1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3   This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4   ST Ethernet IPs are built around a Synopsys IP Core.
5 
6 	Copyright(C) 2007-2011 STMicroelectronics Ltd
7 
8 
9   Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10 
11   Documentation available at:
12 	http://www.stlinux.com
13   Support available at:
14 	https://bugzilla.stlinux.com/
15 *******************************************************************************/
16 
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/pkt_cls.h>
43 #include <net/xdp_sock_drv.h>
44 #include "stmmac_ptp.h"
45 #include "stmmac.h"
46 #include "stmmac_xdp.h"
47 #include <linux/reset.h>
48 #include <linux/of_mdio.h>
49 #include "dwmac1000.h"
50 #include "dwxgmac2.h"
51 #include "hwif.h"
52 
53 /* As long as the interface is active, we keep the timestamping counter enabled
54  * with fine resolution and binary rollover. This avoid non-monotonic behavior
55  * (clock jumps) when changing timestamping settings at runtime.
56  */
57 #define STMMAC_HWTS_ACTIVE	(PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
58 				 PTP_TCR_TSCTRLSSR)
59 
60 #define	STMMAC_ALIGN(x)		ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
61 #define	TSO_MAX_BUFF_SIZE	(SZ_16K - 1)
62 
63 /* Module parameters */
64 #define TX_TIMEO	5000
65 static int watchdog = TX_TIMEO;
66 module_param(watchdog, int, 0644);
67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
68 
69 static int debug = -1;
70 module_param(debug, int, 0644);
71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
72 
73 static int phyaddr = -1;
74 module_param(phyaddr, int, 0444);
75 MODULE_PARM_DESC(phyaddr, "Physical device address");
76 
77 #define STMMAC_TX_THRESH(x)	((x)->dma_tx_size / 4)
78 #define STMMAC_RX_THRESH(x)	((x)->dma_rx_size / 4)
79 
80 /* Limit to make sure XDP TX and slow path can coexist */
81 #define STMMAC_XSK_TX_BUDGET_MAX	256
82 #define STMMAC_TX_XSK_AVAIL		16
83 #define STMMAC_RX_FILL_BATCH		16
84 
85 #define STMMAC_XDP_PASS		0
86 #define STMMAC_XDP_CONSUMED	BIT(0)
87 #define STMMAC_XDP_TX		BIT(1)
88 #define STMMAC_XDP_REDIRECT	BIT(2)
89 
90 static int flow_ctrl = FLOW_AUTO;
91 module_param(flow_ctrl, int, 0644);
92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
93 
94 static int pause = PAUSE_TIME;
95 module_param(pause, int, 0644);
96 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
97 
98 #define TC_DEFAULT 64
99 static int tc = TC_DEFAULT;
100 module_param(tc, int, 0644);
101 MODULE_PARM_DESC(tc, "DMA threshold control value");
102 
103 #define	DEFAULT_BUFSIZE	1536
104 static int buf_sz = DEFAULT_BUFSIZE;
105 module_param(buf_sz, int, 0644);
106 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
107 
108 #define	STMMAC_RX_COPYBREAK	256
109 
110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
111 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
112 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
113 
114 #define STMMAC_DEFAULT_LPI_TIMER	1000
115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
116 module_param(eee_timer, int, 0644);
117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
119 
120 /* By default the driver will use the ring mode to manage tx and rx descriptors,
121  * but allow user to force to use the chain instead of the ring
122  */
123 static unsigned int chain_mode;
124 module_param(chain_mode, int, 0444);
125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
126 
127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
128 /* For MSI interrupts handling */
129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
136 					  u32 rxmode, u32 chan);
137 
138 #ifdef CONFIG_DEBUG_FS
139 static const struct net_device_ops stmmac_netdev_ops;
140 static void stmmac_init_fs(struct net_device *dev);
141 static void stmmac_exit_fs(struct net_device *dev);
142 #endif
143 
144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
145 
146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
147 {
148 	int ret = 0;
149 
150 	if (enabled) {
151 		ret = clk_prepare_enable(priv->plat->stmmac_clk);
152 		if (ret)
153 			return ret;
154 		ret = clk_prepare_enable(priv->plat->pclk);
155 		if (ret) {
156 			clk_disable_unprepare(priv->plat->stmmac_clk);
157 			return ret;
158 		}
159 		if (priv->plat->clks_config) {
160 			ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
161 			if (ret) {
162 				clk_disable_unprepare(priv->plat->stmmac_clk);
163 				clk_disable_unprepare(priv->plat->pclk);
164 				return ret;
165 			}
166 		}
167 	} else {
168 		clk_disable_unprepare(priv->plat->stmmac_clk);
169 		clk_disable_unprepare(priv->plat->pclk);
170 		if (priv->plat->clks_config)
171 			priv->plat->clks_config(priv->plat->bsp_priv, enabled);
172 	}
173 
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
177 
178 /**
179  * stmmac_verify_args - verify the driver parameters.
180  * Description: it checks the driver parameters and set a default in case of
181  * errors.
182  */
183 static void stmmac_verify_args(void)
184 {
185 	if (unlikely(watchdog < 0))
186 		watchdog = TX_TIMEO;
187 	if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
188 		buf_sz = DEFAULT_BUFSIZE;
189 	if (unlikely(flow_ctrl > 1))
190 		flow_ctrl = FLOW_AUTO;
191 	else if (likely(flow_ctrl < 0))
192 		flow_ctrl = FLOW_OFF;
193 	if (unlikely((pause < 0) || (pause > 0xffff)))
194 		pause = PAUSE_TIME;
195 	if (eee_timer < 0)
196 		eee_timer = STMMAC_DEFAULT_LPI_TIMER;
197 }
198 
199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
200 {
201 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
202 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
203 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
204 	u32 queue;
205 
206 	for (queue = 0; queue < maxq; queue++) {
207 		struct stmmac_channel *ch = &priv->channel[queue];
208 
209 		if (stmmac_xdp_is_enabled(priv) &&
210 		    test_bit(queue, priv->af_xdp_zc_qps)) {
211 			napi_disable(&ch->rxtx_napi);
212 			continue;
213 		}
214 
215 		if (queue < rx_queues_cnt)
216 			napi_disable(&ch->rx_napi);
217 		if (queue < tx_queues_cnt)
218 			napi_disable(&ch->tx_napi);
219 	}
220 }
221 
222 /**
223  * stmmac_disable_all_queues - Disable all queues
224  * @priv: driver private structure
225  */
226 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
227 {
228 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
229 	struct stmmac_rx_queue *rx_q;
230 	u32 queue;
231 
232 	/* synchronize_rcu() needed for pending XDP buffers to drain */
233 	for (queue = 0; queue < rx_queues_cnt; queue++) {
234 		rx_q = &priv->rx_queue[queue];
235 		if (rx_q->xsk_pool) {
236 			synchronize_rcu();
237 			break;
238 		}
239 	}
240 
241 	__stmmac_disable_all_queues(priv);
242 }
243 
244 /**
245  * stmmac_enable_all_queues - Enable all queues
246  * @priv: driver private structure
247  */
248 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
249 {
250 	u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
251 	u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
252 	u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
253 	u32 queue;
254 
255 	for (queue = 0; queue < maxq; queue++) {
256 		struct stmmac_channel *ch = &priv->channel[queue];
257 
258 		if (stmmac_xdp_is_enabled(priv) &&
259 		    test_bit(queue, priv->af_xdp_zc_qps)) {
260 			napi_enable(&ch->rxtx_napi);
261 			continue;
262 		}
263 
264 		if (queue < rx_queues_cnt)
265 			napi_enable(&ch->rx_napi);
266 		if (queue < tx_queues_cnt)
267 			napi_enable(&ch->tx_napi);
268 	}
269 }
270 
271 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
272 {
273 	if (!test_bit(STMMAC_DOWN, &priv->state) &&
274 	    !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
275 		queue_work(priv->wq, &priv->service_task);
276 }
277 
278 static void stmmac_global_err(struct stmmac_priv *priv)
279 {
280 	netif_carrier_off(priv->dev);
281 	set_bit(STMMAC_RESET_REQUESTED, &priv->state);
282 	stmmac_service_event_schedule(priv);
283 }
284 
285 /**
286  * stmmac_clk_csr_set - dynamically set the MDC clock
287  * @priv: driver private structure
288  * Description: this is to dynamically set the MDC clock according to the csr
289  * clock input.
290  * Note:
291  *	If a specific clk_csr value is passed from the platform
292  *	this means that the CSR Clock Range selection cannot be
293  *	changed at run-time and it is fixed (as reported in the driver
294  *	documentation). Viceversa the driver will try to set the MDC
295  *	clock dynamically according to the actual clock input.
296  */
297 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
298 {
299 	u32 clk_rate;
300 
301 	clk_rate = clk_get_rate(priv->plat->stmmac_clk);
302 
303 	/* Platform provided default clk_csr would be assumed valid
304 	 * for all other cases except for the below mentioned ones.
305 	 * For values higher than the IEEE 802.3 specified frequency
306 	 * we can not estimate the proper divider as it is not known
307 	 * the frequency of clk_csr_i. So we do not change the default
308 	 * divider.
309 	 */
310 	if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
311 		if (clk_rate < CSR_F_35M)
312 			priv->clk_csr = STMMAC_CSR_20_35M;
313 		else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
314 			priv->clk_csr = STMMAC_CSR_35_60M;
315 		else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
316 			priv->clk_csr = STMMAC_CSR_60_100M;
317 		else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
318 			priv->clk_csr = STMMAC_CSR_100_150M;
319 		else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
320 			priv->clk_csr = STMMAC_CSR_150_250M;
321 		else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
322 			priv->clk_csr = STMMAC_CSR_250_300M;
323 	}
324 
325 	if (priv->plat->has_sun8i) {
326 		if (clk_rate > 160000000)
327 			priv->clk_csr = 0x03;
328 		else if (clk_rate > 80000000)
329 			priv->clk_csr = 0x02;
330 		else if (clk_rate > 40000000)
331 			priv->clk_csr = 0x01;
332 		else
333 			priv->clk_csr = 0;
334 	}
335 
336 	if (priv->plat->has_xgmac) {
337 		if (clk_rate > 400000000)
338 			priv->clk_csr = 0x5;
339 		else if (clk_rate > 350000000)
340 			priv->clk_csr = 0x4;
341 		else if (clk_rate > 300000000)
342 			priv->clk_csr = 0x3;
343 		else if (clk_rate > 250000000)
344 			priv->clk_csr = 0x2;
345 		else if (clk_rate > 150000000)
346 			priv->clk_csr = 0x1;
347 		else
348 			priv->clk_csr = 0x0;
349 	}
350 }
351 
352 static void print_pkt(unsigned char *buf, int len)
353 {
354 	pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
355 	print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
356 }
357 
358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
359 {
360 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
361 	u32 avail;
362 
363 	if (tx_q->dirty_tx > tx_q->cur_tx)
364 		avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
365 	else
366 		avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
367 
368 	return avail;
369 }
370 
371 /**
372  * stmmac_rx_dirty - Get RX queue dirty
373  * @priv: driver private structure
374  * @queue: RX queue index
375  */
376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
377 {
378 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
379 	u32 dirty;
380 
381 	if (rx_q->dirty_rx <= rx_q->cur_rx)
382 		dirty = rx_q->cur_rx - rx_q->dirty_rx;
383 	else
384 		dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
385 
386 	return dirty;
387 }
388 
389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
390 {
391 	int tx_lpi_timer;
392 
393 	/* Clear/set the SW EEE timer flag based on LPI ET enablement */
394 	priv->eee_sw_timer_en = en ? 0 : 1;
395 	tx_lpi_timer  = en ? priv->tx_lpi_timer : 0;
396 	stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
397 }
398 
399 /**
400  * stmmac_enable_eee_mode - check and enter in LPI mode
401  * @priv: driver private structure
402  * Description: this function is to verify and enter in LPI mode in case of
403  * EEE.
404  */
405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
406 {
407 	u32 tx_cnt = priv->plat->tx_queues_to_use;
408 	u32 queue;
409 
410 	/* check if all TX queues have the work finished */
411 	for (queue = 0; queue < tx_cnt; queue++) {
412 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
413 
414 		if (tx_q->dirty_tx != tx_q->cur_tx)
415 			return -EBUSY; /* still unfinished work */
416 	}
417 
418 	/* Check and enter in LPI mode */
419 	if (!priv->tx_path_in_lpi_mode)
420 		stmmac_set_eee_mode(priv, priv->hw,
421 				priv->plat->en_tx_lpi_clockgating);
422 	return 0;
423 }
424 
425 /**
426  * stmmac_disable_eee_mode - disable and exit from LPI mode
427  * @priv: driver private structure
428  * Description: this function is to exit and disable EEE in case of
429  * LPI state is true. This is called by the xmit.
430  */
431 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
432 {
433 	if (!priv->eee_sw_timer_en) {
434 		stmmac_lpi_entry_timer_config(priv, 0);
435 		return;
436 	}
437 
438 	stmmac_reset_eee_mode(priv, priv->hw);
439 	del_timer_sync(&priv->eee_ctrl_timer);
440 	priv->tx_path_in_lpi_mode = false;
441 }
442 
443 /**
444  * stmmac_eee_ctrl_timer - EEE TX SW timer.
445  * @t:  timer_list struct containing private info
446  * Description:
447  *  if there is no data transfer and if we are not in LPI state,
448  *  then MAC Transmitter can be moved to LPI state.
449  */
450 static void stmmac_eee_ctrl_timer(struct timer_list *t)
451 {
452 	struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
453 
454 	if (stmmac_enable_eee_mode(priv))
455 		mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
456 }
457 
458 /**
459  * stmmac_eee_init - init EEE
460  * @priv: driver private structure
461  * Description:
462  *  if the GMAC supports the EEE (from the HW cap reg) and the phy device
463  *  can also manage EEE, this function enable the LPI state and start related
464  *  timer.
465  */
466 bool stmmac_eee_init(struct stmmac_priv *priv)
467 {
468 	int eee_tw_timer = priv->eee_tw_timer;
469 
470 	/* Using PCS we cannot dial with the phy registers at this stage
471 	 * so we do not support extra feature like EEE.
472 	 */
473 	if (priv->hw->pcs == STMMAC_PCS_TBI ||
474 	    priv->hw->pcs == STMMAC_PCS_RTBI)
475 		return false;
476 
477 	/* Check if MAC core supports the EEE feature. */
478 	if (!priv->dma_cap.eee)
479 		return false;
480 
481 	mutex_lock(&priv->lock);
482 
483 	/* Check if it needs to be deactivated */
484 	if (!priv->eee_active) {
485 		if (priv->eee_enabled) {
486 			netdev_dbg(priv->dev, "disable EEE\n");
487 			stmmac_lpi_entry_timer_config(priv, 0);
488 			del_timer_sync(&priv->eee_ctrl_timer);
489 			stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
490 			if (priv->hw->xpcs)
491 				xpcs_config_eee(priv->hw->xpcs,
492 						priv->plat->mult_fact_100ns,
493 						false);
494 		}
495 		mutex_unlock(&priv->lock);
496 		return false;
497 	}
498 
499 	if (priv->eee_active && !priv->eee_enabled) {
500 		timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
501 		stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
502 				     eee_tw_timer);
503 		if (priv->hw->xpcs)
504 			xpcs_config_eee(priv->hw->xpcs,
505 					priv->plat->mult_fact_100ns,
506 					true);
507 	}
508 
509 	if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
510 		del_timer_sync(&priv->eee_ctrl_timer);
511 		priv->tx_path_in_lpi_mode = false;
512 		stmmac_lpi_entry_timer_config(priv, 1);
513 	} else {
514 		stmmac_lpi_entry_timer_config(priv, 0);
515 		mod_timer(&priv->eee_ctrl_timer,
516 			  STMMAC_LPI_T(priv->tx_lpi_timer));
517 	}
518 
519 	mutex_unlock(&priv->lock);
520 	netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
521 	return true;
522 }
523 
524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
525  * @priv: driver private structure
526  * @p : descriptor pointer
527  * @skb : the socket buffer
528  * Description :
529  * This function will read timestamp from the descriptor & pass it to stack.
530  * and also perform some sanity checks.
531  */
532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
533 				   struct dma_desc *p, struct sk_buff *skb)
534 {
535 	struct skb_shared_hwtstamps shhwtstamp;
536 	bool found = false;
537 	u64 ns = 0;
538 
539 	if (!priv->hwts_tx_en)
540 		return;
541 
542 	/* exit if skb doesn't support hw tstamp */
543 	if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
544 		return;
545 
546 	/* check tx tstamp status */
547 	if (stmmac_get_tx_timestamp_status(priv, p)) {
548 		stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
549 		found = true;
550 	} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
551 		found = true;
552 	}
553 
554 	if (found) {
555 		ns -= priv->plat->cdc_error_adj;
556 
557 		memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
558 		shhwtstamp.hwtstamp = ns_to_ktime(ns);
559 
560 		netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
561 		/* pass tstamp to stack */
562 		skb_tstamp_tx(skb, &shhwtstamp);
563 	}
564 }
565 
566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
567  * @priv: driver private structure
568  * @p : descriptor pointer
569  * @np : next descriptor pointer
570  * @skb : the socket buffer
571  * Description :
572  * This function will read received packet's timestamp from the descriptor
573  * and pass it to stack. It also perform some sanity checks.
574  */
575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
576 				   struct dma_desc *np, struct sk_buff *skb)
577 {
578 	struct skb_shared_hwtstamps *shhwtstamp = NULL;
579 	struct dma_desc *desc = p;
580 	u64 ns = 0;
581 
582 	if (!priv->hwts_rx_en)
583 		return;
584 	/* For GMAC4, the valid timestamp is from CTX next desc. */
585 	if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
586 		desc = np;
587 
588 	/* Check if timestamp is available */
589 	if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
590 		stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
591 
592 		ns -= priv->plat->cdc_error_adj;
593 
594 		netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
595 		shhwtstamp = skb_hwtstamps(skb);
596 		memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
597 		shhwtstamp->hwtstamp = ns_to_ktime(ns);
598 	} else  {
599 		netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
600 	}
601 }
602 
603 /**
604  *  stmmac_hwtstamp_set - control hardware timestamping.
605  *  @dev: device pointer.
606  *  @ifr: An IOCTL specific structure, that can contain a pointer to
607  *  a proprietary structure used to pass information to the driver.
608  *  Description:
609  *  This function configures the MAC to enable/disable both outgoing(TX)
610  *  and incoming(RX) packets time stamping based on user input.
611  *  Return Value:
612  *  0 on success and an appropriate -ve integer on failure.
613  */
614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
615 {
616 	struct stmmac_priv *priv = netdev_priv(dev);
617 	struct hwtstamp_config config;
618 	u32 ptp_v2 = 0;
619 	u32 tstamp_all = 0;
620 	u32 ptp_over_ipv4_udp = 0;
621 	u32 ptp_over_ipv6_udp = 0;
622 	u32 ptp_over_ethernet = 0;
623 	u32 snap_type_sel = 0;
624 	u32 ts_master_en = 0;
625 	u32 ts_event_en = 0;
626 
627 	if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
628 		netdev_alert(priv->dev, "No support for HW time stamping\n");
629 		priv->hwts_tx_en = 0;
630 		priv->hwts_rx_en = 0;
631 
632 		return -EOPNOTSUPP;
633 	}
634 
635 	if (copy_from_user(&config, ifr->ifr_data,
636 			   sizeof(config)))
637 		return -EFAULT;
638 
639 	netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
640 		   __func__, config.flags, config.tx_type, config.rx_filter);
641 
642 	if (config.tx_type != HWTSTAMP_TX_OFF &&
643 	    config.tx_type != HWTSTAMP_TX_ON)
644 		return -ERANGE;
645 
646 	if (priv->adv_ts) {
647 		switch (config.rx_filter) {
648 		case HWTSTAMP_FILTER_NONE:
649 			/* time stamp no incoming packet at all */
650 			config.rx_filter = HWTSTAMP_FILTER_NONE;
651 			break;
652 
653 		case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
654 			/* PTP v1, UDP, any kind of event packet */
655 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
656 			/* 'xmac' hardware can support Sync, Pdelay_Req and
657 			 * Pdelay_resp by setting bit14 and bits17/16 to 01
658 			 * This leaves Delay_Req timestamps out.
659 			 * Enable all events *and* general purpose message
660 			 * timestamping
661 			 */
662 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
663 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
664 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
665 			break;
666 
667 		case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
668 			/* PTP v1, UDP, Sync packet */
669 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
670 			/* take time stamp for SYNC messages only */
671 			ts_event_en = PTP_TCR_TSEVNTENA;
672 
673 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
674 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
675 			break;
676 
677 		case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
678 			/* PTP v1, UDP, Delay_req packet */
679 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
680 			/* take time stamp for Delay_Req messages only */
681 			ts_master_en = PTP_TCR_TSMSTRENA;
682 			ts_event_en = PTP_TCR_TSEVNTENA;
683 
684 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
685 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
686 			break;
687 
688 		case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
689 			/* PTP v2, UDP, any kind of event packet */
690 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
691 			ptp_v2 = PTP_TCR_TSVER2ENA;
692 			/* take time stamp for all event messages */
693 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
694 
695 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
696 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
697 			break;
698 
699 		case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
700 			/* PTP v2, UDP, Sync packet */
701 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
702 			ptp_v2 = PTP_TCR_TSVER2ENA;
703 			/* take time stamp for SYNC messages only */
704 			ts_event_en = PTP_TCR_TSEVNTENA;
705 
706 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
707 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
708 			break;
709 
710 		case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
711 			/* PTP v2, UDP, Delay_req packet */
712 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
713 			ptp_v2 = PTP_TCR_TSVER2ENA;
714 			/* take time stamp for Delay_Req messages only */
715 			ts_master_en = PTP_TCR_TSMSTRENA;
716 			ts_event_en = PTP_TCR_TSEVNTENA;
717 
718 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
719 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
720 			break;
721 
722 		case HWTSTAMP_FILTER_PTP_V2_EVENT:
723 			/* PTP v2/802.AS1 any layer, any kind of event packet */
724 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
725 			ptp_v2 = PTP_TCR_TSVER2ENA;
726 			snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
727 			if (priv->synopsys_id < DWMAC_CORE_4_10)
728 				ts_event_en = PTP_TCR_TSEVNTENA;
729 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
730 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
731 			ptp_over_ethernet = PTP_TCR_TSIPENA;
732 			break;
733 
734 		case HWTSTAMP_FILTER_PTP_V2_SYNC:
735 			/* PTP v2/802.AS1, any layer, Sync packet */
736 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
737 			ptp_v2 = PTP_TCR_TSVER2ENA;
738 			/* take time stamp for SYNC messages only */
739 			ts_event_en = PTP_TCR_TSEVNTENA;
740 
741 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
742 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
743 			ptp_over_ethernet = PTP_TCR_TSIPENA;
744 			break;
745 
746 		case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
747 			/* PTP v2/802.AS1, any layer, Delay_req packet */
748 			config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
749 			ptp_v2 = PTP_TCR_TSVER2ENA;
750 			/* take time stamp for Delay_Req messages only */
751 			ts_master_en = PTP_TCR_TSMSTRENA;
752 			ts_event_en = PTP_TCR_TSEVNTENA;
753 
754 			ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
755 			ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
756 			ptp_over_ethernet = PTP_TCR_TSIPENA;
757 			break;
758 
759 		case HWTSTAMP_FILTER_NTP_ALL:
760 		case HWTSTAMP_FILTER_ALL:
761 			/* time stamp any incoming packet */
762 			config.rx_filter = HWTSTAMP_FILTER_ALL;
763 			tstamp_all = PTP_TCR_TSENALL;
764 			break;
765 
766 		default:
767 			return -ERANGE;
768 		}
769 	} else {
770 		switch (config.rx_filter) {
771 		case HWTSTAMP_FILTER_NONE:
772 			config.rx_filter = HWTSTAMP_FILTER_NONE;
773 			break;
774 		default:
775 			/* PTP v1, UDP, any kind of event packet */
776 			config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
777 			break;
778 		}
779 	}
780 	priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
781 	priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
782 
783 	priv->systime_flags = STMMAC_HWTS_ACTIVE;
784 
785 	if (priv->hwts_tx_en || priv->hwts_rx_en) {
786 		priv->systime_flags |= tstamp_all | ptp_v2 |
787 				       ptp_over_ethernet | ptp_over_ipv6_udp |
788 				       ptp_over_ipv4_udp | ts_event_en |
789 				       ts_master_en | snap_type_sel;
790 	}
791 
792 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
793 
794 	memcpy(&priv->tstamp_config, &config, sizeof(config));
795 
796 	return copy_to_user(ifr->ifr_data, &config,
797 			    sizeof(config)) ? -EFAULT : 0;
798 }
799 
800 /**
801  *  stmmac_hwtstamp_get - read hardware timestamping.
802  *  @dev: device pointer.
803  *  @ifr: An IOCTL specific structure, that can contain a pointer to
804  *  a proprietary structure used to pass information to the driver.
805  *  Description:
806  *  This function obtain the current hardware timestamping settings
807  *  as requested.
808  */
809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
810 {
811 	struct stmmac_priv *priv = netdev_priv(dev);
812 	struct hwtstamp_config *config = &priv->tstamp_config;
813 
814 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
815 		return -EOPNOTSUPP;
816 
817 	return copy_to_user(ifr->ifr_data, config,
818 			    sizeof(*config)) ? -EFAULT : 0;
819 }
820 
821 /**
822  * stmmac_init_tstamp_counter - init hardware timestamping counter
823  * @priv: driver private structure
824  * @systime_flags: timestamping flags
825  * Description:
826  * Initialize hardware counter for packet timestamping.
827  * This is valid as long as the interface is open and not suspended.
828  * Will be rerun after resuming from suspend, case in which the timestamping
829  * flags updated by stmmac_hwtstamp_set() also need to be restored.
830  */
831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
832 {
833 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
834 	struct timespec64 now;
835 	u32 sec_inc = 0;
836 	u64 temp = 0;
837 	int ret;
838 
839 	if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
840 		return -EOPNOTSUPP;
841 
842 	ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
843 	if (ret < 0) {
844 		netdev_warn(priv->dev,
845 			    "failed to enable PTP reference clock: %pe\n",
846 			    ERR_PTR(ret));
847 		return ret;
848 	}
849 
850 	stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
851 	priv->systime_flags = systime_flags;
852 
853 	/* program Sub Second Increment reg */
854 	stmmac_config_sub_second_increment(priv, priv->ptpaddr,
855 					   priv->plat->clk_ptp_rate,
856 					   xmac, &sec_inc);
857 	temp = div_u64(1000000000ULL, sec_inc);
858 
859 	/* Store sub second increment for later use */
860 	priv->sub_second_inc = sec_inc;
861 
862 	/* calculate default added value:
863 	 * formula is :
864 	 * addend = (2^32)/freq_div_ratio;
865 	 * where, freq_div_ratio = 1e9ns/sec_inc
866 	 */
867 	temp = (u64)(temp << 32);
868 	priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
869 	stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
870 
871 	/* initialize system time */
872 	ktime_get_real_ts64(&now);
873 
874 	/* lower 32 bits of tv_sec are safe until y2106 */
875 	stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
876 
877 	return 0;
878 }
879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
880 
881 /**
882  * stmmac_init_ptp - init PTP
883  * @priv: driver private structure
884  * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
885  * This is done by looking at the HW cap. register.
886  * This function also registers the ptp driver.
