1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
54 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
55 
56 /* Module parameters */
57 #define TX_TIMEO	5000
58 static int watchdog = TX_TIMEO;
59 module_param(watchdog, int, 0644);
60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
61 
62 static int debug = -1;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
65 
66 static int phyaddr = -1;
67 module_param(phyaddr, int, 0444);
68 MODULE_PARM_DESC(phyaddr, "Physical device address");
69 
70 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
71 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
72 
73 /* Limit to make sure XDP TX and slow path can coexist */
74 #define STMMAC_XSK_TX_BUDGET_MAX	256
75 #define STMMAC_TX_XSK_AVAIL		16
76 #define STMMAC_RX_FILL_BATCH		16
77 
78 #define STMMAC_XDP_PASS		0
79 #define STMMAC_XDP_CONSUMED	BIT(0)
80 #define STMMAC_XDP_TX		BIT(1)
81 #define STMMAC_XDP_REDIRECT	BIT(2)
82 
83 static int flow_ctrl = FLOW_AUTO;
84 module_param(flow_ctrl, int, 0644);
85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
86 
87 static int pause = PAUSE_TIME;
88 module_param(pause, int, 0644);
89 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
90 
91 #define TC_DEFAULT 64
92 static int tc = TC_DEFAULT;
93 module_param(tc, int, 0644);
94 MODULE_PARM_DESC(tc, "DMA threshold control value");
95 
96 #define	DEFAULT_BUFSIZE	1536
97 static int buf_sz = DEFAULT_BUFSIZE;
98 module_param(buf_sz, int, 0644);
99 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
100 
101 #define	STMMAC_RX_COPYBREAK	256
102 
103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
104 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
105 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
106 
107 #define STMMAC_DEFAULT_LPI_TIMER	1000
108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
109 module_param(eee_timer, int, 0644);
110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
112 
113 /* By default the driver will use the ring mode to manage tx and rx descriptors,
114  * but allow user to force to use the chain instead of the ring
115  */
116 static unsigned int chain_mode;
117 module_param(chain_mode, int, 0444);
118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
119 
120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
121 /* For MSI interrupts handling */
122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
128 
129 #ifdef CONFIG_DEBUG_FS
130 static const struct net_device_ops stmmac_netdev_ops;
131 static void stmmac_init_fs(struct net_device *dev);
132 static void stmmac_exit_fs(struct net_device *dev);
133 #endif
134 
135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
136 
137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
138 {
139 	int ret = 0;
140 
141 	if (enabled) {
142 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
143 		if (ret)
144 			return ret;
145 		ret = clk_prepare_enable(priv->plat->pclk);
146 		if (ret) {
147 			clk_disable_unprepare(priv->plat->stmmac_clk);
148 			return ret;
149 		}
150 		if (priv->plat->clks_config) {
151 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
152 			if (ret) {
153 				clk_disable_unprepare(priv->plat->stmmac_clk);
154 				clk_disable_unprepare(priv->plat->pclk);
155 				return ret;
156 			}
157 		}
158 	} else {
159 		clk_disable_unprepare(priv->plat->stmmac_clk);
160 		clk_disable_unprepare(priv->plat->pclk);
161 		if (priv->plat->clks_config)
162 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
163 	}
164 
165 	return ret;
166 }
167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
168 
169 /**
170  * stmmac_verify_args - verify the driver parameters.
171  * Description: it checks the driver parameters and set a default in case of
172  * errors.
173  */
174 static void stmmac_verify_args(void)
175 {
176 	if (unlikely(watchdog < 0))
177 		watchdog = TX_TIMEO;
178 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
179 		buf_sz = DEFAULT_BUFSIZE;
180 	if (unlikely(flow_ctrl > 1))
181 		flow_ctrl = FLOW_AUTO;
182 	else if (likely(flow_ctrl < 0))
183 		flow_ctrl = FLOW_OFF;
184 	if (unlikely((pause < 0) || (pause > 0xffff)))
185 		pause = PAUSE_TIME;
186 	if (eee_timer < 0)
187 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
188 }
189 
190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
191 {
192 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
193 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
194 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
195 	u32 queue;
196 
197 	for (queue = 0; queue < maxq; queue++) {
198 		struct stmmac_channel *ch = &priv->channel[queue];
199 
200 		if (stmmac_xdp_is_enabled(priv) &&
201 		    test_bit(queue, priv->af_xdp_zc_qps)) {
202 			napi_disable(&ch->rxtx_napi);
203 			continue;
204 		}
205 
206 		if (queue < rx_queues_cnt)
207 			napi_disable(&ch->rx_napi);
208 		if (queue < tx_queues_cnt)
209 			napi_disable(&ch->tx_napi);
210 	}
211 }
212 
213 /**
214  * stmmac_disable_all_queues - Disable all queues
215  * @priv: driver private structure
216  */
217 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
218 {
219 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
220 	struct stmmac_rx_queue *rx_q;
221 	u32 queue;
222 
223 	/* synchronize_rcu() needed for pending XDP buffers to drain */
224 	for (queue = 0; queue < rx_queues_cnt; queue++) {
225 		rx_q = &priv->rx_queue[queue];
226 		if (rx_q->xsk_pool) {
227 			synchronize_rcu();
228 			break;
229 		}
230 	}
231 
232 	__stmmac_disable_all_queues(priv);
233 }
234 
235 /**
236  * stmmac_enable_all_queues - Enable all queues
237  * @priv: driver private structure
238  */
239 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
240 {
241 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
242 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
243 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
244 	u32 queue;
245 
246 	for (queue = 0; queue < maxq; queue++) {
247 		struct stmmac_channel *ch = &priv->channel[queue];
248 
249 		if (stmmac_xdp_is_enabled(priv) &&
250 		    test_bit(queue, priv->af_xdp_zc_qps)) {
251 			napi_enable(&ch->rxtx_napi);
252 			continue;
253 		}
254 
255 		if (queue < rx_queues_cnt)
256 			napi_enable(&ch->rx_napi);
257 		if (queue < tx_queues_cnt)
258 			napi_enable(&ch->tx_napi);
259 	}
260 }
261 
262 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
263 {
264 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
265 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
266 		queue_work(priv->wq, &priv->service_task);
267 }
268 
269 static void stmmac_global_err(struct stmmac_priv *priv)
270 {
271 	netif_carrier_off(priv->dev);
272 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
273 	stmmac_service_event_schedule(priv);
274 }
275 
276 /**
277  * stmmac_clk_csr_set - dynamically set the MDC clock
278  * @priv: driver private structure
279  * Description: this is to dynamically set the MDC clock according to the csr
280  * clock input.
281  * Note:
282  *	If a specific clk_csr value is passed from the platform
283  *	this means that the CSR Clock Range selection cannot be
284  *	changed at run-time and it is fixed (as reported in the driver
285  *	documentation). Viceversa the driver will try to set the MDC
286  *	clock dynamically according to the actual clock input.
287  */
288 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
289 {
290 	u32 clk_rate;
291 
292 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
293 
294 	/* Platform provided default clk_csr would be assumed valid
295 	 * for all other cases except for the below mentioned ones.
296 	 * For values higher than the IEEE 802.3 specified frequency
297 	 * we can not estimate the proper divider as it is not known
298 	 * the frequency of clk_csr_i. So we do not change the default
299 	 * divider.
300 	 */
301 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
302 		if (clk_rate < CSR_F_35M)
303 			priv->clk_csr = STMMAC_CSR_20_35M;
304 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
305 			priv->clk_csr = STMMAC_CSR_35_60M;
306 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
307 			priv->clk_csr = STMMAC_CSR_60_100M;
308 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
309 			priv->clk_csr = STMMAC_CSR_100_150M;
310 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
311 			priv->clk_csr = STMMAC_CSR_150_250M;
312 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
313 			priv->clk_csr = STMMAC_CSR_250_300M;
314 	}
315 
316 	if (priv->plat->has_sun8i) {
317 		if (clk_rate > 160000000)
318 			priv->clk_csr = 0x03;
319 		else if (clk_rate > 80000000)
320 			priv->clk_csr = 0x02;
321 		else if (clk_rate > 40000000)
322 			priv->clk_csr = 0x01;
323 		else
324 			priv->clk_csr = 0;
325 	}
326 
327 	if (priv->plat->has_xgmac) {
328 		if (clk_rate > 400000000)
329 			priv->clk_csr = 0x5;
330 		else if (clk_rate > 350000000)
331 			priv->clk_csr = 0x4;
332 		else if (clk_rate > 300000000)
333 			priv->clk_csr = 0x3;
334 		else if (clk_rate > 250000000)
335 			priv->clk_csr = 0x2;
336 		else if (clk_rate > 150000000)
337 			priv->clk_csr = 0x1;
338 		else
339 			priv->clk_csr = 0x0;
340 	}
341 }
342 
343 static void print_pkt(unsigned char *buf, int len)
344 {
345 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
346 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
347 }
348 
349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
350 {
351 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
352 	u32 avail;
353 
354 	if (tx_q->dirty_tx > tx_q->cur_tx)
355 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
356 	else
357 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
358 
359 	return avail;
360 }
361 
362 /**
363  * stmmac_rx_dirty - Get RX queue dirty
364  * @priv: driver private structure
365  * @queue: RX queue index
366  */
367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
368 {
369 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
370 	u32 dirty;
371 
372 	if (rx_q->dirty_rx <= rx_q->cur_rx)
373 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
374 	else
375 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
376 
377 	return dirty;
378 }
379 
380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
381 {
382 	int tx_lpi_timer;
383 
384 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
385 	priv->eee_sw_timer_en = en ? 0 : 1;
386 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
387 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
388 }
389 
390 /**
391  * stmmac_enable_eee_mode - check and enter in LPI mode
392  * @priv: driver private structure
393  * Description: this function is to verify and enter in LPI mode in case of
394  * EEE.
395  */
396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
397 {
398 	u32 tx_cnt = priv->plat->tx_queues_to_use;
399 	u32 queue;
400 
401 	/* check if all TX queues have the work finished */
402 	for (queue = 0; queue < tx_cnt; queue++) {
403 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
404 
405 		if (tx_q->dirty_tx != tx_q->cur_tx)
406 			return; /* still unfinished work */
407 	}
408 
409 	/* Check and enter in LPI mode */
410 	if (!priv->tx_path_in_lpi_mode)
411 		stmmac_set_eee_mode(priv, priv->hw,
412 				priv->plat->en_tx_lpi_clockgating);
413 }
414 
415 /**
416  * stmmac_disable_eee_mode - disable and exit from LPI mode
417  * @priv: driver private structure
418  * Description: this function is to exit and disable EEE in case of
419  * LPI state is true. This is called by the xmit.
420  */
421 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
422 {
423 	if (!priv->eee_sw_timer_en) {
424 		stmmac_lpi_entry_timer_config(priv, 0);
425 		return;
426 	}
427 
428 	stmmac_reset_eee_mode(priv, priv->hw);
429 	del_timer_sync(&priv->eee_ctrl_timer);
430 	priv->tx_path_in_lpi_mode = false;
431 }
432 
433 /**
434  * stmmac_eee_ctrl_timer - EEE TX SW timer.
435  * @t:  timer_list struct containing private info
436  * Description:
437  *  if there is no data transfer and if we are not in LPI state,
438  *  then MAC Transmitter can be moved to LPI state.
439  */
440 static void stmmac_eee_ctrl_timer(struct timer_list *t)
441 {
442 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
443 
444 	stmmac_enable_eee_mode(priv);
445 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
446 }
447 
448 /**
449  * stmmac_eee_init - init EEE
450  * @priv: driver private structure
451  * Description:
452  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
453  *  can also manage EEE, this function enable the LPI state and start related
454  *  timer.
455  */
456 bool stmmac_eee_init(struct stmmac_priv *priv)
457 {
458 	int eee_tw_timer = priv->eee_tw_timer;
459 
460 	/* Using PCS we cannot dial with the phy registers at this stage
461 	 * so we do not support extra feature like EEE.
462 	 */
463 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
464 	    priv->hw->pcs == STMMAC_PCS_RTBI)
465 		return false;
466 
467 	/* Check if MAC core supports the EEE feature. */
468 	if (!priv->dma_cap.eee)
469 		return false;
470 
471 	mutex_lock(&priv->lock);
472 
473 	/* Check if it needs to be deactivated */
474 	if (!priv->eee_active) {
475 		if (priv->eee_enabled) {
476 			netdev_dbg(priv->dev, "disable EEE\n");
477 			stmmac_lpi_entry_timer_config(priv, 0);
478 			del_timer_sync(&priv->eee_ctrl_timer);
479 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
480 		}
481 		mutex_unlock(&priv->lock);
482 		return false;
483 	}
484 
485 	if (priv->eee_active && !priv->eee_enabled) {
486 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
487 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
488 				     eee_tw_timer);
489 	}
490 
491 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
492 		del_timer_sync(&priv->eee_ctrl_timer);
493 		priv->tx_path_in_lpi_mode = false;
494 		stmmac_lpi_entry_timer_config(priv, 1);
495 	} else {
496 		stmmac_lpi_entry_timer_config(priv, 0);
497 		mod_timer(&priv->eee_ctrl_timer,
498 			  STMMAC_LPI_T(priv->tx_lpi_timer));
499 	}
500 
501 	mutex_unlock(&priv->lock);
502 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
503 	return true;
504 }
505 
506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
507  * @priv: driver private structure
508  * @p : descriptor pointer
509  * @skb : the socket buffer
510  * Description :
511  * This function will read timestamp from the descriptor & pass it to stack.
512  * and also perform some sanity checks.
513  */
514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
515 				   struct dma_desc *p, struct sk_buff *skb)
516 {
517 	struct skb_shared_hwtstamps shhwtstamp;
518 	bool found = false;
519 	s64 adjust = 0;
520 	u64 ns = 0;
521 
522 	if (!priv->hwts_tx_en)
523 		return;
524 
525 	/* exit if skb doesn't support hw tstamp */
526 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
527 		return;
528 
529 	/* check tx tstamp status */
530 	if (stmmac_get_tx_timestamp_status(priv, p)) {
531 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
532 		found = true;
533 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
534 		found = true;
535 	}
536 
537 	if (found) {
538 		/* Correct the clk domain crossing(CDC) error */
539 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
540 			adjust += -(2 * (NSEC_PER_SEC /
541 					 priv->plat->clk_ptp_rate));
542 			ns += adjust;
543 		}
544 
545 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
546 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
547 
548 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
549 		/* pass tstamp to stack */
550 		skb_tstamp_tx(skb, &shhwtstamp);
551 	}
552 }
553 
554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
555  * @priv: driver private structure
556  * @p : descriptor pointer
557  * @np : next descriptor pointer
558  * @skb : the socket buffer
559  * Description :
560  * This function will read received packet's timestamp from the descriptor
561  * and pass it to stack. It also perform some sanity checks.
562  */
563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
564 				   struct dma_desc *np, struct sk_buff *skb)
565 {
566 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
567 	struct dma_desc *desc = p;
568 	u64 adjust = 0;
569 	u64 ns = 0;
570 
571 	if (!priv->hwts_rx_en)
572 		return;
573 	/* For GMAC4, the valid timestamp is from CTX next desc. */
574 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
575 		desc = np;
576 
577 	/* Check if timestamp is available */
578 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
579 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
580 
581 		/* Correct the clk domain crossing(CDC) error */
582 		if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) {
583 			adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate);
584 			ns -= adjust;
585 		}
586 
587 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
588 		shhwtstamp = skb_hwtstamps(skb);
589 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
590 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
591 	} else  {
592 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
593 	}
594 }
595 
596 /**
597  *  stmmac_hwtstamp_set - control hardware timestamping.
598  *  @dev: device pointer.
599  *  @ifr: An IOCTL specific structure, that can contain a pointer to
600  *  a proprietary structure used to pass information to the driver.
601  *  Description:
602  *  This function configures the MAC to enable/disable both outgoing(TX)
603  *  and incoming(RX) packets time stamping based on user input.
604  *  Return Value:
605  *  0 on success and an appropriate -ve integer on failure.
606  */
607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
608 {
609 	struct stmmac_priv *priv = netdev_priv(dev);
610 	struct hwtstamp_config config;
611 	struct timespec64 now;
612 	u64 temp = 0;
613 	u32 ptp_v2 = 0;
614 	u32 tstamp_all = 0;
615 	u32 ptp_over_ipv4_udp = 0;
616 	u32 ptp_over_ipv6_udp = 0;
617 	u32 ptp_over_ethernet = 0;
618 	u32 snap_type_sel = 0;
619 	u32 ts_master_en = 0;
620 	u32 ts_event_en = 0;
621 	u32 sec_inc = 0;
622 	u32 value = 0;
623 	bool xmac;
624 
625 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	/* reserved for future extensions */
643 	if (config.flags)
644 		return -EINVAL;
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id != DWMAC_CORE_5_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
788 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
789 	else {
790 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
791 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
792 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
793 			 ts_master_en | snap_type_sel);
794 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
795 
796 		/* program Sub Second Increment reg */
797 		stmmac_config_sub_second_increment(priv,
798 				priv->ptpaddr, priv->plat->clk_ptp_rate,
799 				xmac, &sec_inc);
800 		temp = div_u64(1000000000ULL, sec_inc);
801 
802 		/* Store sub second increment and flags for later use */
803 		priv->sub_second_inc = sec_inc;
804 		priv->systime_flags = value;
805 
806 		/* calculate default added value:
807 		 * formula is :
808 		 * addend = (2^32)/freq_div_ratio;
809 		 * where, freq_div_ratio = 1e9ns/sec_inc
810 		 */
811 		temp = (u64)(temp << 32);
812 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
813 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
814 
815 		/* initialize system time */
816 		ktime_get_real_ts64(&now);
817 
818 		/* lower 32 bits of tv_sec are safe until y2106 */
819 		stmmac_init_systime(priv, priv->ptpaddr,
820 				(u32)now.tv_sec, now.tv_nsec);
821 	}
822 
823 	memcpy(&priv->tstamp_config, &config, sizeof(config));
824 
825 	return copy_to_user(ifr->ifr_data, &config,
826 			    sizeof(config)) ? -EFAULT : 0;
827 }
828 
829 /**
830  *  stmmac_hwtstamp_get - read hardware timestamping.
831  *  @dev: device pointer.
832  *  @ifr: An IOCTL specific structure, that can contain a pointer to
833  *  a proprietary structure used to pass information to the driver.
834  *  Description:
835  *  This function obtain the current hardware timestamping settings
836  *  as requested.
837  */
838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
839 {
840 	struct stmmac_priv *priv = netdev_priv(dev);
841 	struct hwtstamp_config *config = &priv->tstamp_config;
842 
843 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
844 		return -EOPNOTSUPP;
845 
846 	return copy_to_user(ifr->ifr_data, config,
847 			    sizeof(*config)) ? -EFAULT : 0;
848 }
849 
850 /**
851  * stmmac_init_ptp - init PTP
852  * @priv: driver private structure
853  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
854  * This is done by looking at the HW cap. register.
855  * This function also registers the ptp driver.
856  */
857 static int stmmac_init_ptp(struct stmmac_priv *priv)
858 {
859 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
860 
861 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
862 		return -EOPNOTSUPP;
863 
864 	priv->adv_ts = 0;
865 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
866 	if (xmac && priv->dma_cap.atime_stamp)
867 		priv->adv_ts = 1;
868 	/* Dwmac 3.x core with extend_desc can support adv_ts */
869 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
870 		priv->adv_ts = 1;
871 
872 	if (priv->dma_cap.time_stamp)
873 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
874 
875 	if (priv->adv_ts)
876 		netdev_info(priv->dev,
877 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
878 
879 	priv->hwts_tx_en = 0;
880 	priv->hwts_rx_en = 0;
881 
882 	stmmac_ptp_register(priv);
883 
884 	return 0;
885 }
886 
887 static void stmmac_release_ptp(struct stmmac_priv *priv)
888 {
889 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
890 	stmmac_ptp_unregister(priv);
891 }
892 
893 /**
894  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
895  *  @priv: driver private structure
896  *  @duplex: duplex passed to the next function
897  *  Description: It is used for configuring the flow control in all queues
898  */
899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
900 {
901 	u32 tx_cnt = priv->plat->tx_queues_to_use;
902 
903 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
904 			priv->pause, tx_cnt);
905 }
906 
907 static void stmmac_validate(struct phylink_config *config,
908 			    unsigned long *supported,
909 			    struct phylink_link_state *state)
910 {
911 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
912 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
913 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
914 	int tx_cnt = priv->plat->tx_queues_to_use;
915 	int max_speed = priv->plat->max_speed;
916 
917 	phylink_set(mac_supported, 10baseT_Half);
918 	phylink_set(mac_supported, 10baseT_Full);
919 	phylink_set(mac_supported, 100baseT_Half);
920 	phylink_set(mac_supported, 100baseT_Full);
921 	phylink_set(mac_supported, 1000baseT_Half);
922 	phylink_set(mac_supported, 1000baseT_Full);
923 	phylink_set(mac_supported, 1000baseKX_Full);
924 
925 	phylink_set(mac_supported, Autoneg);
926 	phylink_set(mac_supported, Pause);
927 	phylink_set(mac_supported, Asym_Pause);
928 	phylink_set_port_modes(mac_supported);
929 
930 	/* Cut down 1G if asked to */
931 	if ((max_speed > 0) && (max_speed < 1000)) {
932 		phylink_set(mask, 1000baseT_Full);
933 		phylink_set(mask, 1000baseX_Full);
934 	} else if (priv->plat->has_xgmac) {
935 		if (!max_speed || (max_speed >= 2500)) {
936 			phylink_set(mac_supported, 2500baseT_Full);
937 			phylink_set(mac_supported, 2500baseX_Full);
938 		}
939 		if (!max_speed || (max_speed >= 5000)) {
940 			phylink_set(mac_supported, 5000baseT_Full);
941 		}
942 		if (!max_speed || (max_speed >= 10000)) {
943 			phylink_set(mac_supported, 10000baseSR_Full);
944 			phylink_set(mac_supported, 10000baseLR_Full);
945 			phylink_set(mac_supported, 10000baseER_Full);
946 			phylink_set(mac_supported, 10000baseLRM_Full);
947 			phylink_set(mac_supported, 10000baseT_Full);
948 			phylink_set(mac_supported, 10000baseKX4_Full);
949 			phylink_set(mac_supported, 10000baseKR_Full);
950 		}
951 		if (!max_speed || (max_speed >= 25000)) {
952 			phylink_set(mac_supported, 25000baseCR_Full);
953 			phylink_set(mac_supported, 25000baseKR_Full);
954 			phylink_set(mac_supported, 25000baseSR_Full);
955 		}
956 		if (!max_speed || (max_speed >= 40000)) {
957 			phylink_set(mac_supported, 40000baseKR4_Full);
958 			phylink_set(mac_supported, 40000baseCR4_Full);
959 			phylink_set(mac_supported, 40000baseSR4_Full);
960 			phylink_set(mac_supported, 40000baseLR4_Full);
961 		}
962 		if (!max_speed || (max_speed >= 50000)) {
963 			phylink_set(mac_supported, 50000baseCR2_Full);
964 			phylink_set(mac_supported, 50000baseKR2_Full);
965 			phylink_set(mac_supported, 50000baseSR2_Full);
966 			phylink_set(mac_supported, 50000baseKR_Full);
967 			phylink_set(mac_supported, 50000baseSR_Full);
968 			phylink_set(mac_supported, 50000baseCR_Full);
969 			phylink_set(mac_supported, 50000baseLR_ER_FR_Full);
970 			phylink_set(mac_supported, 50000baseDR_Full);
971 		}
972 		if (!max_speed || (max_speed >= 100000)) {
973 			phylink_set(mac_supported, 100000baseKR4_Full);
974 			phylink_set(mac_supported, 100000baseSR4_Full);
975 			phylink_set(mac_supported, 100000baseCR4_Full);
976 			phylink_set(mac_supported, 100000baseLR4_ER4_Full);
977 			phylink_set(mac_supported, 100000baseKR2_Full);
978 			phylink_set(mac_supported, 100000baseSR2_Full);
979 			phylink_set(mac_supported, 100000baseCR2_Full);
980 			phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full);
981 			phylink_set(mac_supported, 100000baseDR2_Full);
982 		}
983 	}
984 
985 	/* Half-Duplex can only work with single queue */
986 	if (tx_cnt > 1) {
987 		phylink_set(mask, 10baseT_Half);
988 		phylink_set(mask, 100baseT_Half);
989 		phylink_set(mask, 1000baseT_Half);
990 	}
991 
992 	linkmode_and(supported, supported, mac_supported);
993 	linkmode_andnot(supported, supported, mask);
994 
995 	linkmode_and(state->advertising, state->advertising, mac_supported);
996 	linkmode_andnot(state->advertising, state->advertising, mask);
997 
998 	/* If PCS is supported, check which modes it supports. */
999 	stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state);
1000 }
1001 
1002 static void stmmac_mac_pcs_get_state(struct phylink_config *config,
1003 				     struct phylink_link_state *state)
1004 {
1005 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1006 
1007 	state->link = 0;
1008 	stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state);
1009 }
1010 
1011 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
1012 			      const struct phylink_link_state *state)
1013 {
1014 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1015 
1016 	stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state);
1017 }
1018 
1019 static void stmmac_mac_an_restart(struct phylink_config *config)
1020 {
1021 	/* Not Supported */
1022 }
1023 
1024 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
1025 {
1026 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
1027 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
1028 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
1029 	bool *hs_enable = &fpe_cfg->hs_enable;
1030 
1031 	if (is_up && *hs_enable) {
1032 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
1033 	} else {
1034 		*lo_state = FPE_EVENT_UNKNOWN;
1035 		*lp_state = FPE_EVENT_UNKNOWN;
1036 	}
1037 }
1038 
1039 static void stmmac_mac_link_down(struct phylink_config *config,
1040 				 unsigned int mode, phy_interface_t interface)
1041 {
1042 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1043 
1044 	stmmac_mac_set(priv, priv->ioaddr, false);
1045 	priv->eee_active = false;
1046 	priv->tx_lpi_enabled = false;
1047 	stmmac_eee_init(priv);
1048 	stmmac_set_eee_pls(priv, priv->hw, false);
1049 
1050 	if (priv->dma_cap.fpesel)
1051 		stmmac_fpe_link_state_handle(priv, false);
1052 }
1053 
1054 static void stmmac_mac_link_up(struct phylink_config *config,
1055 			       struct phy_device *phy,
1056 			       unsigned int mode, phy_interface_t interface,
1057 			       int speed, int duplex,
1058 			       bool tx_pause, bool rx_pause)
1059 {
1060 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
1061 	u32 ctrl;
1062 
1063 	stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface);
1064 
1065 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1066 	ctrl &= ~priv->hw->link.speed_mask;
1067 
1068 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1069 		switch (speed) {
1070 		case SPEED_10000:
1071 			ctrl |= priv->hw->link.xgmii.speed10000;
1072 			break;
1073 		case SPEED_5000:
1074 			ctrl |= priv->hw->link.xgmii.speed5000;
1075 			break;
1076 		case SPEED_2500:
1077 			ctrl |= priv->hw->link.xgmii.speed2500;
1078 			break;
1079 		default:
1080 			return;
1081 		}
1082 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1083 		switch (speed) {
1084 		case SPEED_100000:
1085 			ctrl |= priv->hw->link.xlgmii.speed100000;
1086 			break;
1087 		case SPEED_50000:
1088 			ctrl |= priv->hw->link.xlgmii.speed50000;
1089 			break;
1090 		case SPEED_40000:
1091 			ctrl |= priv->hw->link.xlgmii.speed40000;
1092 			break;
1093 		case SPEED_25000:
1094 			ctrl |= priv->hw->link.xlgmii.speed25000;
1095 			break;
1096 		case SPEED_10000:
1097 			ctrl |= priv->hw->link.xgmii.speed10000;
1098 			break;
1099 		case SPEED_2500:
1100 			ctrl |= priv->hw->link.speed2500;
1101 			break;
1102 		case SPEED_1000:
1103 			ctrl |= priv->hw->link.speed1000;
1104 			break;
1105 		default:
1106 			return;
1107 		}
1108 	} else {
1109 		switch (speed) {
1110 		case SPEED_2500:
1111 			ctrl |= priv->hw->link.speed2500;
1112 			break;
1113 		case SPEED_1000:
1114 			ctrl |= priv->hw->link.speed1000;
1115 			break;
1116 		case SPEED_100:
1117 			ctrl |= priv->hw->link.speed100;
1118 			break;
1119 		case SPEED_10:
1120 			ctrl |= priv->hw->link.speed10;
1121 			break;
1122 		default:
1123 			return;
1124 		}
1125 	}
1126 
1127 	priv->speed = speed;
1128 
1129 	if (priv->plat->fix_mac_speed)
1130 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1131 
1132 	if (!duplex)
1133 		ctrl &= ~priv->hw->link.duplex;
1134 	else
1135 		ctrl |= priv->hw->link.duplex;
1136 
1137 	/* Flow Control operation */
1138 	if (tx_pause && rx_pause)
1139 		stmmac_mac_flow_ctrl(priv, duplex);
1140 
1141 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1142 
1143 	stmmac_mac_set(priv, priv->ioaddr, true);
1144 	if (phy && priv->dma_cap.eee) {
1145 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1146 		priv->eee_enabled = stmmac_eee_init(priv);
1147 		priv->tx_lpi_enabled = priv->eee_enabled;
1148 		stmmac_set_eee_pls(priv, priv->hw, true);
1149 	}
1150 
1151 	if (priv->dma_cap.fpesel)
1152 		stmmac_fpe_link_state_handle(priv, true);
1153 }
1154 
1155 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1156 	.validate = stmmac_validate,
1157 	.mac_pcs_get_state = stmmac_mac_pcs_get_state,
1158 	.mac_config = stmmac_mac_config,
1159 	.mac_an_restart = stmmac_mac_an_restart,
1160 	.mac_link_down = stmmac_mac_link_down,
1161 	.mac_link_up = stmmac_mac_link_up,
1162 };
1163 
1164 /**
1165  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1166  * @priv: driver private structure
1167  * Description: this is to verify if the HW supports the PCS.
