1 /*******************************************************************************
2   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3   ST Ethernet IPs are built around a Synopsys IP Core.
4 
5 	Copyright(C) 2007-2011 STMicroelectronics Ltd
6 
7   This program is free software; you can redistribute it and/or modify it
8   under the terms and conditions of the GNU General Public License,
9   version 2, as published by the Free Software Foundation.
10 
11   This program is distributed in the hope it will be useful, but WITHOUT
12   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14   more details.
15 
16   You should have received a copy of the GNU General Public License along with
17   this program; if not, write to the Free Software Foundation, Inc.,
18   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 
20   The full GNU General Public License is included in this distribution in
21   the file called "COPYING".
22 
23   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24 
25   Documentation available at:
26 	http://www.stlinux.com
27   Support available at:
28 	https://bugzilla.stlinux.com/
29 *******************************************************************************/
30 
31 #include <linux/clk.h>
32 #include <linux/kernel.h>
33 #include <linux/interrupt.h>
34 #include <linux/ip.h>
35 #include <linux/tcp.h>
36 #include <linux/skbuff.h>
37 #include <linux/ethtool.h>
38 #include <linux/if_ether.h>
39 #include <linux/crc32.h>
40 #include <linux/mii.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/slab.h>
45 #include <linux/prefetch.h>
46 #ifdef CONFIG_STMMAC_DEBUG_FS
47 #include <linux/debugfs.h>
48 #include <linux/seq_file.h>
49 #endif /* CONFIG_STMMAC_DEBUG_FS */
50 #include <linux/net_tstamp.h>
51 #include "stmmac_ptp.h"
52 #include "stmmac.h"
53 
54 #define STMMAC_ALIGN(x)	L1_CACHE_ALIGN(x)
55 #define JUMBO_LEN	9000
56 
57 /* Module parameters */
58 #define TX_TIMEO	5000
59 static int watchdog = TX_TIMEO;
60 module_param(watchdog, int, S_IRUGO | S_IWUSR);
61 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
62 
63 static int debug = -1;
64 module_param(debug, int, S_IRUGO | S_IWUSR);
65 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
66 
67 int phyaddr = -1;
68 module_param(phyaddr, int, S_IRUGO);
69 MODULE_PARM_DESC(phyaddr, "Physical device address");
70 
71 #define DMA_TX_SIZE 256
72 static int dma_txsize = DMA_TX_SIZE;
73 module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
74 MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
75 
76 #define DMA_RX_SIZE 256
77 static int dma_rxsize = DMA_RX_SIZE;
78 module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
79 MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
80 
81 static int flow_ctrl = FLOW_OFF;
82 module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
83 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
84 
85 static int pause = PAUSE_TIME;
86 module_param(pause, int, S_IRUGO | S_IWUSR);
87 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
88 
89 #define TC_DEFAULT 64
90 static int tc = TC_DEFAULT;
91 module_param(tc, int, S_IRUGO | S_IWUSR);
92 MODULE_PARM_DESC(tc, "DMA threshold control value");
93 
94 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
95 static int buf_sz = DMA_BUFFER_SIZE;
96 module_param(buf_sz, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
98 
99 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
100 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
101 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
102 
103 #define STMMAC_DEFAULT_LPI_TIMER	1000
104 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
105 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
106 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
107 #define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
108 
109 /* By default the driver will use the ring mode to manage tx and rx descriptors
110  * but passing this value so user can force to use the chain instead of the ring
111  */
112 static unsigned int chain_mode;
113 module_param(chain_mode, int, S_IRUGO);
114 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
115 
116 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
117 
118 #ifdef CONFIG_STMMAC_DEBUG_FS
119 static int stmmac_init_fs(struct net_device *dev);
120 static void stmmac_exit_fs(void);
121 #endif
122 
123 #define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
124 
125 /**
126  * stmmac_verify_args - verify the driver parameters.
127  * Description: it verifies if some wrong parameter is passed to the driver.
128  * Note that wrong parameters are replaced with the default values.
129  */
130 static void stmmac_verify_args(void)
131 {
132 	if (unlikely(watchdog < 0))
133 		watchdog = TX_TIMEO;
134 	if (unlikely(dma_rxsize < 0))
135 		dma_rxsize = DMA_RX_SIZE;
136 	if (unlikely(dma_txsize < 0))
137 		dma_txsize = DMA_TX_SIZE;
138 	if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
139 		buf_sz = DMA_BUFFER_SIZE;
140 	if (unlikely(flow_ctrl > 1))
141 		flow_ctrl = FLOW_AUTO;
142 	else if (likely(flow_ctrl < 0))
143 		flow_ctrl = FLOW_OFF;
144 	if (unlikely((pause < 0) || (pause > 0xffff)))
145 		pause = PAUSE_TIME;
146 	if (eee_timer < 0)
147 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
148 }
149 
150 /**
151  * stmmac_clk_csr_set - dynamically set the MDC clock
152  * @priv: driver private structure
153  * Description: this is to dynamically set the MDC clock according to the csr
154  * clock input.
155  * Note:
156  *	If a specific clk_csr value is passed from the platform
157  *	this means that the CSR Clock Range selection cannot be
158  *	changed at run-time and it is fixed (as reported in the driver
159  *	documentation). Viceversa the driver will try to set the MDC
160  *	clock dynamically according to the actual clock input.
161  */
162 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
163 {
164 	u32 clk_rate;
165 
166 	clk_rate = clk_get_rate(priv->stmmac_clk);
167 
168 	/* Platform provided default clk_csr would be assumed valid
169 	 * for all other cases except for the below mentioned ones.
170 	 * For values higher than the IEEE 802.3 specified frequency
171 	 * we can not estimate the proper divider as it is not known
172 	 * the frequency of clk_csr_i. So we do not change the default
173 	 * divider.
174 	 */
175 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
176 		if (clk_rate < CSR_F_35M)
177 			priv->clk_csr = STMMAC_CSR_20_35M;
178 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
179 			priv->clk_csr = STMMAC_CSR_35_60M;
180 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
181 			priv->clk_csr = STMMAC_CSR_60_100M;
182 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
183 			priv->clk_csr = STMMAC_CSR_100_150M;
184 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
185 			priv->clk_csr = STMMAC_CSR_150_250M;
186 		else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
187 			priv->clk_csr = STMMAC_CSR_250_300M;
188 	}
189 }
190 
191 static void print_pkt(unsigned char *buf, int len)
192 {
193 	int j;
194 	pr_debug("len = %d byte, buf addr: 0x%p", len, buf);
195 	for (j = 0; j < len; j++) {
196 		if ((j % 16) == 0)
197 			pr_debug("\n %03x:", j);
198 		pr_debug(" %02x", buf[j]);
199 	}
200 	pr_debug("\n");
201 }
202 
203 /* minimum number of free TX descriptors required to wake up TX process */
204 #define STMMAC_TX_THRESH(x)	(x->dma_tx_size/4)
205 
206 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
207 {
208 	return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
209 }
210 
211 /**
212  * stmmac_hw_fix_mac_speed: callback for speed selection
213  * @priv: driver private structure
214  * Description: on some platforms (e.g. ST), some HW system configuraton
215  * registers have to be set according to the link speed negotiated.
216  */
217 static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
218 {
219 	struct phy_device *phydev = priv->phydev;
220 
221 	if (likely(priv->plat->fix_mac_speed))
222 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
223 }
224 
225 /**
226  * stmmac_enable_eee_mode: Check and enter in LPI mode
227  * @priv: driver private structure
228  * Description: this function is to verify and enter in LPI mode for EEE.
229  */
230 static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
231 {
232 	/* Check and enter in LPI mode */
233 	if ((priv->dirty_tx == priv->cur_tx) &&
234 	    (priv->tx_path_in_lpi_mode == false))
235 		priv->hw->mac->set_eee_mode(priv->ioaddr);
236 }
237 
238 /**
239  * stmmac_disable_eee_mode: disable/exit from EEE
240  * @priv: driver private structure
241  * Description: this function is to exit and disable EEE in case of
242  * LPI state is true. This is called by the xmit.
243  */
244 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
245 {
246 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
247 	del_timer_sync(&priv->eee_ctrl_timer);
248 	priv->tx_path_in_lpi_mode = false;
249 }
250 
251 /**
252  * stmmac_eee_ctrl_timer: EEE TX SW timer.
253  * @arg : data hook
254  * Description:
255  *  if there is no data transfer and if we are not in LPI state,
256  *  then MAC Transmitter can be moved to LPI state.
257  */
258 static void stmmac_eee_ctrl_timer(unsigned long arg)
259 {
260 	struct stmmac_priv *priv = (struct stmmac_priv *)arg;
261 
262 	stmmac_enable_eee_mode(priv);
263 	mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
264 }
265 
266 /**
267  * stmmac_eee_init: init EEE
268  * @priv: driver private structure
269  * Description:
270  *  If the EEE support has been enabled while configuring the driver,
271  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
272  *  phy can also manage EEE, so enable the LPI state and start the timer
273  *  to verify if the tx path can enter in LPI state.
274  */
275 bool stmmac_eee_init(struct stmmac_priv *priv)
276 {
277 	bool ret = false;
278 
279 	/* Using PCS we cannot dial with the phy registers at this stage
280 	 * so we do not support extra feature like EEE.
281 	 */
282 	if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
283 	    (priv->pcs == STMMAC_PCS_RTBI))
284 		goto out;
285 
286 	/* MAC core supports the EEE feature. */
287 	if (priv->dma_cap.eee) {
288 		/* Check if the PHY supports EEE */
289 		if (phy_init_eee(priv->phydev, 1))
290 			goto out;
291 
292 		if (!priv->eee_active) {
293 			priv->eee_active = 1;
294 			init_timer(&priv->eee_ctrl_timer);
295 			priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
296 			priv->eee_ctrl_timer.data = (unsigned long)priv;
297 			priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
298 			add_timer(&priv->eee_ctrl_timer);
299 
300 			priv->hw->mac->set_eee_timer(priv->ioaddr,
301 						     STMMAC_DEFAULT_LIT_LS,
302 						     priv->tx_lpi_timer);
303 		} else
304 			/* Set HW EEE according to the speed */
305 			priv->hw->mac->set_eee_pls(priv->ioaddr,
306 						   priv->phydev->link);
307 
308 		pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
309 
310 		ret = true;
311 	}
312 out:
313 	return ret;
314 }
315 
316 /* stmmac_get_tx_hwtstamp: get HW TX timestamps
317  * @priv: driver private structure
318  * @entry : descriptor index to be used.
319  * @skb : the socket buffer
320  * Description :
321  * This function will read timestamp from the descriptor & pass it to stack.
322  * and also perform some sanity checks.
323  */
324 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
325 				   unsigned int entry, struct sk_buff *skb)
326 {
327 	struct skb_shared_hwtstamps shhwtstamp;
328 	u64 ns;
329 	void *desc = NULL;
330 
331 	if (!priv->hwts_tx_en)
332 		return;
333 
334 	/* exit if skb doesn't support hw tstamp */
335 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
336 		return;
337 
338 	if (priv->adv_ts)
339 		desc = (priv->dma_etx + entry);
340 	else
341 		desc = (priv->dma_tx + entry);
342 
343 	/* check tx tstamp status */
344 	if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
345 		return;
346 
347 	/* get the valid tstamp */
348 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
349 
350 	memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
351 	shhwtstamp.hwtstamp = ns_to_ktime(ns);
352 	/* pass tstamp to stack */
353 	skb_tstamp_tx(skb, &shhwtstamp);
354 
355 	return;
356 }
357 
358 /* stmmac_get_rx_hwtstamp: get HW RX timestamps
359  * @priv: driver private structure
360  * @entry : descriptor index to be used.
361  * @skb : the socket buffer
362  * Description :
363  * This function will read received packet's timestamp from the descriptor
364  * and pass it to stack. It also perform some sanity checks.
365  */
366 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
367 				   unsigned int entry, struct sk_buff *skb)
368 {
369 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
370 	u64 ns;
371 	void *desc = NULL;
372 
373 	if (!priv->hwts_rx_en)
374 		return;
375 
376 	if (priv->adv_ts)
377 		desc = (priv->dma_erx + entry);
378 	else
379 		desc = (priv->dma_rx + entry);
380 
381 	/* exit if rx tstamp is not valid */
382 	if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
383 		return;
384 
385 	/* get valid tstamp */
386 	ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
387 	shhwtstamp = skb_hwtstamps(skb);
388 	memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
389 	shhwtstamp->hwtstamp = ns_to_ktime(ns);
390 }
391 
392 /**
393  *  stmmac_hwtstamp_ioctl - control hardware timestamping.
