417 
1418 	if (!buf->page) {
1419 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1420 		if (!buf->page)
1421 			return -ENOMEM;
1422 		buf->page_offset = stmmac_rx_offset(priv);
1423 	}
1424 
1425 	if (priv->sph && !buf->sec_page) {
1426 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1427 		if (!buf->sec_page)
1428 			return -ENOMEM;
1429 
1430 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1431 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1432 	} else {
1433 		buf->sec_page = NULL;
1434 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1435 	}
1436 
1437 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1438 
1439 	stmmac_set_desc_addr(priv, p, buf->addr);
1440 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1441 		stmmac_init_desc3(priv, p);
1442 
1443 	return 0;
1444 }
1445 
1446 /**
1447  * stmmac_free_rx_buffer - free RX dma buffers
1448  * @priv: private structure
1449  * @rx_q: RX queue
1450  * @i: buffer index.
1451  */
1452 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1453 				  struct stmmac_rx_queue *rx_q,
1454 				  int i)
1455 {
1456 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1457 
1458 	if (buf->page)
1459 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1460 	buf->page = NULL;
1461 
1462 	if (buf->sec_page)
1463 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1464 	buf->sec_page = NULL;
1465 }
1466 
1467 /**
1468  * stmmac_free_tx_buffer - free RX dma buffers
1469  * @priv: private structure
1470  * @dma_conf: structure to take the dma data
1471  * @queue: RX queue index
1472  * @i: buffer index.
1473  */
1474 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1475 				  struct stmmac_dma_conf *dma_conf,
1476 				  u32 queue, int i)
1477 {
1478 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1479 
1480 	if (tx_q->tx_skbuff_dma[i].buf &&
1481 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1482 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1483 			dma_unmap_page(priv->device,
1484 				       tx_q->tx_skbuff_dma[i].buf,
1485 				       tx_q->tx_skbuff_dma[i].len,
1486 				       DMA_TO_DEVICE);
1487 		else
1488 			dma_unmap_single(priv->device,
1489 					 tx_q->tx_skbuff_dma[i].buf,
1490 					 tx_q->tx_skbuff_dma[i].len,
1491 					 DMA_TO_DEVICE);
1492 	}
1493 
1494 	if (tx_q->xdpf[i] &&
1495 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1496 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1497 		xdp_return_frame(tx_q->xdpf[i]);
1498 		tx_q->xdpf[i] = NULL;
1499 	}
1500 
1501 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1502 		tx_q->xsk_frames_done++;
1503 
1504 	if (tx_q->tx_skbuff[i] &&
1505 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1506 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1507 		tx_q->tx_skbuff[i] = NULL;
1508 	}
1509 
1510 	tx_q->tx_skbuff_dma[i].buf = 0;
1511 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1512 }
1513 
1514 /**
1515  * dma_free_rx_skbufs - free RX dma buffers
1516  * @priv: private structure
1517  * @dma_conf: structure to take the dma data
1518  * @queue: RX queue index
1519  */
1520 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1521 			       struct stmmac_dma_conf *dma_conf,
1522 			       u32 queue)
1523 {
1524 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1525 	int i;
1526 
1527 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1528 		stmmac_free_rx_buffer(priv, rx_q, i);
1529 }
1530 
1531 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1532 				   struct stmmac_dma_conf *dma_conf,
1533 				   u32 queue, gfp_t flags)
1534 {
1535 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1536 	int i;
1537 
1538 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1539 		struct dma_desc *p;
1540 		int ret;
1541 
1542 		if (priv->extend_desc)
1543 			p = &((rx_q->dma_erx + i)->basic);
1544 		else
1545 			p = rx_q->dma_rx + i;
1546 
1547 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1548 					     queue);
1549 		if (ret)
1550 			return ret;
1551 
1552 		rx_q->buf_alloc_num++;
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 /**
1559  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1560  * @priv: private structure
1561  * @dma_conf: structure to take the dma data
1562  * @queue: RX queue index
1563  */
1564 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1565 				struct stmmac_dma_conf *dma_conf,
1566 				u32 queue)
1567 {
1568 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1569 	int i;
1570 
1571 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1572 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1573 
1574 		if (!buf->xdp)
1575 			continue;
1576 
1577 		xsk_buff_free(buf->xdp);
1578 		buf->xdp = NULL;
1579 	}
1580 }
1581 
1582 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1583 				      struct stmmac_dma_conf *dma_conf,
1584 				      u32 queue)
1585 {
1586 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1587 	int i;
1588 
1589 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1590 		struct stmmac_rx_buffer *buf;
1591 		dma_addr_t dma_addr;
1592 		struct dma_desc *p;
1593 
1594 		if (priv->extend_desc)
1595 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1596 		else
1597 			p = rx_q->dma_rx + i;
1598 
1599 		buf = &rx_q->buf_pool[i];
1600 
1601 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1602 		if (!buf->xdp)
1603 			return -ENOMEM;
1604 
1605 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1606 		stmmac_set_desc_addr(priv, p, dma_addr);
1607 		rx_q->buf_alloc_num++;
1608 	}
1609 
1610 	return 0;
1611 }
1612 
1613 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1614 {
1615 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1616 		return NULL;
1617 
1618 	return xsk_get_pool_from_qid(priv->dev, queue);
1619 }
1620 
1621 /**
1622  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1623  * @priv: driver private structure
1624  * @dma_conf: structure to take the dma data
1625  * @queue: RX queue index
1626  * @flags: gfp flag.
1627  * Description: this function initializes the DMA RX descriptors
1628  * and allocates the socket buffers. It supports the chained and ring
1629  * modes.
1630  */
1631 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1632 				    struct stmmac_dma_conf *dma_conf,
1633 				    u32 queue, gfp_t flags)
1634 {
1635 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1636 	int ret;
1637 
1638 	netif_dbg(priv, probe, priv->dev,
1639 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1640 		  (u32)rx_q->dma_rx_phy);
1641 
1642 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1643 
1644 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1645 
1646 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1647 
1648 	if (rx_q->xsk_pool) {
1649 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1650 						   MEM_TYPE_XSK_BUFF_POOL,
1651 						   NULL));
1652 		netdev_info(priv->dev,
1653 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1654 			    rx_q->queue_index);
1655 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1656 	} else {
1657 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1658 						   MEM_TYPE_PAGE_POOL,
1659 						   rx_q->page_pool));
1660 		netdev_info(priv->dev,
1661 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1662 			    rx_q->queue_index);
1663 	}
1664 
1665 	if (rx_q->xsk_pool) {
1666 		/* RX XDP ZC buffer pool may not be populated, e.g.
1667 		 * xdpsock TX-only.
1668 		 */
1669 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1670 	} else {
1671 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1672 		if (ret < 0)
1673 			return -ENOMEM;
1674 	}
1675 
1676 	/* Setup the chained descriptor addresses */
1677 	if (priv->mode == STMMAC_CHAIN_MODE) {
1678 		if (priv->extend_desc)
1679 			stmmac_mode_init(priv, rx_q->dma_erx,
1680 					 rx_q->dma_rx_phy,
1681 					 dma_conf->dma_rx_size, 1);
1682 		else
1683 			stmmac_mode_init(priv, rx_q->dma_rx,
1684 					 rx_q->dma_rx_phy,
1685 					 dma_conf->dma_rx_size, 0);
1686 	}
1687 
1688 	return 0;
1689 }
1690 
1691 static int init_dma_rx_desc_rings(struct net_device *dev,
1692 				  struct stmmac_dma_conf *dma_conf,
1693 				  gfp_t flags)
1694 {
1695 	struct stmmac_priv *priv = netdev_priv(dev);
1696 	u32 rx_count = priv->plat->rx_queues_to_use;
1697 	int queue;
1698 	int ret;
1699 
1700 	/* RX INITIALIZATION */
1701 	netif_dbg(priv, probe, priv->dev,
1702 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1703 
1704 	for (queue = 0; queue < rx_count; queue++) {
1705 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1706 		if (ret)
1707 			goto err_init_rx_buffers;
1708 	}
1709 
1710 	return 0;
1711 
1712 err_init_rx_buffers:
1713 	while (queue >= 0) {
1714 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1715 
1716 		if (rx_q->xsk_pool)
1717 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1718 		else
1719 			dma_free_rx_skbufs(priv, dma_conf, queue);
1720 
1721 		rx_q->buf_alloc_num = 0;
1722 		rx_q->xsk_pool = NULL;
1723 
1724 		queue--;
1725 	}
1726 
1727 	return ret;
1728 }
1729 
1730 /**
1731  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1732  * @priv: driver private structure
1733  * @dma_conf: structure to take the dma data
1734  * @queue: TX queue index
1735  * Description: this function initializes the DMA TX descriptors
1736  * and allocates the socket buffers. It supports the chained and ring
1737  * modes.
1738  */
1739 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1740 				    struct stmmac_dma_conf *dma_conf,
1741 				    u32 queue)
1742 {
1743 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1744 	int i;
1745 
1746 	netif_dbg(priv, probe, priv->dev,
1747 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1748 		  (u32)tx_q->dma_tx_phy);
1749 
1750 	/* Setup the chained descriptor addresses */
1751 	if (priv->mode == STMMAC_CHAIN_MODE) {
1752 		if (priv->extend_desc)
1753 			stmmac_mode_init(priv, tx_q->dma_etx,
1754 					 tx_q->dma_tx_phy,
1755 					 dma_conf->dma_tx_size, 1);
1756 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1757 			stmmac_mode_init(priv, tx_q->dma_tx,
1758 					 tx_q->dma_tx_phy,
1759 					 dma_conf->dma_tx_size, 0);
1760 	}
1761 
1762 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1763 
1764 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1765 		struct dma_desc *p;
1766 
1767 		if (priv->extend_desc)
1768 			p = &((tx_q->dma_etx + i)->basic);
1769 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1770 			p = &((tx_q->dma_entx + i)->basic);
1771 		else
1772 			p = tx_q->dma_tx + i;
1773 
1774 		stmmac_clear_desc(priv, p);
1775 
1776 		tx_q->tx_skbuff_dma[i].buf = 0;
1777 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1778 		tx_q->tx_skbuff_dma[i].len = 0;
1779 		tx_q->tx_skbuff_dma[i].last_segment = false;
1780 		tx_q->tx_skbuff[i] = NULL;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static int init_dma_tx_desc_rings(struct net_device *dev,
1787 				  struct stmmac_dma_conf *dma_conf)
1788 {
1789 	struct stmmac_priv *priv = netdev_priv(dev);
1790 	u32 tx_queue_cnt;
1791 	u32 queue;
1792 
1793 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1794 
1795 	for (queue = 0; queue < tx_queue_cnt; queue++)
1796 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1797 
1798 	return 0;
1799 }
1800 
1801 /**
1802  * init_dma_desc_rings - init the RX/TX descriptor rings
1803  * @dev: net device structure
1804  * @dma_conf: structure to take the dma data
1805  * @flags: gfp flag.
1806  * Description: this function initializes the DMA RX/TX descriptors
1807  * and allocates the socket buffers. It supports the chained and ring
1808  * modes.
1809  */
1810 static int init_dma_desc_rings(struct net_device *dev,
1811 			       struct stmmac_dma_conf *dma_conf,
1812 			       gfp_t flags)
1813 {
1814 	struct stmmac_priv *priv = netdev_priv(dev);
1815 	int ret;
1816 
1817 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1818 	if (ret)
1819 		return ret;
1820 
1821 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1822 
1823 	stmmac_clear_descriptors(priv, dma_conf);
1824 
1825 	if (netif_msg_hw(priv))
1826 		stmmac_display_rings(priv, dma_conf);
1827 
1828 	return ret;
1829 }
1830 
1831 /**
1832  * dma_free_tx_skbufs - free TX dma buffers
1833  * @priv: private structure
1834  * @dma_conf: structure to take the dma data
1835  * @queue: TX queue index
1836  */
1837 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1838 			       struct stmmac_dma_conf *dma_conf,
1839 			       u32 queue)
1840 {
1841 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1842 	int i;
1843 
1844 	tx_q->xsk_frames_done = 0;
1845 
1846 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1847 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1848 
1849 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1850 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1851 		tx_q->xsk_frames_done = 0;
1852 		tx_q->xsk_pool = NULL;
1853 	}
1854 }
1855 
1856 /**
1857  * stmmac_free_tx_skbufs - free TX skb buffers
1858  * @priv: private structure
1859  */
1860 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1861 {
1862 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1863 	u32 queue;
1864 
1865 	for (queue = 0; queue < tx_queue_cnt; queue++)
1866 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1867 }
1868 
1869 /**
1870  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1871  * @priv: private structure
1872  * @dma_conf: structure to take the dma data
1873  * @queue: RX queue index
1874  */
1875 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1876 					 struct stmmac_dma_conf *dma_conf,
1877 					 u32 queue)
1878 {
1879 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1880 
1881 	/* Release the DMA RX socket buffers */
1882 	if (rx_q->xsk_pool)
1883 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1884 	else
1885 		dma_free_rx_skbufs(priv, dma_conf, queue);
1886 
1887 	rx_q->buf_alloc_num = 0;
1888 	rx_q->xsk_pool = NULL;
1889 
1890 	/* Free DMA regions of consistent memory previously allocated */
1891 	if (!priv->extend_desc)
1892 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1893 				  sizeof(struct dma_desc),
1894 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1895 	else
1896 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1897 				  sizeof(struct dma_extended_desc),
1898 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1899 
1900 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1901 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1902 
1903 	kfree(rx_q->buf_pool);
1904 	if (rx_q->page_pool)
1905 		page_pool_destroy(rx_q->page_pool);
1906 }
1907 
1908 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1909 				       struct stmmac_dma_conf *dma_conf)
1910 {
1911 	u32 rx_count = priv->plat->rx_queues_to_use;
1912 	u32 queue;
1913 
1914 	/* Free RX queue resources */
1915 	for (queue = 0; queue < rx_count; queue++)
1916 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1917 }
1918 
1919 /**
1920  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1921  * @priv: private structure
1922  * @dma_conf: structure to take the dma data
1923  * @queue: TX queue index
1924  */
1925 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1926 					 struct stmmac_dma_conf *dma_conf,
1927 					 u32 queue)
1928 {
1929 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1930 	size_t size;
1931 	void *addr;
1932 
1933 	/* Release the DMA TX socket buffers */
1934 	dma_free_tx_skbufs(priv, dma_conf, queue);
1935 
1936 	if (priv->extend_desc) {
1937 		size = sizeof(struct dma_extended_desc);
1938 		addr = tx_q->dma_etx;
1939 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1940 		size = sizeof(struct dma_edesc);
1941 		addr = tx_q->dma_entx;
1942 	} else {
1943 		size = sizeof(struct dma_desc);
1944 		addr = tx_q->dma_tx;
1945 	}
1946 
1947 	size *= dma_conf->dma_tx_size;
1948 
1949 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1950 
1951 	kfree(tx_q->tx_skbuff_dma);
1952 	kfree(tx_q->tx_skbuff);
1953 }
1954 
1955 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1956 				       struct stmmac_dma_conf *dma_conf)
1957 {
1958 	u32 tx_count = priv->plat->tx_queues_to_use;
1959 	u32 queue;
1960 
1961 	/* Free TX queue resources */
1962 	for (queue = 0; queue < tx_count; queue++)
1963 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
1964 }
1965 
1966 /**
1967  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1968  * @priv: private structure
1969  * @dma_conf: structure to take the dma data
1970  * @queue: RX queue index
1971  * Description: according to which descriptor can be used (extend or basic)
1972  * this function allocates the resources for TX and RX paths. In case of
1973  * reception, for example, it pre-allocated the RX socket buffer in order to
1974  * allow zero-copy mechanism.
1975  */
1976 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
1977 					 struct stmmac_dma_conf *dma_conf,
1978 					 u32 queue)
1979 {
1980 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1981 	struct stmmac_channel *ch = &priv->channel[queue];
1982 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1983 	struct page_pool_params pp_params = { 0 };
1984 	unsigned int num_pages;
1985 	unsigned int napi_id;
1986 	int ret;
1987 
1988 	rx_q->queue_index = queue;
1989 	rx_q->priv_data = priv;
1990 
1991 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1992 	pp_params.pool_size = dma_conf->dma_rx_size;
1993 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
1994 	pp_params.order = ilog2(num_pages);
1995 	pp_params.nid = dev_to_node(priv->device);
1996 	pp_params.dev = priv->device;
1997 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1998 	pp_params.offset = stmmac_rx_offset(priv);
1999 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2000 
2001 	rx_q->page_pool = page_pool_create(&pp_params);
2002 	if (IS_ERR(rx_q->page_pool)) {
2003 		ret = PTR_ERR(rx_q->page_pool);
2004 		rx_q->page_pool = NULL;
2005 		return ret;
2006 	}
2007 
2008 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2009 				 sizeof(*rx_q->buf_pool),
2010 				 GFP_KERNEL);
2011 	if (!rx_q->buf_pool)
2012 		return -ENOMEM;
2013 
2014 	if (priv->extend_desc) {
2015 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2016 						   dma_conf->dma_rx_size *
2017 						   sizeof(struct dma_extended_desc),
2018 						   &rx_q->dma_rx_phy,
2019 						   GFP_KERNEL);
2020 		if (!rx_q->dma_erx)
2021 			return -ENOMEM;
2022 
2023 	} else {
2024 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2025 						  dma_conf->dma_rx_size *
2026 						  sizeof(struct dma_desc),
2027 						  &rx_q->dma_rx_phy,
2028 						  GFP_KERNEL);
2029 		if (!rx_q->dma_rx)
2030 			return -ENOMEM;
2031 	}
2032 
2033 	if (stmmac_xdp_is_enabled(priv) &&
2034 	    test_bit(queue, priv->af_xdp_zc_qps))
2035 		napi_id = ch->rxtx_napi.napi_id;
2036 	else
2037 		napi_id = ch->rx_napi.napi_id;
2038 
2039 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2040 			       rx_q->queue_index,
2041 			       napi_id);
2042 	if (ret) {
2043 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	return 0;
2048 }
2049 
2050 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2051 				       struct stmmac_dma_conf *dma_conf)
2052 {
2053 	u32 rx_count = priv->plat->rx_queues_to_use;
2054 	u32 queue;
2055 	int ret;
2056 
2057 	/* RX queues buffers and DMA */
2058 	for (queue = 0; queue < rx_count; queue++) {
2059 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2060 		if (ret)
2061 			goto err_dma;
2062 	}
2063 
2064 	return 0;
2065 
2066 err_dma:
2067 	free_dma_rx_desc_resources(priv, dma_conf);
2068 
2069 	return ret;
2070 }
2071 
2072 /**
2073  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2074  * @priv: private structure
2075  * @dma_conf: structure to take the dma data
2076  * @queue: TX queue index
2077  * Description: according to which descriptor can be used (extend or basic)
2078  * this function allocates the resources for TX and RX paths. In case of
2079  * reception, for example, it pre-allocated the RX socket buffer in order to
2080  * allow zero-copy mechanism.
2081  */
2082 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2083 					 struct stmmac_dma_conf *dma_conf,
2084 					 u32 queue)
2085 {
2086 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2087 	size_t size;
2088 	void *addr;
2089 
2090 	tx_q->queue_index = queue;
2091 	tx_q->priv_data = priv;
2092 
2093 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2094 				      sizeof(*tx_q->tx_skbuff_dma),
2095 				      GFP_KERNEL);
2096 	if (!tx_q->tx_skbuff_dma)
2097 		return -ENOMEM;
2098 
2099 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2100 				  sizeof(struct sk_buff *),
2101 				  GFP_KERNEL);
2102 	if (!tx_q->tx_skbuff)
2103 		return -ENOMEM;
2104 
2105 	if (priv->extend_desc)
2106 		size = sizeof(struct dma_extended_desc);
2107 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2108 		size = sizeof(struct dma_edesc);
2109 	else
2110 		size = sizeof(struct dma_desc);
2111 
2112 	size *= dma_conf->dma_tx_size;
2113 
2114 	addr = dma_alloc_coherent(priv->device, size,
2115 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2116 	if (!addr)
2117 		return -ENOMEM;
2118 
2119 	if (priv->extend_desc)
2120 		tx_q->dma_etx = addr;
2121 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2122 		tx_q->dma_entx = addr;
2123 	else
2124 		tx_q->dma_tx = addr;
2125 
2126 	return 0;
2127 }
2128 
2129 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2130 				       struct stmmac_dma_conf *dma_conf)
2131 {
2132 	u32 tx_count = priv->plat->tx_queues_to_use;
2133 	u32 queue;
2134 	int ret;
2135 
2136 	/* TX queues buffers and DMA */
2137 	for (queue = 0; queue < tx_count; queue++) {
2138 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2139 		if (ret)
2140 			goto err_dma;
2141 	}
2142 
2143 	return 0;
2144 
2145 err_dma:
2146 	free_dma_tx_desc_resources(priv, dma_conf);
2147 	return ret;
2148 }
2149 
2150 /**
2151  * alloc_dma_desc_resources - alloc TX/RX resources.
2152  * @priv: private structure
2153  * @dma_conf: structure to take the dma data
2154  * Description: according to which descriptor can be used (extend or basic)
2155  * this function allocates the resources for TX and RX paths. In case of
2156  * reception, for example, it pre-allocated the RX socket buffer in order to
2157  * allow zero-copy mechanism.
2158  */
2159 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2160 				    struct stmmac_dma_conf *dma_conf)
2161 {
2162 	/* RX Allocation */
2163 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2164 
2165 	if (ret)
2166 		return ret;
2167 
2168 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2169 
2170 	return ret;
2171 }
2172 
2173 /**
2174  * free_dma_desc_resources - free dma desc resources
2175  * @priv: private structure
2176  * @dma_conf: structure to take the dma data
2177  */
2178 static void free_dma_desc_resources(struct stmmac_priv *priv,
2179 				    struct stmmac_dma_conf *dma_conf)
2180 {
2181 	/* Release the DMA TX socket buffers */
2182 	free_dma_tx_desc_resources(priv, dma_conf);
2183 
2184 	/* Release the DMA RX socket buffers later
2185 	 * to ensure all pending XDP_TX buffers are returned.
