1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 54 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 55 56 /* Module parameters */ 57 #define TX_TIMEO 5000 58 static int watchdog = TX_TIMEO; 59 module_param(watchdog, int, 0644); 60 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 61 62 static int debug = -1; 63 module_param(debug, int, 0644); 64 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 65 66 static int phyaddr = -1; 67 module_param(phyaddr, int, 0444); 68 MODULE_PARM_DESC(phyaddr, "Physical device address"); 69 70 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 71 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 72 73 /* Limit to make sure XDP TX and slow path can coexist */ 74 #define STMMAC_XSK_TX_BUDGET_MAX 256 75 #define STMMAC_TX_XSK_AVAIL 16 76 #define STMMAC_RX_FILL_BATCH 16 77 78 #define STMMAC_XDP_PASS 0 79 #define STMMAC_XDP_CONSUMED BIT(0) 80 #define STMMAC_XDP_TX BIT(1) 81 #define STMMAC_XDP_REDIRECT BIT(2) 82 83 static int flow_ctrl = FLOW_AUTO; 84 module_param(flow_ctrl, int, 0644); 85 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 86 87 static int pause = PAUSE_TIME; 88 module_param(pause, int, 0644); 89 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 90 91 #define TC_DEFAULT 64 92 static int tc = TC_DEFAULT; 93 module_param(tc, int, 0644); 94 MODULE_PARM_DESC(tc, "DMA threshold control value"); 95 96 #define DEFAULT_BUFSIZE 1536 97 static int buf_sz = DEFAULT_BUFSIZE; 98 module_param(buf_sz, int, 0644); 99 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 100 101 #define STMMAC_RX_COPYBREAK 256 102 103 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 104 NETIF_MSG_LINK | NETIF_MSG_IFUP | 105 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 106 107 #define STMMAC_DEFAULT_LPI_TIMER 1000 108 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 109 module_param(eee_timer, int, 0644); 110 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 111 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 112 113 /* By default the driver will use the ring mode to manage tx and rx descriptors, 114 * but allow user to force to use the chain instead of the ring 115 */ 116 static unsigned int chain_mode; 117 module_param(chain_mode, int, 0444); 118 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 119 120 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 121 /* For MSI interrupts handling */ 122 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 123 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 124 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 125 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 126 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 127 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 128 129 #ifdef CONFIG_DEBUG_FS 130 static const struct net_device_ops stmmac_netdev_ops; 131 static void stmmac_init_fs(struct net_device *dev); 132 static void stmmac_exit_fs(struct net_device *dev); 133 #endif 134 135 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 136 137 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 138 { 139 int ret = 0; 140 141 if (enabled) { 142 ret = clk_prepare_enable(priv->plat->stmmac_clk); 143 if (ret) 144 return ret; 145 ret = clk_prepare_enable(priv->plat->pclk); 146 if (ret) { 147 clk_disable_unprepare(priv->plat->stmmac_clk); 148 return ret; 149 } 150 if (priv->plat->clks_config) { 151 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 152 if (ret) { 153 clk_disable_unprepare(priv->plat->stmmac_clk); 154 clk_disable_unprepare(priv->plat->pclk); 155 return ret; 156 } 157 } 158 } else { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 clk_disable_unprepare(priv->plat->pclk); 161 if (priv->plat->clks_config) 162 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 163 } 164 165 return ret; 166 } 167 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 168 169 /** 170 * stmmac_verify_args - verify the driver parameters. 171 * Description: it checks the driver parameters and set a default in case of 172 * errors. 173 */ 174 static void stmmac_verify_args(void) 175 { 176 if (unlikely(watchdog < 0)) 177 watchdog = TX_TIMEO; 178 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 179 buf_sz = DEFAULT_BUFSIZE; 180 if (unlikely(flow_ctrl > 1)) 181 flow_ctrl = FLOW_AUTO; 182 else if (likely(flow_ctrl < 0)) 183 flow_ctrl = FLOW_OFF; 184 if (unlikely((pause < 0) || (pause > 0xffff))) 185 pause = PAUSE_TIME; 186 if (eee_timer < 0) 187 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 188 } 189 190 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 191 { 192 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 193 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 194 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 195 u32 queue; 196 197 for (queue = 0; queue < maxq; queue++) { 198 struct stmmac_channel *ch = &priv->channel[queue]; 199 200 if (stmmac_xdp_is_enabled(priv) && 201 test_bit(queue, priv->af_xdp_zc_qps)) { 202 napi_disable(&ch->rxtx_napi); 203 continue; 204 } 205 206 if (queue < rx_queues_cnt) 207 napi_disable(&ch->rx_napi); 208 if (queue < tx_queues_cnt) 209 napi_disable(&ch->tx_napi); 210 } 211 } 212 213 /** 214 * stmmac_disable_all_queues - Disable all queues 215 * @priv: driver private structure 216 */ 217 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 218 { 219 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 220 struct stmmac_rx_queue *rx_q; 221 u32 queue; 222 223 /* synchronize_rcu() needed for pending XDP buffers to drain */ 224 for (queue = 0; queue < rx_queues_cnt; queue++) { 225 rx_q = &priv->rx_queue[queue]; 226 if (rx_q->xsk_pool) { 227 synchronize_rcu(); 228 break; 229 } 230 } 231 232 __stmmac_disable_all_queues(priv); 233 } 234 235 /** 236 * stmmac_enable_all_queues - Enable all queues 237 * @priv: driver private structure 238 */ 239 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 240 { 241 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 242 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 243 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 244 u32 queue; 245 246 for (queue = 0; queue < maxq; queue++) { 247 struct stmmac_channel *ch = &priv->channel[queue]; 248 249 if (stmmac_xdp_is_enabled(priv) && 250 test_bit(queue, priv->af_xdp_zc_qps)) { 251 napi_enable(&ch->rxtx_napi); 252 continue; 253 } 254 255 if (queue < rx_queues_cnt) 256 napi_enable(&ch->rx_napi); 257 if (queue < tx_queues_cnt) 258 napi_enable(&ch->tx_napi); 259 } 260 } 261 262 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 263 { 264 if (!test_bit(STMMAC_DOWN, &priv->state) && 265 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 266 queue_work(priv->wq, &priv->service_task); 267 } 268 269 static void stmmac_global_err(struct stmmac_priv *priv) 270 { 271 netif_carrier_off(priv->dev); 272 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 273 stmmac_service_event_schedule(priv); 274 } 275 276 /** 277 * stmmac_clk_csr_set - dynamically set the MDC clock 278 * @priv: driver private structure 279 * Description: this is to dynamically set the MDC clock according to the csr 280 * clock input. 281 * Note: 282 * If a specific clk_csr value is passed from the platform 283 * this means that the CSR Clock Range selection cannot be 284 * changed at run-time and it is fixed (as reported in the driver 285 * documentation). Viceversa the driver will try to set the MDC 286 * clock dynamically according to the actual clock input. 287 */ 288 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 289 { 290 u32 clk_rate; 291 292 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 293 294 /* Platform provided default clk_csr would be assumed valid 295 * for all other cases except for the below mentioned ones. 296 * For values higher than the IEEE 802.3 specified frequency 297 * we can not estimate the proper divider as it is not known 298 * the frequency of clk_csr_i. So we do not change the default 299 * divider. 300 */ 301 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 302 if (clk_rate < CSR_F_35M) 303 priv->clk_csr = STMMAC_CSR_20_35M; 304 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 305 priv->clk_csr = STMMAC_CSR_35_60M; 306 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 307 priv->clk_csr = STMMAC_CSR_60_100M; 308 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 309 priv->clk_csr = STMMAC_CSR_100_150M; 310 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 311 priv->clk_csr = STMMAC_CSR_150_250M; 312 else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M)) 313 priv->clk_csr = STMMAC_CSR_250_300M; 314 } 315 316 if (priv->plat->has_sun8i) { 317 if (clk_rate > 160000000) 318 priv->clk_csr = 0x03; 319 else if (clk_rate > 80000000) 320 priv->clk_csr = 0x02; 321 else if (clk_rate > 40000000) 322 priv->clk_csr = 0x01; 323 else 324 priv->clk_csr = 0; 325 } 326 327 if (priv->plat->has_xgmac) { 328 if (clk_rate > 400000000) 329 priv->clk_csr = 0x5; 330 else if (clk_rate > 350000000) 331 priv->clk_csr = 0x4; 332 else if (clk_rate > 300000000) 333 priv->clk_csr = 0x3; 334 else if (clk_rate > 250000000) 335 priv->clk_csr = 0x2; 336 else if (clk_rate > 150000000) 337 priv->clk_csr = 0x1; 338 else 339 priv->clk_csr = 0x0; 340 } 341 } 342 343 static void print_pkt(unsigned char *buf, int len) 344 { 345 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 346 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 347 } 348 349 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 350 { 351 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 352 u32 avail; 353 354 if (tx_q->dirty_tx > tx_q->cur_tx) 355 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 356 else 357 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 358 359 return avail; 360 } 361 362 /** 363 * stmmac_rx_dirty - Get RX queue dirty 364 * @priv: driver private structure 365 * @queue: RX queue index 366 */ 367 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 368 { 369 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 370 u32 dirty; 371 372 if (rx_q->dirty_rx <= rx_q->cur_rx) 373 dirty = rx_q->cur_rx - rx_q->dirty_rx; 374 else 375 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 376 377 return dirty; 378 } 379 380 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 381 { 382 int tx_lpi_timer; 383 384 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 385 priv->eee_sw_timer_en = en ? 0 : 1; 386 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 387 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 388 } 389 390 /** 391 * stmmac_enable_eee_mode - check and enter in LPI mode 392 * @priv: driver private structure 393 * Description: this function is to verify and enter in LPI mode in case of 394 * EEE. 395 */ 396 static void stmmac_enable_eee_mode(struct stmmac_priv *priv) 397 { 398 u32 tx_cnt = priv->plat->tx_queues_to_use; 399 u32 queue; 400 401 /* check if all TX queues have the work finished */ 402 for (queue = 0; queue < tx_cnt; queue++) { 403 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 404 405 if (tx_q->dirty_tx != tx_q->cur_tx) 406 return; /* still unfinished work */ 407 } 408 409 /* Check and enter in LPI mode */ 410 if (!priv->tx_path_in_lpi_mode) 411 stmmac_set_eee_mode(priv, priv->hw, 412 priv->plat->en_tx_lpi_clockgating); 413 } 414 415 /** 416 * stmmac_disable_eee_mode - disable and exit from LPI mode 417 * @priv: driver private structure 418 * Description: this function is to exit and disable EEE in case of 419 * LPI state is true. This is called by the xmit. 420 */ 421 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 422 { 423 if (!priv->eee_sw_timer_en) { 424 stmmac_lpi_entry_timer_config(priv, 0); 425 return; 426 } 427 428 stmmac_reset_eee_mode(priv, priv->hw); 429 del_timer_sync(&priv->eee_ctrl_timer); 430 priv->tx_path_in_lpi_mode = false; 431 } 432 433 /** 434 * stmmac_eee_ctrl_timer - EEE TX SW timer. 435 * @t: timer_list struct containing private info 436 * Description: 437 * if there is no data transfer and if we are not in LPI state, 438 * then MAC Transmitter can be moved to LPI state. 439 */ 440 static void stmmac_eee_ctrl_timer(struct timer_list *t) 441 { 442 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 443 444 stmmac_enable_eee_mode(priv); 445 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 446 } 447 448 /** 449 * stmmac_eee_init - init EEE 450 * @priv: driver private structure 451 * Description: 452 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 453 * can also manage EEE, this function enable the LPI state and start related 454 * timer. 455 */ 456 bool stmmac_eee_init(struct stmmac_priv *priv) 457 { 458 int eee_tw_timer = priv->eee_tw_timer; 459 460 /* Using PCS we cannot dial with the phy registers at this stage 461 * so we do not support extra feature like EEE. 462 */ 463 if (priv->hw->pcs == STMMAC_PCS_TBI || 464 priv->hw->pcs == STMMAC_PCS_RTBI) 465 return false; 466 467 /* Check if MAC core supports the EEE feature. */ 468 if (!priv->dma_cap.eee) 469 return false; 470 471 mutex_lock(&priv->lock); 472 473 /* Check if it needs to be deactivated */ 474 if (!priv->eee_active) { 475 if (priv->eee_enabled) { 476 netdev_dbg(priv->dev, "disable EEE\n"); 477 stmmac_lpi_entry_timer_config(priv, 0); 478 del_timer_sync(&priv->eee_ctrl_timer); 479 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 480 } 481 mutex_unlock(&priv->lock); 482 return false; 483 } 484 485 if (priv->eee_active && !priv->eee_enabled) { 486 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 487 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 488 eee_tw_timer); 489 } 490 491 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 492 del_timer_sync(&priv->eee_ctrl_timer); 493 priv->tx_path_in_lpi_mode = false; 494 stmmac_lpi_entry_timer_config(priv, 1); 495 } else { 496 stmmac_lpi_entry_timer_config(priv, 0); 497 mod_timer(&priv->eee_ctrl_timer, 498 STMMAC_LPI_T(priv->tx_lpi_timer)); 499 } 500 501 mutex_unlock(&priv->lock); 502 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 503 return true; 504 } 505 506 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 507 * @priv: driver private structure 508 * @p : descriptor pointer 509 * @skb : the socket buffer 510 * Description : 511 * This function will read timestamp from the descriptor & pass it to stack. 512 * and also perform some sanity checks. 513 */ 514 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 515 struct dma_desc *p, struct sk_buff *skb) 516 { 517 struct skb_shared_hwtstamps shhwtstamp; 518 bool found = false; 519 s64 adjust = 0; 520 u64 ns = 0; 521 522 if (!priv->hwts_tx_en) 523 return; 524 525 /* exit if skb doesn't support hw tstamp */ 526 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 527 return; 528 529 /* check tx tstamp status */ 530 if (stmmac_get_tx_timestamp_status(priv, p)) { 531 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 532 found = true; 533 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 534 found = true; 535 } 536 537 if (found) { 538 /* Correct the clk domain crossing(CDC) error */ 539 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 540 adjust += -(2 * (NSEC_PER_SEC / 541 priv->plat->clk_ptp_rate)); 542 ns += adjust; 543 } 544 545 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 546 shhwtstamp.hwtstamp = ns_to_ktime(ns); 547 548 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 549 /* pass tstamp to stack */ 550 skb_tstamp_tx(skb, &shhwtstamp); 551 } 552 } 553 554 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 555 * @priv: driver private structure 556 * @p : descriptor pointer 557 * @np : next descriptor pointer 558 * @skb : the socket buffer 559 * Description : 560 * This function will read received packet's timestamp from the descriptor 561 * and pass it to stack. It also perform some sanity checks. 562 */ 563 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 564 struct dma_desc *np, struct sk_buff *skb) 565 { 566 struct skb_shared_hwtstamps *shhwtstamp = NULL; 567 struct dma_desc *desc = p; 568 u64 adjust = 0; 569 u64 ns = 0; 570 571 if (!priv->hwts_rx_en) 572 return; 573 /* For GMAC4, the valid timestamp is from CTX next desc. */ 574 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 575 desc = np; 576 577 /* Check if timestamp is available */ 578 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 579 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 580 581 /* Correct the clk domain crossing(CDC) error */ 582 if (priv->plat->has_gmac4 && priv->plat->clk_ptp_rate) { 583 adjust += 2 * (NSEC_PER_SEC / priv->plat->clk_ptp_rate); 584 ns -= adjust; 585 } 586 587 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 588 shhwtstamp = skb_hwtstamps(skb); 589 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 590 shhwtstamp->hwtstamp = ns_to_ktime(ns); 591 } else { 592 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 593 } 594 } 595 596 /** 597 * stmmac_hwtstamp_set - control hardware timestamping. 598 * @dev: device pointer. 599 * @ifr: An IOCTL specific structure, that can contain a pointer to 600 * a proprietary structure used to pass information to the driver. 601 * Description: 602 * This function configures the MAC to enable/disable both outgoing(TX) 603 * and incoming(RX) packets time stamping based on user input. 604 * Return Value: 605 * 0 on success and an appropriate -ve integer on failure. 606 */ 607 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 608 { 609 struct stmmac_priv *priv = netdev_priv(dev); 610 struct hwtstamp_config config; 611 struct timespec64 now; 612 u64 temp = 0; 613 u32 ptp_v2 = 0; 614 u32 tstamp_all = 0; 615 u32 ptp_over_ipv4_udp = 0; 616 u32 ptp_over_ipv6_udp = 0; 617 u32 ptp_over_ethernet = 0; 618 u32 snap_type_sel = 0; 619 u32 ts_master_en = 0; 620 u32 ts_event_en = 0; 621 u32 sec_inc = 0; 622 u32 value = 0; 623 bool xmac; 624 625 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 /* reserved for future extensions */ 643 if (config.flags) 644 return -EINVAL; 645 646 if (config.tx_type != HWTSTAMP_TX_OFF && 647 config.tx_type != HWTSTAMP_TX_ON) 648 return -ERANGE; 649 650 if (priv->adv_ts) { 651 switch (config.rx_filter) { 652 case HWTSTAMP_FILTER_NONE: 653 /* time stamp no incoming packet at all */ 654 config.rx_filter = HWTSTAMP_FILTER_NONE; 655 break; 656 657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 658 /* PTP v1, UDP, any kind of event packet */ 659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 660 /* 'xmac' hardware can support Sync, Pdelay_Req and 661 * Pdelay_resp by setting bit14 and bits17/16 to 01 662 * This leaves Delay_Req timestamps out. 663 * Enable all events *and* general purpose message 664 * timestamping 665 */ 666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 669 break; 670 671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 672 /* PTP v1, UDP, Sync packet */ 673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 674 /* take time stamp for SYNC messages only */ 675 ts_event_en = PTP_TCR_TSEVNTENA; 676 677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 679 break; 680 681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 682 /* PTP v1, UDP, Delay_req packet */ 683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 684 /* take time stamp for Delay_Req messages only */ 685 ts_master_en = PTP_TCR_TSMSTRENA; 686 ts_event_en = PTP_TCR_TSEVNTENA; 687 688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 690 break; 691 692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 693 /* PTP v2, UDP, any kind of event packet */ 694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 695 ptp_v2 = PTP_TCR_TSVER2ENA; 696 /* take time stamp for all event messages */ 697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 698 699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 701 break; 702 703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 704 /* PTP v2, UDP, Sync packet */ 705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 706 ptp_v2 = PTP_TCR_TSVER2ENA; 707 /* take time stamp for SYNC messages only */ 708 ts_event_en = PTP_TCR_TSEVNTENA; 709 710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 712 break; 713 714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 715 /* PTP v2, UDP, Delay_req packet */ 716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 717 ptp_v2 = PTP_TCR_TSVER2ENA; 718 /* take time stamp for Delay_Req messages only */ 719 ts_master_en = PTP_TCR_TSMSTRENA; 720 ts_event_en = PTP_TCR_TSEVNTENA; 721 722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 724 break; 725 726 case HWTSTAMP_FILTER_PTP_V2_EVENT: 727 /* PTP v2/802.AS1 any layer, any kind of event packet */ 728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 729 ptp_v2 = PTP_TCR_TSVER2ENA; 730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 731 if (priv->synopsys_id != DWMAC_CORE_5_10) 732 ts_event_en = PTP_TCR_TSEVNTENA; 733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 735 ptp_over_ethernet = PTP_TCR_TSIPENA; 736 break; 737 738 case HWTSTAMP_FILTER_PTP_V2_SYNC: 739 /* PTP v2/802.AS1, any layer, Sync packet */ 740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 741 ptp_v2 = PTP_TCR_TSVER2ENA; 742 /* take time stamp for SYNC messages only */ 743 ts_event_en = PTP_TCR_TSEVNTENA; 744 745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 747 ptp_over_ethernet = PTP_TCR_TSIPENA; 748 break; 749 750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 751 /* PTP v2/802.AS1, any layer, Delay_req packet */ 752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 753 ptp_v2 = PTP_TCR_TSVER2ENA; 754 /* take time stamp for Delay_Req messages only */ 755 ts_master_en = PTP_TCR_TSMSTRENA; 756 ts_event_en = PTP_TCR_TSEVNTENA; 757 758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 760 ptp_over_ethernet = PTP_TCR_TSIPENA; 761 break; 762 763 case HWTSTAMP_FILTER_NTP_ALL: 764 case HWTSTAMP_FILTER_ALL: 765 /* time stamp any incoming packet */ 766 config.rx_filter = HWTSTAMP_FILTER_ALL; 767 tstamp_all = PTP_TCR_TSENALL; 768 break; 769 770 default: 771 return -ERANGE; 772 } 773 } else { 774 switch (config.rx_filter) { 775 case HWTSTAMP_FILTER_NONE: 776 config.rx_filter = HWTSTAMP_FILTER_NONE; 777 break; 778 default: 779 /* PTP v1, UDP, any kind of event packet */ 780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 781 break; 782 } 783 } 784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 786 787 if (!priv->hwts_tx_en && !priv->hwts_rx_en) 788 stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0); 789 else { 790 value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR | 791 tstamp_all | ptp_v2 | ptp_over_ethernet | 792 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en | 793 ts_master_en | snap_type_sel); 794 stmmac_config_hw_tstamping(priv, priv->ptpaddr, value); 795 796 /* program Sub Second Increment reg */ 797 stmmac_config_sub_second_increment(priv, 798 priv->ptpaddr, priv->plat->clk_ptp_rate, 799 xmac, &sec_inc); 800 temp = div_u64(1000000000ULL, sec_inc); 801 802 /* Store sub second increment and flags for later use */ 803 priv->sub_second_inc = sec_inc; 804 priv->systime_flags = value; 805 806 /* calculate default added value: 807 * formula is : 808 * addend = (2^32)/freq_div_ratio; 809 * where, freq_div_ratio = 1e9ns/sec_inc 810 */ 811 temp = (u64)(temp << 32); 812 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 813 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 814 815 /* initialize system time */ 816 ktime_get_real_ts64(&now); 817 818 /* lower 32 bits of tv_sec are safe until y2106 */ 819 stmmac_init_systime(priv, priv->ptpaddr, 820 (u32)now.tv_sec, now.tv_nsec); 821 } 822 823 memcpy(&priv->tstamp_config, &config, sizeof(config)); 824 825 return copy_to_user(ifr->ifr_data, &config, 826 sizeof(config)) ? -EFAULT : 0; 827 } 828 829 /** 830 * stmmac_hwtstamp_get - read hardware timestamping. 831 * @dev: device pointer. 832 * @ifr: An IOCTL specific structure, that can contain a pointer to 833 * a proprietary structure used to pass information to the driver. 834 * Description: 835 * This function obtain the current hardware timestamping settings 836 * as requested. 837 */ 838 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 839 { 840 struct stmmac_priv *priv = netdev_priv(dev); 841 struct hwtstamp_config *config = &priv->tstamp_config; 842 843 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 844 return -EOPNOTSUPP; 845 846 return copy_to_user(ifr->ifr_data, config, 847 sizeof(*config)) ? -EFAULT : 0; 848 } 849 850 /** 851 * stmmac_init_ptp - init PTP 852 * @priv: driver private structure 853 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 854 * This is done by looking at the HW cap. register. 855 * This function also registers the ptp driver. 