887  */
888 static int stmmac_init_ptp(struct stmmac_priv *priv)
889 {
890 	bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
891 	int ret;
892 
893 	if (priv->plat->ptp_clk_freq_config)
894 		priv->plat->ptp_clk_freq_config(priv);
895 
896 	ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
897 	if (ret)
898 		return ret;
899 
900 	priv->adv_ts = 0;
901 	/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
902 	if (xmac && priv->dma_cap.atime_stamp)
903 		priv->adv_ts = 1;
904 	/* Dwmac 3.x core with extend_desc can support adv_ts */
905 	else if (priv->extend_desc && priv->dma_cap.atime_stamp)
906 		priv->adv_ts = 1;
907 
908 	if (priv->dma_cap.time_stamp)
909 		netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
910 
911 	if (priv->adv_ts)
912 		netdev_info(priv->dev,
913 			    "IEEE 1588-2008 Advanced Timestamp supported\n");
914 
915 	priv->hwts_tx_en = 0;
916 	priv->hwts_rx_en = 0;
917 
918 	return 0;
919 }
920 
921 static void stmmac_release_ptp(struct stmmac_priv *priv)
922 {
923 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
924 	stmmac_ptp_unregister(priv);
925 }
926 
927 /**
928  *  stmmac_mac_flow_ctrl - Configure flow control in all queues
929  *  @priv: driver private structure
930  *  @duplex: duplex passed to the next function
931  *  Description: It is used for configuring the flow control in all queues
932  */
933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
934 {
935 	u32 tx_cnt = priv->plat->tx_queues_to_use;
936 
937 	stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
938 			priv->pause, tx_cnt);
939 }
940 
941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
942 						 phy_interface_t interface)
943 {
944 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
945 
946 	if (!priv->hw->xpcs)
947 		return NULL;
948 
949 	return &priv->hw->xpcs->pcs;
950 }
951 
952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
953 			      const struct phylink_link_state *state)
954 {
955 	/* Nothing to do, xpcs_config() handles everything */
956 }
957 
958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
959 {
960 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
961 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
962 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
963 	bool *hs_enable = &fpe_cfg->hs_enable;
964 
965 	if (is_up && *hs_enable) {
966 		stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY);
967 	} else {
968 		*lo_state = FPE_STATE_OFF;
969 		*lp_state = FPE_STATE_OFF;
970 	}
971 }
972 
973 static void stmmac_mac_link_down(struct phylink_config *config,
974 				 unsigned int mode, phy_interface_t interface)
975 {
976 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
977 
978 	stmmac_mac_set(priv, priv->ioaddr, false);
979 	priv->eee_active = false;
980 	priv->tx_lpi_enabled = false;
981 	priv->eee_enabled = stmmac_eee_init(priv);
982 	stmmac_set_eee_pls(priv, priv->hw, false);
983 
984 	if (priv->dma_cap.fpesel)
985 		stmmac_fpe_link_state_handle(priv, false);
986 }
987 
988 static void stmmac_mac_link_up(struct phylink_config *config,
989 			       struct phy_device *phy,
990 			       unsigned int mode, phy_interface_t interface,
991 			       int speed, int duplex,
992 			       bool tx_pause, bool rx_pause)
993 {
994 	struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
995 	u32 ctrl;
996 
997 	ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
998 	ctrl &= ~priv->hw->link.speed_mask;
999 
1000 	if (interface == PHY_INTERFACE_MODE_USXGMII) {
1001 		switch (speed) {
1002 		case SPEED_10000:
1003 			ctrl |= priv->hw->link.xgmii.speed10000;
1004 			break;
1005 		case SPEED_5000:
1006 			ctrl |= priv->hw->link.xgmii.speed5000;
1007 			break;
1008 		case SPEED_2500:
1009 			ctrl |= priv->hw->link.xgmii.speed2500;
1010 			break;
1011 		default:
1012 			return;
1013 		}
1014 	} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1015 		switch (speed) {
1016 		case SPEED_100000:
1017 			ctrl |= priv->hw->link.xlgmii.speed100000;
1018 			break;
1019 		case SPEED_50000:
1020 			ctrl |= priv->hw->link.xlgmii.speed50000;
1021 			break;
1022 		case SPEED_40000:
1023 			ctrl |= priv->hw->link.xlgmii.speed40000;
1024 			break;
1025 		case SPEED_25000:
1026 			ctrl |= priv->hw->link.xlgmii.speed25000;
1027 			break;
1028 		case SPEED_10000:
1029 			ctrl |= priv->hw->link.xgmii.speed10000;
1030 			break;
1031 		case SPEED_2500:
1032 			ctrl |= priv->hw->link.speed2500;
1033 			break;
1034 		case SPEED_1000:
1035 			ctrl |= priv->hw->link.speed1000;
1036 			break;
1037 		default:
1038 			return;
1039 		}
1040 	} else {
1041 		switch (speed) {
1042 		case SPEED_2500:
1043 			ctrl |= priv->hw->link.speed2500;
1044 			break;
1045 		case SPEED_1000:
1046 			ctrl |= priv->hw->link.speed1000;
1047 			break;
1048 		case SPEED_100:
1049 			ctrl |= priv->hw->link.speed100;
1050 			break;
1051 		case SPEED_10:
1052 			ctrl |= priv->hw->link.speed10;
1053 			break;
1054 		default:
1055 			return;
1056 		}
1057 	}
1058 
1059 	priv->speed = speed;
1060 
1061 	if (priv->plat->fix_mac_speed)
1062 		priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed);
1063 
1064 	if (!duplex)
1065 		ctrl &= ~priv->hw->link.duplex;
1066 	else
1067 		ctrl |= priv->hw->link.duplex;
1068 
1069 	/* Flow Control operation */
1070 	if (tx_pause && rx_pause)
1071 		stmmac_mac_flow_ctrl(priv, duplex);
1072 
1073 	writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1074 
1075 	stmmac_mac_set(priv, priv->ioaddr, true);
1076 	if (phy && priv->dma_cap.eee) {
1077 		priv->eee_active = phy_init_eee(phy, 1) >= 0;
1078 		priv->eee_enabled = stmmac_eee_init(priv);
1079 		priv->tx_lpi_enabled = priv->eee_enabled;
1080 		stmmac_set_eee_pls(priv, priv->hw, true);
1081 	}
1082 
1083 	if (priv->dma_cap.fpesel)
1084 		stmmac_fpe_link_state_handle(priv, true);
1085 }
1086 
1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1088 	.validate = phylink_generic_validate,
1089 	.mac_select_pcs = stmmac_mac_select_pcs,
1090 	.mac_config = stmmac_mac_config,
1091 	.mac_link_down = stmmac_mac_link_down,
1092 	.mac_link_up = stmmac_mac_link_up,
1093 };
1094 
1095 /**
1096  * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1097  * @priv: driver private structure
1098  * Description: this is to verify if the HW supports the PCS.
1099  * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1100  * configured for the TBI, RTBI, or SGMII PHY interface.
1101  */
1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1103 {
1104 	int interface = priv->plat->interface;
1105 
1106 	if (priv->dma_cap.pcs) {
1107 		if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1108 		    (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1109 		    (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1110 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1111 			netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1112 			priv->hw->pcs = STMMAC_PCS_RGMII;
1113 		} else if (interface == PHY_INTERFACE_MODE_SGMII) {
1114 			netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1115 			priv->hw->pcs = STMMAC_PCS_SGMII;
1116 		}
1117 	}
1118 }
1119 
1120 /**
1121  * stmmac_init_phy - PHY initialization
1122  * @dev: net device structure
1123  * Description: it initializes the driver's PHY state, and attaches the PHY
1124  * to the mac driver.
1125  *  Return value:
1126  *  0 on success
1127  */
1128 static int stmmac_init_phy(struct net_device *dev)
1129 {
1130 	struct stmmac_priv *priv = netdev_priv(dev);
1131 	struct fwnode_handle *fwnode;
1132 	int ret;
1133 
1134 	fwnode = of_fwnode_handle(priv->plat->phylink_node);
1135 	if (!fwnode)
1136 		fwnode = dev_fwnode(priv->device);
1137 
1138 	if (fwnode)
1139 		ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1140 
1141 	/* Some DT bindings do not set-up the PHY handle. Let's try to
1142 	 * manually parse it
1143 	 */
1144 	if (!fwnode || ret) {
1145 		int addr = priv->plat->phy_addr;
1146 		struct phy_device *phydev;
1147 
1148 		phydev = mdiobus_get_phy(priv->mii, addr);
1149 		if (!phydev) {
1150 			netdev_err(priv->dev, "no phy at addr %d\n", addr);
1151 			return -ENODEV;
1152 		}
1153 
1154 		ret = phylink_connect_phy(priv->phylink, phydev);
1155 	}
1156 
1157 	if (!priv->plat->pmt) {
1158 		struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1159 
1160 		phylink_ethtool_get_wol(priv->phylink, &wol);
1161 		device_set_wakeup_capable(priv->device, !!wol.supported);
1162 	}
1163 
1164 	return ret;
1165 }
1166 
1167 static int stmmac_phy_setup(struct stmmac_priv *priv)
1168 {
1169 	struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data;
1170 	struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node);
1171 	int max_speed = priv->plat->max_speed;
1172 	int mode = priv->plat->phy_interface;
1173 	struct phylink *phylink;
1174 
1175 	priv->phylink_config.dev = &priv->dev->dev;
1176 	priv->phylink_config.type = PHYLINK_NETDEV;
1177 	if (priv->plat->mdio_bus_data)
1178 		priv->phylink_config.ovr_an_inband =
1179 			mdio_bus_data->xpcs_an_inband;
1180 
1181 	if (!fwnode)
1182 		fwnode = dev_fwnode(priv->device);
1183 
1184 	/* Set the platform/firmware specified interface mode */
1185 	__set_bit(mode, priv->phylink_config.supported_interfaces);
1186 
1187 	/* If we have an xpcs, it defines which PHY interfaces are supported. */
1188 	if (priv->hw->xpcs)
1189 		xpcs_get_interfaces(priv->hw->xpcs,
1190 				    priv->phylink_config.supported_interfaces);
1191 
1192 	priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
1193 		MAC_10 | MAC_100;
1194 
1195 	if (!max_speed || max_speed >= 1000)
1196 		priv->phylink_config.mac_capabilities |= MAC_1000;
1197 
1198 	if (priv->plat->has_gmac4) {
1199 		if (!max_speed || max_speed >= 2500)
1200 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1201 	} else if (priv->plat->has_xgmac) {
1202 		if (!max_speed || max_speed >= 2500)
1203 			priv->phylink_config.mac_capabilities |= MAC_2500FD;
1204 		if (!max_speed || max_speed >= 5000)
1205 			priv->phylink_config.mac_capabilities |= MAC_5000FD;
1206 		if (!max_speed || max_speed >= 10000)
1207 			priv->phylink_config.mac_capabilities |= MAC_10000FD;
1208 		if (!max_speed || max_speed >= 25000)
1209 			priv->phylink_config.mac_capabilities |= MAC_25000FD;
1210 		if (!max_speed || max_speed >= 40000)
1211 			priv->phylink_config.mac_capabilities |= MAC_40000FD;
1212 		if (!max_speed || max_speed >= 50000)
1213 			priv->phylink_config.mac_capabilities |= MAC_50000FD;
1214 		if (!max_speed || max_speed >= 100000)
1215 			priv->phylink_config.mac_capabilities |= MAC_100000FD;
1216 	}
1217 
1218 	/* Half-Duplex can only work with single queue */
1219 	if (priv->plat->tx_queues_to_use > 1)
1220 		priv->phylink_config.mac_capabilities &=
1221 			~(MAC_10HD | MAC_100HD | MAC_1000HD);
1222 
1223 	phylink = phylink_create(&priv->phylink_config, fwnode,
1224 				 mode, &stmmac_phylink_mac_ops);
1225 	if (IS_ERR(phylink))
1226 		return PTR_ERR(phylink);
1227 
1228 	priv->phylink = phylink;
1229 	return 0;
1230 }
1231 
1232 static void stmmac_display_rx_rings(struct stmmac_priv *priv)
1233 {
1234 	u32 rx_cnt = priv->plat->rx_queues_to_use;
1235 	unsigned int desc_size;
1236 	void *head_rx;
1237 	u32 queue;
1238 
1239 	/* Display RX rings */
1240 	for (queue = 0; queue < rx_cnt; queue++) {
1241 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1242 
1243 		pr_info("\tRX Queue %u rings\n", queue);
1244 
1245 		if (priv->extend_desc) {
1246 			head_rx = (void *)rx_q->dma_erx;
1247 			desc_size = sizeof(struct dma_extended_desc);
1248 		} else {
1249 			head_rx = (void *)rx_q->dma_rx;
1250 			desc_size = sizeof(struct dma_desc);
1251 		}
1252 
1253 		/* Display RX ring */
1254 		stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true,
1255 				    rx_q->dma_rx_phy, desc_size);
1256 	}
1257 }
1258 
1259 static void stmmac_display_tx_rings(struct stmmac_priv *priv)
1260 {
1261 	u32 tx_cnt = priv->plat->tx_queues_to_use;
1262 	unsigned int desc_size;
1263 	void *head_tx;
1264 	u32 queue;
1265 
1266 	/* Display TX rings */
1267 	for (queue = 0; queue < tx_cnt; queue++) {
1268 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1269 
1270 		pr_info("\tTX Queue %d rings\n", queue);
1271 
1272 		if (priv->extend_desc) {
1273 			head_tx = (void *)tx_q->dma_etx;
1274 			desc_size = sizeof(struct dma_extended_desc);
1275 		} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1276 			head_tx = (void *)tx_q->dma_entx;
1277 			desc_size = sizeof(struct dma_edesc);
1278 		} else {
1279 			head_tx = (void *)tx_q->dma_tx;
1280 			desc_size = sizeof(struct dma_desc);
1281 		}
1282 
1283 		stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false,
1284 				    tx_q->dma_tx_phy, desc_size);
1285 	}
1286 }
1287 
1288 static void stmmac_display_rings(struct stmmac_priv *priv)
1289 {
1290 	/* Display RX ring */
1291 	stmmac_display_rx_rings(priv);
1292 
1293 	/* Display TX ring */
1294 	stmmac_display_tx_rings(priv);
1295 }
1296 
1297 static int stmmac_set_bfsize(int mtu, int bufsize)
1298 {
1299 	int ret = bufsize;
1300 
1301 	if (mtu >= BUF_SIZE_8KiB)
1302 		ret = BUF_SIZE_16KiB;
1303 	else if (mtu >= BUF_SIZE_4KiB)
1304 		ret = BUF_SIZE_8KiB;
1305 	else if (mtu >= BUF_SIZE_2KiB)
1306 		ret = BUF_SIZE_4KiB;
1307 	else if (mtu > DEFAULT_BUFSIZE)
1308 		ret = BUF_SIZE_2KiB;
1309 	else
1310 		ret = DEFAULT_BUFSIZE;
1311 
1312 	return ret;
1313 }
1314 
1315 /**
1316  * stmmac_clear_rx_descriptors - clear RX descriptors
1317  * @priv: driver private structure
1318  * @queue: RX queue index
1319  * Description: this function is called to clear the RX descriptors
1320  * in case of both basic and extended descriptors are used.
1321  */
1322 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
1323 {
1324 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1325 	int i;
1326 
1327 	/* Clear the RX descriptors */
1328 	for (i = 0; i < priv->dma_rx_size; i++)
1329 		if (priv->extend_desc)
1330 			stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1331 					priv->use_riwt, priv->mode,
1332 					(i == priv->dma_rx_size - 1),
1333 					priv->dma_buf_sz);
1334 		else
1335 			stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1336 					priv->use_riwt, priv->mode,
1337 					(i == priv->dma_rx_size - 1),
1338 					priv->dma_buf_sz);
1339 }
1340 
1341 /**
1342  * stmmac_clear_tx_descriptors - clear tx descriptors
1343  * @priv: driver private structure
1344  * @queue: TX queue index.
1345  * Description: this function is called to clear the TX descriptors
1346  * in case of both basic and extended descriptors are used.
1347  */
1348 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
1349 {
1350 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1351 	int i;
1352 
1353 	/* Clear the TX descriptors */
1354 	for (i = 0; i < priv->dma_tx_size; i++) {
1355 		int last = (i == (priv->dma_tx_size - 1));
1356 		struct dma_desc *p;
1357 
1358 		if (priv->extend_desc)
1359 			p = &tx_q->dma_etx[i].basic;
1360 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1361 			p = &tx_q->dma_entx[i].basic;
1362 		else
1363 			p = &tx_q->dma_tx[i];
1364 
1365 		stmmac_init_tx_desc(priv, p, priv->mode, last);
1366 	}
1367 }
1368 
1369 /**
1370  * stmmac_clear_descriptors - clear descriptors
1371  * @priv: driver private structure
1372  * Description: this function is called to clear the TX and RX descriptors
1373  * in case of both basic and extended descriptors are used.
1374  */
1375 static void stmmac_clear_descriptors(struct stmmac_priv *priv)
1376 {
1377 	u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1378 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1379 	u32 queue;
1380 
1381 	/* Clear the RX descriptors */
1382 	for (queue = 0; queue < rx_queue_cnt; queue++)
1383 		stmmac_clear_rx_descriptors(priv, queue);
1384 
1385 	/* Clear the TX descriptors */
1386 	for (queue = 0; queue < tx_queue_cnt; queue++)
1387 		stmmac_clear_tx_descriptors(priv, queue);
1388 }
1389 
1390 /**
1391  * stmmac_init_rx_buffers - init the RX descriptor buffer.
1392  * @priv: driver private structure
1393  * @p: descriptor pointer
1394  * @i: descriptor index
1395  * @flags: gfp flag
1396  * @queue: RX queue index
1397  * Description: this function is called to allocate a receive buffer, perform
1398  * the DMA mapping and init the descriptor.
1399  */
1400 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
1401 				  int i, gfp_t flags, u32 queue)
1402 {
1403 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1404 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1405 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1406 
1407 	if (priv->dma_cap.addr64 <= 32)
1408 		gfp |= GFP_DMA32;
1409 
1410 	if (!buf->page) {
1411 		buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1412 		if (!buf->page)
1413 			return -ENOMEM;
1414 		buf->page_offset = stmmac_rx_offset(priv);
1415 	}
1416 
1417 	if (priv->sph && !buf->sec_page) {
1418 		buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1419 		if (!buf->sec_page)
1420 			return -ENOMEM;
1421 
1422 		buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1423 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1424 	} else {
1425 		buf->sec_page = NULL;
1426 		stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1427 	}
1428 
1429 	buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1430 
1431 	stmmac_set_desc_addr(priv, p, buf->addr);
1432 	if (priv->dma_buf_sz == BUF_SIZE_16KiB)
1433 		stmmac_init_desc3(priv, p);
1434 
1435 	return 0;
1436 }
1437 
1438 /**
1439  * stmmac_free_rx_buffer - free RX dma buffers
1440  * @priv: private structure
1441  * @queue: RX queue index
1442  * @i: buffer index.
1443  */
1444 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1445 {
1446 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1447 	struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1448 
1449 	if (buf->page)
1450 		page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1451 	buf->page = NULL;
1452 
1453 	if (buf->sec_page)
1454 		page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1455 	buf->sec_page = NULL;
1456 }
1457 
1458 /**
1459  * stmmac_free_tx_buffer - free RX dma buffers
1460  * @priv: private structure
1461  * @queue: RX queue index
1462  * @i: buffer index.
1463  */
1464 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i)
1465 {
1466 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1467 
1468 	if (tx_q->tx_skbuff_dma[i].buf &&
1469 	    tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1470 		if (tx_q->tx_skbuff_dma[i].map_as_page)
1471 			dma_unmap_page(priv->device,
1472 				       tx_q->tx_skbuff_dma[i].buf,
1473 				       tx_q->tx_skbuff_dma[i].len,
1474 				       DMA_TO_DEVICE);
1475 		else
1476 			dma_unmap_single(priv->device,
1477 					 tx_q->tx_skbuff_dma[i].buf,
1478 					 tx_q->tx_skbuff_dma[i].len,
1479 					 DMA_TO_DEVICE);
1480 	}
1481 
1482 	if (tx_q->xdpf[i] &&
1483 	    (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1484 	     tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1485 		xdp_return_frame(tx_q->xdpf[i]);
1486 		tx_q->xdpf[i] = NULL;
1487 	}
1488 
1489 	if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1490 		tx_q->xsk_frames_done++;
1491 
1492 	if (tx_q->tx_skbuff[i] &&
1493 	    tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1494 		dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1495 		tx_q->tx_skbuff[i] = NULL;
1496 	}
1497 
1498 	tx_q->tx_skbuff_dma[i].buf = 0;
1499 	tx_q->tx_skbuff_dma[i].map_as_page = false;
1500 }
1501 
1502 /**
1503  * dma_free_rx_skbufs - free RX dma buffers
1504  * @priv: private structure
1505  * @queue: RX queue index
1506  */
1507 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
1508 {
1509 	int i;
1510 
1511 	for (i = 0; i < priv->dma_rx_size; i++)
1512 		stmmac_free_rx_buffer(priv, queue, i);
1513 }
1514 
1515 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue,
1516 				   gfp_t flags)
1517 {
1518 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1519 	int i;
1520 
1521 	for (i = 0; i < priv->dma_rx_size; i++) {
1522 		struct dma_desc *p;
1523 		int ret;
1524 
1525 		if (priv->extend_desc)
1526 			p = &((rx_q->dma_erx + i)->basic);
1527 		else
1528 			p = rx_q->dma_rx + i;
1529 
1530 		ret = stmmac_init_rx_buffers(priv, p, i, flags,
1531 					     queue);
1532 		if (ret)
1533 			return ret;
1534 
1535 		rx_q->buf_alloc_num++;
1536 	}
1537 
1538 	return 0;
1539 }
1540 
1541 /**
1542  * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1543  * @priv: private structure
1544  * @queue: RX queue index
1545  */
1546 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue)
1547 {
1548 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1549 	int i;
1550 
1551 	for (i = 0; i < priv->dma_rx_size; i++) {
1552 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1553 
1554 		if (!buf->xdp)
1555 			continue;
1556 
1557 		xsk_buff_free(buf->xdp);
1558 		buf->xdp = NULL;
1559 	}
1560 }
1561 
1562 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue)
1563 {
1564 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1565 	int i;
1566 
1567 	for (i = 0; i < priv->dma_rx_size; i++) {
1568 		struct stmmac_rx_buffer *buf;
1569 		dma_addr_t dma_addr;
1570 		struct dma_desc *p;
1571 
1572 		if (priv->extend_desc)
1573 			p = (struct dma_desc *)(rx_q->dma_erx + i);
1574 		else
1575 			p = rx_q->dma_rx + i;
1576 
1577 		buf = &rx_q->buf_pool[i];
1578 
1579 		buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1580 		if (!buf->xdp)
1581 			return -ENOMEM;
1582 
1583 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1584 		stmmac_set_desc_addr(priv, p, dma_addr);
1585 		rx_q->buf_alloc_num++;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1592 {
1593 	if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1594 		return NULL;
1595 
1596 	return xsk_get_pool_from_qid(priv->dev, queue);
1597 }
1598 
1599 /**
1600  * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1601  * @priv: driver private structure
1602  * @queue: RX queue index
1603  * @flags: gfp flag.
1604  * Description: this function initializes the DMA RX descriptors
1605  * and allocates the socket buffers. It supports the chained and ring
1606  * modes.
1607  */
1608 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags)
1609 {
1610 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1611 	int ret;
1612 
1613 	netif_dbg(priv, probe, priv->dev,
1614 		  "(%s) dma_rx_phy=0x%08x\n", __func__,
1615 		  (u32)rx_q->dma_rx_phy);
1616 
1617 	stmmac_clear_rx_descriptors(priv, queue);
1618 
1619 	xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1620 
1621 	rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1622 
1623 	if (rx_q->xsk_pool) {
1624 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1625 						   MEM_TYPE_XSK_BUFF_POOL,
1626 						   NULL));
1627 		netdev_info(priv->dev,
1628 			    "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1629 			    rx_q->queue_index);
1630 		xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1631 	} else {
1632 		WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1633 						   MEM_TYPE_PAGE_POOL,
1634 						   rx_q->page_pool));
1635 		netdev_info(priv->dev,
1636 			    "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1637 			    rx_q->queue_index);
1638 	}
1639 
1640 	if (rx_q->xsk_pool) {
1641 		/* RX XDP ZC buffer pool may not be populated, e.g.
1642 		 * xdpsock TX-only.
1643 		 */
1644 		stmmac_alloc_rx_buffers_zc(priv, queue);
1645 	} else {
1646 		ret = stmmac_alloc_rx_buffers(priv, queue, flags);
1647 		if (ret < 0)
1648 			return -ENOMEM;
1649 	}
1650 
1651 	rx_q->cur_rx = 0;
1652 	rx_q->dirty_rx = 0;
1653 
1654 	/* Setup the chained descriptor addresses */
1655 	if (priv->mode == STMMAC_CHAIN_MODE) {
1656 		if (priv->extend_desc)
1657 			stmmac_mode_init(priv, rx_q->dma_erx,
1658 					 rx_q->dma_rx_phy,
1659 					 priv->dma_rx_size, 1);
1660 		else
1661 			stmmac_mode_init(priv, rx_q->dma_rx,
1662 					 rx_q->dma_rx_phy,
1663 					 priv->dma_rx_size, 0);
1664 	}
1665 
1666 	return 0;
1667 }
1668 
1669 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags)
1670 {
1671 	struct stmmac_priv *priv = netdev_priv(dev);
1672 	u32 rx_count = priv->plat->rx_queues_to_use;
1673 	int queue;
1674 	int ret;
1675 
1676 	/* RX INITIALIZATION */
1677 	netif_dbg(priv, probe, priv->dev,
1678 		  "SKB addresses:\nskb\t\tskb data\tdma data\n");
1679 
1680 	for (queue = 0; queue < rx_count; queue++) {
1681 		ret = __init_dma_rx_desc_rings(priv, queue, flags);
1682 		if (ret)
1683 			goto err_init_rx_buffers;
1684 	}
1685 
1686 	return 0;
1687 
1688 err_init_rx_buffers:
1689 	while (queue >= 0) {
1690 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1691 
1692 		if (rx_q->xsk_pool)
1693 			dma_free_rx_xskbufs(priv, queue);
1694 		else
1695 			dma_free_rx_skbufs(priv, queue);
1696 
1697 		rx_q->buf_alloc_num = 0;
1698 		rx_q->xsk_pool = NULL;
1699 
1700 		queue--;
1701 	}
1702 
1703 	return ret;
1704 }
1705 
1706 /**
1707  * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1708  * @priv: driver private structure
1709  * @queue : TX queue index
1710  * Description: this function initializes the DMA TX descriptors
1711  * and allocates the socket buffers. It supports the chained and ring
1712  * modes.
1713  */
1714 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue)
1715 {
1716 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1717 	int i;
1718 
1719 	netif_dbg(priv, probe, priv->dev,
1720 		  "(%s) dma_tx_phy=0x%08x\n", __func__,
1721 		  (u32)tx_q->dma_tx_phy);
1722 
1723 	/* Setup the chained descriptor addresses */
1724 	if (priv->mode == STMMAC_CHAIN_MODE) {
1725 		if (priv->extend_desc)
1726 			stmmac_mode_init(priv, tx_q->dma_etx,
1727 					 tx_q->dma_tx_phy,
1728 					 priv->dma_tx_size, 1);
1729 		else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1730 			stmmac_mode_init(priv, tx_q->dma_tx,
1731 					 tx_q->dma_tx_phy,
1732 					 priv->dma_tx_size, 0);
1733 	}
1734 
1735 	tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1736 
1737 	for (i = 0; i < priv->dma_tx_size; i++) {
1738 		struct dma_desc *p;
1739 
1740 		if (priv->extend_desc)
1741 			p = &((tx_q->dma_etx + i)->basic);
1742 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1743 			p = &((tx_q->dma_entx + i)->basic);
1744 		else
1745 			p = tx_q->dma_tx + i;
1746 
1747 		stmmac_clear_desc(priv, p);
1748 
1749 		tx_q->tx_skbuff_dma[i].buf = 0;
1750 		tx_q->tx_skbuff_dma[i].map_as_page = false;
1751 		tx_q->tx_skbuff_dma[i].len = 0;
1752 		tx_q->tx_skbuff_dma[i].last_segment = false;
1753 		tx_q->tx_skbuff[i] = NULL;
1754 	}
1755 
1756 	tx_q->dirty_tx = 0;
1757 	tx_q->cur_tx = 0;
1758 	tx_q->mss = 0;
1759 
1760 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
1761 
1762 	return 0;
1763 }
1764 
1765 static int init_dma_tx_desc_rings(struct net_device *dev)
1766 {
1767 	struct stmmac_priv *priv = netdev_priv(dev);
1768 	u32 tx_queue_cnt;
1769 	u32 queue;
1770 
1771 	tx_queue_cnt = priv->plat->tx_queues_to_use;
1772 
1773 	for (queue = 0; queue < tx_queue_cnt; queue++)
1774 		__init_dma_tx_desc_rings(priv, queue);
1775 
1776 	return 0;
1777 }
1778 
1779 /**
1780  * init_dma_desc_rings - init the RX/TX descriptor rings
1781  * @dev: net device structure
1782  * @flags: gfp flag.
1783  * Description: this function initializes the DMA RX/TX descriptors
1784  * and allocates the socket buffers. It supports the chained and ring
1785  * modes.
1786  */
1787 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
1788 {
1789 	struct stmmac_priv *priv = netdev_priv(dev);
1790 	int ret;
1791 
1792 	ret = init_dma_rx_desc_rings(dev, flags);
1793 	if (ret)
1794 		return ret;
1795 
1796 	ret = init_dma_tx_desc_rings(dev);
1797 
1798 	stmmac_clear_descriptors(priv);
1799 
1800 	if (netif_msg_hw(priv))
1801 		stmmac_display_rings(priv);
1802 
1803 	return ret;
1804 }
1805 
1806 /**
1807  * dma_free_tx_skbufs - free TX dma buffers
1808  * @priv: private structure
1809  * @queue: TX queue index
1810  */
1811 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
1812 {
1813 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1814 	int i;
1815 
1816 	tx_q->xsk_frames_done = 0;
1817 
1818 	for (i = 0; i < priv->dma_tx_size; i++)
1819 		stmmac_free_tx_buffer(priv, queue, i);
1820 
1821 	if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1822 		xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1823 		tx_q->xsk_frames_done = 0;
1824 		tx_q->xsk_pool = NULL;
1825 	}
1826 }
1827 
1828 /**
1829  * stmmac_free_tx_skbufs - free TX skb buffers
1830  * @priv: private structure
1831  */
1832 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1833 {
1834 	u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1835 	u32 queue;
1836 
1837 	for (queue = 0; queue < tx_queue_cnt; queue++)
1838 		dma_free_tx_skbufs(priv, queue);
1839 }
1840 
1841 /**
1842  * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1843  * @priv: private structure
1844  * @queue: RX queue index
1845  */
1846 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1847 {
1848 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1849 
1850 	/* Release the DMA RX socket buffers */
1851 	if (rx_q->xsk_pool)
1852 		dma_free_rx_xskbufs(priv, queue);
1853 	else
1854 		dma_free_rx_skbufs(priv, queue);
1855 
1856 	rx_q->buf_alloc_num = 0;
1857 	rx_q->xsk_pool = NULL;
1858 
1859 	/* Free DMA regions of consistent memory previously allocated */
1860 	if (!priv->extend_desc)
1861 		dma_free_coherent(priv->device, priv->dma_rx_size *
1862 				  sizeof(struct dma_desc),
1863 				  rx_q->dma_rx, rx_q->dma_rx_phy);
1864 	else
1865 		dma_free_coherent(priv->device, priv->dma_rx_size *
1866 				  sizeof(struct dma_extended_desc),
1867 				  rx_q->dma_erx, rx_q->dma_rx_phy);
1868 
1869 	if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1870 		xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1871 
1872 	kfree(rx_q->buf_pool);
1873 	if (rx_q->page_pool)
1874 		page_pool_destroy(rx_q->page_pool);
1875 }
1876 
1877 static void free_dma_rx_desc_resources(struct stmmac_priv *priv)
1878 {
1879 	u32 rx_count = priv->plat->rx_queues_to_use;
1880 	u32 queue;
1881 
1882 	/* Free RX queue resources */
1883 	for (queue = 0; queue < rx_count; queue++)
1884 		__free_dma_rx_desc_resources(priv, queue);
1885 }
1886 
1887 /**
1888  * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1889  * @priv: private structure
1890  * @queue: TX queue index
1891  */
1892 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
1893 {
1894 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
1895 	size_t size;
1896 	void *addr;
1897 
1898 	/* Release the DMA TX socket buffers */
1899 	dma_free_tx_skbufs(priv, queue);
1900 
1901 	if (priv->extend_desc) {
1902 		size = sizeof(struct dma_extended_desc);
1903 		addr = tx_q->dma_etx;
1904 	} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1905 		size = sizeof(struct dma_edesc);
1906 		addr = tx_q->dma_entx;
1907 	} else {
1908 		size = sizeof(struct dma_desc);
1909 		addr = tx_q->dma_tx;
1910 	}
1911 
1912 	size *= priv->dma_tx_size;
1913 
1914 	dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1915 
1916 	kfree(tx_q->tx_skbuff_dma);
1917 	kfree(tx_q->tx_skbuff);
1918 }
1919 
1920 static void free_dma_tx_desc_resources(struct stmmac_priv *priv)
1921 {
1922 	u32 tx_count = priv->plat->tx_queues_to_use;
1923 	u32 queue;
1924 
1925 	/* Free TX queue resources */
1926 	for (queue = 0; queue < tx_count; queue++)
1927 		__free_dma_tx_desc_resources(priv, queue);
1928 }
1929 
1930 /**
1931  * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1932  * @priv: private structure
1933  * @queue: RX queue index
1934  * Description: according to which descriptor can be used (extend or basic)
1935  * this function allocates the resources for TX and RX paths. In case of
1936  * reception, for example, it pre-allocated the RX socket buffer in order to
1937  * allow zero-copy mechanism.