2186 	 */
2187 	free_dma_rx_desc_resources(priv, dma_conf);
2188 }
2189 
2190 /**
2191  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2192  *  @priv: driver private structure
2193  *  Description: It is used for enabling the rx queues in the MAC
2194  */
2195 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2196 {
2197 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2198 	int queue;
2199 	u8 mode;
2200 
2201 	for (queue = 0; queue < rx_queues_count; queue++) {
2202 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2203 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2204 	}
2205 }
2206 
2207 /**
2208  * stmmac_start_rx_dma - start RX DMA channel
2209  * @priv: driver private structure
2210  * @chan: RX channel index
2211  * Description:
2212  * This starts a RX DMA channel
2213  */
2214 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2215 {
2216 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2217 	stmmac_start_rx(priv, priv->ioaddr, chan);
2218 }
2219 
2220 /**
2221  * stmmac_start_tx_dma - start TX DMA channel
2222  * @priv: driver private structure
2223  * @chan: TX channel index
2224  * Description:
2225  * This starts a TX DMA channel
2226  */
2227 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2228 {
2229 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2230 	stmmac_start_tx(priv, priv->ioaddr, chan);
2231 }
2232 
2233 /**
2234  * stmmac_stop_rx_dma - stop RX DMA channel
2235  * @priv: driver private structure
2236  * @chan: RX channel index
2237  * Description:
2238  * This stops a RX DMA channel
2239  */
2240 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2241 {
2242 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2243 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2244 }
2245 
2246 /**
2247  * stmmac_stop_tx_dma - stop TX DMA channel
2248  * @priv: driver private structure
2249  * @chan: TX channel index
2250  * Description:
2251  * This stops a TX DMA channel
2252  */
2253 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2254 {
2255 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2256 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2257 }
2258 
2259 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2260 {
2261 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2262 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2263 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2264 	u32 chan;
2265 
2266 	for (chan = 0; chan < dma_csr_ch; chan++) {
2267 		struct stmmac_channel *ch = &priv->channel[chan];
2268 		unsigned long flags;
2269 
2270 		spin_lock_irqsave(&ch->lock, flags);
2271 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2272 		spin_unlock_irqrestore(&ch->lock, flags);
2273 	}
2274 }
2275 
2276 /**
2277  * stmmac_start_all_dma - start all RX and TX DMA channels
2278  * @priv: driver private structure
2279  * Description:
2280  * This starts all the RX and TX DMA channels
2281  */
2282 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2283 {
2284 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2285 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2286 	u32 chan = 0;
2287 
2288 	for (chan = 0; chan < rx_channels_count; chan++)
2289 		stmmac_start_rx_dma(priv, chan);
2290 
2291 	for (chan = 0; chan < tx_channels_count; chan++)
2292 		stmmac_start_tx_dma(priv, chan);
2293 }
2294 
2295 /**
2296  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2297  * @priv: driver private structure
2298  * Description:
2299  * This stops the RX and TX DMA channels
2300  */
2301 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2302 {
2303 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2304 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2305 	u32 chan = 0;
2306 
2307 	for (chan = 0; chan < rx_channels_count; chan++)
2308 		stmmac_stop_rx_dma(priv, chan);
2309 
2310 	for (chan = 0; chan < tx_channels_count; chan++)
2311 		stmmac_stop_tx_dma(priv, chan);
2312 }
2313 
2314 /**
2315  *  stmmac_dma_operation_mode - HW DMA operation mode
2316  *  @priv: driver private structure
2317  *  Description: it is used for configuring the DMA operation mode register in
2318  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2319  */
2320 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2321 {
2322 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2323 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2324 	int rxfifosz = priv->plat->rx_fifo_size;
2325 	int txfifosz = priv->plat->tx_fifo_size;
2326 	u32 txmode = 0;
2327 	u32 rxmode = 0;
2328 	u32 chan = 0;
2329 	u8 qmode = 0;
2330 
2331 	if (rxfifosz == 0)
2332 		rxfifosz = priv->dma_cap.rx_fifo_size;
2333 	if (txfifosz == 0)
2334 		txfifosz = priv->dma_cap.tx_fifo_size;
2335 
2336 	/* Adjust for real per queue fifo size */
2337 	rxfifosz /= rx_channels_count;
2338 	txfifosz /= tx_channels_count;
2339 
2340 	if (priv->plat->force_thresh_dma_mode) {
2341 		txmode = tc;
2342 		rxmode = tc;
2343 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2344 		/*
2345 		 * In case of GMAC, SF mode can be enabled
2346 		 * to perform the TX COE in HW. This depends on:
2347 		 * 1) TX COE if actually supported
2348 		 * 2) There is no bugged Jumbo frame support
2349 		 *    that needs to not insert csum in the TDES.
2350 		 */
2351 		txmode = SF_DMA_MODE;
2352 		rxmode = SF_DMA_MODE;
2353 		priv->xstats.threshold = SF_DMA_MODE;
2354 	} else {
2355 		txmode = tc;
2356 		rxmode = SF_DMA_MODE;
2357 	}
2358 
2359 	/* configure all channels */
2360 	for (chan = 0; chan < rx_channels_count; chan++) {
2361 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2362 		u32 buf_size;
2363 
2364 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2365 
2366 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2367 				rxfifosz, qmode);
2368 
2369 		if (rx_q->xsk_pool) {
2370 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2371 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2372 					      buf_size,
2373 					      chan);
2374 		} else {
2375 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2376 					      priv->dma_conf.dma_buf_sz,
2377 					      chan);
2378 		}
2379 	}
2380 
2381 	for (chan = 0; chan < tx_channels_count; chan++) {
2382 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2383 
2384 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2385 				txfifosz, qmode);
2386 	}
2387 }
2388 
2389 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2390 {
2391 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2392 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2393 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2394 	unsigned int entry = tx_q->cur_tx;
2395 	struct dma_desc *tx_desc = NULL;
2396 	struct xdp_desc xdp_desc;
2397 	bool work_done = true;
2398 
2399 	/* Avoids TX time-out as we are sharing with slow path */
2400 	txq_trans_cond_update(nq);
2401 
2402 	budget = min(budget, stmmac_tx_avail(priv, queue));
2403 
2404 	while (budget-- > 0) {
2405 		dma_addr_t dma_addr;
2406 		bool set_ic;
2407 
2408 		/* We are sharing with slow path and stop XSK TX desc submission when
2409 		 * available TX ring is less than threshold.
2410 		 */
2411 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2412 		    !netif_carrier_ok(priv->dev)) {
2413 			work_done = false;
2414 			break;
2415 		}
2416 
2417 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2418 			break;
2419 
2420 		if (likely(priv->extend_desc))
2421 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2422 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2423 			tx_desc = &tx_q->dma_entx[entry].basic;
2424 		else
2425 			tx_desc = tx_q->dma_tx + entry;
2426 
2427 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2428 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2429 
2430 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2431 
2432 		/* To return XDP buffer to XSK pool, we simple call
2433 		 * xsk_tx_completed(), so we don't need to fill up
2434 		 * 'buf' and 'xdpf'.
2435 		 */
2436 		tx_q->tx_skbuff_dma[entry].buf = 0;
2437 		tx_q->xdpf[entry] = NULL;
2438 
2439 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2440 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2441 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2442 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2443 
2444 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2445 
2446 		tx_q->tx_count_frames++;
2447 
2448 		if (!priv->tx_coal_frames[queue])
2449 			set_ic = false;
2450 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2451 			set_ic = true;
2452 		else
2453 			set_ic = false;
2454 
2455 		if (set_ic) {
2456 			tx_q->tx_count_frames = 0;
2457 			stmmac_set_tx_ic(priv, tx_desc);
2458 			priv->xstats.tx_set_ic_bit++;
2459 		}
2460 
2461 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2462 				       true, priv->mode, true, true,
2463 				       xdp_desc.len);
2464 
2465 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2466 
2467 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2468 		entry = tx_q->cur_tx;
2469 	}
2470 
2471 	if (tx_desc) {
2472 		stmmac_flush_tx_descriptors(priv, queue);
2473 		xsk_tx_release(pool);
2474 	}
2475 
2476 	/* Return true if all of the 3 conditions are met
2477 	 *  a) TX Budget is still available
2478 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2479 	 *     pending XSK TX for transmission)
2480 	 */
2481 	return !!budget && work_done;
2482 }
2483 
2484 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2485 {
2486 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2487 		tc += 64;
2488 
2489 		if (priv->plat->force_thresh_dma_mode)
2490 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2491 		else
2492 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2493 						      chan);
2494 
2495 		priv->xstats.threshold = tc;
2496 	}
2497 }
2498 
2499 /**
2500  * stmmac_tx_clean - to manage the transmission completion
2501  * @priv: driver private structure
2502  * @budget: napi budget limiting this functions packet handling
2503  * @queue: TX queue index
2504  * Description: it reclaims the transmit resources after transmission completes.
2505  */
2506 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2507 {
2508 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2509 	unsigned int bytes_compl = 0, pkts_compl = 0;
2510 	unsigned int entry, xmits = 0, count = 0;
2511 
2512 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2513 
2514 	priv->xstats.tx_clean++;
2515 
2516 	tx_q->xsk_frames_done = 0;
2517 
2518 	entry = tx_q->dirty_tx;
2519 
2520 	/* Try to clean all TX complete frame in 1 shot */
2521 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2522 		struct xdp_frame *xdpf;
2523 		struct sk_buff *skb;
2524 		struct dma_desc *p;
2525 		int status;
2526 
2527 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2528 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2529 			xdpf = tx_q->xdpf[entry];
2530 			skb = NULL;
2531 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2532 			xdpf = NULL;
2533 			skb = tx_q->tx_skbuff[entry];
2534 		} else {
2535 			xdpf = NULL;
2536 			skb = NULL;
2537 		}
2538 
2539 		if (priv->extend_desc)
2540 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2541 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2542 			p = &tx_q->dma_entx[entry].basic;
2543 		else
2544 			p = tx_q->dma_tx + entry;
2545 
2546 		status = stmmac_tx_status(priv, &priv->dev->stats,
2547 				&priv->xstats, p, priv->ioaddr);
2548 		/* Check if the descriptor is owned by the DMA */
2549 		if (unlikely(status & tx_dma_own))
2550 			break;
2551 
2552 		count++;
2553 
2554 		/* Make sure descriptor fields are read after reading
2555 		 * the own bit.
2556 		 */
2557 		dma_rmb();
2558 
2559 		/* Just consider the last segment and ...*/
2560 		if (likely(!(status & tx_not_ls))) {
2561 			/* ... verify the status error condition */
2562 			if (unlikely(status & tx_err)) {
2563 				priv->dev->stats.tx_errors++;
2564 				if (unlikely(status & tx_err_bump_tc))
2565 					stmmac_bump_dma_threshold(priv, queue);
2566 			} else {
2567 				priv->dev->stats.tx_packets++;
2568 				priv->xstats.tx_pkt_n++;
2569 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2570 			}
2571 			if (skb)
2572 				stmmac_get_tx_hwtstamp(priv, p, skb);
2573 		}
2574 
2575 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2576 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2577 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2578 				dma_unmap_page(priv->device,
2579 					       tx_q->tx_skbuff_dma[entry].buf,
2580 					       tx_q->tx_skbuff_dma[entry].len,
2581 					       DMA_TO_DEVICE);
2582 			else
2583 				dma_unmap_single(priv->device,
2584 						 tx_q->tx_skbuff_dma[entry].buf,
2585 						 tx_q->tx_skbuff_dma[entry].len,
2586 						 DMA_TO_DEVICE);
2587 			tx_q->tx_skbuff_dma[entry].buf = 0;
2588 			tx_q->tx_skbuff_dma[entry].len = 0;
2589 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2590 		}
2591 
2592 		stmmac_clean_desc3(priv, tx_q, p);
2593 
2594 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2595 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2596 
2597 		if (xdpf &&
2598 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2599 			xdp_return_frame_rx_napi(xdpf);
2600 			tx_q->xdpf[entry] = NULL;
2601 		}
2602 
2603 		if (xdpf &&
2604 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2605 			xdp_return_frame(xdpf);
2606 			tx_q->xdpf[entry] = NULL;
2607 		}
2608 
2609 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2610 			tx_q->xsk_frames_done++;
2611 
2612 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2613 			if (likely(skb)) {
2614 				pkts_compl++;
2615 				bytes_compl += skb->len;
2616 				dev_consume_skb_any(skb);
2617 				tx_q->tx_skbuff[entry] = NULL;
2618 			}
2619 		}
2620 
2621 		stmmac_release_tx_desc(priv, p, priv->mode);
2622 
2623 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2624 	}
2625 	tx_q->dirty_tx = entry;
2626 
2627 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2628 				  pkts_compl, bytes_compl);
2629 
2630 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2631 								queue))) &&
2632 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2633 
2634 		netif_dbg(priv, tx_done, priv->dev,
2635 			  "%s: restart transmit\n", __func__);
2636 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2637 	}
2638 
2639 	if (tx_q->xsk_pool) {
2640 		bool work_done;
2641 
2642 		if (tx_q->xsk_frames_done)
2643 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2644 
2645 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2646 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2647 
2648 		/* For XSK TX, we try to send as many as possible.
2649 		 * If XSK work done (XSK TX desc empty and budget still
2650 		 * available), return "budget - 1" to reenable TX IRQ.
2651 		 * Else, return "budget" to make NAPI continue polling.
2652 		 */
2653 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2654 					       STMMAC_XSK_TX_BUDGET_MAX);
2655 		if (work_done)
2656 			xmits = budget - 1;
2657 		else
2658 			xmits = budget;
2659 	}
2660 
2661 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2662 	    priv->eee_sw_timer_en) {
2663 		if (stmmac_enable_eee_mode(priv))
2664 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2665 	}
2666 
2667 	/* We still have pending packets, let's call for a new scheduling */
2668 	if (tx_q->dirty_tx != tx_q->cur_tx)
2669 		hrtimer_start(&tx_q->txtimer,
2670 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2671 			      HRTIMER_MODE_REL);
2672 
2673 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2674 
2675 	/* Combine decisions from TX clean and XSK TX */
2676 	return max(count, xmits);
2677 }
2678 
2679 /**
2680  * stmmac_tx_err - to manage the tx error
2681  * @priv: driver private structure
2682  * @chan: channel index
2683  * Description: it cleans the descriptors and restarts the transmission
2684  * in case of transmission errors.
2685  */
2686 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2687 {
2688 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2689 
2690 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2691 
2692 	stmmac_stop_tx_dma(priv, chan);
2693 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2694 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2695 	stmmac_reset_tx_queue(priv, chan);
2696 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2697 			    tx_q->dma_tx_phy, chan);
2698 	stmmac_start_tx_dma(priv, chan);
2699 
2700 	priv->dev->stats.tx_errors++;
2701 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2702 }
2703 
2704 /**
2705  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2706  *  @priv: driver private structure
2707  *  @txmode: TX operating mode
2708  *  @rxmode: RX operating mode
2709  *  @chan: channel index
2710  *  Description: it is used for configuring of the DMA operation mode in
2711  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2712  *  mode.
2713  */
2714 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2715 					  u32 rxmode, u32 chan)
2716 {
2717 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2718 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2719 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2720 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2721 	int rxfifosz = priv->plat->rx_fifo_size;
2722 	int txfifosz = priv->plat->tx_fifo_size;
2723 
2724 	if (rxfifosz == 0)
2725 		rxfifosz = priv->dma_cap.rx_fifo_size;
2726 	if (txfifosz == 0)
2727 		txfifosz = priv->dma_cap.tx_fifo_size;
2728 
2729 	/* Adjust for real per queue fifo size */
2730 	rxfifosz /= rx_channels_count;
2731 	txfifosz /= tx_channels_count;
2732 
2733 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2734 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2735 }
2736 
2737 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2738 {
2739 	int ret;
2740 
2741 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2742 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2743 	if (ret && (ret != -EINVAL)) {
2744 		stmmac_global_err(priv);
2745 		return true;
2746 	}
2747 
2748 	return false;
2749 }
2750 
2751 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2752 {
2753 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2754 						 &priv->xstats, chan, dir);
2755 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2756 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2757 	struct stmmac_channel *ch = &priv->channel[chan];
2758 	struct napi_struct *rx_napi;
2759 	struct napi_struct *tx_napi;
2760 	unsigned long flags;
2761 
2762 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2763 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2764 
2765 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2766 		if (napi_schedule_prep(rx_napi)) {
2767 			spin_lock_irqsave(&ch->lock, flags);
2768 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2769 			spin_unlock_irqrestore(&ch->lock, flags);
2770 			__napi_schedule(rx_napi);
2771 		}
2772 	}
2773 
2774 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2775 		if (napi_schedule_prep(tx_napi)) {
2776 			spin_lock_irqsave(&ch->lock, flags);
2777 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2778 			spin_unlock_irqrestore(&ch->lock, flags);
2779 			__napi_schedule(tx_napi);
2780 		}
2781 	}
2782 
2783 	return status;
2784 }
2785 
2786 /**
2787  * stmmac_dma_interrupt - DMA ISR
2788  * @priv: driver private structure
2789  * Description: this is the DMA ISR. It is called by the main ISR.
2790  * It calls the dwmac dma routine and schedule poll method in case of some
2791  * work can be done.
2792  */
2793 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2794 {
2795 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2796 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2797 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2798 				tx_channel_count : rx_channel_count;
2799 	u32 chan;
2800 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2801 
2802 	/* Make sure we never check beyond our status buffer. */
2803 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2804 		channels_to_check = ARRAY_SIZE(status);
2805 
2806 	for (chan = 0; chan < channels_to_check; chan++)
2807 		status[chan] = stmmac_napi_check(priv, chan,
2808 						 DMA_DIR_RXTX);
2809 
2810 	for (chan = 0; chan < tx_channel_count; chan++) {
2811 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2812 			/* Try to bump up the dma threshold on this failure */
2813 			stmmac_bump_dma_threshold(priv, chan);
2814 		} else if (unlikely(status[chan] == tx_hard_error)) {
2815 			stmmac_tx_err(priv, chan);
2816 		}
2817 	}
2818 }
2819 
2820 /**
2821  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2822  * @priv: driver private structure
2823  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2824  */
2825 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2826 {
2827 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2828 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2829 
2830 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2831 
2832 	if (priv->dma_cap.rmon) {
2833 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2834 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2835 	} else
2836 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2837 }
2838 
2839 /**
2840  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2841  * @priv: driver private structure
2842  * Description:
2843  *  new GMAC chip generations have a new register to indicate the
2844  *  presence of the optional feature/functions.
2845  *  This can be also used to override the value passed through the
2846  *  platform and necessary for old MAC10/100 and GMAC chips.
2847  */
2848 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2849 {
2850 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2851 }
2852 
2853 /**
2854  * stmmac_check_ether_addr - check if the MAC addr is valid
2855  * @priv: driver private structure
2856  * Description:
2857  * it is to verify if the MAC address is valid, in case of failures it
2858  * generates a random MAC address
2859  */
2860 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2861 {
2862 	u8 addr[ETH_ALEN];
2863 
2864 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2865 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2866 		if (is_valid_ether_addr(addr))
2867 			eth_hw_addr_set(priv->dev, addr);
2868 		else
2869 			eth_hw_addr_random(priv->dev);
2870 		dev_info(priv->device, "device MAC address %pM\n",
2871 			 priv->dev->dev_addr);
2872 	}
2873 }
2874 
2875 /**
2876  * stmmac_init_dma_engine - DMA init.
2877  * @priv: driver private structure
2878  * Description:
2879  * It inits the DMA invoking the specific MAC/GMAC callback.
2880  * Some DMA parameters can be passed from the platform;
2881  * in case of these are not passed a default is kept for the MAC or GMAC.
2882  */
2883 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2884 {
2885 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2886 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2887 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2888 	struct stmmac_rx_queue *rx_q;
2889 	struct stmmac_tx_queue *tx_q;
2890 	u32 chan = 0;
2891 	int atds = 0;
2892 	int ret = 0;
2893 
2894 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2895 		dev_err(priv->device, "Invalid DMA configuration\n");
2896 		return -EINVAL;
2897 	}
2898 
2899 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2900 		atds = 1;
2901 
2902 	ret = stmmac_reset(priv, priv->ioaddr);
2903 	if (ret) {
2904 		dev_err(priv->device, "Failed to reset the dma\n");
2905 		return ret;
2906 	}
2907 
2908 	/* DMA Configuration */
2909 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2910 
2911 	if (priv->plat->axi)
2912 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2913 
2914 	/* DMA CSR Channel configuration */
2915 	for (chan = 0; chan < dma_csr_ch; chan++) {
2916 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2917 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2918 	}
2919 
2920 	/* DMA RX Channel Configuration */
2921 	for (chan = 0; chan < rx_channels_count; chan++) {
2922 		rx_q = &priv->dma_conf.rx_queue[chan];
2923 
2924 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2925 				    rx_q->dma_rx_phy, chan);
2926 
2927 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2928 				     (rx_q->buf_alloc_num *
2929 				      sizeof(struct dma_desc));
2930 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2931 				       rx_q->rx_tail_addr, chan);
2932 	}
2933 
2934 	/* DMA TX Channel Configuration */
2935 	for (chan = 0; chan < tx_channels_count; chan++) {
2936 		tx_q = &priv->dma_conf.tx_queue[chan];
2937 
2938 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2939 				    tx_q->dma_tx_phy, chan);
2940 
2941 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2942 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2943 				       tx_q->tx_tail_addr, chan);
2944 	}
2945 
2946 	return ret;
2947 }
2948 
2949 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2950 {
2951 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2952 
2953 	hrtimer_start(&tx_q->txtimer,
2954 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2955 		      HRTIMER_MODE_REL);
2956 }
2957 
2958 /**
2959  * stmmac_tx_timer - mitigation sw timer for tx.
2960  * @t: data pointer
2961  * Description:
2962  * This is the timer handler to directly invoke the stmmac_tx_clean.
2963  */
2964 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2965 {
2966 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2967 	struct stmmac_priv *priv = tx_q->priv_data;
2968 	struct stmmac_channel *ch;
2969 	struct napi_struct *napi;
2970 
2971 	ch = &priv->channel[tx_q->queue_index];
2972 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2973 
2974 	if (likely(napi_schedule_prep(napi))) {
2975 		unsigned long flags;
2976 
2977 		spin_lock_irqsave(&ch->lock, flags);
2978 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2979 		spin_unlock_irqrestore(&ch->lock, flags);
2980 		__napi_schedule(napi);
2981 	}
2982 
2983 	return HRTIMER_NORESTART;
2984 }
2985 
2986 /**
2987  * stmmac_init_coalesce - init mitigation options.
2988  * @priv: driver private structure
2989  * Description:
2990  * This inits the coalesce parameters: i.e. timer rate,
2991  * timer handler and default threshold used for enabling the
2992  * interrupt on completion bit.
