xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c (revision 6486c0f44ed8e91073c1b08e83075e3832618ae5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/page_pool/helpers.h>
43 #include <net/pkt_cls.h>
44 #include <net/xdp_sock_drv.h>
45 #include "stmmac_ptp.h"
46 #include "stmmac.h"
47 #include "stmmac_xdp.h"
48 #include <linux/reset.h>
49 #include <linux/of_mdio.h>
50 #include "dwmac1000.h"
51 #include "dwxgmac2.h"
52 #include "hwif.h"
53 
54 /* As long as the interface is active, we keep the timestamping counter enabled
55  * with fine resolution and binary rollover. This avoid non-monotonic behavior
56  * (clock jumps) when changing timestamping settings at runtime.
57  */
58 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
59 				 PTP_TCR_TSCTRLSSR)
60 
61 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
62 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
63 
64 /* Module parameters */
65 #define TX_TIMEO	5000
66 static int watchdog = TX_TIMEO;
67 module_param(watchdog, int, 0644);
68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69 
70 static int debug = -1;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73 
74 static int phyaddr = -1;
75 module_param(phyaddr, int, 0444);
76 MODULE_PARM_DESC(phyaddr, "Physical device address");
77 
78 #define STMMAC_TX_THRESH(x)	((x)->dma_conf.dma_tx_size / 4)
79 #define STMMAC_RX_THRESH(x)	((x)->dma_conf.dma_rx_size / 4)
80 
81 /* Limit to make sure XDP TX and slow path can coexist */
82 #define STMMAC_XSK_TX_BUDGET_MAX	256
83 #define STMMAC_TX_XSK_AVAIL		16
84 #define STMMAC_RX_FILL_BATCH		16
85 
86 #define STMMAC_XDP_PASS		0
87 #define STMMAC_XDP_CONSUMED	BIT(0)
88 #define STMMAC_XDP_TX		BIT(1)
89 #define STMMAC_XDP_REDIRECT	BIT(2)
90 
91 static int flow_ctrl = FLOW_AUTO;
92 module_param(flow_ctrl, int, 0644);
93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94 
95 static int pause = PAUSE_TIME;
96 module_param(pause, int, 0644);
97 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
98 
99 #define TC_DEFAULT 64
100 static int tc = TC_DEFAULT;
101 module_param(tc, int, 0644);
102 MODULE_PARM_DESC(tc, "DMA threshold control value");
103 
104 #define	DEFAULT_BUFSIZE	1536
105 static int buf_sz = DEFAULT_BUFSIZE;
106 module_param(buf_sz, int, 0644);
107 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108 
109 #define	STMMAC_RX_COPYBREAK	256
110 
111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
112 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
113 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114 
115 #define STMMAC_DEFAULT_LPI_TIMER	1000
116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
117 module_param(eee_timer, int, 0644);
118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120 
121 /* By default the driver will use the ring mode to manage tx and rx descriptors,
122  * but allow user to force to use the chain instead of the ring
123  */
124 static unsigned int chain_mode;
125 module_param(chain_mode, int, 0444);
126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127 
128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
129 /* For MSI interrupts handling */
130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
136 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
140 					  u32 rxmode, u32 chan);
141 
142 #ifdef CONFIG_DEBUG_FS
143 static const struct net_device_ops stmmac_netdev_ops;
144 static void stmmac_init_fs(struct net_device *dev);
145 static void stmmac_exit_fs(struct net_device *dev);
146 #endif
147 
148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149 
150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
151 {
152 	int ret = 0;
153 
154 	if (enabled) {
155 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
156 		if (ret)
157 			return ret;
158 		ret = clk_prepare_enable(priv->plat->pclk);
159 		if (ret) {
160 			clk_disable_unprepare(priv->plat->stmmac_clk);
161 			return ret;
162 		}
163 		if (priv->plat->clks_config) {
164 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 			if (ret) {
166 				clk_disable_unprepare(priv->plat->stmmac_clk);
167 				clk_disable_unprepare(priv->plat->pclk);
168 				return ret;
169 			}
170 		}
171 	} else {
172 		clk_disable_unprepare(priv->plat->stmmac_clk);
173 		clk_disable_unprepare(priv->plat->pclk);
174 		if (priv->plat->clks_config)
175 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
176 	}
177 
178 	return ret;
179 }
180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
181 
182 /**
183  * stmmac_verify_args - verify the driver parameters.
184  * Description: it checks the driver parameters and set a default in case of
185  * errors.
186  */
187 static void stmmac_verify_args(void)
188 {
189 	if (unlikely(watchdog < 0))
190 		watchdog = TX_TIMEO;
191 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
192 		buf_sz = DEFAULT_BUFSIZE;
193 	if (unlikely(flow_ctrl > 1))
194 		flow_ctrl = FLOW_AUTO;
195 	else if (likely(flow_ctrl < 0))
196 		flow_ctrl = FLOW_OFF;
197 	if (unlikely((pause < 0) || (pause > 0xffff)))
198 		pause = PAUSE_TIME;
199 	if (eee_timer < 0)
200 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
201 }
202 
203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 {
205 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
206 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
208 	u32 queue;
209 
210 	for (queue = 0; queue < maxq; queue++) {
211 		struct stmmac_channel *ch = &priv->channel[queue];
212 
213 		if (stmmac_xdp_is_enabled(priv) &&
214 		    test_bit(queue, priv->af_xdp_zc_qps)) {
215 			napi_disable(&ch->rxtx_napi);
216 			continue;
217 		}
218 
219 		if (queue < rx_queues_cnt)
220 			napi_disable(&ch->rx_napi);
221 		if (queue < tx_queues_cnt)
222 			napi_disable(&ch->tx_napi);
223 	}
224 }
225 
226 /**
227  * stmmac_disable_all_queues - Disable all queues
228  * @priv: driver private structure
229  */
230 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 {
232 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
233 	struct stmmac_rx_queue *rx_q;
234 	u32 queue;
235 
236 	/* synchronize_rcu() needed for pending XDP buffers to drain */
237 	for (queue = 0; queue < rx_queues_cnt; queue++) {
238 		rx_q = &priv->dma_conf.rx_queue[queue];
239 		if (rx_q->xsk_pool) {
240 			synchronize_rcu();
241 			break;
242 		}
243 	}
244 
245 	__stmmac_disable_all_queues(priv);
246 }
247 
248 /**
249  * stmmac_enable_all_queues - Enable all queues
250  * @priv: driver private structure
251  */
252 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 {
254 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
255 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
256 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
257 	u32 queue;
258 
259 	for (queue = 0; queue < maxq; queue++) {
260 		struct stmmac_channel *ch = &priv->channel[queue];
261 
262 		if (stmmac_xdp_is_enabled(priv) &&
263 		    test_bit(queue, priv->af_xdp_zc_qps)) {
264 			napi_enable(&ch->rxtx_napi);
265 			continue;
266 		}
267 
268 		if (queue < rx_queues_cnt)
269 			napi_enable(&ch->rx_napi);
270 		if (queue < tx_queues_cnt)
271 			napi_enable(&ch->tx_napi);
272 	}
273 }
274 
275 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 {
277 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
278 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
279 		queue_work(priv->wq, &priv->service_task);
280 }
281 
282 static void stmmac_global_err(struct stmmac_priv *priv)
283 {
284 	netif_carrier_off(priv->dev);
285 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
286 	stmmac_service_event_schedule(priv);
287 }
288 
289 /**
290  * stmmac_clk_csr_set - dynamically set the MDC clock
291  * @priv: driver private structure
292  * Description: this is to dynamically set the MDC clock according to the csr
293  * clock input.
294  * Note:
295  *	If a specific clk_csr value is passed from the platform
296  *	this means that the CSR Clock Range selection cannot be
297  *	changed at run-time and it is fixed (as reported in the driver
298  *	documentation). Viceversa the driver will try to set the MDC
299  *	clock dynamically according to the actual clock input.
300  */
301 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
302 {
303 	u32 clk_rate;
304 
305 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306 
307 	/* Platform provided default clk_csr would be assumed valid
308 	 * for all other cases except for the below mentioned ones.
309 	 * For values higher than the IEEE 802.3 specified frequency
310 	 * we can not estimate the proper divider as it is not known
311 	 * the frequency of clk_csr_i. So we do not change the default
312 	 * divider.
313 	 */
314 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
315 		if (clk_rate < CSR_F_35M)
316 			priv->clk_csr = STMMAC_CSR_20_35M;
317 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
318 			priv->clk_csr = STMMAC_CSR_35_60M;
319 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
320 			priv->clk_csr = STMMAC_CSR_60_100M;
321 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
322 			priv->clk_csr = STMMAC_CSR_100_150M;
323 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
324 			priv->clk_csr = STMMAC_CSR_150_250M;
325 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
326 			priv->clk_csr = STMMAC_CSR_250_300M;
327 	}
328 
329 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
330 		if (clk_rate > 160000000)
331 			priv->clk_csr = 0x03;
332 		else if (clk_rate > 80000000)
333 			priv->clk_csr = 0x02;
334 		else if (clk_rate > 40000000)
335 			priv->clk_csr = 0x01;
336 		else
337 			priv->clk_csr = 0;
338 	}
339 
340 	if (priv->plat->has_xgmac) {
341 		if (clk_rate > 400000000)
342 			priv->clk_csr = 0x5;
343 		else if (clk_rate > 350000000)
344 			priv->clk_csr = 0x4;
345 		else if (clk_rate > 300000000)
346 			priv->clk_csr = 0x3;
347 		else if (clk_rate > 250000000)
348 			priv->clk_csr = 0x2;
349 		else if (clk_rate > 150000000)
350 			priv->clk_csr = 0x1;
351 		else
352 			priv->clk_csr = 0x0;
353 	}
354 }
355 
356 static void print_pkt(unsigned char *buf, int len)
357 {
358 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
359 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
360 }
361 
362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 {
364 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
365 	u32 avail;
366 
367 	if (tx_q->dirty_tx > tx_q->cur_tx)
368 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 	else
370 		avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
371 
372 	return avail;
373 }
374 
375 /**
376  * stmmac_rx_dirty - Get RX queue dirty
377  * @priv: driver private structure
378  * @queue: RX queue index
379  */
380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 {
382 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
383 	u32 dirty;
384 
385 	if (rx_q->dirty_rx <= rx_q->cur_rx)
386 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 	else
388 		dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
389 
390 	return dirty;
391 }
392 
393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
394 {
395 	int tx_lpi_timer;
396 
397 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
398 	priv->eee_sw_timer_en = en ? 0 : 1;
399 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
400 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
401 }
402 
403 /**
404  * stmmac_enable_eee_mode - check and enter in LPI mode
405  * @priv: driver private structure
406  * Description: this function is to verify and enter in LPI mode in case of
407  * EEE.
408  */
409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 {
411 	u32 tx_cnt = priv->plat->tx_queues_to_use;
412 	u32 queue;
413 
414 	/* check if all TX queues have the work finished */
415 	for (queue = 0; queue < tx_cnt; queue++) {
416 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417 
418 		if (tx_q->dirty_tx != tx_q->cur_tx)
419 			return -EBUSY; /* still unfinished work */
420 	}
421 
422 	/* Check and enter in LPI mode */
423 	if (!priv->tx_path_in_lpi_mode)
424 		stmmac_set_eee_mode(priv, priv->hw,
425 			priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
426 	return 0;
427 }
428 
429 /**
430  * stmmac_disable_eee_mode - disable and exit from LPI mode
431  * @priv: driver private structure
432  * Description: this function is to exit and disable EEE in case of
433  * LPI state is true. This is called by the xmit.
434  */
435 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 {
437 	if (!priv->eee_sw_timer_en) {
438 		stmmac_lpi_entry_timer_config(priv, 0);
439 		return;
440 	}
441 
442 	stmmac_reset_eee_mode(priv, priv->hw);
443 	del_timer_sync(&priv->eee_ctrl_timer);
444 	priv->tx_path_in_lpi_mode = false;
445 }
446 
447 /**
448  * stmmac_eee_ctrl_timer - EEE TX SW timer.
449  * @t:  timer_list struct containing private info
450  * Description:
451  *  if there is no data transfer and if we are not in LPI state,
452  *  then MAC Transmitter can be moved to LPI state.
453  */
454 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 {
456 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457 
458 	if (stmmac_enable_eee_mode(priv))
459 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
460 }
461 
462 /**
463  * stmmac_eee_init - init EEE
464  * @priv: driver private structure
465  * Description:
466  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
467  *  can also manage EEE, this function enable the LPI state and start related
468  *  timer.
469  */
470 bool stmmac_eee_init(struct stmmac_priv *priv)
471 {
472 	int eee_tw_timer = priv->eee_tw_timer;
473 
474 	/* Using PCS we cannot dial with the phy registers at this stage
475 	 * so we do not support extra feature like EEE.
476 	 */
477 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
478 	    priv->hw->pcs == STMMAC_PCS_RTBI)
479 		return false;
480 
481 	/* Check if MAC core supports the EEE feature. */
482 	if (!priv->dma_cap.eee)
483 		return false;
484 
485 	mutex_lock(&priv->lock);
486 
487 	/* Check if it needs to be deactivated */
488 	if (!priv->eee_active) {
489 		if (priv->eee_enabled) {
490 			netdev_dbg(priv->dev, "disable EEE\n");
491 			stmmac_lpi_entry_timer_config(priv, 0);
492 			del_timer_sync(&priv->eee_ctrl_timer);
493 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 			if (priv->hw->xpcs)
495 				xpcs_config_eee(priv->hw->xpcs,
496 						priv->plat->mult_fact_100ns,
497 						false);
498 		}
499 		mutex_unlock(&priv->lock);
500 		return false;
501 	}
502 
503 	if (priv->eee_active && !priv->eee_enabled) {
504 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
505 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
506 				     eee_tw_timer);
507 		if (priv->hw->xpcs)
508 			xpcs_config_eee(priv->hw->xpcs,
509 					priv->plat->mult_fact_100ns,
510 					true);
511 	}
512 
513 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
514 		del_timer_sync(&priv->eee_ctrl_timer);
515 		priv->tx_path_in_lpi_mode = false;
516 		stmmac_lpi_entry_timer_config(priv, 1);
517 	} else {
518 		stmmac_lpi_entry_timer_config(priv, 0);
519 		mod_timer(&priv->eee_ctrl_timer,
520 			  STMMAC_LPI_T(priv->tx_lpi_timer));
521 	}
522 
523 	mutex_unlock(&priv->lock);
524 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
525 	return true;
526 }
527 
528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
529  * @priv: driver private structure
530  * @p : descriptor pointer
531  * @skb : the socket buffer
532  * Description :
533  * This function will read timestamp from the descriptor & pass it to stack.
534  * and also perform some sanity checks.
535  */
536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
537 				   struct dma_desc *p, struct sk_buff *skb)
538 {
539 	struct skb_shared_hwtstamps shhwtstamp;
540 	bool found = false;
541 	u64 ns = 0;
542 
543 	if (!priv->hwts_tx_en)
544 		return;
545 
546 	/* exit if skb doesn't support hw tstamp */
547 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
548 		return;
549 
550 	/* check tx tstamp status */
551 	if (stmmac_get_tx_timestamp_status(priv, p)) {
552 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 		found = true;
554 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
555 		found = true;
556 	}
557 
558 	if (found) {
559 		ns -= priv->plat->cdc_error_adj;
560 
561 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
562 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
563 
564 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
565 		/* pass tstamp to stack */
566 		skb_tstamp_tx(skb, &shhwtstamp);
567 	}
568 }
569 
570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
571  * @priv: driver private structure
572  * @p : descriptor pointer
573  * @np : next descriptor pointer
574  * @skb : the socket buffer
575  * Description :
576  * This function will read received packet's timestamp from the descriptor
577  * and pass it to stack. It also perform some sanity checks.
578  */
579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
580 				   struct dma_desc *np, struct sk_buff *skb)
581 {
582 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
583 	struct dma_desc *desc = p;
584 	u64 ns = 0;
585 
586 	if (!priv->hwts_rx_en)
587 		return;
588 	/* For GMAC4, the valid timestamp is from CTX next desc. */
589 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
590 		desc = np;
591 
592 	/* Check if timestamp is available */
593 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
594 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595 
596 		ns -= priv->plat->cdc_error_adj;
597 
598 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
599 		shhwtstamp = skb_hwtstamps(skb);
600 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
601 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 	} else  {
603 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
604 	}
605 }
606 
607 /**
608  *  stmmac_hwtstamp_set - control hardware timestamping.
609  *  @dev: device pointer.
610  *  @ifr: An IOCTL specific structure, that can contain a pointer to
611  *  a proprietary structure used to pass information to the driver.
612  *  Description:
613  *  This function configures the MAC to enable/disable both outgoing(TX)
614  *  and incoming(RX) packets time stamping based on user input.
615  *  Return Value:
616  *  0 on success and an appropriate -ve integer on failure.
617  */
618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 {
620 	struct stmmac_priv *priv = netdev_priv(dev);
621 	struct hwtstamp_config config;
622 	u32 ptp_v2 = 0;
623 	u32 tstamp_all = 0;
624 	u32 ptp_over_ipv4_udp = 0;
625 	u32 ptp_over_ipv6_udp = 0;
626 	u32 ptp_over_ethernet = 0;
627 	u32 snap_type_sel = 0;
628 	u32 ts_master_en = 0;
629 	u32 ts_event_en = 0;
630 
631 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
632 		netdev_alert(priv->dev, "No support for HW time stamping\n");
633 		priv->hwts_tx_en = 0;
634 		priv->hwts_rx_en = 0;
635 
636 		return -EOPNOTSUPP;
637 	}
638 
639 	if (copy_from_user(&config, ifr->ifr_data,
640 			   sizeof(config)))
641 		return -EFAULT;
642 
643 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
644 		   __func__, config.flags, config.tx_type, config.rx_filter);
645 
646 	if (config.tx_type != HWTSTAMP_TX_OFF &&
647 	    config.tx_type != HWTSTAMP_TX_ON)
648 		return -ERANGE;
649 
650 	if (priv->adv_ts) {
651 		switch (config.rx_filter) {
652 		case HWTSTAMP_FILTER_NONE:
653 			/* time stamp no incoming packet at all */
654 			config.rx_filter = HWTSTAMP_FILTER_NONE;
655 			break;
656 
657 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 			/* PTP v1, UDP, any kind of event packet */
659 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 			/* 'xmac' hardware can support Sync, Pdelay_Req and
661 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 			 * This leaves Delay_Req timestamps out.
663 			 * Enable all events *and* general purpose message
664 			 * timestamping
665 			 */
666 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 			break;
670 
671 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 			/* PTP v1, UDP, Sync packet */
673 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 			/* take time stamp for SYNC messages only */
675 			ts_event_en = PTP_TCR_TSEVNTENA;
676 
677 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 			break;
680 
681 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 			/* PTP v1, UDP, Delay_req packet */
683 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 			/* take time stamp for Delay_Req messages only */
685 			ts_master_en = PTP_TCR_TSMSTRENA;
686 			ts_event_en = PTP_TCR_TSEVNTENA;
687 
688 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 			break;
691 
692 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 			/* PTP v2, UDP, any kind of event packet */
694 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 			ptp_v2 = PTP_TCR_TSVER2ENA;
696 			/* take time stamp for all event messages */
697 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698 
699 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 			break;
702 
703 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 			/* PTP v2, UDP, Sync packet */
705 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 			ptp_v2 = PTP_TCR_TSVER2ENA;
707 			/* take time stamp for SYNC messages only */
708 			ts_event_en = PTP_TCR_TSEVNTENA;
709 
710 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 			break;
713 
714 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 			/* PTP v2, UDP, Delay_req packet */
716 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 			ptp_v2 = PTP_TCR_TSVER2ENA;
718 			/* take time stamp for Delay_Req messages only */
719 			ts_master_en = PTP_TCR_TSMSTRENA;
720 			ts_event_en = PTP_TCR_TSEVNTENA;
721 
722 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 			break;
725 
726 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 			/* PTP v2/802.AS1 any layer, any kind of event packet */
728 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 			ptp_v2 = PTP_TCR_TSVER2ENA;
730 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 			if (priv->synopsys_id < DWMAC_CORE_4_10)
732 				ts_event_en = PTP_TCR_TSEVNTENA;
733 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 			ptp_over_ethernet = PTP_TCR_TSIPENA;
736 			break;
737 
738 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 			/* PTP v2/802.AS1, any layer, Sync packet */
740 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 			ptp_v2 = PTP_TCR_TSVER2ENA;
742 			/* take time stamp for SYNC messages only */
743 			ts_event_en = PTP_TCR_TSEVNTENA;
744 
745 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 			ptp_over_ethernet = PTP_TCR_TSIPENA;
748 			break;
749 
750 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 			/* PTP v2/802.AS1, any layer, Delay_req packet */
752 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 			ptp_v2 = PTP_TCR_TSVER2ENA;
754 			/* take time stamp for Delay_Req messages only */
755 			ts_master_en = PTP_TCR_TSMSTRENA;
756 			ts_event_en = PTP_TCR_TSEVNTENA;
757 
758 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 			ptp_over_ethernet = PTP_TCR_TSIPENA;
761 			break;
762 
763 		case HWTSTAMP_FILTER_NTP_ALL:
764 		case HWTSTAMP_FILTER_ALL:
765 			/* time stamp any incoming packet */
766 			config.rx_filter = HWTSTAMP_FILTER_ALL;
767 			tstamp_all = PTP_TCR_TSENALL;
768 			break;
769 
770 		default:
771 			return -ERANGE;
772 		}
773 	} else {
774 		switch (config.rx_filter) {
775 		case HWTSTAMP_FILTER_NONE:
776 			config.rx_filter = HWTSTAMP_FILTER_NONE;
777 			break;
778 		default:
779 			/* PTP v1, UDP, any kind of event packet */
780 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 			break;
782 		}
783 	}
784 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786 
787 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
788 
789 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
790 		priv->systime_flags |= tstamp_all | ptp_v2 |
791 				       ptp_over_ethernet | ptp_over_ipv6_udp |
792 				       ptp_over_ipv4_udp | ts_event_en |
793 				       ts_master_en | snap_type_sel;
794 	}
795 
796 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797 
798 	memcpy(&priv->tstamp_config, &config, sizeof(config));
799 
800 	return copy_to_user(ifr->ifr_data, &config,
801 			    sizeof(config)) ? -EFAULT : 0;
802 }
803 
804 /**
805  *  stmmac_hwtstamp_get - read hardware timestamping.
806  *  @dev: device pointer.
807  *  @ifr: An IOCTL specific structure, that can contain a pointer to
808  *  a proprietary structure used to pass information to the driver.
809  *  Description:
810  *  This function obtain the current hardware timestamping settings
811  *  as requested.
812  */
813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 {
815 	struct stmmac_priv *priv = netdev_priv(dev);
816 	struct hwtstamp_config *config = &priv->tstamp_config;
817 
818 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
819 		return -EOPNOTSUPP;
820 
821 	return copy_to_user(ifr->ifr_data, config,
822 			    sizeof(*config)) ? -EFAULT : 0;
823 }
824 
825 /**
826  * stmmac_init_tstamp_counter - init hardware timestamping counter
827  * @priv: driver private structure
828  * @systime_flags: timestamping flags
829  * Description:
830  * Initialize hardware counter for packet timestamping.
831  * This is valid as long as the interface is open and not suspended.
832  * Will be rerun after resuming from suspend, case in which the timestamping
833  * flags updated by stmmac_hwtstamp_set() also need to be restored.
834  */
835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 {
837 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
838 	struct timespec64 now;
839 	u32 sec_inc = 0;
840 	u64 temp = 0;
841 
842 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
843 		return -EOPNOTSUPP;
844 
845 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
846 	priv->systime_flags = systime_flags;
847 
848 	/* program Sub Second Increment reg */
849 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
850 					   priv->plat->clk_ptp_rate,
851 					   xmac, &sec_inc);
852 	temp = div_u64(1000000000ULL, sec_inc);
853 
854 	/* Store sub second increment for later use */
855 	priv->sub_second_inc = sec_inc;
856 
857 	/* calculate default added value:
858 	 * formula is :
859 	 * addend = (2^32)/freq_div_ratio;
860 	 * where, freq_div_ratio = 1e9ns/sec_inc
861 	 */
862 	temp = (u64)(temp << 32);
863 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
864 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865 
866 	/* initialize system time */
867 	ktime_get_real_ts64(&now);
868 
869 	/* lower 32 bits of tv_sec are safe until y2106 */
870 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
871 
872 	return 0;
873 }
874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
875 
876 /**
877  * stmmac_init_ptp - init PTP
878  * @priv: driver private structure
879  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
880  * This is done by looking at the HW cap. register.
881  * This function also registers the ptp driver.
882  */
883 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 {
885 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
886 	int ret;
887 
888 	if (priv->plat->ptp_clk_freq_config)
889 		priv->plat->ptp_clk_freq_config(priv);
890 
891 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
892 	if (ret)
893 		return ret;
894 
895 	priv->adv_ts = 0;
896 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
897 	if (xmac && priv->dma_cap.atime_stamp)
898 		priv->adv_ts = 1;
899 	/* Dwmac 3.x core with extend_desc can support adv_ts */
900 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
901 		priv->adv_ts = 1;
902 
903 	if (priv->dma_cap.time_stamp)
904 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
905 
906 	if (priv->adv_ts)
907 		netdev_info(priv->dev,
908 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
909 
910 	priv->hwts_tx_en = 0;
911 	priv->hwts_rx_en = 0;
912 
913 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
914 		stmmac_hwtstamp_correct_latency(priv, priv);
915 
916 	return 0;
917 }
918 
919 static void stmmac_release_ptp(struct stmmac_priv *priv)
920 {
921 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
922 	stmmac_ptp_unregister(priv);
923 }
924 
925 /**
926  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
927  *  @priv: driver private structure
928  *  @duplex: duplex passed to the next function
929  *  Description: It is used for configuring the flow control in all queues
930  */
931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
932 {
933 	u32 tx_cnt = priv->plat->tx_queues_to_use;
934 
935 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
936 			priv->pause, tx_cnt);
937 }
938 
939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
940 						 phy_interface_t interface)
941 {
942 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943 
944 	if (priv->hw->xpcs)
945 		return &priv->hw->xpcs->pcs;
946 
947 	if (priv->hw->lynx_pcs)
948 		return priv->hw->lynx_pcs;
949 
950 	return NULL;
951 }
952 
953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
954 			      const struct phylink_link_state *state)
955 {
956 	/* Nothing to do, xpcs_config() handles everything */
957 }
958 
959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
960 {
961 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
962 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
963 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
964 	bool *hs_enable = &fpe_cfg->hs_enable;
965 
966 	if (is_up && *hs_enable) {
967 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
968 	} else {
969 		*lo_state = FPE_STATE_OFF;
970 		*lp_state = FPE_STATE_OFF;
971 	}
972 }
973 
974 static void stmmac_mac_link_down(struct phylink_config *config,
975 				 unsigned int mode, phy_interface_t interface)
976 {
977 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
978 
979 	stmmac_mac_set(priv, priv->ioaddr, false);
980 	priv->eee_active = false;
981 	priv->tx_lpi_enabled = false;
982 	priv->eee_enabled = stmmac_eee_init(priv);
983 	stmmac_set_eee_pls(priv, priv->hw, false);
984 
985 	if (priv->dma_cap.fpesel)
986 		stmmac_fpe_link_state_handle(priv, false);
987 }
988 
989 static void stmmac_mac_link_up(struct phylink_config *config,
990 			       struct phy_device *phy,
991 			       unsigned int mode, phy_interface_t interface,
992 			       int speed, int duplex,
993 			       bool tx_pause, bool rx_pause)
994 {
995 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
996 	u32 old_ctrl, ctrl;
997 
998 	if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
999 	    priv->plat->serdes_powerup)
1000 		priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
1001 
1002 	old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1003 	ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1004 
1005 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1006 		switch (speed) {
1007 		case SPEED_10000:
1008 			ctrl |= priv->hw->link.xgmii.speed10000;
1009 			break;
1010 		case SPEED_5000:
1011 			ctrl |= priv->hw->link.xgmii.speed5000;
1012 			break;
1013 		case SPEED_2500:
1014 			ctrl |= priv->hw->link.xgmii.speed2500;
1015 			break;
1016 		default:
1017 			return;
1018 		}
1019 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1020 		switch (speed) {
1021 		case SPEED_100000:
1022 			ctrl |= priv->hw->link.xlgmii.speed100000;
1023 			break;
1024 		case SPEED_50000:
1025 			ctrl |= priv->hw->link.xlgmii.speed50000;
1026 			break;
1027 		case SPEED_40000:
1028 			ctrl |= priv->hw->link.xlgmii.speed40000;
1029 			break;
1030 		case SPEED_25000:
1031 			ctrl |= priv->hw->link.xlgmii.speed25000;
1032 			break;
1033 		case SPEED_10000:
1034 			ctrl |= priv->hw->link.xgmii.speed10000;
1035 			break;
1036 		case SPEED_2500:
1037 			ctrl |= priv->hw->link.speed2500;
1038 			break;
1039 		case SPEED_1000:
1040 			ctrl |= priv->hw->link.speed1000;
1041 			break;
1042 		default:
1043 			return;
1044 		}
1045 	} else {
1046 		switch (speed) {
1047 		case SPEED_2500:
1048 			ctrl |= priv->hw->link.speed2500;
1049 			break;
1050 		case SPEED_1000:
1051 			ctrl |= priv->hw->link.speed1000;
1052 			break;
1053 		case SPEED_100:
1054 			ctrl |= priv->hw->link.speed100;
1055 			break;
1056 		case SPEED_10:
1057 			ctrl |= priv->hw->link.speed10;
1058 			break;
1059 		default:
1060 			return;
1061 		}
1062 	}
1063 
1064 	priv->speed = speed;
1065 
1066 	if (priv->plat->fix_mac_speed)
1067 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
1068 
1069 	if (!duplex)
1070 		ctrl &= ~priv->hw->link.duplex;
1071 	else
1072 		ctrl |= priv->hw->link.duplex;
1073 
1074 	/* Flow Control operation */
1075 	if (rx_pause && tx_pause)
1076 		priv->flow_ctrl = FLOW_AUTO;
1077 	else if (rx_pause && !tx_pause)
1078 		priv->flow_ctrl = FLOW_RX;
1079 	else if (!rx_pause && tx_pause)
1080 		priv->flow_ctrl = FLOW_TX;
1081 	else
1082 		priv->flow_ctrl = FLOW_OFF;
1083 
1084 	stmmac_mac_flow_ctrl(priv, duplex);
1085 
1086 	if (ctrl != old_ctrl)
1087 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1088 
1089 	stmmac_mac_set(priv, priv->ioaddr, true);
1090 	if (phy && priv->dma_cap.eee) {
1091 		priv->eee_active =
1092 			phy_init_eee(phy, !(priv->plat->flags &
1093 				STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1094 		priv->eee_enabled = stmmac_eee_init(priv);
1095 		priv->tx_lpi_enabled = priv->eee_enabled;
1096 		stmmac_set_eee_pls(priv, priv->hw, true);
1097 	}
1098 
1099 	if (priv->dma_cap.fpesel)
1100 		stmmac_fpe_link_state_handle(priv, true);
1101 
1102 	if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
1103 		stmmac_hwtstamp_correct_latency(priv, priv);
1104 }
1105 
1106 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1107 	.mac_select_pcs = stmmac_mac_select_pcs,
1108 	.mac_config = stmmac_mac_config,
1109 	.mac_link_down = stmmac_mac_link_down,
1110 	.mac_link_up = stmmac_mac_link_up,
1111 };
1112 
1113 /**
1114  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1115  * @priv: driver private structure
1116  * Description: this is to verify if the HW supports the PCS.
