1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 136 u32 rxmode, u32 chan); 137 138 #ifdef CONFIG_DEBUG_FS 139 static const struct net_device_ops stmmac_netdev_ops; 140 static void stmmac_init_fs(struct net_device *dev); 141 static void stmmac_exit_fs(struct net_device *dev); 142 #endif 143 144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 145 146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 147 { 148 int ret = 0; 149 150 if (enabled) { 151 ret = clk_prepare_enable(priv->plat->stmmac_clk); 152 if (ret) 153 return ret; 154 ret = clk_prepare_enable(priv->plat->pclk); 155 if (ret) { 156 clk_disable_unprepare(priv->plat->stmmac_clk); 157 return ret; 158 } 159 if (priv->plat->clks_config) { 160 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 161 if (ret) { 162 clk_disable_unprepare(priv->plat->stmmac_clk); 163 clk_disable_unprepare(priv->plat->pclk); 164 return ret; 165 } 166 } 167 } else { 168 clk_disable_unprepare(priv->plat->stmmac_clk); 169 clk_disable_unprepare(priv->plat->pclk); 170 if (priv->plat->clks_config) 171 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 172 } 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 177 178 /** 179 * stmmac_verify_args - verify the driver parameters. 180 * Description: it checks the driver parameters and set a default in case of 181 * errors. 182 */ 183 static void stmmac_verify_args(void) 184 { 185 if (unlikely(watchdog < 0)) 186 watchdog = TX_TIMEO; 187 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 188 buf_sz = DEFAULT_BUFSIZE; 189 if (unlikely(flow_ctrl > 1)) 190 flow_ctrl = FLOW_AUTO; 191 else if (likely(flow_ctrl < 0)) 192 flow_ctrl = FLOW_OFF; 193 if (unlikely((pause < 0) || (pause > 0xffff))) 194 pause = PAUSE_TIME; 195 if (eee_timer < 0) 196 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 197 } 198 199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 200 { 201 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 202 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 203 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 204 u32 queue; 205 206 for (queue = 0; queue < maxq; queue++) { 207 struct stmmac_channel *ch = &priv->channel[queue]; 208 209 if (stmmac_xdp_is_enabled(priv) && 210 test_bit(queue, priv->af_xdp_zc_qps)) { 211 napi_disable(&ch->rxtx_napi); 212 continue; 213 } 214 215 if (queue < rx_queues_cnt) 216 napi_disable(&ch->rx_napi); 217 if (queue < tx_queues_cnt) 218 napi_disable(&ch->tx_napi); 219 } 220 } 221 222 /** 223 * stmmac_disable_all_queues - Disable all queues 224 * @priv: driver private structure 225 */ 226 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 227 { 228 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 229 struct stmmac_rx_queue *rx_q; 230 u32 queue; 231 232 /* synchronize_rcu() needed for pending XDP buffers to drain */ 233 for (queue = 0; queue < rx_queues_cnt; queue++) { 234 rx_q = &priv->rx_queue[queue]; 235 if (rx_q->xsk_pool) { 236 synchronize_rcu(); 237 break; 238 } 239 } 240 241 __stmmac_disable_all_queues(priv); 242 } 243 244 /** 245 * stmmac_enable_all_queues - Enable all queues 246 * @priv: driver private structure 247 */ 248 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 249 { 250 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 251 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 252 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 253 u32 queue; 254 255 for (queue = 0; queue < maxq; queue++) { 256 struct stmmac_channel *ch = &priv->channel[queue]; 257 258 if (stmmac_xdp_is_enabled(priv) && 259 test_bit(queue, priv->af_xdp_zc_qps)) { 260 napi_enable(&ch->rxtx_napi); 261 continue; 262 } 263 264 if (queue < rx_queues_cnt) 265 napi_enable(&ch->rx_napi); 266 if (queue < tx_queues_cnt) 267 napi_enable(&ch->tx_napi); 268 } 269 } 270 271 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 272 { 273 if (!test_bit(STMMAC_DOWN, &priv->state) && 274 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 275 queue_work(priv->wq, &priv->service_task); 276 } 277 278 static void stmmac_global_err(struct stmmac_priv *priv) 279 { 280 netif_carrier_off(priv->dev); 281 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 282 stmmac_service_event_schedule(priv); 283 } 284 285 /** 286 * stmmac_clk_csr_set - dynamically set the MDC clock 287 * @priv: driver private structure 288 * Description: this is to dynamically set the MDC clock according to the csr 289 * clock input. 290 * Note: 291 * If a specific clk_csr value is passed from the platform 292 * this means that the CSR Clock Range selection cannot be 293 * changed at run-time and it is fixed (as reported in the driver 294 * documentation). Viceversa the driver will try to set the MDC 295 * clock dynamically according to the actual clock input. 296 */ 297 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 298 { 299 u32 clk_rate; 300 301 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 302 303 /* Platform provided default clk_csr would be assumed valid 304 * for all other cases except for the below mentioned ones. 305 * For values higher than the IEEE 802.3 specified frequency 306 * we can not estimate the proper divider as it is not known 307 * the frequency of clk_csr_i. So we do not change the default 308 * divider. 309 */ 310 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 311 if (clk_rate < CSR_F_35M) 312 priv->clk_csr = STMMAC_CSR_20_35M; 313 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 314 priv->clk_csr = STMMAC_CSR_35_60M; 315 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 316 priv->clk_csr = STMMAC_CSR_60_100M; 317 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 318 priv->clk_csr = STMMAC_CSR_100_150M; 319 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 320 priv->clk_csr = STMMAC_CSR_150_250M; 321 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 322 priv->clk_csr = STMMAC_CSR_250_300M; 323 } 324 325 if (priv->plat->has_sun8i) { 326 if (clk_rate > 160000000) 327 priv->clk_csr = 0x03; 328 else if (clk_rate > 80000000) 329 priv->clk_csr = 0x02; 330 else if (clk_rate > 40000000) 331 priv->clk_csr = 0x01; 332 else 333 priv->clk_csr = 0; 334 } 335 336 if (priv->plat->has_xgmac) { 337 if (clk_rate > 400000000) 338 priv->clk_csr = 0x5; 339 else if (clk_rate > 350000000) 340 priv->clk_csr = 0x4; 341 else if (clk_rate > 300000000) 342 priv->clk_csr = 0x3; 343 else if (clk_rate > 250000000) 344 priv->clk_csr = 0x2; 345 else if (clk_rate > 150000000) 346 priv->clk_csr = 0x1; 347 else 348 priv->clk_csr = 0x0; 349 } 350 } 351 352 static void print_pkt(unsigned char *buf, int len) 353 { 354 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 355 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 356 } 357 358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 359 { 360 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 361 u32 avail; 362 363 if (tx_q->dirty_tx > tx_q->cur_tx) 364 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 365 else 366 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 367 368 return avail; 369 } 370 371 /** 372 * stmmac_rx_dirty - Get RX queue dirty 373 * @priv: driver private structure 374 * @queue: RX queue index 375 */ 376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 377 { 378 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 379 u32 dirty; 380 381 if (rx_q->dirty_rx <= rx_q->cur_rx) 382 dirty = rx_q->cur_rx - rx_q->dirty_rx; 383 else 384 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 385 386 return dirty; 387 } 388 389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 390 { 391 int tx_lpi_timer; 392 393 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 394 priv->eee_sw_timer_en = en ? 0 : 1; 395 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 396 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 397 } 398 399 /** 400 * stmmac_enable_eee_mode - check and enter in LPI mode 401 * @priv: driver private structure 402 * Description: this function is to verify and enter in LPI mode in case of 403 * EEE. 404 */ 405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 406 { 407 u32 tx_cnt = priv->plat->tx_queues_to_use; 408 u32 queue; 409 410 /* check if all TX queues have the work finished */ 411 for (queue = 0; queue < tx_cnt; queue++) { 412 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 413 414 if (tx_q->dirty_tx != tx_q->cur_tx) 415 return -EBUSY; /* still unfinished work */ 416 } 417 418 /* Check and enter in LPI mode */ 419 if (!priv->tx_path_in_lpi_mode) 420 stmmac_set_eee_mode(priv, priv->hw, 421 priv->plat->en_tx_lpi_clockgating); 422 return 0; 423 } 424 425 /** 426 * stmmac_disable_eee_mode - disable and exit from LPI mode 427 * @priv: driver private structure 428 * Description: this function is to exit and disable EEE in case of 429 * LPI state is true. This is called by the xmit. 430 */ 431 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 432 { 433 if (!priv->eee_sw_timer_en) { 434 stmmac_lpi_entry_timer_config(priv, 0); 435 return; 436 } 437 438 stmmac_reset_eee_mode(priv, priv->hw); 439 del_timer_sync(&priv->eee_ctrl_timer); 440 priv->tx_path_in_lpi_mode = false; 441 } 442 443 /** 444 * stmmac_eee_ctrl_timer - EEE TX SW timer. 445 * @t: timer_list struct containing private info 446 * Description: 447 * if there is no data transfer and if we are not in LPI state, 448 * then MAC Transmitter can be moved to LPI state. 449 */ 450 static void stmmac_eee_ctrl_timer(struct timer_list *t) 451 { 452 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 453 454 if (stmmac_enable_eee_mode(priv)) 455 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 456 } 457 458 /** 459 * stmmac_eee_init - init EEE 460 * @priv: driver private structure 461 * Description: 462 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 463 * can also manage EEE, this function enable the LPI state and start related 464 * timer. 465 */ 466 bool stmmac_eee_init(struct stmmac_priv *priv) 467 { 468 int eee_tw_timer = priv->eee_tw_timer; 469 470 /* Using PCS we cannot dial with the phy registers at this stage 471 * so we do not support extra feature like EEE. 472 */ 473 if (priv->hw->pcs == STMMAC_PCS_TBI || 474 priv->hw->pcs == STMMAC_PCS_RTBI) 475 return false; 476 477 /* Check if MAC core supports the EEE feature. */ 478 if (!priv->dma_cap.eee) 479 return false; 480 481 mutex_lock(&priv->lock); 482 483 /* Check if it needs to be deactivated */ 484 if (!priv->eee_active) { 485 if (priv->eee_enabled) { 486 netdev_dbg(priv->dev, "disable EEE\n"); 487 stmmac_lpi_entry_timer_config(priv, 0); 488 del_timer_sync(&priv->eee_ctrl_timer); 489 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 490 if (priv->hw->xpcs) 491 xpcs_config_eee(priv->hw->xpcs, 492 priv->plat->mult_fact_100ns, 493 false); 494 } 495 mutex_unlock(&priv->lock); 496 return false; 497 } 498 499 if (priv->eee_active && !priv->eee_enabled) { 500 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 501 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 502 eee_tw_timer); 503 if (priv->hw->xpcs) 504 xpcs_config_eee(priv->hw->xpcs, 505 priv->plat->mult_fact_100ns, 506 true); 507 } 508 509 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 510 del_timer_sync(&priv->eee_ctrl_timer); 511 priv->tx_path_in_lpi_mode = false; 512 stmmac_lpi_entry_timer_config(priv, 1); 513 } else { 514 stmmac_lpi_entry_timer_config(priv, 0); 515 mod_timer(&priv->eee_ctrl_timer, 516 STMMAC_LPI_T(priv->tx_lpi_timer)); 517 } 518 519 mutex_unlock(&priv->lock); 520 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 521 return true; 522 } 523 524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 525 * @priv: driver private structure 526 * @p : descriptor pointer 527 * @skb : the socket buffer 528 * Description : 529 * This function will read timestamp from the descriptor & pass it to stack. 530 * and also perform some sanity checks. 531 */ 532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 533 struct dma_desc *p, struct sk_buff *skb) 534 { 535 struct skb_shared_hwtstamps shhwtstamp; 536 bool found = false; 537 u64 ns = 0; 538 539 if (!priv->hwts_tx_en) 540 return; 541 542 /* exit if skb doesn't support hw tstamp */ 543 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 544 return; 545 546 /* check tx tstamp status */ 547 if (stmmac_get_tx_timestamp_status(priv, p)) { 548 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 549 found = true; 550 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 551 found = true; 552 } 553 554 if (found) { 555 ns -= priv->plat->cdc_error_adj; 556 557 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 558 shhwtstamp.hwtstamp = ns_to_ktime(ns); 559 560 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 561 /* pass tstamp to stack */ 562 skb_tstamp_tx(skb, &shhwtstamp); 563 } 564 } 565 566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 567 * @priv: driver private structure 568 * @p : descriptor pointer 569 * @np : next descriptor pointer 570 * @skb : the socket buffer 571 * Description : 572 * This function will read received packet's timestamp from the descriptor 573 * and pass it to stack. It also perform some sanity checks. 574 */ 575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 576 struct dma_desc *np, struct sk_buff *skb) 577 { 578 struct skb_shared_hwtstamps *shhwtstamp = NULL; 579 struct dma_desc *desc = p; 580 u64 ns = 0; 581 582 if (!priv->hwts_rx_en) 583 return; 584 /* For GMAC4, the valid timestamp is from CTX next desc. */ 585 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 586 desc = np; 587 588 /* Check if timestamp is available */ 589 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 590 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 591 592 ns -= priv->plat->cdc_error_adj; 593 594 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 595 shhwtstamp = skb_hwtstamps(skb); 596 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 597 shhwtstamp->hwtstamp = ns_to_ktime(ns); 598 } else { 599 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 600 } 601 } 602 603 /** 604 * stmmac_hwtstamp_set - control hardware timestamping. 605 * @dev: device pointer. 606 * @ifr: An IOCTL specific structure, that can contain a pointer to 607 * a proprietary structure used to pass information to the driver. 608 * Description: 609 * This function configures the MAC to enable/disable both outgoing(TX) 610 * and incoming(RX) packets time stamping based on user input. 611 * Return Value: 612 * 0 on success and an appropriate -ve integer on failure. 613 */ 614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 615 { 616 struct stmmac_priv *priv = netdev_priv(dev); 617 struct hwtstamp_config config; 618 u32 ptp_v2 = 0; 619 u32 tstamp_all = 0; 620 u32 ptp_over_ipv4_udp = 0; 621 u32 ptp_over_ipv6_udp = 0; 622 u32 ptp_over_ethernet = 0; 623 u32 snap_type_sel = 0; 624 u32 ts_master_en = 0; 625 u32 ts_event_en = 0; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 if (config.tx_type != HWTSTAMP_TX_OFF && 643 config.tx_type != HWTSTAMP_TX_ON) 644 return -ERANGE; 645 646 if (priv->adv_ts) { 647 switch (config.rx_filter) { 648 case HWTSTAMP_FILTER_NONE: 649 /* time stamp no incoming packet at all */ 650 config.rx_filter = HWTSTAMP_FILTER_NONE; 651 break; 652 653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 654 /* PTP v1, UDP, any kind of event packet */ 655 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 656 /* 'xmac' hardware can support Sync, Pdelay_Req and 657 * Pdelay_resp by setting bit14 and bits17/16 to 01 658 * This leaves Delay_Req timestamps out. 659 * Enable all events *and* general purpose message 660 * timestamping 661 */ 662 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 663 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 664 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 665 break; 666 667 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 668 /* PTP v1, UDP, Sync packet */ 669 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 670 /* take time stamp for SYNC messages only */ 671 ts_event_en = PTP_TCR_TSEVNTENA; 672 673 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 674 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 675 break; 676 677 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 678 /* PTP v1, UDP, Delay_req packet */ 679 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 680 /* take time stamp for Delay_Req messages only */ 681 ts_master_en = PTP_TCR_TSMSTRENA; 682 ts_event_en = PTP_TCR_TSEVNTENA; 683 684 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 685 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 686 break; 687 688 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 689 /* PTP v2, UDP, any kind of event packet */ 690 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 691 ptp_v2 = PTP_TCR_TSVER2ENA; 692 /* take time stamp for all event messages */ 693 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 694 695 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 696 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 697 break; 698 699 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 700 /* PTP v2, UDP, Sync packet */ 701 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 702 ptp_v2 = PTP_TCR_TSVER2ENA; 703 /* take time stamp for SYNC messages only */ 704 ts_event_en = PTP_TCR_TSEVNTENA; 705 706 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 707 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 708 break; 709 710 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 711 /* PTP v2, UDP, Delay_req packet */ 712 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 713 ptp_v2 = PTP_TCR_TSVER2ENA; 714 /* take time stamp for Delay_Req messages only */ 715 ts_master_en = PTP_TCR_TSMSTRENA; 716 ts_event_en = PTP_TCR_TSEVNTENA; 717 718 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 719 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 720 break; 721 722 case HWTSTAMP_FILTER_PTP_V2_EVENT: 723 /* PTP v2/802.AS1 any layer, any kind of event packet */ 724 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 725 ptp_v2 = PTP_TCR_TSVER2ENA; 726 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 727 if (priv->synopsys_id < DWMAC_CORE_4_10) 728 ts_event_en = PTP_TCR_TSEVNTENA; 729 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 730 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 731 ptp_over_ethernet = PTP_TCR_TSIPENA; 732 break; 733 734 case HWTSTAMP_FILTER_PTP_V2_SYNC: 735 /* PTP v2/802.AS1, any layer, Sync packet */ 736 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 737 ptp_v2 = PTP_TCR_TSVER2ENA; 738 /* take time stamp for SYNC messages only */ 739 ts_event_en = PTP_TCR_TSEVNTENA; 740 741 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 742 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 743 ptp_over_ethernet = PTP_TCR_TSIPENA; 744 break; 745 746 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 747 /* PTP v2/802.AS1, any layer, Delay_req packet */ 748 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 749 ptp_v2 = PTP_TCR_TSVER2ENA; 750 /* take time stamp for Delay_Req messages only */ 751 ts_master_en = PTP_TCR_TSMSTRENA; 752 ts_event_en = PTP_TCR_TSEVNTENA; 753 754 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 755 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 756 ptp_over_ethernet = PTP_TCR_TSIPENA; 757 break; 758 759 case HWTSTAMP_FILTER_NTP_ALL: 760 case HWTSTAMP_FILTER_ALL: 761 /* time stamp any incoming packet */ 762 config.rx_filter = HWTSTAMP_FILTER_ALL; 763 tstamp_all = PTP_TCR_TSENALL; 764 break; 765 766 default: 767 return -ERANGE; 768 } 769 } else { 770 switch (config.rx_filter) { 771 case HWTSTAMP_FILTER_NONE: 772 config.rx_filter = HWTSTAMP_FILTER_NONE; 773 break; 774 default: 775 /* PTP v1, UDP, any kind of event packet */ 776 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 777 break; 778 } 779 } 780 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 781 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 782 783 priv->systime_flags = STMMAC_HWTS_ACTIVE; 784 785 if (priv->hwts_tx_en || priv->hwts_rx_en) { 786 priv->systime_flags |= tstamp_all | ptp_v2 | 787 ptp_over_ethernet | ptp_over_ipv6_udp | 788 ptp_over_ipv4_udp | ts_event_en | 789 ts_master_en | snap_type_sel; 790 } 791 792 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 793 794 memcpy(&priv->tstamp_config, &config, sizeof(config)); 795 796 return copy_to_user(ifr->ifr_data, &config, 797 sizeof(config)) ? -EFAULT : 0; 798 } 799 800 /** 801 * stmmac_hwtstamp_get - read hardware timestamping. 802 * @dev: device pointer. 803 * @ifr: An IOCTL specific structure, that can contain a pointer to 804 * a proprietary structure used to pass information to the driver. 805 * Description: 806 * This function obtain the current hardware timestamping settings 807 * as requested. 808 */ 809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 810 { 811 struct stmmac_priv *priv = netdev_priv(dev); 812 struct hwtstamp_config *config = &priv->tstamp_config; 813 814 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 815 return -EOPNOTSUPP; 816 817 return copy_to_user(ifr->ifr_data, config, 818 sizeof(*config)) ? -EFAULT : 0; 819 } 820 821 /** 822 * stmmac_init_tstamp_counter - init hardware timestamping counter 823 * @priv: driver private structure 824 * @systime_flags: timestamping flags 825 * Description: 826 * Initialize hardware counter for packet timestamping. 827 * This is valid as long as the interface is open and not suspended. 828 * Will be rerun after resuming from suspend, case in which the timestamping 829 * flags updated by stmmac_hwtstamp_set() also need to be restored. 830 */ 831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 832 { 833 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 834 struct timespec64 now; 835 u32 sec_inc = 0; 836 u64 temp = 0; 837 int ret; 838 839 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 840 return -EOPNOTSUPP; 841 842 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 843 if (ret < 0) { 844 netdev_warn(priv->dev, 845 "failed to enable PTP reference clock: %pe\n", 846 ERR_PTR(ret)); 847 return ret; 848 } 849 850 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 851 priv->systime_flags = systime_flags; 852 853 /* program Sub Second Increment reg */ 854 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 855 priv->plat->clk_ptp_rate, 856 xmac, &sec_inc); 857 temp = div_u64(1000000000ULL, sec_inc); 858 859 /* Store sub second increment for later use */ 860 priv->sub_second_inc = sec_inc; 861 862 /* calculate default added value: 863 * formula is : 864 * addend = (2^32)/freq_div_ratio; 865 * where, freq_div_ratio = 1e9ns/sec_inc 866 */ 867 temp = (u64)(temp << 32); 868 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 869 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 870 871 /* initialize system time */ 872 ktime_get_real_ts64(&now); 873 874 /* lower 32 bits of tv_sec are safe until y2106 */ 875 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 876 877 return 0; 878 } 879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 880 881 /** 882 * stmmac_init_ptp - init PTP 883 * @priv: driver private structure 884 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 885 * This is done by looking at the HW cap. register. 886 * This function also registers the ptp driver. 887 */ 888 static int stmmac_init_ptp(struct stmmac_priv *priv) 889 { 890 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 891 int ret; 892 893 if (priv->plat->ptp_clk_freq_config) 894 priv->plat->ptp_clk_freq_config(priv); 895 896 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 897 if (ret) 898 return ret; 899 900 priv->adv_ts = 0; 901 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 902 if (xmac && priv->dma_cap.atime_stamp) 903 priv->adv_ts = 1; 904 /* Dwmac 3.x core with extend_desc can support adv_ts */ 905 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 906 priv->adv_ts = 1; 907 908 if (priv->dma_cap.time_stamp) 909 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 910 911 if (priv->adv_ts) 912 netdev_info(priv->dev, 913 "IEEE 1588-2008 Advanced Timestamp supported\n"); 914 915 priv->hwts_tx_en = 0; 916 priv->hwts_rx_en = 0; 917 918 return 0; 919 } 920 921 static void stmmac_release_ptp(struct stmmac_priv *priv) 922 { 923 clk_disable_unprepare(priv->plat->clk_ptp_ref); 924 stmmac_ptp_unregister(priv); 925 } 926 927 /** 928 * stmmac_mac_flow_ctrl - Configure flow control in all queues 929 * @priv: driver private structure 930 * @duplex: duplex passed to the next function 931 * Description: It is used for configuring the flow control in all queues 932 */ 933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 934 { 935 u32 tx_cnt = priv->plat->tx_queues_to_use; 936 937 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 938 priv->pause, tx_cnt); 939 } 940 941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 942 phy_interface_t interface) 943 { 944 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 945 946 if (!priv->hw->xpcs) 947 return NULL; 948 949 return &priv->hw->xpcs->pcs; 950 } 951 952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 953 const struct phylink_link_state *state) 954 { 955 /* Nothing to do, xpcs_config() handles everything */ 956 } 957 958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 959 { 960 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 961 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 962 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 963 bool *hs_enable = &fpe_cfg->hs_enable; 964 965 if (is_up && *hs_enable) { 966 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 967 } else { 968 *lo_state = FPE_STATE_OFF; 969 *lp_state = FPE_STATE_OFF; 970 } 971 } 972 973 static void stmmac_mac_link_down(struct phylink_config *config, 974 unsigned int mode, phy_interface_t interface) 975 { 976 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 977 978 stmmac_mac_set(priv, priv->ioaddr, false); 979 priv->eee_active = false; 980 priv->tx_lpi_enabled = false; 981 priv->eee_enabled = stmmac_eee_init(priv); 982 stmmac_set_eee_pls(priv, priv->hw, false); 983 984 if (priv->dma_cap.fpesel) 985 stmmac_fpe_link_state_handle(priv, false); 986 } 987 988 static void stmmac_mac_link_up(struct phylink_config *config, 989 struct phy_device *phy, 990 unsigned int mode, phy_interface_t interface, 991 int speed, int duplex, 992 bool tx_pause, bool rx_pause) 993 { 994 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 995 u32 ctrl; 996 997 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 998 ctrl &= ~priv->hw->link.speed_mask; 999 1000 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1001 switch (speed) { 1002 case SPEED_10000: 1003 ctrl |= priv->hw->link.xgmii.speed10000; 1004 break; 1005 case SPEED_5000: 1006 ctrl |= priv->hw->link.xgmii.speed5000; 1007 break; 1008 case SPEED_2500: 1009 ctrl |= priv->hw->link.xgmii.speed2500; 1010 break; 1011 default: 1012 return; 1013 } 1014 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1015 switch (speed) { 1016 case SPEED_100000: 1017 ctrl |= priv->hw->link.xlgmii.speed100000; 1018 break; 1019 case SPEED_50000: 1020 ctrl |= priv->hw->link.xlgmii.speed50000; 1021 break; 1022 case SPEED_40000: 1023 ctrl |= priv->hw->link.xlgmii.speed40000; 1024 break; 1025 case SPEED_25000: 1026 ctrl |= priv->hw->link.xlgmii.speed25000; 1027 break; 1028 case SPEED_10000: 1029 ctrl |= priv->hw->link.xgmii.speed10000; 1030 break; 1031 case SPEED_2500: 1032 ctrl |= priv->hw->link.speed2500; 1033 break; 1034 case SPEED_1000: 1035 ctrl |= priv->hw->link.speed1000; 1036 break; 1037 default: 1038 return; 1039 } 1040 } else { 1041 switch (speed) { 1042 case SPEED_2500: 1043 ctrl |= priv->hw->link.speed2500; 1044 break; 1045 case SPEED_1000: 1046 ctrl |= priv->hw->link.speed1000; 1047 break; 1048 case SPEED_100: 1049 ctrl |= priv->hw->link.speed100; 1050 break; 1051 case SPEED_10: 1052 ctrl |= priv->hw->link.speed10; 1053 break; 1054 default: 1055 return; 1056 } 1057 } 1058 1059 priv->speed = speed; 1060 1061 if (priv->plat->fix_mac_speed) 1062 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1063 1064 if (!duplex) 1065 ctrl &= ~priv->hw->link.duplex; 1066 else 1067 ctrl |= priv->hw->link.duplex; 1068 1069 /* Flow Control operation */ 1070 if (tx_pause && rx_pause) 1071 stmmac_mac_flow_ctrl(priv, duplex); 1072 1073 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1074 1075 stmmac_mac_set(priv, priv->ioaddr, true); 1076 if (phy && priv->dma_cap.eee) { 1077 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1078 priv->eee_enabled = stmmac_eee_init(priv); 1079 priv->tx_lpi_enabled = priv->eee_enabled; 1080 stmmac_set_eee_pls(priv, priv->hw, true); 1081 } 1082 1083 if (priv->dma_cap.fpesel) 1084 stmmac_fpe_link_state_handle(priv, true); 1085 } 1086 1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1088 .validate = phylink_generic_validate, 1089 .mac_select_pcs = stmmac_mac_select_pcs, 1090 .mac_config = stmmac_mac_config, 1091 .mac_link_down = stmmac_mac_link_down, 1092 .mac_link_up = stmmac_mac_link_up, 1093 }; 1094 1095 /** 1096 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1097 * @priv: driver private structure 1098 * Description: this is to verify if the HW supports the PCS. 1099 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1100 * configured for the TBI, RTBI, or SGMII PHY interface. 