1938  */
1939 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue)
1940 {
1941 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
1942 	struct stmmac_channel *ch = &priv->channel[queue];
1943 	bool xdp_prog = stmmac_xdp_is_enabled(priv);
1944 	struct page_pool_params pp_params = { 0 };
1945 	unsigned int num_pages;
1946 	unsigned int napi_id;
1947 	int ret;
1948 
1949 	rx_q->queue_index = queue;
1950 	rx_q->priv_data = priv;
1951 
1952 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
1953 	pp_params.pool_size = priv->dma_rx_size;
1954 	num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE);
1955 	pp_params.order = ilog2(num_pages);
1956 	pp_params.nid = dev_to_node(priv->device);
1957 	pp_params.dev = priv->device;
1958 	pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
1959 	pp_params.offset = stmmac_rx_offset(priv);
1960 	pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
1961 
1962 	rx_q->page_pool = page_pool_create(&pp_params);
1963 	if (IS_ERR(rx_q->page_pool)) {
1964 		ret = PTR_ERR(rx_q->page_pool);
1965 		rx_q->page_pool = NULL;
1966 		return ret;
1967 	}
1968 
1969 	rx_q->buf_pool = kcalloc(priv->dma_rx_size,
1970 				 sizeof(*rx_q->buf_pool),
1971 				 GFP_KERNEL);
1972 	if (!rx_q->buf_pool)
1973 		return -ENOMEM;
1974 
1975 	if (priv->extend_desc) {
1976 		rx_q->dma_erx = dma_alloc_coherent(priv->device,
1977 						   priv->dma_rx_size *
1978 						   sizeof(struct dma_extended_desc),
1979 						   &rx_q->dma_rx_phy,
1980 						   GFP_KERNEL);
1981 		if (!rx_q->dma_erx)
1982 			return -ENOMEM;
1983 
1984 	} else {
1985 		rx_q->dma_rx = dma_alloc_coherent(priv->device,
1986 						  priv->dma_rx_size *
1987 						  sizeof(struct dma_desc),
1988 						  &rx_q->dma_rx_phy,
1989 						  GFP_KERNEL);
1990 		if (!rx_q->dma_rx)
1991 			return -ENOMEM;
1992 	}
1993 
1994 	if (stmmac_xdp_is_enabled(priv) &&
1995 	    test_bit(queue, priv->af_xdp_zc_qps))
1996 		napi_id = ch->rxtx_napi.napi_id;
1997 	else
1998 		napi_id = ch->rx_napi.napi_id;
1999 
2000 	ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2001 			       rx_q->queue_index,
2002 			       napi_id);
2003 	if (ret) {
2004 		netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2005 		return -EINVAL;
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv)
2012 {
2013 	u32 rx_count = priv->plat->rx_queues_to_use;
2014 	u32 queue;
2015 	int ret;
2016 
2017 	/* RX queues buffers and DMA */
2018 	for (queue = 0; queue < rx_count; queue++) {
2019 		ret = __alloc_dma_rx_desc_resources(priv, queue);
2020 		if (ret)
2021 			goto err_dma;
2022 	}
2023 
2024 	return 0;
2025 
2026 err_dma:
2027 	free_dma_rx_desc_resources(priv);
2028 
2029 	return ret;
2030 }
2031 
2032 /**
2033  * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2034  * @priv: private structure
2035  * @queue: TX queue index
2036  * Description: according to which descriptor can be used (extend or basic)
2037  * this function allocates the resources for TX and RX paths. In case of
2038  * reception, for example, it pre-allocated the RX socket buffer in order to
2039  * allow zero-copy mechanism.
2040  */
2041 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue)
2042 {
2043 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2044 	size_t size;
2045 	void *addr;
2046 
2047 	tx_q->queue_index = queue;
2048 	tx_q->priv_data = priv;
2049 
2050 	tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size,
2051 				      sizeof(*tx_q->tx_skbuff_dma),
2052 				      GFP_KERNEL);
2053 	if (!tx_q->tx_skbuff_dma)
2054 		return -ENOMEM;
2055 
2056 	tx_q->tx_skbuff = kcalloc(priv->dma_tx_size,
2057 				  sizeof(struct sk_buff *),
2058 				  GFP_KERNEL);
2059 	if (!tx_q->tx_skbuff)
2060 		return -ENOMEM;
2061 
2062 	if (priv->extend_desc)
2063 		size = sizeof(struct dma_extended_desc);
2064 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2065 		size = sizeof(struct dma_edesc);
2066 	else
2067 		size = sizeof(struct dma_desc);
2068 
2069 	size *= priv->dma_tx_size;
2070 
2071 	addr = dma_alloc_coherent(priv->device, size,
2072 				  &tx_q->dma_tx_phy, GFP_KERNEL);
2073 	if (!addr)
2074 		return -ENOMEM;
2075 
2076 	if (priv->extend_desc)
2077 		tx_q->dma_etx = addr;
2078 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2079 		tx_q->dma_entx = addr;
2080 	else
2081 		tx_q->dma_tx = addr;
2082 
2083 	return 0;
2084 }
2085 
2086 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv)
2087 {
2088 	u32 tx_count = priv->plat->tx_queues_to_use;
2089 	u32 queue;
2090 	int ret;
2091 
2092 	/* TX queues buffers and DMA */
2093 	for (queue = 0; queue < tx_count; queue++) {
2094 		ret = __alloc_dma_tx_desc_resources(priv, queue);
2095 		if (ret)
2096 			goto err_dma;
2097 	}
2098 
2099 	return 0;
2100 
2101 err_dma:
2102 	free_dma_tx_desc_resources(priv);
2103 	return ret;
2104 }
2105 
2106 /**
2107  * alloc_dma_desc_resources - alloc TX/RX resources.
2108  * @priv: private structure
2109  * Description: according to which descriptor can be used (extend or basic)
2110  * this function allocates the resources for TX and RX paths. In case of
2111  * reception, for example, it pre-allocated the RX socket buffer in order to
2112  * allow zero-copy mechanism.
2113  */
2114 static int alloc_dma_desc_resources(struct stmmac_priv *priv)
2115 {
2116 	/* RX Allocation */
2117 	int ret = alloc_dma_rx_desc_resources(priv);
2118 
2119 	if (ret)
2120 		return ret;
2121 
2122 	ret = alloc_dma_tx_desc_resources(priv);
2123 
2124 	return ret;
2125 }
2126 
2127 /**
2128  * free_dma_desc_resources - free dma desc resources
2129  * @priv: private structure
2130  */
2131 static void free_dma_desc_resources(struct stmmac_priv *priv)
2132 {
2133 	/* Release the DMA TX socket buffers */
2134 	free_dma_tx_desc_resources(priv);
2135 
2136 	/* Release the DMA RX socket buffers later
2137 	 * to ensure all pending XDP_TX buffers are returned.
2138 	 */
2139 	free_dma_rx_desc_resources(priv);
2140 }
2141 
2142 /**
2143  *  stmmac_mac_enable_rx_queues - Enable MAC rx queues
2144  *  @priv: driver private structure
2145  *  Description: It is used for enabling the rx queues in the MAC
2146  */
2147 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2148 {
2149 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
2150 	int queue;
2151 	u8 mode;
2152 
2153 	for (queue = 0; queue < rx_queues_count; queue++) {
2154 		mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2155 		stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2156 	}
2157 }
2158 
2159 /**
2160  * stmmac_start_rx_dma - start RX DMA channel
2161  * @priv: driver private structure
2162  * @chan: RX channel index
2163  * Description:
2164  * This starts a RX DMA channel
2165  */
2166 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2167 {
2168 	netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2169 	stmmac_start_rx(priv, priv->ioaddr, chan);
2170 }
2171 
2172 /**
2173  * stmmac_start_tx_dma - start TX DMA channel
2174  * @priv: driver private structure
2175  * @chan: TX channel index
2176  * Description:
2177  * This starts a TX DMA channel
2178  */
2179 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2180 {
2181 	netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2182 	stmmac_start_tx(priv, priv->ioaddr, chan);
2183 }
2184 
2185 /**
2186  * stmmac_stop_rx_dma - stop RX DMA channel
2187  * @priv: driver private structure
2188  * @chan: RX channel index
2189  * Description:
2190  * This stops a RX DMA channel
2191  */
2192 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2193 {
2194 	netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2195 	stmmac_stop_rx(priv, priv->ioaddr, chan);
2196 }
2197 
2198 /**
2199  * stmmac_stop_tx_dma - stop TX DMA channel
2200  * @priv: driver private structure
2201  * @chan: TX channel index
2202  * Description:
2203  * This stops a TX DMA channel
2204  */
2205 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2206 {
2207 	netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2208 	stmmac_stop_tx(priv, priv->ioaddr, chan);
2209 }
2210 
2211 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2212 {
2213 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2214 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2215 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2216 	u32 chan;
2217 
2218 	for (chan = 0; chan < dma_csr_ch; chan++) {
2219 		struct stmmac_channel *ch = &priv->channel[chan];
2220 		unsigned long flags;
2221 
2222 		spin_lock_irqsave(&ch->lock, flags);
2223 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2224 		spin_unlock_irqrestore(&ch->lock, flags);
2225 	}
2226 }
2227 
2228 /**
2229  * stmmac_start_all_dma - start all RX and TX DMA channels
2230  * @priv: driver private structure
2231  * Description:
2232  * This starts all the RX and TX DMA channels
2233  */
2234 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2235 {
2236 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2237 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2238 	u32 chan = 0;
2239 
2240 	for (chan = 0; chan < rx_channels_count; chan++)
2241 		stmmac_start_rx_dma(priv, chan);
2242 
2243 	for (chan = 0; chan < tx_channels_count; chan++)
2244 		stmmac_start_tx_dma(priv, chan);
2245 }
2246 
2247 /**
2248  * stmmac_stop_all_dma - stop all RX and TX DMA channels
2249  * @priv: driver private structure
2250  * Description:
2251  * This stops the RX and TX DMA channels
2252  */
2253 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2254 {
2255 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2256 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2257 	u32 chan = 0;
2258 
2259 	for (chan = 0; chan < rx_channels_count; chan++)
2260 		stmmac_stop_rx_dma(priv, chan);
2261 
2262 	for (chan = 0; chan < tx_channels_count; chan++)
2263 		stmmac_stop_tx_dma(priv, chan);
2264 }
2265 
2266 /**
2267  *  stmmac_dma_operation_mode - HW DMA operation mode
2268  *  @priv: driver private structure
2269  *  Description: it is used for configuring the DMA operation mode register in
2270  *  order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2271  */
2272 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2273 {
2274 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2275 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2276 	int rxfifosz = priv->plat->rx_fifo_size;
2277 	int txfifosz = priv->plat->tx_fifo_size;
2278 	u32 txmode = 0;
2279 	u32 rxmode = 0;
2280 	u32 chan = 0;
2281 	u8 qmode = 0;
2282 
2283 	if (rxfifosz == 0)
2284 		rxfifosz = priv->dma_cap.rx_fifo_size;
2285 	if (txfifosz == 0)
2286 		txfifosz = priv->dma_cap.tx_fifo_size;
2287 
2288 	/* Adjust for real per queue fifo size */
2289 	rxfifosz /= rx_channels_count;
2290 	txfifosz /= tx_channels_count;
2291 
2292 	if (priv->plat->force_thresh_dma_mode) {
2293 		txmode = tc;
2294 		rxmode = tc;
2295 	} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2296 		/*
2297 		 * In case of GMAC, SF mode can be enabled
2298 		 * to perform the TX COE in HW. This depends on:
2299 		 * 1) TX COE if actually supported
2300 		 * 2) There is no bugged Jumbo frame support
2301 		 *    that needs to not insert csum in the TDES.
2302 		 */
2303 		txmode = SF_DMA_MODE;
2304 		rxmode = SF_DMA_MODE;
2305 		priv->xstats.threshold = SF_DMA_MODE;
2306 	} else {
2307 		txmode = tc;
2308 		rxmode = SF_DMA_MODE;
2309 	}
2310 
2311 	/* configure all channels */
2312 	for (chan = 0; chan < rx_channels_count; chan++) {
2313 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2314 		u32 buf_size;
2315 
2316 		qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2317 
2318 		stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2319 				rxfifosz, qmode);
2320 
2321 		if (rx_q->xsk_pool) {
2322 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2323 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2324 					      buf_size,
2325 					      chan);
2326 		} else {
2327 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
2328 					      priv->dma_buf_sz,
2329 					      chan);
2330 		}
2331 	}
2332 
2333 	for (chan = 0; chan < tx_channels_count; chan++) {
2334 		qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2335 
2336 		stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2337 				txfifosz, qmode);
2338 	}
2339 }
2340 
2341 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2342 {
2343 	struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2344 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2345 	struct xsk_buff_pool *pool = tx_q->xsk_pool;
2346 	unsigned int entry = tx_q->cur_tx;
2347 	struct dma_desc *tx_desc = NULL;
2348 	struct xdp_desc xdp_desc;
2349 	bool work_done = true;
2350 
2351 	/* Avoids TX time-out as we are sharing with slow path */
2352 	txq_trans_cond_update(nq);
2353 
2354 	budget = min(budget, stmmac_tx_avail(priv, queue));
2355 
2356 	while (budget-- > 0) {
2357 		dma_addr_t dma_addr;
2358 		bool set_ic;
2359 
2360 		/* We are sharing with slow path and stop XSK TX desc submission when
2361 		 * available TX ring is less than threshold.
2362 		 */
2363 		if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2364 		    !netif_carrier_ok(priv->dev)) {
2365 			work_done = false;
2366 			break;
2367 		}
2368 
2369 		if (!xsk_tx_peek_desc(pool, &xdp_desc))
2370 			break;
2371 
2372 		if (likely(priv->extend_desc))
2373 			tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2374 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2375 			tx_desc = &tx_q->dma_entx[entry].basic;
2376 		else
2377 			tx_desc = tx_q->dma_tx + entry;
2378 
2379 		dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2380 		xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2381 
2382 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2383 
2384 		/* To return XDP buffer to XSK pool, we simple call
2385 		 * xsk_tx_completed(), so we don't need to fill up
2386 		 * 'buf' and 'xdpf'.
2387 		 */
2388 		tx_q->tx_skbuff_dma[entry].buf = 0;
2389 		tx_q->xdpf[entry] = NULL;
2390 
2391 		tx_q->tx_skbuff_dma[entry].map_as_page = false;
2392 		tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2393 		tx_q->tx_skbuff_dma[entry].last_segment = true;
2394 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2395 
2396 		stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2397 
2398 		tx_q->tx_count_frames++;
2399 
2400 		if (!priv->tx_coal_frames[queue])
2401 			set_ic = false;
2402 		else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2403 			set_ic = true;
2404 		else
2405 			set_ic = false;
2406 
2407 		if (set_ic) {
2408 			tx_q->tx_count_frames = 0;
2409 			stmmac_set_tx_ic(priv, tx_desc);
2410 			priv->xstats.tx_set_ic_bit++;
2411 		}
2412 
2413 		stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2414 				       true, priv->mode, true, true,
2415 				       xdp_desc.len);
2416 
2417 		stmmac_enable_dma_transmission(priv, priv->ioaddr);
2418 
2419 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
2420 		entry = tx_q->cur_tx;
2421 	}
2422 
2423 	if (tx_desc) {
2424 		stmmac_flush_tx_descriptors(priv, queue);
2425 		xsk_tx_release(pool);
2426 	}
2427 
2428 	/* Return true if all of the 3 conditions are met
2429 	 *  a) TX Budget is still available
2430 	 *  b) work_done = true when XSK TX desc peek is empty (no more
2431 	 *     pending XSK TX for transmission)
2432 	 */
2433 	return !!budget && work_done;
2434 }
2435 
2436 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2437 {
2438 	if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2439 		tc += 64;
2440 
2441 		if (priv->plat->force_thresh_dma_mode)
2442 			stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2443 		else
2444 			stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2445 						      chan);
2446 
2447 		priv->xstats.threshold = tc;
2448 	}
2449 }
2450 
2451 /**
2452  * stmmac_tx_clean - to manage the transmission completion
2453  * @priv: driver private structure
2454  * @budget: napi budget limiting this functions packet handling
2455  * @queue: TX queue index
2456  * Description: it reclaims the transmit resources after transmission completes.
2457  */
2458 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2459 {
2460 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2461 	unsigned int bytes_compl = 0, pkts_compl = 0;
2462 	unsigned int entry, xmits = 0, count = 0;
2463 
2464 	__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2465 
2466 	priv->xstats.tx_clean++;
2467 
2468 	tx_q->xsk_frames_done = 0;
2469 
2470 	entry = tx_q->dirty_tx;
2471 
2472 	/* Try to clean all TX complete frame in 1 shot */
2473 	while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) {
2474 		struct xdp_frame *xdpf;
2475 		struct sk_buff *skb;
2476 		struct dma_desc *p;
2477 		int status;
2478 
2479 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2480 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2481 			xdpf = tx_q->xdpf[entry];
2482 			skb = NULL;
2483 		} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2484 			xdpf = NULL;
2485 			skb = tx_q->tx_skbuff[entry];
2486 		} else {
2487 			xdpf = NULL;
2488 			skb = NULL;
2489 		}
2490 
2491 		if (priv->extend_desc)
2492 			p = (struct dma_desc *)(tx_q->dma_etx + entry);
2493 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2494 			p = &tx_q->dma_entx[entry].basic;
2495 		else
2496 			p = tx_q->dma_tx + entry;
2497 
2498 		status = stmmac_tx_status(priv, &priv->dev->stats,
2499 				&priv->xstats, p, priv->ioaddr);
2500 		/* Check if the descriptor is owned by the DMA */
2501 		if (unlikely(status & tx_dma_own))
2502 			break;
2503 
2504 		count++;
2505 
2506 		/* Make sure descriptor fields are read after reading
2507 		 * the own bit.
2508 		 */
2509 		dma_rmb();
2510 
2511 		/* Just consider the last segment and ...*/
2512 		if (likely(!(status & tx_not_ls))) {
2513 			/* ... verify the status error condition */
2514 			if (unlikely(status & tx_err)) {
2515 				priv->dev->stats.tx_errors++;
2516 				if (unlikely(status & tx_err_bump_tc))
2517 					stmmac_bump_dma_threshold(priv, queue);
2518 			} else {
2519 				priv->dev->stats.tx_packets++;
2520 				priv->xstats.tx_pkt_n++;
2521 				priv->xstats.txq_stats[queue].tx_pkt_n++;
2522 			}
2523 			if (skb)
2524 				stmmac_get_tx_hwtstamp(priv, p, skb);
2525 		}
2526 
2527 		if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2528 			   tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2529 			if (tx_q->tx_skbuff_dma[entry].map_as_page)
2530 				dma_unmap_page(priv->device,
2531 					       tx_q->tx_skbuff_dma[entry].buf,
2532 					       tx_q->tx_skbuff_dma[entry].len,
2533 					       DMA_TO_DEVICE);
2534 			else
2535 				dma_unmap_single(priv->device,
2536 						 tx_q->tx_skbuff_dma[entry].buf,
2537 						 tx_q->tx_skbuff_dma[entry].len,
2538 						 DMA_TO_DEVICE);
2539 			tx_q->tx_skbuff_dma[entry].buf = 0;
2540 			tx_q->tx_skbuff_dma[entry].len = 0;
2541 			tx_q->tx_skbuff_dma[entry].map_as_page = false;
2542 		}
2543 
2544 		stmmac_clean_desc3(priv, tx_q, p);
2545 
2546 		tx_q->tx_skbuff_dma[entry].last_segment = false;
2547 		tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2548 
2549 		if (xdpf &&
2550 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2551 			xdp_return_frame_rx_napi(xdpf);
2552 			tx_q->xdpf[entry] = NULL;
2553 		}
2554 
2555 		if (xdpf &&
2556 		    tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2557 			xdp_return_frame(xdpf);
2558 			tx_q->xdpf[entry] = NULL;
2559 		}
2560 
2561 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2562 			tx_q->xsk_frames_done++;
2563 
2564 		if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2565 			if (likely(skb)) {
2566 				pkts_compl++;
2567 				bytes_compl += skb->len;
2568 				dev_consume_skb_any(skb);
2569 				tx_q->tx_skbuff[entry] = NULL;
2570 			}
2571 		}
2572 
2573 		stmmac_release_tx_desc(priv, p, priv->mode);
2574 
2575 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
2576 	}
2577 	tx_q->dirty_tx = entry;
2578 
2579 	netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2580 				  pkts_compl, bytes_compl);
2581 
2582 	if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2583 								queue))) &&
2584 	    stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2585 
2586 		netif_dbg(priv, tx_done, priv->dev,
2587 			  "%s: restart transmit\n", __func__);
2588 		netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2589 	}
2590 
2591 	if (tx_q->xsk_pool) {
2592 		bool work_done;
2593 
2594 		if (tx_q->xsk_frames_done)
2595 			xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2596 
2597 		if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2598 			xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2599 
2600 		/* For XSK TX, we try to send as many as possible.
2601 		 * If XSK work done (XSK TX desc empty and budget still
2602 		 * available), return "budget - 1" to reenable TX IRQ.
2603 		 * Else, return "budget" to make NAPI continue polling.
2604 		 */
2605 		work_done = stmmac_xdp_xmit_zc(priv, queue,
2606 					       STMMAC_XSK_TX_BUDGET_MAX);
2607 		if (work_done)
2608 			xmits = budget - 1;
2609 		else
2610 			xmits = budget;
2611 	}
2612 
2613 	if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2614 	    priv->eee_sw_timer_en) {
2615 		if (stmmac_enable_eee_mode(priv))
2616 			mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2617 	}
2618 
2619 	/* We still have pending packets, let's call for a new scheduling */
2620 	if (tx_q->dirty_tx != tx_q->cur_tx)
2621 		hrtimer_start(&tx_q->txtimer,
2622 			      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2623 			      HRTIMER_MODE_REL);
2624 
2625 	__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2626 
2627 	/* Combine decisions from TX clean and XSK TX */
2628 	return max(count, xmits);
2629 }
2630 
2631 /**
2632  * stmmac_tx_err - to manage the tx error
2633  * @priv: driver private structure
2634  * @chan: channel index
2635  * Description: it cleans the descriptors and restarts the transmission
2636  * in case of transmission errors.
2637  */
2638 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2639 {
2640 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2641 
2642 	netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2643 
2644 	stmmac_stop_tx_dma(priv, chan);
2645 	dma_free_tx_skbufs(priv, chan);
2646 	stmmac_clear_tx_descriptors(priv, chan);
2647 	tx_q->dirty_tx = 0;
2648 	tx_q->cur_tx = 0;
2649 	tx_q->mss = 0;
2650 	netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan));
2651 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2652 			    tx_q->dma_tx_phy, chan);
2653 	stmmac_start_tx_dma(priv, chan);
2654 
2655 	priv->dev->stats.tx_errors++;
2656 	netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2657 }
2658 
2659 /**
2660  *  stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2661  *  @priv: driver private structure
2662  *  @txmode: TX operating mode
2663  *  @rxmode: RX operating mode
2664  *  @chan: channel index
2665  *  Description: it is used for configuring of the DMA operation mode in
2666  *  runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2667  *  mode.
2668  */
2669 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2670 					  u32 rxmode, u32 chan)
2671 {
2672 	u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2673 	u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2674 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2675 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2676 	int rxfifosz = priv->plat->rx_fifo_size;
2677 	int txfifosz = priv->plat->tx_fifo_size;
2678 
2679 	if (rxfifosz == 0)
2680 		rxfifosz = priv->dma_cap.rx_fifo_size;
2681 	if (txfifosz == 0)
2682 		txfifosz = priv->dma_cap.tx_fifo_size;
2683 
2684 	/* Adjust for real per queue fifo size */
2685 	rxfifosz /= rx_channels_count;
2686 	txfifosz /= tx_channels_count;
2687 
2688 	stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2689 	stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2690 }
2691 
2692 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2693 {
2694 	int ret;
2695 
2696 	ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2697 			priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2698 	if (ret && (ret != -EINVAL)) {
2699 		stmmac_global_err(priv);
2700 		return true;
2701 	}
2702 
2703 	return false;
2704 }
2705 
2706 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2707 {
2708 	int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2709 						 &priv->xstats, chan, dir);
2710 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
2711 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2712 	struct stmmac_channel *ch = &priv->channel[chan];
2713 	struct napi_struct *rx_napi;
2714 	struct napi_struct *tx_napi;
2715 	unsigned long flags;
2716 
2717 	rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2718 	tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2719 
2720 	if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2721 		if (napi_schedule_prep(rx_napi)) {
2722 			spin_lock_irqsave(&ch->lock, flags);
2723 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2724 			spin_unlock_irqrestore(&ch->lock, flags);
2725 			__napi_schedule(rx_napi);
2726 		}
2727 	}
2728 
2729 	if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2730 		if (napi_schedule_prep(tx_napi)) {
2731 			spin_lock_irqsave(&ch->lock, flags);
2732 			stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2733 			spin_unlock_irqrestore(&ch->lock, flags);
2734 			__napi_schedule(tx_napi);
2735 		}
2736 	}
2737 
2738 	return status;
2739 }
2740 
2741 /**
2742  * stmmac_dma_interrupt - DMA ISR
2743  * @priv: driver private structure
2744  * Description: this is the DMA ISR. It is called by the main ISR.
2745  * It calls the dwmac dma routine and schedule poll method in case of some
2746  * work can be done.
2747  */
2748 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2749 {
2750 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2751 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2752 	u32 channels_to_check = tx_channel_count > rx_channel_count ?
2753 				tx_channel_count : rx_channel_count;
2754 	u32 chan;
2755 	int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2756 
2757 	/* Make sure we never check beyond our status buffer. */
2758 	if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2759 		channels_to_check = ARRAY_SIZE(status);
2760 
2761 	for (chan = 0; chan < channels_to_check; chan++)
2762 		status[chan] = stmmac_napi_check(priv, chan,
2763 						 DMA_DIR_RXTX);
2764 
2765 	for (chan = 0; chan < tx_channel_count; chan++) {
2766 		if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2767 			/* Try to bump up the dma threshold on this failure */
2768 			stmmac_bump_dma_threshold(priv, chan);
2769 		} else if (unlikely(status[chan] == tx_hard_error)) {
2770 			stmmac_tx_err(priv, chan);
2771 		}
2772 	}
2773 }
2774 
2775 /**
2776  * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2777  * @priv: driver private structure
2778  * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2779  */
2780 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2781 {
2782 	unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2783 			    MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2784 
2785 	stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2786 
2787 	if (priv->dma_cap.rmon) {
2788 		stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2789 		memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2790 	} else
2791 		netdev_info(priv->dev, "No MAC Management Counters available\n");
2792 }
2793 
2794 /**
2795  * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2796  * @priv: driver private structure
2797  * Description:
2798  *  new GMAC chip generations have a new register to indicate the
2799  *  presence of the optional feature/functions.
2800  *  This can be also used to override the value passed through the
2801  *  platform and necessary for old MAC10/100 and GMAC chips.
2802  */
2803 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2804 {
2805 	return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2806 }
2807 
2808 /**
2809  * stmmac_check_ether_addr - check if the MAC addr is valid
2810  * @priv: driver private structure
2811  * Description:
2812  * it is to verify if the MAC address is valid, in case of failures it
2813  * generates a random MAC address
2814  */
2815 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2816 {
2817 	u8 addr[ETH_ALEN];
2818 
2819 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2820 		stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2821 		if (is_valid_ether_addr(addr))
2822 			eth_hw_addr_set(priv->dev, addr);
2823 		else
2824 			eth_hw_addr_random(priv->dev);
2825 		dev_info(priv->device, "device MAC address %pM\n",
2826 			 priv->dev->dev_addr);
2827 	}
2828 }
2829 
2830 /**
2831  * stmmac_init_dma_engine - DMA init.
2832  * @priv: driver private structure
2833  * Description:
2834  * It inits the DMA invoking the specific MAC/GMAC callback.
2835  * Some DMA parameters can be passed from the platform;
2836  * in case of these are not passed a default is kept for the MAC or GMAC.
2837  */
2838 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2839 {
2840 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2841 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2842 	u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2843 	struct stmmac_rx_queue *rx_q;
2844 	struct stmmac_tx_queue *tx_q;
2845 	u32 chan = 0;
2846 	int atds = 0;
2847 	int ret = 0;
2848 
2849 	if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2850 		dev_err(priv->device, "Invalid DMA configuration\n");
2851 		return -EINVAL;
2852 	}
2853 
2854 	if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2855 		atds = 1;
2856 
2857 	ret = stmmac_reset(priv, priv->ioaddr);
2858 	if (ret) {
2859 		dev_err(priv->device, "Failed to reset the dma\n");
2860 		return ret;
2861 	}
2862 
2863 	/* DMA Configuration */
2864 	stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2865 
2866 	if (priv->plat->axi)
2867 		stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2868 
2869 	/* DMA CSR Channel configuration */
2870 	for (chan = 0; chan < dma_csr_ch; chan++) {
2871 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2872 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2873 	}
2874 
2875 	/* DMA RX Channel Configuration */
2876 	for (chan = 0; chan < rx_channels_count; chan++) {
2877 		rx_q = &priv->rx_queue[chan];
2878 
2879 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2880 				    rx_q->dma_rx_phy, chan);
2881 
2882 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2883 				     (rx_q->buf_alloc_num *
2884 				      sizeof(struct dma_desc));
2885 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2886 				       rx_q->rx_tail_addr, chan);
2887 	}
2888 
2889 	/* DMA TX Channel Configuration */
2890 	for (chan = 0; chan < tx_channels_count; chan++) {
2891 		tx_q = &priv->tx_queue[chan];
2892 
2893 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2894 				    tx_q->dma_tx_phy, chan);
2895 
2896 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2897 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2898 				       tx_q->tx_tail_addr, chan);
2899 	}
2900 
2901 	return ret;
2902 }
2903 
2904 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2905 {
2906 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
2907 
2908 	hrtimer_start(&tx_q->txtimer,
2909 		      STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]),
2910 		      HRTIMER_MODE_REL);
2911 }
2912 
2913 /**
2914  * stmmac_tx_timer - mitigation sw timer for tx.