1117  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1118  * configured for the TBI, RTBI, or SGMII PHY interface.
1119  */
1120 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1121 {
1122 	int interface = priv->plat->interface;
1123 
1124 	if (priv->dma_cap.pcs) {
1125 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1126 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1127 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1128 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1129 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1130 			priv->hw->pcs = STMMAC_PCS_RGMII;
1131 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1132 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1133 			priv->hw->pcs = STMMAC_PCS_SGMII;
1134 		}
1135 	}
1136 }
1137 
1138 /**
1139  * stmmac_init_phy - PHY initialization
1140  * @dev: net device structure
1141  * Description: it initializes the driver's PHY state, and attaches the PHY
1142  * to the mac driver.
1143  *  Return value:
1144  *  0 on success
1145  */
1146 static int stmmac_init_phy(struct net_device *dev)
1147 {
1148 	struct stmmac_priv *priv = netdev_priv(dev);
1149 	struct fwnode_handle *phy_fwnode;
1150 	struct fwnode_handle *fwnode;
1151 	int ret;
1152 
1153 	if (!phylink_expects_phy(priv->phylink))
1154 		return 0;
1155 
1156 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1157 	if (!fwnode)
1158 		fwnode = dev_fwnode(priv->device);
1159 
1160 	if (fwnode)
1161 		phy_fwnode = fwnode_get_phy_node(fwnode);
1162 	else
1163 		phy_fwnode = NULL;
1164 
1165 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1166 	 * manually parse it
1167 	 */
1168 	if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1169 		int addr = priv->plat->phy_addr;
1170 		struct phy_device *phydev;
1171 
1172 		if (addr < 0) {
1173 			netdev_err(priv->dev, "no phy found\n");
1174 			return -ENODEV;
1175 		}
1176 
1177 		phydev = mdiobus_get_phy(priv->mii, addr);
1178 		if (!phydev) {
1179 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1180 			return -ENODEV;
1181 		}
1182 
1183 		ret = phylink_connect_phy(priv->phylink, phydev);
1184 	} else {
1185 		fwnode_handle_put(phy_fwnode);
1186 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1187 	}
1188 
1189 	if (!priv->plat->pmt) {
1190 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1191 
1192 		phylink_ethtool_get_wol(priv->phylink, &wol);
1193 		device_set_wakeup_capable(priv->device, !!wol.supported);
1194 		device_set_wakeup_enable(priv->device, !!wol.wolopts);
1195 	}
1196 
1197 	return ret;
1198 }
1199 
1200 static int stmmac_phy_setup(struct stmmac_priv *priv)
1201 {
1202 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1203 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1204 	int max_speed = priv->plat->max_speed;
1205 	int mode = priv->plat->phy_interface;
1206 	struct phylink *phylink;
1207 
1208 	priv->phylink_config.dev = &priv->dev->dev;
1209 	priv->phylink_config.type = PHYLINK_NETDEV;
1210 	if (priv->plat->mdio_bus_data)
1211 		priv->phylink_config.ovr_an_inband =
1212 			mdio_bus_data->xpcs_an_inband;
1213 
1214 	if (!fwnode)
1215 		fwnode = dev_fwnode(priv->device);
1216 
1217 	/* Set the platform/firmware specified interface mode */
1218 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1219 
1220 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1221 	if (priv->hw->xpcs)
1222 		xpcs_get_interfaces(priv->hw->xpcs,
1223 				    priv->phylink_config.supported_interfaces);
1224 
1225 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1226 		MAC_10 | MAC_100;
1227 
1228 	if (!max_speed || max_speed >= 1000)
1229 		priv->phylink_config.mac_capabilities |= MAC_1000;
1230 
1231 	if (priv->plat->has_gmac4) {
1232 		if (!max_speed || max_speed >= 2500)
1233 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1234 	} else if (priv->plat->has_xgmac) {
1235 		if (!max_speed || max_speed >= 2500)
1236 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1237 		if (!max_speed || max_speed >= 5000)
1238 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1239 		if (!max_speed || max_speed >= 10000)
1240 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1241 		if (!max_speed || max_speed >= 25000)
1242 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1243 		if (!max_speed || max_speed >= 40000)
1244 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1245 		if (!max_speed || max_speed >= 50000)
1246 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1247 		if (!max_speed || max_speed >= 100000)
1248 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1249 	}
1250 
1251 	/* Half-Duplex can only work with single queue */
1252 	if (priv->plat->tx_queues_to_use > 1)
1253 		priv->phylink_config.mac_capabilities &=
1254 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1255 	priv->phylink_config.mac_managed_pm = true;
1256 
1257 	phylink = phylink_create(&priv->phylink_config, fwnode,
1258 				 mode, &stmmac_phylink_mac_ops);
1259 	if (IS_ERR(phylink))
1260 		return PTR_ERR(phylink);
1261 
1262 	priv->phylink = phylink;
1263 	return 0;
1264 }
1265 
1266 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1267 				    struct stmmac_dma_conf *dma_conf)
1268 {
1269 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1270 	unsigned int desc_size;
1271 	void *head_rx;
1272 	u32 queue;
1273 
1274 	/* Display RX rings */
1275 	for (queue = 0; queue < rx_cnt; queue++) {
1276 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1277 
1278 		pr_info("\tRX Queue %u rings\n", queue);
1279 
1280 		if (priv->extend_desc) {
1281 			head_rx = (void *)rx_q->dma_erx;
1282 			desc_size = sizeof(struct dma_extended_desc);
1283 		} else {
1284 			head_rx = (void *)rx_q->dma_rx;
1285 			desc_size = sizeof(struct dma_desc);
1286 		}
1287 
1288 		/* Display RX ring */
1289 		stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1290 				    rx_q->dma_rx_phy, desc_size);
1291 	}
1292 }
1293 
1294 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1295 				    struct stmmac_dma_conf *dma_conf)
1296 {
1297 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1298 	unsigned int desc_size;
1299 	void *head_tx;
1300 	u32 queue;
1301 
1302 	/* Display TX rings */
1303 	for (queue = 0; queue < tx_cnt; queue++) {
1304 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1305 
1306 		pr_info("\tTX Queue %d rings\n", queue);
1307 
1308 		if (priv->extend_desc) {
1309 			head_tx = (void *)tx_q->dma_etx;
1310 			desc_size = sizeof(struct dma_extended_desc);
1311 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1312 			head_tx = (void *)tx_q->dma_entx;
1313 			desc_size = sizeof(struct dma_edesc);
1314 		} else {
1315 			head_tx = (void *)tx_q->dma_tx;
1316 			desc_size = sizeof(struct dma_desc);
1317 		}
1318 
1319 		stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1320 				    tx_q->dma_tx_phy, desc_size);
1321 	}
1322 }
1323 
1324 static void stmmac_display_rings(struct stmmac_priv *priv,
1325 				 struct stmmac_dma_conf *dma_conf)
1326 {
1327 	/* Display RX ring */
1328 	stmmac_display_rx_rings(priv, dma_conf);
1329 
1330 	/* Display TX ring */
1331 	stmmac_display_tx_rings(priv, dma_conf);
1332 }
1333 
1334 static int stmmac_set_bfsize(int mtu, int bufsize)
1335 {
1336 	int ret = bufsize;
1337 
1338 	if (mtu >= BUF_SIZE_8KiB)
1339 		ret = BUF_SIZE_16KiB;
1340 	else if (mtu >= BUF_SIZE_4KiB)
1341 		ret = BUF_SIZE_8KiB;
1342 	else if (mtu >= BUF_SIZE_2KiB)
1343 		ret = BUF_SIZE_4KiB;
1344 	else if (mtu > DEFAULT_BUFSIZE)
1345 		ret = BUF_SIZE_2KiB;
1346 	else
1347 		ret = DEFAULT_BUFSIZE;
1348 
1349 	return ret;
1350 }
1351 
1352 /**
1353  * stmmac_clear_rx_descriptors - clear RX descriptors
1354  * @priv: driver private structure
1355  * @dma_conf: structure to take the dma data
1356  * @queue: RX queue index
1357  * Description: this function is called to clear the RX descriptors
1358  * in case of both basic and extended descriptors are used.
1359  */
1360 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1361 					struct stmmac_dma_conf *dma_conf,
1362 					u32 queue)
1363 {
1364 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1365 	int i;
1366 
1367 	/* Clear the RX descriptors */
1368 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1369 		if (priv->extend_desc)
1370 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1371 					priv->use_riwt, priv->mode,
1372 					(i == dma_conf->dma_rx_size - 1),
1373 					dma_conf->dma_buf_sz);
1374 		else
1375 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1376 					priv->use_riwt, priv->mode,
1377 					(i == dma_conf->dma_rx_size - 1),
1378 					dma_conf->dma_buf_sz);
1379 }
1380 
1381 /**
1382  * stmmac_clear_tx_descriptors - clear tx descriptors
1383  * @priv: driver private structure
1384  * @dma_conf: structure to take the dma data
1385  * @queue: TX queue index.
1386  * Description: this function is called to clear the TX descriptors
1387  * in case of both basic and extended descriptors are used.
1388  */
1389 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1390 					struct stmmac_dma_conf *dma_conf,
1391 					u32 queue)
1392 {
1393 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1394 	int i;
1395 
1396 	/* Clear the TX descriptors */
1397 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1398 		int last = (i == (dma_conf->dma_tx_size - 1));
1399 		struct dma_desc *p;
1400 
1401 		if (priv->extend_desc)
1402 			p = &tx_q->dma_etx[i].basic;
1403 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1404 			p = &tx_q->dma_entx[i].basic;
1405 		else
1406 			p = &tx_q->dma_tx[i];
1407 
1408 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1409 	}
1410 }
1411 
1412 /**
1413  * stmmac_clear_descriptors - clear descriptors
1414  * @priv: driver private structure
1415  * @dma_conf: structure to take the dma data
1416  * Description: this function is called to clear the TX and RX descriptors
1417  * in case of both basic and extended descriptors are used.
1418  */
1419 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1420 				     struct stmmac_dma_conf *dma_conf)
1421 {
1422 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1423 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1424 	u32 queue;
1425 
1426 	/* Clear the RX descriptors */
1427 	for (queue = 0; queue < rx_queue_cnt; queue++)
1428 		stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1429 
1430 	/* Clear the TX descriptors */
1431 	for (queue = 0; queue < tx_queue_cnt; queue++)
1432 		stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1433 }
1434 
1435 /**
1436  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1437  * @priv: driver private structure
1438  * @dma_conf: structure to take the dma data
1439  * @p: descriptor pointer
1440  * @i: descriptor index
1441  * @flags: gfp flag
1442  * @queue: RX queue index
1443  * Description: this function is called to allocate a receive buffer, perform
1444  * the DMA mapping and init the descriptor.
1445  */
1446 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1447 				  struct stmmac_dma_conf *dma_conf,
1448 				  struct dma_desc *p,
1449 				  int i, gfp_t flags, u32 queue)
1450 {
1451 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1452 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1453 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1454 
1455 	if (priv->dma_cap.host_dma_width <= 32)
1456 		gfp |= GFP_DMA32;
1457 
1458 	if (!buf->page) {
1459 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1460 		if (!buf->page)
1461 			return -ENOMEM;
1462 		buf->page_offset = stmmac_rx_offset(priv);
1463 	}
1464 
1465 	if (priv->sph && !buf->sec_page) {
1466 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1467 		if (!buf->sec_page)
1468 			return -ENOMEM;
1469 
1470 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1471 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1472 	} else {
1473 		buf->sec_page = NULL;
1474 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1475 	}
1476 
1477 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1478 
1479 	stmmac_set_desc_addr(priv, p, buf->addr);
1480 	if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1481 		stmmac_init_desc3(priv, p);
1482 
1483 	return 0;
1484 }
1485 
1486 /**
1487  * stmmac_free_rx_buffer - free RX dma buffers
1488  * @priv: private structure
1489  * @rx_q: RX queue
1490  * @i: buffer index.
1491  */
1492 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1493 				  struct stmmac_rx_queue *rx_q,
1494 				  int i)
1495 {
1496 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1497 
1498 	if (buf->page)
1499 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1500 	buf->page = NULL;
1501 
1502 	if (buf->sec_page)
1503 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1504 	buf->sec_page = NULL;
1505 }
1506 
1507 /**
1508  * stmmac_free_tx_buffer - free RX dma buffers
1509  * @priv: private structure
1510  * @dma_conf: structure to take the dma data
1511  * @queue: RX queue index
1512  * @i: buffer index.
1513  */
1514 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1515 				  struct stmmac_dma_conf *dma_conf,
1516 				  u32 queue, int i)
1517 {
1518 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1519 
1520 	if (tx_q->tx_skbuff_dma[i].buf &&
1521 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1522 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1523 			dma_unmap_page(priv->device,
1524 				       tx_q->tx_skbuff_dma[i].buf,
1525 				       tx_q->tx_skbuff_dma[i].len,
1526 				       DMA_TO_DEVICE);
1527 		else
1528 			dma_unmap_single(priv->device,
1529 					 tx_q->tx_skbuff_dma[i].buf,
1530 					 tx_q->tx_skbuff_dma[i].len,
1531 					 DMA_TO_DEVICE);
1532 	}
1533 
1534 	if (tx_q->xdpf[i] &&
1535 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1536 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1537 		xdp_return_frame(tx_q->xdpf[i]);
1538 		tx_q->xdpf[i] = NULL;
1539 	}
1540 
1541 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1542 		tx_q->xsk_frames_done++;
1543 
1544 	if (tx_q->tx_skbuff[i] &&
1545 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1546 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1547 		tx_q->tx_skbuff[i] = NULL;
1548 	}
1549 
1550 	tx_q->tx_skbuff_dma[i].buf = 0;
1551 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1552 }
1553 
1554 /**
1555  * dma_free_rx_skbufs - free RX dma buffers
1556  * @priv: private structure
1557  * @dma_conf: structure to take the dma data
1558  * @queue: RX queue index
1559  */
1560 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1561 			       struct stmmac_dma_conf *dma_conf,
1562 			       u32 queue)
1563 {
1564 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1565 	int i;
1566 
1567 	for (i = 0; i < dma_conf->dma_rx_size; i++)
1568 		stmmac_free_rx_buffer(priv, rx_q, i);
1569 }
1570 
1571 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1572 				   struct stmmac_dma_conf *dma_conf,
1573 				   u32 queue, gfp_t flags)
1574 {
1575 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1576 	int i;
1577 
1578 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1579 		struct dma_desc *p;
1580 		int ret;
1581 
1582 		if (priv->extend_desc)
1583 			p = &((rx_q->dma_erx + i)->basic);
1584 		else
1585 			p = rx_q->dma_rx + i;
1586 
1587 		ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1588 					     queue);
1589 		if (ret)
1590 			return ret;
1591 
1592 		rx_q->buf_alloc_num++;
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1600  * @priv: private structure
1601  * @dma_conf: structure to take the dma data
1602  * @queue: RX queue index
1603  */
1604 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1605 				struct stmmac_dma_conf *dma_conf,
1606 				u32 queue)
1607 {
1608 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1609 	int i;
1610 
1611 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1612 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1613 
1614 		if (!buf->xdp)
1615 			continue;
1616 
1617 		xsk_buff_free(buf->xdp);
1618 		buf->xdp = NULL;
1619 	}
1620 }
1621 
1622 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1623 				      struct stmmac_dma_conf *dma_conf,
1624 				      u32 queue)
1625 {
1626 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1627 	int i;
1628 
1629 	/* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1630 	 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1631 	 * use this macro to make sure no size violations.
1632 	 */
1633 	XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1634 
1635 	for (i = 0; i < dma_conf->dma_rx_size; i++) {
1636 		struct stmmac_rx_buffer *buf;
1637 		dma_addr_t dma_addr;
1638 		struct dma_desc *p;
1639 
1640 		if (priv->extend_desc)
1641 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1642 		else
1643 			p = rx_q->dma_rx + i;
1644 
1645 		buf = &rx_q->buf_pool[i];
1646 
1647 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1648 		if (!buf->xdp)
1649 			return -ENOMEM;
1650 
1651 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1652 		stmmac_set_desc_addr(priv, p, dma_addr);
1653 		rx_q->buf_alloc_num++;
1654 	}
1655 
1656 	return 0;
1657 }
1658 
1659 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1660 {
1661 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1662 		return NULL;
1663 
1664 	return xsk_get_pool_from_qid(priv->dev, queue);
1665 }
1666 
1667 /**
1668  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1669  * @priv: driver private structure
1670  * @dma_conf: structure to take the dma data
1671  * @queue: RX queue index
1672  * @flags: gfp flag.
1673  * Description: this function initializes the DMA RX descriptors
1674  * and allocates the socket buffers. It supports the chained and ring
1675  * modes.
1676  */
1677 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1678 				    struct stmmac_dma_conf *dma_conf,
1679 				    u32 queue, gfp_t flags)
1680 {
1681 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1682 	int ret;
1683 
1684 	netif_dbg(priv, probe, priv->dev,
1685 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1686 		  (u32)rx_q->dma_rx_phy);
1687 
1688 	stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1689 
1690 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1691 
1692 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1693 
1694 	if (rx_q->xsk_pool) {
1695 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1696 						   MEM_TYPE_XSK_BUFF_POOL,
1697 						   NULL));
1698 		netdev_info(priv->dev,
1699 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1700 			    rx_q->queue_index);
1701 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1702 	} else {
1703 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1704 						   MEM_TYPE_PAGE_POOL,
1705 						   rx_q->page_pool));
1706 		netdev_info(priv->dev,
1707 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1708 			    rx_q->queue_index);
1709 	}
1710 
1711 	if (rx_q->xsk_pool) {
1712 		/* RX XDP ZC buffer pool may not be populated, e.g.
1713 		 * xdpsock TX-only.
1714 		 */
1715 		stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1716 	} else {
1717 		ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1718 		if (ret < 0)
1719 			return -ENOMEM;
1720 	}
1721 
1722 	/* Setup the chained descriptor addresses */
1723 	if (priv->mode == STMMAC_CHAIN_MODE) {
1724 		if (priv->extend_desc)
1725 			stmmac_mode_init(priv, rx_q->dma_erx,
1726 					 rx_q->dma_rx_phy,
1727 					 dma_conf->dma_rx_size, 1);
1728 		else
1729 			stmmac_mode_init(priv, rx_q->dma_rx,
1730 					 rx_q->dma_rx_phy,
1731 					 dma_conf->dma_rx_size, 0);
1732 	}
1733 
1734 	return 0;
1735 }
1736 
1737 static int init_dma_rx_desc_rings(struct net_device *dev,
1738 				  struct stmmac_dma_conf *dma_conf,
1739 				  gfp_t flags)
1740 {
1741 	struct stmmac_priv *priv = netdev_priv(dev);
1742 	u32 rx_count = priv->plat->rx_queues_to_use;
1743 	int queue;
1744 	int ret;
1745 
1746 	/* RX INITIALIZATION */
1747 	netif_dbg(priv, probe, priv->dev,
1748 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1749 
1750 	for (queue = 0; queue < rx_count; queue++) {
1751 		ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1752 		if (ret)
1753 			goto err_init_rx_buffers;
1754 	}
1755 
1756 	return 0;
1757 
1758 err_init_rx_buffers:
1759 	while (queue >= 0) {
1760 		struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1761 
1762 		if (rx_q->xsk_pool)
1763 			dma_free_rx_xskbufs(priv, dma_conf, queue);
1764 		else
1765 			dma_free_rx_skbufs(priv, dma_conf, queue);
1766 
1767 		rx_q->buf_alloc_num = 0;
1768 		rx_q->xsk_pool = NULL;
1769 
1770 		queue--;
1771 	}
1772 
1773 	return ret;
1774 }
1775 
1776 /**
1777  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1778  * @priv: driver private structure
1779  * @dma_conf: structure to take the dma data
1780  * @queue: TX queue index
1781  * Description: this function initializes the DMA TX descriptors
1782  * and allocates the socket buffers. It supports the chained and ring
1783  * modes.
1784  */
1785 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1786 				    struct stmmac_dma_conf *dma_conf,
1787 				    u32 queue)
1788 {
1789 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1790 	int i;
1791 
1792 	netif_dbg(priv, probe, priv->dev,
1793 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1794 		  (u32)tx_q->dma_tx_phy);
1795 
1796 	/* Setup the chained descriptor addresses */
1797 	if (priv->mode == STMMAC_CHAIN_MODE) {
1798 		if (priv->extend_desc)
1799 			stmmac_mode_init(priv, tx_q->dma_etx,
1800 					 tx_q->dma_tx_phy,
1801 					 dma_conf->dma_tx_size, 1);
1802 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1803 			stmmac_mode_init(priv, tx_q->dma_tx,
1804 					 tx_q->dma_tx_phy,
1805 					 dma_conf->dma_tx_size, 0);
1806 	}
1807 
1808 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1809 
1810 	for (i = 0; i < dma_conf->dma_tx_size; i++) {
1811 		struct dma_desc *p;
1812 
1813 		if (priv->extend_desc)
1814 			p = &((tx_q->dma_etx + i)->basic);
1815 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1816 			p = &((tx_q->dma_entx + i)->basic);
1817 		else
1818 			p = tx_q->dma_tx + i;
1819 
1820 		stmmac_clear_desc(priv, p);
1821 
1822 		tx_q->tx_skbuff_dma[i].buf = 0;
1823 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1824 		tx_q->tx_skbuff_dma[i].len = 0;
1825 		tx_q->tx_skbuff_dma[i].last_segment = false;
1826 		tx_q->tx_skbuff[i] = NULL;
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static int init_dma_tx_desc_rings(struct net_device *dev,
1833 				  struct stmmac_dma_conf *dma_conf)
1834 {
1835 	struct stmmac_priv *priv = netdev_priv(dev);
1836 	u32 tx_queue_cnt;
1837 	u32 queue;
1838 
1839 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1840 
1841 	for (queue = 0; queue < tx_queue_cnt; queue++)
1842 		__init_dma_tx_desc_rings(priv, dma_conf, queue);
1843 
1844 	return 0;
1845 }
1846 
1847 /**
1848  * init_dma_desc_rings - init the RX/TX descriptor rings
1849  * @dev: net device structure
1850  * @dma_conf: structure to take the dma data
1851  * @flags: gfp flag.
1852  * Description: this function initializes the DMA RX/TX descriptors
1853  * and allocates the socket buffers. It supports the chained and ring
1854  * modes.
1855  */
1856 static int init_dma_desc_rings(struct net_device *dev,
1857 			       struct stmmac_dma_conf *dma_conf,
1858 			       gfp_t flags)
1859 {
1860 	struct stmmac_priv *priv = netdev_priv(dev);
1861 	int ret;
1862 
1863 	ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1864 	if (ret)
1865 		return ret;
1866 
1867 	ret = init_dma_tx_desc_rings(dev, dma_conf);
1868 
1869 	stmmac_clear_descriptors(priv, dma_conf);
1870 
1871 	if (netif_msg_hw(priv))
1872 		stmmac_display_rings(priv, dma_conf);
1873 
1874 	return ret;
1875 }
1876 
1877 /**
1878  * dma_free_tx_skbufs - free TX dma buffers
1879  * @priv: private structure
1880  * @dma_conf: structure to take the dma data
1881  * @queue: TX queue index
1882  */
1883 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1884 			       struct stmmac_dma_conf *dma_conf,
1885 			       u32 queue)
1886 {
1887 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1888 	int i;
1889 
1890 	tx_q->xsk_frames_done = 0;
1891 
1892 	for (i = 0; i < dma_conf->dma_tx_size; i++)
1893 		stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1894 
1895 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1896 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1897 		tx_q->xsk_frames_done = 0;
1898 		tx_q->xsk_pool = NULL;
1899 	}
1900 }
1901 
1902 /**
1903  * stmmac_free_tx_skbufs - free TX skb buffers
1904  * @priv: private structure
1905  */
1906 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1907 {
1908 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1909 	u32 queue;
1910 
1911 	for (queue = 0; queue < tx_queue_cnt; queue++)
1912 		dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1913 }
1914 
1915 /**
1916  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1917  * @priv: private structure
1918  * @dma_conf: structure to take the dma data
1919  * @queue: RX queue index
1920  */
1921 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1922 					 struct stmmac_dma_conf *dma_conf,
1923 					 u32 queue)
1924 {
1925 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1926 
1927 	/* Release the DMA RX socket buffers */
1928 	if (rx_q->xsk_pool)
1929 		dma_free_rx_xskbufs(priv, dma_conf, queue);
1930 	else
1931 		dma_free_rx_skbufs(priv, dma_conf, queue);
1932 
1933 	rx_q->buf_alloc_num = 0;
1934 	rx_q->xsk_pool = NULL;
1935 
1936 	/* Free DMA regions of consistent memory previously allocated */
1937 	if (!priv->extend_desc)
1938 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1939 				  sizeof(struct dma_desc),
1940 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1941 	else
1942 		dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1943 				  sizeof(struct dma_extended_desc),
1944 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1945 
1946 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1947 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1948 
1949 	kfree(rx_q->buf_pool);
1950 	if (rx_q->page_pool)
1951 		page_pool_destroy(rx_q->page_pool);
1952 }
1953 
1954 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1955 				       struct stmmac_dma_conf *dma_conf)
1956 {
1957 	u32 rx_count = priv->plat->rx_queues_to_use;
1958 	u32 queue;
1959 
1960 	/* Free RX queue resources */
1961 	for (queue = 0; queue < rx_count; queue++)
1962 		__free_dma_rx_desc_resources(priv, dma_conf, queue);
1963 }
1964 
1965 /**
1966  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1967  * @priv: private structure
1968  * @dma_conf: structure to take the dma data
1969  * @queue: TX queue index
1970  */
1971 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1972 					 struct stmmac_dma_conf *dma_conf,
1973 					 u32 queue)
1974 {
1975 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1976 	size_t size;
1977 	void *addr;
1978 
1979 	/* Release the DMA TX socket buffers */
1980 	dma_free_tx_skbufs(priv, dma_conf, queue);
1981 
1982 	if (priv->extend_desc) {
1983 		size = sizeof(struct dma_extended_desc);
1984 		addr = tx_q->dma_etx;
1985 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1986 		size = sizeof(struct dma_edesc);
1987 		addr = tx_q->dma_entx;
1988 	} else {
1989 		size = sizeof(struct dma_desc);
1990 		addr = tx_q->dma_tx;
1991 	}
1992 
1993 	size *= dma_conf->dma_tx_size;
1994 
1995 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1996 
1997 	kfree(tx_q->tx_skbuff_dma);
1998 	kfree(tx_q->tx_skbuff);
1999 }
2000 
2001 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
2002 				       struct stmmac_dma_conf *dma_conf)
2003 {
2004 	u32 tx_count = priv->plat->tx_queues_to_use;
2005 	u32 queue;
2006 
2007 	/* Free TX queue resources */
2008 	for (queue = 0; queue < tx_count; queue++)
2009 		__free_dma_tx_desc_resources(priv, dma_conf, queue);
2010 }
2011 
2012 /**
2013  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
2014  * @priv: private structure
2015  * @dma_conf: structure to take the dma data
2016  * @queue: RX queue index
2017  * Description: according to which descriptor can be used (extend or basic)
2018  * this function allocates the resources for TX and RX paths. In case of
2019  * reception, for example, it pre-allocated the RX socket buffer in order to
2020  * allow zero-copy mechanism.
