1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue); 135 static void stmmac_reset_queues_param(struct stmmac_priv *priv); 136 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 137 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 138 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 139 u32 rxmode, u32 chan); 140 141 #ifdef CONFIG_DEBUG_FS 142 static const struct net_device_ops stmmac_netdev_ops; 143 static void stmmac_init_fs(struct net_device *dev); 144 static void stmmac_exit_fs(struct net_device *dev); 145 #endif 146 147 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 148 149 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 150 { 151 int ret = 0; 152 153 if (enabled) { 154 ret = clk_prepare_enable(priv->plat->stmmac_clk); 155 if (ret) 156 return ret; 157 ret = clk_prepare_enable(priv->plat->pclk); 158 if (ret) { 159 clk_disable_unprepare(priv->plat->stmmac_clk); 160 return ret; 161 } 162 if (priv->plat->clks_config) { 163 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 164 if (ret) { 165 clk_disable_unprepare(priv->plat->stmmac_clk); 166 clk_disable_unprepare(priv->plat->pclk); 167 return ret; 168 } 169 } 170 } else { 171 clk_disable_unprepare(priv->plat->stmmac_clk); 172 clk_disable_unprepare(priv->plat->pclk); 173 if (priv->plat->clks_config) 174 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 175 } 176 177 return ret; 178 } 179 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 180 181 /** 182 * stmmac_verify_args - verify the driver parameters. 183 * Description: it checks the driver parameters and set a default in case of 184 * errors. 185 */ 186 static void stmmac_verify_args(void) 187 { 188 if (unlikely(watchdog < 0)) 189 watchdog = TX_TIMEO; 190 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 191 buf_sz = DEFAULT_BUFSIZE; 192 if (unlikely(flow_ctrl > 1)) 193 flow_ctrl = FLOW_AUTO; 194 else if (likely(flow_ctrl < 0)) 195 flow_ctrl = FLOW_OFF; 196 if (unlikely((pause < 0) || (pause > 0xffff))) 197 pause = PAUSE_TIME; 198 if (eee_timer < 0) 199 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 200 } 201 202 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 203 { 204 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 205 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 206 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 207 u32 queue; 208 209 for (queue = 0; queue < maxq; queue++) { 210 struct stmmac_channel *ch = &priv->channel[queue]; 211 212 if (stmmac_xdp_is_enabled(priv) && 213 test_bit(queue, priv->af_xdp_zc_qps)) { 214 napi_disable(&ch->rxtx_napi); 215 continue; 216 } 217 218 if (queue < rx_queues_cnt) 219 napi_disable(&ch->rx_napi); 220 if (queue < tx_queues_cnt) 221 napi_disable(&ch->tx_napi); 222 } 223 } 224 225 /** 226 * stmmac_disable_all_queues - Disable all queues 227 * @priv: driver private structure 228 */ 229 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 230 { 231 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 232 struct stmmac_rx_queue *rx_q; 233 u32 queue; 234 235 /* synchronize_rcu() needed for pending XDP buffers to drain */ 236 for (queue = 0; queue < rx_queues_cnt; queue++) { 237 rx_q = &priv->dma_conf.rx_queue[queue]; 238 if (rx_q->xsk_pool) { 239 synchronize_rcu(); 240 break; 241 } 242 } 243 244 __stmmac_disable_all_queues(priv); 245 } 246 247 /** 248 * stmmac_enable_all_queues - Enable all queues 249 * @priv: driver private structure 250 */ 251 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 252 { 253 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 254 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 255 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 256 u32 queue; 257 258 for (queue = 0; queue < maxq; queue++) { 259 struct stmmac_channel *ch = &priv->channel[queue]; 260 261 if (stmmac_xdp_is_enabled(priv) && 262 test_bit(queue, priv->af_xdp_zc_qps)) { 263 napi_enable(&ch->rxtx_napi); 264 continue; 265 } 266 267 if (queue < rx_queues_cnt) 268 napi_enable(&ch->rx_napi); 269 if (queue < tx_queues_cnt) 270 napi_enable(&ch->tx_napi); 271 } 272 } 273 274 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 275 { 276 if (!test_bit(STMMAC_DOWN, &priv->state) && 277 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 278 queue_work(priv->wq, &priv->service_task); 279 } 280 281 static void stmmac_global_err(struct stmmac_priv *priv) 282 { 283 netif_carrier_off(priv->dev); 284 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 285 stmmac_service_event_schedule(priv); 286 } 287 288 /** 289 * stmmac_clk_csr_set - dynamically set the MDC clock 290 * @priv: driver private structure 291 * Description: this is to dynamically set the MDC clock according to the csr 292 * clock input. 