1101 */ 1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1103 { 1104 int interface = priv->plat->interface; 1105 1106 if (priv->dma_cap.pcs) { 1107 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1108 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1109 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1110 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1111 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1112 priv->hw->pcs = STMMAC_PCS_RGMII; 1113 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1114 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1115 priv->hw->pcs = STMMAC_PCS_SGMII; 1116 } 1117 } 1118 } 1119 1120 /** 1121 * stmmac_init_phy - PHY initialization 1122 * @dev: net device structure 1123 * Description: it initializes the driver's PHY state, and attaches the PHY 1124 * to the mac driver. 1125 * Return value: 1126 * 0 on success 1127 */ 1128 static int stmmac_init_phy(struct net_device *dev) 1129 { 1130 struct stmmac_priv *priv = netdev_priv(dev); 1131 struct fwnode_handle *fwnode; 1132 int ret; 1133 1134 fwnode = of_fwnode_handle(priv->plat->phylink_node); 1135 if (!fwnode) 1136 fwnode = dev_fwnode(priv->device); 1137 1138 if (fwnode) 1139 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); 1140 1141 /* Some DT bindings do not set-up the PHY handle. Let's try to 1142 * manually parse it 1143 */ 1144 if (!fwnode || ret) { 1145 int addr = priv->plat->phy_addr; 1146 struct phy_device *phydev; 1147 1148 phydev = mdiobus_get_phy(priv->mii, addr); 1149 if (!phydev) { 1150 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1151 return -ENODEV; 1152 } 1153 1154 ret = phylink_connect_phy(priv->phylink, phydev); 1155 } 1156 1157 if (!priv->plat->pmt) { 1158 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1159 1160 phylink_ethtool_get_wol(priv->phylink, &wol); 1161 device_set_wakeup_capable(priv->device, !!wol.supported); 1162 } 1163 1164 return ret; 1165 } 1166 1167 static int stmmac_phy_setup(struct stmmac_priv *priv) 1168 { 1169 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1170 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1171 int max_speed = priv->plat->max_speed; 1172 int mode = priv->plat->phy_interface; 1173 struct phylink *phylink; 1174 1175 priv->phylink_config.dev = &priv->dev->dev; 1176 priv->phylink_config.type = PHYLINK_NETDEV; 1177 if (priv->plat->mdio_bus_data) 1178 priv->phylink_config.ovr_an_inband = 1179 mdio_bus_data->xpcs_an_inband; 1180 1181 if (!fwnode) 1182 fwnode = dev_fwnode(priv->device); 1183 1184 /* Set the platform/firmware specified interface mode */ 1185 __set_bit(mode, priv->phylink_config.supported_interfaces); 1186 1187 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1188 if (priv->hw->xpcs) 1189 xpcs_get_interfaces(priv->hw->xpcs, 1190 priv->phylink_config.supported_interfaces); 1191 1192 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1193 MAC_10 | MAC_100; 1194 1195 if (!max_speed || max_speed >= 1000) 1196 priv->phylink_config.mac_capabilities |= MAC_1000; 1197 1198 if (priv->plat->has_gmac4) { 1199 if (!max_speed || max_speed >= 2500) 1200 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1201 } else if (priv->plat->has_xgmac) { 1202 if (!max_speed || max_speed >= 2500) 1203 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1204 if (!max_speed || max_speed >= 5000) 1205 priv->phylink_config.mac_capabilities |= MAC_5000FD; 1206 if (!max_speed || max_speed >= 10000) 1207 priv->phylink_config.mac_capabilities |= MAC_10000FD; 1208 if (!max_speed || max_speed >= 25000) 1209 priv->phylink_config.mac_capabilities |= MAC_25000FD; 1210 if (!max_speed || max_speed >= 40000) 1211 priv->phylink_config.mac_capabilities |= MAC_40000FD; 1212 if (!max_speed || max_speed >= 50000) 1213 priv->phylink_config.mac_capabilities |= MAC_50000FD; 1214 if (!max_speed || max_speed >= 100000) 1215 priv->phylink_config.mac_capabilities |= MAC_100000FD; 1216 } 1217 1218 /* Half-Duplex can only work with single queue */ 1219 if (priv->plat->tx_queues_to_use > 1) 1220 priv->phylink_config.mac_capabilities &= 1221 ~(MAC_10HD | MAC_100HD | MAC_1000HD); 1222 1223 phylink = phylink_create(&priv->phylink_config, fwnode, 1224 mode, &stmmac_phylink_mac_ops); 1225 if (IS_ERR(phylink)) 1226 return PTR_ERR(phylink); 1227 1228 priv->phylink = phylink; 1229 return 0; 1230 } 1231 1232 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1233 { 1234 u32 rx_cnt = priv->plat->rx_queues_to_use; 1235 unsigned int desc_size; 1236 void *head_rx; 1237 u32 queue; 1238 1239 /* Display RX rings */ 1240 for (queue = 0; queue < rx_cnt; queue++) { 1241 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1242 1243 pr_info("\tRX Queue %u rings\n", queue); 1244 1245 if (priv->extend_desc) { 1246 head_rx = (void *)rx_q->dma_erx; 1247 desc_size = sizeof(struct dma_extended_desc); 1248 } else { 1249 head_rx = (void *)rx_q->dma_rx; 1250 desc_size = sizeof(struct dma_desc); 1251 } 1252 1253 /* Display RX ring */ 1254 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1255 rx_q->dma_rx_phy, desc_size); 1256 } 1257 } 1258 1259 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1260 { 1261 u32 tx_cnt = priv->plat->tx_queues_to_use; 1262 unsigned int desc_size; 1263 void *head_tx; 1264 u32 queue; 1265 1266 /* Display TX rings */ 1267 for (queue = 0; queue < tx_cnt; queue++) { 1268 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1269 1270 pr_info("\tTX Queue %d rings\n", queue); 1271 1272 if (priv->extend_desc) { 1273 head_tx = (void *)tx_q->dma_etx; 1274 desc_size = sizeof(struct dma_extended_desc); 1275 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1276 head_tx = (void *)tx_q->dma_entx; 1277 desc_size = sizeof(struct dma_edesc); 1278 } else { 1279 head_tx = (void *)tx_q->dma_tx; 1280 desc_size = sizeof(struct dma_desc); 1281 } 1282 1283 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1284 tx_q->dma_tx_phy, desc_size); 1285 } 1286 } 1287 1288 static void stmmac_display_rings(struct stmmac_priv *priv) 1289 { 1290 /* Display RX ring */ 1291 stmmac_display_rx_rings(priv); 1292 1293 /* Display TX ring */ 1294 stmmac_display_tx_rings(priv); 1295 } 1296 1297 static int stmmac_set_bfsize(int mtu, int bufsize) 1298 { 1299 int ret = bufsize; 1300 1301 if (mtu >= BUF_SIZE_8KiB) 1302 ret = BUF_SIZE_16KiB; 1303 else if (mtu >= BUF_SIZE_4KiB) 1304 ret = BUF_SIZE_8KiB; 1305 else if (mtu >= BUF_SIZE_2KiB) 1306 ret = BUF_SIZE_4KiB; 1307 else if (mtu > DEFAULT_BUFSIZE) 1308 ret = BUF_SIZE_2KiB; 1309 else 1310 ret = DEFAULT_BUFSIZE; 1311 1312 return ret; 1313 } 1314 1315 /** 1316 * stmmac_clear_rx_descriptors - clear RX descriptors 1317 * @priv: driver private structure 1318 * @queue: RX queue index 1319 * Description: this function is called to clear the RX descriptors 1320 * in case of both basic and extended descriptors are used. 1321 */ 1322 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1323 { 1324 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1325 int i; 1326 1327 /* Clear the RX descriptors */ 1328 for (i = 0; i < priv->dma_rx_size; i++) 1329 if (priv->extend_desc) 1330 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1331 priv->use_riwt, priv->mode, 1332 (i == priv->dma_rx_size - 1), 1333 priv->dma_buf_sz); 1334 else 1335 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1336 priv->use_riwt, priv->mode, 1337 (i == priv->dma_rx_size - 1), 1338 priv->dma_buf_sz); 1339 } 1340 1341 /** 1342 * stmmac_clear_tx_descriptors - clear tx descriptors 1343 * @priv: driver private structure 1344 * @queue: TX queue index. 1345 * Description: this function is called to clear the TX descriptors 1346 * in case of both basic and extended descriptors are used. 1347 */ 1348 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1349 { 1350 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1351 int i; 1352 1353 /* Clear the TX descriptors */ 1354 for (i = 0; i < priv->dma_tx_size; i++) { 1355 int last = (i == (priv->dma_tx_size - 1)); 1356 struct dma_desc *p; 1357 1358 if (priv->extend_desc) 1359 p = &tx_q->dma_etx[i].basic; 1360 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1361 p = &tx_q->dma_entx[i].basic; 1362 else 1363 p = &tx_q->dma_tx[i]; 1364 1365 stmmac_init_tx_desc(priv, p, priv->mode, last); 1366 } 1367 } 1368 1369 /** 1370 * stmmac_clear_descriptors - clear descriptors 1371 * @priv: driver private structure 1372 * Description: this function is called to clear the TX and RX descriptors 1373 * in case of both basic and extended descriptors are used. 1374 */ 1375 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1376 { 1377 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1378 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1379 u32 queue; 1380 1381 /* Clear the RX descriptors */ 1382 for (queue = 0; queue < rx_queue_cnt; queue++) 1383 stmmac_clear_rx_descriptors(priv, queue); 1384 1385 /* Clear the TX descriptors */ 1386 for (queue = 0; queue < tx_queue_cnt; queue++) 1387 stmmac_clear_tx_descriptors(priv, queue); 1388 } 1389 1390 /** 1391 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1392 * @priv: driver private structure 1393 * @p: descriptor pointer 1394 * @i: descriptor index 1395 * @flags: gfp flag 1396 * @queue: RX queue index 1397 * Description: this function is called to allocate a receive buffer, perform 1398 * the DMA mapping and init the descriptor. 1399 */ 1400 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1401 int i, gfp_t flags, u32 queue) 1402 { 1403 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1404 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1405 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1406 1407 if (priv->dma_cap.addr64 <= 32) 1408 gfp |= GFP_DMA32; 1409 1410 if (!buf->page) { 1411 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1412 if (!buf->page) 1413 return -ENOMEM; 1414 buf->page_offset = stmmac_rx_offset(priv); 1415 } 1416 1417 if (priv->sph && !buf->sec_page) { 1418 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1419 if (!buf->sec_page) 1420 return -ENOMEM; 1421 1422 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1423 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1424 } else { 1425 buf->sec_page = NULL; 1426 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1427 } 1428 1429 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1430 1431 stmmac_set_desc_addr(priv, p, buf->addr); 1432 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1433 stmmac_init_desc3(priv, p); 1434 1435 return 0; 1436 } 1437 1438 /** 1439 * stmmac_free_rx_buffer - free RX dma buffers 1440 * @priv: private structure 1441 * @queue: RX queue index 1442 * @i: buffer index. 1443 */ 1444 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1445 { 1446 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1447 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1448 1449 if (buf->page) 1450 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1451 buf->page = NULL; 1452 1453 if (buf->sec_page) 1454 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1455 buf->sec_page = NULL; 1456 } 1457 1458 /** 1459 * stmmac_free_tx_buffer - free RX dma buffers 1460 * @priv: private structure 1461 * @queue: RX queue index 1462 * @i: buffer index. 1463 */ 1464 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1465 { 1466 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1467 1468 if (tx_q->tx_skbuff_dma[i].buf && 1469 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1470 if (tx_q->tx_skbuff_dma[i].map_as_page) 1471 dma_unmap_page(priv->device, 1472 tx_q->tx_skbuff_dma[i].buf, 1473 tx_q->tx_skbuff_dma[i].len, 1474 DMA_TO_DEVICE); 1475 else 1476 dma_unmap_single(priv->device, 1477 tx_q->tx_skbuff_dma[i].buf, 1478 tx_q->tx_skbuff_dma[i].len, 1479 DMA_TO_DEVICE); 1480 } 1481 1482 if (tx_q->xdpf[i] && 1483 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1484 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1485 xdp_return_frame(tx_q->xdpf[i]); 1486 tx_q->xdpf[i] = NULL; 1487 } 1488 1489 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1490 tx_q->xsk_frames_done++; 1491 1492 if (tx_q->tx_skbuff[i] && 1493 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1494 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1495 tx_q->tx_skbuff[i] = NULL; 1496 } 1497 1498 tx_q->tx_skbuff_dma[i].buf = 0; 1499 tx_q->tx_skbuff_dma[i].map_as_page = false; 1500 } 1501 1502 /** 1503 * dma_free_rx_skbufs - free RX dma buffers 1504 * @priv: private structure 1505 * @queue: RX queue index 1506 */ 1507 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1508 { 1509 int i; 1510 1511 for (i = 0; i < priv->dma_rx_size; i++) 1512 stmmac_free_rx_buffer(priv, queue, i); 1513 } 1514 1515 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1516 gfp_t flags) 1517 { 1518 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1519 int i; 1520 1521 for (i = 0; i < priv->dma_rx_size; i++) { 1522 struct dma_desc *p; 1523 int ret; 1524 1525 if (priv->extend_desc) 1526 p = &((rx_q->dma_erx + i)->basic); 1527 else 1528 p = rx_q->dma_rx + i; 1529 1530 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1531 queue); 1532 if (ret) 1533 return ret; 1534 1535 rx_q->buf_alloc_num++; 1536 } 1537 1538 return 0; 1539 } 1540 1541 /** 1542 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1543 * @priv: private structure 1544 * @queue: RX queue index 1545 */ 1546 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1547 { 1548 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1549 int i; 1550 1551 for (i = 0; i < priv->dma_rx_size; i++) { 1552 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1553 1554 if (!buf->xdp) 1555 continue; 1556 1557 xsk_buff_free(buf->xdp); 1558 buf->xdp = NULL; 1559 } 1560 } 1561 1562 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1563 { 1564 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1565 int i; 1566 1567 for (i = 0; i < priv->dma_rx_size; i++) { 1568 struct stmmac_rx_buffer *buf; 1569 dma_addr_t dma_addr; 1570 struct dma_desc *p; 1571 1572 if (priv->extend_desc) 1573 p = (struct dma_desc *)(rx_q->dma_erx + i); 1574 else 1575 p = rx_q->dma_rx + i; 1576 1577 buf = &rx_q->buf_pool[i]; 1578 1579 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1580 if (!buf->xdp) 1581 return -ENOMEM; 1582 1583 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1584 stmmac_set_desc_addr(priv, p, dma_addr); 1585 rx_q->buf_alloc_num++; 1586 } 1587 1588 return 0; 1589 } 1590 1591 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1592 { 1593 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1594 return NULL; 1595 1596 return xsk_get_pool_from_qid(priv->dev, queue); 1597 } 1598 1599 /** 1600 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1601 * @priv: driver private structure 1602 * @queue: RX queue index 1603 * @flags: gfp flag. 1604 * Description: this function initializes the DMA RX descriptors 1605 * and allocates the socket buffers. It supports the chained and ring 1606 * modes. 1607 */ 1608 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1609 { 1610 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1611 int ret; 1612 1613 netif_dbg(priv, probe, priv->dev, 1614 "(%s) dma_rx_phy=0x%08x\n", __func__, 1615 (u32)rx_q->dma_rx_phy); 1616 1617 stmmac_clear_rx_descriptors(priv, queue); 1618 1619 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1620 1621 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1622 1623 if (rx_q->xsk_pool) { 1624 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1625 MEM_TYPE_XSK_BUFF_POOL, 1626 NULL)); 1627 netdev_info(priv->dev, 1628 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1629 rx_q->queue_index); 1630 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1631 } else { 1632 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1633 MEM_TYPE_PAGE_POOL, 1634 rx_q->page_pool)); 1635 netdev_info(priv->dev, 1636 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1637 rx_q->queue_index); 1638 } 1639 1640 if (rx_q->xsk_pool) { 1641 /* RX XDP ZC buffer pool may not be populated, e.g. 1642 * xdpsock TX-only. 1643 */ 1644 stmmac_alloc_rx_buffers_zc(priv, queue); 1645 } else { 1646 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1647 if (ret < 0) 1648 return -ENOMEM; 1649 } 1650 1651 rx_q->cur_rx = 0; 1652 rx_q->dirty_rx = 0; 1653 1654 /* Setup the chained descriptor addresses */ 1655 if (priv->mode == STMMAC_CHAIN_MODE) { 1656 if (priv->extend_desc) 1657 stmmac_mode_init(priv, rx_q->dma_erx, 1658 rx_q->dma_rx_phy, 1659 priv->dma_rx_size, 1); 1660 else 1661 stmmac_mode_init(priv, rx_q->dma_rx, 1662 rx_q->dma_rx_phy, 1663 priv->dma_rx_size, 0); 1664 } 1665 1666 return 0; 1667 } 1668 1669 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1670 { 1671 struct stmmac_priv *priv = netdev_priv(dev); 1672 u32 rx_count = priv->plat->rx_queues_to_use; 1673 int queue; 1674 int ret; 1675 1676 /* RX INITIALIZATION */ 1677 netif_dbg(priv, probe, priv->dev, 1678 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1679 1680 for (queue = 0; queue < rx_count; queue++) { 1681 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1682 if (ret) 1683 goto err_init_rx_buffers; 1684 } 1685 1686 return 0; 1687 1688 err_init_rx_buffers: 1689 while (queue >= 0) { 1690 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1691 1692 if (rx_q->xsk_pool) 1693 dma_free_rx_xskbufs(priv, queue); 1694 else 1695 dma_free_rx_skbufs(priv, queue); 1696 1697 rx_q->buf_alloc_num = 0; 1698 rx_q->xsk_pool = NULL; 1699 1700 queue--; 1701 } 1702 1703 return ret; 1704 } 1705 1706 /** 1707 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1708 * @priv: driver private structure 1709 * @queue : TX queue index 1710 * Description: this function initializes the DMA TX descriptors 1711 * and allocates the socket buffers. It supports the chained and ring 1712 * modes. 1713 */ 1714 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1715 { 1716 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1717 int i; 1718 1719 netif_dbg(priv, probe, priv->dev, 1720 "(%s) dma_tx_phy=0x%08x\n", __func__, 1721 (u32)tx_q->dma_tx_phy); 1722 1723 /* Setup the chained descriptor addresses */ 1724 if (priv->mode == STMMAC_CHAIN_MODE) { 1725 if (priv->extend_desc) 1726 stmmac_mode_init(priv, tx_q->dma_etx, 1727 tx_q->dma_tx_phy, 1728 priv->dma_tx_size, 1); 1729 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1730 stmmac_mode_init(priv, tx_q->dma_tx, 1731 tx_q->dma_tx_phy, 1732 priv->dma_tx_size, 0); 1733 } 1734 1735 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1736 1737 for (i = 0; i < priv->dma_tx_size; i++) { 1738 struct dma_desc *p; 1739 1740 if (priv->extend_desc) 1741 p = &((tx_q->dma_etx + i)->basic); 1742 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1743 p = &((tx_q->dma_entx + i)->basic); 1744 else 1745 p = tx_q->dma_tx + i; 1746 1747 stmmac_clear_desc(priv, p); 1748 1749 tx_q->tx_skbuff_dma[i].buf = 0; 1750 tx_q->tx_skbuff_dma[i].map_as_page = false; 1751 tx_q->tx_skbuff_dma[i].len = 0; 1752 tx_q->tx_skbuff_dma[i].last_segment = false; 1753 tx_q->tx_skbuff[i] = NULL; 1754 } 1755 1756 tx_q->dirty_tx = 0; 1757 tx_q->cur_tx = 0; 1758 tx_q->mss = 0; 1759 1760 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1761 1762 return 0; 1763 } 1764 1765 static int init_dma_tx_desc_rings(struct net_device *dev) 1766 { 1767 struct stmmac_priv *priv = netdev_priv(dev); 1768 u32 tx_queue_cnt; 1769 u32 queue; 1770 1771 tx_queue_cnt = priv->plat->tx_queues_to_use; 1772 1773 for (queue = 0; queue < tx_queue_cnt; queue++) 1774 __init_dma_tx_desc_rings(priv, queue); 1775 1776 return 0; 1777 } 1778 1779 /** 1780 * init_dma_desc_rings - init the RX/TX descriptor rings 1781 * @dev: net device structure 1782 * @flags: gfp flag. 1783 * Description: this function initializes the DMA RX/TX descriptors 1784 * and allocates the socket buffers. It supports the chained and ring 1785 * modes. 1786 */ 1787 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1788 { 1789 struct stmmac_priv *priv = netdev_priv(dev); 1790 int ret; 1791 1792 ret = init_dma_rx_desc_rings(dev, flags); 1793 if (ret) 1794 return ret; 1795 1796 ret = init_dma_tx_desc_rings(dev); 1797 1798 stmmac_clear_descriptors(priv); 1799 1800 if (netif_msg_hw(priv)) 1801 stmmac_display_rings(priv); 1802 1803 return ret; 1804 } 1805 1806 /** 1807 * dma_free_tx_skbufs - free TX dma buffers 1808 * @priv: private structure 1809 * @queue: TX queue index 1810 */ 1811 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1812 { 1813 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1814 int i; 1815 1816 tx_q->xsk_frames_done = 0; 1817 1818 for (i = 0; i < priv->dma_tx_size; i++) 1819 stmmac_free_tx_buffer(priv, queue, i); 1820 1821 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1822 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1823 tx_q->xsk_frames_done = 0; 1824 tx_q->xsk_pool = NULL; 1825 } 1826 } 1827 1828 /** 1829 * stmmac_free_tx_skbufs - free TX skb buffers 1830 * @priv: private structure 1831 */ 1832 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1833 { 1834 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1835 u32 queue; 1836 1837 for (queue = 0; queue < tx_queue_cnt; queue++) 1838 dma_free_tx_skbufs(priv, queue); 1839 } 1840 1841 /** 1842 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1843 * @priv: private structure 1844 * @queue: RX queue index 1845 */ 1846 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1847 { 1848 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1849 1850 /* Release the DMA RX socket buffers */ 1851 if (rx_q->xsk_pool) 1852 dma_free_rx_xskbufs(priv, queue); 1853 else 1854 dma_free_rx_skbufs(priv, queue); 1855 1856 rx_q->buf_alloc_num = 0; 1857 rx_q->xsk_pool = NULL; 1858 1859 /* Free DMA regions of consistent memory previously allocated */ 1860 if (!priv->extend_desc) 1861 dma_free_coherent(priv->device, priv->dma_rx_size * 1862 sizeof(struct dma_desc), 1863 rx_q->dma_rx, rx_q->dma_rx_phy); 1864 else 1865 dma_free_coherent(priv->device, priv->dma_rx_size * 1866 sizeof(struct dma_extended_desc), 1867 rx_q->dma_erx, rx_q->dma_rx_phy); 1868 1869 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1870 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1871 1872 kfree(rx_q->buf_pool); 1873 if (rx_q->page_pool) 1874 page_pool_destroy(rx_q->page_pool); 1875 } 1876 1877 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1878 { 1879 u32 rx_count = priv->plat->rx_queues_to_use; 1880 u32 queue; 1881 1882 /* Free RX queue resources */ 1883 for (queue = 0; queue < rx_count; queue++) 1884 __free_dma_rx_desc_resources(priv, queue); 1885 } 1886 1887 /** 1888 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1889 * @priv: private structure 1890 * @queue: TX queue index 1891 */ 1892 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1893 { 1894 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1895 size_t size; 1896 void *addr; 1897 1898 /* Release the DMA TX socket buffers */ 1899 dma_free_tx_skbufs(priv, queue); 1900 1901 if (priv->extend_desc) { 1902 size = sizeof(struct dma_extended_desc); 1903 addr = tx_q->dma_etx; 1904 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1905 size = sizeof(struct dma_edesc); 1906 addr = tx_q->dma_entx; 1907 } else { 1908 size = sizeof(struct dma_desc); 1909 addr = tx_q->dma_tx; 1910 } 1911 1912 size *= priv->dma_tx_size; 1913 1914 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1915 1916 kfree(tx_q->tx_skbuff_dma); 1917 kfree(tx_q->tx_skbuff); 1918 } 1919 1920 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1921 { 1922 u32 tx_count = priv->plat->tx_queues_to_use; 1923 u32 queue; 1924 1925 /* Free TX queue resources */ 1926 for (queue = 0; queue < tx_count; queue++) 1927 __free_dma_tx_desc_resources(priv, queue); 1928 } 1929 1930 /** 1931 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1932 * @priv: private structure 1933 * @queue: RX queue index 1934 * Description: according to which descriptor can be used (extend or basic) 1935 * this function allocates the resources for TX and RX paths. In case of 1936 * reception, for example, it pre-allocated the RX socket buffer in order to 1937 * allow zero-copy mechanism. 1938 */ 1939 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1940 { 1941 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1942 struct stmmac_channel *ch = &priv->channel[queue]; 1943 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1944 struct page_pool_params pp_params = { 0 }; 1945 unsigned int num_pages; 1946 unsigned int napi_id; 1947 int ret; 1948 1949 rx_q->queue_index = queue; 1950 rx_q->priv_data = priv; 1951 1952 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1953 pp_params.pool_size = priv->dma_rx_size; 1954 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1955 pp_params.order = ilog2(num_pages); 1956 pp_params.nid = dev_to_node(priv->device); 1957 pp_params.dev = priv->device; 1958 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1959 pp_params.offset = stmmac_rx_offset(priv); 1960 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 1961 1962 rx_q->page_pool = page_pool_create(&pp_params); 1963 if (IS_ERR(rx_q->page_pool)) { 1964 ret = PTR_ERR(rx_q->page_pool); 1965 rx_q->page_pool = NULL; 1966 return ret; 1967 } 1968 1969 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1970 sizeof(*rx_q->buf_pool), 1971 GFP_KERNEL); 1972 if (!rx_q->buf_pool) 1973 return -ENOMEM; 1974 1975 if (priv->extend_desc) { 1976 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1977 priv->dma_rx_size * 1978 sizeof(struct dma_extended_desc), 1979 &rx_q->dma_rx_phy, 1980 GFP_KERNEL); 1981 if (!rx_q->dma_erx) 1982 return -ENOMEM; 1983 1984 } else { 1985 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1986 priv->dma_rx_size * 1987 sizeof(struct dma_desc), 1988 &rx_q->dma_rx_phy, 1989 GFP_KERNEL); 1990 if (!rx_q->dma_rx) 1991 return -ENOMEM; 1992 } 1993 1994 if (stmmac_xdp_is_enabled(priv) && 1995 test_bit(queue, priv->af_xdp_zc_qps)) 1996 napi_id = ch->rxtx_napi.napi_id; 1997 else 1998 napi_id = ch->rx_napi.napi_id; 1999 2000 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2001 rx_q->queue_index, 2002 napi_id); 2003 if (ret) { 2004 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2005 return -EINVAL; 2006 } 2007 2008 return 0; 2009 } 2010 2011 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2012 { 2013 u32 rx_count = priv->plat->rx_queues_to_use; 2014 u32 queue; 2015 int ret; 2016 2017 /* RX queues buffers and DMA */ 2018 for (queue = 0; queue < rx_count; queue++) { 2019 ret = __alloc_dma_rx_desc_resources(priv, queue); 2020 if (ret) 2021 goto err_dma; 2022 } 2023 2024 return 0; 2025 2026 err_dma: 2027 free_dma_rx_desc_resources(priv); 2028 2029 return ret; 2030 } 2031 2032 /** 2033 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2034 * @priv: private structure 2035 * @queue: TX queue index 2036 * Description: according to which descriptor can be used (extend or basic) 2037 * this function allocates the resources for TX and RX paths. In case of 2038 * reception, for example, it pre-allocated the RX socket buffer in order to 2039 * allow zero-copy mechanism. 