1168  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1169  * configured for the TBI, RTBI, or SGMII PHY interface.
1170  */
1171 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1172 {
1173 	int interface = priv->plat->interface;
1174 
1175 	if (priv->dma_cap.pcs) {
1176 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1177 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1178 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1179 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1180 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1181 			priv->hw->pcs = STMMAC_PCS_RGMII;
1182 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1183 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1184 			priv->hw->pcs = STMMAC_PCS_SGMII;
1185 		}
1186 	}
1187 }
1188 
1189 /**
1190  * stmmac_init_phy - PHY initialization
1191  * @dev: net device structure
1192  * Description: it initializes the driver's PHY state, and attaches the PHY
1193  * to the mac driver.
1194  *  Return value:
1195  *  0 on success
1196  */
1197 static int stmmac_init_phy(struct net_device *dev)
1198 {
1199 	struct stmmac_priv *priv = netdev_priv(dev);
1200 	struct device_node *node;
1201 	int ret;
1202 
1203 	node = priv->plat->phylink_node;
1204 
1205 	if (node)
1206 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1207 
1208 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1209 	 * manually parse it
1210 	 */
1211 	if (!node || ret) {
1212 		int addr = priv->plat->phy_addr;
1213 		struct phy_device *phydev;
1214 
1215 		phydev = mdiobus_get_phy(priv->mii, addr);
1216 		if (!phydev) {
1217 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1218 			return -ENODEV;
1219 		}
1220 
1221 		ret = phylink_connect_phy(priv->phylink, phydev);
1222 	}
1223 
1224 	if (!priv->plat->pmt) {
1225 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1226 
1227 		phylink_ethtool_get_wol(priv->phylink, &wol);
1228 		device_set_wakeup_capable(priv->device, !!wol.supported);
1229 	}
1230 
1231 	return ret;
1232 }
1233 
1234 static int stmmac_phy_setup(struct stmmac_priv *priv)
1235 {
1236 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1237 	int mode = priv->plat->phy_interface;
1238 	struct phylink *phylink;
1239 
1240 	priv->phylink_config.dev = &priv->dev->dev;
1241 	priv->phylink_config.type = PHYLINK_NETDEV;
1242 	priv->phylink_config.pcs_poll = true;
1243 	if (priv->plat->mdio_bus_data)
1244 		priv->phylink_config.ovr_an_inband =
1245 			priv->plat->mdio_bus_data->xpcs_an_inband;
1246 
1247 	if (!fwnode)
1248 		fwnode = dev_fwnode(priv->device);
1249 
1250 	phylink = phylink_create(&priv->phylink_config, fwnode,
1251 				 mode, &stmmac_phylink_mac_ops);
1252 	if (IS_ERR(phylink))
1253 		return PTR_ERR(phylink);
1254 
1255 	priv->phylink = phylink;
1256 	return 0;
1257 }
1258 
1259 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1260 {
1261 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1262 	unsigned int desc_size;
1263 	void *head_rx;
1264 	u32 queue;
1265 
1266 	/* Display RX rings */
1267 	for (queue = 0; queue < rx_cnt; queue++) {
1268 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1269 
1270 		pr_info("\tRX Queue %u rings\n", queue);
1271 
1272 		if (priv->extend_desc) {
1273 			head_rx = (void *)rx_q->dma_erx;
1274 			desc_size = sizeof(struct dma_extended_desc);
1275 		} else {
1276 			head_rx = (void *)rx_q->dma_rx;
1277 			desc_size = sizeof(struct dma_desc);
1278 		}
1279 
1280 		/* Display RX ring */
1281 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1282 				    rx_q->dma_rx_phy, desc_size);
1283 	}
1284 }
1285 
1286 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1287 {
1288 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1289 	unsigned int desc_size;
1290 	void *head_tx;
1291 	u32 queue;
1292 
1293 	/* Display TX rings */
1294 	for (queue = 0; queue < tx_cnt; queue++) {
1295 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1296 
1297 		pr_info("\tTX Queue %d rings\n", queue);
1298 
1299 		if (priv->extend_desc) {
1300 			head_tx = (void *)tx_q->dma_etx;
1301 			desc_size = sizeof(struct dma_extended_desc);
1302 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1303 			head_tx = (void *)tx_q->dma_entx;
1304 			desc_size = sizeof(struct dma_edesc);
1305 		} else {
1306 			head_tx = (void *)tx_q->dma_tx;
1307 			desc_size = sizeof(struct dma_desc);
1308 		}
1309 
1310 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1311 				    tx_q->dma_tx_phy, desc_size);
1312 	}
1313 }
1314 
1315 static void stmmac_display_rings(struct stmmac_priv *priv)
1316 {
1317 	/* Display RX ring */
1318 	stmmac_display_rx_rings(priv);
1319 
1320 	/* Display TX ring */
1321 	stmmac_display_tx_rings(priv);
1322 }
1323 
1324 static int stmmac_set_bfsize(int mtu, int bufsize)
1325 {
1326 	int ret = bufsize;
1327 
1328 	if (mtu >= BUF_SIZE_8KiB)
1329 		ret = BUF_SIZE_16KiB;
1330 	else if (mtu >= BUF_SIZE_4KiB)
1331 		ret = BUF_SIZE_8KiB;
1332 	else if (mtu >= BUF_SIZE_2KiB)
1333 		ret = BUF_SIZE_4KiB;
1334 	else if (mtu > DEFAULT_BUFSIZE)
1335 		ret = BUF_SIZE_2KiB;
1336 	else
1337 		ret = DEFAULT_BUFSIZE;
1338 
1339 	return ret;
1340 }
1341 
1342 /**
1343  * stmmac_clear_rx_descriptors - clear RX descriptors
1344  * @priv: driver private structure
1345  * @queue: RX queue index
1346  * Description: this function is called to clear the RX descriptors
1347  * in case of both basic and extended descriptors are used.
1348  */
1349 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1350 {
1351 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1352 	int i;
1353 
1354 	/* Clear the RX descriptors */
1355 	for (i = 0; i < priv->dma_rx_size; i++)
1356 		if (priv->extend_desc)
1357 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1358 					priv->use_riwt, priv->mode,
1359 					(i == priv->dma_rx_size - 1),
1360 					priv->dma_buf_sz);
1361 		else
1362 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1363 					priv->use_riwt, priv->mode,
1364 					(i == priv->dma_rx_size - 1),
1365 					priv->dma_buf_sz);
1366 }
1367 
1368 /**
1369  * stmmac_clear_tx_descriptors - clear tx descriptors
1370  * @priv: driver private structure
1371  * @queue: TX queue index.
1372  * Description: this function is called to clear the TX descriptors
1373  * in case of both basic and extended descriptors are used.
1374  */
1375 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1376 {
1377 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1378 	int i;
1379 
1380 	/* Clear the TX descriptors */
1381 	for (i = 0; i < priv->dma_tx_size; i++) {
1382 		int last = (i == (priv->dma_tx_size - 1));
1383 		struct dma_desc *p;
1384 
1385 		if (priv->extend_desc)
1386 			p = &tx_q->dma_etx[i].basic;
1387 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1388 			p = &tx_q->dma_entx[i].basic;
1389 		else
1390 			p = &tx_q->dma_tx[i];
1391 
1392 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1393 	}
1394 }
1395 
1396 /**
1397  * stmmac_clear_descriptors - clear descriptors
1398  * @priv: driver private structure
1399  * Description: this function is called to clear the TX and RX descriptors
1400  * in case of both basic and extended descriptors are used.
1401  */
1402 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1403 {
1404 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1405 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1406 	u32 queue;
1407 
1408 	/* Clear the RX descriptors */
1409 	for (queue = 0; queue < rx_queue_cnt; queue++)
1410 		stmmac_clear_rx_descriptors(priv, queue);
1411 
1412 	/* Clear the TX descriptors */
1413 	for (queue = 0; queue < tx_queue_cnt; queue++)
1414 		stmmac_clear_tx_descriptors(priv, queue);
1415 }
1416 
1417 /**
1418  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1419  * @priv: driver private structure
1420  * @p: descriptor pointer
1421  * @i: descriptor index
1422  * @flags: gfp flag
1423  * @queue: RX queue index
1424  * Description: this function is called to allocate a receive buffer, perform
1425  * the DMA mapping and init the descriptor.
1426  */
1427 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1428 				  int i, gfp_t flags, u32 queue)
1429 {
1430 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1431 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1432 
1433 	if (!buf->page) {
1434 		buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1435 		if (!buf->page)
1436 			return -ENOMEM;
1437 		buf->page_offset = stmmac_rx_offset(priv);
1438 	}
1439 
1440 	if (priv->sph && !buf->sec_page) {
1441 		buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
1442 		if (!buf->sec_page)
1443 			return -ENOMEM;
1444 
1445 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1446 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1447 	} else {
1448 		buf->sec_page = NULL;
1449 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1450 	}
1451 
1452 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1453 
1454 	stmmac_set_desc_addr(priv, p, buf->addr);
1455 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1456 		stmmac_init_desc3(priv, p);
1457 
1458 	return 0;
1459 }
1460 
1461 /**
1462  * stmmac_free_rx_buffer - free RX dma buffers
1463  * @priv: private structure
1464  * @queue: RX queue index
1465  * @i: buffer index.
1466  */
1467 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1468 {
1469 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1470 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1471 
1472 	if (buf->page)
1473 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1474 	buf->page = NULL;
1475 
1476 	if (buf->sec_page)
1477 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1478 	buf->sec_page = NULL;
1479 }
1480 
1481 /**
1482  * stmmac_free_tx_buffer - free RX dma buffers
1483  * @priv: private structure
1484  * @queue: RX queue index
1485  * @i: buffer index.
1486  */
1487 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1488 {
1489 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1490 
1491 	if (tx_q->tx_skbuff_dma[i].buf &&
1492 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1493 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1494 			dma_unmap_page(priv->device,
1495 				       tx_q->tx_skbuff_dma[i].buf,
1496 				       tx_q->tx_skbuff_dma[i].len,
1497 				       DMA_TO_DEVICE);
1498 		else
1499 			dma_unmap_single(priv->device,
1500 					 tx_q->tx_skbuff_dma[i].buf,
1501 					 tx_q->tx_skbuff_dma[i].len,
1502 					 DMA_TO_DEVICE);
1503 	}
1504 
1505 	if (tx_q->xdpf[i] &&
1506 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1507 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1508 		xdp_return_frame(tx_q->xdpf[i]);
1509 		tx_q->xdpf[i] = NULL;
1510 	}
1511 
1512 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1513 		tx_q->xsk_frames_done++;
1514 
1515 	if (tx_q->tx_skbuff[i] &&
1516 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1517 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1518 		tx_q->tx_skbuff[i] = NULL;
1519 	}
1520 
1521 	tx_q->tx_skbuff_dma[i].buf = 0;
1522 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1523 }
1524 
1525 /**
1526  * dma_free_rx_skbufs - free RX dma buffers
1527  * @priv: private structure
1528  * @queue: RX queue index
1529  */
1530 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1531 {
1532 	int i;
1533 
1534 	for (i = 0; i < priv->dma_rx_size; i++)
1535 		stmmac_free_rx_buffer(priv, queue, i);
1536 }
1537 
1538 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1539 				   gfp_t flags)
1540 {
1541 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1542 	int i;
1543 
1544 	for (i = 0; i < priv->dma_rx_size; i++) {
1545 		struct dma_desc *p;
1546 		int ret;
1547 
1548 		if (priv->extend_desc)
1549 			p = &((rx_q->dma_erx + i)->basic);
1550 		else
1551 			p = rx_q->dma_rx + i;
1552 
1553 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1554 					     queue);
1555 		if (ret)
1556 			return ret;
1557 
1558 		rx_q->buf_alloc_num++;
1559 	}
1560 
1561 	return 0;
1562 }
1563 
1564 /**
1565  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1566  * @priv: private structure
1567  * @queue: RX queue index
1568  */
1569 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1570 {
1571 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1572 	int i;
1573 
1574 	for (i = 0; i < priv->dma_rx_size; i++) {
1575 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1576 
1577 		if (!buf->xdp)
1578 			continue;
1579 
1580 		xsk_buff_free(buf->xdp);
1581 		buf->xdp = NULL;
1582 	}
1583 }
1584 
1585 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1586 {
1587 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1588 	int i;
1589 
1590 	for (i = 0; i < priv->dma_rx_size; i++) {
1591 		struct stmmac_rx_buffer *buf;
1592 		dma_addr_t dma_addr;
1593 		struct dma_desc *p;
1594 
1595 		if (priv->extend_desc)
1596 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1597 		else
1598 			p = rx_q->dma_rx + i;
1599 
1600 		buf = &rx_q->buf_pool[i];
1601 
1602 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1603 		if (!buf->xdp)
1604 			return -ENOMEM;
1605 
1606 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1607 		stmmac_set_desc_addr(priv, p, dma_addr);
1608 		rx_q->buf_alloc_num++;
1609 	}
1610 
1611 	return 0;
1612 }
1613 
1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1615 {
1616 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1617 		return NULL;
1618 
1619 	return xsk_get_pool_from_qid(priv->dev, queue);
1620 }
1621 
1622 /**
1623  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1624  * @priv: driver private structure
1625  * @queue: RX queue index
1626  * @flags: gfp flag.
1627  * Description: this function initializes the DMA RX descriptors
1628  * and allocates the socket buffers. It supports the chained and ring
1629  * modes.
1630  */
1631 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1632 {
1633 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1634 	int ret;
1635 
1636 	netif_dbg(priv, probe, priv->dev,
1637 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1638 		  (u32)rx_q->dma_rx_phy);
1639 
1640 	stmmac_clear_rx_descriptors(priv, queue);
1641 
1642 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1643 
1644 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1645 
1646 	if (rx_q->xsk_pool) {
1647 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1648 						   MEM_TYPE_XSK_BUFF_POOL,
1649 						   NULL));
1650 		netdev_info(priv->dev,
1651 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1652 			    rx_q->queue_index);
1653 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1654 	} else {
1655 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1656 						   MEM_TYPE_PAGE_POOL,
1657 						   rx_q->page_pool));
1658 		netdev_info(priv->dev,
1659 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1660 			    rx_q->queue_index);
1661 	}
1662 
1663 	if (rx_q->xsk_pool) {
1664 		/* RX XDP ZC buffer pool may not be populated, e.g.
1665 		 * xdpsock TX-only.
1666 		 */
1667 		stmmac_alloc_rx_buffers_zc(priv, queue);
1668 	} else {
1669 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1670 		if (ret < 0)
1671 			return -ENOMEM;
1672 	}
1673 
1674 	rx_q->cur_rx = 0;
1675 	rx_q->dirty_rx = 0;
1676 
1677 	/* Setup the chained descriptor addresses */
1678 	if (priv->mode == STMMAC_CHAIN_MODE) {
1679 		if (priv->extend_desc)
1680 			stmmac_mode_init(priv, rx_q->dma_erx,
1681 					 rx_q->dma_rx_phy,
1682 					 priv->dma_rx_size, 1);
1683 		else
1684 			stmmac_mode_init(priv, rx_q->dma_rx,
1685 					 rx_q->dma_rx_phy,
1686 					 priv->dma_rx_size, 0);
1687 	}
1688 
1689 	return 0;
1690 }
1691 
1692 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1693 {
1694 	struct stmmac_priv *priv = netdev_priv(dev);
1695 	u32 rx_count = priv->plat->rx_queues_to_use;
1696 	u32 queue;
1697 	int ret;
1698 
1699 	/* RX INITIALIZATION */
1700 	netif_dbg(priv, probe, priv->dev,
1701 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1702 
1703 	for (queue = 0; queue < rx_count; queue++) {
1704 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1705 		if (ret)
1706 			goto err_init_rx_buffers;
1707 	}
1708 
1709 	return 0;
1710 
1711 err_init_rx_buffers:
1712 	while (queue >= 0) {
1713 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1714 
1715 		if (rx_q->xsk_pool)
1716 			dma_free_rx_xskbufs(priv, queue);
1717 		else
1718 			dma_free_rx_skbufs(priv, queue);
1719 
1720 		rx_q->buf_alloc_num = 0;
1721 		rx_q->xsk_pool = NULL;
1722 
1723 		if (queue == 0)
1724 			break;
1725 
1726 		queue--;
1727 	}
1728 
1729 	return ret;
1730 }
1731 
1732 /**
1733  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1734  * @priv: driver private structure
1735  * @queue : TX queue index
1736  * Description: this function initializes the DMA TX descriptors
1737  * and allocates the socket buffers. It supports the chained and ring
1738  * modes.
1739  */
1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1741 {
1742 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1743 	int i;
1744 
1745 	netif_dbg(priv, probe, priv->dev,
1746 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1747 		  (u32)tx_q->dma_tx_phy);
1748 
1749 	/* Setup the chained descriptor addresses */
1750 	if (priv->mode == STMMAC_CHAIN_MODE) {
1751 		if (priv->extend_desc)
1752 			stmmac_mode_init(priv, tx_q->dma_etx,
1753 					 tx_q->dma_tx_phy,
1754 					 priv->dma_tx_size, 1);
1755 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1756 			stmmac_mode_init(priv, tx_q->dma_tx,
1757 					 tx_q->dma_tx_phy,
1758 					 priv->dma_tx_size, 0);
1759 	}
1760 
1761 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1762 
1763 	for (i = 0; i < priv->dma_tx_size; i++) {
1764 		struct dma_desc *p;
1765 
1766 		if (priv->extend_desc)
1767 			p = &((tx_q->dma_etx + i)->basic);
1768 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1769 			p = &((tx_q->dma_entx + i)->basic);
1770 		else
1771 			p = tx_q->dma_tx + i;
1772 
1773 		stmmac_clear_desc(priv, p);
1774 
1775 		tx_q->tx_skbuff_dma[i].buf = 0;
1776 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1777 		tx_q->tx_skbuff_dma[i].len = 0;
1778 		tx_q->tx_skbuff_dma[i].last_segment = false;
1779 		tx_q->tx_skbuff[i] = NULL;
1780 	}
1781 
1782 	tx_q->dirty_tx = 0;
1783 	tx_q->cur_tx = 0;
1784 	tx_q->mss = 0;
1785 
1786 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1787 
1788 	return 0;
1789 }
1790 
1791 static int init_dma_tx_desc_rings(struct net_device *dev)
1792 {
1793 	struct stmmac_priv *priv = netdev_priv(dev);
1794 	u32 tx_queue_cnt;
1795 	u32 queue;
1796 
1797 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1798 
1799 	for (queue = 0; queue < tx_queue_cnt; queue++)
1800 		__init_dma_tx_desc_rings(priv, queue);
1801 
1802 	return 0;
1803 }
1804 
1805 /**
1806  * init_dma_desc_rings - init the RX/TX descriptor rings
1807  * @dev: net device structure
1808  * @flags: gfp flag.
1809  * Description: this function initializes the DMA RX/TX descriptors
1810  * and allocates the socket buffers. It supports the chained and ring
1811  * modes.
1812  */
1813 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1814 {
1815 	struct stmmac_priv *priv = netdev_priv(dev);
1816 	int ret;
1817 
1818 	ret = init_dma_rx_desc_rings(dev, flags);
1819 	if (ret)
1820 		return ret;
1821 
1822 	ret = init_dma_tx_desc_rings(dev);
1823 
1824 	stmmac_clear_descriptors(priv);
1825 
1826 	if (netif_msg_hw(priv))
1827 		stmmac_display_rings(priv);
1828 
1829 	return ret;
1830 }
1831 
1832 /**
1833  * dma_free_tx_skbufs - free TX dma buffers
1834  * @priv: private structure
1835  * @queue: TX queue index
1836  */
1837 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1838 {
1839 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1840 	int i;
1841 
1842 	tx_q->xsk_frames_done = 0;
1843 
1844 	for (i = 0; i < priv->dma_tx_size; i++)
1845 		stmmac_free_tx_buffer(priv, queue, i);
1846 
1847 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1848 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1849 		tx_q->xsk_frames_done = 0;
1850 		tx_q->xsk_pool = NULL;
1851 	}
1852 }
1853 
1854 /**
1855  * stmmac_free_tx_skbufs - free TX skb buffers
1856  * @priv: private structure
1857  */
1858 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1859 {
1860 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1861 	u32 queue;
1862 
1863 	for (queue = 0; queue < tx_queue_cnt; queue++)
1864 		dma_free_tx_skbufs(priv, queue);
1865 }
1866 
1867 /**
1868  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1869  * @priv: private structure
1870  * @queue: RX queue index
1871  */
1872 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1873 {
1874 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1875 
1876 	/* Release the DMA RX socket buffers */
1877 	if (rx_q->xsk_pool)
1878 		dma_free_rx_xskbufs(priv, queue);
1879 	else
1880 		dma_free_rx_skbufs(priv, queue);
1881 
1882 	rx_q->buf_alloc_num = 0;
1883 	rx_q->xsk_pool = NULL;
1884 
1885 	/* Free DMA regions of consistent memory previously allocated */
1886 	if (!priv->extend_desc)
1887 		dma_free_coherent(priv->device, priv->dma_rx_size *
1888 				  sizeof(struct dma_desc),
1889 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1890 	else
1891 		dma_free_coherent(priv->device, priv->dma_rx_size *
1892 				  sizeof(struct dma_extended_desc),
1893 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1894 
1895 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1896 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1897 
1898 	kfree(rx_q->buf_pool);
1899 	if (rx_q->page_pool)
1900 		page_pool_destroy(rx_q->page_pool);
1901 }
1902 
1903 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1904 {
1905 	u32 rx_count = priv->plat->rx_queues_to_use;
1906 	u32 queue;
1907 
1908 	/* Free RX queue resources */
1909 	for (queue = 0; queue < rx_count; queue++)
1910 		__free_dma_rx_desc_resources(priv, queue);
1911 }
1912 
1913 /**
1914  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1915  * @priv: private structure
1916  * @queue: TX queue index
1917  */
1918 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1919 {
1920 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1921 	size_t size;
1922 	void *addr;
1923 
1924 	/* Release the DMA TX socket buffers */
1925 	dma_free_tx_skbufs(priv, queue);
1926 
1927 	if (priv->extend_desc) {
1928 		size = sizeof(struct dma_extended_desc);
1929 		addr = tx_q->dma_etx;
1930 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1931 		size = sizeof(struct dma_edesc);
1932 		addr = tx_q->dma_entx;
1933 	} else {
1934 		size = sizeof(struct dma_desc);
1935 		addr = tx_q->dma_tx;
1936 	}
1937 
1938 	size *= priv->dma_tx_size;
1939 
1940 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1941 
1942 	kfree(tx_q->tx_skbuff_dma);
1943 	kfree(tx_q->tx_skbuff);
1944 }
1945 
1946 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1947 {
1948 	u32 tx_count = priv->plat->tx_queues_to_use;
1949 	u32 queue;
1950 
1951 	/* Free TX queue resources */
1952 	for (queue = 0; queue < tx_count; queue++)
1953 		__free_dma_tx_desc_resources(priv, queue);
1954 }
1955 
1956 /**
1957  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1958  * @priv: private structure
1959  * @queue: RX queue index
1960  * Description: according to which descriptor can be used (extend or basic)
1961  * this function allocates the resources for TX and RX paths. In case of
1962  * reception, for example, it pre-allocated the RX socket buffer in order to
1963  * allow zero-copy mechanism.