394  *  @dev: device pointer.
395  *  @ifr: An IOCTL specefic structure, that can contain a pointer to
396  *  a proprietary structure used to pass information to the driver.
397  *  Description:
398  *  This function configures the MAC to enable/disable both outgoing(TX)
399  *  and incoming(RX) packets time stamping based on user input.
400  *  Return Value:
401  *  0 on success and an appropriate -ve integer on failure.
402  */
403 static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
404 {
405 	struct stmmac_priv *priv = netdev_priv(dev);
406 	struct hwtstamp_config config;
407 	struct timespec now;
408 	u64 temp = 0;
409 	u32 ptp_v2 = 0;
410 	u32 tstamp_all = 0;
411 	u32 ptp_over_ipv4_udp = 0;
412 	u32 ptp_over_ipv6_udp = 0;
413 	u32 ptp_over_ethernet = 0;
414 	u32 snap_type_sel = 0;
415 	u32 ts_master_en = 0;
416 	u32 ts_event_en = 0;
417 	u32 value = 0;
418 
419 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
420 		netdev_alert(priv->dev, "No support for HW time stamping\n");
421 		priv->hwts_tx_en = 0;
422 		priv->hwts_rx_en = 0;
423 
424 		return -EOPNOTSUPP;
425 	}
426 
427 	if (copy_from_user(&config, ifr->ifr_data,
428 			   sizeof(struct hwtstamp_config)))
429 		return -EFAULT;
430 
431 	pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
432 		 __func__, config.flags, config.tx_type, config.rx_filter);
433 
434 	/* reserved for future extensions */
435 	if (config.flags)
436 		return -EINVAL;
437 
438 	switch (config.tx_type) {
439 	case HWTSTAMP_TX_OFF:
440 		priv->hwts_tx_en = 0;
441 		break;
442 	case HWTSTAMP_TX_ON:
443 		priv->hwts_tx_en = 1;
444 		break;
445 	default:
446 		return -ERANGE;
447 	}
448 
449 	if (priv->adv_ts) {
450 		switch (config.rx_filter) {
451 		case HWTSTAMP_FILTER_NONE:
452 			/* time stamp no incoming packet at all */
453 			config.rx_filter = HWTSTAMP_FILTER_NONE;
454 			break;
455 
456 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
457 			/* PTP v1, UDP, any kind of event packet */
458 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
459 			/* take time stamp for all event messages */
460 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
461 
462 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
463 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
464 			break;
465 
466 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
467 			/* PTP v1, UDP, Sync packet */
468 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
469 			/* take time stamp for SYNC messages only */
470 			ts_event_en = PTP_TCR_TSEVNTENA;
471 
472 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
473 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
474 			break;
475 
476 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
477 			/* PTP v1, UDP, Delay_req packet */
478 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
479 			/* take time stamp for Delay_Req messages only */
480 			ts_master_en = PTP_TCR_TSMSTRENA;
481 			ts_event_en = PTP_TCR_TSEVNTENA;
482 
483 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
484 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
485 			break;
486 
487 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
488 			/* PTP v2, UDP, any kind of event packet */
489 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
490 			ptp_v2 = PTP_TCR_TSVER2ENA;
491 			/* take time stamp for all event messages */
492 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
493 
494 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
495 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
496 			break;
497 
498 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
499 			/* PTP v2, UDP, Sync packet */
500 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
501 			ptp_v2 = PTP_TCR_TSVER2ENA;
502 			/* take time stamp for SYNC messages only */
503 			ts_event_en = PTP_TCR_TSEVNTENA;
504 
505 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
506 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
507 			break;
508 
509 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
510 			/* PTP v2, UDP, Delay_req packet */
511 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
512 			ptp_v2 = PTP_TCR_TSVER2ENA;
513 			/* take time stamp for Delay_Req messages only */
514 			ts_master_en = PTP_TCR_TSMSTRENA;
515 			ts_event_en = PTP_TCR_TSEVNTENA;
516 
517 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
518 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
519 			break;
520 
521 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
522 			/* PTP v2/802.AS1 any layer, any kind of event packet */
523 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
524 			ptp_v2 = PTP_TCR_TSVER2ENA;
525 			/* take time stamp for all event messages */
526 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
527 
528 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
529 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
530 			ptp_over_ethernet = PTP_TCR_TSIPENA;
531 			break;
532 
533 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
534 			/* PTP v2/802.AS1, any layer, Sync packet */
535 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
536 			ptp_v2 = PTP_TCR_TSVER2ENA;
537 			/* take time stamp for SYNC messages only */
538 			ts_event_en = PTP_TCR_TSEVNTENA;
539 
540 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
541 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
542 			ptp_over_ethernet = PTP_TCR_TSIPENA;
543 			break;
544 
545 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
546 			/* PTP v2/802.AS1, any layer, Delay_req packet */
547 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
548 			ptp_v2 = PTP_TCR_TSVER2ENA;
549 			/* take time stamp for Delay_Req messages only */
550 			ts_master_en = PTP_TCR_TSMSTRENA;
551 			ts_event_en = PTP_TCR_TSEVNTENA;
552 
553 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
554 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
555 			ptp_over_ethernet = PTP_TCR_TSIPENA;
556 			break;
557 
558 		case HWTSTAMP_FILTER_ALL:
559 			/* time stamp any incoming packet */
560 			config.rx_filter = HWTSTAMP_FILTER_ALL;
561 			tstamp_all = PTP_TCR_TSENALL;
562 			break;
563 
564 		default:
565 			return -ERANGE;
566 		}
567 	} else {
568 		switch (config.rx_filter) {
569 		case HWTSTAMP_FILTER_NONE:
570 			config.rx_filter = HWTSTAMP_FILTER_NONE;
571 			break;
572 		default:
573 			/* PTP v1, UDP, any kind of event packet */
574 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
575 			break;
576 		}
577 	}
578 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
579 
580 	if (!priv->hwts_tx_en && !priv->hwts_rx_en)
581 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
582 	else {
583 		value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
584 			 tstamp_all | ptp_v2 | ptp_over_ethernet |
585 			 ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
586 			 ts_master_en | snap_type_sel);
587 
588 		priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
589 
590 		/* program Sub Second Increment reg */
591 		priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
592 
593 		/* calculate default added value:
594 		 * formula is :
595 		 * addend = (2^32)/freq_div_ratio;
596 		 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
597 		 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
598 		 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
599 		 *       achive 20ns accuracy.
600 		 *
601 		 * 2^x * y == (y << x), hence
602 		 * 2^32 * 50000000 ==> (50000000 << 32)
603 		 */
604 		temp = (u64) (50000000ULL << 32);
605 		priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
606 		priv->hw->ptp->config_addend(priv->ioaddr,
607 					     priv->default_addend);
608 
609 		/* initialize system time */
610 		getnstimeofday(&now);
611 		priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
612 					    now.tv_nsec);
613 	}
614 
615 	return copy_to_user(ifr->ifr_data, &config,
616 			    sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
617 }
618 
619 /**
620  * stmmac_init_ptp: init PTP
621  * @priv: driver private structure
622  * Description: this is to verify if the HW supports the PTPv1 or v2.
623  * This is done by looking at the HW cap. register.
624  * Also it registers the ptp driver.
625  */
626 static int stmmac_init_ptp(struct stmmac_priv *priv)
627 {
628 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
629 		return -EOPNOTSUPP;
630 
631 	if (netif_msg_hw(priv)) {
632 		if (priv->dma_cap.time_stamp) {
633 			pr_debug("IEEE 1588-2002 Time Stamp supported\n");
634 			priv->adv_ts = 0;
635 		}
636 		if (priv->dma_cap.atime_stamp && priv->extend_desc) {
637 			pr_debug
638 			    ("IEEE 1588-2008 Advanced Time Stamp supported\n");
639 			priv->adv_ts = 1;
640 		}
641 	}
642 
643 	priv->hw->ptp = &stmmac_ptp;
644 	priv->hwts_tx_en = 0;
645 	priv->hwts_rx_en = 0;
646 
647 	return stmmac_ptp_register(priv);
648 }
649 
650 static void stmmac_release_ptp(struct stmmac_priv *priv)
651 {
652 	stmmac_ptp_unregister(priv);
653 }
654 
655 /**
656  * stmmac_adjust_link
657  * @dev: net device structure
658  * Description: it adjusts the link parameters.
659  */
660 static void stmmac_adjust_link(struct net_device *dev)
661 {
662 	struct stmmac_priv *priv = netdev_priv(dev);
663 	struct phy_device *phydev = priv->phydev;
664 	unsigned long flags;
665 	int new_state = 0;
666 	unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
667 
668 	if (phydev == NULL)
669 		return;
670 
671 	spin_lock_irqsave(&priv->lock, flags);
672 
673 	if (phydev->link) {
674 		u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
675 
676 		/* Now we make sure that we can be in full duplex mode.
677 		 * If not, we operate in half-duplex mode. */
678 		if (phydev->duplex != priv->oldduplex) {
679 			new_state = 1;
680 			if (!(phydev->duplex))
681 				ctrl &= ~priv->hw->link.duplex;
682 			else
683 				ctrl |= priv->hw->link.duplex;
684 			priv->oldduplex = phydev->duplex;
685 		}
686 		/* Flow Control operation */
687 		if (phydev->pause)
688 			priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
689 						 fc, pause_time);
690 
691 		if (phydev->speed != priv->speed) {
692 			new_state = 1;
693 			switch (phydev->speed) {
694 			case 1000:
695 				if (likely(priv->plat->has_gmac))
696 					ctrl &= ~priv->hw->link.port;
697 				stmmac_hw_fix_mac_speed(priv);
698 				break;
699 			case 100:
700 			case 10:
701 				if (priv->plat->has_gmac) {
702 					ctrl |= priv->hw->link.port;
703 					if (phydev->speed == SPEED_100) {
704 						ctrl |= priv->hw->link.speed;
705 					} else {
706 						ctrl &= ~(priv->hw->link.speed);
707 					}
708 				} else {
709 					ctrl &= ~priv->hw->link.port;
710 				}
711 				stmmac_hw_fix_mac_speed(priv);
712 				break;
713 			default:
714 				if (netif_msg_link(priv))
715 					pr_warn("%s: Speed (%d) not 10/100\n",
716 						dev->name, phydev->speed);
717 				break;
718 			}
719 
720 			priv->speed = phydev->speed;
721 		}
722 
723 		writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
724 
725 		if (!priv->oldlink) {
726 			new_state = 1;
727 			priv->oldlink = 1;
728 		}
729 	} else if (priv->oldlink) {
730 		new_state = 1;
731 		priv->oldlink = 0;
732 		priv->speed = 0;
733 		priv->oldduplex = -1;
734 	}
735 
736 	if (new_state && netif_msg_link(priv))
737 		phy_print_status(phydev);
738 
739 	/* At this stage, it could be needed to setup the EEE or adjust some
740 	 * MAC related HW registers.
741 	 */
742 	priv->eee_enabled = stmmac_eee_init(priv);
743 
744 	spin_unlock_irqrestore(&priv->lock, flags);
745 }
746 
747 /**
748  * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
749  * @priv: driver private structure
750  * Description: this is to verify if the HW supports the PCS.
751  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
752  * configured for the TBI, RTBI, or SGMII PHY interface.
753  */
754 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
755 {
756 	int interface = priv->plat->interface;
757 
758 	if (priv->dma_cap.pcs) {
759 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
760 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
761 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
762 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
763 			pr_debug("STMMAC: PCS RGMII support enable\n");
764 			priv->pcs = STMMAC_PCS_RGMII;
765 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
766 			pr_debug("STMMAC: PCS SGMII support enable\n");
767 			priv->pcs = STMMAC_PCS_SGMII;
768 		}
769 	}
770 }
771 
772 /**
773  * stmmac_init_phy - PHY initialization
774  * @dev: net device structure
775  * Description: it initializes the driver's PHY state, and attaches the PHY
776  * to the mac driver.