2915  * @t: data pointer
2916  * Description:
2917  * This is the timer handler to directly invoke the stmmac_tx_clean.
2918  */
2919 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
2920 {
2921 	struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
2922 	struct stmmac_priv *priv = tx_q->priv_data;
2923 	struct stmmac_channel *ch;
2924 	struct napi_struct *napi;
2925 
2926 	ch = &priv->channel[tx_q->queue_index];
2927 	napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2928 
2929 	if (likely(napi_schedule_prep(napi))) {
2930 		unsigned long flags;
2931 
2932 		spin_lock_irqsave(&ch->lock, flags);
2933 		stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
2934 		spin_unlock_irqrestore(&ch->lock, flags);
2935 		__napi_schedule(napi);
2936 	}
2937 
2938 	return HRTIMER_NORESTART;
2939 }
2940 
2941 /**
2942  * stmmac_init_coalesce - init mitigation options.
2943  * @priv: driver private structure
2944  * Description:
2945  * This inits the coalesce parameters: i.e. timer rate,
2946  * timer handler and default threshold used for enabling the
2947  * interrupt on completion bit.
2948  */
2949 static void stmmac_init_coalesce(struct stmmac_priv *priv)
2950 {
2951 	u32 tx_channel_count = priv->plat->tx_queues_to_use;
2952 	u32 rx_channel_count = priv->plat->rx_queues_to_use;
2953 	u32 chan;
2954 
2955 	for (chan = 0; chan < tx_channel_count; chan++) {
2956 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
2957 
2958 		priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
2959 		priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
2960 
2961 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2962 		tx_q->txtimer.function = stmmac_tx_timer;
2963 	}
2964 
2965 	for (chan = 0; chan < rx_channel_count; chan++)
2966 		priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
2967 }
2968 
2969 static void stmmac_set_rings_length(struct stmmac_priv *priv)
2970 {
2971 	u32 rx_channels_count = priv->plat->rx_queues_to_use;
2972 	u32 tx_channels_count = priv->plat->tx_queues_to_use;
2973 	u32 chan;
2974 
2975 	/* set TX ring length */
2976 	for (chan = 0; chan < tx_channels_count; chan++)
2977 		stmmac_set_tx_ring_len(priv, priv->ioaddr,
2978 				       (priv->dma_tx_size - 1), chan);
2979 
2980 	/* set RX ring length */
2981 	for (chan = 0; chan < rx_channels_count; chan++)
2982 		stmmac_set_rx_ring_len(priv, priv->ioaddr,
2983 				       (priv->dma_rx_size - 1), chan);
2984 }
2985 
2986 /**
2987  *  stmmac_set_tx_queue_weight - Set TX queue weight
2988  *  @priv: driver private structure
2989  *  Description: It is used for setting TX queues weight
2990  */
2991 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
2992 {
2993 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
2994 	u32 weight;
2995 	u32 queue;
2996 
2997 	for (queue = 0; queue < tx_queues_count; queue++) {
2998 		weight = priv->plat->tx_queues_cfg[queue].weight;
2999 		stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3000 	}
3001 }
3002 
3003 /**
3004  *  stmmac_configure_cbs - Configure CBS in TX queue
3005  *  @priv: driver private structure
3006  *  Description: It is used for configuring CBS in AVB TX queues
3007  */
3008 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3009 {
3010 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3011 	u32 mode_to_use;
3012 	u32 queue;
3013 
3014 	/* queue 0 is reserved for legacy traffic */
3015 	for (queue = 1; queue < tx_queues_count; queue++) {
3016 		mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3017 		if (mode_to_use == MTL_QUEUE_DCB)
3018 			continue;
3019 
3020 		stmmac_config_cbs(priv, priv->hw,
3021 				priv->plat->tx_queues_cfg[queue].send_slope,
3022 				priv->plat->tx_queues_cfg[queue].idle_slope,
3023 				priv->plat->tx_queues_cfg[queue].high_credit,
3024 				priv->plat->tx_queues_cfg[queue].low_credit,
3025 				queue);
3026 	}
3027 }
3028 
3029 /**
3030  *  stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3031  *  @priv: driver private structure
3032  *  Description: It is used for mapping RX queues to RX dma channels
3033  */
3034 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3035 {
3036 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3037 	u32 queue;
3038 	u32 chan;
3039 
3040 	for (queue = 0; queue < rx_queues_count; queue++) {
3041 		chan = priv->plat->rx_queues_cfg[queue].chan;
3042 		stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3043 	}
3044 }
3045 
3046 /**
3047  *  stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3048  *  @priv: driver private structure
3049  *  Description: It is used for configuring the RX Queue Priority
3050  */
3051 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3052 {
3053 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3054 	u32 queue;
3055 	u32 prio;
3056 
3057 	for (queue = 0; queue < rx_queues_count; queue++) {
3058 		if (!priv->plat->rx_queues_cfg[queue].use_prio)
3059 			continue;
3060 
3061 		prio = priv->plat->rx_queues_cfg[queue].prio;
3062 		stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3063 	}
3064 }
3065 
3066 /**
3067  *  stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3068  *  @priv: driver private structure
3069  *  Description: It is used for configuring the TX Queue Priority
3070  */
3071 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3072 {
3073 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3074 	u32 queue;
3075 	u32 prio;
3076 
3077 	for (queue = 0; queue < tx_queues_count; queue++) {
3078 		if (!priv->plat->tx_queues_cfg[queue].use_prio)
3079 			continue;
3080 
3081 		prio = priv->plat->tx_queues_cfg[queue].prio;
3082 		stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3083 	}
3084 }
3085 
3086 /**
3087  *  stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3088  *  @priv: driver private structure
3089  *  Description: It is used for configuring the RX queue routing
3090  */
3091 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3092 {
3093 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3094 	u32 queue;
3095 	u8 packet;
3096 
3097 	for (queue = 0; queue < rx_queues_count; queue++) {
3098 		/* no specific packet type routing specified for the queue */
3099 		if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3100 			continue;
3101 
3102 		packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3103 		stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3104 	}
3105 }
3106 
3107 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3108 {
3109 	if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3110 		priv->rss.enable = false;
3111 		return;
3112 	}
3113 
3114 	if (priv->dev->features & NETIF_F_RXHASH)
3115 		priv->rss.enable = true;
3116 	else
3117 		priv->rss.enable = false;
3118 
3119 	stmmac_rss_configure(priv, priv->hw, &priv->rss,
3120 			     priv->plat->rx_queues_to_use);
3121 }
3122 
3123 /**
3124  *  stmmac_mtl_configuration - Configure MTL
3125  *  @priv: driver private structure
3126  *  Description: It is used for configurring MTL
3127  */
3128 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3129 {
3130 	u32 rx_queues_count = priv->plat->rx_queues_to_use;
3131 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
3132 
3133 	if (tx_queues_count > 1)
3134 		stmmac_set_tx_queue_weight(priv);
3135 
3136 	/* Configure MTL RX algorithms */
3137 	if (rx_queues_count > 1)
3138 		stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3139 				priv->plat->rx_sched_algorithm);
3140 
3141 	/* Configure MTL TX algorithms */
3142 	if (tx_queues_count > 1)
3143 		stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3144 				priv->plat->tx_sched_algorithm);
3145 
3146 	/* Configure CBS in AVB TX queues */
3147 	if (tx_queues_count > 1)
3148 		stmmac_configure_cbs(priv);
3149 
3150 	/* Map RX MTL to DMA channels */
3151 	stmmac_rx_queue_dma_chan_map(priv);
3152 
3153 	/* Enable MAC RX Queues */
3154 	stmmac_mac_enable_rx_queues(priv);
3155 
3156 	/* Set RX priorities */
3157 	if (rx_queues_count > 1)
3158 		stmmac_mac_config_rx_queues_prio(priv);
3159 
3160 	/* Set TX priorities */
3161 	if (tx_queues_count > 1)
3162 		stmmac_mac_config_tx_queues_prio(priv);
3163 
3164 	/* Set RX routing */
3165 	if (rx_queues_count > 1)
3166 		stmmac_mac_config_rx_queues_routing(priv);
3167 
3168 	/* Receive Side Scaling */
3169 	if (rx_queues_count > 1)
3170 		stmmac_mac_config_rss(priv);
3171 }
3172 
3173 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3174 {
3175 	if (priv->dma_cap.asp) {
3176 		netdev_info(priv->dev, "Enabling Safety Features\n");
3177 		stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3178 					  priv->plat->safety_feat_cfg);
3179 	} else {
3180 		netdev_info(priv->dev, "No Safety Features support found\n");
3181 	}
3182 }
3183 
3184 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3185 {
3186 	char *name;
3187 
3188 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3189 	clear_bit(__FPE_REMOVING,  &priv->fpe_task_state);
3190 
3191 	name = priv->wq_name;
3192 	sprintf(name, "%s-fpe", priv->dev->name);
3193 
3194 	priv->fpe_wq = create_singlethread_workqueue(name);
3195 	if (!priv->fpe_wq) {
3196 		netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3197 
3198 		return -ENOMEM;
3199 	}
3200 	netdev_info(priv->dev, "FPE workqueue start");
3201 
3202 	return 0;
3203 }
3204 
3205 /**
3206  * stmmac_hw_setup - setup mac in a usable state.
3207  *  @dev : pointer to the device structure.
3208  *  @ptp_register: register PTP if set
3209  *  Description:
3210  *  this is the main function to setup the HW in a usable state because the
3211  *  dma engine is reset, the core registers are configured (e.g. AXI,
3212  *  Checksum features, timers). The DMA is ready to start receiving and
3213  *  transmitting.
3214  *  Return value:
3215  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3216  *  file on failure.
3217  */
3218 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3219 {
3220 	struct stmmac_priv *priv = netdev_priv(dev);
3221 	u32 rx_cnt = priv->plat->rx_queues_to_use;
3222 	u32 tx_cnt = priv->plat->tx_queues_to_use;
3223 	bool sph_en;
3224 	u32 chan;
3225 	int ret;
3226 
3227 	/* DMA initialization and SW reset */
3228 	ret = stmmac_init_dma_engine(priv);
3229 	if (ret < 0) {
3230 		netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3231 			   __func__);
3232 		return ret;
3233 	}
3234 
3235 	/* Copy the MAC addr into the HW  */
3236 	stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3237 
3238 	/* PS and related bits will be programmed according to the speed */
3239 	if (priv->hw->pcs) {
3240 		int speed = priv->plat->mac_port_sel_speed;
3241 
3242 		if ((speed == SPEED_10) || (speed == SPEED_100) ||
3243 		    (speed == SPEED_1000)) {
3244 			priv->hw->ps = speed;
3245 		} else {
3246 			dev_warn(priv->device, "invalid port speed\n");
3247 			priv->hw->ps = 0;
3248 		}
3249 	}
3250 
3251 	/* Initialize the MAC Core */
3252 	stmmac_core_init(priv, priv->hw, dev);
3253 
3254 	/* Initialize MTL*/
3255 	stmmac_mtl_configuration(priv);
3256 
3257 	/* Initialize Safety Features */
3258 	stmmac_safety_feat_configuration(priv);
3259 
3260 	ret = stmmac_rx_ipc(priv, priv->hw);
3261 	if (!ret) {
3262 		netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3263 		priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3264 		priv->hw->rx_csum = 0;
3265 	}
3266 
3267 	/* Enable the MAC Rx/Tx */
3268 	stmmac_mac_set(priv, priv->ioaddr, true);
3269 
3270 	/* Set the HW DMA mode and the COE */
3271 	stmmac_dma_operation_mode(priv);
3272 
3273 	stmmac_mmc_setup(priv);
3274 
3275 	ret = stmmac_init_ptp(priv);
3276 	if (ret == -EOPNOTSUPP)
3277 		netdev_info(priv->dev, "PTP not supported by HW\n");
3278 	else if (ret)
3279 		netdev_warn(priv->dev, "PTP init failed\n");
3280 	else if (ptp_register)
3281 		stmmac_ptp_register(priv);
3282 
3283 	priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3284 
3285 	/* Convert the timer from msec to usec */
3286 	if (!priv->tx_lpi_timer)
3287 		priv->tx_lpi_timer = eee_timer * 1000;
3288 
3289 	if (priv->use_riwt) {
3290 		u32 queue;
3291 
3292 		for (queue = 0; queue < rx_cnt; queue++) {
3293 			if (!priv->rx_riwt[queue])
3294 				priv->rx_riwt[queue] = DEF_DMA_RIWT;
3295 
3296 			stmmac_rx_watchdog(priv, priv->ioaddr,
3297 					   priv->rx_riwt[queue], queue);
3298 		}
3299 	}
3300 
3301 	if (priv->hw->pcs)
3302 		stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3303 
3304 	/* set TX and RX rings length */
3305 	stmmac_set_rings_length(priv);
3306 
3307 	/* Enable TSO */
3308 	if (priv->tso) {
3309 		for (chan = 0; chan < tx_cnt; chan++) {
3310 			struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3311 
3312 			/* TSO and TBS cannot co-exist */
3313 			if (tx_q->tbs & STMMAC_TBS_AVAIL)
3314 				continue;
3315 
3316 			stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3317 		}
3318 	}
3319 
3320 	/* Enable Split Header */
3321 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3322 	for (chan = 0; chan < rx_cnt; chan++)
3323 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3324 
3325 
3326 	/* VLAN Tag Insertion */
3327 	if (priv->dma_cap.vlins)
3328 		stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3329 
3330 	/* TBS */
3331 	for (chan = 0; chan < tx_cnt; chan++) {
3332 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3333 		int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3334 
3335 		stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3336 	}
3337 
3338 	/* Configure real RX and TX queues */
3339 	netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3340 	netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3341 
3342 	/* Start the ball rolling... */
3343 	stmmac_start_all_dma(priv);
3344 
3345 	if (priv->dma_cap.fpesel) {
3346 		stmmac_fpe_start_wq(priv);
3347 
3348 		if (priv->plat->fpe_cfg->enable)
3349 			stmmac_fpe_handshake(priv, true);
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 static void stmmac_hw_teardown(struct net_device *dev)
3356 {
3357 	struct stmmac_priv *priv = netdev_priv(dev);
3358 
3359 	clk_disable_unprepare(priv->plat->clk_ptp_ref);
3360 }
3361 
3362 static void stmmac_free_irq(struct net_device *dev,
3363 			    enum request_irq_err irq_err, int irq_idx)
3364 {
3365 	struct stmmac_priv *priv = netdev_priv(dev);
3366 	int j;
3367 
3368 	switch (irq_err) {
3369 	case REQ_IRQ_ERR_ALL:
3370 		irq_idx = priv->plat->tx_queues_to_use;
3371 		fallthrough;
3372 	case REQ_IRQ_ERR_TX:
3373 		for (j = irq_idx - 1; j >= 0; j--) {
3374 			if (priv->tx_irq[j] > 0) {
3375 				irq_set_affinity_hint(priv->tx_irq[j], NULL);
3376 				free_irq(priv->tx_irq[j], &priv->tx_queue[j]);
3377 			}
3378 		}
3379 		irq_idx = priv->plat->rx_queues_to_use;
3380 		fallthrough;
3381 	case REQ_IRQ_ERR_RX:
3382 		for (j = irq_idx - 1; j >= 0; j--) {
3383 			if (priv->rx_irq[j] > 0) {
3384 				irq_set_affinity_hint(priv->rx_irq[j], NULL);
3385 				free_irq(priv->rx_irq[j], &priv->rx_queue[j]);
3386 			}
3387 		}
3388 
3389 		if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3390 			free_irq(priv->sfty_ue_irq, dev);
3391 		fallthrough;
3392 	case REQ_IRQ_ERR_SFTY_UE:
3393 		if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3394 			free_irq(priv->sfty_ce_irq, dev);
3395 		fallthrough;
3396 	case REQ_IRQ_ERR_SFTY_CE:
3397 		if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3398 			free_irq(priv->lpi_irq, dev);
3399 		fallthrough;
3400 	case REQ_IRQ_ERR_LPI:
3401 		if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3402 			free_irq(priv->wol_irq, dev);
3403 		fallthrough;
3404 	case REQ_IRQ_ERR_WOL:
3405 		free_irq(dev->irq, dev);
3406 		fallthrough;
3407 	case REQ_IRQ_ERR_MAC:
3408 	case REQ_IRQ_ERR_NO:
3409 		/* If MAC IRQ request error, no more IRQ to free */
3410 		break;
3411 	}
3412 }
3413 
3414 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3415 {
3416 	struct stmmac_priv *priv = netdev_priv(dev);
3417 	enum request_irq_err irq_err;
3418 	cpumask_t cpu_mask;
3419 	int irq_idx = 0;
3420 	char *int_name;
3421 	int ret;
3422 	int i;
3423 
3424 	/* For common interrupt */
3425 	int_name = priv->int_name_mac;
3426 	sprintf(int_name, "%s:%s", dev->name, "mac");
3427 	ret = request_irq(dev->irq, stmmac_mac_interrupt,
3428 			  0, int_name, dev);
3429 	if (unlikely(ret < 0)) {
3430 		netdev_err(priv->dev,
3431 			   "%s: alloc mac MSI %d (error: %d)\n",
3432 			   __func__, dev->irq, ret);
3433 		irq_err = REQ_IRQ_ERR_MAC;
3434 		goto irq_error;
3435 	}
3436 
3437 	/* Request the Wake IRQ in case of another line
3438 	 * is used for WoL
3439 	 */
3440 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3441 		int_name = priv->int_name_wol;
3442 		sprintf(int_name, "%s:%s", dev->name, "wol");
3443 		ret = request_irq(priv->wol_irq,
3444 				  stmmac_mac_interrupt,
3445 				  0, int_name, dev);
3446 		if (unlikely(ret < 0)) {
3447 			netdev_err(priv->dev,
3448 				   "%s: alloc wol MSI %d (error: %d)\n",
3449 				   __func__, priv->wol_irq, ret);
3450 			irq_err = REQ_IRQ_ERR_WOL;
3451 			goto irq_error;
3452 		}
3453 	}
3454 
3455 	/* Request the LPI IRQ in case of another line
3456 	 * is used for LPI
3457 	 */
3458 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3459 		int_name = priv->int_name_lpi;
3460 		sprintf(int_name, "%s:%s", dev->name, "lpi");
3461 		ret = request_irq(priv->lpi_irq,
3462 				  stmmac_mac_interrupt,
3463 				  0, int_name, dev);
3464 		if (unlikely(ret < 0)) {
3465 			netdev_err(priv->dev,
3466 				   "%s: alloc lpi MSI %d (error: %d)\n",
3467 				   __func__, priv->lpi_irq, ret);
3468 			irq_err = REQ_IRQ_ERR_LPI;
3469 			goto irq_error;
3470 		}
3471 	}
3472 
3473 	/* Request the Safety Feature Correctible Error line in
3474 	 * case of another line is used
3475 	 */
3476 	if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3477 		int_name = priv->int_name_sfty_ce;
3478 		sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3479 		ret = request_irq(priv->sfty_ce_irq,
3480 				  stmmac_safety_interrupt,
3481 				  0, int_name, dev);
3482 		if (unlikely(ret < 0)) {
3483 			netdev_err(priv->dev,
3484 				   "%s: alloc sfty ce MSI %d (error: %d)\n",
3485 				   __func__, priv->sfty_ce_irq, ret);
3486 			irq_err = REQ_IRQ_ERR_SFTY_CE;
3487 			goto irq_error;
3488 		}
3489 	}
3490 
3491 	/* Request the Safety Feature Uncorrectible Error line in
3492 	 * case of another line is used
3493 	 */
3494 	if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3495 		int_name = priv->int_name_sfty_ue;
3496 		sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3497 		ret = request_irq(priv->sfty_ue_irq,
3498 				  stmmac_safety_interrupt,
3499 				  0, int_name, dev);
3500 		if (unlikely(ret < 0)) {
3501 			netdev_err(priv->dev,
3502 				   "%s: alloc sfty ue MSI %d (error: %d)\n",
3503 				   __func__, priv->sfty_ue_irq, ret);
3504 			irq_err = REQ_IRQ_ERR_SFTY_UE;
3505 			goto irq_error;
3506 		}
3507 	}
3508 
3509 	/* Request Rx MSI irq */
3510 	for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3511 		if (i >= MTL_MAX_RX_QUEUES)
3512 			break;
3513 		if (priv->rx_irq[i] == 0)
3514 			continue;
3515 
3516 		int_name = priv->int_name_rx_irq[i];
3517 		sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3518 		ret = request_irq(priv->rx_irq[i],
3519 				  stmmac_msi_intr_rx,
3520 				  0, int_name, &priv->rx_queue[i]);
3521 		if (unlikely(ret < 0)) {
3522 			netdev_err(priv->dev,
3523 				   "%s: alloc rx-%d  MSI %d (error: %d)\n",
3524 				   __func__, i, priv->rx_irq[i], ret);
3525 			irq_err = REQ_IRQ_ERR_RX;
3526 			irq_idx = i;
3527 			goto irq_error;
3528 		}
3529 		cpumask_clear(&cpu_mask);
3530 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3531 		irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3532 	}
3533 
3534 	/* Request Tx MSI irq */
3535 	for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3536 		if (i >= MTL_MAX_TX_QUEUES)
3537 			break;
3538 		if (priv->tx_irq[i] == 0)
3539 			continue;
3540 
3541 		int_name = priv->int_name_tx_irq[i];
3542 		sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3543 		ret = request_irq(priv->tx_irq[i],
3544 				  stmmac_msi_intr_tx,
3545 				  0, int_name, &priv->tx_queue[i]);
3546 		if (unlikely(ret < 0)) {
3547 			netdev_err(priv->dev,
3548 				   "%s: alloc tx-%d  MSI %d (error: %d)\n",
3549 				   __func__, i, priv->tx_irq[i], ret);
3550 			irq_err = REQ_IRQ_ERR_TX;
3551 			irq_idx = i;
3552 			goto irq_error;
3553 		}
3554 		cpumask_clear(&cpu_mask);
3555 		cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3556 		irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3557 	}
3558 
3559 	return 0;
3560 
3561 irq_error:
3562 	stmmac_free_irq(dev, irq_err, irq_idx);
3563 	return ret;
3564 }
3565 
3566 static int stmmac_request_irq_single(struct net_device *dev)
3567 {
3568 	struct stmmac_priv *priv = netdev_priv(dev);
3569 	enum request_irq_err irq_err;
3570 	int ret;
3571 
3572 	ret = request_irq(dev->irq, stmmac_interrupt,
3573 			  IRQF_SHARED, dev->name, dev);
3574 	if (unlikely(ret < 0)) {
3575 		netdev_err(priv->dev,
3576 			   "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3577 			   __func__, dev->irq, ret);
3578 		irq_err = REQ_IRQ_ERR_MAC;
3579 		goto irq_error;
3580 	}
3581 
3582 	/* Request the Wake IRQ in case of another line
3583 	 * is used for WoL
3584 	 */
3585 	if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3586 		ret = request_irq(priv->wol_irq, stmmac_interrupt,
3587 				  IRQF_SHARED, dev->name, dev);
3588 		if (unlikely(ret < 0)) {
3589 			netdev_err(priv->dev,
3590 				   "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3591 				   __func__, priv->wol_irq, ret);
3592 			irq_err = REQ_IRQ_ERR_WOL;
3593 			goto irq_error;
3594 		}
3595 	}
3596 
3597 	/* Request the IRQ lines */
3598 	if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3599 		ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3600 				  IRQF_SHARED, dev->name, dev);
3601 		if (unlikely(ret < 0)) {
3602 			netdev_err(priv->dev,
3603 				   "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3604 				   __func__, priv->lpi_irq, ret);
3605 			irq_err = REQ_IRQ_ERR_LPI;
3606 			goto irq_error;
3607 		}
3608 	}
3609 
3610 	return 0;
3611 
3612 irq_error:
3613 	stmmac_free_irq(dev, irq_err, 0);
3614 	return ret;
3615 }
3616 
3617 static int stmmac_request_irq(struct net_device *dev)
3618 {
3619 	struct stmmac_priv *priv = netdev_priv(dev);
3620 	int ret;
3621 
3622 	/* Request the IRQ lines */
3623 	if (priv->plat->multi_msi_en)
3624 		ret = stmmac_request_irq_multi_msi(dev);
3625 	else
3626 		ret = stmmac_request_irq_single(dev);
3627 
3628 	return ret;
3629 }
3630 
3631 /**
3632  *  stmmac_open - open entry point of the driver
3633  *  @dev : pointer to the device structure.
3634  *  Description:
3635  *  This function is the open entry point of the driver.
3636  *  Return value:
3637  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3638  *  file on failure.
3639  */
3640 static int stmmac_open(struct net_device *dev)
3641 {
3642 	struct stmmac_priv *priv = netdev_priv(dev);
3643 	int mode = priv->plat->phy_interface;
3644 	int bfsize = 0;
3645 	u32 chan;
3646 	int ret;
3647 
3648 	ret = pm_runtime_resume_and_get(priv->device);
3649 	if (ret < 0)
3650 		return ret;
3651 
3652 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
3653 	    priv->hw->pcs != STMMAC_PCS_RTBI &&
3654 	    (!priv->hw->xpcs ||
3655 	     xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
3656 		ret = stmmac_init_phy(dev);
3657 		if (ret) {
3658 			netdev_err(priv->dev,
3659 				   "%s: Cannot attach to PHY (error: %d)\n",
3660 				   __func__, ret);
3661 			goto init_phy_error;
3662 		}
3663 	}
3664 
3665 	/* Extra statistics */
3666 	memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
3667 	priv->xstats.threshold = tc;
3668 
3669 	bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu);
3670 	if (bfsize < 0)
3671 		bfsize = 0;
3672 
3673 	if (bfsize < BUF_SIZE_16KiB)
3674 		bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
3675 
3676 	priv->dma_buf_sz = bfsize;
3677 	buf_sz = bfsize;
3678 
3679 	priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3680 
3681 	if (!priv->dma_tx_size)
3682 		priv->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3683 	if (!priv->dma_rx_size)
3684 		priv->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3685 
3686 	/* Earlier check for TBS */
3687 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3688 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan];
3689 		int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3690 
3691 		/* Setup per-TXQ tbs flag before TX descriptor alloc */
3692 		tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3693 	}
3694 
3695 	ret = alloc_dma_desc_resources(priv);
3696 	if (ret < 0) {
3697 		netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3698 			   __func__);
3699 		goto dma_desc_error;
3700 	}
3701 
3702 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
3703 	if (ret < 0) {
3704 		netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3705 			   __func__);
3706 		goto init_error;
3707 	}
3708 
3709 	ret = stmmac_hw_setup(dev, true);
3710 	if (ret < 0) {
3711 		netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3712 		goto init_error;
3713 	}
3714 
3715 	stmmac_init_coalesce(priv);
3716 
3717 	phylink_start(priv->phylink);
3718 	/* We may have called phylink_speed_down before */
3719 	phylink_speed_up(priv->phylink);
3720 
3721 	ret = stmmac_request_irq(dev);
3722 	if (ret)
3723 		goto irq_error;
3724 
3725 	stmmac_enable_all_queues(priv);
3726 	netif_tx_start_all_queues(priv->dev);
3727 	stmmac_enable_all_dma_irq(priv);
3728 
3729 	return 0;
3730 
3731 irq_error:
3732 	phylink_stop(priv->phylink);
3733 
3734 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3735 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3736 
3737 	stmmac_hw_teardown(dev);
3738 init_error:
3739 	free_dma_desc_resources(priv);
3740 dma_desc_error:
3741 	phylink_disconnect_phy(priv->phylink);
3742 init_phy_error:
3743 	pm_runtime_put(priv->device);
3744 	return ret;
3745 }
3746 
3747 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3748 {
3749 	set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3750 
3751 	if (priv->fpe_wq)
3752 		destroy_workqueue(priv->fpe_wq);
3753 
3754 	netdev_info(priv->dev, "FPE workqueue stop");
3755 }
3756 
3757 /**
3758  *  stmmac_release - close entry point of the driver
3759  *  @dev : device pointer.
3760  *  Description:
3761  *  This is the stop entry point of the driver.
3762  */
3763 static int stmmac_release(struct net_device *dev)
3764 {
3765 	struct stmmac_priv *priv = netdev_priv(dev);
3766 	u32 chan;
3767 
3768 	netif_tx_disable(dev);
3769 
3770 	if (device_may_wakeup(priv->device))
3771 		phylink_speed_down(priv->phylink, false);
3772 	/* Stop and disconnect the PHY */
3773 	phylink_stop(priv->phylink);
3774 	phylink_disconnect_phy(priv->phylink);
3775 
3776 	stmmac_disable_all_queues(priv);
3777 
3778 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3779 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
3780 
3781 	/* Free the IRQ lines */
3782 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3783 
3784 	if (priv->eee_enabled) {
3785 		priv->tx_path_in_lpi_mode = false;
3786 		del_timer_sync(&priv->eee_ctrl_timer);
3787 	}
3788 
3789 	/* Stop TX/RX DMA and clear the descriptors */
3790 	stmmac_stop_all_dma(priv);
3791 
3792 	/* Release and free the Rx/Tx resources */
3793 	free_dma_desc_resources(priv);
3794 
3795 	/* Disable the MAC Rx/Tx */
3796 	stmmac_mac_set(priv, priv->ioaddr, false);
3797 
3798 	netif_carrier_off(dev);
3799 
3800 	stmmac_release_ptp(priv);
3801 
3802 	pm_runtime_put(priv->device);
3803 
3804 	if (priv->dma_cap.fpesel)
3805 		stmmac_fpe_stop_wq(priv);
3806 
3807 	return 0;
3808 }
3809 
3810 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3811 			       struct stmmac_tx_queue *tx_q)
3812 {
3813 	u16 tag = 0x0, inner_tag = 0x0;
3814 	u32 inner_type = 0x0;
3815 	struct dma_desc *p;
3816 
3817 	if (!priv->dma_cap.vlins)
3818 		return false;
3819 	if (!skb_vlan_tag_present(skb))
3820 		return false;
3821 	if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3822 		inner_tag = skb_vlan_tag_get(skb);
3823 		inner_type = STMMAC_VLAN_INSERT;
3824 	}
3825 
3826 	tag = skb_vlan_tag_get(skb);
3827 
3828 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
3829 		p = &tx_q->dma_entx[tx_q->cur_tx].basic;
3830 	else
3831 		p = &tx_q->dma_tx[tx_q->cur_tx];
3832 
3833 	if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
3834 		return false;
3835 
3836 	stmmac_set_tx_owner(priv, p);
3837 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
3838 	return true;
3839 }
3840 
3841 /**
3842  *  stmmac_tso_allocator - close entry point of the driver
3843  *  @priv: driver private structure
3844  *  @des: buffer start address
3845  *  @total_len: total length to fill in descriptors
3846  *  @last_segment: condition for the last descriptor
3847  *  @queue: TX queue index
3848  *  Description:
3849  *  This function fills descriptor and request new descriptors according to
3850  *  buffer length to fill
3851  */
3852 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
3853 				 int total_len, bool last_segment, u32 queue)
3854 {
3855 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3856 	struct dma_desc *desc;
3857 	u32 buff_size;
3858 	int tmp_len;
3859 
3860 	tmp_len = total_len;
3861 
3862 	while (tmp_len > 0) {
3863 		dma_addr_t curr_addr;
3864 
3865 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3866 						priv->dma_tx_size);
3867 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3868 
3869 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3870 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3871 		else
3872 			desc = &tx_q->dma_tx[tx_q->cur_tx];
3873 
3874 		curr_addr = des + (total_len - tmp_len);
3875 		if (priv->dma_cap.addr64 <= 32)
3876 			desc->des0 = cpu_to_le32(curr_addr);
3877 		else
3878 			stmmac_set_desc_addr(priv, desc, curr_addr);
3879 
3880 		buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
3881 			    TSO_MAX_BUFF_SIZE : tmp_len;
3882 
3883 		stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
3884 				0, 1,
3885 				(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
3886 				0, 0);
3887 
3888 		tmp_len -= TSO_MAX_BUFF_SIZE;
3889 	}
3890 }
3891 
3892 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
3893 {
3894 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
3895 	int desc_size;
3896 
3897 	if (likely(priv->extend_desc))
3898 		desc_size = sizeof(struct dma_extended_desc);
3899 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
3900 		desc_size = sizeof(struct dma_edesc);
3901 	else
3902 		desc_size = sizeof(struct dma_desc);
3903 
3904 	/* The own bit must be the latest setting done when prepare the
3905 	 * descriptor and then barrier is needed to make sure that
3906 	 * all is coherent before granting the DMA engine.