1964  */
1965 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1966 {
1967 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1968 	struct stmmac_channel *ch = &priv->channel[queue];
1969 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1970 	struct page_pool_params pp_params = { 0 };
1971 	unsigned int num_pages;
1972 	unsigned int napi_id;
1973 	int ret;
1974 
1975 	rx_q->queue_index = queue;
1976 	rx_q->priv_data = priv;
1977 
1978 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1979 	pp_params.pool_size = priv->dma_rx_size;
1980 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1981 	pp_params.order = ilog2(num_pages);
1982 	pp_params.nid = dev_to_node(priv->device);
1983 	pp_params.dev = priv->device;
1984 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1985 	pp_params.offset = stmmac_rx_offset(priv);
1986 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1987 
1988 	rx_q->page_pool = page_pool_create(&pp_params);
1989 	if (IS_ERR(rx_q->page_pool)) {
1990 		ret = PTR_ERR(rx_q->page_pool);
1991 		rx_q->page_pool = NULL;
1992 		return ret;
1993 	}
1994 
1995 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1996 				 sizeof(*rx_q->buf_pool),
1997 				 GFP_KERNEL);
1998 	if (!rx_q->buf_pool)
1999 		return -ENOMEM;
2000 
2001 	if (priv->extend_desc) {
2002 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2003 						   priv->dma_rx_size *
2004 						   sizeof(struct dma_extended_desc),
2005 						   &rx_q->dma_rx_phy,
2006 						   GFP_KERNEL);
2007 		if (!rx_q->dma_erx)
2008 			return -ENOMEM;
2009 
2010 	} else {
2011 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2012 						  priv->dma_rx_size *
2013 						  sizeof(struct dma_desc),
2014 						  &rx_q->dma_rx_phy,
2015 						  GFP_KERNEL);
2016 		if (!rx_q->dma_rx)
2017 			return -ENOMEM;
2018 	}
2019 
2020 	if (stmmac_xdp_is_enabled(priv) &&
2021 	    test_bit(queue, priv->af_xdp_zc_qps))
2022 		napi_id = ch->rxtx_napi.napi_id;
2023 	else
2024 		napi_id = ch->rx_napi.napi_id;
2025 
2026 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2027 			       rx_q->queue_index,
2028 			       napi_id);
2029 	if (ret) {
2030 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2031 		return -EINVAL;
2032 	}
2033 
2034 	return 0;
2035 }
2036 
2037 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2038 {
2039 	u32 rx_count = priv->plat->rx_queues_to_use;
2040 	u32 queue;
2041 	int ret;
2042 
2043 	/* RX queues buffers and DMA */
2044 	for (queue = 0; queue < rx_count; queue++) {
2045 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2046 		if (ret)
2047 			goto err_dma;
2048 	}
2049 
2050 	return 0;
2051 
2052 err_dma:
2053 	free_dma_rx_desc_resources(priv);
2054 
2055 	return ret;
2056 }
2057 
2058 /**
2059  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2060  * @priv: private structure
2061  * @queue: TX queue index
2062  * Description: according to which descriptor can be used (extend or basic)
2063  * this function allocates the resources for TX and RX paths. In case of
2064  * reception, for example, it pre-allocated the RX socket buffer in order to
2065  * allow zero-copy mechanism.
2066  */
2067 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2068 {
2069 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2070 	size_t size;
2071 	void *addr;
2072 
2073 	tx_q->queue_index = queue;
2074 	tx_q->priv_data = priv;
2075 
2076 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2077 				      sizeof(*tx_q->tx_skbuff_dma),
2078 				      GFP_KERNEL);
2079 	if (!tx_q->tx_skbuff_dma)
2080 		return -ENOMEM;
2081 
2082 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2083 				  sizeof(struct sk_buff *),
2084 				  GFP_KERNEL);
2085 	if (!tx_q->tx_skbuff)
2086 		return -ENOMEM;
2087 
2088 	if (priv->extend_desc)
2089 		size = sizeof(struct dma_extended_desc);
2090 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2091 		size = sizeof(struct dma_edesc);
2092 	else
2093 		size = sizeof(struct dma_desc);
2094 
2095 	size *= priv->dma_tx_size;
2096 
2097 	addr = dma_alloc_coherent(priv->device, size,
2098 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2099 	if (!addr)
2100 		return -ENOMEM;
2101 
2102 	if (priv->extend_desc)
2103 		tx_q->dma_etx = addr;
2104 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2105 		tx_q->dma_entx = addr;
2106 	else
2107 		tx_q->dma_tx = addr;
2108 
2109 	return 0;
2110 }
2111 
2112 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2113 {
2114 	u32 tx_count = priv->plat->tx_queues_to_use;
2115 	u32 queue;
2116 	int ret;
2117 
2118 	/* TX queues buffers and DMA */
2119 	for (queue = 0; queue < tx_count; queue++) {
2120 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2121 		if (ret)
2122 			goto err_dma;
2123 	}
2124 
2125 	return 0;
2126 
2127 err_dma:
2128 	free_dma_tx_desc_resources(priv);
2129 	return ret;
2130 }
2131 
2132 /**
2133  * alloc_dma_desc_resources - alloc TX/RX resources.
2134  * @priv: private structure
2135  * Description: according to which descriptor can be used (extend or basic)
2136  * this function allocates the resources for TX and RX paths. In case of
2137  * reception, for example, it pre-allocated the RX socket buffer in order to
2138  * allow zero-copy mechanism.
2139  */
2140 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2141 {
2142 	/* RX Allocation */
2143 	int ret = alloc_dma_rx_desc_resources(priv);
2144 
2145 	if (ret)
2146 		return ret;
2147 
2148 	ret = alloc_dma_tx_desc_resources(priv);
2149 
2150 	return ret;
2151 }
2152 
2153 /**
2154  * free_dma_desc_resources - free dma desc resources
2155  * @priv: private structure
2156  */
2157 static void free_dma_desc_resources(struct stmmac_priv *priv)
2158 {
2159 	/* Release the DMA TX socket buffers */
2160 	free_dma_tx_desc_resources(priv);
2161 
2162 	/* Release the DMA RX socket buffers later
2163 	 * to ensure all pending XDP_TX buffers are returned.
2164 	 */
2165 	free_dma_rx_desc_resources(priv);
2166 }
2167 
2168 /**
2169  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2170  *  @priv: driver private structure
2171  *  Description: It is used for enabling the rx queues in the MAC
2172  */
2173 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2174 {
2175 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2176 	int queue;
2177 	u8 mode;
2178 
2179 	for (queue = 0; queue < rx_queues_count; queue++) {
2180 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2181 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2182 	}
2183 }
2184 
2185 /**
2186  * stmmac_start_rx_dma - start RX DMA channel
2187  * @priv: driver private structure
2188  * @chan: RX channel index
2189  * Description:
2190  * This starts a RX DMA channel
2191  */
2192 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2193 {
2194 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2195 	stmmac_start_rx(priv, priv->ioaddr, chan);
2196 }
2197 
2198 /**
2199  * stmmac_start_tx_dma - start TX DMA channel
2200  * @priv: driver private structure
2201  * @chan: TX channel index
2202  * Description:
2203  * This starts a TX DMA channel
2204  */
2205 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2206 {
2207 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2208 	stmmac_start_tx(priv, priv->ioaddr, chan);
2209 }
2210 
2211 /**
2212  * stmmac_stop_rx_dma - stop RX DMA channel
2213  * @priv: driver private structure
2214  * @chan: RX channel index
2215  * Description:
2216  * This stops a RX DMA channel
2217  */
2218 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2219 {
2220 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2221 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2222 }
2223 
2224 /**
2225  * stmmac_stop_tx_dma - stop TX DMA channel
2226  * @priv: driver private structure
2227  * @chan: TX channel index
2228  * Description:
2229  * This stops a TX DMA channel
2230  */
2231 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2232 {
2233 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2234 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2235 }
2236 
2237 /**
2238  * stmmac_start_all_dma - start all RX and TX DMA channels
2239  * @priv: driver private structure
2240  * Description:
2241  * This starts all the RX and TX DMA channels
2242  */
2243 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2244 {
2245 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2246 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2247 	u32 chan = 0;
2248 
2249 	for (chan = 0; chan < rx_channels_count; chan++)
2250 		stmmac_start_rx_dma(priv, chan);
2251 
2252 	for (chan = 0; chan < tx_channels_count; chan++)
2253 		stmmac_start_tx_dma(priv, chan);
2254 }
2255 
2256 /**
2257  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2258  * @priv: driver private structure
2259  * Description:
2260  * This stops the RX and TX DMA channels
2261  */
2262 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2263 {
2264 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2265 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2266 	u32 chan = 0;
2267 
2268 	for (chan = 0; chan < rx_channels_count; chan++)
2269 		stmmac_stop_rx_dma(priv, chan);
2270 
2271 	for (chan = 0; chan < tx_channels_count; chan++)
2272 		stmmac_stop_tx_dma(priv, chan);
2273 }
2274 
2275 /**
2276  *  stmmac_dma_operation_mode - HW DMA operation mode
2277  *  @priv: driver private structure
2278  *  Description: it is used for configuring the DMA operation mode register in
2279  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2280  */
2281 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2282 {
2283 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2284 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2285 	int rxfifosz = priv->plat->rx_fifo_size;
2286 	int txfifosz = priv->plat->tx_fifo_size;
2287 	u32 txmode = 0;
2288 	u32 rxmode = 0;
2289 	u32 chan = 0;
2290 	u8 qmode = 0;
2291 
2292 	if (rxfifosz == 0)
2293 		rxfifosz = priv->dma_cap.rx_fifo_size;
2294 	if (txfifosz == 0)
2295 		txfifosz = priv->dma_cap.tx_fifo_size;
2296 
2297 	/* Adjust for real per queue fifo size */
2298 	rxfifosz /= rx_channels_count;
2299 	txfifosz /= tx_channels_count;
2300 
2301 	if (priv->plat->force_thresh_dma_mode) {
2302 		txmode = tc;
2303 		rxmode = tc;
2304 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2305 		/*
2306 		 * In case of GMAC, SF mode can be enabled
2307 		 * to perform the TX COE in HW. This depends on:
2308 		 * 1) TX COE if actually supported
2309 		 * 2) There is no bugged Jumbo frame support
2310 		 *    that needs to not insert csum in the TDES.
2311 		 */
2312 		txmode = SF_DMA_MODE;
2313 		rxmode = SF_DMA_MODE;
2314 		priv->xstats.threshold = SF_DMA_MODE;
2315 	} else {
2316 		txmode = tc;
2317 		rxmode = SF_DMA_MODE;
2318 	}
2319 
2320 	/* configure all channels */
2321 	for (chan = 0; chan < rx_channels_count; chan++) {
2322 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2323 		u32 buf_size;
2324 
2325 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2326 
2327 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2328 				rxfifosz, qmode);
2329 
2330 		if (rx_q->xsk_pool) {
2331 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2332 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2333 					      buf_size,
2334 					      chan);
2335 		} else {
2336 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2337 					      priv->dma_buf_sz,
2338 					      chan);
2339 		}
2340 	}
2341 
2342 	for (chan = 0; chan < tx_channels_count; chan++) {
2343 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2344 
2345 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2346 				txfifosz, qmode);
2347 	}
2348 }
2349 
2350 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2351 {
2352 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2353 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2354 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2355 	unsigned int entry = tx_q->cur_tx;
2356 	struct dma_desc *tx_desc = NULL;
2357 	struct xdp_desc xdp_desc;
2358 	bool work_done = true;
2359 
2360 	/* Avoids TX time-out as we are sharing with slow path */
2361 	nq->trans_start = jiffies;
2362 
2363 	budget = min(budget, stmmac_tx_avail(priv, queue));
2364 
2365 	while (budget-- > 0) {
2366 		dma_addr_t dma_addr;
2367 		bool set_ic;
2368 
2369 		/* We are sharing with slow path and stop XSK TX desc submission when
2370 		 * available TX ring is less than threshold.
2371 		 */
2372 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2373 		    !netif_carrier_ok(priv->dev)) {
2374 			work_done = false;
2375 			break;
2376 		}
2377 
2378 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2379 			break;
2380 
2381 		if (likely(priv->extend_desc))
2382 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2383 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2384 			tx_desc = &tx_q->dma_entx[entry].basic;
2385 		else
2386 			tx_desc = tx_q->dma_tx + entry;
2387 
2388 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2389 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2390 
2391 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2392 
2393 		/* To return XDP buffer to XSK pool, we simple call
2394 		 * xsk_tx_completed(), so we don't need to fill up
2395 		 * 'buf' and 'xdpf'.
2396 		 */
2397 		tx_q->tx_skbuff_dma[entry].buf = 0;
2398 		tx_q->xdpf[entry] = NULL;
2399 
2400 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2401 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2402 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2403 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2404 
2405 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2406 
2407 		tx_q->tx_count_frames++;
2408 
2409 		if (!priv->tx_coal_frames[queue])
2410 			set_ic = false;
2411 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2412 			set_ic = true;
2413 		else
2414 			set_ic = false;
2415 
2416 		if (set_ic) {
2417 			tx_q->tx_count_frames = 0;
2418 			stmmac_set_tx_ic(priv, tx_desc);
2419 			priv->xstats.tx_set_ic_bit++;
2420 		}
2421 
2422 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2423 				       true, priv->mode, true, true,
2424 				       xdp_desc.len);
2425 
2426 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2427 
2428 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2429 		entry = tx_q->cur_tx;
2430 	}
2431 
2432 	if (tx_desc) {
2433 		stmmac_flush_tx_descriptors(priv, queue);
2434 		xsk_tx_release(pool);
2435 	}
2436 
2437 	/* Return true if all of the 3 conditions are met
2438 	 *  a) TX Budget is still available
2439 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2440 	 *     pending XSK TX for transmission)
2441 	 */
2442 	return !!budget && work_done;
2443 }
2444 
2445 /**
2446  * stmmac_tx_clean - to manage the transmission completion
2447  * @priv: driver private structure
2448  * @budget: napi budget limiting this functions packet handling
2449  * @queue: TX queue index
2450  * Description: it reclaims the transmit resources after transmission completes.
2451  */
2452 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2453 {
2454 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2455 	unsigned int bytes_compl = 0, pkts_compl = 0;
2456 	unsigned int entry, xmits = 0, count = 0;
2457 
2458 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2459 
2460 	priv->xstats.tx_clean++;
2461 
2462 	tx_q->xsk_frames_done = 0;
2463 
2464 	entry = tx_q->dirty_tx;
2465 
2466 	/* Try to clean all TX complete frame in 1 shot */
2467 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2468 		struct xdp_frame *xdpf;
2469 		struct sk_buff *skb;
2470 		struct dma_desc *p;
2471 		int status;
2472 
2473 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2474 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2475 			xdpf = tx_q->xdpf[entry];
2476 			skb = NULL;
2477 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2478 			xdpf = NULL;
2479 			skb = tx_q->tx_skbuff[entry];
2480 		} else {
2481 			xdpf = NULL;
2482 			skb = NULL;
2483 		}
2484 
2485 		if (priv->extend_desc)
2486 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2487 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2488 			p = &tx_q->dma_entx[entry].basic;
2489 		else
2490 			p = tx_q->dma_tx + entry;
2491 
2492 		status = stmmac_tx_status(priv, &priv->dev->stats,
2493 				&priv->xstats, p, priv->ioaddr);
2494 		/* Check if the descriptor is owned by the DMA */
2495 		if (unlikely(status & tx_dma_own))
2496 			break;
2497 
2498 		count++;
2499 
2500 		/* Make sure descriptor fields are read after reading
2501 		 * the own bit.
2502 		 */
2503 		dma_rmb();
2504 
2505 		/* Just consider the last segment and ...*/
2506 		if (likely(!(status & tx_not_ls))) {
2507 			/* ... verify the status error condition */
2508 			if (unlikely(status & tx_err)) {
2509 				priv->dev->stats.tx_errors++;
2510 			} else {
2511 				priv->dev->stats.tx_packets++;
2512 				priv->xstats.tx_pkt_n++;
2513 			}
2514 			if (skb)
2515 				stmmac_get_tx_hwtstamp(priv, p, skb);
2516 		}
2517 
2518 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2519 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2520 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2521 				dma_unmap_page(priv->device,
2522 					       tx_q->tx_skbuff_dma[entry].buf,
2523 					       tx_q->tx_skbuff_dma[entry].len,
2524 					       DMA_TO_DEVICE);
2525 			else
2526 				dma_unmap_single(priv->device,
2527 						 tx_q->tx_skbuff_dma[entry].buf,
2528 						 tx_q->tx_skbuff_dma[entry].len,
2529 						 DMA_TO_DEVICE);
2530 			tx_q->tx_skbuff_dma[entry].buf = 0;
2531 			tx_q->tx_skbuff_dma[entry].len = 0;
2532 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2533 		}
2534 
2535 		stmmac_clean_desc3(priv, tx_q, p);
2536 
2537 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2538 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2539 
2540 		if (xdpf &&
2541 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2542 			xdp_return_frame_rx_napi(xdpf);
2543 			tx_q->xdpf[entry] = NULL;
2544 		}
2545 
2546 		if (xdpf &&
2547 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2548 			xdp_return_frame(xdpf);
2549 			tx_q->xdpf[entry] = NULL;
2550 		}
2551 
2552 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2553 			tx_q->xsk_frames_done++;
2554 
2555 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2556 			if (likely(skb)) {
2557 				pkts_compl++;
2558 				bytes_compl += skb->len;
2559 				dev_consume_skb_any(skb);
2560 				tx_q->tx_skbuff[entry] = NULL;
2561 			}
2562 		}
2563 
2564 		stmmac_release_tx_desc(priv, p, priv->mode);
2565 
2566 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2567 	}
2568 	tx_q->dirty_tx = entry;
2569 
2570 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2571 				  pkts_compl, bytes_compl);
2572 
2573 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2574 								queue))) &&
2575 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2576 
2577 		netif_dbg(priv, tx_done, priv->dev,
2578 			  "%s: restart transmit\n", __func__);
2579 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2580 	}
2581 
2582 	if (tx_q->xsk_pool) {
2583 		bool work_done;
2584 
2585 		if (tx_q->xsk_frames_done)
2586 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2587 
2588 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2589 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2590 
2591 		/* For XSK TX, we try to send as many as possible.
2592 		 * If XSK work done (XSK TX desc empty and budget still
2593 		 * available), return "budget - 1" to reenable TX IRQ.
2594 		 * Else, return "budget" to make NAPI continue polling.
2595 		 */
2596 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2597 					       STMMAC_XSK_TX_BUDGET_MAX);
2598 		if (work_done)
2599 			xmits = budget - 1;
2600 		else
2601 			xmits = budget;
2602 	}
2603 
2604 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2605 	    priv->eee_sw_timer_en) {
2606 		stmmac_enable_eee_mode(priv);
2607 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2608 	}
2609 
2610 	/* We still have pending packets, let's call for a new scheduling */
2611 	if (tx_q->dirty_tx != tx_q->cur_tx)
2612 		hrtimer_start(&tx_q->txtimer,
2613 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2614 			      HRTIMER_MODE_REL);
2615 
2616 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2617 
2618 	/* Combine decisions from TX clean and XSK TX */
2619 	return max(count, xmits);
2620 }
2621 
2622 /**
2623  * stmmac_tx_err - to manage the tx error
2624  * @priv: driver private structure
2625  * @chan: channel index
2626  * Description: it cleans the descriptors and restarts the transmission
2627  * in case of transmission errors.
2628  */
2629 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2630 {
2631 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2632 
2633 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2634 
2635 	stmmac_stop_tx_dma(priv, chan);
2636 	dma_free_tx_skbufs(priv, chan);
2637 	stmmac_clear_tx_descriptors(priv, chan);
2638 	tx_q->dirty_tx = 0;
2639 	tx_q->cur_tx = 0;
2640 	tx_q->mss = 0;
2641 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2642 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2643 			    tx_q->dma_tx_phy, chan);
2644 	stmmac_start_tx_dma(priv, chan);
2645 
2646 	priv->dev->stats.tx_errors++;
2647 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2648 }
2649 
2650 /**
2651  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2652  *  @priv: driver private structure
2653  *  @txmode: TX operating mode
2654  *  @rxmode: RX operating mode
2655  *  @chan: channel index
2656  *  Description: it is used for configuring of the DMA operation mode in
2657  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2658  *  mode.
2659  */
2660 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2661 					  u32 rxmode, u32 chan)
2662 {
2663 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2664 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2665 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2666 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2667 	int rxfifosz = priv->plat->rx_fifo_size;
2668 	int txfifosz = priv->plat->tx_fifo_size;
2669 
2670 	if (rxfifosz == 0)
2671 		rxfifosz = priv->dma_cap.rx_fifo_size;
2672 	if (txfifosz == 0)
2673 		txfifosz = priv->dma_cap.tx_fifo_size;
2674 
2675 	/* Adjust for real per queue fifo size */
2676 	rxfifosz /= rx_channels_count;
2677 	txfifosz /= tx_channels_count;
2678 
2679 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2680 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2681 }
2682 
2683 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2684 {
2685 	int ret;
2686 
2687 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2688 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2689 	if (ret && (ret != -EINVAL)) {
2690 		stmmac_global_err(priv);
2691 		return true;
2692 	}
2693 
2694 	return false;
2695 }
2696 
2697 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2698 {
2699 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2700 						 &priv->xstats, chan, dir);
2701 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2702 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2703 	struct stmmac_channel *ch = &priv->channel[chan];
2704 	struct napi_struct *rx_napi;
2705 	struct napi_struct *tx_napi;
2706 	unsigned long flags;
2707 
2708 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2709 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2710 
2711 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2712 		if (napi_schedule_prep(rx_napi)) {
2713 			spin_lock_irqsave(&ch->lock, flags);
2714 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2715 			spin_unlock_irqrestore(&ch->lock, flags);
2716 			__napi_schedule(rx_napi);
2717 		}
2718 	}
2719 
2720 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2721 		if (napi_schedule_prep(tx_napi)) {
2722 			spin_lock_irqsave(&ch->lock, flags);
2723 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2724 			spin_unlock_irqrestore(&ch->lock, flags);
2725 			__napi_schedule(tx_napi);
2726 		}
2727 	}
2728 
2729 	return status;
2730 }
2731 
2732 /**
2733  * stmmac_dma_interrupt - DMA ISR
2734  * @priv: driver private structure
2735  * Description: this is the DMA ISR. It is called by the main ISR.
2736  * It calls the dwmac dma routine and schedule poll method in case of some
2737  * work can be done.
2738  */
2739 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2740 {
2741 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2742 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2743 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2744 				tx_channel_count : rx_channel_count;
2745 	u32 chan;
2746 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2747 
2748 	/* Make sure we never check beyond our status buffer. */
2749 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2750 		channels_to_check = ARRAY_SIZE(status);
2751 
2752 	for (chan = 0; chan < channels_to_check; chan++)
2753 		status[chan] = stmmac_napi_check(priv, chan,
2754 						 DMA_DIR_RXTX);
2755 
2756 	for (chan = 0; chan < tx_channel_count; chan++) {
2757 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2758 			/* Try to bump up the dma threshold on this failure */
2759 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2760 			    (tc <= 256)) {
2761 				tc += 64;
2762 				if (priv->plat->force_thresh_dma_mode)
2763 					stmmac_set_dma_operation_mode(priv,
2764 								      tc,
2765 								      tc,
2766 								      chan);
2767 				else
2768 					stmmac_set_dma_operation_mode(priv,
2769 								    tc,
2770 								    SF_DMA_MODE,
2771 								    chan);
2772 				priv->xstats.threshold = tc;
2773 			}
2774 		} else if (unlikely(status[chan] == tx_hard_error)) {
2775 			stmmac_tx_err(priv, chan);
2776 		}
2777 	}
2778 }
2779 
2780 /**
2781  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2782  * @priv: driver private structure
2783  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2784  */
2785 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2786 {
2787 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2788 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2789 
2790 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2791 
2792 	if (priv->dma_cap.rmon) {
2793 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2794 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2795 	} else
2796 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2797 }
2798 
2799 /**
2800  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2801  * @priv: driver private structure
2802  * Description:
2803  *  new GMAC chip generations have a new register to indicate the
2804  *  presence of the optional feature/functions.
2805  *  This can be also used to override the value passed through the
2806  *  platform and necessary for old MAC10/100 and GMAC chips.
2807  */
2808 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2809 {
2810 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2811 }
2812 
2813 /**
2814  * stmmac_check_ether_addr - check if the MAC addr is valid
2815  * @priv: driver private structure
2816  * Description:
2817  * it is to verify if the MAC address is valid, in case of failures it
2818  * generates a random MAC address
2819  */
2820 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2821 {
2822 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2823 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2824 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2825 			eth_hw_addr_random(priv->dev);
2826 		dev_info(priv->device, "device MAC address %pM\n",
2827 			 priv->dev->dev_addr);
2828 	}
2829 }
2830 
2831 /**
2832  * stmmac_init_dma_engine - DMA init.
2833  * @priv: driver private structure
2834  * Description:
2835  * It inits the DMA invoking the specific MAC/GMAC callback.
2836  * Some DMA parameters can be passed from the platform;
2837  * in case of these are not passed a default is kept for the MAC or GMAC.
2838  */
2839 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2840 {
2841 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2842 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2843 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2844 	struct stmmac_rx_queue *rx_q;
2845 	struct stmmac_tx_queue *tx_q;
2846 	u32 chan = 0;
2847 	int atds = 0;
2848 	int ret = 0;
2849 
2850 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2851 		dev_err(priv->device, "Invalid DMA configuration\n");
2852 		return -EINVAL;
2853 	}
2854 
2855 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2856 		atds = 1;
2857 
2858 	ret = stmmac_reset(priv, priv->ioaddr);
2859 	if (ret) {
2860 		dev_err(priv->device, "Failed to reset the dma\n");
2861 		return ret;
2862 	}
2863 
2864 	/* DMA Configuration */
2865 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2866 
2867 	if (priv->plat->axi)
2868 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2869 
2870 	/* DMA CSR Channel configuration */
2871 	for (chan = 0; chan < dma_csr_ch; chan++)
2872 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2873 
2874 	/* DMA RX Channel Configuration */
2875 	for (chan = 0; chan < rx_channels_count; chan++) {
2876 		rx_q = &priv->rx_queue[chan];
2877 
2878 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2879 				    rx_q->dma_rx_phy, chan);
2880 
2881 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2882 				     (rx_q->buf_alloc_num *
2883 				      sizeof(struct dma_desc));
2884 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2885 				       rx_q->rx_tail_addr, chan);
2886 	}
2887 
2888 	/* DMA TX Channel Configuration */
2889 	for (chan = 0; chan < tx_channels_count; chan++) {
2890 		tx_q = &priv->tx_queue[chan];
2891 
2892 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2893 				    tx_q->dma_tx_phy, chan);
2894 
2895 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2896 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2897 				       tx_q->tx_tail_addr, chan);
2898 	}
2899 
2900 	return ret;
2901 }
2902 
2903 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2904 {
2905 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2906 
2907 	hrtimer_start(&tx_q->txtimer,
2908 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2909 		      HRTIMER_MODE_REL);
2910 }
2911 
2912 /**
2913  * stmmac_tx_timer - mitigation sw timer for tx.
2914  * @t: data pointer
2915  * Description:
2916  * This is the timer handler to directly invoke the stmmac_tx_clean.