777  *  Return value:
778  *  0 on success
779  */
780 static int stmmac_init_phy(struct net_device *dev)
781 {
782 	struct stmmac_priv *priv = netdev_priv(dev);
783 	struct phy_device *phydev;
784 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
785 	char bus_id[MII_BUS_ID_SIZE];
786 	int interface = priv->plat->interface;
787 	priv->oldlink = 0;
788 	priv->speed = 0;
789 	priv->oldduplex = -1;
790 
791 	if (priv->plat->phy_bus_name)
792 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
793 			 priv->plat->phy_bus_name, priv->plat->bus_id);
794 	else
795 		snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
796 			 priv->plat->bus_id);
797 
798 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
799 		 priv->plat->phy_addr);
800 	pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
801 
802 	phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
803 
804 	if (IS_ERR(phydev)) {
805 		pr_err("%s: Could not attach to PHY\n", dev->name);
806 		return PTR_ERR(phydev);
807 	}
808 
809 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
810 	if ((interface == PHY_INTERFACE_MODE_MII) ||
811 	    (interface == PHY_INTERFACE_MODE_RMII))
812 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
813 					 SUPPORTED_1000baseT_Full);
814 
815 	/*
816 	 * Broken HW is sometimes missing the pull-up resistor on the
817 	 * MDIO line, which results in reads to non-existent devices returning
818 	 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
819 	 * device as well.
820 	 * Note: phydev->phy_id is the result of reading the UID PHY registers.
821 	 */
822 	if (phydev->phy_id == 0) {
823 		phy_disconnect(phydev);
824 		return -ENODEV;
825 	}
826 	pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
827 		 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
828 
829 	priv->phydev = phydev;
830 
831 	return 0;
832 }
833 
834 /**
835  * stmmac_display_ring: display ring
836  * @head: pointer to the head of the ring passed.
837  * @size: size of the ring.
838  * @extend_desc: to verify if extended descriptors are used.
839  * Description: display the control/status and buffer descriptors.
840  */
841 static void stmmac_display_ring(void *head, int size, int extend_desc)
842 {
843 	int i;
844 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
845 	struct dma_desc *p = (struct dma_desc *)head;
846 
847 	for (i = 0; i < size; i++) {
848 		u64 x;
849 		if (extend_desc) {
850 			x = *(u64 *) ep;
851 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
852 				i, (unsigned int)virt_to_phys(ep),
853 				(unsigned int)x, (unsigned int)(x >> 32),
854 				ep->basic.des2, ep->basic.des3);
855 			ep++;
856 		} else {
857 			x = *(u64 *) p;
858 			pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
859 				i, (unsigned int)virt_to_phys(p),
860 				(unsigned int)x, (unsigned int)(x >> 32),
861 				p->des2, p->des3);
862 			p++;
863 		}
864 		pr_info("\n");
865 	}
866 }
867 
868 static void stmmac_display_rings(struct stmmac_priv *priv)
869 {
870 	unsigned int txsize = priv->dma_tx_size;
871 	unsigned int rxsize = priv->dma_rx_size;
872 
873 	if (priv->extend_desc) {
874 		pr_info("Extended RX descriptor ring:\n");
875 		stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
876 		pr_info("Extended TX descriptor ring:\n");
877 		stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
878 	} else {
879 		pr_info("RX descriptor ring:\n");
880 		stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
881 		pr_info("TX descriptor ring:\n");
882 		stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
883 	}
884 }
885 
886 static int stmmac_set_bfsize(int mtu, int bufsize)
887 {
888 	int ret = bufsize;
889 
890 	if (mtu >= BUF_SIZE_4KiB)
891 		ret = BUF_SIZE_8KiB;
892 	else if (mtu >= BUF_SIZE_2KiB)
893 		ret = BUF_SIZE_4KiB;
894 	else if (mtu >= DMA_BUFFER_SIZE)
895 		ret = BUF_SIZE_2KiB;
896 	else
897 		ret = DMA_BUFFER_SIZE;
898 
899 	return ret;
900 }
901 
902 /**
903  * stmmac_clear_descriptors: clear descriptors
904  * @priv: driver private structure
905  * Description: this function is called to clear the tx and rx descriptors
906  * in case of both basic and extended descriptors are used.
907  */
908 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
909 {
910 	int i;
911 	unsigned int txsize = priv->dma_tx_size;
912 	unsigned int rxsize = priv->dma_rx_size;
913 
914 	/* Clear the Rx/Tx descriptors */
915 	for (i = 0; i < rxsize; i++)
916 		if (priv->extend_desc)
917 			priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
918 						     priv->use_riwt, priv->mode,
919 						     (i == rxsize - 1));
920 		else
921 			priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
922 						     priv->use_riwt, priv->mode,
923 						     (i == rxsize - 1));
924 	for (i = 0; i < txsize; i++)
925 		if (priv->extend_desc)
926 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
927 						     priv->mode,
928 						     (i == txsize - 1));
929 		else
930 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
931 						     priv->mode,
932 						     (i == txsize - 1));
933 }
934 
935 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
936 				  int i)
937 {
938 	struct sk_buff *skb;
939 
940 	skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
941 				 GFP_KERNEL);
942 	if (unlikely(skb == NULL)) {
943 		pr_err("%s: Rx init fails; skb is NULL\n", __func__);
944 		return 1;
945 	}
946 	skb_reserve(skb, NET_IP_ALIGN);
947 	priv->rx_skbuff[i] = skb;
948 	priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
949 						priv->dma_buf_sz,
950 						DMA_FROM_DEVICE);
951 
952 	p->des2 = priv->rx_skbuff_dma[i];
953 
954 	if ((priv->mode == STMMAC_RING_MODE) &&
955 	    (priv->dma_buf_sz == BUF_SIZE_16KiB))
956 		priv->hw->ring->init_desc3(p);
957 
958 	return 0;
959 }
960 
961 /**
962  * init_dma_desc_rings - init the RX/TX descriptor rings
963  * @dev: net device structure
964  * Description:  this function initializes the DMA RX/TX descriptors
965  * and allocates the socket buffers. It suppors the chained and ring
966  * modes.
967  */
968 static void init_dma_desc_rings(struct net_device *dev)
969 {
970 	int i;
971 	struct stmmac_priv *priv = netdev_priv(dev);
972 	unsigned int txsize = priv->dma_tx_size;
973 	unsigned int rxsize = priv->dma_rx_size;
974 	unsigned int bfsize = 0;
975 
976 	/* Set the max buffer size according to the DESC mode
977 	 * and the MTU. Note that RING mode allows 16KiB bsize.
978 	 */
979 	if (priv->mode == STMMAC_RING_MODE)
980 		bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
981 
982 	if (bfsize < BUF_SIZE_16KiB)
983 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
984 
985 	if (netif_msg_probe(priv))
986 		pr_debug("%s: txsize %d, rxsize %d, bfsize %d\n", __func__,
987 			 txsize, rxsize, bfsize);
988 
989 	if (priv->extend_desc) {
990 		priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
991 						   sizeof(struct
992 							  dma_extended_desc),
993 						   &priv->dma_rx_phy,
994 						   GFP_KERNEL);
995 		priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
996 						   sizeof(struct
997 							  dma_extended_desc),
998 						   &priv->dma_tx_phy,
999 						   GFP_KERNEL);
1000 		if ((!priv->dma_erx) || (!priv->dma_etx))
1001 			return;
1002 	} else {
1003 		priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1004 						  sizeof(struct dma_desc),
1005 						  &priv->dma_rx_phy,
1006 						  GFP_KERNEL);
1007 		priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1008 						  sizeof(struct dma_desc),
1009 						  &priv->dma_tx_phy,
1010 						  GFP_KERNEL);
1011 		if ((!priv->dma_rx) || (!priv->dma_tx))
1012 			return;
1013 	}
1014 
1015 	priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1016 					    GFP_KERNEL);
1017 	priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1018 					GFP_KERNEL);
1019 	priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1020 					    GFP_KERNEL);
1021 	priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1022 					GFP_KERNEL);
1023 	if (netif_msg_probe(priv)) {
1024 		pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1025 			 (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1026 
1027 		/* RX INITIALIZATION */
1028 		pr_debug("\tSKB addresses:\nskb\t\tskb data\tdma data\n");
1029 	}
1030 	for (i = 0; i < rxsize; i++) {
1031 		struct dma_desc *p;
1032 		if (priv->extend_desc)
1033 			p = &((priv->dma_erx + i)->basic);
1034 		else
1035 			p = priv->dma_rx + i;
1036 
1037 		if (stmmac_init_rx_buffers(priv, p, i))
1038 			break;
1039 
1040 		if (netif_msg_probe(priv))
1041 			pr_debug("[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1042 				 priv->rx_skbuff[i]->data,
1043 				 (unsigned int)priv->rx_skbuff_dma[i]);
1044 	}
1045 	priv->cur_rx = 0;
1046 	priv->dirty_rx = (unsigned int)(i - rxsize);
1047 	priv->dma_buf_sz = bfsize;
1048 	buf_sz = bfsize;
1049 
1050 	/* Setup the chained descriptor addresses */
1051 	if (priv->mode == STMMAC_CHAIN_MODE) {
1052 		if (priv->extend_desc) {
1053 			priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1054 					      rxsize, 1);
1055 			priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1056 					      txsize, 1);
1057 		} else {
1058 			priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1059 					      rxsize, 0);
1060 			priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1061 					      txsize, 0);
1062 		}
1063 	}
1064 
1065 	/* TX INITIALIZATION */
1066 	for (i = 0; i < txsize; i++) {
1067 		struct dma_desc *p;
1068 		if (priv->extend_desc)
1069 			p = &((priv->dma_etx + i)->basic);
1070 		else
1071 			p = priv->dma_tx + i;
1072 		p->des2 = 0;
1073 		priv->tx_skbuff_dma[i] = 0;
1074 		priv->tx_skbuff[i] = NULL;
1075 	}
1076 
1077 	priv->dirty_tx = 0;
1078 	priv->cur_tx = 0;
1079 
1080 	stmmac_clear_descriptors(priv);
1081 
1082 	if (netif_msg_hw(priv))
1083 		stmmac_display_rings(priv);
1084 }
1085 
1086 static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1087 {
1088 	int i;
1089 
1090 	for (i = 0; i < priv->dma_rx_size; i++) {
1091 		if (priv->rx_skbuff[i]) {
1092 			dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1093 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
1094 			dev_kfree_skb_any(priv->rx_skbuff[i]);
1095 		}
1096 		priv->rx_skbuff[i] = NULL;
1097 	}
1098 }
1099 
1100 static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1101 {
1102 	int i;
1103 
1104 	for (i = 0; i < priv->dma_tx_size; i++) {
1105 		if (priv->tx_skbuff[i] != NULL) {
1106 			struct dma_desc *p;
1107 			if (priv->extend_desc)
1108 				p = &((priv->dma_etx + i)->basic);
1109 			else
1110 				p = priv->dma_tx + i;
1111 
1112 			if (priv->tx_skbuff_dma[i])
1113 				dma_unmap_single(priv->device,
1114 						 priv->tx_skbuff_dma[i],
1115 						 priv->hw->desc->get_tx_len(p),
1116 						 DMA_TO_DEVICE);
1117 			dev_kfree_skb_any(priv->tx_skbuff[i]);
1118 			priv->tx_skbuff[i] = NULL;
1119 			priv->tx_skbuff_dma[i] = 0;
1120 		}
1121 	}
1122 }
1123 
1124 static void free_dma_desc_resources(struct stmmac_priv *priv)
1125 {
1126 	/* Release the DMA TX/RX socket buffers */
1127 	dma_free_rx_skbufs(priv);
1128 	dma_free_tx_skbufs(priv);
1129 
1130 	/* Free DMA regions of consistent memory previously allocated */
1131 	if (!priv->extend_desc) {
1132 		dma_free_coherent(priv->device,
1133 				  priv->dma_tx_size * sizeof(struct dma_desc),
1134 				  priv->dma_tx, priv->dma_tx_phy);
1135 		dma_free_coherent(priv->device,
1136 				  priv->dma_rx_size * sizeof(struct dma_desc),
1137 				  priv->dma_rx, priv->dma_rx_phy);
1138 	} else {
1139 		dma_free_coherent(priv->device, priv->dma_tx_size *
1140 				  sizeof(struct dma_extended_desc),
1141 				  priv->dma_etx, priv->dma_tx_phy);
1142 		dma_free_coherent(priv->device, priv->dma_rx_size *
1143 				  sizeof(struct dma_extended_desc),
1144 				  priv->dma_erx, priv->dma_rx_phy);
1145 	}
1146 	kfree(priv->rx_skbuff_dma);
1147 	kfree(priv->rx_skbuff);
1148 	kfree(priv->tx_skbuff_dma);
1149 	kfree(priv->tx_skbuff);
1150 }
1151 
1152 /**
1153  *  stmmac_dma_operation_mode - HW DMA operation mode
1154  *  @priv: driver private structure
1155  *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1156  *  or Store-And-Forward capability.