3907 	 */
3908 	wmb();
3909 
3910 	tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
3911 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
3912 }
3913 
3914 /**
3915  *  stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
3916  *  @skb : the socket buffer
3917  *  @dev : device pointer
3918  *  Description: this is the transmit function that is called on TSO frames
3919  *  (support available on GMAC4 and newer chips).
3920  *  Diagram below show the ring programming in case of TSO frames:
3921  *
3922  *  First Descriptor
3923  *   --------
3924  *   | DES0 |---> buffer1 = L2/L3/L4 header
3925  *   | DES1 |---> TCP Payload (can continue on next descr...)
3926  *   | DES2 |---> buffer 1 and 2 len
3927  *   | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
3928  *   --------
3929  *	|
3930  *     ...
3931  *	|
3932  *   --------
3933  *   | DES0 | --| Split TCP Payload on Buffers 1 and 2
3934  *   | DES1 | --|
3935  *   | DES2 | --> buffer 1 and 2 len
3936  *   | DES3 |
3937  *   --------
3938  *
3939  * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
3940  */
3941 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
3942 {
3943 	struct dma_desc *desc, *first, *mss_desc = NULL;
3944 	struct stmmac_priv *priv = netdev_priv(dev);
3945 	int nfrags = skb_shinfo(skb)->nr_frags;
3946 	u32 queue = skb_get_queue_mapping(skb);
3947 	unsigned int first_entry, tx_packets;
3948 	int tmp_pay_len = 0, first_tx;
3949 	struct stmmac_tx_queue *tx_q;
3950 	bool has_vlan, set_ic;
3951 	u8 proto_hdr_len, hdr;
3952 	u32 pay_len, mss;
3953 	dma_addr_t des;
3954 	int i;
3955 
3956 	tx_q = &priv->tx_queue[queue];
3957 	first_tx = tx_q->cur_tx;
3958 
3959 	/* Compute header lengths */
3960 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3961 		proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
3962 		hdr = sizeof(struct udphdr);
3963 	} else {
3964 		proto_hdr_len = skb_tcp_all_headers(skb);
3965 		hdr = tcp_hdrlen(skb);
3966 	}
3967 
3968 	/* Desc availability based on threshold should be enough safe */
3969 	if (unlikely(stmmac_tx_avail(priv, queue) <
3970 		(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
3971 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
3972 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
3973 								queue));
3974 			/* This is a hard error, log it. */
3975 			netdev_err(priv->dev,
3976 				   "%s: Tx Ring full when queue awake\n",
3977 				   __func__);
3978 		}
3979 		return NETDEV_TX_BUSY;
3980 	}
3981 
3982 	pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
3983 
3984 	mss = skb_shinfo(skb)->gso_size;
3985 
3986 	/* set new MSS value if needed */
3987 	if (mss != tx_q->mss) {
3988 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
3989 			mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
3990 		else
3991 			mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
3992 
3993 		stmmac_set_mss(priv, mss_desc, mss);
3994 		tx_q->mss = mss;
3995 		tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
3996 						priv->dma_tx_size);
3997 		WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
3998 	}
3999 
4000 	if (netif_msg_tx_queued(priv)) {
4001 		pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4002 			__func__, hdr, proto_hdr_len, pay_len, mss);
4003 		pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4004 			skb->data_len);
4005 	}
4006 
4007 	/* Check if VLAN can be inserted by HW */
4008 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4009 
4010 	first_entry = tx_q->cur_tx;
4011 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4012 
4013 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
4014 		desc = &tx_q->dma_entx[first_entry].basic;
4015 	else
4016 		desc = &tx_q->dma_tx[first_entry];
4017 	first = desc;
4018 
4019 	if (has_vlan)
4020 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4021 
4022 	/* first descriptor: fill Headers on Buf1 */
4023 	des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4024 			     DMA_TO_DEVICE);
4025 	if (dma_mapping_error(priv->device, des))
4026 		goto dma_map_err;
4027 
4028 	tx_q->tx_skbuff_dma[first_entry].buf = des;
4029 	tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
4030 	tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4031 	tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4032 
4033 	if (priv->dma_cap.addr64 <= 32) {
4034 		first->des0 = cpu_to_le32(des);
4035 
4036 		/* Fill start of payload in buff2 of first descriptor */
4037 		if (pay_len)
4038 			first->des1 = cpu_to_le32(des + proto_hdr_len);
4039 
4040 		/* If needed take extra descriptors to fill the remaining payload */
4041 		tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4042 	} else {
4043 		stmmac_set_desc_addr(priv, first, des);
4044 		tmp_pay_len = pay_len;
4045 		des += proto_hdr_len;
4046 		pay_len = 0;
4047 	}
4048 
4049 	stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4050 
4051 	/* Prepare fragments */
4052 	for (i = 0; i < nfrags; i++) {
4053 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4054 
4055 		des = skb_frag_dma_map(priv->device, frag, 0,
4056 				       skb_frag_size(frag),
4057 				       DMA_TO_DEVICE);
4058 		if (dma_mapping_error(priv->device, des))
4059 			goto dma_map_err;
4060 
4061 		stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4062 				     (i == nfrags - 1), queue);
4063 
4064 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4065 		tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4066 		tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4067 		tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4068 	}
4069 
4070 	tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4071 
4072 	/* Only the last descriptor gets to point to the skb. */
4073 	tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4074 	tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4075 
4076 	/* Manage tx mitigation */
4077 	tx_packets = (tx_q->cur_tx + 1) - first_tx;
4078 	tx_q->tx_count_frames += tx_packets;
4079 
4080 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4081 		set_ic = true;
4082 	else if (!priv->tx_coal_frames[queue])
4083 		set_ic = false;
4084 	else if (tx_packets > priv->tx_coal_frames[queue])
4085 		set_ic = true;
4086 	else if ((tx_q->tx_count_frames %
4087 		  priv->tx_coal_frames[queue]) < tx_packets)
4088 		set_ic = true;
4089 	else
4090 		set_ic = false;
4091 
4092 	if (set_ic) {
4093 		if (tx_q->tbs & STMMAC_TBS_AVAIL)
4094 			desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4095 		else
4096 			desc = &tx_q->dma_tx[tx_q->cur_tx];
4097 
4098 		tx_q->tx_count_frames = 0;
4099 		stmmac_set_tx_ic(priv, desc);
4100 		priv->xstats.tx_set_ic_bit++;
4101 	}
4102 
4103 	/* We've used all descriptors we need for this skb, however,
4104 	 * advance cur_tx so that it references a fresh descriptor.
4105 	 * ndo_start_xmit will fill this descriptor the next time it's
4106 	 * called and stmmac_tx_clean may clean up to this descriptor.
4107 	 */
4108 	tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size);
4109 
4110 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4111 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4112 			  __func__);
4113 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4114 	}
4115 
4116 	dev->stats.tx_bytes += skb->len;
4117 	priv->xstats.tx_tso_frames++;
4118 	priv->xstats.tx_tso_nfrags += nfrags;
4119 
4120 	if (priv->sarc_type)
4121 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4122 
4123 	skb_tx_timestamp(skb);
4124 
4125 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4126 		     priv->hwts_tx_en)) {
4127 		/* declare that device is doing timestamping */
4128 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4129 		stmmac_enable_tx_timestamp(priv, first);
4130 	}
4131 
4132 	/* Complete the first descriptor before granting the DMA */
4133 	stmmac_prepare_tso_tx_desc(priv, first, 1,
4134 			proto_hdr_len,
4135 			pay_len,
4136 			1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4137 			hdr / 4, (skb->len - proto_hdr_len));
4138 
4139 	/* If context desc is used to change MSS */
4140 	if (mss_desc) {
4141 		/* Make sure that first descriptor has been completely
4142 		 * written, including its own bit. This is because MSS is
4143 		 * actually before first descriptor, so we need to make
4144 		 * sure that MSS's own bit is the last thing written.
4145 		 */
4146 		dma_wmb();
4147 		stmmac_set_tx_owner(priv, mss_desc);
4148 	}
4149 
4150 	if (netif_msg_pktdata(priv)) {
4151 		pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4152 			__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4153 			tx_q->cur_tx, first, nfrags);
4154 		pr_info(">>> frame to be transmitted: ");
4155 		print_pkt(skb->data, skb_headlen(skb));
4156 	}
4157 
4158 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4159 
4160 	stmmac_flush_tx_descriptors(priv, queue);
4161 	stmmac_tx_timer_arm(priv, queue);
4162 
4163 	return NETDEV_TX_OK;
4164 
4165 dma_map_err:
4166 	dev_err(priv->device, "Tx dma map failed\n");
4167 	dev_kfree_skb(skb);
4168 	priv->dev->stats.tx_dropped++;
4169 	return NETDEV_TX_OK;
4170 }
4171 
4172 /**
4173  *  stmmac_xmit - Tx entry point of the driver
4174  *  @skb : the socket buffer
4175  *  @dev : device pointer
4176  *  Description : this is the tx entry point of the driver.
4177  *  It programs the chain or the ring and supports oversized frames
4178  *  and SG feature.
4179  */
4180 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4181 {
4182 	unsigned int first_entry, tx_packets, enh_desc;
4183 	struct stmmac_priv *priv = netdev_priv(dev);
4184 	unsigned int nopaged_len = skb_headlen(skb);
4185 	int i, csum_insertion = 0, is_jumbo = 0;
4186 	u32 queue = skb_get_queue_mapping(skb);
4187 	int nfrags = skb_shinfo(skb)->nr_frags;
4188 	int gso = skb_shinfo(skb)->gso_type;
4189 	struct dma_edesc *tbs_desc = NULL;
4190 	struct dma_desc *desc, *first;
4191 	struct stmmac_tx_queue *tx_q;
4192 	bool has_vlan, set_ic;
4193 	int entry, first_tx;
4194 	dma_addr_t des;
4195 
4196 	tx_q = &priv->tx_queue[queue];
4197 	first_tx = tx_q->cur_tx;
4198 
4199 	if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4200 		stmmac_disable_eee_mode(priv);
4201 
4202 	/* Manage oversized TCP frames for GMAC4 device */
4203 	if (skb_is_gso(skb) && priv->tso) {
4204 		if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4205 			return stmmac_tso_xmit(skb, dev);
4206 		if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4207 			return stmmac_tso_xmit(skb, dev);
4208 	}
4209 
4210 	if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4211 		if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4212 			netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4213 								queue));
4214 			/* This is a hard error, log it. */
4215 			netdev_err(priv->dev,
4216 				   "%s: Tx Ring full when queue awake\n",
4217 				   __func__);
4218 		}
4219 		return NETDEV_TX_BUSY;
4220 	}
4221 
4222 	/* Check if VLAN can be inserted by HW */
4223 	has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4224 
4225 	entry = tx_q->cur_tx;
4226 	first_entry = entry;
4227 	WARN_ON(tx_q->tx_skbuff[first_entry]);
4228 
4229 	csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4230 
4231 	if (likely(priv->extend_desc))
4232 		desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4233 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4234 		desc = &tx_q->dma_entx[entry].basic;
4235 	else
4236 		desc = tx_q->dma_tx + entry;
4237 
4238 	first = desc;
4239 
4240 	if (has_vlan)
4241 		stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4242 
4243 	enh_desc = priv->plat->enh_desc;
4244 	/* To program the descriptors according to the size of the frame */
4245 	if (enh_desc)
4246 		is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4247 
4248 	if (unlikely(is_jumbo)) {
4249 		entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4250 		if (unlikely(entry < 0) && (entry != -EINVAL))
4251 			goto dma_map_err;
4252 	}
4253 
4254 	for (i = 0; i < nfrags; i++) {
4255 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4256 		int len = skb_frag_size(frag);
4257 		bool last_segment = (i == (nfrags - 1));
4258 
4259 		entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4260 		WARN_ON(tx_q->tx_skbuff[entry]);
4261 
4262 		if (likely(priv->extend_desc))
4263 			desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4264 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4265 			desc = &tx_q->dma_entx[entry].basic;
4266 		else
4267 			desc = tx_q->dma_tx + entry;
4268 
4269 		des = skb_frag_dma_map(priv->device, frag, 0, len,
4270 				       DMA_TO_DEVICE);
4271 		if (dma_mapping_error(priv->device, des))
4272 			goto dma_map_err; /* should reuse desc w/o issues */
4273 
4274 		tx_q->tx_skbuff_dma[entry].buf = des;
4275 
4276 		stmmac_set_desc_addr(priv, desc, des);
4277 
4278 		tx_q->tx_skbuff_dma[entry].map_as_page = true;
4279 		tx_q->tx_skbuff_dma[entry].len = len;
4280 		tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4281 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4282 
4283 		/* Prepare the descriptor and set the own bit too */
4284 		stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4285 				priv->mode, 1, last_segment, skb->len);
4286 	}
4287 
4288 	/* Only the last descriptor gets to point to the skb. */
4289 	tx_q->tx_skbuff[entry] = skb;
4290 	tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4291 
4292 	/* According to the coalesce parameter the IC bit for the latest
4293 	 * segment is reset and the timer re-started to clean the tx status.
4294 	 * This approach takes care about the fragments: desc is the first
4295 	 * element in case of no SG.
4296 	 */
4297 	tx_packets = (entry + 1) - first_tx;
4298 	tx_q->tx_count_frames += tx_packets;
4299 
4300 	if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4301 		set_ic = true;
4302 	else if (!priv->tx_coal_frames[queue])
4303 		set_ic = false;
4304 	else if (tx_packets > priv->tx_coal_frames[queue])
4305 		set_ic = true;
4306 	else if ((tx_q->tx_count_frames %
4307 		  priv->tx_coal_frames[queue]) < tx_packets)
4308 		set_ic = true;
4309 	else
4310 		set_ic = false;
4311 
4312 	if (set_ic) {
4313 		if (likely(priv->extend_desc))
4314 			desc = &tx_q->dma_etx[entry].basic;
4315 		else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4316 			desc = &tx_q->dma_entx[entry].basic;
4317 		else
4318 			desc = &tx_q->dma_tx[entry];
4319 
4320 		tx_q->tx_count_frames = 0;
4321 		stmmac_set_tx_ic(priv, desc);
4322 		priv->xstats.tx_set_ic_bit++;
4323 	}
4324 
4325 	/* We've used all descriptors we need for this skb, however,
4326 	 * advance cur_tx so that it references a fresh descriptor.
4327 	 * ndo_start_xmit will fill this descriptor the next time it's
4328 	 * called and stmmac_tx_clean may clean up to this descriptor.
4329 	 */
4330 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4331 	tx_q->cur_tx = entry;
4332 
4333 	if (netif_msg_pktdata(priv)) {
4334 		netdev_dbg(priv->dev,
4335 			   "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4336 			   __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4337 			   entry, first, nfrags);
4338 
4339 		netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4340 		print_pkt(skb->data, skb->len);
4341 	}
4342 
4343 	if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4344 		netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4345 			  __func__);
4346 		netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4347 	}
4348 
4349 	dev->stats.tx_bytes += skb->len;
4350 
4351 	if (priv->sarc_type)
4352 		stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4353 
4354 	skb_tx_timestamp(skb);
4355 
4356 	/* Ready to fill the first descriptor and set the OWN bit w/o any
4357 	 * problems because all the descriptors are actually ready to be
4358 	 * passed to the DMA engine.
4359 	 */
4360 	if (likely(!is_jumbo)) {
4361 		bool last_segment = (nfrags == 0);
4362 
4363 		des = dma_map_single(priv->device, skb->data,
4364 				     nopaged_len, DMA_TO_DEVICE);
4365 		if (dma_mapping_error(priv->device, des))
4366 			goto dma_map_err;
4367 
4368 		tx_q->tx_skbuff_dma[first_entry].buf = des;
4369 		tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4370 		tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4371 
4372 		stmmac_set_desc_addr(priv, first, des);
4373 
4374 		tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4375 		tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4376 
4377 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4378 			     priv->hwts_tx_en)) {
4379 			/* declare that device is doing timestamping */
4380 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4381 			stmmac_enable_tx_timestamp(priv, first);
4382 		}
4383 
4384 		/* Prepare the first descriptor setting the OWN bit too */
4385 		stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4386 				csum_insertion, priv->mode, 0, last_segment,
4387 				skb->len);
4388 	}
4389 
4390 	if (tx_q->tbs & STMMAC_TBS_EN) {
4391 		struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4392 
4393 		tbs_desc = &tx_q->dma_entx[first_entry];
4394 		stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4395 	}
4396 
4397 	stmmac_set_tx_owner(priv, first);
4398 
4399 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4400 
4401 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4402 
4403 	stmmac_flush_tx_descriptors(priv, queue);
4404 	stmmac_tx_timer_arm(priv, queue);
4405 
4406 	return NETDEV_TX_OK;
4407 
4408 dma_map_err:
4409 	netdev_err(priv->dev, "Tx DMA map failed\n");
4410 	dev_kfree_skb(skb);
4411 	priv->dev->stats.tx_dropped++;
4412 	return NETDEV_TX_OK;
4413 }
4414 
4415 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4416 {
4417 	struct vlan_ethhdr *veth;
4418 	__be16 vlan_proto;
4419 	u16 vlanid;
4420 
4421 	veth = (struct vlan_ethhdr *)skb->data;
4422 	vlan_proto = veth->h_vlan_proto;
4423 
4424 	if ((vlan_proto == htons(ETH_P_8021Q) &&
4425 	     dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4426 	    (vlan_proto == htons(ETH_P_8021AD) &&
4427 	     dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4428 		/* pop the vlan tag */
4429 		vlanid = ntohs(veth->h_vlan_TCI);
4430 		memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4431 		skb_pull(skb, VLAN_HLEN);
4432 		__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4433 	}
4434 }
4435 
4436 /**
4437  * stmmac_rx_refill - refill used skb preallocated buffers
4438  * @priv: driver private structure
4439  * @queue: RX queue index
4440  * Description : this is to reallocate the skb for the reception process
4441  * that is based on zero-copy.
4442  */
4443 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4444 {
4445 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4446 	int dirty = stmmac_rx_dirty(priv, queue);
4447 	unsigned int entry = rx_q->dirty_rx;
4448 	gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4449 
4450 	if (priv->dma_cap.addr64 <= 32)
4451 		gfp |= GFP_DMA32;
4452 
4453 	while (dirty-- > 0) {
4454 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4455 		struct dma_desc *p;
4456 		bool use_rx_wd;
4457 
4458 		if (priv->extend_desc)
4459 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4460 		else
4461 			p = rx_q->dma_rx + entry;
4462 
4463 		if (!buf->page) {
4464 			buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4465 			if (!buf->page)
4466 				break;
4467 		}
4468 
4469 		if (priv->sph && !buf->sec_page) {
4470 			buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4471 			if (!buf->sec_page)
4472 				break;
4473 
4474 			buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4475 		}
4476 
4477 		buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4478 
4479 		stmmac_set_desc_addr(priv, p, buf->addr);
4480 		if (priv->sph)
4481 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4482 		else
4483 			stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4484 		stmmac_refill_desc3(priv, rx_q, p);
4485 
4486 		rx_q->rx_count_frames++;
4487 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4488 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4489 			rx_q->rx_count_frames = 0;
4490 
4491 		use_rx_wd = !priv->rx_coal_frames[queue];
4492 		use_rx_wd |= rx_q->rx_count_frames > 0;
4493 		if (!priv->use_riwt)
4494 			use_rx_wd = false;
4495 
4496 		dma_wmb();
4497 		stmmac_set_rx_owner(priv, p, use_rx_wd);
4498 
4499 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4500 	}
4501 	rx_q->dirty_rx = entry;
4502 	rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4503 			    (rx_q->dirty_rx * sizeof(struct dma_desc));
4504 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4505 }
4506 
4507 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4508 				       struct dma_desc *p,
4509 				       int status, unsigned int len)
4510 {
4511 	unsigned int plen = 0, hlen = 0;
4512 	int coe = priv->hw->rx_csum;
4513 
4514 	/* Not first descriptor, buffer is always zero */
4515 	if (priv->sph && len)
4516 		return 0;
4517 
4518 	/* First descriptor, get split header length */
4519 	stmmac_get_rx_header_len(priv, p, &hlen);
4520 	if (priv->sph && hlen) {
4521 		priv->xstats.rx_split_hdr_pkt_n++;
4522 		return hlen;
4523 	}
4524 
4525 	/* First descriptor, not last descriptor and not split header */
4526 	if (status & rx_not_ls)
4527 		return priv->dma_buf_sz;
4528 
4529 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4530 
4531 	/* First descriptor and last descriptor and not split header */
4532 	return min_t(unsigned int, priv->dma_buf_sz, plen);
4533 }
4534 
4535 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4536 				       struct dma_desc *p,
4537 				       int status, unsigned int len)
4538 {
4539 	int coe = priv->hw->rx_csum;
4540 	unsigned int plen = 0;
4541 
4542 	/* Not split header, buffer is not available */
4543 	if (!priv->sph)
4544 		return 0;
4545 
4546 	/* Not last descriptor */
4547 	if (status & rx_not_ls)
4548 		return priv->dma_buf_sz;
4549 
4550 	plen = stmmac_get_rx_frame_len(priv, p, coe);
4551 
4552 	/* Last descriptor */
4553 	return plen - len;
4554 }
4555 
4556 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4557 				struct xdp_frame *xdpf, bool dma_map)
4558 {
4559 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
4560 	unsigned int entry = tx_q->cur_tx;
4561 	struct dma_desc *tx_desc;
4562 	dma_addr_t dma_addr;
4563 	bool set_ic;
4564 
4565 	if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4566 		return STMMAC_XDP_CONSUMED;
4567 
4568 	if (likely(priv->extend_desc))
4569 		tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4570 	else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4571 		tx_desc = &tx_q->dma_entx[entry].basic;
4572 	else
4573 		tx_desc = tx_q->dma_tx + entry;
4574 
4575 	if (dma_map) {
4576 		dma_addr = dma_map_single(priv->device, xdpf->data,
4577 					  xdpf->len, DMA_TO_DEVICE);
4578 		if (dma_mapping_error(priv->device, dma_addr))
4579 			return STMMAC_XDP_CONSUMED;
4580 
4581 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4582 	} else {
4583 		struct page *page = virt_to_page(xdpf->data);
4584 
4585 		dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4586 			   xdpf->headroom;
4587 		dma_sync_single_for_device(priv->device, dma_addr,
4588 					   xdpf->len, DMA_BIDIRECTIONAL);
4589 
4590 		tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4591 	}
4592 
4593 	tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4594 	tx_q->tx_skbuff_dma[entry].map_as_page = false;
4595 	tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4596 	tx_q->tx_skbuff_dma[entry].last_segment = true;
4597 	tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4598 
4599 	tx_q->xdpf[entry] = xdpf;
4600 
4601 	stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4602 
4603 	stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4604 			       true, priv->mode, true, true,
4605 			       xdpf->len);
4606 
4607 	tx_q->tx_count_frames++;
4608 
4609 	if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4610 		set_ic = true;
4611 	else
4612 		set_ic = false;
4613 
4614 	if (set_ic) {
4615 		tx_q->tx_count_frames = 0;
4616 		stmmac_set_tx_ic(priv, tx_desc);
4617 		priv->xstats.tx_set_ic_bit++;
4618 	}
4619 
4620 	stmmac_enable_dma_transmission(priv, priv->ioaddr);
4621 
4622 	entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size);
4623 	tx_q->cur_tx = entry;
4624 
4625 	return STMMAC_XDP_TX;
4626 }
4627 
4628 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4629 				   int cpu)
4630 {
4631 	int index = cpu;
4632 
4633 	if (unlikely(index < 0))
4634 		index = 0;
4635 
4636 	while (index >= priv->plat->tx_queues_to_use)
4637 		index -= priv->plat->tx_queues_to_use;
4638 
4639 	return index;
4640 }
4641 
4642 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4643 				struct xdp_buff *xdp)
4644 {
4645 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4646 	int cpu = smp_processor_id();
4647 	struct netdev_queue *nq;
4648 	int queue;
4649 	int res;
4650 
4651 	if (unlikely(!xdpf))
4652 		return STMMAC_XDP_CONSUMED;
4653 
4654 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4655 	nq = netdev_get_tx_queue(priv->dev, queue);
4656 
4657 	__netif_tx_lock(nq, cpu);
4658 	/* Avoids TX time-out as we are sharing with slow path */
4659 	txq_trans_cond_update(nq);
4660 
4661 	res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4662 	if (res == STMMAC_XDP_TX)
4663 		stmmac_flush_tx_descriptors(priv, queue);
4664 
4665 	__netif_tx_unlock(nq);
4666 
4667 	return res;
4668 }
4669 
4670 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4671 				 struct bpf_prog *prog,
4672 				 struct xdp_buff *xdp)
4673 {
4674 	u32 act;
4675 	int res;
4676 
4677 	act = bpf_prog_run_xdp(prog, xdp);
4678 	switch (act) {
4679 	case XDP_PASS:
4680 		res = STMMAC_XDP_PASS;
4681 		break;
4682 	case XDP_TX:
4683 		res = stmmac_xdp_xmit_back(priv, xdp);
4684 		break;
4685 	case XDP_REDIRECT:
4686 		if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4687 			res = STMMAC_XDP_CONSUMED;
4688 		else
4689 			res = STMMAC_XDP_REDIRECT;
4690 		break;
4691 	default:
4692 		bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4693 		fallthrough;
4694 	case XDP_ABORTED:
4695 		trace_xdp_exception(priv->dev, prog, act);
4696 		fallthrough;
4697 	case XDP_DROP:
4698 		res = STMMAC_XDP_CONSUMED;
4699 		break;
4700 	}
4701 
4702 	return res;
4703 }
4704 
4705 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4706 					   struct xdp_buff *xdp)
4707 {
4708 	struct bpf_prog *prog;
4709 	int res;
4710 
4711 	prog = READ_ONCE(priv->xdp_prog);
4712 	if (!prog) {
4713 		res = STMMAC_XDP_PASS;
4714 		goto out;
4715 	}
4716 
4717 	res = __stmmac_xdp_run_prog(priv, prog, xdp);
4718 out:
4719 	return ERR_PTR(-res);
4720 }
4721 
4722 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4723 				   int xdp_status)
4724 {
4725 	int cpu = smp_processor_id();
4726 	int queue;
4727 
4728 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
4729 
4730 	if (xdp_status & STMMAC_XDP_TX)
4731 		stmmac_tx_timer_arm(priv, queue);
4732 
4733 	if (xdp_status & STMMAC_XDP_REDIRECT)
4734 		xdp_do_flush();
4735 }
4736 
4737 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4738 					       struct xdp_buff *xdp)
4739 {
4740 	unsigned int metasize = xdp->data - xdp->data_meta;
4741 	unsigned int datasize = xdp->data_end - xdp->data;
4742 	struct sk_buff *skb;
4743 
4744 	skb = __napi_alloc_skb(&ch->rxtx_napi,
4745 			       xdp->data_end - xdp->data_hard_start,
4746 			       GFP_ATOMIC | __GFP_NOWARN);
4747 	if (unlikely(!skb))
4748 		return NULL;
4749 
4750 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
4751 	memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4752 	if (metasize)
4753 		skb_metadata_set(skb, metasize);
4754 
4755 	return skb;
4756 }
4757 
4758 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4759 				   struct dma_desc *p, struct dma_desc *np,
4760 				   struct xdp_buff *xdp)
4761 {
4762 	struct stmmac_channel *ch = &priv->channel[queue];
4763 	unsigned int len = xdp->data_end - xdp->data;
4764 	enum pkt_hash_types hash_type;
4765 	int coe = priv->hw->rx_csum;
4766 	struct sk_buff *skb;
4767 	u32 hash;
4768 
4769 	skb = stmmac_construct_skb_zc(ch, xdp);
4770 	if (!skb) {
4771 		priv->dev->stats.rx_dropped++;
4772 		return;
4773 	}
4774 
4775 	stmmac_get_rx_hwtstamp(priv, p, np, skb);
4776 	stmmac_rx_vlan(priv->dev, skb);
4777 	skb->protocol = eth_type_trans(skb, priv->dev);
4778 
4779 	if (unlikely(!coe))
4780 		skb_checksum_none_assert(skb);
4781 	else
4782 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4783 
4784 	if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
4785 		skb_set_hash(skb, hash, hash_type);
4786 
4787 	skb_record_rx_queue(skb, queue);
4788 	napi_gro_receive(&ch->rxtx_napi, skb);
4789 
4790 	priv->dev->stats.rx_packets++;
4791 	priv->dev->stats.rx_bytes += len;
4792 }
4793 
4794 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
4795 {
4796 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4797 	unsigned int entry = rx_q->dirty_rx;
4798 	struct dma_desc *rx_desc = NULL;
4799 	bool ret = true;
4800 
4801 	budget = min(budget, stmmac_rx_dirty(priv, queue));
4802 
4803 	while (budget-- > 0 && entry != rx_q->cur_rx) {
4804 		struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4805 		dma_addr_t dma_addr;
4806 		bool use_rx_wd;
4807 
4808 		if (!buf->xdp) {
4809 			buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
4810 			if (!buf->xdp) {
4811 				ret = false;
4812 				break;
4813 			}
4814 		}
4815 
4816 		if (priv->extend_desc)
4817 			rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
4818 		else
4819 			rx_desc = rx_q->dma_rx + entry;
4820 
4821 		dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
4822 		stmmac_set_desc_addr(priv, rx_desc, dma_addr);
4823 		stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
4824 		stmmac_refill_desc3(priv, rx_q, rx_desc);
4825 
4826 		rx_q->rx_count_frames++;
4827 		rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4828 		if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4829 			rx_q->rx_count_frames = 0;
4830 
4831 		use_rx_wd = !priv->rx_coal_frames[queue];
4832 		use_rx_wd |= rx_q->rx_count_frames > 0;
4833 		if (!priv->use_riwt)
4834 			use_rx_wd = false;
4835 
4836 		dma_wmb();
4837 		stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
4838 
4839 		entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size);
4840 	}
4841 
4842 	if (rx_desc) {
4843 		rx_q->dirty_rx = entry;
4844 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4845 				     (rx_q->dirty_rx * sizeof(struct dma_desc));
4846 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4847 	}
4848 
4849 	return ret;
4850 }
4851 
4852 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
4853 {
4854 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
4855 	unsigned int count = 0, error = 0, len = 0;
4856 	int dirty = stmmac_rx_dirty(priv, queue);
4857 	unsigned int next_entry = rx_q->cur_rx;
4858 	unsigned int desc_size;
4859 	struct bpf_prog *prog;
4860 	bool failure = false;
4861 	int xdp_status = 0;
4862 	int status = 0;
4863 
4864 	if (netif_msg_rx_status(priv)) {
4865 		void *rx_head;
4866 
4867 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
4868 		if (priv->extend_desc) {
4869 			rx_head = (void *)rx_q->dma_erx;
4870 			desc_size = sizeof(struct dma_extended_desc);
4871 		} else {
4872 			rx_head = (void *)rx_q->dma_rx;
4873 			desc_size = sizeof(struct dma_desc);
4874 		}
4875 
4876 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
4877 				    rx_q->dma_rx_phy, desc_size);
4878 	}
4879 	while (count < limit) {
4880 		struct stmmac_rx_buffer *buf;
4881 		unsigned int buf1_len = 0;
4882 		struct dma_desc *np, *p;
4883 		int entry;
4884 		int res;
4885 
4886 		if (!count && rx_q->state_saved) {
4887 			error = rx_q->state.error;
4888 			len = rx_q->state.len;
4889 		} else {
4890 			rx_q->state_saved = false;
4891 			error = 0;
4892 			len = 0;
4893 		}
4894 
4895 		if (count >= limit)
4896 			break;
4897 
4898 read_again:
4899 		buf1_len = 0;
4900 		entry = next_entry;
4901 		buf = &rx_q->buf_pool[entry];
4902 
4903 		if (dirty >= STMMAC_RX_FILL_BATCH) {
4904 			failure = failure ||
4905 				  !stmmac_rx_refill_zc(priv, queue, dirty);
4906 			dirty = 0;
4907 		}
4908 
4909 		if (priv->extend_desc)
4910 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
4911 		else
4912 			p = rx_q->dma_rx + entry;
4913 
4914 		/* read the status of the incoming frame */
4915 		status = stmmac_rx_status(priv, &priv->dev->stats,
4916 					  &priv->xstats, p);
4917 		/* check if managed by the DMA otherwise go ahead */
4918 		if (unlikely(status & dma_own))
4919 			break;
4920 
4921 		/* Prefetch the next RX descriptor */
4922 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
4923 						priv->dma_rx_size);
4924 		next_entry = rx_q->cur_rx;
4925 
4926 		if (priv->extend_desc)
4927 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
4928 		else
4929 			np = rx_q->dma_rx + next_entry;
4930 
4931 		prefetch(np);
4932 
4933 		/* Ensure a valid XSK buffer before proceed */
4934 		if (!buf->xdp)
4935 			break;
4936 
4937 		if (priv->extend_desc)
4938 			stmmac_rx_extended_status(priv, &priv->dev->stats,
4939 						  &priv->xstats,
4940 						  rx_q->dma_erx + entry);
4941 		if (unlikely(status == discard_frame)) {
4942 			xsk_buff_free(buf->xdp);
4943 			buf->xdp = NULL;
4944 			dirty++;
4945 			error = 1;
4946 			if (!priv->hwts_rx_en)
4947 				priv->dev->stats.rx_errors++;
4948 		}
4949 
4950 		if (unlikely(error && (status & rx_not_ls)))
4951 			goto read_again;
4952 		if (unlikely(error)) {
4953 			count++;
4954 			continue;
4955 		}
4956 
4957 		/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
4958 		if (likely(status & rx_not_ls)) {
4959 			xsk_buff_free(buf->xdp);
4960 			buf->xdp = NULL;
4961 			dirty++;
4962 			count++;
4963 			goto read_again;
4964 		}
4965 
4966 		/* XDP ZC Frame only support primary buffers for now */
4967 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
4968 		len += buf1_len;
4969 
4970 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
4971 		 * Type frames (LLC/LLC-SNAP)
4972 		 *
4973 		 * llc_snap is never checked in GMAC >= 4, so this ACS
4974 		 * feature is always disabled and packets need to be
4975 		 * stripped manually.