2040 */ 2041 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2042 { 2043 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2044 size_t size; 2045 void *addr; 2046 2047 tx_q->queue_index = queue; 2048 tx_q->priv_data = priv; 2049 2050 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2051 sizeof(*tx_q->tx_skbuff_dma), 2052 GFP_KERNEL); 2053 if (!tx_q->tx_skbuff_dma) 2054 return -ENOMEM; 2055 2056 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2057 sizeof(struct sk_buff *), 2058 GFP_KERNEL); 2059 if (!tx_q->tx_skbuff) 2060 return -ENOMEM; 2061 2062 if (priv->extend_desc) 2063 size = sizeof(struct dma_extended_desc); 2064 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2065 size = sizeof(struct dma_edesc); 2066 else 2067 size = sizeof(struct dma_desc); 2068 2069 size *= priv->dma_tx_size; 2070 2071 addr = dma_alloc_coherent(priv->device, size, 2072 &tx_q->dma_tx_phy, GFP_KERNEL); 2073 if (!addr) 2074 return -ENOMEM; 2075 2076 if (priv->extend_desc) 2077 tx_q->dma_etx = addr; 2078 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2079 tx_q->dma_entx = addr; 2080 else 2081 tx_q->dma_tx = addr; 2082 2083 return 0; 2084 } 2085 2086 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2087 { 2088 u32 tx_count = priv->plat->tx_queues_to_use; 2089 u32 queue; 2090 int ret; 2091 2092 /* TX queues buffers and DMA */ 2093 for (queue = 0; queue < tx_count; queue++) { 2094 ret = __alloc_dma_tx_desc_resources(priv, queue); 2095 if (ret) 2096 goto err_dma; 2097 } 2098 2099 return 0; 2100 2101 err_dma: 2102 free_dma_tx_desc_resources(priv); 2103 return ret; 2104 } 2105 2106 /** 2107 * alloc_dma_desc_resources - alloc TX/RX resources. 2108 * @priv: private structure 2109 * Description: according to which descriptor can be used (extend or basic) 2110 * this function allocates the resources for TX and RX paths. In case of 2111 * reception, for example, it pre-allocated the RX socket buffer in order to 2112 * allow zero-copy mechanism. 2113 */ 2114 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2115 { 2116 /* RX Allocation */ 2117 int ret = alloc_dma_rx_desc_resources(priv); 2118 2119 if (ret) 2120 return ret; 2121 2122 ret = alloc_dma_tx_desc_resources(priv); 2123 2124 return ret; 2125 } 2126 2127 /** 2128 * free_dma_desc_resources - free dma desc resources 2129 * @priv: private structure 2130 */ 2131 static void free_dma_desc_resources(struct stmmac_priv *priv) 2132 { 2133 /* Release the DMA TX socket buffers */ 2134 free_dma_tx_desc_resources(priv); 2135 2136 /* Release the DMA RX socket buffers later 2137 * to ensure all pending XDP_TX buffers are returned. 2138 */ 2139 free_dma_rx_desc_resources(priv); 2140 } 2141 2142 /** 2143 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2144 * @priv: driver private structure 2145 * Description: It is used for enabling the rx queues in the MAC 2146 */ 2147 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2148 { 2149 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2150 int queue; 2151 u8 mode; 2152 2153 for (queue = 0; queue < rx_queues_count; queue++) { 2154 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2155 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2156 } 2157 } 2158 2159 /** 2160 * stmmac_start_rx_dma - start RX DMA channel 2161 * @priv: driver private structure 2162 * @chan: RX channel index 2163 * Description: 2164 * This starts a RX DMA channel 2165 */ 2166 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2167 { 2168 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2169 stmmac_start_rx(priv, priv->ioaddr, chan); 2170 } 2171 2172 /** 2173 * stmmac_start_tx_dma - start TX DMA channel 2174 * @priv: driver private structure 2175 * @chan: TX channel index 2176 * Description: 2177 * This starts a TX DMA channel 2178 */ 2179 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2180 { 2181 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2182 stmmac_start_tx(priv, priv->ioaddr, chan); 2183 } 2184 2185 /** 2186 * stmmac_stop_rx_dma - stop RX DMA channel 2187 * @priv: driver private structure 2188 * @chan: RX channel index 2189 * Description: 2190 * This stops a RX DMA channel 2191 */ 2192 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2193 { 2194 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2195 stmmac_stop_rx(priv, priv->ioaddr, chan); 2196 } 2197 2198 /** 2199 * stmmac_stop_tx_dma - stop TX DMA channel 2200 * @priv: driver private structure 2201 * @chan: TX channel index 2202 * Description: 2203 * This stops a TX DMA channel 2204 */ 2205 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2206 { 2207 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2208 stmmac_stop_tx(priv, priv->ioaddr, chan); 2209 } 2210 2211 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2212 { 2213 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2214 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2215 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2216 u32 chan; 2217 2218 for (chan = 0; chan < dma_csr_ch; chan++) { 2219 struct stmmac_channel *ch = &priv->channel[chan]; 2220 unsigned long flags; 2221 2222 spin_lock_irqsave(&ch->lock, flags); 2223 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2224 spin_unlock_irqrestore(&ch->lock, flags); 2225 } 2226 } 2227 2228 /** 2229 * stmmac_start_all_dma - start all RX and TX DMA channels 2230 * @priv: driver private structure 2231 * Description: 2232 * This starts all the RX and TX DMA channels 2233 */ 2234 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2235 { 2236 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2237 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2238 u32 chan = 0; 2239 2240 for (chan = 0; chan < rx_channels_count; chan++) 2241 stmmac_start_rx_dma(priv, chan); 2242 2243 for (chan = 0; chan < tx_channels_count; chan++) 2244 stmmac_start_tx_dma(priv, chan); 2245 } 2246 2247 /** 2248 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2249 * @priv: driver private structure 2250 * Description: 2251 * This stops the RX and TX DMA channels 2252 */ 2253 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2254 { 2255 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2256 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2257 u32 chan = 0; 2258 2259 for (chan = 0; chan < rx_channels_count; chan++) 2260 stmmac_stop_rx_dma(priv, chan); 2261 2262 for (chan = 0; chan < tx_channels_count; chan++) 2263 stmmac_stop_tx_dma(priv, chan); 2264 } 2265 2266 /** 2267 * stmmac_dma_operation_mode - HW DMA operation mode 2268 * @priv: driver private structure 2269 * Description: it is used for configuring the DMA operation mode register in 2270 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2271 */ 2272 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2273 { 2274 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2275 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2276 int rxfifosz = priv->plat->rx_fifo_size; 2277 int txfifosz = priv->plat->tx_fifo_size; 2278 u32 txmode = 0; 2279 u32 rxmode = 0; 2280 u32 chan = 0; 2281 u8 qmode = 0; 2282 2283 if (rxfifosz == 0) 2284 rxfifosz = priv->dma_cap.rx_fifo_size; 2285 if (txfifosz == 0) 2286 txfifosz = priv->dma_cap.tx_fifo_size; 2287 2288 /* Adjust for real per queue fifo size */ 2289 rxfifosz /= rx_channels_count; 2290 txfifosz /= tx_channels_count; 2291 2292 if (priv->plat->force_thresh_dma_mode) { 2293 txmode = tc; 2294 rxmode = tc; 2295 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2296 /* 2297 * In case of GMAC, SF mode can be enabled 2298 * to perform the TX COE in HW. This depends on: 2299 * 1) TX COE if actually supported 2300 * 2) There is no bugged Jumbo frame support 2301 * that needs to not insert csum in the TDES. 2302 */ 2303 txmode = SF_DMA_MODE; 2304 rxmode = SF_DMA_MODE; 2305 priv->xstats.threshold = SF_DMA_MODE; 2306 } else { 2307 txmode = tc; 2308 rxmode = SF_DMA_MODE; 2309 } 2310 2311 /* configure all channels */ 2312 for (chan = 0; chan < rx_channels_count; chan++) { 2313 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2314 u32 buf_size; 2315 2316 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2317 2318 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2319 rxfifosz, qmode); 2320 2321 if (rx_q->xsk_pool) { 2322 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2323 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2324 buf_size, 2325 chan); 2326 } else { 2327 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2328 priv->dma_buf_sz, 2329 chan); 2330 } 2331 } 2332 2333 for (chan = 0; chan < tx_channels_count; chan++) { 2334 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2335 2336 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2337 txfifosz, qmode); 2338 } 2339 } 2340 2341 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2342 { 2343 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2344 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2345 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2346 unsigned int entry = tx_q->cur_tx; 2347 struct dma_desc *tx_desc = NULL; 2348 struct xdp_desc xdp_desc; 2349 bool work_done = true; 2350 2351 /* Avoids TX time-out as we are sharing with slow path */ 2352 txq_trans_cond_update(nq); 2353 2354 budget = min(budget, stmmac_tx_avail(priv, queue)); 2355 2356 while (budget-- > 0) { 2357 dma_addr_t dma_addr; 2358 bool set_ic; 2359 2360 /* We are sharing with slow path and stop XSK TX desc submission when 2361 * available TX ring is less than threshold. 2362 */ 2363 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2364 !netif_carrier_ok(priv->dev)) { 2365 work_done = false; 2366 break; 2367 } 2368 2369 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2370 break; 2371 2372 if (likely(priv->extend_desc)) 2373 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2374 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2375 tx_desc = &tx_q->dma_entx[entry].basic; 2376 else 2377 tx_desc = tx_q->dma_tx + entry; 2378 2379 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2380 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2381 2382 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2383 2384 /* To return XDP buffer to XSK pool, we simple call 2385 * xsk_tx_completed(), so we don't need to fill up 2386 * 'buf' and 'xdpf'. 2387 */ 2388 tx_q->tx_skbuff_dma[entry].buf = 0; 2389 tx_q->xdpf[entry] = NULL; 2390 2391 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2392 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2393 tx_q->tx_skbuff_dma[entry].last_segment = true; 2394 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2395 2396 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2397 2398 tx_q->tx_count_frames++; 2399 2400 if (!priv->tx_coal_frames[queue]) 2401 set_ic = false; 2402 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2403 set_ic = true; 2404 else 2405 set_ic = false; 2406 2407 if (set_ic) { 2408 tx_q->tx_count_frames = 0; 2409 stmmac_set_tx_ic(priv, tx_desc); 2410 priv->xstats.tx_set_ic_bit++; 2411 } 2412 2413 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2414 true, priv->mode, true, true, 2415 xdp_desc.len); 2416 2417 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2418 2419 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2420 entry = tx_q->cur_tx; 2421 } 2422 2423 if (tx_desc) { 2424 stmmac_flush_tx_descriptors(priv, queue); 2425 xsk_tx_release(pool); 2426 } 2427 2428 /* Return true if all of the 3 conditions are met 2429 * a) TX Budget is still available 2430 * b) work_done = true when XSK TX desc peek is empty (no more 2431 * pending XSK TX for transmission) 2432 */ 2433 return !!budget && work_done; 2434 } 2435 2436 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2437 { 2438 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2439 tc += 64; 2440 2441 if (priv->plat->force_thresh_dma_mode) 2442 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2443 else 2444 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2445 chan); 2446 2447 priv->xstats.threshold = tc; 2448 } 2449 } 2450 2451 /** 2452 * stmmac_tx_clean - to manage the transmission completion 2453 * @priv: driver private structure 2454 * @budget: napi budget limiting this functions packet handling 2455 * @queue: TX queue index 2456 * Description: it reclaims the transmit resources after transmission completes. 2457 */ 2458 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2459 { 2460 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2461 unsigned int bytes_compl = 0, pkts_compl = 0; 2462 unsigned int entry, xmits = 0, count = 0; 2463 2464 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2465 2466 priv->xstats.tx_clean++; 2467 2468 tx_q->xsk_frames_done = 0; 2469 2470 entry = tx_q->dirty_tx; 2471 2472 /* Try to clean all TX complete frame in 1 shot */ 2473 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2474 struct xdp_frame *xdpf; 2475 struct sk_buff *skb; 2476 struct dma_desc *p; 2477 int status; 2478 2479 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2480 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2481 xdpf = tx_q->xdpf[entry]; 2482 skb = NULL; 2483 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2484 xdpf = NULL; 2485 skb = tx_q->tx_skbuff[entry]; 2486 } else { 2487 xdpf = NULL; 2488 skb = NULL; 2489 } 2490 2491 if (priv->extend_desc) 2492 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2493 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2494 p = &tx_q->dma_entx[entry].basic; 2495 else 2496 p = tx_q->dma_tx + entry; 2497 2498 status = stmmac_tx_status(priv, &priv->dev->stats, 2499 &priv->xstats, p, priv->ioaddr); 2500 /* Check if the descriptor is owned by the DMA */ 2501 if (unlikely(status & tx_dma_own)) 2502 break; 2503 2504 count++; 2505 2506 /* Make sure descriptor fields are read after reading 2507 * the own bit. 2508 */ 2509 dma_rmb(); 2510 2511 /* Just consider the last segment and ...*/ 2512 if (likely(!(status & tx_not_ls))) { 2513 /* ... verify the status error condition */ 2514 if (unlikely(status & tx_err)) { 2515 priv->dev->stats.tx_errors++; 2516 if (unlikely(status & tx_err_bump_tc)) 2517 stmmac_bump_dma_threshold(priv, queue); 2518 } else { 2519 priv->dev->stats.tx_packets++; 2520 priv->xstats.tx_pkt_n++; 2521 priv->xstats.txq_stats[queue].tx_pkt_n++; 2522 } 2523 if (skb) 2524 stmmac_get_tx_hwtstamp(priv, p, skb); 2525 } 2526 2527 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2528 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2529 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2530 dma_unmap_page(priv->device, 2531 tx_q->tx_skbuff_dma[entry].buf, 2532 tx_q->tx_skbuff_dma[entry].len, 2533 DMA_TO_DEVICE); 2534 else 2535 dma_unmap_single(priv->device, 2536 tx_q->tx_skbuff_dma[entry].buf, 2537 tx_q->tx_skbuff_dma[entry].len, 2538 DMA_TO_DEVICE); 2539 tx_q->tx_skbuff_dma[entry].buf = 0; 2540 tx_q->tx_skbuff_dma[entry].len = 0; 2541 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2542 } 2543 2544 stmmac_clean_desc3(priv, tx_q, p); 2545 2546 tx_q->tx_skbuff_dma[entry].last_segment = false; 2547 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2548 2549 if (xdpf && 2550 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2551 xdp_return_frame_rx_napi(xdpf); 2552 tx_q->xdpf[entry] = NULL; 2553 } 2554 2555 if (xdpf && 2556 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2557 xdp_return_frame(xdpf); 2558 tx_q->xdpf[entry] = NULL; 2559 } 2560 2561 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2562 tx_q->xsk_frames_done++; 2563 2564 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2565 if (likely(skb)) { 2566 pkts_compl++; 2567 bytes_compl += skb->len; 2568 dev_consume_skb_any(skb); 2569 tx_q->tx_skbuff[entry] = NULL; 2570 } 2571 } 2572 2573 stmmac_release_tx_desc(priv, p, priv->mode); 2574 2575 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2576 } 2577 tx_q->dirty_tx = entry; 2578 2579 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2580 pkts_compl, bytes_compl); 2581 2582 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2583 queue))) && 2584 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2585 2586 netif_dbg(priv, tx_done, priv->dev, 2587 "%s: restart transmit\n", __func__); 2588 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2589 } 2590 2591 if (tx_q->xsk_pool) { 2592 bool work_done; 2593 2594 if (tx_q->xsk_frames_done) 2595 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2596 2597 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2598 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2599 2600 /* For XSK TX, we try to send as many as possible. 2601 * If XSK work done (XSK TX desc empty and budget still 2602 * available), return "budget - 1" to reenable TX IRQ. 2603 * Else, return "budget" to make NAPI continue polling. 2604 */ 2605 work_done = stmmac_xdp_xmit_zc(priv, queue, 2606 STMMAC_XSK_TX_BUDGET_MAX); 2607 if (work_done) 2608 xmits = budget - 1; 2609 else 2610 xmits = budget; 2611 } 2612 2613 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2614 priv->eee_sw_timer_en) { 2615 if (stmmac_enable_eee_mode(priv)) 2616 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2617 } 2618 2619 /* We still have pending packets, let's call for a new scheduling */ 2620 if (tx_q->dirty_tx != tx_q->cur_tx) 2621 hrtimer_start(&tx_q->txtimer, 2622 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2623 HRTIMER_MODE_REL); 2624 2625 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2626 2627 /* Combine decisions from TX clean and XSK TX */ 2628 return max(count, xmits); 2629 } 2630 2631 /** 2632 * stmmac_tx_err - to manage the tx error 2633 * @priv: driver private structure 2634 * @chan: channel index 2635 * Description: it cleans the descriptors and restarts the transmission 2636 * in case of transmission errors. 2637 */ 2638 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2639 { 2640 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2641 2642 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2643 2644 stmmac_stop_tx_dma(priv, chan); 2645 dma_free_tx_skbufs(priv, chan); 2646 stmmac_clear_tx_descriptors(priv, chan); 2647 tx_q->dirty_tx = 0; 2648 tx_q->cur_tx = 0; 2649 tx_q->mss = 0; 2650 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2651 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2652 tx_q->dma_tx_phy, chan); 2653 stmmac_start_tx_dma(priv, chan); 2654 2655 priv->dev->stats.tx_errors++; 2656 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2657 } 2658 2659 /** 2660 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2661 * @priv: driver private structure 2662 * @txmode: TX operating mode 2663 * @rxmode: RX operating mode 2664 * @chan: channel index 2665 * Description: it is used for configuring of the DMA operation mode in 2666 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2667 * mode. 2668 */ 2669 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2670 u32 rxmode, u32 chan) 2671 { 2672 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2673 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2674 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2675 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2676 int rxfifosz = priv->plat->rx_fifo_size; 2677 int txfifosz = priv->plat->tx_fifo_size; 2678 2679 if (rxfifosz == 0) 2680 rxfifosz = priv->dma_cap.rx_fifo_size; 2681 if (txfifosz == 0) 2682 txfifosz = priv->dma_cap.tx_fifo_size; 2683 2684 /* Adjust for real per queue fifo size */ 2685 rxfifosz /= rx_channels_count; 2686 txfifosz /= tx_channels_count; 2687 2688 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2689 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2690 } 2691 2692 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2693 { 2694 int ret; 2695 2696 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2697 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2698 if (ret && (ret != -EINVAL)) { 2699 stmmac_global_err(priv); 2700 return true; 2701 } 2702 2703 return false; 2704 } 2705 2706 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2707 { 2708 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2709 &priv->xstats, chan, dir); 2710 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2711 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2712 struct stmmac_channel *ch = &priv->channel[chan]; 2713 struct napi_struct *rx_napi; 2714 struct napi_struct *tx_napi; 2715 unsigned long flags; 2716 2717 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2718 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2719 2720 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2721 if (napi_schedule_prep(rx_napi)) { 2722 spin_lock_irqsave(&ch->lock, flags); 2723 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2724 spin_unlock_irqrestore(&ch->lock, flags); 2725 __napi_schedule(rx_napi); 2726 } 2727 } 2728 2729 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2730 if (napi_schedule_prep(tx_napi)) { 2731 spin_lock_irqsave(&ch->lock, flags); 2732 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2733 spin_unlock_irqrestore(&ch->lock, flags); 2734 __napi_schedule(tx_napi); 2735 } 2736 } 2737 2738 return status; 2739 } 2740 2741 /** 2742 * stmmac_dma_interrupt - DMA ISR 2743 * @priv: driver private structure 2744 * Description: this is the DMA ISR. It is called by the main ISR. 2745 * It calls the dwmac dma routine and schedule poll method in case of some 2746 * work can be done. 2747 */ 2748 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2749 { 2750 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2751 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2752 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2753 tx_channel_count : rx_channel_count; 2754 u32 chan; 2755 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2756 2757 /* Make sure we never check beyond our status buffer. */ 2758 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2759 channels_to_check = ARRAY_SIZE(status); 2760 2761 for (chan = 0; chan < channels_to_check; chan++) 2762 status[chan] = stmmac_napi_check(priv, chan, 2763 DMA_DIR_RXTX); 2764 2765 for (chan = 0; chan < tx_channel_count; chan++) { 2766 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2767 /* Try to bump up the dma threshold on this failure */ 2768 stmmac_bump_dma_threshold(priv, chan); 2769 } else if (unlikely(status[chan] == tx_hard_error)) { 2770 stmmac_tx_err(priv, chan); 2771 } 2772 } 2773 } 2774 2775 /** 2776 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2777 * @priv: driver private structure 2778 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2779 */ 2780 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2781 { 2782 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2783 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2784 2785 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2786 2787 if (priv->dma_cap.rmon) { 2788 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2789 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2790 } else 2791 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2792 } 2793 2794 /** 2795 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2796 * @priv: driver private structure 2797 * Description: 2798 * new GMAC chip generations have a new register to indicate the 2799 * presence of the optional feature/functions. 2800 * This can be also used to override the value passed through the 2801 * platform and necessary for old MAC10/100 and GMAC chips. 2802 */ 2803 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2804 { 2805 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2806 } 2807 2808 /** 2809 * stmmac_check_ether_addr - check if the MAC addr is valid 2810 * @priv: driver private structure 2811 * Description: 2812 * it is to verify if the MAC address is valid, in case of failures it 2813 * generates a random MAC address 2814 */ 2815 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2816 { 2817 u8 addr[ETH_ALEN]; 2818 2819 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2820 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2821 if (is_valid_ether_addr(addr)) 2822 eth_hw_addr_set(priv->dev, addr); 2823 else 2824 eth_hw_addr_random(priv->dev); 2825 dev_info(priv->device, "device MAC address %pM\n", 2826 priv->dev->dev_addr); 2827 } 2828 } 2829 2830 /** 2831 * stmmac_init_dma_engine - DMA init. 2832 * @priv: driver private structure 2833 * Description: 2834 * It inits the DMA invoking the specific MAC/GMAC callback. 2835 * Some DMA parameters can be passed from the platform; 2836 * in case of these are not passed a default is kept for the MAC or GMAC. 2837 */ 2838 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2839 { 2840 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2841 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2842 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2843 struct stmmac_rx_queue *rx_q; 2844 struct stmmac_tx_queue *tx_q; 2845 u32 chan = 0; 2846 int atds = 0; 2847 int ret = 0; 2848 2849 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2850 dev_err(priv->device, "Invalid DMA configuration\n"); 2851 return -EINVAL; 2852 } 2853 2854 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2855 atds = 1; 2856 2857 ret = stmmac_reset(priv, priv->ioaddr); 2858 if (ret) { 2859 dev_err(priv->device, "Failed to reset the dma\n"); 2860 return ret; 2861 } 2862 2863 /* DMA Configuration */ 2864 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2865 2866 if (priv->plat->axi) 2867 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2868 2869 /* DMA CSR Channel configuration */ 2870 for (chan = 0; chan < dma_csr_ch; chan++) { 2871 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2872 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2873 } 2874 2875 /* DMA RX Channel Configuration */ 2876 for (chan = 0; chan < rx_channels_count; chan++) { 2877 rx_q = &priv->rx_queue[chan]; 2878 2879 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2880 rx_q->dma_rx_phy, chan); 2881 2882 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2883 (rx_q->buf_alloc_num * 2884 sizeof(struct dma_desc)); 2885 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2886 rx_q->rx_tail_addr, chan); 2887 } 2888 2889 /* DMA TX Channel Configuration */ 2890 for (chan = 0; chan < tx_channels_count; chan++) { 2891 tx_q = &priv->tx_queue[chan]; 2892 2893 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2894 tx_q->dma_tx_phy, chan); 2895 2896 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2897 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2898 tx_q->tx_tail_addr, chan); 2899 } 2900 2901 return ret; 2902 } 2903 2904 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2905 { 2906 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2907 2908 hrtimer_start(&tx_q->txtimer, 2909 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2910 HRTIMER_MODE_REL); 2911 } 2912 2913 /** 2914 * stmmac_tx_timer - mitigation sw timer for tx. 2915 * @t: data pointer 2916 * Description: 2917 * This is the timer handler to directly invoke the stmmac_tx_clean. 