1157  */
1158 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1159 {
1160 	if (likely(priv->plat->force_sf_dma_mode ||
1161 		   ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1162 		/*
1163 		 * In case of GMAC, SF mode can be enabled
1164 		 * to perform the TX COE in HW. This depends on:
1165 		 * 1) TX COE if actually supported
1166 		 * 2) There is no bugged Jumbo frame support
1167 		 *    that needs to not insert csum in the TDES.
1168 		 */
1169 		priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1170 		tc = SF_DMA_MODE;
1171 	} else
1172 		priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1173 }
1174 
1175 /**
1176  * stmmac_tx_clean:
1177  * @priv: driver private structure
1178  * Description: it reclaims resources after transmission completes.
1179  */
1180 static void stmmac_tx_clean(struct stmmac_priv *priv)
1181 {
1182 	unsigned int txsize = priv->dma_tx_size;
1183 
1184 	spin_lock(&priv->tx_lock);
1185 
1186 	priv->xstats.tx_clean++;
1187 
1188 	while (priv->dirty_tx != priv->cur_tx) {
1189 		int last;
1190 		unsigned int entry = priv->dirty_tx % txsize;
1191 		struct sk_buff *skb = priv->tx_skbuff[entry];
1192 		struct dma_desc *p;
1193 
1194 		if (priv->extend_desc)
1195 			p = (struct dma_desc *)(priv->dma_etx + entry);
1196 		else
1197 			p = priv->dma_tx + entry;
1198 
1199 		/* Check if the descriptor is owned by the DMA. */
1200 		if (priv->hw->desc->get_tx_owner(p))
1201 			break;
1202 
1203 		/* Verify tx error by looking at the last segment. */
1204 		last = priv->hw->desc->get_tx_ls(p);
1205 		if (likely(last)) {
1206 			int tx_error =
1207 			    priv->hw->desc->tx_status(&priv->dev->stats,
1208 						      &priv->xstats, p,
1209 						      priv->ioaddr);
1210 			if (likely(tx_error == 0)) {
1211 				priv->dev->stats.tx_packets++;
1212 				priv->xstats.tx_pkt_n++;
1213 			} else
1214 				priv->dev->stats.tx_errors++;
1215 
1216 			stmmac_get_tx_hwtstamp(priv, entry, skb);
1217 		}
1218 		if (netif_msg_tx_done(priv))
1219 			pr_debug("%s: curr %d, dirty %d\n", __func__,
1220 				 priv->cur_tx, priv->dirty_tx);
1221 
1222 		if (likely(priv->tx_skbuff_dma[entry])) {
1223 			dma_unmap_single(priv->device,
1224 					 priv->tx_skbuff_dma[entry],
1225 					 priv->hw->desc->get_tx_len(p),
1226 					 DMA_TO_DEVICE);
1227 			priv->tx_skbuff_dma[entry] = 0;
1228 		}
1229 		priv->hw->ring->clean_desc3(priv, p);
1230 
1231 		if (likely(skb != NULL)) {
1232 			dev_kfree_skb(skb);
1233 			priv->tx_skbuff[entry] = NULL;
1234 		}
1235 
1236 		priv->hw->desc->release_tx_desc(p, priv->mode);
1237 
1238 		priv->dirty_tx++;
1239 	}
1240 	if (unlikely(netif_queue_stopped(priv->dev) &&
1241 		     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1242 		netif_tx_lock(priv->dev);
1243 		if (netif_queue_stopped(priv->dev) &&
1244 		    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1245 			if (netif_msg_tx_done(priv))
1246 				pr_debug("%s: restart transmit\n", __func__);
1247 			netif_wake_queue(priv->dev);
1248 		}
1249 		netif_tx_unlock(priv->dev);
1250 	}
1251 
1252 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1253 		stmmac_enable_eee_mode(priv);
1254 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1255 	}
1256 	spin_unlock(&priv->tx_lock);
1257 }
1258 
1259 static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1260 {
1261 	priv->hw->dma->enable_dma_irq(priv->ioaddr);
1262 }
1263 
1264 static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1265 {
1266 	priv->hw->dma->disable_dma_irq(priv->ioaddr);
1267 }
1268 
1269 /**
1270  * stmmac_tx_err: irq tx error mng function
1271  * @priv: driver private structure
1272  * Description: it cleans the descriptors and restarts the transmission
1273  * in case of errors.
1274  */
1275 static void stmmac_tx_err(struct stmmac_priv *priv)
1276 {
1277 	int i;
1278 	int txsize = priv->dma_tx_size;
1279 	netif_stop_queue(priv->dev);
1280 
1281 	priv->hw->dma->stop_tx(priv->ioaddr);
1282 	dma_free_tx_skbufs(priv);
1283 	for (i = 0; i < txsize; i++)
1284 		if (priv->extend_desc)
1285 			priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1286 						     priv->mode,
1287 						     (i == txsize - 1));
1288 		else
1289 			priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1290 						     priv->mode,
1291 						     (i == txsize - 1));
1292 	priv->dirty_tx = 0;
1293 	priv->cur_tx = 0;
1294 	priv->hw->dma->start_tx(priv->ioaddr);
1295 
1296 	priv->dev->stats.tx_errors++;
1297 	netif_wake_queue(priv->dev);
1298 }
1299 
1300 /**
1301  * stmmac_dma_interrupt: DMA ISR
1302  * @priv: driver private structure
1303  * Description: this is the DMA ISR. It is called by the main ISR.
1304  * It calls the dwmac dma routine to understand which type of interrupt
1305  * happened. In case of there is a Normal interrupt and either TX or RX
1306  * interrupt happened so the NAPI is scheduled.
1307  */
1308 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1309 {
1310 	int status;
1311 
1312 	status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1313 	if (likely((status & handle_rx)) || (status & handle_tx)) {
1314 		if (likely(napi_schedule_prep(&priv->napi))) {
1315 			stmmac_disable_dma_irq(priv);
1316 			__napi_schedule(&priv->napi);
1317 		}
1318 	}
1319 	if (unlikely(status & tx_hard_error_bump_tc)) {
1320 		/* Try to bump up the dma threshold on this failure */
1321 		if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1322 			tc += 64;
1323 			priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1324 			priv->xstats.threshold = tc;
1325 		}
1326 	} else if (unlikely(status == tx_hard_error))
1327 		stmmac_tx_err(priv);
1328 }
1329 
1330 /**
1331  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1332  * @priv: driver private structure
1333  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1334  */
1335 static void stmmac_mmc_setup(struct stmmac_priv *priv)
1336 {
1337 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1338 	    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1339 
1340 	dwmac_mmc_intr_all_mask(priv->ioaddr);
1341 
1342 	if (priv->dma_cap.rmon) {
1343 		dwmac_mmc_ctrl(priv->ioaddr, mode);
1344 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1345 	} else
1346 		pr_info(" No MAC Management Counters available\n");
1347 }
1348 
1349 static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1350 {
1351 	u32 hwid = priv->hw->synopsys_uid;
1352 
1353 	/* Check Synopsys Id (not available on old chips) */
1354 	if (likely(hwid)) {
1355 		u32 uid = ((hwid & 0x0000ff00) >> 8);
1356 		u32 synid = (hwid & 0x000000ff);
1357 
1358 		pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1359 			uid, synid);
1360 
1361 		return synid;
1362 	}
1363 	return 0;
1364 }
1365 
1366 /**
1367  * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1368  * @priv: driver private structure
1369  * Description: select the Enhanced/Alternate or Normal descriptors.
1370  * In case of Enhanced/Alternate, it looks at the extended descriptors are
1371  * supported by the HW cap. register.
1372  */
1373 static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1374 {
1375 	if (priv->plat->enh_desc) {
1376 		pr_info(" Enhanced/Alternate descriptors\n");
1377 
1378 		/* GMAC older than 3.50 has no extended descriptors */
1379 		if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1380 			pr_info("\tEnabled extended descriptors\n");
1381 			priv->extend_desc = 1;
1382 		} else
1383 			pr_warn("Extended descriptors not supported\n");
1384 
1385 		priv->hw->desc = &enh_desc_ops;
1386 	} else {
1387 		pr_info(" Normal descriptors\n");
1388 		priv->hw->desc = &ndesc_ops;
1389 	}
1390 }
1391 
1392 /**
1393  * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1394  * @priv: driver private structure
1395  * Description:
1396  *  new GMAC chip generations have a new register to indicate the
1397  *  presence of the optional feature/functions.
1398  *  This can be also used to override the value passed through the
1399  *  platform and necessary for old MAC10/100 and GMAC chips.
1400  */
1401 static int stmmac_get_hw_features(struct stmmac_priv *priv)
1402 {
1403 	u32 hw_cap = 0;
1404 
1405 	if (priv->hw->dma->get_hw_feature) {
1406 		hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1407 
1408 		priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1409 		priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1410 		priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1411 		priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1412 		priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1413 		priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1414 		priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1415 		priv->dma_cap.pmt_remote_wake_up =
1416 		    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1417 		priv->dma_cap.pmt_magic_frame =
1418 		    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1419 		/* MMC */
1420 		priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1421 		/* IEEE 1588-2002 */
1422 		priv->dma_cap.time_stamp =
1423 		    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1424 		/* IEEE 1588-2008 */
1425 		priv->dma_cap.atime_stamp =
1426 		    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1427 		/* 802.3az - Energy-Efficient Ethernet (EEE) */
1428 		priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1429 		priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1430 		/* TX and RX csum */
1431 		priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1432 		priv->dma_cap.rx_coe_type1 =
1433 		    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1434 		priv->dma_cap.rx_coe_type2 =
1435 		    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1436 		priv->dma_cap.rxfifo_over_2048 =
1437 		    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1438 		/* TX and RX number of channels */
1439 		priv->dma_cap.number_rx_channel =
1440 		    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1441 		priv->dma_cap.number_tx_channel =
1442 		    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1443 		/* Alternate (enhanced) DESC mode */
1444 		priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1445 	}
1446 
1447 	return hw_cap;
1448 }
1449 
1450 /**
1451  * stmmac_check_ether_addr: check if the MAC addr is valid
1452  * @priv: driver private structure
1453  * Description:
1454  * it is to verify if the MAC address is valid, in case of failures it
1455  * generates a random MAC address
1456  */
1457 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1458 {
1459 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1460 		priv->hw->mac->get_umac_addr((void __iomem *)
1461 					     priv->dev->base_addr,
1462 					     priv->dev->dev_addr, 0);
1463 		if (!is_valid_ether_addr(priv->dev->dev_addr))
1464 			eth_hw_addr_random(priv->dev);
1465 	}
1466 	pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1467 		priv->dev->dev_addr);
1468 }
1469 
1470 /**
1471  * stmmac_init_dma_engine: DMA init.
1472  * @priv: driver private structure
1473  * Description:
1474  * It inits the DMA invoking the specific MAC/GMAC callback.
1475  * Some DMA parameters can be passed from the platform;
1476  * in case of these are not passed a default is kept for the MAC or GMAC.
1477  */
1478 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1479 {
1480 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1481 	int mixed_burst = 0;
1482 	int atds = 0;
1483 
1484 	if (priv->plat->dma_cfg) {
1485 		pbl = priv->plat->dma_cfg->pbl;
1486 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
1487 		mixed_burst = priv->plat->dma_cfg->mixed_burst;
1488 		burst_len = priv->plat->dma_cfg->burst_len;
1489 	}
1490 
1491 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1492 		atds = 1;
1493 
1494 	return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1495 				   burst_len, priv->dma_tx_phy,
1496 				   priv->dma_rx_phy, atds);
1497 }
1498 
1499 /**
1500  * stmmac_tx_timer: mitigation sw timer for tx.