2021  */
2022 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2023 					 struct stmmac_dma_conf *dma_conf,
2024 					 u32 queue)
2025 {
2026 	struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2027 	struct stmmac_channel *ch = &priv->channel[queue];
2028 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
2029 	struct page_pool_params pp_params = { 0 };
2030 	unsigned int num_pages;
2031 	unsigned int napi_id;
2032 	int ret;
2033 
2034 	rx_q->queue_index = queue;
2035 	rx_q->priv_data = priv;
2036 
2037 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2038 	pp_params.pool_size = dma_conf->dma_rx_size;
2039 	num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2040 	pp_params.order = ilog2(num_pages);
2041 	pp_params.nid = dev_to_node(priv->device);
2042 	pp_params.dev = priv->device;
2043 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2044 	pp_params.offset = stmmac_rx_offset(priv);
2045 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2046 
2047 	rx_q->page_pool = page_pool_create(&pp_params);
2048 	if (IS_ERR(rx_q->page_pool)) {
2049 		ret = PTR_ERR(rx_q->page_pool);
2050 		rx_q->page_pool = NULL;
2051 		return ret;
2052 	}
2053 
2054 	rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2055 				 sizeof(*rx_q->buf_pool),
2056 				 GFP_KERNEL);
2057 	if (!rx_q->buf_pool)
2058 		return -ENOMEM;
2059 
2060 	if (priv->extend_desc) {
2061 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
2062 						   dma_conf->dma_rx_size *
2063 						   sizeof(struct dma_extended_desc),
2064 						   &rx_q->dma_rx_phy,
2065 						   GFP_KERNEL);
2066 		if (!rx_q->dma_erx)
2067 			return -ENOMEM;
2068 
2069 	} else {
2070 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
2071 						  dma_conf->dma_rx_size *
2072 						  sizeof(struct dma_desc),
2073 						  &rx_q->dma_rx_phy,
2074 						  GFP_KERNEL);
2075 		if (!rx_q->dma_rx)
2076 			return -ENOMEM;
2077 	}
2078 
2079 	if (stmmac_xdp_is_enabled(priv) &&
2080 	    test_bit(queue, priv->af_xdp_zc_qps))
2081 		napi_id = ch->rxtx_napi.napi_id;
2082 	else
2083 		napi_id = ch->rx_napi.napi_id;
2084 
2085 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2086 			       rx_q->queue_index,
2087 			       napi_id);
2088 	if (ret) {
2089 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2090 		return -EINVAL;
2091 	}
2092 
2093 	return 0;
2094 }
2095 
2096 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2097 				       struct stmmac_dma_conf *dma_conf)
2098 {
2099 	u32 rx_count = priv->plat->rx_queues_to_use;
2100 	u32 queue;
2101 	int ret;
2102 
2103 	/* RX queues buffers and DMA */
2104 	for (queue = 0; queue < rx_count; queue++) {
2105 		ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2106 		if (ret)
2107 			goto err_dma;
2108 	}
2109 
2110 	return 0;
2111 
2112 err_dma:
2113 	free_dma_rx_desc_resources(priv, dma_conf);
2114 
2115 	return ret;
2116 }
2117 
2118 /**
2119  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2120  * @priv: private structure
2121  * @dma_conf: structure to take the dma data
2122  * @queue: TX queue index
2123  * Description: according to which descriptor can be used (extend or basic)
2124  * this function allocates the resources for TX and RX paths. In case of
2125  * reception, for example, it pre-allocated the RX socket buffer in order to
2126  * allow zero-copy mechanism.
2127  */
2128 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2129 					 struct stmmac_dma_conf *dma_conf,
2130 					 u32 queue)
2131 {
2132 	struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2133 	size_t size;
2134 	void *addr;
2135 
2136 	tx_q->queue_index = queue;
2137 	tx_q->priv_data = priv;
2138 
2139 	tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2140 				      sizeof(*tx_q->tx_skbuff_dma),
2141 				      GFP_KERNEL);
2142 	if (!tx_q->tx_skbuff_dma)
2143 		return -ENOMEM;
2144 
2145 	tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2146 				  sizeof(struct sk_buff *),
2147 				  GFP_KERNEL);
2148 	if (!tx_q->tx_skbuff)
2149 		return -ENOMEM;
2150 
2151 	if (priv->extend_desc)
2152 		size = sizeof(struct dma_extended_desc);
2153 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2154 		size = sizeof(struct dma_edesc);
2155 	else
2156 		size = sizeof(struct dma_desc);
2157 
2158 	size *= dma_conf->dma_tx_size;
2159 
2160 	addr = dma_alloc_coherent(priv->device, size,
2161 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2162 	if (!addr)
2163 		return -ENOMEM;
2164 
2165 	if (priv->extend_desc)
2166 		tx_q->dma_etx = addr;
2167 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2168 		tx_q->dma_entx = addr;
2169 	else
2170 		tx_q->dma_tx = addr;
2171 
2172 	return 0;
2173 }
2174 
2175 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2176 				       struct stmmac_dma_conf *dma_conf)
2177 {
2178 	u32 tx_count = priv->plat->tx_queues_to_use;
2179 	u32 queue;
2180 	int ret;
2181 
2182 	/* TX queues buffers and DMA */
2183 	for (queue = 0; queue < tx_count; queue++) {
2184 		ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2185 		if (ret)
2186 			goto err_dma;
2187 	}
2188 
2189 	return 0;
2190 
2191 err_dma:
2192 	free_dma_tx_desc_resources(priv, dma_conf);
2193 	return ret;
2194 }
2195 
2196 /**
2197  * alloc_dma_desc_resources - alloc TX/RX resources.
2198  * @priv: private structure
2199  * @dma_conf: structure to take the dma data
2200  * Description: according to which descriptor can be used (extend or basic)
2201  * this function allocates the resources for TX and RX paths. In case of
2202  * reception, for example, it pre-allocated the RX socket buffer in order to
2203  * allow zero-copy mechanism.
2204  */
2205 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2206 				    struct stmmac_dma_conf *dma_conf)
2207 {
2208 	/* RX Allocation */
2209 	int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2210 
2211 	if (ret)
2212 		return ret;
2213 
2214 	ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2215 
2216 	return ret;
2217 }
2218 
2219 /**
2220  * free_dma_desc_resources - free dma desc resources
2221  * @priv: private structure
2222  * @dma_conf: structure to take the dma data
2223  */
2224 static void free_dma_desc_resources(struct stmmac_priv *priv,
2225 				    struct stmmac_dma_conf *dma_conf)
2226 {
2227 	/* Release the DMA TX socket buffers */
2228 	free_dma_tx_desc_resources(priv, dma_conf);
2229 
2230 	/* Release the DMA RX socket buffers later
2231 	 * to ensure all pending XDP_TX buffers are returned.
2232 	 */
2233 	free_dma_rx_desc_resources(priv, dma_conf);
2234 }
2235 
2236 /**
2237  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2238  *  @priv: driver private structure
2239  *  Description: It is used for enabling the rx queues in the MAC
2240  */
2241 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2242 {
2243 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2244 	int queue;
2245 	u8 mode;
2246 
2247 	for (queue = 0; queue < rx_queues_count; queue++) {
2248 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2249 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2250 	}
2251 }
2252 
2253 /**
2254  * stmmac_start_rx_dma - start RX DMA channel
2255  * @priv: driver private structure
2256  * @chan: RX channel index
2257  * Description:
2258  * This starts a RX DMA channel
2259  */
2260 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2261 {
2262 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2263 	stmmac_start_rx(priv, priv->ioaddr, chan);
2264 }
2265 
2266 /**
2267  * stmmac_start_tx_dma - start TX DMA channel
2268  * @priv: driver private structure
2269  * @chan: TX channel index
2270  * Description:
2271  * This starts a TX DMA channel
2272  */
2273 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2274 {
2275 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2276 	stmmac_start_tx(priv, priv->ioaddr, chan);
2277 }
2278 
2279 /**
2280  * stmmac_stop_rx_dma - stop RX DMA channel
2281  * @priv: driver private structure
2282  * @chan: RX channel index
2283  * Description:
2284  * This stops a RX DMA channel
2285  */
2286 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2287 {
2288 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2289 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2290 }
2291 
2292 /**
2293  * stmmac_stop_tx_dma - stop TX DMA channel
2294  * @priv: driver private structure
2295  * @chan: TX channel index
2296  * Description:
2297  * This stops a TX DMA channel
2298  */
2299 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2300 {
2301 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2302 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2303 }
2304 
2305 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2306 {
2307 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2308 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2309 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2310 	u32 chan;
2311 
2312 	for (chan = 0; chan < dma_csr_ch; chan++) {
2313 		struct stmmac_channel *ch = &priv->channel[chan];
2314 		unsigned long flags;
2315 
2316 		spin_lock_irqsave(&ch->lock, flags);
2317 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2318 		spin_unlock_irqrestore(&ch->lock, flags);
2319 	}
2320 }
2321 
2322 /**
2323  * stmmac_start_all_dma - start all RX and TX DMA channels
2324  * @priv: driver private structure
2325  * Description:
2326  * This starts all the RX and TX DMA channels
2327  */
2328 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2329 {
2330 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2331 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2332 	u32 chan = 0;
2333 
2334 	for (chan = 0; chan < rx_channels_count; chan++)
2335 		stmmac_start_rx_dma(priv, chan);
2336 
2337 	for (chan = 0; chan < tx_channels_count; chan++)
2338 		stmmac_start_tx_dma(priv, chan);
2339 }
2340 
2341 /**
2342  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2343  * @priv: driver private structure
2344  * Description:
2345  * This stops the RX and TX DMA channels
2346  */
2347 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2348 {
2349 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2350 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2351 	u32 chan = 0;
2352 
2353 	for (chan = 0; chan < rx_channels_count; chan++)
2354 		stmmac_stop_rx_dma(priv, chan);
2355 
2356 	for (chan = 0; chan < tx_channels_count; chan++)
2357 		stmmac_stop_tx_dma(priv, chan);
2358 }
2359 
2360 /**
2361  *  stmmac_dma_operation_mode - HW DMA operation mode
2362  *  @priv: driver private structure
2363  *  Description: it is used for configuring the DMA operation mode register in
2364  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2365  */
2366 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2367 {
2368 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2369 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2370 	int rxfifosz = priv->plat->rx_fifo_size;
2371 	int txfifosz = priv->plat->tx_fifo_size;
2372 	u32 txmode = 0;
2373 	u32 rxmode = 0;
2374 	u32 chan = 0;
2375 	u8 qmode = 0;
2376 
2377 	if (rxfifosz == 0)
2378 		rxfifosz = priv->dma_cap.rx_fifo_size;
2379 	if (txfifosz == 0)
2380 		txfifosz = priv->dma_cap.tx_fifo_size;
2381 
2382 	/* Adjust for real per queue fifo size */
2383 	rxfifosz /= rx_channels_count;
2384 	txfifosz /= tx_channels_count;
2385 
2386 	if (priv->plat->force_thresh_dma_mode) {
2387 		txmode = tc;
2388 		rxmode = tc;
2389 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2390 		/*
2391 		 * In case of GMAC, SF mode can be enabled
2392 		 * to perform the TX COE in HW. This depends on:
2393 		 * 1) TX COE if actually supported
2394 		 * 2) There is no bugged Jumbo frame support
2395 		 *    that needs to not insert csum in the TDES.
2396 		 */
2397 		txmode = SF_DMA_MODE;
2398 		rxmode = SF_DMA_MODE;
2399 		priv->xstats.threshold = SF_DMA_MODE;
2400 	} else {
2401 		txmode = tc;
2402 		rxmode = SF_DMA_MODE;
2403 	}
2404 
2405 	/* configure all channels */
2406 	for (chan = 0; chan < rx_channels_count; chan++) {
2407 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2408 		u32 buf_size;
2409 
2410 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2411 
2412 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2413 				rxfifosz, qmode);
2414 
2415 		if (rx_q->xsk_pool) {
2416 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2417 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2418 					      buf_size,
2419 					      chan);
2420 		} else {
2421 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2422 					      priv->dma_conf.dma_buf_sz,
2423 					      chan);
2424 		}
2425 	}
2426 
2427 	for (chan = 0; chan < tx_channels_count; chan++) {
2428 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2429 
2430 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2431 				txfifosz, qmode);
2432 	}
2433 }
2434 
2435 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2436 {
2437 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2438 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2439 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2440 	unsigned int entry = tx_q->cur_tx;
2441 	struct dma_desc *tx_desc = NULL;
2442 	struct xdp_desc xdp_desc;
2443 	bool work_done = true;
2444 	u32 tx_set_ic_bit = 0;
2445 	unsigned long flags;
2446 
2447 	/* Avoids TX time-out as we are sharing with slow path */
2448 	txq_trans_cond_update(nq);
2449 
2450 	budget = min(budget, stmmac_tx_avail(priv, queue));
2451 
2452 	while (budget-- > 0) {
2453 		dma_addr_t dma_addr;
2454 		bool set_ic;
2455 
2456 		/* We are sharing with slow path and stop XSK TX desc submission when
2457 		 * available TX ring is less than threshold.
2458 		 */
2459 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2460 		    !netif_carrier_ok(priv->dev)) {
2461 			work_done = false;
2462 			break;
2463 		}
2464 
2465 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2466 			break;
2467 
2468 		if (likely(priv->extend_desc))
2469 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2470 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2471 			tx_desc = &tx_q->dma_entx[entry].basic;
2472 		else
2473 			tx_desc = tx_q->dma_tx + entry;
2474 
2475 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2476 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2477 
2478 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2479 
2480 		/* To return XDP buffer to XSK pool, we simple call
2481 		 * xsk_tx_completed(), so we don't need to fill up
2482 		 * 'buf' and 'xdpf'.
2483 		 */
2484 		tx_q->tx_skbuff_dma[entry].buf = 0;
2485 		tx_q->xdpf[entry] = NULL;
2486 
2487 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2488 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2489 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2490 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2491 
2492 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2493 
2494 		tx_q->tx_count_frames++;
2495 
2496 		if (!priv->tx_coal_frames[queue])
2497 			set_ic = false;
2498 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2499 			set_ic = true;
2500 		else
2501 			set_ic = false;
2502 
2503 		if (set_ic) {
2504 			tx_q->tx_count_frames = 0;
2505 			stmmac_set_tx_ic(priv, tx_desc);
2506 			tx_set_ic_bit++;
2507 		}
2508 
2509 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2510 				       true, priv->mode, true, true,
2511 				       xdp_desc.len);
2512 
2513 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2514 
2515 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2516 		entry = tx_q->cur_tx;
2517 	}
2518 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
2519 	tx_q->txq_stats.tx_set_ic_bit += tx_set_ic_bit;
2520 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
2521 
2522 	if (tx_desc) {
2523 		stmmac_flush_tx_descriptors(priv, queue);
2524 		xsk_tx_release(pool);
2525 	}
2526 
2527 	/* Return true if all of the 3 conditions are met
2528 	 *  a) TX Budget is still available
2529 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2530 	 *     pending XSK TX for transmission)
2531 	 */
2532 	return !!budget && work_done;
2533 }
2534 
2535 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2536 {
2537 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2538 		tc += 64;
2539 
2540 		if (priv->plat->force_thresh_dma_mode)
2541 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2542 		else
2543 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2544 						      chan);
2545 
2546 		priv->xstats.threshold = tc;
2547 	}
2548 }
2549 
2550 /**
2551  * stmmac_tx_clean - to manage the transmission completion
2552  * @priv: driver private structure
2553  * @budget: napi budget limiting this functions packet handling
2554  * @queue: TX queue index
2555  * Description: it reclaims the transmit resources after transmission completes.
2556  */
2557 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2558 {
2559 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2560 	unsigned int bytes_compl = 0, pkts_compl = 0;
2561 	unsigned int entry, xmits = 0, count = 0;
2562 	u32 tx_packets = 0, tx_errors = 0;
2563 	unsigned long flags;
2564 
2565 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2566 
2567 	tx_q->xsk_frames_done = 0;
2568 
2569 	entry = tx_q->dirty_tx;
2570 
2571 	/* Try to clean all TX complete frame in 1 shot */
2572 	while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2573 		struct xdp_frame *xdpf;
2574 		struct sk_buff *skb;
2575 		struct dma_desc *p;
2576 		int status;
2577 
2578 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2579 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2580 			xdpf = tx_q->xdpf[entry];
2581 			skb = NULL;
2582 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2583 			xdpf = NULL;
2584 			skb = tx_q->tx_skbuff[entry];
2585 		} else {
2586 			xdpf = NULL;
2587 			skb = NULL;
2588 		}
2589 
2590 		if (priv->extend_desc)
2591 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2592 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2593 			p = &tx_q->dma_entx[entry].basic;
2594 		else
2595 			p = tx_q->dma_tx + entry;
2596 
2597 		status = stmmac_tx_status(priv,	&priv->xstats, p, priv->ioaddr);
2598 		/* Check if the descriptor is owned by the DMA */
2599 		if (unlikely(status & tx_dma_own))
2600 			break;
2601 
2602 		count++;
2603 
2604 		/* Make sure descriptor fields are read after reading
2605 		 * the own bit.
2606 		 */
2607 		dma_rmb();
2608 
2609 		/* Just consider the last segment and ...*/
2610 		if (likely(!(status & tx_not_ls))) {
2611 			/* ... verify the status error condition */
2612 			if (unlikely(status & tx_err)) {
2613 				tx_errors++;
2614 				if (unlikely(status & tx_err_bump_tc))
2615 					stmmac_bump_dma_threshold(priv, queue);
2616 			} else {
2617 				tx_packets++;
2618 			}
2619 			if (skb)
2620 				stmmac_get_tx_hwtstamp(priv, p, skb);
2621 		}
2622 
2623 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2624 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2625 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2626 				dma_unmap_page(priv->device,
2627 					       tx_q->tx_skbuff_dma[entry].buf,
2628 					       tx_q->tx_skbuff_dma[entry].len,
2629 					       DMA_TO_DEVICE);
2630 			else
2631 				dma_unmap_single(priv->device,
2632 						 tx_q->tx_skbuff_dma[entry].buf,
2633 						 tx_q->tx_skbuff_dma[entry].len,
2634 						 DMA_TO_DEVICE);
2635 			tx_q->tx_skbuff_dma[entry].buf = 0;
2636 			tx_q->tx_skbuff_dma[entry].len = 0;
2637 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2638 		}
2639 
2640 		stmmac_clean_desc3(priv, tx_q, p);
2641 
2642 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2643 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2644 
2645 		if (xdpf &&
2646 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2647 			xdp_return_frame_rx_napi(xdpf);
2648 			tx_q->xdpf[entry] = NULL;
2649 		}
2650 
2651 		if (xdpf &&
2652 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2653 			xdp_return_frame(xdpf);
2654 			tx_q->xdpf[entry] = NULL;
2655 		}
2656 
2657 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2658 			tx_q->xsk_frames_done++;
2659 
2660 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2661 			if (likely(skb)) {
2662 				pkts_compl++;
2663 				bytes_compl += skb->len;
2664 				dev_consume_skb_any(skb);
2665 				tx_q->tx_skbuff[entry] = NULL;
2666 			}
2667 		}
2668 
2669 		stmmac_release_tx_desc(priv, p, priv->mode);
2670 
2671 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2672 	}
2673 	tx_q->dirty_tx = entry;
2674 
2675 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2676 				  pkts_compl, bytes_compl);
2677 
2678 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2679 								queue))) &&
2680 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2681 
2682 		netif_dbg(priv, tx_done, priv->dev,
2683 			  "%s: restart transmit\n", __func__);
2684 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2685 	}
2686 
2687 	if (tx_q->xsk_pool) {
2688 		bool work_done;
2689 
2690 		if (tx_q->xsk_frames_done)
2691 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2692 
2693 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2694 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2695 
2696 		/* For XSK TX, we try to send as many as possible.
2697 		 * If XSK work done (XSK TX desc empty and budget still
2698 		 * available), return "budget - 1" to reenable TX IRQ.
2699 		 * Else, return "budget" to make NAPI continue polling.
2700 		 */
2701 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2702 					       STMMAC_XSK_TX_BUDGET_MAX);
2703 		if (work_done)
2704 			xmits = budget - 1;
2705 		else
2706 			xmits = budget;
2707 	}
2708 
2709 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2710 	    priv->eee_sw_timer_en) {
2711 		if (stmmac_enable_eee_mode(priv))
2712 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2713 	}
2714 
2715 	/* We still have pending packets, let's call for a new scheduling */
2716 	if (tx_q->dirty_tx != tx_q->cur_tx)
2717 		hrtimer_start(&tx_q->txtimer,
2718 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2719 			      HRTIMER_MODE_REL);
2720 
2721 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
2722 	tx_q->txq_stats.tx_packets += tx_packets;
2723 	tx_q->txq_stats.tx_pkt_n += tx_packets;
2724 	tx_q->txq_stats.tx_clean++;
2725 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
2726 
2727 	priv->xstats.tx_errors += tx_errors;
2728 
2729 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2730 
2731 	/* Combine decisions from TX clean and XSK TX */
2732 	return max(count, xmits);
2733 }
2734 
2735 /**
2736  * stmmac_tx_err - to manage the tx error
2737  * @priv: driver private structure
2738  * @chan: channel index
2739  * Description: it cleans the descriptors and restarts the transmission
2740  * in case of transmission errors.
2741  */
2742 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2743 {
2744 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2745 
2746 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2747 
2748 	stmmac_stop_tx_dma(priv, chan);
2749 	dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2750 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2751 	stmmac_reset_tx_queue(priv, chan);
2752 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2753 			    tx_q->dma_tx_phy, chan);
2754 	stmmac_start_tx_dma(priv, chan);
2755 
2756 	priv->xstats.tx_errors++;
2757 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2758 }
2759 
2760 /**
2761  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2762  *  @priv: driver private structure
2763  *  @txmode: TX operating mode
2764  *  @rxmode: RX operating mode
2765  *  @chan: channel index
2766  *  Description: it is used for configuring of the DMA operation mode in
2767  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2768  *  mode.
2769  */
2770 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2771 					  u32 rxmode, u32 chan)
2772 {
2773 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2774 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2775 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2776 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2777 	int rxfifosz = priv->plat->rx_fifo_size;
2778 	int txfifosz = priv->plat->tx_fifo_size;
2779 
2780 	if (rxfifosz == 0)
2781 		rxfifosz = priv->dma_cap.rx_fifo_size;
2782 	if (txfifosz == 0)
2783 		txfifosz = priv->dma_cap.tx_fifo_size;
2784 
2785 	/* Adjust for real per queue fifo size */
2786 	rxfifosz /= rx_channels_count;
2787 	txfifosz /= tx_channels_count;
2788 
2789 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2790 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2791 }
2792 
2793 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2794 {
2795 	int ret;
2796 
2797 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2798 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2799 	if (ret && (ret != -EINVAL)) {
2800 		stmmac_global_err(priv);
2801 		return true;
2802 	}
2803 
2804 	return false;
2805 }
2806 
2807 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2808 {
2809 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2810 						 &priv->xstats, chan, dir);
2811 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2812 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2813 	struct stmmac_channel *ch = &priv->channel[chan];
2814 	struct napi_struct *rx_napi;
2815 	struct napi_struct *tx_napi;
2816 	unsigned long flags;
2817 
2818 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2819 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2820 
2821 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2822 		if (napi_schedule_prep(rx_napi)) {
2823 			spin_lock_irqsave(&ch->lock, flags);
2824 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2825 			spin_unlock_irqrestore(&ch->lock, flags);
2826 			__napi_schedule(rx_napi);
2827 		}
2828 	}
2829 
2830 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2831 		if (napi_schedule_prep(tx_napi)) {
2832 			spin_lock_irqsave(&ch->lock, flags);
2833 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2834 			spin_unlock_irqrestore(&ch->lock, flags);
2835 			__napi_schedule(tx_napi);
2836 		}
2837 	}
2838 
2839 	return status;
2840 }
2841 
2842 /**
2843  * stmmac_dma_interrupt - DMA ISR
2844  * @priv: driver private structure
2845  * Description: this is the DMA ISR. It is called by the main ISR.
2846  * It calls the dwmac dma routine and schedule poll method in case of some
2847  * work can be done.
2848  */
2849 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2850 {
2851 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2852 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2853 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2854 				tx_channel_count : rx_channel_count;
2855 	u32 chan;
2856 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2857 
2858 	/* Make sure we never check beyond our status buffer. */
2859 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2860 		channels_to_check = ARRAY_SIZE(status);
2861 
2862 	for (chan = 0; chan < channels_to_check; chan++)
2863 		status[chan] = stmmac_napi_check(priv, chan,
2864 						 DMA_DIR_RXTX);
2865 
2866 	for (chan = 0; chan < tx_channel_count; chan++) {
2867 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2868 			/* Try to bump up the dma threshold on this failure */
2869 			stmmac_bump_dma_threshold(priv, chan);
2870 		} else if (unlikely(status[chan] == tx_hard_error)) {
2871 			stmmac_tx_err(priv, chan);
2872 		}
2873 	}
2874 }
2875 
2876 /**
2877  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2878  * @priv: driver private structure
2879  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2880  */
2881 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2882 {
2883 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2884 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2885 
2886 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2887 
2888 	if (priv->dma_cap.rmon) {
2889 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2890 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2891 	} else
2892 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2893 }
2894 
2895 /**
2896  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2897  * @priv: driver private structure
2898  * Description:
2899  *  new GMAC chip generations have a new register to indicate the
2900  *  presence of the optional feature/functions.
2901  *  This can be also used to override the value passed through the
2902  *  platform and necessary for old MAC10/100 and GMAC chips.
2903  */
2904 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2905 {
2906 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2907 }
2908 
2909 /**
2910  * stmmac_check_ether_addr - check if the MAC addr is valid
2911  * @priv: driver private structure
2912  * Description:
2913  * it is to verify if the MAC address is valid, in case of failures it
2914  * generates a random MAC address
2915  */
2916 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2917 {
2918 	u8 addr[ETH_ALEN];
2919 
2920 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2921 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2922 		if (is_valid_ether_addr(addr))
2923 			eth_hw_addr_set(priv->dev, addr);
2924 		else
2925 			eth_hw_addr_random(priv->dev);
2926 		dev_info(priv->device, "device MAC address %pM\n",
2927 			 priv->dev->dev_addr);
2928 	}
2929 }
2930 
2931 /**
2932  * stmmac_init_dma_engine - DMA init.
2933  * @priv: driver private structure
2934  * Description:
2935  * It inits the DMA invoking the specific MAC/GMAC callback.
2936  * Some DMA parameters can be passed from the platform;
2937  * in case of these are not passed a default is kept for the MAC or GMAC.
2938  */
2939 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2940 {
2941 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2942 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2943 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2944 	struct stmmac_rx_queue *rx_q;
2945 	struct stmmac_tx_queue *tx_q;
2946 	u32 chan = 0;
2947 	int atds = 0;
2948 	int ret = 0;
2949 
2950 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2951 		dev_err(priv->device, "Invalid DMA configuration\n");
2952 		return -EINVAL;
2953 	}
2954 
2955 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2956 		atds = 1;
2957 
2958 	ret = stmmac_reset(priv, priv->ioaddr);
2959 	if (ret) {
2960 		dev_err(priv->device, "Failed to reset the dma\n");
2961 		return ret;
2962 	}
2963 
2964 	/* DMA Configuration */
2965 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2966 
2967 	if (priv->plat->axi)
2968 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2969 
2970 	/* DMA CSR Channel configuration */
2971 	for (chan = 0; chan < dma_csr_ch; chan++) {
2972 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2973 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2974 	}
2975 
2976 	/* DMA RX Channel Configuration */
2977 	for (chan = 0; chan < rx_channels_count; chan++) {
2978 		rx_q = &priv->dma_conf.rx_queue[chan];
2979 
2980 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2981 				    rx_q->dma_rx_phy, chan);
2982 
2983 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2984 				     (rx_q->buf_alloc_num *
2985 				      sizeof(struct dma_desc));
2986 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2987 				       rx_q->rx_tail_addr, chan);
2988 	}
2989 
2990 	/* DMA TX Channel Configuration */
2991 	for (chan = 0; chan < tx_channels_count; chan++) {
2992 		tx_q = &priv->dma_conf.tx_queue[chan];
2993 
2994 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2995 				    tx_q->dma_tx_phy, chan);
2996 
2997 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2998 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2999 				       tx_q->tx_tail_addr, chan);
3000 	}
3001 
3002 	return ret;
3003 }
3004 
3005 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
3006 {
3007 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
3008 
3009 	hrtimer_start(&tx_q->txtimer,
3010 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
3011 		      HRTIMER_MODE_REL);
3012 }
3013 
3014 /**
3015  * stmmac_tx_timer - mitigation sw timer for tx.
3016  * @t: data pointer
3017  * Description:
3018  * This is the timer handler to directly invoke the stmmac_tx_clean.
3019  */
3020 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3021 {
3022 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3023 	struct stmmac_priv *priv = tx_q->priv_data;
3024 	struct stmmac_channel *ch;
3025 	struct napi_struct *napi;
3026 
3027 	ch = &priv->channel[tx_q->queue_index];
3028 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3029 
3030 	if (likely(napi_schedule_prep(napi))) {
3031 		unsigned long flags;
3032 
3033 		spin_lock_irqsave(&ch->lock, flags);
3034 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3035 		spin_unlock_irqrestore(&ch->lock, flags);
3036 		__napi_schedule(napi);
3037 	}
3038 
3039 	return HRTIMER_NORESTART;
3040 }
3041 
3042 /**
3043  * stmmac_init_coalesce - init mitigation options.
3044  * @priv: driver private structure
3045  * Description:
3046  * This inits the coalesce parameters: i.e. timer rate,
3047  * timer handler and default threshold used for enabling the
3048  * interrupt on completion bit.