293 * Note: 294 * If a specific clk_csr value is passed from the platform 295 * this means that the CSR Clock Range selection cannot be 296 * changed at run-time and it is fixed (as reported in the driver 297 * documentation). Viceversa the driver will try to set the MDC 298 * clock dynamically according to the actual clock input. 299 */ 300 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 301 { 302 u32 clk_rate; 303 304 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 305 306 /* Platform provided default clk_csr would be assumed valid 307 * for all other cases except for the below mentioned ones. 308 * For values higher than the IEEE 802.3 specified frequency 309 * we can not estimate the proper divider as it is not known 310 * the frequency of clk_csr_i. So we do not change the default 311 * divider. 312 */ 313 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 314 if (clk_rate < CSR_F_35M) 315 priv->clk_csr = STMMAC_CSR_20_35M; 316 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 317 priv->clk_csr = STMMAC_CSR_35_60M; 318 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 319 priv->clk_csr = STMMAC_CSR_60_100M; 320 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 321 priv->clk_csr = STMMAC_CSR_100_150M; 322 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 323 priv->clk_csr = STMMAC_CSR_150_250M; 324 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 325 priv->clk_csr = STMMAC_CSR_250_300M; 326 } 327 328 if (priv->plat->has_sun8i) { 329 if (clk_rate > 160000000) 330 priv->clk_csr = 0x03; 331 else if (clk_rate > 80000000) 332 priv->clk_csr = 0x02; 333 else if (clk_rate > 40000000) 334 priv->clk_csr = 0x01; 335 else 336 priv->clk_csr = 0; 337 } 338 339 if (priv->plat->has_xgmac) { 340 if (clk_rate > 400000000) 341 priv->clk_csr = 0x5; 342 else if (clk_rate > 350000000) 343 priv->clk_csr = 0x4; 344 else if (clk_rate > 300000000) 345 priv->clk_csr = 0x3; 346 else if (clk_rate > 250000000) 347 priv->clk_csr = 0x2; 348 else if (clk_rate > 150000000) 349 priv->clk_csr = 0x1; 350 else 351 priv->clk_csr = 0x0; 352 } 353 } 354 355 static void print_pkt(unsigned char *buf, int len) 356 { 357 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 358 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 359 } 360 361 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 362 { 363 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 364 u32 avail; 365 366 if (tx_q->dirty_tx > tx_q->cur_tx) 367 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 368 else 369 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 370 371 return avail; 372 } 373 374 /** 375 * stmmac_rx_dirty - Get RX queue dirty 376 * @priv: driver private structure 377 * @queue: RX queue index 378 */ 379 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 380 { 381 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 382 u32 dirty; 383 384 if (rx_q->dirty_rx <= rx_q->cur_rx) 385 dirty = rx_q->cur_rx - rx_q->dirty_rx; 386 else 387 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 388 389 return dirty; 390 } 391 392 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 393 { 394 int tx_lpi_timer; 395 396 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 397 priv->eee_sw_timer_en = en ? 0 : 1; 398 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 399 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 400 } 401 402 /** 403 * stmmac_enable_eee_mode - check and enter in LPI mode 404 * @priv: driver private structure 405 * Description: this function is to verify and enter in LPI mode in case of 406 * EEE. 407 */ 408 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 409 { 410 u32 tx_cnt = priv->plat->tx_queues_to_use; 411 u32 queue; 412 413 /* check if all TX queues have the work finished */ 414 for (queue = 0; queue < tx_cnt; queue++) { 415 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 416 417 if (tx_q->dirty_tx != tx_q->cur_tx) 418 return -EBUSY; /* still unfinished work */ 419 } 420 421 /* Check and enter in LPI