1501  * @data: data pointer
1502  * Description:
1503  * This is the timer handler to directly invoke the stmmac_tx_clean.
1504  */
1505 static void stmmac_tx_timer(unsigned long data)
1506 {
1507 	struct stmmac_priv *priv = (struct stmmac_priv *)data;
1508 
1509 	stmmac_tx_clean(priv);
1510 }
1511 
1512 /**
1513  * stmmac_init_tx_coalesce: init tx mitigation options.
1514  * @priv: driver private structure
1515  * Description:
1516  * This inits the transmit coalesce parameters: i.e. timer rate,
1517  * timer handler and default threshold used for enabling the
1518  * interrupt on completion bit.
1519  */
1520 static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1521 {
1522 	priv->tx_coal_frames = STMMAC_TX_FRAMES;
1523 	priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1524 	init_timer(&priv->txtimer);
1525 	priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1526 	priv->txtimer.data = (unsigned long)priv;
1527 	priv->txtimer.function = stmmac_tx_timer;
1528 	add_timer(&priv->txtimer);
1529 }
1530 
1531 /**
1532  *  stmmac_open - open entry point of the driver
1533  *  @dev : pointer to the device structure.
1534  *  Description:
1535  *  This function is the open entry point of the driver.
1536  *  Return value:
1537  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1538  *  file on failure.
1539  */
1540 static int stmmac_open(struct net_device *dev)
1541 {
1542 	struct stmmac_priv *priv = netdev_priv(dev);
1543 	int ret;
1544 
1545 	clk_prepare_enable(priv->stmmac_clk);
1546 
1547 	stmmac_check_ether_addr(priv);
1548 
1549 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1550 	    priv->pcs != STMMAC_PCS_RTBI) {
1551 		ret = stmmac_init_phy(dev);
1552 		if (ret) {
1553 			pr_err("%s: Cannot attach to PHY (error: %d)\n",
1554 			       __func__, ret);
1555 			goto phy_error;
1556 		}
1557 	}
1558 
1559 	/* Create and initialize the TX/RX descriptors chains. */
1560 	priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1561 	priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1562 	priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1563 	init_dma_desc_rings(dev);
1564 
1565 	/* DMA initialization and SW reset */
1566 	ret = stmmac_init_dma_engine(priv);
1567 	if (ret < 0) {
1568 		pr_err("%s: DMA initialization failed\n", __func__);
1569 		goto init_error;
1570 	}
1571 
1572 	/* Copy the MAC addr into the HW  */
1573 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1574 
1575 	/* If required, perform hw setup of the bus. */
1576 	if (priv->plat->bus_setup)
1577 		priv->plat->bus_setup(priv->ioaddr);
1578 
1579 	/* Initialize the MAC Core */
1580 	priv->hw->mac->core_init(priv->ioaddr);
1581 
1582 	/* Request the IRQ lines */
1583 	ret = request_irq(dev->irq, stmmac_interrupt,
1584 			  IRQF_SHARED, dev->name, dev);
1585 	if (unlikely(ret < 0)) {
1586 		pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1587 		       __func__, dev->irq, ret);
1588 		goto init_error;
1589 	}
1590 
1591 	/* Request the Wake IRQ in case of another line is used for WoL */
1592 	if (priv->wol_irq != dev->irq) {
1593 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
1594 				  IRQF_SHARED, dev->name, dev);
1595 		if (unlikely(ret < 0)) {
1596 			pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1597 			       __func__, priv->wol_irq, ret);
1598 			goto wolirq_error;
1599 		}
1600 	}
1601 
1602 	/* Request the IRQ lines */
1603 	if (priv->lpi_irq != -ENXIO) {
1604 		ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1605 				  dev->name, dev);
1606 		if (unlikely(ret < 0)) {
1607 			pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1608 			       __func__, priv->lpi_irq, ret);
1609 			goto lpiirq_error;
1610 		}
1611 	}
1612 
1613 	/* Enable the MAC Rx/Tx */
1614 	stmmac_set_mac(priv->ioaddr, true);
1615 
1616 	/* Set the HW DMA mode and the COE */
1617 	stmmac_dma_operation_mode(priv);
1618 
1619 	/* Extra statistics */
1620 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1621 	priv->xstats.threshold = tc;
1622 
1623 	stmmac_mmc_setup(priv);
1624 
1625 	ret = stmmac_init_ptp(priv);
1626 	if (ret)
1627 		pr_warn("%s: failed PTP initialisation\n", __func__);
1628 
1629 #ifdef CONFIG_STMMAC_DEBUG_FS
1630 	ret = stmmac_init_fs(dev);
1631 	if (ret < 0)
1632 		pr_warn("%s: failed debugFS registration\n", __func__);
1633 #endif
1634 	/* Start the ball rolling... */
1635 	pr_debug("%s: DMA RX/TX processes started...\n", dev->name);
1636 	priv->hw->dma->start_tx(priv->ioaddr);
1637 	priv->hw->dma->start_rx(priv->ioaddr);
1638 
1639 	/* Dump DMA/MAC registers */
1640 	if (netif_msg_hw(priv)) {
1641 		priv->hw->mac->dump_regs(priv->ioaddr);
1642 		priv->hw->dma->dump_regs(priv->ioaddr);
1643 	}
1644 
1645 	if (priv->phydev)
1646 		phy_start(priv->phydev);
1647 
1648 	priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1649 
1650 	priv->eee_enabled = stmmac_eee_init(priv);
1651 
1652 	stmmac_init_tx_coalesce(priv);
1653 
1654 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1655 		priv->rx_riwt = MAX_DMA_RIWT;
1656 		priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1657 	}
1658 
1659 	if (priv->pcs && priv->hw->mac->ctrl_ane)
1660 		priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1661 
1662 	napi_enable(&priv->napi);
1663 	netif_start_queue(dev);
1664 
1665 	return 0;
1666 
1667 lpiirq_error:
1668 	if (priv->wol_irq != dev->irq)
1669 		free_irq(priv->wol_irq, dev);
1670 wolirq_error:
1671 	free_irq(dev->irq, dev);
1672 
1673 init_error:
1674 	free_dma_desc_resources(priv);
1675 	if (priv->phydev)
1676 		phy_disconnect(priv->phydev);
1677 phy_error:
1678 	clk_disable_unprepare(priv->stmmac_clk);
1679 
1680 	return ret;
1681 }
1682 
1683 /**
1684  *  stmmac_release - close entry point of the driver
1685  *  @dev : device pointer.
1686  *  Description:
1687  *  This is the stop entry point of the driver.
1688  */
1689 static int stmmac_release(struct net_device *dev)
1690 {
1691 	struct stmmac_priv *priv = netdev_priv(dev);
1692 
1693 	if (priv->eee_enabled)
1694 		del_timer_sync(&priv->eee_ctrl_timer);
1695 
1696 	/* Stop and disconnect the PHY */
1697 	if (priv->phydev) {
1698 		phy_stop(priv->phydev);
1699 		phy_disconnect(priv->phydev);
1700 		priv->phydev = NULL;
1701 	}
1702 
1703 	netif_stop_queue(dev);
1704 
1705 	napi_disable(&priv->napi);
1706 
1707 	del_timer_sync(&priv->txtimer);
1708 
1709 	/* Free the IRQ lines */
1710 	free_irq(dev->irq, dev);
1711 	if (priv->wol_irq != dev->irq)
1712 		free_irq(priv->wol_irq, dev);
1713 	if (priv->lpi_irq != -ENXIO)
1714 		free_irq(priv->lpi_irq, dev);
1715 
1716 	/* Stop TX/RX DMA and clear the descriptors */
1717 	priv->hw->dma->stop_tx(priv->ioaddr);
1718 	priv->hw->dma->stop_rx(priv->ioaddr);
1719 
1720 	/* Release and free the Rx/Tx resources */
1721 	free_dma_desc_resources(priv);
1722 
1723 	/* Disable the MAC Rx/Tx */
1724 	stmmac_set_mac(priv->ioaddr, false);
1725 
1726 	netif_carrier_off(dev);
1727 
1728 #ifdef CONFIG_STMMAC_DEBUG_FS
1729 	stmmac_exit_fs();
1730 #endif
1731 	clk_disable_unprepare(priv->stmmac_clk);
1732 
1733 	stmmac_release_ptp(priv);
1734 
1735 	return 0;
1736 }
1737 
1738 /**
1739  *  stmmac_xmit: Tx entry point of the driver
1740  *  @skb : the socket buffer
1741  *  @dev : device pointer
1742  *  Description : this is the tx entry point of the driver.
1743  *  It programs the chain or the ring and supports oversized frames
1744  *  and SG feature.
1745  */
1746 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1747 {
1748 	struct stmmac_priv *priv = netdev_priv(dev);
1749 	unsigned int txsize = priv->dma_tx_size;
1750 	unsigned int entry;
1751 	int i, csum_insertion = 0, is_jumbo = 0;
1752 	int nfrags = skb_shinfo(skb)->nr_frags;
1753 	struct dma_desc *desc, *first;
1754 	unsigned int nopaged_len = skb_headlen(skb);
1755 
1756 	if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1757 		if (!netif_queue_stopped(dev)) {
1758 			netif_stop_queue(dev);
1759 			/* This is a hard error, log it. */
1760 			pr_err("%s: Tx Ring full when queue awake\n", __func__);
1761 		}
1762 		return NETDEV_TX_BUSY;
1763 	}
1764 
1765 	spin_lock(&priv->tx_lock);
1766 
1767 	if (priv->tx_path_in_lpi_mode)
1768 		stmmac_disable_eee_mode(priv);
1769 
1770 	entry = priv->cur_tx % txsize;
1771 
1772 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1773 
1774 	if (priv->extend_desc)
1775 		desc = (struct dma_desc *)(priv->dma_etx + entry);
1776 	else
1777 		desc = priv->dma_tx + entry;
1778 
1779 	first = desc;
1780 
1781 	priv->tx_skbuff[entry] = skb;
1782 
1783 	/* To program the descriptors according to the size of the frame */
1784 	if (priv->mode == STMMAC_RING_MODE) {
1785 		is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1786 							priv->plat->enh_desc);
1787 		if (unlikely(is_jumbo))
1788 			entry = priv->hw->ring->jumbo_frm(priv, skb,
1789 							  csum_insertion);
1790 	} else {
1791 		is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1792 							 priv->plat->enh_desc);
1793 		if (unlikely(is_jumbo))
1794 			entry = priv->hw->chain->jumbo_frm(priv, skb,
1795 							   csum_insertion);
1796 	}
1797 	if (likely(!is_jumbo)) {
1798 		desc->des2 = dma_map_single(priv->device, skb->data,
1799 					    nopaged_len, DMA_TO_DEVICE);
1800 		priv->tx_skbuff_dma[entry] = desc->des2;
1801 		priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1802 						csum_insertion, priv->mode);
1803 	} else
1804 		desc = first;
1805 
1806 	for (i = 0; i < nfrags; i++) {
1807 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1808 		int len = skb_frag_size(frag);
1809 
1810 		entry = (++priv->cur_tx) % txsize;
1811 		if (priv->extend_desc)
1812 			desc = (struct dma_desc *)(priv->dma_etx + entry);
1813 		else
1814 			desc = priv->dma_tx + entry;
1815 
1816 		desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1817 					      DMA_TO_DEVICE);
1818 		priv->tx_skbuff_dma[entry] = desc->des2;
1819 		priv->tx_skbuff[entry] = NULL;
1820 		priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1821 						priv->mode);
1822 		wmb();
1823 		priv->hw->desc->set_tx_owner(desc);
1824 		wmb();
1825 	}
1826 
1827 	/* Finalize the latest segment. */
1828 	priv->hw->desc->close_tx_desc(desc);
1829 
1830 	wmb();
1831 	/* According to the coalesce parameter the IC bit for the latest
1832 	 * segment could be reset and the timer re-started to invoke the
1833 	 * stmmac_tx function. This approach takes care about the fragments.