2993  */
2994 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2995 {
2996 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2997 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2998 	u32 chan;
2999 
3000 	for (chan = 0; chan < tx_channel_count; chan++) {
3001 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3002 
3003 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3004 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3005 
3006 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3007 		tx_q->txtimer.function = stmmac_tx_timer;
3008 	}
3009 
3010 	for (chan = 0; chan < rx_channel_count; chan++)
3011 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3012 }
3013 
3014 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3015 {
3016 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3017 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3018 	u32 chan;
3019 
3020 	/* set TX ring length */
3021 	for (chan = 0; chan < tx_channels_count; chan++)
3022 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3023 				       (priv->dma_conf.dma_tx_size - 1), chan);
3024 
3025 	/* set RX ring length */
3026 	for (chan = 0; chan < rx_channels_count; chan++)
3027 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3028 				       (priv->dma_conf.dma_rx_size - 1), chan);
3029 }
3030 
3031 /**
3032  *  stmmac_set_tx_queue_weight - Set TX queue weight
3033  *  @priv: driver private structure
3034  *  Description: It is used for setting TX queues weight
3035  */
3036 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3037 {
3038 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3039 	u32 weight;
3040 	u32 queue;
3041 
3042 	for (queue = 0; queue < tx_queues_count; queue++) {
3043 		weight = priv->plat->tx_queues_cfg[queue].weight;
3044 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3045 	}
3046 }
3047 
3048 /**
3049  *  stmmac_configure_cbs - Configure CBS in TX queue
3050  *  @priv: driver private structure
3051  *  Description: It is used for configuring CBS in AVB TX queues
3052  */
3053 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3054 {
3055 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3056 	u32 mode_to_use;
3057 	u32 queue;
3058 
3059 	/* queue 0 is reserved for legacy traffic */
3060 	for (queue = 1; queue < tx_queues_count; queue++) {
3061 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3062 		if (mode_to_use == MTL_QUEUE_DCB)
3063 			continue;
3064 
3065 		stmmac_config_cbs(priv, priv->hw,
3066 				priv->plat->tx_queues_cfg[queue].send_slope,
3067 				priv->plat->tx_queues_cfg[queue].idle_slope,
3068 				priv->plat->tx_queues_cfg[queue].high_credit,
3069 				priv->plat->tx_queues_cfg[queue].low_credit,
3070 				queue);
3071 	}
3072 }
3073 
3074 /**
3075  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3076  *  @priv: driver private structure
3077  *  Description: It is used for mapping RX queues to RX dma channels
3078  */
3079 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3080 {
3081 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3082 	u32 queue;
3083 	u32 chan;
3084 
3085 	for (queue = 0; queue < rx_queues_count; queue++) {
3086 		chan = priv->plat->rx_queues_cfg[queue].chan;
3087 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3088 	}
3089 }
3090 
3091 /**
3092  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3093  *  @priv: driver private structure
3094  *  Description: It is used for configuring the RX Queue Priority
3095  */
3096 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3097 {
3098 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3099 	u32 queue;
3100 	u32 prio;
3101 
3102 	for (queue = 0; queue < rx_queues_count; queue++) {
3103 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3104 			continue;
3105 
3106 		prio = priv->plat->rx_queues_cfg[queue].prio;
3107 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3108 	}
3109 }
3110 
3111 /**
3112  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3113  *  @priv: driver private structure
3114  *  Description: It is used for configuring the TX Queue Priority
3115  */
3116 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3117 {
3118 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3119 	u32 queue;
3120 	u32 prio;
3121 
3122 	for (queue = 0; queue < tx_queues_count; queue++) {
3123 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3124 			continue;
3125 
3126 		prio = priv->plat->tx_queues_cfg[queue].prio;
3127 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3128 	}
3129 }
3130 
3131 /**
3132  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3133  *  @priv: driver private structure
3134  *  Description: It is used for configuring the RX queue routing
3135  */
3136 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3137 {
3138 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3139 	u32 queue;
3140 	u8 packet;
3141 
3142 	for (queue = 0; queue < rx_queues_count; queue++) {
3143 		/* no specific packet type routing specified for the queue */
3144 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3145 			continue;
3146 
3147 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3148 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3149 	}
3150 }
3151 
3152 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3153 {
3154 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3155 		priv->rss.enable = false;
3156 		return;
3157 	}
3158 
3159 	if (priv->dev->features & NETIF_F_RXHASH)
3160 		priv->rss.enable = true;
3161 	else
3162 		priv->rss.enable = false;
3163 
3164 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3165 			     priv->plat->rx_queues_to_use);
3166 }
3167 
3168 /**
3169  *  stmmac_mtl_configuration - Configure MTL
3170  *  @priv: driver private structure
3171  *  Description: It is used for configurring MTL
3172  */
3173 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3174 {
3175 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3176 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3177 
3178 	if (tx_queues_count > 1)
3179 		stmmac_set_tx_queue_weight(priv);
3180 
3181 	/* Configure MTL RX algorithms */
3182 	if (rx_queues_count > 1)
3183 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3184 				priv->plat->rx_sched_algorithm);
3185 
3186 	/* Configure MTL TX algorithms */
3187 	if (tx_queues_count > 1)
3188 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3189 				priv->plat->tx_sched_algorithm);
3190 
3191 	/* Configure CBS in AVB TX queues */
3192 	if (tx_queues_count > 1)
3193 		stmmac_configure_cbs(priv);
3194 
3195 	/* Map RX MTL to DMA channels */
3196 	stmmac_rx_queue_dma_chan_map(priv);
3197 
3198 	/* Enable MAC RX Queues */
3199 	stmmac_mac_enable_rx_queues(priv);
3200 
3201 	/* Set RX priorities */
3202 	if (rx_queues_count > 1)
3203 		stmmac_mac_config_rx_queues_prio(priv);
3204 
3205 	/* Set TX priorities */
3206 	if (tx_queues_count > 1)
3207 		stmmac_mac_config_tx_queues_prio(priv);
3208 
3209 	/* Set RX routing */
3210 	if (rx_queues_count > 1)
3211 		stmmac_mac_config_rx_queues_routing(priv);
3212 
3213 	/* Receive Side Scaling */
3214 	if (rx_queues_count > 1)
3215 		stmmac_mac_config_rss(priv);
3216 }
3217 
3218 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3219 {
3220 	if (priv->dma_cap.asp) {
3221 		netdev_info(priv->dev, "Enabling Safety Features\n");
3222 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3223 					  priv->plat->safety_feat_cfg);
3224 	} else {
3225 		netdev_info(priv->dev, "No Safety Features support found\n");
3226 	}
3227 }
3228 
3229 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3230 {
3231 	char *name;
3232 
3233 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3234 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3235 
3236 	name = priv->wq_name;
3237 	sprintf(name, "%s-fpe", priv->dev->name);
3238 
3239 	priv->fpe_wq = create_singlethread_workqueue(name);
3240 	if (!priv->fpe_wq) {
3241 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3242 
3243 		return -ENOMEM;
3244 	}
3245 	netdev_info(priv->dev, "FPE workqueue start");
3246 
3247 	return 0;
3248 }
3249 
3250 /**
3251  * stmmac_hw_setup - setup mac in a usable state.
3252  *  @dev : pointer to the device structure.
3253  *  @ptp_register: register PTP if set
3254  *  Description:
3255  *  this is the main function to setup the HW in a usable state because the
3256  *  dma engine is reset, the core registers are configured (e.g. AXI,
3257  *  Checksum features, timers). The DMA is ready to start receiving and
3258  *  transmitting.
3259  *  Return value:
3260  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3261  *  file on failure.
3262  */
3263 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3264 {
3265 	struct stmmac_priv *priv = netdev_priv(dev);
3266 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3267 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3268 	bool sph_en;
3269 	u32 chan;
3270 	int ret;
3271 
3272 	/* DMA initialization and SW reset */
3273 	ret = stmmac_init_dma_engine(priv);
3274 	if (ret < 0) {
3275 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3276 			   __func__);
3277 		return ret;
3278 	}
3279 
3280 	/* Copy the MAC addr into the HW  */
3281 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3282 
3283 	/* PS and related bits will be programmed according to the speed */
3284 	if (priv->hw->pcs) {
3285 		int speed = priv->plat->mac_port_sel_speed;
3286 
3287 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3288 		    (speed == SPEED_1000)) {
3289 			priv->hw->ps = speed;
3290 		} else {
3291 			dev_warn(priv->device, "invalid port speed\n");
3292 			priv->hw->ps = 0;
3293 		}
3294 	}
3295 
3296 	/* Initialize the MAC Core */
3297 	stmmac_core_init(priv, priv->hw, dev);
3298 
3299 	/* Initialize MTL*/
3300 	stmmac_mtl_configuration(priv);
3301 
3302 	/* Initialize Safety Features */
3303 	stmmac_safety_feat_configuration(priv);
3304 
3305 	ret = stmmac_rx_ipc(priv, priv->hw);
3306 	if (!ret) {
3307 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3308 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3309 		priv->hw->rx_csum = 0;
3310 	}
3311 
3312 	/* Enable the MAC Rx/Tx */
3313 	stmmac_mac_set(priv, priv->ioaddr, true);
3314 
3315 	/* Set the HW DMA mode and the COE */
3316 	stmmac_dma_operation_mode(priv);
3317 
3318 	stmmac_mmc_setup(priv);
3319 
3320 	if (ptp_register) {
3321 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3322 		if (ret < 0)
3323 			netdev_warn(priv->dev,
3324 				    "failed to enable PTP reference clock: %pe\n",
3325 				    ERR_PTR(ret));
3326 	}
3327 
3328 	ret = stmmac_init_ptp(priv);
3329 	if (ret == -EOPNOTSUPP)
3330 		netdev_info(priv->dev, "PTP not supported by HW\n");
3331 	else if (ret)
3332 		netdev_warn(priv->dev, "PTP init failed\n");
3333 	else if (ptp_register)
3334 		stmmac_ptp_register(priv);
3335 
3336 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3337 
3338 	/* Convert the timer from msec to usec */
3339 	if (!priv->tx_lpi_timer)
3340 		priv->tx_lpi_timer = eee_timer * 1000;
3341 
3342 	if (priv->use_riwt) {
3343 		u32 queue;
3344 
3345 		for (queue = 0; queue < rx_cnt; queue++) {
3346 			if (!priv->rx_riwt[queue])
3347 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3348 
3349 			stmmac_rx_watchdog(priv, priv->ioaddr,
3350 					   priv->rx_riwt[queue], queue);
3351 		}
3352 	}
3353 
3354 	if (priv->hw->pcs)
3355 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3356 
3357 	/* set TX and RX rings length */
3358 	stmmac_set_rings_length(priv);
3359 
3360 	/* Enable TSO */
3361 	if (priv->tso) {
3362 		for (chan = 0; chan < tx_cnt; chan++) {
3363 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3364 
3365 			/* TSO and TBS cannot co-exist */
3366 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3367 				continue;
3368 
3369 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3370 		}
3371 	}
3372 
3373 	/* Enable Split Header */
3374 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3375 	for (chan = 0; chan < rx_cnt; chan++)
3376 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3377 
3378 
3379 	/* VLAN Tag Insertion */
3380 	if (priv->dma_cap.vlins)
3381 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3382 
3383 	/* TBS */
3384 	for (chan = 0; chan < tx_cnt; chan++) {
3385 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3386 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3387 
3388 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3389 	}
3390 
3391 	/* Configure real RX and TX queues */
3392 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3393 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3394 
3395 	/* Start the ball rolling... */
3396 	stmmac_start_all_dma(priv);
3397 
3398 	if (priv->dma_cap.fpesel) {
3399 		stmmac_fpe_start_wq(priv);
3400 
3401 		if (priv->plat->fpe_cfg->enable)
3402 			stmmac_fpe_handshake(priv, true);
3403 	}
3404 
3405 	return 0;
3406 }
3407 
3408 static void stmmac_hw_teardown(struct net_device *dev)
3409 {
3410 	struct stmmac_priv *priv = netdev_priv(dev);
3411 
3412 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3413 }
3414 
3415 static void stmmac_free_irq(struct net_device *dev,
3416 			    enum request_irq_err irq_err, int irq_idx)
3417 {
3418 	struct stmmac_priv *priv = netdev_priv(dev);
3419 	int j;
3420 
3421 	switch (irq_err) {
3422 	case REQ_IRQ_ERR_ALL:
3423 		irq_idx = priv->plat->tx_queues_to_use;
3424 		fallthrough;
3425 	case REQ_IRQ_ERR_TX:
3426 		for (j = irq_idx - 1; j >= 0; j--) {
3427 			if (priv->tx_irq[j] > 0) {
3428 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3429 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3430 			}
3431 		}
3432 		irq_idx = priv->plat->rx_queues_to_use;
3433 		fallthrough;
3434 	case REQ_IRQ_ERR_RX:
3435 		for (j = irq_idx - 1; j >= 0; j--) {
3436 			if (priv->rx_irq[j] > 0) {
3437 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3438 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3439 			}
3440 		}
3441 
3442 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3443 			free_irq(priv->sfty_ue_irq, dev);
3444 		fallthrough;
3445 	case REQ_IRQ_ERR_SFTY_UE:
3446 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3447 			free_irq(priv->sfty_ce_irq, dev);
3448 		fallthrough;
3449 	case REQ_IRQ_ERR_SFTY_CE:
3450 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3451 			free_irq(priv->lpi_irq, dev);
3452 		fallthrough;
3453 	case REQ_IRQ_ERR_LPI:
3454 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3455 			free_irq(priv->wol_irq, dev);
3456 		fallthrough;
3457 	case REQ_IRQ_ERR_WOL:
3458 		free_irq(dev->irq, dev);
3459 		fallthrough;
3460 	case REQ_IRQ_ERR_MAC:
3461 	case REQ_IRQ_ERR_NO:
3462 		/* If MAC IRQ request error, no more IRQ to free */
3463 		break;
3464 	}
3465 }
3466 
3467 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3468 {
3469 	struct stmmac_priv *priv = netdev_priv(dev);
3470 	enum request_irq_err irq_err;
3471 	cpumask_t cpu_mask;
3472 	int irq_idx = 0;
3473 	char *int_name;
3474 	int ret;
3475 	int i;
3476 
3477 	/* For common interrupt */
3478 	int_name = priv->int_name_mac;
3479 	sprintf(int_name, "%s:%s", dev->name, "mac");
3480 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3481 			  0, int_name, dev);
3482 	if (unlikely(ret < 0)) {
3483 		netdev_err(priv->dev,
3484 			   "%s: alloc mac MSI %d (error: %d)\n",
3485 			   __func__, dev->irq, ret);
3486 		irq_err = REQ_IRQ_ERR_MAC;
3487 		goto irq_error;
3488 	}
3489 
3490 	/* Request the Wake IRQ in case of another line
3491 	 * is used for WoL
3492 	 */
3493 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3494 		int_name = priv->int_name_wol;
3495 		sprintf(int_name, "%s:%s", dev->name, "wol");
3496 		ret = request_irq(priv->wol_irq,
3497 				  stmmac_mac_interrupt,
3498 				  0, int_name, dev);
3499 		if (unlikely(ret < 0)) {
3500 			netdev_err(priv->dev,
3501 				   "%s: alloc wol MSI %d (error: %d)\n",
3502 				   __func__, priv->wol_irq, ret);
3503 			irq_err = REQ_IRQ_ERR_WOL;
3504 			goto irq_error;
3505 		}
3506 	}
3507 
3508 	/* Request the LPI IRQ in case of another line
3509 	 * is used for LPI
3510 	 */
3511 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3512 		int_name = priv->int_name_lpi;
3513 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3514 		ret = request_irq(priv->lpi_irq,
3515 				  stmmac_mac_interrupt,
3516 				  0, int_name, dev);
3517 		if (unlikely(ret < 0)) {
3518 			netdev_err(priv->dev,
3519 				   "%s: alloc lpi MSI %d (error: %d)\n",
3520 				   __func__, priv->lpi_irq, ret);
3521 			irq_err = REQ_IRQ_ERR_LPI;
3522 			goto irq_error;
3523 		}
3524 	}
3525 
3526 	/* Request the Safety Feature Correctible Error line in
3527 	 * case of another line is used
3528 	 */
3529 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3530 		int_name = priv->int_name_sfty_ce;
3531 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3532 		ret = request_irq(priv->sfty_ce_irq,
3533 				  stmmac_safety_interrupt,
3534 				  0, int_name, dev);
3535 		if (unlikely(ret < 0)) {
3536 			netdev_err(priv->dev,
3537 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3538 				   __func__, priv->sfty_ce_irq, ret);
3539 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3540 			goto irq_error;
3541 		}
3542 	}
3543 
3544 	/* Request the Safety Feature Uncorrectible Error line in
3545 	 * case of another line is used
3546 	 */
3547 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3548 		int_name = priv->int_name_sfty_ue;
3549 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3550 		ret = request_irq(priv->sfty_ue_irq,
3551 				  stmmac_safety_interrupt,
3552 				  0, int_name, dev);
3553 		if (unlikely(ret < 0)) {
3554 			netdev_err(priv->dev,
3555 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3556 				   __func__, priv->sfty_ue_irq, ret);
3557 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3558 			goto irq_error;
3559 		}
3560 	}
3561 
3562 	/* Request Rx MSI irq */
3563 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3564 		if (i >= MTL_MAX_RX_QUEUES)
3565 			break;
3566 		if (priv->rx_irq[i] == 0)
3567 			continue;
3568 
3569 		int_name = priv->int_name_rx_irq[i];
3570 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3571 		ret = request_irq(priv->rx_irq[i],
3572 				  stmmac_msi_intr_rx,
3573 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3574 		if (unlikely(ret < 0)) {
3575 			netdev_err(priv->dev,
3576 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3577 				   __func__, i, priv->rx_irq[i], ret);
3578 			irq_err = REQ_IRQ_ERR_RX;
3579 			irq_idx = i;
3580 			goto irq_error;
3581 		}
3582 		cpumask_clear(&cpu_mask);
3583 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3584 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3585 	}
3586 
3587 	/* Request Tx MSI irq */
3588 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3589 		if (i >= MTL_MAX_TX_QUEUES)
3590 			break;
3591 		if (priv->tx_irq[i] == 0)
3592 			continue;
3593 
3594 		int_name = priv->int_name_tx_irq[i];
3595 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3596 		ret = request_irq(priv->tx_irq[i],
3597 				  stmmac_msi_intr_tx,
3598 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3599 		if (unlikely(ret < 0)) {
3600 			netdev_err(priv->dev,
3601 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3602 				   __func__, i, priv->tx_irq[i], ret);
3603 			irq_err = REQ_IRQ_ERR_TX;
3604 			irq_idx = i;
3605 			goto irq_error;
3606 		}
3607 		cpumask_clear(&cpu_mask);
3608 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3609 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3610 	}
3611 
3612 	return 0;
3613 
3614 irq_error:
3615 	stmmac_free_irq(dev, irq_err, irq_idx);
3616 	return ret;
3617 }
3618 
3619 static int stmmac_request_irq_single(struct net_device *dev)
3620 {
3621 	struct stmmac_priv *priv = netdev_priv(dev);
3622 	enum request_irq_err irq_err;
3623 	int ret;
3624 
3625 	ret = request_irq(dev->irq, stmmac_interrupt,
3626 			  IRQF_SHARED, dev->name, dev);
3627 	if (unlikely(ret < 0)) {
3628 		netdev_err(priv->dev,
3629 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3630 			   __func__, dev->irq, ret);
3631 		irq_err = REQ_IRQ_ERR_MAC;
3632 		goto irq_error;
3633 	}
3634 
3635 	/* Request the Wake IRQ in case of another line
3636 	 * is used for WoL
3637 	 */
3638 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3639 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3640 				  IRQF_SHARED, dev->name, dev);
3641 		if (unlikely(ret < 0)) {
3642 			netdev_err(priv->dev,
3643 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3644 				   __func__, priv->wol_irq, ret);
3645 			irq_err = REQ_IRQ_ERR_WOL;
3646 			goto irq_error;
3647 		}
3648 	}
3649 
3650 	/* Request the IRQ lines */
3651 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3652 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3653 				  IRQF_SHARED, dev->name, dev);
3654 		if (unlikely(ret < 0)) {
3655 			netdev_err(priv->dev,
3656 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3657 				   __func__, priv->lpi_irq, ret);
3658 			irq_err = REQ_IRQ_ERR_LPI;
3659 			goto irq_error;
3660 		}
3661 	}
3662 
3663 	return 0;
3664 
3665 irq_error:
3666 	stmmac_free_irq(dev, irq_err, 0);
3667 	return ret;
3668 }
3669 
3670 static int stmmac_request_irq(struct net_device *dev)
3671 {
3672 	struct stmmac_priv *priv = netdev_priv(dev);
3673 	int ret;
3674 
3675 	/* Request the IRQ lines */
3676 	if (priv->plat->multi_msi_en)
3677 		ret = stmmac_request_irq_multi_msi(dev);
3678 	else
3679 		ret = stmmac_request_irq_single(dev);
3680 
3681 	return ret;
3682 }
3683 
3684 /**
3685  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3686  *  @priv: driver private structure
3687  *  @mtu: MTU to setup the dma queue and buf with
3688  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3689  *  Allocate the Tx/Rx DMA queue and init them.
3690  *  Return value:
3691  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3692  */
3693 static struct stmmac_dma_conf *
3694 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3695 {
3696 	struct stmmac_dma_conf *dma_conf;
3697 	int chan, bfsize, ret;
3698 
3699 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3700 	if (!dma_conf) {
3701 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3702 			   __func__);
3703 		return ERR_PTR(-ENOMEM);
3704 	}
3705 
3706 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3707 	if (bfsize < 0)
3708 		bfsize = 0;
3709 
3710 	if (bfsize < BUF_SIZE_16KiB)
3711 		bfsize = stmmac_set_bfsize(mtu, 0);
3712 
3713 	dma_conf->dma_buf_sz = bfsize;
3714 	/* Chose the tx/rx size from the already defined one in the
3715 	 * priv struct. (if defined)
3716 	 */
3717 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3718 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3719 
3720 	if (!dma_conf->dma_tx_size)
3721 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3722 	if (!dma_conf->dma_rx_size)
3723 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3724 
3725 	/* Earlier check for TBS */
3726 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3727 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3728 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3729 
3730 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3731 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3732 	}
3733 
3734 	ret = alloc_dma_desc_resources(priv, dma_conf);
3735 	if (ret < 0) {
3736 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3737 			   __func__);
3738 		goto alloc_error;
3739 	}
3740 
3741 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3742 	if (ret < 0) {
3743 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3744 			   __func__);
3745 		goto init_error;
3746 	}
3747 
3748 	return dma_conf;
3749 
3750 init_error:
3751 	free_dma_desc_resources(priv, dma_conf);
3752 alloc_error:
3753 	kfree(dma_conf);
3754 	return ERR_PTR(ret);
3755 }
3756 
3757 /**
3758  *  __stmmac_open - open entry point of the driver
3759  *  @dev : pointer to the device structure.
3760  *  @dma_conf :  structure to take the dma data
3761  *  Description:
3762  *  This function is the open entry point of the driver.
3763  *  Return value:
3764  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3765  *  file on failure.