2918 */ 2919 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2920 { 2921 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2922 struct stmmac_priv *priv = tx_q->priv_data; 2923 struct stmmac_channel *ch; 2924 struct napi_struct *napi; 2925 2926 ch = &priv->channel[tx_q->queue_index]; 2927 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2928 2929 if (likely(napi_schedule_prep(napi))) { 2930 unsigned long flags; 2931 2932 spin_lock_irqsave(&ch->lock, flags); 2933 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2934 spin_unlock_irqrestore(&ch->lock, flags); 2935 __napi_schedule(napi); 2936 } 2937 2938 return HRTIMER_NORESTART; 2939 } 2940 2941 /** 2942 * stmmac_init_coalesce - init mitigation options. 2943 * @priv: driver private structure 2944 * Description: 2945 * This inits the coalesce parameters: i.e. timer rate, 2946 * timer handler and default threshold used for enabling the 2947 * interrupt on completion bit. 2948 */ 2949 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2950 { 2951 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2952 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2953 u32 chan; 2954 2955 for (chan = 0; chan < tx_channel_count; chan++) { 2956 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2957 2958 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2959 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2960 2961 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2962 tx_q->txtimer.function = stmmac_tx_timer; 2963 } 2964 2965 for (chan = 0; chan < rx_channel_count; chan++) 2966 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 2967 } 2968 2969 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2970 { 2971 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2972 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2973 u32 chan; 2974 2975 /* set TX ring length */ 2976 for (chan = 0; chan < tx_channels_count; chan++) 2977 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2978 (priv->dma_tx_size - 1), chan); 2979 2980 /* set RX ring length */ 2981 for (chan = 0; chan < rx_channels_count; chan++) 2982 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2983 (priv->dma_rx_size - 1), chan); 2984 } 2985 2986 /** 2987 * stmmac_set_tx_queue_weight - Set TX queue weight 2988 * @priv: driver private structure 2989 * Description: It is used for setting TX queues weight 2990 */ 2991 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2992 { 2993 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2994 u32 weight; 2995 u32 queue; 2996 2997 for (queue = 0; queue < tx_queues_count; queue++) { 2998 weight = priv->plat->tx_queues_cfg[queue].weight; 2999 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3000 } 3001 } 3002 3003 /** 3004 * stmmac_configure_cbs - Configure CBS in TX queue 3005 * @priv: driver private structure 3006 * Description: It is used for configuring CBS in AVB TX queues 3007 */ 3008 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3009 { 3010 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3011 u32 mode_to_use; 3012 u32 queue; 3013 3014 /* queue 0 is reserved for legacy traffic */ 3015 for (queue = 1; queue < tx_queues_count; queue++) { 3016 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3017 if (mode_to_use == MTL_QUEUE_DCB) 3018 continue; 3019 3020 stmmac_config_cbs(priv, priv->hw, 3021 priv->plat->tx_queues_cfg[queue].send_slope, 3022 priv->plat->tx_queues_cfg[queue].idle_slope, 3023 priv->plat->tx_queues_cfg[queue].high_credit, 3024 priv->plat->tx_queues_cfg[queue].low_credit, 3025 queue); 3026 } 3027 } 3028 3029 /** 3030 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3031 * @priv: driver private structure 3032 * Description: It is used for mapping RX queues to RX dma channels 3033 */ 3034 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3035 { 3036 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3037 u32 queue; 3038 u32 chan; 3039 3040 for (queue = 0; queue < rx_queues_count; queue++) { 3041 chan = priv->plat->rx_queues_cfg[queue].chan; 3042 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3043 } 3044 } 3045 3046 /** 3047 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3048 * @priv: driver private structure 3049 * Description: It is used for configuring the RX Queue Priority 3050 */ 3051 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3052 { 3053 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3054 u32 queue; 3055 u32 prio; 3056 3057 for (queue = 0; queue < rx_queues_count; queue++) { 3058 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3059 continue; 3060 3061 prio = priv->plat->rx_queues_cfg[queue].prio; 3062 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3063 } 3064 } 3065 3066 /** 3067 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3068 * @priv: driver private structure 3069 * Description: It is used for configuring the TX Queue Priority 3070 */ 3071 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3072 { 3073 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3074 u32 queue; 3075 u32 prio; 3076 3077 for (queue = 0; queue < tx_queues_count; queue++) { 3078 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3079 continue; 3080 3081 prio = priv->plat->tx_queues_cfg[queue].prio; 3082 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3083 } 3084 } 3085 3086 /** 3087 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3088 * @priv: driver private structure 3089 * Description: It is used for configuring the RX queue routing 3090 */ 3091 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3092 { 3093 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3094 u32 queue; 3095 u8 packet; 3096 3097 for (queue = 0; queue < rx_queues_count; queue++) { 3098 /* no specific packet type routing specified for the queue */ 3099 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3100 continue; 3101 3102 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3103 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3104 } 3105 } 3106 3107 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3108 { 3109 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3110 priv->rss.enable = false; 3111 return; 3112 } 3113 3114 if (priv->dev->features & NETIF_F_RXHASH) 3115 priv->rss.enable = true; 3116 else 3117 priv->rss.enable = false; 3118 3119 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3120 priv->plat->rx_queues_to_use); 3121 } 3122 3123 /** 3124 * stmmac_mtl_configuration - Configure MTL 3125 * @priv: driver private structure 3126 * Description: It is used for configurring MTL 3127 */ 3128 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3129 { 3130 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3131 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3132 3133 if (tx_queues_count > 1) 3134 stmmac_set_tx_queue_weight(priv); 3135 3136 /* Configure MTL RX algorithms */ 3137 if (rx_queues_count > 1) 3138 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3139 priv->plat->rx_sched_algorithm); 3140 3141 /* Configure MTL TX algorithms */ 3142 if (tx_queues_count > 1) 3143 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3144 priv->plat->tx_sched_algorithm); 3145 3146 /* Configure CBS in AVB TX queues */ 3147 if (tx_queues_count > 1) 3148 stmmac_configure_cbs(priv); 3149 3150 /* Map RX MTL to DMA channels */ 3151 stmmac_rx_queue_dma_chan_map(priv); 3152 3153 /* Enable MAC RX Queues */ 3154 stmmac_mac_enable_rx_queues(priv); 3155 3156 /* Set RX priorities */ 3157 if (rx_queues_count > 1) 3158 stmmac_mac_config_rx_queues_prio(priv); 3159 3160 /* Set TX priorities */ 3161 if (tx_queues_count > 1) 3162 stmmac_mac_config_tx_queues_prio(priv); 3163 3164 /* Set RX routing */ 3165 if (rx_queues_count > 1) 3166 stmmac_mac_config_rx_queues_routing(priv); 3167 3168 /* Receive Side Scaling */ 3169 if (rx_queues_count > 1) 3170 stmmac_mac_config_rss(priv); 3171 } 3172 3173 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3174 { 3175 if (priv->dma_cap.asp) { 3176 netdev_info(priv->dev, "Enabling Safety Features\n"); 3177 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3178 priv->plat->safety_feat_cfg); 3179 } else { 3180 netdev_info(priv->dev, "No Safety Features support found\n"); 3181 } 3182 } 3183 3184 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3185 { 3186 char *name; 3187 3188 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3189 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3190 3191 name = priv->wq_name; 3192 sprintf(name, "%s-fpe", priv->dev->name); 3193 3194 priv->fpe_wq = create_singlethread_workqueue(name); 3195 if (!priv->fpe_wq) { 3196 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3197 3198 return -ENOMEM; 3199 } 3200 netdev_info(priv->dev, "FPE workqueue start"); 3201 3202 return 0; 3203 } 3204 3205 /** 3206 * stmmac_hw_setup - setup mac in a usable state. 3207 * @dev : pointer to the device structure. 3208 * @ptp_register: register PTP if set 3209 * Description: 3210 * this is the main function to setup the HW in a usable state because the 3211 * dma engine is reset, the core registers are configured (e.g. AXI, 3212 * Checksum features, timers). The DMA is ready to start receiving and 3213 * transmitting. 3214 * Return value: 3215 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3216 * file on failure. 3217 */ 3218 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3219 { 3220 struct stmmac_priv *priv = netdev_priv(dev); 3221 u32 rx_cnt = priv->plat->rx_queues_to_use; 3222 u32 tx_cnt = priv->plat->tx_queues_to_use; 3223 bool sph_en; 3224 u32 chan; 3225 int ret; 3226 3227 /* DMA initialization and SW reset */ 3228 ret = stmmac_init_dma_engine(priv); 3229 if (ret < 0) { 3230 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3231 __func__); 3232 return ret; 3233 } 3234 3235 /* Copy the MAC addr into the HW */ 3236 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3237 3238 /* PS and related bits will be programmed according to the speed */ 3239 if (priv->hw->pcs) { 3240 int speed = priv->plat->mac_port_sel_speed; 3241 3242 if ((speed == SPEED_10) || (speed == SPEED_100) || 3243 (speed == SPEED_1000)) { 3244 priv->hw->ps = speed; 3245 } else { 3246 dev_warn(priv->device, "invalid port speed\n"); 3247 priv->hw->ps = 0; 3248 } 3249 } 3250 3251 /* Initialize the MAC Core */ 3252 stmmac_core_init(priv, priv->hw, dev); 3253 3254 /* Initialize MTL*/ 3255 stmmac_mtl_configuration(priv); 3256 3257 /* Initialize Safety Features */ 3258 stmmac_safety_feat_configuration(priv); 3259 3260 ret = stmmac_rx_ipc(priv, priv->hw); 3261 if (!ret) { 3262 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3263 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3264 priv->hw->rx_csum = 0; 3265 } 3266 3267 /* Enable the MAC Rx/Tx */ 3268 stmmac_mac_set(priv, priv->ioaddr, true); 3269 3270 /* Set the HW DMA mode and the COE */ 3271 stmmac_dma_operation_mode(priv); 3272 3273 stmmac_mmc_setup(priv); 3274 3275 ret = stmmac_init_ptp(priv); 3276 if (ret == -EOPNOTSUPP) 3277 netdev_info(priv->dev, "PTP not supported by HW\n"); 3278 else if (ret) 3279 netdev_warn(priv->dev, "PTP init failed\n"); 3280 else if (ptp_register) 3281 stmmac_ptp_register(priv); 3282 3283 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3284 3285 /* Convert the timer from msec to usec */ 3286 if (!priv->tx_lpi_timer) 3287 priv->tx_lpi_timer = eee_timer * 1000; 3288 3289 if (priv->use_riwt) { 3290 u32 queue; 3291 3292 for (queue = 0; queue < rx_cnt; queue++) { 3293 if (!priv->rx_riwt[queue]) 3294 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3295 3296 stmmac_rx_watchdog(priv, priv->ioaddr, 3297 priv->rx_riwt[queue], queue); 3298 } 3299 } 3300 3301 if (priv->hw->pcs) 3302 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3303 3304 /* set TX and RX rings length */ 3305 stmmac_set_rings_length(priv); 3306 3307 /* Enable TSO */ 3308 if (priv->tso) { 3309 for (chan = 0; chan < tx_cnt; chan++) { 3310 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3311 3312 /* TSO and TBS cannot co-exist */ 3313 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3314 continue; 3315 3316 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3317 } 3318 } 3319 3320 /* Enable Split Header */ 3321 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3322 for (chan = 0; chan < rx_cnt; chan++) 3323 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3324 3325 3326 /* VLAN Tag Insertion */ 3327 if (priv->dma_cap.vlins) 3328 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3329 3330 /* TBS */ 3331 for (chan = 0; chan < tx_cnt; chan++) { 3332 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3333 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3334 3335 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3336 } 3337 3338 /* Configure real RX and TX queues */ 3339 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3340 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3341 3342 /* Start the ball rolling... */ 3343 stmmac_start_all_dma(priv); 3344 3345 if (priv->dma_cap.fpesel) { 3346 stmmac_fpe_start_wq(priv); 3347 3348 if (priv->plat->fpe_cfg->enable) 3349 stmmac_fpe_handshake(priv, true); 3350 } 3351 3352 return 0; 3353 } 3354 3355 static void stmmac_hw_teardown(struct net_device *dev) 3356 { 3357 struct stmmac_priv *priv = netdev_priv(dev); 3358 3359 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3360 } 3361 3362 static void stmmac_free_irq(struct net_device *dev, 3363 enum request_irq_err irq_err, int irq_idx) 3364 { 3365 struct stmmac_priv *priv = netdev_priv(dev); 3366 int j; 3367 3368 switch (irq_err) { 3369 case REQ_IRQ_ERR_ALL: 3370 irq_idx = priv->plat->tx_queues_to_use; 3371 fallthrough; 3372 case REQ_IRQ_ERR_TX: 3373 for (j = irq_idx - 1; j >= 0; j--) { 3374 if (priv->tx_irq[j] > 0) { 3375 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3376 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3377 } 3378 } 3379 irq_idx = priv->plat->rx_queues_to_use; 3380 fallthrough; 3381 case REQ_IRQ_ERR_RX: 3382 for (j = irq_idx - 1; j >= 0; j--) { 3383 if (priv->rx_irq[j] > 0) { 3384 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3385 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3386 } 3387 } 3388 3389 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3390 free_irq(priv->sfty_ue_irq, dev); 3391 fallthrough; 3392 case REQ_IRQ_ERR_SFTY_UE: 3393 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3394 free_irq(priv->sfty_ce_irq, dev); 3395 fallthrough; 3396 case REQ_IRQ_ERR_SFTY_CE: 3397 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3398 free_irq(priv->lpi_irq, dev); 3399 fallthrough; 3400 case REQ_IRQ_ERR_LPI: 3401 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3402 free_irq(priv->wol_irq, dev); 3403 fallthrough; 3404 case REQ_IRQ_ERR_WOL: 3405 free_irq(dev->irq, dev); 3406 fallthrough; 3407 case REQ_IRQ_ERR_MAC: 3408 case REQ_IRQ_ERR_NO: 3409 /* If MAC IRQ request error, no more IRQ to free */ 3410 break; 3411 } 3412 } 3413 3414 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3415 { 3416 struct stmmac_priv *priv = netdev_priv(dev); 3417 enum request_irq_err irq_err; 3418 cpumask_t cpu_mask; 3419 int irq_idx = 0; 3420 char *int_name; 3421 int ret; 3422 int i; 3423 3424 /* For common interrupt */ 3425 int_name = priv->int_name_mac; 3426 sprintf(int_name, "%s:%s", dev->name, "mac"); 3427 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3428 0, int_name, dev); 3429 if (unlikely(ret < 0)) { 3430 netdev_err(priv->dev, 3431 "%s: alloc mac MSI %d (error: %d)\n", 3432 __func__, dev->irq, ret); 3433 irq_err = REQ_IRQ_ERR_MAC; 3434 goto irq_error; 3435 } 3436 3437 /* Request the Wake IRQ in case of another line 3438 * is used for WoL 3439 */ 3440 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3441 int_name = priv->int_name_wol; 3442 sprintf(int_name, "%s:%s", dev->name, "wol"); 3443 ret = request_irq(priv->wol_irq, 3444 stmmac_mac_interrupt, 3445 0, int_name, dev); 3446 if (unlikely(ret < 0)) { 3447 netdev_err(priv->dev, 3448 "%s: alloc wol MSI %d (error: %d)\n", 3449 __func__, priv->wol_irq, ret); 3450 irq_err = REQ_IRQ_ERR_WOL; 3451 goto irq_error; 3452 } 3453 } 3454 3455 /* Request the LPI IRQ in case of another line 3456 * is used for LPI 3457 */ 3458 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3459 int_name = priv->int_name_lpi; 3460 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3461 ret = request_irq(priv->lpi_irq, 3462 stmmac_mac_interrupt, 3463 0, int_name, dev); 3464 if (unlikely(ret < 0)) { 3465 netdev_err(priv->dev, 3466 "%s: alloc lpi MSI %d (error: %d)\n", 3467 __func__, priv->lpi_irq, ret); 3468 irq_err = REQ_IRQ_ERR_LPI; 3469 goto irq_error; 3470 } 3471 } 3472 3473 /* Request the Safety Feature Correctible Error line in 3474 * case of another line is used 3475 */ 3476 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3477 int_name = priv->int_name_sfty_ce; 3478 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3479 ret = request_irq(priv->sfty_ce_irq, 3480 stmmac_safety_interrupt, 3481 0, int_name, dev); 3482 if (unlikely(ret < 0)) { 3483 netdev_err(priv->dev, 3484 "%s: alloc sfty ce MSI %d (error: %d)\n", 3485 __func__, priv->sfty_ce_irq, ret); 3486 irq_err = REQ_IRQ_ERR_SFTY_CE; 3487 goto irq_error; 3488 } 3489 } 3490 3491 /* Request the Safety Feature Uncorrectible Error line in 3492 * case of another line is used 3493 */ 3494 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3495 int_name = priv->int_name_sfty_ue; 3496 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3497 ret = request_irq(priv->sfty_ue_irq, 3498 stmmac_safety_interrupt, 3499 0, int_name, dev); 3500 if (unlikely(ret < 0)) { 3501 netdev_err(priv->dev, 3502 "%s: alloc sfty ue MSI %d (error: %d)\n", 3503 __func__, priv->sfty_ue_irq, ret); 3504 irq_err = REQ_IRQ_ERR_SFTY_UE; 3505 goto irq_error; 3506 } 3507 } 3508 3509 /* Request Rx MSI irq */ 3510 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3511 if (i >= MTL_MAX_RX_QUEUES) 3512 break; 3513 if (priv->rx_irq[i] == 0) 3514 continue; 3515 3516 int_name = priv->int_name_rx_irq[i]; 3517 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3518 ret = request_irq(priv->rx_irq[i], 3519 stmmac_msi_intr_rx, 3520 0, int_name, &priv->rx_queue[i]); 3521 if (unlikely(ret < 0)) { 3522 netdev_err(priv->dev, 3523 "%s: alloc rx-%d MSI %d (error: %d)\n", 3524 __func__, i, priv->rx_irq[i], ret); 3525 irq_err = REQ_IRQ_ERR_RX; 3526 irq_idx = i; 3527 goto irq_error; 3528 } 3529 cpumask_clear(&cpu_mask); 3530 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3531 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3532 } 3533 3534 /* Request Tx MSI irq */ 3535 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3536 if (i >= MTL_MAX_TX_QUEUES) 3537 break; 3538 if (priv->tx_irq[i] == 0) 3539 continue; 3540 3541 int_name = priv->int_name_tx_irq[i]; 3542 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3543 ret = request_irq(priv->tx_irq[i], 3544 stmmac_msi_intr_tx, 3545 0, int_name, &priv->tx_queue[i]); 3546 if (unlikely(ret < 0)) { 3547 netdev_err(priv->dev, 3548 "%s: alloc tx-%d MSI %d (error: %d)\n", 3549 __func__, i, priv->tx_irq[i], ret); 3550 irq_err = REQ_IRQ_ERR_TX; 3551 irq_idx = i; 3552 goto irq_error; 3553 } 3554 cpumask_clear(&cpu_mask); 3555 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3556 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3557 } 3558 3559 return 0; 3560 3561 irq_error: 3562 stmmac_free_irq(dev, irq_err, irq_idx); 3563 return ret; 3564 } 3565 3566 static int stmmac_request_irq_single(struct net_device *dev) 3567 { 3568 struct stmmac_priv *priv = netdev_priv(dev); 3569 enum request_irq_err irq_err; 3570 int ret; 3571 3572 ret = request_irq(dev->irq, stmmac_interrupt, 3573 IRQF_SHARED, dev->name, dev); 3574 if (unlikely(ret < 0)) { 3575 netdev_err(priv->dev, 3576 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3577 __func__, dev->irq, ret); 3578 irq_err = REQ_IRQ_ERR_MAC; 3579 goto irq_error; 3580 } 3581 3582 /* Request the Wake IRQ in case of another line 3583 * is used for WoL 3584 */ 3585 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3586 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3587 IRQF_SHARED, dev->name, dev); 3588 if (unlikely(ret < 0)) { 3589 netdev_err(priv->dev, 3590 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3591 __func__, priv->wol_irq, ret); 3592 irq_err = REQ_IRQ_ERR_WOL; 3593 goto irq_error; 3594 } 3595 } 3596 3597 /* Request the IRQ lines */ 3598 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3599 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3600 IRQF_SHARED, dev->name, dev); 3601 if (unlikely(ret < 0)) { 3602 netdev_err(priv->dev, 3603 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3604 __func__, priv->lpi_irq, ret); 3605 irq_err = REQ_IRQ_ERR_LPI; 3606 goto irq_error; 3607 } 3608 } 3609 3610 return 0; 3611 3612 irq_error: 3613 stmmac_free_irq(dev, irq_err, 0); 3614 return ret; 3615 } 3616 3617 static int stmmac_request_irq(struct net_device *dev) 3618 { 3619 struct stmmac_priv *priv = netdev_priv(dev); 3620 int ret; 3621 3622 /* Request the IRQ lines */ 3623 if (priv->plat->multi_msi_en) 3624 ret = stmmac_request_irq_multi_msi(dev); 3625 else 3626 ret = stmmac_request_irq_single(dev); 3627 3628 return ret; 3629 } 3630 3631 /** 3632 * stmmac_open - open entry point of the driver 3633 * @dev : pointer to the device structure. 3634 * Description: 3635 * This function is the open entry point of the driver. 3636 * Return value: 3637 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3638 * file on failure. 3639 */ 3640 static int stmmac_open(struct net_device *dev) 3641 { 3642 struct stmmac_priv *priv = netdev_priv(dev); 3643 int mode = priv->plat->phy_interface; 3644 int bfsize = 0; 3645 u32 chan; 3646 int ret; 3647 3648 ret = pm_runtime_resume_and_get(priv->device); 3649 if (ret < 0) 3650 return ret; 3651 3652 if (priv->hw->pcs != STMMAC_PCS_TBI && 3653 priv->hw->pcs != STMMAC_PCS_RTBI && 3654 (!priv->hw->xpcs || 3655 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3656 ret = stmmac_init_phy(dev); 3657 if (ret) { 3658 netdev_err(priv->dev, 3659 "%s: Cannot attach to PHY (error: %d)\n", 3660 __func__, ret); 3661 goto init_phy_error; 3662 } 3663 } 3664 3665 /* Extra statistics */ 3666 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3667 priv->xstats.threshold = tc; 3668 3669 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3670 if (bfsize < 0) 3671 bfsize = 0; 3672 3673 if (bfsize < BUF_SIZE_16KiB) 3674 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3675 3676 priv->dma_buf_sz = bfsize; 3677 buf_sz = bfsize; 3678 3679 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3680 3681 if (!priv->dma_tx_size) 3682 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3683 if (!priv->dma_rx_size) 3684 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3685 3686 /* Earlier check for TBS */ 3687 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3688 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3689 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3690 3691 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3692 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3693 } 3694 3695 ret = alloc_dma_desc_resources(priv); 3696 if (ret < 0) { 3697 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3698 __func__); 3699 goto dma_desc_error; 3700 } 3701 3702 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3703 if (ret < 0) { 3704 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3705 __func__); 3706 goto init_error; 3707 } 3708 3709 ret = stmmac_hw_setup(dev, true); 3710 if (ret < 0) { 3711 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3712 goto init_error; 3713 } 3714 3715 stmmac_init_coalesce(priv); 3716 3717 phylink_start(priv->phylink); 3718 /* We may have called phylink_speed_down before */ 3719 phylink_speed_up(priv->phylink); 3720 3721 ret = stmmac_request_irq(dev); 3722 if (ret) 3723 goto irq_error; 3724 3725 stmmac_enable_all_queues(priv); 3726 netif_tx_start_all_queues(priv->dev); 3727 stmmac_enable_all_dma_irq(priv); 3728 3729 return 0; 3730 3731 irq_error: 3732 phylink_stop(priv->phylink); 3733 3734 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3735 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3736 3737 stmmac_hw_teardown(dev); 3738 init_error: 3739 free_dma_desc_resources(priv); 3740 dma_desc_error: 3741 phylink_disconnect_phy(priv->phylink); 3742 init_phy_error: 3743 pm_runtime_put(priv->device); 3744 return ret; 3745 } 3746 3747 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3748 { 3749 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3750 3751 if (priv->fpe_wq) 3752 destroy_workqueue(priv->fpe_wq); 3753 3754 netdev_info(priv->dev, "FPE workqueue stop"); 3755 } 3756 3757 /** 3758 * stmmac_release - close entry point of the driver 3759 * @dev : device pointer. 3760 * Description: 3761 * This is the stop entry point of the driver. 