1834 	 */
1835 	priv->tx_count_frames += nfrags + 1;
1836 	if (priv->tx_coal_frames > priv->tx_count_frames) {
1837 		priv->hw->desc->clear_tx_ic(desc);
1838 		priv->xstats.tx_reset_ic_bit++;
1839 		mod_timer(&priv->txtimer,
1840 			  STMMAC_COAL_TIMER(priv->tx_coal_timer));
1841 	} else
1842 		priv->tx_count_frames = 0;
1843 
1844 	/* To avoid raise condition */
1845 	priv->hw->desc->set_tx_owner(first);
1846 	wmb();
1847 
1848 	priv->cur_tx++;
1849 
1850 	if (netif_msg_pktdata(priv)) {
1851 		pr_debug("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1852 			__func__, (priv->cur_tx % txsize),
1853 			(priv->dirty_tx % txsize), entry, first, nfrags);
1854 
1855 		if (priv->extend_desc)
1856 			stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1857 		else
1858 			stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1859 
1860 		pr_debug(">>> frame to be transmitted: ");
1861 		print_pkt(skb->data, skb->len);
1862 	}
1863 	if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1864 		if (netif_msg_hw(priv))
1865 			pr_debug("%s: stop transmitted packets\n", __func__);
1866 		netif_stop_queue(dev);
1867 	}
1868 
1869 	dev->stats.tx_bytes += skb->len;
1870 
1871 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1872 		     priv->hwts_tx_en)) {
1873 		/* declare that device is doing timestamping */
1874 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1875 		priv->hw->desc->enable_tx_timestamp(first);
1876 	}
1877 
1878 	if (!priv->hwts_tx_en)
1879 		skb_tx_timestamp(skb);
1880 
1881 	priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1882 
1883 	spin_unlock(&priv->tx_lock);
1884 
1885 	return NETDEV_TX_OK;
1886 }
1887 
1888 /**
1889  * stmmac_rx_refill: refill used skb preallocated buffers
1890  * @priv: driver private structure
1891  * Description : this is to reallocate the skb for the reception process
1892  * that is based on zero-copy.
1893  */
1894 static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1895 {
1896 	unsigned int rxsize = priv->dma_rx_size;
1897 	int bfsize = priv->dma_buf_sz;
1898 
1899 	for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1900 		unsigned int entry = priv->dirty_rx % rxsize;
1901 		struct dma_desc *p;
1902 
1903 		if (priv->extend_desc)
1904 			p = (struct dma_desc *)(priv->dma_erx + entry);
1905 		else
1906 			p = priv->dma_rx + entry;
1907 
1908 		if (likely(priv->rx_skbuff[entry] == NULL)) {
1909 			struct sk_buff *skb;
1910 
1911 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1912 
1913 			if (unlikely(skb == NULL))
1914 				break;
1915 
1916 			priv->rx_skbuff[entry] = skb;
1917 			priv->rx_skbuff_dma[entry] =
1918 			    dma_map_single(priv->device, skb->data, bfsize,
1919 					   DMA_FROM_DEVICE);
1920 
1921 			p->des2 = priv->rx_skbuff_dma[entry];
1922 
1923 			priv->hw->ring->refill_desc3(priv, p);
1924 
1925 			if (netif_msg_rx_status(priv))
1926 				pr_debug("\trefill entry #%d\n", entry);
1927 		}
1928 		wmb();
1929 		priv->hw->desc->set_rx_owner(p);
1930 		wmb();
1931 	}
1932 }
1933 
1934 /**
1935  * stmmac_rx_refill: refill used skb preallocated buffers
1936  * @priv: driver private structure
1937  * @limit: napi bugget.
1938  * Description :  this the function called by the napi poll method.
1939  * It gets all the frames inside the ring.
1940  */
1941 static int stmmac_rx(struct stmmac_priv *priv, int limit)
1942 {
1943 	unsigned int rxsize = priv->dma_rx_size;
1944 	unsigned int entry = priv->cur_rx % rxsize;
1945 	unsigned int next_entry;
1946 	unsigned int count = 0;
1947 	int coe = priv->plat->rx_coe;
1948 
1949 	if (netif_msg_rx_status(priv)) {
1950 		pr_debug("%s: descriptor ring:\n", __func__);
1951 		if (priv->extend_desc)
1952 			stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
1953 		else
1954 			stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
1955 	}
1956 	while (count < limit) {
1957 		int status;
1958 		struct dma_desc *p;
1959 
1960 		if (priv->extend_desc)
1961 			p = (struct dma_desc *)(priv->dma_erx + entry);
1962 		else
1963 			p = priv->dma_rx + entry;
1964 
1965 		if (priv->hw->desc->get_rx_owner(p))
1966 			break;
1967 
1968 		count++;
1969 
1970 		next_entry = (++priv->cur_rx) % rxsize;
1971 		if (priv->extend_desc)
1972 			prefetch(priv->dma_erx + next_entry);
1973 		else
1974 			prefetch(priv->dma_rx + next_entry);
1975 
1976 		/* read the status of the incoming frame */
1977 		status = priv->hw->desc->rx_status(&priv->dev->stats,
1978 						   &priv->xstats, p);
1979 		if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
1980 			priv->hw->desc->rx_extended_status(&priv->dev->stats,
1981 							   &priv->xstats,
1982 							   priv->dma_erx +
1983 							   entry);
1984 		if (unlikely(status == discard_frame)) {
1985 			priv->dev->stats.rx_errors++;
1986 			if (priv->hwts_rx_en && !priv->extend_desc) {
1987 				/* DESC2 & DESC3 will be overwitten by device
1988 				 * with timestamp value, hence reinitialize
1989 				 * them in stmmac_rx_refill() function so that
1990 				 * device can reuse it.
1991 				 */
1992 				priv->rx_skbuff[entry] = NULL;
1993 				dma_unmap_single(priv->device,
1994 						 priv->rx_skbuff_dma[entry],
1995 						 priv->dma_buf_sz,
1996 						 DMA_FROM_DEVICE);
1997 			}
1998 		} else {
1999 			struct sk_buff *skb;
2000 			int frame_len;
2001 
2002 			frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2003 
2004 			/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2005 			 * Type frames (LLC/LLC-SNAP)
2006 			 */
2007 			if (unlikely(status != llc_snap))
2008 				frame_len -= ETH_FCS_LEN;
2009 
2010 			if (netif_msg_rx_status(priv)) {
2011 				pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2012 					 p, entry, p->des2);
2013 				if (frame_len > ETH_FRAME_LEN)
2014 					pr_debug("\tframe size %d, COE: %d\n",
2015 						 frame_len, status);
2016 			}
2017 			skb = priv->rx_skbuff[entry];
2018 			if (unlikely(!skb)) {
2019 				pr_err("%s: Inconsistent Rx descriptor chain\n",
2020 				       priv->dev->name);
2021 				priv->dev->stats.rx_dropped++;
2022 				break;
2023 			}
2024 			prefetch(skb->data - NET_IP_ALIGN);
2025 			priv->rx_skbuff[entry] = NULL;
2026 
2027 			stmmac_get_rx_hwtstamp(priv, entry, skb);
2028 
2029 			skb_put(skb, frame_len);
2030 			dma_unmap_single(priv->device,
2031 					 priv->rx_skbuff_dma[entry],
2032 					 priv->dma_buf_sz, DMA_FROM_DEVICE);
2033 
2034 			if (netif_msg_pktdata(priv)) {
2035 				pr_debug("frame received (%dbytes)", frame_len);
2036 				print_pkt(skb->data, frame_len);
2037 			}
2038 
2039 			skb->protocol = eth_type_trans(skb, priv->dev);
2040 
2041 			if (unlikely(!coe))
2042 				skb_checksum_none_assert(skb);
2043 			else
2044 				skb->ip_summed = CHECKSUM_UNNECESSARY;
2045 
2046 			napi_gro_receive(&priv->napi, skb);
2047 
2048 			priv->dev->stats.rx_packets++;
2049 			priv->dev->stats.rx_bytes += frame_len;
2050 		}
2051 		entry = next_entry;
2052 	}
2053 
2054 	stmmac_rx_refill(priv);
2055 
2056 	priv->xstats.rx_pkt_n += count;
2057 
2058 	return count;
2059 }
2060 
2061 /**
2062  *  stmmac_poll - stmmac poll method (NAPI)
2063  *  @napi : pointer to the napi structure.
2064  *  @budget : maximum number of packets that the current CPU can receive from
2065  *	      all interfaces.
2066  *  Description :
2067  *  To look at the incoming frames and clear the tx resources.
2068  */
2069 static int stmmac_poll(struct napi_struct *napi, int budget)
2070 {
2071 	struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2072 	int work_done = 0;
2073 
2074 	priv->xstats.napi_poll++;
2075 	stmmac_tx_clean(priv);
2076 
2077 	work_done = stmmac_rx(priv, budget);
2078 	if (work_done < budget) {
2079 		napi_complete(napi);
2080 		stmmac_enable_dma_irq(priv);
2081 	}
2082 	return work_done;
2083 }
2084 
2085 /**
2086  *  stmmac_tx_timeout
2087  *  @dev : Pointer to net device structure
2088  *  Description: this function is called when a packet transmission fails to
2089  *   complete within a reasonable time. The driver will mark the error in the
2090  *   netdev structure and arrange for the device to be reset to a sane state
2091  *   in order to transmit a new packet.
2092  */
2093 static void stmmac_tx_timeout(struct net_device *dev)
2094 {
2095 	struct stmmac_priv *priv = netdev_priv(dev);
2096 
2097 	/* Clear Tx resources and restart transmitting again */
2098 	stmmac_tx_err(priv);
2099 }
2100 
2101 /* Configuration changes (passed on by ifconfig) */
2102 static int stmmac_config(struct net_device *dev, struct ifmap *map)
2103 {
2104 	if (dev->flags & IFF_UP)	/* can't act on a running interface */
2105 		return -EBUSY;
2106 
2107 	/* Don't allow changing the I/O address */
2108 	if (map->base_addr != dev->base_addr) {
2109 		pr_warn("%s: can't change I/O address\n", dev->name);
2110 		return -EOPNOTSUPP;
2111 	}
2112 
2113 	/* Don't allow changing the IRQ */
2114 	if (map->irq != dev->irq) {
2115 		pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2116 		return -EOPNOTSUPP;
2117 	}
2118 
2119 	return 0;
2120 }
2121 
2122 /**
2123  *  stmmac_set_rx_mode - entry point for multicast addressing
2124  *  @dev : pointer to the device structure
2125  *  Description:
2126  *  This function is a driver entry point which gets called by the kernel
2127  *  whenever multicast addresses must be enabled/disabled.
2128  *  Return value:
2129  *  void.
2130  */
2131 static void stmmac_set_rx_mode(struct net_device *dev)
2132 {
2133 	struct stmmac_priv *priv = netdev_priv(dev);
2134 
2135 	spin_lock(&priv->lock);
2136 	priv->hw->mac->set_filter(dev, priv->synopsys_id);
2137 	spin_unlock(&priv->lock);
2138 }
2139 
2140 /**
2141  *  stmmac_change_mtu - entry point to change MTU size for the device.
2142  *  @dev : device pointer.
2143  *  @new_mtu : the new MTU size for the device.
2144  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2145  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2146  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2147  *  Return value:
2148  *  0 on success and an appropriate (-)ve integer as defined in errno.h
2149  *  file on failure.
2150  */
2151 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2152 {
2153 	struct stmmac_priv *priv = netdev_priv(dev);
2154 	int max_mtu;
2155 
2156 	if (netif_running(dev)) {
2157 		pr_err("%s: must be stopped to change its MTU\n", dev->name);
2158 		return -EBUSY;
2159 	}
2160 
2161 	if (priv->plat->enh_desc)
2162 		max_mtu = JUMBO_LEN;
2163 	else
2164 		max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2165 
2166 	if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2167 		pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2168 		return -EINVAL;
2169 	}
2170 
2171 	dev->mtu = new_mtu;
2172 	netdev_update_features(dev);
2173 
2174 	return 0;
2175 }
2176 
2177 static netdev_features_t stmmac_fix_features(struct net_device *dev,
2178 					     netdev_features_t features)
2179 {
2180 	struct stmmac_priv *priv = netdev_priv(dev);
2181 
2182 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2183 		features &= ~NETIF_F_RXCSUM;
2184 	else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2185 		features &= ~NETIF_F_IPV6_CSUM;
2186 	if (!priv->plat->tx_coe)
2187 		features &= ~NETIF_F_ALL_CSUM;
2188 
2189 	/* Some GMAC devices have a bugged Jumbo frame support that
2190 	 * needs to have the Tx COE disabled for oversized frames
2191 	 * (due to limited buffer sizes). In this case we disable
2192 	 * the TX csum insertionin the TDES and not use SF.