856 */ 857 static int stmmac_init_ptp(struct stmmac_priv *priv) 858 { 859 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 860 861 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 862 return -EOPNOTSUPP; 863 864 priv->adv_ts = 0; 865 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 866 if (xmac && priv->dma_cap.atime_stamp) 867 priv->adv_ts = 1; 868 /* Dwmac 3.x core with extend_desc can support adv_ts */ 869 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 870 priv->adv_ts = 1; 871 872 if (priv->dma_cap.time_stamp) 873 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 874 875 if (priv->adv_ts) 876 netdev_info(priv->dev, 877 "IEEE 1588-2008 Advanced Timestamp supported\n"); 878 879 priv->hwts_tx_en = 0; 880 priv->hwts_rx_en = 0; 881 882 stmmac_ptp_register(priv); 883 884 return 0; 885 } 886 887 static void stmmac_release_ptp(struct stmmac_priv *priv) 888 { 889 clk_disable_unprepare(priv->plat->clk_ptp_ref); 890 stmmac_ptp_unregister(priv); 891 } 892 893 /** 894 * stmmac_mac_flow_ctrl - Configure flow control in all queues 895 * @priv: driver private structure 896 * @duplex: duplex passed to the next function 897 * Description: It is used for configuring the flow control in all queues 898 */ 899 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 900 { 901 u32 tx_cnt = priv->plat->tx_queues_to_use; 902 903 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 904 priv->pause, tx_cnt); 905 } 906 907 static void stmmac_validate(struct phylink_config *config, 908 unsigned long *supported, 909 struct phylink_link_state *state) 910 { 911 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 912 __ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, }; 913 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 914 int tx_cnt = priv->plat->tx_queues_to_use; 915 int max_speed = priv->plat->max_speed; 916 917 phylink_set(mac_supported, 10baseT_Half); 918 phylink_set(mac_supported, 10baseT_Full); 919 phylink_set(mac_supported, 100baseT_Half); 920 phylink_set(mac_supported, 100baseT_Full); 921 phylink_set(mac_supported, 1000baseT_Half); 922 phylink_set(mac_supported, 1000baseT_Full); 923 phylink_set(mac_supported, 1000baseKX_Full); 924 925 phylink_set(mac_supported, Autoneg); 926 phylink_set(mac_supported, Pause); 927 phylink_set(mac_supported, Asym_Pause); 928 phylink_set_port_modes(mac_supported); 929 930 /* Cut down 1G if asked to */ 931 if ((max_speed > 0) && (max_speed < 1000)) { 932 phylink_set(mask, 1000baseT_Full); 933 phylink_set(mask, 1000baseX_Full); 934 } else if (priv->plat->has_xgmac) { 935 if (!max_speed || (max_speed >= 2500)) { 936 phylink_set(mac_supported, 2500baseT_Full); 937 phylink_set(mac_supported, 2500baseX_Full); 938 } 939 if (!max_speed || (max_speed >= 5000)) { 940 phylink_set(mac_supported, 5000baseT_Full); 941 } 942 if (!max_speed || (max_speed >= 10000)) { 943 phylink_set(mac_supported, 10000baseSR_Full); 944 phylink_set(mac_supported, 10000baseLR_Full); 945 phylink_set(mac_supported, 10000baseER_Full); 946 phylink_set(mac_supported, 10000baseLRM_Full); 947 phylink_set(mac_supported, 10000baseT_Full); 948 phylink_set(mac_supported, 10000baseKX4_Full); 949 phylink_set(mac_supported, 10000baseKR_Full); 950 } 951 if (!max_speed || (max_speed >= 25000)) { 952 phylink_set(mac_supported, 25000baseCR_Full); 953 phylink_set(mac_supported, 25000baseKR_Full); 954 phylink_set(mac_supported, 25000baseSR_Full); 955 } 956 if (!max_speed || (max_speed >= 40000)) { 957 phylink_set(mac_supported, 40000baseKR4_Full); 958 phylink_set(mac_supported, 40000baseCR4_Full); 959 phylink_set(mac_supported, 40000baseSR4_Full); 960 phylink_set(mac_supported, 40000baseLR4_Full); 961 } 962 if (!max_speed || (max_speed >= 50000)) { 963 phylink_set(mac_supported, 50000baseCR2_Full); 964 phylink_set(mac_supported, 50000baseKR2_Full); 965 phylink_set(mac_supported, 50000baseSR2_Full); 966 phylink_set(mac_supported, 50000baseKR_Full); 967 phylink_set(mac_supported, 50000baseSR_Full); 968 phylink_set(mac_supported, 50000baseCR_Full); 969 phylink_set(mac_supported, 50000baseLR_ER_FR_Full); 970 phylink_set(mac_supported, 50000baseDR_Full); 971 } 972 if (!max_speed || (max_speed >= 100000)) { 973 phylink_set(mac_supported, 100000baseKR4_Full); 974 phylink_set(mac_supported, 100000baseSR4_Full); 975 phylink_set(mac_supported, 100000baseCR4_Full); 976 phylink_set(mac_supported, 100000baseLR4_ER4_Full); 977 phylink_set(mac_supported, 100000baseKR2_Full); 978 phylink_set(mac_supported, 100000baseSR2_Full); 979 phylink_set(mac_supported, 100000baseCR2_Full); 980 phylink_set(mac_supported, 100000baseLR2_ER2_FR2_Full); 981 phylink_set(mac_supported, 100000baseDR2_Full); 982 } 983 } 984 985 /* Half-Duplex can only work with single queue */ 986 if (tx_cnt > 1) { 987 phylink_set(mask, 10baseT_Half); 988 phylink_set(mask, 100baseT_Half); 989 phylink_set(mask, 1000baseT_Half); 990 } 991 992 linkmode_and(supported, supported, mac_supported); 993 linkmode_andnot(supported, supported, mask); 994 995 linkmode_and(state->advertising, state->advertising, mac_supported); 996 linkmode_andnot(state->advertising, state->advertising, mask); 997 998 /* If PCS is supported, check which modes it supports. */ 999 stmmac_xpcs_validate(priv, &priv->hw->xpcs_args, supported, state); 1000 } 1001 1002 static void stmmac_mac_pcs_get_state(struct phylink_config *config, 1003 struct phylink_link_state *state) 1004 { 1005 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1006 1007 state->link = 0; 1008 stmmac_xpcs_get_state(priv, &priv->hw->xpcs_args, state); 1009 } 1010 1011 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 1012 const struct phylink_link_state *state) 1013 { 1014 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1015 1016 stmmac_xpcs_config(priv, &priv->hw->xpcs_args, state); 1017 } 1018 1019 static void stmmac_mac_an_restart(struct phylink_config *config) 1020 { 1021 /* Not Supported */ 1022 } 1023 1024 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 1025 { 1026 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 1027 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 1028 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 1029 bool *hs_enable = &fpe_cfg->hs_enable; 1030 1031 if (is_up && *hs_enable) { 1032 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 1033 } else { 1034 *lo_state = FPE_EVENT_UNKNOWN; 1035 *lp_state = FPE_EVENT_UNKNOWN; 1036 } 1037 } 1038 1039 static void stmmac_mac_link_down(struct phylink_config *config, 1040 unsigned int mode, phy_interface_t interface) 1041 { 1042 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1043 1044 stmmac_mac_set(priv, priv->ioaddr, false); 1045 priv->eee_active = false; 1046 priv->tx_lpi_enabled = false; 1047 stmmac_eee_init(priv); 1048 stmmac_set_eee_pls(priv, priv->hw, false); 1049 1050 if (priv->dma_cap.fpesel) 1051 stmmac_fpe_link_state_handle(priv, false); 1052 } 1053 1054 static void stmmac_mac_link_up(struct phylink_config *config, 1055 struct phy_device *phy, 1056 unsigned int mode, phy_interface_t interface, 1057 int speed, int duplex, 1058 bool tx_pause, bool rx_pause) 1059 { 1060 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 1061 u32 ctrl; 1062 1063 stmmac_xpcs_link_up(priv, &priv->hw->xpcs_args, speed, interface); 1064 1065 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 1066 ctrl &= ~priv->hw->link.speed_mask; 1067 1068 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1069 switch (speed) { 1070 case SPEED_10000: 1071 ctrl |= priv->hw->link.xgmii.speed10000; 1072 break; 1073 case SPEED_5000: 1074 ctrl |= priv->hw->link.xgmii.speed5000; 1075 break; 1076 case SPEED_2500: 1077 ctrl |= priv->hw->link.xgmii.speed2500; 1078 break; 1079 default: 1080 return; 1081 } 1082 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1083 switch (speed) { 1084 case SPEED_100000: 1085 ctrl |= priv->hw->link.xlgmii.speed100000; 1086 break; 1087 case SPEED_50000: 1088 ctrl |= priv->hw->link.xlgmii.speed50000; 1089 break; 1090 case SPEED_40000: 1091 ctrl |= priv->hw->link.xlgmii.speed40000; 1092 break; 1093 case SPEED_25000: 1094 ctrl |= priv->hw->link.xlgmii.speed25000; 1095 break; 1096 case SPEED_10000: 1097 ctrl |= priv->hw->link.xgmii.speed10000; 1098 break; 1099 case SPEED_2500: 1100 ctrl |= priv->hw->link.speed2500; 1101 break; 1102 case SPEED_1000: 1103 ctrl |= priv->hw->link.speed1000; 1104 break; 1105 default: 1106 return; 1107 } 1108 } else { 1109 switch (speed) { 1110 case SPEED_2500: 1111 ctrl |= priv->hw->link.speed2500; 1112 break; 1113 case SPEED_1000: 1114 ctrl |= priv->hw->link.speed1000; 1115 break; 1116 case SPEED_100: 1117 ctrl |= priv->hw->link.speed100; 1118 break; 1119 case SPEED_10: 1120 ctrl |= priv->hw->link.speed10; 1121 break; 1122 default: 1123 return; 1124 } 1125 } 1126 1127 priv->speed = speed; 1128 1129 if (priv->plat->fix_mac_speed) 1130 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1131 1132 if (!duplex) 1133 ctrl &= ~priv->hw->link.duplex; 1134 else 1135 ctrl |= priv->hw->link.duplex; 1136 1137 /* Flow Control operation */ 1138 if (tx_pause && rx_pause) 1139 stmmac_mac_flow_ctrl(priv, duplex); 1140 1141 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1142 1143 stmmac_mac_set(priv, priv->ioaddr, true); 1144 if (phy && priv->dma_cap.eee) { 1145 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1146 priv->eee_enabled = stmmac_eee_init(priv); 1147 priv->tx_lpi_enabled = priv->eee_enabled; 1148 stmmac_set_eee_pls(priv, priv->hw, true); 1149 } 1150 1151 if (priv->dma_cap.fpesel) 1152 stmmac_fpe_link_state_handle(priv, true); 1153 } 1154 1155 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1156 .validate = stmmac_validate, 1157 .mac_pcs_get_state = stmmac_mac_pcs_get_state, 1158 .mac_config = stmmac_mac_config, 1159 .mac_an_restart = stmmac_mac_an_restart, 1160 .mac_link_down = stmmac_mac_link_down, 1161 .mac_link_up = stmmac_mac_link_up, 1162 }; 1163 1164 /** 1165 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1166 * @priv: driver private structure 1167 * Description: this is to verify if the HW supports the PCS. 1168 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1169 * configured for the TBI, RTBI, or SGMII PHY interface. 1170 */ 1171 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1172 { 1173 int interface = priv->plat->interface; 1174 1175 if (priv->dma_cap.pcs) { 1176 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1177 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1178 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1179 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1180 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1181 priv->hw->pcs = STMMAC_PCS_RGMII; 1182 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1183 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1184 priv->hw->pcs = STMMAC_PCS_SGMII; 1185 } 1186 } 1187 } 1188 1189 /** 1190 * stmmac_init_phy - PHY initialization 1191 * @dev: net device structure 1192 * Description: it initializes the driver's PHY state, and attaches the PHY 1193 * to the mac driver. 1194 * Return value: 1195 * 0 on success 1196 */ 1197 static int stmmac_init_phy(struct net_device *dev) 1198 { 1199 struct stmmac_priv *priv = netdev_priv(dev); 1200 struct device_node *node; 1201 int ret; 1202 1203 node = priv->plat->phylink_node; 1204 1205 if (node) 1206 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1207 1208 /* Some DT bindings do not set-up the PHY handle. Let's try to 1209 * manually parse it 1210 */ 1211 if (!node || ret) { 1212 int addr = priv->plat->phy_addr; 1213 struct phy_device *phydev; 1214 1215 phydev = mdiobus_get_phy(priv->mii, addr); 1216 if (!phydev) { 1217 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1218 return -ENODEV; 1219 } 1220 1221 ret = phylink_connect_phy(priv->phylink, phydev); 1222 } 1223 1224 if (!priv->plat->pmt) { 1225 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1226 1227 phylink_ethtool_get_wol(priv->phylink, &wol); 1228 device_set_wakeup_capable(priv->device, !!wol.supported); 1229 } 1230 1231 return ret; 1232 } 1233 1234 static int stmmac_phy_setup(struct stmmac_priv *priv) 1235 { 1236 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1237 int mode = priv->plat->phy_interface; 1238 struct phylink *phylink; 1239 1240 priv->phylink_config.dev = &priv->dev->dev; 1241 priv->phylink_config.type = PHYLINK_NETDEV; 1242 priv->phylink_config.pcs_poll = true; 1243 if (priv->plat->mdio_bus_data) 1244 priv->phylink_config.ovr_an_inband = 1245 priv->plat->mdio_bus_data->xpcs_an_inband; 1246 1247 if (!fwnode) 1248 fwnode = dev_fwnode(priv->device); 1249 1250 phylink = phylink_create(&priv->phylink_config, fwnode, 1251 mode, &stmmac_phylink_mac_ops); 1252 if (IS_ERR(phylink)) 1253 return PTR_ERR(phylink); 1254 1255 priv->phylink = phylink; 1256 return 0; 1257 } 1258 1259 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1260 { 1261 u32 rx_cnt = priv->plat->rx_queues_to_use; 1262 unsigned int desc_size; 1263 void *head_rx; 1264 u32 queue; 1265 1266 /* Display RX rings */ 1267 for (queue = 0; queue < rx_cnt; queue++) { 1268 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1269 1270 pr_info("\tRX Queue %u rings\n", queue); 1271 1272 if (priv->extend_desc) { 1273 head_rx = (void *)rx_q->dma_erx; 1274 desc_size = sizeof(struct dma_extended_desc); 1275 } else { 1276 head_rx = (void *)rx_q->dma_rx; 1277 desc_size = sizeof(struct dma_desc); 1278 } 1279 1280 /* Display RX ring */ 1281 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1282 rx_q->dma_rx_phy, desc_size); 1283 } 1284 } 1285 1286 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1287 { 1288 u32 tx_cnt = priv->plat->tx_queues_to_use; 1289 unsigned int desc_size; 1290 void *head_tx; 1291 u32 queue; 1292 1293 /* Display TX rings */ 1294 for (queue = 0; queue < tx_cnt; queue++) { 1295 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1296 1297 pr_info("\tTX Queue %d rings\n", queue); 1298 1299 if (priv->extend_desc) { 1300 head_tx = (void *)tx_q->dma_etx; 1301 desc_size = sizeof(struct dma_extended_desc); 1302 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1303 head_tx = (void *)tx_q->dma_entx; 1304 desc_size = sizeof(struct dma_edesc); 1305 } else { 1306 head_tx = (void *)tx_q->dma_tx; 1307 desc_size = sizeof(struct dma_desc); 1308 } 1309 1310 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1311 tx_q->dma_tx_phy, desc_size); 1312 } 1313 } 1314 1315 static void stmmac_display_rings(struct stmmac_priv *priv) 1316 { 1317 /* Display RX ring */ 1318 stmmac_display_rx_rings(priv); 1319 1320 /* Display TX ring */ 1321 stmmac_display_tx_rings(priv); 1322 } 1323 1324 static int stmmac_set_bfsize(int mtu, int bufsize) 1325 { 1326 int ret = bufsize; 1327 1328 if (mtu >= BUF_SIZE_8KiB) 1329 ret = BUF_SIZE_16KiB; 1330 else if (mtu >= BUF_SIZE_4KiB) 1331 ret = BUF_SIZE_8KiB; 1332 else if (mtu >= BUF_SIZE_2KiB) 1333 ret = BUF_SIZE_4KiB; 1334 else if (mtu > DEFAULT_BUFSIZE) 1335 ret = BUF_SIZE_2KiB; 1336 else 1337 ret = DEFAULT_BUFSIZE; 1338 1339 return ret; 1340 } 1341 1342 /** 1343 * stmmac_clear_rx_descriptors - clear RX descriptors 1344 * @priv: driver private structure 1345 * @queue: RX queue index 1346 * Description: this function is called to clear the RX descriptors 1347 * in case of both basic and extended descriptors are used. 1348 */ 1349 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1350 { 1351 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1352 int i; 1353 1354 /* Clear the RX descriptors */ 1355 for (i = 0; i < priv->dma_rx_size; i++) 1356 if (priv->extend_desc) 1357 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1358 priv->use_riwt, priv->mode, 1359 (i == priv->dma_rx_size - 1), 1360 priv->dma_buf_sz); 1361 else 1362 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1363 priv->use_riwt, priv->mode, 1364 (i == priv->dma_rx_size - 1), 1365 priv->dma_buf_sz); 1366 } 1367 1368 /** 1369 * stmmac_clear_tx_descriptors - clear tx descriptors 1370 * @priv: driver private structure 1371 * @queue: TX queue index. 1372 * Description: this function is called to clear the TX descriptors 1373 * in case of both basic and extended descriptors are used. 1374 */ 1375 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1376 { 1377 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1378 int i; 1379 1380 /* Clear the TX descriptors */ 1381 for (i = 0; i < priv->dma_tx_size; i++) { 1382 int last = (i == (priv->dma_tx_size - 1)); 1383 struct dma_desc *p; 1384 1385 if (priv->extend_desc) 1386 p = &tx_q->dma_etx[i].basic; 1387 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1388 p = &tx_q->dma_entx[i].basic; 1389 else 1390 p = &tx_q->dma_tx[i]; 1391 1392 stmmac_init_tx_desc(priv, p, priv->mode, last); 1393 } 1394 } 1395 1396 /** 1397 * stmmac_clear_descriptors - clear descriptors 1398 * @priv: driver private structure 1399 * Description: this function is called to clear the TX and RX descriptors 1400 * in case of both basic and extended descriptors are used. 1401 */ 1402 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1403 { 1404 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1405 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1406 u32 queue; 1407 1408 /* Clear the RX descriptors */ 1409 for (queue = 0; queue < rx_queue_cnt; queue++) 1410 stmmac_clear_rx_descriptors(priv, queue); 1411 1412 /* Clear the TX descriptors */ 1413 for (queue = 0; queue < tx_queue_cnt; queue++) 1414 stmmac_clear_tx_descriptors(priv, queue); 1415 } 1416 1417 /** 1418 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1419 * @priv: driver private structure 1420 * @p: descriptor pointer 1421 * @i: descriptor index 1422 * @flags: gfp flag 1423 * @queue: RX queue index 1424 * Description: this function is called to allocate a receive buffer, perform 1425 * the DMA mapping and init the descriptor. 1426 */ 1427 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1428 int i, gfp_t flags, u32 queue) 1429 { 1430 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1431 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1432 1433 if (!buf->page) { 1434 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 1435 if (!buf->page) 1436 return -ENOMEM; 1437 buf->page_offset = stmmac_rx_offset(priv); 1438 } 1439 1440 if (priv->sph && !buf->sec_page) { 1441 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 1442 if (!buf->sec_page) 1443 return -ENOMEM; 1444 1445 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1446 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1447 } else { 1448 buf->sec_page = NULL; 1449 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1450 } 1451 1452 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1453 1454 stmmac_set_desc_addr(priv, p, buf->addr); 1455 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1456 stmmac_init_desc3(priv, p); 1457 1458 return 0; 1459 } 1460 1461 /** 1462 * stmmac_free_rx_buffer - free RX dma buffers 1463 * @priv: private structure 1464 * @queue: RX queue index 1465 * @i: buffer index. 1466 */ 1467 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1468 { 1469 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1470 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1471 1472 if (buf->page) 1473 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1474 buf->page = NULL; 1475 1476 if (buf->sec_page) 1477 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1478 buf->sec_page = NULL; 1479 } 1480 1481 /** 1482 * stmmac_free_tx_buffer - free RX dma buffers 1483 * @priv: private structure 1484 * @queue: RX queue index 1485 * @i: buffer index. 1486 */ 1487 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1488 { 1489 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1490 1491 if (tx_q->tx_skbuff_dma[i].buf && 1492 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1493 if (tx_q->tx_skbuff_dma[i].map_as_page) 1494 dma_unmap_page(priv->device, 1495 tx_q->tx_skbuff_dma[i].buf, 1496 tx_q->tx_skbuff_dma[i].len, 1497 DMA_TO_DEVICE); 1498 else 1499 dma_unmap_single(priv->device, 1500 tx_q->tx_skbuff_dma[i].buf, 1501 tx_q->tx_skbuff_dma[i].len, 1502 DMA_TO_DEVICE); 1503 } 1504 1505 if (tx_q->xdpf[i] && 1506 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1507 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1508 xdp_return_frame(tx_q->xdpf[i]); 1509 tx_q->xdpf[i] = NULL; 1510 } 1511 1512 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1513 tx_q->xsk_frames_done++; 1514 1515 if (tx_q->tx_skbuff[i] && 1516 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1517 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1518 tx_q->tx_skbuff[i] = NULL; 1519 } 1520 1521 tx_q->tx_skbuff_dma[i].buf = 0; 1522 tx_q->tx_skbuff_dma[i].map_as_page = false; 1523 } 1524 1525 /** 1526 * dma_free_rx_skbufs - free RX dma buffers 1527 * @priv: private structure 1528 * @queue: RX queue index 1529 */ 1530 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1531 { 1532 int i; 1533 1534 for (i = 0; i < priv->dma_rx_size; i++) 1535 stmmac_free_rx_buffer(priv, queue, i); 1536 } 1537 1538 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1539 gfp_t flags) 1540 { 1541 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1542 int i; 1543 1544 for (i = 0; i < priv->dma_rx_size; i++) { 1545 struct dma_desc *p; 1546 int ret; 1547 1548 if (priv->extend_desc) 1549 p = &((rx_q->dma_erx + i)->basic); 1550 else 1551 p = rx_q->dma_rx + i; 1552 1553 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1554 queue); 1555 if (ret) 1556 return ret; 1557 1558 rx_q->buf_alloc_num++; 1559 } 1560 1561 return 0; 1562 } 1563 1564 /** 1565 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1566 * @priv: private structure 1567 * @queue: RX queue index 1568 */ 1569 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1570 { 1571 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1572 int i; 1573 1574 for (i = 0; i < priv->dma_rx_size; i++) { 1575 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1576 1577 if (!buf->xdp) 1578 continue; 1579 1580 xsk_buff_free(buf->xdp); 1581 buf->xdp = NULL; 1582 } 1583 } 1584 1585 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1586 { 1587 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1588 int i; 1589 1590 for (i = 0; i < priv->dma_rx_size; i++) { 1591 struct stmmac_rx_buffer *buf; 1592 dma_addr_t dma_addr; 1593 struct dma_desc *p; 1594 1595 if (priv->extend_desc) 1596 p = (struct dma_desc *)(rx_q->dma_erx + i); 1597 else 1598 p = rx_q->dma_rx + i; 1599 1600 buf = &rx_q->buf_pool[i]; 1601 1602 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1603 if (!buf->xdp) 1604 return -ENOMEM; 1605 1606 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1607 stmmac_set_desc_addr(priv, p, dma_addr); 1608 rx_q->buf_alloc_num++; 1609 } 1610 1611 return 0; 1612 } 1613 1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1615 { 1616 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1617 return NULL; 1618 1619 return xsk_get_pool_from_qid(priv->dev, queue); 1620 } 1621 1622 /** 1623 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1624 * @priv: driver private structure 1625 * @queue: RX queue index 1626 * @flags: gfp flag. 1627 * Description: this function initializes the DMA RX descriptors 1628 * and allocates the socket buffers. It supports the chained and ring 1629 * modes. 1630 */ 1631 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1632 { 1633 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1634 int ret; 1635 1636 netif_dbg(priv, probe, priv->dev, 1637 "(%s) dma_rx_phy=0x%08x\n", __func__, 1638 (u32)rx_q->dma_rx_phy); 1639 1640 stmmac_clear_rx_descriptors(priv, queue); 1641 1642 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1643 1644 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1645 1646 if (rx_q->xsk_pool) { 1647 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1648 MEM_TYPE_XSK_BUFF_POOL, 1649 NULL)); 1650 netdev_info(priv->dev, 1651 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1652 rx_q->queue_index); 1653 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1654 } else { 1655 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1656 MEM_TYPE_PAGE_POOL, 1657 rx_q->page_pool)); 1658 netdev_info(priv->dev, 1659 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1660 rx_q->queue_index); 1661 } 1662 1663 if (rx_q->xsk_pool) { 1664 /* RX XDP ZC buffer pool may not be populated, e.g. 1665 * xdpsock TX-only. 1666 */ 1667 stmmac_alloc_rx_buffers_zc(priv, queue); 1668 } else { 1669 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1670 if (ret < 0) 1671 return -ENOMEM; 1672 } 1673 1674 rx_q->cur_rx = 0; 1675 rx_q->dirty_rx = 0; 1676 1677 /* Setup the chained descriptor addresses */ 1678 if (priv->mode == STMMAC_CHAIN_MODE) { 1679 if (priv->extend_desc) 1680 stmmac_mode_init(priv, rx_q->dma_erx, 1681 rx_q->dma_rx_phy, 1682 priv->dma_rx_size, 1); 1683 else 1684 stmmac_mode_init(priv, rx_q->dma_rx, 1685 rx_q->dma_rx_phy, 1686 priv->dma_rx_size, 0); 1687 } 1688 1689 return 0; 1690 } 1691 1692 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1693 { 1694 struct stmmac_priv *priv = netdev_priv(dev); 1695 u32 rx_count = priv->plat->rx_queues_to_use; 1696 u32 queue; 1697 int ret; 1698 1699 /* RX INITIALIZATION */ 1700 netif_dbg(priv, probe, priv->dev, 1701 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1702 1703 for (queue = 0; queue < rx_count; queue++) { 1704 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1705 if (ret) 1706 goto err_init_rx_buffers; 1707 } 1708 1709 return 0; 1710 1711 err_init_rx_buffers: 1712 while (queue >= 0) { 1713 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1714 1715 if (rx_q->xsk_pool) 1716 dma_free_rx_xskbufs(priv, queue); 1717 else 1718 dma_free_rx_skbufs(priv, queue); 1719 1720 rx_q->buf_alloc_num = 0; 1721 rx_q->xsk_pool = NULL; 1722 1723 if (queue == 0) 1724 break; 1725 1726 queue--; 1727 } 1728 1729 return ret; 1730 } 1731 1732 /** 1733 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1734 * @priv: driver private structure 1735 * @queue : TX queue index 1736 * Description: this function initializes the DMA TX descriptors 1737 * and allocates the socket buffers. It supports the chained and ring 1738 * modes. 1739 */ 1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1741 { 1742 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1743 int i; 1744 1745 netif_dbg(priv, probe, priv->dev, 1746 "(%s) dma_tx_phy=0x%08x\n", __func__, 1747 (u32)tx_q->dma_tx_phy); 1748 1749 /* Setup the chained descriptor addresses */ 1750 if (priv->mode == STMMAC_CHAIN_MODE) { 1751 if (priv->extend_desc) 1752 stmmac_mode_init(priv, tx_q->dma_etx, 1753 tx_q->dma_tx_phy, 1754 priv->dma_tx_size, 1); 1755 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1756 stmmac_mode_init(priv, tx_q->dma_tx, 1757 tx_q->dma_tx_phy, 1758 priv->dma_tx_size, 0); 1759 } 1760 1761 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1762 1763 for (i = 0; i < priv->dma_tx_size; i++) { 1764 struct dma_desc *p; 1765 1766 if (priv->extend_desc) 1767 p = &((tx_q->dma_etx + i)->basic); 1768 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1769 p = &((tx_q->dma_entx + i)->basic); 1770 else 1771 p = tx_q->dma_tx + i; 1772 1773 stmmac_clear_desc(priv, p); 1774 1775 tx_q->tx_skbuff_dma[i].buf = 0; 1776 tx_q->tx_skbuff_dma[i].map_as_page = false; 1777 tx_q->tx_skbuff_dma[i].len = 0; 1778 tx_q->tx_skbuff_dma[i].last_segment = false; 1779 tx_q->tx_skbuff[i] = NULL; 1780 } 1781 1782 tx_q->dirty_tx = 0; 1783 tx_q->cur_tx = 0; 1784 tx_q->mss = 0; 1785 1786 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1787 1788 return 0; 1789 } 1790 1791 static int init_dma_tx_desc_rings(struct net_device *dev) 1792 { 1793 struct stmmac_priv *priv = netdev_priv(dev); 1794 u32 tx_queue_cnt; 1795 u32 queue; 1796 1797 tx_queue_cnt = priv->plat->tx_queues_to_use; 1798 1799 for (queue = 0; queue < tx_queue_cnt; queue++) 1800 __init_dma_tx_desc_rings(priv, queue); 1801 1802 return 0; 1803 } 1804 1805 /** 1806 * init_dma_desc_rings - init the RX/TX descriptor rings 1807 * @dev: net device structure 1808 * @flags: gfp flag. 1809 * Description: this function initializes the DMA RX/TX descriptors 1810 * and allocates the socket buffers. It supports the chained and ring 1811 * modes. 