1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/prefetch.h>
32 #include <linux/pinctrl/consumer.h>
33 #ifdef CONFIG_DEBUG_FS
34 #include <linux/debugfs.h>
35 #include <linux/seq_file.h>
36 #endif /* CONFIG_DEBUG_FS */
37 #include <linux/net_tstamp.h>
38 #include <linux/phylink.h>
39 #include <net/pkt_cls.h>
40 #include "stmmac_ptp.h"
41 #include "stmmac.h"
42 #include <linux/reset.h>
43 #include <linux/of_mdio.h>
44 #include "dwmac1000.h"
45 #include "dwxgmac2.h"
46 #include "hwif.h"
47 
48 #define	STMMAC_ALIGN(x)		__ALIGN_KERNEL(x, SMP_CACHE_BYTES)
49 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
50 
51 /* Module parameters */
52 #define TX_TIMEO	5000
53 static int watchdog = TX_TIMEO;
54 module_param(watchdog, int, 0644);
55 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
56 
57 static int debug = -1;
58 module_param(debug, int, 0644);
59 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
60 
61 static int phyaddr = -1;
62 module_param(phyaddr, int, 0444);
63 MODULE_PARM_DESC(phyaddr, "Physical device address");
64 
65 #define STMMAC_TX_THRESH	(DMA_TX_SIZE / 4)
66 #define STMMAC_RX_THRESH	(DMA_RX_SIZE / 4)
67 
68 static int flow_ctrl = FLOW_AUTO;
69 module_param(flow_ctrl, int, 0644);
70 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
71 
72 static int pause = PAUSE_TIME;
73 module_param(pause, int, 0644);
74 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
75 
76 #define TC_DEFAULT 64
77 static int tc = TC_DEFAULT;
78 module_param(tc, int, 0644);
79 MODULE_PARM_DESC(tc, "DMA threshold control value");
80 
81 #define	DEFAULT_BUFSIZE	1536
82 static int buf_sz = DEFAULT_BUFSIZE;
83 module_param(buf_sz, int, 0644);
84 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
85 
86 #define	STMMAC_RX_COPYBREAK	256
87 
88 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
89 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
90 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
91 
92 #define STMMAC_DEFAULT_LPI_TIMER	1000
93 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
94 module_param(eee_timer, int, 0644);
95 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
96 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
97 
98 /* By default the driver will use the ring mode to manage tx and rx descriptors,
99  * but allow user to force to use the chain instead of the ring
100  */
101 static unsigned int chain_mode;
102 module_param(chain_mode, int, 0444);
103 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
104 
105 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
106 
107 #ifdef CONFIG_DEBUG_FS
108 static int stmmac_init_fs(struct net_device *dev);
109 static void stmmac_exit_fs(struct net_device *dev);
110 #endif
111 
112 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
113 
114 /**
115  * stmmac_verify_args - verify the driver parameters.
116  * Description: it checks the driver parameters and set a default in case of
117  * errors.
118  */
119 static void stmmac_verify_args(void)
120 {
121 	if (unlikely(watchdog < 0))
122 		watchdog = TX_TIMEO;
123 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
124 		buf_sz = DEFAULT_BUFSIZE;
125 	if (unlikely(flow_ctrl > 1))
126 		flow_ctrl = FLOW_AUTO;
127 	else if (likely(flow_ctrl < 0))
128 		flow_ctrl = FLOW_OFF;
129 	if (unlikely((pause < 0) || (pause > 0xffff)))
130 		pause = PAUSE_TIME;
131 	if (eee_timer < 0)
132 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
133 }
134 
135 /**
136  * stmmac_disable_all_queues - Disable all queues
137  * @priv: driver private structure
138  */
139 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
140 {
141 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
142 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
143 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
144 	u32 queue;
145 
146 	for (queue = 0; queue < maxq; queue++) {
147 		struct stmmac_channel *ch = &priv->channel[queue];
148 
149 		if (queue < rx_queues_cnt)
150 			napi_disable(&ch->rx_napi);
151 		if (queue < tx_queues_cnt)
152 			napi_disable(&ch->tx_napi);
153 	}
154 }
155 
156 /**
157  * stmmac_enable_all_queues - Enable all queues
158  * @priv: driver private structure
159  */
160 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
161 {
162 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
163 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
164 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
165 	u32 queue;
166 
167 	for (queue = 0; queue < maxq; queue++) {
168 		struct stmmac_channel *ch = &priv->channel[queue];
169 
170 		if (queue < rx_queues_cnt)
171 			napi_enable(&ch->rx_napi);
172 		if (queue < tx_queues_cnt)
173 			napi_enable(&ch->tx_napi);
174 	}
175 }
176 
177 /**
178  * stmmac_stop_all_queues - Stop all queues
179  * @priv: driver private structure
180  */
181 static void stmmac_stop_all_queues(struct stmmac_priv *priv)
182 {
183 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
184 	u32 queue;
185 
186 	for (queue = 0; queue < tx_queues_cnt; queue++)
187 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
188 }
189 
190 /**
191  * stmmac_start_all_queues - Start all queues
192  * @priv: driver private structure
193  */
194 static void stmmac_start_all_queues(struct stmmac_priv *priv)
195 {
196 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
197 	u32 queue;
198 
199 	for (queue = 0; queue < tx_queues_cnt; queue++)
200 		netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
201 }
202 
203 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
204 {
205 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
206 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
207 		queue_work(priv->wq, &priv->service_task);
208 }
209 
210 static void stmmac_global_err(struct stmmac_priv *priv)
211 {
212 	netif_carrier_off(priv->dev);
213 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
214 	stmmac_service_event_schedule(priv);
215 }
216 
217 /**
218  * stmmac_clk_csr_set - dynamically set the MDC clock
219  * @priv: driver private structure
220  * Description: this is to dynamically set the MDC clock according to the csr
221  * clock input.
222  * Note:
223  *	If a specific clk_csr value is passed from the platform
224  *	this means that the CSR Clock Range selection cannot be
225  *	changed at run-time and it is fixed (as reported in the driver
226  *	documentation). Viceversa the driver will try to set the MDC
227  *	clock dynamically according to the actual clock input.
228  */
229 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
230 {
231 	u32 clk_rate;
232 
233 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
234 
235 	/* Platform provided default clk_csr would be assumed valid
236 	 * for all other cases except for the below mentioned ones.
237 	 * For values higher than the IEEE 802.3 specified frequency
238 	 * we can not estimate the proper divider as it is not known
239 	 * the frequency of clk_csr_i. So we do not change the default
240 	 * divider.
241 	 */
242 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
243 		if (clk_rate < CSR_F_35M)
244 			priv->clk_csr = STMMAC_CSR_20_35M;
245 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
246 			priv->clk_csr = STMMAC_CSR_35_60M;
247 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
248 			priv->clk_csr = STMMAC_CSR_60_100M;
249 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
250 			priv->clk_csr = STMMAC_CSR_100_150M;
251 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
252 			priv->clk_csr = STMMAC_CSR_150_250M;
253 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
254 			priv->clk_csr = STMMAC_CSR_250_300M;
255 	}
256 
257 	if (priv->plat->has_sun8i) {
258 		if (clk_rate > 160000000)
259 			priv->clk_csr = 0x03;
260 		else if (clk_rate > 80000000)
261 			priv->clk_csr = 0x02;
262 		else if (clk_rate > 40000000)
263 			priv->clk_csr = 0x01;
264 		else
265 			priv->clk_csr = 0;
266 	}
267 
268 	if (priv->plat->has_xgmac) {
269 		if (clk_rate > 400000000)
270 			priv->clk_csr = 0x5;
271 		else if (clk_rate > 350000000)
272 			priv->clk_csr = 0x4;
273 		else if (clk_rate > 300000000)
274 			priv->clk_csr = 0x3;
275 		else if (clk_rate > 250000000)
276 			priv->clk_csr = 0x2;
277 		else if (clk_rate > 150000000)
278 			priv->clk_csr = 0x1;
279 		else
280 			priv->clk_csr = 0x0;
281 	}
282 }
283 
284 static void print_pkt(unsigned char *buf, int len)
285 {
286 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
287 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
288 }
289 
290 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
291 {
292 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
293 	u32 avail;
294 
295 	if (tx_q->dirty_tx > tx_q->cur_tx)
296 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
297 	else
298 		avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
299 
300 	return avail;
301 }
302 
303 /**
304  * stmmac_rx_dirty - Get RX queue dirty
305  * @priv: driver private structure
306  * @queue: RX queue index
307  */
308 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
309 {
310 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
311 	u32 dirty;
312 
313 	if (rx_q->dirty_rx <= rx_q->cur_rx)
314 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
315 	else
316 		dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
317 
318 	return dirty;
319 }
320 
321 /**
322  * stmmac_enable_eee_mode - check and enter in LPI mode
323  * @priv: driver private structure
324  * Description: this function is to verify and enter in LPI mode in case of
325  * EEE.
326  */
327 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
328 {
329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
330 	u32 queue;
331 
332 	/* check if all TX queues have the work finished */
333 	for (queue = 0; queue < tx_cnt; queue++) {
334 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
335 
336 		if (tx_q->dirty_tx != tx_q->cur_tx)
337 			return; /* still unfinished work */
338 	}
339 
340 	/* Check and enter in LPI mode */
341 	if (!priv->tx_path_in_lpi_mode)
342 		stmmac_set_eee_mode(priv, priv->hw,
343 				priv->plat->en_tx_lpi_clockgating);
344 }
345 
346 /**
347  * stmmac_disable_eee_mode - disable and exit from LPI mode
348  * @priv: driver private structure
349  * Description: this function is to exit and disable EEE in case of
350  * LPI state is true. This is called by the xmit.
351  */
352 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
353 {
354 	stmmac_reset_eee_mode(priv, priv->hw);
355 	del_timer_sync(&priv->eee_ctrl_timer);
356 	priv->tx_path_in_lpi_mode = false;
357 }
358 
359 /**
360  * stmmac_eee_ctrl_timer - EEE TX SW timer.
361  * @arg : data hook
362  * Description:
363  *  if there is no data transfer and if we are not in LPI state,
364  *  then MAC Transmitter can be moved to LPI state.
365  */
366 static void stmmac_eee_ctrl_timer(struct timer_list *t)
367 {
368 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
369 
370 	stmmac_enable_eee_mode(priv);
371 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
372 }
373 
374 /**
375  * stmmac_eee_init - init EEE
376  * @priv: driver private structure
377  * Description:
378  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
379  *  can also manage EEE, this function enable the LPI state and start related
380  *  timer.
381  */
382 bool stmmac_eee_init(struct stmmac_priv *priv)
383 {
384 	int tx_lpi_timer = priv->tx_lpi_timer;
385 
386 	/* Using PCS we cannot dial with the phy registers at this stage
387 	 * so we do not support extra feature like EEE.
388 	 */
389 	if ((priv->hw->pcs == STMMAC_PCS_RGMII) ||
390 	    (priv->hw->pcs == STMMAC_PCS_TBI) ||
391 	    (priv->hw->pcs == STMMAC_PCS_RTBI))
392 		return false;
393 
394 	/* Check if MAC core supports the EEE feature. */
395 	if (!priv->dma_cap.eee)
396 		return false;
397 
398 	mutex_lock(&priv->lock);
399 
400 	/* Check if it needs to be deactivated */
401 	if (!priv->eee_active) {
402 		if (priv->eee_enabled) {
403 			netdev_dbg(priv->dev, "disable EEE\n");
404 			del_timer_sync(&priv->eee_ctrl_timer);
405 			stmmac_set_eee_timer(priv, priv->hw, 0, tx_lpi_timer);
406 		}
407 		mutex_unlock(&priv->lock);
408 		return false;
409 	}
410 
411 	if (priv->eee_active && !priv->eee_enabled) {
412 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
413 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
414 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
415 				     tx_lpi_timer);
416 	}
417 
418 	mutex_unlock(&priv->lock);
419 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
420 	return true;
421 }
422 
423 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
424  * @priv: driver private structure
425  * @p : descriptor pointer
426  * @skb : the socket buffer
427  * Description :
428  * This function will read timestamp from the descriptor & pass it to stack.
429  * and also perform some sanity checks.
430  */
431 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
432 				   struct dma_desc *p, struct sk_buff *skb)
433 {
434 	struct skb_shared_hwtstamps shhwtstamp;
435 	u64 ns = 0;
436 
437 	if (!priv->hwts_tx_en)
438 		return;
439 
440 	/* exit if skb doesn't support hw tstamp */
441 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
442 		return;
443 
444 	/* check tx tstamp status */
445 	if (stmmac_get_tx_timestamp_status(priv, p)) {
446 		/* get the valid tstamp */
447 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
448 
449 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
450 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
451 
452 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
453 		/* pass tstamp to stack */
454 		skb_tstamp_tx(skb, &shhwtstamp);
455 	}
456 
457 	return;
458 }
459 
460 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
461  * @priv: driver private structure
462  * @p : descriptor pointer
463  * @np : next descriptor pointer
464  * @skb : the socket buffer
465  * Description :
466  * This function will read received packet's timestamp from the descriptor
467  * and pass it to stack. It also perform some sanity checks.
468  */
469 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
470 				   struct dma_desc *np, struct sk_buff *skb)
471 {
472 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
473 	struct dma_desc *desc = p;
474 	u64 ns = 0;
475 
476 	if (!priv->hwts_rx_en)
477 		return;
478 	/* For GMAC4, the valid timestamp is from CTX next desc. */
479 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
480 		desc = np;
481 
482 	/* Check if timestamp is available */
483 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
484 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
485 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
486 		shhwtstamp = skb_hwtstamps(skb);
487 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
488 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
489 	} else  {
490 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
491 	}
492 }
493 
494 /**
495  *  stmmac_hwtstamp_set - control hardware timestamping.
496  *  @dev: device pointer.
497  *  @ifr: An IOCTL specific structure, that can contain a pointer to
498  *  a proprietary structure used to pass information to the driver.
499  *  Description:
500  *  This function configures the MAC to enable/disable both outgoing(TX)
501  *  and incoming(RX) packets time stamping based on user input.
502  *  Return Value:
503  *  0 on success and an appropriate -ve integer on failure.
504  */
505 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
506 {
507 	struct stmmac_priv *priv = netdev_priv(dev);
508 	struct hwtstamp_config config;
509 	struct timespec64 now;
510 	u64 temp = 0;
511 	u32 ptp_v2 = 0;
512 	u32 tstamp_all = 0;
513 	u32 ptp_over_ipv4_udp = 0;
514 	u32 ptp_over_ipv6_udp = 0;
515 	u32 ptp_over_ethernet = 0;
516 	u32 snap_type_sel = 0;
517 	u32 ts_master_en = 0;
518 	u32 ts_event_en = 0;
519 	u32 sec_inc = 0;
520 	u32 value = 0;
521 	bool xmac;
522 
523 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
524 
525 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
526 		netdev_alert(priv->dev, "No support for HW time stamping\n");
527 		priv->hwts_tx_en = 0;
528 		priv->hwts_rx_en = 0;
529 
530 		return -EOPNOTSUPP;
531 	}
532 
533 	if (copy_from_user(&config, ifr->ifr_data,
534 			   sizeof(config)))
535 		return -EFAULT;
536 
537 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
538 		   __func__, config.flags, config.tx_type, config.rx_filter);
539 
540 	/* reserved for future extensions */
541 	if (config.flags)
542 		return -EINVAL;
543 
544 	if (config.tx_type != HWTSTAMP_TX_OFF &&
545 	    config.tx_type != HWTSTAMP_TX_ON)
546 		return -ERANGE;
547 
548 	if (priv->adv_ts) {
549 		switch (config.rx_filter) {
550 		case HWTSTAMP_FILTER_NONE:
551 			/* time stamp no incoming packet at all */
552 			config.rx_filter = HWTSTAMP_FILTER_NONE;
553 			break;
554 
555 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
556 			/* PTP v1, UDP, any kind of event packet */
557 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
558 			/* 'xmac' hardware can support Sync, Pdelay_Req and
559 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
560 			 * This leaves Delay_Req timestamps out.
561 			 * Enable all events *and* general purpose message
562 			 * timestamping
563 			 */
564 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
565 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
566 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
567 			break;
568 
569 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
570 			/* PTP v1, UDP, Sync packet */
571 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
572 			/* take time stamp for SYNC messages only */
573 			ts_event_en = PTP_TCR_TSEVNTENA;
574 
575 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
576 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
577 			break;
578 
579 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
580 			/* PTP v1, UDP, Delay_req packet */
581 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
582 			/* take time stamp for Delay_Req messages only */
583 			ts_master_en = PTP_TCR_TSMSTRENA;
584 			ts_event_en = PTP_TCR_TSEVNTENA;
585 
586 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
587 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
588 			break;
589 
590 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
591 			/* PTP v2, UDP, any kind of event packet */
592 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
593 			ptp_v2 = PTP_TCR_TSVER2ENA;
594 			/* take time stamp for all event messages */
595 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
596 
597 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
598 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
599 			break;
600 
601 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
602 			/* PTP v2, UDP, Sync packet */
603 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
604 			ptp_v2 = PTP_TCR_TSVER2ENA;
605 			/* take time stamp for SYNC messages only */
606 			ts_event_en = PTP_TCR_TSEVNTENA;
607 
608 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
609 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
610 			break;
611 
612 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
613 			/* PTP v2, UDP, Delay_req packet */
614 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
615 			ptp_v2 = PTP_TCR_TSVER2ENA;
616 			/* take time stamp for Delay_Req messages only */
617 			ts_master_en = PTP_TCR_TSMSTRENA;
618 			ts_event_en = PTP_TCR_TSEVNTENA;
619 
620 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
621 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
622 			break;
623 
624 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
625 			/* PTP v2/802.AS1 any layer, any kind of event packet */
626 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
627 			ptp_v2 = PTP_TCR_TSVER2ENA;
628 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
629 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
630 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
631 			ptp_over_ethernet = PTP_TCR_TSIPENA;
632 			break;
633 
634 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
635 			/* PTP v2/802.AS1, any layer, Sync packet */
636 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
637 			ptp_v2 = PTP_TCR_TSVER2ENA;
638 			/* take time stamp for SYNC messages only */
639 			ts_event_en = PTP_TCR_TSEVNTENA;
640 
641 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
642 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
643 			ptp_over_ethernet = PTP_TCR_TSIPENA;
644 			break;
645 
646 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
647 			/* PTP v2/802.AS1, any layer, Delay_req packet */
648 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
649 			ptp_v2 = PTP_TCR_TSVER2ENA;
650 			/* take time stamp for Delay_Req messages only */
651 			ts_master_en = PTP_TCR_TSMSTRENA;
652 			ts_event_en = PTP_TCR_TSEVNTENA;
653 
654 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
655 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
656 			ptp_over_ethernet = PTP_TCR_TSIPENA;
657 			break;
658 
659 		case HWTSTAMP_FILTER_NTP_ALL:
660 		case HWTSTAMP_FILTER_ALL:
661 			/* time stamp any incoming packet */
662 			config.rx_filter = HWTSTAMP_FILTER_ALL;
663 			tstamp_all = PTP_TCR_TSENALL;
664 			break;
665 
666 		default:
667 			return -ERANGE;
668 		}
669 	} else {
670 		switch (config.rx_filter) {
671 		case HWTSTAMP_FILTER_NONE:
672 			config.rx_filter = HWTSTAMP_FILTER_NONE;
673 			break;
674 		default:
675 			/* PTP v1, UDP, any kind of event packet */
676 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
677 			break;
678 		}
679 	}
680 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
681 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
682 
683 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
684 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, 0);
685 	else {
686 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
687 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
688 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
689 			 ts_master_en | snap_type_sel);
690 		stmmac_config_hw_tstamping(priv, priv->ptpaddr, value);
691 
692 		/* program Sub Second Increment reg */
693 		stmmac_config_sub_second_increment(priv,
694 				priv->ptpaddr, priv->plat->clk_ptp_rate,
695 				xmac, &sec_inc);
696 		temp = div_u64(1000000000ULL, sec_inc);
697 
698 		/* Store sub second increment and flags for later use */
699 		priv->sub_second_inc = sec_inc;
700 		priv->systime_flags = value;
701 
702 		/* calculate default added value:
703 		 * formula is :
704 		 * addend = (2^32)/freq_div_ratio;
705 		 * where, freq_div_ratio = 1e9ns/sec_inc
706 		 */
707 		temp = (u64)(temp << 32);
708 		priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
709 		stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
710 
711 		/* initialize system time */
712 		ktime_get_real_ts64(&now);
713 
714 		/* lower 32 bits of tv_sec are safe until y2106 */
715 		stmmac_init_systime(priv, priv->ptpaddr,
716 				(u32)now.tv_sec, now.tv_nsec);
717 	}
718 
719 	memcpy(&priv->tstamp_config, &config, sizeof(config));
720 
721 	return copy_to_user(ifr->ifr_data, &config,
722 			    sizeof(config)) ? -EFAULT : 0;
723 }
724 
725 /**
726  *  stmmac_hwtstamp_get - read hardware timestamping.