3766  */
3767 static int __stmmac_open(struct net_device *dev,
3768 			 struct stmmac_dma_conf *dma_conf)
3769 {
3770 	struct stmmac_priv *priv = netdev_priv(dev);
3771 	int mode = priv->plat->phy_interface;
3772 	u32 chan;
3773 	int ret;
3774 
3775 	ret = pm_runtime_resume_and_get(priv->device);
3776 	if (ret < 0)
3777 		return ret;
3778 
3779 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3780 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3781 	    (!priv->hw->xpcs ||
3782 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3783 		ret = stmmac_init_phy(dev);
3784 		if (ret) {
3785 			netdev_err(priv->dev,
3786 				   "%s: Cannot attach to PHY (error: %d)\n",
3787 				   __func__, ret);
3788 			goto init_phy_error;
3789 		}
3790 	}
3791 
3792 	/* Extra statistics */
3793 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3794 	priv->xstats.threshold = tc;
3795 
3796 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3797 
3798 	buf_sz = dma_conf->dma_buf_sz;
3799 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3800 
3801 	stmmac_reset_queues_param(priv);
3802 
3803 	ret = stmmac_hw_setup(dev, true);
3804 	if (ret < 0) {
3805 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3806 		goto init_error;
3807 	}
3808 
3809 	stmmac_init_coalesce(priv);
3810 
3811 	phylink_start(priv->phylink);
3812 	/* We may have called phylink_speed_down before */
3813 	phylink_speed_up(priv->phylink);
3814 
3815 	ret = stmmac_request_irq(dev);
3816 	if (ret)
3817 		goto irq_error;
3818 
3819 	stmmac_enable_all_queues(priv);
3820 	netif_tx_start_all_queues(priv->dev);
3821 	stmmac_enable_all_dma_irq(priv);
3822 
3823 	return 0;
3824 
3825 irq_error:
3826 	phylink_stop(priv->phylink);
3827 
3828 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3829 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3830 
3831 	stmmac_hw_teardown(dev);
3832 init_error:
3833 	free_dma_desc_resources(priv, &priv->dma_conf);
3834 	phylink_disconnect_phy(priv->phylink);
3835 init_phy_error:
3836 	pm_runtime_put(priv->device);
3837 	return ret;
3838 }
3839 
3840 static int stmmac_open(struct net_device *dev)
3841 {
3842 	struct stmmac_priv *priv = netdev_priv(dev);
3843 	struct stmmac_dma_conf *dma_conf;
3844 	int ret;
3845 
3846 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3847 	if (IS_ERR(dma_conf))
3848 		return PTR_ERR(dma_conf);
3849 
3850 	ret = __stmmac_open(dev, dma_conf);
3851 	kfree(dma_conf);
3852 	return ret;
3853 }
3854 
3855 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3856 {
3857 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3858 
3859 	if (priv->fpe_wq)
3860 		destroy_workqueue(priv->fpe_wq);
3861 
3862 	netdev_info(priv->dev, "FPE workqueue stop");
3863 }
3864 
3865 /**
3866  *  stmmac_release - close entry point of the driver
3867  *  @dev : device pointer.
3868  *  Description:
3869  *  This is the stop entry point of the driver.
3870  */
3871 static int stmmac_release(struct net_device *dev)
3872 {
3873 	struct stmmac_priv *priv = netdev_priv(dev);
3874 	u32 chan;
3875 
3876 	if (device_may_wakeup(priv->device))
3877 		phylink_speed_down(priv->phylink, false);
3878 	/* Stop and disconnect the PHY */
3879 	phylink_stop(priv->phylink);
3880 	phylink_disconnect_phy(priv->phylink);
3881 
3882 	stmmac_disable_all_queues(priv);
3883 
3884 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3885 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3886 
3887 	netif_tx_disable(dev);
3888 
3889 	/* Free the IRQ lines */
3890 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3891 
3892 	if (priv->eee_enabled) {
3893 		priv->tx_path_in_lpi_mode = false;
3894 		del_timer_sync(&priv->eee_ctrl_timer);
3895 	}
3896 
3897 	/* Stop TX/RX DMA and clear the descriptors */
3898 	stmmac_stop_all_dma(priv);
3899 
3900 	/* Release and free the Rx/Tx resources */
3901 	free_dma_desc_resources(priv, &priv->dma_conf);
3902 
3903 	/* Disable the MAC Rx/Tx */
3904 	stmmac_mac_set(priv, priv->ioaddr, false);
3905 
3906 	netif_carrier_off(dev);
3907 
3908 	stmmac_release_ptp(priv);
3909 
3910 	pm_runtime_put(priv->device);
3911 
3912 	if (priv->dma_cap.fpesel)
3913 		stmmac_fpe_stop_wq(priv);
3914 
3915 	return 0;
3916 }
3917 
3918 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3919 			       struct stmmac_tx_queue *tx_q)
3920 {
3921 	u16 tag = 0x0, inner_tag = 0x0;
3922 	u32 inner_type = 0x0;
3923 	struct dma_desc *p;
3924 
3925 	if (!priv->dma_cap.vlins)
3926 		return false;
3927 	if (!skb_vlan_tag_present(skb))
3928 		return false;
3929 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3930 		inner_tag = skb_vlan_tag_get(skb);
3931 		inner_type = STMMAC_VLAN_INSERT;
3932 	}
3933 
3934 	tag = skb_vlan_tag_get(skb);
3935 
3936 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3937 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3938 	else
3939 		p = &tx_q->dma_tx[tx_q->cur_tx];
3940 
3941 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3942 		return false;
3943 
3944 	stmmac_set_tx_owner(priv, p);
3945 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
3946 	return true;
3947 }
3948 
3949 /**
3950  *  stmmac_tso_allocator - close entry point of the driver
3951  *  @priv: driver private structure
3952  *  @des: buffer start address
3953  *  @total_len: total length to fill in descriptors
3954  *  @last_segment: condition for the last descriptor
3955  *  @queue: TX queue index
3956  *  Description:
3957  *  This function fills descriptor and request new descriptors according to
3958  *  buffer length to fill
3959  */
3960 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3961 				 int total_len, bool last_segment, u32 queue)
3962 {
3963 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3964 	struct dma_desc *desc;
3965 	u32 buff_size;
3966 	int tmp_len;
3967 
3968 	tmp_len = total_len;
3969 
3970 	while (tmp_len > 0) {
3971 		dma_addr_t curr_addr;
3972 
3973 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3974 						priv->dma_conf.dma_tx_size);
3975 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3976 
3977 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3978 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3979 		else
3980 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3981 
3982 		curr_addr = des + (total_len - tmp_len);
3983 		if (priv->dma_cap.addr64 <= 32)
3984 			desc->des0 = cpu_to_le32(curr_addr);
3985 		else
3986 			stmmac_set_desc_addr(priv, desc, curr_addr);
3987 
3988 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3989 			    TSO_MAX_BUFF_SIZE : tmp_len;
3990 
3991 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3992 				0, 1,
3993 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3994 				0, 0);
3995 
3996 		tmp_len -= TSO_MAX_BUFF_SIZE;
3997 	}
3998 }
3999 
4000 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4001 {
4002 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4003 	int desc_size;
4004 
4005 	if (likely(priv->extend_desc))
4006 		desc_size = sizeof(struct dma_extended_desc);
4007 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4008 		desc_size = sizeof(struct dma_edesc);
4009 	else
4010 		desc_size = sizeof(struct dma_desc);
4011 
4012 	/* The own bit must be the latest setting done when prepare the
4013 	 * descriptor and then barrier is needed to make sure that
4014 	 * all is coherent before granting the DMA engine.
4015 	 */
4016 	wmb();
4017 
4018 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4019 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4020 }
4021 
4022 /**
4023  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4024  *  @skb : the socket buffer
4025  *  @dev : device pointer
4026  *  Description: this is the transmit function that is called on TSO frames
4027  *  (support available on GMAC4 and newer chips).
4028  *  Diagram below show the ring programming in case of TSO frames:
4029  *
4030  *  First Descriptor
4031  *   --------
4032  *   | DES0 |---> buffer1 = L2/L3/L4 header
4033  *   | DES1 |---> TCP Payload (can continue on next descr...)
4034  *   | DES2 |---> buffer 1 and 2 len
4035  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4036  *   --------
4037  *	|
4038  *     ...
4039  *	|
4040  *   --------
4041  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4042  *   | DES1 | --|
4043  *   | DES2 | --> buffer 1 and 2 len
4044  *   | DES3 |
4045  *   --------
4046  *
4047  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4048  */
4049 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4050 {
4051 	struct dma_desc *desc, *first, *mss_desc = NULL;
4052 	struct stmmac_priv *priv = netdev_priv(dev);
4053 	int nfrags = skb_shinfo(skb)->nr_frags;
4054 	u32 queue = skb_get_queue_mapping(skb);
4055 	unsigned int first_entry, tx_packets;
4056 	int tmp_pay_len = 0, first_tx;
4057 	struct stmmac_tx_queue *tx_q;
4058 	bool has_vlan, set_ic;
4059 	u8 proto_hdr_len, hdr;
4060 	u32 pay_len, mss;
4061 	dma_addr_t des;
4062 	int i;
4063 
4064 	tx_q = &priv->dma_conf.tx_queue[queue];
4065 	first_tx = tx_q->cur_tx;
4066 
4067 	/* Compute header lengths */
4068 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4069 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4070 		hdr = sizeof(struct udphdr);
4071 	} else {
4072 		proto_hdr_len = skb_tcp_all_headers(skb);
4073 		hdr = tcp_hdrlen(skb);
4074 	}
4075 
4076 	/* Desc availability based on threshold should be enough safe */
4077 	if (unlikely(stmmac_tx_avail(priv, queue) <
4078 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4079 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4080 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4081 								queue));
4082 			/* This is a hard error, log it. */
4083 			netdev_err(priv->dev,
4084 				   "%s: Tx Ring full when queue awake\n",
4085 				   __func__);
4086 		}
4087 		return NETDEV_TX_BUSY;
4088 	}
4089 
4090 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4091 
4092 	mss = skb_shinfo(skb)->gso_size;
4093 
4094 	/* set new MSS value if needed */
4095 	if (mss != tx_q->mss) {
4096 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4097 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4098 		else
4099 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4100 
4101 		stmmac_set_mss(priv, mss_desc, mss);
4102 		tx_q->mss = mss;
4103 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4104 						priv->dma_conf.dma_tx_size);
4105 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4106 	}
4107 
4108 	if (netif_msg_tx_queued(priv)) {
4109 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4110 			__func__, hdr, proto_hdr_len, pay_len, mss);
4111 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4112 			skb->data_len);
4113 	}
4114 
4115 	/* Check if VLAN can be inserted by HW */
4116 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4117 
4118 	first_entry = tx_q->cur_tx;
4119 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4120 
4121 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4122 		desc = &tx_q->dma_entx[first_entry].basic;
4123 	else
4124 		desc = &tx_q->dma_tx[first_entry];
4125 	first = desc;
4126 
4127 	if (has_vlan)
4128 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4129 
4130 	/* first descriptor: fill Headers on Buf1 */
4131 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4132 			     DMA_TO_DEVICE);
4133 	if (dma_mapping_error(priv->device, des))
4134 		goto dma_map_err;
4135 
4136 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4137 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4138 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4139 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4140 
4141 	if (priv->dma_cap.addr64 <= 32) {
4142 		first->des0 = cpu_to_le32(des);
4143 
4144 		/* Fill start of payload in buff2 of first descriptor */
4145 		if (pay_len)
4146 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4147 
4148 		/* If needed take extra descriptors to fill the remaining payload */
4149 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4150 	} else {
4151 		stmmac_set_desc_addr(priv, first, des);
4152 		tmp_pay_len = pay_len;
4153 		des += proto_hdr_len;
4154 		pay_len = 0;
4155 	}
4156 
4157 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4158 
4159 	/* Prepare fragments */
4160 	for (i = 0; i < nfrags; i++) {
4161 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4162 
4163 		des = skb_frag_dma_map(priv->device, frag, 0,
4164 				       skb_frag_size(frag),
4165 				       DMA_TO_DEVICE);
4166 		if (dma_mapping_error(priv->device, des))
4167 			goto dma_map_err;
4168 
4169 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4170 				     (i == nfrags - 1), queue);
4171 
4172 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4173 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4174 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4175 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4176 	}
4177 
4178 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4179 
4180 	/* Only the last descriptor gets to point to the skb. */
4181 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4182 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4183 
4184 	/* Manage tx mitigation */
4185 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4186 	tx_q->tx_count_frames += tx_packets;
4187 
4188 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4189 		set_ic = true;
4190 	else if (!priv->tx_coal_frames[queue])
4191 		set_ic = false;
4192 	else if (tx_packets > priv->tx_coal_frames[queue])
4193 		set_ic = true;
4194 	else if ((tx_q->tx_count_frames %
4195 		  priv->tx_coal_frames[queue]) < tx_packets)
4196 		set_ic = true;
4197 	else
4198 		set_ic = false;
4199 
4200 	if (set_ic) {
4201 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4202 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4203 		else
4204 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4205 
4206 		tx_q->tx_count_frames = 0;
4207 		stmmac_set_tx_ic(priv, desc);
4208 		priv->xstats.tx_set_ic_bit++;
4209 	}
4210 
4211 	/* We've used all descriptors we need for this skb, however,
4212 	 * advance cur_tx so that it references a fresh descriptor.
4213 	 * ndo_start_xmit will fill this descriptor the next time it's
4214 	 * called and stmmac_tx_clean may clean up to this descriptor.
4215 	 */
4216 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4217 
4218 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4219 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4220 			  __func__);
4221 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4222 	}
4223 
4224 	dev->stats.tx_bytes += skb->len;
4225 	priv->xstats.tx_tso_frames++;
4226 	priv->xstats.tx_tso_nfrags += nfrags;
4227 
4228 	if (priv->sarc_type)
4229 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4230 
4231 	skb_tx_timestamp(skb);
4232 
4233 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4234 		     priv->hwts_tx_en)) {
4235 		/* declare that device is doing timestamping */
4236 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4237 		stmmac_enable_tx_timestamp(priv, first);
4238 	}
4239 
4240 	/* Complete the first descriptor before granting the DMA */
4241 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4242 			proto_hdr_len,
4243 			pay_len,
4244 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4245 			hdr / 4, (skb->len - proto_hdr_len));
4246 
4247 	/* If context desc is used to change MSS */
4248 	if (mss_desc) {
4249 		/* Make sure that first descriptor has been completely
4250 		 * written, including its own bit. This is because MSS is
4251 		 * actually before first descriptor, so we need to make
4252 		 * sure that MSS's own bit is the last thing written.
4253 		 */
4254 		dma_wmb();
4255 		stmmac_set_tx_owner(priv, mss_desc);
4256 	}
4257 
4258 	if (netif_msg_pktdata(priv)) {
4259 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4260 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4261 			tx_q->cur_tx, first, nfrags);
4262 		pr_info(">>> frame to be transmitted: ");
4263 		print_pkt(skb->data, skb_headlen(skb));
4264 	}
4265 
4266 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4267 
4268 	stmmac_flush_tx_descriptors(priv, queue);
4269 	stmmac_tx_timer_arm(priv, queue);
4270 
4271 	return NETDEV_TX_OK;
4272 
4273 dma_map_err:
4274 	dev_err(priv->device, "Tx dma map failed\n");
4275 	dev_kfree_skb(skb);
4276 	priv->dev->stats.tx_dropped++;
4277 	return NETDEV_TX_OK;
4278 }
4279 
4280 /**
4281  *  stmmac_xmit - Tx entry point of the driver
4282  *  @skb : the socket buffer
4283  *  @dev : device pointer
4284  *  Description : this is the tx entry point of the driver.
4285  *  It programs the chain or the ring and supports oversized frames
4286  *  and SG feature.
4287  */
4288 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4289 {
4290 	unsigned int first_entry, tx_packets, enh_desc;
4291 	struct stmmac_priv *priv = netdev_priv(dev);
4292 	unsigned int nopaged_len = skb_headlen(skb);
4293 	int i, csum_insertion = 0, is_jumbo = 0;
4294 	u32 queue = skb_get_queue_mapping(skb);
4295 	int nfrags = skb_shinfo(skb)->nr_frags;
4296 	int gso = skb_shinfo(skb)->gso_type;
4297 	struct dma_edesc *tbs_desc = NULL;
4298 	struct dma_desc *desc, *first;
4299 	struct stmmac_tx_queue *tx_q;
4300 	bool has_vlan, set_ic;
4301 	int entry, first_tx;
4302 	dma_addr_t des;
4303 
4304 	tx_q = &priv->dma_conf.tx_queue[queue];
4305 	first_tx = tx_q->cur_tx;
4306 
4307 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4308 		stmmac_disable_eee_mode(priv);
4309 
4310 	/* Manage oversized TCP frames for GMAC4 device */
4311 	if (skb_is_gso(skb) && priv->tso) {
4312 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4313 			return stmmac_tso_xmit(skb, dev);
4314 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4315 			return stmmac_tso_xmit(skb, dev);
4316 	}
4317 
4318 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4319 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4320 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4321 								queue));
4322 			/* This is a hard error, log it. */
4323 			netdev_err(priv->dev,
4324 				   "%s: Tx Ring full when queue awake\n",
4325 				   __func__);
4326 		}
4327 		return NETDEV_TX_BUSY;
4328 	}
4329 
4330 	/* Check if VLAN can be inserted by HW */
4331 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4332 
4333 	entry = tx_q->cur_tx;
4334 	first_entry = entry;
4335 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4336 
4337 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4338 
4339 	if (likely(priv->extend_desc))
4340 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4341 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4342 		desc = &tx_q->dma_entx[entry].basic;
4343 	else
4344 		desc = tx_q->dma_tx + entry;
4345 
4346 	first = desc;
4347 
4348 	if (has_vlan)
4349 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4350 
4351 	enh_desc = priv->plat->enh_desc;
4352 	/* To program the descriptors according to the size of the frame */
4353 	if (enh_desc)
4354 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4355 
4356 	if (unlikely(is_jumbo)) {
4357 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4358 		if (unlikely(entry < 0) && (entry != -EINVAL))
4359 			goto dma_map_err;
4360 	}
4361 
4362 	for (i = 0; i < nfrags; i++) {
4363 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4364 		int len = skb_frag_size(frag);
4365 		bool last_segment = (i == (nfrags - 1));
4366 
4367 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4368 		WARN_ON(tx_q->tx_skbuff[entry]);
4369 
4370 		if (likely(priv->extend_desc))
4371 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4372 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4373 			desc = &tx_q->dma_entx[entry].basic;
4374 		else
4375 			desc = tx_q->dma_tx + entry;
4376 
4377 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4378 				       DMA_TO_DEVICE);
4379 		if (dma_mapping_error(priv->device, des))
4380 			goto dma_map_err; /* should reuse desc w/o issues */
4381 
4382 		tx_q->tx_skbuff_dma[entry].buf = des;
4383 
4384 		stmmac_set_desc_addr(priv, desc, des);
4385 
4386 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4387 		tx_q->tx_skbuff_dma[entry].len = len;
4388 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4389 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4390 
4391 		/* Prepare the descriptor and set the own bit too */
4392 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4393 				priv->mode, 1, last_segment, skb->len);
4394 	}
4395 
4396 	/* Only the last descriptor gets to point to the skb. */
4397 	tx_q->tx_skbuff[entry] = skb;
4398 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4399 
4400 	/* According to the coalesce parameter the IC bit for the latest
4401 	 * segment is reset and the timer re-started to clean the tx status.
4402 	 * This approach takes care about the fragments: desc is the first
4403 	 * element in case of no SG.
4404 	 */
4405 	tx_packets = (entry + 1) - first_tx;
4406 	tx_q->tx_count_frames += tx_packets;
4407 
4408 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4409 		set_ic = true;
4410 	else if (!priv->tx_coal_frames[queue])
4411 		set_ic = false;
4412 	else if (tx_packets > priv->tx_coal_frames[queue])
4413 		set_ic = true;
4414 	else if ((tx_q->tx_count_frames %
4415 		  priv->tx_coal_frames[queue]) < tx_packets)
4416 		set_ic = true;
4417 	else
4418 		set_ic = false;
4419 
4420 	if (set_ic) {
4421 		if (likely(priv->extend_desc))
4422 			desc = &tx_q->dma_etx[entry].basic;
4423 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4424 			desc = &tx_q->dma_entx[entry].basic;
4425 		else
4426 			desc = &tx_q->dma_tx[entry];
4427 
4428 		tx_q->tx_count_frames = 0;
4429 		stmmac_set_tx_ic(priv, desc);
4430 		priv->xstats.tx_set_ic_bit++;
4431 	}
4432 
4433 	/* We've used all descriptors we need for this skb, however,
4434 	 * advance cur_tx so that it references a fresh descriptor.
4435 	 * ndo_start_xmit will fill this descriptor the next time it's
4436 	 * called and stmmac_tx_clean may clean up to this descriptor.
4437 	 */
4438 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4439 	tx_q->cur_tx = entry;
4440 
4441 	if (netif_msg_pktdata(priv)) {
4442 		netdev_dbg(priv->dev,
4443 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4444 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4445 			   entry, first, nfrags);
4446 
4447 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4448 		print_pkt(skb->data, skb->len);
4449 	}
4450 
4451 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4452 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4453 			  __func__);
4454 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4455 	}
4456 
4457 	dev->stats.tx_bytes += skb->len;
4458 
4459 	if (priv->sarc_type)
4460 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4461 
4462 	skb_tx_timestamp(skb);
4463 
4464 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4465 	 * problems because all the descriptors are actually ready to be
4466 	 * passed to the DMA engine.
4467 	 */
4468 	if (likely(!is_jumbo)) {
4469 		bool last_segment = (nfrags == 0);
4470 
4471 		des = dma_map_single(priv->device, skb->data,
4472 				     nopaged_len, DMA_TO_DEVICE);
4473 		if (dma_mapping_error(priv->device, des))
4474 			goto dma_map_err;
4475 
4476 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4477 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4478 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4479 
4480 		stmmac_set_desc_addr(priv, first, des);
4481 
4482 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4483 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4484 
4485 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4486 			     priv->hwts_tx_en)) {
4487 			/* declare that device is doing timestamping */
4488 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4489 			stmmac_enable_tx_timestamp(priv, first);
4490 		}
4491 
4492 		/* Prepare the first descriptor setting the OWN bit too */
4493 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4494 				csum_insertion, priv->mode, 0, last_segment,
4495 				skb->len);
4496 	}
4497 
4498 	if (tx_q->tbs & STMMAC_TBS_EN) {
4499 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4500 
4501 		tbs_desc = &tx_q->dma_entx[first_entry];
4502 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4503 	}
4504 
4505 	stmmac_set_tx_owner(priv, first);
4506 
4507 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4508 
4509 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4510 
4511 	stmmac_flush_tx_descriptors(priv, queue);
4512 	stmmac_tx_timer_arm(priv, queue);
4513 
4514 	return NETDEV_TX_OK;
4515 
4516 dma_map_err:
4517 	netdev_err(priv->dev, "Tx DMA map failed\n");
4518 	dev_kfree_skb(skb);
4519 	priv->dev->stats.tx_dropped++;
4520 	return NETDEV_TX_OK;
4521 }
4522 
4523 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4524 {
4525 	struct vlan_ethhdr *veth;
4526 	__be16 vlan_proto;
4527 	u16 vlanid;
4528 
4529 	veth = (struct vlan_ethhdr *)skb->data;
4530 	vlan_proto = veth->h_vlan_proto;
4531 
4532 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4533 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4534 	    (vlan_proto == htons(ETH_P_8021AD) &&
4535 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4536 		/* pop the vlan tag */
4537 		vlanid = ntohs(veth->h_vlan_TCI);
4538 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4539 		skb_pull(skb, VLAN_HLEN);
4540 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4541 	}
4542 }
4543 
4544 /**
4545  * stmmac_rx_refill - refill used skb preallocated buffers
4546  * @priv: driver private structure
4547  * @queue: RX queue index
4548  * Description : this is to reallocate the skb for the reception process
4549  * that is based on zero-copy.