4976 		 */
4977 		if (likely(!(status & rx_not_ls)) &&
4978 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
4979 		     unlikely(status != llc_snap))) {
4980 			buf1_len -= ETH_FCS_LEN;
4981 			len -= ETH_FCS_LEN;
4982 		}
4983 
4984 		/* RX buffer is good and fit into a XSK pool buffer */
4985 		buf->xdp->data_end = buf->xdp->data + buf1_len;
4986 		xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
4987 
4988 		prog = READ_ONCE(priv->xdp_prog);
4989 		res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
4990 
4991 		switch (res) {
4992 		case STMMAC_XDP_PASS:
4993 			stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
4994 			xsk_buff_free(buf->xdp);
4995 			break;
4996 		case STMMAC_XDP_CONSUMED:
4997 			xsk_buff_free(buf->xdp);
4998 			priv->dev->stats.rx_dropped++;
4999 			break;
5000 		case STMMAC_XDP_TX:
5001 		case STMMAC_XDP_REDIRECT:
5002 			xdp_status |= res;
5003 			break;
5004 		}
5005 
5006 		buf->xdp = NULL;
5007 		dirty++;
5008 		count++;
5009 	}
5010 
5011 	if (status & rx_not_ls) {
5012 		rx_q->state_saved = true;
5013 		rx_q->state.error = error;
5014 		rx_q->state.len = len;
5015 	}
5016 
5017 	stmmac_finalize_xdp_rx(priv, xdp_status);
5018 
5019 	priv->xstats.rx_pkt_n += count;
5020 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5021 
5022 	if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5023 		if (failure || stmmac_rx_dirty(priv, queue) > 0)
5024 			xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5025 		else
5026 			xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5027 
5028 		return (int)count;
5029 	}
5030 
5031 	return failure ? limit : (int)count;
5032 }
5033 
5034 /**
5035  * stmmac_rx - manage the receive process
5036  * @priv: driver private structure
5037  * @limit: napi bugget
5038  * @queue: RX queue index.
5039  * Description :  this the function called by the napi poll method.
5040  * It gets all the frames inside the ring.
5041  */
5042 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5043 {
5044 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5045 	struct stmmac_channel *ch = &priv->channel[queue];
5046 	unsigned int count = 0, error = 0, len = 0;
5047 	int status = 0, coe = priv->hw->rx_csum;
5048 	unsigned int next_entry = rx_q->cur_rx;
5049 	enum dma_data_direction dma_dir;
5050 	unsigned int desc_size;
5051 	struct sk_buff *skb = NULL;
5052 	struct xdp_buff xdp;
5053 	int xdp_status = 0;
5054 	int buf_sz;
5055 
5056 	dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5057 	buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5058 
5059 	if (netif_msg_rx_status(priv)) {
5060 		void *rx_head;
5061 
5062 		netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5063 		if (priv->extend_desc) {
5064 			rx_head = (void *)rx_q->dma_erx;
5065 			desc_size = sizeof(struct dma_extended_desc);
5066 		} else {
5067 			rx_head = (void *)rx_q->dma_rx;
5068 			desc_size = sizeof(struct dma_desc);
5069 		}
5070 
5071 		stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true,
5072 				    rx_q->dma_rx_phy, desc_size);
5073 	}
5074 	while (count < limit) {
5075 		unsigned int buf1_len = 0, buf2_len = 0;
5076 		enum pkt_hash_types hash_type;
5077 		struct stmmac_rx_buffer *buf;
5078 		struct dma_desc *np, *p;
5079 		int entry;
5080 		u32 hash;
5081 
5082 		if (!count && rx_q->state_saved) {
5083 			skb = rx_q->state.skb;
5084 			error = rx_q->state.error;
5085 			len = rx_q->state.len;
5086 		} else {
5087 			rx_q->state_saved = false;
5088 			skb = NULL;
5089 			error = 0;
5090 			len = 0;
5091 		}
5092 
5093 		if (count >= limit)
5094 			break;
5095 
5096 read_again:
5097 		buf1_len = 0;
5098 		buf2_len = 0;
5099 		entry = next_entry;
5100 		buf = &rx_q->buf_pool[entry];
5101 
5102 		if (priv->extend_desc)
5103 			p = (struct dma_desc *)(rx_q->dma_erx + entry);
5104 		else
5105 			p = rx_q->dma_rx + entry;
5106 
5107 		/* read the status of the incoming frame */
5108 		status = stmmac_rx_status(priv, &priv->dev->stats,
5109 				&priv->xstats, p);
5110 		/* check if managed by the DMA otherwise go ahead */
5111 		if (unlikely(status & dma_own))
5112 			break;
5113 
5114 		rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5115 						priv->dma_rx_size);
5116 		next_entry = rx_q->cur_rx;
5117 
5118 		if (priv->extend_desc)
5119 			np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5120 		else
5121 			np = rx_q->dma_rx + next_entry;
5122 
5123 		prefetch(np);
5124 
5125 		if (priv->extend_desc)
5126 			stmmac_rx_extended_status(priv, &priv->dev->stats,
5127 					&priv->xstats, rx_q->dma_erx + entry);
5128 		if (unlikely(status == discard_frame)) {
5129 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5130 			buf->page = NULL;
5131 			error = 1;
5132 			if (!priv->hwts_rx_en)
5133 				priv->dev->stats.rx_errors++;
5134 		}
5135 
5136 		if (unlikely(error && (status & rx_not_ls)))
5137 			goto read_again;
5138 		if (unlikely(error)) {
5139 			dev_kfree_skb(skb);
5140 			skb = NULL;
5141 			count++;
5142 			continue;
5143 		}
5144 
5145 		/* Buffer is good. Go on. */
5146 
5147 		prefetch(page_address(buf->page) + buf->page_offset);
5148 		if (buf->sec_page)
5149 			prefetch(page_address(buf->sec_page));
5150 
5151 		buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5152 		len += buf1_len;
5153 		buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5154 		len += buf2_len;
5155 
5156 		/* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
5157 		 * Type frames (LLC/LLC-SNAP)
5158 		 *
5159 		 * llc_snap is never checked in GMAC >= 4, so this ACS
5160 		 * feature is always disabled and packets need to be
5161 		 * stripped manually.
5162 		 */
5163 		if (likely(!(status & rx_not_ls)) &&
5164 		    (likely(priv->synopsys_id >= DWMAC_CORE_4_00) ||
5165 		     unlikely(status != llc_snap))) {
5166 			if (buf2_len) {
5167 				buf2_len -= ETH_FCS_LEN;
5168 				len -= ETH_FCS_LEN;
5169 			} else if (buf1_len) {
5170 				buf1_len -= ETH_FCS_LEN;
5171 				len -= ETH_FCS_LEN;
5172 			}
5173 		}
5174 
5175 		if (!skb) {
5176 			unsigned int pre_len, sync_len;
5177 
5178 			dma_sync_single_for_cpu(priv->device, buf->addr,
5179 						buf1_len, dma_dir);
5180 
5181 			xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq);
5182 			xdp_prepare_buff(&xdp, page_address(buf->page),
5183 					 buf->page_offset, buf1_len, false);
5184 
5185 			pre_len = xdp.data_end - xdp.data_hard_start -
5186 				  buf->page_offset;
5187 			skb = stmmac_xdp_run_prog(priv, &xdp);
5188 			/* Due xdp_adjust_tail: DMA sync for_device
5189 			 * cover max len CPU touch
5190 			 */
5191 			sync_len = xdp.data_end - xdp.data_hard_start -
5192 				   buf->page_offset;
5193 			sync_len = max(sync_len, pre_len);
5194 
5195 			/* For Not XDP_PASS verdict */
5196 			if (IS_ERR(skb)) {
5197 				unsigned int xdp_res = -PTR_ERR(skb);
5198 
5199 				if (xdp_res & STMMAC_XDP_CONSUMED) {
5200 					page_pool_put_page(rx_q->page_pool,
5201 							   virt_to_head_page(xdp.data),
5202 							   sync_len, true);
5203 					buf->page = NULL;
5204 					priv->dev->stats.rx_dropped++;
5205 
5206 					/* Clear skb as it was set as
5207 					 * status by XDP program.
5208 					 */
5209 					skb = NULL;
5210 
5211 					if (unlikely((status & rx_not_ls)))
5212 						goto read_again;
5213 
5214 					count++;
5215 					continue;
5216 				} else if (xdp_res & (STMMAC_XDP_TX |
5217 						      STMMAC_XDP_REDIRECT)) {
5218 					xdp_status |= xdp_res;
5219 					buf->page = NULL;
5220 					skb = NULL;
5221 					count++;
5222 					continue;
5223 				}
5224 			}
5225 		}
5226 
5227 		if (!skb) {
5228 			/* XDP program may expand or reduce tail */
5229 			buf1_len = xdp.data_end - xdp.data;
5230 
5231 			skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5232 			if (!skb) {
5233 				priv->dev->stats.rx_dropped++;
5234 				count++;
5235 				goto drain_data;
5236 			}
5237 
5238 			/* XDP program may adjust header */
5239 			skb_copy_to_linear_data(skb, xdp.data, buf1_len);
5240 			skb_put(skb, buf1_len);
5241 
5242 			/* Data payload copied into SKB, page ready for recycle */
5243 			page_pool_recycle_direct(rx_q->page_pool, buf->page);
5244 			buf->page = NULL;
5245 		} else if (buf1_len) {
5246 			dma_sync_single_for_cpu(priv->device, buf->addr,
5247 						buf1_len, dma_dir);
5248 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5249 					buf->page, buf->page_offset, buf1_len,
5250 					priv->dma_buf_sz);
5251 
5252 			/* Data payload appended into SKB */
5253 			page_pool_release_page(rx_q->page_pool, buf->page);
5254 			buf->page = NULL;
5255 		}
5256 
5257 		if (buf2_len) {
5258 			dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5259 						buf2_len, dma_dir);
5260 			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5261 					buf->sec_page, 0, buf2_len,
5262 					priv->dma_buf_sz);
5263 
5264 			/* Data payload appended into SKB */
5265 			page_pool_release_page(rx_q->page_pool, buf->sec_page);
5266 			buf->sec_page = NULL;
5267 		}
5268 
5269 drain_data:
5270 		if (likely(status & rx_not_ls))
5271 			goto read_again;
5272 		if (!skb)
5273 			continue;
5274 
5275 		/* Got entire packet into SKB. Finish it. */
5276 
5277 		stmmac_get_rx_hwtstamp(priv, p, np, skb);
5278 		stmmac_rx_vlan(priv->dev, skb);
5279 		skb->protocol = eth_type_trans(skb, priv->dev);
5280 
5281 		if (unlikely(!coe))
5282 			skb_checksum_none_assert(skb);
5283 		else
5284 			skb->ip_summed = CHECKSUM_UNNECESSARY;
5285 
5286 		if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5287 			skb_set_hash(skb, hash, hash_type);
5288 
5289 		skb_record_rx_queue(skb, queue);
5290 		napi_gro_receive(&ch->rx_napi, skb);
5291 		skb = NULL;
5292 
5293 		priv->dev->stats.rx_packets++;
5294 		priv->dev->stats.rx_bytes += len;
5295 		count++;
5296 	}
5297 
5298 	if (status & rx_not_ls || skb) {
5299 		rx_q->state_saved = true;
5300 		rx_q->state.skb = skb;
5301 		rx_q->state.error = error;
5302 		rx_q->state.len = len;
5303 	}
5304 
5305 	stmmac_finalize_xdp_rx(priv, xdp_status);
5306 
5307 	stmmac_rx_refill(priv, queue);
5308 
5309 	priv->xstats.rx_pkt_n += count;
5310 	priv->xstats.rxq_stats[queue].rx_pkt_n += count;
5311 
5312 	return count;
5313 }
5314 
5315 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5316 {
5317 	struct stmmac_channel *ch =
5318 		container_of(napi, struct stmmac_channel, rx_napi);
5319 	struct stmmac_priv *priv = ch->priv_data;
5320 	u32 chan = ch->index;
5321 	int work_done;
5322 
5323 	priv->xstats.napi_poll++;
5324 
5325 	work_done = stmmac_rx(priv, budget, chan);
5326 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5327 		unsigned long flags;
5328 
5329 		spin_lock_irqsave(&ch->lock, flags);
5330 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5331 		spin_unlock_irqrestore(&ch->lock, flags);
5332 	}
5333 
5334 	return work_done;
5335 }
5336 
5337 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5338 {
5339 	struct stmmac_channel *ch =
5340 		container_of(napi, struct stmmac_channel, tx_napi);
5341 	struct stmmac_priv *priv = ch->priv_data;
5342 	u32 chan = ch->index;
5343 	int work_done;
5344 
5345 	priv->xstats.napi_poll++;
5346 
5347 	work_done = stmmac_tx_clean(priv, budget, chan);
5348 	work_done = min(work_done, budget);
5349 
5350 	if (work_done < budget && napi_complete_done(napi, work_done)) {
5351 		unsigned long flags;
5352 
5353 		spin_lock_irqsave(&ch->lock, flags);
5354 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5355 		spin_unlock_irqrestore(&ch->lock, flags);
5356 	}
5357 
5358 	return work_done;
5359 }
5360 
5361 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5362 {
5363 	struct stmmac_channel *ch =
5364 		container_of(napi, struct stmmac_channel, rxtx_napi);
5365 	struct stmmac_priv *priv = ch->priv_data;
5366 	int rx_done, tx_done, rxtx_done;
5367 	u32 chan = ch->index;
5368 
5369 	priv->xstats.napi_poll++;
5370 
5371 	tx_done = stmmac_tx_clean(priv, budget, chan);
5372 	tx_done = min(tx_done, budget);
5373 
5374 	rx_done = stmmac_rx_zc(priv, budget, chan);
5375 
5376 	rxtx_done = max(tx_done, rx_done);
5377 
5378 	/* If either TX or RX work is not complete, return budget
5379 	 * and keep pooling
5380 	 */
5381 	if (rxtx_done >= budget)
5382 		return budget;
5383 
5384 	/* all work done, exit the polling mode */
5385 	if (napi_complete_done(napi, rxtx_done)) {
5386 		unsigned long flags;
5387 
5388 		spin_lock_irqsave(&ch->lock, flags);
5389 		/* Both RX and TX work done are compelte,
5390 		 * so enable both RX & TX IRQs.
5391 		 */
5392 		stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5393 		spin_unlock_irqrestore(&ch->lock, flags);
5394 	}
5395 
5396 	return min(rxtx_done, budget - 1);
5397 }
5398 
5399 /**
5400  *  stmmac_tx_timeout
5401  *  @dev : Pointer to net device structure
5402  *  @txqueue: the index of the hanging transmit queue
5403  *  Description: this function is called when a packet transmission fails to
5404  *   complete within a reasonable time. The driver will mark the error in the
5405  *   netdev structure and arrange for the device to be reset to a sane state
5406  *   in order to transmit a new packet.
5407  */
5408 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5409 {
5410 	struct stmmac_priv *priv = netdev_priv(dev);
5411 
5412 	stmmac_global_err(priv);
5413 }
5414 
5415 /**
5416  *  stmmac_set_rx_mode - entry point for multicast addressing
5417  *  @dev : pointer to the device structure
5418  *  Description:
5419  *  This function is a driver entry point which gets called by the kernel
5420  *  whenever multicast addresses must be enabled/disabled.
5421  *  Return value:
5422  *  void.
5423  */
5424 static void stmmac_set_rx_mode(struct net_device *dev)
5425 {
5426 	struct stmmac_priv *priv = netdev_priv(dev);
5427 
5428 	stmmac_set_filter(priv, priv->hw, dev);
5429 }
5430 
5431 /**
5432  *  stmmac_change_mtu - entry point to change MTU size for the device.
5433  *  @dev : device pointer.
5434  *  @new_mtu : the new MTU size for the device.
5435  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
5436  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
5437  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
5438  *  Return value:
5439  *  0 on success and an appropriate (-)ve integer as defined in errno.h
5440  *  file on failure.
5441  */
5442 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5443 {
5444 	struct stmmac_priv *priv = netdev_priv(dev);
5445 	int txfifosz = priv->plat->tx_fifo_size;
5446 	const int mtu = new_mtu;
5447 
5448 	if (txfifosz == 0)
5449 		txfifosz = priv->dma_cap.tx_fifo_size;
5450 
5451 	txfifosz /= priv->plat->tx_queues_to_use;
5452 
5453 	if (netif_running(dev)) {
5454 		netdev_err(priv->dev, "must be stopped to change its MTU\n");
5455 		return -EBUSY;
5456 	}
5457 
5458 	if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5459 		netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5460 		return -EINVAL;
5461 	}
5462 
5463 	new_mtu = STMMAC_ALIGN(new_mtu);
5464 
5465 	/* If condition true, FIFO is too small or MTU too large */
5466 	if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5467 		return -EINVAL;
5468 
5469 	dev->mtu = mtu;
5470 
5471 	netdev_update_features(dev);
5472 
5473 	return 0;
5474 }
5475 
5476 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5477 					     netdev_features_t features)
5478 {
5479 	struct stmmac_priv *priv = netdev_priv(dev);
5480 
5481 	if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5482 		features &= ~NETIF_F_RXCSUM;
5483 
5484 	if (!priv->plat->tx_coe)
5485 		features &= ~NETIF_F_CSUM_MASK;
5486 
5487 	/* Some GMAC devices have a bugged Jumbo frame support that
5488 	 * needs to have the Tx COE disabled for oversized frames
5489 	 * (due to limited buffer sizes). In this case we disable
5490 	 * the TX csum insertion in the TDES and not use SF.
5491 	 */
5492 	if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5493 		features &= ~NETIF_F_CSUM_MASK;
5494 
5495 	/* Disable tso if asked by ethtool */
5496 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
5497 		if (features & NETIF_F_TSO)
5498 			priv->tso = true;
5499 		else
5500 			priv->tso = false;
5501 	}
5502 
5503 	return features;
5504 }
5505 
5506 static int stmmac_set_features(struct net_device *netdev,
5507 			       netdev_features_t features)
5508 {
5509 	struct stmmac_priv *priv = netdev_priv(netdev);
5510 
5511 	/* Keep the COE Type in case of csum is supporting */
5512 	if (features & NETIF_F_RXCSUM)
5513 		priv->hw->rx_csum = priv->plat->rx_coe;
5514 	else
5515 		priv->hw->rx_csum = 0;
5516 	/* No check needed because rx_coe has been set before and it will be
5517 	 * fixed in case of issue.
5518 	 */
5519 	stmmac_rx_ipc(priv, priv->hw);
5520 
5521 	if (priv->sph_cap) {
5522 		bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5523 		u32 chan;
5524 
5525 		for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5526 			stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5527 	}
5528 
5529 	return 0;
5530 }
5531 
5532 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5533 {
5534 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5535 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5536 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5537 	bool *hs_enable = &fpe_cfg->hs_enable;
5538 
5539 	if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5540 		return;
5541 
5542 	/* If LP has sent verify mPacket, LP is FPE capable */
5543 	if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5544 		if (*lp_state < FPE_STATE_CAPABLE)
5545 			*lp_state = FPE_STATE_CAPABLE;
5546 
5547 		/* If user has requested FPE enable, quickly response */
5548 		if (*hs_enable)
5549 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5550 						MPACKET_RESPONSE);
5551 	}
5552 
5553 	/* If Local has sent verify mPacket, Local is FPE capable */
5554 	if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5555 		if (*lo_state < FPE_STATE_CAPABLE)
5556 			*lo_state = FPE_STATE_CAPABLE;
5557 	}
5558 
5559 	/* If LP has sent response mPacket, LP is entering FPE ON */
5560 	if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5561 		*lp_state = FPE_STATE_ENTERING_ON;
5562 
5563 	/* If Local has sent response mPacket, Local is entering FPE ON */
5564 	if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5565 		*lo_state = FPE_STATE_ENTERING_ON;
5566 
5567 	if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5568 	    !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5569 	    priv->fpe_wq) {
5570 		queue_work(priv->fpe_wq, &priv->fpe_task);
5571 	}
5572 }
5573 
5574 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5575 {
5576 	u32 rx_cnt = priv->plat->rx_queues_to_use;
5577 	u32 tx_cnt = priv->plat->tx_queues_to_use;
5578 	u32 queues_count;
5579 	u32 queue;
5580 	bool xmac;
5581 
5582 	xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5583 	queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5584 
5585 	if (priv->irq_wake)
5586 		pm_wakeup_event(priv->device, 0);
5587 
5588 	if (priv->dma_cap.estsel)
5589 		stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5590 				      &priv->xstats, tx_cnt);
5591 
5592 	if (priv->dma_cap.fpesel) {
5593 		int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5594 						   priv->dev);
5595 
5596 		stmmac_fpe_event_status(priv, status);
5597 	}
5598 
5599 	/* To handle GMAC own interrupts */
5600 	if ((priv->plat->has_gmac) || xmac) {
5601 		int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5602 
5603 		if (unlikely(status)) {
5604 			/* For LPI we need to save the tx status */
5605 			if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5606 				priv->tx_path_in_lpi_mode = true;
5607 			if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5608 				priv->tx_path_in_lpi_mode = false;
5609 		}
5610 
5611 		for (queue = 0; queue < queues_count; queue++) {
5612 			status = stmmac_host_mtl_irq_status(priv, priv->hw,
5613 							    queue);
5614 		}
5615 
5616 		/* PCS link status */
5617 		if (priv->hw->pcs) {
5618 			if (priv->xstats.pcs_link)
5619 				netif_carrier_on(priv->dev);
5620 			else
5621 				netif_carrier_off(priv->dev);
5622 		}
5623 
5624 		stmmac_timestamp_interrupt(priv, priv);
5625 	}
5626 }
5627 
5628 /**
5629  *  stmmac_interrupt - main ISR
5630  *  @irq: interrupt number.
5631  *  @dev_id: to pass the net device pointer.
5632  *  Description: this is the main driver interrupt service routine.
5633  *  It can call:
5634  *  o DMA service routine (to manage incoming frame reception and transmission
5635  *    status)
5636  *  o Core interrupts to manage: remote wake-up, management counter, LPI
5637  *    interrupts.
5638  */
5639 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5640 {
5641 	struct net_device *dev = (struct net_device *)dev_id;
5642 	struct stmmac_priv *priv = netdev_priv(dev);
5643 
5644 	/* Check if adapter is up */
5645 	if (test_bit(STMMAC_DOWN, &priv->state))
5646 		return IRQ_HANDLED;
5647 
5648 	/* Check if a fatal error happened */
5649 	if (stmmac_safety_feat_interrupt(priv))
5650 		return IRQ_HANDLED;
5651 
5652 	/* To handle Common interrupts */
5653 	stmmac_common_interrupt(priv);
5654 
5655 	/* To handle DMA interrupts */
5656 	stmmac_dma_interrupt(priv);
5657 
5658 	return IRQ_HANDLED;
5659 }
5660 
5661 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5662 {
5663 	struct net_device *dev = (struct net_device *)dev_id;
5664 	struct stmmac_priv *priv = netdev_priv(dev);
5665 
5666 	if (unlikely(!dev)) {
5667 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5668 		return IRQ_NONE;
5669 	}
5670 
5671 	/* Check if adapter is up */
5672 	if (test_bit(STMMAC_DOWN, &priv->state))
5673 		return IRQ_HANDLED;
5674 
5675 	/* To handle Common interrupts */
5676 	stmmac_common_interrupt(priv);
5677 
5678 	return IRQ_HANDLED;
5679 }
5680 
5681 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5682 {
5683 	struct net_device *dev = (struct net_device *)dev_id;
5684 	struct stmmac_priv *priv = netdev_priv(dev);
5685 
5686 	if (unlikely(!dev)) {
5687 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5688 		return IRQ_NONE;
5689 	}
5690 
5691 	/* Check if adapter is up */
5692 	if (test_bit(STMMAC_DOWN, &priv->state))
5693 		return IRQ_HANDLED;
5694 
5695 	/* Check if a fatal error happened */
5696 	stmmac_safety_feat_interrupt(priv);
5697 
5698 	return IRQ_HANDLED;
5699 }
5700 
5701 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5702 {
5703 	struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5704 	int chan = tx_q->queue_index;
5705 	struct stmmac_priv *priv;
5706 	int status;
5707 
5708 	priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]);
5709 
5710 	if (unlikely(!data)) {
5711 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5712 		return IRQ_NONE;
5713 	}
5714 
5715 	/* Check if adapter is up */
5716 	if (test_bit(STMMAC_DOWN, &priv->state))
5717 		return IRQ_HANDLED;
5718 
5719 	status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5720 
5721 	if (unlikely(status & tx_hard_error_bump_tc)) {
5722 		/* Try to bump up the dma threshold on this failure */
5723 		stmmac_bump_dma_threshold(priv, chan);
5724 	} else if (unlikely(status == tx_hard_error)) {
5725 		stmmac_tx_err(priv, chan);
5726 	}
5727 
5728 	return IRQ_HANDLED;
5729 }
5730 
5731 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
5732 {
5733 	struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
5734 	int chan = rx_q->queue_index;
5735 	struct stmmac_priv *priv;
5736 
5737 	priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]);
5738 
5739 	if (unlikely(!data)) {
5740 		netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__);
5741 		return IRQ_NONE;
5742 	}
5743 
5744 	/* Check if adapter is up */
5745 	if (test_bit(STMMAC_DOWN, &priv->state))
5746 		return IRQ_HANDLED;
5747 
5748 	stmmac_napi_check(priv, chan, DMA_DIR_RX);
5749 
5750 	return IRQ_HANDLED;
5751 }
5752 
5753 #ifdef CONFIG_NET_POLL_CONTROLLER
5754 /* Polling receive - used by NETCONSOLE and other diagnostic tools
5755  * to allow network I/O with interrupts disabled.