727  *  @dev: device pointer.
728  *  @ifr: An IOCTL specific structure, that can contain a pointer to
729  *  a proprietary structure used to pass information to the driver.
730  *  Description:
731  *  This function obtain the current hardware timestamping settings
732     as requested.
733  */
734 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
735 {
736 	struct stmmac_priv *priv = netdev_priv(dev);
737 	struct hwtstamp_config *config = &priv->tstamp_config;
738 
739 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
740 		return -EOPNOTSUPP;
741 
742 	return copy_to_user(ifr->ifr_data, config,
743 			    sizeof(*config)) ? -EFAULT : 0;
744 }
745 
746 /**
747  * stmmac_init_ptp - init PTP
748  * @priv: driver private structure
749  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
750  * This is done by looking at the HW cap. register.
751  * This function also registers the ptp driver.
752  */
753 static int stmmac_init_ptp(struct stmmac_priv *priv)
754 {
755 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
756 
757 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
758 		return -EOPNOTSUPP;
759 
760 	priv->adv_ts = 0;
761 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
762 	if (xmac && priv->dma_cap.atime_stamp)
763 		priv->adv_ts = 1;
764 	/* Dwmac 3.x core with extend_desc can support adv_ts */
765 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
766 		priv->adv_ts = 1;
767 
768 	if (priv->dma_cap.time_stamp)
769 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
770 
771 	if (priv->adv_ts)
772 		netdev_info(priv->dev,
773 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
774 
775 	priv->hwts_tx_en = 0;
776 	priv->hwts_rx_en = 0;
777 
778 	stmmac_ptp_register(priv);
779 
780 	return 0;
781 }
782 
783 static void stmmac_release_ptp(struct stmmac_priv *priv)
784 {
785 	if (priv->plat->clk_ptp_ref)
786 		clk_disable_unprepare(priv->plat->clk_ptp_ref);
787 	stmmac_ptp_unregister(priv);
788 }
789 
790 /**
791  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
792  *  @priv: driver private structure
793  *  Description: It is used for configuring the flow control in all queues
794  */
795 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
796 {
797 	u32 tx_cnt = priv->plat->tx_queues_to_use;
798 
799 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
800 			priv->pause, tx_cnt);
801 }
802 
803 static void stmmac_validate(struct phylink_config *config,
804 			    unsigned long *supported,
805 			    struct phylink_link_state *state)
806 {
807 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
808 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mac_supported) = { 0, };
809 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
810 	int tx_cnt = priv->plat->tx_queues_to_use;
811 	int max_speed = priv->plat->max_speed;
812 
813 	phylink_set(mac_supported, 10baseT_Half);
814 	phylink_set(mac_supported, 10baseT_Full);
815 	phylink_set(mac_supported, 100baseT_Half);
816 	phylink_set(mac_supported, 100baseT_Full);
817 	phylink_set(mac_supported, 1000baseT_Half);
818 	phylink_set(mac_supported, 1000baseT_Full);
819 	phylink_set(mac_supported, 1000baseKX_Full);
820 
821 	phylink_set(mac_supported, Autoneg);
822 	phylink_set(mac_supported, Pause);
823 	phylink_set(mac_supported, Asym_Pause);
824 	phylink_set_port_modes(mac_supported);
825 
826 	/* Cut down 1G if asked to */
827 	if ((max_speed > 0) && (max_speed < 1000)) {
828 		phylink_set(mask, 1000baseT_Full);
829 		phylink_set(mask, 1000baseX_Full);
830 	} else if (priv->plat->has_xgmac) {
831 		phylink_set(mac_supported, 2500baseT_Full);
832 		phylink_set(mac_supported, 5000baseT_Full);
833 		phylink_set(mac_supported, 10000baseSR_Full);
834 		phylink_set(mac_supported, 10000baseLR_Full);
835 		phylink_set(mac_supported, 10000baseER_Full);
836 		phylink_set(mac_supported, 10000baseLRM_Full);
837 		phylink_set(mac_supported, 10000baseT_Full);
838 		phylink_set(mac_supported, 10000baseKX4_Full);
839 		phylink_set(mac_supported, 10000baseKR_Full);
840 	}
841 
842 	/* Half-Duplex can only work with single queue */
843 	if (tx_cnt > 1) {
844 		phylink_set(mask, 10baseT_Half);
845 		phylink_set(mask, 100baseT_Half);
846 		phylink_set(mask, 1000baseT_Half);
847 	}
848 
849 	bitmap_and(supported, supported, mac_supported,
850 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
851 	bitmap_andnot(supported, supported, mask,
852 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
853 	bitmap_and(state->advertising, state->advertising, mac_supported,
854 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
855 	bitmap_andnot(state->advertising, state->advertising, mask,
856 		      __ETHTOOL_LINK_MODE_MASK_NBITS);
857 }
858 
859 static int stmmac_mac_link_state(struct phylink_config *config,
860 				 struct phylink_link_state *state)
861 {
862 	return -EOPNOTSUPP;
863 }
864 
865 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
866 			      const struct phylink_link_state *state)
867 {
868 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
869 	u32 ctrl;
870 
871 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
872 	ctrl &= ~priv->hw->link.speed_mask;
873 
874 	if (state->interface == PHY_INTERFACE_MODE_USXGMII) {
875 		switch (state->speed) {
876 		case SPEED_10000:
877 			ctrl |= priv->hw->link.xgmii.speed10000;
878 			break;
879 		case SPEED_5000:
880 			ctrl |= priv->hw->link.xgmii.speed5000;
881 			break;
882 		case SPEED_2500:
883 			ctrl |= priv->hw->link.xgmii.speed2500;
884 			break;
885 		default:
886 			return;
887 		}
888 	} else {
889 		switch (state->speed) {
890 		case SPEED_2500:
891 			ctrl |= priv->hw->link.speed2500;
892 			break;
893 		case SPEED_1000:
894 			ctrl |= priv->hw->link.speed1000;
895 			break;
896 		case SPEED_100:
897 			ctrl |= priv->hw->link.speed100;
898 			break;
899 		case SPEED_10:
900 			ctrl |= priv->hw->link.speed10;
901 			break;
902 		default:
903 			return;
904 		}
905 	}
906 
907 	priv->speed = state->speed;
908 
909 	if (priv->plat->fix_mac_speed)
910 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, state->speed);
911 
912 	if (!state->duplex)
913 		ctrl &= ~priv->hw->link.duplex;
914 	else
915 		ctrl |= priv->hw->link.duplex;
916 
917 	/* Flow Control operation */
918 	if (state->pause)
919 		stmmac_mac_flow_ctrl(priv, state->duplex);
920 
921 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
922 }
923 
924 static void stmmac_mac_an_restart(struct phylink_config *config)
925 {
926 	/* Not Supported */
927 }
928 
929 static void stmmac_mac_link_down(struct phylink_config *config,
930 				 unsigned int mode, phy_interface_t interface)
931 {
932 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
933 
934 	stmmac_mac_set(priv, priv->ioaddr, false);
935 	priv->eee_active = false;
936 	stmmac_eee_init(priv);
937 	stmmac_set_eee_pls(priv, priv->hw, false);
938 }
939 
940 static void stmmac_mac_link_up(struct phylink_config *config,
941 			       unsigned int mode, phy_interface_t interface,
942 			       struct phy_device *phy)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	stmmac_mac_set(priv, priv->ioaddr, true);
947 	if (phy && priv->dma_cap.eee) {
948 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
949 		priv->eee_enabled = stmmac_eee_init(priv);
950 		stmmac_set_eee_pls(priv, priv->hw, true);
951 	}
952 }
953 
954 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
955 	.validate = stmmac_validate,
956 	.mac_link_state = stmmac_mac_link_state,
957 	.mac_config = stmmac_mac_config,
958 	.mac_an_restart = stmmac_mac_an_restart,
959 	.mac_link_down = stmmac_mac_link_down,
960 	.mac_link_up = stmmac_mac_link_up,
961 };
962 
963 /**
964  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
965  * @priv: driver private structure
966  * Description: this is to verify if the HW supports the PCS.
967  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
968  * configured for the TBI, RTBI, or SGMII PHY interface.
969  */
970 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
971 {
972 	int interface = priv->plat->interface;
973 
974 	if (priv->dma_cap.pcs) {
975 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
976 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
977 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
978 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
979 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
980 			priv->hw->pcs = STMMAC_PCS_RGMII;
981 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
982 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
983 			priv->hw->pcs = STMMAC_PCS_SGMII;
984 		}
985 	}
986 }
987 
988 /**
989  * stmmac_init_phy - PHY initialization
990  * @dev: net device structure
991  * Description: it initializes the driver's PHY state, and attaches the PHY
992  * to the mac driver.
993  *  Return value:
994  *  0 on success
995  */
996 static int stmmac_init_phy(struct net_device *dev)
997 {
998 	struct stmmac_priv *priv = netdev_priv(dev);
999 	struct device_node *node;
1000 	int ret;
1001 
1002 	node = priv->plat->phylink_node;
1003 
1004 	if (node)
1005 		ret = phylink_of_phy_connect(priv->phylink, node, 0);
1006 
1007 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1008 	 * manually parse it
1009 	 */
1010 	if (!node || ret) {
1011 		int addr = priv->plat->phy_addr;
1012 		struct phy_device *phydev;
1013 
1014 		phydev = mdiobus_get_phy(priv->mii, addr);
1015 		if (!phydev) {
1016 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1017 			return -ENODEV;
1018 		}
1019 
1020 		ret = phylink_connect_phy(priv->phylink, phydev);
1021 	}
1022 
1023 	return ret;
1024 }
1025 
1026 static int stmmac_phy_setup(struct stmmac_priv *priv)
1027 {
1028 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1029 	int mode = priv->plat->interface;
1030 	struct phylink *phylink;
1031 
1032 	priv->phylink_config.dev = &priv->dev->dev;
1033 	priv->phylink_config.type = PHYLINK_NETDEV;
1034 
1035 	phylink = phylink_create(&priv->phylink_config, fwnode,
1036 				 mode, &stmmac_phylink_mac_ops);
1037 	if (IS_ERR(phylink))
1038 		return PTR_ERR(phylink);
1039 
1040 	priv->phylink = phylink;
1041 	return 0;
1042 }
1043 
1044 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1045 {
1046 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1047 	void *head_rx;
1048 	u32 queue;
1049 
1050 	/* Display RX rings */
1051 	for (queue = 0; queue < rx_cnt; queue++) {
1052 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1053 
1054 		pr_info("\tRX Queue %u rings\n", queue);
1055 
1056 		if (priv->extend_desc)
1057 			head_rx = (void *)rx_q->dma_erx;
1058 		else
1059 			head_rx = (void *)rx_q->dma_rx;
1060 
1061 		/* Display RX ring */
1062 		stmmac_display_ring(priv, head_rx, DMA_RX_SIZE, true);
1063 	}
1064 }
1065 
1066 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1067 {
1068 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1069 	void *head_tx;
1070 	u32 queue;
1071 
1072 	/* Display TX rings */
1073 	for (queue = 0; queue < tx_cnt; queue++) {
1074 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1075 
1076 		pr_info("\tTX Queue %d rings\n", queue);
1077 
1078 		if (priv->extend_desc)
1079 			head_tx = (void *)tx_q->dma_etx;
1080 		else
1081 			head_tx = (void *)tx_q->dma_tx;
1082 
1083 		stmmac_display_ring(priv, head_tx, DMA_TX_SIZE, false);
1084 	}
1085 }
1086 
1087 static void stmmac_display_rings(struct stmmac_priv *priv)
1088 {
1089 	/* Display RX ring */
1090 	stmmac_display_rx_rings(priv);
1091 
1092 	/* Display TX ring */
1093 	stmmac_display_tx_rings(priv);
1094 }
1095 
1096 static int stmmac_set_bfsize(int mtu, int bufsize)
1097 {
1098 	int ret = bufsize;
1099 
1100 	if (mtu >= BUF_SIZE_4KiB)
1101 		ret = BUF_SIZE_8KiB;
1102 	else if (mtu >= BUF_SIZE_2KiB)
1103 		ret = BUF_SIZE_4KiB;
1104 	else if (mtu > DEFAULT_BUFSIZE)
1105 		ret = BUF_SIZE_2KiB;
1106 	else
1107 		ret = DEFAULT_BUFSIZE;
1108 
1109 	return ret;
1110 }
1111 
1112 /**
1113  * stmmac_clear_rx_descriptors - clear RX descriptors
1114  * @priv: driver private structure
1115  * @queue: RX queue index
1116  * Description: this function is called to clear the RX descriptors
1117  * in case of both basic and extended descriptors are used.
1118  */
1119 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1120 {
1121 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1122 	int i;
1123 
1124 	/* Clear the RX descriptors */
1125 	for (i = 0; i < DMA_RX_SIZE; i++)
1126 		if (priv->extend_desc)
1127 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1128 					priv->use_riwt, priv->mode,
1129 					(i == DMA_RX_SIZE - 1),
1130 					priv->dma_buf_sz);
1131 		else
1132 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1133 					priv->use_riwt, priv->mode,
1134 					(i == DMA_RX_SIZE - 1),
1135 					priv->dma_buf_sz);
1136 }
1137 
1138 /**
1139  * stmmac_clear_tx_descriptors - clear tx descriptors
1140  * @priv: driver private structure
1141  * @queue: TX queue index.
1142  * Description: this function is called to clear the TX descriptors
1143  * in case of both basic and extended descriptors are used.
1144  */
1145 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1146 {
1147 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1148 	int i;
1149 
1150 	/* Clear the TX descriptors */
1151 	for (i = 0; i < DMA_TX_SIZE; i++)
1152 		if (priv->extend_desc)
1153 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1154 					priv->mode, (i == DMA_TX_SIZE - 1));
1155 		else
1156 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1157 					priv->mode, (i == DMA_TX_SIZE - 1));
1158 }
1159 
1160 /**
1161  * stmmac_clear_descriptors - clear descriptors
1162  * @priv: driver private structure
1163  * Description: this function is called to clear the TX and RX descriptors
1164  * in case of both basic and extended descriptors are used.
1165  */
1166 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1167 {
1168 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1169 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1170 	u32 queue;
1171 
1172 	/* Clear the RX descriptors */
1173 	for (queue = 0; queue < rx_queue_cnt; queue++)
1174 		stmmac_clear_rx_descriptors(priv, queue);
1175 
1176 	/* Clear the TX descriptors */
1177 	for (queue = 0; queue < tx_queue_cnt; queue++)
1178 		stmmac_clear_tx_descriptors(priv, queue);
1179 }
1180 
1181 /**
1182  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1183  * @priv: driver private structure
1184  * @p: descriptor pointer
1185  * @i: descriptor index
1186  * @flags: gfp flag
1187  * @queue: RX queue index
1188  * Description: this function is called to allocate a receive buffer, perform
1189  * the DMA mapping and init the descriptor.
1190  */
1191 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1192 				  int i, gfp_t flags, u32 queue)
1193 {
1194 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1195 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1196 
1197 	buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
1198 	if (!buf->page)
1199 		return -ENOMEM;
1200 
1201 	buf->addr = page_pool_get_dma_addr(buf->page);
1202 	stmmac_set_desc_addr(priv, p, buf->addr);
1203 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1204 		stmmac_init_desc3(priv, p);
1205 
1206 	return 0;
1207 }
1208 
1209 /**
1210  * stmmac_free_rx_buffer - free RX dma buffers
1211  * @priv: private structure
1212  * @queue: RX queue index
1213  * @i: buffer index.
1214  */
1215 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1216 {
1217 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1218 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1219 
1220 	if (buf->page)
1221 		page_pool_put_page(rx_q->page_pool, buf->page, false);
1222 	buf->page = NULL;
1223 }
1224 
1225 /**
1226  * stmmac_free_tx_buffer - free RX dma buffers
1227  * @priv: private structure
1228  * @queue: RX queue index
1229  * @i: buffer index.
1230  */
1231 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1232 {
1233 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1234 
1235 	if (tx_q->tx_skbuff_dma[i].buf) {
1236 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1237 			dma_unmap_page(priv->device,
1238 				       tx_q->tx_skbuff_dma[i].buf,
1239 				       tx_q->tx_skbuff_dma[i].len,
1240 				       DMA_TO_DEVICE);
1241 		else
1242 			dma_unmap_single(priv->device,
1243 					 tx_q->tx_skbuff_dma[i].buf,
1244 					 tx_q->tx_skbuff_dma[i].len,
1245 					 DMA_TO_DEVICE);
1246 	}
1247 
1248 	if (tx_q->tx_skbuff[i]) {
1249 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1250 		tx_q->tx_skbuff[i] = NULL;
1251 		tx_q->tx_skbuff_dma[i].buf = 0;
1252 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1253 	}
1254 }
1255 
1256 /**
1257  * init_dma_rx_desc_rings - init the RX descriptor rings
1258  * @dev: net device structure
1259  * @flags: gfp flag.