3762 */ 3763 static int stmmac_release(struct net_device *dev) 3764 { 3765 struct stmmac_priv *priv = netdev_priv(dev); 3766 u32 chan; 3767 3768 netif_tx_disable(dev); 3769 3770 if (device_may_wakeup(priv->device)) 3771 phylink_speed_down(priv->phylink, false); 3772 /* Stop and disconnect the PHY */ 3773 phylink_stop(priv->phylink); 3774 phylink_disconnect_phy(priv->phylink); 3775 3776 stmmac_disable_all_queues(priv); 3777 3778 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3779 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3780 3781 /* Free the IRQ lines */ 3782 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3783 3784 if (priv->eee_enabled) { 3785 priv->tx_path_in_lpi_mode = false; 3786 del_timer_sync(&priv->eee_ctrl_timer); 3787 } 3788 3789 /* Stop TX/RX DMA and clear the descriptors */ 3790 stmmac_stop_all_dma(priv); 3791 3792 /* Release and free the Rx/Tx resources */ 3793 free_dma_desc_resources(priv); 3794 3795 /* Disable the MAC Rx/Tx */ 3796 stmmac_mac_set(priv, priv->ioaddr, false); 3797 3798 netif_carrier_off(dev); 3799 3800 stmmac_release_ptp(priv); 3801 3802 pm_runtime_put(priv->device); 3803 3804 if (priv->dma_cap.fpesel) 3805 stmmac_fpe_stop_wq(priv); 3806 3807 return 0; 3808 } 3809 3810 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3811 struct stmmac_tx_queue *tx_q) 3812 { 3813 u16 tag = 0x0, inner_tag = 0x0; 3814 u32 inner_type = 0x0; 3815 struct dma_desc *p; 3816 3817 if (!priv->dma_cap.vlins) 3818 return false; 3819 if (!skb_vlan_tag_present(skb)) 3820 return false; 3821 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3822 inner_tag = skb_vlan_tag_get(skb); 3823 inner_type = STMMAC_VLAN_INSERT; 3824 } 3825 3826 tag = skb_vlan_tag_get(skb); 3827 3828 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3829 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3830 else 3831 p = &tx_q->dma_tx[tx_q->cur_tx]; 3832 3833 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3834 return false; 3835 3836 stmmac_set_tx_owner(priv, p); 3837 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3838 return true; 3839 } 3840 3841 /** 3842 * stmmac_tso_allocator - close entry point of the driver 3843 * @priv: driver private structure 3844 * @des: buffer start address 3845 * @total_len: total length to fill in descriptors 3846 * @last_segment: condition for the last descriptor 3847 * @queue: TX queue index 3848 * Description: 3849 * This function fills descriptor and request new descriptors according to 3850 * buffer length to fill 3851 */ 3852 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3853 int total_len, bool last_segment, u32 queue) 3854 { 3855 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3856 struct dma_desc *desc; 3857 u32 buff_size; 3858 int tmp_len; 3859 3860 tmp_len = total_len; 3861 3862 while (tmp_len > 0) { 3863 dma_addr_t curr_addr; 3864 3865 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3866 priv->dma_tx_size); 3867 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3868 3869 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3870 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3871 else 3872 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3873 3874 curr_addr = des + (total_len - tmp_len); 3875 if (priv->dma_cap.addr64 <= 32) 3876 desc->des0 = cpu_to_le32(curr_addr); 3877 else 3878 stmmac_set_desc_addr(priv, desc, curr_addr); 3879 3880 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3881 TSO_MAX_BUFF_SIZE : tmp_len; 3882 3883 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3884 0, 1, 3885 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3886 0, 0); 3887 3888 tmp_len -= TSO_MAX_BUFF_SIZE; 3889 } 3890 } 3891 3892 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3893 { 3894 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3895 int desc_size; 3896 3897 if (likely(priv->extend_desc)) 3898 desc_size = sizeof(struct dma_extended_desc); 3899 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3900 desc_size = sizeof(struct dma_edesc); 3901 else 3902 desc_size = sizeof(struct dma_desc); 3903 3904 /* The own bit must be the latest setting done when prepare the 3905 * descriptor and then barrier is needed to make sure that 3906 * all is coherent before granting the DMA engine. 3907 */ 3908 wmb(); 3909 3910 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3911 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3912 } 3913 3914 /** 3915 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3916 * @skb : the socket buffer 3917 * @dev : device pointer 3918 * Description: this is the transmit function that is called on TSO frames 3919 * (support available on GMAC4 and newer chips). 3920 * Diagram below show the ring programming in case of TSO frames: 3921 * 3922 * First Descriptor 3923 * -------- 3924 * | DES0 |---> buffer1 = L2/L3/L4 header 3925 * | DES1 |---> TCP Payload (can continue on next descr...) 3926 * | DES2 |---> buffer 1 and 2 len 3927 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3928 * -------- 3929 * | 3930 * ... 3931 * | 3932 * -------- 3933 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3934 * | DES1 | --| 3935 * | DES2 | --> buffer 1 and 2 len 3936 * | DES3 | 3937 * -------- 3938 * 3939 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3940 */ 3941 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3942 { 3943 struct dma_desc *desc, *first, *mss_desc = NULL; 3944 struct stmmac_priv *priv = netdev_priv(dev); 3945 int nfrags = skb_shinfo(skb)->nr_frags; 3946 u32 queue = skb_get_queue_mapping(skb); 3947 unsigned int first_entry, tx_packets; 3948 int tmp_pay_len = 0, first_tx; 3949 struct stmmac_tx_queue *tx_q; 3950 bool has_vlan, set_ic; 3951 u8 proto_hdr_len, hdr; 3952 u32 pay_len, mss; 3953 dma_addr_t des; 3954 int i; 3955 3956 tx_q = &priv->tx_queue[queue]; 3957 first_tx = tx_q->cur_tx; 3958 3959 /* Compute header lengths */ 3960 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3961 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3962 hdr = sizeof(struct udphdr); 3963 } else { 3964 proto_hdr_len = skb_tcp_all_headers(skb); 3965 hdr = tcp_hdrlen(skb); 3966 } 3967 3968 /* Desc availability based on threshold should be enough safe */ 3969 if (unlikely(stmmac_tx_avail(priv, queue) < 3970 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3971 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3972 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3973 queue)); 3974 /* This is a hard error, log it. */ 3975 netdev_err(priv->dev, 3976 "%s: Tx Ring full when queue awake\n", 3977 __func__); 3978 } 3979 return NETDEV_TX_BUSY; 3980 } 3981 3982 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3983 3984 mss = skb_shinfo(skb)->gso_size; 3985 3986 /* set new MSS value if needed */ 3987 if (mss != tx_q->mss) { 3988 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3989 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3990 else 3991 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3992 3993 stmmac_set_mss(priv, mss_desc, mss); 3994 tx_q->mss = mss; 3995 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3996 priv->dma_tx_size); 3997 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3998 } 3999 4000 if (netif_msg_tx_queued(priv)) { 4001 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4002 __func__, hdr, proto_hdr_len, pay_len, mss); 4003 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4004 skb->data_len); 4005 } 4006 4007 /* Check if VLAN can be inserted by HW */ 4008 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4009 4010 first_entry = tx_q->cur_tx; 4011 WARN_ON(tx_q->tx_skbuff[first_entry]); 4012 4013 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4014 desc = &tx_q->dma_entx[first_entry].basic; 4015 else 4016 desc = &tx_q->dma_tx[first_entry]; 4017 first = desc; 4018 4019 if (has_vlan) 4020 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4021 4022 /* first descriptor: fill Headers on Buf1 */ 4023 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4024 DMA_TO_DEVICE); 4025 if (dma_mapping_error(priv->device, des)) 4026 goto dma_map_err; 4027 4028 tx_q->tx_skbuff_dma[first_entry].buf = des; 4029 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4030 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4031 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4032 4033 if (priv->dma_cap.addr64 <= 32) { 4034 first->des0 = cpu_to_le32(des); 4035 4036 /* Fill start of payload in buff2 of first descriptor */ 4037 if (pay_len) 4038 first->des1 = cpu_to_le32(des + proto_hdr_len); 4039 4040 /* If needed take extra descriptors to fill the remaining payload */ 4041 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4042 } else { 4043 stmmac_set_desc_addr(priv, first, des); 4044 tmp_pay_len = pay_len; 4045 des += proto_hdr_len; 4046 pay_len = 0; 4047 } 4048 4049 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4050 4051 /* Prepare fragments */ 4052 for (i = 0; i < nfrags; i++) { 4053 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4054 4055 des = skb_frag_dma_map(priv->device, frag, 0, 4056 skb_frag_size(frag), 4057 DMA_TO_DEVICE); 4058 if (dma_mapping_error(priv->device, des)) 4059 goto dma_map_err; 4060 4061 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4062 (i == nfrags - 1), queue); 4063 4064 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4065 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4066 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4067 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4068 } 4069 4070 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4071 4072 /* Only the last descriptor gets to point to the skb. */ 4073 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4074 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4075 4076 /* Manage tx mitigation */ 4077 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4078 tx_q->tx_count_frames += tx_packets; 4079 4080 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4081 set_ic = true; 4082 else if (!priv->tx_coal_frames[queue]) 4083 set_ic = false; 4084 else if (tx_packets > priv->tx_coal_frames[queue]) 4085 set_ic = true; 4086 else if ((tx_q->tx_count_frames % 4087 priv->tx_coal_frames[queue]) < tx_packets) 4088 set_ic = true; 4089 else 4090 set_ic = false; 4091 4092 if (set_ic) { 4093 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4094 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4095 else 4096 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4097 4098 tx_q->tx_count_frames = 0; 4099 stmmac_set_tx_ic(priv, desc); 4100 priv->xstats.tx_set_ic_bit++; 4101 } 4102 4103 /* We've used all descriptors we need for this skb, however, 4104 * advance cur_tx so that it references a fresh descriptor. 4105 * ndo_start_xmit will fill this descriptor the next time it's 4106 * called and stmmac_tx_clean may clean up to this descriptor. 4107 */ 4108 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4109 4110 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4111 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4112 __func__); 4113 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4114 } 4115 4116 dev->stats.tx_bytes += skb->len; 4117 priv->xstats.tx_tso_frames++; 4118 priv->xstats.tx_tso_nfrags += nfrags; 4119 4120 if (priv->sarc_type) 4121 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4122 4123 skb_tx_timestamp(skb); 4124 4125 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4126 priv->hwts_tx_en)) { 4127 /* declare that device is doing timestamping */ 4128 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4129 stmmac_enable_tx_timestamp(priv, first); 4130 } 4131 4132 /* Complete the first descriptor before granting the DMA */ 4133 stmmac_prepare_tso_tx_desc(priv, first, 1, 4134 proto_hdr_len, 4135 pay_len, 4136 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4137 hdr / 4, (skb->len - proto_hdr_len)); 4138 4139 /* If context desc is used to change MSS */ 4140 if (mss_desc) { 4141 /* Make sure that first descriptor has been completely 4142 * written, including its own bit. This is because MSS is 4143 * actually before first descriptor, so we need to make 4144 * sure that MSS's own bit is the last thing written. 4145 */ 4146 dma_wmb(); 4147 stmmac_set_tx_owner(priv, mss_desc); 4148 } 4149 4150 if (netif_msg_pktdata(priv)) { 4151 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4152 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4153 tx_q->cur_tx, first, nfrags); 4154 pr_info(">>> frame to be transmitted: "); 4155 print_pkt(skb->data, skb_headlen(skb)); 4156 } 4157 4158 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4159 4160 stmmac_flush_tx_descriptors(priv, queue); 4161 stmmac_tx_timer_arm(priv, queue); 4162 4163 return NETDEV_TX_OK; 4164 4165 dma_map_err: 4166 dev_err(priv->device, "Tx dma map failed\n"); 4167 dev_kfree_skb(skb); 4168 priv->dev->stats.tx_dropped++; 4169 return NETDEV_TX_OK; 4170 } 4171 4172 /** 4173 * stmmac_xmit - Tx entry point of the driver 4174 * @skb : the socket buffer 4175 * @dev : device pointer 4176 * Description : this is the tx entry point of the driver. 4177 * It programs the chain or the ring and supports oversized frames 4178 * and SG feature. 4179 */ 4180 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4181 { 4182 unsigned int first_entry, tx_packets, enh_desc; 4183 struct stmmac_priv *priv = netdev_priv(dev); 4184 unsigned int nopaged_len = skb_headlen(skb); 4185 int i, csum_insertion = 0, is_jumbo = 0; 4186 u32 queue = skb_get_queue_mapping(skb); 4187 int nfrags = skb_shinfo(skb)->nr_frags; 4188 int gso = skb_shinfo(skb)->gso_type; 4189 struct dma_edesc *tbs_desc = NULL; 4190 struct dma_desc *desc, *first; 4191 struct stmmac_tx_queue *tx_q; 4192 bool has_vlan, set_ic; 4193 int entry, first_tx; 4194 dma_addr_t des; 4195 4196 tx_q = &priv->tx_queue[queue]; 4197 first_tx = tx_q->cur_tx; 4198 4199 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4200 stmmac_disable_eee_mode(priv); 4201 4202 /* Manage oversized TCP frames for GMAC4 device */ 4203 if (skb_is_gso(skb) && priv->tso) { 4204 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4205 return stmmac_tso_xmit(skb, dev); 4206 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4207 return stmmac_tso_xmit(skb, dev); 4208 } 4209 4210 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4211 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4212 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4213 queue)); 4214 /* This is a hard error, log it. */ 4215 netdev_err(priv->dev, 4216 "%s: Tx Ring full when queue awake\n", 4217 __func__); 4218 } 4219 return NETDEV_TX_BUSY; 4220 } 4221 4222 /* Check if VLAN can be inserted by HW */ 4223 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4224 4225 entry = tx_q->cur_tx; 4226 first_entry = entry; 4227 WARN_ON(tx_q->tx_skbuff[first_entry]); 4228 4229 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4230 4231 if (likely(priv->extend_desc)) 4232 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4233 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4234 desc = &tx_q->dma_entx[entry].basic; 4235 else 4236 desc = tx_q->dma_tx + entry; 4237 4238 first = desc; 4239 4240 if (has_vlan) 4241 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4242 4243 enh_desc = priv->plat->enh_desc; 4244 /* To program the descriptors according to the size of the frame */ 4245 if (enh_desc) 4246 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4247 4248 if (unlikely(is_jumbo)) { 4249 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4250 if (unlikely(entry < 0) && (entry != -EINVAL)) 4251 goto dma_map_err; 4252 } 4253 4254 for (i = 0; i < nfrags; i++) { 4255 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4256 int len = skb_frag_size(frag); 4257 bool last_segment = (i == (nfrags - 1)); 4258 4259 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4260 WARN_ON(tx_q->tx_skbuff[entry]); 4261 4262 if (likely(priv->extend_desc)) 4263 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4264 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4265 desc = &tx_q->dma_entx[entry].basic; 4266 else 4267 desc = tx_q->dma_tx + entry; 4268 4269 des = skb_frag_dma_map(priv->device, frag, 0, len, 4270 DMA_TO_DEVICE); 4271 if (dma_mapping_error(priv->device, des)) 4272 goto dma_map_err; /* should reuse desc w/o issues */ 4273 4274 tx_q->tx_skbuff_dma[entry].buf = des; 4275 4276 stmmac_set_desc_addr(priv, desc, des); 4277 4278 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4279 tx_q->tx_skbuff_dma[entry].len = len; 4280 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4281 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4282 4283 /* Prepare the descriptor and set the own bit too */ 4284 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4285 priv->mode, 1, last_segment, skb->len); 4286 } 4287 4288 /* Only the last descriptor gets to point to the skb. */ 4289 tx_q->tx_skbuff[entry] = skb; 4290 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4291 4292 /* According to the coalesce parameter the IC bit for the latest 4293 * segment is reset and the timer re-started to clean the tx status. 4294 * This approach takes care about the fragments: desc is the first 4295 * element in case of no SG. 4296 */ 4297 tx_packets = (entry + 1) - first_tx; 4298 tx_q->tx_count_frames += tx_packets; 4299 4300 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4301 set_ic = true; 4302 else if (!priv->tx_coal_frames[queue]) 4303 set_ic = false; 4304 else if (tx_packets > priv->tx_coal_frames[queue]) 4305 set_ic = true; 4306 else if ((tx_q->tx_count_frames % 4307 priv->tx_coal_frames[queue]) < tx_packets) 4308 set_ic = true; 4309 else 4310 set_ic = false; 4311 4312 if (set_ic) { 4313 if (likely(priv->extend_desc)) 4314 desc = &tx_q->dma_etx[entry].basic; 4315 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4316 desc = &tx_q->dma_entx[entry].basic; 4317 else 4318 desc = &tx_q->dma_tx[entry]; 4319 4320 tx_q->tx_count_frames = 0; 4321 stmmac_set_tx_ic(priv, desc); 4322 priv->xstats.tx_set_ic_bit++; 4323 } 4324 4325 /* We've used all descriptors we need for this skb, however, 4326 * advance cur_tx so that it references a fresh descriptor. 4327 * ndo_start_xmit will fill this descriptor the next time it's 4328 * called and stmmac_tx_clean may clean up to this descriptor. 4329 */ 4330 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4331 tx_q->cur_tx = entry; 4332 4333 if (netif_msg_pktdata(priv)) { 4334 netdev_dbg(priv->dev, 4335 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4336 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4337 entry, first, nfrags); 4338 4339 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4340 print_pkt(skb->data, skb->len); 4341 } 4342 4343 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4344 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4345 __func__); 4346 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4347 } 4348 4349 dev->stats.tx_bytes += skb->len; 4350 4351 if (priv->sarc_type) 4352 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4353 4354 skb_tx_timestamp(skb); 4355 4356 /* Ready to fill the first descriptor and set the OWN bit w/o any 4357 * problems because all the descriptors are actually ready to be 4358 * passed to the DMA engine. 4359 */ 4360 if (likely(!is_jumbo)) { 4361 bool last_segment = (nfrags == 0); 4362 4363 des = dma_map_single(priv->device, skb->data, 4364 nopaged_len, DMA_TO_DEVICE); 4365 if (dma_mapping_error(priv->device, des)) 4366 goto dma_map_err; 4367 4368 tx_q->tx_skbuff_dma[first_entry].buf = des; 4369 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4370 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4371 4372 stmmac_set_desc_addr(priv, first, des); 4373 4374 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4375 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4376 4377 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4378 priv->hwts_tx_en)) { 4379 /* declare that device is doing timestamping */ 4380 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4381 stmmac_enable_tx_timestamp(priv, first); 4382 } 4383 4384 /* Prepare the first descriptor setting the OWN bit too */ 4385 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4386 csum_insertion, priv->mode, 0, last_segment, 4387 skb->len); 4388 } 4389 4390 if (tx_q->tbs & STMMAC_TBS_EN) { 4391 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4392 4393 tbs_desc = &tx_q->dma_entx[first_entry]; 4394 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4395 } 4396 4397 stmmac_set_tx_owner(priv, first); 4398 4399 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4400 4401 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4402 4403 stmmac_flush_tx_descriptors(priv, queue); 4404 stmmac_tx_timer_arm(priv, queue); 4405 4406 return NETDEV_TX_OK; 4407 4408 dma_map_err: 4409 netdev_err(priv->dev, "Tx DMA map failed\n"); 4410 dev_kfree_skb(skb); 4411 priv->dev->stats.tx_dropped++; 4412 return NETDEV_TX_OK; 4413 } 4414 4415 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4416 { 4417 struct vlan_ethhdr *veth; 4418 __be16 vlan_proto; 4419 u16 vlanid; 4420 4421 veth = (struct vlan_ethhdr *)skb->data; 4422 vlan_proto = veth->h_vlan_proto; 4423 4424 if ((vlan_proto == htons(ETH_P_8021Q) && 4425 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4426 (vlan_proto == htons(ETH_P_8021AD) && 4427 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4428 /* pop the vlan tag */ 4429 vlanid = ntohs(veth->h_vlan_TCI); 4430 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4431 skb_pull(skb, VLAN_HLEN); 4432 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4433 } 4434 } 4435 4436 /** 4437 * stmmac_rx_refill - refill used skb preallocated buffers 4438 * @priv: driver private structure 4439 * @queue: RX queue index 4440 * Description : this is to reallocate the skb for the reception process 4441 * that is based on zero-copy. 4442 */ 4443 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4444 { 4445 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4446 int dirty = stmmac_rx_dirty(priv, queue); 4447 unsigned int entry = rx_q->dirty_rx; 4448 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4449 4450 if (priv->dma_cap.addr64 <= 32) 4451 gfp |= GFP_DMA32; 4452 4453 while (dirty-- > 0) { 4454 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4455 struct dma_desc *p; 4456 bool use_rx_wd; 4457 4458 if (priv->extend_desc) 4459 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4460 else 4461 p = rx_q->dma_rx + entry; 4462 4463 if (!buf->page) { 4464 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4465 if (!buf->page) 4466 break; 4467 } 4468 4469 if (priv->sph && !buf->sec_page) { 4470 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4471 if (!buf->sec_page) 4472 break; 4473 4474 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4475 } 4476 4477 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4478 4479 stmmac_set_desc_addr(priv, p, buf->addr); 4480 if (priv->sph) 4481 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4482 else 4483 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4484 stmmac_refill_desc3(priv, rx_q, p); 4485 4486 rx_q->rx_count_frames++; 4487 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4488 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4489 rx_q->rx_count_frames = 0; 4490 4491 use_rx_wd = !priv->rx_coal_frames[queue]; 4492 use_rx_wd |= rx_q->rx_count_frames > 0; 4493 if (!priv->use_riwt) 4494 use_rx_wd = false; 4495 4496 dma_wmb(); 4497 stmmac_set_rx_owner(priv, p, use_rx_wd); 4498 4499 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4500 } 4501 rx_q->dirty_rx = entry; 4502 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4503 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4504 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4505 } 4506 4507 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4508 struct dma_desc *p, 4509 int status, unsigned int len) 4510 { 4511 unsigned int plen = 0, hlen = 0; 4512 int coe = priv->hw->rx_csum; 4513 4514 /* Not first descriptor, buffer is always zero */ 4515 if (priv->sph && len) 4516 return 0; 4517 4518 /* First descriptor, get split header length */ 4519 stmmac_get_rx_header_len(priv, p, &hlen); 4520 if (priv->sph && hlen) { 4521 priv->xstats.rx_split_hdr_pkt_n++; 4522 return hlen; 4523 } 4524 4525 /* First descriptor, not last descriptor and not split header */ 4526 if (status & rx_not_ls) 4527 return priv->dma_buf_sz; 4528 4529 plen = stmmac_get_rx_frame_len(priv, p, coe); 4530 4531 /* First descriptor and last descriptor and not split header */ 4532 return min_t(unsigned int, priv->dma_buf_sz, plen); 4533 } 4534 4535 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4536 struct dma_desc *p, 4537 int status, unsigned int len) 4538 { 4539 int coe = priv->hw->rx_csum; 4540 unsigned int plen = 0; 4541 4542 /* Not split header, buffer is not available */ 4543 if (!priv->sph) 4544 return 0; 4545 4546 /* Not last descriptor */ 4547 if (status & rx_not_ls) 4548 return priv->dma_buf_sz; 4549 4550 plen = stmmac_get_rx_frame_len(priv, p, coe); 4551 4552 /* Last descriptor */ 4553 return plen - len; 4554 } 4555 4556 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4557 struct xdp_frame *xdpf, bool dma_map) 4558 { 4559 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4560 unsigned int entry = tx_q->cur_tx; 4561 struct dma_desc *tx_desc; 4562 dma_addr_t dma_addr; 4563 bool set_ic; 4564 4565 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4566 return STMMAC_XDP_CONSUMED; 4567 4568 if (likely(priv->extend_desc)) 4569 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4570 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4571 tx_desc = &tx_q->dma_entx[entry].basic; 4572 else 4573 tx_desc = tx_q->dma_tx + entry; 4574 4575 if (dma_map) { 4576 dma_addr = dma_map_single(priv->device, xdpf->data, 4577 xdpf->len, DMA_TO_DEVICE); 4578 if (dma_mapping_error(priv->device, dma_addr)) 4579 return STMMAC_XDP_CONSUMED; 4580 4581 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4582 } else { 4583 struct page *page = virt_to_page(xdpf->data); 4584 4585 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4586 xdpf->headroom; 4587 dma_sync_single_for_device(priv->device, dma_addr, 4588 xdpf->len, DMA_BIDIRECTIONAL); 4589 4590 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4591 } 4592 4593 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4594 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4595 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4596 tx_q->tx_skbuff_dma[entry].last_segment = true; 4597 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4598 4599 tx_q->xdpf[entry] = xdpf; 4600 4601 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4602 4603 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4604 true, priv->mode, true, true, 4605 xdpf->len); 4606 4607 tx_q->tx_count_frames++; 4608 4609 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4610 set_ic = true; 4611 else 4612 set_ic = false; 4613 4614 if (set_ic) { 4615 tx_q->tx_count_frames = 0; 4616 stmmac_set_tx_ic(priv, tx_desc); 4617 priv->xstats.tx_set_ic_bit++; 4618 } 4619 4620 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4621 4622 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4623 tx_q->cur_tx = entry; 4624 4625 return STMMAC_XDP_TX; 4626 } 4627 4628 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4629 int cpu) 4630 { 4631 int index = cpu; 4632 4633 if (unlikely(index < 0)) 4634 index = 0; 4635 4636 while (index >= priv->plat->tx_queues_to_use) 4637 index -= priv->plat->tx_queues_to_use; 4638 4639 return index; 4640 } 4641 4642 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4643 struct xdp_buff *xdp) 4644 { 4645 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4646 int cpu = smp_processor_id(); 4647 struct netdev_queue *nq; 4648 int queue; 4649 int res; 4650 4651 if (unlikely(!xdpf)) 4652 return STMMAC_XDP_CONSUMED; 4653 4654 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4655 nq = netdev_get_tx_queue(priv->dev, queue); 4656 4657 __netif_tx_lock(nq, cpu); 4658 /* Avoids TX time-out as we are sharing with slow path */ 4659 txq_trans_cond_update(nq); 4660 4661 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4662 if (res == STMMAC_XDP_TX) 4663 stmmac_flush_tx_descriptors(priv, queue); 4664 4665 __netif_tx_unlock(nq); 4666 4667 return res; 4668 } 4669 4670 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4671 struct bpf_prog *prog, 4672 struct xdp_buff *xdp) 4673 { 4674 u32 act; 4675 int res; 4676 4677 act = bpf_prog_run_xdp(prog, xdp); 4678 switch (act) { 4679 case XDP_PASS: 4680 res = STMMAC_XDP_PASS; 4681 break; 4682 case XDP_TX: 4683 res = stmmac_xdp_xmit_back(priv, xdp); 4684 break; 4685 case XDP_REDIRECT: 4686 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4687 res = STMMAC_XDP_CONSUMED; 4688 else 4689 res = STMMAC_XDP_REDIRECT; 4690 break; 4691 default: 4692 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4693 fallthrough; 4694 case XDP_ABORTED: 4695 trace_xdp_exception(priv->dev, prog, act); 4696 fallthrough; 4697 case XDP_DROP: 4698 res = STMMAC_XDP_CONSUMED; 4699 break; 