2193 	 */
2194 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2195 		features &= ~NETIF_F_ALL_CSUM;
2196 
2197 	return features;
2198 }
2199 
2200 /**
2201  *  stmmac_interrupt - main ISR
2202  *  @irq: interrupt number.
2203  *  @dev_id: to pass the net device pointer.
2204  *  Description: this is the main driver interrupt service routine.
2205  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2206  *  interrupts.
2207  */
2208 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2209 {
2210 	struct net_device *dev = (struct net_device *)dev_id;
2211 	struct stmmac_priv *priv = netdev_priv(dev);
2212 
2213 	if (unlikely(!dev)) {
2214 		pr_err("%s: invalid dev pointer\n", __func__);
2215 		return IRQ_NONE;
2216 	}
2217 
2218 	/* To handle GMAC own interrupts */
2219 	if (priv->plat->has_gmac) {
2220 		int status = priv->hw->mac->host_irq_status((void __iomem *)
2221 							    dev->base_addr,
2222 							    &priv->xstats);
2223 		if (unlikely(status)) {
2224 			/* For LPI we need to save the tx status */
2225 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2226 				priv->tx_path_in_lpi_mode = true;
2227 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2228 				priv->tx_path_in_lpi_mode = false;
2229 		}
2230 	}
2231 
2232 	/* To handle DMA interrupts */
2233 	stmmac_dma_interrupt(priv);
2234 
2235 	return IRQ_HANDLED;
2236 }
2237 
2238 #ifdef CONFIG_NET_POLL_CONTROLLER
2239 /* Polling receive - used by NETCONSOLE and other diagnostic tools
2240  * to allow network I/O with interrupts disabled.
2241  */
2242 static void stmmac_poll_controller(struct net_device *dev)
2243 {
2244 	disable_irq(dev->irq);
2245 	stmmac_interrupt(dev->irq, dev);
2246 	enable_irq(dev->irq);
2247 }
2248 #endif
2249 
2250 /**
2251  *  stmmac_ioctl - Entry point for the Ioctl
2252  *  @dev: Device pointer.
2253  *  @rq: An IOCTL specefic structure, that can contain a pointer to
2254  *  a proprietary structure used to pass information to the driver.
2255  *  @cmd: IOCTL command
2256  *  Description:
2257  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2258  */
2259 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2260 {
2261 	struct stmmac_priv *priv = netdev_priv(dev);
2262 	int ret = -EOPNOTSUPP;
2263 
2264 	if (!netif_running(dev))
2265 		return -EINVAL;
2266 
2267 	switch (cmd) {
2268 	case SIOCGMIIPHY:
2269 	case SIOCGMIIREG:
2270 	case SIOCSMIIREG:
2271 		if (!priv->phydev)
2272 			return -EINVAL;
2273 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2274 		break;
2275 	case SIOCSHWTSTAMP:
2276 		ret = stmmac_hwtstamp_ioctl(dev, rq);
2277 		break;
2278 	default:
2279 		break;
2280 	}
2281 
2282 	return ret;
2283 }
2284 
2285 #ifdef CONFIG_STMMAC_DEBUG_FS
2286 static struct dentry *stmmac_fs_dir;
2287 static struct dentry *stmmac_rings_status;
2288 static struct dentry *stmmac_dma_cap;
2289 
2290 static void sysfs_display_ring(void *head, int size, int extend_desc,
2291 			       struct seq_file *seq)
2292 {
2293 	int i;
2294 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2295 	struct dma_desc *p = (struct dma_desc *)head;
2296 
2297 	for (i = 0; i < size; i++) {
2298 		u64 x;
2299 		if (extend_desc) {
2300 			x = *(u64 *) ep;
2301 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2302 				   i, (unsigned int)virt_to_phys(ep),
2303 				   (unsigned int)x, (unsigned int)(x >> 32),
2304 				   ep->basic.des2, ep->basic.des3);
2305 			ep++;
2306 		} else {
2307 			x = *(u64 *) p;
2308 			seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2309 				   i, (unsigned int)virt_to_phys(ep),
2310 				   (unsigned int)x, (unsigned int)(x >> 32),
2311 				   p->des2, p->des3);
2312 			p++;
2313 		}
2314 		seq_printf(seq, "\n");
2315 	}
2316 }
2317 
2318 static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2319 {
2320 	struct net_device *dev = seq->private;
2321 	struct stmmac_priv *priv = netdev_priv(dev);
2322 	unsigned int txsize = priv->dma_tx_size;
2323 	unsigned int rxsize = priv->dma_rx_size;
2324 
2325 	if (priv->extend_desc) {
2326 		seq_printf(seq, "Extended RX descriptor ring:\n");
2327 		sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2328 		seq_printf(seq, "Extended TX descriptor ring:\n");
2329 		sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2330 	} else {
2331 		seq_printf(seq, "RX descriptor ring:\n");
2332 		sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2333 		seq_printf(seq, "TX descriptor ring:\n");
2334 		sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2335 	}
2336 
2337 	return 0;
2338 }
2339 
2340 static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2341 {
2342 	return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2343 }
2344 
2345 static const struct file_operations stmmac_rings_status_fops = {
2346 	.owner = THIS_MODULE,
2347 	.open = stmmac_sysfs_ring_open,
2348 	.read = seq_read,
2349 	.llseek = seq_lseek,
2350 	.release = single_release,
2351 };
2352 
2353 static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2354 {
2355 	struct net_device *dev = seq->private;
2356 	struct stmmac_priv *priv = netdev_priv(dev);
2357 
2358 	if (!priv->hw_cap_support) {
2359 		seq_printf(seq, "DMA HW features not supported\n");
2360 		return 0;
2361 	}
2362 
2363 	seq_printf(seq, "==============================\n");
2364 	seq_printf(seq, "\tDMA HW features\n");
2365 	seq_printf(seq, "==============================\n");
2366 
2367 	seq_printf(seq, "\t10/100 Mbps %s\n",
2368 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2369 	seq_printf(seq, "\t1000 Mbps %s\n",
2370 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2371 	seq_printf(seq, "\tHalf duple %s\n",
2372 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
2373 	seq_printf(seq, "\tHash Filter: %s\n",
2374 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
2375 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2376 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
2377 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2378 		   (priv->dma_cap.pcs) ? "Y" : "N");
2379 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2380 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2381 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
2382 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2383 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
2384 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2385 	seq_printf(seq, "\tRMON module: %s\n",
2386 		   (priv->dma_cap.rmon) ? "Y" : "N");
2387 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2388 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
2389 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2390 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2391 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2392 		   (priv->dma_cap.eee) ? "Y" : "N");
2393 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2394 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2395 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
2396 	seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2397 		   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2398 	seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2399 		   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2400 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2401 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2402 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2403 		   priv->dma_cap.number_rx_channel);
2404 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2405 		   priv->dma_cap.number_tx_channel);
2406 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
2407 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
2408 
2409 	return 0;
2410 }
2411 
2412 static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2413 {
2414 	return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2415 }
2416 
2417 static const struct file_operations stmmac_dma_cap_fops = {
2418 	.owner = THIS_MODULE,
2419 	.open = stmmac_sysfs_dma_cap_open,
2420 	.read = seq_read,
2421 	.llseek = seq_lseek,
2422 	.release = single_release,
2423 };
2424 
2425 static int stmmac_init_fs(struct net_device *dev)
2426 {
2427 	/* Create debugfs entries */
2428 	stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2429 
2430 	if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2431 		pr_err("ERROR %s, debugfs create directory failed\n",
2432 		       STMMAC_RESOURCE_NAME);
2433 
2434 		return -ENOMEM;
2435 	}
2436 
2437 	/* Entry to report DMA RX/TX rings */
2438 	stmmac_rings_status = debugfs_create_file("descriptors_status",
2439 						  S_IRUGO, stmmac_fs_dir, dev,
2440 						  &stmmac_rings_status_fops);
2441 
2442 	if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2443 		pr_info("ERROR creating stmmac ring debugfs file\n");
2444 		debugfs_remove(stmmac_fs_dir);
2445 
2446 		return -ENOMEM;
2447 	}
2448 
2449 	/* Entry to report the DMA HW features */
2450 	stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2451 					     dev, &stmmac_dma_cap_fops);
2452 
2453 	if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2454 		pr_info("ERROR creating stmmac MMC debugfs file\n");
2455 		debugfs_remove(stmmac_rings_status);
2456 		debugfs_remove(stmmac_fs_dir);
2457 
2458 		return -ENOMEM;
2459 	}
2460 
2461 	return 0;
2462 }
2463 
2464 static void stmmac_exit_fs(void)
2465 {
2466 	debugfs_remove(stmmac_rings_status);
2467 	debugfs_remove(stmmac_dma_cap);
2468 	debugfs_remove(stmmac_fs_dir);
2469 }
2470 #endif /* CONFIG_STMMAC_DEBUG_FS */
2471 
2472 static const struct net_device_ops stmmac_netdev_ops = {
2473 	.ndo_open = stmmac_open,
2474 	.ndo_start_xmit = stmmac_xmit,
2475 	.ndo_stop = stmmac_release,
2476 	.ndo_change_mtu = stmmac_change_mtu,
2477 	.ndo_fix_features = stmmac_fix_features,
2478 	.ndo_set_rx_mode = stmmac_set_rx_mode,
2479 	.ndo_tx_timeout = stmmac_tx_timeout,
2480 	.ndo_do_ioctl = stmmac_ioctl,
2481 	.ndo_set_config = stmmac_config,
2482 #ifdef CONFIG_NET_POLL_CONTROLLER
2483 	.ndo_poll_controller = stmmac_poll_controller,
2484 #endif
2485 	.ndo_set_mac_address = eth_mac_addr,
2486 };
2487 
2488 /**
2489  *  stmmac_hw_init - Init the MAC device
2490  *  @priv: driver private structure
2491  *  Description: this function detects which MAC device
2492  *  (GMAC/MAC10-100) has to attached, checks the HW capability
2493  *  (if supported) and sets the driver's features (for example
2494  *  to use the ring or chaine mode or support the normal/enh
2495  *  descriptor structure).
2496  */
2497 static int stmmac_hw_init(struct stmmac_priv *priv)
2498 {
2499 	int ret;
2500 	struct mac_device_info *mac;
2501 
2502 	/* Identify the MAC HW device */
2503 	if (priv->plat->has_gmac) {
2504 		priv->dev->priv_flags |= IFF_UNICAST_FLT;
2505 		mac = dwmac1000_setup(priv->ioaddr);
2506 	} else {
2507 		mac = dwmac100_setup(priv->ioaddr);
2508 	}
2509 	if (!mac)
2510 		return -ENOMEM;
2511 
2512 	priv->hw = mac;
2513 
2514 	/* Get and dump the chip ID */
2515 	priv->synopsys_id = stmmac_get_synopsys_id(priv);
2516 
2517 	/* To use the chained or ring mode */
2518 	if (chain_mode) {
2519 		priv->hw->chain = &chain_mode_ops;
2520 		pr_info(" Chain mode enabled\n");
2521 		priv->mode = STMMAC_CHAIN_MODE;
2522 	} else {
2523 		priv->hw->ring = &ring_mode_ops;
2524 		pr_info(" Ring mode enabled\n");
2525 		priv->mode = STMMAC_RING_MODE;
2526 	}
2527 
2528 	/* Get the HW capability (new GMAC newer than 3.50a) */
2529 	priv->hw_cap_support = stmmac_get_hw_features(priv);
2530 	if (priv->hw_cap_support) {
2531 		pr_info(" DMA HW capability register supported");
2532 
2533 		/* We can override some gmac/dma configuration fields: e.g.
2534 		 * enh_desc, tx_coe (e.g. that are passed through the
2535 		 * platform) with the values from the HW capability
2536 		 * register (if supported).