2917  */
2918 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2919 {
2920 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2921 	struct stmmac_priv *priv = tx_q->priv_data;
2922 	struct stmmac_channel *ch;
2923 	struct napi_struct *napi;
2924 
2925 	ch = &priv->channel[tx_q->queue_index];
2926 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2927 
2928 	if (likely(napi_schedule_prep(napi))) {
2929 		unsigned long flags;
2930 
2931 		spin_lock_irqsave(&ch->lock, flags);
2932 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2933 		spin_unlock_irqrestore(&ch->lock, flags);
2934 		__napi_schedule(napi);
2935 	}
2936 
2937 	return HRTIMER_NORESTART;
2938 }
2939 
2940 /**
2941  * stmmac_init_coalesce - init mitigation options.
2942  * @priv: driver private structure
2943  * Description:
2944  * This inits the coalesce parameters: i.e. timer rate,
2945  * timer handler and default threshold used for enabling the
2946  * interrupt on completion bit.
2947  */
2948 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2949 {
2950 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2951 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2952 	u32 chan;
2953 
2954 	for (chan = 0; chan < tx_channel_count; chan++) {
2955 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2956 
2957 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2958 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2959 
2960 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2961 		tx_q->txtimer.function = stmmac_tx_timer;
2962 	}
2963 
2964 	for (chan = 0; chan < rx_channel_count; chan++)
2965 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2966 }
2967 
2968 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2969 {
2970 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2971 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2972 	u32 chan;
2973 
2974 	/* set TX ring length */
2975 	for (chan = 0; chan < tx_channels_count; chan++)
2976 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2977 				       (priv->dma_tx_size - 1), chan);
2978 
2979 	/* set RX ring length */
2980 	for (chan = 0; chan < rx_channels_count; chan++)
2981 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2982 				       (priv->dma_rx_size - 1), chan);
2983 }
2984 
2985 /**
2986  *  stmmac_set_tx_queue_weight - Set TX queue weight
2987  *  @priv: driver private structure
2988  *  Description: It is used for setting TX queues weight
2989  */
2990 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2991 {
2992 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2993 	u32 weight;
2994 	u32 queue;
2995 
2996 	for (queue = 0; queue < tx_queues_count; queue++) {
2997 		weight = priv->plat->tx_queues_cfg[queue].weight;
2998 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2999 	}
3000 }
3001 
3002 /**
3003  *  stmmac_configure_cbs - Configure CBS in TX queue
3004  *  @priv: driver private structure
3005  *  Description: It is used for configuring CBS in AVB TX queues
3006  */
3007 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3008 {
3009 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3010 	u32 mode_to_use;
3011 	u32 queue;
3012 
3013 	/* queue 0 is reserved for legacy traffic */
3014 	for (queue = 1; queue < tx_queues_count; queue++) {
3015 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3016 		if (mode_to_use == MTL_QUEUE_DCB)
3017 			continue;
3018 
3019 		stmmac_config_cbs(priv, priv->hw,
3020 				priv->plat->tx_queues_cfg[queue].send_slope,
3021 				priv->plat->tx_queues_cfg[queue].idle_slope,
3022 				priv->plat->tx_queues_cfg[queue].high_credit,
3023 				priv->plat->tx_queues_cfg[queue].low_credit,
3024 				queue);
3025 	}
3026 }
3027 
3028 /**
3029  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3030  *  @priv: driver private structure
3031  *  Description: It is used for mapping RX queues to RX dma channels
3032  */
3033 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3034 {
3035 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3036 	u32 queue;
3037 	u32 chan;
3038 
3039 	for (queue = 0; queue < rx_queues_count; queue++) {
3040 		chan = priv->plat->rx_queues_cfg[queue].chan;
3041 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3042 	}
3043 }
3044 
3045 /**
3046  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3047  *  @priv: driver private structure
3048  *  Description: It is used for configuring the RX Queue Priority
3049  */
3050 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3051 {
3052 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3053 	u32 queue;
3054 	u32 prio;
3055 
3056 	for (queue = 0; queue < rx_queues_count; queue++) {
3057 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3058 			continue;
3059 
3060 		prio = priv->plat->rx_queues_cfg[queue].prio;
3061 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3062 	}
3063 }
3064 
3065 /**
3066  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3067  *  @priv: driver private structure
3068  *  Description: It is used for configuring the TX Queue Priority
3069  */
3070 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3071 {
3072 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3073 	u32 queue;
3074 	u32 prio;
3075 
3076 	for (queue = 0; queue < tx_queues_count; queue++) {
3077 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3078 			continue;
3079 
3080 		prio = priv->plat->tx_queues_cfg[queue].prio;
3081 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3082 	}
3083 }
3084 
3085 /**
3086  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3087  *  @priv: driver private structure
3088  *  Description: It is used for configuring the RX queue routing
3089  */
3090 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3091 {
3092 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3093 	u32 queue;
3094 	u8 packet;
3095 
3096 	for (queue = 0; queue < rx_queues_count; queue++) {
3097 		/* no specific packet type routing specified for the queue */
3098 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3099 			continue;
3100 
3101 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3102 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3103 	}
3104 }
3105 
3106 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3107 {
3108 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3109 		priv->rss.enable = false;
3110 		return;
3111 	}
3112 
3113 	if (priv->dev->features & NETIF_F_RXHASH)
3114 		priv->rss.enable = true;
3115 	else
3116 		priv->rss.enable = false;
3117 
3118 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3119 			     priv->plat->rx_queues_to_use);
3120 }
3121 
3122 /**
3123  *  stmmac_mtl_configuration - Configure MTL
3124  *  @priv: driver private structure
3125  *  Description: It is used for configurring MTL
3126  */
3127 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3128 {
3129 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3130 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3131 
3132 	if (tx_queues_count > 1)
3133 		stmmac_set_tx_queue_weight(priv);
3134 
3135 	/* Configure MTL RX algorithms */
3136 	if (rx_queues_count > 1)
3137 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3138 				priv->plat->rx_sched_algorithm);
3139 
3140 	/* Configure MTL TX algorithms */
3141 	if (tx_queues_count > 1)
3142 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3143 				priv->plat->tx_sched_algorithm);
3144 
3145 	/* Configure CBS in AVB TX queues */
3146 	if (tx_queues_count > 1)
3147 		stmmac_configure_cbs(priv);
3148 
3149 	/* Map RX MTL to DMA channels */
3150 	stmmac_rx_queue_dma_chan_map(priv);
3151 
3152 	/* Enable MAC RX Queues */
3153 	stmmac_mac_enable_rx_queues(priv);
3154 
3155 	/* Set RX priorities */
3156 	if (rx_queues_count > 1)
3157 		stmmac_mac_config_rx_queues_prio(priv);
3158 
3159 	/* Set TX priorities */
3160 	if (tx_queues_count > 1)
3161 		stmmac_mac_config_tx_queues_prio(priv);
3162 
3163 	/* Set RX routing */
3164 	if (rx_queues_count > 1)
3165 		stmmac_mac_config_rx_queues_routing(priv);
3166 
3167 	/* Receive Side Scaling */
3168 	if (rx_queues_count > 1)
3169 		stmmac_mac_config_rss(priv);
3170 }
3171 
3172 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3173 {
3174 	if (priv->dma_cap.asp) {
3175 		netdev_info(priv->dev, "Enabling Safety Features\n");
3176 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
3177 	} else {
3178 		netdev_info(priv->dev, "No Safety Features support found\n");
3179 	}
3180 }
3181 
3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3183 {
3184 	char *name;
3185 
3186 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3187 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3188 
3189 	name = priv->wq_name;
3190 	sprintf(name, "%s-fpe", priv->dev->name);
3191 
3192 	priv->fpe_wq = create_singlethread_workqueue(name);
3193 	if (!priv->fpe_wq) {
3194 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3195 
3196 		return -ENOMEM;
3197 	}
3198 	netdev_info(priv->dev, "FPE workqueue start");
3199 
3200 	return 0;
3201 }
3202 
3203 /**
3204  * stmmac_hw_setup - setup mac in a usable state.
3205  *  @dev : pointer to the device structure.
3206  *  @init_ptp: initialize PTP if set
3207  *  Description:
3208  *  this is the main function to setup the HW in a usable state because the
3209  *  dma engine is reset, the core registers are configured (e.g. AXI,
3210  *  Checksum features, timers). The DMA is ready to start receiving and
3211  *  transmitting.
3212  *  Return value:
3213  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3214  *  file on failure.
3215  */
3216 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
3217 {
3218 	struct stmmac_priv *priv = netdev_priv(dev);
3219 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3220 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3221 	bool sph_en;
3222 	u32 chan;
3223 	int ret;
3224 
3225 	/* DMA initialization and SW reset */
3226 	ret = stmmac_init_dma_engine(priv);
3227 	if (ret < 0) {
3228 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3229 			   __func__);
3230 		return ret;
3231 	}
3232 
3233 	/* Copy the MAC addr into the HW  */
3234 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3235 
3236 	/* PS and related bits will be programmed according to the speed */
3237 	if (priv->hw->pcs) {
3238 		int speed = priv->plat->mac_port_sel_speed;
3239 
3240 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3241 		    (speed == SPEED_1000)) {
3242 			priv->hw->ps = speed;
3243 		} else {
3244 			dev_warn(priv->device, "invalid port speed\n");
3245 			priv->hw->ps = 0;
3246 		}
3247 	}
3248 
3249 	/* Initialize the MAC Core */
3250 	stmmac_core_init(priv, priv->hw, dev);
3251 
3252 	/* Initialize MTL*/
3253 	stmmac_mtl_configuration(priv);
3254 
3255 	/* Initialize Safety Features */
3256 	stmmac_safety_feat_configuration(priv);
3257 
3258 	ret = stmmac_rx_ipc(priv, priv->hw);
3259 	if (!ret) {
3260 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3261 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3262 		priv->hw->rx_csum = 0;
3263 	}
3264 
3265 	/* Enable the MAC Rx/Tx */
3266 	stmmac_mac_set(priv, priv->ioaddr, true);
3267 
3268 	/* Set the HW DMA mode and the COE */
3269 	stmmac_dma_operation_mode(priv);
3270 
3271 	stmmac_mmc_setup(priv);
3272 
3273 	if (init_ptp) {
3274 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3275 		if (ret < 0)
3276 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
3277 
3278 		ret = stmmac_init_ptp(priv);
3279 		if (ret == -EOPNOTSUPP)
3280 			netdev_warn(priv->dev, "PTP not supported by HW\n");
3281 		else if (ret)
3282 			netdev_warn(priv->dev, "PTP init failed\n");
3283 	}
3284 
3285 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3286 
3287 	/* Convert the timer from msec to usec */
3288 	if (!priv->tx_lpi_timer)
3289 		priv->tx_lpi_timer = eee_timer * 1000;
3290 
3291 	if (priv->use_riwt) {
3292 		u32 queue;
3293 
3294 		for (queue = 0; queue < rx_cnt; queue++) {
3295 			if (!priv->rx_riwt[queue])
3296 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3297 
3298 			stmmac_rx_watchdog(priv, priv->ioaddr,
3299 					   priv->rx_riwt[queue], queue);
3300 		}
3301 	}
3302 
3303 	if (priv->hw->pcs)
3304 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3305 
3306 	/* set TX and RX rings length */
3307 	stmmac_set_rings_length(priv);
3308 
3309 	/* Enable TSO */
3310 	if (priv->tso) {
3311 		for (chan = 0; chan < tx_cnt; chan++) {
3312 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3313 
3314 			/* TSO and TBS cannot co-exist */
3315 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3316 				continue;
3317 
3318 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3319 		}
3320 	}
3321 
3322 	/* Enable Split Header */
3323 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3324 	for (chan = 0; chan < rx_cnt; chan++)
3325 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3326 
3327 
3328 	/* VLAN Tag Insertion */
3329 	if (priv->dma_cap.vlins)
3330 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3331 
3332 	/* TBS */
3333 	for (chan = 0; chan < tx_cnt; chan++) {
3334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3335 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3336 
3337 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3338 	}
3339 
3340 	/* Configure real RX and TX queues */
3341 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3342 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3343 
3344 	/* Start the ball rolling... */
3345 	stmmac_start_all_dma(priv);
3346 
3347 	if (priv->dma_cap.fpesel) {
3348 		stmmac_fpe_start_wq(priv);
3349 
3350 		if (priv->plat->fpe_cfg->enable)
3351 			stmmac_fpe_handshake(priv, true);
3352 	}
3353 
3354 	return 0;
3355 }
3356 
3357 static void stmmac_hw_teardown(struct net_device *dev)
3358 {
3359 	struct stmmac_priv *priv = netdev_priv(dev);
3360 
3361 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3362 }
3363 
3364 static void stmmac_free_irq(struct net_device *dev,
3365 			    enum request_irq_err irq_err, int irq_idx)
3366 {
3367 	struct stmmac_priv *priv = netdev_priv(dev);
3368 	int j;
3369 
3370 	switch (irq_err) {
3371 	case REQ_IRQ_ERR_ALL:
3372 		irq_idx = priv->plat->tx_queues_to_use;
3373 		fallthrough;
3374 	case REQ_IRQ_ERR_TX:
3375 		for (j = irq_idx - 1; j >= 0; j--) {
3376 			if (priv->tx_irq[j] > 0) {
3377 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3378 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3379 			}
3380 		}
3381 		irq_idx = priv->plat->rx_queues_to_use;
3382 		fallthrough;
3383 	case REQ_IRQ_ERR_RX:
3384 		for (j = irq_idx - 1; j >= 0; j--) {
3385 			if (priv->rx_irq[j] > 0) {
3386 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3387 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3388 			}
3389 		}
3390 
3391 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3392 			free_irq(priv->sfty_ue_irq, dev);
3393 		fallthrough;
3394 	case REQ_IRQ_ERR_SFTY_UE:
3395 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3396 			free_irq(priv->sfty_ce_irq, dev);
3397 		fallthrough;
3398 	case REQ_IRQ_ERR_SFTY_CE:
3399 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3400 			free_irq(priv->lpi_irq, dev);
3401 		fallthrough;
3402 	case REQ_IRQ_ERR_LPI:
3403 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3404 			free_irq(priv->wol_irq, dev);
3405 		fallthrough;
3406 	case REQ_IRQ_ERR_WOL:
3407 		free_irq(dev->irq, dev);
3408 		fallthrough;
3409 	case REQ_IRQ_ERR_MAC:
3410 	case REQ_IRQ_ERR_NO:
3411 		/* If MAC IRQ request error, no more IRQ to free */
3412 		break;
3413 	}
3414 }
3415 
3416 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3417 {
3418 	enum request_irq_err irq_err = REQ_IRQ_ERR_NO;
3419 	struct stmmac_priv *priv = netdev_priv(dev);
3420 	cpumask_t cpu_mask;
3421 	int irq_idx = 0;
3422 	char *int_name;
3423 	int ret;
3424 	int i;
3425 
3426 	/* For common interrupt */
3427 	int_name = priv->int_name_mac;
3428 	sprintf(int_name, "%s:%s", dev->name, "mac");
3429 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3430 			  0, int_name, dev);
3431 	if (unlikely(ret < 0)) {
3432 		netdev_err(priv->dev,
3433 			   "%s: alloc mac MSI %d (error: %d)\n",
3434 			   __func__, dev->irq, ret);
3435 		irq_err = REQ_IRQ_ERR_MAC;
3436 		goto irq_error;
3437 	}
3438 
3439 	/* Request the Wake IRQ in case of another line
3440 	 * is used for WoL
3441 	 */
3442 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3443 		int_name = priv->int_name_wol;
3444 		sprintf(int_name, "%s:%s", dev->name, "wol");
3445 		ret = request_irq(priv->wol_irq,
3446 				  stmmac_mac_interrupt,
3447 				  0, int_name, dev);
3448 		if (unlikely(ret < 0)) {
3449 			netdev_err(priv->dev,
3450 				   "%s: alloc wol MSI %d (error: %d)\n",
3451 				   __func__, priv->wol_irq, ret);
3452 			irq_err = REQ_IRQ_ERR_WOL;
3453 			goto irq_error;
3454 		}
3455 	}
3456 
3457 	/* Request the LPI IRQ in case of another line
3458 	 * is used for LPI
3459 	 */
3460 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3461 		int_name = priv->int_name_lpi;
3462 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3463 		ret = request_irq(priv->lpi_irq,
3464 				  stmmac_mac_interrupt,
3465 				  0, int_name, dev);
3466 		if (unlikely(ret < 0)) {
3467 			netdev_err(priv->dev,
3468 				   "%s: alloc lpi MSI %d (error: %d)\n",
3469 				   __func__, priv->lpi_irq, ret);
3470 			irq_err = REQ_IRQ_ERR_LPI;
3471 			goto irq_error;
3472 		}
3473 	}
3474 
3475 	/* Request the Safety Feature Correctible Error line in
3476 	 * case of another line is used
3477 	 */
3478 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3479 		int_name = priv->int_name_sfty_ce;
3480 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3481 		ret = request_irq(priv->sfty_ce_irq,
3482 				  stmmac_safety_interrupt,
3483 				  0, int_name, dev);
3484 		if (unlikely(ret < 0)) {
3485 			netdev_err(priv->dev,
3486 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3487 				   __func__, priv->sfty_ce_irq, ret);
3488 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3489 			goto irq_error;
3490 		}
3491 	}
3492 
3493 	/* Request the Safety Feature Uncorrectible Error line in
3494 	 * case of another line is used
3495 	 */
3496 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3497 		int_name = priv->int_name_sfty_ue;
3498 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3499 		ret = request_irq(priv->sfty_ue_irq,
3500 				  stmmac_safety_interrupt,
3501 				  0, int_name, dev);
3502 		if (unlikely(ret < 0)) {
3503 			netdev_err(priv->dev,
3504 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3505 				   __func__, priv->sfty_ue_irq, ret);
3506 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3507 			goto irq_error;
3508 		}
3509 	}
3510 
3511 	/* Request Rx MSI irq */
3512 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3513 		if (priv->rx_irq[i] == 0)
3514 			continue;
3515 
3516 		int_name = priv->int_name_rx_irq[i];
3517 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3518 		ret = request_irq(priv->rx_irq[i],
3519 				  stmmac_msi_intr_rx,
3520 				  0, int_name, &priv->rx_queue[i]);
3521 		if (unlikely(ret < 0)) {
3522 			netdev_err(priv->dev,
3523 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3524 				   __func__, i, priv->rx_irq[i], ret);
3525 			irq_err = REQ_IRQ_ERR_RX;
3526 			irq_idx = i;
3527 			goto irq_error;
3528 		}
3529 		cpumask_clear(&cpu_mask);
3530 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3531 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3532 	}
3533 
3534 	/* Request Tx MSI irq */
3535 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3536 		if (priv->tx_irq[i] == 0)
3537 			continue;
3538 
3539 		int_name = priv->int_name_tx_irq[i];
3540 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3541 		ret = request_irq(priv->tx_irq[i],
3542 				  stmmac_msi_intr_tx,
3543 				  0, int_name, &priv->tx_queue[i]);
3544 		if (unlikely(ret < 0)) {
3545 			netdev_err(priv->dev,
3546 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3547 				   __func__, i, priv->tx_irq[i], ret);
3548 			irq_err = REQ_IRQ_ERR_TX;
3549 			irq_idx = i;
3550 			goto irq_error;
3551 		}
3552 		cpumask_clear(&cpu_mask);
3553 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3554 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3555 	}
3556 
3557 	return 0;
3558 
3559 irq_error:
3560 	stmmac_free_irq(dev, irq_err, irq_idx);
3561 	return ret;
3562 }
3563 
3564 static int stmmac_request_irq_single(struct net_device *dev)
3565 {
3566 	enum request_irq_err irq_err = REQ_IRQ_ERR_NO;
3567 	struct stmmac_priv *priv = netdev_priv(dev);
3568 	int ret;
3569 
3570 	ret = request_irq(dev->irq, stmmac_interrupt,
3571 			  IRQF_SHARED, dev->name, dev);
3572 	if (unlikely(ret < 0)) {
3573 		netdev_err(priv->dev,
3574 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3575 			   __func__, dev->irq, ret);
3576 		irq_err = REQ_IRQ_ERR_MAC;
3577 		return ret;
3578 	}
3579 
3580 	/* Request the Wake IRQ in case of another line
3581 	 * is used for WoL
3582 	 */
3583 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3584 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3585 				  IRQF_SHARED, dev->name, dev);
3586 		if (unlikely(ret < 0)) {
3587 			netdev_err(priv->dev,
3588 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3589 				   __func__, priv->wol_irq, ret);
3590 			irq_err = REQ_IRQ_ERR_WOL;
3591 			return ret;
3592 		}
3593 	}
3594 
3595 	/* Request the IRQ lines */
3596 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3597 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3598 				  IRQF_SHARED, dev->name, dev);
3599 		if (unlikely(ret < 0)) {
3600 			netdev_err(priv->dev,
3601 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3602 				   __func__, priv->lpi_irq, ret);
3603 			irq_err = REQ_IRQ_ERR_LPI;
3604 			goto irq_error;
3605 		}
3606 	}
3607 
3608 	return 0;
3609 
3610 irq_error:
3611 	stmmac_free_irq(dev, irq_err, 0);
3612 	return ret;
3613 }
3614 
3615 static int stmmac_request_irq(struct net_device *dev)
3616 {
3617 	struct stmmac_priv *priv = netdev_priv(dev);
3618 	int ret;
3619 
3620 	/* Request the IRQ lines */
3621 	if (priv->plat->multi_msi_en)
3622 		ret = stmmac_request_irq_multi_msi(dev);
3623 	else
3624 		ret = stmmac_request_irq_single(dev);
3625 
3626 	return ret;
3627 }
3628 
3629 /**
3630  *  stmmac_open - open entry point of the driver
3631  *  @dev : pointer to the device structure.
3632  *  Description:
3633  *  This function is the open entry point of the driver.
3634  *  Return value:
3635  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3636  *  file on failure.
3637  */
3638 int stmmac_open(struct net_device *dev)
3639 {
3640 	struct stmmac_priv *priv = netdev_priv(dev);
3641 	int bfsize = 0;
3642 	u32 chan;
3643 	int ret;
3644 
3645 	ret = pm_runtime_get_sync(priv->device);
3646 	if (ret < 0) {
3647 		pm_runtime_put_noidle(priv->device);
3648 		return ret;
3649 	}
3650 
3651 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3652 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3653 	    priv->hw->xpcs_args.an_mode != DW_AN_C73) {
3654 		ret = stmmac_init_phy(dev);
3655 		if (ret) {
3656 			netdev_err(priv->dev,
3657 				   "%s: Cannot attach to PHY (error: %d)\n",
3658 				   __func__, ret);
3659 			goto init_phy_error;
3660 		}
3661 	}
3662 
3663 	/* Extra statistics */
3664 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3665 	priv->xstats.threshold = tc;
3666 
3667 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3668 	if (bfsize < 0)
3669 		bfsize = 0;
3670 
3671 	if (bfsize < BUF_SIZE_16KiB)
3672 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3673 
3674 	priv->dma_buf_sz = bfsize;
3675 	buf_sz = bfsize;
3676 
3677 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3678 
3679 	if (!priv->dma_tx_size)
3680 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3681 	if (!priv->dma_rx_size)
3682 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3683 
3684 	/* Earlier check for TBS */
3685 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3686 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3687 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3688 
3689 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3690 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3691 	}
3692 
3693 	ret = alloc_dma_desc_resources(priv);
3694 	if (ret < 0) {
3695 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3696 			   __func__);
3697 		goto dma_desc_error;
3698 	}
3699 
3700 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3701 	if (ret < 0) {
3702 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3703 			   __func__);
3704 		goto init_error;
3705 	}
3706 
3707 	ret = stmmac_hw_setup(dev, true);
3708 	if (ret < 0) {
3709 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3710 		goto init_error;
3711 	}
3712 
3713 	stmmac_init_coalesce(priv);
3714 
3715 	phylink_start(priv->phylink);
3716 	/* We may have called phylink_speed_down before */
3717 	phylink_speed_up(priv->phylink);
3718 
3719 	ret = stmmac_request_irq(dev);
3720 	if (ret)
3721 		goto irq_error;
3722 
3723 	stmmac_enable_all_queues(priv);
3724 	netif_tx_start_all_queues(priv->dev);
3725 
3726 	return 0;
3727 
3728 irq_error:
3729 	phylink_stop(priv->phylink);
3730 
3731 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3732 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3733 
3734 	stmmac_hw_teardown(dev);
3735 init_error:
3736 	free_dma_desc_resources(priv);
3737 dma_desc_error:
3738 	phylink_disconnect_phy(priv->phylink);
3739 init_phy_error:
3740 	pm_runtime_put(priv->device);
3741 	return ret;
3742 }
3743 
3744 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3745 {
3746 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3747 
3748 	if (priv->fpe_wq)
3749 		destroy_workqueue(priv->fpe_wq);
3750 
3751 	netdev_info(priv->dev, "FPE workqueue stop");
3752 }
3753 
3754 /**
3755  *  stmmac_release - close entry point of the driver
3756  *  @dev : device pointer.
3757  *  Description:
3758  *  This is the stop entry point of the driver.