3049  */
3050 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3051 {
3052 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
3053 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
3054 	u32 chan;
3055 
3056 	for (chan = 0; chan < tx_channel_count; chan++) {
3057 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3058 
3059 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3060 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3061 
3062 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3063 		tx_q->txtimer.function = stmmac_tx_timer;
3064 	}
3065 
3066 	for (chan = 0; chan < rx_channel_count; chan++)
3067 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3068 }
3069 
3070 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3071 {
3072 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
3073 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
3074 	u32 chan;
3075 
3076 	/* set TX ring length */
3077 	for (chan = 0; chan < tx_channels_count; chan++)
3078 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
3079 				       (priv->dma_conf.dma_tx_size - 1), chan);
3080 
3081 	/* set RX ring length */
3082 	for (chan = 0; chan < rx_channels_count; chan++)
3083 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
3084 				       (priv->dma_conf.dma_rx_size - 1), chan);
3085 }
3086 
3087 /**
3088  *  stmmac_set_tx_queue_weight - Set TX queue weight
3089  *  @priv: driver private structure
3090  *  Description: It is used for setting TX queues weight
3091  */
3092 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3093 {
3094 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3095 	u32 weight;
3096 	u32 queue;
3097 
3098 	for (queue = 0; queue < tx_queues_count; queue++) {
3099 		weight = priv->plat->tx_queues_cfg[queue].weight;
3100 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3101 	}
3102 }
3103 
3104 /**
3105  *  stmmac_configure_cbs - Configure CBS in TX queue
3106  *  @priv: driver private structure
3107  *  Description: It is used for configuring CBS in AVB TX queues
3108  */
3109 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3110 {
3111 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3112 	u32 mode_to_use;
3113 	u32 queue;
3114 
3115 	/* queue 0 is reserved for legacy traffic */
3116 	for (queue = 1; queue < tx_queues_count; queue++) {
3117 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3118 		if (mode_to_use == MTL_QUEUE_DCB)
3119 			continue;
3120 
3121 		stmmac_config_cbs(priv, priv->hw,
3122 				priv->plat->tx_queues_cfg[queue].send_slope,
3123 				priv->plat->tx_queues_cfg[queue].idle_slope,
3124 				priv->plat->tx_queues_cfg[queue].high_credit,
3125 				priv->plat->tx_queues_cfg[queue].low_credit,
3126 				queue);
3127 	}
3128 }
3129 
3130 /**
3131  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3132  *  @priv: driver private structure
3133  *  Description: It is used for mapping RX queues to RX dma channels
3134  */
3135 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3136 {
3137 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3138 	u32 queue;
3139 	u32 chan;
3140 
3141 	for (queue = 0; queue < rx_queues_count; queue++) {
3142 		chan = priv->plat->rx_queues_cfg[queue].chan;
3143 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3144 	}
3145 }
3146 
3147 /**
3148  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3149  *  @priv: driver private structure
3150  *  Description: It is used for configuring the RX Queue Priority
3151  */
3152 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3153 {
3154 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3155 	u32 queue;
3156 	u32 prio;
3157 
3158 	for (queue = 0; queue < rx_queues_count; queue++) {
3159 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3160 			continue;
3161 
3162 		prio = priv->plat->rx_queues_cfg[queue].prio;
3163 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3164 	}
3165 }
3166 
3167 /**
3168  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3169  *  @priv: driver private structure
3170  *  Description: It is used for configuring the TX Queue Priority
3171  */
3172 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3173 {
3174 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3175 	u32 queue;
3176 	u32 prio;
3177 
3178 	for (queue = 0; queue < tx_queues_count; queue++) {
3179 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3180 			continue;
3181 
3182 		prio = priv->plat->tx_queues_cfg[queue].prio;
3183 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3184 	}
3185 }
3186 
3187 /**
3188  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3189  *  @priv: driver private structure
3190  *  Description: It is used for configuring the RX queue routing
3191  */
3192 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3193 {
3194 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3195 	u32 queue;
3196 	u8 packet;
3197 
3198 	for (queue = 0; queue < rx_queues_count; queue++) {
3199 		/* no specific packet type routing specified for the queue */
3200 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3201 			continue;
3202 
3203 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3204 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3205 	}
3206 }
3207 
3208 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3209 {
3210 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3211 		priv->rss.enable = false;
3212 		return;
3213 	}
3214 
3215 	if (priv->dev->features & NETIF_F_RXHASH)
3216 		priv->rss.enable = true;
3217 	else
3218 		priv->rss.enable = false;
3219 
3220 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3221 			     priv->plat->rx_queues_to_use);
3222 }
3223 
3224 /**
3225  *  stmmac_mtl_configuration - Configure MTL
3226  *  @priv: driver private structure
3227  *  Description: It is used for configurring MTL
3228  */
3229 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3230 {
3231 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3232 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3233 
3234 	if (tx_queues_count > 1)
3235 		stmmac_set_tx_queue_weight(priv);
3236 
3237 	/* Configure MTL RX algorithms */
3238 	if (rx_queues_count > 1)
3239 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3240 				priv->plat->rx_sched_algorithm);
3241 
3242 	/* Configure MTL TX algorithms */
3243 	if (tx_queues_count > 1)
3244 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3245 				priv->plat->tx_sched_algorithm);
3246 
3247 	/* Configure CBS in AVB TX queues */
3248 	if (tx_queues_count > 1)
3249 		stmmac_configure_cbs(priv);
3250 
3251 	/* Map RX MTL to DMA channels */
3252 	stmmac_rx_queue_dma_chan_map(priv);
3253 
3254 	/* Enable MAC RX Queues */
3255 	stmmac_mac_enable_rx_queues(priv);
3256 
3257 	/* Set RX priorities */
3258 	if (rx_queues_count > 1)
3259 		stmmac_mac_config_rx_queues_prio(priv);
3260 
3261 	/* Set TX priorities */
3262 	if (tx_queues_count > 1)
3263 		stmmac_mac_config_tx_queues_prio(priv);
3264 
3265 	/* Set RX routing */
3266 	if (rx_queues_count > 1)
3267 		stmmac_mac_config_rx_queues_routing(priv);
3268 
3269 	/* Receive Side Scaling */
3270 	if (rx_queues_count > 1)
3271 		stmmac_mac_config_rss(priv);
3272 }
3273 
3274 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3275 {
3276 	if (priv->dma_cap.asp) {
3277 		netdev_info(priv->dev, "Enabling Safety Features\n");
3278 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3279 					  priv->plat->safety_feat_cfg);
3280 	} else {
3281 		netdev_info(priv->dev, "No Safety Features support found\n");
3282 	}
3283 }
3284 
3285 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3286 {
3287 	char *name;
3288 
3289 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3290 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3291 
3292 	name = priv->wq_name;
3293 	sprintf(name, "%s-fpe", priv->dev->name);
3294 
3295 	priv->fpe_wq = create_singlethread_workqueue(name);
3296 	if (!priv->fpe_wq) {
3297 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3298 
3299 		return -ENOMEM;
3300 	}
3301 	netdev_info(priv->dev, "FPE workqueue start");
3302 
3303 	return 0;
3304 }
3305 
3306 /**
3307  * stmmac_hw_setup - setup mac in a usable state.
3308  *  @dev : pointer to the device structure.
3309  *  @ptp_register: register PTP if set
3310  *  Description:
3311  *  this is the main function to setup the HW in a usable state because the
3312  *  dma engine is reset, the core registers are configured (e.g. AXI,
3313  *  Checksum features, timers). The DMA is ready to start receiving and
3314  *  transmitting.
3315  *  Return value:
3316  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3317  *  file on failure.
3318  */
3319 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3320 {
3321 	struct stmmac_priv *priv = netdev_priv(dev);
3322 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3323 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3324 	bool sph_en;
3325 	u32 chan;
3326 	int ret;
3327 
3328 	/* DMA initialization and SW reset */
3329 	ret = stmmac_init_dma_engine(priv);
3330 	if (ret < 0) {
3331 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3332 			   __func__);
3333 		return ret;
3334 	}
3335 
3336 	/* Copy the MAC addr into the HW  */
3337 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3338 
3339 	/* PS and related bits will be programmed according to the speed */
3340 	if (priv->hw->pcs) {
3341 		int speed = priv->plat->mac_port_sel_speed;
3342 
3343 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3344 		    (speed == SPEED_1000)) {
3345 			priv->hw->ps = speed;
3346 		} else {
3347 			dev_warn(priv->device, "invalid port speed\n");
3348 			priv->hw->ps = 0;
3349 		}
3350 	}
3351 
3352 	/* Initialize the MAC Core */
3353 	stmmac_core_init(priv, priv->hw, dev);
3354 
3355 	/* Initialize MTL*/
3356 	stmmac_mtl_configuration(priv);
3357 
3358 	/* Initialize Safety Features */
3359 	stmmac_safety_feat_configuration(priv);
3360 
3361 	ret = stmmac_rx_ipc(priv, priv->hw);
3362 	if (!ret) {
3363 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3364 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3365 		priv->hw->rx_csum = 0;
3366 	}
3367 
3368 	/* Enable the MAC Rx/Tx */
3369 	stmmac_mac_set(priv, priv->ioaddr, true);
3370 
3371 	/* Set the HW DMA mode and the COE */
3372 	stmmac_dma_operation_mode(priv);
3373 
3374 	stmmac_mmc_setup(priv);
3375 
3376 	if (ptp_register) {
3377 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3378 		if (ret < 0)
3379 			netdev_warn(priv->dev,
3380 				    "failed to enable PTP reference clock: %pe\n",
3381 				    ERR_PTR(ret));
3382 	}
3383 
3384 	ret = stmmac_init_ptp(priv);
3385 	if (ret == -EOPNOTSUPP)
3386 		netdev_info(priv->dev, "PTP not supported by HW\n");
3387 	else if (ret)
3388 		netdev_warn(priv->dev, "PTP init failed\n");
3389 	else if (ptp_register)
3390 		stmmac_ptp_register(priv);
3391 
3392 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3393 
3394 	/* Convert the timer from msec to usec */
3395 	if (!priv->tx_lpi_timer)
3396 		priv->tx_lpi_timer = eee_timer * 1000;
3397 
3398 	if (priv->use_riwt) {
3399 		u32 queue;
3400 
3401 		for (queue = 0; queue < rx_cnt; queue++) {
3402 			if (!priv->rx_riwt[queue])
3403 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3404 
3405 			stmmac_rx_watchdog(priv, priv->ioaddr,
3406 					   priv->rx_riwt[queue], queue);
3407 		}
3408 	}
3409 
3410 	if (priv->hw->pcs)
3411 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3412 
3413 	/* set TX and RX rings length */
3414 	stmmac_set_rings_length(priv);
3415 
3416 	/* Enable TSO */
3417 	if (priv->tso) {
3418 		for (chan = 0; chan < tx_cnt; chan++) {
3419 			struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3420 
3421 			/* TSO and TBS cannot co-exist */
3422 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3423 				continue;
3424 
3425 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3426 		}
3427 	}
3428 
3429 	/* Enable Split Header */
3430 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3431 	for (chan = 0; chan < rx_cnt; chan++)
3432 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3433 
3434 
3435 	/* VLAN Tag Insertion */
3436 	if (priv->dma_cap.vlins)
3437 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3438 
3439 	/* TBS */
3440 	for (chan = 0; chan < tx_cnt; chan++) {
3441 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3442 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3443 
3444 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3445 	}
3446 
3447 	/* Configure real RX and TX queues */
3448 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3449 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3450 
3451 	/* Start the ball rolling... */
3452 	stmmac_start_all_dma(priv);
3453 
3454 	if (priv->dma_cap.fpesel) {
3455 		stmmac_fpe_start_wq(priv);
3456 
3457 		if (priv->plat->fpe_cfg->enable)
3458 			stmmac_fpe_handshake(priv, true);
3459 	}
3460 
3461 	return 0;
3462 }
3463 
3464 static void stmmac_hw_teardown(struct net_device *dev)
3465 {
3466 	struct stmmac_priv *priv = netdev_priv(dev);
3467 
3468 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3469 }
3470 
3471 static void stmmac_free_irq(struct net_device *dev,
3472 			    enum request_irq_err irq_err, int irq_idx)
3473 {
3474 	struct stmmac_priv *priv = netdev_priv(dev);
3475 	int j;
3476 
3477 	switch (irq_err) {
3478 	case REQ_IRQ_ERR_ALL:
3479 		irq_idx = priv->plat->tx_queues_to_use;
3480 		fallthrough;
3481 	case REQ_IRQ_ERR_TX:
3482 		for (j = irq_idx - 1; j >= 0; j--) {
3483 			if (priv->tx_irq[j] > 0) {
3484 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3485 				free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3486 			}
3487 		}
3488 		irq_idx = priv->plat->rx_queues_to_use;
3489 		fallthrough;
3490 	case REQ_IRQ_ERR_RX:
3491 		for (j = irq_idx - 1; j >= 0; j--) {
3492 			if (priv->rx_irq[j] > 0) {
3493 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3494 				free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3495 			}
3496 		}
3497 
3498 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3499 			free_irq(priv->sfty_ue_irq, dev);
3500 		fallthrough;
3501 	case REQ_IRQ_ERR_SFTY_UE:
3502 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3503 			free_irq(priv->sfty_ce_irq, dev);
3504 		fallthrough;
3505 	case REQ_IRQ_ERR_SFTY_CE:
3506 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3507 			free_irq(priv->lpi_irq, dev);
3508 		fallthrough;
3509 	case REQ_IRQ_ERR_LPI:
3510 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3511 			free_irq(priv->wol_irq, dev);
3512 		fallthrough;
3513 	case REQ_IRQ_ERR_WOL:
3514 		free_irq(dev->irq, dev);
3515 		fallthrough;
3516 	case REQ_IRQ_ERR_MAC:
3517 	case REQ_IRQ_ERR_NO:
3518 		/* If MAC IRQ request error, no more IRQ to free */
3519 		break;
3520 	}
3521 }
3522 
3523 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3524 {
3525 	struct stmmac_priv *priv = netdev_priv(dev);
3526 	enum request_irq_err irq_err;
3527 	cpumask_t cpu_mask;
3528 	int irq_idx = 0;
3529 	char *int_name;
3530 	int ret;
3531 	int i;
3532 
3533 	/* For common interrupt */
3534 	int_name = priv->int_name_mac;
3535 	sprintf(int_name, "%s:%s", dev->name, "mac");
3536 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3537 			  0, int_name, dev);
3538 	if (unlikely(ret < 0)) {
3539 		netdev_err(priv->dev,
3540 			   "%s: alloc mac MSI %d (error: %d)\n",
3541 			   __func__, dev->irq, ret);
3542 		irq_err = REQ_IRQ_ERR_MAC;
3543 		goto irq_error;
3544 	}
3545 
3546 	/* Request the Wake IRQ in case of another line
3547 	 * is used for WoL
3548 	 */
3549 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3550 		int_name = priv->int_name_wol;
3551 		sprintf(int_name, "%s:%s", dev->name, "wol");
3552 		ret = request_irq(priv->wol_irq,
3553 				  stmmac_mac_interrupt,
3554 				  0, int_name, dev);
3555 		if (unlikely(ret < 0)) {
3556 			netdev_err(priv->dev,
3557 				   "%s: alloc wol MSI %d (error: %d)\n",
3558 				   __func__, priv->wol_irq, ret);
3559 			irq_err = REQ_IRQ_ERR_WOL;
3560 			goto irq_error;
3561 		}
3562 	}
3563 
3564 	/* Request the LPI IRQ in case of another line
3565 	 * is used for LPI
3566 	 */
3567 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3568 		int_name = priv->int_name_lpi;
3569 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3570 		ret = request_irq(priv->lpi_irq,
3571 				  stmmac_mac_interrupt,
3572 				  0, int_name, dev);
3573 		if (unlikely(ret < 0)) {
3574 			netdev_err(priv->dev,
3575 				   "%s: alloc lpi MSI %d (error: %d)\n",
3576 				   __func__, priv->lpi_irq, ret);
3577 			irq_err = REQ_IRQ_ERR_LPI;
3578 			goto irq_error;
3579 		}
3580 	}
3581 
3582 	/* Request the Safety Feature Correctible Error line in
3583 	 * case of another line is used
3584 	 */
3585 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3586 		int_name = priv->int_name_sfty_ce;
3587 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3588 		ret = request_irq(priv->sfty_ce_irq,
3589 				  stmmac_safety_interrupt,
3590 				  0, int_name, dev);
3591 		if (unlikely(ret < 0)) {
3592 			netdev_err(priv->dev,
3593 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3594 				   __func__, priv->sfty_ce_irq, ret);
3595 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3596 			goto irq_error;
3597 		}
3598 	}
3599 
3600 	/* Request the Safety Feature Uncorrectible Error line in
3601 	 * case of another line is used
3602 	 */
3603 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3604 		int_name = priv->int_name_sfty_ue;
3605 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3606 		ret = request_irq(priv->sfty_ue_irq,
3607 				  stmmac_safety_interrupt,
3608 				  0, int_name, dev);
3609 		if (unlikely(ret < 0)) {
3610 			netdev_err(priv->dev,
3611 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3612 				   __func__, priv->sfty_ue_irq, ret);
3613 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3614 			goto irq_error;
3615 		}
3616 	}
3617 
3618 	/* Request Rx MSI irq */
3619 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3620 		if (i >= MTL_MAX_RX_QUEUES)
3621 			break;
3622 		if (priv->rx_irq[i] == 0)
3623 			continue;
3624 
3625 		int_name = priv->int_name_rx_irq[i];
3626 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3627 		ret = request_irq(priv->rx_irq[i],
3628 				  stmmac_msi_intr_rx,
3629 				  0, int_name, &priv->dma_conf.rx_queue[i]);
3630 		if (unlikely(ret < 0)) {
3631 			netdev_err(priv->dev,
3632 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3633 				   __func__, i, priv->rx_irq[i], ret);
3634 			irq_err = REQ_IRQ_ERR_RX;
3635 			irq_idx = i;
3636 			goto irq_error;
3637 		}
3638 		cpumask_clear(&cpu_mask);
3639 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3640 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3641 	}
3642 
3643 	/* Request Tx MSI irq */
3644 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3645 		if (i >= MTL_MAX_TX_QUEUES)
3646 			break;
3647 		if (priv->tx_irq[i] == 0)
3648 			continue;
3649 
3650 		int_name = priv->int_name_tx_irq[i];
3651 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3652 		ret = request_irq(priv->tx_irq[i],
3653 				  stmmac_msi_intr_tx,
3654 				  0, int_name, &priv->dma_conf.tx_queue[i]);
3655 		if (unlikely(ret < 0)) {
3656 			netdev_err(priv->dev,
3657 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3658 				   __func__, i, priv->tx_irq[i], ret);
3659 			irq_err = REQ_IRQ_ERR_TX;
3660 			irq_idx = i;
3661 			goto irq_error;
3662 		}
3663 		cpumask_clear(&cpu_mask);
3664 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3665 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3666 	}
3667 
3668 	return 0;
3669 
3670 irq_error:
3671 	stmmac_free_irq(dev, irq_err, irq_idx);
3672 	return ret;
3673 }
3674 
3675 static int stmmac_request_irq_single(struct net_device *dev)
3676 {
3677 	struct stmmac_priv *priv = netdev_priv(dev);
3678 	enum request_irq_err irq_err;
3679 	int ret;
3680 
3681 	ret = request_irq(dev->irq, stmmac_interrupt,
3682 			  IRQF_SHARED, dev->name, dev);
3683 	if (unlikely(ret < 0)) {
3684 		netdev_err(priv->dev,
3685 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3686 			   __func__, dev->irq, ret);
3687 		irq_err = REQ_IRQ_ERR_MAC;
3688 		goto irq_error;
3689 	}
3690 
3691 	/* Request the Wake IRQ in case of another line
3692 	 * is used for WoL
3693 	 */
3694 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3695 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3696 				  IRQF_SHARED, dev->name, dev);
3697 		if (unlikely(ret < 0)) {
3698 			netdev_err(priv->dev,
3699 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3700 				   __func__, priv->wol_irq, ret);
3701 			irq_err = REQ_IRQ_ERR_WOL;
3702 			goto irq_error;
3703 		}
3704 	}
3705 
3706 	/* Request the IRQ lines */
3707 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3708 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3709 				  IRQF_SHARED, dev->name, dev);
3710 		if (unlikely(ret < 0)) {
3711 			netdev_err(priv->dev,
3712 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3713 				   __func__, priv->lpi_irq, ret);
3714 			irq_err = REQ_IRQ_ERR_LPI;
3715 			goto irq_error;
3716 		}
3717 	}
3718 
3719 	return 0;
3720 
3721 irq_error:
3722 	stmmac_free_irq(dev, irq_err, 0);
3723 	return ret;
3724 }
3725 
3726 static int stmmac_request_irq(struct net_device *dev)
3727 {
3728 	struct stmmac_priv *priv = netdev_priv(dev);
3729 	int ret;
3730 
3731 	/* Request the IRQ lines */
3732 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3733 		ret = stmmac_request_irq_multi_msi(dev);
3734 	else
3735 		ret = stmmac_request_irq_single(dev);
3736 
3737 	return ret;
3738 }
3739 
3740 /**
3741  *  stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3742  *  @priv: driver private structure
3743  *  @mtu: MTU to setup the dma queue and buf with
3744  *  Description: Allocate and generate a dma_conf based on the provided MTU.
3745  *  Allocate the Tx/Rx DMA queue and init them.
3746  *  Return value:
3747  *  the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3748  */
3749 static struct stmmac_dma_conf *
3750 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3751 {
3752 	struct stmmac_dma_conf *dma_conf;
3753 	int chan, bfsize, ret;
3754 
3755 	dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3756 	if (!dma_conf) {
3757 		netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3758 			   __func__);
3759 		return ERR_PTR(-ENOMEM);
3760 	}
3761 
3762 	bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3763 	if (bfsize < 0)
3764 		bfsize = 0;
3765 
3766 	if (bfsize < BUF_SIZE_16KiB)
3767 		bfsize = stmmac_set_bfsize(mtu, 0);
3768 
3769 	dma_conf->dma_buf_sz = bfsize;
3770 	/* Chose the tx/rx size from the already defined one in the
3771 	 * priv struct. (if defined)
3772 	 */
3773 	dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3774 	dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3775 
3776 	if (!dma_conf->dma_tx_size)
3777 		dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3778 	if (!dma_conf->dma_rx_size)
3779 		dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3780 
3781 	/* Earlier check for TBS */
3782 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3783 		struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3784 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3785 
3786 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3787 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3788 	}
3789 
3790 	ret = alloc_dma_desc_resources(priv, dma_conf);
3791 	if (ret < 0) {
3792 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3793 			   __func__);
3794 		goto alloc_error;
3795 	}
3796 
3797 	ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3798 	if (ret < 0) {
3799 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3800 			   __func__);
3801 		goto init_error;
3802 	}
3803 
3804 	return dma_conf;
3805 
3806 init_error:
3807 	free_dma_desc_resources(priv, dma_conf);
3808 alloc_error:
3809 	kfree(dma_conf);
3810 	return ERR_PTR(ret);
3811 }
3812 
3813 /**
3814  *  __stmmac_open - open entry point of the driver
3815  *  @dev : pointer to the device structure.
3816  *  @dma_conf :  structure to take the dma data
3817  *  Description:
3818  *  This function is the open entry point of the driver.
3819  *  Return value:
3820  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3821  *  file on failure.
3822  */
3823 static int __stmmac_open(struct net_device *dev,
3824 			 struct stmmac_dma_conf *dma_conf)
3825 {
3826 	struct stmmac_priv *priv = netdev_priv(dev);
3827 	int mode = priv->plat->phy_interface;
3828 	u32 chan;
3829 	int ret;
3830 
3831 	ret = pm_runtime_resume_and_get(priv->device);
3832 	if (ret < 0)
3833 		return ret;
3834 
3835 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3836 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3837 	    (!priv->hw->xpcs ||
3838 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3839 	    !priv->hw->lynx_pcs) {
3840 		ret = stmmac_init_phy(dev);
3841 		if (ret) {
3842 			netdev_err(priv->dev,
3843 				   "%s: Cannot attach to PHY (error: %d)\n",
3844 				   __func__, ret);
3845 			goto init_phy_error;
3846 		}
3847 	}
3848 
3849 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3850 
3851 	buf_sz = dma_conf->dma_buf_sz;
3852 	memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3853 
3854 	stmmac_reset_queues_param(priv);
3855 
3856 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3857 	    priv->plat->serdes_powerup) {
3858 		ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3859 		if (ret < 0) {
3860 			netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3861 				   __func__);
3862 			goto init_error;
3863 		}
3864 	}
3865 
3866 	ret = stmmac_hw_setup(dev, true);
3867 	if (ret < 0) {
3868 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3869 		goto init_error;
3870 	}
3871 
3872 	stmmac_init_coalesce(priv);
3873 
3874 	phylink_start(priv->phylink);
3875 	/* We may have called phylink_speed_down before */
3876 	phylink_speed_up(priv->phylink);
3877 
3878 	ret = stmmac_request_irq(dev);
3879 	if (ret)
3880 		goto irq_error;
3881 
3882 	stmmac_enable_all_queues(priv);
3883 	netif_tx_start_all_queues(priv->dev);
3884 	stmmac_enable_all_dma_irq(priv);
3885 
3886 	return 0;
3887 
3888 irq_error:
3889 	phylink_stop(priv->phylink);
3890 
3891 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3892 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3893 
3894 	stmmac_hw_teardown(dev);
3895 init_error:
3896 	phylink_disconnect_phy(priv->phylink);
3897 init_phy_error:
3898 	pm_runtime_put(priv->device);
3899 	return ret;
3900 }
3901 
3902 static int stmmac_open(struct net_device *dev)
3903 {
3904 	struct stmmac_priv *priv = netdev_priv(dev);
3905 	struct stmmac_dma_conf *dma_conf;
3906 	int ret;
3907 
3908 	dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3909 	if (IS_ERR(dma_conf))
3910 		return PTR_ERR(dma_conf);
3911 
3912 	ret = __stmmac_open(dev, dma_conf);
3913 	if (ret)
3914 		free_dma_desc_resources(priv, dma_conf);
3915 
3916 	kfree(dma_conf);
3917 	return ret;
3918 }
3919 
3920 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3921 {
3922 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3923 
3924 	if (priv->fpe_wq)
3925 		destroy_workqueue(priv->fpe_wq);
3926 
3927 	netdev_info(priv->dev, "FPE workqueue stop");
3928 }
3929 
3930 /**
3931  *  stmmac_release - close entry point of the driver
3932  *  @dev : device pointer.
3933  *  Description:
3934  *  This is the stop entry point of the driver.
3935  */
3936 static int stmmac_release(struct net_device *dev)
3937 {
3938 	struct stmmac_priv *priv = netdev_priv(dev);
3939 	u32 chan;
3940 
3941 	if (device_may_wakeup(priv->device))
3942 		phylink_speed_down(priv->phylink, false);
3943 	/* Stop and disconnect the PHY */
3944 	phylink_stop(priv->phylink);
3945 	phylink_disconnect_phy(priv->phylink);
3946 
3947 	stmmac_disable_all_queues(priv);
3948 
3949 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3950 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3951 
3952 	netif_tx_disable(dev);
3953 
3954 	/* Free the IRQ lines */
3955 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3956 
3957 	if (priv->eee_enabled) {
3958 		priv->tx_path_in_lpi_mode = false;
3959 		del_timer_sync(&priv->eee_ctrl_timer);
3960 	}
3961 
3962 	/* Stop TX/RX DMA and clear the descriptors */
3963 	stmmac_stop_all_dma(priv);
3964 
3965 	/* Release and free the Rx/Tx resources */
3966 	free_dma_desc_resources(priv, &priv->dma_conf);
3967 
3968 	/* Disable the MAC Rx/Tx */
3969 	stmmac_mac_set(priv, priv->ioaddr, false);
3970 
3971 	/* Powerdown Serdes if there is */
3972 	if (priv->plat->serdes_powerdown)
3973 		priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3974 
3975 	netif_carrier_off(dev);
3976 
3977 	stmmac_release_ptp(priv);
3978 
3979 	pm_runtime_put(priv->device);
3980 
3981 	if (priv->dma_cap.fpesel)
3982 		stmmac_fpe_stop_wq(priv);
3983 
3984 	return 0;
3985 }
3986 
3987 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3988 			       struct stmmac_tx_queue *tx_q)
3989 {
3990 	u16 tag = 0x0, inner_tag = 0x0;
3991 	u32 inner_type = 0x0;
3992 	struct dma_desc *p;
3993 
3994 	if (!priv->dma_cap.vlins)
3995 		return false;
3996 	if (!skb_vlan_tag_present(skb))
3997 		return false;
3998 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3999 		inner_tag = skb_vlan_tag_get(skb);
4000 		inner_type = STMMAC_VLAN_INSERT;
4001 	}
4002 
4003 	tag = skb_vlan_tag_get(skb);
4004 
4005 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4006 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
4007 	else
4008 		p = &tx_q->dma_tx[tx_q->cur_tx];
4009 
4010 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4011 		return false;
4012 
4013 	stmmac_set_tx_owner(priv, p);
4014 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4015 	return true;
4016 }
4017 
4018 /**
4019  *  stmmac_tso_allocator - close entry point of the driver
4020  *  @priv: driver private structure
4021  *  @des: buffer start address
4022  *  @total_len: total length to fill in descriptors
4023  *  @last_segment: condition for the last descriptor
4024  *  @queue: TX queue index
4025  *  Description:
4026  *  This function fills descriptor and request new descriptors according to
4027  *  buffer length to fill
4028  */
4029 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4030 				 int total_len, bool last_segment, u32 queue)
4031 {
4032 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4033 	struct dma_desc *desc;
4034 	u32 buff_size;
4035 	int tmp_len;
4036 
4037 	tmp_len = total_len;
4038 
4039 	while (tmp_len > 0) {
4040 		dma_addr_t curr_addr;
4041 
4042 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4043 						priv->dma_conf.dma_tx_size);
4044 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4045 
4046 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4047 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4048 		else
4049 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4050 
4051 		curr_addr = des + (total_len - tmp_len);
4052 		if (priv->dma_cap.addr64 <= 32)
4053 			desc->des0 = cpu_to_le32(curr_addr);
4054 		else
4055 			stmmac_set_desc_addr(priv, desc, curr_addr);
4056 
4057 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4058 			    TSO_MAX_BUFF_SIZE : tmp_len;
4059 
4060 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4061 				0, 1,
4062 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4063 				0, 0);
4064 
4065 		tmp_len -= TSO_MAX_BUFF_SIZE;
4066 	}
4067 }
4068 
4069 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4070 {
4071 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4072 	int desc_size;
4073 
4074 	if (likely(priv->extend_desc))
4075 		desc_size = sizeof(struct dma_extended_desc);
4076 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4077 		desc_size = sizeof(struct dma_edesc);
4078 	else
4079 		desc_size = sizeof(struct dma_desc);
4080 
4081 	/* The own bit must be the latest setting done when prepare the
4082 	 * descriptor and then barrier is needed to make sure that
4083 	 * all is coherent before granting the DMA engine.