1260  * Description: this function initializes the DMA RX descriptors
1261  * and allocates the socket buffers. It supports the chained and ring
1262  * modes.
1263  */
1264 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1265 {
1266 	struct stmmac_priv *priv = netdev_priv(dev);
1267 	u32 rx_count = priv->plat->rx_queues_to_use;
1268 	int ret = -ENOMEM;
1269 	int bfsize = 0;
1270 	int queue;
1271 	int i;
1272 
1273 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
1274 	if (bfsize < 0)
1275 		bfsize = 0;
1276 
1277 	if (bfsize < BUF_SIZE_16KiB)
1278 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1279 
1280 	priv->dma_buf_sz = bfsize;
1281 
1282 	/* RX INITIALIZATION */
1283 	netif_dbg(priv, probe, priv->dev,
1284 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1285 
1286 	for (queue = 0; queue < rx_count; queue++) {
1287 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1288 
1289 		netif_dbg(priv, probe, priv->dev,
1290 			  "(%s) dma_rx_phy=0x%08x\n", __func__,
1291 			  (u32)rx_q->dma_rx_phy);
1292 
1293 		stmmac_clear_rx_descriptors(priv, queue);
1294 
1295 		for (i = 0; i < DMA_RX_SIZE; i++) {
1296 			struct dma_desc *p;
1297 
1298 			if (priv->extend_desc)
1299 				p = &((rx_q->dma_erx + i)->basic);
1300 			else
1301 				p = rx_q->dma_rx + i;
1302 
1303 			ret = stmmac_init_rx_buffers(priv, p, i, flags,
1304 						     queue);
1305 			if (ret)
1306 				goto err_init_rx_buffers;
1307 		}
1308 
1309 		rx_q->cur_rx = 0;
1310 		rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
1311 
1312 		/* Setup the chained descriptor addresses */
1313 		if (priv->mode == STMMAC_CHAIN_MODE) {
1314 			if (priv->extend_desc)
1315 				stmmac_mode_init(priv, rx_q->dma_erx,
1316 						rx_q->dma_rx_phy, DMA_RX_SIZE, 1);
1317 			else
1318 				stmmac_mode_init(priv, rx_q->dma_rx,
1319 						rx_q->dma_rx_phy, DMA_RX_SIZE, 0);
1320 		}
1321 	}
1322 
1323 	buf_sz = bfsize;
1324 
1325 	return 0;
1326 
1327 err_init_rx_buffers:
1328 	while (queue >= 0) {
1329 		while (--i >= 0)
1330 			stmmac_free_rx_buffer(priv, queue, i);
1331 
1332 		if (queue == 0)
1333 			break;
1334 
1335 		i = DMA_RX_SIZE;
1336 		queue--;
1337 	}
1338 
1339 	return ret;
1340 }
1341 
1342 /**
1343  * init_dma_tx_desc_rings - init the TX descriptor rings
1344  * @dev: net device structure.
1345  * Description: this function initializes the DMA TX descriptors
1346  * and allocates the socket buffers. It supports the chained and ring
1347  * modes.
1348  */
1349 static int init_dma_tx_desc_rings(struct net_device *dev)
1350 {
1351 	struct stmmac_priv *priv = netdev_priv(dev);
1352 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1353 	u32 queue;
1354 	int i;
1355 
1356 	for (queue = 0; queue < tx_queue_cnt; queue++) {
1357 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1358 
1359 		netif_dbg(priv, probe, priv->dev,
1360 			  "(%s) dma_tx_phy=0x%08x\n", __func__,
1361 			 (u32)tx_q->dma_tx_phy);
1362 
1363 		/* Setup the chained descriptor addresses */
1364 		if (priv->mode == STMMAC_CHAIN_MODE) {
1365 			if (priv->extend_desc)
1366 				stmmac_mode_init(priv, tx_q->dma_etx,
1367 						tx_q->dma_tx_phy, DMA_TX_SIZE, 1);
1368 			else
1369 				stmmac_mode_init(priv, tx_q->dma_tx,
1370 						tx_q->dma_tx_phy, DMA_TX_SIZE, 0);
1371 		}
1372 
1373 		for (i = 0; i < DMA_TX_SIZE; i++) {
1374 			struct dma_desc *p;
1375 			if (priv->extend_desc)
1376 				p = &((tx_q->dma_etx + i)->basic);
1377 			else
1378 				p = tx_q->dma_tx + i;
1379 
1380 			stmmac_clear_desc(priv, p);
1381 
1382 			tx_q->tx_skbuff_dma[i].buf = 0;
1383 			tx_q->tx_skbuff_dma[i].map_as_page = false;
1384 			tx_q->tx_skbuff_dma[i].len = 0;
1385 			tx_q->tx_skbuff_dma[i].last_segment = false;
1386 			tx_q->tx_skbuff[i] = NULL;
1387 		}
1388 
1389 		tx_q->dirty_tx = 0;
1390 		tx_q->cur_tx = 0;
1391 		tx_q->mss = 0;
1392 
1393 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1394 	}
1395 
1396 	return 0;
1397 }
1398 
1399 /**
1400  * init_dma_desc_rings - init the RX/TX descriptor rings
1401  * @dev: net device structure
1402  * @flags: gfp flag.
1403  * Description: this function initializes the DMA RX/TX descriptors
1404  * and allocates the socket buffers. It supports the chained and ring
1405  * modes.
1406  */
1407 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1408 {
1409 	struct stmmac_priv *priv = netdev_priv(dev);
1410 	int ret;
1411 
1412 	ret = init_dma_rx_desc_rings(dev, flags);
1413 	if (ret)
1414 		return ret;
1415 
1416 	ret = init_dma_tx_desc_rings(dev);
1417 
1418 	stmmac_clear_descriptors(priv);
1419 
1420 	if (netif_msg_hw(priv))
1421 		stmmac_display_rings(priv);
1422 
1423 	return ret;
1424 }
1425 
1426 /**
1427  * dma_free_rx_skbufs - free RX dma buffers
1428  * @priv: private structure
1429  * @queue: RX queue index
1430  */
1431 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1432 {
1433 	int i;
1434 
1435 	for (i = 0; i < DMA_RX_SIZE; i++)
1436 		stmmac_free_rx_buffer(priv, queue, i);
1437 }
1438 
1439 /**
1440  * dma_free_tx_skbufs - free TX dma buffers
1441  * @priv: private structure
1442  * @queue: TX queue index
1443  */
1444 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1445 {
1446 	int i;
1447 
1448 	for (i = 0; i < DMA_TX_SIZE; i++)
1449 		stmmac_free_tx_buffer(priv, queue, i);
1450 }
1451 
1452 /**
1453  * free_dma_rx_desc_resources - free RX dma desc resources
1454  * @priv: private structure
1455  */
1456 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1457 {
1458 	u32 rx_count = priv->plat->rx_queues_to_use;
1459 	u32 queue;
1460 
1461 	/* Free RX queue resources */
1462 	for (queue = 0; queue < rx_count; queue++) {
1463 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1464 
1465 		/* Release the DMA RX socket buffers */
1466 		dma_free_rx_skbufs(priv, queue);
1467 
1468 		/* Free DMA regions of consistent memory previously allocated */
1469 		if (!priv->extend_desc)
1470 			dma_free_coherent(priv->device,
1471 					  DMA_RX_SIZE * sizeof(struct dma_desc),
1472 					  rx_q->dma_rx, rx_q->dma_rx_phy);
1473 		else
1474 			dma_free_coherent(priv->device, DMA_RX_SIZE *
1475 					  sizeof(struct dma_extended_desc),
1476 					  rx_q->dma_erx, rx_q->dma_rx_phy);
1477 
1478 		kfree(rx_q->buf_pool);
1479 		if (rx_q->page_pool) {
1480 			page_pool_request_shutdown(rx_q->page_pool);
1481 			page_pool_destroy(rx_q->page_pool);
1482 		}
1483 	}
1484 }
1485 
1486 /**
1487  * free_dma_tx_desc_resources - free TX dma desc resources
1488  * @priv: private structure
1489  */
1490 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1491 {
1492 	u32 tx_count = priv->plat->tx_queues_to_use;
1493 	u32 queue;
1494 
1495 	/* Free TX queue resources */
1496 	for (queue = 0; queue < tx_count; queue++) {
1497 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1498 
1499 		/* Release the DMA TX socket buffers */
1500 		dma_free_tx_skbufs(priv, queue);
1501 
1502 		/* Free DMA regions of consistent memory previously allocated */
1503 		if (!priv->extend_desc)
1504 			dma_free_coherent(priv->device,
1505 					  DMA_TX_SIZE * sizeof(struct dma_desc),
1506 					  tx_q->dma_tx, tx_q->dma_tx_phy);
1507 		else
1508 			dma_free_coherent(priv->device, DMA_TX_SIZE *
1509 					  sizeof(struct dma_extended_desc),
1510 					  tx_q->dma_etx, tx_q->dma_tx_phy);
1511 
1512 		kfree(tx_q->tx_skbuff_dma);
1513 		kfree(tx_q->tx_skbuff);
1514 	}
1515 }
1516 
1517 /**
1518  * alloc_dma_rx_desc_resources - alloc RX resources.
1519  * @priv: private structure
1520  * Description: according to which descriptor can be used (extend or basic)
1521  * this function allocates the resources for TX and RX paths. In case of
1522  * reception, for example, it pre-allocated the RX socket buffer in order to
1523  * allow zero-copy mechanism.
1524  */
1525 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
1526 {
1527 	u32 rx_count = priv->plat->rx_queues_to_use;
1528 	int ret = -ENOMEM;
1529 	u32 queue;
1530 
1531 	/* RX queues buffers and DMA */
1532 	for (queue = 0; queue < rx_count; queue++) {
1533 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1534 		struct page_pool_params pp_params = { 0 };
1535 
1536 		rx_q->queue_index = queue;
1537 		rx_q->priv_data = priv;
1538 
1539 		pp_params.flags = PP_FLAG_DMA_MAP;
1540 		pp_params.pool_size = DMA_RX_SIZE;
1541 		pp_params.order = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1542 		pp_params.nid = dev_to_node(priv->device);
1543 		pp_params.dev = priv->device;
1544 		pp_params.dma_dir = DMA_FROM_DEVICE;
1545 
1546 		rx_q->page_pool = page_pool_create(&pp_params);
1547 		if (IS_ERR(rx_q->page_pool)) {
1548 			ret = PTR_ERR(rx_q->page_pool);
1549 			rx_q->page_pool = NULL;
1550 			goto err_dma;
1551 		}
1552 
1553 		rx_q->buf_pool = kcalloc(DMA_RX_SIZE, sizeof(*rx_q->buf_pool),
1554 					 GFP_KERNEL);
1555 		if (!rx_q->buf_pool)
1556 			goto err_dma;
1557 
1558 		if (priv->extend_desc) {
1559 			rx_q->dma_erx = dma_alloc_coherent(priv->device,
1560 							   DMA_RX_SIZE * sizeof(struct dma_extended_desc),
1561 							   &rx_q->dma_rx_phy,
1562 							   GFP_KERNEL);
1563 			if (!rx_q->dma_erx)
1564 				goto err_dma;
1565 
1566 		} else {
1567 			rx_q->dma_rx = dma_alloc_coherent(priv->device,
1568 							  DMA_RX_SIZE * sizeof(struct dma_desc),
1569 							  &rx_q->dma_rx_phy,
1570 							  GFP_KERNEL);
1571 			if (!rx_q->dma_rx)
1572 				goto err_dma;
1573 		}
1574 	}
1575 
1576 	return 0;
1577 
1578 err_dma:
1579 	free_dma_rx_desc_resources(priv);
1580 
1581 	return ret;
1582 }
1583 
1584 /**
1585  * alloc_dma_tx_desc_resources - alloc TX resources.
1586  * @priv: private structure
1587  * Description: according to which descriptor can be used (extend or basic)
1588  * this function allocates the resources for TX and RX paths. In case of
1589  * reception, for example, it pre-allocated the RX socket buffer in order to
1590  * allow zero-copy mechanism.
1591  */
1592 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
1593 {
1594 	u32 tx_count = priv->plat->tx_queues_to_use;
1595 	int ret = -ENOMEM;
1596 	u32 queue;
1597 
1598 	/* TX queues buffers and DMA */
1599 	for (queue = 0; queue < tx_count; queue++) {
1600 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1601 
1602 		tx_q->queue_index = queue;
1603 		tx_q->priv_data = priv;
1604 
1605 		tx_q->tx_skbuff_dma = kcalloc(DMA_TX_SIZE,
1606 					      sizeof(*tx_q->tx_skbuff_dma),
1607 					      GFP_KERNEL);
1608 		if (!tx_q->tx_skbuff_dma)
1609 			goto err_dma;
1610 
1611 		tx_q->tx_skbuff = kcalloc(DMA_TX_SIZE,
1612 					  sizeof(struct sk_buff *),
1613 					  GFP_KERNEL);
1614 		if (!tx_q->tx_skbuff)
1615 			goto err_dma;
1616 
1617 		if (priv->extend_desc) {
1618 			tx_q->dma_etx = dma_alloc_coherent(priv->device,
1619 							   DMA_TX_SIZE * sizeof(struct dma_extended_desc),
1620 							   &tx_q->dma_tx_phy,
1621 							   GFP_KERNEL);
1622 			if (!tx_q->dma_etx)
1623 				goto err_dma;
1624 		} else {
1625 			tx_q->dma_tx = dma_alloc_coherent(priv->device,
1626 							  DMA_TX_SIZE * sizeof(struct dma_desc),
1627 							  &tx_q->dma_tx_phy,
1628 							  GFP_KERNEL);
1629 			if (!tx_q->dma_tx)
1630 				goto err_dma;
1631 		}
1632 	}
1633 
1634 	return 0;
1635 
1636 err_dma:
1637 	free_dma_tx_desc_resources(priv);
1638 
1639 	return ret;
1640 }
1641 
1642 /**
1643  * alloc_dma_desc_resources - alloc TX/RX resources.
1644  * @priv: private structure
1645  * Description: according to which descriptor can be used (extend or basic)
1646  * this function allocates the resources for TX and RX paths. In case of
1647  * reception, for example, it pre-allocated the RX socket buffer in order to
1648  * allow zero-copy mechanism.
1649  */
1650 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
1651 {
1652 	/* RX Allocation */
1653 	int ret = alloc_dma_rx_desc_resources(priv);
1654 
1655 	if (ret)
1656 		return ret;
1657 
1658 	ret = alloc_dma_tx_desc_resources(priv);
1659 
1660 	return ret;
1661 }
1662 
1663 /**
1664  * free_dma_desc_resources - free dma desc resources
1665  * @priv: private structure
1666  */
1667 static void free_dma_desc_resources(struct stmmac_priv *priv)
1668 {
1669 	/* Release the DMA RX socket buffers */
1670 	free_dma_rx_desc_resources(priv);
1671 
1672 	/* Release the DMA TX socket buffers */
1673 	free_dma_tx_desc_resources(priv);
1674 }
1675 
1676 /**
1677  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
1678  *  @priv: driver private structure
1679  *  Description: It is used for enabling the rx queues in the MAC
1680  */
1681 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
1682 {
1683 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
1684 	int queue;
1685 	u8 mode;
1686 
1687 	for (queue = 0; queue < rx_queues_count; queue++) {
1688 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
1689 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
1690 	}
1691 }
1692 
1693 /**
1694  * stmmac_start_rx_dma - start RX DMA channel
1695  * @priv: driver private structure
1696  * @chan: RX channel index
1697  * Description:
1698  * This starts a RX DMA channel
1699  */
1700 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
1701 {
1702 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
1703 	stmmac_start_rx(priv, priv->ioaddr, chan);
1704 }
1705 
1706 /**
1707  * stmmac_start_tx_dma - start TX DMA channel
1708  * @priv: driver private structure
1709  * @chan: TX channel index
1710  * Description:
1711  * This starts a TX DMA channel
1712  */
1713 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
1714 {
1715 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
1716 	stmmac_start_tx(priv, priv->ioaddr, chan);
1717 }
1718 
1719 /**
1720  * stmmac_stop_rx_dma - stop RX DMA channel
1721  * @priv: driver private structure
1722  * @chan: RX channel index
1723  * Description:
1724  * This stops a RX DMA channel
1725  */
1726 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
1727 {
1728 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
1729 	stmmac_stop_rx(priv, priv->ioaddr, chan);
1730 }
1731 
1732 /**
1733  * stmmac_stop_tx_dma - stop TX DMA channel
1734  * @priv: driver private structure
1735  * @chan: TX channel index
1736  * Description:
1737  * This stops a TX DMA channel
1738  */
1739 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
1740 {
1741 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
1742 	stmmac_stop_tx(priv, priv->ioaddr, chan);
1743 }
1744 
1745 /**
1746  * stmmac_start_all_dma - start all RX and TX DMA channels
1747  * @priv: driver private structure
1748  * Description:
1749  * This starts all the RX and TX DMA channels
1750  */
1751 static void stmmac_start_all_dma(struct stmmac_priv *priv)
1752 {
1753 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1754 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1755 	u32 chan = 0;
1756 
1757 	for (chan = 0; chan < rx_channels_count; chan++)
1758 		stmmac_start_rx_dma(priv, chan);
1759 
1760 	for (chan = 0; chan < tx_channels_count; chan++)
1761 		stmmac_start_tx_dma(priv, chan);
1762 }
1763 
1764 /**
1765  * stmmac_stop_all_dma - stop all RX and TX DMA channels
1766  * @priv: driver private structure
1767  * Description:
1768  * This stops the RX and TX DMA channels
1769  */
1770 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
1771 {
1772 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1773 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1774 	u32 chan = 0;
1775 
1776 	for (chan = 0; chan < rx_channels_count; chan++)
1777 		stmmac_stop_rx_dma(priv, chan);
1778 
1779 	for (chan = 0; chan < tx_channels_count; chan++)
1780 		stmmac_stop_tx_dma(priv, chan);
1781 }
1782 
1783 /**
1784  *  stmmac_dma_operation_mode - HW DMA operation mode
1785  *  @priv: driver private structure
1786  *  Description: it is used for configuring the DMA operation mode register in
1787  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
1788  */
1789 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1790 {
1791 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
1792 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
1793 	int rxfifosz = priv->plat->rx_fifo_size;
1794 	int txfifosz = priv->plat->tx_fifo_size;
1795 	u32 txmode = 0;
1796 	u32 rxmode = 0;
1797 	u32 chan = 0;
1798 	u8 qmode = 0;
1799 
1800 	if (rxfifosz == 0)
1801 		rxfifosz = priv->dma_cap.rx_fifo_size;
1802 	if (txfifosz == 0)
1803 		txfifosz = priv->dma_cap.tx_fifo_size;
1804 
1805 	/* Adjust for real per queue fifo size */
1806 	rxfifosz /= rx_channels_count;
1807 	txfifosz /= tx_channels_count;
1808 
1809 	if (priv->plat->force_thresh_dma_mode) {
1810 		txmode = tc;
1811 		rxmode = tc;
1812 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
1813 		/*
1814 		 * In case of GMAC, SF mode can be enabled
1815 		 * to perform the TX COE in HW. This depends on:
1816 		 * 1) TX COE if actually supported
1817 		 * 2) There is no bugged Jumbo frame support
1818 		 *    that needs to not insert csum in the TDES.