5756  */
5757 static void stmmac_poll_controller(struct net_device *dev)
5758 {
5759 	struct stmmac_priv *priv = netdev_priv(dev);
5760 	int i;
5761 
5762 	/* If adapter is down, do nothing */
5763 	if (test_bit(STMMAC_DOWN, &priv->state))
5764 		return;
5765 
5766 	if (priv->plat->multi_msi_en) {
5767 		for (i = 0; i < priv->plat->rx_queues_to_use; i++)
5768 			stmmac_msi_intr_rx(0, &priv->rx_queue[i]);
5769 
5770 		for (i = 0; i < priv->plat->tx_queues_to_use; i++)
5771 			stmmac_msi_intr_tx(0, &priv->tx_queue[i]);
5772 	} else {
5773 		disable_irq(dev->irq);
5774 		stmmac_interrupt(dev->irq, dev);
5775 		enable_irq(dev->irq);
5776 	}
5777 }
5778 #endif
5779 
5780 /**
5781  *  stmmac_ioctl - Entry point for the Ioctl
5782  *  @dev: Device pointer.
5783  *  @rq: An IOCTL specefic structure, that can contain a pointer to
5784  *  a proprietary structure used to pass information to the driver.
5785  *  @cmd: IOCTL command
5786  *  Description:
5787  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
5788  */
5789 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5790 {
5791 	struct stmmac_priv *priv = netdev_priv (dev);
5792 	int ret = -EOPNOTSUPP;
5793 
5794 	if (!netif_running(dev))
5795 		return -EINVAL;
5796 
5797 	switch (cmd) {
5798 	case SIOCGMIIPHY:
5799 	case SIOCGMIIREG:
5800 	case SIOCSMIIREG:
5801 		ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
5802 		break;
5803 	case SIOCSHWTSTAMP:
5804 		ret = stmmac_hwtstamp_set(dev, rq);
5805 		break;
5806 	case SIOCGHWTSTAMP:
5807 		ret = stmmac_hwtstamp_get(dev, rq);
5808 		break;
5809 	default:
5810 		break;
5811 	}
5812 
5813 	return ret;
5814 }
5815 
5816 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
5817 				    void *cb_priv)
5818 {
5819 	struct stmmac_priv *priv = cb_priv;
5820 	int ret = -EOPNOTSUPP;
5821 
5822 	if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
5823 		return ret;
5824 
5825 	__stmmac_disable_all_queues(priv);
5826 
5827 	switch (type) {
5828 	case TC_SETUP_CLSU32:
5829 		ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
5830 		break;
5831 	case TC_SETUP_CLSFLOWER:
5832 		ret = stmmac_tc_setup_cls(priv, priv, type_data);
5833 		break;
5834 	default:
5835 		break;
5836 	}
5837 
5838 	stmmac_enable_all_queues(priv);
5839 	return ret;
5840 }
5841 
5842 static LIST_HEAD(stmmac_block_cb_list);
5843 
5844 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
5845 			   void *type_data)
5846 {
5847 	struct stmmac_priv *priv = netdev_priv(ndev);
5848 
5849 	switch (type) {
5850 	case TC_SETUP_BLOCK:
5851 		return flow_block_cb_setup_simple(type_data,
5852 						  &stmmac_block_cb_list,
5853 						  stmmac_setup_tc_block_cb,
5854 						  priv, priv, true);
5855 	case TC_SETUP_QDISC_CBS:
5856 		return stmmac_tc_setup_cbs(priv, priv, type_data);
5857 	case TC_SETUP_QDISC_TAPRIO:
5858 		return stmmac_tc_setup_taprio(priv, priv, type_data);
5859 	case TC_SETUP_QDISC_ETF:
5860 		return stmmac_tc_setup_etf(priv, priv, type_data);
5861 	default:
5862 		return -EOPNOTSUPP;
5863 	}
5864 }
5865 
5866 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
5867 			       struct net_device *sb_dev)
5868 {
5869 	int gso = skb_shinfo(skb)->gso_type;
5870 
5871 	if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
5872 		/*
5873 		 * There is no way to determine the number of TSO/USO
5874 		 * capable Queues. Let's use always the Queue 0
5875 		 * because if TSO/USO is supported then at least this
5876 		 * one will be capable.
5877 		 */
5878 		return 0;
5879 	}
5880 
5881 	return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
5882 }
5883 
5884 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
5885 {
5886 	struct stmmac_priv *priv = netdev_priv(ndev);
5887 	int ret = 0;
5888 
5889 	ret = pm_runtime_resume_and_get(priv->device);
5890 	if (ret < 0)
5891 		return ret;
5892 
5893 	ret = eth_mac_addr(ndev, addr);
5894 	if (ret)
5895 		goto set_mac_error;
5896 
5897 	stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
5898 
5899 set_mac_error:
5900 	pm_runtime_put(priv->device);
5901 
5902 	return ret;
5903 }
5904 
5905 #ifdef CONFIG_DEBUG_FS
5906 static struct dentry *stmmac_fs_dir;
5907 
5908 static void sysfs_display_ring(void *head, int size, int extend_desc,
5909 			       struct seq_file *seq, dma_addr_t dma_phy_addr)
5910 {
5911 	int i;
5912 	struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
5913 	struct dma_desc *p = (struct dma_desc *)head;
5914 	dma_addr_t dma_addr;
5915 
5916 	for (i = 0; i < size; i++) {
5917 		if (extend_desc) {
5918 			dma_addr = dma_phy_addr + i * sizeof(*ep);
5919 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5920 				   i, &dma_addr,
5921 				   le32_to_cpu(ep->basic.des0),
5922 				   le32_to_cpu(ep->basic.des1),
5923 				   le32_to_cpu(ep->basic.des2),
5924 				   le32_to_cpu(ep->basic.des3));
5925 			ep++;
5926 		} else {
5927 			dma_addr = dma_phy_addr + i * sizeof(*p);
5928 			seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
5929 				   i, &dma_addr,
5930 				   le32_to_cpu(p->des0), le32_to_cpu(p->des1),
5931 				   le32_to_cpu(p->des2), le32_to_cpu(p->des3));
5932 			p++;
5933 		}
5934 		seq_printf(seq, "\n");
5935 	}
5936 }
5937 
5938 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
5939 {
5940 	struct net_device *dev = seq->private;
5941 	struct stmmac_priv *priv = netdev_priv(dev);
5942 	u32 rx_count = priv->plat->rx_queues_to_use;
5943 	u32 tx_count = priv->plat->tx_queues_to_use;
5944 	u32 queue;
5945 
5946 	if ((dev->flags & IFF_UP) == 0)
5947 		return 0;
5948 
5949 	for (queue = 0; queue < rx_count; queue++) {
5950 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
5951 
5952 		seq_printf(seq, "RX Queue %d:\n", queue);
5953 
5954 		if (priv->extend_desc) {
5955 			seq_printf(seq, "Extended descriptor ring:\n");
5956 			sysfs_display_ring((void *)rx_q->dma_erx,
5957 					   priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy);
5958 		} else {
5959 			seq_printf(seq, "Descriptor ring:\n");
5960 			sysfs_display_ring((void *)rx_q->dma_rx,
5961 					   priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy);
5962 		}
5963 	}
5964 
5965 	for (queue = 0; queue < tx_count; queue++) {
5966 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
5967 
5968 		seq_printf(seq, "TX Queue %d:\n", queue);
5969 
5970 		if (priv->extend_desc) {
5971 			seq_printf(seq, "Extended descriptor ring:\n");
5972 			sysfs_display_ring((void *)tx_q->dma_etx,
5973 					   priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy);
5974 		} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
5975 			seq_printf(seq, "Descriptor ring:\n");
5976 			sysfs_display_ring((void *)tx_q->dma_tx,
5977 					   priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy);
5978 		}
5979 	}
5980 
5981 	return 0;
5982 }
5983 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
5984 
5985 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
5986 {
5987 	struct net_device *dev = seq->private;
5988 	struct stmmac_priv *priv = netdev_priv(dev);
5989 
5990 	if (!priv->hw_cap_support) {
5991 		seq_printf(seq, "DMA HW features not supported\n");
5992 		return 0;
5993 	}
5994 
5995 	seq_printf(seq, "==============================\n");
5996 	seq_printf(seq, "\tDMA HW features\n");
5997 	seq_printf(seq, "==============================\n");
5998 
5999 	seq_printf(seq, "\t10/100 Mbps: %s\n",
6000 		   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6001 	seq_printf(seq, "\t1000 Mbps: %s\n",
6002 		   (priv->dma_cap.mbps_1000) ? "Y" : "N");
6003 	seq_printf(seq, "\tHalf duplex: %s\n",
6004 		   (priv->dma_cap.half_duplex) ? "Y" : "N");
6005 	seq_printf(seq, "\tHash Filter: %s\n",
6006 		   (priv->dma_cap.hash_filter) ? "Y" : "N");
6007 	seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6008 		   (priv->dma_cap.multi_addr) ? "Y" : "N");
6009 	seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6010 		   (priv->dma_cap.pcs) ? "Y" : "N");
6011 	seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6012 		   (priv->dma_cap.sma_mdio) ? "Y" : "N");
6013 	seq_printf(seq, "\tPMT Remote wake up: %s\n",
6014 		   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6015 	seq_printf(seq, "\tPMT Magic Frame: %s\n",
6016 		   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6017 	seq_printf(seq, "\tRMON module: %s\n",
6018 		   (priv->dma_cap.rmon) ? "Y" : "N");
6019 	seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6020 		   (priv->dma_cap.time_stamp) ? "Y" : "N");
6021 	seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6022 		   (priv->dma_cap.atime_stamp) ? "Y" : "N");
6023 	seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6024 		   (priv->dma_cap.eee) ? "Y" : "N");
6025 	seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6026 	seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6027 		   (priv->dma_cap.tx_coe) ? "Y" : "N");
6028 	if (priv->synopsys_id >= DWMAC_CORE_4_00) {
6029 		seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6030 			   (priv->dma_cap.rx_coe) ? "Y" : "N");
6031 	} else {
6032 		seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6033 			   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6034 		seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6035 			   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6036 	}
6037 	seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6038 		   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6039 	seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6040 		   priv->dma_cap.number_rx_channel);
6041 	seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6042 		   priv->dma_cap.number_tx_channel);
6043 	seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6044 		   priv->dma_cap.number_rx_queues);
6045 	seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6046 		   priv->dma_cap.number_tx_queues);
6047 	seq_printf(seq, "\tEnhanced descriptors: %s\n",
6048 		   (priv->dma_cap.enh_desc) ? "Y" : "N");
6049 	seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6050 	seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6051 	seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz);
6052 	seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6053 	seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6054 		   priv->dma_cap.pps_out_num);
6055 	seq_printf(seq, "\tSafety Features: %s\n",
6056 		   priv->dma_cap.asp ? "Y" : "N");
6057 	seq_printf(seq, "\tFlexible RX Parser: %s\n",
6058 		   priv->dma_cap.frpsel ? "Y" : "N");
6059 	seq_printf(seq, "\tEnhanced Addressing: %d\n",
6060 		   priv->dma_cap.addr64);
6061 	seq_printf(seq, "\tReceive Side Scaling: %s\n",
6062 		   priv->dma_cap.rssen ? "Y" : "N");
6063 	seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6064 		   priv->dma_cap.vlhash ? "Y" : "N");
6065 	seq_printf(seq, "\tSplit Header: %s\n",
6066 		   priv->dma_cap.sphen ? "Y" : "N");
6067 	seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6068 		   priv->dma_cap.vlins ? "Y" : "N");
6069 	seq_printf(seq, "\tDouble VLAN: %s\n",
6070 		   priv->dma_cap.dvlan ? "Y" : "N");
6071 	seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6072 		   priv->dma_cap.l3l4fnum);
6073 	seq_printf(seq, "\tARP Offloading: %s\n",
6074 		   priv->dma_cap.arpoffsel ? "Y" : "N");
6075 	seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6076 		   priv->dma_cap.estsel ? "Y" : "N");
6077 	seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6078 		   priv->dma_cap.fpesel ? "Y" : "N");
6079 	seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6080 		   priv->dma_cap.tbssel ? "Y" : "N");
6081 	return 0;
6082 }
6083 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6084 
6085 /* Use network device events to rename debugfs file entries.
6086  */
6087 static int stmmac_device_event(struct notifier_block *unused,
6088 			       unsigned long event, void *ptr)
6089 {
6090 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6091 	struct stmmac_priv *priv = netdev_priv(dev);
6092 
6093 	if (dev->netdev_ops != &stmmac_netdev_ops)
6094 		goto done;
6095 
6096 	switch (event) {
6097 	case NETDEV_CHANGENAME:
6098 		if (priv->dbgfs_dir)
6099 			priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6100 							 priv->dbgfs_dir,
6101 							 stmmac_fs_dir,
6102 							 dev->name);
6103 		break;
6104 	}
6105 done:
6106 	return NOTIFY_DONE;
6107 }
6108 
6109 static struct notifier_block stmmac_notifier = {
6110 	.notifier_call = stmmac_device_event,
6111 };
6112 
6113 static void stmmac_init_fs(struct net_device *dev)
6114 {
6115 	struct stmmac_priv *priv = netdev_priv(dev);
6116 
6117 	rtnl_lock();
6118 
6119 	/* Create per netdev entries */
6120 	priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6121 
6122 	/* Entry to report DMA RX/TX rings */
6123 	debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6124 			    &stmmac_rings_status_fops);
6125 
6126 	/* Entry to report the DMA HW features */
6127 	debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6128 			    &stmmac_dma_cap_fops);
6129 
6130 	rtnl_unlock();
6131 }
6132 
6133 static void stmmac_exit_fs(struct net_device *dev)
6134 {
6135 	struct stmmac_priv *priv = netdev_priv(dev);
6136 
6137 	debugfs_remove_recursive(priv->dbgfs_dir);
6138 }
6139 #endif /* CONFIG_DEBUG_FS */
6140 
6141 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6142 {
6143 	unsigned char *data = (unsigned char *)&vid_le;
6144 	unsigned char data_byte = 0;
6145 	u32 crc = ~0x0;
6146 	u32 temp = 0;
6147 	int i, bits;
6148 
6149 	bits = get_bitmask_order(VLAN_VID_MASK);
6150 	for (i = 0; i < bits; i++) {
6151 		if ((i % 8) == 0)
6152 			data_byte = data[i / 8];
6153 
6154 		temp = ((crc & 1) ^ data_byte) & 1;
6155 		crc >>= 1;
6156 		data_byte >>= 1;
6157 
6158 		if (temp)
6159 			crc ^= 0xedb88320;
6160 	}
6161 
6162 	return crc;
6163 }
6164 
6165 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6166 {
6167 	u32 crc, hash = 0;
6168 	__le16 pmatch = 0;
6169 	int count = 0;
6170 	u16 vid = 0;
6171 
6172 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6173 		__le16 vid_le = cpu_to_le16(vid);
6174 		crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6175 		hash |= (1 << crc);
6176 		count++;
6177 	}
6178 
6179 	if (!priv->dma_cap.vlhash) {
6180 		if (count > 2) /* VID = 0 always passes filter */
6181 			return -EOPNOTSUPP;
6182 
6183 		pmatch = cpu_to_le16(vid);
6184 		hash = 0;
6185 	}
6186 
6187 	return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6188 }
6189 
6190 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6191 {
6192 	struct stmmac_priv *priv = netdev_priv(ndev);
6193 	bool is_double = false;
6194 	int ret;
6195 
6196 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6197 		is_double = true;
6198 
6199 	set_bit(vid, priv->active_vlans);
6200 	ret = stmmac_vlan_update(priv, is_double);
6201 	if (ret) {
6202 		clear_bit(vid, priv->active_vlans);
6203 		return ret;
6204 	}
6205 
6206 	if (priv->hw->num_vlan) {
6207 		ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6208 		if (ret)
6209 			return ret;
6210 	}
6211 
6212 	return 0;
6213 }
6214 
6215 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6216 {
6217 	struct stmmac_priv *priv = netdev_priv(ndev);
6218 	bool is_double = false;
6219 	int ret;
6220 
6221 	ret = pm_runtime_resume_and_get(priv->device);
6222 	if (ret < 0)
6223 		return ret;
6224 
6225 	if (be16_to_cpu(proto) == ETH_P_8021AD)
6226 		is_double = true;
6227 
6228 	clear_bit(vid, priv->active_vlans);
6229 
6230 	if (priv->hw->num_vlan) {
6231 		ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6232 		if (ret)
6233 			goto del_vlan_error;
6234 	}
6235 
6236 	ret = stmmac_vlan_update(priv, is_double);
6237 
6238 del_vlan_error:
6239 	pm_runtime_put(priv->device);
6240 
6241 	return ret;
6242 }
6243 
6244 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6245 {
6246 	struct stmmac_priv *priv = netdev_priv(dev);
6247 
6248 	switch (bpf->command) {
6249 	case XDP_SETUP_PROG:
6250 		return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6251 	case XDP_SETUP_XSK_POOL:
6252 		return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6253 					     bpf->xsk.queue_id);
6254 	default:
6255 		return -EOPNOTSUPP;
6256 	}
6257 }
6258 
6259 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6260 			   struct xdp_frame **frames, u32 flags)
6261 {
6262 	struct stmmac_priv *priv = netdev_priv(dev);
6263 	int cpu = smp_processor_id();
6264 	struct netdev_queue *nq;
6265 	int i, nxmit = 0;
6266 	int queue;
6267 
6268 	if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6269 		return -ENETDOWN;
6270 
6271 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6272 		return -EINVAL;
6273 
6274 	queue = stmmac_xdp_get_tx_queue(priv, cpu);
6275 	nq = netdev_get_tx_queue(priv->dev, queue);
6276 
6277 	__netif_tx_lock(nq, cpu);
6278 	/* Avoids TX time-out as we are sharing with slow path */
6279 	txq_trans_cond_update(nq);
6280 
6281 	for (i = 0; i < num_frames; i++) {
6282 		int res;
6283 
6284 		res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6285 		if (res == STMMAC_XDP_CONSUMED)
6286 			break;
6287 
6288 		nxmit++;
6289 	}
6290 
6291 	if (flags & XDP_XMIT_FLUSH) {
6292 		stmmac_flush_tx_descriptors(priv, queue);
6293 		stmmac_tx_timer_arm(priv, queue);
6294 	}
6295 
6296 	__netif_tx_unlock(nq);
6297 
6298 	return nxmit;
6299 }
6300 
6301 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6302 {
6303 	struct stmmac_channel *ch = &priv->channel[queue];
6304 	unsigned long flags;
6305 
6306 	spin_lock_irqsave(&ch->lock, flags);
6307 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6308 	spin_unlock_irqrestore(&ch->lock, flags);
6309 
6310 	stmmac_stop_rx_dma(priv, queue);
6311 	__free_dma_rx_desc_resources(priv, queue);
6312 }
6313 
6314 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6315 {
6316 	struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
6317 	struct stmmac_channel *ch = &priv->channel[queue];
6318 	unsigned long flags;
6319 	u32 buf_size;
6320 	int ret;
6321 
6322 	ret = __alloc_dma_rx_desc_resources(priv, queue);
6323 	if (ret) {
6324 		netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6325 		return;
6326 	}
6327 
6328 	ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL);
6329 	if (ret) {
6330 		__free_dma_rx_desc_resources(priv, queue);
6331 		netdev_err(priv->dev, "Failed to init RX desc.\n");
6332 		return;
6333 	}
6334 
6335 	stmmac_clear_rx_descriptors(priv, queue);
6336 
6337 	stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6338 			    rx_q->dma_rx_phy, rx_q->queue_index);
6339 
6340 	rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6341 			     sizeof(struct dma_desc));
6342 	stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6343 			       rx_q->rx_tail_addr, rx_q->queue_index);
6344 
6345 	if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6346 		buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6347 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6348 				      buf_size,
6349 				      rx_q->queue_index);
6350 	} else {
6351 		stmmac_set_dma_bfsize(priv, priv->ioaddr,
6352 				      priv->dma_buf_sz,
6353 				      rx_q->queue_index);
6354 	}
6355 
6356 	stmmac_start_rx_dma(priv, queue);
6357 
6358 	spin_lock_irqsave(&ch->lock, flags);
6359 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6360 	spin_unlock_irqrestore(&ch->lock, flags);
6361 }
6362 
6363 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6364 {
6365 	struct stmmac_channel *ch = &priv->channel[queue];
6366 	unsigned long flags;
6367 
6368 	spin_lock_irqsave(&ch->lock, flags);
6369 	stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6370 	spin_unlock_irqrestore(&ch->lock, flags);
6371 
6372 	stmmac_stop_tx_dma(priv, queue);
6373 	__free_dma_tx_desc_resources(priv, queue);
6374 }
6375 
6376 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6377 {
6378 	struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
6379 	struct stmmac_channel *ch = &priv->channel[queue];
6380 	unsigned long flags;
6381 	int ret;
6382 
6383 	ret = __alloc_dma_tx_desc_resources(priv, queue);
6384 	if (ret) {
6385 		netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6386 		return;
6387 	}
6388 
6389 	ret = __init_dma_tx_desc_rings(priv, queue);
6390 	if (ret) {
6391 		__free_dma_tx_desc_resources(priv, queue);
6392 		netdev_err(priv->dev, "Failed to init TX desc.\n");
6393 		return;
6394 	}
6395 
6396 	stmmac_clear_tx_descriptors(priv, queue);
6397 
6398 	stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6399 			    tx_q->dma_tx_phy, tx_q->queue_index);
6400 
6401 	if (tx_q->tbs & STMMAC_TBS_AVAIL)
6402 		stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6403 
6404 	tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6405 	stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6406 			       tx_q->tx_tail_addr, tx_q->queue_index);
6407 
6408 	stmmac_start_tx_dma(priv, queue);
6409 
6410 	spin_lock_irqsave(&ch->lock, flags);
6411 	stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6412 	spin_unlock_irqrestore(&ch->lock, flags);
6413 }
6414 
6415 void stmmac_xdp_release(struct net_device *dev)
6416 {
6417 	struct stmmac_priv *priv = netdev_priv(dev);
6418 	u32 chan;
6419 
6420 	/* Disable NAPI process */
6421 	stmmac_disable_all_queues(priv);
6422 
6423 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6424 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6425 
6426 	/* Free the IRQ lines */
6427 	stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6428 
6429 	/* Stop TX/RX DMA channels */
6430 	stmmac_stop_all_dma(priv);
6431 
6432 	/* Release and free the Rx/Tx resources */
6433 	free_dma_desc_resources(priv);
6434 
6435 	/* Disable the MAC Rx/Tx */
6436 	stmmac_mac_set(priv, priv->ioaddr, false);
6437 
6438 	/* set trans_start so we don't get spurious
6439 	 * watchdogs during reset
6440 	 */
6441 	netif_trans_update(dev);
6442 	netif_carrier_off(dev);
6443 }
6444 
6445 int stmmac_xdp_open(struct net_device *dev)
6446 {
6447 	struct stmmac_priv *priv = netdev_priv(dev);
6448 	u32 rx_cnt = priv->plat->rx_queues_to_use;
6449 	u32 tx_cnt = priv->plat->tx_queues_to_use;
6450 	u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6451 	struct stmmac_rx_queue *rx_q;
6452 	struct stmmac_tx_queue *tx_q;
6453 	u32 buf_size;
6454 	bool sph_en;
6455 	u32 chan;
6456 	int ret;
6457 
6458 	ret = alloc_dma_desc_resources(priv);
6459 	if (ret < 0) {
6460 		netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6461 			   __func__);
6462 		goto dma_desc_error;
6463 	}
6464 
6465 	ret = init_dma_desc_rings(dev, GFP_KERNEL);
6466 	if (ret < 0) {
6467 		netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6468 			   __func__);
6469 		goto init_error;
6470 	}
6471 
6472 	/* DMA CSR Channel configuration */
6473 	for (chan = 0; chan < dma_csr_ch; chan++) {
6474 		stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6475 		stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6476 	}
6477 
6478 	/* Adjust Split header */
6479 	sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6480 
6481 	/* DMA RX Channel Configuration */
6482 	for (chan = 0; chan < rx_cnt; chan++) {
6483 		rx_q = &priv->rx_queue[chan];
6484 
6485 		stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6486 				    rx_q->dma_rx_phy, chan);
6487 
6488 		rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6489 				     (rx_q->buf_alloc_num *
6490 				      sizeof(struct dma_desc));
6491 		stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6492 				       rx_q->rx_tail_addr, chan);
6493 
6494 		if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6495 			buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6496 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6497 					      buf_size,
6498 					      rx_q->queue_index);
6499 		} else {
6500 			stmmac_set_dma_bfsize(priv, priv->ioaddr,
6501 					      priv->dma_buf_sz,
6502 					      rx_q->queue_index);
6503 		}
6504 
6505 		stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6506 	}
6507 
6508 	/* DMA TX Channel Configuration */
6509 	for (chan = 0; chan < tx_cnt; chan++) {
6510 		tx_q = &priv->tx_queue[chan];
6511 
6512 		stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6513 				    tx_q->dma_tx_phy, chan);
6514 
6515 		tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6516 		stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6517 				       tx_q->tx_tail_addr, chan);
6518 
6519 		hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6520 		tx_q->txtimer.function = stmmac_tx_timer;
6521 	}
6522 
6523 	/* Enable the MAC Rx/Tx */
6524 	stmmac_mac_set(priv, priv->ioaddr, true);
6525 
6526 	/* Start Rx & Tx DMA Channels */
6527 	stmmac_start_all_dma(priv);
6528 
6529 	ret = stmmac_request_irq(dev);
6530 	if (ret)
6531 		goto irq_error;
6532 
6533 	/* Enable NAPI process*/
6534 	stmmac_enable_all_queues(priv);
6535 	netif_carrier_on(dev);
6536 	netif_tx_start_all_queues(dev);
6537 	stmmac_enable_all_dma_irq(priv);
6538 
6539 	return 0;
6540 
6541 irq_error:
6542 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6543 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
6544 
6545 	stmmac_hw_teardown(dev);
6546 init_error:
6547 	free_dma_desc_resources(priv);
6548 dma_desc_error:
6549 	return ret;
6550 }
6551 
6552 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6553 {
6554 	struct stmmac_priv *priv = netdev_priv(dev);
6555 	struct stmmac_rx_queue *rx_q;
6556 	struct stmmac_tx_queue *tx_q;
6557 	struct stmmac_channel *ch;
6558 
6559 	if (test_bit(STMMAC_DOWN, &priv->state) ||
6560 	    !netif_carrier_ok(priv->dev))
6561 		return -ENETDOWN;
6562 
6563 	if (!stmmac_xdp_is_enabled(priv))
6564 		return -EINVAL;
6565 
6566 	if (queue >= priv->plat->rx_queues_to_use ||
6567 	    queue >= priv->plat->tx_queues_to_use)
6568 		return -EINVAL;
6569 
6570 	rx_q = &priv->rx_queue[queue];
6571 	tx_q = &priv->tx_queue[queue];
6572 	ch = &priv->channel[queue];
6573 
6574 	if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6575 		return -EINVAL;
6576 
6577 	if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6578 		/* EQoS does not have per-DMA channel SW interrupt,
6579 		 * so we schedule RX Napi straight-away.
6580 		 */
6581 		if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6582 			__napi_schedule(&ch->rxtx_napi);
6583 	}
6584 
6585 	return 0;
6586 }
6587 
6588 static const struct net_device_ops stmmac_netdev_ops = {
6589 	.ndo_open = stmmac_open,
6590 	.ndo_start_xmit = stmmac_xmit,
6591 	.ndo_stop = stmmac_release,
6592 	.ndo_change_mtu = stmmac_change_mtu,
6593 	.ndo_fix_features = stmmac_fix_features,
6594 	.ndo_set_features = stmmac_set_features,
6595 	.ndo_set_rx_mode = stmmac_set_rx_mode,
6596 	.ndo_tx_timeout = stmmac_tx_timeout,
6597 	.ndo_eth_ioctl = stmmac_ioctl,
6598 	.ndo_setup_tc = stmmac_setup_tc,
6599 	.ndo_select_queue = stmmac_select_queue,
6600 #ifdef CONFIG_NET_POLL_CONTROLLER
6601 	.ndo_poll_controller = stmmac_poll_controller,
6602 #endif
6603 	.ndo_set_mac_address = stmmac_set_mac_address,
6604 	.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6605 	.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6606 	.ndo_bpf = stmmac_bpf,
6607 	.ndo_xdp_xmit = stmmac_xdp_xmit,
6608 	.ndo_xsk_wakeup = stmmac_xsk_wakeup,
6609 };
6610 
6611 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6612 {
6613 	if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6614 		return;
6615 	if (test_bit(STMMAC_DOWN, &priv->state))
6616 		return;
6617 
6618 	netdev_err(priv->dev, "Reset adapter.\n");
6619 
6620 	rtnl_lock();
6621 	netif_trans_update(priv->dev);
6622 	while (test_and_set_bit(STMMAC_RESETING, &priv->state))
6623 		usleep_range(1000, 2000);
6624 
6625 	set_bit(STMMAC_DOWN, &priv->state);
6626 	dev_close(priv->dev);
6627 	dev_open(priv->dev, NULL);
6628 	clear_bit(STMMAC_DOWN, &priv->state);
6629 	clear_bit(STMMAC_RESETING, &priv->state);
6630 	rtnl_unlock();
6631 }
6632 
6633 static void stmmac_service_task(struct work_struct *work)
6634 {
6635 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6636 			service_task);
6637 
6638 	stmmac_reset_subtask(priv);
6639 	clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
6640 }
6641 
6642 /**
6643  *  stmmac_hw_init - Init the MAC device
6644  *  @priv: driver private structure
6645  *  Description: this function is to configure the MAC device according to
6646  *  some platform parameters or the HW capability register. It prepares the
6647  *  driver to use either ring or chain modes and to setup either enhanced or
6648  *  normal descriptors.