4084 	 */
4085 	wmb();
4086 
4087 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4088 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4089 }
4090 
4091 /**
4092  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4093  *  @skb : the socket buffer
4094  *  @dev : device pointer
4095  *  Description: this is the transmit function that is called on TSO frames
4096  *  (support available on GMAC4 and newer chips).
4097  *  Diagram below show the ring programming in case of TSO frames:
4098  *
4099  *  First Descriptor
4100  *   --------
4101  *   | DES0 |---> buffer1 = L2/L3/L4 header
4102  *   | DES1 |---> TCP Payload (can continue on next descr...)
4103  *   | DES2 |---> buffer 1 and 2 len
4104  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4105  *   --------
4106  *	|
4107  *     ...
4108  *	|
4109  *   --------
4110  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
4111  *   | DES1 | --|
4112  *   | DES2 | --> buffer 1 and 2 len
4113  *   | DES3 |
4114  *   --------
4115  *
4116  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4117  */
4118 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4119 {
4120 	struct dma_desc *desc, *first, *mss_desc = NULL;
4121 	struct stmmac_priv *priv = netdev_priv(dev);
4122 	int nfrags = skb_shinfo(skb)->nr_frags;
4123 	u32 queue = skb_get_queue_mapping(skb);
4124 	unsigned int first_entry, tx_packets;
4125 	int tmp_pay_len = 0, first_tx;
4126 	struct stmmac_tx_queue *tx_q;
4127 	bool has_vlan, set_ic;
4128 	u8 proto_hdr_len, hdr;
4129 	unsigned long flags;
4130 	u32 pay_len, mss;
4131 	dma_addr_t des;
4132 	int i;
4133 
4134 	tx_q = &priv->dma_conf.tx_queue[queue];
4135 	first_tx = tx_q->cur_tx;
4136 
4137 	/* Compute header lengths */
4138 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4139 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4140 		hdr = sizeof(struct udphdr);
4141 	} else {
4142 		proto_hdr_len = skb_tcp_all_headers(skb);
4143 		hdr = tcp_hdrlen(skb);
4144 	}
4145 
4146 	/* Desc availability based on threshold should be enough safe */
4147 	if (unlikely(stmmac_tx_avail(priv, queue) <
4148 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4149 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4150 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4151 								queue));
4152 			/* This is a hard error, log it. */
4153 			netdev_err(priv->dev,
4154 				   "%s: Tx Ring full when queue awake\n",
4155 				   __func__);
4156 		}
4157 		return NETDEV_TX_BUSY;
4158 	}
4159 
4160 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4161 
4162 	mss = skb_shinfo(skb)->gso_size;
4163 
4164 	/* set new MSS value if needed */
4165 	if (mss != tx_q->mss) {
4166 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4167 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4168 		else
4169 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4170 
4171 		stmmac_set_mss(priv, mss_desc, mss);
4172 		tx_q->mss = mss;
4173 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4174 						priv->dma_conf.dma_tx_size);
4175 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4176 	}
4177 
4178 	if (netif_msg_tx_queued(priv)) {
4179 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4180 			__func__, hdr, proto_hdr_len, pay_len, mss);
4181 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4182 			skb->data_len);
4183 	}
4184 
4185 	/* Check if VLAN can be inserted by HW */
4186 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4187 
4188 	first_entry = tx_q->cur_tx;
4189 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4190 
4191 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4192 		desc = &tx_q->dma_entx[first_entry].basic;
4193 	else
4194 		desc = &tx_q->dma_tx[first_entry];
4195 	first = desc;
4196 
4197 	if (has_vlan)
4198 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4199 
4200 	/* first descriptor: fill Headers on Buf1 */
4201 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4202 			     DMA_TO_DEVICE);
4203 	if (dma_mapping_error(priv->device, des))
4204 		goto dma_map_err;
4205 
4206 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4207 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4208 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4209 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4210 
4211 	if (priv->dma_cap.addr64 <= 32) {
4212 		first->des0 = cpu_to_le32(des);
4213 
4214 		/* Fill start of payload in buff2 of first descriptor */
4215 		if (pay_len)
4216 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4217 
4218 		/* If needed take extra descriptors to fill the remaining payload */
4219 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4220 	} else {
4221 		stmmac_set_desc_addr(priv, first, des);
4222 		tmp_pay_len = pay_len;
4223 		des += proto_hdr_len;
4224 		pay_len = 0;
4225 	}
4226 
4227 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4228 
4229 	/* Prepare fragments */
4230 	for (i = 0; i < nfrags; i++) {
4231 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4232 
4233 		des = skb_frag_dma_map(priv->device, frag, 0,
4234 				       skb_frag_size(frag),
4235 				       DMA_TO_DEVICE);
4236 		if (dma_mapping_error(priv->device, des))
4237 			goto dma_map_err;
4238 
4239 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4240 				     (i == nfrags - 1), queue);
4241 
4242 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4243 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4244 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4245 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4246 	}
4247 
4248 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4249 
4250 	/* Only the last descriptor gets to point to the skb. */
4251 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4252 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4253 
4254 	/* Manage tx mitigation */
4255 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4256 	tx_q->tx_count_frames += tx_packets;
4257 
4258 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4259 		set_ic = true;
4260 	else if (!priv->tx_coal_frames[queue])
4261 		set_ic = false;
4262 	else if (tx_packets > priv->tx_coal_frames[queue])
4263 		set_ic = true;
4264 	else if ((tx_q->tx_count_frames %
4265 		  priv->tx_coal_frames[queue]) < tx_packets)
4266 		set_ic = true;
4267 	else
4268 		set_ic = false;
4269 
4270 	if (set_ic) {
4271 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4272 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4273 		else
4274 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4275 
4276 		tx_q->tx_count_frames = 0;
4277 		stmmac_set_tx_ic(priv, desc);
4278 	}
4279 
4280 	/* We've used all descriptors we need for this skb, however,
4281 	 * advance cur_tx so that it references a fresh descriptor.
4282 	 * ndo_start_xmit will fill this descriptor the next time it's
4283 	 * called and stmmac_tx_clean may clean up to this descriptor.
4284 	 */
4285 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4286 
4287 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4288 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4289 			  __func__);
4290 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4291 	}
4292 
4293 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
4294 	tx_q->txq_stats.tx_bytes += skb->len;
4295 	tx_q->txq_stats.tx_tso_frames++;
4296 	tx_q->txq_stats.tx_tso_nfrags += nfrags;
4297 	if (set_ic)
4298 		tx_q->txq_stats.tx_set_ic_bit++;
4299 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
4300 
4301 	if (priv->sarc_type)
4302 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4303 
4304 	skb_tx_timestamp(skb);
4305 
4306 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4307 		     priv->hwts_tx_en)) {
4308 		/* declare that device is doing timestamping */
4309 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4310 		stmmac_enable_tx_timestamp(priv, first);
4311 	}
4312 
4313 	/* Complete the first descriptor before granting the DMA */
4314 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4315 			proto_hdr_len,
4316 			pay_len,
4317 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4318 			hdr / 4, (skb->len - proto_hdr_len));
4319 
4320 	/* If context desc is used to change MSS */
4321 	if (mss_desc) {
4322 		/* Make sure that first descriptor has been completely
4323 		 * written, including its own bit. This is because MSS is
4324 		 * actually before first descriptor, so we need to make
4325 		 * sure that MSS's own bit is the last thing written.
4326 		 */
4327 		dma_wmb();
4328 		stmmac_set_tx_owner(priv, mss_desc);
4329 	}
4330 
4331 	if (netif_msg_pktdata(priv)) {
4332 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4333 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4334 			tx_q->cur_tx, first, nfrags);
4335 		pr_info(">>> frame to be transmitted: ");
4336 		print_pkt(skb->data, skb_headlen(skb));
4337 	}
4338 
4339 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4340 
4341 	stmmac_flush_tx_descriptors(priv, queue);
4342 	stmmac_tx_timer_arm(priv, queue);
4343 
4344 	return NETDEV_TX_OK;
4345 
4346 dma_map_err:
4347 	dev_err(priv->device, "Tx dma map failed\n");
4348 	dev_kfree_skb(skb);
4349 	priv->xstats.tx_dropped++;
4350 	return NETDEV_TX_OK;
4351 }
4352 
4353 /**
4354  *  stmmac_xmit - Tx entry point of the driver
4355  *  @skb : the socket buffer
4356  *  @dev : device pointer
4357  *  Description : this is the tx entry point of the driver.
4358  *  It programs the chain or the ring and supports oversized frames
4359  *  and SG feature.
4360  */
4361 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4362 {
4363 	unsigned int first_entry, tx_packets, enh_desc;
4364 	struct stmmac_priv *priv = netdev_priv(dev);
4365 	unsigned int nopaged_len = skb_headlen(skb);
4366 	int i, csum_insertion = 0, is_jumbo = 0;
4367 	u32 queue = skb_get_queue_mapping(skb);
4368 	int nfrags = skb_shinfo(skb)->nr_frags;
4369 	int gso = skb_shinfo(skb)->gso_type;
4370 	struct dma_edesc *tbs_desc = NULL;
4371 	struct dma_desc *desc, *first;
4372 	struct stmmac_tx_queue *tx_q;
4373 	bool has_vlan, set_ic;
4374 	int entry, first_tx;
4375 	unsigned long flags;
4376 	dma_addr_t des;
4377 
4378 	tx_q = &priv->dma_conf.tx_queue[queue];
4379 	first_tx = tx_q->cur_tx;
4380 
4381 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4382 		stmmac_disable_eee_mode(priv);
4383 
4384 	/* Manage oversized TCP frames for GMAC4 device */
4385 	if (skb_is_gso(skb) && priv->tso) {
4386 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4387 			return stmmac_tso_xmit(skb, dev);
4388 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4389 			return stmmac_tso_xmit(skb, dev);
4390 	}
4391 
4392 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4393 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4394 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4395 								queue));
4396 			/* This is a hard error, log it. */
4397 			netdev_err(priv->dev,
4398 				   "%s: Tx Ring full when queue awake\n",
4399 				   __func__);
4400 		}
4401 		return NETDEV_TX_BUSY;
4402 	}
4403 
4404 	/* Check if VLAN can be inserted by HW */
4405 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4406 
4407 	entry = tx_q->cur_tx;
4408 	first_entry = entry;
4409 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4410 
4411 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4412 
4413 	if (likely(priv->extend_desc))
4414 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4415 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4416 		desc = &tx_q->dma_entx[entry].basic;
4417 	else
4418 		desc = tx_q->dma_tx + entry;
4419 
4420 	first = desc;
4421 
4422 	if (has_vlan)
4423 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4424 
4425 	enh_desc = priv->plat->enh_desc;
4426 	/* To program the descriptors according to the size of the frame */
4427 	if (enh_desc)
4428 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4429 
4430 	if (unlikely(is_jumbo)) {
4431 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4432 		if (unlikely(entry < 0) && (entry != -EINVAL))
4433 			goto dma_map_err;
4434 	}
4435 
4436 	for (i = 0; i < nfrags; i++) {
4437 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4438 		int len = skb_frag_size(frag);
4439 		bool last_segment = (i == (nfrags - 1));
4440 
4441 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4442 		WARN_ON(tx_q->tx_skbuff[entry]);
4443 
4444 		if (likely(priv->extend_desc))
4445 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4446 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4447 			desc = &tx_q->dma_entx[entry].basic;
4448 		else
4449 			desc = tx_q->dma_tx + entry;
4450 
4451 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4452 				       DMA_TO_DEVICE);
4453 		if (dma_mapping_error(priv->device, des))
4454 			goto dma_map_err; /* should reuse desc w/o issues */
4455 
4456 		tx_q->tx_skbuff_dma[entry].buf = des;
4457 
4458 		stmmac_set_desc_addr(priv, desc, des);
4459 
4460 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4461 		tx_q->tx_skbuff_dma[entry].len = len;
4462 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4463 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4464 
4465 		/* Prepare the descriptor and set the own bit too */
4466 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4467 				priv->mode, 1, last_segment, skb->len);
4468 	}
4469 
4470 	/* Only the last descriptor gets to point to the skb. */
4471 	tx_q->tx_skbuff[entry] = skb;
4472 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4473 
4474 	/* According to the coalesce parameter the IC bit for the latest
4475 	 * segment is reset and the timer re-started to clean the tx status.
4476 	 * This approach takes care about the fragments: desc is the first
4477 	 * element in case of no SG.
4478 	 */
4479 	tx_packets = (entry + 1) - first_tx;
4480 	tx_q->tx_count_frames += tx_packets;
4481 
4482 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4483 		set_ic = true;
4484 	else if (!priv->tx_coal_frames[queue])
4485 		set_ic = false;
4486 	else if (tx_packets > priv->tx_coal_frames[queue])
4487 		set_ic = true;
4488 	else if ((tx_q->tx_count_frames %
4489 		  priv->tx_coal_frames[queue]) < tx_packets)
4490 		set_ic = true;
4491 	else
4492 		set_ic = false;
4493 
4494 	if (set_ic) {
4495 		if (likely(priv->extend_desc))
4496 			desc = &tx_q->dma_etx[entry].basic;
4497 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4498 			desc = &tx_q->dma_entx[entry].basic;
4499 		else
4500 			desc = &tx_q->dma_tx[entry];
4501 
4502 		tx_q->tx_count_frames = 0;
4503 		stmmac_set_tx_ic(priv, desc);
4504 	}
4505 
4506 	/* We've used all descriptors we need for this skb, however,
4507 	 * advance cur_tx so that it references a fresh descriptor.
4508 	 * ndo_start_xmit will fill this descriptor the next time it's
4509 	 * called and stmmac_tx_clean may clean up to this descriptor.
4510 	 */
4511 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4512 	tx_q->cur_tx = entry;
4513 
4514 	if (netif_msg_pktdata(priv)) {
4515 		netdev_dbg(priv->dev,
4516 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4517 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4518 			   entry, first, nfrags);
4519 
4520 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4521 		print_pkt(skb->data, skb->len);
4522 	}
4523 
4524 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4525 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4526 			  __func__);
4527 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4528 	}
4529 
4530 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
4531 	tx_q->txq_stats.tx_bytes += skb->len;
4532 	if (set_ic)
4533 		tx_q->txq_stats.tx_set_ic_bit++;
4534 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
4535 
4536 	if (priv->sarc_type)
4537 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4538 
4539 	skb_tx_timestamp(skb);
4540 
4541 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4542 	 * problems because all the descriptors are actually ready to be
4543 	 * passed to the DMA engine.
4544 	 */
4545 	if (likely(!is_jumbo)) {
4546 		bool last_segment = (nfrags == 0);
4547 
4548 		des = dma_map_single(priv->device, skb->data,
4549 				     nopaged_len, DMA_TO_DEVICE);
4550 		if (dma_mapping_error(priv->device, des))
4551 			goto dma_map_err;
4552 
4553 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4554 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4555 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4556 
4557 		stmmac_set_desc_addr(priv, first, des);
4558 
4559 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4560 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4561 
4562 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4563 			     priv->hwts_tx_en)) {
4564 			/* declare that device is doing timestamping */
4565 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4566 			stmmac_enable_tx_timestamp(priv, first);
4567 		}
4568 
4569 		/* Prepare the first descriptor setting the OWN bit too */
4570 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4571 				csum_insertion, priv->mode, 0, last_segment,
4572 				skb->len);
4573 	}
4574 
4575 	if (tx_q->tbs & STMMAC_TBS_EN) {
4576 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4577 
4578 		tbs_desc = &tx_q->dma_entx[first_entry];
4579 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4580 	}
4581 
4582 	stmmac_set_tx_owner(priv, first);
4583 
4584 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4585 
4586 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4587 
4588 	stmmac_flush_tx_descriptors(priv, queue);
4589 	stmmac_tx_timer_arm(priv, queue);
4590 
4591 	return NETDEV_TX_OK;
4592 
4593 dma_map_err:
4594 	netdev_err(priv->dev, "Tx DMA map failed\n");
4595 	dev_kfree_skb(skb);
4596 	priv->xstats.tx_dropped++;
4597 	return NETDEV_TX_OK;
4598 }
4599 
4600 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4601 {
4602 	struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4603 	__be16 vlan_proto = veth->h_vlan_proto;
4604 	u16 vlanid;
4605 
4606 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4607 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4608 	    (vlan_proto == htons(ETH_P_8021AD) &&
4609 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4610 		/* pop the vlan tag */
4611 		vlanid = ntohs(veth->h_vlan_TCI);
4612 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4613 		skb_pull(skb, VLAN_HLEN);
4614 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4615 	}
4616 }
4617 
4618 /**
4619  * stmmac_rx_refill - refill used skb preallocated buffers
4620  * @priv: driver private structure
4621  * @queue: RX queue index
4622  * Description : this is to reallocate the skb for the reception process
4623  * that is based on zero-copy.
4624  */
4625 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4626 {
4627 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4628 	int dirty = stmmac_rx_dirty(priv, queue);
4629 	unsigned int entry = rx_q->dirty_rx;
4630 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4631 
4632 	if (priv->dma_cap.host_dma_width <= 32)
4633 		gfp |= GFP_DMA32;
4634 
4635 	while (dirty-- > 0) {
4636 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4637 		struct dma_desc *p;
4638 		bool use_rx_wd;
4639 
4640 		if (priv->extend_desc)
4641 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4642 		else
4643 			p = rx_q->dma_rx + entry;
4644 
4645 		if (!buf->page) {
4646 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4647 			if (!buf->page)
4648 				break;
4649 		}
4650 
4651 		if (priv->sph && !buf->sec_page) {
4652 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4653 			if (!buf->sec_page)
4654 				break;
4655 
4656 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4657 		}
4658 
4659 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4660 
4661 		stmmac_set_desc_addr(priv, p, buf->addr);
4662 		if (priv->sph)
4663 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4664 		else
4665 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4666 		stmmac_refill_desc3(priv, rx_q, p);
4667 
4668 		rx_q->rx_count_frames++;
4669 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4670 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4671 			rx_q->rx_count_frames = 0;
4672 
4673 		use_rx_wd = !priv->rx_coal_frames[queue];
4674 		use_rx_wd |= rx_q->rx_count_frames > 0;
4675 		if (!priv->use_riwt)
4676 			use_rx_wd = false;
4677 
4678 		dma_wmb();
4679 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4680 
4681 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4682 	}
4683 	rx_q->dirty_rx = entry;
4684 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4685 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4686 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4687 }
4688 
4689 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4690 				       struct dma_desc *p,
4691 				       int status, unsigned int len)
4692 {
4693 	unsigned int plen = 0, hlen = 0;
4694 	int coe = priv->hw->rx_csum;
4695 
4696 	/* Not first descriptor, buffer is always zero */
4697 	if (priv->sph && len)
4698 		return 0;
4699 
4700 	/* First descriptor, get split header length */
4701 	stmmac_get_rx_header_len(priv, p, &hlen);
4702 	if (priv->sph && hlen) {
4703 		priv->xstats.rx_split_hdr_pkt_n++;
4704 		return hlen;
4705 	}
4706 
4707 	/* First descriptor, not last descriptor and not split header */
4708 	if (status & rx_not_ls)
4709 		return priv->dma_conf.dma_buf_sz;
4710 
4711 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4712 
4713 	/* First descriptor and last descriptor and not split header */
4714 	return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4715 }
4716 
4717 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4718 				       struct dma_desc *p,
4719 				       int status, unsigned int len)
4720 {
4721 	int coe = priv->hw->rx_csum;
4722 	unsigned int plen = 0;
4723 
4724 	/* Not split header, buffer is not available */
4725 	if (!priv->sph)
4726 		return 0;
4727 
4728 	/* Not last descriptor */
4729 	if (status & rx_not_ls)
4730 		return priv->dma_conf.dma_buf_sz;
4731 
4732 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4733 
4734 	/* Last descriptor */
4735 	return plen - len;
4736 }
4737 
4738 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4739 				struct xdp_frame *xdpf, bool dma_map)
4740 {
4741 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4742 	unsigned int entry = tx_q->cur_tx;
4743 	struct dma_desc *tx_desc;
4744 	dma_addr_t dma_addr;
4745 	bool set_ic;
4746 
4747 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4748 		return STMMAC_XDP_CONSUMED;
4749 
4750 	if (likely(priv->extend_desc))
4751 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4752 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4753 		tx_desc = &tx_q->dma_entx[entry].basic;
4754 	else
4755 		tx_desc = tx_q->dma_tx + entry;
4756 
4757 	if (dma_map) {
4758 		dma_addr = dma_map_single(priv->device, xdpf->data,
4759 					  xdpf->len, DMA_TO_DEVICE);
4760 		if (dma_mapping_error(priv->device, dma_addr))
4761 			return STMMAC_XDP_CONSUMED;
4762 
4763 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4764 	} else {
4765 		struct page *page = virt_to_page(xdpf->data);
4766 
4767 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4768 			   xdpf->headroom;
4769 		dma_sync_single_for_device(priv->device, dma_addr,
4770 					   xdpf->len, DMA_BIDIRECTIONAL);
4771 
4772 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4773 	}
4774 
4775 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4776 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4777 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4778 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4779 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4780 
4781 	tx_q->xdpf[entry] = xdpf;
4782 
4783 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4784 
4785 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4786 			       true, priv->mode, true, true,
4787 			       xdpf->len);
4788 
4789 	tx_q->tx_count_frames++;
4790 
4791 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4792 		set_ic = true;
4793 	else
4794 		set_ic = false;
4795 
4796 	if (set_ic) {
4797 		unsigned long flags;
4798 		tx_q->tx_count_frames = 0;
4799 		stmmac_set_tx_ic(priv, tx_desc);
4800 		flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
4801 		tx_q->txq_stats.tx_set_ic_bit++;
4802 		u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
4803 	}
4804 
4805 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4806 
4807 	entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4808 	tx_q->cur_tx = entry;
4809 
4810 	return STMMAC_XDP_TX;
4811 }
4812 
4813 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4814 				   int cpu)
4815 {
4816 	int index = cpu;
4817 
4818 	if (unlikely(index < 0))
4819 		index = 0;
4820 
4821 	while (index >= priv->plat->tx_queues_to_use)
4822 		index -= priv->plat->tx_queues_to_use;
4823 
4824 	return index;
4825 }
4826 
4827 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4828 				struct xdp_buff *xdp)
4829 {
4830 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4831 	int cpu = smp_processor_id();
4832 	struct netdev_queue *nq;
4833 	int queue;
4834 	int res;
4835 
4836 	if (unlikely(!xdpf))
4837 		return STMMAC_XDP_CONSUMED;
4838 
4839 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4840 	nq = netdev_get_tx_queue(priv->dev, queue);
4841 
4842 	__netif_tx_lock(nq, cpu);
4843 	/* Avoids TX time-out as we are sharing with slow path */
4844 	txq_trans_cond_update(nq);
4845 
4846 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4847 	if (res == STMMAC_XDP_TX)
4848 		stmmac_flush_tx_descriptors(priv, queue);
4849 
4850 	__netif_tx_unlock(nq);
4851 
4852 	return res;
4853 }
4854 
4855 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4856 				 struct bpf_prog *prog,
4857 				 struct xdp_buff *xdp)
4858 {
4859 	u32 act;
4860 	int res;
4861 
4862 	act = bpf_prog_run_xdp(prog, xdp);
4863 	switch (act) {
4864 	case XDP_PASS:
4865 		res = STMMAC_XDP_PASS;
4866 		break;
4867 	case XDP_TX:
4868 		res = stmmac_xdp_xmit_back(priv, xdp);
4869 		break;
4870 	case XDP_REDIRECT:
4871 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4872 			res = STMMAC_XDP_CONSUMED;
4873 		else
4874 			res = STMMAC_XDP_REDIRECT;
4875 		break;
4876 	default:
4877 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4878 		fallthrough;
4879 	case XDP_ABORTED:
4880 		trace_xdp_exception(priv->dev, prog, act);
4881 		fallthrough;
4882 	case XDP_DROP:
4883 		res = STMMAC_XDP_CONSUMED;
4884 		break;
4885 	}
4886 
4887 	return res;
4888 }
4889 
4890 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4891 					   struct xdp_buff *xdp)
4892 {
4893 	struct bpf_prog *prog;
4894 	int res;
4895 
4896 	prog = READ_ONCE(priv->xdp_prog);
4897 	if (!prog) {
4898 		res = STMMAC_XDP_PASS;
4899 		goto out;
4900 	}
4901 
4902 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4903 out:
4904 	return ERR_PTR(-res);
4905 }
4906 
4907 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4908 				   int xdp_status)
4909 {
4910 	int cpu = smp_processor_id();
4911 	int queue;
4912 
4913 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4914 
4915 	if (xdp_status & STMMAC_XDP_TX)
4916 		stmmac_tx_timer_arm(priv, queue);
4917 
4918 	if (xdp_status & STMMAC_XDP_REDIRECT)
4919 		xdp_do_flush();
4920 }
4921 
4922 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4923 					       struct xdp_buff *xdp)
4924 {
4925 	unsigned int metasize = xdp->data - xdp->data_meta;
4926 	unsigned int datasize = xdp->data_end - xdp->data;
4927 	struct sk_buff *skb;
4928 
4929 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4930 			       xdp->data_end - xdp->data_hard_start,
4931 			       GFP_ATOMIC | __GFP_NOWARN);
4932 	if (unlikely(!skb))
4933 		return NULL;
4934 
4935 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4936 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4937 	if (metasize)
4938 		skb_metadata_set(skb, metasize);
4939 
4940 	return skb;
4941 }
4942 
4943 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4944 				   struct dma_desc *p, struct dma_desc *np,
4945 				   struct xdp_buff *xdp)
4946 {
4947 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4948 	struct stmmac_channel *ch = &priv->channel[queue];
4949 	unsigned int len = xdp->data_end - xdp->data;
4950 	enum pkt_hash_types hash_type;
4951 	int coe = priv->hw->rx_csum;
4952 	unsigned long flags;
4953 	struct sk_buff *skb;
4954 	u32 hash;
4955 
4956 	skb = stmmac_construct_skb_zc(ch, xdp);
4957 	if (!skb) {
4958 		priv->xstats.rx_dropped++;
4959 		return;
4960 	}
4961 
4962 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4963 	stmmac_rx_vlan(priv->dev, skb);
4964 	skb->protocol = eth_type_trans(skb, priv->dev);
4965 
4966 	if (unlikely(!coe))
4967 		skb_checksum_none_assert(skb);
4968 	else
4969 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4970 
4971 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4972 		skb_set_hash(skb, hash, hash_type);
4973 
4974 	skb_record_rx_queue(skb, queue);
4975 	napi_gro_receive(&ch->rxtx_napi, skb);
4976 
4977 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
4978 	rx_q->rxq_stats.rx_pkt_n++;
4979 	rx_q->rxq_stats.rx_bytes += len;
4980 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
4981 }
4982 
4983 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4984 {
4985 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4986 	unsigned int entry = rx_q->dirty_rx;
4987 	struct dma_desc *rx_desc = NULL;
4988 	bool ret = true;
4989 
4990 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4991 
4992 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4993 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4994 		dma_addr_t dma_addr;
4995 		bool use_rx_wd;
4996 
4997 		if (!buf->xdp) {
4998 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4999 			if (!buf->xdp) {
5000 				ret = false;
5001 				break;
5002 			}
5003 		}
5004 
5005 		if (priv->extend_desc)
5006 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5007 		else
5008 			rx_desc = rx_q->dma_rx + entry;
5009 
5010 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5011 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5012 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5013 		stmmac_refill_desc3(priv, rx_q, rx_desc);
5014 
5015 		rx_q->rx_count_frames++;
5016 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5017 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5018 			rx_q->rx_count_frames = 0;
5019 
5020 		use_rx_wd = !priv->rx_coal_frames[queue];
5021 		use_rx_wd |= rx_q->rx_count_frames > 0;
5022 		if (!priv->use_riwt)
5023 			use_rx_wd = false;
5024 
5025 		dma_wmb();
5026 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5027 
5028 		entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5029 	}
5030 
5031 	if (rx_desc) {
5032 		rx_q->dirty_rx = entry;
5033 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5034 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
5035 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5036 	}
5037 
5038 	return ret;
5039 }
5040 
5041 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5042 {
5043 	/* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5044 	 * to represent incoming packet, whereas cb field in the same structure
5045 	 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5046 	 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5047 	 */
5048 	return (struct stmmac_xdp_buff *)xdp;
5049 }
5050 
5051 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5052 {
5053 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5054 	unsigned int count = 0, error = 0, len = 0;
5055 	int dirty = stmmac_rx_dirty(priv, queue);
5056 	unsigned int next_entry = rx_q->cur_rx;
5057 	u32 rx_errors = 0, rx_dropped = 0;
5058 	unsigned int desc_size;
5059 	struct bpf_prog *prog;
5060 	bool failure = false;
5061 	unsigned long flags;
5062 	int xdp_status = 0;
5063 	int status = 0;
5064 
5065 	if (netif_msg_rx_status(priv)) {
5066 		void *rx_head;
5067 
5068 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5069 		if (priv->extend_desc) {
5070 			rx_head = (void *)rx_q->dma_erx;
5071 			desc_size = sizeof(struct dma_extended_desc);
5072 		} else {
5073 			rx_head = (void *)rx_q->dma_rx;
5074 			desc_size = sizeof(struct dma_desc);
5075 		}
5076 
5077 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5078 				    rx_q->dma_rx_phy, desc_size);
5079 	}
5080 	while (count < limit) {
5081 		struct stmmac_rx_buffer *buf;
5082 		struct stmmac_xdp_buff *ctx;
5083 		unsigned int buf1_len = 0;
5084 		struct dma_desc *np, *p;
5085 		int entry;
5086 		int res;
5087 
5088 		if (!count && rx_q->state_saved) {
5089 			error = rx_q->state.error;
5090 			len = rx_q->state.len;
5091 		} else {
5092 			rx_q->state_saved = false;
5093 			error = 0;
5094 			len = 0;
5095 		}
5096 
5097 		if (count >= limit)
5098 			break;
5099 
5100 read_again:
5101 		buf1_len = 0;
5102 		entry = next_entry;
5103 		buf = &rx_q->buf_pool[entry];
5104 
5105 		if (dirty >= STMMAC_RX_FILL_BATCH) {
5106 			failure = failure ||
5107 				  !stmmac_rx_refill_zc(priv, queue, dirty);
5108 			dirty = 0;
5109 		}
5110 
5111 		if (priv->extend_desc)
5112 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5113 		else
5114 			p = rx_q->dma_rx + entry;
5115 
5116 		/* read the status of the incoming frame */
5117 		status = stmmac_rx_status(priv, &priv->xstats, p);
5118 		/* check if managed by the DMA otherwise go ahead */
5119 		if (unlikely(status & dma_own))
5120 			break;
5121 
5122 		/* Prefetch the next RX descriptor */
5123 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5124 						priv->dma_conf.dma_rx_size);
5125 		next_entry = rx_q->cur_rx;
5126 
5127 		if (priv->extend_desc)
5128 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5129 		else
5130 			np = rx_q->dma_rx + next_entry;
5131 
5132 		prefetch(np);
5133 
5134 		/* Ensure a valid XSK buffer before proceed */
5135 		if (!buf->xdp)
5136 			break;
5137 
5138 		if (priv->extend_desc)
5139 			stmmac_rx_extended_status(priv, &priv->xstats,
5140 						  rx_q->dma_erx + entry);
5141 		if (unlikely(status == discard_frame)) {
5142 			xsk_buff_free(buf->xdp);
5143 			buf->xdp = NULL;
5144 			dirty++;
5145 			error = 1;
5146 			if (!priv->hwts_rx_en)
5147 				rx_errors++;
5148 		}
5149 
5150 		if (unlikely(error && (status & rx_not_ls)))
5151 			goto read_again;
5152 		if (unlikely(error)) {
5153 			count++;
5154 			continue;
5155 		}
5156 
5157 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5158 		if (likely(status & rx_not_ls)) {
5159 			xsk_buff_free(buf->xdp);
5160 			buf->xdp = NULL;
5161 			dirty++;
5162 			count++;
5163 			goto read_again;
5164 		}
5165 
5166 		ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5167 		ctx->priv = priv;
5168 		ctx->desc = p;
5169 		ctx->ndesc = np;
5170 
5171 		/* XDP ZC Frame only support primary buffers for now */
5172 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5173 		len += buf1_len;
5174 
5175 		/* ACS is disabled; strip manually. */
5176 		if (likely(!(status & rx_not_ls))) {
5177 			buf1_len -= ETH_FCS_LEN;
5178 			len -= ETH_FCS_LEN;
5179 		}
5180 
5181 		/* RX buffer is good and fit into a XSK pool buffer */
5182 		buf->xdp->data_end = buf->xdp->data + buf1_len;
5183 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5184 
5185 		prog = READ_ONCE(priv->xdp_prog);
5186 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5187 
5188 		switch (res) {
5189 		case STMMAC_XDP_PASS:
5190 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5191 			xsk_buff_free(buf->xdp);
5192 			break;
5193 		case STMMAC_XDP_CONSUMED:
5194 			xsk_buff_free(buf->xdp);
5195 			rx_dropped++;
5196 			break;
5197 		case STMMAC_XDP_TX:
5198 		case STMMAC_XDP_REDIRECT:
5199 			xdp_status |= res;
5200 			break;
5201 		}
5202 
5203 		buf->xdp = NULL;
5204 		dirty++;
5205 		count++;
5206 	}
5207 
5208 	if (status & rx_not_ls) {
5209 		rx_q->state_saved = true;
5210 		rx_q->state.error = error;
5211 		rx_q->state.len = len;
5212 	}
5213 
5214 	stmmac_finalize_xdp_rx(priv, xdp_status);
5215 
5216 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5217 	rx_q->rxq_stats.rx_pkt_n += count;
5218 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5219 
5220 	priv->xstats.rx_dropped += rx_dropped;
5221 	priv->xstats.rx_errors += rx_errors;
5222 
5223 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5224 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5225 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5226 		else
5227 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5228 
5229 		return (int)count;
5230 	}
5231 
5232 	return failure ? limit : (int)count;
5233 }
5234 
5235 /**
5236  * stmmac_rx - manage the receive process
5237  * @priv: driver private structure
5238  * @limit: napi bugget
5239  * @queue: RX queue index.