4700 } 4701 4702 return res; 4703 } 4704 4705 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4706 struct xdp_buff *xdp) 4707 { 4708 struct bpf_prog *prog; 4709 int res; 4710 4711 prog = READ_ONCE(priv->xdp_prog); 4712 if (!prog) { 4713 res = STMMAC_XDP_PASS; 4714 goto out; 4715 } 4716 4717 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4718 out: 4719 return ERR_PTR(-res); 4720 } 4721 4722 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4723 int xdp_status) 4724 { 4725 int cpu = smp_processor_id(); 4726 int queue; 4727 4728 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4729 4730 if (xdp_status & STMMAC_XDP_TX) 4731 stmmac_tx_timer_arm(priv, queue); 4732 4733 if (xdp_status & STMMAC_XDP_REDIRECT) 4734 xdp_do_flush(); 4735 } 4736 4737 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4738 struct xdp_buff *xdp) 4739 { 4740 unsigned int metasize = xdp->data - xdp->data_meta; 4741 unsigned int datasize = xdp->data_end - xdp->data; 4742 struct sk_buff *skb; 4743 4744 skb = __napi_alloc_skb(&ch->rxtx_napi, 4745 xdp->data_end - xdp->data_hard_start, 4746 GFP_ATOMIC | __GFP_NOWARN); 4747 if (unlikely(!skb)) 4748 return NULL; 4749 4750 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4751 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4752 if (metasize) 4753 skb_metadata_set(skb, metasize); 4754 4755 return skb; 4756 } 4757 4758 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4759 struct dma_desc *p, struct dma_desc *np, 4760 struct xdp_buff *xdp) 4761 { 4762 struct stmmac_channel *ch = &priv->channel[queue]; 4763 unsigned int len = xdp->data_end - xdp->data; 4764 enum pkt_hash_types hash_type; 4765 int coe = priv->hw->rx_csum; 4766 struct sk_buff *skb; 4767 u32 hash; 4768 4769 skb = stmmac_construct_skb_zc(ch, xdp); 4770 if (!skb) { 4771 priv->dev->stats.rx_dropped++; 4772 return; 4773 } 4774 4775 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4776 stmmac_rx_vlan(priv->dev, skb); 4777 skb->protocol = eth_type_trans(skb, priv->dev); 4778 4779 if (unlikely(!coe)) 4780 skb_checksum_none_assert(skb); 4781 else 4782 skb->ip_summed = CHECKSUM_UNNECESSARY; 4783 4784 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4785 skb_set_hash(skb, hash, hash_type); 4786 4787 skb_record_rx_queue(skb, queue); 4788 napi_gro_receive(&ch->rxtx_napi, skb); 4789 4790 priv->dev->stats.rx_packets++; 4791 priv->dev->stats.rx_bytes += len; 4792 } 4793 4794 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4795 { 4796 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4797 unsigned int entry = rx_q->dirty_rx; 4798 struct dma_desc *rx_desc = NULL; 4799 bool ret = true; 4800 4801 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4802 4803 while (budget-- > 0 && entry != rx_q->cur_rx) { 4804 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4805 dma_addr_t dma_addr; 4806 bool use_rx_wd; 4807 4808 if (!buf->xdp) { 4809 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4810 if (!buf->xdp) { 4811 ret = false; 4812 break; 4813 } 4814 } 4815 4816 if (priv->extend_desc) 4817 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4818 else 4819 rx_desc = rx_q->dma_rx + entry; 4820 4821 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4822 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4823 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4824 stmmac_refill_desc3(priv, rx_q, rx_desc); 4825 4826 rx_q->rx_count_frames++; 4827 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4828 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4829 rx_q->rx_count_frames = 0; 4830 4831 use_rx_wd = !priv->rx_coal_frames[queue]; 4832 use_rx_wd |= rx_q->rx_count_frames > 0; 4833 if (!priv->use_riwt) 4834 use_rx_wd = false; 4835 4836 dma_wmb(); 4837 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4838 4839 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4840 } 4841 4842 if (rx_desc) { 4843 rx_q->dirty_rx = entry; 4844 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4845 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4846 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4847 } 4848 4849 return ret; 4850 } 4851 4852 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4853 { 4854 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4855 unsigned int count = 0, error = 0, len = 0; 4856 int dirty = stmmac_rx_dirty(priv, queue); 4857 unsigned int next_entry = rx_q->cur_rx; 4858 unsigned int desc_size; 4859 struct bpf_prog *prog; 4860 bool failure = false; 4861 int xdp_status = 0; 4862 int status = 0; 4863 4864 if (netif_msg_rx_status(priv)) { 4865 void *rx_head; 4866 4867 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4868 if (priv->extend_desc) { 4869 rx_head = (void *)rx_q->dma_erx; 4870 desc_size = sizeof(struct dma_extended_desc); 4871 } else { 4872 rx_head = (void *)rx_q->dma_rx; 4873 desc_size = sizeof(struct dma_desc); 4874 } 4875 4876 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4877 rx_q->dma_rx_phy, desc_size); 4878 } 4879 while (count < limit) { 4880 struct stmmac_rx_buffer *buf; 4881 unsigned int buf1_len = 0; 4882 struct dma_desc *np, *p; 4883 int entry; 4884 int res; 4885 4886 if (!count && rx_q->state_saved) { 4887 error = rx_q->state.error; 4888 len = rx_q->state.len; 4889 } else { 4890 rx_q->state_saved = false; 4891 error = 0; 4892 len = 0; 4893 } 4894 4895 if (count >= limit) 4896 break; 4897 4898 read_again: 4899 buf1_len = 0; 4900 entry = next_entry; 4901 buf = &rx_q->buf_pool[entry]; 4902 4903 if (dirty >= STMMAC_RX_FILL_BATCH) { 4904 failure = failure || 4905 !stmmac_rx_refill_zc(priv, queue, dirty); 4906 dirty = 0; 4907 } 4908 4909 if (priv->extend_desc) 4910 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4911 else 4912 p = rx_q->dma_rx + entry; 4913 4914 /* read the status of the incoming frame */ 4915 status = stmmac_rx_status(priv, &priv->dev->stats, 4916 &priv->xstats, p); 4917 /* check if managed by the DMA otherwise go ahead */ 4918 if (unlikely(status & dma_own)) 4919 break; 4920 4921 /* Prefetch the next RX descriptor */ 4922 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4923 priv->dma_rx_size); 4924 next_entry = rx_q->cur_rx; 4925 4926 if (priv->extend_desc) 4927 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4928 else 4929 np = rx_q->dma_rx + next_entry; 4930 4931 prefetch(np); 4932 4933 /* Ensure a valid XSK buffer before proceed */ 4934 if (!buf->xdp) 4935 break; 4936 4937 if (priv->extend_desc) 4938 stmmac_rx_extended_status(priv, &priv->dev->stats, 4939 &priv->xstats, 4940 rx_q->dma_erx + entry); 4941 if (unlikely(status == discard_frame)) { 4942 xsk_buff_free(buf->xdp); 4943 buf->xdp = NULL; 4944 dirty++; 4945 error = 1; 4946 if (!priv->hwts_rx_en) 4947 priv->dev->stats.rx_errors++; 4948 } 4949 4950 if (unlikely(error && (status & rx_not_ls))) 4951 goto read_again; 4952 if (unlikely(error)) { 4953 count++; 4954 continue; 4955 } 4956 4957 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4958 if (likely(status & rx_not_ls)) { 4959 xsk_buff_free(buf->xdp); 4960 buf->xdp = NULL; 4961 dirty++; 4962 count++; 4963 goto read_again; 4964 } 4965 4966 /* XDP ZC Frame only support primary buffers for now */ 4967 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 4968 len += buf1_len; 4969 4970 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 4971 * Type frames (LLC/LLC-SNAP) 4972 * 4973 * llc_snap is never checked in GMAC >= 4, so this ACS 4974 * feature is always disabled and packets need to be 4975 * stripped manually. 4976 */ 4977 if (likely(!(status & rx_not_ls)) && 4978 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 4979 unlikely(status != llc_snap))) { 4980 buf1_len -= ETH_FCS_LEN; 4981 len -= ETH_FCS_LEN; 4982 } 4983 4984 /* RX buffer is good and fit into a XSK pool buffer */ 4985 buf->xdp->data_end = buf->xdp->data + buf1_len; 4986 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 4987 4988 prog = READ_ONCE(priv->xdp_prog); 4989 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 4990 4991 switch (res) { 4992 case STMMAC_XDP_PASS: 4993 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 4994 xsk_buff_free(buf->xdp); 4995 break; 4996 case STMMAC_XDP_CONSUMED: 4997 xsk_buff_free(buf->xdp); 4998 priv->dev->stats.rx_dropped++; 4999 break; 5000 case STMMAC_XDP_TX: 5001 case STMMAC_XDP_REDIRECT: 5002 xdp_status |= res; 5003 break; 5004 } 5005 5006 buf->xdp = NULL; 5007 dirty++; 5008 count++; 5009 } 5010 5011 if (status & rx_not_ls) { 5012 rx_q->state_saved = true; 5013 rx_q->state.error = error; 5014 rx_q->state.len = len; 5015 } 5016 5017 stmmac_finalize_xdp_rx(priv, xdp_status); 5018 5019 priv->xstats.rx_pkt_n += count; 5020 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5021 5022 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5023 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5024 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5025 else 5026 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5027 5028 return (int)count; 5029 } 5030 5031 return failure ? limit : (int)count; 5032 } 5033 5034 /** 5035 * stmmac_rx - manage the receive process 5036 * @priv: driver private structure 5037 * @limit: napi bugget 5038 * @queue: RX queue index. 5039 * Description : this the function called by the napi poll method. 5040 * It gets all the frames inside the ring. 5041 */ 5042 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5043 { 5044 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5045 struct stmmac_channel *ch = &priv->channel[queue]; 5046 unsigned int count = 0, error = 0, len = 0; 5047 int status = 0, coe = priv->hw->rx_csum; 5048 unsigned int next_entry = rx_q->cur_rx; 5049 enum dma_data_direction dma_dir; 5050 unsigned int desc_size; 5051 struct sk_buff *skb = NULL; 5052 struct xdp_buff xdp; 5053 int xdp_status = 0; 5054 int buf_sz; 5055 5056 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5057 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5058 5059 if (netif_msg_rx_status(priv)) { 5060 void *rx_head; 5061 5062 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5063 if (priv->extend_desc) { 5064 rx_head = (void *)rx_q->dma_erx; 5065 desc_size = sizeof(struct dma_extended_desc); 5066 } else { 5067 rx_head = (void *)rx_q->dma_rx; 5068 desc_size = sizeof(struct dma_desc); 5069 } 5070 5071 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5072 rx_q->dma_rx_phy, desc_size); 5073 } 5074 while (count < limit) { 5075 unsigned int buf1_len = 0, buf2_len = 0; 5076 enum pkt_hash_types hash_type; 5077 struct stmmac_rx_buffer *buf; 5078 struct dma_desc *np, *p; 5079 int entry; 5080 u32 hash; 5081 5082 if (!count && rx_q->state_saved) { 5083 skb = rx_q->state.skb; 5084 error = rx_q->state.error; 5085 len = rx_q->state.len; 5086 } else { 5087 rx_q->state_saved = false; 5088 skb = NULL; 5089 error = 0; 5090 len = 0; 5091 } 5092 5093 if (count >= limit) 5094 break; 5095 5096 read_again: 5097 buf1_len = 0; 5098 buf2_len = 0; 5099 entry = next_entry; 5100 buf = &rx_q->buf_pool[entry]; 5101 5102 if (priv->extend_desc) 5103 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5104 else 5105 p = rx_q->dma_rx + entry; 5106 5107 /* read the status of the incoming frame */ 5108 status = stmmac_rx_status(priv, &priv->dev->stats, 5109 &priv->xstats, p); 5110 /* check if managed by the DMA otherwise go ahead */ 5111 if (unlikely(status & dma_own)) 5112 break; 5113 5114 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5115 priv->dma_rx_size); 5116 next_entry = rx_q->cur_rx; 5117 5118 if (priv->extend_desc) 5119 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5120 else 5121 np = rx_q->dma_rx + next_entry; 5122 5123 prefetch(np); 5124 5125 if (priv->extend_desc) 5126 stmmac_rx_extended_status(priv, &priv->dev->stats, 5127 &priv->xstats, rx_q->dma_erx + entry); 5128 if (unlikely(status == discard_frame)) { 5129 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5130 buf->page = NULL; 5131 error = 1; 5132 if (!priv->hwts_rx_en) 5133 priv->dev->stats.rx_errors++; 5134 } 5135 5136 if (unlikely(error && (status & rx_not_ls))) 5137 goto read_again; 5138 if (unlikely(error)) { 5139 dev_kfree_skb(skb); 5140 skb = NULL; 5141 count++; 5142 continue; 5143 } 5144 5145 /* Buffer is good. Go on. */ 5146 5147 prefetch(page_address(buf->page) + buf->page_offset); 5148 if (buf->sec_page) 5149 prefetch(page_address(buf->sec_page)); 5150 5151 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5152 len += buf1_len; 5153 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5154 len += buf2_len; 5155 5156 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5157 * Type frames (LLC/LLC-SNAP) 5158 * 5159 * llc_snap is never checked in GMAC >= 4, so this ACS 5160 * feature is always disabled and packets need to be 5161 * stripped manually. 5162 */ 5163 if (likely(!(status & rx_not_ls)) && 5164 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5165 unlikely(status != llc_snap))) { 5166 if (buf2_len) { 5167 buf2_len -= ETH_FCS_LEN; 5168 len -= ETH_FCS_LEN; 5169 } else if (buf1_len) { 5170 buf1_len -= ETH_FCS_LEN; 5171 len -= ETH_FCS_LEN; 5172 } 5173 } 5174 5175 if (!skb) { 5176 unsigned int pre_len, sync_len; 5177 5178 dma_sync_single_for_cpu(priv->device, buf->addr, 5179 buf1_len, dma_dir); 5180 5181 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5182 xdp_prepare_buff(&xdp, page_address(buf->page), 5183 buf->page_offset, buf1_len, false); 5184 5185 pre_len = xdp.data_end - xdp.data_hard_start - 5186 buf->page_offset; 5187 skb = stmmac_xdp_run_prog(priv, &xdp); 5188 /* Due xdp_adjust_tail: DMA sync for_device 5189 * cover max len CPU touch 5190 */ 5191 sync_len = xdp.data_end - xdp.data_hard_start - 5192 buf->page_offset; 5193 sync_len = max(sync_len, pre_len); 5194 5195 /* For Not XDP_PASS verdict */ 5196 if (IS_ERR(skb)) { 5197 unsigned int xdp_res = -PTR_ERR(skb); 5198 5199 if (xdp_res & STMMAC_XDP_CONSUMED) { 5200 page_pool_put_page(rx_q->page_pool, 5201 virt_to_head_page(xdp.data), 5202 sync_len, true); 5203 buf->page = NULL; 5204 priv->dev->stats.rx_dropped++; 5205 5206 /* Clear skb as it was set as 5207 * status by XDP program. 5208 */ 5209 skb = NULL; 5210 5211 if (unlikely((status & rx_not_ls))) 5212 goto read_again; 5213 5214 count++; 5215 continue; 5216 } else if (xdp_res & (STMMAC_XDP_TX | 5217 STMMAC_XDP_REDIRECT)) { 5218 xdp_status |= xdp_res; 5219 buf->page = NULL; 5220 skb = NULL; 5221 count++; 5222 continue; 5223 } 5224 } 5225 } 5226 5227 if (!skb) { 5228 /* XDP program may expand or reduce tail */ 5229 buf1_len = xdp.data_end - xdp.data; 5230 5231 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5232 if (!skb) { 5233 priv->dev->stats.rx_dropped++; 5234 count++; 5235 goto drain_data; 5236 } 5237 5238 /* XDP program may adjust header */ 5239 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5240 skb_put(skb, buf1_len); 5241 5242 /* Data payload copied into SKB, page ready for recycle */ 5243 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5244 buf->page = NULL; 5245 } else if (buf1_len) { 5246 dma_sync_single_for_cpu(priv->device, buf->addr, 5247 buf1_len, dma_dir); 5248 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5249 buf->page, buf->page_offset, buf1_len, 5250 priv->dma_buf_sz); 5251 5252 /* Data payload appended into SKB */ 5253 page_pool_release_page(rx_q->page_pool, buf->page); 5254 buf->page = NULL; 5255 } 5256 5257 if (buf2_len) { 5258 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5259 buf2_len, dma_dir); 5260 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5261 buf->sec_page, 0, buf2_len, 5262 priv->dma_buf_sz); 5263 5264 /* Data payload appended into SKB */ 5265 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5266 buf->sec_page = NULL; 5267 } 5268 5269 drain_data: 5270 if (likely(status & rx_not_ls)) 5271 goto read_again; 5272 if (!skb) 5273 continue; 5274 5275 /* Got entire packet into SKB. Finish it. */ 5276 5277 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5278 stmmac_rx_vlan(priv->dev, skb); 5279 skb->protocol = eth_type_trans(skb, priv->dev); 5280 5281 if (unlikely(!coe)) 5282 skb_checksum_none_assert(skb); 5283 else 5284 skb->ip_summed = CHECKSUM_UNNECESSARY; 5285 5286 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5287 skb_set_hash(skb, hash, hash_type); 5288 5289 skb_record_rx_queue(skb, queue); 5290 napi_gro_receive(&ch->rx_napi, skb); 5291 skb = NULL; 5292 5293 priv->dev->stats.rx_packets++; 5294 priv->dev->stats.rx_bytes += len; 5295 count++; 5296 } 5297 5298 if (status & rx_not_ls || skb) { 5299 rx_q->state_saved = true; 5300 rx_q->state.skb = skb; 5301 rx_q->state.error = error; 5302 rx_q->state.len = len; 5303 } 5304 5305 stmmac_finalize_xdp_rx(priv, xdp_status); 5306 5307 stmmac_rx_refill(priv, queue); 5308 5309 priv->xstats.rx_pkt_n += count; 5310 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5311 5312 return count; 5313 } 5314 5315 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5316 { 5317 struct stmmac_channel *ch = 5318 container_of(napi, struct stmmac_channel, rx_napi); 5319 struct stmmac_priv *priv = ch->priv_data; 5320 u32 chan = ch->index; 5321 int work_done; 5322 5323 priv->xstats.napi_poll++; 5324 5325 work_done = stmmac_rx(priv, budget, chan); 5326 if (work_done < budget && napi_complete_done(napi, work_done)) { 5327 unsigned long flags; 5328 5329 spin_lock_irqsave(&ch->lock, flags); 5330 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5331 spin_unlock_irqrestore(&ch->lock, flags); 5332 } 5333 5334 return work_done; 5335 } 5336 5337 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5338 { 5339 struct stmmac_channel *ch = 5340 container_of(napi, struct stmmac_channel, tx_napi); 5341 struct stmmac_priv *priv = ch->priv_data; 5342 u32 chan = ch->index; 5343 int work_done; 5344 5345 priv->xstats.napi_poll++; 5346 5347 work_done = stmmac_tx_clean(priv, budget, chan); 5348 work_done = min(work_done, budget); 5349 5350 if (work_done < budget && napi_complete_done(napi, work_done)) { 5351 unsigned long flags; 5352 5353 spin_lock_irqsave(&ch->lock, flags); 5354 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5355 spin_unlock_irqrestore(&ch->lock, flags); 5356 } 5357 5358 return work_done; 5359 } 5360 5361 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5362 { 5363 struct stmmac_channel *ch = 5364 container_of(napi, struct stmmac_channel, rxtx_napi); 5365 struct stmmac_priv *priv = ch->priv_data; 5366 int rx_done, tx_done, rxtx_done; 5367 u32 chan = ch->index; 5368 5369 priv->xstats.napi_poll++; 5370 5371 tx_done = stmmac_tx_clean(priv, budget, chan); 5372 tx_done = min(tx_done, budget); 5373 5374 rx_done = stmmac_rx_zc(priv, budget, chan); 5375 5376 rxtx_done = max(tx_done, rx_done); 5377 5378 /* If either TX or RX work is not complete, return budget 5379 * and keep pooling 5380 */ 5381 if (rxtx_done >= budget) 5382 return budget; 5383 5384 /* all work done, exit the polling mode */ 5385 if (napi_complete_done(napi, rxtx_done)) { 5386 unsigned long flags; 5387 5388 spin_lock_irqsave(&ch->lock, flags); 5389 /* Both RX and TX work done are compelte, 5390 * so enable both RX & TX IRQs. 5391 */ 5392 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5393 spin_unlock_irqrestore(&ch->lock, flags); 5394 } 5395 5396 return min(rxtx_done, budget - 1); 5397 } 5398 5399 /** 5400 * stmmac_tx_timeout 5401 * @dev : Pointer to net device structure 5402 * @txqueue: the index of the hanging transmit queue 5403 * Description: this function is called when a packet transmission fails to 5404 * complete within a reasonable time. The driver will mark the error in the 5405 * netdev structure and arrange for the device to be reset to a sane state 5406 * in order to transmit a new packet. 5407 */ 5408 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5409 { 5410 struct stmmac_priv *priv = netdev_priv(dev); 5411 5412 stmmac_global_err(priv); 5413 } 5414 5415 /** 5416 * stmmac_set_rx_mode - entry point for multicast addressing 5417 * @dev : pointer to the device structure 5418 * Description: 5419 * This function is a driver entry point which gets called by the kernel 5420 * whenever multicast addresses must be enabled/disabled. 5421 * Return value: 5422 * void. 5423 */ 5424 static void stmmac_set_rx_mode(struct net_device *dev) 5425 { 5426 struct stmmac_priv *priv = netdev_priv(dev); 5427 5428 stmmac_set_filter(priv, priv->hw, dev); 5429 } 5430 5431 /** 5432 * stmmac_change_mtu - entry point to change MTU size for the device. 5433 * @dev : device pointer. 5434 * @new_mtu : the new MTU size for the device. 5435 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5436 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5437 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5438 * Return value: 5439 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5440 * file on failure. 5441 */ 5442 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5443 { 5444 struct stmmac_priv *priv = netdev_priv(dev); 5445 int txfifosz = priv->plat->tx_fifo_size; 5446 const int mtu = new_mtu; 5447 5448 if (txfifosz == 0) 5449 txfifosz = priv->dma_cap.tx_fifo_size; 5450 5451 txfifosz /= priv->plat->tx_queues_to_use; 5452 5453 if (netif_running(dev)) { 5454 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5455 return -EBUSY; 5456 } 5457 5458 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5459 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5460 return -EINVAL; 5461 } 5462 5463 new_mtu = STMMAC_ALIGN(new_mtu); 5464 5465 /* If condition true, FIFO is too small or MTU too large */ 5466 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5467 return -EINVAL; 5468 5469 dev->mtu = mtu; 5470 5471 netdev_update_features(dev); 5472 5473 return 0; 5474 } 5475 5476 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5477 netdev_features_t features) 5478 { 5479 struct stmmac_priv *priv = netdev_priv(dev); 5480 5481 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5482 features &= ~NETIF_F_RXCSUM; 5483 5484 if (!priv->plat->tx_coe) 5485 features &= ~NETIF_F_CSUM_MASK; 5486 5487 /* Some GMAC devices have a bugged Jumbo frame support that 5488 * needs to have the Tx COE disabled for oversized frames 5489 * (due to limited buffer sizes). In this case we disable 5490 * the TX csum insertion in the TDES and not use SF. 5491 */ 5492 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5493 features &= ~NETIF_F_CSUM_MASK; 5494 5495 /* Disable tso if asked by ethtool */ 5496 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5497 if (features & NETIF_F_TSO) 5498 priv->tso = true; 5499 else 5500 priv->tso = false; 5501 } 5502 5503 return features; 5504 } 5505 5506 static int stmmac_set_features(struct net_device *netdev, 5507 netdev_features_t features) 5508 { 5509 struct stmmac_priv *priv = netdev_priv(netdev); 5510 5511 /* Keep the COE Type in case of csum is supporting */ 5512 if (features & NETIF_F_RXCSUM) 5513 priv->hw->rx_csum = priv->plat->rx_coe; 5514 else 5515 priv->hw->rx_csum = 0; 5516 /* No check needed because rx_coe has been set before and it will be 5517 * fixed in case of issue. 5518 */ 5519 stmmac_rx_ipc(priv, priv->hw); 5520 5521 if (priv->sph_cap) { 5522 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5523 u32 chan; 5524 5525 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5526 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5527 } 5528 5529 return 0; 5530 } 5531 5532 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5533 { 5534 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5535 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5536 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5537 bool *hs_enable = &fpe_cfg->hs_enable; 5538 5539 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5540 return; 5541 5542 /* If LP has sent verify mPacket, LP is FPE capable */ 5543 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5544 if (*lp_state < FPE_STATE_CAPABLE) 5545 *lp_state = FPE_STATE_CAPABLE; 5546 5547 /* If user has requested FPE enable, quickly response */ 5548 if (*hs_enable) 5549 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5550 MPACKET_RESPONSE); 5551 } 5552 5553 /* If Local has sent verify mPacket, Local is FPE capable */ 5554 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5555 if (*lo_state < FPE_STATE_CAPABLE) 5556 *lo_state = FPE_STATE_CAPABLE; 5557 } 5558 5559 /* If LP has sent response mPacket, LP is entering FPE ON */ 5560 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5561 *lp_state = FPE_STATE_ENTERING_ON; 5562 5563 /* If Local has sent response mPacket, Local is entering FPE ON */ 5564 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5565 *lo_state = FPE_STATE_ENTERING_ON; 5566 5567 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5568 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5569 priv->fpe_wq) { 5570 queue_work(priv->fpe_wq, &priv->fpe_task); 5571 } 5572 } 5573 5574 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5575 { 5576 u32 rx_cnt = priv->plat->rx_queues_to_use; 5577 u32 tx_cnt = priv->plat->tx_queues_to_use; 5578 u32 queues_count; 5579 u32 queue; 5580 bool xmac; 5581 5582 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5583 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5584 5585 if (priv->irq_wake) 5586 pm_wakeup_event(priv->device, 0); 5587 5588 if (priv->dma_cap.estsel) 5589 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5590 &priv->xstats, tx_cnt); 5591 5592 if (priv->dma_cap.fpesel) { 5593 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5594 priv->dev); 5595 5596 stmmac_fpe_event_status(priv, status); 5597 } 5598 5599 /* To handle GMAC own interrupts */ 5600 if ((priv->plat->has_gmac) || xmac) { 5601 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5602 5603 if (unlikely(status)) { 5604 /* For LPI we need to save the tx status */ 5605 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5606 priv->tx_path_in_lpi_mode = true; 5607 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5608 priv->tx_path_in_lpi_mode = false; 5609 } 5610 5611 for (queue = 0; queue < queues_count; queue++) { 5612 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5613 queue); 5614 } 5615 5616 /* PCS link status */ 5617 if (priv->hw->pcs) { 5618 if (priv->xstats.pcs_link) 5619 netif_carrier_on(priv->dev); 5620 else 5621 netif_carrier_off(priv->dev); 5622 } 5623 5624 stmmac_timestamp_interrupt(priv, priv); 5625 } 5626 } 5627 5628 /** 5629 * stmmac_interrupt - main ISR 5630 * @irq: interrupt number. 5631 * @dev_id: to pass the net device pointer. 5632 * Description: this is the main driver interrupt service routine. 5633 * It can call: 5634 * o DMA service routine (to manage incoming frame reception and transmission 5635 * status) 5636 * o Core interrupts to manage: remote wake-up, management counter, LPI 5637 * interrupts. 