6649  */
6650 static int stmmac_hw_init(struct stmmac_priv *priv)
6651 {
6652 	int ret;
6653 
6654 	/* dwmac-sun8i only work in chain mode */
6655 	if (priv->plat->has_sun8i)
6656 		chain_mode = 1;
6657 	priv->chain_mode = chain_mode;
6658 
6659 	/* Initialize HW Interface */
6660 	ret = stmmac_hwif_init(priv);
6661 	if (ret)
6662 		return ret;
6663 
6664 	/* Get the HW capability (new GMAC newer than 3.50a) */
6665 	priv->hw_cap_support = stmmac_get_hw_features(priv);
6666 	if (priv->hw_cap_support) {
6667 		dev_info(priv->device, "DMA HW capability register supported\n");
6668 
6669 		/* We can override some gmac/dma configuration fields: e.g.
6670 		 * enh_desc, tx_coe (e.g. that are passed through the
6671 		 * platform) with the values from the HW capability
6672 		 * register (if supported).
6673 		 */
6674 		priv->plat->enh_desc = priv->dma_cap.enh_desc;
6675 		priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
6676 				!priv->plat->use_phy_wol;
6677 		priv->hw->pmt = priv->plat->pmt;
6678 		if (priv->dma_cap.hash_tb_sz) {
6679 			priv->hw->multicast_filter_bins =
6680 					(BIT(priv->dma_cap.hash_tb_sz) << 5);
6681 			priv->hw->mcast_bits_log2 =
6682 					ilog2(priv->hw->multicast_filter_bins);
6683 		}
6684 
6685 		/* TXCOE doesn't work in thresh DMA mode */
6686 		if (priv->plat->force_thresh_dma_mode)
6687 			priv->plat->tx_coe = 0;
6688 		else
6689 			priv->plat->tx_coe = priv->dma_cap.tx_coe;
6690 
6691 		/* In case of GMAC4 rx_coe is from HW cap register. */
6692 		priv->plat->rx_coe = priv->dma_cap.rx_coe;
6693 
6694 		if (priv->dma_cap.rx_coe_type2)
6695 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
6696 		else if (priv->dma_cap.rx_coe_type1)
6697 			priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
6698 
6699 	} else {
6700 		dev_info(priv->device, "No HW DMA feature register supported\n");
6701 	}
6702 
6703 	if (priv->plat->rx_coe) {
6704 		priv->hw->rx_csum = priv->plat->rx_coe;
6705 		dev_info(priv->device, "RX Checksum Offload Engine supported\n");
6706 		if (priv->synopsys_id < DWMAC_CORE_4_00)
6707 			dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
6708 	}
6709 	if (priv->plat->tx_coe)
6710 		dev_info(priv->device, "TX Checksum insertion supported\n");
6711 
6712 	if (priv->plat->pmt) {
6713 		dev_info(priv->device, "Wake-Up On Lan supported\n");
6714 		device_set_wakeup_capable(priv->device, 1);
6715 	}
6716 
6717 	if (priv->dma_cap.tsoen)
6718 		dev_info(priv->device, "TSO supported\n");
6719 
6720 	priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en;
6721 	priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
6722 
6723 	/* Run HW quirks, if any */
6724 	if (priv->hwif_quirks) {
6725 		ret = priv->hwif_quirks(priv);
6726 		if (ret)
6727 			return ret;
6728 	}
6729 
6730 	/* Rx Watchdog is available in the COREs newer than the 3.40.
6731 	 * In some case, for example on bugged HW this feature
6732 	 * has to be disable and this can be done by passing the
6733 	 * riwt_off field from the platform.
6734 	 */
6735 	if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
6736 	    (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
6737 		priv->use_riwt = 1;
6738 		dev_info(priv->device,
6739 			 "Enable RX Mitigation via HW Watchdog Timer\n");
6740 	}
6741 
6742 	return 0;
6743 }
6744 
6745 static void stmmac_napi_add(struct net_device *dev)
6746 {
6747 	struct stmmac_priv *priv = netdev_priv(dev);
6748 	u32 queue, maxq;
6749 
6750 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6751 
6752 	for (queue = 0; queue < maxq; queue++) {
6753 		struct stmmac_channel *ch = &priv->channel[queue];
6754 
6755 		ch->priv_data = priv;
6756 		ch->index = queue;
6757 		spin_lock_init(&ch->lock);
6758 
6759 		if (queue < priv->plat->rx_queues_to_use) {
6760 			netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx,
6761 				       NAPI_POLL_WEIGHT);
6762 		}
6763 		if (queue < priv->plat->tx_queues_to_use) {
6764 			netif_napi_add_tx(dev, &ch->tx_napi,
6765 					  stmmac_napi_poll_tx);
6766 		}
6767 		if (queue < priv->plat->rx_queues_to_use &&
6768 		    queue < priv->plat->tx_queues_to_use) {
6769 			netif_napi_add(dev, &ch->rxtx_napi,
6770 				       stmmac_napi_poll_rxtx,
6771 				       NAPI_POLL_WEIGHT);
6772 		}
6773 	}
6774 }
6775 
6776 static void stmmac_napi_del(struct net_device *dev)
6777 {
6778 	struct stmmac_priv *priv = netdev_priv(dev);
6779 	u32 queue, maxq;
6780 
6781 	maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
6782 
6783 	for (queue = 0; queue < maxq; queue++) {
6784 		struct stmmac_channel *ch = &priv->channel[queue];
6785 
6786 		if (queue < priv->plat->rx_queues_to_use)
6787 			netif_napi_del(&ch->rx_napi);
6788 		if (queue < priv->plat->tx_queues_to_use)
6789 			netif_napi_del(&ch->tx_napi);
6790 		if (queue < priv->plat->rx_queues_to_use &&
6791 		    queue < priv->plat->tx_queues_to_use) {
6792 			netif_napi_del(&ch->rxtx_napi);
6793 		}
6794 	}
6795 }
6796 
6797 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
6798 {
6799 	struct stmmac_priv *priv = netdev_priv(dev);
6800 	int ret = 0;
6801 
6802 	if (netif_running(dev))
6803 		stmmac_release(dev);
6804 
6805 	stmmac_napi_del(dev);
6806 
6807 	priv->plat->rx_queues_to_use = rx_cnt;
6808 	priv->plat->tx_queues_to_use = tx_cnt;
6809 
6810 	stmmac_napi_add(dev);
6811 
6812 	if (netif_running(dev))
6813 		ret = stmmac_open(dev);
6814 
6815 	return ret;
6816 }
6817 
6818 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
6819 {
6820 	struct stmmac_priv *priv = netdev_priv(dev);
6821 	int ret = 0;
6822 
6823 	if (netif_running(dev))
6824 		stmmac_release(dev);
6825 
6826 	priv->dma_rx_size = rx_size;
6827 	priv->dma_tx_size = tx_size;
6828 
6829 	if (netif_running(dev))
6830 		ret = stmmac_open(dev);
6831 
6832 	return ret;
6833 }
6834 
6835 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
6836 static void stmmac_fpe_lp_task(struct work_struct *work)
6837 {
6838 	struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
6839 						fpe_task);
6840 	struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
6841 	enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
6842 	enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
6843 	bool *hs_enable = &fpe_cfg->hs_enable;
6844 	bool *enable = &fpe_cfg->enable;
6845 	int retries = 20;
6846 
6847 	while (retries-- > 0) {
6848 		/* Bail out immediately if FPE handshake is OFF */
6849 		if (*lo_state == FPE_STATE_OFF || !*hs_enable)
6850 			break;
6851 
6852 		if (*lo_state == FPE_STATE_ENTERING_ON &&
6853 		    *lp_state == FPE_STATE_ENTERING_ON) {
6854 			stmmac_fpe_configure(priv, priv->ioaddr,
6855 					     priv->plat->tx_queues_to_use,
6856 					     priv->plat->rx_queues_to_use,
6857 					     *enable);
6858 
6859 			netdev_info(priv->dev, "configured FPE\n");
6860 
6861 			*lo_state = FPE_STATE_ON;
6862 			*lp_state = FPE_STATE_ON;
6863 			netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
6864 			break;
6865 		}
6866 
6867 		if ((*lo_state == FPE_STATE_CAPABLE ||
6868 		     *lo_state == FPE_STATE_ENTERING_ON) &&
6869 		     *lp_state != FPE_STATE_ON) {
6870 			netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
6871 				    *lo_state, *lp_state);
6872 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6873 						MPACKET_VERIFY);
6874 		}
6875 		/* Sleep then retry */
6876 		msleep(500);
6877 	}
6878 
6879 	clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
6880 }
6881 
6882 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
6883 {
6884 	if (priv->plat->fpe_cfg->hs_enable != enable) {
6885 		if (enable) {
6886 			stmmac_fpe_send_mpacket(priv, priv->ioaddr,
6887 						MPACKET_VERIFY);
6888 		} else {
6889 			priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
6890 			priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
6891 		}
6892 
6893 		priv->plat->fpe_cfg->hs_enable = enable;
6894 	}
6895 }
6896 
6897 /**
6898  * stmmac_dvr_probe
6899  * @device: device pointer
6900  * @plat_dat: platform data pointer
6901  * @res: stmmac resource pointer
6902  * Description: this is the main probe function used to
6903  * call the alloc_etherdev, allocate the priv structure.
6904  * Return:
6905  * returns 0 on success, otherwise errno.
6906  */
6907 int stmmac_dvr_probe(struct device *device,
6908 		     struct plat_stmmacenet_data *plat_dat,
6909 		     struct stmmac_resources *res)
6910 {
6911 	struct net_device *ndev = NULL;
6912 	struct stmmac_priv *priv;
6913 	u32 rxq;
6914 	int i, ret = 0;
6915 
6916 	ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
6917 				       MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
6918 	if (!ndev)
6919 		return -ENOMEM;
6920 
6921 	SET_NETDEV_DEV(ndev, device);
6922 
6923 	priv = netdev_priv(ndev);
6924 	priv->device = device;
6925 	priv->dev = ndev;
6926 
6927 	stmmac_set_ethtool_ops(ndev);
6928 	priv->pause = pause;
6929 	priv->plat = plat_dat;
6930 	priv->ioaddr = res->addr;
6931 	priv->dev->base_addr = (unsigned long)res->addr;
6932 	priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en;
6933 
6934 	priv->dev->irq = res->irq;
6935 	priv->wol_irq = res->wol_irq;
6936 	priv->lpi_irq = res->lpi_irq;
6937 	priv->sfty_ce_irq = res->sfty_ce_irq;
6938 	priv->sfty_ue_irq = res->sfty_ue_irq;
6939 	for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
6940 		priv->rx_irq[i] = res->rx_irq[i];
6941 	for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
6942 		priv->tx_irq[i] = res->tx_irq[i];
6943 
6944 	if (!is_zero_ether_addr(res->mac))
6945 		eth_hw_addr_set(priv->dev, res->mac);
6946 
6947 	dev_set_drvdata(device, priv->dev);
6948 
6949 	/* Verify driver arguments */
6950 	stmmac_verify_args();
6951 
6952 	priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
6953 	if (!priv->af_xdp_zc_qps)
6954 		return -ENOMEM;
6955 
6956 	/* Allocate workqueue */
6957 	priv->wq = create_singlethread_workqueue("stmmac_wq");
6958 	if (!priv->wq) {
6959 		dev_err(priv->device, "failed to create workqueue\n");
6960 		return -ENOMEM;
6961 	}
6962 
6963 	INIT_WORK(&priv->service_task, stmmac_service_task);
6964 
6965 	/* Initialize Link Partner FPE workqueue */
6966 	INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
6967 
6968 	/* Override with kernel parameters if supplied XXX CRS XXX
6969 	 * this needs to have multiple instances
6970 	 */
6971 	if ((phyaddr >= 0) && (phyaddr <= 31))
6972 		priv->plat->phy_addr = phyaddr;
6973 
6974 	if (priv->plat->stmmac_rst) {
6975 		ret = reset_control_assert(priv->plat->stmmac_rst);
6976 		reset_control_deassert(priv->plat->stmmac_rst);
6977 		/* Some reset controllers have only reset callback instead of
6978 		 * assert + deassert callbacks pair.
6979 		 */
6980 		if (ret == -ENOTSUPP)
6981 			reset_control_reset(priv->plat->stmmac_rst);
6982 	}
6983 
6984 	ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
6985 	if (ret == -ENOTSUPP)
6986 		dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
6987 			ERR_PTR(ret));
6988 
6989 	/* Init MAC and get the capabilities */
6990 	ret = stmmac_hw_init(priv);
6991 	if (ret)
6992 		goto error_hw_init;
6993 
6994 	/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
6995 	 */
6996 	if (priv->synopsys_id < DWMAC_CORE_5_20)
6997 		priv->plat->dma_cfg->dche = false;
6998 
6999 	stmmac_check_ether_addr(priv);
7000 
7001 	ndev->netdev_ops = &stmmac_netdev_ops;
7002 
7003 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7004 			    NETIF_F_RXCSUM;
7005 
7006 	ret = stmmac_tc_init(priv, priv);
7007 	if (!ret) {
7008 		ndev->hw_features |= NETIF_F_HW_TC;
7009 	}
7010 
7011 	if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) {
7012 		ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7013 		if (priv->plat->has_gmac4)
7014 			ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7015 		priv->tso = true;
7016 		dev_info(priv->device, "TSO feature enabled\n");
7017 	}
7018 
7019 	if (priv->dma_cap.sphen && !priv->plat->sph_disable) {
7020 		ndev->hw_features |= NETIF_F_GRO;
7021 		priv->sph_cap = true;
7022 		priv->sph = priv->sph_cap;
7023 		dev_info(priv->device, "SPH feature enabled\n");
7024 	}
7025 
7026 	/* The current IP register MAC_HW_Feature1[ADDR64] only define
7027 	 * 32/40/64 bit width, but some SOC support others like i.MX8MP
7028 	 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64].
7029 	 * So overwrite dma_cap.addr64 according to HW real design.
7030 	 */
7031 	if (priv->plat->addr64)
7032 		priv->dma_cap.addr64 = priv->plat->addr64;
7033 
7034 	if (priv->dma_cap.addr64) {
7035 		ret = dma_set_mask_and_coherent(device,
7036 				DMA_BIT_MASK(priv->dma_cap.addr64));
7037 		if (!ret) {
7038 			dev_info(priv->device, "Using %d bits DMA width\n",
7039 				 priv->dma_cap.addr64);
7040 
7041 			/*
7042 			 * If more than 32 bits can be addressed, make sure to
7043 			 * enable enhanced addressing mode.
7044 			 */
7045 			if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7046 				priv->plat->dma_cfg->eame = true;
7047 		} else {
7048 			ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7049 			if (ret) {
7050 				dev_err(priv->device, "Failed to set DMA Mask\n");
7051 				goto error_hw_init;
7052 			}
7053 
7054 			priv->dma_cap.addr64 = 32;
7055 		}
7056 	}
7057 
7058 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7059 	ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7060 #ifdef STMMAC_VLAN_TAG_USED
7061 	/* Both mac100 and gmac support receive VLAN tag detection */
7062 	ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7063 	if (priv->dma_cap.vlhash) {
7064 		ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7065 		ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7066 	}
7067 	if (priv->dma_cap.vlins) {
7068 		ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7069 		if (priv->dma_cap.dvlan)
7070 			ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7071 	}
7072 #endif
7073 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
7074 
7075 	/* Initialize RSS */
7076 	rxq = priv->plat->rx_queues_to_use;
7077 	netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7078 	for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7079 		priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7080 
7081 	if (priv->dma_cap.rssen && priv->plat->rss_en)
7082 		ndev->features |= NETIF_F_RXHASH;
7083 
7084 	/* MTU range: 46 - hw-specific max */
7085 	ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7086 	if (priv->plat->has_xgmac)
7087 		ndev->max_mtu = XGMAC_JUMBO_LEN;
7088 	else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7089 		ndev->max_mtu = JUMBO_LEN;
7090 	else
7091 		ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7092 	/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7093 	 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7094 	 */
7095 	if ((priv->plat->maxmtu < ndev->max_mtu) &&
7096 	    (priv->plat->maxmtu >= ndev->min_mtu))
7097 		ndev->max_mtu = priv->plat->maxmtu;
7098 	else if (priv->plat->maxmtu < ndev->min_mtu)
7099 		dev_warn(priv->device,
7100 			 "%s: warning: maxmtu having invalid value (%d)\n",
7101 			 __func__, priv->plat->maxmtu);
7102 
7103 	if (flow_ctrl)
7104 		priv->flow_ctrl = FLOW_AUTO;	/* RX/TX pause on */
7105 
7106 	/* Setup channels NAPI */
7107 	stmmac_napi_add(ndev);
7108 
7109 	mutex_init(&priv->lock);
7110 
7111 	/* If a specific clk_csr value is passed from the platform
7112 	 * this means that the CSR Clock Range selection cannot be
7113 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
7114 	 * set the MDC clock dynamically according to the csr actual
7115 	 * clock input.
7116 	 */
7117 	if (priv->plat->clk_csr >= 0)
7118 		priv->clk_csr = priv->plat->clk_csr;
7119 	else
7120 		stmmac_clk_csr_set(priv);
7121 
7122 	stmmac_check_pcs_mode(priv);
7123 
7124 	pm_runtime_get_noresume(device);
7125 	pm_runtime_set_active(device);
7126 	if (!pm_runtime_enabled(device))
7127 		pm_runtime_enable(device);
7128 
7129 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7130 	    priv->hw->pcs != STMMAC_PCS_RTBI) {
7131 		/* MDIO bus Registration */
7132 		ret = stmmac_mdio_register(ndev);
7133 		if (ret < 0) {
7134 			dev_err_probe(priv->device, ret,
7135 				      "%s: MDIO bus (id: %d) registration failed\n",
7136 				      __func__, priv->plat->bus_id);
7137 			goto error_mdio_register;
7138 		}
7139 	}
7140 
7141 	if (priv->plat->speed_mode_2500)
7142 		priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7143 
7144 	if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7145 		ret = stmmac_xpcs_setup(priv->mii);
7146 		if (ret)
7147 			goto error_xpcs_setup;
7148 	}
7149 
7150 	ret = stmmac_phy_setup(priv);
7151 	if (ret) {
7152 		netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7153 		goto error_phy_setup;
7154 	}
7155 
7156 	ret = register_netdev(ndev);
7157 	if (ret) {
7158 		dev_err(priv->device, "%s: ERROR %i registering the device\n",
7159 			__func__, ret);
7160 		goto error_netdev_register;
7161 	}
7162 
7163 	if (priv->plat->serdes_powerup) {
7164 		ret = priv->plat->serdes_powerup(ndev,
7165 						 priv->plat->bsp_priv);
7166 
7167 		if (ret < 0)
7168 			goto error_serdes_powerup;
7169 	}
7170 
7171 #ifdef CONFIG_DEBUG_FS
7172 	stmmac_init_fs(ndev);
7173 #endif
7174 
7175 	if (priv->plat->dump_debug_regs)
7176 		priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7177 
7178 	/* Let pm_runtime_put() disable the clocks.
7179 	 * If CONFIG_PM is not enabled, the clocks will stay powered.
7180 	 */
7181 	pm_runtime_put(device);
7182 
7183 	return ret;
7184 
7185 error_serdes_powerup:
7186 	unregister_netdev(ndev);
7187 error_netdev_register:
7188 	phylink_destroy(priv->phylink);
7189 error_xpcs_setup:
7190 error_phy_setup:
7191 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7192 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7193 		stmmac_mdio_unregister(ndev);
7194 error_mdio_register:
7195 	stmmac_napi_del(ndev);
7196 error_hw_init:
7197 	destroy_workqueue(priv->wq);
7198 	bitmap_free(priv->af_xdp_zc_qps);
7199 
7200 	return ret;
7201 }
7202 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7203 
7204 /**
7205  * stmmac_dvr_remove
7206  * @dev: device pointer
7207  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7208  * changes the link status, releases the DMA descriptor rings.
7209  */
7210 int stmmac_dvr_remove(struct device *dev)
7211 {
7212 	struct net_device *ndev = dev_get_drvdata(dev);
7213 	struct stmmac_priv *priv = netdev_priv(ndev);
7214 
7215 	netdev_info(priv->dev, "%s: removing driver", __func__);
7216 
7217 	pm_runtime_get_sync(dev);
7218 	pm_runtime_disable(dev);
7219 	pm_runtime_put_noidle(dev);
7220 
7221 	stmmac_stop_all_dma(priv);
7222 	stmmac_mac_set(priv, priv->ioaddr, false);
7223 	netif_carrier_off(ndev);
7224 	unregister_netdev(ndev);
7225 
7226 	/* Serdes power down needs to happen after VLAN filter
7227 	 * is deleted that is triggered by unregister_netdev().
7228 	 */
7229 	if (priv->plat->serdes_powerdown)
7230 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7231 
7232 #ifdef CONFIG_DEBUG_FS
7233 	stmmac_exit_fs(ndev);
7234 #endif
7235 	phylink_destroy(priv->phylink);
7236 	if (priv->plat->stmmac_rst)
7237 		reset_control_assert(priv->plat->stmmac_rst);
7238 	reset_control_assert(priv->plat->stmmac_ahb_rst);
7239 	if (priv->hw->pcs != STMMAC_PCS_TBI &&
7240 	    priv->hw->pcs != STMMAC_PCS_RTBI)
7241 		stmmac_mdio_unregister(ndev);
7242 	destroy_workqueue(priv->wq);
7243 	mutex_destroy(&priv->lock);
7244 	bitmap_free(priv->af_xdp_zc_qps);
7245 
7246 	return 0;
7247 }
7248 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7249 
7250 /**
7251  * stmmac_suspend - suspend callback
7252  * @dev: device pointer
7253  * Description: this is the function to suspend the device and it is called
7254  * by the platform driver to stop the network queue, release the resources,
7255  * program the PMT register (for WoL), clean and release driver resources.
7256  */
7257 int stmmac_suspend(struct device *dev)
7258 {
7259 	struct net_device *ndev = dev_get_drvdata(dev);
7260 	struct stmmac_priv *priv = netdev_priv(ndev);
7261 	u32 chan;
7262 
7263 	if (!ndev || !netif_running(ndev))
7264 		return 0;
7265 
7266 	mutex_lock(&priv->lock);
7267 
7268 	netif_device_detach(ndev);
7269 
7270 	stmmac_disable_all_queues(priv);
7271 
7272 	for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7273 		hrtimer_cancel(&priv->tx_queue[chan].txtimer);
7274 
7275 	if (priv->eee_enabled) {
7276 		priv->tx_path_in_lpi_mode = false;
7277 		del_timer_sync(&priv->eee_ctrl_timer);
7278 	}
7279 
7280 	/* Stop TX/RX DMA */
7281 	stmmac_stop_all_dma(priv);
7282 
7283 	if (priv->plat->serdes_powerdown)
7284 		priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7285 
7286 	/* Enable Power down mode by programming the PMT regs */
7287 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7288 		stmmac_pmt(priv, priv->hw, priv->wolopts);
7289 		priv->irq_wake = 1;
7290 	} else {
7291 		stmmac_mac_set(priv, priv->ioaddr, false);
7292 		pinctrl_pm_select_sleep_state(priv->device);
7293 	}
7294 
7295 	mutex_unlock(&priv->lock);
7296 
7297 	rtnl_lock();
7298 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7299 		phylink_suspend(priv->phylink, true);
7300 	} else {
7301 		if (device_may_wakeup(priv->device))
7302 			phylink_speed_down(priv->phylink, false);
7303 		phylink_suspend(priv->phylink, false);
7304 	}
7305 	rtnl_unlock();
7306 
7307 	if (priv->dma_cap.fpesel) {
7308 		/* Disable FPE */
7309 		stmmac_fpe_configure(priv, priv->ioaddr,
7310 				     priv->plat->tx_queues_to_use,
7311 				     priv->plat->rx_queues_to_use, false);
7312 
7313 		stmmac_fpe_handshake(priv, false);
7314 		stmmac_fpe_stop_wq(priv);
7315 	}
7316 
7317 	priv->speed = SPEED_UNKNOWN;
7318 	return 0;
7319 }
7320 EXPORT_SYMBOL_GPL(stmmac_suspend);
7321 
7322 /**
7323  * stmmac_reset_queues_param - reset queue parameters
7324  * @priv: device pointer
7325  */
7326 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7327 {
7328 	u32 rx_cnt = priv->plat->rx_queues_to_use;
7329 	u32 tx_cnt = priv->plat->tx_queues_to_use;
7330 	u32 queue;
7331 
7332 	for (queue = 0; queue < rx_cnt; queue++) {
7333 		struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
7334 
7335 		rx_q->cur_rx = 0;
7336 		rx_q->dirty_rx = 0;
7337 	}
7338 
7339 	for (queue = 0; queue < tx_cnt; queue++) {
7340 		struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
7341 
7342 		tx_q->cur_tx = 0;
7343 		tx_q->dirty_tx = 0;
7344 		tx_q->mss = 0;
7345 
7346 		netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7347 	}
7348 }
7349 
7350 /**
7351  * stmmac_resume - resume callback
7352  * @dev: device pointer
7353  * Description: when resume this function is invoked to setup the DMA and CORE
7354  * in a usable state.
7355  */
7356 int stmmac_resume(struct device *dev)
7357 {
7358 	struct net_device *ndev = dev_get_drvdata(dev);
7359 	struct stmmac_priv *priv = netdev_priv(ndev);
7360 	int ret;
7361 
7362 	if (!netif_running(ndev))
7363 		return 0;
7364 
7365 	/* Power Down bit, into the PM register, is cleared
7366 	 * automatically as soon as a magic packet or a Wake-up frame
7367 	 * is received. Anyway, it's better to manually clear
7368 	 * this bit because it can generate problems while resuming
7369 	 * from another devices (e.g. serial console).
7370 	 */
7371 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7372 		mutex_lock(&priv->lock);
7373 		stmmac_pmt(priv, priv->hw, 0);
7374 		mutex_unlock(&priv->lock);
7375 		priv->irq_wake = 0;
7376 	} else {
7377 		pinctrl_pm_select_default_state(priv->device);
7378 		/* reset the phy so that it's ready */
7379 		if (priv->mii)
7380 			stmmac_mdio_reset(priv->mii);
7381 	}
7382 
7383 	if (priv->plat->serdes_powerup) {
7384 		ret = priv->plat->serdes_powerup(ndev,
7385 						 priv->plat->bsp_priv);
7386 
7387 		if (ret < 0)
7388 			return ret;
7389 	}
7390 
7391 	rtnl_lock();
7392 	if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7393 		phylink_resume(priv->phylink);
7394 	} else {
7395 		phylink_resume(priv->phylink);
7396 		if (device_may_wakeup(priv->device))
7397 			phylink_speed_up(priv->phylink);
7398 	}
7399 	rtnl_unlock();
7400 
7401 	rtnl_lock();
7402 	mutex_lock(&priv->lock);
7403 
7404 	stmmac_reset_queues_param(priv);
7405 
7406 	stmmac_free_tx_skbufs(priv);
7407 	stmmac_clear_descriptors(priv);
7408 
7409 	stmmac_hw_setup(ndev, false);
7410 	stmmac_init_coalesce(priv);
7411 	stmmac_set_rx_mode(ndev);
7412 
7413 	stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7414 
7415 	stmmac_enable_all_queues(priv);
7416 	stmmac_enable_all_dma_irq(priv);
7417 
7418 	mutex_unlock(&priv->lock);
7419 	rtnl_unlock();
7420 
7421 	netif_device_attach(ndev);
7422 
7423 	return 0;
7424 }
7425 EXPORT_SYMBOL_GPL(stmmac_resume);
7426 
7427 #ifndef MODULE
7428 static int __init stmmac_cmdline_opt(char *str)
7429 {
7430 	char *opt;
7431 
7432 	if (!str || !*str)
7433 		return 1;
7434 	while ((opt = strsep(&str, ",")) != NULL) {
7435 		if (!strncmp(opt, "debug:", 6)) {
7436 			if (kstrtoint(opt + 6, 0, &debug))
7437 				goto err;
7438 		} else if (!strncmp(opt, "phyaddr:", 8)) {
7439 			if (kstrtoint(opt + 8, 0, &phyaddr))
7440 				goto err;
7441 		} else if (!strncmp(opt, "buf_sz:", 7)) {
7442 			if (kstrtoint(opt + 7, 0, &buf_sz))
7443 				goto err;
7444 		} else if (!strncmp(opt, "tc:", 3)) {
7445 			if (kstrtoint(opt + 3, 0, &tc))
7446 				goto err;
7447 		} else if (!strncmp(opt, "watchdog:", 9)) {
7448 			if (kstrtoint(opt + 9, 0, &watchdog))
7449 				goto err;
7450 		} else if (!strncmp(opt, "flow_ctrl:", 10)) {
7451 			if (kstrtoint(opt + 10, 0, &flow_ctrl))
7452 				goto err;
7453 		} else if (!strncmp(opt, "pause:", 6)) {
7454 			if (kstrtoint(opt + 6, 0, &pause))
7455 				goto err;
7456 		} else if (!strncmp(opt, "eee_timer:", 10)) {
7457 			if (kstrtoint(opt + 10, 0, &eee_timer))
7458 				goto err;
7459 		} else if (!strncmp(opt, "chain_mode:", 11)) {
7460 			if (kstrtoint(opt + 11, 0, &chain_mode))
7461 				goto err;
7462 		}
7463 	}
7464 	return 1;
7465 
7466 err:
7467 	pr_err("%s: ERROR broken module parameter conversion", __func__);
7468 	return 1;
7469 }
7470 
7471 __setup("stmmaceth=", stmmac_cmdline_opt);
7472 #endif /* MODULE */
7473 
7474 static int __init stmmac_init(void)
7475 {
7476 #ifdef CONFIG_DEBUG_FS
7477 	/* Create debugfs main directory if it doesn't exist yet */
7478 	if (!stmmac_fs_dir)
7479 		stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7480 	register_netdevice_notifier(&stmmac_notifier);
7481 #endif
7482 
7483 	return 0;
7484 }
7485 
7486 static void __exit stmmac_exit(void)
7487 {
7488 #ifdef CONFIG_DEBUG_FS
7489 	unregister_netdevice_notifier(&stmmac_notifier);
7490 	debugfs_remove_recursive(stmmac_fs_dir);
7491 #endif
7492 }
7493 
7494 module_init(stmmac_init)
7495 module_exit(stmmac_exit)
7496 
7497 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7498 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7499 MODULE_LICENSE("GPL");
7500