1812 */ 1813 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1814 { 1815 struct stmmac_priv *priv = netdev_priv(dev); 1816 int ret; 1817 1818 ret = init_dma_rx_desc_rings(dev, flags); 1819 if (ret) 1820 return ret; 1821 1822 ret = init_dma_tx_desc_rings(dev); 1823 1824 stmmac_clear_descriptors(priv); 1825 1826 if (netif_msg_hw(priv)) 1827 stmmac_display_rings(priv); 1828 1829 return ret; 1830 } 1831 1832 /** 1833 * dma_free_tx_skbufs - free TX dma buffers 1834 * @priv: private structure 1835 * @queue: TX queue index 1836 */ 1837 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1838 { 1839 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1840 int i; 1841 1842 tx_q->xsk_frames_done = 0; 1843 1844 for (i = 0; i < priv->dma_tx_size; i++) 1845 stmmac_free_tx_buffer(priv, queue, i); 1846 1847 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1848 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1849 tx_q->xsk_frames_done = 0; 1850 tx_q->xsk_pool = NULL; 1851 } 1852 } 1853 1854 /** 1855 * stmmac_free_tx_skbufs - free TX skb buffers 1856 * @priv: private structure 1857 */ 1858 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1859 { 1860 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1861 u32 queue; 1862 1863 for (queue = 0; queue < tx_queue_cnt; queue++) 1864 dma_free_tx_skbufs(priv, queue); 1865 } 1866 1867 /** 1868 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1869 * @priv: private structure 1870 * @queue: RX queue index 1871 */ 1872 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1873 { 1874 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1875 1876 /* Release the DMA RX socket buffers */ 1877 if (rx_q->xsk_pool) 1878 dma_free_rx_xskbufs(priv, queue); 1879 else 1880 dma_free_rx_skbufs(priv, queue); 1881 1882 rx_q->buf_alloc_num = 0; 1883 rx_q->xsk_pool = NULL; 1884 1885 /* Free DMA regions of consistent memory previously allocated */ 1886 if (!priv->extend_desc) 1887 dma_free_coherent(priv->device, priv->dma_rx_size * 1888 sizeof(struct dma_desc), 1889 rx_q->dma_rx, rx_q->dma_rx_phy); 1890 else 1891 dma_free_coherent(priv->device, priv->dma_rx_size * 1892 sizeof(struct dma_extended_desc), 1893 rx_q->dma_erx, rx_q->dma_rx_phy); 1894 1895 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1896 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1897 1898 kfree(rx_q->buf_pool); 1899 if (rx_q->page_pool) 1900 page_pool_destroy(rx_q->page_pool); 1901 } 1902 1903 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1904 { 1905 u32 rx_count = priv->plat->rx_queues_to_use; 1906 u32 queue; 1907 1908 /* Free RX queue resources */ 1909 for (queue = 0; queue < rx_count; queue++) 1910 __free_dma_rx_desc_resources(priv, queue); 1911 } 1912 1913 /** 1914 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1915 * @priv: private structure 1916 * @queue: TX queue index 1917 */ 1918 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1919 { 1920 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1921 size_t size; 1922 void *addr; 1923 1924 /* Release the DMA TX socket buffers */ 1925 dma_free_tx_skbufs(priv, queue); 1926 1927 if (priv->extend_desc) { 1928 size = sizeof(struct dma_extended_desc); 1929 addr = tx_q->dma_etx; 1930 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1931 size = sizeof(struct dma_edesc); 1932 addr = tx_q->dma_entx; 1933 } else { 1934 size = sizeof(struct dma_desc); 1935 addr = tx_q->dma_tx; 1936 } 1937 1938 size *= priv->dma_tx_size; 1939 1940 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1941 1942 kfree(tx_q->tx_skbuff_dma); 1943 kfree(tx_q->tx_skbuff); 1944 } 1945 1946 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1947 { 1948 u32 tx_count = priv->plat->tx_queues_to_use; 1949 u32 queue; 1950 1951 /* Free TX queue resources */ 1952 for (queue = 0; queue < tx_count; queue++) 1953 __free_dma_tx_desc_resources(priv, queue); 1954 } 1955 1956 /** 1957 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1958 * @priv: private structure 1959 * @queue: RX queue index 1960 * Description: according to which descriptor can be used (extend or basic) 1961 * this function allocates the resources for TX and RX paths. In case of 1962 * reception, for example, it pre-allocated the RX socket buffer in order to 1963 * allow zero-copy mechanism. 1964 */ 1965 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1966 { 1967 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1968 struct stmmac_channel *ch = &priv->channel[queue]; 1969 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1970 struct page_pool_params pp_params = { 0 }; 1971 unsigned int num_pages; 1972 unsigned int napi_id; 1973 int ret; 1974 1975 rx_q->queue_index = queue; 1976 rx_q->priv_data = priv; 1977 1978 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1979 pp_params.pool_size = priv->dma_rx_size; 1980 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1981 pp_params.order = ilog2(num_pages); 1982 pp_params.nid = dev_to_node(priv->device); 1983 pp_params.dev = priv->device; 1984 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1985 pp_params.offset = stmmac_rx_offset(priv); 1986 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 1987 1988 rx_q->page_pool = page_pool_create(&pp_params); 1989 if (IS_ERR(rx_q->page_pool)) { 1990 ret = PTR_ERR(rx_q->page_pool); 1991 rx_q->page_pool = NULL; 1992 return ret; 1993 } 1994 1995 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1996 sizeof(*rx_q->buf_pool), 1997 GFP_KERNEL); 1998 if (!rx_q->buf_pool) 1999 return -ENOMEM; 2000 2001 if (priv->extend_desc) { 2002 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2003 priv->dma_rx_size * 2004 sizeof(struct dma_extended_desc), 2005 &rx_q->dma_rx_phy, 2006 GFP_KERNEL); 2007 if (!rx_q->dma_erx) 2008 return -ENOMEM; 2009 2010 } else { 2011 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2012 priv->dma_rx_size * 2013 sizeof(struct dma_desc), 2014 &rx_q->dma_rx_phy, 2015 GFP_KERNEL); 2016 if (!rx_q->dma_rx) 2017 return -ENOMEM; 2018 } 2019 2020 if (stmmac_xdp_is_enabled(priv) && 2021 test_bit(queue, priv->af_xdp_zc_qps)) 2022 napi_id = ch->rxtx_napi.napi_id; 2023 else 2024 napi_id = ch->rx_napi.napi_id; 2025 2026 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2027 rx_q->queue_index, 2028 napi_id); 2029 if (ret) { 2030 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2031 return -EINVAL; 2032 } 2033 2034 return 0; 2035 } 2036 2037 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2038 { 2039 u32 rx_count = priv->plat->rx_queues_to_use; 2040 u32 queue; 2041 int ret; 2042 2043 /* RX queues buffers and DMA */ 2044 for (queue = 0; queue < rx_count; queue++) { 2045 ret = __alloc_dma_rx_desc_resources(priv, queue); 2046 if (ret) 2047 goto err_dma; 2048 } 2049 2050 return 0; 2051 2052 err_dma: 2053 free_dma_rx_desc_resources(priv); 2054 2055 return ret; 2056 } 2057 2058 /** 2059 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2060 * @priv: private structure 2061 * @queue: TX queue index 2062 * Description: according to which descriptor can be used (extend or basic) 2063 * this function allocates the resources for TX and RX paths. In case of 2064 * reception, for example, it pre-allocated the RX socket buffer in order to 2065 * allow zero-copy mechanism. 2066 */ 2067 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2068 { 2069 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2070 size_t size; 2071 void *addr; 2072 2073 tx_q->queue_index = queue; 2074 tx_q->priv_data = priv; 2075 2076 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2077 sizeof(*tx_q->tx_skbuff_dma), 2078 GFP_KERNEL); 2079 if (!tx_q->tx_skbuff_dma) 2080 return -ENOMEM; 2081 2082 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2083 sizeof(struct sk_buff *), 2084 GFP_KERNEL); 2085 if (!tx_q->tx_skbuff) 2086 return -ENOMEM; 2087 2088 if (priv->extend_desc) 2089 size = sizeof(struct dma_extended_desc); 2090 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2091 size = sizeof(struct dma_edesc); 2092 else 2093 size = sizeof(struct dma_desc); 2094 2095 size *= priv->dma_tx_size; 2096 2097 addr = dma_alloc_coherent(priv->device, size, 2098 &tx_q->dma_tx_phy, GFP_KERNEL); 2099 if (!addr) 2100 return -ENOMEM; 2101 2102 if (priv->extend_desc) 2103 tx_q->dma_etx = addr; 2104 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2105 tx_q->dma_entx = addr; 2106 else 2107 tx_q->dma_tx = addr; 2108 2109 return 0; 2110 } 2111 2112 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2113 { 2114 u32 tx_count = priv->plat->tx_queues_to_use; 2115 u32 queue; 2116 int ret; 2117 2118 /* TX queues buffers and DMA */ 2119 for (queue = 0; queue < tx_count; queue++) { 2120 ret = __alloc_dma_tx_desc_resources(priv, queue); 2121 if (ret) 2122 goto err_dma; 2123 } 2124 2125 return 0; 2126 2127 err_dma: 2128 free_dma_tx_desc_resources(priv); 2129 return ret; 2130 } 2131 2132 /** 2133 * alloc_dma_desc_resources - alloc TX/RX resources. 2134 * @priv: private structure 2135 * Description: according to which descriptor can be used (extend or basic) 2136 * this function allocates the resources for TX and RX paths. In case of 2137 * reception, for example, it pre-allocated the RX socket buffer in order to 2138 * allow zero-copy mechanism. 2139 */ 2140 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2141 { 2142 /* RX Allocation */ 2143 int ret = alloc_dma_rx_desc_resources(priv); 2144 2145 if (ret) 2146 return ret; 2147 2148 ret = alloc_dma_tx_desc_resources(priv); 2149 2150 return ret; 2151 } 2152 2153 /** 2154 * free_dma_desc_resources - free dma desc resources 2155 * @priv: private structure 2156 */ 2157 static void free_dma_desc_resources(struct stmmac_priv *priv) 2158 { 2159 /* Release the DMA TX socket buffers */ 2160 free_dma_tx_desc_resources(priv); 2161 2162 /* Release the DMA RX socket buffers later 2163 * to ensure all pending XDP_TX buffers are returned. 2164 */ 2165 free_dma_rx_desc_resources(priv); 2166 } 2167 2168 /** 2169 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2170 * @priv: driver private structure 2171 * Description: It is used for enabling the rx queues in the MAC 2172 */ 2173 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2174 { 2175 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2176 int queue; 2177 u8 mode; 2178 2179 for (queue = 0; queue < rx_queues_count; queue++) { 2180 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2181 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2182 } 2183 } 2184 2185 /** 2186 * stmmac_start_rx_dma - start RX DMA channel 2187 * @priv: driver private structure 2188 * @chan: RX channel index 2189 * Description: 2190 * This starts a RX DMA channel 2191 */ 2192 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2193 { 2194 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2195 stmmac_start_rx(priv, priv->ioaddr, chan); 2196 } 2197 2198 /** 2199 * stmmac_start_tx_dma - start TX DMA channel 2200 * @priv: driver private structure 2201 * @chan: TX channel index 2202 * Description: 2203 * This starts a TX DMA channel 2204 */ 2205 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2206 { 2207 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2208 stmmac_start_tx(priv, priv->ioaddr, chan); 2209 } 2210 2211 /** 2212 * stmmac_stop_rx_dma - stop RX DMA channel 2213 * @priv: driver private structure 2214 * @chan: RX channel index 2215 * Description: 2216 * This stops a RX DMA channel 2217 */ 2218 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2219 { 2220 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2221 stmmac_stop_rx(priv, priv->ioaddr, chan); 2222 } 2223 2224 /** 2225 * stmmac_stop_tx_dma - stop TX DMA channel 2226 * @priv: driver private structure 2227 * @chan: TX channel index 2228 * Description: 2229 * This stops a TX DMA channel 2230 */ 2231 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2232 { 2233 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2234 stmmac_stop_tx(priv, priv->ioaddr, chan); 2235 } 2236 2237 /** 2238 * stmmac_start_all_dma - start all RX and TX DMA channels 2239 * @priv: driver private structure 2240 * Description: 2241 * This starts all the RX and TX DMA channels 2242 */ 2243 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2244 { 2245 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2246 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2247 u32 chan = 0; 2248 2249 for (chan = 0; chan < rx_channels_count; chan++) 2250 stmmac_start_rx_dma(priv, chan); 2251 2252 for (chan = 0; chan < tx_channels_count; chan++) 2253 stmmac_start_tx_dma(priv, chan); 2254 } 2255 2256 /** 2257 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2258 * @priv: driver private structure 2259 * Description: 2260 * This stops the RX and TX DMA channels 2261 */ 2262 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2263 { 2264 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2265 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2266 u32 chan = 0; 2267 2268 for (chan = 0; chan < rx_channels_count; chan++) 2269 stmmac_stop_rx_dma(priv, chan); 2270 2271 for (chan = 0; chan < tx_channels_count; chan++) 2272 stmmac_stop_tx_dma(priv, chan); 2273 } 2274 2275 /** 2276 * stmmac_dma_operation_mode - HW DMA operation mode 2277 * @priv: driver private structure 2278 * Description: it is used for configuring the DMA operation mode register in 2279 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2280 */ 2281 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2282 { 2283 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2284 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2285 int rxfifosz = priv->plat->rx_fifo_size; 2286 int txfifosz = priv->plat->tx_fifo_size; 2287 u32 txmode = 0; 2288 u32 rxmode = 0; 2289 u32 chan = 0; 2290 u8 qmode = 0; 2291 2292 if (rxfifosz == 0) 2293 rxfifosz = priv->dma_cap.rx_fifo_size; 2294 if (txfifosz == 0) 2295 txfifosz = priv->dma_cap.tx_fifo_size; 2296 2297 /* Adjust for real per queue fifo size */ 2298 rxfifosz /= rx_channels_count; 2299 txfifosz /= tx_channels_count; 2300 2301 if (priv->plat->force_thresh_dma_mode) { 2302 txmode = tc; 2303 rxmode = tc; 2304 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2305 /* 2306 * In case of GMAC, SF mode can be enabled 2307 * to perform the TX COE in HW. This depends on: 2308 * 1) TX COE if actually supported 2309 * 2) There is no bugged Jumbo frame support 2310 * that needs to not insert csum in the TDES. 2311 */ 2312 txmode = SF_DMA_MODE; 2313 rxmode = SF_DMA_MODE; 2314 priv->xstats.threshold = SF_DMA_MODE; 2315 } else { 2316 txmode = tc; 2317 rxmode = SF_DMA_MODE; 2318 } 2319 2320 /* configure all channels */ 2321 for (chan = 0; chan < rx_channels_count; chan++) { 2322 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2323 u32 buf_size; 2324 2325 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2326 2327 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2328 rxfifosz, qmode); 2329 2330 if (rx_q->xsk_pool) { 2331 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2332 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2333 buf_size, 2334 chan); 2335 } else { 2336 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2337 priv->dma_buf_sz, 2338 chan); 2339 } 2340 } 2341 2342 for (chan = 0; chan < tx_channels_count; chan++) { 2343 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2344 2345 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2346 txfifosz, qmode); 2347 } 2348 } 2349 2350 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2351 { 2352 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2353 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2354 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2355 unsigned int entry = tx_q->cur_tx; 2356 struct dma_desc *tx_desc = NULL; 2357 struct xdp_desc xdp_desc; 2358 bool work_done = true; 2359 2360 /* Avoids TX time-out as we are sharing with slow path */ 2361 nq->trans_start = jiffies; 2362 2363 budget = min(budget, stmmac_tx_avail(priv, queue)); 2364 2365 while (budget-- > 0) { 2366 dma_addr_t dma_addr; 2367 bool set_ic; 2368 2369 /* We are sharing with slow path and stop XSK TX desc submission when 2370 * available TX ring is less than threshold. 2371 */ 2372 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2373 !netif_carrier_ok(priv->dev)) { 2374 work_done = false; 2375 break; 2376 } 2377 2378 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2379 break; 2380 2381 if (likely(priv->extend_desc)) 2382 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2383 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2384 tx_desc = &tx_q->dma_entx[entry].basic; 2385 else 2386 tx_desc = tx_q->dma_tx + entry; 2387 2388 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2389 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2390 2391 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2392 2393 /* To return XDP buffer to XSK pool, we simple call 2394 * xsk_tx_completed(), so we don't need to fill up 2395 * 'buf' and 'xdpf'. 2396 */ 2397 tx_q->tx_skbuff_dma[entry].buf = 0; 2398 tx_q->xdpf[entry] = NULL; 2399 2400 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2401 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2402 tx_q->tx_skbuff_dma[entry].last_segment = true; 2403 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2404 2405 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2406 2407 tx_q->tx_count_frames++; 2408 2409 if (!priv->tx_coal_frames[queue]) 2410 set_ic = false; 2411 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2412 set_ic = true; 2413 else 2414 set_ic = false; 2415 2416 if (set_ic) { 2417 tx_q->tx_count_frames = 0; 2418 stmmac_set_tx_ic(priv, tx_desc); 2419 priv->xstats.tx_set_ic_bit++; 2420 } 2421 2422 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2423 true, priv->mode, true, true, 2424 xdp_desc.len); 2425 2426 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2427 2428 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2429 entry = tx_q->cur_tx; 2430 } 2431 2432 if (tx_desc) { 2433 stmmac_flush_tx_descriptors(priv, queue); 2434 xsk_tx_release(pool); 2435 } 2436 2437 /* Return true if all of the 3 conditions are met 2438 * a) TX Budget is still available 2439 * b) work_done = true when XSK TX desc peek is empty (no more 2440 * pending XSK TX for transmission) 2441 */ 2442 return !!budget && work_done; 2443 } 2444 2445 /** 2446 * stmmac_tx_clean - to manage the transmission completion 2447 * @priv: driver private structure 2448 * @budget: napi budget limiting this functions packet handling 2449 * @queue: TX queue index 2450 * Description: it reclaims the transmit resources after transmission completes. 2451 */ 2452 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2453 { 2454 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2455 unsigned int bytes_compl = 0, pkts_compl = 0; 2456 unsigned int entry, xmits = 0, count = 0; 2457 2458 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2459 2460 priv->xstats.tx_clean++; 2461 2462 tx_q->xsk_frames_done = 0; 2463 2464 entry = tx_q->dirty_tx; 2465 2466 /* Try to clean all TX complete frame in 1 shot */ 2467 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2468 struct xdp_frame *xdpf; 2469 struct sk_buff *skb; 2470 struct dma_desc *p; 2471 int status; 2472 2473 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2474 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2475 xdpf = tx_q->xdpf[entry]; 2476 skb = NULL; 2477 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2478 xdpf = NULL; 2479 skb = tx_q->tx_skbuff[entry]; 2480 } else { 2481 xdpf = NULL; 2482 skb = NULL; 2483 } 2484 2485 if (priv->extend_desc) 2486 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2487 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2488 p = &tx_q->dma_entx[entry].basic; 2489 else 2490 p = tx_q->dma_tx + entry; 2491 2492 status = stmmac_tx_status(priv, &priv->dev->stats, 2493 &priv->xstats, p, priv->ioaddr); 2494 /* Check if the descriptor is owned by the DMA */ 2495 if (unlikely(status & tx_dma_own)) 2496 break; 2497 2498 count++; 2499 2500 /* Make sure descriptor fields are read after reading 2501 * the own bit. 2502 */ 2503 dma_rmb(); 2504 2505 /* Just consider the last segment and ...*/ 2506 if (likely(!(status & tx_not_ls))) { 2507 /* ... verify the status error condition */ 2508 if (unlikely(status & tx_err)) { 2509 priv->dev->stats.tx_errors++; 2510 } else { 2511 priv->dev->stats.tx_packets++; 2512 priv->xstats.tx_pkt_n++; 2513 } 2514 if (skb) 2515 stmmac_get_tx_hwtstamp(priv, p, skb); 2516 } 2517 2518 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2519 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2520 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2521 dma_unmap_page(priv->device, 2522 tx_q->tx_skbuff_dma[entry].buf, 2523 tx_q->tx_skbuff_dma[entry].len, 2524 DMA_TO_DEVICE); 2525 else 2526 dma_unmap_single(priv->device, 2527 tx_q->tx_skbuff_dma[entry].buf, 2528 tx_q->tx_skbuff_dma[entry].len, 2529 DMA_TO_DEVICE); 2530 tx_q->tx_skbuff_dma[entry].buf = 0; 2531 tx_q->tx_skbuff_dma[entry].len = 0; 2532 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2533 } 2534 2535 stmmac_clean_desc3(priv, tx_q, p); 2536 2537 tx_q->tx_skbuff_dma[entry].last_segment = false; 2538 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2539 2540 if (xdpf && 2541 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2542 xdp_return_frame_rx_napi(xdpf); 2543 tx_q->xdpf[entry] = NULL; 2544 } 2545 2546 if (xdpf && 2547 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2548 xdp_return_frame(xdpf); 2549 tx_q->xdpf[entry] = NULL; 2550 } 2551 2552 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2553 tx_q->xsk_frames_done++; 2554 2555 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2556 if (likely(skb)) { 2557 pkts_compl++; 2558 bytes_compl += skb->len; 2559 dev_consume_skb_any(skb); 2560 tx_q->tx_skbuff[entry] = NULL; 2561 } 2562 } 2563 2564 stmmac_release_tx_desc(priv, p, priv->mode); 2565 2566 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2567 } 2568 tx_q->dirty_tx = entry; 2569 2570 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2571 pkts_compl, bytes_compl); 2572 2573 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2574 queue))) && 2575 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2576 2577 netif_dbg(priv, tx_done, priv->dev, 2578 "%s: restart transmit\n", __func__); 2579 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2580 } 2581 2582 if (tx_q->xsk_pool) { 2583 bool work_done; 2584 2585 if (tx_q->xsk_frames_done) 2586 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2587 2588 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2589 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2590 2591 /* For XSK TX, we try to send as many as possible. 2592 * If XSK work done (XSK TX desc empty and budget still 2593 * available), return "budget - 1" to reenable TX IRQ. 2594 * Else, return "budget" to make NAPI continue polling. 2595 */ 2596 work_done = stmmac_xdp_xmit_zc(priv, queue, 2597 STMMAC_XSK_TX_BUDGET_MAX); 2598 if (work_done) 2599 xmits = budget - 1; 2600 else 2601 xmits = budget; 2602 } 2603 2604 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2605 priv->eee_sw_timer_en) { 2606 stmmac_enable_eee_mode(priv); 2607 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2608 } 2609 2610 /* We still have pending packets, let's call for a new scheduling */ 2611 if (tx_q->dirty_tx != tx_q->cur_tx) 2612 hrtimer_start(&tx_q->txtimer, 2613 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2614 HRTIMER_MODE_REL); 2615 2616 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2617 2618 /* Combine decisions from TX clean and XSK TX */ 2619 return max(count, xmits); 2620 } 2621 2622 /** 2623 * stmmac_tx_err - to manage the tx error 2624 * @priv: driver private structure 2625 * @chan: channel index 2626 * Description: it cleans the descriptors and restarts the transmission 2627 * in case of transmission errors. 2628 */ 2629 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2630 { 2631 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2632 2633 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2634 2635 stmmac_stop_tx_dma(priv, chan); 2636 dma_free_tx_skbufs(priv, chan); 2637 stmmac_clear_tx_descriptors(priv, chan); 2638 tx_q->dirty_tx = 0; 2639 tx_q->cur_tx = 0; 2640 tx_q->mss = 0; 2641 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2642 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2643 tx_q->dma_tx_phy, chan); 2644 stmmac_start_tx_dma(priv, chan); 2645 2646 priv->dev->stats.tx_errors++; 2647 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2648 } 2649 2650 /** 2651 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2652 * @priv: driver private structure 2653 * @txmode: TX operating mode 2654 * @rxmode: RX operating mode 2655 * @chan: channel index 2656 * Description: it is used for configuring of the DMA operation mode in 2657 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2658 * mode. 2659 */ 2660 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2661 u32 rxmode, u32 chan) 2662 { 2663 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2664 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2665 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2666 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2667 int rxfifosz = priv->plat->rx_fifo_size; 2668 int txfifosz = priv->plat->tx_fifo_size; 2669 2670 if (rxfifosz == 0) 2671 rxfifosz = priv->dma_cap.rx_fifo_size; 2672 if (txfifosz == 0) 2673 txfifosz = priv->dma_cap.tx_fifo_size; 2674 2675 /* Adjust for real per queue fifo size */ 2676 rxfifosz /= rx_channels_count; 2677 txfifosz /= tx_channels_count; 2678 2679 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2680 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2681 } 2682 2683 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2684 { 2685 int ret; 2686 2687 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2688 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2689 if (ret && (ret != -EINVAL)) { 2690 stmmac_global_err(priv); 2691 return true; 2692 } 2693 2694 return false; 2695 } 2696 2697 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2698 { 2699 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2700 &priv->xstats, chan, dir); 2701 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2702 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2703 struct stmmac_channel *ch = &priv->channel[chan]; 2704 struct napi_struct *rx_napi; 2705 struct napi_struct *tx_napi; 2706 unsigned long flags; 2707 2708 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2709 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2710 2711 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2712 if (napi_schedule_prep(rx_napi)) { 2713 spin_lock_irqsave(&ch->lock, flags); 2714 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2715 spin_unlock_irqrestore(&ch->lock, flags); 2716 __napi_schedule(rx_napi); 2717 } 2718 } 2719 2720 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2721 if (napi_schedule_prep(tx_napi)) { 2722 spin_lock_irqsave(&ch->lock, flags); 2723 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2724 spin_unlock_irqrestore(&ch->lock, flags); 2725 __napi_schedule(tx_napi); 2726 } 2727 } 2728 2729 return status; 2730 } 2731 2732 /** 2733 * stmmac_dma_interrupt - DMA ISR 2734 * @priv: driver private structure 2735 * Description: this is the DMA ISR. It is called by the main ISR. 2736 * It calls the dwmac dma routine and schedule poll method in case of some 2737 * work can be done. 2738 */ 2739 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2740 { 2741 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2742 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2743 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2744 tx_channel_count : rx_channel_count; 2745 u32 chan; 2746 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2747 2748 /* Make sure we never check beyond our status buffer. */ 2749 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2750 channels_to_check = ARRAY_SIZE(status); 2751 2752 for (chan = 0; chan < channels_to_check; chan++) 2753 status[chan] = stmmac_napi_check(priv, chan, 2754 DMA_DIR_RXTX); 2755 2756 for (chan = 0; chan < tx_channel_count; chan++) { 2757 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2758 /* Try to bump up the dma threshold on this failure */ 2759 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 2760 (tc <= 256)) { 2761 tc += 64; 2762 if (priv->plat->force_thresh_dma_mode) 2763 stmmac_set_dma_operation_mode(priv, 2764 tc, 2765 tc, 2766 chan); 2767 else 2768 stmmac_set_dma_operation_mode(priv, 2769 tc, 2770 SF_DMA_MODE, 2771 chan); 2772 priv->xstats.threshold = tc; 2773 } 2774 } else if (unlikely(status[chan] == tx_hard_error)) { 2775 stmmac_tx_err(priv, chan); 2776 } 2777 } 2778 } 2779 2780 /** 2781 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2782 * @priv: driver private structure 2783 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2784 */ 2785 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2786 { 2787 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2788 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2789 2790 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2791 2792 if (priv->dma_cap.rmon) { 2793 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2794 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2795 } else 2796 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2797 } 2798 2799 /** 2800 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2801 * @priv: driver private structure 2802 * Description: 2803 * new GMAC chip generations have a new register to indicate the 2804 * presence of the optional feature/functions. 