5240  * Description :  this the function called by the napi poll method.
5241  * It gets all the frames inside the ring.
5242  */
5243 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5244 {
5245 	u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5246 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5247 	struct stmmac_channel *ch = &priv->channel[queue];
5248 	unsigned int count = 0, error = 0, len = 0;
5249 	int status = 0, coe = priv->hw->rx_csum;
5250 	unsigned int next_entry = rx_q->cur_rx;
5251 	enum dma_data_direction dma_dir;
5252 	unsigned int desc_size;
5253 	struct sk_buff *skb = NULL;
5254 	struct stmmac_xdp_buff ctx;
5255 	unsigned long flags;
5256 	int xdp_status = 0;
5257 	int buf_sz;
5258 
5259 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5260 	buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5261 
5262 	if (netif_msg_rx_status(priv)) {
5263 		void *rx_head;
5264 
5265 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5266 		if (priv->extend_desc) {
5267 			rx_head = (void *)rx_q->dma_erx;
5268 			desc_size = sizeof(struct dma_extended_desc);
5269 		} else {
5270 			rx_head = (void *)rx_q->dma_rx;
5271 			desc_size = sizeof(struct dma_desc);
5272 		}
5273 
5274 		stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5275 				    rx_q->dma_rx_phy, desc_size);
5276 	}
5277 	while (count < limit) {
5278 		unsigned int buf1_len = 0, buf2_len = 0;
5279 		enum pkt_hash_types hash_type;
5280 		struct stmmac_rx_buffer *buf;
5281 		struct dma_desc *np, *p;
5282 		int entry;
5283 		u32 hash;
5284 
5285 		if (!count && rx_q->state_saved) {
5286 			skb = rx_q->state.skb;
5287 			error = rx_q->state.error;
5288 			len = rx_q->state.len;
5289 		} else {
5290 			rx_q->state_saved = false;
5291 			skb = NULL;
5292 			error = 0;
5293 			len = 0;
5294 		}
5295 
5296 		if (count >= limit)
5297 			break;
5298 
5299 read_again:
5300 		buf1_len = 0;
5301 		buf2_len = 0;
5302 		entry = next_entry;
5303 		buf = &rx_q->buf_pool[entry];
5304 
5305 		if (priv->extend_desc)
5306 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5307 		else
5308 			p = rx_q->dma_rx + entry;
5309 
5310 		/* read the status of the incoming frame */
5311 		status = stmmac_rx_status(priv, &priv->xstats, p);
5312 		/* check if managed by the DMA otherwise go ahead */
5313 		if (unlikely(status & dma_own))
5314 			break;
5315 
5316 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5317 						priv->dma_conf.dma_rx_size);
5318 		next_entry = rx_q->cur_rx;
5319 
5320 		if (priv->extend_desc)
5321 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5322 		else
5323 			np = rx_q->dma_rx + next_entry;
5324 
5325 		prefetch(np);
5326 
5327 		if (priv->extend_desc)
5328 			stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5329 		if (unlikely(status == discard_frame)) {
5330 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5331 			buf->page = NULL;
5332 			error = 1;
5333 			if (!priv->hwts_rx_en)
5334 				rx_errors++;
5335 		}
5336 
5337 		if (unlikely(error && (status & rx_not_ls)))
5338 			goto read_again;
5339 		if (unlikely(error)) {
5340 			dev_kfree_skb(skb);
5341 			skb = NULL;
5342 			count++;
5343 			continue;
5344 		}
5345 
5346 		/* Buffer is good. Go on. */
5347 
5348 		prefetch(page_address(buf->page) + buf->page_offset);
5349 		if (buf->sec_page)
5350 			prefetch(page_address(buf->sec_page));
5351 
5352 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5353 		len += buf1_len;
5354 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5355 		len += buf2_len;
5356 
5357 		/* ACS is disabled; strip manually. */
5358 		if (likely(!(status & rx_not_ls))) {
5359 			if (buf2_len) {
5360 				buf2_len -= ETH_FCS_LEN;
5361 				len -= ETH_FCS_LEN;
5362 			} else if (buf1_len) {
5363 				buf1_len -= ETH_FCS_LEN;
5364 				len -= ETH_FCS_LEN;
5365 			}
5366 		}
5367 
5368 		if (!skb) {
5369 			unsigned int pre_len, sync_len;
5370 
5371 			dma_sync_single_for_cpu(priv->device, buf->addr,
5372 						buf1_len, dma_dir);
5373 
5374 			xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5375 			xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5376 					 buf->page_offset, buf1_len, true);
5377 
5378 			pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5379 				  buf->page_offset;
5380 
5381 			ctx.priv = priv;
5382 			ctx.desc = p;
5383 			ctx.ndesc = np;
5384 
5385 			skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5386 			/* Due xdp_adjust_tail: DMA sync for_device
5387 			 * cover max len CPU touch
5388 			 */
5389 			sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5390 				   buf->page_offset;
5391 			sync_len = max(sync_len, pre_len);
5392 
5393 			/* For Not XDP_PASS verdict */
5394 			if (IS_ERR(skb)) {
5395 				unsigned int xdp_res = -PTR_ERR(skb);
5396 
5397 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5398 					page_pool_put_page(rx_q->page_pool,
5399 							   virt_to_head_page(ctx.xdp.data),
5400 							   sync_len, true);
5401 					buf->page = NULL;
5402 					rx_dropped++;
5403 
5404 					/* Clear skb as it was set as
5405 					 * status by XDP program.
5406 					 */
5407 					skb = NULL;
5408 
5409 					if (unlikely((status & rx_not_ls)))
5410 						goto read_again;
5411 
5412 					count++;
5413 					continue;
5414 				} else if (xdp_res & (STMMAC_XDP_TX |
5415 						      STMMAC_XDP_REDIRECT)) {
5416 					xdp_status |= xdp_res;
5417 					buf->page = NULL;
5418 					skb = NULL;
5419 					count++;
5420 					continue;
5421 				}
5422 			}
5423 		}
5424 
5425 		if (!skb) {
5426 			/* XDP program may expand or reduce tail */
5427 			buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5428 
5429 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5430 			if (!skb) {
5431 				rx_dropped++;
5432 				count++;
5433 				goto drain_data;
5434 			}
5435 
5436 			/* XDP program may adjust header */
5437 			skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5438 			skb_put(skb, buf1_len);
5439 
5440 			/* Data payload copied into SKB, page ready for recycle */
5441 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5442 			buf->page = NULL;
5443 		} else if (buf1_len) {
5444 			dma_sync_single_for_cpu(priv->device, buf->addr,
5445 						buf1_len, dma_dir);
5446 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5447 					buf->page, buf->page_offset, buf1_len,
5448 					priv->dma_conf.dma_buf_sz);
5449 
5450 			/* Data payload appended into SKB */
5451 			skb_mark_for_recycle(skb);
5452 			buf->page = NULL;
5453 		}
5454 
5455 		if (buf2_len) {
5456 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5457 						buf2_len, dma_dir);
5458 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5459 					buf->sec_page, 0, buf2_len,
5460 					priv->dma_conf.dma_buf_sz);
5461 
5462 			/* Data payload appended into SKB */
5463 			skb_mark_for_recycle(skb);
5464 			buf->sec_page = NULL;
5465 		}
5466 
5467 drain_data:
5468 		if (likely(status & rx_not_ls))
5469 			goto read_again;
5470 		if (!skb)
5471 			continue;
5472 
5473 		/* Got entire packet into SKB. Finish it. */
5474 
5475 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5476 		stmmac_rx_vlan(priv->dev, skb);
5477 		skb->protocol = eth_type_trans(skb, priv->dev);
5478 
5479 		if (unlikely(!coe))
5480 			skb_checksum_none_assert(skb);
5481 		else
5482 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5483 
5484 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5485 			skb_set_hash(skb, hash, hash_type);
5486 
5487 		skb_record_rx_queue(skb, queue);
5488 		napi_gro_receive(&ch->rx_napi, skb);
5489 		skb = NULL;
5490 
5491 		rx_packets++;
5492 		rx_bytes += len;
5493 		count++;
5494 	}
5495 
5496 	if (status & rx_not_ls || skb) {
5497 		rx_q->state_saved = true;
5498 		rx_q->state.skb = skb;
5499 		rx_q->state.error = error;
5500 		rx_q->state.len = len;
5501 	}
5502 
5503 	stmmac_finalize_xdp_rx(priv, xdp_status);
5504 
5505 	stmmac_rx_refill(priv, queue);
5506 
5507 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5508 	rx_q->rxq_stats.rx_packets += rx_packets;
5509 	rx_q->rxq_stats.rx_bytes += rx_bytes;
5510 	rx_q->rxq_stats.rx_pkt_n += count;
5511 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5512 
5513 	priv->xstats.rx_dropped += rx_dropped;
5514 	priv->xstats.rx_errors += rx_errors;
5515 
5516 	return count;
5517 }
5518 
5519 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5520 {
5521 	struct stmmac_channel *ch =
5522 		container_of(napi, struct stmmac_channel, rx_napi);
5523 	struct stmmac_priv *priv = ch->priv_data;
5524 	struct stmmac_rx_queue *rx_q;
5525 	u32 chan = ch->index;
5526 	unsigned long flags;
5527 	int work_done;
5528 
5529 	rx_q = &priv->dma_conf.rx_queue[chan];
5530 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5531 	rx_q->rxq_stats.napi_poll++;
5532 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5533 
5534 	work_done = stmmac_rx(priv, budget, chan);
5535 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5536 		unsigned long flags;
5537 
5538 		spin_lock_irqsave(&ch->lock, flags);
5539 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5540 		spin_unlock_irqrestore(&ch->lock, flags);
5541 	}
5542 
5543 	return work_done;
5544 }
5545 
5546 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5547 {
5548 	struct stmmac_channel *ch =
5549 		container_of(napi, struct stmmac_channel, tx_napi);
5550 	struct stmmac_priv *priv = ch->priv_data;
5551 	struct stmmac_tx_queue *tx_q;
5552 	u32 chan = ch->index;
5553 	unsigned long flags;
5554 	int work_done;
5555 
5556 	tx_q = &priv->dma_conf.tx_queue[chan];
5557 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
5558 	tx_q->txq_stats.napi_poll++;
5559 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
5560 
5561 	work_done = stmmac_tx_clean(priv, budget, chan);
5562 	work_done = min(work_done, budget);
5563 
5564 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5565 		unsigned long flags;
5566 
5567 		spin_lock_irqsave(&ch->lock, flags);
5568 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5569 		spin_unlock_irqrestore(&ch->lock, flags);
5570 	}
5571 
5572 	return work_done;
5573 }
5574 
5575 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5576 {
5577 	struct stmmac_channel *ch =
5578 		container_of(napi, struct stmmac_channel, rxtx_napi);
5579 	struct stmmac_priv *priv = ch->priv_data;
5580 	int rx_done, tx_done, rxtx_done;
5581 	struct stmmac_rx_queue *rx_q;
5582 	struct stmmac_tx_queue *tx_q;
5583 	u32 chan = ch->index;
5584 	unsigned long flags;
5585 
5586 	rx_q = &priv->dma_conf.rx_queue[chan];
5587 	flags = u64_stats_update_begin_irqsave(&rx_q->rxq_stats.syncp);
5588 	rx_q->rxq_stats.napi_poll++;
5589 	u64_stats_update_end_irqrestore(&rx_q->rxq_stats.syncp, flags);
5590 
5591 	tx_q = &priv->dma_conf.tx_queue[chan];
5592 	flags = u64_stats_update_begin_irqsave(&tx_q->txq_stats.syncp);
5593 	tx_q->txq_stats.napi_poll++;
5594 	u64_stats_update_end_irqrestore(&tx_q->txq_stats.syncp, flags);
5595 
5596 	tx_done = stmmac_tx_clean(priv, budget, chan);
5597 	tx_done = min(tx_done, budget);
5598 
5599 	rx_done = stmmac_rx_zc(priv, budget, chan);
5600 
5601 	rxtx_done = max(tx_done, rx_done);
5602 
5603 	/* If either TX or RX work is not complete, return budget
5604 	 * and keep pooling
5605 	 */
5606 	if (rxtx_done >= budget)
5607 		return budget;
5608 
5609 	/* all work done, exit the polling mode */
5610 	if (napi_complete_done(napi, rxtx_done)) {
5611 		unsigned long flags;
5612 
5613 		spin_lock_irqsave(&ch->lock, flags);
5614 		/* Both RX and TX work done are compelte,
5615 		 * so enable both RX & TX IRQs.
5616 		 */
5617 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5618 		spin_unlock_irqrestore(&ch->lock, flags);
5619 	}
5620 
5621 	return min(rxtx_done, budget - 1);
5622 }
5623 
5624 /**
5625  *  stmmac_tx_timeout
5626  *  @dev : Pointer to net device structure
5627  *  @txqueue: the index of the hanging transmit queue
5628  *  Description: this function is called when a packet transmission fails to
5629  *   complete within a reasonable time. The driver will mark the error in the
5630  *   netdev structure and arrange for the device to be reset to a sane state
5631  *   in order to transmit a new packet.
5632  */
5633 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5634 {
5635 	struct stmmac_priv *priv = netdev_priv(dev);
5636 
5637 	stmmac_global_err(priv);
5638 }
5639 
5640 /**
5641  *  stmmac_set_rx_mode - entry point for multicast addressing
5642  *  @dev : pointer to the device structure
5643  *  Description:
5644  *  This function is a driver entry point which gets called by the kernel
5645  *  whenever multicast addresses must be enabled/disabled.
5646  *  Return value:
5647  *  void.
5648  */
5649 static void stmmac_set_rx_mode(struct net_device *dev)
5650 {
5651 	struct stmmac_priv *priv = netdev_priv(dev);
5652 
5653 	stmmac_set_filter(priv, priv->hw, dev);
5654 }
5655 
5656 /**
5657  *  stmmac_change_mtu - entry point to change MTU size for the device.
5658  *  @dev : device pointer.
5659  *  @new_mtu : the new MTU size for the device.
5660  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5661  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5662  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5663  *  Return value:
5664  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5665  *  file on failure.
5666  */
5667 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5668 {
5669 	struct stmmac_priv *priv = netdev_priv(dev);
5670 	int txfifosz = priv->plat->tx_fifo_size;
5671 	struct stmmac_dma_conf *dma_conf;
5672 	const int mtu = new_mtu;
5673 	int ret;
5674 
5675 	if (txfifosz == 0)
5676 		txfifosz = priv->dma_cap.tx_fifo_size;
5677 
5678 	txfifosz /= priv->plat->tx_queues_to_use;
5679 
5680 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5681 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5682 		return -EINVAL;
5683 	}
5684 
5685 	new_mtu = STMMAC_ALIGN(new_mtu);
5686 
5687 	/* If condition true, FIFO is too small or MTU too large */
5688 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5689 		return -EINVAL;
5690 
5691 	if (netif_running(dev)) {
5692 		netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5693 		/* Try to allocate the new DMA conf with the new mtu */
5694 		dma_conf = stmmac_setup_dma_desc(priv, mtu);
5695 		if (IS_ERR(dma_conf)) {
5696 			netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5697 				   mtu);
5698 			return PTR_ERR(dma_conf);
5699 		}
5700 
5701 		stmmac_release(dev);
5702 
5703 		ret = __stmmac_open(dev, dma_conf);
5704 		if (ret) {
5705 			free_dma_desc_resources(priv, dma_conf);
5706 			kfree(dma_conf);
5707 			netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5708 			return ret;
5709 		}
5710 
5711 		kfree(dma_conf);
5712 
5713 		stmmac_set_rx_mode(dev);
5714 	}
5715 
5716 	dev->mtu = mtu;
5717 	netdev_update_features(dev);
5718 
5719 	return 0;
5720 }
5721 
5722 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5723 					     netdev_features_t features)
5724 {
5725 	struct stmmac_priv *priv = netdev_priv(dev);
5726 
5727 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5728 		features &= ~NETIF_F_RXCSUM;
5729 
5730 	if (!priv->plat->tx_coe)
5731 		features &= ~NETIF_F_CSUM_MASK;
5732 
5733 	/* Some GMAC devices have a bugged Jumbo frame support that
5734 	 * needs to have the Tx COE disabled for oversized frames
5735 	 * (due to limited buffer sizes). In this case we disable
5736 	 * the TX csum insertion in the TDES and not use SF.
5737 	 */
5738 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5739 		features &= ~NETIF_F_CSUM_MASK;
5740 
5741 	/* Disable tso if asked by ethtool */
5742 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5743 		if (features & NETIF_F_TSO)
5744 			priv->tso = true;
5745 		else
5746 			priv->tso = false;
5747 	}
5748 
5749 	return features;
5750 }
5751 
5752 static int stmmac_set_features(struct net_device *netdev,
5753 			       netdev_features_t features)
5754 {
5755 	struct stmmac_priv *priv = netdev_priv(netdev);
5756 
5757 	/* Keep the COE Type in case of csum is supporting */
5758 	if (features & NETIF_F_RXCSUM)
5759 		priv->hw->rx_csum = priv->plat->rx_coe;
5760 	else
5761 		priv->hw->rx_csum = 0;
5762 	/* No check needed because rx_coe has been set before and it will be
5763 	 * fixed in case of issue.
5764 	 */
5765 	stmmac_rx_ipc(priv, priv->hw);
5766 
5767 	if (priv->sph_cap) {
5768 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5769 		u32 chan;
5770 
5771 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5772 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5773 	}
5774 
5775 	return 0;
5776 }
5777 
5778 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5779 {
5780 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5781 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5782 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5783 	bool *hs_enable = &fpe_cfg->hs_enable;
5784 
5785 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5786 		return;
5787 
5788 	/* If LP has sent verify mPacket, LP is FPE capable */
5789 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5790 		if (*lp_state < FPE_STATE_CAPABLE)
5791 			*lp_state = FPE_STATE_CAPABLE;
5792 
5793 		/* If user has requested FPE enable, quickly response */
5794 		if (*hs_enable)
5795 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5796 						MPACKET_RESPONSE);
5797 	}
5798 
5799 	/* If Local has sent verify mPacket, Local is FPE capable */
5800 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5801 		if (*lo_state < FPE_STATE_CAPABLE)
5802 			*lo_state = FPE_STATE_CAPABLE;
5803 	}
5804 
5805 	/* If LP has sent response mPacket, LP is entering FPE ON */
5806 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5807 		*lp_state = FPE_STATE_ENTERING_ON;
5808 
5809 	/* If Local has sent response mPacket, Local is entering FPE ON */
5810 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5811 		*lo_state = FPE_STATE_ENTERING_ON;
5812 
5813 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5814 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5815 	    priv->fpe_wq) {
5816 		queue_work(priv->fpe_wq, &priv->fpe_task);
5817 	}
5818 }
5819 
5820 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5821 {
5822 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5823 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5824 	u32 queues_count;
5825 	u32 queue;
5826 	bool xmac;
5827 
5828 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5829 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5830 
5831 	if (priv->irq_wake)
5832 		pm_wakeup_event(priv->device, 0);
5833 
5834 	if (priv->dma_cap.estsel)
5835 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5836 				      &priv->xstats, tx_cnt);
5837 
5838 	if (priv->dma_cap.fpesel) {
5839 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5840 						   priv->dev);
5841 
5842 		stmmac_fpe_event_status(priv, status);
5843 	}
5844 
5845 	/* To handle GMAC own interrupts */
5846 	if ((priv->plat->has_gmac) || xmac) {
5847 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5848 
5849 		if (unlikely(status)) {
5850 			/* For LPI we need to save the tx status */
5851 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5852 				priv->tx_path_in_lpi_mode = true;
5853 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5854 				priv->tx_path_in_lpi_mode = false;
5855 		}
5856 
5857 		for (queue = 0; queue < queues_count; queue++) {
5858 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5859 							    queue);
5860 		}
5861 
5862 		/* PCS link status */
5863 		if (priv->hw->pcs &&
5864 		    !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5865 			if (priv->xstats.pcs_link)
5866 				netif_carrier_on(priv->dev);
5867 			else
5868 				netif_carrier_off(priv->dev);
5869 		}
5870 
5871 		stmmac_timestamp_interrupt(priv, priv);
5872 	}
5873 }
5874 
5875 /**
5876  *  stmmac_interrupt - main ISR
5877  *  @irq: interrupt number.
5878  *  @dev_id: to pass the net device pointer.
5879  *  Description: this is the main driver interrupt service routine.
5880  *  It can call:
5881  *  o DMA service routine (to manage incoming frame reception and transmission
5882  *    status)
5883  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5884  *    interrupts.
5885  */
5886 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5887 {
5888 	struct net_device *dev = (struct net_device *)dev_id;
5889 	struct stmmac_priv *priv = netdev_priv(dev);
5890 
5891 	/* Check if adapter is up */
5892 	if (test_bit(STMMAC_DOWN, &priv->state))
5893 		return IRQ_HANDLED;
5894 
5895 	/* Check if a fatal error happened */
5896 	if (stmmac_safety_feat_interrupt(priv))
5897 		return IRQ_HANDLED;
5898 
5899 	/* To handle Common interrupts */
5900 	stmmac_common_interrupt(priv);
5901 
5902 	/* To handle DMA interrupts */
5903 	stmmac_dma_interrupt(priv);
5904 
5905 	return IRQ_HANDLED;
5906 }
5907 
5908 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5909 {
5910 	struct net_device *dev = (struct net_device *)dev_id;
5911 	struct stmmac_priv *priv = netdev_priv(dev);
5912 
5913 	if (unlikely(!dev)) {
5914 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5915 		return IRQ_NONE;
5916 	}
5917 
5918 	/* Check if adapter is up */
5919 	if (test_bit(STMMAC_DOWN, &priv->state))
5920 		return IRQ_HANDLED;
5921 
5922 	/* To handle Common interrupts */
5923 	stmmac_common_interrupt(priv);
5924 
5925 	return IRQ_HANDLED;
5926 }
5927 
5928 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5929 {
5930 	struct net_device *dev = (struct net_device *)dev_id;
5931 	struct stmmac_priv *priv = netdev_priv(dev);
5932 
5933 	if (unlikely(!dev)) {
5934 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5935 		return IRQ_NONE;
5936 	}
5937 
5938 	/* Check if adapter is up */
5939 	if (test_bit(STMMAC_DOWN, &priv->state))
5940 		return IRQ_HANDLED;
5941 
5942 	/* Check if a fatal error happened */
5943 	stmmac_safety_feat_interrupt(priv);
5944 
5945 	return IRQ_HANDLED;
5946 }
5947 
5948 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5949 {
5950 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5951 	struct stmmac_dma_conf *dma_conf;
5952 	int chan = tx_q->queue_index;
5953 	struct stmmac_priv *priv;
5954 	int status;
5955 
5956 	dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5957 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5958 
5959 	if (unlikely(!data)) {
5960 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5961 		return IRQ_NONE;
5962 	}
5963 
5964 	/* Check if adapter is up */
5965 	if (test_bit(STMMAC_DOWN, &priv->state))
5966 		return IRQ_HANDLED;
5967 
5968 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5969 
5970 	if (unlikely(status & tx_hard_error_bump_tc)) {
5971 		/* Try to bump up the dma threshold on this failure */
5972 		stmmac_bump_dma_threshold(priv, chan);
5973 	} else if (unlikely(status == tx_hard_error)) {
5974 		stmmac_tx_err(priv, chan);
5975 	}
5976 
5977 	return IRQ_HANDLED;
5978 }
5979 
5980 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5981 {
5982 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5983 	struct stmmac_dma_conf *dma_conf;
5984 	int chan = rx_q->queue_index;
5985 	struct stmmac_priv *priv;
5986 
5987 	dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
5988 	priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5989 
5990 	if (unlikely(!data)) {
5991 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5992 		return IRQ_NONE;
5993 	}
5994 
5995 	/* Check if adapter is up */
5996 	if (test_bit(STMMAC_DOWN, &priv->state))
5997 		return IRQ_HANDLED;
5998 
5999 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
6000 
6001 	return IRQ_HANDLED;
6002 }
6003 
6004 #ifdef CONFIG_NET_POLL_CONTROLLER
6005 /* Polling receive - used by NETCONSOLE and other diagnostic tools
6006  * to allow network I/O with interrupts disabled.