1819 		 */
1820 		txmode = SF_DMA_MODE;
1821 		rxmode = SF_DMA_MODE;
1822 		priv->xstats.threshold = SF_DMA_MODE;
1823 	} else {
1824 		txmode = tc;
1825 		rxmode = SF_DMA_MODE;
1826 	}
1827 
1828 	/* configure all channels */
1829 	for (chan = 0; chan < rx_channels_count; chan++) {
1830 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
1831 
1832 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
1833 				rxfifosz, qmode);
1834 		stmmac_set_dma_bfsize(priv, priv->ioaddr, priv->dma_buf_sz,
1835 				chan);
1836 	}
1837 
1838 	for (chan = 0; chan < tx_channels_count; chan++) {
1839 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
1840 
1841 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
1842 				txfifosz, qmode);
1843 	}
1844 }
1845 
1846 /**
1847  * stmmac_tx_clean - to manage the transmission completion
1848  * @priv: driver private structure
1849  * @queue: TX queue index
1850  * Description: it reclaims the transmit resources after transmission completes.
1851  */
1852 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
1853 {
1854 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1855 	unsigned int bytes_compl = 0, pkts_compl = 0;
1856 	unsigned int entry, count = 0;
1857 
1858 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
1859 
1860 	priv->xstats.tx_clean++;
1861 
1862 	entry = tx_q->dirty_tx;
1863 	while ((entry != tx_q->cur_tx) && (count < budget)) {
1864 		struct sk_buff *skb = tx_q->tx_skbuff[entry];
1865 		struct dma_desc *p;
1866 		int status;
1867 
1868 		if (priv->extend_desc)
1869 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
1870 		else
1871 			p = tx_q->dma_tx + entry;
1872 
1873 		status = stmmac_tx_status(priv, &priv->dev->stats,
1874 				&priv->xstats, p, priv->ioaddr);
1875 		/* Check if the descriptor is owned by the DMA */
1876 		if (unlikely(status & tx_dma_own))
1877 			break;
1878 
1879 		count++;
1880 
1881 		/* Make sure descriptor fields are read after reading
1882 		 * the own bit.
1883 		 */
1884 		dma_rmb();
1885 
1886 		/* Just consider the last segment and ...*/
1887 		if (likely(!(status & tx_not_ls))) {
1888 			/* ... verify the status error condition */
1889 			if (unlikely(status & tx_err)) {
1890 				priv->dev->stats.tx_errors++;
1891 			} else {
1892 				priv->dev->stats.tx_packets++;
1893 				priv->xstats.tx_pkt_n++;
1894 			}
1895 			stmmac_get_tx_hwtstamp(priv, p, skb);
1896 		}
1897 
1898 		if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
1899 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
1900 				dma_unmap_page(priv->device,
1901 					       tx_q->tx_skbuff_dma[entry].buf,
1902 					       tx_q->tx_skbuff_dma[entry].len,
1903 					       DMA_TO_DEVICE);
1904 			else
1905 				dma_unmap_single(priv->device,
1906 						 tx_q->tx_skbuff_dma[entry].buf,
1907 						 tx_q->tx_skbuff_dma[entry].len,
1908 						 DMA_TO_DEVICE);
1909 			tx_q->tx_skbuff_dma[entry].buf = 0;
1910 			tx_q->tx_skbuff_dma[entry].len = 0;
1911 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
1912 		}
1913 
1914 		stmmac_clean_desc3(priv, tx_q, p);
1915 
1916 		tx_q->tx_skbuff_dma[entry].last_segment = false;
1917 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
1918 
1919 		if (likely(skb != NULL)) {
1920 			pkts_compl++;
1921 			bytes_compl += skb->len;
1922 			dev_consume_skb_any(skb);
1923 			tx_q->tx_skbuff[entry] = NULL;
1924 		}
1925 
1926 		stmmac_release_tx_desc(priv, p, priv->mode);
1927 
1928 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
1929 	}
1930 	tx_q->dirty_tx = entry;
1931 
1932 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
1933 				  pkts_compl, bytes_compl);
1934 
1935 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
1936 								queue))) &&
1937 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
1938 
1939 		netif_dbg(priv, tx_done, priv->dev,
1940 			  "%s: restart transmit\n", __func__);
1941 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
1942 	}
1943 
1944 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1945 		stmmac_enable_eee_mode(priv);
1946 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1947 	}
1948 
1949 	/* We still have pending packets, let's call for a new scheduling */
1950 	if (tx_q->dirty_tx != tx_q->cur_tx)
1951 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
1952 
1953 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
1954 
1955 	return count;
1956 }
1957 
1958 /**
1959  * stmmac_tx_err - to manage the tx error
1960  * @priv: driver private structure
1961  * @chan: channel index
1962  * Description: it cleans the descriptors and restarts the transmission
1963  * in case of transmission errors.
1964  */
1965 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
1966 {
1967 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
1968 	int i;
1969 
1970 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
1971 
1972 	stmmac_stop_tx_dma(priv, chan);
1973 	dma_free_tx_skbufs(priv, chan);
1974 	for (i = 0; i < DMA_TX_SIZE; i++)
1975 		if (priv->extend_desc)
1976 			stmmac_init_tx_desc(priv, &tx_q->dma_etx[i].basic,
1977 					priv->mode, (i == DMA_TX_SIZE - 1));
1978 		else
1979 			stmmac_init_tx_desc(priv, &tx_q->dma_tx[i],
1980 					priv->mode, (i == DMA_TX_SIZE - 1));
1981 	tx_q->dirty_tx = 0;
1982 	tx_q->cur_tx = 0;
1983 	tx_q->mss = 0;
1984 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
1985 	stmmac_start_tx_dma(priv, chan);
1986 
1987 	priv->dev->stats.tx_errors++;
1988 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
1989 }
1990 
1991 /**
1992  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
1993  *  @priv: driver private structure
1994  *  @txmode: TX operating mode
1995  *  @rxmode: RX operating mode
1996  *  @chan: channel index
1997  *  Description: it is used for configuring of the DMA operation mode in
1998  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
1999  *  mode.
2000  */
2001 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2002 					  u32 rxmode, u32 chan)
2003 {
2004 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2005 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2006 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2007 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2008 	int rxfifosz = priv->plat->rx_fifo_size;
2009 	int txfifosz = priv->plat->tx_fifo_size;
2010 
2011 	if (rxfifosz == 0)
2012 		rxfifosz = priv->dma_cap.rx_fifo_size;
2013 	if (txfifosz == 0)
2014 		txfifosz = priv->dma_cap.tx_fifo_size;
2015 
2016 	/* Adjust for real per queue fifo size */
2017 	rxfifosz /= rx_channels_count;
2018 	txfifosz /= tx_channels_count;
2019 
2020 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2021 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2022 }
2023 
2024 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2025 {
2026 	int ret;
2027 
2028 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2029 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2030 	if (ret && (ret != -EINVAL)) {
2031 		stmmac_global_err(priv);
2032 		return true;
2033 	}
2034 
2035 	return false;
2036 }
2037 
2038 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan)
2039 {
2040 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2041 						 &priv->xstats, chan);
2042 	struct stmmac_channel *ch = &priv->channel[chan];
2043 
2044 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2045 		if (napi_schedule_prep(&ch->rx_napi)) {
2046 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan);
2047 			__napi_schedule_irqoff(&ch->rx_napi);
2048 			status |= handle_tx;
2049 		}
2050 	}
2051 
2052 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use))
2053 		napi_schedule_irqoff(&ch->tx_napi);
2054 
2055 	return status;
2056 }
2057 
2058 /**
2059  * stmmac_dma_interrupt - DMA ISR
2060  * @priv: driver private structure
2061  * Description: this is the DMA ISR. It is called by the main ISR.
2062  * It calls the dwmac dma routine and schedule poll method in case of some
2063  * work can be done.
2064  */
2065 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2066 {
2067 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2068 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2069 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2070 				tx_channel_count : rx_channel_count;
2071 	u32 chan;
2072 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2073 
2074 	/* Make sure we never check beyond our status buffer. */
2075 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2076 		channels_to_check = ARRAY_SIZE(status);
2077 
2078 	for (chan = 0; chan < channels_to_check; chan++)
2079 		status[chan] = stmmac_napi_check(priv, chan);
2080 
2081 	for (chan = 0; chan < tx_channel_count; chan++) {
2082 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2083 			/* Try to bump up the dma threshold on this failure */
2084 			if (unlikely(priv->xstats.threshold != SF_DMA_MODE) &&
2085 			    (tc <= 256)) {
2086 				tc += 64;
2087 				if (priv->plat->force_thresh_dma_mode)
2088 					stmmac_set_dma_operation_mode(priv,
2089 								      tc,
2090 								      tc,
2091 								      chan);
2092 				else
2093 					stmmac_set_dma_operation_mode(priv,
2094 								    tc,
2095 								    SF_DMA_MODE,
2096 								    chan);
2097 				priv->xstats.threshold = tc;
2098 			}
2099 		} else if (unlikely(status[chan] == tx_hard_error)) {
2100 			stmmac_tx_err(priv, chan);
2101 		}
2102 	}
2103 }
2104 
2105 /**
2106  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2107  * @priv: driver private structure
2108  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2109  */
2110 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2111 {
2112 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2113 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2114 
2115 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2116 
2117 	if (priv->dma_cap.rmon) {
2118 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2119 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2120 	} else
2121 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2122 }
2123 
2124 /**
2125  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2126  * @priv: driver private structure
2127  * Description:
2128  *  new GMAC chip generations have a new register to indicate the
2129  *  presence of the optional feature/functions.
2130  *  This can be also used to override the value passed through the
2131  *  platform and necessary for old MAC10/100 and GMAC chips.
2132  */
2133 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2134 {
2135 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2136 }
2137 
2138 /**
2139  * stmmac_check_ether_addr - check if the MAC addr is valid
2140  * @priv: driver private structure
2141  * Description:
2142  * it is to verify if the MAC address is valid, in case of failures it
2143  * generates a random MAC address
2144  */
2145 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2146 {
2147 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2148 		stmmac_get_umac_addr(priv, priv->hw, priv->dev->dev_addr, 0);
2149 		if (!is_valid_ether_addr(priv->dev->dev_addr))
2150 			eth_hw_addr_random(priv->dev);
2151 		dev_info(priv->device, "device MAC address %pM\n",
2152 			 priv->dev->dev_addr);
2153 	}
2154 }
2155 
2156 /**
2157  * stmmac_init_dma_engine - DMA init.
2158  * @priv: driver private structure
2159  * Description:
2160  * It inits the DMA invoking the specific MAC/GMAC callback.
2161  * Some DMA parameters can be passed from the platform;
2162  * in case of these are not passed a default is kept for the MAC or GMAC.
2163  */
2164 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2165 {
2166 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2167 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2168 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2169 	struct stmmac_rx_queue *rx_q;
2170 	struct stmmac_tx_queue *tx_q;
2171 	u32 chan = 0;
2172 	int atds = 0;
2173 	int ret = 0;
2174 
2175 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2176 		dev_err(priv->device, "Invalid DMA configuration\n");
2177 		return -EINVAL;
2178 	}
2179 
2180 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2181 		atds = 1;
2182 
2183 	ret = stmmac_reset(priv, priv->ioaddr);
2184 	if (ret) {
2185 		dev_err(priv->device, "Failed to reset the dma\n");
2186 		return ret;
2187 	}
2188 
2189 	/* DMA Configuration */
2190 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2191 
2192 	if (priv->plat->axi)
2193 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2194 
2195 	/* DMA CSR Channel configuration */
2196 	for (chan = 0; chan < dma_csr_ch; chan++)
2197 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2198 
2199 	/* DMA RX Channel Configuration */
2200 	for (chan = 0; chan < rx_channels_count; chan++) {
2201 		rx_q = &priv->rx_queue[chan];
2202 
2203 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2204 				    rx_q->dma_rx_phy, chan);
2205 
2206 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2207 			    (DMA_RX_SIZE * sizeof(struct dma_desc));
2208 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2209 				       rx_q->rx_tail_addr, chan);
2210 	}
2211 
2212 	/* DMA TX Channel Configuration */
2213 	for (chan = 0; chan < tx_channels_count; chan++) {
2214 		tx_q = &priv->tx_queue[chan];
2215 
2216 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2217 				    tx_q->dma_tx_phy, chan);
2218 
2219 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2220 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2221 				       tx_q->tx_tail_addr, chan);
2222 	}
2223 
2224 	return ret;
2225 }
2226 
2227 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2228 {
2229 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2230 
2231 	mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(priv->tx_coal_timer));
2232 }
2233 
2234 /**
2235  * stmmac_tx_timer - mitigation sw timer for tx.
2236  * @data: data pointer
2237  * Description:
2238  * This is the timer handler to directly invoke the stmmac_tx_clean.
2239  */
2240 static void stmmac_tx_timer(struct timer_list *t)
2241 {
2242 	struct stmmac_tx_queue *tx_q = from_timer(tx_q, t, txtimer);
2243 	struct stmmac_priv *priv = tx_q->priv_data;
2244 	struct stmmac_channel *ch;
2245 
2246 	ch = &priv->channel[tx_q->queue_index];
2247 
2248 	/*
2249 	 * If NAPI is already running we can miss some events. Let's rearm
2250 	 * the timer and try again.
2251 	 */
2252 	if (likely(napi_schedule_prep(&ch->tx_napi)))
2253 		__napi_schedule(&ch->tx_napi);
2254 	else
2255 		mod_timer(&tx_q->txtimer, STMMAC_COAL_TIMER(10));
2256 }
2257 
2258 /**
2259  * stmmac_init_coalesce - init mitigation options.
2260  * @priv: driver private structure
2261  * Description:
2262  * This inits the coalesce parameters: i.e. timer rate,
2263  * timer handler and default threshold used for enabling the
2264  * interrupt on completion bit.
2265  */
2266 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2267 {
2268 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2269 	u32 chan;
2270 
2271 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
2272 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
2273 	priv->rx_coal_frames = STMMAC_RX_FRAMES;
2274 
2275 	for (chan = 0; chan < tx_channel_count; chan++) {
2276 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2277 
2278 		timer_setup(&tx_q->txtimer, stmmac_tx_timer, 0);
2279 	}
2280 }
2281 
2282 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2283 {
2284 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2285 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2286 	u32 chan;
2287 
2288 	/* set TX ring length */
2289 	for (chan = 0; chan < tx_channels_count; chan++)
2290 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2291 				(DMA_TX_SIZE - 1), chan);
2292 
2293 	/* set RX ring length */
2294 	for (chan = 0; chan < rx_channels_count; chan++)
2295 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2296 				(DMA_RX_SIZE - 1), chan);
2297 }
2298 
2299 /**
2300  *  stmmac_set_tx_queue_weight - Set TX queue weight
2301  *  @priv: driver private structure
2302  *  Description: It is used for setting TX queues weight
2303  */
2304 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2305 {
2306 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2307 	u32 weight;
2308 	u32 queue;
2309 
2310 	for (queue = 0; queue < tx_queues_count; queue++) {
2311 		weight = priv->plat->tx_queues_cfg[queue].weight;
2312 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
2313 	}
2314 }
2315 
2316 /**
2317  *  stmmac_configure_cbs - Configure CBS in TX queue
2318  *  @priv: driver private structure
2319  *  Description: It is used for configuring CBS in AVB TX queues
2320  */
2321 static void stmmac_configure_cbs(struct stmmac_priv *priv)
2322 {
2323 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2324 	u32 mode_to_use;
2325 	u32 queue;
2326 
2327 	/* queue 0 is reserved for legacy traffic */
2328 	for (queue = 1; queue < tx_queues_count; queue++) {
2329 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
2330 		if (mode_to_use == MTL_QUEUE_DCB)
2331 			continue;
2332 
2333 		stmmac_config_cbs(priv, priv->hw,
2334 				priv->plat->tx_queues_cfg[queue].send_slope,
2335 				priv->plat->tx_queues_cfg[queue].idle_slope,
2336 				priv->plat->tx_queues_cfg[queue].high_credit,
2337 				priv->plat->tx_queues_cfg[queue].low_credit,
2338 				queue);
2339 	}
2340 }
2341 
2342 /**
2343  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
2344  *  @priv: driver private structure
2345  *  Description: It is used for mapping RX queues to RX dma channels
2346  */
2347 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
2348 {
2349 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2350 	u32 queue;
2351 	u32 chan;
2352 
2353 	for (queue = 0; queue < rx_queues_count; queue++) {
2354 		chan = priv->plat->rx_queues_cfg[queue].chan;
2355 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
2356 	}
2357 }
2358 
2359 /**
2360  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
2361  *  @priv: driver private structure
2362  *  Description: It is used for configuring the RX Queue Priority
2363  */
2364 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
2365 {
2366 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2367 	u32 queue;
2368 	u32 prio;
2369 
2370 	for (queue = 0; queue < rx_queues_count; queue++) {
2371 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
2372 			continue;
2373 
2374 		prio = priv->plat->rx_queues_cfg[queue].prio;
2375 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
2376 	}
2377 }
2378 
2379 /**
2380  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
2381  *  @priv: driver private structure
2382  *  Description: It is used for configuring the TX Queue Priority
2383  */
2384 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
2385 {
2386 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2387 	u32 queue;
2388 	u32 prio;
2389 
2390 	for (queue = 0; queue < tx_queues_count; queue++) {
2391 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
2392 			continue;
2393 
2394 		prio = priv->plat->tx_queues_cfg[queue].prio;
2395 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
2396 	}
2397 }
2398 
2399 /**
2400  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
2401  *  @priv: driver private structure
2402  *  Description: It is used for configuring the RX queue routing
2403  */
2404 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
2405 {
2406 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2407 	u32 queue;
2408 	u8 packet;
2409 
2410 	for (queue = 0; queue < rx_queues_count; queue++) {
2411 		/* no specific packet type routing specified for the queue */
2412 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
2413 			continue;
2414 
2415 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
2416 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
2417 	}
2418 }
2419 
2420 /**
2421  *  stmmac_mtl_configuration - Configure MTL
2422  *  @priv: driver private structure
2423  *  Description: It is used for configurring MTL
2424  */
2425 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
2426 {
2427 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2428 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2429 
2430 	if (tx_queues_count > 1)
2431 		stmmac_set_tx_queue_weight(priv);
2432 
2433 	/* Configure MTL RX algorithms */
2434 	if (rx_queues_count > 1)
2435 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
2436 				priv->plat->rx_sched_algorithm);
2437 
2438 	/* Configure MTL TX algorithms */
2439 	if (tx_queues_count > 1)
2440 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
2441 				priv->plat->tx_sched_algorithm);
2442 
2443 	/* Configure CBS in AVB TX queues */
2444 	if (tx_queues_count > 1)
2445 		stmmac_configure_cbs(priv);
2446 
2447 	/* Map RX MTL to DMA channels */
2448 	stmmac_rx_queue_dma_chan_map(priv);
2449 
2450 	/* Enable MAC RX Queues */
2451 	stmmac_mac_enable_rx_queues(priv);
2452 
2453 	/* Set RX priorities */
2454 	if (rx_queues_count > 1)
2455 		stmmac_mac_config_rx_queues_prio(priv);
2456 
2457 	/* Set TX priorities */
2458 	if (tx_queues_count > 1)
2459 		stmmac_mac_config_tx_queues_prio(priv);
2460 
2461 	/* Set RX routing */
2462 	if (rx_queues_count > 1)
2463 		stmmac_mac_config_rx_queues_routing(priv);
2464 }
2465 
2466 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
2467 {
2468 	if (priv->dma_cap.asp) {
2469 		netdev_info(priv->dev, "Enabling Safety Features\n");
2470 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp);
2471 	} else {
2472 		netdev_info(priv->dev, "No Safety Features support found\n");
2473 	}
2474 }
2475 
2476 /**
2477  * stmmac_hw_setup - setup mac in a usable state.