2805 * This can be also used to override the value passed through the 2806 * platform and necessary for old MAC10/100 and GMAC chips. 2807 */ 2808 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2809 { 2810 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2811 } 2812 2813 /** 2814 * stmmac_check_ether_addr - check if the MAC addr is valid 2815 * @priv: driver private structure 2816 * Description: 2817 * it is to verify if the MAC address is valid, in case of failures it 2818 * generates a random MAC address 2819 */ 2820 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2821 { 2822 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2823 stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0); 2824 if (!is_valid_ether_addr(priv->dev->dev_addr)) 2825 eth_hw_addr_random(priv->dev); 2826 dev_info(priv->device, "device MAC address %pM\n", 2827 priv->dev->dev_addr); 2828 } 2829 } 2830 2831 /** 2832 * stmmac_init_dma_engine - DMA init. 2833 * @priv: driver private structure 2834 * Description: 2835 * It inits the DMA invoking the specific MAC/GMAC callback. 2836 * Some DMA parameters can be passed from the platform; 2837 * in case of these are not passed a default is kept for the MAC or GMAC. 2838 */ 2839 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2840 { 2841 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2842 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2843 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2844 struct stmmac_rx_queue *rx_q; 2845 struct stmmac_tx_queue *tx_q; 2846 u32 chan = 0; 2847 int atds = 0; 2848 int ret = 0; 2849 2850 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2851 dev_err(priv->device, "Invalid DMA configuration\n"); 2852 return -EINVAL; 2853 } 2854 2855 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2856 atds = 1; 2857 2858 ret = stmmac_reset(priv, priv->ioaddr); 2859 if (ret) { 2860 dev_err(priv->device, "Failed to reset the dma\n"); 2861 return ret; 2862 } 2863 2864 /* DMA Configuration */ 2865 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2866 2867 if (priv->plat->axi) 2868 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2869 2870 /* DMA CSR Channel configuration */ 2871 for (chan = 0; chan < dma_csr_ch; chan++) 2872 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2873 2874 /* DMA RX Channel Configuration */ 2875 for (chan = 0; chan < rx_channels_count; chan++) { 2876 rx_q = &priv->rx_queue[chan]; 2877 2878 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2879 rx_q->dma_rx_phy, chan); 2880 2881 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2882 (rx_q->buf_alloc_num * 2883 sizeof(struct dma_desc)); 2884 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2885 rx_q->rx_tail_addr, chan); 2886 } 2887 2888 /* DMA TX Channel Configuration */ 2889 for (chan = 0; chan < tx_channels_count; chan++) { 2890 tx_q = &priv->tx_queue[chan]; 2891 2892 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2893 tx_q->dma_tx_phy, chan); 2894 2895 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2896 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2897 tx_q->tx_tail_addr, chan); 2898 } 2899 2900 return ret; 2901 } 2902 2903 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2904 { 2905 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2906 2907 hrtimer_start(&tx_q->txtimer, 2908 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2909 HRTIMER_MODE_REL); 2910 } 2911 2912 /** 2913 * stmmac_tx_timer - mitigation sw timer for tx. 2914 * @t: data pointer 2915 * Description: 2916 * This is the timer handler to directly invoke the stmmac_tx_clean. 2917 */ 2918 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2919 { 2920 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2921 struct stmmac_priv *priv = tx_q->priv_data; 2922 struct stmmac_channel *ch; 2923 struct napi_struct *napi; 2924 2925 ch = &priv->channel[tx_q->queue_index]; 2926 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2927 2928 if (likely(napi_schedule_prep(napi))) { 2929 unsigned long flags; 2930 2931 spin_lock_irqsave(&ch->lock, flags); 2932 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2933 spin_unlock_irqrestore(&ch->lock, flags); 2934 __napi_schedule(napi); 2935 } 2936 2937 return HRTIMER_NORESTART; 2938 } 2939 2940 /** 2941 * stmmac_init_coalesce - init mitigation options. 2942 * @priv: driver private structure 2943 * Description: 2944 * This inits the coalesce parameters: i.e. timer rate, 2945 * timer handler and default threshold used for enabling the 2946 * interrupt on completion bit. 2947 */ 2948 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2949 { 2950 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2951 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2952 u32 chan; 2953 2954 for (chan = 0; chan < tx_channel_count; chan++) { 2955 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2956 2957 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2958 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2959 2960 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2961 tx_q->txtimer.function = stmmac_tx_timer; 2962 } 2963 2964 for (chan = 0; chan < rx_channel_count; chan++) 2965 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 2966 } 2967 2968 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2969 { 2970 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2971 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2972 u32 chan; 2973 2974 /* set TX ring length */ 2975 for (chan = 0; chan < tx_channels_count; chan++) 2976 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2977 (priv->dma_tx_size - 1), chan); 2978 2979 /* set RX ring length */ 2980 for (chan = 0; chan < rx_channels_count; chan++) 2981 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2982 (priv->dma_rx_size - 1), chan); 2983 } 2984 2985 /** 2986 * stmmac_set_tx_queue_weight - Set TX queue weight 2987 * @priv: driver private structure 2988 * Description: It is used for setting TX queues weight 2989 */ 2990 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2991 { 2992 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2993 u32 weight; 2994 u32 queue; 2995 2996 for (queue = 0; queue < tx_queues_count; queue++) { 2997 weight = priv->plat->tx_queues_cfg[queue].weight; 2998 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2999 } 3000 } 3001 3002 /** 3003 * stmmac_configure_cbs - Configure CBS in TX queue 3004 * @priv: driver private structure 3005 * Description: It is used for configuring CBS in AVB TX queues 3006 */ 3007 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3008 { 3009 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3010 u32 mode_to_use; 3011 u32 queue; 3012 3013 /* queue 0 is reserved for legacy traffic */ 3014 for (queue = 1; queue < tx_queues_count; queue++) { 3015 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3016 if (mode_to_use == MTL_QUEUE_DCB) 3017 continue; 3018 3019 stmmac_config_cbs(priv, priv->hw, 3020 priv->plat->tx_queues_cfg[queue].send_slope, 3021 priv->plat->tx_queues_cfg[queue].idle_slope, 3022 priv->plat->tx_queues_cfg[queue].high_credit, 3023 priv->plat->tx_queues_cfg[queue].low_credit, 3024 queue); 3025 } 3026 } 3027 3028 /** 3029 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3030 * @priv: driver private structure 3031 * Description: It is used for mapping RX queues to RX dma channels 3032 */ 3033 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3034 { 3035 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3036 u32 queue; 3037 u32 chan; 3038 3039 for (queue = 0; queue < rx_queues_count; queue++) { 3040 chan = priv->plat->rx_queues_cfg[queue].chan; 3041 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3042 } 3043 } 3044 3045 /** 3046 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3047 * @priv: driver private structure 3048 * Description: It is used for configuring the RX Queue Priority 3049 */ 3050 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3051 { 3052 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3053 u32 queue; 3054 u32 prio; 3055 3056 for (queue = 0; queue < rx_queues_count; queue++) { 3057 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3058 continue; 3059 3060 prio = priv->plat->rx_queues_cfg[queue].prio; 3061 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3062 } 3063 } 3064 3065 /** 3066 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3067 * @priv: driver private structure 3068 * Description: It is used for configuring the TX Queue Priority 3069 */ 3070 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3071 { 3072 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3073 u32 queue; 3074 u32 prio; 3075 3076 for (queue = 0; queue < tx_queues_count; queue++) { 3077 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3078 continue; 3079 3080 prio = priv->plat->tx_queues_cfg[queue].prio; 3081 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3082 } 3083 } 3084 3085 /** 3086 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3087 * @priv: driver private structure 3088 * Description: It is used for configuring the RX queue routing 3089 */ 3090 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3091 { 3092 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3093 u32 queue; 3094 u8 packet; 3095 3096 for (queue = 0; queue < rx_queues_count; queue++) { 3097 /* no specific packet type routing specified for the queue */ 3098 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3099 continue; 3100 3101 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3102 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3103 } 3104 } 3105 3106 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3107 { 3108 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3109 priv->rss.enable = false; 3110 return; 3111 } 3112 3113 if (priv->dev->features & NETIF_F_RXHASH) 3114 priv->rss.enable = true; 3115 else 3116 priv->rss.enable = false; 3117 3118 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3119 priv->plat->rx_queues_to_use); 3120 } 3121 3122 /** 3123 * stmmac_mtl_configuration - Configure MTL 3124 * @priv: driver private structure 3125 * Description: It is used for configurring MTL 3126 */ 3127 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3128 { 3129 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3130 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3131 3132 if (tx_queues_count > 1) 3133 stmmac_set_tx_queue_weight(priv); 3134 3135 /* Configure MTL RX algorithms */ 3136 if (rx_queues_count > 1) 3137 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3138 priv->plat->rx_sched_algorithm); 3139 3140 /* Configure MTL TX algorithms */ 3141 if (tx_queues_count > 1) 3142 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3143 priv->plat->tx_sched_algorithm); 3144 3145 /* Configure CBS in AVB TX queues */ 3146 if (tx_queues_count > 1) 3147 stmmac_configure_cbs(priv); 3148 3149 /* Map RX MTL to DMA channels */ 3150 stmmac_rx_queue_dma_chan_map(priv); 3151 3152 /* Enable MAC RX Queues */ 3153 stmmac_mac_enable_rx_queues(priv); 3154 3155 /* Set RX priorities */ 3156 if (rx_queues_count > 1) 3157 stmmac_mac_config_rx_queues_prio(priv); 3158 3159 /* Set TX priorities */ 3160 if (tx_queues_count > 1) 3161 stmmac_mac_config_tx_queues_prio(priv); 3162 3163 /* Set RX routing */ 3164 if (rx_queues_count > 1) 3165 stmmac_mac_config_rx_queues_routing(priv); 3166 3167 /* Receive Side Scaling */ 3168 if (rx_queues_count > 1) 3169 stmmac_mac_config_rss(priv); 3170 } 3171 3172 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3173 { 3174 if (priv->dma_cap.asp) { 3175 netdev_info(priv->dev, "Enabling Safety Features\n"); 3176 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp); 3177 } else { 3178 netdev_info(priv->dev, "No Safety Features support found\n"); 3179 } 3180 } 3181 3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3183 { 3184 char *name; 3185 3186 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3187 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3188 3189 name = priv->wq_name; 3190 sprintf(name, "%s-fpe", priv->dev->name); 3191 3192 priv->fpe_wq = create_singlethread_workqueue(name); 3193 if (!priv->fpe_wq) { 3194 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3195 3196 return -ENOMEM; 3197 } 3198 netdev_info(priv->dev, "FPE workqueue start"); 3199 3200 return 0; 3201 } 3202 3203 /** 3204 * stmmac_hw_setup - setup mac in a usable state. 3205 * @dev : pointer to the device structure. 3206 * @init_ptp: initialize PTP if set 3207 * Description: 3208 * this is the main function to setup the HW in a usable state because the 3209 * dma engine is reset, the core registers are configured (e.g. AXI, 3210 * Checksum features, timers). The DMA is ready to start receiving and 3211 * transmitting. 3212 * Return value: 3213 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3214 * file on failure. 3215 */ 3216 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp) 3217 { 3218 struct stmmac_priv *priv = netdev_priv(dev); 3219 u32 rx_cnt = priv->plat->rx_queues_to_use; 3220 u32 tx_cnt = priv->plat->tx_queues_to_use; 3221 bool sph_en; 3222 u32 chan; 3223 int ret; 3224 3225 /* DMA initialization and SW reset */ 3226 ret = stmmac_init_dma_engine(priv); 3227 if (ret < 0) { 3228 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3229 __func__); 3230 return ret; 3231 } 3232 3233 /* Copy the MAC addr into the HW */ 3234 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3235 3236 /* PS and related bits will be programmed according to the speed */ 3237 if (priv->hw->pcs) { 3238 int speed = priv->plat->mac_port_sel_speed; 3239 3240 if ((speed == SPEED_10) || (speed == SPEED_100) || 3241 (speed == SPEED_1000)) { 3242 priv->hw->ps = speed; 3243 } else { 3244 dev_warn(priv->device, "invalid port speed\n"); 3245 priv->hw->ps = 0; 3246 } 3247 } 3248 3249 /* Initialize the MAC Core */ 3250 stmmac_core_init(priv, priv->hw, dev); 3251 3252 /* Initialize MTL*/ 3253 stmmac_mtl_configuration(priv); 3254 3255 /* Initialize Safety Features */ 3256 stmmac_safety_feat_configuration(priv); 3257 3258 ret = stmmac_rx_ipc(priv, priv->hw); 3259 if (!ret) { 3260 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3261 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3262 priv->hw->rx_csum = 0; 3263 } 3264 3265 /* Enable the MAC Rx/Tx */ 3266 stmmac_mac_set(priv, priv->ioaddr, true); 3267 3268 /* Set the HW DMA mode and the COE */ 3269 stmmac_dma_operation_mode(priv); 3270 3271 stmmac_mmc_setup(priv); 3272 3273 if (init_ptp) { 3274 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3275 if (ret < 0) 3276 netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret); 3277 3278 ret = stmmac_init_ptp(priv); 3279 if (ret == -EOPNOTSUPP) 3280 netdev_warn(priv->dev, "PTP not supported by HW\n"); 3281 else if (ret) 3282 netdev_warn(priv->dev, "PTP init failed\n"); 3283 } 3284 3285 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3286 3287 /* Convert the timer from msec to usec */ 3288 if (!priv->tx_lpi_timer) 3289 priv->tx_lpi_timer = eee_timer * 1000; 3290 3291 if (priv->use_riwt) { 3292 u32 queue; 3293 3294 for (queue = 0; queue < rx_cnt; queue++) { 3295 if (!priv->rx_riwt[queue]) 3296 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3297 3298 stmmac_rx_watchdog(priv, priv->ioaddr, 3299 priv->rx_riwt[queue], queue); 3300 } 3301 } 3302 3303 if (priv->hw->pcs) 3304 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3305 3306 /* set TX and RX rings length */ 3307 stmmac_set_rings_length(priv); 3308 3309 /* Enable TSO */ 3310 if (priv->tso) { 3311 for (chan = 0; chan < tx_cnt; chan++) { 3312 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3313 3314 /* TSO and TBS cannot co-exist */ 3315 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3316 continue; 3317 3318 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3319 } 3320 } 3321 3322 /* Enable Split Header */ 3323 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3324 for (chan = 0; chan < rx_cnt; chan++) 3325 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3326 3327 3328 /* VLAN Tag Insertion */ 3329 if (priv->dma_cap.vlins) 3330 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3331 3332 /* TBS */ 3333 for (chan = 0; chan < tx_cnt; chan++) { 3334 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3335 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3336 3337 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3338 } 3339 3340 /* Configure real RX and TX queues */ 3341 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3342 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3343 3344 /* Start the ball rolling... */ 3345 stmmac_start_all_dma(priv); 3346 3347 if (priv->dma_cap.fpesel) { 3348 stmmac_fpe_start_wq(priv); 3349 3350 if (priv->plat->fpe_cfg->enable) 3351 stmmac_fpe_handshake(priv, true); 3352 } 3353 3354 return 0; 3355 } 3356 3357 static void stmmac_hw_teardown(struct net_device *dev) 3358 { 3359 struct stmmac_priv *priv = netdev_priv(dev); 3360 3361 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3362 } 3363 3364 static void stmmac_free_irq(struct net_device *dev, 3365 enum request_irq_err irq_err, int irq_idx) 3366 { 3367 struct stmmac_priv *priv = netdev_priv(dev); 3368 int j; 3369 3370 switch (irq_err) { 3371 case REQ_IRQ_ERR_ALL: 3372 irq_idx = priv->plat->tx_queues_to_use; 3373 fallthrough; 3374 case REQ_IRQ_ERR_TX: 3375 for (j = irq_idx - 1; j >= 0; j--) { 3376 if (priv->tx_irq[j] > 0) { 3377 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3378 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3379 } 3380 } 3381 irq_idx = priv->plat->rx_queues_to_use; 3382 fallthrough; 3383 case REQ_IRQ_ERR_RX: 3384 for (j = irq_idx - 1; j >= 0; j--) { 3385 if (priv->rx_irq[j] > 0) { 3386 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3387 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3388 } 3389 } 3390 3391 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3392 free_irq(priv->sfty_ue_irq, dev); 3393 fallthrough; 3394 case REQ_IRQ_ERR_SFTY_UE: 3395 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3396 free_irq(priv->sfty_ce_irq, dev); 3397 fallthrough; 3398 case REQ_IRQ_ERR_SFTY_CE: 3399 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3400 free_irq(priv->lpi_irq, dev); 3401 fallthrough; 3402 case REQ_IRQ_ERR_LPI: 3403 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3404 free_irq(priv->wol_irq, dev); 3405 fallthrough; 3406 case REQ_IRQ_ERR_WOL: 3407 free_irq(dev->irq, dev); 3408 fallthrough; 3409 case REQ_IRQ_ERR_MAC: 3410 case REQ_IRQ_ERR_NO: 3411 /* If MAC IRQ request error, no more IRQ to free */ 3412 break; 3413 } 3414 } 3415 3416 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3417 { 3418 enum request_irq_err irq_err = REQ_IRQ_ERR_NO; 3419 struct stmmac_priv *priv = netdev_priv(dev); 3420 cpumask_t cpu_mask; 3421 int irq_idx = 0; 3422 char *int_name; 3423 int ret; 3424 int i; 3425 3426 /* For common interrupt */ 3427 int_name = priv->int_name_mac; 3428 sprintf(int_name, "%s:%s", dev->name, "mac"); 3429 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3430 0, int_name, dev); 3431 if (unlikely(ret < 0)) { 3432 netdev_err(priv->dev, 3433 "%s: alloc mac MSI %d (error: %d)\n", 3434 __func__, dev->irq, ret); 3435 irq_err = REQ_IRQ_ERR_MAC; 3436 goto irq_error; 3437 } 3438 3439 /* Request the Wake IRQ in case of another line 3440 * is used for WoL 3441 */ 3442 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3443 int_name = priv->int_name_wol; 3444 sprintf(int_name, "%s:%s", dev->name, "wol"); 3445 ret = request_irq(priv->wol_irq, 3446 stmmac_mac_interrupt, 3447 0, int_name, dev); 3448 if (unlikely(ret < 0)) { 3449 netdev_err(priv->dev, 3450 "%s: alloc wol MSI %d (error: %d)\n", 3451 __func__, priv->wol_irq, ret); 3452 irq_err = REQ_IRQ_ERR_WOL; 3453 goto irq_error; 3454 } 3455 } 3456 3457 /* Request the LPI IRQ in case of another line 3458 * is used for LPI 3459 */ 3460 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3461 int_name = priv->int_name_lpi; 3462 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3463 ret = request_irq(priv->lpi_irq, 3464 stmmac_mac_interrupt, 3465 0, int_name, dev); 3466 if (unlikely(ret < 0)) { 3467 netdev_err(priv->dev, 3468 "%s: alloc lpi MSI %d (error: %d)\n", 3469 __func__, priv->lpi_irq, ret); 3470 irq_err = REQ_IRQ_ERR_LPI; 3471 goto irq_error; 3472 } 3473 } 3474 3475 /* Request the Safety Feature Correctible Error line in 3476 * case of another line is used 3477 */ 3478 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3479 int_name = priv->int_name_sfty_ce; 3480 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3481 ret = request_irq(priv->sfty_ce_irq, 3482 stmmac_safety_interrupt, 3483 0, int_name, dev); 3484 if (unlikely(ret < 0)) { 3485 netdev_err(priv->dev, 3486 "%s: alloc sfty ce MSI %d (error: %d)\n", 3487 __func__, priv->sfty_ce_irq, ret); 3488 irq_err = REQ_IRQ_ERR_SFTY_CE; 3489 goto irq_error; 3490 } 3491 } 3492 3493 /* Request the Safety Feature Uncorrectible Error line in 3494 * case of another line is used 3495 */ 3496 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3497 int_name = priv->int_name_sfty_ue; 3498 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3499 ret = request_irq(priv->sfty_ue_irq, 3500 stmmac_safety_interrupt, 3501 0, int_name, dev); 3502 if (unlikely(ret < 0)) { 3503 netdev_err(priv->dev, 3504 "%s: alloc sfty ue MSI %d (error: %d)\n", 3505 __func__, priv->sfty_ue_irq, ret); 3506 irq_err = REQ_IRQ_ERR_SFTY_UE; 3507 goto irq_error; 3508 } 3509 } 3510 3511 /* Request Rx MSI irq */ 3512 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3513 if (priv->rx_irq[i] == 0) 3514 continue; 3515 3516 int_name = priv->int_name_rx_irq[i]; 3517 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3518 ret = request_irq(priv->rx_irq[i], 3519 stmmac_msi_intr_rx, 3520 0, int_name, &priv->rx_queue[i]); 3521 if (unlikely(ret < 0)) { 3522 netdev_err(priv->dev, 3523 "%s: alloc rx-%d MSI %d (error: %d)\n", 3524 __func__, i, priv->rx_irq[i], ret); 3525 irq_err = REQ_IRQ_ERR_RX; 3526 irq_idx = i; 3527 goto irq_error; 3528 } 3529 cpumask_clear(&cpu_mask); 3530 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3531 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3532 } 3533 3534 /* Request Tx MSI irq */ 3535 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3536 if (priv->tx_irq[i] == 0) 3537 continue; 3538 3539 int_name = priv->int_name_tx_irq[i]; 3540 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3541 ret = request_irq(priv->tx_irq[i], 3542 stmmac_msi_intr_tx, 3543 0, int_name, &priv->tx_queue[i]); 3544 if (unlikely(ret < 0)) { 3545 netdev_err(priv->dev, 3546 "%s: alloc tx-%d MSI %d (error: %d)\n", 3547 __func__, i, priv->tx_irq[i], ret); 3548 irq_err = REQ_IRQ_ERR_TX; 3549 irq_idx = i; 3550 goto irq_error; 3551 } 3552 cpumask_clear(&cpu_mask); 3553 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3554 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3555 } 3556 3557 return 0; 3558 3559 irq_error: 3560 stmmac_free_irq(dev, irq_err, irq_idx); 3561 return ret; 3562 } 3563 3564 static int stmmac_request_irq_single(struct net_device *dev) 3565 { 3566 enum request_irq_err irq_err = REQ_IRQ_ERR_NO; 3567 struct stmmac_priv *priv = netdev_priv(dev); 3568 int ret; 3569 3570 ret = request_irq(dev->irq, stmmac_interrupt, 3571 IRQF_SHARED, dev->name, dev); 3572 if (unlikely(ret < 0)) { 3573 netdev_err(priv->dev, 3574 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3575 __func__, dev->irq, ret); 3576 irq_err = REQ_IRQ_ERR_MAC; 3577 return ret; 3578 } 3579 3580 /* Request the Wake IRQ in case of another line 3581 * is used for WoL 3582 */ 3583 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3584 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3585 IRQF_SHARED, dev->name, dev); 3586 if (unlikely(ret < 0)) { 3587 netdev_err(priv->dev, 3588 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3589 __func__, priv->wol_irq, ret); 3590 irq_err = REQ_IRQ_ERR_WOL; 3591 return ret; 3592 } 3593 } 3594 3595 /* Request the IRQ lines */ 3596 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3597 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3598 IRQF_SHARED, dev->name, dev); 3599 if (unlikely(ret < 0)) { 3600 netdev_err(priv->dev, 3601 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3602 __func__, priv->lpi_irq, ret); 3603 irq_err = REQ_IRQ_ERR_LPI; 3604 goto irq_error; 3605 } 3606 } 3607 3608 return 0; 3609 3610 irq_error: 3611 stmmac_free_irq(dev, irq_err, 0); 3612 return ret; 3613 } 3614 3615 static int stmmac_request_irq(struct net_device *dev) 3616 { 3617 struct stmmac_priv *priv = netdev_priv(dev); 3618 int ret; 3619 3620 /* Request the IRQ lines */ 3621 if (priv->plat->multi_msi_en) 3622 ret = stmmac_request_irq_multi_msi(dev); 3623 else 3624 ret = stmmac_request_irq_single(dev); 3625 3626 return ret; 3627 } 3628 3629 /** 3630 * stmmac_open - open entry point of the driver 3631 * @dev : pointer to the device structure. 3632 * Description: 3633 * This function is the open entry point of the driver. 3634 * Return value: 3635 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3636 * file on failure. 