4550  */
4551 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4552 {
4553 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4554 	int dirty = stmmac_rx_dirty(priv, queue);
4555 	unsigned int entry = rx_q->dirty_rx;
4556 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4557 
4558 	if (priv->dma_cap.addr64 <= 32)
4559 		gfp |= GFP_DMA32;
4560 
4561 	while (dirty-- > 0) {
4562 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4563 		struct dma_desc *p;
4564 		bool use_rx_wd;
4565 
4566 		if (priv->extend_desc)
4567 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4568 		else
4569 			p = rx_q->dma_rx + entry;
4570 
4571 		if (!buf->page) {
4572 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4573 			if (!buf->page)
4574 				break;
4575 		}
4576 
4577 		if (priv->sph && !buf->sec_page) {
4578 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4579 			if (!buf->sec_page)
4580 				break;
4581 
4582 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4583 		}
4584 
4585 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4586 
4587 		stmmac_set_desc_addr(priv, p, buf->addr);
4588 		if (priv->sph)
4589 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4590 		else
4591 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4592 		stmmac_refill_desc3(priv, rx_q, p);
4593 
4594 		rx_q->rx_count_frames++;
4595 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4596 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4597 			rx_q->rx_count_frames = 0;
4598 
4599 		use_rx_wd = !priv->rx_coal_frames[queue];
4600 		use_rx_wd |= rx_q->rx_count_frames > 0;
4601 		if (!priv->use_riwt)
4602 			use_rx_wd = false;
4603 
4604 		dma_wmb();
4605 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4606 
4607 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4608 	}
4609 	rx_q->dirty_rx = entry;
4610 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4611 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4612 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4613 }
4614 
4615 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4616 				       struct dma_desc *p,
4617 				       int status, unsigned int len)
4618 {
4619 	unsigned int plen = 0, hlen = 0;
4620 	int coe = priv->hw->rx_csum;
4621 
4622 	/* Not first descriptor, buffer is always zero */
4623 	if (priv->sph && len)
4624 		return 0;
4625 
4626 	/* First descriptor, get split header length */
4627 	stmmac_get_rx_header_len(priv, p, &hlen);
4628 	if (priv->sph && hlen) {
4629 		priv->xstats.rx_split_hdr_pkt_n++;
4630 		return hlen;
4631 	}
4632 
4633 	/* First descriptor, not last descriptor and not split header */
4634 	if (status & rx_not_ls)
4635 		return priv->dma_conf.dma_buf_sz;
4636 
4637 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4638 
4639 	/* First descriptor and last descriptor and not split header */
4640 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4641 }
4642 
4643 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4644 				       struct dma_desc *p,
4645 				       int status, unsigned int len)
4646 {
4647 	int coe = priv->hw->rx_csum;
4648 	unsigned int plen = 0;
4649 
4650 	/* Not split header, buffer is not available */
4651 	if (!priv->sph)
4652 		return 0;
4653 
4654 	/* Not last descriptor */
4655 	if (status & rx_not_ls)
4656 		return priv->dma_conf.dma_buf_sz;
4657 
4658 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4659 
4660 	/* Last descriptor */
4661 	return plen - len;
4662 }
4663 
4664 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4665 				struct xdp_frame *xdpf, bool dma_map)
4666 {
4667 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4668 	unsigned int entry = tx_q->cur_tx;
4669 	struct dma_desc *tx_desc;
4670 	dma_addr_t dma_addr;
4671 	bool set_ic;
4672 
4673 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4674 		return STMMAC_XDP_CONSUMED;
4675 
4676 	if (likely(priv->extend_desc))
4677 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4678 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4679 		tx_desc = &tx_q->dma_entx[entry].basic;
4680 	else
4681 		tx_desc = tx_q->dma_tx + entry;
4682 
4683 	if (dma_map) {
4684 		dma_addr = dma_map_single(priv->device, xdpf->data,
4685 					  xdpf->len, DMA_TO_DEVICE);
4686 		if (dma_mapping_error(priv->device, dma_addr))
4687 			return STMMAC_XDP_CONSUMED;
4688 
4689 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4690 	} else {
4691 		struct page *page = virt_to_page(xdpf->data);
4692 
4693 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4694 			   xdpf->headroom;
4695 		dma_sync_single_for_device(priv->device, dma_addr,
4696 					   xdpf->len, DMA_BIDIRECTIONAL);
4697 
4698 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4699 	}
4700 
4701 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4702 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4703 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4704 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4705 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4706 
4707 	tx_q->xdpf[entry] = xdpf;
4708 
4709 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4710 
4711 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4712 			       true, priv->mode, true, true,
4713 			       xdpf->len);
4714 
4715 	tx_q->tx_count_frames++;
4716 
4717 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4718 		set_ic = true;
4719 	else
4720 		set_ic = false;
4721 
4722 	if (set_ic) {
4723 		tx_q->tx_count_frames = 0;
4724 		stmmac_set_tx_ic(priv, tx_desc);
4725 		priv->xstats.tx_set_ic_bit++;
4726 	}
4727 
4728 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4729 
4730 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4731 	tx_q->cur_tx = entry;
4732 
4733 	return STMMAC_XDP_TX;
4734 }
4735 
4736 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4737 				   int cpu)
4738 {
4739 	int index = cpu;
4740 
4741 	if (unlikely(index < 0))
4742 		index = 0;
4743 
4744 	while (index >= priv->plat->tx_queues_to_use)
4745 		index -= priv->plat->tx_queues_to_use;
4746 
4747 	return index;
4748 }
4749 
4750 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4751 				struct xdp_buff *xdp)
4752 {
4753 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4754 	int cpu = smp_processor_id();
4755 	struct netdev_queue *nq;
4756 	int queue;
4757 	int res;
4758 
4759 	if (unlikely(!xdpf))
4760 		return STMMAC_XDP_CONSUMED;
4761 
4762 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4763 	nq = netdev_get_tx_queue(priv->dev, queue);
4764 
4765 	__netif_tx_lock(nq, cpu);
4766 	/* Avoids TX time-out as we are sharing with slow path */
4767 	txq_trans_cond_update(nq);
4768 
4769 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4770 	if (res == STMMAC_XDP_TX)
4771 		stmmac_flush_tx_descriptors(priv, queue);
4772 
4773 	__netif_tx_unlock(nq);
4774 
4775 	return res;
4776 }
4777 
4778 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4779 				 struct bpf_prog *prog,
4780 				 struct xdp_buff *xdp)
4781 {
4782 	u32 act;
4783 	int res;
4784 
4785 	act = bpf_prog_run_xdp(prog, xdp);
4786 	switch (act) {
4787 	case XDP_PASS:
4788 		res = STMMAC_XDP_PASS;
4789 		break;
4790 	case XDP_TX:
4791 		res = stmmac_xdp_xmit_back(priv, xdp);
4792 		break;
4793 	case XDP_REDIRECT:
4794 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4795 			res = STMMAC_XDP_CONSUMED;
4796 		else
4797 			res = STMMAC_XDP_REDIRECT;
4798 		break;
4799 	default:
4800 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4801 		fallthrough;
4802 	case XDP_ABORTED:
4803 		trace_xdp_exception(priv->dev, prog, act);
4804 		fallthrough;
4805 	case XDP_DROP:
4806 		res = STMMAC_XDP_CONSUMED;
4807 		break;
4808 	}
4809 
4810 	return res;
4811 }
4812 
4813 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4814 					   struct xdp_buff *xdp)
4815 {
4816 	struct bpf_prog *prog;
4817 	int res;
4818 
4819 	prog = READ_ONCE(priv->xdp_prog);
4820 	if (!prog) {
4821 		res = STMMAC_XDP_PASS;
4822 		goto out;
4823 	}
4824 
4825 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4826 out:
4827 	return ERR_PTR(-res);
4828 }
4829 
4830 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4831 				   int xdp_status)
4832 {
4833 	int cpu = smp_processor_id();
4834 	int queue;
4835 
4836 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4837 
4838 	if (xdp_status & STMMAC_XDP_TX)
4839 		stmmac_tx_timer_arm(priv, queue);
4840 
4841 	if (xdp_status & STMMAC_XDP_REDIRECT)
4842 		xdp_do_flush();
4843 }
4844 
4845 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4846 					       struct xdp_buff *xdp)
4847 {
4848 	unsigned int metasize = xdp->data - xdp->data_meta;
4849 	unsigned int datasize = xdp->data_end - xdp->data;
4850 	struct sk_buff *skb;
4851 
4852 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4853 			       xdp->data_end - xdp->data_hard_start,
4854 			       GFP_ATOMIC | __GFP_NOWARN);
4855 	if (unlikely(!skb))
4856 		return NULL;
4857 
4858 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4859 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4860 	if (metasize)
4861 		skb_metadata_set(skb, metasize);
4862 
4863 	return skb;
4864 }
4865 
4866 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4867 				   struct dma_desc *p, struct dma_desc *np,
4868 				   struct xdp_buff *xdp)
4869 {
4870 	struct stmmac_channel *ch = &priv->channel[queue];
4871 	unsigned int len = xdp->data_end - xdp->data;
4872 	enum pkt_hash_types hash_type;
4873 	int coe = priv->hw->rx_csum;
4874 	struct sk_buff *skb;
4875 	u32 hash;
4876 
4877 	skb = stmmac_construct_skb_zc(ch, xdp);
4878 	if (!skb) {
4879 		priv->dev->stats.rx_dropped++;
4880 		return;
4881 	}
4882 
4883 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4884 	stmmac_rx_vlan(priv->dev, skb);
4885 	skb->protocol = eth_type_trans(skb, priv->dev);
4886 
4887 	if (unlikely(!coe))
4888 		skb_checksum_none_assert(skb);
4889 	else
4890 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4891 
4892 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4893 		skb_set_hash(skb, hash, hash_type);
4894 
4895 	skb_record_rx_queue(skb, queue);
4896 	napi_gro_receive(&ch->rxtx_napi, skb);
4897 
4898 	priv->dev->stats.rx_packets++;
4899 	priv->dev->stats.rx_bytes += len;
4900 }
4901 
4902 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4903 {
4904 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4905 	unsigned int entry = rx_q->dirty_rx;
4906 	struct dma_desc *rx_desc = NULL;
4907 	bool ret = true;
4908 
4909 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4910 
4911 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4912 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4913 		dma_addr_t dma_addr;
4914 		bool use_rx_wd;
4915 
4916 		if (!buf->xdp) {
4917 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4918 			if (!buf->xdp) {
4919 				ret = false;
4920 				break;
4921 			}
4922 		}
4923 
4924 		if (priv->extend_desc)
4925 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4926 		else
4927 			rx_desc = rx_q->dma_rx + entry;
4928 
4929 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4930 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4931 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4932 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4933 
4934 		rx_q->rx_count_frames++;
4935 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4936 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4937 			rx_q->rx_count_frames = 0;
4938 
4939 		use_rx_wd = !priv->rx_coal_frames[queue];
4940 		use_rx_wd |= rx_q->rx_count_frames > 0;
4941 		if (!priv->use_riwt)
4942 			use_rx_wd = false;
4943 
4944 		dma_wmb();
4945 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4946 
4947 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4948 	}
4949 
4950 	if (rx_desc) {
4951 		rx_q->dirty_rx = entry;
4952 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4953 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4954 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4955 	}
4956 
4957 	return ret;
4958 }
4959 
4960 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4961 {
4962 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4963 	unsigned int count = 0, error = 0, len = 0;
4964 	int dirty = stmmac_rx_dirty(priv, queue);
4965 	unsigned int next_entry = rx_q->cur_rx;
4966 	unsigned int desc_size;
4967 	struct bpf_prog *prog;
4968 	bool failure = false;
4969 	int xdp_status = 0;
4970 	int status = 0;
4971 
4972 	if (netif_msg_rx_status(priv)) {
4973 		void *rx_head;
4974 
4975 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4976 		if (priv->extend_desc) {
4977 			rx_head = (void *)rx_q->dma_erx;
4978 			desc_size = sizeof(struct dma_extended_desc);
4979 		} else {
4980 			rx_head = (void *)rx_q->dma_rx;
4981 			desc_size = sizeof(struct dma_desc);
4982 		}
4983 
4984 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
4985 				    rx_q->dma_rx_phy, desc_size);
4986 	}
4987 	while (count < limit) {
4988 		struct stmmac_rx_buffer *buf;
4989 		unsigned int buf1_len = 0;
4990 		struct dma_desc *np, *p;
4991 		int entry;
4992 		int res;
4993 
4994 		if (!count && rx_q->state_saved) {
4995 			error = rx_q->state.error;
4996 			len = rx_q->state.len;
4997 		} else {
4998 			rx_q->state_saved = false;
4999 			error = 0;
5000 			len = 0;
5001 		}
5002 
5003 		if (count >= limit)
5004 			break;
5005 
5006 read_again:
5007 		buf1_len = 0;
5008 		entry = next_entry;
5009 		buf = &rx_q->buf_pool[entry];
5010 
5011 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5012 			failure = failure ||
5013 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5014 			dirty = 0;
5015 		}
5016 
5017 		if (priv->extend_desc)
5018 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5019 		else
5020 			p = rx_q->dma_rx + entry;
5021 
5022 		/* read the status of the incoming frame */
5023 		status = stmmac_rx_status(priv, &priv->dev->stats,
5024 					  &priv->xstats, p);
5025 		/* check if managed by the DMA otherwise go ahead */
5026 		if (unlikely(status & dma_own))
5027 			break;
5028 
5029 		/* Prefetch the next RX descriptor */
5030 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5031 						priv->dma_conf.dma_rx_size);
5032 		next_entry = rx_q->cur_rx;
5033 
5034 		if (priv->extend_desc)
5035 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5036 		else
5037 			np = rx_q->dma_rx + next_entry;
5038 
5039 		prefetch(np);
5040 
5041 		/* Ensure a valid XSK buffer before proceed */
5042 		if (!buf->xdp)
5043 			break;
5044 
5045 		if (priv->extend_desc)
5046 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5047 						  &priv->xstats,
5048 						  rx_q->dma_erx + entry);
5049 		if (unlikely(status == discard_frame)) {
5050 			xsk_buff_free(buf->xdp);
5051 			buf->xdp = NULL;
5052 			dirty++;
5053 			error = 1;
5054 			if (!priv->hwts_rx_en)
5055 				priv->dev->stats.rx_errors++;
5056 		}
5057 
5058 		if (unlikely(error && (status & rx_not_ls)))
5059 			goto read_again;
5060 		if (unlikely(error)) {
5061 			count++;
5062 			continue;
5063 		}
5064 
5065 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5066 		if (likely(status & rx_not_ls)) {
5067 			xsk_buff_free(buf->xdp);
5068 			buf->xdp = NULL;
5069 			dirty++;
5070 			count++;
5071 			goto read_again;
5072 		}
5073 
5074 		/* XDP ZC Frame only support primary buffers for now */
5075 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5076 		len += buf1_len;
5077 
5078 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5079 		 * Type frames (LLC/LLC-SNAP)
5080 		 *
5081 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5082 		 * feature is always disabled and packets need to be
5083 		 * stripped manually.
5084 		 */
5085 		if (likely(!(status & rx_not_ls)) &&
5086 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5087 		     unlikely(status != llc_snap))) {
5088 			buf1_len -= ETH_FCS_LEN;
5089 			len -= ETH_FCS_LEN;
5090 		}
5091 
5092 		/* RX buffer is good and fit into a XSK pool buffer */
5093 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5094 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5095 
5096 		prog = READ_ONCE(priv->xdp_prog);
5097 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5098 
5099 		switch (res) {
5100 		case STMMAC_XDP_PASS:
5101 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5102 			xsk_buff_free(buf->xdp);
5103 			break;
5104 		case STMMAC_XDP_CONSUMED:
5105 			xsk_buff_free(buf->xdp);
5106 			priv->dev->stats.rx_dropped++;
5107 			break;
5108 		case STMMAC_XDP_TX:
5109 		case STMMAC_XDP_REDIRECT:
5110 			xdp_status |= res;
5111 			break;
5112 		}
5113 
5114 		buf->xdp = NULL;
5115 		dirty++;
5116 		count++;
5117 	}
5118 
5119 	if (status & rx_not_ls) {
5120 		rx_q->state_saved = true;
5121 		rx_q->state.error = error;
5122 		rx_q->state.len = len;
5123 	}
5124 
5125 	stmmac_finalize_xdp_rx(priv, xdp_status);
5126 
5127 	priv->xstats.rx_pkt_n += count;
5128 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5129 
5130 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5131 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5132 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5133 		else
5134 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5135 
5136 		return (int)count;
5137 	}
5138 
5139 	return failure ? limit : (int)count;
5140 }
5141 
5142 /**
5143  * stmmac_rx - manage the receive process
5144  * @priv: driver private structure
5145  * @limit: napi bugget
5146  * @queue: RX queue index.
5147  * Description :  this the function called by the napi poll method.
5148  * It gets all the frames inside the ring.
5149  */
5150 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5151 {
5152 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5153 	struct stmmac_channel *ch = &priv->channel[queue];
5154 	unsigned int count = 0, error = 0, len = 0;
5155 	int status = 0, coe = priv->hw->rx_csum;
5156 	unsigned int next_entry = rx_q->cur_rx;
5157 	enum dma_data_direction dma_dir;
5158 	unsigned int desc_size;
5159 	struct sk_buff *skb = NULL;
5160 	struct xdp_buff xdp;
5161 	int xdp_status = 0;
5162 	int buf_sz;
5163 
5164 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5165 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5166 
5167 	if (netif_msg_rx_status(priv)) {
5168 		void *rx_head;
5169 
5170 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5171 		if (priv->extend_desc) {
5172 			rx_head = (void *)rx_q->dma_erx;
5173 			desc_size = sizeof(struct dma_extended_desc);
5174 		} else {
5175 			rx_head = (void *)rx_q->dma_rx;
5176 			desc_size = sizeof(struct dma_desc);
5177 		}
5178 
5179 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5180 				    rx_q->dma_rx_phy, desc_size);
5181 	}
5182 	while (count < limit) {
5183 		unsigned int buf1_len = 0, buf2_len = 0;
5184 		enum pkt_hash_types hash_type;
5185 		struct stmmac_rx_buffer *buf;
5186 		struct dma_desc *np, *p;
5187 		int entry;
5188 		u32 hash;
5189 
5190 		if (!count && rx_q->state_saved) {
5191 			skb = rx_q->state.skb;
5192 			error = rx_q->state.error;
5193 			len = rx_q->state.len;
5194 		} else {
5195 			rx_q->state_saved = false;
5196 			skb = NULL;
5197 			error = 0;
5198 			len = 0;
5199 		}
5200 
5201 		if (count >= limit)
5202 			break;
5203 
5204 read_again:
5205 		buf1_len = 0;
5206 		buf2_len = 0;
5207 		entry = next_entry;
5208 		buf = &rx_q->buf_pool[entry];
5209 
5210 		if (priv->extend_desc)
5211 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5212 		else
5213 			p = rx_q->dma_rx + entry;
5214 
5215 		/* read the status of the incoming frame */
5216 		status = stmmac_rx_status(priv, &priv->dev->stats,
5217 				&priv->xstats, p);
5218 		/* check if managed by the DMA otherwise go ahead */
5219 		if (unlikely(status & dma_own))
5220 			break;
5221 
5222 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5223 						priv->dma_conf.dma_rx_size);
5224 		next_entry = rx_q->cur_rx;
5225 
5226 		if (priv->extend_desc)
5227 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5228 		else
5229 			np = rx_q->dma_rx + next_entry;
5230 
5231 		prefetch(np);
5232 
5233 		if (priv->extend_desc)
5234 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5235 					&priv->xstats, rx_q->dma_erx + entry);
5236 		if (unlikely(status == discard_frame)) {
5237 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5238 			buf->page = NULL;
5239 			error = 1;
5240 			if (!priv->hwts_rx_en)
5241 				priv->dev->stats.rx_errors++;
5242 		}
5243 
5244 		if (unlikely(error && (status & rx_not_ls)))
5245 			goto read_again;
5246 		if (unlikely(error)) {
5247 			dev_kfree_skb(skb);
5248 			skb = NULL;
5249 			count++;
5250 			continue;
5251 		}
5252 
5253 		/* Buffer is good. Go on. */
5254 
5255 		prefetch(page_address(buf->page) + buf->page_offset);
5256 		if (buf->sec_page)
5257 			prefetch(page_address(buf->sec_page));
5258 
5259 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5260 		len += buf1_len;
5261 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5262 		len += buf2_len;
5263 
5264 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5265 		 * Type frames (LLC/LLC-SNAP)
5266 		 *
5267 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5268 		 * feature is always disabled and packets need to be
5269 		 * stripped manually.
5270 		 */
5271 		if (likely(!(status & rx_not_ls)) &&
5272 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5273 		     unlikely(status != llc_snap))) {
5274 			if (buf2_len) {
5275 				buf2_len -= ETH_FCS_LEN;
5276 				len -= ETH_FCS_LEN;
5277 			} else if (buf1_len) {
5278 				buf1_len -= ETH_FCS_LEN;
5279 				len -= ETH_FCS_LEN;
5280 			}
5281 		}
5282 
5283 		if (!skb) {
5284 			unsigned int pre_len, sync_len;
5285 
5286 			dma_sync_single_for_cpu(priv->device, buf->addr,
5287 						buf1_len, dma_dir);
5288 
5289 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5290 			xdp_prepare_buff(&xdp, page_address(buf->page),
5291 					 buf->page_offset, buf1_len, false);
5292 
5293 			pre_len = xdp.data_end - xdp.data_hard_start -
5294 				  buf->page_offset;
5295 			skb = stmmac_xdp_run_prog(priv, &xdp);
5296 			/* Due xdp_adjust_tail: DMA sync for_device
5297 			 * cover max len CPU touch
5298 			 */
5299 			sync_len = xdp.data_end - xdp.data_hard_start -
5300 				   buf->page_offset;
5301 			sync_len = max(sync_len, pre_len);
5302 
5303 			/* For Not XDP_PASS verdict */
5304 			if (IS_ERR(skb)) {
5305 				unsigned int xdp_res = -PTR_ERR(skb);
5306 
5307 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5308 					page_pool_put_page(rx_q->page_pool,
5309 							   virt_to_head_page(xdp.data),
5310 							   sync_len, true);
5311 					buf->page = NULL;
5312 					priv->dev->stats.rx_dropped++;
5313 
5314 					/* Clear skb as it was set as
5315 					 * status by XDP program.