6007  */
6008 static void stmmac_poll_controller(struct net_device *dev)
6009 {
6010 	struct stmmac_priv *priv = netdev_priv(dev);
6011 	int i;
6012 
6013 	/* If adapter is down, do nothing */
6014 	if (test_bit(STMMAC_DOWN, &priv->state))
6015 		return;
6016 
6017 	if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN) {
6018 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
6019 			stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]);
6020 
6021 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
6022 			stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]);
6023 	} else {
6024 		disable_irq(dev->irq);
6025 		stmmac_interrupt(dev->irq, dev);
6026 		enable_irq(dev->irq);
6027 	}
6028 }
6029 #endif
6030 
6031 /**
6032  *  stmmac_ioctl - Entry point for the Ioctl
6033  *  @dev: Device pointer.
6034  *  @rq: An IOCTL specefic structure, that can contain a pointer to
6035  *  a proprietary structure used to pass information to the driver.
6036  *  @cmd: IOCTL command
6037  *  Description:
6038  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6039  */
6040 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6041 {
6042 	struct stmmac_priv *priv = netdev_priv (dev);
6043 	int ret = -EOPNOTSUPP;
6044 
6045 	if (!netif_running(dev))
6046 		return -EINVAL;
6047 
6048 	switch (cmd) {
6049 	case SIOCGMIIPHY:
6050 	case SIOCGMIIREG:
6051 	case SIOCSMIIREG:
6052 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6053 		break;
6054 	case SIOCSHWTSTAMP:
6055 		ret = stmmac_hwtstamp_set(dev, rq);
6056 		break;
6057 	case SIOCGHWTSTAMP:
6058 		ret = stmmac_hwtstamp_get(dev, rq);
6059 		break;
6060 	default:
6061 		break;
6062 	}
6063 
6064 	return ret;
6065 }
6066 
6067 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6068 				    void *cb_priv)
6069 {
6070 	struct stmmac_priv *priv = cb_priv;
6071 	int ret = -EOPNOTSUPP;
6072 
6073 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6074 		return ret;
6075 
6076 	__stmmac_disable_all_queues(priv);
6077 
6078 	switch (type) {
6079 	case TC_SETUP_CLSU32:
6080 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6081 		break;
6082 	case TC_SETUP_CLSFLOWER:
6083 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
6084 		break;
6085 	default:
6086 		break;
6087 	}
6088 
6089 	stmmac_enable_all_queues(priv);
6090 	return ret;
6091 }
6092 
6093 static LIST_HEAD(stmmac_block_cb_list);
6094 
6095 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6096 			   void *type_data)
6097 {
6098 	struct stmmac_priv *priv = netdev_priv(ndev);
6099 
6100 	switch (type) {
6101 	case TC_QUERY_CAPS:
6102 		return stmmac_tc_query_caps(priv, priv, type_data);
6103 	case TC_SETUP_BLOCK:
6104 		return flow_block_cb_setup_simple(type_data,
6105 						  &stmmac_block_cb_list,
6106 						  stmmac_setup_tc_block_cb,
6107 						  priv, priv, true);
6108 	case TC_SETUP_QDISC_CBS:
6109 		return stmmac_tc_setup_cbs(priv, priv, type_data);
6110 	case TC_SETUP_QDISC_TAPRIO:
6111 		return stmmac_tc_setup_taprio(priv, priv, type_data);
6112 	case TC_SETUP_QDISC_ETF:
6113 		return stmmac_tc_setup_etf(priv, priv, type_data);
6114 	default:
6115 		return -EOPNOTSUPP;
6116 	}
6117 }
6118 
6119 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6120 			       struct net_device *sb_dev)
6121 {
6122 	int gso = skb_shinfo(skb)->gso_type;
6123 
6124 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6125 		/*
6126 		 * There is no way to determine the number of TSO/USO
6127 		 * capable Queues. Let's use always the Queue 0
6128 		 * because if TSO/USO is supported then at least this
6129 		 * one will be capable.
6130 		 */
6131 		return 0;
6132 	}
6133 
6134 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6135 }
6136 
6137 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6138 {
6139 	struct stmmac_priv *priv = netdev_priv(ndev);
6140 	int ret = 0;
6141 
6142 	ret = pm_runtime_resume_and_get(priv->device);
6143 	if (ret < 0)
6144 		return ret;
6145 
6146 	ret = eth_mac_addr(ndev, addr);
6147 	if (ret)
6148 		goto set_mac_error;
6149 
6150 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6151 
6152 set_mac_error:
6153 	pm_runtime_put(priv->device);
6154 
6155 	return ret;
6156 }
6157 
6158 #ifdef CONFIG_DEBUG_FS
6159 static struct dentry *stmmac_fs_dir;
6160 
6161 static void sysfs_display_ring(void *head, int size, int extend_desc,
6162 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
6163 {
6164 	int i;
6165 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6166 	struct dma_desc *p = (struct dma_desc *)head;
6167 	dma_addr_t dma_addr;
6168 
6169 	for (i = 0; i < size; i++) {
6170 		if (extend_desc) {
6171 			dma_addr = dma_phy_addr + i * sizeof(*ep);
6172 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6173 				   i, &dma_addr,
6174 				   le32_to_cpu(ep->basic.des0),
6175 				   le32_to_cpu(ep->basic.des1),
6176 				   le32_to_cpu(ep->basic.des2),
6177 				   le32_to_cpu(ep->basic.des3));
6178 			ep++;
6179 		} else {
6180 			dma_addr = dma_phy_addr + i * sizeof(*p);
6181 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6182 				   i, &dma_addr,
6183 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6184 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6185 			p++;
6186 		}
6187 		seq_printf(seq, "\n");
6188 	}
6189 }
6190 
6191 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6192 {
6193 	struct net_device *dev = seq->private;
6194 	struct stmmac_priv *priv = netdev_priv(dev);
6195 	u32 rx_count = priv->plat->rx_queues_to_use;
6196 	u32 tx_count = priv->plat->tx_queues_to_use;
6197 	u32 queue;
6198 
6199 	if ((dev->flags & IFF_UP) == 0)
6200 		return 0;
6201 
6202 	for (queue = 0; queue < rx_count; queue++) {
6203 		struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6204 
6205 		seq_printf(seq, "RX Queue %d:\n", queue);
6206 
6207 		if (priv->extend_desc) {
6208 			seq_printf(seq, "Extended descriptor ring:\n");
6209 			sysfs_display_ring((void *)rx_q->dma_erx,
6210 					   priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6211 		} else {
6212 			seq_printf(seq, "Descriptor ring:\n");
6213 			sysfs_display_ring((void *)rx_q->dma_rx,
6214 					   priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6215 		}
6216 	}
6217 
6218 	for (queue = 0; queue < tx_count; queue++) {
6219 		struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6220 
6221 		seq_printf(seq, "TX Queue %d:\n", queue);
6222 
6223 		if (priv->extend_desc) {
6224 			seq_printf(seq, "Extended descriptor ring:\n");
6225 			sysfs_display_ring((void *)tx_q->dma_etx,
6226 					   priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6227 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6228 			seq_printf(seq, "Descriptor ring:\n");
6229 			sysfs_display_ring((void *)tx_q->dma_tx,
6230 					   priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6231 		}
6232 	}
6233 
6234 	return 0;
6235 }
6236 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6237 
6238 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6239 {
6240 	static const char * const dwxgmac_timestamp_source[] = {
6241 		"None",
6242 		"Internal",
6243 		"External",
6244 		"Both",
6245 	};
6246 	struct net_device *dev = seq->private;
6247 	struct stmmac_priv *priv = netdev_priv(dev);
6248 
6249 	if (!priv->hw_cap_support) {
6250 		seq_printf(seq, "DMA HW features not supported\n");
6251 		return 0;
6252 	}
6253 
6254 	seq_printf(seq, "==============================\n");
6255 	seq_printf(seq, "\tDMA HW features\n");
6256 	seq_printf(seq, "==============================\n");
6257 
6258 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6259 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6260 	seq_printf(seq, "\t1000 Mbps: %s\n",
6261 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6262 	seq_printf(seq, "\tHalf duplex: %s\n",
6263 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6264 	seq_printf(seq, "\tHash Filter: %s\n",
6265 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6266 	if (priv->plat->has_xgmac)
6267 		seq_printf(seq,
6268 			   "\tNumber of Additional MAC address registers: %d\n",
6269 			   priv->dma_cap.multi_addr);
6270 	else
6271 		seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6272 			   (priv->dma_cap.multi_addr) ? "Y" : "N");
6273 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6274 		   (priv->dma_cap.pcs) ? "Y" : "N");
6275 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6276 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6277 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6278 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6279 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6280 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6281 	seq_printf(seq, "\tRMON module: %s\n",
6282 		   (priv->dma_cap.rmon) ? "Y" : "N");
6283 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6284 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6285 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6286 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6287 	if (priv->plat->has_xgmac)
6288 		seq_printf(seq, "\tTimestamp System Time Source: %s\n",
6289 			   dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
6290 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6291 		   (priv->dma_cap.eee) ? "Y" : "N");
6292 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6293 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6294 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6295 	if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
6296 	    priv->plat->has_xgmac) {
6297 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6298 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6299 	} else {
6300 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6301 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6302 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6303 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6304 		seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6305 			   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6306 	}
6307 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6308 		   priv->dma_cap.number_rx_channel);
6309 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6310 		   priv->dma_cap.number_tx_channel);
6311 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6312 		   priv->dma_cap.number_rx_queues);
6313 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6314 		   priv->dma_cap.number_tx_queues);
6315 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6316 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6317 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6318 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6319 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6320 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6321 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6322 		   priv->dma_cap.pps_out_num);
6323 	seq_printf(seq, "\tSafety Features: %s\n",
6324 		   priv->dma_cap.asp ? "Y" : "N");
6325 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6326 		   priv->dma_cap.frpsel ? "Y" : "N");
6327 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6328 		   priv->dma_cap.host_dma_width);
6329 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6330 		   priv->dma_cap.rssen ? "Y" : "N");
6331 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6332 		   priv->dma_cap.vlhash ? "Y" : "N");
6333 	seq_printf(seq, "\tSplit Header: %s\n",
6334 		   priv->dma_cap.sphen ? "Y" : "N");
6335 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6336 		   priv->dma_cap.vlins ? "Y" : "N");
6337 	seq_printf(seq, "\tDouble VLAN: %s\n",
6338 		   priv->dma_cap.dvlan ? "Y" : "N");
6339 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6340 		   priv->dma_cap.l3l4fnum);
6341 	seq_printf(seq, "\tARP Offloading: %s\n",
6342 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6343 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6344 		   priv->dma_cap.estsel ? "Y" : "N");
6345 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6346 		   priv->dma_cap.fpesel ? "Y" : "N");
6347 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6348 		   priv->dma_cap.tbssel ? "Y" : "N");
6349 	return 0;
6350 }
6351 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6352 
6353 /* Use network device events to rename debugfs file entries.
6354  */
6355 static int stmmac_device_event(struct notifier_block *unused,
6356 			       unsigned long event, void *ptr)
6357 {
6358 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6359 	struct stmmac_priv *priv = netdev_priv(dev);
6360 
6361 	if (dev->netdev_ops != &stmmac_netdev_ops)
6362 		goto done;
6363 
6364 	switch (event) {
6365 	case NETDEV_CHANGENAME:
6366 		if (priv->dbgfs_dir)
6367 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6368 							 priv->dbgfs_dir,
6369 							 stmmac_fs_dir,
6370 							 dev->name);
6371 		break;
6372 	}
6373 done:
6374 	return NOTIFY_DONE;
6375 }
6376 
6377 static struct notifier_block stmmac_notifier = {
6378 	.notifier_call = stmmac_device_event,
6379 };
6380 
6381 static void stmmac_init_fs(struct net_device *dev)
6382 {
6383 	struct stmmac_priv *priv = netdev_priv(dev);
6384 
6385 	rtnl_lock();
6386 
6387 	/* Create per netdev entries */
6388 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6389 
6390 	/* Entry to report DMA RX/TX rings */
6391 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6392 			    &stmmac_rings_status_fops);
6393 
6394 	/* Entry to report the DMA HW features */
6395 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6396 			    &stmmac_dma_cap_fops);
6397 
6398 	rtnl_unlock();
6399 }
6400 
6401 static void stmmac_exit_fs(struct net_device *dev)
6402 {
6403 	struct stmmac_priv *priv = netdev_priv(dev);
6404 
6405 	debugfs_remove_recursive(priv->dbgfs_dir);
6406 }
6407 #endif /* CONFIG_DEBUG_FS */
6408 
6409 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6410 {
6411 	unsigned char *data = (unsigned char *)&vid_le;
6412 	unsigned char data_byte = 0;
6413 	u32 crc = ~0x0;
6414 	u32 temp = 0;
6415 	int i, bits;
6416 
6417 	bits = get_bitmask_order(VLAN_VID_MASK);
6418 	for (i = 0; i < bits; i++) {
6419 		if ((i % 8) == 0)
6420 			data_byte = data[i / 8];
6421 
6422 		temp = ((crc & 1) ^ data_byte) & 1;
6423 		crc >>= 1;
6424 		data_byte >>= 1;
6425 
6426 		if (temp)
6427 			crc ^= 0xedb88320;
6428 	}
6429 
6430 	return crc;
6431 }
6432 
6433 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6434 {
6435 	u32 crc, hash = 0;
6436 	__le16 pmatch = 0;
6437 	int count = 0;
6438 	u16 vid = 0;
6439 
6440 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6441 		__le16 vid_le = cpu_to_le16(vid);
6442 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6443 		hash |= (1 << crc);
6444 		count++;
6445 	}
6446 
6447 	if (!priv->dma_cap.vlhash) {
6448 		if (count > 2) /* VID = 0 always passes filter */
6449 			return -EOPNOTSUPP;
6450 
6451 		pmatch = cpu_to_le16(vid);
6452 		hash = 0;
6453 	}
6454 
6455 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6456 }
6457 
6458 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6459 {
6460 	struct stmmac_priv *priv = netdev_priv(ndev);
6461 	bool is_double = false;
6462 	int ret;
6463 
6464 	ret = pm_runtime_resume_and_get(priv->device);
6465 	if (ret < 0)
6466 		return ret;
6467 
6468 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6469 		is_double = true;
6470 
6471 	set_bit(vid, priv->active_vlans);
6472 	ret = stmmac_vlan_update(priv, is_double);
6473 	if (ret) {
6474 		clear_bit(vid, priv->active_vlans);
6475 		goto err_pm_put;
6476 	}
6477 
6478 	if (priv->hw->num_vlan) {
6479 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6480 		if (ret)
6481 			goto err_pm_put;
6482 	}
6483 err_pm_put:
6484 	pm_runtime_put(priv->device);
6485 
6486 	return ret;
6487 }
6488 
6489 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6490 {
6491 	struct stmmac_priv *priv = netdev_priv(ndev);
6492 	bool is_double = false;
6493 	int ret;
6494 
6495 	ret = pm_runtime_resume_and_get(priv->device);
6496 	if (ret < 0)
6497 		return ret;
6498 
6499 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6500 		is_double = true;
6501 
6502 	clear_bit(vid, priv->active_vlans);
6503 
6504 	if (priv->hw->num_vlan) {
6505 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6506 		if (ret)
6507 			goto del_vlan_error;
6508 	}
6509 
6510 	ret = stmmac_vlan_update(priv, is_double);
6511 
6512 del_vlan_error:
6513 	pm_runtime_put(priv->device);
6514 
6515 	return ret;
6516 }
6517 
6518 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6519 {
6520 	struct stmmac_priv *priv = netdev_priv(dev);
6521 
6522 	switch (bpf->command) {
6523 	case XDP_SETUP_PROG:
6524 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6525 	case XDP_SETUP_XSK_POOL:
6526 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6527 					     bpf->xsk.queue_id);
6528 	default:
6529 		return -EOPNOTSUPP;
6530 	}
6531 }
6532 
6533 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6534 			   struct xdp_frame **frames, u32 flags)
6535 {
6536 	struct stmmac_priv *priv = netdev_priv(dev);
6537 	int cpu = smp_processor_id();
6538 	struct netdev_queue *nq;
6539 	int i, nxmit = 0;
6540 	int queue;
6541 
6542 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6543 		return -ENETDOWN;
6544 
6545 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6546 		return -EINVAL;
6547 
6548 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6549 	nq = netdev_get_tx_queue(priv->dev, queue);
6550 
6551 	__netif_tx_lock(nq, cpu);
6552 	/* Avoids TX time-out as we are sharing with slow path */
6553 	txq_trans_cond_update(nq);
6554 
6555 	for (i = 0; i < num_frames; i++) {
6556 		int res;
6557 
6558 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6559 		if (res == STMMAC_XDP_CONSUMED)
6560 			break;
6561 
6562 		nxmit++;
6563 	}
6564 
6565 	if (flags & XDP_XMIT_FLUSH) {
6566 		stmmac_flush_tx_descriptors(priv, queue);
6567 		stmmac_tx_timer_arm(priv, queue);
6568 	}
6569 
6570 	__netif_tx_unlock(nq);
6571 
6572 	return nxmit;
6573 }
6574 
6575 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6576 {
6577 	struct stmmac_channel *ch = &priv->channel[queue];
6578 	unsigned long flags;
6579 
6580 	spin_lock_irqsave(&ch->lock, flags);
6581 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6582 	spin_unlock_irqrestore(&ch->lock, flags);
6583 
6584 	stmmac_stop_rx_dma(priv, queue);
6585 	__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6586 }
6587 
6588 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6589 {
6590 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6591 	struct stmmac_channel *ch = &priv->channel[queue];
6592 	unsigned long flags;
6593 	u32 buf_size;
6594 	int ret;
6595 
6596 	ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6597 	if (ret) {
6598 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6599 		return;
6600 	}
6601 
6602 	ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6603 	if (ret) {
6604 		__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6605 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6606 		return;
6607 	}
6608 
6609 	stmmac_reset_rx_queue(priv, queue);
6610 	stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6611 
6612 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6613 			    rx_q->dma_rx_phy, rx_q->queue_index);
6614 
6615 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6616 			     sizeof(struct dma_desc));
6617 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6618 			       rx_q->rx_tail_addr, rx_q->queue_index);
6619 
6620 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6621 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6622 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6623 				      buf_size,
6624 				      rx_q->queue_index);
6625 	} else {
6626 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6627 				      priv->dma_conf.dma_buf_sz,
6628 				      rx_q->queue_index);
6629 	}
6630 
6631 	stmmac_start_rx_dma(priv, queue);
6632 
6633 	spin_lock_irqsave(&ch->lock, flags);
6634 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6635 	spin_unlock_irqrestore(&ch->lock, flags);
6636 }
6637 
6638 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6639 {
6640 	struct stmmac_channel *ch = &priv->channel[queue];
6641 	unsigned long flags;
6642 
6643 	spin_lock_irqsave(&ch->lock, flags);
6644 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6645 	spin_unlock_irqrestore(&ch->lock, flags);
6646 
6647 	stmmac_stop_tx_dma(priv, queue);
6648 	__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6649 }
6650 
6651 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6652 {
6653 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6654 	struct stmmac_channel *ch = &priv->channel[queue];
6655 	unsigned long flags;
6656 	int ret;
6657 
6658 	ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6659 	if (ret) {
6660 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6661 		return;
6662 	}
6663 
6664 	ret = __init_dma_tx_desc_rings(priv,  &priv->dma_conf, queue);
6665 	if (ret) {
6666 		__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6667 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6668 		return;
6669 	}
6670 
6671 	stmmac_reset_tx_queue(priv, queue);
6672 	stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6673 
6674 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6675 			    tx_q->dma_tx_phy, tx_q->queue_index);
6676 
6677 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6678 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6679 
6680 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6681 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6682 			       tx_q->tx_tail_addr, tx_q->queue_index);
6683 
6684 	stmmac_start_tx_dma(priv, queue);
6685 
6686 	spin_lock_irqsave(&ch->lock, flags);
6687 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6688 	spin_unlock_irqrestore(&ch->lock, flags);
6689 }
6690 
6691 void stmmac_xdp_release(struct net_device *dev)
6692 {
6693 	struct stmmac_priv *priv = netdev_priv(dev);
6694 	u32 chan;
6695 
6696 	/* Ensure tx function is not running */
6697 	netif_tx_disable(dev);
6698 
6699 	/* Disable NAPI process */
6700 	stmmac_disable_all_queues(priv);
6701 
6702 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6703 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6704 
6705 	/* Free the IRQ lines */
6706 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6707 
6708 	/* Stop TX/RX DMA channels */
6709 	stmmac_stop_all_dma(priv);
6710 
6711 	/* Release and free the Rx/Tx resources */
6712 	free_dma_desc_resources(priv, &priv->dma_conf);
6713 
6714 	/* Disable the MAC Rx/Tx */
6715 	stmmac_mac_set(priv, priv->ioaddr, false);
6716 
6717 	/* set trans_start so we don't get spurious
6718 	 * watchdogs during reset
6719 	 */
6720 	netif_trans_update(dev);
6721 	netif_carrier_off(dev);
6722 }
6723 
6724 int stmmac_xdp_open(struct net_device *dev)
6725 {
6726 	struct stmmac_priv *priv = netdev_priv(dev);
6727 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6728 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6729 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6730 	struct stmmac_rx_queue *rx_q;
6731 	struct stmmac_tx_queue *tx_q;
6732 	u32 buf_size;
6733 	bool sph_en;
6734 	u32 chan;
6735 	int ret;
6736 
6737 	ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6738 	if (ret < 0) {
6739 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6740 			   __func__);
6741 		goto dma_desc_error;
6742 	}
6743 
6744 	ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6745 	if (ret < 0) {
6746 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6747 			   __func__);
6748 		goto init_error;
6749 	}
6750 
6751 	stmmac_reset_queues_param(priv);
6752 
6753 	/* DMA CSR Channel configuration */
6754 	for (chan = 0; chan < dma_csr_ch; chan++) {
6755 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6756 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6757 	}
6758 
6759 	/* Adjust Split header */
6760 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6761 
6762 	/* DMA RX Channel Configuration */
6763 	for (chan = 0; chan < rx_cnt; chan++) {
6764 		rx_q = &priv->dma_conf.rx_queue[chan];
6765 
6766 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6767 				    rx_q->dma_rx_phy, chan);
6768 
6769 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6770 				     (rx_q->buf_alloc_num *
6771 				      sizeof(struct dma_desc));
6772 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6773 				       rx_q->rx_tail_addr, chan);
6774 
6775 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6776 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6777 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6778 					      buf_size,
6779 					      rx_q->queue_index);
6780 		} else {
6781 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6782 					      priv->dma_conf.dma_buf_sz,
6783 					      rx_q->queue_index);
6784 		}
6785 
6786 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6787 	}
6788 
6789 	/* DMA TX Channel Configuration */
6790 	for (chan = 0; chan < tx_cnt; chan++) {
6791 		tx_q = &priv->dma_conf.tx_queue[chan];
6792 
6793 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6794 				    tx_q->dma_tx_phy, chan);
6795 
6796 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6797 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6798 				       tx_q->tx_tail_addr, chan);
6799 
6800 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6801 		tx_q->txtimer.function = stmmac_tx_timer;
6802 	}
6803 
6804 	/* Enable the MAC Rx/Tx */
6805 	stmmac_mac_set(priv, priv->ioaddr, true);
6806 
6807 	/* Start Rx & Tx DMA Channels */
6808 	stmmac_start_all_dma(priv);
6809 
6810 	ret = stmmac_request_irq(dev);
6811 	if (ret)
6812 		goto irq_error;
6813 
6814 	/* Enable NAPI process*/
6815 	stmmac_enable_all_queues(priv);
6816 	netif_carrier_on(dev);
6817 	netif_tx_start_all_queues(dev);
6818 	stmmac_enable_all_dma_irq(priv);
6819 
6820 	return 0;
6821 
6822 irq_error:
6823 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6824 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6825 
6826 	stmmac_hw_teardown(dev);
6827 init_error:
6828 	free_dma_desc_resources(priv, &priv->dma_conf);
6829 dma_desc_error:
6830 	return ret;
6831 }
6832 
6833 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6834 {
6835 	struct stmmac_priv *priv = netdev_priv(dev);
6836 	struct stmmac_rx_queue *rx_q;
6837 	struct stmmac_tx_queue *tx_q;
6838 	struct stmmac_channel *ch;
6839 
6840 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6841 	    !netif_carrier_ok(priv->dev))
6842 		return -ENETDOWN;
6843 
6844 	if (!stmmac_xdp_is_enabled(priv))
6845 		return -EINVAL;
6846 
6847 	if (queue >= priv->plat->rx_queues_to_use ||
6848 	    queue >= priv->plat->tx_queues_to_use)
6849 		return -EINVAL;
6850 
6851 	rx_q = &priv->dma_conf.rx_queue[queue];
6852 	tx_q = &priv->dma_conf.tx_queue[queue];
6853 	ch = &priv->channel[queue];
6854 
6855 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6856 		return -EINVAL;
6857 
6858 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6859 		/* EQoS does not have per-DMA channel SW interrupt,
6860 		 * so we schedule RX Napi straight-away.
6861 		 */
6862 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6863 			__napi_schedule(&ch->rxtx_napi);
6864 	}
6865 
6866 	return 0;
6867 }
6868 
6869 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6870 {
6871 	struct stmmac_priv *priv = netdev_priv(dev);
6872 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6873 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6874 	unsigned int start;
6875 	int q;
6876 
6877 	for (q = 0; q < tx_cnt; q++) {
6878 		struct stmmac_txq_stats *txq_stats = &priv->dma_conf.tx_queue[q].txq_stats;
6879 		u64 tx_packets;
6880 		u64 tx_bytes;
6881 
6882 		do {
6883 			start = u64_stats_fetch_begin(&txq_stats->syncp);
6884 			tx_packets = txq_stats->tx_packets;
6885 			tx_bytes   = txq_stats->tx_bytes;
6886 		} while (u64_stats_fetch_retry(&txq_stats->syncp, start));
6887 
6888 		stats->tx_packets += tx_packets;
6889 		stats->tx_bytes += tx_bytes;
6890 	}
6891 
6892 	for (q = 0; q < rx_cnt; q++) {
6893 		struct stmmac_rxq_stats *rxq_stats = &priv->dma_conf.rx_queue[q].rxq_stats;
6894 		u64 rx_packets;
6895 		u64 rx_bytes;
6896 
6897 		do {
6898 			start = u64_stats_fetch_begin(&rxq_stats->syncp);
6899 			rx_packets = rxq_stats->rx_packets;
6900 			rx_bytes   = rxq_stats->rx_bytes;
6901 		} while (u64_stats_fetch_retry(&rxq_stats->syncp, start));
6902 
6903 		stats->rx_packets += rx_packets;
6904 		stats->rx_bytes += rx_bytes;
6905 	}
6906 
6907 	stats->rx_dropped = priv->xstats.rx_dropped;
6908 	stats->rx_errors = priv->xstats.rx_errors;
6909 	stats->tx_dropped = priv->xstats.tx_dropped;
6910 	stats->tx_errors = priv->xstats.tx_errors;
6911 	stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6912 	stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6913 	stats->rx_length_errors = priv->xstats.rx_length;
6914 	stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6915 	stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6916 	stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6917 }
6918 
6919 static const struct net_device_ops stmmac_netdev_ops = {
6920 	.ndo_open = stmmac_open,
6921 	.ndo_start_xmit = stmmac_xmit,
6922 	.ndo_stop = stmmac_release,
6923 	.ndo_change_mtu = stmmac_change_mtu,
6924 	.ndo_fix_features = stmmac_fix_features,
6925 	.ndo_set_features = stmmac_set_features,
6926 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6927 	.ndo_tx_timeout = stmmac_tx_timeout,
6928 	.ndo_eth_ioctl = stmmac_ioctl,
6929 	.ndo_get_stats64 = stmmac_get_stats64,
6930 	.ndo_setup_tc = stmmac_setup_tc,
6931 	.ndo_select_queue = stmmac_select_queue,
6932 #ifdef CONFIG_NET_POLL_CONTROLLER
6933 	.ndo_poll_controller = stmmac_poll_controller,
6934 #endif
6935 	.ndo_set_mac_address = stmmac_set_mac_address,
6936 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6937 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6938 	.ndo_bpf = stmmac_bpf,
6939 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6940 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6941 };
6942 
6943 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6944 {
6945 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6946 		return;
6947 	if (test_bit(STMMAC_DOWN, &priv->state))
6948 		return;
6949 
6950 	netdev_err(priv->dev, "Reset adapter.\n");
6951 
6952 	rtnl_lock();
6953 	netif_trans_update(priv->dev);
6954 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6955 		usleep_range(1000, 2000);
6956 
6957 	set_bit(STMMAC_DOWN, &priv->state);
6958 	dev_close(priv->dev);
6959 	dev_open(priv->dev, NULL);
6960 	clear_bit(STMMAC_DOWN, &priv->state);
6961 	clear_bit(STMMAC_RESETING, &priv->state);
6962 	rtnl_unlock();
6963 }
6964 
6965 static void stmmac_service_task(struct work_struct *work)
6966 {
6967 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6968 			service_task);
6969 
6970 	stmmac_reset_subtask(priv);
6971 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6972 }
6973 
6974 /**
6975  *  stmmac_hw_init - Init the MAC device
6976  *  @priv: driver private structure
6977  *  Description: this function is to configure the MAC device according to
6978  *  some platform parameters or the HW capability register. It prepares the
6979  *  driver to use either ring or chain modes and to setup either enhanced or
6980  *  normal descriptors.