mode */ 422 if (!priv->tx_path_in_lpi_mode) 423 stmmac_set_eee_mode(priv, priv->hw, 424 priv->plat->en_tx_lpi_clockgating); 425 return 0; 426 } 427 428 /** 429 * stmmac_disable_eee_mode - disable and exit from LPI mode 430 * @priv: driver private structure 431 * Description: this function is to exit and disable EEE in case of 432 * LPI state is true. This is called by the xmit. 433 */ 434 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 435 { 436 if (!priv->eee_sw_timer_en) { 437 stmmac_lpi_entry_timer_config(priv, 0); 438 return; 439 } 440 441 stmmac_reset_eee_mode(priv, priv->hw); 442 del_timer_sync(&priv->eee_ctrl_timer); 443 priv->tx_path_in_lpi_mode = false; 444 } 445 446 /** 447 * stmmac_eee_ctrl_timer - EEE TX SW timer. 448 * @t: timer_list struct containing private info 449 * Description: 450 * if there is no data transfer and if we are not in LPI state, 451 * then MAC Transmitter can be moved to LPI state. 452 */ 453 static void stmmac_eee_ctrl_timer(struct timer_list *t) 454 { 455 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 456 457 if (stmmac_enable_eee_mode(priv)) 458 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 459 } 460 461 /** 462 * stmmac_eee_init - init EEE 463 * @priv: driver private structure 464 * Description: 465 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 466 * can also manage EEE, this function enable the LPI state and start related 467 * timer. 468 */ 469 bool stmmac_eee_init(struct stmmac_priv *priv) 470 { 471 int eee_tw_timer = priv->eee_tw_timer; 472 473 /* Using PCS we cannot dial with the phy registers at this stage 474 * so we do not support extra feature like EEE. 475 */ 476 if (priv->hw->pcs == STMMAC_PCS_TBI || 477 priv->hw->pcs == STMMAC_PCS_RTBI) 478 return false; 479 480 /* Check if MAC core supports the EEE feature. */ 481 if (!priv->dma_cap.eee) 482 return false; 483 484 mutex_lock(&priv->lock); 485 486 /* Check if it needs to be deactivated */ 487 if (!priv->eee_active) { 488 if (priv->eee_enabled) { 489 netdev_dbg(priv->dev, "disable EEE\n"); 490 stmmac_lpi_entry_timer_config(priv, 0); 491 del_timer_sync(&priv->eee_ctrl_timer); 492 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 493 if (priv->hw->xpcs) 494 xpcs_config_eee(priv->hw->xpcs, 495 priv->plat->mult_fact_100ns, 496 false); 497 } 498 mutex_unlock(&priv->lock); 499 return false; 500 } 501 502 if (priv->eee_active && !priv->eee_enabled) { 503 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 504 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 505 eee_tw_timer); 506 if (priv->hw->xpcs) 507 xpcs_config_eee(priv->hw->xpcs, 508 priv->plat->mult_fact_100ns, 509 true); 510 } 511 512 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 513 del_timer_sync(&priv->eee_ctrl_timer); 514 priv->tx_path_in_lpi_mode = false; 515 stmmac_lpi_entry_timer_config(priv, 1); 516 } else { 517 stmmac_lpi_entry_timer_config(priv, 0); 518 mod_timer(&priv->eee_ctrl_timer, 519 STMMAC_LPI_T(priv->tx_lpi_timer)); 520 } 521 522 mutex_unlock(&priv->lock); 523 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 524 return true; 525 } 526 527 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 528 * @priv: driver private structure 529 * @p : descriptor pointer 530 * @skb : the socket buffer 531 * Description : 532 * This function will read timestamp from the descriptor & pass it to stack. 533 * and also perform some sanity checks. 534 */ 535 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 536 struct dma_desc *p, struct sk_buff *skb) 537 { 538 struct skb_shared_hwtstamps shhwtstamp; 539 bool found = false; 540 u64 ns = 0; 541 542 if (!priv->hwts_tx_en) 543 return; 544 545 /* exit if skb doesn't support hw tstamp */ 546 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 547 return; 548 549 /* check tx tstamp status */ 550 if (stmmac_get_tx_timestamp_status(priv, p)) { 551 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 552 found = true; 553 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 554 found = true; 555 } 556 557 if (found) { 558 ns -= priv->plat->cdc_error_adj; 559 560 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 561 shhwtstamp.hwtstamp = ns_to_ktime(ns); 562 563 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 564 /* pass tstamp to stack */ 565 skb_tstamp_tx(skb, &shhwtstamp); 566 } 567 } 568 569 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 570 * @priv: driver private structure 571 * @p : descriptor pointer 572 * @np : next descriptor pointer 573 * @skb : the socket buffer 574 * Description : 575 * This function will read received packet's timestamp from the descriptor 576 * and pass it to stack. It also perform some sanity checks. 