5638 */ 5639 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5640 { 5641 struct net_device *dev = (struct net_device *)dev_id; 5642 struct stmmac_priv *priv = netdev_priv(dev); 5643 5644 /* Check if adapter is up */ 5645 if (test_bit(STMMAC_DOWN, &priv->state)) 5646 return IRQ_HANDLED; 5647 5648 /* Check if a fatal error happened */ 5649 if (stmmac_safety_feat_interrupt(priv)) 5650 return IRQ_HANDLED; 5651 5652 /* To handle Common interrupts */ 5653 stmmac_common_interrupt(priv); 5654 5655 /* To handle DMA interrupts */ 5656 stmmac_dma_interrupt(priv); 5657 5658 return IRQ_HANDLED; 5659 } 5660 5661 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5662 { 5663 struct net_device *dev = (struct net_device *)dev_id; 5664 struct stmmac_priv *priv = netdev_priv(dev); 5665 5666 if (unlikely(!dev)) { 5667 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5668 return IRQ_NONE; 5669 } 5670 5671 /* Check if adapter is up */ 5672 if (test_bit(STMMAC_DOWN, &priv->state)) 5673 return IRQ_HANDLED; 5674 5675 /* To handle Common interrupts */ 5676 stmmac_common_interrupt(priv); 5677 5678 return IRQ_HANDLED; 5679 } 5680 5681 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5682 { 5683 struct net_device *dev = (struct net_device *)dev_id; 5684 struct stmmac_priv *priv = netdev_priv(dev); 5685 5686 if (unlikely(!dev)) { 5687 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5688 return IRQ_NONE; 5689 } 5690 5691 /* Check if adapter is up */ 5692 if (test_bit(STMMAC_DOWN, &priv->state)) 5693 return IRQ_HANDLED; 5694 5695 /* Check if a fatal error happened */ 5696 stmmac_safety_feat_interrupt(priv); 5697 5698 return IRQ_HANDLED; 5699 } 5700 5701 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5702 { 5703 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5704 int chan = tx_q->queue_index; 5705 struct stmmac_priv *priv; 5706 int status; 5707 5708 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5709 5710 if (unlikely(!data)) { 5711 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5712 return IRQ_NONE; 5713 } 5714 5715 /* Check if adapter is up */ 5716 if (test_bit(STMMAC_DOWN, &priv->state)) 5717 return IRQ_HANDLED; 5718 5719 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5720 5721 if (unlikely(status & tx_hard_error_bump_tc)) { 5722 /* Try to bump up the dma threshold on this failure */ 5723 stmmac_bump_dma_threshold(priv, chan); 5724 } else if (unlikely(status == tx_hard_error)) { 5725 stmmac_tx_err(priv, chan); 5726 } 5727 5728 return IRQ_HANDLED; 5729 } 5730 5731 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5732 { 5733 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5734 int chan = rx_q->queue_index; 5735 struct stmmac_priv *priv; 5736 5737 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5738 5739 if (unlikely(!data)) { 5740 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5741 return IRQ_NONE; 5742 } 5743 5744 /* Check if adapter is up */ 5745 if (test_bit(STMMAC_DOWN, &priv->state)) 5746 return IRQ_HANDLED; 5747 5748 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5749 5750 return IRQ_HANDLED; 5751 } 5752 5753 #ifdef CONFIG_NET_POLL_CONTROLLER 5754 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5755 * to allow network I/O with interrupts disabled. 5756 */ 5757 static void stmmac_poll_controller(struct net_device *dev) 5758 { 5759 struct stmmac_priv *priv = netdev_priv(dev); 5760 int i; 5761 5762 /* If adapter is down, do nothing */ 5763 if (test_bit(STMMAC_DOWN, &priv->state)) 5764 return; 5765 5766 if (priv->plat->multi_msi_en) { 5767 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5768 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5769 5770 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5771 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5772 } else { 5773 disable_irq(dev->irq); 5774 stmmac_interrupt(dev->irq, dev); 5775 enable_irq(dev->irq); 5776 } 5777 } 5778 #endif 5779 5780 /** 5781 * stmmac_ioctl - Entry point for the Ioctl 5782 * @dev: Device pointer. 5783 * @rq: An IOCTL specefic structure, that can contain a pointer to 5784 * a proprietary structure used to pass information to the driver. 5785 * @cmd: IOCTL command 5786 * Description: 5787 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5788 */ 5789 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5790 { 5791 struct stmmac_priv *priv = netdev_priv (dev); 5792 int ret = -EOPNOTSUPP; 5793 5794 if (!netif_running(dev)) 5795 return -EINVAL; 5796 5797 switch (cmd) { 5798 case SIOCGMIIPHY: 5799 case SIOCGMIIREG: 5800 case SIOCSMIIREG: 5801 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5802 break; 5803 case SIOCSHWTSTAMP: 5804 ret = stmmac_hwtstamp_set(dev, rq); 5805 break; 5806 case SIOCGHWTSTAMP: 5807 ret = stmmac_hwtstamp_get(dev, rq); 5808 break; 5809 default: 5810 break; 5811 } 5812 5813 return ret; 5814 } 5815 5816 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5817 void *cb_priv) 5818 { 5819 struct stmmac_priv *priv = cb_priv; 5820 int ret = -EOPNOTSUPP; 5821 5822 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5823 return ret; 5824 5825 __stmmac_disable_all_queues(priv); 5826 5827 switch (type) { 5828 case TC_SETUP_CLSU32: 5829 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5830 break; 5831 case TC_SETUP_CLSFLOWER: 5832 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5833 break; 5834 default: 5835 break; 5836 } 5837 5838 stmmac_enable_all_queues(priv); 5839 return ret; 5840 } 5841 5842 static LIST_HEAD(stmmac_block_cb_list); 5843 5844 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5845 void *type_data) 5846 { 5847 struct stmmac_priv *priv = netdev_priv(ndev); 5848 5849 switch (type) { 5850 case TC_SETUP_BLOCK: 5851 return flow_block_cb_setup_simple(type_data, 5852 &stmmac_block_cb_list, 5853 stmmac_setup_tc_block_cb, 5854 priv, priv, true); 5855 case TC_SETUP_QDISC_CBS: 5856 return stmmac_tc_setup_cbs(priv, priv, type_data); 5857 case TC_SETUP_QDISC_TAPRIO: 5858 return stmmac_tc_setup_taprio(priv, priv, type_data); 5859 case TC_SETUP_QDISC_ETF: 5860 return stmmac_tc_setup_etf(priv, priv, type_data); 5861 default: 5862 return -EOPNOTSUPP; 5863 } 5864 } 5865 5866 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5867 struct net_device *sb_dev) 5868 { 5869 int gso = skb_shinfo(skb)->gso_type; 5870 5871 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5872 /* 5873 * There is no way to determine the number of TSO/USO 5874 * capable Queues. Let's use always the Queue 0 5875 * because if TSO/USO is supported then at least this 5876 * one will be capable. 5877 */ 5878 return 0; 5879 } 5880 5881 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5882 } 5883 5884 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5885 { 5886 struct stmmac_priv *priv = netdev_priv(ndev); 5887 int ret = 0; 5888 5889 ret = pm_runtime_resume_and_get(priv->device); 5890 if (ret < 0) 5891 return ret; 5892 5893 ret = eth_mac_addr(ndev, addr); 5894 if (ret) 5895 goto set_mac_error; 5896 5897 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5898 5899 set_mac_error: 5900 pm_runtime_put(priv->device); 5901 5902 return ret; 5903 } 5904 5905 #ifdef CONFIG_DEBUG_FS 5906 static struct dentry *stmmac_fs_dir; 5907 5908 static void sysfs_display_ring(void *head, int size, int extend_desc, 5909 struct seq_file *seq, dma_addr_t dma_phy_addr) 5910 { 5911 int i; 5912 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5913 struct dma_desc *p = (struct dma_desc *)head; 5914 dma_addr_t dma_addr; 5915 5916 for (i = 0; i < size; i++) { 5917 if (extend_desc) { 5918 dma_addr = dma_phy_addr + i * sizeof(*ep); 5919 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5920 i, &dma_addr, 5921 le32_to_cpu(ep->basic.des0), 5922 le32_to_cpu(ep->basic.des1), 5923 le32_to_cpu(ep->basic.des2), 5924 le32_to_cpu(ep->basic.des3)); 5925 ep++; 5926 } else { 5927 dma_addr = dma_phy_addr + i * sizeof(*p); 5928 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5929 i, &dma_addr, 5930 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5931 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5932 p++; 5933 } 5934 seq_printf(seq, "\n"); 5935 } 5936 } 5937 5938 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5939 { 5940 struct net_device *dev = seq->private; 5941 struct stmmac_priv *priv = netdev_priv(dev); 5942 u32 rx_count = priv->plat->rx_queues_to_use; 5943 u32 tx_count = priv->plat->tx_queues_to_use; 5944 u32 queue; 5945 5946 if ((dev->flags & IFF_UP) == 0) 5947 return 0; 5948 5949 for (queue = 0; queue < rx_count; queue++) { 5950 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5951 5952 seq_printf(seq, "RX Queue %d:\n", queue); 5953 5954 if (priv->extend_desc) { 5955 seq_printf(seq, "Extended descriptor ring:\n"); 5956 sysfs_display_ring((void *)rx_q->dma_erx, 5957 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5958 } else { 5959 seq_printf(seq, "Descriptor ring:\n"); 5960 sysfs_display_ring((void *)rx_q->dma_rx, 5961 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5962 } 5963 } 5964 5965 for (queue = 0; queue < tx_count; queue++) { 5966 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5967 5968 seq_printf(seq, "TX Queue %d:\n", queue); 5969 5970 if (priv->extend_desc) { 5971 seq_printf(seq, "Extended descriptor ring:\n"); 5972 sysfs_display_ring((void *)tx_q->dma_etx, 5973 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 5974 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 5975 seq_printf(seq, "Descriptor ring:\n"); 5976 sysfs_display_ring((void *)tx_q->dma_tx, 5977 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 5978 } 5979 } 5980 5981 return 0; 5982 } 5983 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 5984 5985 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 5986 { 5987 struct net_device *dev = seq->private; 5988 struct stmmac_priv *priv = netdev_priv(dev); 5989 5990 if (!priv->hw_cap_support) { 5991 seq_printf(seq, "DMA HW features not supported\n"); 5992 return 0; 5993 } 5994 5995 seq_printf(seq, "==============================\n"); 5996 seq_printf(seq, "\tDMA HW features\n"); 5997 seq_printf(seq, "==============================\n"); 5998 5999 seq_printf(seq, "\t10/100 Mbps: %s\n", 6000 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6001 seq_printf(seq, "\t1000 Mbps: %s\n", 6002 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6003 seq_printf(seq, "\tHalf duplex: %s\n", 6004 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6005 seq_printf(seq, "\tHash Filter: %s\n", 6006 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6007 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6008 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6009 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6010 (priv->dma_cap.pcs) ? "Y" : "N"); 6011 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6012 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6013 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6014 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6015 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6016 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6017 seq_printf(seq, "\tRMON module: %s\n", 6018 (priv->dma_cap.rmon) ? "Y" : "N"); 6019 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6020 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6021 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6022 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6023 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6024 (priv->dma_cap.eee) ? "Y" : "N"); 6025 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6026 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6027 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6028 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6029 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6030 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6031 } else { 6032 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6033 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6034 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6035 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6036 } 6037 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6038 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6039 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6040 priv->dma_cap.number_rx_channel); 6041 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6042 priv->dma_cap.number_tx_channel); 6043 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6044 priv->dma_cap.number_rx_queues); 6045 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6046 priv->dma_cap.number_tx_queues); 6047 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6048 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6049 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6050 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6051 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6052 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6053 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6054 priv->dma_cap.pps_out_num); 6055 seq_printf(seq, "\tSafety Features: %s\n", 6056 priv->dma_cap.asp ? "Y" : "N"); 6057 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6058 priv->dma_cap.frpsel ? "Y" : "N"); 6059 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6060 priv->dma_cap.addr64); 6061 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6062 priv->dma_cap.rssen ? "Y" : "N"); 6063 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6064 priv->dma_cap.vlhash ? "Y" : "N"); 6065 seq_printf(seq, "\tSplit Header: %s\n", 6066 priv->dma_cap.sphen ? "Y" : "N"); 6067 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6068 priv->dma_cap.vlins ? "Y" : "N"); 6069 seq_printf(seq, "\tDouble VLAN: %s\n", 6070 priv->dma_cap.dvlan ? "Y" : "N"); 6071 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6072 priv->dma_cap.l3l4fnum); 6073 seq_printf(seq, "\tARP Offloading: %s\n", 6074 priv->dma_cap.arpoffsel ? "Y" : "N"); 6075 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6076 priv->dma_cap.estsel ? "Y" : "N"); 6077 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6078 priv->dma_cap.fpesel ? "Y" : "N"); 6079 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6080 priv->dma_cap.tbssel ? "Y" : "N"); 6081 return 0; 6082 } 6083 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6084 6085 /* Use network device events to rename debugfs file entries. 6086 */ 6087 static int stmmac_device_event(struct notifier_block *unused, 6088 unsigned long event, void *ptr) 6089 { 6090 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6091 struct stmmac_priv *priv = netdev_priv(dev); 6092 6093 if (dev->netdev_ops != &stmmac_netdev_ops) 6094 goto done; 6095 6096 switch (event) { 6097 case NETDEV_CHANGENAME: 6098 if (priv->dbgfs_dir) 6099 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6100 priv->dbgfs_dir, 6101 stmmac_fs_dir, 6102 dev->name); 6103 break; 6104 } 6105 done: 6106 return NOTIFY_DONE; 6107 } 6108 6109 static struct notifier_block stmmac_notifier = { 6110 .notifier_call = stmmac_device_event, 6111 }; 6112 6113 static void stmmac_init_fs(struct net_device *dev) 6114 { 6115 struct stmmac_priv *priv = netdev_priv(dev); 6116 6117 rtnl_lock(); 6118 6119 /* Create per netdev entries */ 6120 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6121 6122 /* Entry to report DMA RX/TX rings */ 6123 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6124 &stmmac_rings_status_fops); 6125 6126 /* Entry to report the DMA HW features */ 6127 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6128 &stmmac_dma_cap_fops); 6129 6130 rtnl_unlock(); 6131 } 6132 6133 static void stmmac_exit_fs(struct net_device *dev) 6134 { 6135 struct stmmac_priv *priv = netdev_priv(dev); 6136 6137 debugfs_remove_recursive(priv->dbgfs_dir); 6138 } 6139 #endif /* CONFIG_DEBUG_FS */ 6140 6141 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6142 { 6143 unsigned char *data = (unsigned char *)&vid_le; 6144 unsigned char data_byte = 0; 6145 u32 crc = ~0x0; 6146 u32 temp = 0; 6147 int i, bits; 6148 6149 bits = get_bitmask_order(VLAN_VID_MASK); 6150 for (i = 0; i < bits; i++) { 6151 if ((i % 8) == 0) 6152 data_byte = data[i / 8]; 6153 6154 temp = ((crc & 1) ^ data_byte) & 1; 6155 crc >>= 1; 6156 data_byte >>= 1; 6157 6158 if (temp) 6159 crc ^= 0xedb88320; 6160 } 6161 6162 return crc; 6163 } 6164 6165 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6166 { 6167 u32 crc, hash = 0; 6168 __le16 pmatch = 0; 6169 int count = 0; 6170 u16 vid = 0; 6171 6172 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6173 __le16 vid_le = cpu_to_le16(vid); 6174 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6175 hash |= (1 << crc); 6176 count++; 6177 } 6178 6179 if (!priv->dma_cap.vlhash) { 6180 if (count > 2) /* VID = 0 always passes filter */ 6181 return -EOPNOTSUPP; 6182 6183 pmatch = cpu_to_le16(vid); 6184 hash = 0; 6185 } 6186 6187 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6188 } 6189 6190 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6191 { 6192 struct stmmac_priv *priv = netdev_priv(ndev); 6193 bool is_double = false; 6194 int ret; 6195 6196 if (be16_to_cpu(proto) == ETH_P_8021AD) 6197 is_double = true; 6198 6199 set_bit(vid, priv->active_vlans); 6200 ret = stmmac_vlan_update(priv, is_double); 6201 if (ret) { 6202 clear_bit(vid, priv->active_vlans); 6203 return ret; 6204 } 6205 6206 if (priv->hw->num_vlan) { 6207 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6208 if (ret) 6209 return ret; 6210 } 6211 6212 return 0; 6213 } 6214 6215 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6216 { 6217 struct stmmac_priv *priv = netdev_priv(ndev); 6218 bool is_double = false; 6219 int ret; 6220 6221 ret = pm_runtime_resume_and_get(priv->device); 6222 if (ret < 0) 6223 return ret; 6224 6225 if (be16_to_cpu(proto) == ETH_P_8021AD) 6226 is_double = true; 6227 6228 clear_bit(vid, priv->active_vlans); 6229 6230 if (priv->hw->num_vlan) { 6231 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6232 if (ret) 6233 goto del_vlan_error; 6234 } 6235 6236 ret = stmmac_vlan_update(priv, is_double); 6237 6238 del_vlan_error: 6239 pm_runtime_put(priv->device); 6240 6241 return ret; 6242 } 6243 6244 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6245 { 6246 struct stmmac_priv *priv = netdev_priv(dev); 6247 6248 switch (bpf->command) { 6249 case XDP_SETUP_PROG: 6250 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6251 case XDP_SETUP_XSK_POOL: 6252 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6253 bpf->xsk.queue_id); 6254 default: 6255 return -EOPNOTSUPP; 6256 } 6257 } 6258 6259 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6260 struct xdp_frame **frames, u32 flags) 6261 { 6262 struct stmmac_priv *priv = netdev_priv(dev); 6263 int cpu = smp_processor_id(); 6264 struct netdev_queue *nq; 6265 int i, nxmit = 0; 6266 int queue; 6267 6268 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6269 return -ENETDOWN; 6270 6271 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6272 return -EINVAL; 6273 6274 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6275 nq = netdev_get_tx_queue(priv->dev, queue); 6276 6277 __netif_tx_lock(nq, cpu); 6278 /* Avoids TX time-out as we are sharing with slow path */ 6279 txq_trans_cond_update(nq); 6280 6281 for (i = 0; i < num_frames; i++) { 6282 int res; 6283 6284 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6285 if (res == STMMAC_XDP_CONSUMED) 6286 break; 6287 6288 nxmit++; 6289 } 6290 6291 if (flags & XDP_XMIT_FLUSH) { 6292 stmmac_flush_tx_descriptors(priv, queue); 6293 stmmac_tx_timer_arm(priv, queue); 6294 } 6295 6296 __netif_tx_unlock(nq); 6297 6298 return nxmit; 6299 } 6300 6301 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6302 { 6303 struct stmmac_channel *ch = &priv->channel[queue]; 6304 unsigned long flags; 6305 6306 spin_lock_irqsave(&ch->lock, flags); 6307 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6308 spin_unlock_irqrestore(&ch->lock, flags); 6309 6310 stmmac_stop_rx_dma(priv, queue); 6311 __free_dma_rx_desc_resources(priv, queue); 6312 } 6313 6314 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6315 { 6316 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6317 struct stmmac_channel *ch = &priv->channel[queue]; 6318 unsigned long flags; 6319 u32 buf_size; 6320 int ret; 6321 6322 ret = __alloc_dma_rx_desc_resources(priv, queue); 6323 if (ret) { 6324 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6325 return; 6326 } 6327 6328 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6329 if (ret) { 6330 __free_dma_rx_desc_resources(priv, queue); 6331 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6332 return; 6333 } 6334 6335 stmmac_clear_rx_descriptors(priv, queue); 6336 6337 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6338 rx_q->dma_rx_phy, rx_q->queue_index); 6339 6340 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6341 sizeof(struct dma_desc)); 6342 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6343 rx_q->rx_tail_addr, rx_q->queue_index); 6344 6345 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6346 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6347 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6348 buf_size, 6349 rx_q->queue_index); 6350 } else { 6351 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6352 priv->dma_buf_sz, 6353 rx_q->queue_index); 6354 } 6355 6356 stmmac_start_rx_dma(priv, queue); 6357 6358 spin_lock_irqsave(&ch->lock, flags); 6359 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6360 spin_unlock_irqrestore(&ch->lock, flags); 6361 } 6362 6363 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6364 { 6365 struct stmmac_channel *ch = &priv->channel[queue]; 6366 unsigned long flags; 6367 6368 spin_lock_irqsave(&ch->lock, flags); 6369 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6370 spin_unlock_irqrestore(&ch->lock, flags); 6371 6372 stmmac_stop_tx_dma(priv, queue); 6373 __free_dma_tx_desc_resources(priv, queue); 6374 } 6375 6376 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6377 { 6378 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6379 struct stmmac_channel *ch = &priv->channel[queue]; 6380 unsigned long flags; 6381 int ret; 6382 6383 ret = __alloc_dma_tx_desc_resources(priv, queue); 6384 if (ret) { 6385 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6386 return; 6387 } 6388 6389 ret = __init_dma_tx_desc_rings(priv, queue); 6390 if (ret) { 6391 __free_dma_tx_desc_resources(priv, queue); 6392 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6393 return; 6394 } 6395 6396 stmmac_clear_tx_descriptors(priv, queue); 6397 6398 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6399 tx_q->dma_tx_phy, tx_q->queue_index); 6400 6401 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6402 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6403 6404 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6405 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6406 tx_q->tx_tail_addr, tx_q->queue_index); 6407 6408 stmmac_start_tx_dma(priv, queue); 6409 6410 spin_lock_irqsave(&ch->lock, flags); 6411 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6412 spin_unlock_irqrestore(&ch->lock, flags); 6413 } 6414 6415 void stmmac_xdp_release(struct net_device *dev) 6416 { 6417 struct stmmac_priv *priv = netdev_priv(dev); 6418 u32 chan; 6419 6420 /* Disable NAPI process */ 6421 stmmac_disable_all_queues(priv); 6422 6423 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6424 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6425 6426 /* Free the IRQ lines */ 6427 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6428 6429 /* Stop TX/RX DMA channels */ 6430 stmmac_stop_all_dma(priv); 6431 6432 /* Release and free the Rx/Tx resources */ 6433 free_dma_desc_resources(priv); 6434 6435 /* Disable the MAC Rx/Tx */ 6436 stmmac_mac_set(priv, priv->ioaddr, false); 6437 6438 /* set trans_start so we don't get spurious 6439 * watchdogs during reset 6440 */ 6441 netif_trans_update(dev); 6442 netif_carrier_off(dev); 6443 } 6444 6445 int stmmac_xdp_open(struct net_device *dev) 6446 { 6447 struct stmmac_priv *priv = netdev_priv(dev); 6448 u32 rx_cnt = priv->plat->rx_queues_to_use; 6449 u32 tx_cnt = priv->plat->tx_queues_to_use; 6450 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6451 struct stmmac_rx_queue *rx_q; 6452 struct stmmac_tx_queue *tx_q; 6453 u32 buf_size; 6454 bool sph_en; 6455 u32 chan; 6456 int ret; 6457 6458 ret = alloc_dma_desc_resources(priv); 6459 if (ret < 0) { 6460 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6461 __func__); 6462 goto dma_desc_error; 6463 } 6464 6465 ret = init_dma_desc_rings(dev, GFP_KERNEL); 6466 if (ret < 0) { 6467 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6468 __func__); 6469 goto init_error; 6470 } 6471 6472 /* DMA CSR Channel configuration */ 6473 for (chan = 0; chan < dma_csr_ch; chan++) { 6474 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6475 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6476 } 6477 6478 /* Adjust Split header */ 6479 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6480 6481 /* DMA RX Channel Configuration */ 6482 for (chan = 0; chan < rx_cnt; chan++) { 6483 rx_q = &priv->rx_queue[chan]; 6484 6485 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6486 rx_q->dma_rx_phy, chan); 6487 6488 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6489 (rx_q->buf_alloc_num * 6490 sizeof(struct dma_desc)); 6491 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6492 rx_q->rx_tail_addr, chan); 6493 6494 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6495 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6496 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6497 buf_size, 6498 rx_q->queue_index); 6499 } else { 6500 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6501 priv->dma_buf_sz, 6502 rx_q->queue_index); 6503 } 6504 6505 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6506 } 6507 6508 /* DMA TX Channel Configuration */ 6509 for (chan = 0; chan < tx_cnt; chan++) { 6510 tx_q = &priv->tx_queue[chan]; 6511 6512 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6513 tx_q->dma_tx_phy, chan); 6514 6515 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6516 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6517 tx_q->tx_tail_addr, chan); 6518 6519 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6520 tx_q->txtimer.function = stmmac_tx_timer; 6521 } 6522 6523 /* Enable the MAC Rx/Tx */ 6524 stmmac_mac_set(priv, priv->ioaddr, true); 6525 6526 /* Start Rx & Tx DMA Channels */ 6527 stmmac_start_all_dma(priv); 6528 6529 ret = stmmac_request_irq(dev); 6530 if (ret) 6531 goto irq_error; 6532 6533 /* Enable NAPI process*/ 6534 stmmac_enable_all_queues(priv); 6535 netif_carrier_on(dev); 6536 netif_tx_start_all_queues(dev); 6537 stmmac_enable_all_dma_irq(priv); 6538 6539 return 0; 6540 6541 irq_error: 6542 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6543 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6544 6545 stmmac_hw_teardown(dev); 6546 init_error: 6547 free_dma_desc_resources(priv); 6548 dma_desc_error: 6549 return ret; 6550 } 6551 6552 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6553 { 6554 struct stmmac_priv *priv = netdev_priv(dev); 6555 struct stmmac_rx_queue *rx_q; 6556 struct stmmac_tx_queue *tx_q; 6557 struct stmmac_channel *ch; 6558 6559 if (test_bit(STMMAC_DOWN, &priv->state) || 6560 !netif_carrier_ok(priv->dev)) 6561 return -ENETDOWN; 6562 6563 if (!stmmac_xdp_is_enabled(priv)) 6564 return -EINVAL; 6565 6566 if (queue >= priv->plat->rx_queues_to_use || 6567 queue >= priv->plat->tx_queues_to_use) 6568 return -EINVAL; 6569 6570 rx_q = &priv->rx_queue[queue]; 6571 tx_q = &priv->tx_queue[queue]; 6572 ch = &priv->channel[queue]; 6573 6574 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6575 return -EINVAL; 6576 6577 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6578 /* EQoS does not have per-DMA channel SW interrupt, 6579 * so we schedule RX Napi straight-away. 6580 */ 6581 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6582 __napi_schedule(&ch->rxtx_napi); 6583 } 6584 6585 return 0; 6586 } 6587 6588 static const struct net_device_ops stmmac_netdev_ops = { 6589 .ndo_open = stmmac_open, 6590 .ndo_start_xmit = stmmac_xmit, 6591 .ndo_stop = stmmac_release, 6592 .ndo_change_mtu = stmmac_change_mtu, 6593 .ndo_fix_features = stmmac_fix_features, 6594 .ndo_set_features = stmmac_set_features, 6595 .ndo_set_rx_mode = stmmac_set_rx_mode, 6596 .ndo_tx_timeout = stmmac_tx_timeout, 6597 .ndo_eth_ioctl = stmmac_ioctl, 6598 .ndo_setup_tc = stmmac_setup_tc, 6599 .ndo_select_queue = stmmac_select_queue, 6600 #ifdef CONFIG_NET_POLL_CONTROLLER 6601 .ndo_poll_controller = stmmac_poll_controller, 6602 #endif 6603 .ndo_set_mac_address = stmmac_set_mac_address, 6604 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6605 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6606 .ndo_bpf = stmmac_bpf, 6607 .ndo_xdp_xmit = stmmac_xdp_xmit, 6608 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6609 }; 6610 6611 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6612 { 6613 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6614 return; 6615 if (test_bit(STMMAC_DOWN, &priv->state)) 6616 return; 6617 6618 netdev_err(priv->dev, "Reset adapter.