5316 					 */
5317 					skb = NULL;
5318 
5319 					if (unlikely((status & rx_not_ls)))
5320 						goto read_again;
5321 
5322 					count++;
5323 					continue;
5324 				} else if (xdp_res & (STMMAC_XDP_TX |
5325 						      STMMAC_XDP_REDIRECT)) {
5326 					xdp_status |= xdp_res;
5327 					buf->page = NULL;
5328 					skb = NULL;
5329 					count++;
5330 					continue;
5331 				}
5332 			}
5333 		}
5334 
5335 		if (!skb) {
5336 			/* XDP program may expand or reduce tail */
5337 			buf1_len = xdp.data_end - xdp.data;
5338 
5339 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5340 			if (!skb) {
5341 				priv->dev->stats.rx_dropped++;
5342 				count++;
5343 				goto drain_data;
5344 			}
5345 
5346 			/* XDP program may adjust header */
5347 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5348 			skb_put(skb, buf1_len);
5349 
5350 			/* Data payload copied into SKB, page ready for recycle */
5351 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5352 			buf->page = NULL;
5353 		} else if (buf1_len) {
5354 			dma_sync_single_for_cpu(priv->device, buf->addr,
5355 						buf1_len, dma_dir);
5356 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5357 					buf->page, buf->page_offset, buf1_len,
5358 					priv->dma_conf.dma_buf_sz);
5359 
5360 			/* Data payload appended into SKB */
5361 			page_pool_release_page(rx_q->page_pool, buf->page);
5362 			buf->page = NULL;
5363 		}
5364 
5365 		if (buf2_len) {
5366 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5367 						buf2_len, dma_dir);
5368 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5369 					buf->sec_page, 0, buf2_len,
5370 					priv->dma_conf.dma_buf_sz);
5371 
5372 			/* Data payload appended into SKB */
5373 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5374 			buf->sec_page = NULL;
5375 		}
5376 
5377 drain_data:
5378 		if (likely(status & rx_not_ls))
5379 			goto read_again;
5380 		if (!skb)
5381 			continue;
5382 
5383 		/* Got entire packet into SKB. Finish it. */
5384 
5385 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5386 		stmmac_rx_vlan(priv->dev, skb);
5387 		skb->protocol = eth_type_trans(skb, priv->dev);
5388 
5389 		if (unlikely(!coe))
5390 			skb_checksum_none_assert(skb);
5391 		else
5392 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5393 
5394 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5395 			skb_set_hash(skb, hash, hash_type);
5396 
5397 		skb_record_rx_queue(skb, queue);
5398 		napi_gro_receive(&ch->rx_napi, skb);
5399 		skb = NULL;
5400 
5401 		priv->dev->stats.rx_packets++;
5402 		priv->dev->stats.rx_bytes += len;
5403 		count++;
5404 	}
5405 
5406 	if (status & rx_not_ls || skb) {
5407 		rx_q->state_saved = true;
5408 		rx_q->state.skb = skb;
5409 		rx_q->state.error = error;
5410 		rx_q->state.len = len;
5411 	}
5412 
5413 	stmmac_finalize_xdp_rx(priv, xdp_status);
5414 
5415 	stmmac_rx_refill(priv, queue);
5416 
5417 	priv->xstats.rx_pkt_n += count;
5418 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5419 
5420 	return count;
5421 }
5422 
5423 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5424 {
5425 	struct stmmac_channel *ch =
5426 		container_of(napi, struct stmmac_channel, rx_napi);
5427 	struct stmmac_priv *priv = ch->priv_data;
5428 	u32 chan = ch->index;
5429 	int work_done;
5430 
5431 	priv->xstats.napi_poll++;
5432 
5433 	work_done = stmmac_rx(priv, budget, chan);
5434 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5435 		unsigned long flags;
5436 
5437 		spin_lock_irqsave(&ch->lock, flags);
5438 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5439 		spin_unlock_irqrestore(&ch->lock, flags);
5440 	}
5441 
5442 	return work_done;
5443 }
5444 
5445 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5446 {
5447 	struct stmmac_channel *ch =
5448 		container_of(napi, struct stmmac_channel, tx_napi);
5449 	struct stmmac_priv *priv = ch->priv_data;
5450 	u32 chan = ch->index;
5451 	int work_done;
5452 
5453 	priv->xstats.napi_poll++;
5454 
5455 	work_done = stmmac_tx_clean(priv, budget, chan);
5456 	work_done = min(work_done, budget);
5457 
5458 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5459 		unsigned long flags;
5460 
5461 		spin_lock_irqsave(&ch->lock, flags);
5462 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5463 		spin_unlock_irqrestore(&ch->lock, flags);
5464 	}
5465 
5466 	return work_done;
5467 }
5468 
5469 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5470 {
5471 	struct stmmac_channel *ch =
5472 		container_of(napi, struct stmmac_channel, rxtx_napi);
5473 	struct stmmac_priv *priv = ch->priv_data;
5474 	int rx_done, tx_done, rxtx_done;
5475 	u32 chan = ch->index;
5476 
5477 	priv->xstats.napi_poll++;
5478 
5479 	tx_done = stmmac_tx_clean(priv, budget, chan);
5480 	tx_done = min(tx_done, budget);
5481 
5482 	rx_done = stmmac_rx_zc(priv, budget, chan);
5483 
5484 	rxtx_done = max(tx_done, rx_done);
5485 
5486 	/* If either TX or RX work is not complete, return budget
5487 	 * and keep pooling
5488 	 */
5489 	if (rxtx_done >= budget)
5490 		return budget;
5491 
5492 	/* all work done, exit the polling mode */
5493 	if (napi_complete_done(napi, rxtx_done)) {
5494 		unsigned long flags;
5495 
5496 		spin_lock_irqsave(&ch->lock, flags);
5497 		/* Both RX and TX work done are compelte,
5498 		 * so enable both RX & TX IRQs.
5499 		 */
5500 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5501 		spin_unlock_irqrestore(&ch->lock, flags);
5502 	}
5503 
5504 	return min(rxtx_done, budget - 1);
5505 }
5506 
5507 /**
5508  *  stmmac_tx_timeout
5509  *  @dev : Pointer to net device structure
5510  *  @txqueue: the index of the hanging transmit queue
5511  *  Description: this function is called when a packet transmission fails to
5512  *   complete within a reasonable time. The driver will mark the error in the
5513  *   netdev structure and arrange for the device to be reset to a sane state
5514  *   in order to transmit a new packet.
5515  */
5516 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5517 {
5518 	struct stmmac_priv *priv = netdev_priv(dev);
5519 
5520 	stmmac_global_err(priv);
5521 }
5522 
5523 /**
5524  *  stmmac_set_rx_mode - entry point for multicast addressing
5525  *  @dev : pointer to the device structure
5526  *  Description:
5527  *  This function is a driver entry point which gets called by the kernel
5528  *  whenever multicast addresses must be enabled/disabled.
5529  *  Return value:
5530  *  void.
5531  */
5532 static void stmmac_set_rx_mode(struct net_device *dev)
5533 {
5534 	struct stmmac_priv *priv = netdev_priv(dev);
5535 
5536 	stmmac_set_filter(priv, priv->hw, dev);
5537 }
5538 
5539 /**
5540  *  stmmac_change_mtu - entry point to change MTU size for the device.
5541  *  @dev : device pointer.
5542  *  @new_mtu : the new MTU size for the device.
5543  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5544  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5545  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5546  *  Return value:
5547  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5548  *  file on failure.
5549  */
5550 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5551 {
5552 	struct stmmac_priv *priv = netdev_priv(dev);
5553 	int txfifosz = priv->plat->tx_fifo_size;
5554 	struct stmmac_dma_conf *dma_conf;
5555 	const int mtu = new_mtu;
5556 	int ret;
5557 
5558 	if (txfifosz == 0)
5559 		txfifosz = priv->dma_cap.tx_fifo_size;
5560 
5561 	txfifosz /= priv->plat->tx_queues_to_use;
5562 
5563 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5564 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5565 		return -EINVAL;
5566 	}
5567 
5568 	new_mtu = STMMAC_ALIGN(new_mtu);
5569 
5570 	/* If condition true, FIFO is too small or MTU too large */
5571 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5572 		return -EINVAL;
5573 
5574 	if (netif_running(dev)) {
5575 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5576 		/* Try to allocate the new DMA conf with the new mtu */
5577 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5578 		if (IS_ERR(dma_conf)) {
5579 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5580 				   mtu);
5581 			return PTR_ERR(dma_conf);
5582 		}
5583 
5584 		stmmac_release(dev);
5585 
5586 		ret = __stmmac_open(dev, dma_conf);
5587 		kfree(dma_conf);
5588 		if (ret) {
5589 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5590 			return ret;
5591 		}
5592 
5593 		stmmac_set_rx_mode(dev);
5594 	}
5595 
5596 	dev->mtu = mtu;
5597 	netdev_update_features(dev);
5598 
5599 	return 0;
5600 }
5601 
5602 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5603 					     netdev_features_t features)
5604 {
5605 	struct stmmac_priv *priv = netdev_priv(dev);
5606 
5607 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5608 		features &= ~NETIF_F_RXCSUM;
5609 
5610 	if (!priv->plat->tx_coe)
5611 		features &= ~NETIF_F_CSUM_MASK;
5612 
5613 	/* Some GMAC devices have a bugged Jumbo frame support that
5614 	 * needs to have the Tx COE disabled for oversized frames
5615 	 * (due to limited buffer sizes). In this case we disable
5616 	 * the TX csum insertion in the TDES and not use SF.
5617 	 */
5618 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5619 		features &= ~NETIF_F_CSUM_MASK;
5620 
5621 	/* Disable tso if asked by ethtool */
5622 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5623 		if (features & NETIF_F_TSO)
5624 			priv->tso = true;
5625 		else
5626 			priv->tso = false;
5627 	}
5628 
5629 	return features;
5630 }
5631 
5632 static int stmmac_set_features(struct net_device *netdev,
5633 			       netdev_features_t features)
5634 {
5635 	struct stmmac_priv *priv = netdev_priv(netdev);
5636 
5637 	/* Keep the COE Type in case of csum is supporting */
5638 	if (features & NETIF_F_RXCSUM)
5639 		priv->hw->rx_csum = priv->plat->rx_coe;
5640 	else
5641 		priv->hw->rx_csum = 0;
5642 	/* No check needed because rx_coe has been set before and it will be
5643 	 * fixed in case of issue.
5644 	 */
5645 	stmmac_rx_ipc(priv, priv->hw);
5646 
5647 	if (priv->sph_cap) {
5648 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5649 		u32 chan;
5650 
5651 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5652 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5653 	}
5654 
5655 	return 0;
5656 }
5657 
5658 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5659 {
5660 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5661 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5662 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5663 	bool *hs_enable = &fpe_cfg->hs_enable;
5664 
5665 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5666 		return;
5667 
5668 	/* If LP has sent verify mPacket, LP is FPE capable */
5669 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5670 		if (*lp_state < FPE_STATE_CAPABLE)
5671 			*lp_state = FPE_STATE_CAPABLE;
5672 
5673 		/* If user has requested FPE enable, quickly response */
5674 		if (*hs_enable)
5675 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5676 						MPACKET_RESPONSE);
5677 	}
5678 
5679 	/* If Local has sent verify mPacket, Local is FPE capable */
5680 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5681 		if (*lo_state < FPE_STATE_CAPABLE)
5682 			*lo_state = FPE_STATE_CAPABLE;
5683 	}
5684 
5685 	/* If LP has sent response mPacket, LP is entering FPE ON */
5686 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5687 		*lp_state = FPE_STATE_ENTERING_ON;
5688 
5689 	/* If Local has sent response mPacket, Local is entering FPE ON */
5690 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5691 		*lo_state = FPE_STATE_ENTERING_ON;
5692 
5693 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5694 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5695 	    priv->fpe_wq) {
5696 		queue_work(priv->fpe_wq, &priv->fpe_task);
5697 	}
5698 }
5699 
5700 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5701 {
5702 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5703 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5704 	u32 queues_count;
5705 	u32 queue;
5706 	bool xmac;
5707 
5708 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5709 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5710 
5711 	if (priv->irq_wake)
5712 		pm_wakeup_event(priv->device, 0);
5713 
5714 	if (priv->dma_cap.estsel)
5715 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5716 				      &priv->xstats, tx_cnt);
5717 
5718 	if (priv->dma_cap.fpesel) {
5719 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5720 						   priv->dev);
5721 
5722 		stmmac_fpe_event_status(priv, status);
5723 	}
5724 
5725 	/* To handle GMAC own interrupts */
5726 	if ((priv->plat->has_gmac) || xmac) {
5727 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5728 
5729 		if (unlikely(status)) {
5730 			/* For LPI we need to save the tx status */
5731 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5732 				priv->tx_path_in_lpi_mode = true;
5733 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5734 				priv->tx_path_in_lpi_mode = false;
5735 		}
5736 
5737 		for (queue = 0; queue < queues_count; queue++) {
5738 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5739 							    queue);
5740 		}
5741 
5742 		/* PCS link status */
5743 		if (priv->hw->pcs) {
5744 			if (priv->xstats.pcs_link)
5745 				netif_carrier_on(priv->dev);
5746 			else
5747 				netif_carrier_off(priv->dev);
5748 		}
5749 
5750 		stmmac_timestamp_interrupt(priv, priv);
5751 	}
5752 }
5753 
5754 /**
5755  *  stmmac_interrupt - main ISR
5756  *  @irq: interrupt number.
5757  *  @dev_id: to pass the net device pointer.
5758  *  Description: this is the main driver interrupt service routine.
5759  *  It can call:
5760  *  o DMA service routine (to manage incoming frame reception and transmission
5761  *    status)
5762  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5763  *    interrupts.
5764  */
5765 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5766 {
5767 	struct net_device *dev = (struct net_device *)dev_id;
5768 	struct stmmac_priv *priv = netdev_priv(dev);
5769 
5770 	/* Check if adapter is up */
5771 	if (test_bit(STMMAC_DOWN, &priv->state))
5772 		return IRQ_HANDLED;
5773 
5774 	/* Check if a fatal error happened */
5775 	if (stmmac_safety_feat_interrupt(priv))
5776 		return IRQ_HANDLED;
5777 
5778 	/* To handle Common interrupts */
5779 	stmmac_common_interrupt(priv);
5780 
5781 	/* To handle DMA interrupts */
5782 	stmmac_dma_interrupt(priv);
5783 
5784 	return IRQ_HANDLED;
5785 }
5786 
5787 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5788 {
5789 	struct net_device *dev = (struct net_device *)dev_id;
5790 	struct stmmac_priv *priv = netdev_priv(dev);
5791 
5792 	if (unlikely(!dev)) {
5793 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5794 		return IRQ_NONE;
5795 	}
5796 
5797 	/* Check if adapter is up */
5798 	if (test_bit(STMMAC_DOWN, &priv->state))
5799 		return IRQ_HANDLED;
5800 
5801 	/* To handle Common interrupts */
5802 	stmmac_common_interrupt(priv);
5803 
5804 	return IRQ_HANDLED;
5805 }
5806 
5807 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5808 {
5809 	struct net_device *dev = (struct net_device *)dev_id;
5810 	struct stmmac_priv *priv = netdev_priv(dev);
5811 
5812 	if (unlikely(!dev)) {
5813 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5814 		return IRQ_NONE;
5815 	}
5816 
5817 	/* Check if adapter is up */
5818 	if (test_bit(STMMAC_DOWN, &priv->state))
5819 		return IRQ_HANDLED;
5820 
5821 	/* Check if a fatal error happened */
5822 	stmmac_safety_feat_interrupt(priv);
5823 
5824 	return IRQ_HANDLED;
5825 }
5826 
5827 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5828 {
5829 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5830 	struct stmmac_dma_conf *dma_conf;
5831 	int chan = tx_q->queue_index;
5832 	struct stmmac_priv *priv;
5833 	int status;
5834 
5835 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5836 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5837 
5838 	if (unlikely(!data)) {
5839 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5840 		return IRQ_NONE;
5841 	}
5842 
5843 	/* Check if adapter is up */
5844 	if (test_bit(STMMAC_DOWN, &priv->state))
5845 		return IRQ_HANDLED;
5846 
5847 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5848 
5849 	if (unlikely(status & tx_hard_error_bump_tc)) {
5850 		/* Try to bump up the dma threshold on this failure */
5851 		stmmac_bump_dma_threshold(priv, chan);
5852 	} else if (unlikely(status == tx_hard_error)) {
5853 		stmmac_tx_err(priv, chan);
5854 	}
5855 
5856 	return IRQ_HANDLED;
5857 }
5858 
5859 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5860 {
5861 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5862 	struct stmmac_dma_conf *dma_conf;
5863 	int chan = rx_q->queue_index;
5864 	struct stmmac_priv *priv;
5865 
5866 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5867 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5868 
5869 	if (unlikely(!data)) {
5870 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5871 		return IRQ_NONE;
5872 	}
5873 
5874 	/* Check if adapter is up */
5875 	if (test_bit(STMMAC_DOWN, &priv->state))
5876 		return IRQ_HANDLED;
5877 
5878 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5879 
5880 	return IRQ_HANDLED;
5881 }
5882 
5883 #ifdef CONFIG_NET_POLL_CONTROLLER
5884 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5885  * to allow network I/O with interrupts disabled.
5886  */
5887 static void stmmac_poll_controller(struct net_device *dev)
5888 {
5889 	struct stmmac_priv *priv = netdev_priv(dev);
5890 	int i;
5891 
5892 	/* If adapter is down, do nothing */
5893 	if (test_bit(STMMAC_DOWN, &priv->state))
5894 		return;
5895 
5896 	if (priv->plat->multi_msi_en) {
5897 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5898 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
5899 
5900 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5901 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
5902 	} else {
5903 		disable_irq(dev->irq);
5904 		stmmac_interrupt(dev->irq, dev);
5905 		enable_irq(dev->irq);
5906 	}
5907 }
5908 #endif
5909 
5910 /**
5911  *  stmmac_ioctl - Entry point for the Ioctl
5912  *  @dev: Device pointer.
5913  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5914  *  a proprietary structure used to pass information to the driver.
5915  *  @cmd: IOCTL command
5916  *  Description:
5917  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5918  */
5919 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5920 {
5921 	struct stmmac_priv *priv = netdev_priv (dev);
5922 	int ret = -EOPNOTSUPP;
5923 
5924 	if (!netif_running(dev))
5925 		return -EINVAL;
5926 
5927 	switch (cmd) {
5928 	case SIOCGMIIPHY:
5929 	case SIOCGMIIREG:
5930 	case SIOCSMIIREG:
5931 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5932 		break;
5933 	case SIOCSHWTSTAMP:
5934 		ret = stmmac_hwtstamp_set(dev, rq);
5935 		break;
5936 	case SIOCGHWTSTAMP:
5937 		ret = stmmac_hwtstamp_get(dev, rq);
5938 		break;
5939 	default:
5940 		break;
5941 	}
5942 
5943 	return ret;
5944 }
5945 
5946 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5947 				    void *cb_priv)
5948 {
5949 	struct stmmac_priv *priv = cb_priv;
5950 	int ret = -EOPNOTSUPP;
5951 
5952 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5953 		return ret;
5954 
5955 	__stmmac_disable_all_queues(priv);
5956 
5957 	switch (type) {
5958 	case TC_SETUP_CLSU32:
5959 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5960 		break;
5961 	case TC_SETUP_CLSFLOWER:
5962 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5963 		break;
5964 	default:
5965 		break;
5966 	}
5967 
5968 	stmmac_enable_all_queues(priv);
5969 	return ret;
5970 }
5971 
5972 static LIST_HEAD(stmmac_block_cb_list);
5973 
5974 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5975 			   void *type_data)
5976 {
5977 	struct stmmac_priv *priv = netdev_priv(ndev);
5978 
5979 	switch (type) {
5980 	case TC_SETUP_BLOCK:
5981 		return flow_block_cb_setup_simple(type_data,
5982 						  &stmmac_block_cb_list,
5983 						  stmmac_setup_tc_block_cb,
5984 						  priv, priv, true);
5985 	case TC_SETUP_QDISC_CBS:
5986 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5987 	case TC_SETUP_QDISC_TAPRIO:
5988 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5989 	case TC_SETUP_QDISC_ETF:
5990 		return stmmac_tc_setup_etf(priv, priv, type_data);
5991 	default:
5992 		return -EOPNOTSUPP;
5993 	}
5994 }
5995 
5996 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5997 			       struct net_device *sb_dev)
5998 {
5999 	int gso = skb_shinfo(skb)->gso_type;
6000 
6001 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6002 		/*
6003 		 * There is no way to determine the number of TSO/USO
6004 		 * capable Queues. Let's use always the Queue 0
6005 		 * because if TSO/USO is supported then at least this
6006 		 * one will be capable.
6007 		 */
6008 		return 0;
6009 	}
6010 
6011 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6012 }
6013 
6014 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6015 {
6016 	struct stmmac_priv *priv = netdev_priv(ndev);
6017 	int ret = 0;
6018 
6019 	ret = pm_runtime_resume_and_get(priv->device);
6020 	if (ret < 0)
6021 		return ret;
6022 
6023 	ret = eth_mac_addr(ndev, addr);
6024 	if (ret)
6025 		goto set_mac_error;
6026 
6027 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6028 
6029 set_mac_error:
6030 	pm_runtime_put(priv->device);
6031 
6032 	return ret;
6033 }
6034 
6035 #ifdef CONFIG_DEBUG_FS
6036 static struct dentry *stmmac_fs_dir;
6037 
6038 static void sysfs_display_ring(void *head, int size, int extend_desc,
6039 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6040 {
6041 	int i;
6042 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6043 	struct dma_desc *p = (struct dma_desc *)head;
6044 	dma_addr_t dma_addr;
6045 
6046 	for (i = 0; i < size; i++) {
6047 		if (extend_desc) {
6048 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6049 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6050 				   i, &dma_addr,
6051 				   le32_to_cpu(ep->basic.des0),
6052 				   le32_to_cpu(ep->basic.des1),
6053 				   le32_to_cpu(ep->basic.des2),
6054 				   le32_to_cpu(ep->basic.des3));
6055 			ep++;
6056 		} else {
6057 			dma_addr = dma_phy_addr + i * sizeof(*p);
6058 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6059 				   i, &dma_addr,
6060 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6061 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6062 			p++;
6063 		}
6064 		seq_printf(seq, "\n");
6065 	}
6066 }
6067 
6068 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6069 {
6070 	struct net_device *dev = seq->private;
6071 	struct stmmac_priv *priv = netdev_priv(dev);
6072 	u32 rx_count = priv->plat->rx_queues_to_use;
6073 	u32 tx_count = priv->plat->tx_queues_to_use;
6074 	u32 queue;
6075 
6076 	if ((dev->flags & IFF_UP) == 0)
6077 		return 0;
6078 
6079 	for (queue = 0; queue < rx_count; queue++) {
6080 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6081 
6082 		seq_printf(seq, "RX Queue %d:\n", queue);
6083 
6084 		if (priv->extend_desc) {
6085 			seq_printf(seq, "Extended descriptor ring:\n");
6086 			sysfs_display_ring((void *)rx_q->dma_erx,
6087 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6088 		} else {
6089 			seq_printf(seq, "Descriptor ring:\n");
6090 			sysfs_display_ring((void *)rx_q->dma_rx,
6091 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6092 		}
6093 	}
6094 
6095 	for (queue = 0; queue < tx_count; queue++) {
6096 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6097 
6098 		seq_printf(seq, "TX Queue %d:\n", queue);
6099 
6100 		if (priv->extend_desc) {
6101 			seq_printf(seq, "Extended descriptor ring:\n");
6102 			sysfs_display_ring((void *)tx_q->dma_etx,
6103 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6104 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6105 			seq_printf(seq, "Descriptor ring:\n");
6106 			sysfs_display_ring((void *)tx_q->dma_tx,
6107 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6108 		}
6109 	}
6110 
6111 	return 0;
6112 }
6113 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6114 
6115 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6116 {
6117 	struct net_device *dev = seq->private;
6118 	struct stmmac_priv *priv = netdev_priv(dev);
6119 
6120 	if (!priv->hw_cap_support) {
6121 		seq_printf(seq, "DMA HW features not supported\n");
6122 		return 0;
6123 	}
6124 
6125 	seq_printf(seq, "==============================\n");
6126 	seq_printf(seq, "\tDMA HW features\n");
6127 	seq_printf(seq, "==============================\n");
6128 
6129 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6130 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6131 	seq_printf(seq, "\t1000 Mbps: %s\n",
6132 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6133 	seq_printf(seq, "\tHalf duplex: %s\n",
6134 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6135 	seq_printf(seq, "\tHash Filter: %s\n",
6136 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6137 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6138 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6139 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6140 		   (priv->dma_cap.pcs) ? "Y" : "N");
6141 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6142 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6143 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6144 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6145 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6146 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6147 	seq_printf(seq, "\tRMON module: %s\n",
6148 		   (priv->dma_cap.rmon) ? "Y" : "N");
6149 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6150 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6151 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6152 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6153 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6154 		   (priv->dma_cap.eee) ? "Y" : "N");
6155 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6156 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6157 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6158 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6159 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6160 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6161 	} else {
6162 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6163 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6164 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6165 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6166 	}
6167 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6168 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6169 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6170 		   priv->dma_cap.number_rx_channel);
6171 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6172 		   priv->dma_cap.number_tx_channel);
6173 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6174 		   priv->dma_cap.number_rx_queues);
6175 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6176 		   priv->dma_cap.number_tx_queues);
6177 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6178 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6179 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6180 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6181 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6182 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6183 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6184 		   priv->dma_cap.pps_out_num);
6185 	seq_printf(seq, "\tSafety Features: %s\n",
6186 		   priv->dma_cap.asp ? "Y" : "N");
6187 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6188 		   priv->dma_cap.frpsel ? "Y" : "N");
6189 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6190 		   priv->dma_cap.addr64);
6191 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6192 		   priv->dma_cap.rssen ? "Y" : "N");
6193 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6194 		   priv->dma_cap.vlhash ? "Y" : "N");
6195 	seq_printf(seq, "\tSplit Header: %s\n",
6196 		   priv->dma_cap.sphen ? "Y" : "N");
6197 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6198 		   priv->dma_cap.vlins ? "Y" : "N");
6199 	seq_printf(seq, "\tDouble VLAN: %s\n",
6200 		   priv->dma_cap.dvlan ? "Y" : "N");
6201 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6202 		   priv->dma_cap.l3l4fnum);
6203 	seq_printf(seq, "\tARP Offloading: %s\n",
6204 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6205 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6206 		   priv->dma_cap.estsel ? "Y" : "N");
6207 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6208 		   priv->dma_cap.fpesel ? "Y" : "N");
6209 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6210 		   priv->dma_cap.tbssel ? "Y" : "N");
6211 	return 0;
6212 }
6213 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6214 
6215 /* Use network device events to rename debugfs file entries.