3637 */ 3638 int stmmac_open(struct net_device *dev) 3639 { 3640 struct stmmac_priv *priv = netdev_priv(dev); 3641 int bfsize = 0; 3642 u32 chan; 3643 int ret; 3644 3645 ret = pm_runtime_get_sync(priv->device); 3646 if (ret < 0) { 3647 pm_runtime_put_noidle(priv->device); 3648 return ret; 3649 } 3650 3651 if (priv->hw->pcs != STMMAC_PCS_TBI && 3652 priv->hw->pcs != STMMAC_PCS_RTBI && 3653 priv->hw->xpcs_args.an_mode != DW_AN_C73) { 3654 ret = stmmac_init_phy(dev); 3655 if (ret) { 3656 netdev_err(priv->dev, 3657 "%s: Cannot attach to PHY (error: %d)\n", 3658 __func__, ret); 3659 goto init_phy_error; 3660 } 3661 } 3662 3663 /* Extra statistics */ 3664 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3665 priv->xstats.threshold = tc; 3666 3667 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3668 if (bfsize < 0) 3669 bfsize = 0; 3670 3671 if (bfsize < BUF_SIZE_16KiB) 3672 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3673 3674 priv->dma_buf_sz = bfsize; 3675 buf_sz = bfsize; 3676 3677 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3678 3679 if (!priv->dma_tx_size) 3680 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3681 if (!priv->dma_rx_size) 3682 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3683 3684 /* Earlier check for TBS */ 3685 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3686 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3687 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3688 3689 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3690 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3691 } 3692 3693 ret = alloc_dma_desc_resources(priv); 3694 if (ret < 0) { 3695 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3696 __func__); 3697 goto dma_desc_error; 3698 } 3699 3700 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3701 if (ret < 0) { 3702 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3703 __func__); 3704 goto init_error; 3705 } 3706 3707 ret = stmmac_hw_setup(dev, true); 3708 if (ret < 0) { 3709 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3710 goto init_error; 3711 } 3712 3713 stmmac_init_coalesce(priv); 3714 3715 phylink_start(priv->phylink); 3716 /* We may have called phylink_speed_down before */ 3717 phylink_speed_up(priv->phylink); 3718 3719 ret = stmmac_request_irq(dev); 3720 if (ret) 3721 goto irq_error; 3722 3723 stmmac_enable_all_queues(priv); 3724 netif_tx_start_all_queues(priv->dev); 3725 3726 return 0; 3727 3728 irq_error: 3729 phylink_stop(priv->phylink); 3730 3731 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3732 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3733 3734 stmmac_hw_teardown(dev); 3735 init_error: 3736 free_dma_desc_resources(priv); 3737 dma_desc_error: 3738 phylink_disconnect_phy(priv->phylink); 3739 init_phy_error: 3740 pm_runtime_put(priv->device); 3741 return ret; 3742 } 3743 3744 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3745 { 3746 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3747 3748 if (priv->fpe_wq) 3749 destroy_workqueue(priv->fpe_wq); 3750 3751 netdev_info(priv->dev, "FPE workqueue stop"); 3752 } 3753 3754 /** 3755 * stmmac_release - close entry point of the driver 3756 * @dev : device pointer. 3757 * Description: 3758 * This is the stop entry point of the driver. 3759 */ 3760 int stmmac_release(struct net_device *dev) 3761 { 3762 struct stmmac_priv *priv = netdev_priv(dev); 3763 u32 chan; 3764 3765 if (device_may_wakeup(priv->device)) 3766 phylink_speed_down(priv->phylink, false); 3767 /* Stop and disconnect the PHY */ 3768 phylink_stop(priv->phylink); 3769 phylink_disconnect_phy(priv->phylink); 3770 3771 stmmac_disable_all_queues(priv); 3772 3773 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3774 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3775 3776 /* Free the IRQ lines */ 3777 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3778 3779 if (priv->eee_enabled) { 3780 priv->tx_path_in_lpi_mode = false; 3781 del_timer_sync(&priv->eee_ctrl_timer); 3782 } 3783 3784 /* Stop TX/RX DMA and clear the descriptors */ 3785 stmmac_stop_all_dma(priv); 3786 3787 /* Release and free the Rx/Tx resources */ 3788 free_dma_desc_resources(priv); 3789 3790 /* Disable the MAC Rx/Tx */ 3791 stmmac_mac_set(priv, priv->ioaddr, false); 3792 3793 netif_carrier_off(dev); 3794 3795 stmmac_release_ptp(priv); 3796 3797 pm_runtime_put(priv->device); 3798 3799 if (priv->dma_cap.fpesel) 3800 stmmac_fpe_stop_wq(priv); 3801 3802 return 0; 3803 } 3804 3805 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3806 struct stmmac_tx_queue *tx_q) 3807 { 3808 u16 tag = 0x0, inner_tag = 0x0; 3809 u32 inner_type = 0x0; 3810 struct dma_desc *p; 3811 3812 if (!priv->dma_cap.vlins) 3813 return false; 3814 if (!skb_vlan_tag_present(skb)) 3815 return false; 3816 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3817 inner_tag = skb_vlan_tag_get(skb); 3818 inner_type = STMMAC_VLAN_INSERT; 3819 } 3820 3821 tag = skb_vlan_tag_get(skb); 3822 3823 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3824 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3825 else 3826 p = &tx_q->dma_tx[tx_q->cur_tx]; 3827 3828 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3829 return false; 3830 3831 stmmac_set_tx_owner(priv, p); 3832 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3833 return true; 3834 } 3835 3836 /** 3837 * stmmac_tso_allocator - close entry point of the driver 3838 * @priv: driver private structure 3839 * @des: buffer start address 3840 * @total_len: total length to fill in descriptors 3841 * @last_segment: condition for the last descriptor 3842 * @queue: TX queue index 3843 * Description: 3844 * This function fills descriptor and request new descriptors according to 3845 * buffer length to fill 3846 */ 3847 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3848 int total_len, bool last_segment, u32 queue) 3849 { 3850 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3851 struct dma_desc *desc; 3852 u32 buff_size; 3853 int tmp_len; 3854 3855 tmp_len = total_len; 3856 3857 while (tmp_len > 0) { 3858 dma_addr_t curr_addr; 3859 3860 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3861 priv->dma_tx_size); 3862 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3863 3864 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3865 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3866 else 3867 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3868 3869 curr_addr = des + (total_len - tmp_len); 3870 if (priv->dma_cap.addr64 <= 32) 3871 desc->des0 = cpu_to_le32(curr_addr); 3872 else 3873 stmmac_set_desc_addr(priv, desc, curr_addr); 3874 3875 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3876 TSO_MAX_BUFF_SIZE : tmp_len; 3877 3878 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3879 0, 1, 3880 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3881 0, 0); 3882 3883 tmp_len -= TSO_MAX_BUFF_SIZE; 3884 } 3885 } 3886 3887 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3888 { 3889 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3890 int desc_size; 3891 3892 if (likely(priv->extend_desc)) 3893 desc_size = sizeof(struct dma_extended_desc); 3894 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3895 desc_size = sizeof(struct dma_edesc); 3896 else 3897 desc_size = sizeof(struct dma_desc); 3898 3899 /* The own bit must be the latest setting done when prepare the 3900 * descriptor and then barrier is needed to make sure that 3901 * all is coherent before granting the DMA engine. 3902 */ 3903 wmb(); 3904 3905 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3906 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3907 } 3908 3909 /** 3910 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3911 * @skb : the socket buffer 3912 * @dev : device pointer 3913 * Description: this is the transmit function that is called on TSO frames 3914 * (support available on GMAC4 and newer chips). 3915 * Diagram below show the ring programming in case of TSO frames: 3916 * 3917 * First Descriptor 3918 * -------- 3919 * | DES0 |---> buffer1 = L2/L3/L4 header 3920 * | DES1 |---> TCP Payload (can continue on next descr...) 3921 * | DES2 |---> buffer 1 and 2 len 3922 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3923 * -------- 3924 * | 3925 * ... 3926 * | 3927 * -------- 3928 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3929 * | DES1 | --| 3930 * | DES2 | --> buffer 1 and 2 len 3931 * | DES3 | 3932 * -------- 3933 * 3934 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3935 */ 3936 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3937 { 3938 struct dma_desc *desc, *first, *mss_desc = NULL; 3939 struct stmmac_priv *priv = netdev_priv(dev); 3940 int nfrags = skb_shinfo(skb)->nr_frags; 3941 u32 queue = skb_get_queue_mapping(skb); 3942 unsigned int first_entry, tx_packets; 3943 int tmp_pay_len = 0, first_tx; 3944 struct stmmac_tx_queue *tx_q; 3945 bool has_vlan, set_ic; 3946 u8 proto_hdr_len, hdr; 3947 u32 pay_len, mss; 3948 dma_addr_t des; 3949 int i; 3950 3951 tx_q = &priv->tx_queue[queue]; 3952 first_tx = tx_q->cur_tx; 3953 3954 /* Compute header lengths */ 3955 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3956 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3957 hdr = sizeof(struct udphdr); 3958 } else { 3959 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3960 hdr = tcp_hdrlen(skb); 3961 } 3962 3963 /* Desc availability based on threshold should be enough safe */ 3964 if (unlikely(stmmac_tx_avail(priv, queue) < 3965 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3966 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3967 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3968 queue)); 3969 /* This is a hard error, log it. */ 3970 netdev_err(priv->dev, 3971 "%s: Tx Ring full when queue awake\n", 3972 __func__); 3973 } 3974 return NETDEV_TX_BUSY; 3975 } 3976 3977 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3978 3979 mss = skb_shinfo(skb)->gso_size; 3980 3981 /* set new MSS value if needed */ 3982 if (mss != tx_q->mss) { 3983 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3984 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3985 else 3986 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3987 3988 stmmac_set_mss(priv, mss_desc, mss); 3989 tx_q->mss = mss; 3990 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3991 priv->dma_tx_size); 3992 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3993 } 3994 3995 if (netif_msg_tx_queued(priv)) { 3996 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 3997 __func__, hdr, proto_hdr_len, pay_len, mss); 3998 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 3999 skb->data_len); 4000 } 4001 4002 /* Check if VLAN can be inserted by HW */ 4003 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4004 4005 first_entry = tx_q->cur_tx; 4006 WARN_ON(tx_q->tx_skbuff[first_entry]); 4007 4008 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4009 desc = &tx_q->dma_entx[first_entry].basic; 4010 else 4011 desc = &tx_q->dma_tx[first_entry]; 4012 first = desc; 4013 4014 if (has_vlan) 4015 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4016 4017 /* first descriptor: fill Headers on Buf1 */ 4018 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4019 DMA_TO_DEVICE); 4020 if (dma_mapping_error(priv->device, des)) 4021 goto dma_map_err; 4022 4023 tx_q->tx_skbuff_dma[first_entry].buf = des; 4024 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4025 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4026 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4027 4028 if (priv->dma_cap.addr64 <= 32) { 4029 first->des0 = cpu_to_le32(des); 4030 4031 /* Fill start of payload in buff2 of first descriptor */ 4032 if (pay_len) 4033 first->des1 = cpu_to_le32(des + proto_hdr_len); 4034 4035 /* If needed take extra descriptors to fill the remaining payload */ 4036 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4037 } else { 4038 stmmac_set_desc_addr(priv, first, des); 4039 tmp_pay_len = pay_len; 4040 des += proto_hdr_len; 4041 pay_len = 0; 4042 } 4043 4044 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4045 4046 /* Prepare fragments */ 4047 for (i = 0; i < nfrags; i++) { 4048 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4049 4050 des = skb_frag_dma_map(priv->device, frag, 0, 4051 skb_frag_size(frag), 4052 DMA_TO_DEVICE); 4053 if (dma_mapping_error(priv->device, des)) 4054 goto dma_map_err; 4055 4056 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4057 (i == nfrags - 1), queue); 4058 4059 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4060 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4061 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4062 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4063 } 4064 4065 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4066 4067 /* Only the last descriptor gets to point to the skb. */ 4068 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4069 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4070 4071 /* Manage tx mitigation */ 4072 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4073 tx_q->tx_count_frames += tx_packets; 4074 4075 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4076 set_ic = true; 4077 else if (!priv->tx_coal_frames[queue]) 4078 set_ic = false; 4079 else if (tx_packets > priv->tx_coal_frames[queue]) 4080 set_ic = true; 4081 else if ((tx_q->tx_count_frames % 4082 priv->tx_coal_frames[queue]) < tx_packets) 4083 set_ic = true; 4084 else 4085 set_ic = false; 4086 4087 if (set_ic) { 4088 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4089 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4090 else 4091 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4092 4093 tx_q->tx_count_frames = 0; 4094 stmmac_set_tx_ic(priv, desc); 4095 priv->xstats.tx_set_ic_bit++; 4096 } 4097 4098 /* We've used all descriptors we need for this skb, however, 4099 * advance cur_tx so that it references a fresh descriptor. 4100 * ndo_start_xmit will fill this descriptor the next time it's 4101 * called and stmmac_tx_clean may clean up to this descriptor. 4102 */ 4103 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4104 4105 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4106 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4107 __func__); 4108 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4109 } 4110 4111 dev->stats.tx_bytes += skb->len; 4112 priv->xstats.tx_tso_frames++; 4113 priv->xstats.tx_tso_nfrags += nfrags; 4114 4115 if (priv->sarc_type) 4116 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4117 4118 skb_tx_timestamp(skb); 4119 4120 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4121 priv->hwts_tx_en)) { 4122 /* declare that device is doing timestamping */ 4123 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4124 stmmac_enable_tx_timestamp(priv, first); 4125 } 4126 4127 /* Complete the first descriptor before granting the DMA */ 4128 stmmac_prepare_tso_tx_desc(priv, first, 1, 4129 proto_hdr_len, 4130 pay_len, 4131 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4132 hdr / 4, (skb->len - proto_hdr_len)); 4133 4134 /* If context desc is used to change MSS */ 4135 if (mss_desc) { 4136 /* Make sure that first descriptor has been completely 4137 * written, including its own bit. This is because MSS is 4138 * actually before first descriptor, so we need to make 4139 * sure that MSS's own bit is the last thing written. 4140 */ 4141 dma_wmb(); 4142 stmmac_set_tx_owner(priv, mss_desc); 4143 } 4144 4145 if (netif_msg_pktdata(priv)) { 4146 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4147 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4148 tx_q->cur_tx, first, nfrags); 4149 pr_info(">>> frame to be transmitted: "); 4150 print_pkt(skb->data, skb_headlen(skb)); 4151 } 4152 4153 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4154 4155 stmmac_flush_tx_descriptors(priv, queue); 4156 stmmac_tx_timer_arm(priv, queue); 4157 4158 return NETDEV_TX_OK; 4159 4160 dma_map_err: 4161 dev_err(priv->device, "Tx dma map failed\n"); 4162 dev_kfree_skb(skb); 4163 priv->dev->stats.tx_dropped++; 4164 return NETDEV_TX_OK; 4165 } 4166 4167 /** 4168 * stmmac_xmit - Tx entry point of the driver 4169 * @skb : the socket buffer 4170 * @dev : device pointer 4171 * Description : this is the tx entry point of the driver. 4172 * It programs the chain or the ring and supports oversized frames 4173 * and SG feature. 4174 */ 4175 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4176 { 4177 unsigned int first_entry, tx_packets, enh_desc; 4178 struct stmmac_priv *priv = netdev_priv(dev); 4179 unsigned int nopaged_len = skb_headlen(skb); 4180 int i, csum_insertion = 0, is_jumbo = 0; 4181 u32 queue = skb_get_queue_mapping(skb); 4182 int nfrags = skb_shinfo(skb)->nr_frags; 4183 int gso = skb_shinfo(skb)->gso_type; 4184 struct dma_edesc *tbs_desc = NULL; 4185 struct dma_desc *desc, *first; 4186 struct stmmac_tx_queue *tx_q; 4187 bool has_vlan, set_ic; 4188 int entry, first_tx; 4189 dma_addr_t des; 4190 4191 tx_q = &priv->tx_queue[queue]; 4192 first_tx = tx_q->cur_tx; 4193 4194 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4195 stmmac_disable_eee_mode(priv); 4196 4197 /* Manage oversized TCP frames for GMAC4 device */ 4198 if (skb_is_gso(skb) && priv->tso) { 4199 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4200 return stmmac_tso_xmit(skb, dev); 4201 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4202 return stmmac_tso_xmit(skb, dev); 4203 } 4204 4205 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4206 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4207 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4208 queue)); 4209 /* This is a hard error, log it. */ 4210 netdev_err(priv->dev, 4211 "%s: Tx Ring full when queue awake\n", 4212 __func__); 4213 } 4214 return NETDEV_TX_BUSY; 4215 } 4216 4217 /* Check if VLAN can be inserted by HW */ 4218 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4219 4220 entry = tx_q->cur_tx; 4221 first_entry = entry; 4222 WARN_ON(tx_q->tx_skbuff[first_entry]); 4223 4224 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4225 4226 if (likely(priv->extend_desc)) 4227 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4228 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4229 desc = &tx_q->dma_entx[entry].basic; 4230 else 4231 desc = tx_q->dma_tx + entry; 4232 4233 first = desc; 4234 4235 if (has_vlan) 4236 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4237 4238 enh_desc = priv->plat->enh_desc; 4239 /* To program the descriptors according to the size of the frame */ 4240 if (enh_desc) 4241 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4242 4243 if (unlikely(is_jumbo)) { 4244 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4245 if (unlikely(entry < 0) && (entry != -EINVAL)) 4246 goto dma_map_err; 4247 } 4248 4249 for (i = 0; i < nfrags; i++) { 4250 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4251 int len = skb_frag_size(frag); 4252 bool last_segment = (i == (nfrags - 1)); 4253 4254 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4255 WARN_ON(tx_q->tx_skbuff[entry]); 4256 4257 if (likely(priv->extend_desc)) 4258 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4259 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4260 desc = &tx_q->dma_entx[entry].basic; 4261 else 4262 desc = tx_q->dma_tx + entry; 4263 4264 des = skb_frag_dma_map(priv->device, frag, 0, len, 4265 DMA_TO_DEVICE); 4266 if (dma_mapping_error(priv->device, des)) 4267 goto dma_map_err; /* should reuse desc w/o issues */ 4268 4269 tx_q->tx_skbuff_dma[entry].buf = des; 4270 4271 stmmac_set_desc_addr(priv, desc, des); 4272 4273 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4274 tx_q->tx_skbuff_dma[entry].len = len; 4275 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4276 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4277 4278 /* Prepare the descriptor and set the own bit too */ 4279 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4280 priv->mode, 1, last_segment, skb->len); 4281 } 4282 4283 /* Only the last descriptor gets to point to the skb. */ 4284 tx_q->tx_skbuff[entry] = skb; 4285 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4286 4287 /* According to the coalesce parameter the IC bit for the latest 4288 * segment is reset and the timer re-started to clean the tx status. 4289 * This approach takes care about the fragments: desc is the first 4290 * element in case of no SG. 4291 */ 4292 tx_packets = (entry + 1) - first_tx; 4293 tx_q->tx_count_frames += tx_packets; 4294 4295 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4296 set_ic = true; 4297 else if (!priv->tx_coal_frames[queue]) 4298 set_ic = false; 4299 else if (tx_packets > priv->tx_coal_frames[queue]) 4300 set_ic = true; 4301 else if ((tx_q->tx_count_frames % 4302 priv->tx_coal_frames[queue]) < tx_packets) 4303 set_ic = true; 4304 else 4305 set_ic = false; 4306 4307 if (set_ic) { 4308 if (likely(priv->extend_desc)) 4309 desc = &tx_q->dma_etx[entry].basic; 4310 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4311 desc = &tx_q->dma_entx[entry].basic; 4312 else 4313 desc = &tx_q->dma_tx[entry]; 4314 4315 tx_q->tx_count_frames = 0; 4316 stmmac_set_tx_ic(priv, desc); 4317 priv->xstats.tx_set_ic_bit++; 4318 } 4319 4320 /* We've used all descriptors we need for this skb, however, 4321 * advance cur_tx so that it references a fresh descriptor. 4322 * ndo_start_xmit will fill this descriptor the next time it's 4323 * called and stmmac_tx_clean may clean up to this descriptor. 4324 */ 4325 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4326 tx_q->cur_tx = entry; 4327 4328 if (netif_msg_pktdata(priv)) { 4329 netdev_dbg(priv->dev, 4330 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4331 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4332 entry, first, nfrags); 4333 4334 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4335 print_pkt(skb->data, skb->len); 4336 } 4337 4338 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4339 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4340 __func__); 4341 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4342 } 4343 4344 dev->stats.tx_bytes += skb->len; 4345 4346 if (priv->sarc_type) 4347 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4348 4349 skb_tx_timestamp(skb); 4350 4351 /* Ready to fill the first descriptor and set the OWN bit w/o any 4352 * problems because all the descriptors are actually ready to be 4353 * passed to the DMA engine. 4354 */ 4355 if (likely(!is_jumbo)) { 4356 bool last_segment = (nfrags == 0); 4357 4358 des = dma_map_single(priv->device, skb->data, 4359 nopaged_len, DMA_TO_DEVICE); 4360 if (dma_mapping_error(priv->device, des)) 4361 goto dma_map_err; 4362 4363 tx_q->tx_skbuff_dma[first_entry].buf = des; 4364 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4365 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4366 4367 stmmac_set_desc_addr(priv, first, des); 4368 4369 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4370 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4371 4372 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4373 priv->hwts_tx_en)) { 4374 /* declare that device is doing timestamping */ 4375 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4376 stmmac_enable_tx_timestamp(priv, first); 4377 } 4378 4379 /* Prepare the first descriptor setting the OWN bit too */ 4380 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4381 csum_insertion, priv->mode, 0, last_segment, 4382 skb->len); 4383 } 4384 4385 if (tx_q->tbs & STMMAC_TBS_EN) { 4386 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4387 4388 tbs_desc = &tx_q->dma_entx[first_entry]; 4389 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4390 } 4391 4392 stmmac_set_tx_owner(priv, first); 4393 4394 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4395 4396 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4397 4398 stmmac_flush_tx_descriptors(priv, queue); 4399 stmmac_tx_timer_arm(priv, queue); 4400 4401 return NETDEV_TX_OK; 4402 4403 dma_map_err: 4404 netdev_err(priv->dev, "Tx DMA map failed\n"); 4405 dev_kfree_skb(skb); 4406 priv->dev->stats.tx_dropped++; 4407 return NETDEV_TX_OK; 4408 } 4409 4410 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4411 { 4412 struct vlan_ethhdr *veth; 4413 __be16 vlan_proto; 4414 u16 vlanid; 4415 4416 veth = (struct vlan_ethhdr *)skb->data; 4417 vlan_proto = veth->h_vlan_proto; 4418 4419 if ((vlan_proto == htons(ETH_P_8021Q) && 4420 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4421 (vlan_proto == htons(ETH_P_8021AD) && 4422 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4423 /* pop the vlan tag */ 4424 vlanid = ntohs(veth->h_vlan_TCI); 4425 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4426 skb_pull(skb, VLAN_HLEN); 4427 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4428 } 4429 } 4430 4431 /** 4432 * stmmac_rx_refill - refill used skb preallocated buffers 4433 * @priv: driver private structure 4434 * @queue: RX queue index 4435 * Description : this is to reallocate the skb for the reception process 4436 * that is based on zero-copy. 4437 */ 4438 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4439 { 4440 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4441 int dirty = stmmac_rx_dirty(priv, queue); 4442 unsigned int entry = rx_q->dirty_rx; 4443 4444 while (dirty-- > 0) { 4445 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4446 struct dma_desc *p; 4447 bool use_rx_wd; 4448 4449 if (priv->extend_desc) 4450 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4451 else 4452 p = rx_q->dma_rx + entry; 4453 4454 if (!buf->page) { 4455 buf->page = page_pool_dev_alloc_pages(rx_q->page_pool); 4456 if (!buf->page) 4457 break; 4458 } 4459 4460 if (priv->sph && !buf->sec_page) { 4461 buf->sec_page = page_pool_dev_alloc_pages(rx_q->page_pool); 4462 if (!buf->sec_page) 4463 break; 4464 4465 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4466 } 4467 4468 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4469 4470 stmmac_set_desc_addr(priv, p, buf->addr); 4471 if (priv->sph) 4472 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4473 else 4474 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4475 stmmac_refill_desc3(priv, rx_q, p); 4476 4477 rx_q->rx_count_frames++; 4478 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4479 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4480 rx_q->rx_count_frames = 0; 4481 4482 use_rx_wd = !priv->rx_coal_frames[queue]; 4483 use_rx_wd |= rx_q->rx_count_frames > 0; 4484 if (!priv->use_riwt) 4485 use_rx_wd = false; 4486 4487 dma_wmb(); 4488 stmmac_set_rx_owner(priv, p, use_rx_wd); 4489 4490 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4491 } 4492 rx_q->dirty_rx = entry; 4493 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4494 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4495 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4496 } 4497 4498 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4499 struct dma_desc *p, 4500 int status, unsigned int len) 4501 { 4502 unsigned int plen = 0, hlen = 0; 4503 int coe = priv->hw->rx_csum; 4504 4505 /* Not first descriptor, buffer is always zero */ 4506 if (priv->sph && len) 4507 return 0; 4508 4509 /* First descriptor, get split header length */ 4510 stmmac_get_rx_header_len(priv, p, &hlen); 4511 if (priv->sph && hlen) { 4512 priv->xstats.rx_split_hdr_pkt_n++; 4513 return hlen; 4514 } 4515 4516 /* First descriptor, not last descriptor and not split header */ 4517 if (status & rx_not_ls) 4518 return priv->dma_buf_sz; 4519 4520 plen = stmmac_get_rx_frame_len(priv, p, coe); 4521 4522 /* First descriptor and last descriptor and not split header */ 4523 return min_t(unsigned int, priv->dma_buf_sz, plen); 4524 } 4525 4526 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4527 struct dma_desc *p, 4528 int status, unsigned int len) 4529 { 4530 int coe = priv->hw->rx_csum; 4531 unsigned int plen = 0; 4532 4533 /* Not split header, buffer is not available */ 4534 if (!priv->sph) 4535 return 0; 4536 4537 /* Not last descriptor */ 4538 if (status & rx_not_ls) 4539 return priv->dma_buf_sz; 4540 4541 plen = stmmac_get_rx_frame_len(priv, p, coe); 4542 4543 /* Last descriptor */ 4544 return plen - len; 4545 } 4546 4547 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4548 struct xdp_frame *xdpf, bool dma_map) 4549 { 4550 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4551 unsigned int entry = tx_q->cur_tx; 4552 struct dma_desc *tx_desc; 4553 dma_addr_t dma_addr; 4554 bool set_ic; 4555 4556 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4557 return STMMAC_XDP_CONSUMED; 4558 4559 if (likely(priv->extend_desc)) 4560 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4561 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4562 tx_desc = &tx_q->dma_entx[entry].basic; 4563 else 4564 tx_desc = tx_q->dma_tx + entry; 4565 4566 if (dma_map) { 4567 dma_addr = dma_map_single(priv->device, xdpf->data, 4568 xdpf->len, DMA_TO_DEVICE); 4569 if (dma_mapping_error(priv->device, dma_addr)) 4570 return STMMAC_XDP_CONSUMED; 4571 4572 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4573 } else { 4574 struct page *page = virt_to_page(xdpf->data); 4575 4576 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4577 xdpf->headroom; 4578 dma_sync_single_for_device(priv->device, dma_addr, 4579 xdpf->len, DMA_BIDIRECTIONAL); 4580 4581 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4582 } 4583 4584 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4585 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4586 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4587 tx_q->tx_skbuff_dma[entry].last_segment = true; 4588 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4589 4590 tx_q->xdpf[entry] = xdpf; 4591 4592 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4593 4594 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4595 true, priv->mode, true, true, 4596 xdpf->len); 4597 4598 tx_q->tx_count_frames++; 4599 4600 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4601 set_ic = true; 4602 else 4603 set_ic = false; 4604 4605 if (set_ic) { 4606 tx_q->tx_count_frames = 0; 4607 stmmac_set_tx_ic(priv, tx_desc); 4608 priv->xstats.tx_set_ic_bit++; 4609 } 4610 4611 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4612 4613 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4614 tx_q->cur_tx = entry; 4615 4616 return STMMAC_XDP_TX; 4617 } 4618 4619 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4620 int cpu) 4621 { 4622 int index = cpu; 4623 4624 if (unlikely(index < 0)) 4625 index = 0; 4626 4627 while (index >= priv->plat->tx_queues_to_use) 4628 index -= priv->plat->tx_queues_to_use; 4629 4630 return index; 4631 } 4632 4633 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4634 struct xdp_buff *xdp) 4635 { 4636 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4637 int cpu = smp_processor_id(); 4638 struct netdev_queue *nq; 4639 int queue; 4640 int res; 4641 4642 if (unlikely(!xdpf)) 4643 return STMMAC_XDP_CONSUMED; 4644 4645 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4646 nq = netdev_get_tx_queue(priv->dev, queue); 4647 4648 __netif_tx_lock(nq, cpu); 4649 /* Avoids TX time-out as we are sharing with slow path */ 4650 nq->trans_start = jiffies; 4651 4652 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4653 if (res == STMMAC_XDP_TX) 4654 stmmac_flush_tx_descriptors(priv, queue); 4655 4656 __netif_tx_unlock(nq); 4657 4658 return res; 4659 } 4660 4661 /* This function assumes rcu_read_lock() is held by the caller. */ 4662 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4663 struct bpf_prog *prog, 4664 struct xdp_buff *xdp) 4665 { 4666 u32 act; 4667 int res; 4668 4669 act = bpf_prog_run_xdp(prog, xdp); 4670 switch (act) { 4671 case XDP_PASS: 4672 res = STMMAC_XDP_PASS; 4673 break; 4674 case XDP_TX: 4675 res = stmmac_xdp_xmit_back(priv, xdp); 4676 break; 4677 case XDP_REDIRECT: 4678 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4679 res = STMMAC_XDP_CONSUMED; 4680 else 4681 res = STMMAC_XDP_REDIRECT; 4682 break; 4683 default: 4684 bpf_warn_invalid_xdp_action(act); 4685 fallthrough; 4686 case XDP_ABORTED: 4687 trace_xdp_exception(priv->dev, prog, act); 4688 fallthrough; 4689 case XDP_DROP: 4690 res = STMMAC_XDP_CONSUMED; 4691 break; 4692 } 4693 4694 return res; 4695 } 4696 4697 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4698 struct xdp_buff *xdp) 4699 { 4700 struct bpf_prog *prog; 4701 int res; 4702 4703 rcu_read_lock(); 4704 4705 prog = READ_ONCE(priv->xdp_prog); 4706 if (!prog) { 4707 res = STMMAC_XDP_PASS; 4708 goto unlock; 4709 } 4710 4711 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4712 unlock: 4713 rcu_read_unlock(); 4714 return ERR_PTR(-res); 4715 } 4716 4717 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4718 int xdp_status) 4719 { 4720 int cpu = smp_processor_id(); 4721 int queue; 4722 4723 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4724 4725 if (xdp_status & STMMAC_XDP_TX) 4726 stmmac_tx_timer_arm(priv, queue); 4727 4728 if (xdp_status & STMMAC_XDP_REDIRECT) 4729 xdp_do_flush(); 4730 } 4731 4732 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4733 struct xdp_buff *xdp) 4734 { 4735 unsigned int metasize = xdp->data - xdp->data_meta; 4736 unsigned int datasize = xdp->data_end - xdp->data; 4737 struct sk_buff *skb; 4738 4739 skb = __napi_alloc_skb(&ch->rxtx_napi, 4740 xdp->data_end - xdp->data_hard_start, 4741 GFP_ATOMIC | __GFP_NOWARN); 4742 if (unlikely(!skb)) 4743 return NULL; 4744 4745 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4746 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4747 if (metasize) 4748 skb_metadata_set(skb, metasize); 4749 4750 return skb; 4751 } 4752 4753 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4754 struct dma_desc *p, struct dma_desc *np, 4755 struct xdp_buff *xdp) 4756 { 4757 struct stmmac_channel *ch = &priv->channel[queue]; 4758 unsigned int len = xdp->data_end - xdp->data; 4759 enum pkt_hash_types hash_type; 4760 int coe = priv->hw->rx_csum; 4761 struct sk_buff *skb; 4762 u32 hash; 4763 4764 skb = stmmac_construct_skb_zc(ch, xdp); 4765 if (!skb) { 4766 priv->dev->stats.rx_dropped++; 4767 return; 4768 } 4769 4770 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4771 stmmac_rx_vlan(priv->dev, skb); 4772 skb->protocol = eth_type_trans(skb, priv->dev); 4773 4774 if (unlikely(!coe)) 4775 skb_checksum_none_assert(skb); 4776 else 4777 skb->ip_summed = CHECKSUM_UNNECESSARY; 4778 4779 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4780 skb_set_hash(skb, hash, hash_type); 4781 4782 skb_record_rx_queue(skb, queue); 4783 napi_gro_receive(&ch->rxtx_napi, skb); 4784 4785 priv->dev->stats.rx_packets++; 4786 priv->dev->stats.rx_bytes += len; 4787 } 4788 4789 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4790 { 4791 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4792 unsigned int entry = rx_q->dirty_rx; 4793 struct dma_desc *rx_desc = NULL; 4794 bool ret = true; 4795 4796 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4797 4798 while (budget-- > 0 && entry != rx_q->cur_rx) { 4799 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4800 dma_addr_t dma_addr; 4801 bool use_rx_wd; 4802 4803 if (!buf->xdp) { 4804 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4805 if (!buf->xdp) { 4806 ret = false; 4807 break; 4808 } 4809 } 4810 4811 if (priv->extend_desc) 4812 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4813 else 4814 rx_desc = rx_q->dma_rx + entry; 4815 4816 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4817 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4818 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4819 stmmac_refill_desc3(priv, rx_q, rx_desc); 4820 4821 rx_q->rx_count_frames++; 4822 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4823 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4824 rx_q->rx_count_frames = 0; 4825 4826 use_rx_wd = !priv->rx_coal_frames[queue]; 4827 use_rx_wd |= rx_q->rx_count_frames > 0; 4828 if (!priv->use_riwt) 4829 use_rx_wd = false; 4830 4831 dma_wmb(); 4832 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4833 4834 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4835 } 4836 4837 if (rx_desc) { 4838 rx_q->dirty_rx = entry; 4839 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4840 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4841 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4842 } 4843 4844 return ret; 4845 } 4846 4847 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4848 { 4849 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4850 unsigned int count = 0, error = 0, len = 0; 4851 int dirty = stmmac_rx_dirty(priv, queue); 4852 unsigned int next_entry = rx_q->cur_rx; 4853 unsigned int desc_size; 4854 struct bpf_prog *prog; 4855 bool failure = false; 4856 int xdp_status = 0; 4857 int status = 0; 4858 4859 if (netif_msg_rx_status(priv)) { 4860 void *rx_head; 4861 4862 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4863 if (priv->extend_desc) { 4864 rx_head = (void *)rx_q->dma_erx; 4865 desc_size = sizeof(struct dma_extended_desc); 4866 } else { 4867 rx_head = (void *)rx_q->dma_rx; 4868 desc_size = sizeof(struct dma_desc); 4869 } 4870 4871 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4872 rx_q->dma_rx_phy, desc_size); 4873 } 4874 while (count < limit) { 4875 struct stmmac_rx_buffer *buf; 4876 unsigned int buf1_len = 0; 4877 struct dma_desc *np, *p; 4878 int entry; 4879 int res; 4880 4881 if (!count && rx_q->state_saved) { 4882 error = rx_q->state.error; 4883 len = rx_q->state.len; 4884 } else { 4885 rx_q->state_saved = false; 4886 error = 0; 4887 len = 0; 4888 } 4889 4890 if (count >= limit) 4891 break; 4892 4893 read_again: 4894 buf1_len = 0; 4895 entry = next_entry; 4896 buf = &rx_q->buf_pool[entry]; 4897 4898 if (dirty >= STMMAC_RX_FILL_BATCH) { 4899 failure = failure || 4900 !stmmac_rx_refill_zc(priv, queue, dirty); 4901 dirty = 0; 4902 } 4903 4904 if (priv->extend_desc) 4905 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4906 else 4907 p = rx_q->dma_rx + entry; 4908 4909 /* read the status of the incoming frame */ 4910 status = stmmac_rx_status(priv, &priv->dev->stats, 4911 &priv->xstats, p); 4912 /* check if managed by the DMA otherwise go ahead */ 4913 if (unlikely(status & dma_own)) 4914 break; 4915 4916 /* Prefetch the next RX descriptor */ 4917 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4918 priv->dma_rx_size); 4919 next_entry = rx_q->cur_rx; 4920 4921 if (priv->extend_desc) 4922 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4923 else 4924 np = rx_q->dma_rx + next_entry; 4925 4926 prefetch(np); 4927 4928 if (priv->extend_desc) 4929 stmmac_rx_extended_status(priv, &priv->dev->stats, 4930 &priv->xstats, 4931 rx_q->dma_erx + entry); 4932 if (unlikely(status == discard_frame)) { 4933 xsk_buff_free(buf->xdp); 4934 buf->xdp = NULL; 4935 dirty++; 4936 error = 1; 4937 if (!priv->hwts_rx_en) 4938 priv->dev->stats.rx_errors++; 4939 } 4940 4941 if (unlikely(error && (status & rx_not_ls))) 4942 goto read_again; 4943 if (unlikely(error)) { 4944 count++; 4945 continue; 4946 } 4947 4948 /* Ensure a valid XSK buffer before proceed */ 4949 if (!buf->xdp) 4950 break; 4951 4952 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4953 if (likely(status & rx_not_ls)) { 4954 xsk_buff_free(buf->xdp); 4955 buf->xdp = NULL; 4956 dirty++; 4957 count++; 4958 goto read_again; 4959 } 4960 4961 /* XDP ZC Frame only support primary buffers for now */ 4962 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 4963 len += buf1_len; 4964 4965 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 4966 * Type frames (LLC/LLC-SNAP) 4967 * 4968 * llc_snap is never checked in GMAC >= 4, so this ACS 4969 * feature is always disabled and packets need to be 4970 * stripped manually. 4971 */ 4972 if (likely(!(status & rx_not_ls)) && 4973 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 4974 unlikely(status != llc_snap))) { 4975 buf1_len -= ETH_FCS_LEN; 4976 len -= ETH_FCS_LEN; 4977 } 4978 4979 /* RX buffer is good and fit into a XSK pool buffer */ 4980 buf->xdp->data_end = buf->xdp->data + buf1_len; 4981 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 4982 4983 rcu_read_lock(); 4984 prog = READ_ONCE(priv->xdp_prog); 4985 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 4986 rcu_read_unlock(); 4987 4988 switch (res) { 4989 case STMMAC_XDP_PASS: 4990 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 4991 xsk_buff_free(buf->xdp); 4992 break; 4993 case STMMAC_XDP_CONSUMED: 4994 xsk_buff_free(buf->xdp); 4995 priv->dev->stats.rx_dropped++; 4996 break; 4997 case STMMAC_XDP_TX: 4998 case STMMAC_XDP_REDIRECT: 4999 xdp_status |= res; 5000 break; 5001 } 5002 5003 buf->xdp = NULL; 5004 dirty++; 5005 count++; 5006 } 5007 5008 if (status & rx_not_ls) { 5009 rx_q->state_saved = true; 5010 rx_q->state.error = error; 5011 rx_q->state.len = len; 5012 } 5013 5014 stmmac_finalize_xdp_rx(priv, xdp_status); 5015 5016 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5017 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5018 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5019 else 5020 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5021 5022 return (int)count; 5023 } 5024 5025 return failure ? limit : (int)count; 5026 } 5027 5028 /** 5029 * stmmac_rx - manage the receive process 5030 * @priv: driver private structure 5031 * @limit: napi bugget 5032 * @queue: RX queue index. 5033 * Description : this the function called by the napi poll method. 5034 * It gets all the frames inside the ring. 5035 */ 5036 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5037 { 5038 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5039 struct stmmac_channel *ch = &priv->channel[queue]; 5040 unsigned int count = 0, error = 0, len = 0; 5041 int status = 0, coe = priv->hw->rx_csum; 5042 unsigned int next_entry = rx_q->cur_rx; 5043 enum dma_data_direction dma_dir; 5044 unsigned int desc_size; 5045 struct sk_buff *skb = NULL; 5046 struct xdp_buff xdp; 5047 int xdp_status = 0; 5048 int buf_sz; 5049 5050 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5051 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5052 5053 if (netif_msg_rx_status(priv)) { 5054 void *rx_head; 5055 5056 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5057 if (priv->extend_desc) { 5058 rx_head = (void *)rx_q->dma_erx; 5059 desc_size = sizeof(struct dma_extended_desc); 5060 } else { 5061 rx_head = (void *)rx_q->dma_rx; 5062 desc_size = sizeof(struct dma_desc); 5063 } 5064 5065 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5066 rx_q->dma_rx_phy, desc_size); 5067 } 5068 while (count < limit) { 5069 unsigned int buf1_len = 0, buf2_len = 0; 5070 enum pkt_hash_types hash_type; 5071 struct stmmac_rx_buffer *buf; 5072 struct dma_desc *np, *p; 5073 int entry; 5074 u32 hash; 5075 5076 if (!count && rx_q->state_saved) { 5077 skb = rx_q->state.skb; 5078 error = rx_q->state.error; 5079 len = rx_q->state.len; 5080 } else { 5081 rx_q->state_saved = false; 5082 skb = NULL; 5083 error = 0; 5084 len = 0; 5085 } 5086 5087 if (count >= limit) 5088 break; 5089 5090 read_again: 5091 buf1_len = 0; 5092 buf2_len = 0; 5093 entry = next_entry; 5094 buf = &rx_q->buf_pool[entry]; 5095 5096 if (priv->extend_desc) 5097 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5098 else 5099 p = rx_q->dma_rx + entry; 5100 5101 /* read the status of the incoming frame */ 5102 status = stmmac_rx_status(priv, &priv->dev->stats, 5103 &priv->xstats, p); 5104 /* check if managed by the DMA otherwise go ahead */ 5105 if (unlikely(status & dma_own)) 5106 break; 5107 5108 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5109 priv->dma_rx_size); 5110 next_entry = rx_q->cur_rx; 5111 5112 if (priv->extend_desc) 5113 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5114 else 5115 np = rx_q->dma_rx + next_entry; 5116 5117 prefetch(np); 5118 5119 if (priv->extend_desc) 5120 stmmac_rx_extended_status(priv, &priv->dev->stats, 5121 &priv->xstats, rx_q->dma_erx + entry); 5122 if (unlikely(status == discard_frame)) { 5123 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5124 buf->page = NULL; 5125 error = 1; 5126 if (!priv->hwts_rx_en) 5127 priv->dev->stats.rx_errors++; 5128 } 5129 5130 if (unlikely(error && (status & rx_not_ls))) 5131 goto read_again; 5132 if (unlikely(error)) { 5133 dev_kfree_skb(skb); 5134 skb = NULL; 5135 count++; 5136 continue; 5137 } 5138 5139 /* Buffer is good. Go on. */ 5140 5141 prefetch(page_address(buf->page)); 5142 if (buf->sec_page) 5143 prefetch(page_address(buf->sec_page)); 5144 5145 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5146 len += buf1_len; 5147 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5148 len += buf2_len; 5149 5150 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5151 * Type frames (LLC/LLC-SNAP) 5152 * 5153 * llc_snap is never checked in GMAC >= 4, so this ACS 5154 * feature is always disabled and packets need to be 5155 * stripped manually. 5156 */ 5157 if (likely(!(status & rx_not_ls)) && 5158 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5159 unlikely(status != llc_snap))) { 5160 if (buf2_len) 5161 buf2_len -= ETH_FCS_LEN; 5162 else 5163 buf1_len -= ETH_FCS_LEN; 5164 5165 len -= ETH_FCS_LEN; 5166 } 5167 5168 if (!skb) { 5169 unsigned int pre_len, sync_len; 5170 5171 dma_sync_single_for_cpu(priv->device, buf->addr, 5172 buf1_len, dma_dir); 5173 5174 xdp.data = page_address(buf->page) + buf->page_offset; 5175 xdp.data_end = xdp.data + buf1_len; 5176 xdp.data_hard_start = page_address(buf->page); 5177 xdp_set_data_meta_invalid(&xdp); 5178 xdp.frame_sz = buf_sz; 5179 xdp.rxq = &rx_q->xdp_rxq; 5180 5181 pre_len = xdp.data_end - xdp.data_hard_start - 5182 buf->page_offset; 5183 skb = stmmac_xdp_run_prog(priv, &xdp); 5184 /* Due xdp_adjust_tail: DMA sync for_device 5185 * cover max len CPU touch 5186 */ 5187 sync_len = xdp.data_end - xdp.data_hard_start - 5188 buf->page_offset; 5189 sync_len = max(sync_len, pre_len); 5190 5191 /* For Not XDP_PASS verdict */ 5192 if (IS_ERR(skb)) { 5193 unsigned int xdp_res = -PTR_ERR(skb); 5194 5195 if (xdp_res & STMMAC_XDP_CONSUMED) { 5196 page_pool_put_page(rx_q->page_pool, 5197 virt_to_head_page(xdp.data), 5198 sync_len, true); 5199 buf->page = NULL; 5200 priv->dev->stats.rx_dropped++; 5201 5202 /* Clear skb as it was set as 5203 * status by XDP program. 5204 */ 5205 skb = NULL; 5206 5207 if (unlikely((status & rx_not_ls))) 5208 goto read_again; 5209 5210 count++; 5211 continue; 5212 } else if (xdp_res & (STMMAC_XDP_TX | 5213 STMMAC_XDP_REDIRECT)) { 5214 xdp_status |= xdp_res; 5215 buf->page = NULL; 5216 skb = NULL; 5217 count++; 5218 continue; 5219 } 5220 } 5221 } 5222 5223 if (!skb) { 5224 /* XDP program may expand or reduce tail */ 5225 buf1_len = xdp.data_end - xdp.data; 5226 5227 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5228 if (!skb) { 5229 priv->dev->stats.rx_dropped++; 5230 count++; 5231 goto drain_data; 5232 } 5233 5234 /* XDP program may adjust header */ 5235 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5236 skb_put(skb, buf1_len); 5237 5238 /* Data payload copied into SKB, page ready for recycle */ 5239 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5240 buf->page = NULL; 5241 } else if (buf1_len) { 5242 dma_sync_single_for_cpu(priv->device, buf->addr, 5243 buf1_len, dma_dir); 5244 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5245 buf->page, buf->page_offset, buf1_len, 5246 priv->dma_buf_sz); 5247 5248 /* Data payload appended into SKB */ 5249 page_pool_release_page(rx_q->page_pool, buf->page); 5250 buf->page = NULL; 5251 } 5252 5253 if (buf2_len) { 5254 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5255 buf2_len, dma_dir); 5256 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5257 buf->sec_page, 0, buf2_len, 5258 priv->dma_buf_sz); 5259 5260 /* Data payload appended into SKB */ 5261 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5262 buf->sec_page = NULL; 5263 } 5264 5265 drain_data: 5266 if (likely(status & rx_not_ls)) 5267 goto read_again; 5268 if (!skb) 5269 continue; 5270 5271 /* Got entire packet into SKB. Finish it. */ 5272 5273 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5274 stmmac_rx_vlan(priv->dev, skb); 5275 skb->protocol = eth_type_trans(skb, priv->dev); 5276 5277 if (unlikely(!coe)) 5278 skb_checksum_none_assert(skb); 5279 else 5280 skb->ip_summed = CHECKSUM_UNNECESSARY; 5281 5282 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5283 skb_set_hash(skb, hash, hash_type); 5284 5285 skb_record_rx_queue(skb, queue); 5286 napi_gro_receive(&ch->rx_napi, skb); 5287 skb = NULL; 5288 5289 priv->dev->stats.rx_packets++; 5290 priv->dev->stats.rx_bytes += len; 5291 count++; 5292 } 5293 5294 if (status & rx_not_ls || skb) { 5295 rx_q->state_saved = true; 5296 rx_q->state.skb = skb; 5297 rx_q->state.error = error; 5298 rx_q->state.len = len; 5299 } 5300 5301 stmmac_finalize_xdp_rx(priv, xdp_status); 5302 5303 stmmac_rx_refill(priv, queue); 5304 5305 priv->xstats.rx_pkt_n += count; 5306 5307 return count; 5308 } 5309 5310 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5311 { 5312 struct stmmac_channel *ch = 5313 container_of(napi, struct stmmac_channel, rx_napi); 5314 struct stmmac_priv *priv = ch->priv_data; 5315 u32 chan = ch->index; 5316 int work_done; 5317 5318 priv->xstats.napi_poll++; 5319 5320 work_done = stmmac_rx(priv, budget, chan); 5321 if (work_done < budget && napi_complete_done(napi, work_done)) { 5322 unsigned long flags; 5323 5324 spin_lock_irqsave(&ch->lock, flags); 5325 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5326 spin_unlock_irqrestore(&ch->lock, flags); 5327 } 5328 5329 return work_done; 5330 } 5331 5332 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5333 { 5334 struct stmmac_channel *ch = 5335 container_of(napi, struct stmmac_channel, tx_napi); 5336 struct stmmac_priv *priv = ch->priv_data; 5337 u32 chan = ch->index; 5338 int work_done; 5339 5340 priv->xstats.napi_poll++; 5341 5342 work_done = stmmac_tx_clean(priv, budget, chan); 5343 work_done = min(work_done, budget); 5344 5345 if (work_done < budget && napi_complete_done(napi, work_done)) { 5346 unsigned long flags; 5347 5348 spin_lock_irqsave(&ch->lock, flags); 5349 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5350 spin_unlock_irqrestore(&ch->lock, flags); 5351 } 5352 5353 return work_done; 5354 } 5355 5356 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5357 { 5358 struct stmmac_channel *ch = 5359 container_of(napi, struct stmmac_channel, rxtx_napi); 5360 struct stmmac_priv *priv = ch->priv_data; 5361 int rx_done, tx_done; 5362 u32 chan = ch->index; 5363 5364 priv->xstats.napi_poll++; 5365 5366 tx_done = stmmac_tx_clean(priv, budget, chan); 5367 tx_done = min(tx_done, budget); 5368 5369 rx_done = stmmac_rx_zc(priv, budget, chan); 5370 5371 /* If either TX or RX work is not complete, return budget 5372 * and keep pooling 5373 */ 5374 if (tx_done >= budget || rx_done >= budget) 5375 return budget; 5376 5377 /* all work done, exit the polling mode */ 5378 if (napi_complete_done(napi, rx_done)) { 5379 unsigned long flags; 5380 5381 spin_lock_irqsave(&ch->lock, flags); 5382 /* Both RX and TX work done are compelte, 5383 * so enable both RX & TX IRQs. 5384 */ 5385 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5386 spin_unlock_irqrestore(&ch->lock, flags); 5387 } 5388 5389 return min(rx_done, budget - 1); 5390 } 5391 5392 /** 5393 * stmmac_tx_timeout 5394 * @dev : Pointer to net device structure 5395 * @txqueue: the index of the hanging transmit queue 5396 * Description: this function is called when a packet transmission fails to 5397 * complete within a reasonable time. The driver will mark the error in the 5398 * netdev structure and arrange for the device to be reset to a sane state 5399 * in order to transmit a new packet. 5400 */ 5401 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5402 { 5403 struct stmmac_priv *priv = netdev_priv(dev); 5404 5405 stmmac_global_err(priv); 5406 } 5407 5408 /** 5409 * stmmac_set_rx_mode - entry point for multicast addressing 5410 * @dev : pointer to the device structure 5411 * Description: 5412 * This function is a driver entry point which gets called by the kernel 5413 * whenever multicast addresses must be enabled/disabled. 5414 * Return value: 5415 * void. 5416 */ 5417 static void stmmac_set_rx_mode(struct net_device *dev) 5418 { 5419 struct stmmac_priv *priv = netdev_priv(dev); 5420 5421 stmmac_set_filter(priv, priv->hw, dev); 5422 } 5423 5424 /** 5425 * stmmac_change_mtu - entry point to change MTU size for the device. 5426 * @dev : device pointer. 5427 * @new_mtu : the new MTU size for the device. 5428 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5429 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5430 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5431 * Return value: 5432 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5433 * file on failure. 5434 */ 5435 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5436 { 5437 struct stmmac_priv *priv = netdev_priv(dev); 5438 int txfifosz = priv->plat->tx_fifo_size; 5439 const int mtu = new_mtu; 5440 5441 if (txfifosz == 0) 5442 txfifosz = priv->dma_cap.tx_fifo_size; 5443 5444 txfifosz /= priv->plat->tx_queues_to_use; 5445 5446 if (netif_running(dev)) { 5447 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5448 return -EBUSY; 5449 } 5450 5451 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5452 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5453 return -EINVAL; 5454 } 5455 5456 new_mtu = STMMAC_ALIGN(new_mtu); 5457 5458 /* If condition true, FIFO is too small or MTU too large */ 5459 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5460 return -EINVAL; 5461 5462 dev->mtu = mtu; 5463 5464 netdev_update_features(dev); 5465 5466 return 0; 5467 } 5468 5469 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5470 netdev_features_t features) 5471 { 5472 struct stmmac_priv *priv = netdev_priv(dev); 5473 5474 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5475 features &= ~NETIF_F_RXCSUM; 5476 5477 if (!priv->plat->tx_coe) 5478 features &= ~NETIF_F_CSUM_MASK; 5479 5480 /* Some GMAC devices have a bugged Jumbo frame support that 5481 * needs to have the Tx COE disabled for oversized frames 5482 * (due to limited buffer sizes). In this case we disable 5483 * the TX csum insertion in the TDES and not use SF. 5484 */ 5485 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5486 features &= ~NETIF_F_CSUM_MASK; 5487 5488 /* Disable tso if asked by ethtool */ 5489 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5490 if (features & NETIF_F_TSO) 5491 priv->tso = true; 5492 else 5493 priv->tso = false; 5494 } 5495 5496 return features; 5497 } 5498 5499 static int stmmac_set_features(struct net_device *netdev, 5500 netdev_features_t features) 5501 { 5502 struct stmmac_priv *priv = netdev_priv(netdev); 5503 bool sph_en; 5504 u32 chan; 5505 5506 /* Keep the COE Type in case of csum is supporting */ 5507 if (features & NETIF_F_RXCSUM) 5508 priv->hw->rx_csum = priv->plat->rx_coe; 5509 else 5510 priv->hw->rx_csum = 0; 5511 /* No check needed because rx_coe has been set before and it will be 5512 * fixed in case of issue. 