6981  */
6982 static int stmmac_hw_init(struct stmmac_priv *priv)
6983 {
6984 	int ret;
6985 
6986 	/* dwmac-sun8i only work in chain mode */
6987 	if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
6988 		chain_mode = 1;
6989 	priv->chain_mode = chain_mode;
6990 
6991 	/* Initialize HW Interface */
6992 	ret = stmmac_hwif_init(priv);
6993 	if (ret)
6994 		return ret;
6995 
6996 	/* Get the HW capability (new GMAC newer than 3.50a) */
6997 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6998 	if (priv->hw_cap_support) {
6999 		dev_info(priv->device, "DMA HW capability register supported\n");
7000 
7001 		/* We can override some gmac/dma configuration fields: e.g.
7002 		 * enh_desc, tx_coe (e.g. that are passed through the
7003 		 * platform) with the values from the HW capability
7004 		 * register (if supported).
7005 		 */
7006 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
7007 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
7008 				!(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
7009 		priv->hw->pmt = priv->plat->pmt;
7010 		if (priv->dma_cap.hash_tb_sz) {
7011 			priv->hw->multicast_filter_bins =
7012 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
7013 			priv->hw->mcast_bits_log2 =
7014 					ilog2(priv->hw->multicast_filter_bins);
7015 		}
7016 
7017 		/* TXCOE doesn't work in thresh DMA mode */
7018 		if (priv->plat->force_thresh_dma_mode)
7019 			priv->plat->tx_coe = 0;
7020 		else
7021 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
7022 
7023 		/* In case of GMAC4 rx_coe is from HW cap register. */
7024 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
7025 
7026 		if (priv->dma_cap.rx_coe_type2)
7027 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7028 		else if (priv->dma_cap.rx_coe_type1)
7029 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7030 
7031 	} else {
7032 		dev_info(priv->device, "No HW DMA feature register supported\n");
7033 	}
7034 
7035 	if (priv->plat->rx_coe) {
7036 		priv->hw->rx_csum = priv->plat->rx_coe;
7037 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7038 		if (priv->synopsys_id < DWMAC_CORE_4_00)
7039 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7040 	}
7041 	if (priv->plat->tx_coe)
7042 		dev_info(priv->device, "TX Checksum insertion supported\n");
7043 
7044 	if (priv->plat->pmt) {
7045 		dev_info(priv->device, "Wake-Up On Lan supported\n");
7046 		device_set_wakeup_capable(priv->device, 1);
7047 	}
7048 
7049 	if (priv->dma_cap.tsoen)
7050 		dev_info(priv->device, "TSO supported\n");
7051 
7052 	priv->hw->vlan_fail_q_en =
7053 		(priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7054 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7055 
7056 	/* Run HW quirks, if any */
7057 	if (priv->hwif_quirks) {
7058 		ret = priv->hwif_quirks(priv);
7059 		if (ret)
7060 			return ret;
7061 	}
7062 
7063 	/* Rx Watchdog is available in the COREs newer than the 3.40.
7064 	 * In some case, for example on bugged HW this feature
7065 	 * has to be disable and this can be done by passing the
7066 	 * riwt_off field from the platform.
7067 	 */
7068 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7069 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7070 		priv->use_riwt = 1;
7071 		dev_info(priv->device,
7072 			 "Enable RX Mitigation via HW Watchdog Timer\n");
7073 	}
7074 
7075 	return 0;
7076 }
7077 
7078 static void stmmac_napi_add(struct net_device *dev)
7079 {
7080 	struct stmmac_priv *priv = netdev_priv(dev);
7081 	u32 queue, maxq;
7082 
7083 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7084 
7085 	for (queue = 0; queue < maxq; queue++) {
7086 		struct stmmac_channel *ch = &priv->channel[queue];
7087 
7088 		ch->priv_data = priv;
7089 		ch->index = queue;
7090 		spin_lock_init(&ch->lock);
7091 
7092 		if (queue < priv->plat->rx_queues_to_use) {
7093 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7094 		}
7095 		if (queue < priv->plat->tx_queues_to_use) {
7096 			netif_napi_add_tx(dev, &ch->tx_napi,
7097 					  stmmac_napi_poll_tx);
7098 		}
7099 		if (queue < priv->plat->rx_queues_to_use &&
7100 		    queue < priv->plat->tx_queues_to_use) {
7101 			netif_napi_add(dev, &ch->rxtx_napi,
7102 				       stmmac_napi_poll_rxtx);
7103 		}
7104 	}
7105 }
7106 
7107 static void stmmac_napi_del(struct net_device *dev)
7108 {
7109 	struct stmmac_priv *priv = netdev_priv(dev);
7110 	u32 queue, maxq;
7111 
7112 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7113 
7114 	for (queue = 0; queue < maxq; queue++) {
7115 		struct stmmac_channel *ch = &priv->channel[queue];
7116 
7117 		if (queue < priv->plat->rx_queues_to_use)
7118 			netif_napi_del(&ch->rx_napi);
7119 		if (queue < priv->plat->tx_queues_to_use)
7120 			netif_napi_del(&ch->tx_napi);
7121 		if (queue < priv->plat->rx_queues_to_use &&
7122 		    queue < priv->plat->tx_queues_to_use) {
7123 			netif_napi_del(&ch->rxtx_napi);
7124 		}
7125 	}
7126 }
7127 
7128 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7129 {
7130 	struct stmmac_priv *priv = netdev_priv(dev);
7131 	int ret = 0, i;
7132 
7133 	if (netif_running(dev))
7134 		stmmac_release(dev);
7135 
7136 	stmmac_napi_del(dev);
7137 
7138 	priv->plat->rx_queues_to_use = rx_cnt;
7139 	priv->plat->tx_queues_to_use = tx_cnt;
7140 	if (!netif_is_rxfh_configured(dev))
7141 		for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7142 			priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7143 									rx_cnt);
7144 
7145 	stmmac_napi_add(dev);
7146 
7147 	if (netif_running(dev))
7148 		ret = stmmac_open(dev);
7149 
7150 	return ret;
7151 }
7152 
7153 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7154 {
7155 	struct stmmac_priv *priv = netdev_priv(dev);
7156 	int ret = 0;
7157 
7158 	if (netif_running(dev))
7159 		stmmac_release(dev);
7160 
7161 	priv->dma_conf.dma_rx_size = rx_size;
7162 	priv->dma_conf.dma_tx_size = tx_size;
7163 
7164 	if (netif_running(dev))
7165 		ret = stmmac_open(dev);
7166 
7167 	return ret;
7168 }
7169 
7170 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
7171 static void stmmac_fpe_lp_task(struct work_struct *work)
7172 {
7173 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7174 						fpe_task);
7175 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7176 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7177 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7178 	bool *hs_enable = &fpe_cfg->hs_enable;
7179 	bool *enable = &fpe_cfg->enable;
7180 	int retries = 20;
7181 
7182 	while (retries-- > 0) {
7183 		/* Bail out immediately if FPE handshake is OFF */
7184 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7185 			break;
7186 
7187 		if (*lo_state == FPE_STATE_ENTERING_ON &&
7188 		    *lp_state == FPE_STATE_ENTERING_ON) {
7189 			stmmac_fpe_configure(priv, priv->ioaddr,
7190 					     priv->plat->tx_queues_to_use,
7191 					     priv->plat->rx_queues_to_use,
7192 					     *enable);
7193 
7194 			netdev_info(priv->dev, "configured FPE\n");
7195 
7196 			*lo_state = FPE_STATE_ON;
7197 			*lp_state = FPE_STATE_ON;
7198 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7199 			break;
7200 		}
7201 
7202 		if ((*lo_state == FPE_STATE_CAPABLE ||
7203 		     *lo_state == FPE_STATE_ENTERING_ON) &&
7204 		     *lp_state != FPE_STATE_ON) {
7205 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7206 				    *lo_state, *lp_state);
7207 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7208 						MPACKET_VERIFY);
7209 		}
7210 		/* Sleep then retry */
7211 		msleep(500);
7212 	}
7213 
7214 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7215 }
7216 
7217 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7218 {
7219 	if (priv->plat->fpe_cfg->hs_enable != enable) {
7220 		if (enable) {
7221 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7222 						MPACKET_VERIFY);
7223 		} else {
7224 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7225 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7226 		}
7227 
7228 		priv->plat->fpe_cfg->hs_enable = enable;
7229 	}
7230 }
7231 
7232 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7233 {
7234 	const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7235 	struct dma_desc *desc_contains_ts = ctx->desc;
7236 	struct stmmac_priv *priv = ctx->priv;
7237 	struct dma_desc *ndesc = ctx->ndesc;
7238 	struct dma_desc *desc = ctx->desc;
7239 	u64 ns = 0;
7240 
7241 	if (!priv->hwts_rx_en)
7242 		return -ENODATA;
7243 
7244 	/* For GMAC4, the valid timestamp is from CTX next desc. */
7245 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7246 		desc_contains_ts = ndesc;
7247 
7248 	/* Check if timestamp is available */
7249 	if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7250 		stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7251 		ns -= priv->plat->cdc_error_adj;
7252 		*timestamp = ns_to_ktime(ns);
7253 		return 0;
7254 	}
7255 
7256 	return -ENODATA;
7257 }
7258 
7259 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7260 	.xmo_rx_timestamp		= stmmac_xdp_rx_timestamp,
7261 };
7262 
7263 /**
7264  * stmmac_dvr_probe
7265  * @device: device pointer
7266  * @plat_dat: platform data pointer
7267  * @res: stmmac resource pointer
7268  * Description: this is the main probe function used to
7269  * call the alloc_etherdev, allocate the priv structure.
7270  * Return:
7271  * returns 0 on success, otherwise errno.
7272  */
7273 int stmmac_dvr_probe(struct device *device,
7274 		     struct plat_stmmacenet_data *plat_dat,
7275 		     struct stmmac_resources *res)
7276 {
7277 	struct net_device *ndev = NULL;
7278 	struct stmmac_priv *priv;
7279 	u32 rxq;
7280 	int i, ret = 0;
7281 
7282 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7283 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7284 	if (!ndev)
7285 		return -ENOMEM;
7286 
7287 	SET_NETDEV_DEV(ndev, device);
7288 
7289 	priv = netdev_priv(ndev);
7290 	priv->device = device;
7291 	priv->dev = ndev;
7292 
7293 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7294 		u64_stats_init(&priv->dma_conf.rx_queue[i].rxq_stats.syncp);
7295 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7296 		u64_stats_init(&priv->dma_conf.tx_queue[i].txq_stats.syncp);
7297 
7298 	stmmac_set_ethtool_ops(ndev);
7299 	priv->pause = pause;
7300 	priv->plat = plat_dat;
7301 	priv->ioaddr = res->addr;
7302 	priv->dev->base_addr = (unsigned long)res->addr;
7303 	priv->plat->dma_cfg->multi_msi_en =
7304 		(priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7305 
7306 	priv->dev->irq = res->irq;
7307 	priv->wol_irq = res->wol_irq;
7308 	priv->lpi_irq = res->lpi_irq;
7309 	priv->sfty_ce_irq = res->sfty_ce_irq;
7310 	priv->sfty_ue_irq = res->sfty_ue_irq;
7311 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7312 		priv->rx_irq[i] = res->rx_irq[i];
7313 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7314 		priv->tx_irq[i] = res->tx_irq[i];
7315 
7316 	if (!is_zero_ether_addr(res->mac))
7317 		eth_hw_addr_set(priv->dev, res->mac);
7318 
7319 	dev_set_drvdata(device, priv->dev);
7320 
7321 	/* Verify driver arguments */
7322 	stmmac_verify_args();
7323 
7324 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7325 	if (!priv->af_xdp_zc_qps)
7326 		return -ENOMEM;
7327 
7328 	/* Allocate workqueue */
7329 	priv->wq = create_singlethread_workqueue("stmmac_wq");
7330 	if (!priv->wq) {
7331 		dev_err(priv->device, "failed to create workqueue\n");
7332 		ret = -ENOMEM;
7333 		goto error_wq_init;
7334 	}
7335 
7336 	INIT_WORK(&priv->service_task, stmmac_service_task);
7337 
7338 	/* Initialize Link Partner FPE workqueue */
7339 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7340 
7341 	/* Override with kernel parameters if supplied XXX CRS XXX
7342 	 * this needs to have multiple instances
7343 	 */
7344 	if ((phyaddr >= 0) && (phyaddr <= 31))
7345 		priv->plat->phy_addr = phyaddr;
7346 
7347 	if (priv->plat->stmmac_rst) {
7348 		ret = reset_control_assert(priv->plat->stmmac_rst);
7349 		reset_control_deassert(priv->plat->stmmac_rst);
7350 		/* Some reset controllers have only reset callback instead of
7351 		 * assert + deassert callbacks pair.
7352 		 */
7353 		if (ret == -ENOTSUPP)
7354 			reset_control_reset(priv->plat->stmmac_rst);
7355 	}
7356 
7357 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7358 	if (ret == -ENOTSUPP)
7359 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7360 			ERR_PTR(ret));
7361 
7362 	/* Init MAC and get the capabilities */
7363 	ret = stmmac_hw_init(priv);
7364 	if (ret)
7365 		goto error_hw_init;
7366 
7367 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7368 	 */
7369 	if (priv->synopsys_id < DWMAC_CORE_5_20)
7370 		priv->plat->dma_cfg->dche = false;
7371 
7372 	stmmac_check_ether_addr(priv);
7373 
7374 	ndev->netdev_ops = &stmmac_netdev_ops;
7375 
7376 	ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7377 
7378 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7379 			    NETIF_F_RXCSUM;
7380 	ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7381 			     NETDEV_XDP_ACT_XSK_ZEROCOPY;
7382 
7383 	ret = stmmac_tc_init(priv, priv);
7384 	if (!ret) {
7385 		ndev->hw_features |= NETIF_F_HW_TC;
7386 	}
7387 
7388 	if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7389 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7390 		if (priv->plat->has_gmac4)
7391 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7392 		priv->tso = true;
7393 		dev_info(priv->device, "TSO feature enabled\n");
7394 	}
7395 
7396 	if (priv->dma_cap.sphen &&
7397 	    !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7398 		ndev->hw_features |= NETIF_F_GRO;
7399 		priv->sph_cap = true;
7400 		priv->sph = priv->sph_cap;
7401 		dev_info(priv->device, "SPH feature enabled\n");
7402 	}
7403 
7404 	/* Ideally our host DMA address width is the same as for the
7405 	 * device. However, it may differ and then we have to use our
7406 	 * host DMA width for allocation and the device DMA width for
7407 	 * register handling.
7408 	 */
7409 	if (priv->plat->host_dma_width)
7410 		priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7411 	else
7412 		priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7413 
7414 	if (priv->dma_cap.host_dma_width) {
7415 		ret = dma_set_mask_and_coherent(device,
7416 				DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7417 		if (!ret) {
7418 			dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7419 				 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7420 
7421 			/*
7422 			 * If more than 32 bits can be addressed, make sure to
7423 			 * enable enhanced addressing mode.
7424 			 */
7425 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7426 				priv->plat->dma_cfg->eame = true;
7427 		} else {
7428 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7429 			if (ret) {
7430 				dev_err(priv->device, "Failed to set DMA Mask\n");
7431 				goto error_hw_init;
7432 			}
7433 
7434 			priv->dma_cap.host_dma_width = 32;
7435 		}
7436 	}
7437 
7438 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7439 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7440 #ifdef STMMAC_VLAN_TAG_USED
7441 	/* Both mac100 and gmac support receive VLAN tag detection */
7442 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7443 	if (priv->dma_cap.vlhash) {
7444 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7445 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7446 	}
7447 	if (priv->dma_cap.vlins) {
7448 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7449 		if (priv->dma_cap.dvlan)
7450 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7451 	}
7452 #endif
7453 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7454 
7455 	priv->xstats.threshold = tc;
7456 
7457 	/* Initialize RSS */
7458 	rxq = priv->plat->rx_queues_to_use;
7459 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7460 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7461 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7462 
7463 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7464 		ndev->features |= NETIF_F_RXHASH;
7465 
7466 	ndev->vlan_features |= ndev->features;
7467 	/* TSO doesn't work on VLANs yet */
7468 	ndev->vlan_features &= ~NETIF_F_TSO;
7469 
7470 	/* MTU range: 46 - hw-specific max */
7471 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7472 	if (priv->plat->has_xgmac)
7473 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7474 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7475 		ndev->max_mtu = JUMBO_LEN;
7476 	else
7477 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7478 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7479 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7480 	 */
7481 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7482 	    (priv->plat->maxmtu >= ndev->min_mtu))
7483 		ndev->max_mtu = priv->plat->maxmtu;
7484 	else if (priv->plat->maxmtu < ndev->min_mtu)
7485 		dev_warn(priv->device,
7486 			 "%s: warning: maxmtu having invalid value (%d)\n",
7487 			 __func__, priv->plat->maxmtu);
7488 
7489 	if (flow_ctrl)
7490 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7491 
7492 	ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7493 
7494 	/* Setup channels NAPI */
7495 	stmmac_napi_add(ndev);
7496 
7497 	mutex_init(&priv->lock);
7498 
7499 	/* If a specific clk_csr value is passed from the platform
7500 	 * this means that the CSR Clock Range selection cannot be
7501 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7502 	 * set the MDC clock dynamically according to the csr actual
7503 	 * clock input.
7504 	 */
7505 	if (priv->plat->clk_csr >= 0)
7506 		priv->clk_csr = priv->plat->clk_csr;
7507 	else
7508 		stmmac_clk_csr_set(priv);
7509 
7510 	stmmac_check_pcs_mode(priv);
7511 
7512 	pm_runtime_get_noresume(device);
7513 	pm_runtime_set_active(device);
7514 	if (!pm_runtime_enabled(device))
7515 		pm_runtime_enable(device);
7516 
7517 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7518 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7519 		/* MDIO bus Registration */
7520 		ret = stmmac_mdio_register(ndev);
7521 		if (ret < 0) {
7522 			dev_err_probe(priv->device, ret,
7523 				      "%s: MDIO bus (id: %d) registration failed\n",
7524 				      __func__, priv->plat->bus_id);
7525 			goto error_mdio_register;
7526 		}
7527 	}
7528 
7529 	if (priv->plat->speed_mode_2500)
7530 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7531 
7532 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7533 		ret = stmmac_xpcs_setup(priv->mii);
7534 		if (ret)
7535 			goto error_xpcs_setup;
7536 	}
7537 
7538 	ret = stmmac_phy_setup(priv);
7539 	if (ret) {
7540 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7541 		goto error_phy_setup;
7542 	}
7543 
7544 	ret = register_netdev(ndev);
7545 	if (ret) {
7546 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7547 			__func__, ret);
7548 		goto error_netdev_register;
7549 	}
7550 
7551 #ifdef CONFIG_DEBUG_FS
7552 	stmmac_init_fs(ndev);
7553 #endif
7554 
7555 	if (priv->plat->dump_debug_regs)
7556 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7557 
7558 	/* Let pm_runtime_put() disable the clocks.
7559 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7560 	 */
7561 	pm_runtime_put(device);
7562 
7563 	return ret;
7564 
7565 error_netdev_register:
7566 	phylink_destroy(priv->phylink);
7567 error_xpcs_setup:
7568 error_phy_setup:
7569 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7570 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7571 		stmmac_mdio_unregister(ndev);
7572 error_mdio_register:
7573 	stmmac_napi_del(ndev);
7574 error_hw_init:
7575 	destroy_workqueue(priv->wq);
7576 error_wq_init:
7577 	bitmap_free(priv->af_xdp_zc_qps);
7578 
7579 	return ret;
7580 }
7581 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7582 
7583 /**
7584  * stmmac_dvr_remove
7585  * @dev: device pointer
7586  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7587  * changes the link status, releases the DMA descriptor rings.
7588  */
7589 void stmmac_dvr_remove(struct device *dev)
7590 {
7591 	struct net_device *ndev = dev_get_drvdata(dev);
7592 	struct stmmac_priv *priv = netdev_priv(ndev);
7593 
7594 	netdev_info(priv->dev, "%s: removing driver", __func__);
7595 
7596 	pm_runtime_get_sync(dev);
7597 
7598 	stmmac_stop_all_dma(priv);
7599 	stmmac_mac_set(priv, priv->ioaddr, false);
7600 	netif_carrier_off(ndev);
7601 	unregister_netdev(ndev);
7602 
7603 #ifdef CONFIG_DEBUG_FS
7604 	stmmac_exit_fs(ndev);
7605 #endif
7606 	phylink_destroy(priv->phylink);
7607 	if (priv->plat->stmmac_rst)
7608 		reset_control_assert(priv->plat->stmmac_rst);
7609 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7610 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7611 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7612 		stmmac_mdio_unregister(ndev);
7613 	destroy_workqueue(priv->wq);
7614 	mutex_destroy(&priv->lock);
7615 	bitmap_free(priv->af_xdp_zc_qps);
7616 
7617 	pm_runtime_disable(dev);
7618 	pm_runtime_put_noidle(dev);
7619 }
7620 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7621 
7622 /**
7623  * stmmac_suspend - suspend callback
7624  * @dev: device pointer
7625  * Description: this is the function to suspend the device and it is called
7626  * by the platform driver to stop the network queue, release the resources,
7627  * program the PMT register (for WoL), clean and release driver resources.
7628  */
7629 int stmmac_suspend(struct device *dev)
7630 {
7631 	struct net_device *ndev = dev_get_drvdata(dev);
7632 	struct stmmac_priv *priv = netdev_priv(ndev);
7633 	u32 chan;
7634 
7635 	if (!ndev || !netif_running(ndev))
7636 		return 0;
7637 
7638 	mutex_lock(&priv->lock);
7639 
7640 	netif_device_detach(ndev);
7641 
7642 	stmmac_disable_all_queues(priv);
7643 
7644 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7645 		hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7646 
7647 	if (priv->eee_enabled) {
7648 		priv->tx_path_in_lpi_mode = false;
7649 		del_timer_sync(&priv->eee_ctrl_timer);
7650 	}
7651 
7652 	/* Stop TX/RX DMA */
7653 	stmmac_stop_all_dma(priv);
7654 
7655 	if (priv->plat->serdes_powerdown)
7656 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7657 
7658 	/* Enable Power down mode by programming the PMT regs */
7659 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7660 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7661 		priv->irq_wake = 1;
7662 	} else {
7663 		stmmac_mac_set(priv, priv->ioaddr, false);
7664 		pinctrl_pm_select_sleep_state(priv->device);
7665 	}
7666 
7667 	mutex_unlock(&priv->lock);
7668 
7669 	rtnl_lock();
7670 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7671 		phylink_suspend(priv->phylink, true);
7672 	} else {
7673 		if (device_may_wakeup(priv->device))
7674 			phylink_speed_down(priv->phylink, false);
7675 		phylink_suspend(priv->phylink, false);
7676 	}
7677 	rtnl_unlock();
7678 
7679 	if (priv->dma_cap.fpesel) {
7680 		/* Disable FPE */
7681 		stmmac_fpe_configure(priv, priv->ioaddr,
7682 				     priv->plat->tx_queues_to_use,
7683 				     priv->plat->rx_queues_to_use, false);
7684 
7685 		stmmac_fpe_handshake(priv, false);
7686 		stmmac_fpe_stop_wq(priv);
7687 	}
7688 
7689 	priv->speed = SPEED_UNKNOWN;
7690 	return 0;
7691 }
7692 EXPORT_SYMBOL_GPL(stmmac_suspend);
7693 
7694 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7695 {
7696 	struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7697 
7698 	rx_q->cur_rx = 0;
7699 	rx_q->dirty_rx = 0;
7700 }
7701 
7702 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7703 {
7704 	struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7705 
7706 	tx_q->cur_tx = 0;
7707 	tx_q->dirty_tx = 0;
7708 	tx_q->mss = 0;
7709 
7710 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7711 }
7712 
7713 /**
7714  * stmmac_reset_queues_param - reset queue parameters
7715  * @priv: device pointer
7716  */
7717 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7718 {
7719 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7720 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7721 	u32 queue;
7722 
7723 	for (queue = 0; queue < rx_cnt; queue++)
7724 		stmmac_reset_rx_queue(priv, queue);
7725 
7726 	for (queue = 0; queue < tx_cnt; queue++)
7727 		stmmac_reset_tx_queue(priv, queue);
7728 }
7729 
7730 /**
7731  * stmmac_resume - resume callback
7732  * @dev: device pointer
7733  * Description: when resume this function is invoked to setup the DMA and CORE
7734  * in a usable state.
7735  */
7736 int stmmac_resume(struct device *dev)
7737 {
7738 	struct net_device *ndev = dev_get_drvdata(dev);
7739 	struct stmmac_priv *priv = netdev_priv(ndev);
7740 	int ret;
7741 
7742 	if (!netif_running(ndev))
7743 		return 0;
7744 
7745 	/* Power Down bit, into the PM register, is cleared
7746 	 * automatically as soon as a magic packet or a Wake-up frame
7747 	 * is received. Anyway, it's better to manually clear
7748 	 * this bit because it can generate problems while resuming
7749 	 * from another devices (e.g. serial console).
7750 	 */
7751 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7752 		mutex_lock(&priv->lock);
7753 		stmmac_pmt(priv, priv->hw, 0);
7754 		mutex_unlock(&priv->lock);
7755 		priv->irq_wake = 0;
7756 	} else {
7757 		pinctrl_pm_select_default_state(priv->device);
7758 		/* reset the phy so that it's ready */
7759 		if (priv->mii)
7760 			stmmac_mdio_reset(priv->mii);
7761 	}
7762 
7763 	if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7764 	    priv->plat->serdes_powerup) {
7765 		ret = priv->plat->serdes_powerup(ndev,
7766 						 priv->plat->bsp_priv);
7767 
7768 		if (ret < 0)
7769 			return ret;
7770 	}
7771 
7772 	rtnl_lock();
7773 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7774 		phylink_resume(priv->phylink);
7775 	} else {
7776 		phylink_resume(priv->phylink);
7777 		if (device_may_wakeup(priv->device))
7778 			phylink_speed_up(priv->phylink);
7779 	}
7780 	rtnl_unlock();
7781 
7782 	rtnl_lock();
7783 	mutex_lock(&priv->lock);
7784 
7785 	stmmac_reset_queues_param(priv);
7786 
7787 	stmmac_free_tx_skbufs(priv);
7788 	stmmac_clear_descriptors(priv, &priv->dma_conf);
7789 
7790 	stmmac_hw_setup(ndev, false);
7791 	stmmac_init_coalesce(priv);
7792 	stmmac_set_rx_mode(ndev);
7793 
7794 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7795 
7796 	stmmac_enable_all_queues(priv);
7797 	stmmac_enable_all_dma_irq(priv);
7798 
7799 	mutex_unlock(&priv->lock);
7800 	rtnl_unlock();
7801 
7802 	netif_device_attach(ndev);
7803 
7804 	return 0;
7805 }
7806 EXPORT_SYMBOL_GPL(stmmac_resume);
7807 
7808 #ifndef MODULE
7809 static int __init stmmac_cmdline_opt(char *str)
7810 {
7811 	char *opt;
7812 
7813 	if (!str || !*str)
7814 		return 1;
7815 	while ((opt = strsep(&str, ",")) != NULL) {
7816 		if (!strncmp(opt, "debug:", 6)) {
7817 			if (kstrtoint(opt + 6, 0, &debug))
7818 				goto err;
7819 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7820 			if (kstrtoint(opt + 8, 0, &phyaddr))
7821 				goto err;
7822 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7823 			if (kstrtoint(opt + 7, 0, &buf_sz))
7824 				goto err;
7825 		} else if (!strncmp(opt, "tc:", 3)) {
7826 			if (kstrtoint(opt + 3, 0, &tc))
7827 				goto err;
7828 		} else if (!strncmp(opt, "watchdog:", 9)) {
7829 			if (kstrtoint(opt + 9, 0, &watchdog))
7830 				goto err;
7831 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7832 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7833 				goto err;
7834 		} else if (!strncmp(opt, "pause:", 6)) {
7835 			if (kstrtoint(opt + 6, 0, &pause))
7836 				goto err;
7837 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7838 			if (kstrtoint(opt + 10, 0, &eee_timer))
7839 				goto err;
7840 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7841 			if (kstrtoint(opt + 11, 0, &chain_mode))
7842 				goto err;
7843 		}
7844 	}
7845 	return 1;
7846 
7847 err:
7848 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7849 	return 1;
7850 }
7851 
7852 __setup("stmmaceth=", stmmac_cmdline_opt);
7853 #endif /* MODULE */
7854 
7855 static int __init stmmac_init(void)
7856 {
7857 #ifdef CONFIG_DEBUG_FS
7858 	/* Create debugfs main directory if it doesn't exist yet */
7859 	if (!stmmac_fs_dir)
7860 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7861 	register_netdevice_notifier(&stmmac_notifier);
7862 #endif
7863 
7864 	return 0;
7865 }
7866 
7867 static void __exit stmmac_exit(void)
7868 {
7869 #ifdef CONFIG_DEBUG_FS
7870 	unregister_netdevice_notifier(&stmmac_notifier);
7871 	debugfs_remove_recursive(stmmac_fs_dir);
7872 #endif
7873 }
7874 
7875 module_init(stmmac_init)
7876 module_exit(stmmac_exit)
7877 
7878 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7879 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7880 MODULE_LICENSE("GPL");
7881