3759  */
3760 int stmmac_release(struct net_device *dev)
3761 {
3762 	struct stmmac_priv *priv = netdev_priv(dev);
3763 	u32 chan;
3764 
3765 	if (device_may_wakeup(priv->device))
3766 		phylink_speed_down(priv->phylink, false);
3767 	/* Stop and disconnect the PHY */
3768 	phylink_stop(priv->phylink);
3769 	phylink_disconnect_phy(priv->phylink);
3770 
3771 	stmmac_disable_all_queues(priv);
3772 
3773 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3774 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3775 
3776 	/* Free the IRQ lines */
3777 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3778 
3779 	if (priv->eee_enabled) {
3780 		priv->tx_path_in_lpi_mode = false;
3781 		del_timer_sync(&priv->eee_ctrl_timer);
3782 	}
3783 
3784 	/* Stop TX/RX DMA and clear the descriptors */
3785 	stmmac_stop_all_dma(priv);
3786 
3787 	/* Release and free the Rx/Tx resources */
3788 	free_dma_desc_resources(priv);
3789 
3790 	/* Disable the MAC Rx/Tx */
3791 	stmmac_mac_set(priv, priv->ioaddr, false);
3792 
3793 	netif_carrier_off(dev);
3794 
3795 	stmmac_release_ptp(priv);
3796 
3797 	pm_runtime_put(priv->device);
3798 
3799 	if (priv->dma_cap.fpesel)
3800 		stmmac_fpe_stop_wq(priv);
3801 
3802 	return 0;
3803 }
3804 
3805 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3806 			       struct stmmac_tx_queue *tx_q)
3807 {
3808 	u16 tag = 0x0, inner_tag = 0x0;
3809 	u32 inner_type = 0x0;
3810 	struct dma_desc *p;
3811 
3812 	if (!priv->dma_cap.vlins)
3813 		return false;
3814 	if (!skb_vlan_tag_present(skb))
3815 		return false;
3816 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3817 		inner_tag = skb_vlan_tag_get(skb);
3818 		inner_type = STMMAC_VLAN_INSERT;
3819 	}
3820 
3821 	tag = skb_vlan_tag_get(skb);
3822 
3823 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3824 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3825 	else
3826 		p = &tx_q->dma_tx[tx_q->cur_tx];
3827 
3828 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3829 		return false;
3830 
3831 	stmmac_set_tx_owner(priv, p);
3832 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3833 	return true;
3834 }
3835 
3836 /**
3837  *  stmmac_tso_allocator - close entry point of the driver
3838  *  @priv: driver private structure
3839  *  @des: buffer start address
3840  *  @total_len: total length to fill in descriptors
3841  *  @last_segment: condition for the last descriptor
3842  *  @queue: TX queue index
3843  *  Description:
3844  *  This function fills descriptor and request new descriptors according to
3845  *  buffer length to fill
3846  */
3847 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3848 				 int total_len, bool last_segment, u32 queue)
3849 {
3850 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3851 	struct dma_desc *desc;
3852 	u32 buff_size;
3853 	int tmp_len;
3854 
3855 	tmp_len = total_len;
3856 
3857 	while (tmp_len > 0) {
3858 		dma_addr_t curr_addr;
3859 
3860 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3861 						priv->dma_tx_size);
3862 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3863 
3864 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3865 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3866 		else
3867 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3868 
3869 		curr_addr = des + (total_len - tmp_len);
3870 		if (priv->dma_cap.addr64 <= 32)
3871 			desc->des0 = cpu_to_le32(curr_addr);
3872 		else
3873 			stmmac_set_desc_addr(priv, desc, curr_addr);
3874 
3875 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3876 			    TSO_MAX_BUFF_SIZE : tmp_len;
3877 
3878 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3879 				0, 1,
3880 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3881 				0, 0);
3882 
3883 		tmp_len -= TSO_MAX_BUFF_SIZE;
3884 	}
3885 }
3886 
3887 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3888 {
3889 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3890 	int desc_size;
3891 
3892 	if (likely(priv->extend_desc))
3893 		desc_size = sizeof(struct dma_extended_desc);
3894 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3895 		desc_size = sizeof(struct dma_edesc);
3896 	else
3897 		desc_size = sizeof(struct dma_desc);
3898 
3899 	/* The own bit must be the latest setting done when prepare the
3900 	 * descriptor and then barrier is needed to make sure that
3901 	 * all is coherent before granting the DMA engine.
3902 	 */
3903 	wmb();
3904 
3905 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3906 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3907 }
3908 
3909 /**
3910  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3911  *  @skb : the socket buffer
3912  *  @dev : device pointer
3913  *  Description: this is the transmit function that is called on TSO frames
3914  *  (support available on GMAC4 and newer chips).
3915  *  Diagram below show the ring programming in case of TSO frames:
3916  *
3917  *  First Descriptor
3918  *   --------
3919  *   | DES0 |---> buffer1 = L2/L3/L4 header
3920  *   | DES1 |---> TCP Payload (can continue on next descr...)
3921  *   | DES2 |---> buffer 1 and 2 len
3922  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3923  *   --------
3924  *	|
3925  *     ...
3926  *	|
3927  *   --------
3928  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3929  *   | DES1 | --|
3930  *   | DES2 | --> buffer 1 and 2 len
3931  *   | DES3 |
3932  *   --------
3933  *
3934  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3935  */
3936 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3937 {
3938 	struct dma_desc *desc, *first, *mss_desc = NULL;
3939 	struct stmmac_priv *priv = netdev_priv(dev);
3940 	int nfrags = skb_shinfo(skb)->nr_frags;
3941 	u32 queue = skb_get_queue_mapping(skb);
3942 	unsigned int first_entry, tx_packets;
3943 	int tmp_pay_len = 0, first_tx;
3944 	struct stmmac_tx_queue *tx_q;
3945 	bool has_vlan, set_ic;
3946 	u8 proto_hdr_len, hdr;
3947 	u32 pay_len, mss;
3948 	dma_addr_t des;
3949 	int i;
3950 
3951 	tx_q = &priv->tx_queue[queue];
3952 	first_tx = tx_q->cur_tx;
3953 
3954 	/* Compute header lengths */
3955 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3956 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3957 		hdr = sizeof(struct udphdr);
3958 	} else {
3959 		proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3960 		hdr = tcp_hdrlen(skb);
3961 	}
3962 
3963 	/* Desc availability based on threshold should be enough safe */
3964 	if (unlikely(stmmac_tx_avail(priv, queue) <
3965 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3966 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3967 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3968 								queue));
3969 			/* This is a hard error, log it. */
3970 			netdev_err(priv->dev,
3971 				   "%s: Tx Ring full when queue awake\n",
3972 				   __func__);
3973 		}
3974 		return NETDEV_TX_BUSY;
3975 	}
3976 
3977 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3978 
3979 	mss = skb_shinfo(skb)->gso_size;
3980 
3981 	/* set new MSS value if needed */
3982 	if (mss != tx_q->mss) {
3983 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3984 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3985 		else
3986 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3987 
3988 		stmmac_set_mss(priv, mss_desc, mss);
3989 		tx_q->mss = mss;
3990 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3991 						priv->dma_tx_size);
3992 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3993 	}
3994 
3995 	if (netif_msg_tx_queued(priv)) {
3996 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
3997 			__func__, hdr, proto_hdr_len, pay_len, mss);
3998 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
3999 			skb->data_len);
4000 	}
4001 
4002 	/* Check if VLAN can be inserted by HW */
4003 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4004 
4005 	first_entry = tx_q->cur_tx;
4006 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4007 
4008 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4009 		desc = &tx_q->dma_entx[first_entry].basic;
4010 	else
4011 		desc = &tx_q->dma_tx[first_entry];
4012 	first = desc;
4013 
4014 	if (has_vlan)
4015 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4016 
4017 	/* first descriptor: fill Headers on Buf1 */
4018 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4019 			     DMA_TO_DEVICE);
4020 	if (dma_mapping_error(priv->device, des))
4021 		goto dma_map_err;
4022 
4023 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4024 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4025 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4026 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4027 
4028 	if (priv->dma_cap.addr64 <= 32) {
4029 		first->des0 = cpu_to_le32(des);
4030 
4031 		/* Fill start of payload in buff2 of first descriptor */
4032 		if (pay_len)
4033 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4034 
4035 		/* If needed take extra descriptors to fill the remaining payload */
4036 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4037 	} else {
4038 		stmmac_set_desc_addr(priv, first, des);
4039 		tmp_pay_len = pay_len;
4040 		des += proto_hdr_len;
4041 		pay_len = 0;
4042 	}
4043 
4044 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4045 
4046 	/* Prepare fragments */
4047 	for (i = 0; i < nfrags; i++) {
4048 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4049 
4050 		des = skb_frag_dma_map(priv->device, frag, 0,
4051 				       skb_frag_size(frag),
4052 				       DMA_TO_DEVICE);
4053 		if (dma_mapping_error(priv->device, des))
4054 			goto dma_map_err;
4055 
4056 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4057 				     (i == nfrags - 1), queue);
4058 
4059 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4060 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4061 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4062 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4063 	}
4064 
4065 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4066 
4067 	/* Only the last descriptor gets to point to the skb. */
4068 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4069 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4070 
4071 	/* Manage tx mitigation */
4072 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4073 	tx_q->tx_count_frames += tx_packets;
4074 
4075 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4076 		set_ic = true;
4077 	else if (!priv->tx_coal_frames[queue])
4078 		set_ic = false;
4079 	else if (tx_packets > priv->tx_coal_frames[queue])
4080 		set_ic = true;
4081 	else if ((tx_q->tx_count_frames %
4082 		  priv->tx_coal_frames[queue]) < tx_packets)
4083 		set_ic = true;
4084 	else
4085 		set_ic = false;
4086 
4087 	if (set_ic) {
4088 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4089 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4090 		else
4091 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4092 
4093 		tx_q->tx_count_frames = 0;
4094 		stmmac_set_tx_ic(priv, desc);
4095 		priv->xstats.tx_set_ic_bit++;
4096 	}
4097 
4098 	/* We've used all descriptors we need for this skb, however,
4099 	 * advance cur_tx so that it references a fresh descriptor.
4100 	 * ndo_start_xmit will fill this descriptor the next time it's
4101 	 * called and stmmac_tx_clean may clean up to this descriptor.
4102 	 */
4103 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4104 
4105 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4106 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4107 			  __func__);
4108 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4109 	}
4110 
4111 	dev->stats.tx_bytes += skb->len;
4112 	priv->xstats.tx_tso_frames++;
4113 	priv->xstats.tx_tso_nfrags += nfrags;
4114 
4115 	if (priv->sarc_type)
4116 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4117 
4118 	skb_tx_timestamp(skb);
4119 
4120 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4121 		     priv->hwts_tx_en)) {
4122 		/* declare that device is doing timestamping */
4123 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4124 		stmmac_enable_tx_timestamp(priv, first);
4125 	}
4126 
4127 	/* Complete the first descriptor before granting the DMA */
4128 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4129 			proto_hdr_len,
4130 			pay_len,
4131 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4132 			hdr / 4, (skb->len - proto_hdr_len));
4133 
4134 	/* If context desc is used to change MSS */
4135 	if (mss_desc) {
4136 		/* Make sure that first descriptor has been completely
4137 		 * written, including its own bit. This is because MSS is
4138 		 * actually before first descriptor, so we need to make
4139 		 * sure that MSS's own bit is the last thing written.
4140 		 */
4141 		dma_wmb();
4142 		stmmac_set_tx_owner(priv, mss_desc);
4143 	}
4144 
4145 	if (netif_msg_pktdata(priv)) {
4146 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4147 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4148 			tx_q->cur_tx, first, nfrags);
4149 		pr_info(">>> frame to be transmitted: ");
4150 		print_pkt(skb->data, skb_headlen(skb));
4151 	}
4152 
4153 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4154 
4155 	stmmac_flush_tx_descriptors(priv, queue);
4156 	stmmac_tx_timer_arm(priv, queue);
4157 
4158 	return NETDEV_TX_OK;
4159 
4160 dma_map_err:
4161 	dev_err(priv->device, "Tx dma map failed\n");
4162 	dev_kfree_skb(skb);
4163 	priv->dev->stats.tx_dropped++;
4164 	return NETDEV_TX_OK;
4165 }
4166 
4167 /**
4168  *  stmmac_xmit - Tx entry point of the driver
4169  *  @skb : the socket buffer
4170  *  @dev : device pointer
4171  *  Description : this is the tx entry point of the driver.
4172  *  It programs the chain or the ring and supports oversized frames
4173  *  and SG feature.
4174  */
4175 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4176 {
4177 	unsigned int first_entry, tx_packets, enh_desc;
4178 	struct stmmac_priv *priv = netdev_priv(dev);
4179 	unsigned int nopaged_len = skb_headlen(skb);
4180 	int i, csum_insertion = 0, is_jumbo = 0;
4181 	u32 queue = skb_get_queue_mapping(skb);
4182 	int nfrags = skb_shinfo(skb)->nr_frags;
4183 	int gso = skb_shinfo(skb)->gso_type;
4184 	struct dma_edesc *tbs_desc = NULL;
4185 	struct dma_desc *desc, *first;
4186 	struct stmmac_tx_queue *tx_q;
4187 	bool has_vlan, set_ic;
4188 	int entry, first_tx;
4189 	dma_addr_t des;
4190 
4191 	tx_q = &priv->tx_queue[queue];
4192 	first_tx = tx_q->cur_tx;
4193 
4194 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4195 		stmmac_disable_eee_mode(priv);
4196 
4197 	/* Manage oversized TCP frames for GMAC4 device */
4198 	if (skb_is_gso(skb) && priv->tso) {
4199 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4200 			return stmmac_tso_xmit(skb, dev);
4201 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4202 			return stmmac_tso_xmit(skb, dev);
4203 	}
4204 
4205 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4206 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4207 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4208 								queue));
4209 			/* This is a hard error, log it. */
4210 			netdev_err(priv->dev,
4211 				   "%s: Tx Ring full when queue awake\n",
4212 				   __func__);
4213 		}
4214 		return NETDEV_TX_BUSY;
4215 	}
4216 
4217 	/* Check if VLAN can be inserted by HW */
4218 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4219 
4220 	entry = tx_q->cur_tx;
4221 	first_entry = entry;
4222 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4223 
4224 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4225 
4226 	if (likely(priv->extend_desc))
4227 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4228 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4229 		desc = &tx_q->dma_entx[entry].basic;
4230 	else
4231 		desc = tx_q->dma_tx + entry;
4232 
4233 	first = desc;
4234 
4235 	if (has_vlan)
4236 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4237 
4238 	enh_desc = priv->plat->enh_desc;
4239 	/* To program the descriptors according to the size of the frame */
4240 	if (enh_desc)
4241 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4242 
4243 	if (unlikely(is_jumbo)) {
4244 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4245 		if (unlikely(entry < 0) && (entry != -EINVAL))
4246 			goto dma_map_err;
4247 	}
4248 
4249 	for (i = 0; i < nfrags; i++) {
4250 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4251 		int len = skb_frag_size(frag);
4252 		bool last_segment = (i == (nfrags - 1));
4253 
4254 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4255 		WARN_ON(tx_q->tx_skbuff[entry]);
4256 
4257 		if (likely(priv->extend_desc))
4258 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4259 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4260 			desc = &tx_q->dma_entx[entry].basic;
4261 		else
4262 			desc = tx_q->dma_tx + entry;
4263 
4264 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4265 				       DMA_TO_DEVICE);
4266 		if (dma_mapping_error(priv->device, des))
4267 			goto dma_map_err; /* should reuse desc w/o issues */
4268 
4269 		tx_q->tx_skbuff_dma[entry].buf = des;
4270 
4271 		stmmac_set_desc_addr(priv, desc, des);
4272 
4273 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4274 		tx_q->tx_skbuff_dma[entry].len = len;
4275 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4276 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4277 
4278 		/* Prepare the descriptor and set the own bit too */
4279 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4280 				priv->mode, 1, last_segment, skb->len);
4281 	}
4282 
4283 	/* Only the last descriptor gets to point to the skb. */
4284 	tx_q->tx_skbuff[entry] = skb;
4285 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4286 
4287 	/* According to the coalesce parameter the IC bit for the latest
4288 	 * segment is reset and the timer re-started to clean the tx status.
4289 	 * This approach takes care about the fragments: desc is the first
4290 	 * element in case of no SG.
4291 	 */
4292 	tx_packets = (entry + 1) - first_tx;
4293 	tx_q->tx_count_frames += tx_packets;
4294 
4295 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4296 		set_ic = true;
4297 	else if (!priv->tx_coal_frames[queue])
4298 		set_ic = false;
4299 	else if (tx_packets > priv->tx_coal_frames[queue])
4300 		set_ic = true;
4301 	else if ((tx_q->tx_count_frames %
4302 		  priv->tx_coal_frames[queue]) < tx_packets)
4303 		set_ic = true;
4304 	else
4305 		set_ic = false;
4306 
4307 	if (set_ic) {
4308 		if (likely(priv->extend_desc))
4309 			desc = &tx_q->dma_etx[entry].basic;
4310 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4311 			desc = &tx_q->dma_entx[entry].basic;
4312 		else
4313 			desc = &tx_q->dma_tx[entry];
4314 
4315 		tx_q->tx_count_frames = 0;
4316 		stmmac_set_tx_ic(priv, desc);
4317 		priv->xstats.tx_set_ic_bit++;
4318 	}
4319 
4320 	/* We've used all descriptors we need for this skb, however,
4321 	 * advance cur_tx so that it references a fresh descriptor.
4322 	 * ndo_start_xmit will fill this descriptor the next time it's
4323 	 * called and stmmac_tx_clean may clean up to this descriptor.
4324 	 */
4325 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4326 	tx_q->cur_tx = entry;
4327 
4328 	if (netif_msg_pktdata(priv)) {
4329 		netdev_dbg(priv->dev,
4330 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4331 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4332 			   entry, first, nfrags);
4333 
4334 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4335 		print_pkt(skb->data, skb->len);
4336 	}
4337 
4338 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4339 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4340 			  __func__);
4341 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4342 	}
4343 
4344 	dev->stats.tx_bytes += skb->len;
4345 
4346 	if (priv->sarc_type)
4347 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4348 
4349 	skb_tx_timestamp(skb);
4350 
4351 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4352 	 * problems because all the descriptors are actually ready to be
4353 	 * passed to the DMA engine.
4354 	 */
4355 	if (likely(!is_jumbo)) {
4356 		bool last_segment = (nfrags == 0);
4357 
4358 		des = dma_map_single(priv->device, skb->data,
4359 				     nopaged_len, DMA_TO_DEVICE);
4360 		if (dma_mapping_error(priv->device, des))
4361 			goto dma_map_err;
4362 
4363 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4364 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4365 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4366 
4367 		stmmac_set_desc_addr(priv, first, des);
4368 
4369 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4370 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4371 
4372 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4373 			     priv->hwts_tx_en)) {
4374 			/* declare that device is doing timestamping */
4375 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4376 			stmmac_enable_tx_timestamp(priv, first);
4377 		}
4378 
4379 		/* Prepare the first descriptor setting the OWN bit too */
4380 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4381 				csum_insertion, priv->mode, 0, last_segment,
4382 				skb->len);
4383 	}
4384 
4385 	if (tx_q->tbs & STMMAC_TBS_EN) {
4386 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4387 
4388 		tbs_desc = &tx_q->dma_entx[first_entry];
4389 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4390 	}
4391 
4392 	stmmac_set_tx_owner(priv, first);
4393 
4394 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4395 
4396 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4397 
4398 	stmmac_flush_tx_descriptors(priv, queue);
4399 	stmmac_tx_timer_arm(priv, queue);
4400 
4401 	return NETDEV_TX_OK;
4402 
4403 dma_map_err:
4404 	netdev_err(priv->dev, "Tx DMA map failed\n");
4405 	dev_kfree_skb(skb);
4406 	priv->dev->stats.tx_dropped++;
4407 	return NETDEV_TX_OK;
4408 }
4409 
4410 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4411 {
4412 	struct vlan_ethhdr *veth;
4413 	__be16 vlan_proto;
4414 	u16 vlanid;
4415 
4416 	veth = (struct vlan_ethhdr *)skb->data;
4417 	vlan_proto = veth->h_vlan_proto;
4418 
4419 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4420 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4421 	    (vlan_proto == htons(ETH_P_8021AD) &&
4422 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4423 		/* pop the vlan tag */
4424 		vlanid = ntohs(veth->h_vlan_TCI);
4425 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4426 		skb_pull(skb, VLAN_HLEN);
4427 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4428 	}
4429 }
4430 
4431 /**
4432  * stmmac_rx_refill - refill used skb preallocated buffers
4433  * @priv: driver private structure
4434  * @queue: RX queue index
4435  * Description : this is to reallocate the skb for the reception process
4436  * that is based on zero-copy.
4437  */
4438 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4439 {
4440 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4441 	int dirty = stmmac_rx_dirty(priv, queue);
4442 	unsigned int entry = rx_q->dirty_rx;
4443 
4444 	while (dirty-- > 0) {
4445 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4446 		struct dma_desc *p;
4447 		bool use_rx_wd;
4448 
4449 		if (priv->extend_desc)
4450 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4451 		else
4452 			p = rx_q->dma_rx + entry;
4453 
4454 		if (!buf->page) {
4455 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
4456 			if (!buf->page)
4457 				break;
4458 		}
4459 
4460 		if (priv->sph && !buf->sec_page) {
4461 			buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool);
4462 			if (!buf->sec_page)
4463 				break;
4464 
4465 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4466 		}
4467 
4468 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4469 
4470 		stmmac_set_desc_addr(priv, p, buf->addr);
4471 		if (priv->sph)
4472 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4473 		else
4474 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4475 		stmmac_refill_desc3(priv, rx_q, p);
4476 
4477 		rx_q->rx_count_frames++;
4478 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4479 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4480 			rx_q->rx_count_frames = 0;
4481 
4482 		use_rx_wd = !priv->rx_coal_frames[queue];
4483 		use_rx_wd |= rx_q->rx_count_frames > 0;
4484 		if (!priv->use_riwt)
4485 			use_rx_wd = false;
4486 
4487 		dma_wmb();
4488 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4489 
4490 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4491 	}
4492 	rx_q->dirty_rx = entry;
4493 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4494 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4495 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4496 }
4497 
4498 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4499 				       struct dma_desc *p,
4500 				       int status, unsigned int len)
4501 {
4502 	unsigned int plen = 0, hlen = 0;
4503 	int coe = priv->hw->rx_csum;
4504 
4505 	/* Not first descriptor, buffer is always zero */
4506 	if (priv->sph && len)
4507 		return 0;
4508 
4509 	/* First descriptor, get split header length */
4510 	stmmac_get_rx_header_len(priv, p, &hlen);
4511 	if (priv->sph && hlen) {
4512 		priv->xstats.rx_split_hdr_pkt_n++;
4513 		return hlen;
4514 	}
4515 
4516 	/* First descriptor, not last descriptor and not split header */
4517 	if (status & rx_not_ls)
4518 		return priv->dma_buf_sz;
4519 
4520 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4521 
4522 	/* First descriptor and last descriptor and not split header */
4523 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4524 }
4525 
4526 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4527 				       struct dma_desc *p,
4528 				       int status, unsigned int len)
4529 {
4530 	int coe = priv->hw->rx_csum;
4531 	unsigned int plen = 0;
4532 
4533 	/* Not split header, buffer is not available */
4534 	if (!priv->sph)
4535 		return 0;
4536 
4537 	/* Not last descriptor */
4538 	if (status & rx_not_ls)
4539 		return priv->dma_buf_sz;
4540 
4541 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4542 
4543 	/* Last descriptor */
4544 	return plen - len;
4545 }
4546 
4547 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4548 				struct xdp_frame *xdpf, bool dma_map)
4549 {
4550 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4551 	unsigned int entry = tx_q->cur_tx;
4552 	struct dma_desc *tx_desc;
4553 	dma_addr_t dma_addr;
4554 	bool set_ic;
4555 
4556 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4557 		return STMMAC_XDP_CONSUMED;
4558 
4559 	if (likely(priv->extend_desc))
4560 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4561 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4562 		tx_desc = &tx_q->dma_entx[entry].basic;
4563 	else
4564 		tx_desc = tx_q->dma_tx + entry;
4565 
4566 	if (dma_map) {
4567 		dma_addr = dma_map_single(priv->device, xdpf->data,
4568 					  xdpf->len, DMA_TO_DEVICE);
4569 		if (dma_mapping_error(priv->device, dma_addr))
4570 			return STMMAC_XDP_CONSUMED;
4571 
4572 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4573 	} else {
4574 		struct page *page = virt_to_page(xdpf->data);
4575 
4576 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4577 			   xdpf->headroom;
4578 		dma_sync_single_for_device(priv->device, dma_addr,
4579 					   xdpf->len, DMA_BIDIRECTIONAL);
4580 
4581 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4582 	}
4583 
4584 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4585 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4586 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4587 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4588 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4589 
4590 	tx_q->xdpf[entry] = xdpf;
4591 
4592 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4593 
4594 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4595 			       true, priv->mode, true, true,
4596 			       xdpf->len);
4597 
4598 	tx_q->tx_count_frames++;
4599 
4600 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4601 		set_ic = true;
4602 	else
4603 		set_ic = false;
4604 
4605 	if (set_ic) {
4606 		tx_q->tx_count_frames = 0;
4607 		stmmac_set_tx_ic(priv, tx_desc);
4608 		priv->xstats.tx_set_ic_bit++;
4609 	}
4610 
4611 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4612 
4613 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4614 	tx_q->cur_tx = entry;
4615 
4616 	return STMMAC_XDP_TX;
4617 }
4618 
4619 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4620 				   int cpu)
4621 {
4622 	int index = cpu;
4623 
4624 	if (unlikely(index < 0))
4625 		index = 0;
4626 
4627 	while (index >= priv->plat->tx_queues_to_use)
4628 		index -= priv->plat->tx_queues_to_use;
4629 
4630 	return index;
4631 }
4632 
4633 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4634 				struct xdp_buff *xdp)
4635 {
4636 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4637 	int cpu = smp_processor_id();
4638 	struct netdev_queue *nq;
4639 	int queue;
4640 	int res;
4641 
4642 	if (unlikely(!xdpf))
4643 		return STMMAC_XDP_CONSUMED;
4644 
4645 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4646 	nq = netdev_get_tx_queue(priv->dev, queue);
4647 
4648 	__netif_tx_lock(nq, cpu);
4649 	/* Avoids TX time-out as we are sharing with slow path */
4650 	nq->trans_start = jiffies;
4651 
4652 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4653 	if (res == STMMAC_XDP_TX)
4654 		stmmac_flush_tx_descriptors(priv, queue);
4655 
4656 	__netif_tx_unlock(nq);
4657 
4658 	return res;
4659 }
4660 
4661 /* This function assumes rcu_read_lock() is held by the caller. */
4662 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4663 				 struct bpf_prog *prog,
4664 				 struct xdp_buff *xdp)
4665 {
4666 	u32 act;
4667 	int res;
4668 
4669 	act = bpf_prog_run_xdp(prog, xdp);
4670 	switch (act) {
4671 	case XDP_PASS:
4672 		res = STMMAC_XDP_PASS;
4673 		break;
4674 	case XDP_TX:
4675 		res = stmmac_xdp_xmit_back(priv, xdp);
4676 		break;
4677 	case XDP_REDIRECT:
4678 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4679 			res = STMMAC_XDP_CONSUMED;
4680 		else
4681 			res = STMMAC_XDP_REDIRECT;
4682 		break;
4683 	default:
4684 		bpf_warn_invalid_xdp_action(act);
4685 		fallthrough;
4686 	case XDP_ABORTED:
4687 		trace_xdp_exception(priv->dev, prog, act);
4688 		fallthrough;
4689 	case XDP_DROP:
4690 		res = STMMAC_XDP_CONSUMED;
4691 		break;
4692 	}
4693 
4694 	return res;
4695 }
4696 
4697 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4698 					   struct xdp_buff *xdp)
4699 {
4700 	struct bpf_prog *prog;
4701 	int res;
4702 
4703 	rcu_read_lock();
4704 
4705 	prog = READ_ONCE(priv->xdp_prog);
4706 	if (!prog) {
4707 		res = STMMAC_XDP_PASS;
4708 		goto unlock;
4709 	}
4710 
4711 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4712 unlock:
4713 	rcu_read_unlock();
4714 	return ERR_PTR(-res);
4715 }
4716 
4717 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4718 				   int xdp_status)
4719 {
4720 	int cpu = smp_processor_id();
4721 	int queue;
4722 
4723 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4724 
4725 	if (xdp_status & STMMAC_XDP_TX)
4726 		stmmac_tx_timer_arm(priv, queue);
4727 
4728 	if (xdp_status & STMMAC_XDP_REDIRECT)
4729 		xdp_do_flush();
4730 }
4731 
4732 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4733 					       struct xdp_buff *xdp)
4734 {
4735 	unsigned int metasize = xdp->data - xdp->data_meta;
4736 	unsigned int datasize = xdp->data_end - xdp->data;
4737 	struct sk_buff *skb;
4738 
4739 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4740 			       xdp->data_end - xdp->data_hard_start,
4741 			       GFP_ATOMIC | __GFP_NOWARN);
4742 	if (unlikely(!skb))
4743 		return NULL;
4744 
4745 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4746 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4747 	if (metasize)
4748 		skb_metadata_set(skb, metasize);
4749 
4750 	return skb;
4751 }
4752 
4753 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4754 				   struct dma_desc *p, struct dma_desc *np,
4755 				   struct xdp_buff *xdp)
4756 {
4757 	struct stmmac_channel *ch = &priv->channel[queue];
4758 	unsigned int len = xdp->data_end - xdp->data;
4759 	enum pkt_hash_types hash_type;
4760 	int coe = priv->hw->rx_csum;
4761 	struct sk_buff *skb;
4762 	u32 hash;
4763 
4764 	skb = stmmac_construct_skb_zc(ch, xdp);
4765 	if (!skb) {
4766 		priv->dev->stats.rx_dropped++;
4767 		return;
4768 	}
4769 
4770 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4771 	stmmac_rx_vlan(priv->dev, skb);
4772 	skb->protocol = eth_type_trans(skb, priv->dev);
4773 
4774 	if (unlikely(!coe))
4775 		skb_checksum_none_assert(skb);
4776 	else
4777 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4778 
4779 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4780 		skb_set_hash(skb, hash, hash_type);
4781 
4782 	skb_record_rx_queue(skb, queue);
4783 	napi_gro_receive(&ch->rxtx_napi, skb);
4784 
4785 	priv->dev->stats.rx_packets++;
4786 	priv->dev->stats.rx_bytes += len;
4787 }
4788 
4789 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4790 {
4791 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4792 	unsigned int entry = rx_q->dirty_rx;
4793 	struct dma_desc *rx_desc = NULL;
4794 	bool ret = true;
4795 
4796 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4797 
4798 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4799 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4800 		dma_addr_t dma_addr;
4801 		bool use_rx_wd;
4802 
4803 		if (!buf->xdp) {
4804 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4805 			if (!buf->xdp) {
4806 				ret = false;
4807 				break;
4808 			}
4809 		}
4810 
4811 		if (priv->extend_desc)
4812 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4813 		else
4814 			rx_desc = rx_q->dma_rx + entry;
4815 
4816 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4817 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4818 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4819 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4820 
4821 		rx_q->rx_count_frames++;
4822 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4823 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4824 			rx_q->rx_count_frames = 0;
4825 
4826 		use_rx_wd = !priv->rx_coal_frames[queue];
4827 		use_rx_wd |= rx_q->rx_count_frames > 0;
4828 		if (!priv->use_riwt)
4829 			use_rx_wd = false;
4830 
4831 		dma_wmb();
4832 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4833 
4834 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4835 	}
4836 
4837 	if (rx_desc) {
4838 		rx_q->dirty_rx = entry;
4839 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4840 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4841 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4842 	}
4843 
4844 	return ret;
4845 }
4846 
4847 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4848 {
4849 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4850 	unsigned int count = 0, error = 0, len = 0;
4851 	int dirty = stmmac_rx_dirty(priv, queue);
4852 	unsigned int next_entry = rx_q->cur_rx;
4853 	unsigned int desc_size;
4854 	struct bpf_prog *prog;
4855 	bool failure = false;
4856 	int xdp_status = 0;
4857 	int status = 0;
4858 
4859 	if (netif_msg_rx_status(priv)) {
4860 		void *rx_head;
4861 
4862 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4863 		if (priv->extend_desc) {
4864 			rx_head = (void *)rx_q->dma_erx;
4865 			desc_size = sizeof(struct dma_extended_desc);
4866 		} else {
4867 			rx_head = (void *)rx_q->dma_rx;
4868 			desc_size = sizeof(struct dma_desc);
4869 		}
4870 
4871 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4872 				    rx_q->dma_rx_phy, desc_size);
4873 	}
4874 	while (count < limit) {
4875 		struct stmmac_rx_buffer *buf;
4876 		unsigned int buf1_len = 0;
4877 		struct dma_desc *np, *p;
4878 		int entry;
4879 		int res;
4880 
4881 		if (!count && rx_q->state_saved) {
4882 			error = rx_q->state.error;
4883 			len = rx_q->state.len;
4884 		} else {
4885 			rx_q->state_saved = false;
4886 			error = 0;
4887 			len = 0;
4888 		}
4889 
4890 		if (count >= limit)
4891 			break;
4892 
4893 read_again:
4894 		buf1_len = 0;
4895 		entry = next_entry;
4896 		buf = &rx_q->buf_pool[entry];
4897 
4898 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4899 			failure = failure ||
4900 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4901 			dirty = 0;
4902 		}
4903 
4904 		if (priv->extend_desc)
4905 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4906 		else
4907 			p = rx_q->dma_rx + entry;
4908 
4909 		/* read the status of the incoming frame */
4910 		status = stmmac_rx_status(priv, &priv->dev->stats,
4911 					  &priv->xstats, p);
4912 		/* check if managed by the DMA otherwise go ahead */
4913 		if (unlikely(status & dma_own))
4914 			break;
4915 
4916 		/* Prefetch the next RX descriptor */
4917 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4918 						priv->dma_rx_size);
4919 		next_entry = rx_q->cur_rx;
4920 
4921 		if (priv->extend_desc)
4922 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4923 		else
4924 			np = rx_q->dma_rx + next_entry;
4925 
4926 		prefetch(np);
4927 
4928 		if (priv->extend_desc)
4929 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4930 						  &priv->xstats,
4931 						  rx_q->dma_erx + entry);
4932 		if (unlikely(status == discard_frame)) {
4933 			xsk_buff_free(buf->xdp);
4934 			buf->xdp = NULL;
4935 			dirty++;
4936 			error = 1;
4937 			if (!priv->hwts_rx_en)
4938 				priv->dev->stats.rx_errors++;
4939 		}
4940 
4941 		if (unlikely(error && (status & rx_not_ls)))
4942 			goto read_again;
4943 		if (unlikely(error)) {
4944 			count++;
4945 			continue;
4946 		}
4947 
4948 		/* Ensure a valid XSK buffer before proceed */
4949 		if (!buf->xdp)
4950 			break;
4951 
4952 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4953 		if (likely(status & rx_not_ls)) {
4954 			xsk_buff_free(buf->xdp);
4955 			buf->xdp = NULL;
4956 			dirty++;
4957 			count++;
4958 			goto read_again;
4959 		}
4960 
4961 		/* XDP ZC Frame only support primary buffers for now */
4962 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4963 		len += buf1_len;
4964 
4965 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4966 		 * Type frames (LLC/LLC-SNAP)
4967 		 *
4968 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4969 		 * feature is always disabled and packets need to be
4970 		 * stripped manually.