577 */ 578 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 579 struct dma_desc *np, struct sk_buff *skb) 580 { 581 struct skb_shared_hwtstamps *shhwtstamp = NULL; 582 struct dma_desc *desc = p; 583 u64 ns = 0; 584 585 if (!priv->hwts_rx_en) 586 return; 587 /* For GMAC4, the valid timestamp is from CTX next desc. */ 588 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 589 desc = np; 590 591 /* Check if timestamp is available */ 592 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 593 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 594 595 ns -= priv->plat->cdc_error_adj; 596 597 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 598 shhwtstamp = skb_hwtstamps(skb); 599 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 600 shhwtstamp->hwtstamp = ns_to_ktime(ns); 601 } else { 602 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 603 } 604 } 605 606 /** 607 * stmmac_hwtstamp_set - control hardware timestamping. 608 * @dev: device pointer. 609 * @ifr: An IOCTL specific structure, that can contain a pointer to 610 * a proprietary structure used to pass information to the driver. 611 * Description: 612 * This function configures the MAC to enable/disable both outgoing(TX) 613 * and incoming(RX) packets time stamping based on user input. 614 * Return Value: 615 * 0 on success and an appropriate -ve integer on failure. 616 */ 617 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 618 { 619 struct stmmac_priv *priv = netdev_priv(dev); 620 struct hwtstamp_config config; 621 u32 ptp_v2 = 0; 622 u32 tstamp_all = 0; 623 u32 ptp_over_ipv4_udp = 0; 624 u32 ptp_over_ipv6_udp = 0; 625 u32 ptp_over_ethernet = 0; 626 u32 snap_type_sel = 0; 627 u32 ts_master_en = 0; 628 u32 ts_event_en = 0; 629 630 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 631 netdev_alert(priv->dev, "No support for HW time stamping\n"); 632 priv->hwts_tx_en = 0; 633 priv->hwts_rx_en = 0; 634 635 return -EOPNOTSUPP; 636 } 637 638 if (copy_from_user(&config, ifr->ifr_data, 639 sizeof(config))) 640 return -EFAULT; 641 642 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 643 __func__, config.flags, config.tx_type, config.rx_filter); 644 645 if (config.tx_type != HWTSTAMP_TX_OFF && 646 config.tx_type != HWTSTAMP_TX_ON) 647 return -ERANGE; 648 649 if (priv->adv_ts) { 650 switch (config.rx_filter) { 651 case HWTSTAMP_FILTER_NONE: 652 /* time stamp no incoming packet at all */ 653 config.rx_filter = HWTSTAMP_FILTER_NONE; 654 break; 655 656 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 657 /* PTP v1, UDP, any kind of event packet */ 658 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 659 /* 'xmac' hardware can support Sync, Pdelay_Req and 660 * Pdelay_resp by setting bit14 and bits17/16 to 01 661 * This leaves Delay_Req timestamps out. 662 * Enable all events *and* general purpose message 663 * timestamping 664 */ 665 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 666 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 667 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 668 break; 669 670 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 671 /* PTP v1, UDP, Sync packet */ 672 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 673 /* take time stamp for SYNC messages only */ 674 ts_event_en = PTP_TCR_TSEVNTENA; 675 676 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 677 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 678 break; 679 680 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 681 /* PTP v1, UDP, Delay_req packet */ 682 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 683 /* take time stamp for Delay_Req messages only */ 684 ts_master_en = PTP_TCR_TSMSTRENA; 685 ts_event_en = PTP_TCR_TSEVNTENA; 686 687 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 688 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 689 break; 690 691 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 692 /* PTP v2, UDP, any kind of event packet */ 693 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 694 