5513 */ 5514 stmmac_rx_ipc(priv, priv->hw); 5515 5516 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5517 5518 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5519 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5520 5521 return 0; 5522 } 5523 5524 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5525 { 5526 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5527 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5528 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5529 bool *hs_enable = &fpe_cfg->hs_enable; 5530 5531 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5532 return; 5533 5534 /* If LP has sent verify mPacket, LP is FPE capable */ 5535 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5536 if (*lp_state < FPE_STATE_CAPABLE) 5537 *lp_state = FPE_STATE_CAPABLE; 5538 5539 /* If user has requested FPE enable, quickly response */ 5540 if (*hs_enable) 5541 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5542 MPACKET_RESPONSE); 5543 } 5544 5545 /* If Local has sent verify mPacket, Local is FPE capable */ 5546 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5547 if (*lo_state < FPE_STATE_CAPABLE) 5548 *lo_state = FPE_STATE_CAPABLE; 5549 } 5550 5551 /* If LP has sent response mPacket, LP is entering FPE ON */ 5552 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5553 *lp_state = FPE_STATE_ENTERING_ON; 5554 5555 /* If Local has sent response mPacket, Local is entering FPE ON */ 5556 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5557 *lo_state = FPE_STATE_ENTERING_ON; 5558 5559 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5560 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5561 priv->fpe_wq) { 5562 queue_work(priv->fpe_wq, &priv->fpe_task); 5563 } 5564 } 5565 5566 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5567 { 5568 u32 rx_cnt = priv->plat->rx_queues_to_use; 5569 u32 tx_cnt = priv->plat->tx_queues_to_use; 5570 u32 queues_count; 5571 u32 queue; 5572 bool xmac; 5573 5574 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5575 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5576 5577 if (priv->irq_wake) 5578 pm_wakeup_event(priv->device, 0); 5579 5580 if (priv->dma_cap.estsel) 5581 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5582 &priv->xstats, tx_cnt); 5583 5584 if (priv->dma_cap.fpesel) { 5585 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5586 priv->dev); 5587 5588 stmmac_fpe_event_status(priv, status); 5589 } 5590 5591 /* To handle GMAC own interrupts */ 5592 if ((priv->plat->has_gmac) || xmac) { 5593 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5594 5595 if (unlikely(status)) { 5596 /* For LPI we need to save the tx status */ 5597 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5598 priv->tx_path_in_lpi_mode = true; 5599 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5600 priv->tx_path_in_lpi_mode = false; 5601 } 5602 5603 for (queue = 0; queue < queues_count; queue++) { 5604 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5605 queue); 5606 } 5607 5608 /* PCS link status */ 5609 if (priv->hw->pcs) { 5610 if (priv->xstats.pcs_link) 5611 netif_carrier_on(priv->dev); 5612 else 5613 netif_carrier_off(priv->dev); 5614 } 5615 5616 stmmac_timestamp_interrupt(priv, priv); 5617 } 5618 } 5619 5620 /** 5621 * stmmac_interrupt - main ISR 5622 * @irq: interrupt number. 5623 * @dev_id: to pass the net device pointer. 5624 * Description: this is the main driver interrupt service routine. 5625 * It can call: 5626 * o DMA service routine (to manage incoming frame reception and transmission 5627 * status) 5628 * o Core interrupts to manage: remote wake-up, management counter, LPI 5629 * interrupts. 5630 */ 5631 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5632 { 5633 struct net_device *dev = (struct net_device *)dev_id; 5634 struct stmmac_priv *priv = netdev_priv(dev); 5635 5636 /* Check if adapter is up */ 5637 if (test_bit(STMMAC_DOWN, &priv->state)) 5638 return IRQ_HANDLED; 5639 5640 /* Check if a fatal error happened */ 5641 if (stmmac_safety_feat_interrupt(priv)) 5642 return IRQ_HANDLED; 5643 5644 /* To handle Common interrupts */ 5645 stmmac_common_interrupt(priv); 5646 5647 /* To handle DMA interrupts */ 5648 stmmac_dma_interrupt(priv); 5649 5650 return IRQ_HANDLED; 5651 } 5652 5653 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5654 { 5655 struct net_device *dev = (struct net_device *)dev_id; 5656 struct stmmac_priv *priv = netdev_priv(dev); 5657 5658 if (unlikely(!dev)) { 5659 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5660 return IRQ_NONE; 5661 } 5662 5663 /* Check if adapter is up */ 5664 if (test_bit(STMMAC_DOWN, &priv->state)) 5665 return IRQ_HANDLED; 5666 5667 /* To handle Common interrupts */ 5668 stmmac_common_interrupt(priv); 5669 5670 return IRQ_HANDLED; 5671 } 5672 5673 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5674 { 5675 struct net_device *dev = (struct net_device *)dev_id; 5676 struct stmmac_priv *priv = netdev_priv(dev); 5677 5678 if (unlikely(!dev)) { 5679 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5680 return IRQ_NONE; 5681 } 5682 5683 /* Check if adapter is up */ 5684 if (test_bit(STMMAC_DOWN, &priv->state)) 5685 return IRQ_HANDLED; 5686 5687 /* Check if a fatal error happened */ 5688 stmmac_safety_feat_interrupt(priv); 5689 5690 return IRQ_HANDLED; 5691 } 5692 5693 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5694 { 5695 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5696 int chan = tx_q->queue_index; 5697 struct stmmac_priv *priv; 5698 int status; 5699 5700 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5701 5702 if (unlikely(!data)) { 5703 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5704 return IRQ_NONE; 5705 } 5706 5707 /* Check if adapter is up */ 5708 if (test_bit(STMMAC_DOWN, &priv->state)) 5709 return IRQ_HANDLED; 5710 5711 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5712 5713 if (unlikely(status & tx_hard_error_bump_tc)) { 5714 /* Try to bump up the dma threshold on this failure */ 5715 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && 5716 tc <= 256) { 5717 tc += 64; 5718 if (priv->plat->force_thresh_dma_mode) 5719 stmmac_set_dma_operation_mode(priv, 5720 tc, 5721 tc, 5722 chan); 5723 else 5724 stmmac_set_dma_operation_mode(priv, 5725 tc, 5726 SF_DMA_MODE, 5727 chan); 5728 priv->xstats.threshold = tc; 5729 } 5730 } else if (unlikely(status == tx_hard_error)) { 5731 stmmac_tx_err(priv, chan); 5732 } 5733 5734 return IRQ_HANDLED; 5735 } 5736 5737 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5738 { 5739 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5740 int chan = rx_q->queue_index; 5741 struct stmmac_priv *priv; 5742 5743 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5744 5745 if (unlikely(!data)) { 5746 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5747 return IRQ_NONE; 5748 } 5749 5750 /* Check if adapter is up */ 5751 if (test_bit(STMMAC_DOWN, &priv->state)) 5752 return IRQ_HANDLED; 5753 5754 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5755 5756 return IRQ_HANDLED; 5757 } 5758 5759 #ifdef CONFIG_NET_POLL_CONTROLLER 5760 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5761 * to allow network I/O with interrupts disabled. 5762 */ 5763 static void stmmac_poll_controller(struct net_device *dev) 5764 { 5765 struct stmmac_priv *priv = netdev_priv(dev); 5766 int i; 5767 5768 /* If adapter is down, do nothing */ 5769 if (test_bit(STMMAC_DOWN, &priv->state)) 5770 return; 5771 5772 if (priv->plat->multi_msi_en) { 5773 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5774 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5775 5776 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5777 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5778 } else { 5779 disable_irq(dev->irq); 5780 stmmac_interrupt(dev->irq, dev); 5781 enable_irq(dev->irq); 5782 } 5783 } 5784 #endif 5785 5786 /** 5787 * stmmac_ioctl - Entry point for the Ioctl 5788 * @dev: Device pointer. 5789 * @rq: An IOCTL specefic structure, that can contain a pointer to 5790 * a proprietary structure used to pass information to the driver. 5791 * @cmd: IOCTL command 5792 * Description: 5793 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5794 */ 5795 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5796 { 5797 struct stmmac_priv *priv = netdev_priv (dev); 5798 int ret = -EOPNOTSUPP; 5799 5800 if (!netif_running(dev)) 5801 return -EINVAL; 5802 5803 switch (cmd) { 5804 case SIOCGMIIPHY: 5805 case SIOCGMIIREG: 5806 case SIOCSMIIREG: 5807 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5808 break; 5809 case SIOCSHWTSTAMP: 5810 ret = stmmac_hwtstamp_set(dev, rq); 5811 break; 5812 case SIOCGHWTSTAMP: 5813 ret = stmmac_hwtstamp_get(dev, rq); 5814 break; 5815 default: 5816 break; 5817 } 5818 5819 return ret; 5820 } 5821 5822 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5823 void *cb_priv) 5824 { 5825 struct stmmac_priv *priv = cb_priv; 5826 int ret = -EOPNOTSUPP; 5827 5828 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5829 return ret; 5830 5831 __stmmac_disable_all_queues(priv); 5832 5833 switch (type) { 5834 case TC_SETUP_CLSU32: 5835 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5836 break; 5837 case TC_SETUP_CLSFLOWER: 5838 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5839 break; 5840 default: 5841 break; 5842 } 5843 5844 stmmac_enable_all_queues(priv); 5845 return ret; 5846 } 5847 5848 static LIST_HEAD(stmmac_block_cb_list); 5849 5850 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5851 void *type_data) 5852 { 5853 struct stmmac_priv *priv = netdev_priv(ndev); 5854 5855 switch (type) { 5856 case TC_SETUP_BLOCK: 5857 return flow_block_cb_setup_simple(type_data, 5858 &stmmac_block_cb_list, 5859 stmmac_setup_tc_block_cb, 5860 priv, priv, true); 5861 case TC_SETUP_QDISC_CBS: 5862 return stmmac_tc_setup_cbs(priv, priv, type_data); 5863 case TC_SETUP_QDISC_TAPRIO: 5864 return stmmac_tc_setup_taprio(priv, priv, type_data); 5865 case TC_SETUP_QDISC_ETF: 5866 return stmmac_tc_setup_etf(priv, priv, type_data); 5867 default: 5868 return -EOPNOTSUPP; 5869 } 5870 } 5871 5872 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5873 struct net_device *sb_dev) 5874 { 5875 int gso = skb_shinfo(skb)->gso_type; 5876 5877 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5878 /* 5879 * There is no way to determine the number of TSO/USO 5880 * capable Queues. Let's use always the Queue 0 5881 * because if TSO/USO is supported then at least this 5882 * one will be capable. 5883 */ 5884 return 0; 5885 } 5886 5887 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5888 } 5889 5890 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5891 { 5892 struct stmmac_priv *priv = netdev_priv(ndev); 5893 int ret = 0; 5894 5895 ret = pm_runtime_get_sync(priv->device); 5896 if (ret < 0) { 5897 pm_runtime_put_noidle(priv->device); 5898 return ret; 5899 } 5900 5901 ret = eth_mac_addr(ndev, addr); 5902 if (ret) 5903 goto set_mac_error; 5904 5905 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5906 5907 set_mac_error: 5908 pm_runtime_put(priv->device); 5909 5910 return ret; 5911 } 5912 5913 #ifdef CONFIG_DEBUG_FS 5914 static struct dentry *stmmac_fs_dir; 5915 5916 static void sysfs_display_ring(void *head, int size, int extend_desc, 5917 struct seq_file *seq, dma_addr_t dma_phy_addr) 5918 { 5919 int i; 5920 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5921 struct dma_desc *p = (struct dma_desc *)head; 5922 dma_addr_t dma_addr; 5923 5924 for (i = 0; i < size; i++) { 5925 if (extend_desc) { 5926 dma_addr = dma_phy_addr + i * sizeof(*ep); 5927 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5928 i, &dma_addr, 5929 le32_to_cpu(ep->basic.des0), 5930 le32_to_cpu(ep->basic.des1), 5931 le32_to_cpu(ep->basic.des2), 5932 le32_to_cpu(ep->basic.des3)); 5933 ep++; 5934 } else { 5935 dma_addr = dma_phy_addr + i * sizeof(*p); 5936 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5937 i, &dma_addr, 5938 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5939 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5940 p++; 5941 } 5942 seq_printf(seq, "\n"); 5943 } 5944 } 5945 5946 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5947 { 5948 struct net_device *dev = seq->private; 5949 struct stmmac_priv *priv = netdev_priv(dev); 5950 u32 rx_count = priv->plat->rx_queues_to_use; 5951 u32 tx_count = priv->plat->tx_queues_to_use; 5952 u32 queue; 5953 5954 if ((dev->flags & IFF_UP) == 0) 5955 return 0; 5956 5957 for (queue = 0; queue < rx_count; queue++) { 5958 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5959 5960 seq_printf(seq, "RX Queue %d:\n", queue); 5961 5962 if (priv->extend_desc) { 5963 seq_printf(seq, "Extended descriptor ring:\n"); 5964 sysfs_display_ring((void *)rx_q->dma_erx, 5965 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5966 } else { 5967 seq_printf(seq, "Descriptor ring:\n"); 5968 sysfs_display_ring((void *)rx_q->dma_rx, 5969 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5970 } 5971 } 5972 5973 for (queue = 0; queue < tx_count; queue++) { 5974 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5975 5976 seq_printf(seq, "TX Queue %d:\n", queue); 5977 5978 if (priv->extend_desc) { 5979 seq_printf(seq, "Extended descriptor ring:\n"); 5980 sysfs_display_ring((void *)tx_q->dma_etx, 5981 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 5982 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 5983 seq_printf(seq, "Descriptor ring:\n"); 5984 sysfs_display_ring((void *)tx_q->dma_tx, 5985 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 5986 } 5987 } 5988 5989 return 0; 5990 } 5991 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 5992 5993 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 5994 { 5995 struct net_device *dev = seq->private; 5996 struct stmmac_priv *priv = netdev_priv(dev); 5997 5998 if (!priv->hw_cap_support) { 5999 seq_printf(seq, "DMA HW features not supported\n"); 6000 return 0; 6001 } 6002 6003 seq_printf(seq, "==============================\n"); 6004 seq_printf(seq, "\tDMA HW features\n"); 6005 seq_printf(seq, "==============================\n"); 6006 6007 seq_printf(seq, "\t10/100 Mbps: %s\n", 6008 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6009 seq_printf(seq, "\t1000 Mbps: %s\n", 6010 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6011 seq_printf(seq, "\tHalf duplex: %s\n", 6012 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6013 seq_printf(seq, "\tHash Filter: %s\n", 6014 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6015 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6016 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6017 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6018 (priv->dma_cap.pcs) ? "Y" : "N"); 6019 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6020 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6021 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6022 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6023 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6024 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6025 seq_printf(seq, "\tRMON module: %s\n", 6026 (priv->dma_cap.rmon) ? "Y" : "N"); 6027 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6028 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6029 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6030 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6031 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6032 (priv->dma_cap.eee) ? "Y" : "N"); 6033 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6034 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6035 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6036 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6037 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6038 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6039 } else { 6040 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6041 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6042 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6043 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6044 } 6045 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6046 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6047 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6048 priv->dma_cap.number_rx_channel); 6049 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6050 priv->dma_cap.number_tx_channel); 6051 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6052 priv->dma_cap.number_rx_queues); 6053 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6054 priv->dma_cap.number_tx_queues); 6055 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6056 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6057 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6058 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6059 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6060 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6061 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6062 priv->dma_cap.pps_out_num); 6063 seq_printf(seq, "\tSafety Features: %s\n", 6064 priv->dma_cap.asp ? "Y" : "N"); 6065 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6066 priv->dma_cap.frpsel ? "Y" : "N"); 6067 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6068 priv->dma_cap.addr64); 6069 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6070 priv->dma_cap.rssen ? "Y" : "N"); 6071 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6072 priv->dma_cap.vlhash ? "Y" : "N"); 6073 seq_printf(seq, "\tSplit Header: %s\n", 6074 priv->dma_cap.sphen ? "Y" : "N"); 6075 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6076 priv->dma_cap.vlins ? "Y" : "N"); 6077 seq_printf(seq, "\tDouble VLAN: %s\n", 6078 priv->dma_cap.dvlan ? "Y" : "N"); 6079 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6080 priv->dma_cap.l3l4fnum); 6081 seq_printf(seq, "\tARP Offloading: %s\n", 6082 priv->dma_cap.arpoffsel ? "Y" : "N"); 6083 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6084 priv->dma_cap.estsel ? "Y" : "N"); 6085 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6086 priv->dma_cap.fpesel ? "Y" : "N"); 6087 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6088 priv->dma_cap.tbssel ? "Y" : "N"); 6089 return 0; 6090 } 6091 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6092 6093 /* Use network device events to rename debugfs file entries. 6094 */ 6095 static int stmmac_device_event(struct notifier_block *unused, 6096 unsigned long event, void *ptr) 6097 { 6098 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6099 struct stmmac_priv *priv = netdev_priv(dev); 6100 6101 if (dev->netdev_ops != &stmmac_netdev_ops) 6102 goto done; 6103 6104 switch (event) { 6105 case NETDEV_CHANGENAME: 6106 if (priv->dbgfs_dir) 6107 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6108 priv->dbgfs_dir, 6109 stmmac_fs_dir, 6110 dev->name); 6111 break; 6112 } 6113 done: 6114 return NOTIFY_DONE; 6115 } 6116 6117 static struct notifier_block stmmac_notifier = { 6118 .notifier_call = stmmac_device_event, 6119 }; 6120 6121 static void stmmac_init_fs(struct net_device *dev) 6122 { 6123 struct stmmac_priv *priv = netdev_priv(dev); 6124 6125 rtnl_lock(); 6126 6127 /* Create per netdev entries */ 6128 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6129 6130 /* Entry to report DMA RX/TX rings */ 6131 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6132 &stmmac_rings_status_fops); 6133 6134 /* Entry to report the DMA HW features */ 6135 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6136 &stmmac_dma_cap_fops); 6137 6138 rtnl_unlock(); 6139 } 6140 6141 static void stmmac_exit_fs(struct net_device *dev) 6142 { 6143 struct stmmac_priv *priv = netdev_priv(dev); 6144 6145 debugfs_remove_recursive(priv->dbgfs_dir); 6146 } 6147 #endif /* CONFIG_DEBUG_FS */ 6148 6149 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6150 { 6151 unsigned char *data = (unsigned char *)&vid_le; 6152 unsigned char data_byte = 0; 6153 u32 crc = ~0x0; 6154 u32 temp = 0; 6155 int i, bits; 6156 6157 bits = get_bitmask_order(VLAN_VID_MASK); 6158 for (i = 0; i < bits; i++) { 6159 if ((i % 8) == 0) 6160 data_byte = data[i / 8]; 6161 6162 temp = ((crc & 1) ^ data_byte) & 1; 6163 crc >>= 1; 6164 data_byte >>= 1; 6165 6166 if (temp) 6167 crc ^= 0xedb88320; 6168 } 6169 6170 return crc; 6171 } 6172 6173 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6174 { 6175 u32 crc, hash = 0; 6176 __le16 pmatch = 0; 6177 int count = 0; 6178 u16 vid = 0; 6179 6180 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6181 __le16 vid_le = cpu_to_le16(vid); 6182 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6183 hash |= (1 << crc); 6184 count++; 6185 } 6186 6187 if (!priv->dma_cap.vlhash) { 6188 if (count > 2) /* VID = 0 always passes filter */ 6189 return -EOPNOTSUPP; 6190 6191 pmatch = cpu_to_le16(vid); 6192 hash = 0; 6193 } 6194 6195 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6196 } 6197 6198 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6199 { 6200 struct stmmac_priv *priv = netdev_priv(ndev); 6201 bool is_double = false; 6202 int ret; 6203 6204 if (be16_to_cpu(proto) == ETH_P_8021AD) 6205 is_double = true; 6206 6207 set_bit(vid, priv->active_vlans); 6208 ret = stmmac_vlan_update(priv, is_double); 6209 if (ret) { 6210 clear_bit(vid, priv->active_vlans); 6211 return ret; 6212 } 6213 6214 if (priv->hw->num_vlan) { 6215 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6216 if (ret) 6217 return ret; 6218 } 6219 6220 return 0; 6221 } 6222 6223 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6224 { 6225 struct stmmac_priv *priv = netdev_priv(ndev); 6226 bool is_double = false; 6227 int ret; 6228 6229 ret = pm_runtime_get_sync(priv->device); 6230 if (ret < 0) { 6231 pm_runtime_put_noidle(priv->device); 6232 return ret; 6233 } 6234 6235 if (be16_to_cpu(proto) == ETH_P_8021AD) 6236 is_double = true; 6237 6238 clear_bit(vid, priv->active_vlans); 6239 6240 if (priv->hw->num_vlan) { 6241 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6242 if (ret) 6243 goto del_vlan_error; 6244 } 6245 6246 ret = stmmac_vlan_update(priv, is_double); 6247 6248 del_vlan_error: 6249 pm_runtime_put(priv->device); 6250 6251 return ret; 6252 } 6253 6254 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6255 { 6256 struct stmmac_priv *priv = netdev_priv(dev); 6257 6258 switch (bpf->command) { 6259 case XDP_SETUP_PROG: 6260 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6261 case XDP_SETUP_XSK_POOL: 6262 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6263 bpf->xsk.queue_id); 6264 default: 6265 return -EOPNOTSUPP; 6266 } 6267 } 6268 6269 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6270 struct xdp_frame **frames, u32 flags) 6271 { 6272 struct stmmac_priv *priv = netdev_priv(dev); 6273 int cpu = smp_processor_id(); 6274 struct netdev_queue *nq; 6275 int i, nxmit = 0; 6276 int queue; 6277 6278 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6279 return -ENETDOWN; 6280 6281 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6282 return -EINVAL; 6283 6284 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6285 nq = netdev_get_tx_queue(priv->dev, queue); 6286 6287 __netif_tx_lock(nq, cpu); 6288 /* Avoids TX time-out as we are sharing with slow path */ 6289 nq->trans_start = jiffies; 6290 6291 for (i = 0; i < num_frames; i++) { 6292 int res; 6293 6294 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6295 if (res == STMMAC_XDP_CONSUMED) 6296 break; 6297 6298 nxmit++; 6299 } 6300 6301 if (flags & XDP_XMIT_FLUSH) { 6302 stmmac_flush_tx_descriptors(priv, queue); 6303 stmmac_tx_timer_arm(priv, queue); 6304 } 6305 6306 __netif_tx_unlock(nq); 6307 6308 return nxmit; 6309 } 6310 6311 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6312 { 6313 struct stmmac_channel *ch = &priv->channel[queue]; 6314 unsigned long flags; 6315 6316 spin_lock_irqsave(&ch->lock, flags); 6317 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6318 spin_unlock_irqrestore(&ch->lock, flags); 6319 6320 stmmac_stop_rx_dma(priv, queue); 6321 __free_dma_rx_desc_resources(priv, queue); 6322 } 6323 6324 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6325 { 6326 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6327 struct stmmac_channel *ch = &priv->channel[queue]; 6328 unsigned long flags; 6329 u32 buf_size; 6330 int ret; 6331 6332 ret = __alloc_dma_rx_desc_resources(priv, queue); 6333 if (ret) { 6334 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6335 return; 6336 } 6337 6338 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6339 if (ret) { 6340 __free_dma_rx_desc_resources(priv, queue); 6341 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6342 return; 6343 } 6344 6345 stmmac_clear_rx_descriptors(priv, queue); 6346 6347 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6348 rx_q->dma_rx_phy, rx_q->queue_index); 6349 6350 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6351 sizeof(struct dma_desc)); 6352 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6353 rx_q->rx_tail_addr, rx_q->queue_index); 6354 6355 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6356 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6357 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6358 buf_size, 6359 rx_q->queue_index); 6360 } else { 6361 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6362 priv->dma_buf_sz, 6363 rx_q->queue_index); 6364 } 6365 6366 stmmac_start_rx_dma(priv, queue); 6367 6368 spin_lock_irqsave(&ch->lock, flags); 6369 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6370 spin_unlock_irqrestore(&ch->lock, flags); 6371 } 6372 6373 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6374 { 6375 struct stmmac_channel *ch = &priv->channel[queue]; 6376 unsigned long flags; 6377 6378 spin_lock_irqsave(&ch->lock, flags); 6379 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6380 spin_unlock_irqrestore(&ch->lock, flags); 6381 6382 stmmac_stop_tx_dma(priv, queue); 6383 __free_dma_tx_desc_resources(priv, queue); 6384 } 6385 6386 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6387 { 6388 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6389 struct stmmac_channel *ch = &priv->channel[queue]; 6390 unsigned long flags; 6391 int ret; 6392 6393 ret = __alloc_dma_tx_desc_resources(priv, queue); 6394 if (ret) { 6395 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6396 return; 6397 } 6398 6399 ret = __init_dma_tx_desc_rings(priv, queue); 6400 if (ret) { 6401 __free_dma_tx_desc_resources(priv, queue); 6402 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6403 return; 6404 } 6405 6406 stmmac_clear_tx_descriptors(priv, queue); 6407 6408 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6409 tx_q->dma_tx_phy, tx_q->queue_index); 6410 6411 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6412 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6413 6414 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6415 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6416 tx_q->tx_tail_addr, tx_q->queue_index); 6417 6418 stmmac_start_tx_dma(priv, queue); 6419 6420 spin_lock_irqsave(&ch->lock, flags); 6421 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6422 spin_unlock_irqrestore(&ch->lock, flags); 6423 } 6424 6425 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6426 { 6427 struct stmmac_priv *priv = netdev_priv(dev); 6428 struct stmmac_rx_queue *rx_q; 6429 struct stmmac_tx_queue *tx_q; 6430 struct stmmac_channel *ch; 6431 6432 if (test_bit(STMMAC_DOWN, &priv->state) || 6433 !netif_carrier_ok(priv->dev)) 6434 return -ENETDOWN; 6435 6436 if (!stmmac_xdp_is_enabled(priv)) 6437 return -ENXIO; 6438 6439 if (queue >= priv->plat->rx_queues_to_use || 6440 queue >= priv->plat->tx_queues_to_use) 6441 return -EINVAL; 6442 6443 rx_q = &priv->rx_queue[queue]; 6444 tx_q = &priv->tx_queue[queue]; 6445 ch = &priv->channel[queue]; 6446 6447 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6448 return -ENXIO; 6449 6450 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6451 /* EQoS does not have per-DMA channel SW interrupt, 6452 * so we schedule RX Napi straight-away. 6453 */ 6454 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6455 __napi_schedule(&ch->rxtx_napi); 6456 } 6457 6458 return 0; 6459 } 6460 6461 static const struct net_device_ops stmmac_netdev_ops = { 6462 .ndo_open = stmmac_open, 6463 .ndo_start_xmit = stmmac_xmit, 6464 .ndo_stop = stmmac_release, 6465 .ndo_change_mtu = stmmac_change_mtu, 6466 .ndo_fix_features = stmmac_fix_features, 6467 .ndo_set_features = stmmac_set_features, 6468 .ndo_set_rx_mode = stmmac_set_rx_mode, 6469 .ndo_tx_timeout = stmmac_tx_timeout, 6470 .ndo_do_ioctl = stmmac_ioctl, 6471 .ndo_setup_tc = stmmac_setup_tc, 6472 .ndo_select_queue = stmmac_select_queue, 6473 #ifdef CONFIG_NET_POLL_CONTROLLER 6474 .ndo_poll_controller = stmmac_poll_controller, 6475 #endif 6476 .ndo_set_mac_address = stmmac_set_mac_address, 6477 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6478 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6479 .ndo_bpf = stmmac_bpf, 6480 .ndo_xdp_xmit = stmmac_xdp_xmit, 6481 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6482 }; 6483 6484 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6485 { 6486 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6487 return; 6488 if (test_bit(STMMAC_DOWN, &priv->state)) 6489 return; 6490 6491 netdev_err(priv->dev, "Reset adapter.