4971 		 */
4972 		if (likely(!(status & rx_not_ls)) &&
4973 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4974 		     unlikely(status != llc_snap))) {
4975 			buf1_len -= ETH_FCS_LEN;
4976 			len -= ETH_FCS_LEN;
4977 		}
4978 
4979 		/* RX buffer is good and fit into a XSK pool buffer */
4980 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4981 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4982 
4983 		rcu_read_lock();
4984 		prog = READ_ONCE(priv->xdp_prog);
4985 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4986 		rcu_read_unlock();
4987 
4988 		switch (res) {
4989 		case STMMAC_XDP_PASS:
4990 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4991 			xsk_buff_free(buf->xdp);
4992 			break;
4993 		case STMMAC_XDP_CONSUMED:
4994 			xsk_buff_free(buf->xdp);
4995 			priv->dev->stats.rx_dropped++;
4996 			break;
4997 		case STMMAC_XDP_TX:
4998 		case STMMAC_XDP_REDIRECT:
4999 			xdp_status |= res;
5000 			break;
5001 		}
5002 
5003 		buf->xdp = NULL;
5004 		dirty++;
5005 		count++;
5006 	}
5007 
5008 	if (status & rx_not_ls) {
5009 		rx_q->state_saved = true;
5010 		rx_q->state.error = error;
5011 		rx_q->state.len = len;
5012 	}
5013 
5014 	stmmac_finalize_xdp_rx(priv, xdp_status);
5015 
5016 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5017 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5018 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5019 		else
5020 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5021 
5022 		return (int)count;
5023 	}
5024 
5025 	return failure ? limit : (int)count;
5026 }
5027 
5028 /**
5029  * stmmac_rx - manage the receive process
5030  * @priv: driver private structure
5031  * @limit: napi bugget
5032  * @queue: RX queue index.
5033  * Description :  this the function called by the napi poll method.
5034  * It gets all the frames inside the ring.
5035  */
5036 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5037 {
5038 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5039 	struct stmmac_channel *ch = &priv->channel[queue];
5040 	unsigned int count = 0, error = 0, len = 0;
5041 	int status = 0, coe = priv->hw->rx_csum;
5042 	unsigned int next_entry = rx_q->cur_rx;
5043 	enum dma_data_direction dma_dir;
5044 	unsigned int desc_size;
5045 	struct sk_buff *skb = NULL;
5046 	struct xdp_buff xdp;
5047 	int xdp_status = 0;
5048 	int buf_sz;
5049 
5050 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5051 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5052 
5053 	if (netif_msg_rx_status(priv)) {
5054 		void *rx_head;
5055 
5056 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5057 		if (priv->extend_desc) {
5058 			rx_head = (void *)rx_q->dma_erx;
5059 			desc_size = sizeof(struct dma_extended_desc);
5060 		} else {
5061 			rx_head = (void *)rx_q->dma_rx;
5062 			desc_size = sizeof(struct dma_desc);
5063 		}
5064 
5065 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5066 				    rx_q->dma_rx_phy, desc_size);
5067 	}
5068 	while (count < limit) {
5069 		unsigned int buf1_len = 0, buf2_len = 0;
5070 		enum pkt_hash_types hash_type;
5071 		struct stmmac_rx_buffer *buf;
5072 		struct dma_desc *np, *p;
5073 		int entry;
5074 		u32 hash;
5075 
5076 		if (!count && rx_q->state_saved) {
5077 			skb = rx_q->state.skb;
5078 			error = rx_q->state.error;
5079 			len = rx_q->state.len;
5080 		} else {
5081 			rx_q->state_saved = false;
5082 			skb = NULL;
5083 			error = 0;
5084 			len = 0;
5085 		}
5086 
5087 		if (count >= limit)
5088 			break;
5089 
5090 read_again:
5091 		buf1_len = 0;
5092 		buf2_len = 0;
5093 		entry = next_entry;
5094 		buf = &rx_q->buf_pool[entry];
5095 
5096 		if (priv->extend_desc)
5097 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5098 		else
5099 			p = rx_q->dma_rx + entry;
5100 
5101 		/* read the status of the incoming frame */
5102 		status = stmmac_rx_status(priv, &priv->dev->stats,
5103 				&priv->xstats, p);
5104 		/* check if managed by the DMA otherwise go ahead */
5105 		if (unlikely(status & dma_own))
5106 			break;
5107 
5108 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5109 						priv->dma_rx_size);
5110 		next_entry = rx_q->cur_rx;
5111 
5112 		if (priv->extend_desc)
5113 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5114 		else
5115 			np = rx_q->dma_rx + next_entry;
5116 
5117 		prefetch(np);
5118 
5119 		if (priv->extend_desc)
5120 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5121 					&priv->xstats, rx_q->dma_erx + entry);
5122 		if (unlikely(status == discard_frame)) {
5123 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5124 			buf->page = NULL;
5125 			error = 1;
5126 			if (!priv->hwts_rx_en)
5127 				priv->dev->stats.rx_errors++;
5128 		}
5129 
5130 		if (unlikely(error && (status & rx_not_ls)))
5131 			goto read_again;
5132 		if (unlikely(error)) {
5133 			dev_kfree_skb(skb);
5134 			skb = NULL;
5135 			count++;
5136 			continue;
5137 		}
5138 
5139 		/* Buffer is good. Go on. */
5140 
5141 		prefetch(page_address(buf->page));
5142 		if (buf->sec_page)
5143 			prefetch(page_address(buf->sec_page));
5144 
5145 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5146 		len += buf1_len;
5147 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5148 		len += buf2_len;
5149 
5150 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5151 		 * Type frames (LLC/LLC-SNAP)
5152 		 *
5153 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5154 		 * feature is always disabled and packets need to be
5155 		 * stripped manually.
5156 		 */
5157 		if (likely(!(status & rx_not_ls)) &&
5158 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5159 		     unlikely(status != llc_snap))) {
5160 			if (buf2_len)
5161 				buf2_len -= ETH_FCS_LEN;
5162 			else
5163 				buf1_len -= ETH_FCS_LEN;
5164 
5165 			len -= ETH_FCS_LEN;
5166 		}
5167 
5168 		if (!skb) {
5169 			unsigned int pre_len, sync_len;
5170 
5171 			dma_sync_single_for_cpu(priv->device, buf->addr,
5172 						buf1_len, dma_dir);
5173 
5174 			xdp.data = page_address(buf->page) + buf->page_offset;
5175 			xdp.data_end = xdp.data + buf1_len;
5176 			xdp.data_hard_start = page_address(buf->page);
5177 			xdp_set_data_meta_invalid(&xdp);
5178 			xdp.frame_sz = buf_sz;
5179 			xdp.rxq = &rx_q->xdp_rxq;
5180 
5181 			pre_len = xdp.data_end - xdp.data_hard_start -
5182 				  buf->page_offset;
5183 			skb = stmmac_xdp_run_prog(priv, &xdp);
5184 			/* Due xdp_adjust_tail: DMA sync for_device
5185 			 * cover max len CPU touch
5186 			 */
5187 			sync_len = xdp.data_end - xdp.data_hard_start -
5188 				   buf->page_offset;
5189 			sync_len = max(sync_len, pre_len);
5190 
5191 			/* For Not XDP_PASS verdict */
5192 			if (IS_ERR(skb)) {
5193 				unsigned int xdp_res = -PTR_ERR(skb);
5194 
5195 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5196 					page_pool_put_page(rx_q->page_pool,
5197 							   virt_to_head_page(xdp.data),
5198 							   sync_len, true);
5199 					buf->page = NULL;
5200 					priv->dev->stats.rx_dropped++;
5201 
5202 					/* Clear skb as it was set as
5203 					 * status by XDP program.
5204 					 */
5205 					skb = NULL;
5206 
5207 					if (unlikely((status & rx_not_ls)))
5208 						goto read_again;
5209 
5210 					count++;
5211 					continue;
5212 				} else if (xdp_res & (STMMAC_XDP_TX |
5213 						      STMMAC_XDP_REDIRECT)) {
5214 					xdp_status |= xdp_res;
5215 					buf->page = NULL;
5216 					skb = NULL;
5217 					count++;
5218 					continue;
5219 				}
5220 			}
5221 		}
5222 
5223 		if (!skb) {
5224 			/* XDP program may expand or reduce tail */
5225 			buf1_len = xdp.data_end - xdp.data;
5226 
5227 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5228 			if (!skb) {
5229 				priv->dev->stats.rx_dropped++;
5230 				count++;
5231 				goto drain_data;
5232 			}
5233 
5234 			/* XDP program may adjust header */
5235 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5236 			skb_put(skb, buf1_len);
5237 
5238 			/* Data payload copied into SKB, page ready for recycle */
5239 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5240 			buf->page = NULL;
5241 		} else if (buf1_len) {
5242 			dma_sync_single_for_cpu(priv->device, buf->addr,
5243 						buf1_len, dma_dir);
5244 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5245 					buf->page, buf->page_offset, buf1_len,
5246 					priv->dma_buf_sz);
5247 
5248 			/* Data payload appended into SKB */
5249 			page_pool_release_page(rx_q->page_pool, buf->page);
5250 			buf->page = NULL;
5251 		}
5252 
5253 		if (buf2_len) {
5254 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5255 						buf2_len, dma_dir);
5256 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5257 					buf->sec_page, 0, buf2_len,
5258 					priv->dma_buf_sz);
5259 
5260 			/* Data payload appended into SKB */
5261 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5262 			buf->sec_page = NULL;
5263 		}
5264 
5265 drain_data:
5266 		if (likely(status & rx_not_ls))
5267 			goto read_again;
5268 		if (!skb)
5269 			continue;
5270 
5271 		/* Got entire packet into SKB. Finish it. */
5272 
5273 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5274 		stmmac_rx_vlan(priv->dev, skb);
5275 		skb->protocol = eth_type_trans(skb, priv->dev);
5276 
5277 		if (unlikely(!coe))
5278 			skb_checksum_none_assert(skb);
5279 		else
5280 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5281 
5282 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5283 			skb_set_hash(skb, hash, hash_type);
5284 
5285 		skb_record_rx_queue(skb, queue);
5286 		napi_gro_receive(&ch->rx_napi, skb);
5287 		skb = NULL;
5288 
5289 		priv->dev->stats.rx_packets++;
5290 		priv->dev->stats.rx_bytes += len;
5291 		count++;
5292 	}
5293 
5294 	if (status & rx_not_ls || skb) {
5295 		rx_q->state_saved = true;
5296 		rx_q->state.skb = skb;
5297 		rx_q->state.error = error;
5298 		rx_q->state.len = len;
5299 	}
5300 
5301 	stmmac_finalize_xdp_rx(priv, xdp_status);
5302 
5303 	stmmac_rx_refill(priv, queue);
5304 
5305 	priv->xstats.rx_pkt_n += count;
5306 
5307 	return count;
5308 }
5309 
5310 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5311 {
5312 	struct stmmac_channel *ch =
5313 		container_of(napi, struct stmmac_channel, rx_napi);
5314 	struct stmmac_priv *priv = ch->priv_data;
5315 	u32 chan = ch->index;
5316 	int work_done;
5317 
5318 	priv->xstats.napi_poll++;
5319 
5320 	work_done = stmmac_rx(priv, budget, chan);
5321 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5322 		unsigned long flags;
5323 
5324 		spin_lock_irqsave(&ch->lock, flags);
5325 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5326 		spin_unlock_irqrestore(&ch->lock, flags);
5327 	}
5328 
5329 	return work_done;
5330 }
5331 
5332 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5333 {
5334 	struct stmmac_channel *ch =
5335 		container_of(napi, struct stmmac_channel, tx_napi);
5336 	struct stmmac_priv *priv = ch->priv_data;
5337 	u32 chan = ch->index;
5338 	int work_done;
5339 
5340 	priv->xstats.napi_poll++;
5341 
5342 	work_done = stmmac_tx_clean(priv, budget, chan);
5343 	work_done = min(work_done, budget);
5344 
5345 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5346 		unsigned long flags;
5347 
5348 		spin_lock_irqsave(&ch->lock, flags);
5349 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5350 		spin_unlock_irqrestore(&ch->lock, flags);
5351 	}
5352 
5353 	return work_done;
5354 }
5355 
5356 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5357 {
5358 	struct stmmac_channel *ch =
5359 		container_of(napi, struct stmmac_channel, rxtx_napi);
5360 	struct stmmac_priv *priv = ch->priv_data;
5361 	int rx_done, tx_done;
5362 	u32 chan = ch->index;
5363 
5364 	priv->xstats.napi_poll++;
5365 
5366 	tx_done = stmmac_tx_clean(priv, budget, chan);
5367 	tx_done = min(tx_done, budget);
5368 
5369 	rx_done = stmmac_rx_zc(priv, budget, chan);
5370 
5371 	/* If either TX or RX work is not complete, return budget
5372 	 * and keep pooling
5373 	 */
5374 	if (tx_done >= budget || rx_done >= budget)
5375 		return budget;
5376 
5377 	/* all work done, exit the polling mode */
5378 	if (napi_complete_done(napi, rx_done)) {
5379 		unsigned long flags;
5380 
5381 		spin_lock_irqsave(&ch->lock, flags);
5382 		/* Both RX and TX work done are compelte,
5383 		 * so enable both RX & TX IRQs.
5384 		 */
5385 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5386 		spin_unlock_irqrestore(&ch->lock, flags);
5387 	}
5388 
5389 	return min(rx_done, budget - 1);
5390 }
5391 
5392 /**
5393  *  stmmac_tx_timeout
5394  *  @dev : Pointer to net device structure
5395  *  @txqueue: the index of the hanging transmit queue
5396  *  Description: this function is called when a packet transmission fails to
5397  *   complete within a reasonable time. The driver will mark the error in the
5398  *   netdev structure and arrange for the device to be reset to a sane state
5399  *   in order to transmit a new packet.
5400  */
5401 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5402 {
5403 	struct stmmac_priv *priv = netdev_priv(dev);
5404 
5405 	stmmac_global_err(priv);
5406 }
5407 
5408 /**
5409  *  stmmac_set_rx_mode - entry point for multicast addressing
5410  *  @dev : pointer to the device structure
5411  *  Description:
5412  *  This function is a driver entry point which gets called by the kernel
5413  *  whenever multicast addresses must be enabled/disabled.
5414  *  Return value:
5415  *  void.
5416  */
5417 static void stmmac_set_rx_mode(struct net_device *dev)
5418 {
5419 	struct stmmac_priv *priv = netdev_priv(dev);
5420 
5421 	stmmac_set_filter(priv, priv->hw, dev);
5422 }
5423 
5424 /**
5425  *  stmmac_change_mtu - entry point to change MTU size for the device.
5426  *  @dev : device pointer.
5427  *  @new_mtu : the new MTU size for the device.
5428  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5429  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5430  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5431  *  Return value:
5432  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5433  *  file on failure.
5434  */
5435 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5436 {
5437 	struct stmmac_priv *priv = netdev_priv(dev);
5438 	int txfifosz = priv->plat->tx_fifo_size;
5439 	const int mtu = new_mtu;
5440 
5441 	if (txfifosz == 0)
5442 		txfifosz = priv->dma_cap.tx_fifo_size;
5443 
5444 	txfifosz /= priv->plat->tx_queues_to_use;
5445 
5446 	if (netif_running(dev)) {
5447 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5448 		return -EBUSY;
5449 	}
5450 
5451 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5452 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5453 		return -EINVAL;
5454 	}
5455 
5456 	new_mtu = STMMAC_ALIGN(new_mtu);
5457 
5458 	/* If condition true, FIFO is too small or MTU too large */
5459 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5460 		return -EINVAL;
5461 
5462 	dev->mtu = mtu;
5463 
5464 	netdev_update_features(dev);
5465 
5466 	return 0;
5467 }
5468 
5469 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5470 					     netdev_features_t features)
5471 {
5472 	struct stmmac_priv *priv = netdev_priv(dev);
5473 
5474 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5475 		features &= ~NETIF_F_RXCSUM;
5476 
5477 	if (!priv->plat->tx_coe)
5478 		features &= ~NETIF_F_CSUM_MASK;
5479 
5480 	/* Some GMAC devices have a bugged Jumbo frame support that
5481 	 * needs to have the Tx COE disabled for oversized frames
5482 	 * (due to limited buffer sizes). In this case we disable
5483 	 * the TX csum insertion in the TDES and not use SF.
5484 	 */
5485 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5486 		features &= ~NETIF_F_CSUM_MASK;
5487 
5488 	/* Disable tso if asked by ethtool */
5489 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5490 		if (features & NETIF_F_TSO)
5491 			priv->tso = true;
5492 		else
5493 			priv->tso = false;
5494 	}
5495 
5496 	return features;
5497 }
5498 
5499 static int stmmac_set_features(struct net_device *netdev,
5500 			       netdev_features_t features)
5501 {
5502 	struct stmmac_priv *priv = netdev_priv(netdev);
5503 	bool sph_en;
5504 	u32 chan;
5505 
5506 	/* Keep the COE Type in case of csum is supporting */
5507 	if (features & NETIF_F_RXCSUM)
5508 		priv->hw->rx_csum = priv->plat->rx_coe;
5509 	else
5510 		priv->hw->rx_csum = 0;
5511 	/* No check needed because rx_coe has been set before and it will be
5512 	 * fixed in case of issue.
5513 	 */
5514 	stmmac_rx_ipc(priv, priv->hw);
5515 
5516 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5517 
5518 	for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5519 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5520 
5521 	return 0;
5522 }
5523 
5524 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5525 {
5526 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5527 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5528 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5529 	bool *hs_enable = &fpe_cfg->hs_enable;
5530 
5531 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5532 		return;
5533 
5534 	/* If LP has sent verify mPacket, LP is FPE capable */
5535 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5536 		if (*lp_state < FPE_STATE_CAPABLE)
5537 			*lp_state = FPE_STATE_CAPABLE;
5538 
5539 		/* If user has requested FPE enable, quickly response */
5540 		if (*hs_enable)
5541 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5542 						MPACKET_RESPONSE);
5543 	}
5544 
5545 	/* If Local has sent verify mPacket, Local is FPE capable */
5546 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5547 		if (*lo_state < FPE_STATE_CAPABLE)
5548 			*lo_state = FPE_STATE_CAPABLE;
5549 	}
5550 
5551 	/* If LP has sent response mPacket, LP is entering FPE ON */
5552 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5553 		*lp_state = FPE_STATE_ENTERING_ON;
5554 
5555 	/* If Local has sent response mPacket, Local is entering FPE ON */
5556 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5557 		*lo_state = FPE_STATE_ENTERING_ON;
5558 
5559 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5560 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5561 	    priv->fpe_wq) {
5562 		queue_work(priv->fpe_wq, &priv->fpe_task);
5563 	}
5564 }
5565 
5566 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5567 {
5568 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5569 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5570 	u32 queues_count;
5571 	u32 queue;
5572 	bool xmac;
5573 
5574 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5575 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5576 
5577 	if (priv->irq_wake)
5578 		pm_wakeup_event(priv->device, 0);
5579 
5580 	if (priv->dma_cap.estsel)
5581 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5582 				      &priv->xstats, tx_cnt);
5583 
5584 	if (priv->dma_cap.fpesel) {
5585 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5586 						   priv->dev);
5587 
5588 		stmmac_fpe_event_status(priv, status);
5589 	}
5590 
5591 	/* To handle GMAC own interrupts */
5592 	if ((priv->plat->has_gmac) || xmac) {
5593 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5594 
5595 		if (unlikely(status)) {
5596 			/* For LPI we need to save the tx status */
5597 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5598 				priv->tx_path_in_lpi_mode = true;
5599 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5600 				priv->tx_path_in_lpi_mode = false;
5601 		}
5602 
5603 		for (queue = 0; queue < queues_count; queue++) {
5604 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5605 							    queue);
5606 		}
5607 
5608 		/* PCS link status */
5609 		if (priv->hw->pcs) {
5610 			if (priv->xstats.pcs_link)
5611 				netif_carrier_on(priv->dev);
5612 			else
5613 				netif_carrier_off(priv->dev);
5614 		}
5615 
5616 		stmmac_timestamp_interrupt(priv, priv);
5617 	}
5618 }
5619 
5620 /**
5621  *  stmmac_interrupt - main ISR
5622  *  @irq: interrupt number.