\n"); 6619 6620 rtnl_lock(); 6621 netif_trans_update(priv->dev); 6622 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6623 usleep_range(1000, 2000); 6624 6625 set_bit(STMMAC_DOWN, &priv->state); 6626 dev_close(priv->dev); 6627 dev_open(priv->dev, NULL); 6628 clear_bit(STMMAC_DOWN, &priv->state); 6629 clear_bit(STMMAC_RESETING, &priv->state); 6630 rtnl_unlock(); 6631 } 6632 6633 static void stmmac_service_task(struct work_struct *work) 6634 { 6635 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6636 service_task); 6637 6638 stmmac_reset_subtask(priv); 6639 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6640 } 6641 6642 /** 6643 * stmmac_hw_init - Init the MAC device 6644 * @priv: driver private structure 6645 * Description: this function is to configure the MAC device according to 6646 * some platform parameters or the HW capability register. It prepares the 6647 * driver to use either ring or chain modes and to setup either enhanced or 6648 * normal descriptors. 6649 */ 6650 static int stmmac_hw_init(struct stmmac_priv *priv) 6651 { 6652 int ret; 6653 6654 /* dwmac-sun8i only work in chain mode */ 6655 if (priv->plat->has_sun8i) 6656 chain_mode = 1; 6657 priv->chain_mode = chain_mode; 6658 6659 /* Initialize HW Interface */ 6660 ret = stmmac_hwif_init(priv); 6661 if (ret) 6662 return ret; 6663 6664 /* Get the HW capability (new GMAC newer than 3.50a) */ 6665 priv->hw_cap_support = stmmac_get_hw_features(priv); 6666 if (priv->hw_cap_support) { 6667 dev_info(priv->device, "DMA HW capability register supported\n"); 6668 6669 /* We can override some gmac/dma configuration fields: e.g. 6670 * enh_desc, tx_coe (e.g. that are passed through the 6671 * platform) with the values from the HW capability 6672 * register (if supported). 6673 */ 6674 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6675 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6676 !priv->plat->use_phy_wol; 6677 priv->hw->pmt = priv->plat->pmt; 6678 if (priv->dma_cap.hash_tb_sz) { 6679 priv->hw->multicast_filter_bins = 6680 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6681 priv->hw->mcast_bits_log2 = 6682 ilog2(priv->hw->multicast_filter_bins); 6683 } 6684 6685 /* TXCOE doesn't work in thresh DMA mode */ 6686 if (priv->plat->force_thresh_dma_mode) 6687 priv->plat->tx_coe = 0; 6688 else 6689 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6690 6691 /* In case of GMAC4 rx_coe is from HW cap register. */ 6692 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6693 6694 if (priv->dma_cap.rx_coe_type2) 6695 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6696 else if (priv->dma_cap.rx_coe_type1) 6697 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6698 6699 } else { 6700 dev_info(priv->device, "No HW DMA feature register supported\n"); 6701 } 6702 6703 if (priv->plat->rx_coe) { 6704 priv->hw->rx_csum = priv->plat->rx_coe; 6705 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6706 if (priv->synopsys_id < DWMAC_CORE_4_00) 6707 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6708 } 6709 if (priv->plat->tx_coe) 6710 dev_info(priv->device, "TX Checksum insertion supported\n"); 6711 6712 if (priv->plat->pmt) { 6713 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6714 device_set_wakeup_capable(priv->device, 1); 6715 } 6716 6717 if (priv->dma_cap.tsoen) 6718 dev_info(priv->device, "TSO supported\n"); 6719 6720 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6721 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6722 6723 /* Run HW quirks, if any */ 6724 if (priv->hwif_quirks) { 6725 ret = priv->hwif_quirks(priv); 6726 if (ret) 6727 return ret; 6728 } 6729 6730 /* Rx Watchdog is available in the COREs newer than the 3.40. 6731 * In some case, for example on bugged HW this feature 6732 * has to be disable and this can be done by passing the 6733 * riwt_off field from the platform. 6734 */ 6735 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6736 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6737 priv->use_riwt = 1; 6738 dev_info(priv->device, 6739 "Enable RX Mitigation via HW Watchdog Timer\n"); 6740 } 6741 6742 return 0; 6743 } 6744 6745 static void stmmac_napi_add(struct net_device *dev) 6746 { 6747 struct stmmac_priv *priv = netdev_priv(dev); 6748 u32 queue, maxq; 6749 6750 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6751 6752 for (queue = 0; queue < maxq; queue++) { 6753 struct stmmac_channel *ch = &priv->channel[queue]; 6754 6755 ch->priv_data = priv; 6756 ch->index = queue; 6757 spin_lock_init(&ch->lock); 6758 6759 if (queue < priv->plat->rx_queues_to_use) { 6760 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6761 NAPI_POLL_WEIGHT); 6762 } 6763 if (queue < priv->plat->tx_queues_to_use) { 6764 netif_napi_add_tx(dev, &ch->tx_napi, 6765 stmmac_napi_poll_tx); 6766 } 6767 if (queue < priv->plat->rx_queues_to_use && 6768 queue < priv->plat->tx_queues_to_use) { 6769 netif_napi_add(dev, &ch->rxtx_napi, 6770 stmmac_napi_poll_rxtx, 6771 NAPI_POLL_WEIGHT); 6772 } 6773 } 6774 } 6775 6776 static void stmmac_napi_del(struct net_device *dev) 6777 { 6778 struct stmmac_priv *priv = netdev_priv(dev); 6779 u32 queue, maxq; 6780 6781 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6782 6783 for (queue = 0; queue < maxq; queue++) { 6784 struct stmmac_channel *ch = &priv->channel[queue]; 6785 6786 if (queue < priv->plat->rx_queues_to_use) 6787 netif_napi_del(&ch->rx_napi); 6788 if (queue < priv->plat->tx_queues_to_use) 6789 netif_napi_del(&ch->tx_napi); 6790 if (queue < priv->plat->rx_queues_to_use && 6791 queue < priv->plat->tx_queues_to_use) { 6792 netif_napi_del(&ch->rxtx_napi); 6793 } 6794 } 6795 } 6796 6797 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6798 { 6799 struct stmmac_priv *priv = netdev_priv(dev); 6800 int ret = 0; 6801 6802 if (netif_running(dev)) 6803 stmmac_release(dev); 6804 6805 stmmac_napi_del(dev); 6806 6807 priv->plat->rx_queues_to_use = rx_cnt; 6808 priv->plat->tx_queues_to_use = tx_cnt; 6809 6810 stmmac_napi_add(dev); 6811 6812 if (netif_running(dev)) 6813 ret = stmmac_open(dev); 6814 6815 return ret; 6816 } 6817 6818 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6819 { 6820 struct stmmac_priv *priv = netdev_priv(dev); 6821 int ret = 0; 6822 6823 if (netif_running(dev)) 6824 stmmac_release(dev); 6825 6826 priv->dma_rx_size = rx_size; 6827 priv->dma_tx_size = tx_size; 6828 6829 if (netif_running(dev)) 6830 ret = stmmac_open(dev); 6831 6832 return ret; 6833 } 6834 6835 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6836 static void stmmac_fpe_lp_task(struct work_struct *work) 6837 { 6838 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6839 fpe_task); 6840 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6841 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6842 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6843 bool *hs_enable = &fpe_cfg->hs_enable; 6844 bool *enable = &fpe_cfg->enable; 6845 int retries = 20; 6846 6847 while (retries-- > 0) { 6848 /* Bail out immediately if FPE handshake is OFF */ 6849 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6850 break; 6851 6852 if (*lo_state == FPE_STATE_ENTERING_ON && 6853 *lp_state == FPE_STATE_ENTERING_ON) { 6854 stmmac_fpe_configure(priv, priv->ioaddr, 6855 priv->plat->tx_queues_to_use, 6856 priv->plat->rx_queues_to_use, 6857 *enable); 6858 6859 netdev_info(priv->dev, "configured FPE\n"); 6860 6861 *lo_state = FPE_STATE_ON; 6862 *lp_state = FPE_STATE_ON; 6863 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6864 break; 6865 } 6866 6867 if ((*lo_state == FPE_STATE_CAPABLE || 6868 *lo_state == FPE_STATE_ENTERING_ON) && 6869 *lp_state != FPE_STATE_ON) { 6870 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6871 *lo_state, *lp_state); 6872 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6873 MPACKET_VERIFY); 6874 } 6875 /* Sleep then retry */ 6876 msleep(500); 6877 } 6878 6879 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6880 } 6881 6882 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6883 { 6884 if (priv->plat->fpe_cfg->hs_enable != enable) { 6885 if (enable) { 6886 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6887 MPACKET_VERIFY); 6888 } else { 6889 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6890 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6891 } 6892 6893 priv->plat->fpe_cfg->hs_enable = enable; 6894 } 6895 } 6896 6897 /** 6898 * stmmac_dvr_probe 6899 * @device: device pointer 6900 * @plat_dat: platform data pointer 6901 * @res: stmmac resource pointer 6902 * Description: this is the main probe function used to 6903 * call the alloc_etherdev, allocate the priv structure. 6904 * Return: 6905 * returns 0 on success, otherwise errno. 6906 */ 6907 int stmmac_dvr_probe(struct device *device, 6908 struct plat_stmmacenet_data *plat_dat, 6909 struct stmmac_resources *res) 6910 { 6911 struct net_device *ndev = NULL; 6912 struct stmmac_priv *priv; 6913 u32 rxq; 6914 int i, ret = 0; 6915 6916 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6917 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6918 if (!ndev) 6919 return -ENOMEM; 6920 6921 SET_NETDEV_DEV(ndev, device); 6922 6923 priv = netdev_priv(ndev); 6924 priv->device = device; 6925 priv->dev = ndev; 6926 6927 stmmac_set_ethtool_ops(ndev); 6928 priv->pause = pause; 6929 priv->plat = plat_dat; 6930 priv->ioaddr = res->addr; 6931 priv->dev->base_addr = (unsigned long)res->addr; 6932 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6933 6934 priv->dev->irq = res->irq; 6935 priv->wol_irq = res->wol_irq; 6936 priv->lpi_irq = res->lpi_irq; 6937 priv->sfty_ce_irq = res->sfty_ce_irq; 6938 priv->sfty_ue_irq = res->sfty_ue_irq; 6939 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6940 priv->rx_irq[i] = res->rx_irq[i]; 6941 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6942 priv->tx_irq[i] = res->tx_irq[i]; 6943 6944 if (!is_zero_ether_addr(res->mac)) 6945 eth_hw_addr_set(priv->dev, res->mac); 6946 6947 dev_set_drvdata(device, priv->dev); 6948 6949 /* Verify driver arguments */ 6950 stmmac_verify_args(); 6951 6952 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6953 if (!priv->af_xdp_zc_qps) 6954 return -ENOMEM; 6955 6956 /* Allocate workqueue */ 6957 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6958 if (!priv->wq) { 6959 dev_err(priv->device, "failed to create workqueue\n"); 6960 return -ENOMEM; 6961 } 6962 6963 INIT_WORK(&priv->service_task, stmmac_service_task); 6964 6965 /* Initialize Link Partner FPE workqueue */ 6966 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6967 6968 /* Override with kernel parameters if supplied XXX CRS XXX 6969 * this needs to have multiple instances 6970 */ 6971 if ((phyaddr >= 0) && (phyaddr <= 31)) 6972 priv->plat->phy_addr = phyaddr; 6973 6974 if (priv->plat->stmmac_rst) { 6975 ret = reset_control_assert(priv->plat->stmmac_rst); 6976 reset_control_deassert(priv->plat->stmmac_rst); 6977 /* Some reset controllers have only reset callback instead of 6978 * assert + deassert callbacks pair. 6979 */ 6980 if (ret == -ENOTSUPP) 6981 reset_control_reset(priv->plat->stmmac_rst); 6982 } 6983 6984 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 6985 if (ret == -ENOTSUPP) 6986 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 6987 ERR_PTR(ret)); 6988 6989 /* Init MAC and get the capabilities */ 6990 ret = stmmac_hw_init(priv); 6991 if (ret) 6992 goto error_hw_init; 6993 6994 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 6995 */ 6996 if (priv->synopsys_id < DWMAC_CORE_5_20) 6997 priv->plat->dma_cfg->dche = false; 6998 6999 stmmac_check_ether_addr(priv); 7000 7001 ndev->netdev_ops = &stmmac_netdev_ops; 7002 7003 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7004 NETIF_F_RXCSUM; 7005 7006 ret = stmmac_tc_init(priv, priv); 7007 if (!ret) { 7008 ndev->hw_features |= NETIF_F_HW_TC; 7009 } 7010 7011 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7012 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7013 if (priv->plat->has_gmac4) 7014 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7015 priv->tso = true; 7016 dev_info(priv->device, "TSO feature enabled\n"); 7017 } 7018 7019 if (priv->dma_cap.sphen && !priv->plat->sph_disable) { 7020 ndev->hw_features |= NETIF_F_GRO; 7021 priv->sph_cap = true; 7022 priv->sph = priv->sph_cap; 7023 dev_info(priv->device, "SPH feature enabled\n"); 7024 } 7025 7026 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7027 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7028 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7029 * So overwrite dma_cap.addr64 according to HW real design. 7030 */ 7031 if (priv->plat->addr64) 7032 priv->dma_cap.addr64 = priv->plat->addr64; 7033 7034 if (priv->dma_cap.addr64) { 7035 ret = dma_set_mask_and_coherent(device, 7036 DMA_BIT_MASK(priv->dma_cap.addr64)); 7037 if (!ret) { 7038 dev_info(priv->device, "Using %d bits DMA width\n", 7039 priv->dma_cap.addr64); 7040 7041 /* 7042 * If more than 32 bits can be addressed, make sure to 7043 * enable enhanced addressing mode. 7044 */ 7045 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7046 priv->plat->dma_cfg->eame = true; 7047 } else { 7048 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7049 if (ret) { 7050 dev_err(priv->device, "Failed to set DMA Mask\n"); 7051 goto error_hw_init; 7052 } 7053 7054 priv->dma_cap.addr64 = 32; 7055 } 7056 } 7057 7058 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7059 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7060 #ifdef STMMAC_VLAN_TAG_USED 7061 /* Both mac100 and gmac support receive VLAN tag detection */ 7062 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7063 if (priv->dma_cap.vlhash) { 7064 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7065 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7066 } 7067 if (priv->dma_cap.vlins) { 7068 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7069 if (priv->dma_cap.dvlan) 7070 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7071 } 7072 #endif 7073 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7074 7075 /* Initialize RSS */ 7076 rxq = priv->plat->rx_queues_to_use; 7077 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7078 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7079 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7080 7081 if (priv->dma_cap.rssen && priv->plat->rss_en) 7082 ndev->features |= NETIF_F_RXHASH; 7083 7084 /* MTU range: 46 - hw-specific max */ 7085 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7086 if (priv->plat->has_xgmac) 7087 ndev->max_mtu = XGMAC_JUMBO_LEN; 7088 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7089 ndev->max_mtu = JUMBO_LEN; 7090 else 7091 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7092 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7093 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7094 */ 7095 if ((priv->plat->maxmtu < ndev->max_mtu) && 7096 (priv->plat->maxmtu >= ndev->min_mtu)) 7097 ndev->max_mtu = priv->plat->maxmtu; 7098 else if (priv->plat->maxmtu < ndev->min_mtu) 7099 dev_warn(priv->device, 7100 "%s: warning: maxmtu having invalid value (%d)\n", 7101 __func__, priv->plat->maxmtu); 7102 7103 if (flow_ctrl) 7104 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7105 7106 /* Setup channels NAPI */ 7107 stmmac_napi_add(ndev); 7108 7109 mutex_init(&priv->lock); 7110 7111 /* If a specific clk_csr value is passed from the platform 7112 * this means that the CSR Clock Range selection cannot be 7113 * changed at run-time and it is fixed. Viceversa the driver'll try to 7114 * set the MDC clock dynamically according to the csr actual 7115 * clock input. 7116 */ 7117 if (priv->plat->clk_csr >= 0) 7118 priv->clk_csr = priv->plat->clk_csr; 7119 else 7120 stmmac_clk_csr_set(priv); 7121 7122 stmmac_check_pcs_mode(priv); 7123 7124 pm_runtime_get_noresume(device); 7125 pm_runtime_set_active(device); 7126 if (!pm_runtime_enabled(device)) 7127 pm_runtime_enable(device); 7128 7129 if (priv->hw->pcs != STMMAC_PCS_TBI && 7130 priv->hw->pcs != STMMAC_PCS_RTBI) { 7131 /* MDIO bus Registration */ 7132 ret = stmmac_mdio_register(ndev); 7133 if (ret < 0) { 7134 dev_err_probe(priv->device, ret, 7135 "%s: MDIO bus (id: %d) registration failed\n", 7136 __func__, priv->plat->bus_id); 7137 goto error_mdio_register; 7138 } 7139 } 7140 7141 if (priv->plat->speed_mode_2500) 7142 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7143 7144 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7145 ret = stmmac_xpcs_setup(priv->mii); 7146 if (ret) 7147 goto error_xpcs_setup; 7148 } 7149 7150 ret = stmmac_phy_setup(priv); 7151 if (ret) { 7152 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7153 goto error_phy_setup; 7154 } 7155 7156 ret = register_netdev(ndev); 7157 if (ret) { 7158 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7159 __func__, ret); 7160 goto error_netdev_register; 7161 } 7162 7163 if (priv->plat->serdes_powerup) { 7164 ret = priv->plat->serdes_powerup(ndev, 7165 priv->plat->bsp_priv); 7166 7167 if (ret < 0) 7168 goto error_serdes_powerup; 7169 } 7170 7171 #ifdef CONFIG_DEBUG_FS 7172 stmmac_init_fs(ndev); 7173 #endif 7174 7175 if (priv->plat->dump_debug_regs) 7176 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7177 7178 /* Let pm_runtime_put() disable the clocks. 7179 * If CONFIG_PM is not enabled, the clocks will stay powered. 7180 */ 7181 pm_runtime_put(device); 7182 7183 return ret; 7184 7185 error_serdes_powerup: 7186 unregister_netdev(ndev); 7187 error_netdev_register: 7188 phylink_destroy(priv->phylink); 7189 error_xpcs_setup: 7190 error_phy_setup: 7191 if (priv->hw->pcs != STMMAC_PCS_TBI && 7192 priv->hw->pcs != STMMAC_PCS_RTBI) 7193 stmmac_mdio_unregister(ndev); 7194 error_mdio_register: 7195 stmmac_napi_del(ndev); 7196 error_hw_init: 7197 destroy_workqueue(priv->wq); 7198 bitmap_free(priv->af_xdp_zc_qps); 7199 7200 return ret; 7201 } 7202 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7203 7204 /** 7205 * stmmac_dvr_remove 7206 * @dev: device pointer 7207 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7208 * changes the link status, releases the DMA descriptor rings. 7209 */ 7210 int stmmac_dvr_remove(struct device *dev) 7211 { 7212 struct net_device *ndev = dev_get_drvdata(dev); 7213 struct stmmac_priv *priv = netdev_priv(ndev); 7214 7215 netdev_info(priv->dev, "%s: removing driver", __func__); 7216 7217 pm_runtime_get_sync(dev); 7218 pm_runtime_disable(dev); 7219 pm_runtime_put_noidle(dev); 7220 7221 stmmac_stop_all_dma(priv); 7222 stmmac_mac_set(priv, priv->ioaddr, false); 7223 netif_carrier_off(ndev); 7224 unregister_netdev(ndev); 7225 7226 /* Serdes power down needs to happen after VLAN filter 7227 * is deleted that is triggered by unregister_netdev(). 7228 */ 7229 if (priv->plat->serdes_powerdown) 7230 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7231 7232 #ifdef CONFIG_DEBUG_FS 7233 stmmac_exit_fs(ndev); 7234 #endif 7235 phylink_destroy(priv->phylink); 7236 if (priv->plat->stmmac_rst) 7237 reset_control_assert(priv->plat->stmmac_rst); 7238 reset_control_assert(priv->plat->stmmac_ahb_rst); 7239 if (priv->hw->pcs != STMMAC_PCS_TBI && 7240 priv->hw->pcs != STMMAC_PCS_RTBI) 7241 stmmac_mdio_unregister(ndev); 7242 destroy_workqueue(priv->wq); 7243 mutex_destroy(&priv->lock); 7244 bitmap_free(priv->af_xdp_zc_qps); 7245 7246 return 0; 7247 } 7248 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7249 7250 /** 7251 * stmmac_suspend - suspend callback 7252 * @dev: device pointer 7253 * Description: this is the function to suspend the device and it is called 7254 * by the platform driver to stop the network queue, release the resources, 7255 * program the PMT register (for WoL), clean and release driver resources. 7256 */ 7257 int stmmac_suspend(struct device *dev) 7258 { 7259 struct net_device *ndev = dev_get_drvdata(dev); 7260 struct stmmac_priv *priv = netdev_priv(ndev); 7261 u32 chan; 7262 7263 if (!ndev || !netif_running(ndev)) 7264 return 0; 7265 7266 mutex_lock(&priv->lock); 7267 7268 netif_device_detach(ndev); 7269 7270 stmmac_disable_all_queues(priv); 7271 7272 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7273 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7274 7275 if (priv->eee_enabled) { 7276 priv->tx_path_in_lpi_mode = false; 7277 del_timer_sync(&priv->eee_ctrl_timer); 7278 } 7279 7280 /* Stop TX/RX DMA */ 7281 stmmac_stop_all_dma(priv); 7282 7283 if (priv->plat->serdes_powerdown) 7284 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7285 7286 /* Enable Power down mode by programming the PMT regs */ 7287 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7288 stmmac_pmt(priv, priv->hw, priv->wolopts); 7289 priv->irq_wake = 1; 7290 } else { 7291 stmmac_mac_set(priv, priv->ioaddr, false); 7292 pinctrl_pm_select_sleep_state(priv->device); 7293 } 7294 7295 mutex_unlock(&priv->lock); 7296 7297 rtnl_lock(); 7298 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7299 phylink_suspend(priv->phylink, true); 7300 } else { 7301 if (device_may_wakeup(priv->device)) 7302 phylink_speed_down(priv->phylink, false); 7303 phylink_suspend(priv->phylink, false); 7304 } 7305 rtnl_unlock(); 7306 7307 if (priv->dma_cap.fpesel) { 7308 /* Disable FPE */ 7309 stmmac_fpe_configure(priv, priv->ioaddr, 7310 priv->plat->tx_queues_to_use, 7311 priv->plat->rx_queues_to_use, false); 7312 7313 stmmac_fpe_handshake(priv, false); 7314 stmmac_fpe_stop_wq(priv); 7315 } 7316 7317 priv->speed = SPEED_UNKNOWN; 7318 return 0; 7319 } 7320 EXPORT_SYMBOL_GPL(stmmac_suspend); 7321 7322 /** 7323 * stmmac_reset_queues_param - reset queue parameters 7324 * @priv: device pointer 7325 */ 7326 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7327 { 7328 u32 rx_cnt = priv->plat->rx_queues_to_use; 7329 u32 tx_cnt = priv->plat->tx_queues_to_use; 7330 u32 queue; 7331 7332 for (queue = 0; queue < rx_cnt; queue++) { 7333 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7334 7335 rx_q->cur_rx = 0; 7336 rx_q->dirty_rx = 0; 7337 } 7338 7339 for (queue = 0; queue < tx_cnt; queue++) { 7340 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7341 7342 tx_q->cur_tx = 0; 7343 tx_q->dirty_tx = 0; 7344 tx_q->mss = 0; 7345 7346 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7347 } 7348 } 7349 7350 /** 7351 * stmmac_resume - resume callback 7352 * @dev: device pointer 7353 * Description: when resume this function is invoked to setup the DMA and CORE 7354 * in a usable state. 7355 */ 7356 int stmmac_resume(struct device *dev) 7357 { 7358 struct net_device *ndev = dev_get_drvdata(dev); 7359 struct stmmac_priv *priv = netdev_priv(ndev); 7360 int ret; 7361 7362 if (!netif_running(ndev)) 7363 return 0; 7364 7365 /* Power Down bit, into the PM register, is cleared 7366 * automatically as soon as a magic packet or a Wake-up frame 7367 * is received. Anyway, it's better to manually clear 7368 * this bit because it can generate problems while resuming 7369 * from another devices (e.g. serial console). 7370 */ 7371 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7372 mutex_lock(&priv->lock); 7373 stmmac_pmt(priv, priv->hw, 0); 7374 mutex_unlock(&priv->lock); 7375 priv->irq_wake = 0; 7376 } else { 7377 pinctrl_pm_select_default_state(priv->device); 7378 /* reset the phy so that it's ready */ 7379 if (priv->mii) 7380 stmmac_mdio_reset(priv->mii); 7381 } 7382 7383 if (priv->plat->serdes_powerup) { 7384 ret = priv->plat->serdes_powerup(ndev, 7385 priv->plat->bsp_priv); 7386 7387 if (ret < 0) 7388 return ret; 7389 } 7390 7391 rtnl_lock(); 7392 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7393 phylink_resume(priv->phylink); 7394 } else { 7395 phylink_resume(priv->phylink); 7396 if (device_may_wakeup(priv->device)) 7397 phylink_speed_up(priv->phylink); 7398 } 7399 rtnl_unlock(); 7400 7401 rtnl_lock(); 7402 mutex_lock(&priv->lock); 7403 7404 stmmac_reset_queues_param(priv); 7405 7406 stmmac_free_tx_skbufs(priv); 7407 stmmac_clear_descriptors(priv); 7408 7409 stmmac_hw_setup(ndev, false); 7410 stmmac_init_coalesce(priv); 7411 stmmac_set_rx_mode(ndev); 7412 7413 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7414 7415 stmmac_enable_all_queues(priv); 7416 stmmac_enable_all_dma_irq(priv); 7417 7418 mutex_unlock(&priv->lock); 7419 rtnl_unlock(); 7420 7421 netif_device_attach(ndev); 7422 7423 return 0; 7424 } 7425 EXPORT_SYMBOL_GPL(stmmac_resume); 7426 7427 #ifndef MODULE 7428 static int __init stmmac_cmdline_opt(char *str) 7429 { 7430 char *opt; 7431 7432 if (!str || !*str) 7433 return 1; 7434 while ((opt = strsep(&str, ",")) != NULL) { 7435 if (!strncmp(opt, "debug:", 6)) { 7436 if (kstrtoint(opt + 6, 0, &debug)) 7437 goto err; 7438 } else if (!strncmp(opt, "phyaddr:", 8)) { 7439 if (kstrtoint(opt + 8, 0, &phyaddr)) 7440 goto err; 7441 } else if (!strncmp(opt, "buf_sz:", 7)) { 7442 if (kstrtoint(opt + 7, 0, &buf_sz)) 7443 goto err; 7444 } else if (!strncmp(opt, "tc:", 3)) { 7445 if (kstrtoint(opt + 3, 0, &tc)) 7446 goto err; 7447 } else if (!strncmp(opt, "watchdog:", 9)) { 7448 if (kstrtoint(opt + 9, 0, &watchdog)) 7449 goto err; 7450 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7451 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7452 goto err; 7453 } else if (!strncmp(opt, "pause:", 6)) { 7454 if (kstrtoint(opt + 6, 0, &pause)) 7455 goto err; 7456 } else if (!strncmp(opt, "eee_timer:", 10)) { 7457 if (kstrtoint(opt + 10, 0, &eee_timer)) 7458 goto err; 7459 } else if (!strncmp(opt, "chain_mode:", 11)) { 7460 if (kstrtoint(opt + 11, 0, &chain_mode)) 7461 goto err; 7462 } 7463 } 7464 return 1; 7465 7466 err: 7467 pr_err("%s: ERROR broken module parameter conversion", __func__); 7468 return 1; 7469 } 7470 7471 __setup("stmmaceth=", stmmac_cmdline_opt); 7472 #endif /* MODULE */ 7473 7474 static int __init stmmac_init(void) 7475 { 7476 #ifdef CONFIG_DEBUG_FS 7477 /* Create debugfs main directory if it doesn't exist yet */ 7478 if (!stmmac_fs_dir) 7479 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7480 register_netdevice_notifier(&stmmac_notifier); 7481 #endif 7482 7483 return 0; 7484 } 7485 7486 static void __exit stmmac_exit(void) 7487 { 7488 #ifdef CONFIG_DEBUG_FS 7489 unregister_netdevice_notifier(&stmmac_notifier); 7490 debugfs_remove_recursive(stmmac_fs_dir); 7491 #endif 7492 } 7493 7494 module_init(stmmac_init) 7495 module_exit(stmmac_exit) 7496 7497 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7498 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7499 MODULE_LICENSE("GPL"); 7500