2478  *  @dev : pointer to the device structure.
2479  *  Description:
2480  *  this is the main function to setup the HW in a usable state because the
2481  *  dma engine is reset, the core registers are configured (e.g. AXI,
2482  *  Checksum features, timers). The DMA is ready to start receiving and
2483  *  transmitting.
2484  *  Return value:
2485  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2486  *  file on failure.
2487  */
2488 static int stmmac_hw_setup(struct net_device *dev, bool init_ptp)
2489 {
2490 	struct stmmac_priv *priv = netdev_priv(dev);
2491 	u32 rx_cnt = priv->plat->rx_queues_to_use;
2492 	u32 tx_cnt = priv->plat->tx_queues_to_use;
2493 	u32 chan;
2494 	int ret;
2495 
2496 	/* DMA initialization and SW reset */
2497 	ret = stmmac_init_dma_engine(priv);
2498 	if (ret < 0) {
2499 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
2500 			   __func__);
2501 		return ret;
2502 	}
2503 
2504 	/* Copy the MAC addr into the HW  */
2505 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
2506 
2507 	/* PS and related bits will be programmed according to the speed */
2508 	if (priv->hw->pcs) {
2509 		int speed = priv->plat->mac_port_sel_speed;
2510 
2511 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
2512 		    (speed == SPEED_1000)) {
2513 			priv->hw->ps = speed;
2514 		} else {
2515 			dev_warn(priv->device, "invalid port speed\n");
2516 			priv->hw->ps = 0;
2517 		}
2518 	}
2519 
2520 	/* Initialize the MAC Core */
2521 	stmmac_core_init(priv, priv->hw, dev);
2522 
2523 	/* Initialize MTL*/
2524 	stmmac_mtl_configuration(priv);
2525 
2526 	/* Initialize Safety Features */
2527 	stmmac_safety_feat_configuration(priv);
2528 
2529 	ret = stmmac_rx_ipc(priv, priv->hw);
2530 	if (!ret) {
2531 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
2532 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2533 		priv->hw->rx_csum = 0;
2534 	}
2535 
2536 	/* Enable the MAC Rx/Tx */
2537 	stmmac_mac_set(priv, priv->ioaddr, true);
2538 
2539 	/* Set the HW DMA mode and the COE */
2540 	stmmac_dma_operation_mode(priv);
2541 
2542 	stmmac_mmc_setup(priv);
2543 
2544 	if (init_ptp) {
2545 		ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
2546 		if (ret < 0)
2547 			netdev_warn(priv->dev, "failed to enable PTP reference clock: %d\n", ret);
2548 
2549 		ret = stmmac_init_ptp(priv);
2550 		if (ret == -EOPNOTSUPP)
2551 			netdev_warn(priv->dev, "PTP not supported by HW\n");
2552 		else if (ret)
2553 			netdev_warn(priv->dev, "PTP init failed\n");
2554 	}
2555 
2556 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
2557 
2558 	if (priv->use_riwt) {
2559 		ret = stmmac_rx_watchdog(priv, priv->ioaddr, MIN_DMA_RIWT, rx_cnt);
2560 		if (!ret)
2561 			priv->rx_riwt = MIN_DMA_RIWT;
2562 	}
2563 
2564 	if (priv->hw->pcs)
2565 		stmmac_pcs_ctrl_ane(priv, priv->hw, 1, priv->hw->ps, 0);
2566 
2567 	/* set TX and RX rings length */
2568 	stmmac_set_rings_length(priv);
2569 
2570 	/* Enable TSO */
2571 	if (priv->tso) {
2572 		for (chan = 0; chan < tx_cnt; chan++)
2573 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
2574 	}
2575 
2576 	/* Start the ball rolling... */
2577 	stmmac_start_all_dma(priv);
2578 
2579 	return 0;
2580 }
2581 
2582 static void stmmac_hw_teardown(struct net_device *dev)
2583 {
2584 	struct stmmac_priv *priv = netdev_priv(dev);
2585 
2586 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
2587 }
2588 
2589 /**
2590  *  stmmac_open - open entry point of the driver
2591  *  @dev : pointer to the device structure.
2592  *  Description:
2593  *  This function is the open entry point of the driver.
2594  *  Return value:
2595  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2596  *  file on failure.
2597  */
2598 static int stmmac_open(struct net_device *dev)
2599 {
2600 	struct stmmac_priv *priv = netdev_priv(dev);
2601 	u32 chan;
2602 	int ret;
2603 
2604 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
2605 	    priv->hw->pcs != STMMAC_PCS_TBI &&
2606 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
2607 		ret = stmmac_init_phy(dev);
2608 		if (ret) {
2609 			netdev_err(priv->dev,
2610 				   "%s: Cannot attach to PHY (error: %d)\n",
2611 				   __func__, ret);
2612 			return ret;
2613 		}
2614 	}
2615 
2616 	/* Extra statistics */
2617 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
2618 	priv->xstats.threshold = tc;
2619 
2620 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
2621 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
2622 
2623 	ret = alloc_dma_desc_resources(priv);
2624 	if (ret < 0) {
2625 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
2626 			   __func__);
2627 		goto dma_desc_error;
2628 	}
2629 
2630 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
2631 	if (ret < 0) {
2632 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
2633 			   __func__);
2634 		goto init_error;
2635 	}
2636 
2637 	ret = stmmac_hw_setup(dev, true);
2638 	if (ret < 0) {
2639 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
2640 		goto init_error;
2641 	}
2642 
2643 	stmmac_init_coalesce(priv);
2644 
2645 	phylink_start(priv->phylink);
2646 
2647 	/* Request the IRQ lines */
2648 	ret = request_irq(dev->irq, stmmac_interrupt,
2649 			  IRQF_SHARED, dev->name, dev);
2650 	if (unlikely(ret < 0)) {
2651 		netdev_err(priv->dev,
2652 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
2653 			   __func__, dev->irq, ret);
2654 		goto irq_error;
2655 	}
2656 
2657 	/* Request the Wake IRQ in case of another line is used for WoL */
2658 	if (priv->wol_irq != dev->irq) {
2659 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
2660 				  IRQF_SHARED, dev->name, dev);
2661 		if (unlikely(ret < 0)) {
2662 			netdev_err(priv->dev,
2663 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
2664 				   __func__, priv->wol_irq, ret);
2665 			goto wolirq_error;
2666 		}
2667 	}
2668 
2669 	/* Request the IRQ lines */
2670 	if (priv->lpi_irq > 0) {
2671 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
2672 				  dev->name, dev);
2673 		if (unlikely(ret < 0)) {
2674 			netdev_err(priv->dev,
2675 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
2676 				   __func__, priv->lpi_irq, ret);
2677 			goto lpiirq_error;
2678 		}
2679 	}
2680 
2681 	stmmac_enable_all_queues(priv);
2682 	stmmac_start_all_queues(priv);
2683 
2684 	return 0;
2685 
2686 lpiirq_error:
2687 	if (priv->wol_irq != dev->irq)
2688 		free_irq(priv->wol_irq, dev);
2689 wolirq_error:
2690 	free_irq(dev->irq, dev);
2691 irq_error:
2692 	phylink_stop(priv->phylink);
2693 
2694 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2695 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2696 
2697 	stmmac_hw_teardown(dev);
2698 init_error:
2699 	free_dma_desc_resources(priv);
2700 dma_desc_error:
2701 	phylink_disconnect_phy(priv->phylink);
2702 	return ret;
2703 }
2704 
2705 /**
2706  *  stmmac_release - close entry point of the driver
2707  *  @dev : device pointer.
2708  *  Description:
2709  *  This is the stop entry point of the driver.
2710  */
2711 static int stmmac_release(struct net_device *dev)
2712 {
2713 	struct stmmac_priv *priv = netdev_priv(dev);
2714 	u32 chan;
2715 
2716 	if (priv->eee_enabled)
2717 		del_timer_sync(&priv->eee_ctrl_timer);
2718 
2719 	/* Stop and disconnect the PHY */
2720 	phylink_stop(priv->phylink);
2721 	phylink_disconnect_phy(priv->phylink);
2722 
2723 	stmmac_stop_all_queues(priv);
2724 
2725 	stmmac_disable_all_queues(priv);
2726 
2727 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
2728 		del_timer_sync(&priv->tx_queue[chan].txtimer);
2729 
2730 	/* Free the IRQ lines */
2731 	free_irq(dev->irq, dev);
2732 	if (priv->wol_irq != dev->irq)
2733 		free_irq(priv->wol_irq, dev);
2734 	if (priv->lpi_irq > 0)
2735 		free_irq(priv->lpi_irq, dev);
2736 
2737 	/* Stop TX/RX DMA and clear the descriptors */
2738 	stmmac_stop_all_dma(priv);
2739 
2740 	/* Release and free the Rx/Tx resources */
2741 	free_dma_desc_resources(priv);
2742 
2743 	/* Disable the MAC Rx/Tx */
2744 	stmmac_mac_set(priv, priv->ioaddr, false);
2745 
2746 	netif_carrier_off(dev);
2747 
2748 	stmmac_release_ptp(priv);
2749 
2750 	return 0;
2751 }
2752 
2753 /**
2754  *  stmmac_tso_allocator - close entry point of the driver
2755  *  @priv: driver private structure
2756  *  @des: buffer start address
2757  *  @total_len: total length to fill in descriptors
2758  *  @last_segmant: condition for the last descriptor
2759  *  @queue: TX queue index
2760  *  Description:
2761  *  This function fills descriptor and request new descriptors according to
2762  *  buffer length to fill
2763  */
2764 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
2765 				 int total_len, bool last_segment, u32 queue)
2766 {
2767 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2768 	struct dma_desc *desc;
2769 	u32 buff_size;
2770 	int tmp_len;
2771 
2772 	tmp_len = total_len;
2773 
2774 	while (tmp_len > 0) {
2775 		dma_addr_t curr_addr;
2776 
2777 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2778 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2779 		desc = tx_q->dma_tx + tx_q->cur_tx;
2780 
2781 		curr_addr = des + (total_len - tmp_len);
2782 		if (priv->dma_cap.addr64 <= 32)
2783 			desc->des0 = cpu_to_le32(curr_addr);
2784 		else
2785 			stmmac_set_desc_addr(priv, desc, curr_addr);
2786 
2787 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
2788 			    TSO_MAX_BUFF_SIZE : tmp_len;
2789 
2790 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
2791 				0, 1,
2792 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
2793 				0, 0);
2794 
2795 		tmp_len -= TSO_MAX_BUFF_SIZE;
2796 	}
2797 }
2798 
2799 /**
2800  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
2801  *  @skb : the socket buffer
2802  *  @dev : device pointer
2803  *  Description: this is the transmit function that is called on TSO frames
2804  *  (support available on GMAC4 and newer chips).
2805  *  Diagram below show the ring programming in case of TSO frames:
2806  *
2807  *  First Descriptor
2808  *   --------
2809  *   | DES0 |---> buffer1 = L2/L3/L4 header
2810  *   | DES1 |---> TCP Payload (can continue on next descr...)
2811  *   | DES2 |---> buffer 1 and 2 len
2812  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
2813  *   --------
2814  *	|
2815  *     ...
2816  *	|
2817  *   --------
2818  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
2819  *   | DES1 | --|
2820  *   | DES2 | --> buffer 1 and 2 len
2821  *   | DES3 |
2822  *   --------
2823  *
2824  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
2825  */
2826 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
2827 {
2828 	struct dma_desc *desc, *first, *mss_desc = NULL;
2829 	struct stmmac_priv *priv = netdev_priv(dev);
2830 	int nfrags = skb_shinfo(skb)->nr_frags;
2831 	u32 queue = skb_get_queue_mapping(skb);
2832 	unsigned int first_entry;
2833 	struct stmmac_tx_queue *tx_q;
2834 	int tmp_pay_len = 0;
2835 	u32 pay_len, mss;
2836 	u8 proto_hdr_len;
2837 	dma_addr_t des;
2838 	int i;
2839 
2840 	tx_q = &priv->tx_queue[queue];
2841 
2842 	/* Compute header lengths */
2843 	proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2844 
2845 	/* Desc availability based on threshold should be enough safe */
2846 	if (unlikely(stmmac_tx_avail(priv, queue) <
2847 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
2848 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
2849 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
2850 								queue));
2851 			/* This is a hard error, log it. */
2852 			netdev_err(priv->dev,
2853 				   "%s: Tx Ring full when queue awake\n",
2854 				   __func__);
2855 		}
2856 		return NETDEV_TX_BUSY;
2857 	}
2858 
2859 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
2860 
2861 	mss = skb_shinfo(skb)->gso_size;
2862 
2863 	/* set new MSS value if needed */
2864 	if (mss != tx_q->mss) {
2865 		mss_desc = tx_q->dma_tx + tx_q->cur_tx;
2866 		stmmac_set_mss(priv, mss_desc, mss);
2867 		tx_q->mss = mss;
2868 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2869 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
2870 	}
2871 
2872 	if (netif_msg_tx_queued(priv)) {
2873 		pr_info("%s: tcphdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
2874 			__func__, tcp_hdrlen(skb), proto_hdr_len, pay_len, mss);
2875 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
2876 			skb->data_len);
2877 	}
2878 
2879 	first_entry = tx_q->cur_tx;
2880 	WARN_ON(tx_q->tx_skbuff[first_entry]);
2881 
2882 	desc = tx_q->dma_tx + first_entry;
2883 	first = desc;
2884 
2885 	/* first descriptor: fill Headers on Buf1 */
2886 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
2887 			     DMA_TO_DEVICE);
2888 	if (dma_mapping_error(priv->device, des))
2889 		goto dma_map_err;
2890 
2891 	tx_q->tx_skbuff_dma[first_entry].buf = des;
2892 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
2893 
2894 	if (priv->dma_cap.addr64 <= 32) {
2895 		first->des0 = cpu_to_le32(des);
2896 
2897 		/* Fill start of payload in buff2 of first descriptor */
2898 		if (pay_len)
2899 			first->des1 = cpu_to_le32(des + proto_hdr_len);
2900 
2901 		/* If needed take extra descriptors to fill the remaining payload */
2902 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
2903 	} else {
2904 		stmmac_set_desc_addr(priv, first, des);
2905 		tmp_pay_len = pay_len;
2906 	}
2907 
2908 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
2909 
2910 	/* Prepare fragments */
2911 	for (i = 0; i < nfrags; i++) {
2912 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2913 
2914 		des = skb_frag_dma_map(priv->device, frag, 0,
2915 				       skb_frag_size(frag),
2916 				       DMA_TO_DEVICE);
2917 		if (dma_mapping_error(priv->device, des))
2918 			goto dma_map_err;
2919 
2920 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
2921 				     (i == nfrags - 1), queue);
2922 
2923 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
2924 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
2925 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
2926 	}
2927 
2928 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
2929 
2930 	/* Only the last descriptor gets to point to the skb. */
2931 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
2932 
2933 	/* We've used all descriptors we need for this skb, however,
2934 	 * advance cur_tx so that it references a fresh descriptor.
2935 	 * ndo_start_xmit will fill this descriptor the next time it's
2936 	 * called and stmmac_tx_clean may clean up to this descriptor.
2937 	 */
2938 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
2939 
2940 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
2941 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
2942 			  __func__);
2943 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
2944 	}
2945 
2946 	dev->stats.tx_bytes += skb->len;
2947 	priv->xstats.tx_tso_frames++;
2948 	priv->xstats.tx_tso_nfrags += nfrags;
2949 
2950 	/* Manage tx mitigation */
2951 	tx_q->tx_count_frames += nfrags + 1;
2952 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
2953 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
2954 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2955 	    priv->hwts_tx_en)) {
2956 		stmmac_tx_timer_arm(priv, queue);
2957 	} else {
2958 		tx_q->tx_count_frames = 0;
2959 		stmmac_set_tx_ic(priv, desc);
2960 		priv->xstats.tx_set_ic_bit++;
2961 	}
2962 
2963 	skb_tx_timestamp(skb);
2964 
2965 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2966 		     priv->hwts_tx_en)) {
2967 		/* declare that device is doing timestamping */
2968 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2969 		stmmac_enable_tx_timestamp(priv, first);
2970 	}
2971 
2972 	/* Complete the first descriptor before granting the DMA */
2973 	stmmac_prepare_tso_tx_desc(priv, first, 1,
2974 			proto_hdr_len,
2975 			pay_len,
2976 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
2977 			tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
2978 
2979 	/* If context desc is used to change MSS */
2980 	if (mss_desc) {
2981 		/* Make sure that first descriptor has been completely
2982 		 * written, including its own bit. This is because MSS is
2983 		 * actually before first descriptor, so we need to make
2984 		 * sure that MSS's own bit is the last thing written.
2985 		 */
2986 		dma_wmb();
2987 		stmmac_set_tx_owner(priv, mss_desc);
2988 	}
2989 
2990 	/* The own bit must be the latest setting done when prepare the
2991 	 * descriptor and then barrier is needed to make sure that
2992 	 * all is coherent before granting the DMA engine.