2537 		 */
2538 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
2539 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2540 
2541 		priv->plat->tx_coe = priv->dma_cap.tx_coe;
2542 
2543 		if (priv->dma_cap.rx_coe_type2)
2544 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2545 		else if (priv->dma_cap.rx_coe_type1)
2546 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2547 
2548 	} else
2549 		pr_info(" No HW DMA feature register supported");
2550 
2551 	/* To use alternate (extended) or normal descriptor structures */
2552 	stmmac_selec_desc_mode(priv);
2553 
2554 	ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2555 	if (!ret) {
2556 		pr_warn(" RX IPC Checksum Offload not configured.\n");
2557 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2558 	}
2559 
2560 	if (priv->plat->rx_coe)
2561 		pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2562 			priv->plat->rx_coe);
2563 	if (priv->plat->tx_coe)
2564 		pr_info(" TX Checksum insertion supported\n");
2565 
2566 	if (priv->plat->pmt) {
2567 		pr_info(" Wake-Up On Lan supported\n");
2568 		device_set_wakeup_capable(priv->device, 1);
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 /**
2575  * stmmac_dvr_probe
2576  * @device: device pointer
2577  * @plat_dat: platform data pointer
2578  * @addr: iobase memory address
2579  * Description: this is the main probe function used to
2580  * call the alloc_etherdev, allocate the priv structure.
2581  */
2582 struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2583 				     struct plat_stmmacenet_data *plat_dat,
2584 				     void __iomem *addr)
2585 {
2586 	int ret = 0;
2587 	struct net_device *ndev = NULL;
2588 	struct stmmac_priv *priv;
2589 
2590 	ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2591 	if (!ndev)
2592 		return NULL;
2593 
2594 	SET_NETDEV_DEV(ndev, device);
2595 
2596 	priv = netdev_priv(ndev);
2597 	priv->device = device;
2598 	priv->dev = ndev;
2599 
2600 	ether_setup(ndev);
2601 
2602 	stmmac_set_ethtool_ops(ndev);
2603 	priv->pause = pause;
2604 	priv->plat = plat_dat;
2605 	priv->ioaddr = addr;
2606 	priv->dev->base_addr = (unsigned long)addr;
2607 
2608 	/* Verify driver arguments */
2609 	stmmac_verify_args();
2610 
2611 	/* Override with kernel parameters if supplied XXX CRS XXX
2612 	 * this needs to have multiple instances
2613 	 */
2614 	if ((phyaddr >= 0) && (phyaddr <= 31))
2615 		priv->plat->phy_addr = phyaddr;
2616 
2617 	/* Init MAC and get the capabilities */
2618 	ret = stmmac_hw_init(priv);
2619 	if (ret)
2620 		goto error_free_netdev;
2621 
2622 	ndev->netdev_ops = &stmmac_netdev_ops;
2623 
2624 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2625 			    NETIF_F_RXCSUM;
2626 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2627 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2628 #ifdef STMMAC_VLAN_TAG_USED
2629 	/* Both mac100 and gmac support receive VLAN tag detection */
2630 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2631 #endif
2632 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2633 
2634 	if (flow_ctrl)
2635 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
2636 
2637 	/* Rx Watchdog is available in the COREs newer than the 3.40.
2638 	 * In some case, for example on bugged HW this feature
2639 	 * has to be disable and this can be done by passing the
2640 	 * riwt_off field from the platform.
2641 	 */
2642 	if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2643 		priv->use_riwt = 1;
2644 		pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2645 	}
2646 
2647 	netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2648 
2649 	spin_lock_init(&priv->lock);
2650 	spin_lock_init(&priv->tx_lock);
2651 
2652 	ret = register_netdev(ndev);
2653 	if (ret) {
2654 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2655 		goto error_netdev_register;
2656 	}
2657 
2658 	priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2659 	if (IS_ERR(priv->stmmac_clk)) {
2660 		pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2661 		goto error_clk_get;
2662 	}
2663 
2664 	/* If a specific clk_csr value is passed from the platform
2665 	 * this means that the CSR Clock Range selection cannot be
2666 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2667 	 * set the MDC clock dynamically according to the csr actual
2668 	 * clock input.
2669 	 */
2670 	if (!priv->plat->clk_csr)
2671 		stmmac_clk_csr_set(priv);
2672 	else
2673 		priv->clk_csr = priv->plat->clk_csr;
2674 
2675 	stmmac_check_pcs_mode(priv);
2676 
2677 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2678 	    priv->pcs != STMMAC_PCS_RTBI) {
2679 		/* MDIO bus Registration */
2680 		ret = stmmac_mdio_register(ndev);
2681 		if (ret < 0) {
2682 			pr_debug("%s: MDIO bus (id: %d) registration failed",
2683 				 __func__, priv->plat->bus_id);
2684 			goto error_mdio_register;
2685 		}
2686 	}
2687 
2688 	return priv;
2689 
2690 error_mdio_register:
2691 	clk_put(priv->stmmac_clk);
2692 error_clk_get:
2693 	unregister_netdev(ndev);
2694 error_netdev_register:
2695 	netif_napi_del(&priv->napi);
2696 error_free_netdev:
2697 	free_netdev(ndev);
2698 
2699 	return NULL;
2700 }
2701 
2702 /**
2703  * stmmac_dvr_remove
2704  * @ndev: net device pointer
2705  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2706  * changes the link status, releases the DMA descriptor rings.
2707  */
2708 int stmmac_dvr_remove(struct net_device *ndev)
2709 {
2710 	struct stmmac_priv *priv = netdev_priv(ndev);
2711 
2712 	pr_info("%s:\n\tremoving driver", __func__);
2713 
2714 	priv->hw->dma->stop_rx(priv->ioaddr);
2715 	priv->hw->dma->stop_tx(priv->ioaddr);
2716 
2717 	stmmac_set_mac(priv->ioaddr, false);
2718 	if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2719 	    priv->pcs != STMMAC_PCS_RTBI)
2720 		stmmac_mdio_unregister(ndev);
2721 	netif_carrier_off(ndev);
2722 	unregister_netdev(ndev);
2723 	free_netdev(ndev);
2724 
2725 	return 0;
2726 }
2727 
2728 #ifdef CONFIG_PM
2729 int stmmac_suspend(struct net_device *ndev)
2730 {
2731 	struct stmmac_priv *priv = netdev_priv(ndev);
2732 	unsigned long flags;
2733 
2734 	if (!ndev || !netif_running(ndev))
2735 		return 0;
2736 
2737 	if (priv->phydev)
2738 		phy_stop(priv->phydev);
2739 
2740 	spin_lock_irqsave(&priv->lock, flags);
2741 
2742 	netif_device_detach(ndev);
2743 	netif_stop_queue(ndev);
2744 
2745 	napi_disable(&priv->napi);
2746 
2747 	/* Stop TX/RX DMA */
2748 	priv->hw->dma->stop_tx(priv->ioaddr);
2749 	priv->hw->dma->stop_rx(priv->ioaddr);
2750 
2751 	stmmac_clear_descriptors(priv);
2752 
2753 	/* Enable Power down mode by programming the PMT regs */
2754 	if (device_may_wakeup(priv->device))
2755 		priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2756 	else {
2757 		stmmac_set_mac(priv->ioaddr, false);
2758 		/* Disable clock in case of PWM is off */
2759 		clk_disable_unprepare(priv->stmmac_clk);
2760 	}
2761 	spin_unlock_irqrestore(&priv->lock, flags);
2762 	return 0;
2763 }
2764 
2765 int stmmac_resume(struct net_device *ndev)
2766 {
2767 	struct stmmac_priv *priv = netdev_priv(ndev);
2768 	unsigned long flags;
2769 
2770 	if (!netif_running(ndev))
2771 		return 0;
2772 
2773 	spin_lock_irqsave(&priv->lock, flags);
2774 
2775 	/* Power Down bit, into the PM register, is cleared
2776 	 * automatically as soon as a magic packet or a Wake-up frame
2777 	 * is received. Anyway, it's better to manually clear
2778 	 * this bit because it can generate problems while resuming
2779 	 * from another devices (e.g. serial console).
2780 	 */
2781 	if (device_may_wakeup(priv->device))
2782 		priv->hw->mac->pmt(priv->ioaddr, 0);
2783 	else
2784 		/* enable the clk prevously disabled */
2785 		clk_prepare_enable(priv->stmmac_clk);
2786 
2787 	netif_device_attach(ndev);
2788 
2789 	/* Enable the MAC and DMA */
2790 	stmmac_set_mac(priv->ioaddr, true);
2791 	priv->hw->dma->start_tx(priv->ioaddr);
2792 	priv->hw->dma->start_rx(priv->ioaddr);
2793 
2794 	napi_enable(&priv->napi);
2795 
2796 	netif_start_queue(ndev);
2797 
2798 	spin_unlock_irqrestore(&priv->lock, flags);
2799 
2800 	if (priv->phydev)
2801 		phy_start(priv->phydev);
2802 
2803 	return 0;
2804 }
2805 
2806 int stmmac_freeze(struct net_device *ndev)
2807 {
2808 	if (!ndev || !netif_running(ndev))
2809 		return 0;
2810 
2811 	return stmmac_release(ndev);
2812 }
2813 
2814 int stmmac_restore(struct net_device *ndev)
2815 {
2816 	if (!ndev || !netif_running(ndev))
2817 		return 0;
2818 
2819 	return stmmac_open(ndev);
2820 }
2821 #endif /* CONFIG_PM */
2822 
2823 /* Driver can be configured w/ and w/ both PCI and Platf drivers
2824  * depending on the configuration selected.
2825  */
2826 static int __init stmmac_init(void)
2827 {
2828 	int ret;
2829 
2830 	ret = stmmac_register_platform();
2831 	if (ret)
2832 		goto err;
2833 	ret = stmmac_register_pci();
2834 	if (ret)
2835 		goto err_pci;
2836 	return 0;
2837 err_pci:
2838 	stmmac_unregister_platform();
2839 err:
2840 	pr_err("stmmac: driver registration failed\n");
2841 	return ret;
2842 }
2843 
2844 static void __exit stmmac_exit(void)
2845 {
2846 	stmmac_unregister_platform();
2847 	stmmac_unregister_pci();
2848 }
2849 
2850 module_init(stmmac_init);
2851 module_exit(stmmac_exit);
2852 
2853 #ifndef MODULE
2854 static int __init stmmac_cmdline_opt(char *str)
2855 {
2856 	char *opt;
2857 
2858 	if (!str || !*str)
2859 		return -EINVAL;
2860 	while ((opt = strsep(&str, ",")) != NULL) {
2861 		if (!strncmp(opt, "debug:", 6)) {
2862 			if (kstrtoint(opt + 6, 0, &debug))
2863 				goto err;
2864 		} else if (!strncmp(opt, "phyaddr:", 8)) {
2865 			if (kstrtoint(opt + 8, 0, &phyaddr))
2866 				goto err;
2867 		} else if (!strncmp(opt, "dma_txsize:", 11)) {
2868 			if (kstrtoint(opt + 11, 0, &dma_txsize))
2869 				goto err;
2870 		} else if (!strncmp(opt, "dma_rxsize:", 11)) {
2871 			if (kstrtoint(opt + 11, 0, &dma_rxsize))
2872 				goto err;
2873 		} else if (!strncmp(opt, "buf_sz:", 7)) {
2874 			if (kstrtoint(opt + 7, 0, &buf_sz))
2875 				goto err;
2876 		} else if (!strncmp(opt, "tc:", 3)) {
2877 			if (kstrtoint(opt + 3, 0, &tc))
2878 				goto err;
2879 		} else if (!strncmp(opt, "watchdog:", 9)) {
2880 			if (kstrtoint(opt + 9, 0, &watchdog))
2881 				goto err;
2882 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
2883 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
2884 				goto err;
2885 		} else if (!strncmp(opt, "pause:", 6)) {
2886 			if (kstrtoint(opt + 6, 0, &pause))
2887 				goto err;
2888 		} else if (!strncmp(opt, "eee_timer:", 10)) {
2889 			if (kstrtoint(opt + 10, 0, &eee_timer))
2890 				goto err;
2891 		} else if (!strncmp(opt, "chain_mode:", 11)) {
2892 			if (kstrtoint(opt + 11, 0, &chain_mode))
2893 				goto err;
2894 		}
2895 	}
2896 	return 0;
2897 
2898 err:
2899 	pr_err("%s: ERROR broken module parameter conversion", __func__);
2900 	return -EINVAL;
2901 }
2902 
2903 __setup("stmmaceth=", stmmac_cmdline_opt);
2904 #endif /* MODULE */
2905 
2906 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2907 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2908 MODULE_LICENSE("GPL");
2909