5623  *  @dev_id: to pass the net device pointer.
5624  *  Description: this is the main driver interrupt service routine.
5625  *  It can call:
5626  *  o DMA service routine (to manage incoming frame reception and transmission
5627  *    status)
5628  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5629  *    interrupts.
5630  */
5631 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5632 {
5633 	struct net_device *dev = (struct net_device *)dev_id;
5634 	struct stmmac_priv *priv = netdev_priv(dev);
5635 
5636 	/* Check if adapter is up */
5637 	if (test_bit(STMMAC_DOWN, &priv->state))
5638 		return IRQ_HANDLED;
5639 
5640 	/* Check if a fatal error happened */
5641 	if (stmmac_safety_feat_interrupt(priv))
5642 		return IRQ_HANDLED;
5643 
5644 	/* To handle Common interrupts */
5645 	stmmac_common_interrupt(priv);
5646 
5647 	/* To handle DMA interrupts */
5648 	stmmac_dma_interrupt(priv);
5649 
5650 	return IRQ_HANDLED;
5651 }
5652 
5653 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5654 {
5655 	struct net_device *dev = (struct net_device *)dev_id;
5656 	struct stmmac_priv *priv = netdev_priv(dev);
5657 
5658 	if (unlikely(!dev)) {
5659 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5660 		return IRQ_NONE;
5661 	}
5662 
5663 	/* Check if adapter is up */
5664 	if (test_bit(STMMAC_DOWN, &priv->state))
5665 		return IRQ_HANDLED;
5666 
5667 	/* To handle Common interrupts */
5668 	stmmac_common_interrupt(priv);
5669 
5670 	return IRQ_HANDLED;
5671 }
5672 
5673 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5674 {
5675 	struct net_device *dev = (struct net_device *)dev_id;
5676 	struct stmmac_priv *priv = netdev_priv(dev);
5677 
5678 	if (unlikely(!dev)) {
5679 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5680 		return IRQ_NONE;
5681 	}
5682 
5683 	/* Check if adapter is up */
5684 	if (test_bit(STMMAC_DOWN, &priv->state))
5685 		return IRQ_HANDLED;
5686 
5687 	/* Check if a fatal error happened */
5688 	stmmac_safety_feat_interrupt(priv);
5689 
5690 	return IRQ_HANDLED;
5691 }
5692 
5693 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5694 {
5695 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5696 	int chan = tx_q->queue_index;
5697 	struct stmmac_priv *priv;
5698 	int status;
5699 
5700 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5701 
5702 	if (unlikely(!data)) {
5703 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5704 		return IRQ_NONE;
5705 	}
5706 
5707 	/* Check if adapter is up */
5708 	if (test_bit(STMMAC_DOWN, &priv->state))
5709 		return IRQ_HANDLED;
5710 
5711 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5712 
5713 	if (unlikely(status & tx_hard_error_bump_tc)) {
5714 		/* Try to bump up the dma threshold on this failure */
5715 		if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
5716 		    tc <= 256) {
5717 			tc += 64;
5718 			if (priv->plat->force_thresh_dma_mode)
5719 				stmmac_set_dma_operation_mode(priv,
5720 							      tc,
5721 							      tc,
5722 							      chan);
5723 			else
5724 				stmmac_set_dma_operation_mode(priv,
5725 							      tc,
5726 							      SF_DMA_MODE,
5727 							      chan);
5728 			priv->xstats.threshold = tc;
5729 		}
5730 	} else if (unlikely(status == tx_hard_error)) {
5731 		stmmac_tx_err(priv, chan);
5732 	}
5733 
5734 	return IRQ_HANDLED;
5735 }
5736 
5737 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5738 {
5739 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5740 	int chan = rx_q->queue_index;
5741 	struct stmmac_priv *priv;
5742 
5743 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5744 
5745 	if (unlikely(!data)) {
5746 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5747 		return IRQ_NONE;
5748 	}
5749 
5750 	/* Check if adapter is up */
5751 	if (test_bit(STMMAC_DOWN, &priv->state))
5752 		return IRQ_HANDLED;
5753 
5754 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5755 
5756 	return IRQ_HANDLED;
5757 }
5758 
5759 #ifdef CONFIG_NET_POLL_CONTROLLER
5760 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5761  * to allow network I/O with interrupts disabled.
5762  */
5763 static void stmmac_poll_controller(struct net_device *dev)
5764 {
5765 	struct stmmac_priv *priv = netdev_priv(dev);
5766 	int i;
5767 
5768 	/* If adapter is down, do nothing */
5769 	if (test_bit(STMMAC_DOWN, &priv->state))
5770 		return;
5771 
5772 	if (priv->plat->multi_msi_en) {
5773 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5774 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5775 
5776 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5777 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5778 	} else {
5779 		disable_irq(dev->irq);
5780 		stmmac_interrupt(dev->irq, dev);
5781 		enable_irq(dev->irq);
5782 	}
5783 }
5784 #endif
5785 
5786 /**
5787  *  stmmac_ioctl - Entry point for the Ioctl
5788  *  @dev: Device pointer.
5789  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5790  *  a proprietary structure used to pass information to the driver.
5791  *  @cmd: IOCTL command
5792  *  Description:
5793  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5794  */
5795 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5796 {
5797 	struct stmmac_priv *priv = netdev_priv (dev);
5798 	int ret = -EOPNOTSUPP;
5799 
5800 	if (!netif_running(dev))
5801 		return -EINVAL;
5802 
5803 	switch (cmd) {
5804 	case SIOCGMIIPHY:
5805 	case SIOCGMIIREG:
5806 	case SIOCSMIIREG:
5807 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5808 		break;
5809 	case SIOCSHWTSTAMP:
5810 		ret = stmmac_hwtstamp_set(dev, rq);
5811 		break;
5812 	case SIOCGHWTSTAMP:
5813 		ret = stmmac_hwtstamp_get(dev, rq);
5814 		break;
5815 	default:
5816 		break;
5817 	}
5818 
5819 	return ret;
5820 }
5821 
5822 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5823 				    void *cb_priv)
5824 {
5825 	struct stmmac_priv *priv = cb_priv;
5826 	int ret = -EOPNOTSUPP;
5827 
5828 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5829 		return ret;
5830 
5831 	__stmmac_disable_all_queues(priv);
5832 
5833 	switch (type) {
5834 	case TC_SETUP_CLSU32:
5835 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5836 		break;
5837 	case TC_SETUP_CLSFLOWER:
5838 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5839 		break;
5840 	default:
5841 		break;
5842 	}
5843 
5844 	stmmac_enable_all_queues(priv);
5845 	return ret;
5846 }
5847 
5848 static LIST_HEAD(stmmac_block_cb_list);
5849 
5850 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5851 			   void *type_data)
5852 {
5853 	struct stmmac_priv *priv = netdev_priv(ndev);
5854 
5855 	switch (type) {
5856 	case TC_SETUP_BLOCK:
5857 		return flow_block_cb_setup_simple(type_data,
5858 						  &stmmac_block_cb_list,
5859 						  stmmac_setup_tc_block_cb,
5860 						  priv, priv, true);
5861 	case TC_SETUP_QDISC_CBS:
5862 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5863 	case TC_SETUP_QDISC_TAPRIO:
5864 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5865 	case TC_SETUP_QDISC_ETF:
5866 		return stmmac_tc_setup_etf(priv, priv, type_data);
5867 	default:
5868 		return -EOPNOTSUPP;
5869 	}
5870 }
5871 
5872 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5873 			       struct net_device *sb_dev)
5874 {
5875 	int gso = skb_shinfo(skb)->gso_type;
5876 
5877 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5878 		/*
5879 		 * There is no way to determine the number of TSO/USO
5880 		 * capable Queues. Let's use always the Queue 0
5881 		 * because if TSO/USO is supported then at least this
5882 		 * one will be capable.
5883 		 */
5884 		return 0;
5885 	}
5886 
5887 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5888 }
5889 
5890 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5891 {
5892 	struct stmmac_priv *priv = netdev_priv(ndev);
5893 	int ret = 0;
5894 
5895 	ret = pm_runtime_get_sync(priv->device);
5896 	if (ret < 0) {
5897 		pm_runtime_put_noidle(priv->device);
5898 		return ret;
5899 	}
5900 
5901 	ret = eth_mac_addr(ndev, addr);
5902 	if (ret)
5903 		goto set_mac_error;
5904 
5905 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5906 
5907 set_mac_error:
5908 	pm_runtime_put(priv->device);
5909 
5910 	return ret;
5911 }
5912 
5913 #ifdef CONFIG_DEBUG_FS
5914 static struct dentry *stmmac_fs_dir;
5915 
5916 static void sysfs_display_ring(void *head, int size, int extend_desc,
5917 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5918 {
5919 	int i;
5920 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5921 	struct dma_desc *p = (struct dma_desc *)head;
5922 	dma_addr_t dma_addr;
5923 
5924 	for (i = 0; i < size; i++) {
5925 		if (extend_desc) {
5926 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5927 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5928 				   i, &dma_addr,
5929 				   le32_to_cpu(ep->basic.des0),
5930 				   le32_to_cpu(ep->basic.des1),
5931 				   le32_to_cpu(ep->basic.des2),
5932 				   le32_to_cpu(ep->basic.des3));
5933 			ep++;
5934 		} else {
5935 			dma_addr = dma_phy_addr + i * sizeof(*p);
5936 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5937 				   i, &dma_addr,
5938 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5939 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5940 			p++;
5941 		}
5942 		seq_printf(seq, "\n");
5943 	}
5944 }
5945 
5946 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5947 {
5948 	struct net_device *dev = seq->private;
5949 	struct stmmac_priv *priv = netdev_priv(dev);
5950 	u32 rx_count = priv->plat->rx_queues_to_use;
5951 	u32 tx_count = priv->plat->tx_queues_to_use;
5952 	u32 queue;
5953 
5954 	if ((dev->flags & IFF_UP) == 0)
5955 		return 0;
5956 
5957 	for (queue = 0; queue < rx_count; queue++) {
5958 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5959 
5960 		seq_printf(seq, "RX Queue %d:\n", queue);
5961 
5962 		if (priv->extend_desc) {
5963 			seq_printf(seq, "Extended descriptor ring:\n");
5964 			sysfs_display_ring((void *)rx_q->dma_erx,
5965 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5966 		} else {
5967 			seq_printf(seq, "Descriptor ring:\n");
5968 			sysfs_display_ring((void *)rx_q->dma_rx,
5969 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5970 		}
5971 	}
5972 
5973 	for (queue = 0; queue < tx_count; queue++) {
5974 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5975 
5976 		seq_printf(seq, "TX Queue %d:\n", queue);
5977 
5978 		if (priv->extend_desc) {
5979 			seq_printf(seq, "Extended descriptor ring:\n");
5980 			sysfs_display_ring((void *)tx_q->dma_etx,
5981 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5982 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5983 			seq_printf(seq, "Descriptor ring:\n");
5984 			sysfs_display_ring((void *)tx_q->dma_tx,
5985 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5986 		}
5987 	}
5988 
5989 	return 0;
5990 }
5991 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5992 
5993 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5994 {
5995 	struct net_device *dev = seq->private;
5996 	struct stmmac_priv *priv = netdev_priv(dev);
5997 
5998 	if (!priv->hw_cap_support) {
5999 		seq_printf(seq, "DMA HW features not supported\n");
6000 		return 0;
6001 	}
6002 
6003 	seq_printf(seq, "==============================\n");
6004 	seq_printf(seq, "\tDMA HW features\n");
6005 	seq_printf(seq, "==============================\n");
6006 
6007 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6008 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6009 	seq_printf(seq, "\t1000 Mbps: %s\n",
6010 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6011 	seq_printf(seq, "\tHalf duplex: %s\n",
6012 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6013 	seq_printf(seq, "\tHash Filter: %s\n",
6014 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6015 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6016 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6017 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6018 		   (priv->dma_cap.pcs) ? "Y" : "N");
6019 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6020 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6021 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6022 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6023 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6024 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6025 	seq_printf(seq, "\tRMON module: %s\n",
6026 		   (priv->dma_cap.rmon) ? "Y" : "N");
6027 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6028 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6029 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6030 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6031 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6032 		   (priv->dma_cap.eee) ? "Y" : "N");
6033 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6034 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6035 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6036 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6037 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6038 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6039 	} else {
6040 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6041 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6042 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6043 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6044 	}
6045 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6046 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6047 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6048 		   priv->dma_cap.number_rx_channel);
6049 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6050 		   priv->dma_cap.number_tx_channel);
6051 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6052 		   priv->dma_cap.number_rx_queues);
6053 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6054 		   priv->dma_cap.number_tx_queues);
6055 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6056 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6057 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6058 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6059 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6060 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6061 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6062 		   priv->dma_cap.pps_out_num);
6063 	seq_printf(seq, "\tSafety Features: %s\n",
6064 		   priv->dma_cap.asp ? "Y" : "N");
6065 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6066 		   priv->dma_cap.frpsel ? "Y" : "N");
6067 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6068 		   priv->dma_cap.addr64);
6069 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6070 		   priv->dma_cap.rssen ? "Y" : "N");
6071 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6072 		   priv->dma_cap.vlhash ? "Y" : "N");
6073 	seq_printf(seq, "\tSplit Header: %s\n",
6074 		   priv->dma_cap.sphen ? "Y" : "N");
6075 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6076 		   priv->dma_cap.vlins ? "Y" : "N");
6077 	seq_printf(seq, "\tDouble VLAN: %s\n",
6078 		   priv->dma_cap.dvlan ? "Y" : "N");
6079 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6080 		   priv->dma_cap.l3l4fnum);
6081 	seq_printf(seq, "\tARP Offloading: %s\n",
6082 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6083 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6084 		   priv->dma_cap.estsel ? "Y" : "N");
6085 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6086 		   priv->dma_cap.fpesel ? "Y" : "N");
6087 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6088 		   priv->dma_cap.tbssel ? "Y" : "N");
6089 	return 0;
6090 }
6091 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6092 
6093 /* Use network device events to rename debugfs file entries.
6094  */
6095 static int stmmac_device_event(struct notifier_block *unused,
6096 			       unsigned long event, void *ptr)
6097 {
6098 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6099 	struct stmmac_priv *priv = netdev_priv(dev);
6100 
6101 	if (dev->netdev_ops != &stmmac_netdev_ops)
6102 		goto done;
6103 
6104 	switch (event) {
6105 	case NETDEV_CHANGENAME:
6106 		if (priv->dbgfs_dir)
6107 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6108 							 priv->dbgfs_dir,
6109 							 stmmac_fs_dir,
6110 							 dev->name);
6111 		break;
6112 	}
6113 done:
6114 	return NOTIFY_DONE;
6115 }
6116 
6117 static struct notifier_block stmmac_notifier = {
6118 	.notifier_call = stmmac_device_event,
6119 };
6120 
6121 static void stmmac_init_fs(struct net_device *dev)
6122 {
6123 	struct stmmac_priv *priv = netdev_priv(dev);
6124 
6125 	rtnl_lock();
6126 
6127 	/* Create per netdev entries */
6128 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6129 
6130 	/* Entry to report DMA RX/TX rings */
6131 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6132 			    &stmmac_rings_status_fops);
6133 
6134 	/* Entry to report the DMA HW features */
6135 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6136 			    &stmmac_dma_cap_fops);
6137 
6138 	rtnl_unlock();
6139 }
6140 
6141 static void stmmac_exit_fs(struct net_device *dev)
6142 {
6143 	struct stmmac_priv *priv = netdev_priv(dev);
6144 
6145 	debugfs_remove_recursive(priv->dbgfs_dir);
6146 }
6147 #endif /* CONFIG_DEBUG_FS */
6148 
6149 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6150 {
6151 	unsigned char *data = (unsigned char *)&vid_le;
6152 	unsigned char data_byte = 0;
6153 	u32 crc = ~0x0;
6154 	u32 temp = 0;
6155 	int i, bits;
6156 
6157 	bits = get_bitmask_order(VLAN_VID_MASK);
6158 	for (i = 0; i < bits; i++) {
6159 		if ((i % 8) == 0)
6160 			data_byte = data[i / 8];
6161 
6162 		temp = ((crc & 1) ^ data_byte) & 1;
6163 		crc >>= 1;
6164 		data_byte >>= 1;
6165 
6166 		if (temp)
6167 			crc ^= 0xedb88320;
6168 	}
6169 
6170 	return crc;
6171 }
6172 
6173 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6174 {
6175 	u32 crc, hash = 0;
6176 	__le16 pmatch = 0;
6177 	int count = 0;
6178 	u16 vid = 0;
6179 
6180 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6181 		__le16 vid_le = cpu_to_le16(vid);
6182 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6183 		hash |= (1 << crc);
6184 		count++;
6185 	}
6186 
6187 	if (!priv->dma_cap.vlhash) {
6188 		if (count > 2) /* VID = 0 always passes filter */
6189 			return -EOPNOTSUPP;
6190 
6191 		pmatch = cpu_to_le16(vid);
6192 		hash = 0;
6193 	}
6194 
6195 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6196 }
6197 
6198 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6199 {
6200 	struct stmmac_priv *priv = netdev_priv(ndev);
6201 	bool is_double = false;
6202 	int ret;
6203 
6204 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6205 		is_double = true;
6206 
6207 	set_bit(vid, priv->active_vlans);
6208 	ret = stmmac_vlan_update(priv, is_double);
6209 	if (ret) {
6210 		clear_bit(vid, priv->active_vlans);
6211 		return ret;
6212 	}
6213 
6214 	if (priv->hw->num_vlan) {
6215 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6216 		if (ret)
6217 			return ret;
6218 	}
6219 
6220 	return 0;
6221 }
6222 
6223 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6224 {
6225 	struct stmmac_priv *priv = netdev_priv(ndev);
6226 	bool is_double = false;
6227 	int ret;
6228 
6229 	ret = pm_runtime_get_sync(priv->device);
6230 	if (ret < 0) {
6231 		pm_runtime_put_noidle(priv->device);
6232 		return ret;
6233 	}
6234 
6235 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6236 		is_double = true;
6237 
6238 	clear_bit(vid, priv->active_vlans);
6239 
6240 	if (priv->hw->num_vlan) {
6241 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6242 		if (ret)
6243 			goto del_vlan_error;
6244 	}
6245 
6246 	ret = stmmac_vlan_update(priv, is_double);
6247 
6248 del_vlan_error:
6249 	pm_runtime_put(priv->device);
6250 
6251 	return ret;
6252 }
6253 
6254 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6255 {
6256 	struct stmmac_priv *priv = netdev_priv(dev);
6257 
6258 	switch (bpf->command) {
6259 	case XDP_SETUP_PROG:
6260 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6261 	case XDP_SETUP_XSK_POOL:
6262 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6263 					     bpf->xsk.queue_id);
6264 	default:
6265 		return -EOPNOTSUPP;
6266 	}
6267 }
6268 
6269 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6270 			   struct xdp_frame **frames, u32 flags)
6271 {
6272 	struct stmmac_priv *priv = netdev_priv(dev);
6273 	int cpu = smp_processor_id();
6274 	struct netdev_queue *nq;
6275 	int i, nxmit = 0;
6276 	int queue;
6277 
6278 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6279 		return -ENETDOWN;
6280 
6281 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6282 		return -EINVAL;
6283 
6284 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6285 	nq = netdev_get_tx_queue(priv->dev, queue);
6286 
6287 	__netif_tx_lock(nq, cpu);
6288 	/* Avoids TX time-out as we are sharing with slow path */
6289 	nq->trans_start = jiffies;
6290 
6291 	for (i = 0; i < num_frames; i++) {
6292 		int res;
6293 
6294 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6295 		if (res == STMMAC_XDP_CONSUMED)
6296 			break;
6297 
6298 		nxmit++;
6299 	}
6300 
6301 	if (flags & XDP_XMIT_FLUSH) {
6302 		stmmac_flush_tx_descriptors(priv, queue);
6303 		stmmac_tx_timer_arm(priv, queue);
6304 	}
6305 
6306 	__netif_tx_unlock(nq);
6307 
6308 	return nxmit;
6309 }
6310 
6311 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6312 {
6313 	struct stmmac_channel *ch = &priv->channel[queue];
6314 	unsigned long flags;
6315 
6316 	spin_lock_irqsave(&ch->lock, flags);
6317 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6318 	spin_unlock_irqrestore(&ch->lock, flags);
6319 
6320 	stmmac_stop_rx_dma(priv, queue);
6321 	__free_dma_rx_desc_resources(priv, queue);
6322 }
6323 
6324 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6325 {
6326 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6327 	struct stmmac_channel *ch = &priv->channel[queue];
6328 	unsigned long flags;
6329 	u32 buf_size;
6330 	int ret;
6331 
6332 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6333 	if (ret) {
6334 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6335 		return;
6336 	}
6337 
6338 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6339 	if (ret) {
6340 		__free_dma_rx_desc_resources(priv, queue);
6341 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6342 		return;
6343 	}
6344 
6345 	stmmac_clear_rx_descriptors(priv, queue);
6346 
6347 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6348 			    rx_q->dma_rx_phy, rx_q->queue_index);
6349 
6350 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6351 			     sizeof(struct dma_desc));
6352 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6353 			       rx_q->rx_tail_addr, rx_q->queue_index);
6354 
6355 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6356 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6357 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6358 				      buf_size,
6359 				      rx_q->queue_index);
6360 	} else {
6361 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6362 				      priv->dma_buf_sz,
6363 				      rx_q->queue_index);
6364 	}
6365 
6366 	stmmac_start_rx_dma(priv, queue);
6367 
6368 	spin_lock_irqsave(&ch->lock, flags);
6369 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6370 	spin_unlock_irqrestore(&ch->lock, flags);
6371 }
6372 
6373 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6374 {
6375 	struct stmmac_channel *ch = &priv->channel[queue];
6376 	unsigned long flags;
6377 
6378 	spin_lock_irqsave(&ch->lock, flags);
6379 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6380 	spin_unlock_irqrestore(&ch->lock, flags);
6381 
6382 	stmmac_stop_tx_dma(priv, queue);
6383 	__free_dma_tx_desc_resources(priv, queue);
6384 }
6385 
6386 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6387 {
6388 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6389 	struct stmmac_channel *ch = &priv->channel[queue];
6390 	unsigned long flags;
6391 	int ret;
6392 
6393 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6394 	if (ret) {
6395 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6396 		return;
6397 	}
6398 
6399 	ret = __init_dma_tx_desc_rings(priv, queue);
6400 	if (ret) {
6401 		__free_dma_tx_desc_resources(priv, queue);
6402 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6403 		return;
6404 	}
6405 
6406 	stmmac_clear_tx_descriptors(priv, queue);
6407 
6408 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6409 			    tx_q->dma_tx_phy, tx_q->queue_index);
6410 
6411 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6412 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6413 
6414 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6415 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6416 			       tx_q->tx_tail_addr, tx_q->queue_index);
6417 
6418 	stmmac_start_tx_dma(priv, queue);
6419 
6420 	spin_lock_irqsave(&ch->lock, flags);
6421 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6422 	spin_unlock_irqrestore(&ch->lock, flags);
6423 }
6424 
6425 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6426 {
6427 	struct stmmac_priv *priv = netdev_priv(dev);
6428 	struct stmmac_rx_queue *rx_q;
6429 	struct stmmac_tx_queue *tx_q;
6430 	struct stmmac_channel *ch;
6431 
6432 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6433 	    !netif_carrier_ok(priv->dev))
6434 		return -ENETDOWN;
6435 
6436 	if (!stmmac_xdp_is_enabled(priv))
6437 		return -ENXIO;
6438 
6439 	if (queue >= priv->plat->rx_queues_to_use ||
6440 	    queue >= priv->plat->tx_queues_to_use)
6441 		return -EINVAL;
6442 
6443 	rx_q = &priv->rx_queue[queue];
6444 	tx_q = &priv->tx_queue[queue];
6445 	ch = &priv->channel[queue];
6446 
6447 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6448 		return -ENXIO;
6449 
6450 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6451 		/* EQoS does not have per-DMA channel SW interrupt,
6452 		 * so we schedule RX Napi straight-away.
6453 		 */
6454 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6455 			__napi_schedule(&ch->rxtx_napi);
6456 	}
6457 
6458 	return 0;
6459 }
6460 
6461 static const struct net_device_ops stmmac_netdev_ops = {
6462 	.ndo_open = stmmac_open,
6463 	.ndo_start_xmit = stmmac_xmit,
6464 	.ndo_stop = stmmac_release,
6465 	.ndo_change_mtu = stmmac_change_mtu,
6466 	.ndo_fix_features = stmmac_fix_features,
6467 	.ndo_set_features = stmmac_set_features,
6468 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6469 	.ndo_tx_timeout = stmmac_tx_timeout,
6470 	.ndo_do_ioctl = stmmac_ioctl,
6471 	.ndo_setup_tc = stmmac_setup_tc,
6472 	.ndo_select_queue = stmmac_select_queue,
6473 #ifdef CONFIG_NET_POLL_CONTROLLER
6474 	.ndo_poll_controller = stmmac_poll_controller,
6475 #endif
6476 	.ndo_set_mac_address = stmmac_set_mac_address,
6477 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6478 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6479 	.ndo_bpf = stmmac_bpf,
6480 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6481 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6482 };
6483 
6484 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6485 {
6486 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6487 		return;
6488 	if (test_bit(STMMAC_DOWN, &priv->state))
6489 		return;
6490 
6491 	netdev_err(priv->dev, "Reset adapter.\n");
6492 
6493 	rtnl_lock();
6494 	netif_trans_update(priv->dev);
6495 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6496 		usleep_range(1000, 2000);
6497 
6498 	set_bit(STMMAC_DOWN, &priv->state);
6499 	dev_close(priv->dev);
6500 	dev_open(priv->dev, NULL);
6501 	clear_bit(STMMAC_DOWN, &priv->state);
6502 	clear_bit(STMMAC_RESETING, &priv->state);
6503 	rtnl_unlock();
6504 }
6505 
6506 static void stmmac_service_task(struct work_struct *work)
6507 {
6508 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6509 			service_task);
6510 
6511 	stmmac_reset_subtask(priv);
6512 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6513 }
6514 
6515 /**
6516  *  stmmac_hw_init - Init the MAC device
6517  *  @priv: driver private structure
6518  *  Description: this function is to configure the MAC device according to
6519  *  some platform parameters or the HW capability register. It prepares the
6520  *  driver to use either ring or chain modes and to setup either enhanced or
6521  *  normal descriptors.
6522  */
6523 static int stmmac_hw_init(struct stmmac_priv *priv)
6524 {
6525 	int ret;
6526 
6527 	/* dwmac-sun8i only work in chain mode */
6528 	if (priv->plat->has_sun8i)
6529 		chain_mode = 1;
6530 	priv->chain_mode = chain_mode;
6531 
6532 	/* Initialize HW Interface */
6533 	ret = stmmac_hwif_init(priv);
6534 	if (ret)
6535 		return ret;
6536 
6537 	/* Get the HW capability (new GMAC newer than 3.50a) */
6538 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6539 	if (priv->hw_cap_support) {
6540 		dev_info(priv->device, "DMA HW capability register supported\n");
6541 
6542 		/* We can override some gmac/dma configuration fields: e.g.