2993 	 */
2994 	wmb();
2995 
2996 	if (netif_msg_pktdata(priv)) {
2997 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
2998 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
2999 			tx_q->cur_tx, first, nfrags);
3000 
3001 		stmmac_display_ring(priv, (void *)tx_q->dma_tx, DMA_TX_SIZE, 0);
3002 
3003 		pr_info(">>> frame to be transmitted: ");
3004 		print_pkt(skb->data, skb_headlen(skb));
3005 	}
3006 
3007 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3008 
3009 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3010 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3011 
3012 	return NETDEV_TX_OK;
3013 
3014 dma_map_err:
3015 	dev_err(priv->device, "Tx dma map failed\n");
3016 	dev_kfree_skb(skb);
3017 	priv->dev->stats.tx_dropped++;
3018 	return NETDEV_TX_OK;
3019 }
3020 
3021 /**
3022  *  stmmac_xmit - Tx entry point of the driver
3023  *  @skb : the socket buffer
3024  *  @dev : device pointer
3025  *  Description : this is the tx entry point of the driver.
3026  *  It programs the chain or the ring and supports oversized frames
3027  *  and SG feature.
3028  */
3029 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
3030 {
3031 	struct stmmac_priv *priv = netdev_priv(dev);
3032 	unsigned int nopaged_len = skb_headlen(skb);
3033 	int i, csum_insertion = 0, is_jumbo = 0;
3034 	u32 queue = skb_get_queue_mapping(skb);
3035 	int nfrags = skb_shinfo(skb)->nr_frags;
3036 	struct dma_desc *desc, *first;
3037 	struct stmmac_tx_queue *tx_q;
3038 	unsigned int first_entry;
3039 	unsigned int enh_desc;
3040 	dma_addr_t des;
3041 	int entry;
3042 
3043 	tx_q = &priv->tx_queue[queue];
3044 
3045 	if (priv->tx_path_in_lpi_mode)
3046 		stmmac_disable_eee_mode(priv);
3047 
3048 	/* Manage oversized TCP frames for GMAC4 device */
3049 	if (skb_is_gso(skb) && priv->tso) {
3050 		if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
3051 			return stmmac_tso_xmit(skb, dev);
3052 	}
3053 
3054 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
3055 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3056 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3057 								queue));
3058 			/* This is a hard error, log it. */
3059 			netdev_err(priv->dev,
3060 				   "%s: Tx Ring full when queue awake\n",
3061 				   __func__);
3062 		}
3063 		return NETDEV_TX_BUSY;
3064 	}
3065 
3066 	entry = tx_q->cur_tx;
3067 	first_entry = entry;
3068 	WARN_ON(tx_q->tx_skbuff[first_entry]);
3069 
3070 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
3071 
3072 	if (likely(priv->extend_desc))
3073 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3074 	else
3075 		desc = tx_q->dma_tx + entry;
3076 
3077 	first = desc;
3078 
3079 	enh_desc = priv->plat->enh_desc;
3080 	/* To program the descriptors according to the size of the frame */
3081 	if (enh_desc)
3082 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
3083 
3084 	if (unlikely(is_jumbo)) {
3085 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
3086 		if (unlikely(entry < 0) && (entry != -EINVAL))
3087 			goto dma_map_err;
3088 	}
3089 
3090 	for (i = 0; i < nfrags; i++) {
3091 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3092 		int len = skb_frag_size(frag);
3093 		bool last_segment = (i == (nfrags - 1));
3094 
3095 		entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3096 		WARN_ON(tx_q->tx_skbuff[entry]);
3097 
3098 		if (likely(priv->extend_desc))
3099 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
3100 		else
3101 			desc = tx_q->dma_tx + entry;
3102 
3103 		des = skb_frag_dma_map(priv->device, frag, 0, len,
3104 				       DMA_TO_DEVICE);
3105 		if (dma_mapping_error(priv->device, des))
3106 			goto dma_map_err; /* should reuse desc w/o issues */
3107 
3108 		tx_q->tx_skbuff_dma[entry].buf = des;
3109 
3110 		stmmac_set_desc_addr(priv, desc, des);
3111 
3112 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
3113 		tx_q->tx_skbuff_dma[entry].len = len;
3114 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
3115 
3116 		/* Prepare the descriptor and set the own bit too */
3117 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
3118 				priv->mode, 1, last_segment, skb->len);
3119 	}
3120 
3121 	/* Only the last descriptor gets to point to the skb. */
3122 	tx_q->tx_skbuff[entry] = skb;
3123 
3124 	/* We've used all descriptors we need for this skb, however,
3125 	 * advance cur_tx so that it references a fresh descriptor.
3126 	 * ndo_start_xmit will fill this descriptor the next time it's
3127 	 * called and stmmac_tx_clean may clean up to this descriptor.
3128 	 */
3129 	entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
3130 	tx_q->cur_tx = entry;
3131 
3132 	if (netif_msg_pktdata(priv)) {
3133 		void *tx_head;
3134 
3135 		netdev_dbg(priv->dev,
3136 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
3137 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
3138 			   entry, first, nfrags);
3139 
3140 		if (priv->extend_desc)
3141 			tx_head = (void *)tx_q->dma_etx;
3142 		else
3143 			tx_head = (void *)tx_q->dma_tx;
3144 
3145 		stmmac_display_ring(priv, tx_head, DMA_TX_SIZE, false);
3146 
3147 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
3148 		print_pkt(skb->data, skb->len);
3149 	}
3150 
3151 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
3152 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
3153 			  __func__);
3154 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
3155 	}
3156 
3157 	dev->stats.tx_bytes += skb->len;
3158 
3159 	/* According to the coalesce parameter the IC bit for the latest
3160 	 * segment is reset and the timer re-started to clean the tx status.
3161 	 * This approach takes care about the fragments: desc is the first
3162 	 * element in case of no SG.
3163 	 */
3164 	tx_q->tx_count_frames += nfrags + 1;
3165 	if (likely(priv->tx_coal_frames > tx_q->tx_count_frames) &&
3166 	    !(priv->synopsys_id >= DWMAC_CORE_4_00 &&
3167 	    (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3168 	    priv->hwts_tx_en)) {
3169 		stmmac_tx_timer_arm(priv, queue);
3170 	} else {
3171 		tx_q->tx_count_frames = 0;
3172 		stmmac_set_tx_ic(priv, desc);
3173 		priv->xstats.tx_set_ic_bit++;
3174 	}
3175 
3176 	skb_tx_timestamp(skb);
3177 
3178 	/* Ready to fill the first descriptor and set the OWN bit w/o any
3179 	 * problems because all the descriptors are actually ready to be
3180 	 * passed to the DMA engine.
3181 	 */
3182 	if (likely(!is_jumbo)) {
3183 		bool last_segment = (nfrags == 0);
3184 
3185 		des = dma_map_single(priv->device, skb->data,
3186 				     nopaged_len, DMA_TO_DEVICE);
3187 		if (dma_mapping_error(priv->device, des))
3188 			goto dma_map_err;
3189 
3190 		tx_q->tx_skbuff_dma[first_entry].buf = des;
3191 
3192 		stmmac_set_desc_addr(priv, first, des);
3193 
3194 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
3195 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
3196 
3197 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
3198 			     priv->hwts_tx_en)) {
3199 			/* declare that device is doing timestamping */
3200 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3201 			stmmac_enable_tx_timestamp(priv, first);
3202 		}
3203 
3204 		/* Prepare the first descriptor setting the OWN bit too */
3205 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
3206 				csum_insertion, priv->mode, 1, last_segment,
3207 				skb->len);
3208 	} else {
3209 		stmmac_set_tx_owner(priv, first);
3210 	}
3211 
3212 	/* The own bit must be the latest setting done when prepare the
3213 	 * descriptor and then barrier is needed to make sure that
3214 	 * all is coherent before granting the DMA engine.
3215 	 */
3216 	wmb();
3217 
3218 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
3219 
3220 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
3221 
3222 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * sizeof(*desc));
3223 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3224 
3225 	return NETDEV_TX_OK;
3226 
3227 dma_map_err:
3228 	netdev_err(priv->dev, "Tx DMA map failed\n");
3229 	dev_kfree_skb(skb);
3230 	priv->dev->stats.tx_dropped++;
3231 	return NETDEV_TX_OK;
3232 }
3233 
3234 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
3235 {
3236 	struct vlan_ethhdr *veth;
3237 	__be16 vlan_proto;
3238 	u16 vlanid;
3239 
3240 	veth = (struct vlan_ethhdr *)skb->data;
3241 	vlan_proto = veth->h_vlan_proto;
3242 
3243 	if ((vlan_proto == htons(ETH_P_8021Q) &&
3244 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
3245 	    (vlan_proto == htons(ETH_P_8021AD) &&
3246 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
3247 		/* pop the vlan tag */
3248 		vlanid = ntohs(veth->h_vlan_TCI);
3249 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
3250 		skb_pull(skb, VLAN_HLEN);
3251 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
3252 	}
3253 }
3254 
3255 
3256 static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
3257 {
3258 	if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
3259 		return 0;
3260 
3261 	return 1;
3262 }
3263 
3264 /**
3265  * stmmac_rx_refill - refill used skb preallocated buffers
3266  * @priv: driver private structure
3267  * @queue: RX queue index
3268  * Description : this is to reallocate the skb for the reception process
3269  * that is based on zero-copy.
3270  */
3271 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
3272 {
3273 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3274 	int len, dirty = stmmac_rx_dirty(priv, queue);
3275 	unsigned int entry = rx_q->dirty_rx;
3276 
3277 	len = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
3278 
3279 	while (dirty-- > 0) {
3280 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
3281 		struct dma_desc *p;
3282 		bool use_rx_wd;
3283 
3284 		if (priv->extend_desc)
3285 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3286 		else
3287 			p = rx_q->dma_rx + entry;
3288 
3289 		if (!buf->page) {
3290 			buf->page = page_pool_dev_alloc_pages(rx_q->page_pool);
3291 			if (!buf->page)
3292 				break;
3293 		}
3294 
3295 		buf->addr = page_pool_get_dma_addr(buf->page);
3296 
3297 		/* Sync whole allocation to device. This will invalidate old
3298 		 * data.
3299 		 */
3300 		dma_sync_single_for_device(priv->device, buf->addr, len,
3301 					   DMA_FROM_DEVICE);
3302 
3303 		stmmac_set_desc_addr(priv, p, buf->addr);
3304 		stmmac_refill_desc3(priv, rx_q, p);
3305 
3306 		rx_q->rx_count_frames++;
3307 		rx_q->rx_count_frames %= priv->rx_coal_frames;
3308 		use_rx_wd = priv->use_riwt && rx_q->rx_count_frames;
3309 
3310 		dma_wmb();
3311 		stmmac_set_rx_owner(priv, p, use_rx_wd);
3312 
3313 		entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
3314 	}
3315 	rx_q->dirty_rx = entry;
3316 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
3317 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
3318 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
3319 }
3320 
3321 /**
3322  * stmmac_rx - manage the receive process
3323  * @priv: driver private structure
3324  * @limit: napi bugget
3325  * @queue: RX queue index.
3326  * Description :  this the function called by the napi poll method.
3327  * It gets all the frames inside the ring.
3328  */
3329 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
3330 {
3331 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3332 	struct stmmac_channel *ch = &priv->channel[queue];
3333 	unsigned int next_entry = rx_q->cur_rx;
3334 	int coe = priv->hw->rx_csum;
3335 	unsigned int count = 0;
3336 
3337 	if (netif_msg_rx_status(priv)) {
3338 		void *rx_head;
3339 
3340 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
3341 		if (priv->extend_desc)
3342 			rx_head = (void *)rx_q->dma_erx;
3343 		else
3344 			rx_head = (void *)rx_q->dma_rx;
3345 
3346 		stmmac_display_ring(priv, rx_head, DMA_RX_SIZE, true);
3347 	}
3348 	while (count < limit) {
3349 		struct stmmac_rx_buffer *buf;
3350 		struct dma_desc *np, *p;
3351 		int entry, status;
3352 
3353 		entry = next_entry;
3354 		buf = &rx_q->buf_pool[entry];
3355 
3356 		if (priv->extend_desc)
3357 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
3358 		else
3359 			p = rx_q->dma_rx + entry;
3360 
3361 		/* read the status of the incoming frame */
3362 		status = stmmac_rx_status(priv, &priv->dev->stats,
3363 				&priv->xstats, p);
3364 		/* check if managed by the DMA otherwise go ahead */
3365 		if (unlikely(status & dma_own))
3366 			break;
3367 
3368 		count++;
3369 
3370 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
3371 		next_entry = rx_q->cur_rx;
3372 
3373 		if (priv->extend_desc)
3374 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
3375 		else
3376 			np = rx_q->dma_rx + next_entry;
3377 
3378 		prefetch(np);
3379 
3380 		if (priv->extend_desc)
3381 			stmmac_rx_extended_status(priv, &priv->dev->stats,
3382 					&priv->xstats, rx_q->dma_erx + entry);
3383 		if (unlikely(status == discard_frame)) {
3384 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3385 			priv->dev->stats.rx_errors++;
3386 			buf->page = NULL;
3387 		} else {
3388 			struct sk_buff *skb;
3389 			int frame_len;
3390 			unsigned int des;
3391 
3392 			stmmac_get_desc_addr(priv, p, &des);
3393 			frame_len = stmmac_get_rx_frame_len(priv, p, coe);
3394 
3395 			/*  If frame length is greater than skb buffer size
3396 			 *  (preallocated during init) then the packet is
3397 			 *  ignored
3398 			 */
3399 			if (frame_len > priv->dma_buf_sz) {
3400 				if (net_ratelimit())
3401 					netdev_err(priv->dev,
3402 						   "len %d larger than size (%d)\n",
3403 						   frame_len, priv->dma_buf_sz);
3404 				priv->dev->stats.rx_length_errors++;
3405 				continue;
3406 			}
3407 
3408 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
3409 			 * Type frames (LLC/LLC-SNAP)
3410 			 *
3411 			 * llc_snap is never checked in GMAC >= 4, so this ACS
3412 			 * feature is always disabled and packets need to be
3413 			 * stripped manually.
3414 			 */
3415 			if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
3416 			    unlikely(status != llc_snap))
3417 				frame_len -= ETH_FCS_LEN;
3418 
3419 			if (netif_msg_rx_status(priv)) {
3420 				netdev_dbg(priv->dev, "\tdesc: %p [entry %d] buff=0x%x\n",
3421 					   p, entry, des);
3422 				netdev_dbg(priv->dev, "frame size %d, COE: %d\n",
3423 					   frame_len, status);
3424 			}
3425 
3426 			skb = netdev_alloc_skb_ip_align(priv->dev, frame_len);
3427 			if (unlikely(!skb)) {
3428 				priv->dev->stats.rx_dropped++;
3429 				continue;
3430 			}
3431 
3432 			dma_sync_single_for_cpu(priv->device, buf->addr,
3433 						frame_len, DMA_FROM_DEVICE);
3434 			skb_copy_to_linear_data(skb, page_address(buf->page),
3435 						frame_len);
3436 			skb_put(skb, frame_len);
3437 
3438 			if (netif_msg_pktdata(priv)) {
3439 				netdev_dbg(priv->dev, "frame received (%dbytes)",
3440 					   frame_len);
3441 				print_pkt(skb->data, frame_len);
3442 			}
3443 
3444 			stmmac_get_rx_hwtstamp(priv, p, np, skb);
3445 
3446 			stmmac_rx_vlan(priv->dev, skb);
3447 
3448 			skb->protocol = eth_type_trans(skb, priv->dev);
3449 
3450 			if (unlikely(!coe))
3451 				skb_checksum_none_assert(skb);
3452 			else
3453 				skb->ip_summed = CHECKSUM_UNNECESSARY;
3454 
3455 			napi_gro_receive(&ch->rx_napi, skb);
3456 
3457 			/* Data payload copied into SKB, page ready for recycle */
3458 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
3459 			buf->page = NULL;
3460 
3461 			priv->dev->stats.rx_packets++;
3462 			priv->dev->stats.rx_bytes += frame_len;
3463 		}
3464 	}
3465 
3466 	stmmac_rx_refill(priv, queue);
3467 
3468 	priv->xstats.rx_pkt_n += count;
3469 
3470 	return count;
3471 }
3472 
3473 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
3474 {
3475 	struct stmmac_channel *ch =
3476 		container_of(napi, struct stmmac_channel, rx_napi);
3477 	struct stmmac_priv *priv = ch->priv_data;
3478 	u32 chan = ch->index;
3479 	int work_done;
3480 
3481 	priv->xstats.napi_poll++;
3482 
3483 	work_done = stmmac_rx(priv, budget, chan);
3484 	if (work_done < budget && napi_complete_done(napi, work_done))
3485 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan);
3486 	return work_done;
3487 }
3488 
3489 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
3490 {
3491 	struct stmmac_channel *ch =
3492 		container_of(napi, struct stmmac_channel, tx_napi);
3493 	struct stmmac_priv *priv = ch->priv_data;
3494 	struct stmmac_tx_queue *tx_q;
3495 	u32 chan = ch->index;
3496 	int work_done;
3497 
3498 	priv->xstats.napi_poll++;
3499 
3500 	work_done = stmmac_tx_clean(priv, DMA_TX_SIZE, chan);
3501 	work_done = min(work_done, budget);
3502 
3503 	if (work_done < budget)
3504 		napi_complete_done(napi, work_done);
3505 
3506 	/* Force transmission restart */
3507 	tx_q = &priv->tx_queue[chan];
3508 	if (tx_q->cur_tx != tx_q->dirty_tx) {
3509 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
3510 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr,
3511 				       chan);
3512 	}
3513 
3514 	return work_done;
3515 }
3516 
3517 /**
3518  *  stmmac_tx_timeout
3519  *  @dev : Pointer to net device structure
3520  *  Description: this function is called when a packet transmission fails to
3521  *   complete within a reasonable time. The driver will mark the error in the
3522  *   netdev structure and arrange for the device to be reset to a sane state
3523  *   in order to transmit a new packet.
3524  */
3525 static void stmmac_tx_timeout(struct net_device *dev)
3526 {
3527 	struct stmmac_priv *priv = netdev_priv(dev);
3528 
3529 	stmmac_global_err(priv);
3530 }
3531 
3532 /**
3533  *  stmmac_set_rx_mode - entry point for multicast addressing
3534  *  @dev : pointer to the device structure
3535  *  Description:
3536  *  This function is a driver entry point which gets called by the kernel
3537  *  whenever multicast addresses must be enabled/disabled.
3538  *  Return value:
3539  *  void.
3540  */
3541 static void stmmac_set_rx_mode(struct net_device *dev)
3542 {
3543 	struct stmmac_priv *priv = netdev_priv(dev);
3544 
3545 	stmmac_set_filter(priv, priv->hw, dev);
3546 }
3547 
3548 /**
3549  *  stmmac_change_mtu - entry point to change MTU size for the device.
3550  *  @dev : device pointer.
3551  *  @new_mtu : the new MTU size for the device.
3552  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
3553  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
3554  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
3555  *  Return value:
3556  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3557  *  file on failure.