6216  */
6217 static int stmmac_device_event(struct notifier_block *unused,
6218 			       unsigned long event, void *ptr)
6219 {
6220 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6221 	struct stmmac_priv *priv = netdev_priv(dev);
6222 
6223 	if (dev->netdev_ops != &stmmac_netdev_ops)
6224 		goto done;
6225 
6226 	switch (event) {
6227 	case NETDEV_CHANGENAME:
6228 		if (priv->dbgfs_dir)
6229 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6230 							 priv->dbgfs_dir,
6231 							 stmmac_fs_dir,
6232 							 dev->name);
6233 		break;
6234 	}
6235 done:
6236 	return NOTIFY_DONE;
6237 }
6238 
6239 static struct notifier_block stmmac_notifier = {
6240 	.notifier_call = stmmac_device_event,
6241 };
6242 
6243 static void stmmac_init_fs(struct net_device *dev)
6244 {
6245 	struct stmmac_priv *priv = netdev_priv(dev);
6246 
6247 	rtnl_lock();
6248 
6249 	/* Create per netdev entries */
6250 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6251 
6252 	/* Entry to report DMA RX/TX rings */
6253 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6254 			    &stmmac_rings_status_fops);
6255 
6256 	/* Entry to report the DMA HW features */
6257 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6258 			    &stmmac_dma_cap_fops);
6259 
6260 	rtnl_unlock();
6261 }
6262 
6263 static void stmmac_exit_fs(struct net_device *dev)
6264 {
6265 	struct stmmac_priv *priv = netdev_priv(dev);
6266 
6267 	debugfs_remove_recursive(priv->dbgfs_dir);
6268 }
6269 #endif /* CONFIG_DEBUG_FS */
6270 
6271 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6272 {
6273 	unsigned char *data = (unsigned char *)&vid_le;
6274 	unsigned char data_byte = 0;
6275 	u32 crc = ~0x0;
6276 	u32 temp = 0;
6277 	int i, bits;
6278 
6279 	bits = get_bitmask_order(VLAN_VID_MASK);
6280 	for (i = 0; i < bits; i++) {
6281 		if ((i % 8) == 0)
6282 			data_byte = data[i / 8];
6283 
6284 		temp = ((crc & 1) ^ data_byte) & 1;
6285 		crc >>= 1;
6286 		data_byte >>= 1;
6287 
6288 		if (temp)
6289 			crc ^= 0xedb88320;
6290 	}
6291 
6292 	return crc;
6293 }
6294 
6295 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6296 {
6297 	u32 crc, hash = 0;
6298 	__le16 pmatch = 0;
6299 	int count = 0;
6300 	u16 vid = 0;
6301 
6302 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6303 		__le16 vid_le = cpu_to_le16(vid);
6304 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6305 		hash |= (1 << crc);
6306 		count++;
6307 	}
6308 
6309 	if (!priv->dma_cap.vlhash) {
6310 		if (count > 2) /* VID = 0 always passes filter */
6311 			return -EOPNOTSUPP;
6312 
6313 		pmatch = cpu_to_le16(vid);
6314 		hash = 0;
6315 	}
6316 
6317 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6318 }
6319 
6320 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6321 {
6322 	struct stmmac_priv *priv = netdev_priv(ndev);
6323 	bool is_double = false;
6324 	int ret;
6325 
6326 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6327 		is_double = true;
6328 
6329 	set_bit(vid, priv->active_vlans);
6330 	ret = stmmac_vlan_update(priv, is_double);
6331 	if (ret) {
6332 		clear_bit(vid, priv->active_vlans);
6333 		return ret;
6334 	}
6335 
6336 	if (priv->hw->num_vlan) {
6337 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6338 		if (ret)
6339 			return ret;
6340 	}
6341 
6342 	return 0;
6343 }
6344 
6345 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6346 {
6347 	struct stmmac_priv *priv = netdev_priv(ndev);
6348 	bool is_double = false;
6349 	int ret;
6350 
6351 	ret = pm_runtime_resume_and_get(priv->device);
6352 	if (ret < 0)
6353 		return ret;
6354 
6355 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6356 		is_double = true;
6357 
6358 	clear_bit(vid, priv->active_vlans);
6359 
6360 	if (priv->hw->num_vlan) {
6361 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6362 		if (ret)
6363 			goto del_vlan_error;
6364 	}
6365 
6366 	ret = stmmac_vlan_update(priv, is_double);
6367 
6368 del_vlan_error:
6369 	pm_runtime_put(priv->device);
6370 
6371 	return ret;
6372 }
6373 
6374 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6375 {
6376 	struct stmmac_priv *priv = netdev_priv(dev);
6377 
6378 	switch (bpf->command) {
6379 	case XDP_SETUP_PROG:
6380 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6381 	case XDP_SETUP_XSK_POOL:
6382 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6383 					     bpf->xsk.queue_id);
6384 	default:
6385 		return -EOPNOTSUPP;
6386 	}
6387 }
6388 
6389 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6390 			   struct xdp_frame **frames, u32 flags)
6391 {
6392 	struct stmmac_priv *priv = netdev_priv(dev);
6393 	int cpu = smp_processor_id();
6394 	struct netdev_queue *nq;
6395 	int i, nxmit = 0;
6396 	int queue;
6397 
6398 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6399 		return -ENETDOWN;
6400 
6401 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6402 		return -EINVAL;
6403 
6404 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6405 	nq = netdev_get_tx_queue(priv->dev, queue);
6406 
6407 	__netif_tx_lock(nq, cpu);
6408 	/* Avoids TX time-out as we are sharing with slow path */
6409 	txq_trans_cond_update(nq);
6410 
6411 	for (i = 0; i < num_frames; i++) {
6412 		int res;
6413 
6414 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6415 		if (res == STMMAC_XDP_CONSUMED)
6416 			break;
6417 
6418 		nxmit++;
6419 	}
6420 
6421 	if (flags & XDP_XMIT_FLUSH) {
6422 		stmmac_flush_tx_descriptors(priv, queue);
6423 		stmmac_tx_timer_arm(priv, queue);
6424 	}
6425 
6426 	__netif_tx_unlock(nq);
6427 
6428 	return nxmit;
6429 }
6430 
6431 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6432 {
6433 	struct stmmac_channel *ch = &priv->channel[queue];
6434 	unsigned long flags;
6435 
6436 	spin_lock_irqsave(&ch->lock, flags);
6437 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6438 	spin_unlock_irqrestore(&ch->lock, flags);
6439 
6440 	stmmac_stop_rx_dma(priv, queue);
6441 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6442 }
6443 
6444 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6445 {
6446 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6447 	struct stmmac_channel *ch = &priv->channel[queue];
6448 	unsigned long flags;
6449 	u32 buf_size;
6450 	int ret;
6451 
6452 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6453 	if (ret) {
6454 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6455 		return;
6456 	}
6457 
6458 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6459 	if (ret) {
6460 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6461 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6462 		return;
6463 	}
6464 
6465 	stmmac_reset_rx_queue(priv, queue);
6466 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6467 
6468 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6469 			    rx_q->dma_rx_phy, rx_q->queue_index);
6470 
6471 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6472 			     sizeof(struct dma_desc));
6473 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6474 			       rx_q->rx_tail_addr, rx_q->queue_index);
6475 
6476 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6477 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6478 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6479 				      buf_size,
6480 				      rx_q->queue_index);
6481 	} else {
6482 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6483 				      priv->dma_conf.dma_buf_sz,
6484 				      rx_q->queue_index);
6485 	}
6486 
6487 	stmmac_start_rx_dma(priv, queue);
6488 
6489 	spin_lock_irqsave(&ch->lock, flags);
6490 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6491 	spin_unlock_irqrestore(&ch->lock, flags);
6492 }
6493 
6494 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6495 {
6496 	struct stmmac_channel *ch = &priv->channel[queue];
6497 	unsigned long flags;
6498 
6499 	spin_lock_irqsave(&ch->lock, flags);
6500 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6501 	spin_unlock_irqrestore(&ch->lock, flags);
6502 
6503 	stmmac_stop_tx_dma(priv, queue);
6504 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6505 }
6506 
6507 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6508 {
6509 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6510 	struct stmmac_channel *ch = &priv->channel[queue];
6511 	unsigned long flags;
6512 	int ret;
6513 
6514 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6515 	if (ret) {
6516 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6517 		return;
6518 	}
6519 
6520 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6521 	if (ret) {
6522 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6523 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6524 		return;
6525 	}
6526 
6527 	stmmac_reset_tx_queue(priv, queue);
6528 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6529 
6530 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6531 			    tx_q->dma_tx_phy, tx_q->queue_index);
6532 
6533 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6534 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6535 
6536 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6537 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6538 			       tx_q->tx_tail_addr, tx_q->queue_index);
6539 
6540 	stmmac_start_tx_dma(priv, queue);
6541 
6542 	spin_lock_irqsave(&ch->lock, flags);
6543 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6544 	spin_unlock_irqrestore(&ch->lock, flags);
6545 }
6546 
6547 void stmmac_xdp_release(struct net_device *dev)
6548 {
6549 	struct stmmac_priv *priv = netdev_priv(dev);
6550 	u32 chan;
6551 
6552 	/* Disable NAPI process */
6553 	stmmac_disable_all_queues(priv);
6554 
6555 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6556 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6557 
6558 	/* Free the IRQ lines */
6559 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6560 
6561 	/* Stop TX/RX DMA channels */
6562 	stmmac_stop_all_dma(priv);
6563 
6564 	/* Release and free the Rx/Tx resources */
6565 	free_dma_desc_resources(priv, &priv->dma_conf);
6566 
6567 	/* Disable the MAC Rx/Tx */
6568 	stmmac_mac_set(priv, priv->ioaddr, false);
6569 
6570 	/* set trans_start so we don't get spurious
6571 	 * watchdogs during reset
6572 	 */
6573 	netif_trans_update(dev);
6574 	netif_carrier_off(dev);
6575 }
6576 
6577 int stmmac_xdp_open(struct net_device *dev)
6578 {
6579 	struct stmmac_priv *priv = netdev_priv(dev);
6580 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6581 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6582 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6583 	struct stmmac_rx_queue *rx_q;
6584 	struct stmmac_tx_queue *tx_q;
6585 	u32 buf_size;
6586 	bool sph_en;
6587 	u32 chan;
6588 	int ret;
6589 
6590 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6591 	if (ret < 0) {
6592 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6593 			   __func__);
6594 		goto dma_desc_error;
6595 	}
6596 
6597 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6598 	if (ret < 0) {
6599 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6600 			   __func__);
6601 		goto init_error;
6602 	}
6603 
6604 	/* DMA CSR Channel configuration */
6605 	for (chan = 0; chan < dma_csr_ch; chan++) {
6606 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6607 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6608 	}
6609 
6610 	/* Adjust Split header */
6611 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6612 
6613 	/* DMA RX Channel Configuration */
6614 	for (chan = 0; chan < rx_cnt; chan++) {
6615 		rx_q = &priv->dma_conf.rx_queue[chan];
6616 
6617 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6618 				    rx_q->dma_rx_phy, chan);
6619 
6620 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6621 				     (rx_q->buf_alloc_num *
6622 				      sizeof(struct dma_desc));
6623 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6624 				       rx_q->rx_tail_addr, chan);
6625 
6626 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6627 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6628 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6629 					      buf_size,
6630 					      rx_q->queue_index);
6631 		} else {
6632 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6633 					      priv->dma_conf.dma_buf_sz,
6634 					      rx_q->queue_index);
6635 		}
6636 
6637 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6638 	}
6639 
6640 	/* DMA TX Channel Configuration */
6641 	for (chan = 0; chan < tx_cnt; chan++) {
6642 		tx_q = &priv->dma_conf.tx_queue[chan];
6643 
6644 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6645 				    tx_q->dma_tx_phy, chan);
6646 
6647 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6648 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6649 				       tx_q->tx_tail_addr, chan);
6650 
6651 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6652 		tx_q->txtimer.function = stmmac_tx_timer;
6653 	}
6654 
6655 	/* Enable the MAC Rx/Tx */
6656 	stmmac_mac_set(priv, priv->ioaddr, true);
6657 
6658 	/* Start Rx & Tx DMA Channels */
6659 	stmmac_start_all_dma(priv);
6660 
6661 	ret = stmmac_request_irq(dev);
6662 	if (ret)
6663 		goto irq_error;
6664 
6665 	/* Enable NAPI process*/
6666 	stmmac_enable_all_queues(priv);
6667 	netif_carrier_on(dev);
6668 	netif_tx_start_all_queues(dev);
6669 	stmmac_enable_all_dma_irq(priv);
6670 
6671 	return 0;
6672 
6673 irq_error:
6674 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6675 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6676 
6677 	stmmac_hw_teardown(dev);
6678 init_error:
6679 	free_dma_desc_resources(priv, &priv->dma_conf);
6680 dma_desc_error:
6681 	return ret;
6682 }
6683 
6684 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6685 {
6686 	struct stmmac_priv *priv = netdev_priv(dev);
6687 	struct stmmac_rx_queue *rx_q;
6688 	struct stmmac_tx_queue *tx_q;
6689 	struct stmmac_channel *ch;
6690 
6691 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6692 	    !netif_carrier_ok(priv->dev))
6693 		return -ENETDOWN;
6694 
6695 	if (!stmmac_xdp_is_enabled(priv))
6696 		return -EINVAL;
6697 
6698 	if (queue >= priv->plat->rx_queues_to_use ||
6699 	    queue >= priv->plat->tx_queues_to_use)
6700 		return -EINVAL;
6701 
6702 	rx_q = &priv->dma_conf.rx_queue[queue];
6703 	tx_q = &priv->dma_conf.tx_queue[queue];
6704 	ch = &priv->channel[queue];
6705 
6706 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6707 		return -EINVAL;
6708 
6709 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6710 		/* EQoS does not have per-DMA channel SW interrupt,
6711 		 * so we schedule RX Napi straight-away.
6712 		 */
6713 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6714 			__napi_schedule(&ch->rxtx_napi);
6715 	}
6716 
6717 	return 0;
6718 }
6719 
6720 static const struct net_device_ops stmmac_netdev_ops = {
6721 	.ndo_open = stmmac_open,
6722 	.ndo_start_xmit = stmmac_xmit,
6723 	.ndo_stop = stmmac_release,
6724 	.ndo_change_mtu = stmmac_change_mtu,
6725 	.ndo_fix_features = stmmac_fix_features,
6726 	.ndo_set_features = stmmac_set_features,
6727 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6728 	.ndo_tx_timeout = stmmac_tx_timeout,
6729 	.ndo_eth_ioctl = stmmac_ioctl,
6730 	.ndo_setup_tc = stmmac_setup_tc,
6731 	.ndo_select_queue = stmmac_select_queue,
6732 #ifdef CONFIG_NET_POLL_CONTROLLER
6733 	.ndo_poll_controller = stmmac_poll_controller,
6734 #endif
6735 	.ndo_set_mac_address = stmmac_set_mac_address,
6736 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6737 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6738 	.ndo_bpf = stmmac_bpf,
6739 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6740 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6741 };
6742 
6743 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6744 {
6745 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6746 		return;
6747 	if (test_bit(STMMAC_DOWN, &priv->state))
6748 		return;
6749 
6750 	netdev_err(priv->dev, "Reset adapter.\n");
6751 
6752 	rtnl_lock();
6753 	netif_trans_update(priv->dev);
6754 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6755 		usleep_range(1000, 2000);
6756 
6757 	set_bit(STMMAC_DOWN, &priv->state);
6758 	dev_close(priv->dev);
6759 	dev_open(priv->dev, NULL);
6760 	clear_bit(STMMAC_DOWN, &priv->state);
6761 	clear_bit(STMMAC_RESETING, &priv->state);
6762 	rtnl_unlock();
6763 }
6764 
6765 static void stmmac_service_task(struct work_struct *work)
6766 {
6767 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6768 			service_task);
6769 
6770 	stmmac_reset_subtask(priv);
6771 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6772 }
6773 
6774 /**
6775  *  stmmac_hw_init - Init the MAC device
6776  *  @priv: driver private structure
6777  *  Description: this function is to configure the MAC device according to
6778  *  some platform parameters or the HW capability register. It prepares the
6779  *  driver to use either ring or chain modes and to setup either enhanced or
6780  *  normal descriptors.
6781  */
6782 static int stmmac_hw_init(struct stmmac_priv *priv)
6783 {
6784 	int ret;
6785 
6786 	/* dwmac-sun8i only work in chain mode */
6787 	if (priv->plat->has_sun8i)
6788 		chain_mode = 1;
6789 	priv->chain_mode = chain_mode;
6790 
6791 	/* Initialize HW Interface */
6792 	ret = stmmac_hwif_init(priv);
6793 	if (ret)
6794 		return ret;
6795 
6796 	/* Get the HW capability (new GMAC newer than 3.50a) */
6797 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6798 	if (priv->hw_cap_support) {
6799 		dev_info(priv->device, "DMA HW capability register supported\n");
6800 
6801 		/* We can override some gmac/dma configuration fields: e.g.
6802 		 * enh_desc, tx_coe (e.g. that are passed through the
6803 		 * platform) with the values from the HW capability
6804 		 * register (if supported).
6805 		 */
6806 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6807 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6808 				!priv->plat->use_phy_wol;
6809 		priv->hw->pmt = priv->plat->pmt;
6810 		if (priv->dma_cap.hash_tb_sz) {
6811 			priv->hw->multicast_filter_bins =
6812 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6813 			priv->hw->mcast_bits_log2 =
6814 					ilog2(priv->hw->multicast_filter_bins);
6815 		}
6816 
6817 		/* TXCOE doesn't work in thresh DMA mode */
6818 		if (priv->plat->force_thresh_dma_mode)
6819 			priv->plat->tx_coe = 0;
6820 		else
6821 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6822 
6823 		/* In case of GMAC4 rx_coe is from HW cap register. */
6824 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6825 
6826 		if (priv->dma_cap.rx_coe_type2)
6827 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6828 		else if (priv->dma_cap.rx_coe_type1)
6829 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6830 
6831 	} else {
6832 		dev_info(priv->device, "No HW DMA feature register supported\n");
6833 	}
6834 
6835 	if (priv->plat->rx_coe) {
6836 		priv->hw->rx_csum = priv->plat->rx_coe;
6837 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6838 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6839 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6840 	}
6841 	if (priv->plat->tx_coe)
6842 		dev_info(priv->device, "TX Checksum insertion supported\n");
6843 
6844 	if (priv->plat->pmt) {
6845 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6846 		device_set_wakeup_capable(priv->device, 1);
6847 	}
6848 
6849 	if (priv->dma_cap.tsoen)
6850 		dev_info(priv->device, "TSO supported\n");
6851 
6852 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6853 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6854 
6855 	/* Run HW quirks, if any */
6856 	if (priv->hwif_quirks) {
6857 		ret = priv->hwif_quirks(priv);
6858 		if (ret)
6859 			return ret;
6860 	}
6861 
6862 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6863 	 * In some case, for example on bugged HW this feature
6864 	 * has to be disable and this can be done by passing the
6865 	 * riwt_off field from the platform.