\n"); 6492 6493 rtnl_lock(); 6494 netif_trans_update(priv->dev); 6495 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6496 usleep_range(1000, 2000); 6497 6498 set_bit(STMMAC_DOWN, &priv->state); 6499 dev_close(priv->dev); 6500 dev_open(priv->dev, NULL); 6501 clear_bit(STMMAC_DOWN, &priv->state); 6502 clear_bit(STMMAC_RESETING, &priv->state); 6503 rtnl_unlock(); 6504 } 6505 6506 static void stmmac_service_task(struct work_struct *work) 6507 { 6508 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6509 service_task); 6510 6511 stmmac_reset_subtask(priv); 6512 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6513 } 6514 6515 /** 6516 * stmmac_hw_init - Init the MAC device 6517 * @priv: driver private structure 6518 * Description: this function is to configure the MAC device according to 6519 * some platform parameters or the HW capability register. It prepares the 6520 * driver to use either ring or chain modes and to setup either enhanced or 6521 * normal descriptors. 6522 */ 6523 static int stmmac_hw_init(struct stmmac_priv *priv) 6524 { 6525 int ret; 6526 6527 /* dwmac-sun8i only work in chain mode */ 6528 if (priv->plat->has_sun8i) 6529 chain_mode = 1; 6530 priv->chain_mode = chain_mode; 6531 6532 /* Initialize HW Interface */ 6533 ret = stmmac_hwif_init(priv); 6534 if (ret) 6535 return ret; 6536 6537 /* Get the HW capability (new GMAC newer than 3.50a) */ 6538 priv->hw_cap_support = stmmac_get_hw_features(priv); 6539 if (priv->hw_cap_support) { 6540 dev_info(priv->device, "DMA HW capability register supported\n"); 6541 6542 /* We can override some gmac/dma configuration fields: e.g. 6543 * enh_desc, tx_coe (e.g. that are passed through the 6544 * platform) with the values from the HW capability 6545 * register (if supported). 6546 */ 6547 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6548 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up; 6549 priv->hw->pmt = priv->plat->pmt; 6550 if (priv->dma_cap.hash_tb_sz) { 6551 priv->hw->multicast_filter_bins = 6552 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6553 priv->hw->mcast_bits_log2 = 6554 ilog2(priv->hw->multicast_filter_bins); 6555 } 6556 6557 /* TXCOE doesn't work in thresh DMA mode */ 6558 if (priv->plat->force_thresh_dma_mode) 6559 priv->plat->tx_coe = 0; 6560 else 6561 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6562 6563 /* In case of GMAC4 rx_coe is from HW cap register. */ 6564 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6565 6566 if (priv->dma_cap.rx_coe_type2) 6567 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6568 else if (priv->dma_cap.rx_coe_type1) 6569 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6570 6571 } else { 6572 dev_info(priv->device, "No HW DMA feature register supported\n"); 6573 } 6574 6575 if (priv->plat->rx_coe) { 6576 priv->hw->rx_csum = priv->plat->rx_coe; 6577 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6578 if (priv->synopsys_id < DWMAC_CORE_4_00) 6579 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6580 } 6581 if (priv->plat->tx_coe) 6582 dev_info(priv->device, "TX Checksum insertion supported\n"); 6583 6584 if (priv->plat->pmt) { 6585 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6586 device_set_wakeup_capable(priv->device, 1); 6587 } 6588 6589 if (priv->dma_cap.tsoen) 6590 dev_info(priv->device, "TSO supported\n"); 6591 6592 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6593 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6594 6595 /* Run HW quirks, if any */ 6596 if (priv->hwif_quirks) { 6597 ret = priv->hwif_quirks(priv); 6598 if (ret) 6599 return ret; 6600 } 6601 6602 /* Rx Watchdog is available in the COREs newer than the 3.40. 6603 * In some case, for example on bugged HW this feature 6604 * has to be disable and this can be done by passing the 6605 * riwt_off field from the platform. 6606 */ 6607 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6608 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6609 priv->use_riwt = 1; 6610 dev_info(priv->device, 6611 "Enable RX Mitigation via HW Watchdog Timer\n"); 6612 } 6613 6614 return 0; 6615 } 6616 6617 static void stmmac_napi_add(struct net_device *dev) 6618 { 6619 struct stmmac_priv *priv = netdev_priv(dev); 6620 u32 queue, maxq; 6621 6622 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6623 6624 for (queue = 0; queue < maxq; queue++) { 6625 struct stmmac_channel *ch = &priv->channel[queue]; 6626 6627 ch->priv_data = priv; 6628 ch->index = queue; 6629 spin_lock_init(&ch->lock); 6630 6631 if (queue < priv->plat->rx_queues_to_use) { 6632 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6633 NAPI_POLL_WEIGHT); 6634 } 6635 if (queue < priv->plat->tx_queues_to_use) { 6636 netif_tx_napi_add(dev, &ch->tx_napi, 6637 stmmac_napi_poll_tx, 6638 NAPI_POLL_WEIGHT); 6639 } 6640 if (queue < priv->plat->rx_queues_to_use && 6641 queue < priv->plat->tx_queues_to_use) { 6642 netif_napi_add(dev, &ch->rxtx_napi, 6643 stmmac_napi_poll_rxtx, 6644 NAPI_POLL_WEIGHT); 6645 } 6646 } 6647 } 6648 6649 static void stmmac_napi_del(struct net_device *dev) 6650 { 6651 struct stmmac_priv *priv = netdev_priv(dev); 6652 u32 queue, maxq; 6653 6654 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6655 6656 for (queue = 0; queue < maxq; queue++) { 6657 struct stmmac_channel *ch = &priv->channel[queue]; 6658 6659 if (queue < priv->plat->rx_queues_to_use) 6660 netif_napi_del(&ch->rx_napi); 6661 if (queue < priv->plat->tx_queues_to_use) 6662 netif_napi_del(&ch->tx_napi); 6663 if (queue < priv->plat->rx_queues_to_use && 6664 queue < priv->plat->tx_queues_to_use) { 6665 netif_napi_del(&ch->rxtx_napi); 6666 } 6667 } 6668 } 6669 6670 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6671 { 6672 struct stmmac_priv *priv = netdev_priv(dev); 6673 int ret = 0; 6674 6675 if (netif_running(dev)) 6676 stmmac_release(dev); 6677 6678 stmmac_napi_del(dev); 6679 6680 priv->plat->rx_queues_to_use = rx_cnt; 6681 priv->plat->tx_queues_to_use = tx_cnt; 6682 6683 stmmac_napi_add(dev); 6684 6685 if (netif_running(dev)) 6686 ret = stmmac_open(dev); 6687 6688 return ret; 6689 } 6690 6691 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6692 { 6693 struct stmmac_priv *priv = netdev_priv(dev); 6694 int ret = 0; 6695 6696 if (netif_running(dev)) 6697 stmmac_release(dev); 6698 6699 priv->dma_rx_size = rx_size; 6700 priv->dma_tx_size = tx_size; 6701 6702 if (netif_running(dev)) 6703 ret = stmmac_open(dev); 6704 6705 return ret; 6706 } 6707 6708 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6709 static void stmmac_fpe_lp_task(struct work_struct *work) 6710 { 6711 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6712 fpe_task); 6713 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6714 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6715 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6716 bool *hs_enable = &fpe_cfg->hs_enable; 6717 bool *enable = &fpe_cfg->enable; 6718 int retries = 20; 6719 6720 while (retries-- > 0) { 6721 /* Bail out immediately if FPE handshake is OFF */ 6722 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6723 break; 6724 6725 if (*lo_state == FPE_STATE_ENTERING_ON && 6726 *lp_state == FPE_STATE_ENTERING_ON) { 6727 stmmac_fpe_configure(priv, priv->ioaddr, 6728 priv->plat->tx_queues_to_use, 6729 priv->plat->rx_queues_to_use, 6730 *enable); 6731 6732 netdev_info(priv->dev, "configured FPE\n"); 6733 6734 *lo_state = FPE_STATE_ON; 6735 *lp_state = FPE_STATE_ON; 6736 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6737 break; 6738 } 6739 6740 if ((*lo_state == FPE_STATE_CAPABLE || 6741 *lo_state == FPE_STATE_ENTERING_ON) && 6742 *lp_state != FPE_STATE_ON) { 6743 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6744 *lo_state, *lp_state); 6745 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6746 MPACKET_VERIFY); 6747 } 6748 /* Sleep then retry */ 6749 msleep(500); 6750 } 6751 6752 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6753 } 6754 6755 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6756 { 6757 if (priv->plat->fpe_cfg->hs_enable != enable) { 6758 if (enable) { 6759 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6760 MPACKET_VERIFY); 6761 } else { 6762 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6763 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6764 } 6765 6766 priv->plat->fpe_cfg->hs_enable = enable; 6767 } 6768 } 6769 6770 /** 6771 * stmmac_dvr_probe 6772 * @device: device pointer 6773 * @plat_dat: platform data pointer 6774 * @res: stmmac resource pointer 6775 * Description: this is the main probe function used to 6776 * call the alloc_etherdev, allocate the priv structure. 6777 * Return: 6778 * returns 0 on success, otherwise errno. 6779 */ 6780 int stmmac_dvr_probe(struct device *device, 6781 struct plat_stmmacenet_data *plat_dat, 6782 struct stmmac_resources *res) 6783 { 6784 struct net_device *ndev = NULL; 6785 struct stmmac_priv *priv; 6786 u32 rxq; 6787 int i, ret = 0; 6788 6789 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6790 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6791 if (!ndev) 6792 return -ENOMEM; 6793 6794 SET_NETDEV_DEV(ndev, device); 6795 6796 priv = netdev_priv(ndev); 6797 priv->device = device; 6798 priv->dev = ndev; 6799 6800 stmmac_set_ethtool_ops(ndev); 6801 priv->pause = pause; 6802 priv->plat = plat_dat; 6803 priv->ioaddr = res->addr; 6804 priv->dev->base_addr = (unsigned long)res->addr; 6805 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6806 6807 priv->dev->irq = res->irq; 6808 priv->wol_irq = res->wol_irq; 6809 priv->lpi_irq = res->lpi_irq; 6810 priv->sfty_ce_irq = res->sfty_ce_irq; 6811 priv->sfty_ue_irq = res->sfty_ue_irq; 6812 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6813 priv->rx_irq[i] = res->rx_irq[i]; 6814 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6815 priv->tx_irq[i] = res->tx_irq[i]; 6816 6817 if (!is_zero_ether_addr(res->mac)) 6818 memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN); 6819 6820 dev_set_drvdata(device, priv->dev); 6821 6822 /* Verify driver arguments */ 6823 stmmac_verify_args(); 6824 6825 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6826 if (!priv->af_xdp_zc_qps) 6827 return -ENOMEM; 6828 6829 /* Allocate workqueue */ 6830 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6831 if (!priv->wq) { 6832 dev_err(priv->device, "failed to create workqueue\n"); 6833 return -ENOMEM; 6834 } 6835 6836 INIT_WORK(&priv->service_task, stmmac_service_task); 6837 6838 /* Initialize Link Partner FPE workqueue */ 6839 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6840 6841 /* Override with kernel parameters if supplied XXX CRS XXX 6842 * this needs to have multiple instances 6843 */ 6844 if ((phyaddr >= 0) && (phyaddr <= 31)) 6845 priv->plat->phy_addr = phyaddr; 6846 6847 if (priv->plat->stmmac_rst) { 6848 ret = reset_control_assert(priv->plat->stmmac_rst); 6849 reset_control_deassert(priv->plat->stmmac_rst); 6850 /* Some reset controllers have only reset callback instead of 6851 * assert + deassert callbacks pair. 6852 */ 6853 if (ret == -ENOTSUPP) 6854 reset_control_reset(priv->plat->stmmac_rst); 6855 } 6856 6857 /* Init MAC and get the capabilities */ 6858 ret = stmmac_hw_init(priv); 6859 if (ret) 6860 goto error_hw_init; 6861 6862 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 6863 */ 6864 if (priv->synopsys_id < DWMAC_CORE_5_20) 6865 priv->plat->dma_cfg->dche = false; 6866 6867 stmmac_check_ether_addr(priv); 6868 6869 ndev->netdev_ops = &stmmac_netdev_ops; 6870 6871 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 6872 NETIF_F_RXCSUM; 6873 6874 ret = stmmac_tc_init(priv, priv); 6875 if (!ret) { 6876 ndev->hw_features |= NETIF_F_HW_TC; 6877 } 6878 6879 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 6880 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 6881 if (priv->plat->has_gmac4) 6882 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 6883 priv->tso = true; 6884 dev_info(priv->device, "TSO feature enabled\n"); 6885 } 6886 6887 if (priv->dma_cap.sphen) { 6888 ndev->hw_features |= NETIF_F_GRO; 6889 priv->sph_cap = true; 6890 priv->sph = priv->sph_cap; 6891 dev_info(priv->device, "SPH feature enabled\n"); 6892 } 6893 6894 /* The current IP register MAC_HW_Feature1[ADDR64] only define 6895 * 32/40/64 bit width, but some SOC support others like i.MX8MP 6896 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 6897 * So overwrite dma_cap.addr64 according to HW real design. 6898 */ 6899 if (priv->plat->addr64) 6900 priv->dma_cap.addr64 = priv->plat->addr64; 6901 6902 if (priv->dma_cap.addr64) { 6903 ret = dma_set_mask_and_coherent(device, 6904 DMA_BIT_MASK(priv->dma_cap.addr64)); 6905 if (!ret) { 6906 dev_info(priv->device, "Using %d bits DMA width\n", 6907 priv->dma_cap.addr64); 6908 6909 /* 6910 * If more than 32 bits can be addressed, make sure to 6911 * enable enhanced addressing mode. 6912 */ 6913 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 6914 priv->plat->dma_cfg->eame = true; 6915 } else { 6916 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 6917 if (ret) { 6918 dev_err(priv->device, "Failed to set DMA Mask\n"); 6919 goto error_hw_init; 6920 } 6921 6922 priv->dma_cap.addr64 = 32; 6923 } 6924 } 6925 6926 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 6927 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 6928 #ifdef STMMAC_VLAN_TAG_USED 6929 /* Both mac100 and gmac support receive VLAN tag detection */ 6930 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 6931 if (priv->dma_cap.vlhash) { 6932 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6933 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 6934 } 6935 if (priv->dma_cap.vlins) { 6936 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 6937 if (priv->dma_cap.dvlan) 6938 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 6939 } 6940 #endif 6941 priv->msg_enable = netif_msg_init(debug, default_msg_level); 6942 6943 /* Initialize RSS */ 6944 rxq = priv->plat->rx_queues_to_use; 6945 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 6946 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 6947 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 6948 6949 if (priv->dma_cap.rssen && priv->plat->rss_en) 6950 ndev->features |= NETIF_F_RXHASH; 6951 6952 /* MTU range: 46 - hw-specific max */ 6953 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 6954 if (priv->plat->has_xgmac) 6955 ndev->max_mtu = XGMAC_JUMBO_LEN; 6956 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 6957 ndev->max_mtu = JUMBO_LEN; 6958 else 6959 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 6960 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 6961 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 6962 */ 6963 if ((priv->plat->maxmtu < ndev->max_mtu) && 6964 (priv->plat->maxmtu >= ndev->min_mtu)) 6965 ndev->max_mtu = priv->plat->maxmtu; 6966 else if (priv->plat->maxmtu < ndev->min_mtu) 6967 dev_warn(priv->device, 6968 "%s: warning: maxmtu having invalid value (%d)\n", 6969 __func__, priv->plat->maxmtu); 6970 6971 if (flow_ctrl) 6972 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 6973 6974 /* Setup channels NAPI */ 6975 stmmac_napi_add(ndev); 6976 6977 mutex_init(&priv->lock); 6978 6979 /* If a specific clk_csr value is passed from the platform 6980 * this means that the CSR Clock Range selection cannot be 6981 * changed at run-time and it is fixed. Viceversa the driver'll try to 6982 * set the MDC clock dynamically according to the csr actual 6983 * clock input. 6984 */ 6985 if (priv->plat->clk_csr >= 0) 6986 priv->clk_csr = priv->plat->clk_csr; 6987 else 6988 stmmac_clk_csr_set(priv); 6989 6990 stmmac_check_pcs_mode(priv); 6991 6992 pm_runtime_get_noresume(device); 6993 pm_runtime_set_active(device); 6994 pm_runtime_enable(device); 6995 6996 if (priv->hw->pcs != STMMAC_PCS_TBI && 6997 priv->hw->pcs != STMMAC_PCS_RTBI) { 6998 /* MDIO bus Registration */ 6999 ret = stmmac_mdio_register(ndev); 7000 if (ret < 0) { 7001 dev_err(priv->device, 7002 "%s: MDIO bus (id: %d) registration failed", 7003 __func__, priv->plat->bus_id); 7004 goto error_mdio_register; 7005 } 7006 } 7007 7008 ret = stmmac_phy_setup(priv); 7009 if (ret) { 7010 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7011 goto error_phy_setup; 7012 } 7013 7014 ret = register_netdev(ndev); 7015 if (ret) { 7016 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7017 __func__, ret); 7018 goto error_netdev_register; 7019 } 7020 7021 if (priv->plat->serdes_powerup) { 7022 ret = priv->plat->serdes_powerup(ndev, 7023 priv->plat->bsp_priv); 7024 7025 if (ret < 0) 7026 goto error_serdes_powerup; 7027 } 7028 7029 #ifdef CONFIG_DEBUG_FS 7030 stmmac_init_fs(ndev); 7031 #endif 7032 7033 /* Let pm_runtime_put() disable the clocks. 7034 * If CONFIG_PM is not enabled, the clocks will stay powered. 7035 */ 7036 pm_runtime_put(device); 7037 7038 return ret; 7039 7040 error_serdes_powerup: 7041 unregister_netdev(ndev); 7042 error_netdev_register: 7043 phylink_destroy(priv->phylink); 7044 error_phy_setup: 7045 if (priv->hw->pcs != STMMAC_PCS_TBI && 7046 priv->hw->pcs != STMMAC_PCS_RTBI) 7047 stmmac_mdio_unregister(ndev); 7048 error_mdio_register: 7049 stmmac_napi_del(ndev); 7050 error_hw_init: 7051 destroy_workqueue(priv->wq); 7052 bitmap_free(priv->af_xdp_zc_qps); 7053 7054 return ret; 7055 } 7056 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7057 7058 /** 7059 * stmmac_dvr_remove 7060 * @dev: device pointer 7061 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7062 * changes the link status, releases the DMA descriptor rings. 7063 */ 7064 int stmmac_dvr_remove(struct device *dev) 7065 { 7066 struct net_device *ndev = dev_get_drvdata(dev); 7067 struct stmmac_priv *priv = netdev_priv(ndev); 7068 7069 netdev_info(priv->dev, "%s: removing driver", __func__); 7070 7071 stmmac_stop_all_dma(priv); 7072 stmmac_mac_set(priv, priv->ioaddr, false); 7073 netif_carrier_off(ndev); 7074 unregister_netdev(ndev); 7075 7076 /* Serdes power down needs to happen after VLAN filter 7077 * is deleted that is triggered by unregister_netdev(). 7078 */ 7079 if (priv->plat->serdes_powerdown) 7080 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7081 7082 #ifdef CONFIG_DEBUG_FS 7083 stmmac_exit_fs(ndev); 7084 #endif 7085 phylink_destroy(priv->phylink); 7086 if (priv->plat->stmmac_rst) 7087 reset_control_assert(priv->plat->stmmac_rst); 7088 pm_runtime_put(dev); 7089 pm_runtime_disable(dev); 7090 if (priv->hw->pcs != STMMAC_PCS_TBI && 7091 priv->hw->pcs != STMMAC_PCS_RTBI) 7092 stmmac_mdio_unregister(ndev); 7093 destroy_workqueue(priv->wq); 7094 mutex_destroy(&priv->lock); 7095 bitmap_free(priv->af_xdp_zc_qps); 7096 7097 return 0; 7098 } 7099 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7100 7101 /** 7102 * stmmac_suspend - suspend callback 7103 * @dev: device pointer 7104 * Description: this is the function to suspend the device and it is called 7105 * by the platform driver to stop the network queue, release the resources, 7106 * program the PMT register (for WoL), clean and release driver resources. 7107 */ 7108 int stmmac_suspend(struct device *dev) 7109 { 7110 struct net_device *ndev = dev_get_drvdata(dev); 7111 struct stmmac_priv *priv = netdev_priv(ndev); 7112 u32 chan; 7113 int ret; 7114 7115 if (!ndev || !netif_running(ndev)) 7116 return 0; 7117 7118 phylink_mac_change(priv->phylink, false); 7119 7120 mutex_lock(&priv->lock); 7121 7122 netif_device_detach(ndev); 7123 7124 stmmac_disable_all_queues(priv); 7125 7126 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7127 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7128 7129 if (priv->eee_enabled) { 7130 priv->tx_path_in_lpi_mode = false; 7131 del_timer_sync(&priv->eee_ctrl_timer); 7132 } 7133 7134 /* Stop TX/RX DMA */ 7135 stmmac_stop_all_dma(priv); 7136 7137 if (priv->plat->serdes_powerdown) 7138 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7139 7140 /* Enable Power down mode by programming the PMT regs */ 7141 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7142 stmmac_pmt(priv, priv->hw, priv->wolopts); 7143 priv->irq_wake = 1; 7144 } else { 7145 mutex_unlock(&priv->lock); 7146 rtnl_lock(); 7147 if (device_may_wakeup(priv->device)) 7148 phylink_speed_down(priv->phylink, false); 7149 phylink_stop(priv->phylink); 7150 rtnl_unlock(); 7151 mutex_lock(&priv->lock); 7152 7153 stmmac_mac_set(priv, priv->ioaddr, false); 7154 pinctrl_pm_select_sleep_state(priv->device); 7155 /* Disable clock in case of PWM is off */ 7156 clk_disable_unprepare(priv->plat->clk_ptp_ref); 7157 ret = pm_runtime_force_suspend(dev); 7158 if (ret) { 7159 mutex_unlock(&priv->lock); 7160 return ret; 7161 } 7162 } 7163 7164 mutex_unlock(&priv->lock); 7165 7166 if (priv->dma_cap.fpesel) { 7167 /* Disable FPE */ 7168 stmmac_fpe_configure(priv, priv->ioaddr, 7169 priv->plat->tx_queues_to_use, 7170 priv->plat->rx_queues_to_use, false); 7171 7172 stmmac_fpe_handshake(priv, false); 7173 } 7174 7175 priv->speed = SPEED_UNKNOWN; 7176 return 0; 7177 } 7178 EXPORT_SYMBOL_GPL(stmmac_suspend); 7179 7180 /** 7181 * stmmac_reset_queues_param - reset queue parameters 7182 * @priv: device pointer 7183 */ 7184 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7185 { 7186 u32 rx_cnt = priv->plat->rx_queues_to_use; 7187 u32 tx_cnt = priv->plat->tx_queues_to_use; 7188 u32 queue; 7189 7190 for (queue = 0; queue < rx_cnt; queue++) { 7191 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7192 7193 rx_q->cur_rx = 0; 7194 rx_q->dirty_rx = 0; 7195 } 7196 7197 for (queue = 0; queue < tx_cnt; queue++) { 7198 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7199 7200 tx_q->cur_tx = 0; 7201 tx_q->dirty_tx = 0; 7202 tx_q->mss = 0; 7203 7204 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7205 } 7206 } 7207 7208 /** 7209 * stmmac_resume - resume callback 7210 * @dev: device pointer 7211 * Description: when resume this function is invoked to setup the DMA and CORE 7212 * in a usable state. 7213 */ 7214 int stmmac_resume(struct device *dev) 7215 { 7216 struct net_device *ndev = dev_get_drvdata(dev); 7217 struct stmmac_priv *priv = netdev_priv(ndev); 7218 int ret; 7219 7220 if (!netif_running(ndev)) 7221 return 0; 7222 7223 /* Power Down bit, into the PM register, is cleared 7224 * automatically as soon as a magic packet or a Wake-up frame 7225 * is received. Anyway, it's better to manually clear 7226 * this bit because it can generate problems while resuming 7227 * from another devices (e.g. serial console). 7228 */ 7229 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7230 mutex_lock(&priv->lock); 7231 stmmac_pmt(priv, priv->hw, 0); 7232 mutex_unlock(&priv->lock); 7233 priv->irq_wake = 0; 7234 } else { 7235 pinctrl_pm_select_default_state(priv->device); 7236 /* enable the clk previously disabled */ 7237 ret = pm_runtime_force_resume(dev); 7238 if (ret) 7239 return ret; 7240 if (priv->plat->clk_ptp_ref) 7241 clk_prepare_enable(priv->plat->clk_ptp_ref); 7242 /* reset the phy so that it's ready */ 7243 if (priv->mii) 7244 stmmac_mdio_reset(priv->mii); 7245 } 7246 7247 if (priv->plat->serdes_powerup) { 7248 ret = priv->plat->serdes_powerup(ndev, 7249 priv->plat->bsp_priv); 7250 7251 if (ret < 0) 7252 return ret; 7253 } 7254 7255 if (!device_may_wakeup(priv->device) || !priv->plat->pmt) { 7256 rtnl_lock(); 7257 phylink_start(priv->phylink); 7258 /* We may have called phylink_speed_down before */ 7259 phylink_speed_up(priv->phylink); 7260 rtnl_unlock(); 7261 } 7262 7263 rtnl_lock(); 7264 mutex_lock(&priv->lock); 7265 7266 stmmac_reset_queues_param(priv); 7267 7268 stmmac_free_tx_skbufs(priv); 7269 stmmac_clear_descriptors(priv); 7270 7271 stmmac_hw_setup(ndev, false); 7272 stmmac_init_coalesce(priv); 7273 stmmac_set_rx_mode(ndev); 7274 7275 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7276 7277 stmmac_enable_all_queues(priv); 7278 7279 mutex_unlock(&priv->lock); 7280 rtnl_unlock(); 7281 7282 phylink_mac_change(priv->phylink, true); 7283 7284 netif_device_attach(ndev); 7285 7286 return 0; 7287 } 7288 EXPORT_SYMBOL_GPL(stmmac_resume); 7289 7290 #ifndef MODULE 7291 static int __init stmmac_cmdline_opt(char *str) 7292 { 7293 char *opt; 7294 7295 if (!str || !*str) 7296 return -EINVAL; 7297 while ((opt = strsep(&str, ",")) != NULL) { 7298 if (!strncmp(opt, "debug:", 6)) { 7299 if (kstrtoint(opt + 6, 0, &debug)) 7300 goto err; 7301 } else if (!strncmp(opt, "phyaddr:", 8)) { 7302 if (kstrtoint(opt + 8, 0, &phyaddr)) 7303 goto err; 7304 } else if (!strncmp(opt, "buf_sz:", 7)) { 7305 if (kstrtoint(opt + 7, 0, &buf_sz)) 7306 goto err; 7307 } else if (!strncmp(opt, "tc:", 3)) { 7308 if (kstrtoint(opt + 3, 0, &tc)) 7309 goto err; 7310 } else if (!strncmp(opt, "watchdog:", 9)) { 7311 if (kstrtoint(opt + 9, 0, &watchdog)) 7312 goto err; 7313 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7314 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7315 goto err; 7316 } else if (!strncmp(opt, "pause:", 6)) { 7317 if (kstrtoint(opt + 6, 0, &pause)) 7318 goto err; 7319 } else if (!strncmp(opt, "eee_timer:", 10)) { 7320 if (kstrtoint(opt + 10, 0, &eee_timer)) 7321 goto err; 7322 } else if (!strncmp(opt, "chain_mode:", 11)) { 7323 if (kstrtoint(opt + 11, 0, &chain_mode)) 7324 goto err; 7325 } 7326 } 7327 return 0; 7328 7329 err: 7330 pr_err("%s: ERROR broken module parameter conversion", __func__); 7331 return -EINVAL; 7332 } 7333 7334 __setup("stmmaceth=", stmmac_cmdline_opt); 7335 #endif /* MODULE */ 7336 7337 static int __init stmmac_init(void) 7338 { 7339 #ifdef CONFIG_DEBUG_FS 7340 /* Create debugfs main directory if it doesn't exist yet */ 7341 if (!stmmac_fs_dir) 7342 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7343 register_netdevice_notifier(&stmmac_notifier); 7344 #endif 7345 7346 return 0; 7347 } 7348 7349 static void __exit stmmac_exit(void) 7350 { 7351 #ifdef CONFIG_DEBUG_FS 7352 unregister_netdevice_notifier(&stmmac_notifier); 7353 debugfs_remove_recursive(stmmac_fs_dir); 7354 #endif 7355 } 7356 7357 module_init(stmmac_init) 7358 module_exit(stmmac_exit) 7359 7360 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7361 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7362 MODULE_LICENSE("GPL"); 7363