6543 		 * enh_desc, tx_coe (e.g. that are passed through the
6544 		 * platform) with the values from the HW capability
6545 		 * register (if supported).
6546 		 */
6547 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6548 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
6549 		priv->hw->pmt = priv->plat->pmt;
6550 		if (priv->dma_cap.hash_tb_sz) {
6551 			priv->hw->multicast_filter_bins =
6552 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6553 			priv->hw->mcast_bits_log2 =
6554 					ilog2(priv->hw->multicast_filter_bins);
6555 		}
6556 
6557 		/* TXCOE doesn't work in thresh DMA mode */
6558 		if (priv->plat->force_thresh_dma_mode)
6559 			priv->plat->tx_coe = 0;
6560 		else
6561 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6562 
6563 		/* In case of GMAC4 rx_coe is from HW cap register. */
6564 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6565 
6566 		if (priv->dma_cap.rx_coe_type2)
6567 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6568 		else if (priv->dma_cap.rx_coe_type1)
6569 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6570 
6571 	} else {
6572 		dev_info(priv->device, "No HW DMA feature register supported\n");
6573 	}
6574 
6575 	if (priv->plat->rx_coe) {
6576 		priv->hw->rx_csum = priv->plat->rx_coe;
6577 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6578 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6579 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6580 	}
6581 	if (priv->plat->tx_coe)
6582 		dev_info(priv->device, "TX Checksum insertion supported\n");
6583 
6584 	if (priv->plat->pmt) {
6585 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6586 		device_set_wakeup_capable(priv->device, 1);
6587 	}
6588 
6589 	if (priv->dma_cap.tsoen)
6590 		dev_info(priv->device, "TSO supported\n");
6591 
6592 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6593 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6594 
6595 	/* Run HW quirks, if any */
6596 	if (priv->hwif_quirks) {
6597 		ret = priv->hwif_quirks(priv);
6598 		if (ret)
6599 			return ret;
6600 	}
6601 
6602 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6603 	 * In some case, for example on bugged HW this feature
6604 	 * has to be disable and this can be done by passing the
6605 	 * riwt_off field from the platform.
6606 	 */
6607 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6608 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6609 		priv->use_riwt = 1;
6610 		dev_info(priv->device,
6611 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6612 	}
6613 
6614 	return 0;
6615 }
6616 
6617 static void stmmac_napi_add(struct net_device *dev)
6618 {
6619 	struct stmmac_priv *priv = netdev_priv(dev);
6620 	u32 queue, maxq;
6621 
6622 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6623 
6624 	for (queue = 0; queue < maxq; queue++) {
6625 		struct stmmac_channel *ch = &priv->channel[queue];
6626 
6627 		ch->priv_data = priv;
6628 		ch->index = queue;
6629 		spin_lock_init(&ch->lock);
6630 
6631 		if (queue < priv->plat->rx_queues_to_use) {
6632 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6633 				       NAPI_POLL_WEIGHT);
6634 		}
6635 		if (queue < priv->plat->tx_queues_to_use) {
6636 			netif_tx_napi_add(dev, &ch->tx_napi,
6637 					  stmmac_napi_poll_tx,
6638 					  NAPI_POLL_WEIGHT);
6639 		}
6640 		if (queue < priv->plat->rx_queues_to_use &&
6641 		    queue < priv->plat->tx_queues_to_use) {
6642 			netif_napi_add(dev, &ch->rxtx_napi,
6643 				       stmmac_napi_poll_rxtx,
6644 				       NAPI_POLL_WEIGHT);
6645 		}
6646 	}
6647 }
6648 
6649 static void stmmac_napi_del(struct net_device *dev)
6650 {
6651 	struct stmmac_priv *priv = netdev_priv(dev);
6652 	u32 queue, maxq;
6653 
6654 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6655 
6656 	for (queue = 0; queue < maxq; queue++) {
6657 		struct stmmac_channel *ch = &priv->channel[queue];
6658 
6659 		if (queue < priv->plat->rx_queues_to_use)
6660 			netif_napi_del(&ch->rx_napi);
6661 		if (queue < priv->plat->tx_queues_to_use)
6662 			netif_napi_del(&ch->tx_napi);
6663 		if (queue < priv->plat->rx_queues_to_use &&
6664 		    queue < priv->plat->tx_queues_to_use) {
6665 			netif_napi_del(&ch->rxtx_napi);
6666 		}
6667 	}
6668 }
6669 
6670 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6671 {
6672 	struct stmmac_priv *priv = netdev_priv(dev);
6673 	int ret = 0;
6674 
6675 	if (netif_running(dev))
6676 		stmmac_release(dev);
6677 
6678 	stmmac_napi_del(dev);
6679 
6680 	priv->plat->rx_queues_to_use = rx_cnt;
6681 	priv->plat->tx_queues_to_use = tx_cnt;
6682 
6683 	stmmac_napi_add(dev);
6684 
6685 	if (netif_running(dev))
6686 		ret = stmmac_open(dev);
6687 
6688 	return ret;
6689 }
6690 
6691 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6692 {
6693 	struct stmmac_priv *priv = netdev_priv(dev);
6694 	int ret = 0;
6695 
6696 	if (netif_running(dev))
6697 		stmmac_release(dev);
6698 
6699 	priv->dma_rx_size = rx_size;
6700 	priv->dma_tx_size = tx_size;
6701 
6702 	if (netif_running(dev))
6703 		ret = stmmac_open(dev);
6704 
6705 	return ret;
6706 }
6707 
6708 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6709 static void stmmac_fpe_lp_task(struct work_struct *work)
6710 {
6711 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6712 						fpe_task);
6713 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6714 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6715 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6716 	bool *hs_enable = &fpe_cfg->hs_enable;
6717 	bool *enable = &fpe_cfg->enable;
6718 	int retries = 20;
6719 
6720 	while (retries-- > 0) {
6721 		/* Bail out immediately if FPE handshake is OFF */
6722 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6723 			break;
6724 
6725 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6726 		    *lp_state == FPE_STATE_ENTERING_ON) {
6727 			stmmac_fpe_configure(priv, priv->ioaddr,
6728 					     priv->plat->tx_queues_to_use,
6729 					     priv->plat->rx_queues_to_use,
6730 					     *enable);
6731 
6732 			netdev_info(priv->dev, "configured FPE\n");
6733 
6734 			*lo_state = FPE_STATE_ON;
6735 			*lp_state = FPE_STATE_ON;
6736 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6737 			break;
6738 		}
6739 
6740 		if ((*lo_state == FPE_STATE_CAPABLE ||
6741 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6742 		     *lp_state != FPE_STATE_ON) {
6743 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6744 				    *lo_state, *lp_state);
6745 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6746 						MPACKET_VERIFY);
6747 		}
6748 		/* Sleep then retry */
6749 		msleep(500);
6750 	}
6751 
6752 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6753 }
6754 
6755 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6756 {
6757 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6758 		if (enable) {
6759 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6760 						MPACKET_VERIFY);
6761 		} else {
6762 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6763 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6764 		}
6765 
6766 		priv->plat->fpe_cfg->hs_enable = enable;
6767 	}
6768 }
6769 
6770 /**
6771  * stmmac_dvr_probe
6772  * @device: device pointer
6773  * @plat_dat: platform data pointer
6774  * @res: stmmac resource pointer
6775  * Description: this is the main probe function used to
6776  * call the alloc_etherdev, allocate the priv structure.
6777  * Return:
6778  * returns 0 on success, otherwise errno.
6779  */
6780 int stmmac_dvr_probe(struct device *device,
6781 		     struct plat_stmmacenet_data *plat_dat,
6782 		     struct stmmac_resources *res)
6783 {
6784 	struct net_device *ndev = NULL;
6785 	struct stmmac_priv *priv;
6786 	u32 rxq;
6787 	int i, ret = 0;
6788 
6789 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6790 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6791 	if (!ndev)
6792 		return -ENOMEM;
6793 
6794 	SET_NETDEV_DEV(ndev, device);
6795 
6796 	priv = netdev_priv(ndev);
6797 	priv->device = device;
6798 	priv->dev = ndev;
6799 
6800 	stmmac_set_ethtool_ops(ndev);
6801 	priv->pause = pause;
6802 	priv->plat = plat_dat;
6803 	priv->ioaddr = res->addr;
6804 	priv->dev->base_addr = (unsigned long)res->addr;
6805 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6806 
6807 	priv->dev->irq = res->irq;
6808 	priv->wol_irq = res->wol_irq;
6809 	priv->lpi_irq = res->lpi_irq;
6810 	priv->sfty_ce_irq = res->sfty_ce_irq;
6811 	priv->sfty_ue_irq = res->sfty_ue_irq;
6812 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6813 		priv->rx_irq[i] = res->rx_irq[i];
6814 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6815 		priv->tx_irq[i] = res->tx_irq[i];
6816 
6817 	if (!is_zero_ether_addr(res->mac))
6818 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
6819 
6820 	dev_set_drvdata(device, priv->dev);
6821 
6822 	/* Verify driver arguments */
6823 	stmmac_verify_args();
6824 
6825 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6826 	if (!priv->af_xdp_zc_qps)
6827 		return -ENOMEM;
6828 
6829 	/* Allocate workqueue */
6830 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6831 	if (!priv->wq) {
6832 		dev_err(priv->device, "failed to create workqueue\n");
6833 		return -ENOMEM;
6834 	}
6835 
6836 	INIT_WORK(&priv->service_task, stmmac_service_task);
6837 
6838 	/* Initialize Link Partner FPE workqueue */
6839 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6840 
6841 	/* Override with kernel parameters if supplied XXX CRS XXX
6842 	 * this needs to have multiple instances
6843 	 */
6844 	if ((phyaddr >= 0) && (phyaddr <= 31))
6845 		priv->plat->phy_addr = phyaddr;
6846 
6847 	if (priv->plat->stmmac_rst) {
6848 		ret = reset_control_assert(priv->plat->stmmac_rst);
6849 		reset_control_deassert(priv->plat->stmmac_rst);
6850 		/* Some reset controllers have only reset callback instead of
6851 		 * assert + deassert callbacks pair.
6852 		 */
6853 		if (ret == -ENOTSUPP)
6854 			reset_control_reset(priv->plat->stmmac_rst);
6855 	}
6856 
6857 	/* Init MAC and get the capabilities */
6858 	ret = stmmac_hw_init(priv);
6859 	if (ret)
6860 		goto error_hw_init;
6861 
6862 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6863 	 */
6864 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6865 		priv->plat->dma_cfg->dche = false;
6866 
6867 	stmmac_check_ether_addr(priv);
6868 
6869 	ndev->netdev_ops = &stmmac_netdev_ops;
6870 
6871 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
6872 			    NETIF_F_RXCSUM;
6873 
6874 	ret = stmmac_tc_init(priv, priv);
6875 	if (!ret) {
6876 		ndev->hw_features |= NETIF_F_HW_TC;
6877 	}
6878 
6879 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
6880 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
6881 		if (priv->plat->has_gmac4)
6882 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
6883 		priv->tso = true;
6884 		dev_info(priv->device, "TSO feature enabled\n");
6885 	}
6886 
6887 	if (priv->dma_cap.sphen) {
6888 		ndev->hw_features |= NETIF_F_GRO;
6889 		priv->sph_cap = true;
6890 		priv->sph = priv->sph_cap;
6891 		dev_info(priv->device, "SPH feature enabled\n");
6892 	}
6893 
6894 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
6895 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
6896 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
6897 	 * So overwrite dma_cap.addr64 according to HW real design.
6898 	 */
6899 	if (priv->plat->addr64)
6900 		priv->dma_cap.addr64 = priv->plat->addr64;
6901 
6902 	if (priv->dma_cap.addr64) {
6903 		ret = dma_set_mask_and_coherent(device,
6904 				DMA_BIT_MASK(priv->dma_cap.addr64));
6905 		if (!ret) {
6906 			dev_info(priv->device, "Using %d bits DMA width\n",
6907 				 priv->dma_cap.addr64);
6908 
6909 			/*
6910 			 * If more than 32 bits can be addressed, make sure to
6911 			 * enable enhanced addressing mode.
6912 			 */
6913 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
6914 				priv->plat->dma_cfg->eame = true;
6915 		} else {
6916 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
6917 			if (ret) {
6918 				dev_err(priv->device, "Failed to set DMA Mask\n");
6919 				goto error_hw_init;
6920 			}
6921 
6922 			priv->dma_cap.addr64 = 32;
6923 		}
6924 	}
6925 
6926 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
6927 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
6928 #ifdef STMMAC_VLAN_TAG_USED
6929 	/* Both mac100 and gmac support receive VLAN tag detection */
6930 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
6931 	if (priv->dma_cap.vlhash) {
6932 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6933 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
6934 	}
6935 	if (priv->dma_cap.vlins) {
6936 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
6937 		if (priv->dma_cap.dvlan)
6938 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
6939 	}
6940 #endif
6941 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
6942 
6943 	/* Initialize RSS */
6944 	rxq = priv->plat->rx_queues_to_use;
6945 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
6946 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
6947 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
6948 
6949 	if (priv->dma_cap.rssen && priv->plat->rss_en)
6950 		ndev->features |= NETIF_F_RXHASH;
6951 
6952 	/* MTU range: 46 - hw-specific max */
6953 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
6954 	if (priv->plat->has_xgmac)
6955 		ndev->max_mtu = XGMAC_JUMBO_LEN;
6956 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
6957 		ndev->max_mtu = JUMBO_LEN;
6958 	else
6959 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
6960 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
6961 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
6962 	 */
6963 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
6964 	    (priv->plat->maxmtu >= ndev->min_mtu))
6965 		ndev->max_mtu = priv->plat->maxmtu;
6966 	else if (priv->plat->maxmtu < ndev->min_mtu)
6967 		dev_warn(priv->device,
6968 			 "%s: warning: maxmtu having invalid value (%d)\n",
6969 			 __func__, priv->plat->maxmtu);
6970 
6971 	if (flow_ctrl)
6972 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
6973 
6974 	/* Setup channels NAPI */
6975 	stmmac_napi_add(ndev);
6976 
6977 	mutex_init(&priv->lock);
6978 
6979 	/* If a specific clk_csr value is passed from the platform
6980 	 * this means that the CSR Clock Range selection cannot be
6981 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
6982 	 * set the MDC clock dynamically according to the csr actual
6983 	 * clock input.
6984 	 */
6985 	if (priv->plat->clk_csr >= 0)
6986 		priv->clk_csr = priv->plat->clk_csr;
6987 	else
6988 		stmmac_clk_csr_set(priv);
6989 
6990 	stmmac_check_pcs_mode(priv);
6991 
6992 	pm_runtime_get_noresume(device);
6993 	pm_runtime_set_active(device);
6994 	pm_runtime_enable(device);
6995 
6996 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
6997 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
6998 		/* MDIO bus Registration */
6999 		ret = stmmac_mdio_register(ndev);
7000 		if (ret < 0) {
7001 			dev_err(priv->device,
7002 				"%s: MDIO bus (id: %d) registration failed",
7003 				__func__, priv->plat->bus_id);
7004 			goto error_mdio_register;
7005 		}
7006 	}
7007 
7008 	ret = stmmac_phy_setup(priv);
7009 	if (ret) {
7010 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7011 		goto error_phy_setup;
7012 	}
7013 
7014 	ret = register_netdev(ndev);
7015 	if (ret) {
7016 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7017 			__func__, ret);
7018 		goto error_netdev_register;
7019 	}
7020 
7021 	if (priv->plat->serdes_powerup) {
7022 		ret = priv->plat->serdes_powerup(ndev,
7023 						 priv->plat->bsp_priv);
7024 
7025 		if (ret < 0)
7026 			goto error_serdes_powerup;
7027 	}
7028 
7029 #ifdef CONFIG_DEBUG_FS
7030 	stmmac_init_fs(ndev);
7031 #endif
7032 
7033 	/* Let pm_runtime_put() disable the clocks.
7034 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7035 	 */
7036 	pm_runtime_put(device);
7037 
7038 	return ret;
7039 
7040 error_serdes_powerup:
7041 	unregister_netdev(ndev);
7042 error_netdev_register:
7043 	phylink_destroy(priv->phylink);
7044 error_phy_setup:
7045 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7046 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7047 		stmmac_mdio_unregister(ndev);
7048 error_mdio_register:
7049 	stmmac_napi_del(ndev);
7050 error_hw_init:
7051 	destroy_workqueue(priv->wq);
7052 	bitmap_free(priv->af_xdp_zc_qps);
7053 
7054 	return ret;
7055 }
7056 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7057 
7058 /**
7059  * stmmac_dvr_remove
7060  * @dev: device pointer
7061  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7062  * changes the link status, releases the DMA descriptor rings.
7063  */
7064 int stmmac_dvr_remove(struct device *dev)
7065 {
7066 	struct net_device *ndev = dev_get_drvdata(dev);
7067 	struct stmmac_priv *priv = netdev_priv(ndev);
7068 
7069 	netdev_info(priv->dev, "%s: removing driver", __func__);
7070 
7071 	stmmac_stop_all_dma(priv);
7072 	stmmac_mac_set(priv, priv->ioaddr, false);
7073 	netif_carrier_off(ndev);
7074 	unregister_netdev(ndev);
7075 
7076 	/* Serdes power down needs to happen after VLAN filter
7077 	 * is deleted that is triggered by unregister_netdev().
7078 	 */
7079 	if (priv->plat->serdes_powerdown)
7080 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7081 
7082 #ifdef CONFIG_DEBUG_FS
7083 	stmmac_exit_fs(ndev);
7084 #endif
7085 	phylink_destroy(priv->phylink);
7086 	if (priv->plat->stmmac_rst)
7087 		reset_control_assert(priv->plat->stmmac_rst);
7088 	pm_runtime_put(dev);
7089 	pm_runtime_disable(dev);
7090 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7091 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7092 		stmmac_mdio_unregister(ndev);
7093 	destroy_workqueue(priv->wq);
7094 	mutex_destroy(&priv->lock);
7095 	bitmap_free(priv->af_xdp_zc_qps);
7096 
7097 	return 0;
7098 }
7099 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7100 
7101 /**
7102  * stmmac_suspend - suspend callback
7103  * @dev: device pointer
7104  * Description: this is the function to suspend the device and it is called
7105  * by the platform driver to stop the network queue, release the resources,
7106  * program the PMT register (for WoL), clean and release driver resources.
7107  */
7108 int stmmac_suspend(struct device *dev)
7109 {
7110 	struct net_device *ndev = dev_get_drvdata(dev);
7111 	struct stmmac_priv *priv = netdev_priv(ndev);
7112 	u32 chan;
7113 	int ret;
7114 
7115 	if (!ndev || !netif_running(ndev))
7116 		return 0;
7117 
7118 	phylink_mac_change(priv->phylink, false);
7119 
7120 	mutex_lock(&priv->lock);
7121 
7122 	netif_device_detach(ndev);
7123 
7124 	stmmac_disable_all_queues(priv);
7125 
7126 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7127 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7128 
7129 	if (priv->eee_enabled) {
7130 		priv->tx_path_in_lpi_mode = false;
7131 		del_timer_sync(&priv->eee_ctrl_timer);
7132 	}
7133 
7134 	/* Stop TX/RX DMA */
7135 	stmmac_stop_all_dma(priv);
7136 
7137 	if (priv->plat->serdes_powerdown)
7138 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7139 
7140 	/* Enable Power down mode by programming the PMT regs */
7141 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7142 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7143 		priv->irq_wake = 1;
7144 	} else {
7145 		mutex_unlock(&priv->lock);
7146 		rtnl_lock();
7147 		if (device_may_wakeup(priv->device))
7148 			phylink_speed_down(priv->phylink, false);
7149 		phylink_stop(priv->phylink);
7150 		rtnl_unlock();
7151 		mutex_lock(&priv->lock);
7152 
7153 		stmmac_mac_set(priv, priv->ioaddr, false);
7154 		pinctrl_pm_select_sleep_state(priv->device);
7155 		/* Disable clock in case of PWM is off */
7156 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
7157 		ret = pm_runtime_force_suspend(dev);
7158 		if (ret) {
7159 			mutex_unlock(&priv->lock);
7160 			return ret;
7161 		}
7162 	}
7163 
7164 	mutex_unlock(&priv->lock);
7165 
7166 	if (priv->dma_cap.fpesel) {
7167 		/* Disable FPE */
7168 		stmmac_fpe_configure(priv, priv->ioaddr,
7169 				     priv->plat->tx_queues_to_use,
7170 				     priv->plat->rx_queues_to_use, false);
7171 
7172 		stmmac_fpe_handshake(priv, false);
7173 	}
7174 
7175 	priv->speed = SPEED_UNKNOWN;
7176 	return 0;
7177 }
7178 EXPORT_SYMBOL_GPL(stmmac_suspend);
7179 
7180 /**
7181  * stmmac_reset_queues_param - reset queue parameters
7182  * @priv: device pointer
7183  */
7184 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7185 {
7186 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7187 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7188 	u32 queue;
7189 
7190 	for (queue = 0; queue < rx_cnt; queue++) {
7191 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7192 
7193 		rx_q->cur_rx = 0;
7194 		rx_q->dirty_rx = 0;
7195 	}
7196 
7197 	for (queue = 0; queue < tx_cnt; queue++) {
7198 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7199 
7200 		tx_q->cur_tx = 0;
7201 		tx_q->dirty_tx = 0;
7202 		tx_q->mss = 0;
7203 
7204 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7205 	}
7206 }
7207 
7208 /**
7209  * stmmac_resume - resume callback
7210  * @dev: device pointer
7211  * Description: when resume this function is invoked to setup the DMA and CORE
7212  * in a usable state.
7213  */
7214 int stmmac_resume(struct device *dev)
7215 {
7216 	struct net_device *ndev = dev_get_drvdata(dev);
7217 	struct stmmac_priv *priv = netdev_priv(ndev);
7218 	int ret;
7219 
7220 	if (!netif_running(ndev))
7221 		return 0;
7222 
7223 	/* Power Down bit, into the PM register, is cleared
7224 	 * automatically as soon as a magic packet or a Wake-up frame
7225 	 * is received. Anyway, it's better to manually clear
7226 	 * this bit because it can generate problems while resuming
7227 	 * from another devices (e.g. serial console).
7228 	 */
7229 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7230 		mutex_lock(&priv->lock);
7231 		stmmac_pmt(priv, priv->hw, 0);
7232 		mutex_unlock(&priv->lock);
7233 		priv->irq_wake = 0;
7234 	} else {
7235 		pinctrl_pm_select_default_state(priv->device);
7236 		/* enable the clk previously disabled */
7237 		ret = pm_runtime_force_resume(dev);
7238 		if (ret)
7239 			return ret;
7240 		if (priv->plat->clk_ptp_ref)
7241 			clk_prepare_enable(priv->plat->clk_ptp_ref);
7242 		/* reset the phy so that it's ready */
7243 		if (priv->mii)
7244 			stmmac_mdio_reset(priv->mii);
7245 	}
7246 
7247 	if (priv->plat->serdes_powerup) {
7248 		ret = priv->plat->serdes_powerup(ndev,
7249 						 priv->plat->bsp_priv);
7250 
7251 		if (ret < 0)
7252 			return ret;
7253 	}
7254 
7255 	if (!device_may_wakeup(priv->device) || !priv->plat->pmt) {
7256 		rtnl_lock();
7257 		phylink_start(priv->phylink);
7258 		/* We may have called phylink_speed_down before */
7259 		phylink_speed_up(priv->phylink);
7260 		rtnl_unlock();
7261 	}
7262 
7263 	rtnl_lock();
7264 	mutex_lock(&priv->lock);
7265 
7266 	stmmac_reset_queues_param(priv);
7267 
7268 	stmmac_free_tx_skbufs(priv);
7269 	stmmac_clear_descriptors(priv);
7270 
7271 	stmmac_hw_setup(ndev, false);
7272 	stmmac_init_coalesce(priv);
7273 	stmmac_set_rx_mode(ndev);
7274 
7275 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7276 
7277 	stmmac_enable_all_queues(priv);
7278 
7279 	mutex_unlock(&priv->lock);
7280 	rtnl_unlock();
7281 
7282 	phylink_mac_change(priv->phylink, true);
7283 
7284 	netif_device_attach(ndev);
7285 
7286 	return 0;
7287 }
7288 EXPORT_SYMBOL_GPL(stmmac_resume);
7289 
7290 #ifndef MODULE
7291 static int __init stmmac_cmdline_opt(char *str)
7292 {
7293 	char *opt;
7294 
7295 	if (!str || !*str)
7296 		return -EINVAL;
7297 	while ((opt = strsep(&str, ",")) != NULL) {
7298 		if (!strncmp(opt, "debug:", 6)) {
7299 			if (kstrtoint(opt + 6, 0, &debug))
7300 				goto err;
7301 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7302 			if (kstrtoint(opt + 8, 0, &phyaddr))
7303 				goto err;
7304 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7305 			if (kstrtoint(opt + 7, 0, &buf_sz))
7306 				goto err;
7307 		} else if (!strncmp(opt, "tc:", 3)) {
7308 			if (kstrtoint(opt + 3, 0, &tc))
7309 				goto err;
7310 		} else if (!strncmp(opt, "watchdog:", 9)) {
7311 			if (kstrtoint(opt + 9, 0, &watchdog))
7312 				goto err;
7313 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7314 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7315 				goto err;
7316 		} else if (!strncmp(opt, "pause:", 6)) {
7317 			if (kstrtoint(opt + 6, 0, &pause))
7318 				goto err;
7319 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7320 			if (kstrtoint(opt + 10, 0, &eee_timer))
7321 				goto err;
7322 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7323 			if (kstrtoint(opt + 11, 0, &chain_mode))
7324 				goto err;
7325 		}
7326 	}
7327 	return 0;
7328 
7329 err:
7330 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7331 	return -EINVAL;
7332 }
7333 
7334 __setup("stmmaceth=", stmmac_cmdline_opt);
7335 #endif /* MODULE */
7336 
7337 static int __init stmmac_init(void)
7338 {
7339 #ifdef CONFIG_DEBUG_FS
7340 	/* Create debugfs main directory if it doesn't exist yet */
7341 	if (!stmmac_fs_dir)
7342 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7343 	register_netdevice_notifier(&stmmac_notifier);
7344 #endif
7345 
7346 	return 0;
7347 }
7348 
7349 static void __exit stmmac_exit(void)
7350 {
7351 #ifdef CONFIG_DEBUG_FS
7352 	unregister_netdevice_notifier(&stmmac_notifier);
7353 	debugfs_remove_recursive(stmmac_fs_dir);
7354 #endif
7355 }
7356 
7357 module_init(stmmac_init)
7358 module_exit(stmmac_exit)
7359 
7360 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7361 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7362 MODULE_LICENSE("GPL");
7363