3558  */
3559 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
3560 {
3561 	struct stmmac_priv *priv = netdev_priv(dev);
3562 
3563 	if (netif_running(dev)) {
3564 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
3565 		return -EBUSY;
3566 	}
3567 
3568 	dev->mtu = new_mtu;
3569 
3570 	netdev_update_features(dev);
3571 
3572 	return 0;
3573 }
3574 
3575 static netdev_features_t stmmac_fix_features(struct net_device *dev,
3576 					     netdev_features_t features)
3577 {
3578 	struct stmmac_priv *priv = netdev_priv(dev);
3579 
3580 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
3581 		features &= ~NETIF_F_RXCSUM;
3582 
3583 	if (!priv->plat->tx_coe)
3584 		features &= ~NETIF_F_CSUM_MASK;
3585 
3586 	/* Some GMAC devices have a bugged Jumbo frame support that
3587 	 * needs to have the Tx COE disabled for oversized frames
3588 	 * (due to limited buffer sizes). In this case we disable
3589 	 * the TX csum insertion in the TDES and not use SF.
3590 	 */
3591 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
3592 		features &= ~NETIF_F_CSUM_MASK;
3593 
3594 	/* Disable tso if asked by ethtool */
3595 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
3596 		if (features & NETIF_F_TSO)
3597 			priv->tso = true;
3598 		else
3599 			priv->tso = false;
3600 	}
3601 
3602 	return features;
3603 }
3604 
3605 static int stmmac_set_features(struct net_device *netdev,
3606 			       netdev_features_t features)
3607 {
3608 	struct stmmac_priv *priv = netdev_priv(netdev);
3609 
3610 	/* Keep the COE Type in case of csum is supporting */
3611 	if (features & NETIF_F_RXCSUM)
3612 		priv->hw->rx_csum = priv->plat->rx_coe;
3613 	else
3614 		priv->hw->rx_csum = 0;
3615 	/* No check needed because rx_coe has been set before and it will be
3616 	 * fixed in case of issue.
3617 	 */
3618 	stmmac_rx_ipc(priv, priv->hw);
3619 
3620 	return 0;
3621 }
3622 
3623 /**
3624  *  stmmac_interrupt - main ISR
3625  *  @irq: interrupt number.
3626  *  @dev_id: to pass the net device pointer.
3627  *  Description: this is the main driver interrupt service routine.
3628  *  It can call:
3629  *  o DMA service routine (to manage incoming frame reception and transmission
3630  *    status)
3631  *  o Core interrupts to manage: remote wake-up, management counter, LPI
3632  *    interrupts.
3633  */
3634 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
3635 {
3636 	struct net_device *dev = (struct net_device *)dev_id;
3637 	struct stmmac_priv *priv = netdev_priv(dev);
3638 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3639 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3640 	u32 queues_count;
3641 	u32 queue;
3642 	bool xmac;
3643 
3644 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
3645 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
3646 
3647 	if (priv->irq_wake)
3648 		pm_wakeup_event(priv->device, 0);
3649 
3650 	if (unlikely(!dev)) {
3651 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
3652 		return IRQ_NONE;
3653 	}
3654 
3655 	/* Check if adapter is up */
3656 	if (test_bit(STMMAC_DOWN, &priv->state))
3657 		return IRQ_HANDLED;
3658 	/* Check if a fatal error happened */
3659 	if (stmmac_safety_feat_interrupt(priv))
3660 		return IRQ_HANDLED;
3661 
3662 	/* To handle GMAC own interrupts */
3663 	if ((priv->plat->has_gmac) || xmac) {
3664 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
3665 		int mtl_status;
3666 
3667 		if (unlikely(status)) {
3668 			/* For LPI we need to save the tx status */
3669 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
3670 				priv->tx_path_in_lpi_mode = true;
3671 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
3672 				priv->tx_path_in_lpi_mode = false;
3673 		}
3674 
3675 		for (queue = 0; queue < queues_count; queue++) {
3676 			struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3677 
3678 			mtl_status = stmmac_host_mtl_irq_status(priv, priv->hw,
3679 								queue);
3680 			if (mtl_status != -EINVAL)
3681 				status |= mtl_status;
3682 
3683 			if (status & CORE_IRQ_MTL_RX_OVERFLOW)
3684 				stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
3685 						       rx_q->rx_tail_addr,
3686 						       queue);
3687 		}
3688 
3689 		/* PCS link status */
3690 		if (priv->hw->pcs) {
3691 			if (priv->xstats.pcs_link)
3692 				netif_carrier_on(dev);
3693 			else
3694 				netif_carrier_off(dev);
3695 		}
3696 	}
3697 
3698 	/* To handle DMA interrupts */
3699 	stmmac_dma_interrupt(priv);
3700 
3701 	return IRQ_HANDLED;
3702 }
3703 
3704 #ifdef CONFIG_NET_POLL_CONTROLLER
3705 /* Polling receive - used by NETCONSOLE and other diagnostic tools
3706  * to allow network I/O with interrupts disabled.
3707  */
3708 static void stmmac_poll_controller(struct net_device *dev)
3709 {
3710 	disable_irq(dev->irq);
3711 	stmmac_interrupt(dev->irq, dev);
3712 	enable_irq(dev->irq);
3713 }
3714 #endif
3715 
3716 /**
3717  *  stmmac_ioctl - Entry point for the Ioctl
3718  *  @dev: Device pointer.
3719  *  @rq: An IOCTL specefic structure, that can contain a pointer to
3720  *  a proprietary structure used to pass information to the driver.
3721  *  @cmd: IOCTL command
3722  *  Description:
3723  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
3724  */
3725 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3726 {
3727 	struct stmmac_priv *priv = netdev_priv (dev);
3728 	int ret = -EOPNOTSUPP;
3729 
3730 	if (!netif_running(dev))
3731 		return -EINVAL;
3732 
3733 	switch (cmd) {
3734 	case SIOCGMIIPHY:
3735 	case SIOCGMIIREG:
3736 	case SIOCSMIIREG:
3737 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
3738 		break;
3739 	case SIOCSHWTSTAMP:
3740 		ret = stmmac_hwtstamp_set(dev, rq);
3741 		break;
3742 	case SIOCGHWTSTAMP:
3743 		ret = stmmac_hwtstamp_get(dev, rq);
3744 		break;
3745 	default:
3746 		break;
3747 	}
3748 
3749 	return ret;
3750 }
3751 
3752 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3753 				    void *cb_priv)
3754 {
3755 	struct stmmac_priv *priv = cb_priv;
3756 	int ret = -EOPNOTSUPP;
3757 
3758 	stmmac_disable_all_queues(priv);
3759 
3760 	switch (type) {
3761 	case TC_SETUP_CLSU32:
3762 		if (tc_cls_can_offload_and_chain0(priv->dev, type_data))
3763 			ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
3764 		break;
3765 	default:
3766 		break;
3767 	}
3768 
3769 	stmmac_enable_all_queues(priv);
3770 	return ret;
3771 }
3772 
3773 static LIST_HEAD(stmmac_block_cb_list);
3774 
3775 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
3776 			   void *type_data)
3777 {
3778 	struct stmmac_priv *priv = netdev_priv(ndev);
3779 
3780 	switch (type) {
3781 	case TC_SETUP_BLOCK:
3782 		return flow_block_cb_setup_simple(type_data,
3783 						  &stmmac_block_cb_list,
3784 						  stmmac_setup_tc_block_cb,
3785 						  priv, priv, true);
3786 	case TC_SETUP_QDISC_CBS:
3787 		return stmmac_tc_setup_cbs(priv, priv, type_data);
3788 	default:
3789 		return -EOPNOTSUPP;
3790 	}
3791 }
3792 
3793 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
3794 			       struct net_device *sb_dev)
3795 {
3796 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
3797 		/*
3798 		 * There is no way to determine the number of TSO
3799 		 * capable Queues. Let's use always the Queue 0
3800 		 * because if TSO is supported then at least this
3801 		 * one will be capable.
3802 		 */
3803 		return 0;
3804 	}
3805 
3806 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
3807 }
3808 
3809 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
3810 {
3811 	struct stmmac_priv *priv = netdev_priv(ndev);
3812 	int ret = 0;
3813 
3814 	ret = eth_mac_addr(ndev, addr);
3815 	if (ret)
3816 		return ret;
3817 
3818 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
3819 
3820 	return ret;
3821 }
3822 
3823 #ifdef CONFIG_DEBUG_FS
3824 static struct dentry *stmmac_fs_dir;
3825 
3826 static void sysfs_display_ring(void *head, int size, int extend_desc,
3827 			       struct seq_file *seq)
3828 {
3829 	int i;
3830 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
3831 	struct dma_desc *p = (struct dma_desc *)head;
3832 
3833 	for (i = 0; i < size; i++) {
3834 		if (extend_desc) {
3835 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3836 				   i, (unsigned int)virt_to_phys(ep),
3837 				   le32_to_cpu(ep->basic.des0),
3838 				   le32_to_cpu(ep->basic.des1),
3839 				   le32_to_cpu(ep->basic.des2),
3840 				   le32_to_cpu(ep->basic.des3));
3841 			ep++;
3842 		} else {
3843 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
3844 				   i, (unsigned int)virt_to_phys(p),
3845 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
3846 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
3847 			p++;
3848 		}
3849 		seq_printf(seq, "\n");
3850 	}
3851 }
3852 
3853 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
3854 {
3855 	struct net_device *dev = seq->private;
3856 	struct stmmac_priv *priv = netdev_priv(dev);
3857 	u32 rx_count = priv->plat->rx_queues_to_use;
3858 	u32 tx_count = priv->plat->tx_queues_to_use;
3859 	u32 queue;
3860 
3861 	if ((dev->flags & IFF_UP) == 0)
3862 		return 0;
3863 
3864 	for (queue = 0; queue < rx_count; queue++) {
3865 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
3866 
3867 		seq_printf(seq, "RX Queue %d:\n", queue);
3868 
3869 		if (priv->extend_desc) {
3870 			seq_printf(seq, "Extended descriptor ring:\n");
3871 			sysfs_display_ring((void *)rx_q->dma_erx,
3872 					   DMA_RX_SIZE, 1, seq);
3873 		} else {
3874 			seq_printf(seq, "Descriptor ring:\n");
3875 			sysfs_display_ring((void *)rx_q->dma_rx,
3876 					   DMA_RX_SIZE, 0, seq);
3877 		}
3878 	}
3879 
3880 	for (queue = 0; queue < tx_count; queue++) {
3881 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3882 
3883 		seq_printf(seq, "TX Queue %d:\n", queue);
3884 
3885 		if (priv->extend_desc) {
3886 			seq_printf(seq, "Extended descriptor ring:\n");
3887 			sysfs_display_ring((void *)tx_q->dma_etx,
3888 					   DMA_TX_SIZE, 1, seq);
3889 		} else {
3890 			seq_printf(seq, "Descriptor ring:\n");
3891 			sysfs_display_ring((void *)tx_q->dma_tx,
3892 					   DMA_TX_SIZE, 0, seq);
3893 		}
3894 	}
3895 
3896 	return 0;
3897 }
3898 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
3899 
3900 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
3901 {
3902 	struct net_device *dev = seq->private;
3903 	struct stmmac_priv *priv = netdev_priv(dev);
3904 
3905 	if (!priv->hw_cap_support) {
3906 		seq_printf(seq, "DMA HW features not supported\n");
3907 		return 0;
3908 	}
3909 
3910 	seq_printf(seq, "==============================\n");
3911 	seq_printf(seq, "\tDMA HW features\n");
3912 	seq_printf(seq, "==============================\n");
3913 
3914 	seq_printf(seq, "\t10/100 Mbps: %s\n",
3915 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
3916 	seq_printf(seq, "\t1000 Mbps: %s\n",
3917 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
3918 	seq_printf(seq, "\tHalf duplex: %s\n",
3919 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
3920 	seq_printf(seq, "\tHash Filter: %s\n",
3921 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
3922 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
3923 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
3924 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
3925 		   (priv->dma_cap.pcs) ? "Y" : "N");
3926 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
3927 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
3928 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
3929 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
3930 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
3931 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
3932 	seq_printf(seq, "\tRMON module: %s\n",
3933 		   (priv->dma_cap.rmon) ? "Y" : "N");
3934 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
3935 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
3936 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
3937 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
3938 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
3939 		   (priv->dma_cap.eee) ? "Y" : "N");
3940 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
3941 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
3942 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
3943 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
3944 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
3945 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
3946 	} else {
3947 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
3948 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
3949 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
3950 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
3951 	}
3952 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
3953 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
3954 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
3955 		   priv->dma_cap.number_rx_channel);
3956 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
3957 		   priv->dma_cap.number_tx_channel);
3958 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
3959 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
3960 
3961 	return 0;
3962 }
3963 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
3964 
3965 static int stmmac_init_fs(struct net_device *dev)
3966 {
3967 	struct stmmac_priv *priv = netdev_priv(dev);
3968 
3969 	/* Create per netdev entries */
3970 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
3971 
3972 	if (!priv->dbgfs_dir || IS_ERR(priv->dbgfs_dir)) {
3973 		netdev_err(priv->dev, "ERROR failed to create debugfs directory\n");
3974 
3975 		return -ENOMEM;
3976 	}
3977 
3978 	/* Entry to report DMA RX/TX rings */
3979 	priv->dbgfs_rings_status =
3980 		debugfs_create_file("descriptors_status", 0444,
3981 				    priv->dbgfs_dir, dev,
3982 				    &stmmac_rings_status_fops);
3983 
3984 	if (!priv->dbgfs_rings_status || IS_ERR(priv->dbgfs_rings_status)) {
3985 		netdev_err(priv->dev, "ERROR creating stmmac ring debugfs file\n");
3986 		debugfs_remove_recursive(priv->dbgfs_dir);
3987 
3988 		return -ENOMEM;
3989 	}
3990 
3991 	/* Entry to report the DMA HW features */
3992 	priv->dbgfs_dma_cap = debugfs_create_file("dma_cap", 0444,
3993 						  priv->dbgfs_dir,
3994 						  dev, &stmmac_dma_cap_fops);
3995 
3996 	if (!priv->dbgfs_dma_cap || IS_ERR(priv->dbgfs_dma_cap)) {
3997 		netdev_err(priv->dev, "ERROR creating stmmac MMC debugfs file\n");
3998 		debugfs_remove_recursive(priv->dbgfs_dir);
3999 
4000 		return -ENOMEM;
4001 	}
4002 
4003 	return 0;
4004 }
4005 
4006 static void stmmac_exit_fs(struct net_device *dev)
4007 {
4008 	struct stmmac_priv *priv = netdev_priv(dev);
4009 
4010 	debugfs_remove_recursive(priv->dbgfs_dir);
4011 }
4012 #endif /* CONFIG_DEBUG_FS */
4013 
4014 static const struct net_device_ops stmmac_netdev_ops = {
4015 	.ndo_open = stmmac_open,
4016 	.ndo_start_xmit = stmmac_xmit,
4017 	.ndo_stop = stmmac_release,
4018 	.ndo_change_mtu = stmmac_change_mtu,
4019 	.ndo_fix_features = stmmac_fix_features,
4020 	.ndo_set_features = stmmac_set_features,
4021 	.ndo_set_rx_mode = stmmac_set_rx_mode,
4022 	.ndo_tx_timeout = stmmac_tx_timeout,
4023 	.ndo_do_ioctl = stmmac_ioctl,
4024 	.ndo_setup_tc = stmmac_setup_tc,
4025 	.ndo_select_queue = stmmac_select_queue,
4026 #ifdef CONFIG_NET_POLL_CONTROLLER
4027 	.ndo_poll_controller = stmmac_poll_controller,
4028 #endif
4029 	.ndo_set_mac_address = stmmac_set_mac_address,
4030 };
4031 
4032 static void stmmac_reset_subtask(struct stmmac_priv *priv)
4033 {
4034 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
4035 		return;
4036 	if (test_bit(STMMAC_DOWN, &priv->state))
4037 		return;
4038 
4039 	netdev_err(priv->dev, "Reset adapter.\n");
4040 
4041 	rtnl_lock();
4042 	netif_trans_update(priv->dev);
4043 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
4044 		usleep_range(1000, 2000);
4045 
4046 	set_bit(STMMAC_DOWN, &priv->state);
4047 	dev_close(priv->dev);
4048 	dev_open(priv->dev, NULL);
4049 	clear_bit(STMMAC_DOWN, &priv->state);
4050 	clear_bit(STMMAC_RESETING, &priv->state);
4051 	rtnl_unlock();
4052 }
4053 
4054 static void stmmac_service_task(struct work_struct *work)
4055 {
4056 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
4057 			service_task);
4058 
4059 	stmmac_reset_subtask(priv);
4060 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
4061 }
4062 
4063 /**
4064  *  stmmac_hw_init - Init the MAC device
4065  *  @priv: driver private structure
4066  *  Description: this function is to configure the MAC device according to
4067  *  some platform parameters or the HW capability register. It prepares the
4068  *  driver to use either ring or chain modes and to setup either enhanced or
4069  *  normal descriptors.
4070  */
4071 static int stmmac_hw_init(struct stmmac_priv *priv)
4072 {
4073 	int ret;
4074 
4075 	/* dwmac-sun8i only work in chain mode */
4076 	if (priv->plat->has_sun8i)
4077 		chain_mode = 1;
4078 	priv->chain_mode = chain_mode;
4079 
4080 	/* Initialize HW Interface */
4081 	ret = stmmac_hwif_init(priv);
4082 	if (ret)
4083 		return ret;
4084 
4085 	/* Get the HW capability (new GMAC newer than 3.50a) */
4086 	priv->hw_cap_support = stmmac_get_hw_features(priv);
4087 	if (priv->hw_cap_support) {
4088 		dev_info(priv->device, "DMA HW capability register supported\n");
4089 
4090 		/* We can override some gmac/dma configuration fields: e.g.
4091 		 * enh_desc, tx_coe (e.g. that are passed through the
4092 		 * platform) with the values from the HW capability
4093 		 * register (if supported).
4094 		 */
4095 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
4096 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
4097 		priv->hw->pmt = priv->plat->pmt;
4098 		if (priv->dma_cap.hash_tb_sz) {
4099 			priv->hw->multicast_filter_bins =
4100 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
4101 			priv->hw->mcast_bits_log2 =
4102 					ilog2(priv->hw->multicast_filter_bins);
4103 		}
4104 
4105 		/* TXCOE doesn't work in thresh DMA mode */
4106 		if (priv->plat->force_thresh_dma_mode)
4107 			priv->plat->tx_coe = 0;
4108 		else
4109 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
4110 
4111 		/* In case of GMAC4 rx_coe is from HW cap register. */
4112 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
4113 
4114 		if (priv->dma_cap.rx_coe_type2)
4115 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
4116 		else if (priv->dma_cap.rx_coe_type1)
4117 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
4118 
4119 	} else {
4120 		dev_info(priv->device, "No HW DMA feature register supported\n");
4121 	}
4122 
4123 	if (priv->plat->rx_coe) {
4124 		priv->hw->rx_csum = priv->plat->rx_coe;
4125 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
4126 		if (priv->synopsys_id < DWMAC_CORE_4_00)
4127 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
4128 	}
4129 	if (priv->plat->tx_coe)
4130 		dev_info(priv->device, "TX Checksum insertion supported\n");
4131 
4132 	if (priv->plat->pmt) {
4133 		dev_info(priv->device, "Wake-Up On Lan supported\n");
4134 		device_set_wakeup_capable(priv->device, 1);
4135 	}
4136 
4137 	if (priv->dma_cap.tsoen)
4138 		dev_info(priv->device, "TSO supported\n");
4139 
4140 	/* Run HW quirks, if any */
4141 	if (priv->hwif_quirks) {
4142 		ret = priv->hwif_quirks(priv);
4143 		if (ret)
4144 			return ret;
4145 	}
4146 
4147 	/* Rx Watchdog is available in the COREs newer than the 3.40.