6866 	 */
6867 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6868 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6869 		priv->use_riwt = 1;
6870 		dev_info(priv->device,
6871 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6872 	}
6873 
6874 	return 0;
6875 }
6876 
6877 static void stmmac_napi_add(struct net_device *dev)
6878 {
6879 	struct stmmac_priv *priv = netdev_priv(dev);
6880 	u32 queue, maxq;
6881 
6882 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6883 
6884 	for (queue = 0; queue < maxq; queue++) {
6885 		struct stmmac_channel *ch = &priv->channel[queue];
6886 
6887 		ch->priv_data = priv;
6888 		ch->index = queue;
6889 		spin_lock_init(&ch->lock);
6890 
6891 		if (queue < priv->plat->rx_queues_to_use) {
6892 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6893 				       NAPI_POLL_WEIGHT);
6894 		}
6895 		if (queue < priv->plat->tx_queues_to_use) {
6896 			netif_napi_add_tx(dev, &ch->tx_napi,
6897 					  stmmac_napi_poll_tx);
6898 		}
6899 		if (queue < priv->plat->rx_queues_to_use &&
6900 		    queue < priv->plat->tx_queues_to_use) {
6901 			netif_napi_add(dev, &ch->rxtx_napi,
6902 				       stmmac_napi_poll_rxtx,
6903 				       NAPI_POLL_WEIGHT);
6904 		}
6905 	}
6906 }
6907 
6908 static void stmmac_napi_del(struct net_device *dev)
6909 {
6910 	struct stmmac_priv *priv = netdev_priv(dev);
6911 	u32 queue, maxq;
6912 
6913 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6914 
6915 	for (queue = 0; queue < maxq; queue++) {
6916 		struct stmmac_channel *ch = &priv->channel[queue];
6917 
6918 		if (queue < priv->plat->rx_queues_to_use)
6919 			netif_napi_del(&ch->rx_napi);
6920 		if (queue < priv->plat->tx_queues_to_use)
6921 			netif_napi_del(&ch->tx_napi);
6922 		if (queue < priv->plat->rx_queues_to_use &&
6923 		    queue < priv->plat->tx_queues_to_use) {
6924 			netif_napi_del(&ch->rxtx_napi);
6925 		}
6926 	}
6927 }
6928 
6929 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6930 {
6931 	struct stmmac_priv *priv = netdev_priv(dev);
6932 	int ret = 0;
6933 
6934 	if (netif_running(dev))
6935 		stmmac_release(dev);
6936 
6937 	stmmac_napi_del(dev);
6938 
6939 	priv->plat->rx_queues_to_use = rx_cnt;
6940 	priv->plat->tx_queues_to_use = tx_cnt;
6941 
6942 	stmmac_napi_add(dev);
6943 
6944 	if (netif_running(dev))
6945 		ret = stmmac_open(dev);
6946 
6947 	return ret;
6948 }
6949 
6950 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6951 {
6952 	struct stmmac_priv *priv = netdev_priv(dev);
6953 	int ret = 0;
6954 
6955 	if (netif_running(dev))
6956 		stmmac_release(dev);
6957 
6958 	priv->dma_conf.dma_rx_size = rx_size;
6959 	priv->dma_conf.dma_tx_size = tx_size;
6960 
6961 	if (netif_running(dev))
6962 		ret = stmmac_open(dev);
6963 
6964 	return ret;
6965 }
6966 
6967 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6968 static void stmmac_fpe_lp_task(struct work_struct *work)
6969 {
6970 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6971 						fpe_task);
6972 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6973 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6974 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6975 	bool *hs_enable = &fpe_cfg->hs_enable;
6976 	bool *enable = &fpe_cfg->enable;
6977 	int retries = 20;
6978 
6979 	while (retries-- > 0) {
6980 		/* Bail out immediately if FPE handshake is OFF */
6981 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6982 			break;
6983 
6984 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6985 		    *lp_state == FPE_STATE_ENTERING_ON) {
6986 			stmmac_fpe_configure(priv, priv->ioaddr,
6987 					     priv->plat->tx_queues_to_use,
6988 					     priv->plat->rx_queues_to_use,
6989 					     *enable);
6990 
6991 			netdev_info(priv->dev, "configured FPE\n");
6992 
6993 			*lo_state = FPE_STATE_ON;
6994 			*lp_state = FPE_STATE_ON;
6995 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6996 			break;
6997 		}
6998 
6999 		if ((*lo_state == FPE_STATE_CAPABLE ||
7000 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7001 		     *lp_state != FPE_STATE_ON) {
7002 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7003 				    *lo_state, *lp_state);
7004 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7005 						MPACKET_VERIFY);
7006 		}
7007 		/* Sleep then retry */
7008 		msleep(500);
7009 	}
7010 
7011 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7012 }
7013 
7014 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7015 {
7016 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7017 		if (enable) {
7018 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7019 						MPACKET_VERIFY);
7020 		} else {
7021 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7022 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7023 		}
7024 
7025 		priv->plat->fpe_cfg->hs_enable = enable;
7026 	}
7027 }
7028 
7029 /**
7030  * stmmac_dvr_probe
7031  * @device: device pointer
7032  * @plat_dat: platform data pointer
7033  * @res: stmmac resource pointer
7034  * Description: this is the main probe function used to
7035  * call the alloc_etherdev, allocate the priv structure.
7036  * Return:
7037  * returns 0 on success, otherwise errno.
7038  */
7039 int stmmac_dvr_probe(struct device *device,
7040 		     struct plat_stmmacenet_data *plat_dat,
7041 		     struct stmmac_resources *res)
7042 {
7043 	struct net_device *ndev = NULL;
7044 	struct stmmac_priv *priv;
7045 	u32 rxq;
7046 	int i, ret = 0;
7047 
7048 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7049 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7050 	if (!ndev)
7051 		return -ENOMEM;
7052 
7053 	SET_NETDEV_DEV(ndev, device);
7054 
7055 	priv = netdev_priv(ndev);
7056 	priv->device = device;
7057 	priv->dev = ndev;
7058 
7059 	stmmac_set_ethtool_ops(ndev);
7060 	priv->pause = pause;
7061 	priv->plat = plat_dat;
7062 	priv->ioaddr = res->addr;
7063 	priv->dev->base_addr = (unsigned long)res->addr;
7064 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
7065 
7066 	priv->dev->irq = res->irq;
7067 	priv->wol_irq = res->wol_irq;
7068 	priv->lpi_irq = res->lpi_irq;
7069 	priv->sfty_ce_irq = res->sfty_ce_irq;
7070 	priv->sfty_ue_irq = res->sfty_ue_irq;
7071 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7072 		priv->rx_irq[i] = res->rx_irq[i];
7073 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7074 		priv->tx_irq[i] = res->tx_irq[i];
7075 
7076 	if (!is_zero_ether_addr(res->mac))
7077 		eth_hw_addr_set(priv->dev, res->mac);
7078 
7079 	dev_set_drvdata(device, priv->dev);
7080 
7081 	/* Verify driver arguments */
7082 	stmmac_verify_args();
7083 
7084 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7085 	if (!priv->af_xdp_zc_qps)
7086 		return -ENOMEM;
7087 
7088 	/* Allocate workqueue */
7089 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7090 	if (!priv->wq) {
7091 		dev_err(priv->device, "failed to create workqueue\n");
7092 		return -ENOMEM;
7093 	}
7094 
7095 	INIT_WORK(&priv->service_task, stmmac_service_task);
7096 
7097 	/* Initialize Link Partner FPE workqueue */
7098 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7099 
7100 	/* Override with kernel parameters if supplied XXX CRS XXX
7101 	 * this needs to have multiple instances
7102 	 */
7103 	if ((phyaddr >= 0) && (phyaddr <= 31))
7104 		priv->plat->phy_addr = phyaddr;
7105 
7106 	if (priv->plat->stmmac_rst) {
7107 		ret = reset_control_assert(priv->plat->stmmac_rst);
7108 		reset_control_deassert(priv->plat->stmmac_rst);
7109 		/* Some reset controllers have only reset callback instead of
7110 		 * assert + deassert callbacks pair.
7111 		 */
7112 		if (ret == -ENOTSUPP)
7113 			reset_control_reset(priv->plat->stmmac_rst);
7114 	}
7115 
7116 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7117 	if (ret == -ENOTSUPP)
7118 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7119 			ERR_PTR(ret));
7120 
7121 	/* Init MAC and get the capabilities */
7122 	ret = stmmac_hw_init(priv);
7123 	if (ret)
7124 		goto error_hw_init;
7125 
7126 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7127 	 */
7128 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7129 		priv->plat->dma_cfg->dche = false;
7130 
7131 	stmmac_check_ether_addr(priv);
7132 
7133 	ndev->netdev_ops = &stmmac_netdev_ops;
7134 
7135 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7136 			    NETIF_F_RXCSUM;
7137 
7138 	ret = stmmac_tc_init(priv, priv);
7139 	if (!ret) {
7140 		ndev->hw_features |= NETIF_F_HW_TC;
7141 	}
7142 
7143 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7144 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7145 		if (priv->plat->has_gmac4)
7146 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7147 		priv->tso = true;
7148 		dev_info(priv->device, "TSO feature enabled\n");
7149 	}
7150 
7151 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7152 		ndev->hw_features |= NETIF_F_GRO;
7153 		priv->sph_cap = true;
7154 		priv->sph = priv->sph_cap;
7155 		dev_info(priv->device, "SPH feature enabled\n");
7156 	}
7157 
7158 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7159 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7160 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7161 	 * So overwrite dma_cap.addr64 according to HW real design.
7162 	 */
7163 	if (priv->plat->addr64)
7164 		priv->dma_cap.addr64 = priv->plat->addr64;
7165 
7166 	if (priv->dma_cap.addr64) {
7167 		ret = dma_set_mask_and_coherent(device,
7168 				DMA_BIT_MASK(priv->dma_cap.addr64));
7169 		if (!ret) {
7170 			dev_info(priv->device, "Using %d bits DMA width\n",
7171 				 priv->dma_cap.addr64);
7172 
7173 			/*
7174 			 * If more than 32 bits can be addressed, make sure to
7175 			 * enable enhanced addressing mode.
7176 			 */
7177 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7178 				priv->plat->dma_cfg->eame = true;
7179 		} else {
7180 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7181 			if (ret) {
7182 				dev_err(priv->device, "Failed to set DMA Mask\n");
7183 				goto error_hw_init;
7184 			}
7185 
7186 			priv->dma_cap.addr64 = 32;
7187 		}
7188 	}
7189 
7190 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7191 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7192 #ifdef STMMAC_VLAN_TAG_USED
7193 	/* Both mac100 and gmac support receive VLAN tag detection */
7194 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7195 	if (priv->dma_cap.vlhash) {
7196 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7197 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7198 	}
7199 	if (priv->dma_cap.vlins) {
7200 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7201 		if (priv->dma_cap.dvlan)
7202 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7203 	}
7204 #endif
7205 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7206 
7207 	/* Initialize RSS */
7208 	rxq = priv->plat->rx_queues_to_use;
7209 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7210 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7211 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7212 
7213 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7214 		ndev->features |= NETIF_F_RXHASH;
7215 
7216 	/* MTU range: 46 - hw-specific max */
7217 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7218 	if (priv->plat->has_xgmac)
7219 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7220 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7221 		ndev->max_mtu = JUMBO_LEN;
7222 	else
7223 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7224 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7225 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7226 	 */
7227 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7228 	    (priv->plat->maxmtu >= ndev->min_mtu))
7229 		ndev->max_mtu = priv->plat->maxmtu;
7230 	else if (priv->plat->maxmtu < ndev->min_mtu)
7231 		dev_warn(priv->device,
7232 			 "%s: warning: maxmtu having invalid value (%d)\n",
7233 			 __func__, priv->plat->maxmtu);
7234 
7235 	if (flow_ctrl)
7236 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7237 
7238 	/* Setup channels NAPI */
7239 	stmmac_napi_add(ndev);
7240 
7241 	mutex_init(&priv->lock);
7242 
7243 	/* If a specific clk_csr value is passed from the platform
7244 	 * this means that the CSR Clock Range selection cannot be
7245 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7246 	 * set the MDC clock dynamically according to the csr actual
7247 	 * clock input.
7248 	 */
7249 	if (priv->plat->clk_csr >= 0)
7250 		priv->clk_csr = priv->plat->clk_csr;
7251 	else
7252 		stmmac_clk_csr_set(priv);
7253 
7254 	stmmac_check_pcs_mode(priv);
7255 
7256 	pm_runtime_get_noresume(device);
7257 	pm_runtime_set_active(device);
7258 	if (!pm_runtime_enabled(device))
7259 		pm_runtime_enable(device);
7260 
7261 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7262 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7263 		/* MDIO bus Registration */
7264 		ret = stmmac_mdio_register(ndev);
7265 		if (ret < 0) {
7266 			dev_err_probe(priv->device, ret,
7267 				      "%s: MDIO bus (id: %d) registration failed\n",
7268 				      __func__, priv->plat->bus_id);
7269 			goto error_mdio_register;
7270 		}
7271 	}
7272 
7273 	if (priv->plat->speed_mode_2500)
7274 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7275 
7276 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7277 		ret = stmmac_xpcs_setup(priv->mii);
7278 		if (ret)
7279 			goto error_xpcs_setup;
7280 	}
7281 
7282 	ret = stmmac_phy_setup(priv);
7283 	if (ret) {
7284 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7285 		goto error_phy_setup;
7286 	}
7287 
7288 	ret = register_netdev(ndev);
7289 	if (ret) {
7290 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7291 			__func__, ret);
7292 		goto error_netdev_register;
7293 	}
7294 
7295 	if (priv->plat->serdes_powerup) {
7296 		ret = priv->plat->serdes_powerup(ndev,
7297 						 priv->plat->bsp_priv);
7298 
7299 		if (ret < 0)
7300 			goto error_serdes_powerup;
7301 	}
7302 
7303 #ifdef CONFIG_DEBUG_FS
7304 	stmmac_init_fs(ndev);
7305 #endif
7306 
7307 	if (priv->plat->dump_debug_regs)
7308 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7309 
7310 	/* Let pm_runtime_put() disable the clocks.
7311 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7312 	 */
7313 	pm_runtime_put(device);
7314 
7315 	return ret;
7316 
7317 error_serdes_powerup:
7318 	unregister_netdev(ndev);
7319 error_netdev_register:
7320 	phylink_destroy(priv->phylink);
7321 error_xpcs_setup:
7322 error_phy_setup:
7323 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7324 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7325 		stmmac_mdio_unregister(ndev);
7326 error_mdio_register:
7327 	stmmac_napi_del(ndev);
7328 error_hw_init:
7329 	destroy_workqueue(priv->wq);
7330 	bitmap_free(priv->af_xdp_zc_qps);
7331 
7332 	return ret;
7333 }
7334 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7335 
7336 /**
7337  * stmmac_dvr_remove
7338  * @dev: device pointer
7339  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7340  * changes the link status, releases the DMA descriptor rings.
7341  */
7342 int stmmac_dvr_remove(struct device *dev)
7343 {
7344 	struct net_device *ndev = dev_get_drvdata(dev);
7345 	struct stmmac_priv *priv = netdev_priv(ndev);
7346 
7347 	netdev_info(priv->dev, "%s: removing driver", __func__);
7348 
7349 	pm_runtime_get_sync(dev);
7350 
7351 	stmmac_stop_all_dma(priv);
7352 	stmmac_mac_set(priv, priv->ioaddr, false);
7353 	netif_carrier_off(ndev);
7354 	unregister_netdev(ndev);
7355 
7356 	/* Serdes power down needs to happen after VLAN filter
7357 	 * is deleted that is triggered by unregister_netdev().
7358 	 */
7359 	if (priv->plat->serdes_powerdown)
7360 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7361 
7362 #ifdef CONFIG_DEBUG_FS
7363 	stmmac_exit_fs(ndev);
7364 #endif
7365 	phylink_destroy(priv->phylink);
7366 	if (priv->plat->stmmac_rst)
7367 		reset_control_assert(priv->plat->stmmac_rst);
7368 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7369 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7370 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7371 		stmmac_mdio_unregister(ndev);
7372 	destroy_workqueue(priv->wq);
7373 	mutex_destroy(&priv->lock);
7374 	bitmap_free(priv->af_xdp_zc_qps);
7375 
7376 	pm_runtime_disable(dev);
7377 	pm_runtime_put_noidle(dev);
7378 
7379 	return 0;
7380 }
7381 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7382 
7383 /**
7384  * stmmac_suspend - suspend callback
7385  * @dev: device pointer
7386  * Description: this is the function to suspend the device and it is called
7387  * by the platform driver to stop the network queue, release the resources,
7388  * program the PMT register (for WoL), clean and release driver resources.
7389  */
7390 int stmmac_suspend(struct device *dev)
7391 {
7392 	struct net_device *ndev = dev_get_drvdata(dev);
7393 	struct stmmac_priv *priv = netdev_priv(ndev);
7394 	u32 chan;
7395 
7396 	if (!ndev || !netif_running(ndev))
7397 		return 0;
7398 
7399 	mutex_lock(&priv->lock);
7400 
7401 	netif_device_detach(ndev);
7402 
7403 	stmmac_disable_all_queues(priv);
7404 
7405 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7406 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7407 
7408 	if (priv->eee_enabled) {
7409 		priv->tx_path_in_lpi_mode = false;
7410 		del_timer_sync(&priv->eee_ctrl_timer);
7411 	}
7412 
7413 	/* Stop TX/RX DMA */
7414 	stmmac_stop_all_dma(priv);
7415 
7416 	if (priv->plat->serdes_powerdown)
7417 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7418 
7419 	/* Enable Power down mode by programming the PMT regs */
7420 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7421 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7422 		priv->irq_wake = 1;
7423 	} else {
7424 		stmmac_mac_set(priv, priv->ioaddr, false);
7425 		pinctrl_pm_select_sleep_state(priv->device);
7426 	}
7427 
7428 	mutex_unlock(&priv->lock);
7429 
7430 	rtnl_lock();
7431 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7432 		phylink_suspend(priv->phylink, true);
7433 	} else {
7434 		if (device_may_wakeup(priv->device))
7435 			phylink_speed_down(priv->phylink, false);
7436 		phylink_suspend(priv->phylink, false);
7437 	}
7438 	rtnl_unlock();
7439 
7440 	if (priv->dma_cap.fpesel) {
7441 		/* Disable FPE */
7442 		stmmac_fpe_configure(priv, priv->ioaddr,
7443 				     priv->plat->tx_queues_to_use,
7444 				     priv->plat->rx_queues_to_use, false);
7445 
7446 		stmmac_fpe_handshake(priv, false);
7447 		stmmac_fpe_stop_wq(priv);
7448 	}
7449 
7450 	priv->speed = SPEED_UNKNOWN;
7451 	return 0;
7452 }
7453 EXPORT_SYMBOL_GPL(stmmac_suspend);
7454 
7455 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7456 {
7457 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7458 
7459 	rx_q->cur_rx = 0;
7460 	rx_q->dirty_rx = 0;
7461 }
7462 
7463 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7464 {
7465 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7466 
7467 	tx_q->cur_tx = 0;
7468 	tx_q->dirty_tx = 0;
7469 	tx_q->mss = 0;
7470 
7471 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7472 }
7473 
7474 /**
7475  * stmmac_reset_queues_param - reset queue parameters
7476  * @priv: device pointer
7477  */
7478 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7479 {
7480 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7481 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7482 	u32 queue;
7483 
7484 	for (queue = 0; queue < rx_cnt; queue++)
7485 		stmmac_reset_rx_queue(priv, queue);
7486 
7487 	for (queue = 0; queue < tx_cnt; queue++)
7488 		stmmac_reset_tx_queue(priv, queue);
7489 }
7490 
7491 /**
7492  * stmmac_resume - resume callback
7493  * @dev: device pointer
7494  * Description: when resume this function is invoked to setup the DMA and CORE
7495  * in a usable state.
7496  */
7497 int stmmac_resume(struct device *dev)
7498 {
7499 	struct net_device *ndev = dev_get_drvdata(dev);
7500 	struct stmmac_priv *priv = netdev_priv(ndev);
7501 	int ret;
7502 
7503 	if (!netif_running(ndev))
7504 		return 0;
7505 
7506 	/* Power Down bit, into the PM register, is cleared
7507 	 * automatically as soon as a magic packet or a Wake-up frame
7508 	 * is received. Anyway, it's better to manually clear
7509 	 * this bit because it can generate problems while resuming
7510 	 * from another devices (e.g. serial console).
7511 	 */
7512 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7513 		mutex_lock(&priv->lock);
7514 		stmmac_pmt(priv, priv->hw, 0);
7515 		mutex_unlock(&priv->lock);
7516 		priv->irq_wake = 0;
7517 	} else {
7518 		pinctrl_pm_select_default_state(priv->device);
7519 		/* reset the phy so that it's ready */
7520 		if (priv->mii)
7521 			stmmac_mdio_reset(priv->mii);
7522 	}
7523 
7524 	if (priv->plat->serdes_powerup) {
7525 		ret = priv->plat->serdes_powerup(ndev,
7526 						 priv->plat->bsp_priv);
7527 
7528 		if (ret < 0)
7529 			return ret;
7530 	}
7531 
7532 	rtnl_lock();
7533 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7534 		phylink_resume(priv->phylink);
7535 	} else {
7536 		phylink_resume(priv->phylink);
7537 		if (device_may_wakeup(priv->device))
7538 			phylink_speed_up(priv->phylink);
7539 	}
7540 	rtnl_unlock();
7541 
7542 	rtnl_lock();
7543 	mutex_lock(&priv->lock);
7544 
7545 	stmmac_reset_queues_param(priv);
7546 
7547 	stmmac_free_tx_skbufs(priv);
7548 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7549 
7550 	stmmac_hw_setup(ndev, false);
7551 	stmmac_init_coalesce(priv);
7552 	stmmac_set_rx_mode(ndev);
7553 
7554 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7555 
7556 	stmmac_enable_all_queues(priv);
7557 	stmmac_enable_all_dma_irq(priv);
7558 
7559 	mutex_unlock(&priv->lock);
7560 	rtnl_unlock();
7561 
7562 	netif_device_attach(ndev);
7563 
7564 	return 0;
7565 }
7566 EXPORT_SYMBOL_GPL(stmmac_resume);
7567 
7568 #ifndef MODULE
7569 static int __init stmmac_cmdline_opt(char *str)
7570 {
7571 	char *opt;
7572 
7573 	if (!str || !*str)
7574 		return 1;
7575 	while ((opt = strsep(&str, ",")) != NULL) {
7576 		if (!strncmp(opt, "debug:", 6)) {
7577 			if (kstrtoint(opt + 6, 0, &debug))
7578 				goto err;
7579 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7580 			if (kstrtoint(opt + 8, 0, &phyaddr))
7581 				goto err;
7582 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7583 			if (kstrtoint(opt + 7, 0, &buf_sz))
7584 				goto err;
7585 		} else if (!strncmp(opt, "tc:", 3)) {
7586 			if (kstrtoint(opt + 3, 0, &tc))
7587 				goto err;
7588 		} else if (!strncmp(opt, "watchdog:", 9)) {
7589 			if (kstrtoint(opt + 9, 0, &watchdog))
7590 				goto err;
7591 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7592 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7593 				goto err;
7594 		} else if (!strncmp(opt, "pause:", 6)) {
7595 			if (kstrtoint(opt + 6, 0, &pause))
7596 				goto err;
7597 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7598 			if (kstrtoint(opt + 10, 0, &eee_timer))
7599 				goto err;
7600 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7601 			if (kstrtoint(opt + 11, 0, &chain_mode))
7602 				goto err;
7603 		}
7604 	}
7605 	return 1;
7606 
7607 err:
7608 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7609 	return 1;
7610 }
7611 
7612 __setup("stmmaceth=", stmmac_cmdline_opt);
7613 #endif /* MODULE */
7614 
7615 static int __init stmmac_init(void)
7616 {
7617 #ifdef CONFIG_DEBUG_FS
7618 	/* Create debugfs main directory if it doesn't exist yet */
7619 	if (!stmmac_fs_dir)
7620 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7621 	register_netdevice_notifier(&stmmac_notifier);
7622 #endif
7623 
7624 	return 0;
7625 }
7626 
7627 static void __exit stmmac_exit(void)
7628 {
7629 #ifdef CONFIG_DEBUG_FS
7630 	unregister_netdevice_notifier(&stmmac_notifier);
7631 	debugfs_remove_recursive(stmmac_fs_dir);
7632 #endif
7633 }
7634 
7635 module_init(stmmac_init)
7636 module_exit(stmmac_exit)
7637 
7638 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7639 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7640 MODULE_LICENSE("GPL");
7641