4148 	 * In some case, for example on bugged HW this feature
4149 	 * has to be disable and this can be done by passing the
4150 	 * riwt_off field from the platform.
4151 	 */
4152 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
4153 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
4154 		priv->use_riwt = 1;
4155 		dev_info(priv->device,
4156 			 "Enable RX Mitigation via HW Watchdog Timer\n");
4157 	}
4158 
4159 	return 0;
4160 }
4161 
4162 /**
4163  * stmmac_dvr_probe
4164  * @device: device pointer
4165  * @plat_dat: platform data pointer
4166  * @res: stmmac resource pointer
4167  * Description: this is the main probe function used to
4168  * call the alloc_etherdev, allocate the priv structure.
4169  * Return:
4170  * returns 0 on success, otherwise errno.
4171  */
4172 int stmmac_dvr_probe(struct device *device,
4173 		     struct plat_stmmacenet_data *plat_dat,
4174 		     struct stmmac_resources *res)
4175 {
4176 	struct net_device *ndev = NULL;
4177 	struct stmmac_priv *priv;
4178 	u32 queue, maxq;
4179 	int ret = 0;
4180 
4181 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
4182 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
4183 	if (!ndev)
4184 		return -ENOMEM;
4185 
4186 	SET_NETDEV_DEV(ndev, device);
4187 
4188 	priv = netdev_priv(ndev);
4189 	priv->device = device;
4190 	priv->dev = ndev;
4191 
4192 	stmmac_set_ethtool_ops(ndev);
4193 	priv->pause = pause;
4194 	priv->plat = plat_dat;
4195 	priv->ioaddr = res->addr;
4196 	priv->dev->base_addr = (unsigned long)res->addr;
4197 
4198 	priv->dev->irq = res->irq;
4199 	priv->wol_irq = res->wol_irq;
4200 	priv->lpi_irq = res->lpi_irq;
4201 
4202 	if (!IS_ERR_OR_NULL(res->mac))
4203 		memcpy(priv->dev->dev_addr, res->mac, ETH_ALEN);
4204 
4205 	dev_set_drvdata(device, priv->dev);
4206 
4207 	/* Verify driver arguments */
4208 	stmmac_verify_args();
4209 
4210 	/* Allocate workqueue */
4211 	priv->wq = create_singlethread_workqueue("stmmac_wq");
4212 	if (!priv->wq) {
4213 		dev_err(priv->device, "failed to create workqueue\n");
4214 		return -ENOMEM;
4215 	}
4216 
4217 	INIT_WORK(&priv->service_task, stmmac_service_task);
4218 
4219 	/* Override with kernel parameters if supplied XXX CRS XXX
4220 	 * this needs to have multiple instances
4221 	 */
4222 	if ((phyaddr >= 0) && (phyaddr <= 31))
4223 		priv->plat->phy_addr = phyaddr;
4224 
4225 	if (priv->plat->stmmac_rst) {
4226 		ret = reset_control_assert(priv->plat->stmmac_rst);
4227 		reset_control_deassert(priv->plat->stmmac_rst);
4228 		/* Some reset controllers have only reset callback instead of
4229 		 * assert + deassert callbacks pair.
4230 		 */
4231 		if (ret == -ENOTSUPP)
4232 			reset_control_reset(priv->plat->stmmac_rst);
4233 	}
4234 
4235 	/* Init MAC and get the capabilities */
4236 	ret = stmmac_hw_init(priv);
4237 	if (ret)
4238 		goto error_hw_init;
4239 
4240 	stmmac_check_ether_addr(priv);
4241 
4242 	/* Configure real RX and TX queues */
4243 	netif_set_real_num_rx_queues(ndev, priv->plat->rx_queues_to_use);
4244 	netif_set_real_num_tx_queues(ndev, priv->plat->tx_queues_to_use);
4245 
4246 	ndev->netdev_ops = &stmmac_netdev_ops;
4247 
4248 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4249 			    NETIF_F_RXCSUM;
4250 
4251 	ret = stmmac_tc_init(priv, priv);
4252 	if (!ret) {
4253 		ndev->hw_features |= NETIF_F_HW_TC;
4254 	}
4255 
4256 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
4257 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
4258 		priv->tso = true;
4259 		dev_info(priv->device, "TSO feature enabled\n");
4260 	}
4261 
4262 	if (priv->dma_cap.addr64) {
4263 		ret = dma_set_mask_and_coherent(device,
4264 				DMA_BIT_MASK(priv->dma_cap.addr64));
4265 		if (!ret) {
4266 			dev_info(priv->device, "Using %d bits DMA width\n",
4267 				 priv->dma_cap.addr64);
4268 		} else {
4269 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
4270 			if (ret) {
4271 				dev_err(priv->device, "Failed to set DMA Mask\n");
4272 				goto error_hw_init;
4273 			}
4274 
4275 			priv->dma_cap.addr64 = 32;
4276 		}
4277 	}
4278 
4279 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
4280 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
4281 #ifdef STMMAC_VLAN_TAG_USED
4282 	/* Both mac100 and gmac support receive VLAN tag detection */
4283 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
4284 #endif
4285 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
4286 
4287 	/* MTU range: 46 - hw-specific max */
4288 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
4289 	if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
4290 		ndev->max_mtu = JUMBO_LEN;
4291 	else if (priv->plat->has_xgmac)
4292 		ndev->max_mtu = XGMAC_JUMBO_LEN;
4293 	else
4294 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
4295 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
4296 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
4297 	 */
4298 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
4299 	    (priv->plat->maxmtu >= ndev->min_mtu))
4300 		ndev->max_mtu = priv->plat->maxmtu;
4301 	else if (priv->plat->maxmtu < ndev->min_mtu)
4302 		dev_warn(priv->device,
4303 			 "%s: warning: maxmtu having invalid value (%d)\n",
4304 			 __func__, priv->plat->maxmtu);
4305 
4306 	if (flow_ctrl)
4307 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
4308 
4309 	/* Setup channels NAPI */
4310 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
4311 
4312 	for (queue = 0; queue < maxq; queue++) {
4313 		struct stmmac_channel *ch = &priv->channel[queue];
4314 
4315 		ch->priv_data = priv;
4316 		ch->index = queue;
4317 
4318 		if (queue < priv->plat->rx_queues_to_use) {
4319 			netif_napi_add(ndev, &ch->rx_napi, stmmac_napi_poll_rx,
4320 				       NAPI_POLL_WEIGHT);
4321 		}
4322 		if (queue < priv->plat->tx_queues_to_use) {
4323 			netif_tx_napi_add(ndev, &ch->tx_napi,
4324 					  stmmac_napi_poll_tx,
4325 					  NAPI_POLL_WEIGHT);
4326 		}
4327 	}
4328 
4329 	mutex_init(&priv->lock);
4330 
4331 	/* If a specific clk_csr value is passed from the platform
4332 	 * this means that the CSR Clock Range selection cannot be
4333 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
4334 	 * set the MDC clock dynamically according to the csr actual
4335 	 * clock input.
4336 	 */
4337 	if (priv->plat->clk_csr >= 0)
4338 		priv->clk_csr = priv->plat->clk_csr;
4339 	else
4340 		stmmac_clk_csr_set(priv);
4341 
4342 	stmmac_check_pcs_mode(priv);
4343 
4344 	if (priv->hw->pcs != STMMAC_PCS_RGMII  &&
4345 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4346 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
4347 		/* MDIO bus Registration */
4348 		ret = stmmac_mdio_register(ndev);
4349 		if (ret < 0) {
4350 			dev_err(priv->device,
4351 				"%s: MDIO bus (id: %d) registration failed",
4352 				__func__, priv->plat->bus_id);
4353 			goto error_mdio_register;
4354 		}
4355 	}
4356 
4357 	ret = stmmac_phy_setup(priv);
4358 	if (ret) {
4359 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
4360 		goto error_phy_setup;
4361 	}
4362 
4363 	ret = register_netdev(ndev);
4364 	if (ret) {
4365 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
4366 			__func__, ret);
4367 		goto error_netdev_register;
4368 	}
4369 
4370 #ifdef CONFIG_DEBUG_FS
4371 	ret = stmmac_init_fs(ndev);
4372 	if (ret < 0)
4373 		netdev_warn(priv->dev, "%s: failed debugFS registration\n",
4374 			    __func__);
4375 #endif
4376 
4377 	return ret;
4378 
4379 error_netdev_register:
4380 	phylink_destroy(priv->phylink);
4381 error_phy_setup:
4382 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4383 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4384 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4385 		stmmac_mdio_unregister(ndev);
4386 error_mdio_register:
4387 	for (queue = 0; queue < maxq; queue++) {
4388 		struct stmmac_channel *ch = &priv->channel[queue];
4389 
4390 		if (queue < priv->plat->rx_queues_to_use)
4391 			netif_napi_del(&ch->rx_napi);
4392 		if (queue < priv->plat->tx_queues_to_use)
4393 			netif_napi_del(&ch->tx_napi);
4394 	}
4395 error_hw_init:
4396 	destroy_workqueue(priv->wq);
4397 
4398 	return ret;
4399 }
4400 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
4401 
4402 /**
4403  * stmmac_dvr_remove
4404  * @dev: device pointer
4405  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
4406  * changes the link status, releases the DMA descriptor rings.
4407  */
4408 int stmmac_dvr_remove(struct device *dev)
4409 {
4410 	struct net_device *ndev = dev_get_drvdata(dev);
4411 	struct stmmac_priv *priv = netdev_priv(ndev);
4412 
4413 	netdev_info(priv->dev, "%s: removing driver", __func__);
4414 
4415 #ifdef CONFIG_DEBUG_FS
4416 	stmmac_exit_fs(ndev);
4417 #endif
4418 	stmmac_stop_all_dma(priv);
4419 
4420 	stmmac_mac_set(priv, priv->ioaddr, false);
4421 	netif_carrier_off(ndev);
4422 	unregister_netdev(ndev);
4423 	phylink_destroy(priv->phylink);
4424 	if (priv->plat->stmmac_rst)
4425 		reset_control_assert(priv->plat->stmmac_rst);
4426 	clk_disable_unprepare(priv->plat->pclk);
4427 	clk_disable_unprepare(priv->plat->stmmac_clk);
4428 	if (priv->hw->pcs != STMMAC_PCS_RGMII &&
4429 	    priv->hw->pcs != STMMAC_PCS_TBI &&
4430 	    priv->hw->pcs != STMMAC_PCS_RTBI)
4431 		stmmac_mdio_unregister(ndev);
4432 	destroy_workqueue(priv->wq);
4433 	mutex_destroy(&priv->lock);
4434 
4435 	return 0;
4436 }
4437 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
4438 
4439 /**
4440  * stmmac_suspend - suspend callback
4441  * @dev: device pointer
4442  * Description: this is the function to suspend the device and it is called
4443  * by the platform driver to stop the network queue, release the resources,
4444  * program the PMT register (for WoL), clean and release driver resources.
4445  */
4446 int stmmac_suspend(struct device *dev)
4447 {
4448 	struct net_device *ndev = dev_get_drvdata(dev);
4449 	struct stmmac_priv *priv = netdev_priv(ndev);
4450 
4451 	if (!ndev || !netif_running(ndev))
4452 		return 0;
4453 
4454 	phylink_stop(priv->phylink);
4455 
4456 	mutex_lock(&priv->lock);
4457 
4458 	netif_device_detach(ndev);
4459 	stmmac_stop_all_queues(priv);
4460 
4461 	stmmac_disable_all_queues(priv);
4462 
4463 	/* Stop TX/RX DMA */
4464 	stmmac_stop_all_dma(priv);
4465 
4466 	/* Enable Power down mode by programming the PMT regs */
4467 	if (device_may_wakeup(priv->device)) {
4468 		stmmac_pmt(priv, priv->hw, priv->wolopts);
4469 		priv->irq_wake = 1;
4470 	} else {
4471 		stmmac_mac_set(priv, priv->ioaddr, false);
4472 		pinctrl_pm_select_sleep_state(priv->device);
4473 		/* Disable clock in case of PWM is off */
4474 		clk_disable(priv->plat->pclk);
4475 		clk_disable(priv->plat->stmmac_clk);
4476 	}
4477 	mutex_unlock(&priv->lock);
4478 
4479 	priv->speed = SPEED_UNKNOWN;
4480 	return 0;
4481 }
4482 EXPORT_SYMBOL_GPL(stmmac_suspend);
4483 
4484 /**
4485  * stmmac_reset_queues_param - reset queue parameters
4486  * @dev: device pointer
4487  */
4488 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
4489 {
4490 	u32 rx_cnt = priv->plat->rx_queues_to_use;
4491 	u32 tx_cnt = priv->plat->tx_queues_to_use;
4492 	u32 queue;
4493 
4494 	for (queue = 0; queue < rx_cnt; queue++) {
4495 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4496 
4497 		rx_q->cur_rx = 0;
4498 		rx_q->dirty_rx = 0;
4499 	}
4500 
4501 	for (queue = 0; queue < tx_cnt; queue++) {
4502 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4503 
4504 		tx_q->cur_tx = 0;
4505 		tx_q->dirty_tx = 0;
4506 		tx_q->mss = 0;
4507 	}
4508 }
4509 
4510 /**
4511  * stmmac_resume - resume callback
4512  * @dev: device pointer
4513  * Description: when resume this function is invoked to setup the DMA and CORE
4514  * in a usable state.
4515  */
4516 int stmmac_resume(struct device *dev)
4517 {
4518 	struct net_device *ndev = dev_get_drvdata(dev);
4519 	struct stmmac_priv *priv = netdev_priv(ndev);
4520 
4521 	if (!netif_running(ndev))
4522 		return 0;
4523 
4524 	/* Power Down bit, into the PM register, is cleared
4525 	 * automatically as soon as a magic packet or a Wake-up frame
4526 	 * is received. Anyway, it's better to manually clear
4527 	 * this bit because it can generate problems while resuming
4528 	 * from another devices (e.g. serial console).
4529 	 */
4530 	if (device_may_wakeup(priv->device)) {
4531 		mutex_lock(&priv->lock);
4532 		stmmac_pmt(priv, priv->hw, 0);
4533 		mutex_unlock(&priv->lock);
4534 		priv->irq_wake = 0;
4535 	} else {
4536 		pinctrl_pm_select_default_state(priv->device);
4537 		/* enable the clk previously disabled */
4538 		clk_enable(priv->plat->stmmac_clk);
4539 		clk_enable(priv->plat->pclk);
4540 		/* reset the phy so that it's ready */
4541 		if (priv->mii)
4542 			stmmac_mdio_reset(priv->mii);
4543 	}
4544 
4545 	netif_device_attach(ndev);
4546 
4547 	mutex_lock(&priv->lock);
4548 
4549 	stmmac_reset_queues_param(priv);
4550 
4551 	stmmac_clear_descriptors(priv);
4552 
4553 	stmmac_hw_setup(ndev, false);
4554 	stmmac_init_coalesce(priv);
4555 	stmmac_set_rx_mode(ndev);
4556 
4557 	stmmac_enable_all_queues(priv);
4558 
4559 	stmmac_start_all_queues(priv);
4560 
4561 	mutex_unlock(&priv->lock);
4562 
4563 	phylink_start(priv->phylink);
4564 
4565 	return 0;
4566 }
4567 EXPORT_SYMBOL_GPL(stmmac_resume);
4568 
4569 #ifndef MODULE
4570 static int __init stmmac_cmdline_opt(char *str)
4571 {
4572 	char *opt;
4573 
4574 	if (!str || !*str)
4575 		return -EINVAL;
4576 	while ((opt = strsep(&str, ",")) != NULL) {
4577 		if (!strncmp(opt, "debug:", 6)) {
4578 			if (kstrtoint(opt + 6, 0, &debug))
4579 				goto err;
4580 		} else if (!strncmp(opt, "phyaddr:", 8)) {
4581 			if (kstrtoint(opt + 8, 0, &phyaddr))
4582 				goto err;
4583 		} else if (!strncmp(opt, "buf_sz:", 7)) {
4584 			if (kstrtoint(opt + 7, 0, &buf_sz))
4585 				goto err;
4586 		} else if (!strncmp(opt, "tc:", 3)) {
4587 			if (kstrtoint(opt + 3, 0, &tc))
4588 				goto err;
4589 		} else if (!strncmp(opt, "watchdog:", 9)) {
4590 			if (kstrtoint(opt + 9, 0, &watchdog))
4591 				goto err;
4592 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
4593 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
4594 				goto err;
4595 		} else if (!strncmp(opt, "pause:", 6)) {
4596 			if (kstrtoint(opt + 6, 0, &pause))
4597 				goto err;
4598 		} else if (!strncmp(opt, "eee_timer:", 10)) {
4599 			if (kstrtoint(opt + 10, 0, &eee_timer))
4600 				goto err;
4601 		} else if (!strncmp(opt, "chain_mode:", 11)) {
4602 			if (kstrtoint(opt + 11, 0, &chain_mode))
4603 				goto err;
4604 		}
4605 	}
4606 	return 0;
4607 
4608 err:
4609 	pr_err("%s: ERROR broken module parameter conversion", __func__);
4610 	return -EINVAL;
4611 }
4612 
4613 __setup("stmmaceth=", stmmac_cmdline_opt);
4614 #endif /* MODULE */
4615 
4616 static int __init stmmac_init(void)
4617 {
4618 #ifdef CONFIG_DEBUG_FS
4619 	/* Create debugfs main directory if it doesn't exist yet */
4620 	if (!stmmac_fs_dir) {
4621 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
4622 
4623 		if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
4624 			pr_err("ERROR %s, debugfs create directory failed\n",
4625 			       STMMAC_RESOURCE_NAME);
4626 
4627 			return -ENOMEM;
4628 		}
4629 	}
4630 #endif
4631 
4632 	return 0;
4633 }
4634 
4635 static void __exit stmmac_exit(void)
4636 {
4637 #ifdef CONFIG_DEBUG_FS
4638 	debugfs_remove_recursive(stmmac_fs_dir);
4639 #endif
4640 }
4641 
4642 module_init(stmmac_init)
4643 module_exit(stmmac_exit)
4644 
4645 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
4646 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
4647 MODULE_LICENSE("GPL");
4648