ptp_v2 = PTP_TCR_TSVER2ENA; 695 /* take time stamp for all event messages */ 696 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 697 698 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 699 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 700 break; 701 702 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 703 /* PTP v2, UDP, Sync packet */ 704 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 705 ptp_v2 = PTP_TCR_TSVER2ENA; 706 /* take time stamp for SYNC messages only */ 707 ts_event_en = PTP_TCR_TSEVNTENA; 708 709 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 710 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 711 break; 712 713 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 714 /* PTP v2, UDP, Delay_req packet */ 715 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 716 ptp_v2 = PTP_TCR_TSVER2ENA; 717 /* take time stamp for Delay_Req messages only */ 718 ts_master_en = PTP_TCR_TSMSTRENA; 719 ts_event_en = PTP_TCR_TSEVNTENA; 720 721 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 722 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 723 break; 724 725 case HWTSTAMP_FILTER_PTP_V2_EVENT: 726 /* PTP v2/802.AS1 any layer, any kind of event packet */ 727 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 728 ptp_v2 = PTP_TCR_TSVER2ENA; 729 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 730 if (priv->synopsys_id < DWMAC_CORE_4_10) 731 ts_event_en = PTP_TCR_TSEVNTENA; 732 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 733 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 734 ptp_over_ethernet = PTP_TCR_TSIPENA; 735 break; 736 737 case HWTSTAMP_FILTER_PTP_V2_SYNC: 738 /* PTP v2/802.AS1, any layer, Sync packet */ 739 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 740 ptp_v2 = PTP_TCR_TSVER2ENA; 741 /* take time stamp for SYNC messages only */ 742 ts_event_en = PTP_TCR_TSEVNTENA; 743 744 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 745 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 746 ptp_over_ethernet = PTP_TCR_TSIPENA; 747 break; 748 749 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 750 /* PTP v2/802.AS1, any layer, Delay_req packet */ 751 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 752 ptp_v2 = PTP_TCR_TSVER2ENA; 753 /* take time stamp for Delay_Req messages only */ 754 ts_master_en = PTP_TCR_TSMSTRENA; 755 ts_event_en = PTP_TCR_TSEVNTENA; 756 757 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 758 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 759 ptp_over_ethernet = PTP_TCR_TSIPENA; 760 break; 761 762 case HWTSTAMP_FILTER_NTP_ALL: 763 case HWTSTAMP_FILTER_ALL: 764 /* time stamp any incoming packet */ 765 config.rx_filter = HWTSTAMP_FILTER_ALL; 766 tstamp_all = PTP_TCR_TSENALL; 767 break; 768 769 default: 770 return -ERANGE; 771 } 772 } else { 773 switch (config.rx_filter) { 774 case HWTSTAMP_FILTER_NONE: 775 config.rx_filter = HWTSTAMP_FILTER_NONE; 776 break; 777 default: 778 /* PTP v1, UDP, any kind of event packet */ 779 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 780 break; 781 } 782 } 783 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 784 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 785 786 priv->systime_flags = STMMAC_HWTS_ACTIVE; 787 788 if (priv->hwts_tx_en || priv->hwts_rx_en) { 789 priv->systime_flags |= tstamp_all | ptp_v2 | 790 ptp_over_ethernet | ptp_over_ipv6_udp | 791 ptp_over_ipv4_udp | ts_event_en | 792 ts_master_en | snap_type_sel; 793 } 794 795 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 796 797 memcpy(&priv->tstamp_config, &config, sizeof(config)); 798 799 return copy_to_user(ifr->ifr_data, &config, 800 sizeof(config)) ? -EFAULT : 0; 801 } 802 803 /** 804 * stmmac_hwtstamp_get - read hardware timestamping. 805 * @dev: device pointer. 806 * @ifr: An IOCTL specific structure, that can contain a pointer to 807 * a proprietary structure used to pass information to the driver. 808 * Description: 809 * This function obtain the current hardware timestamping settings 810 * as requested. 811 */ 812 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 813 { 814 struct stmmac_priv *priv = netdev_priv(dev); 815 struct hwtstamp_config *config = &priv->tstamp_config; 816 817 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 818 return -EOPNOTSUPP; 819 820 return copy_to_user(ifr->ifr_data, config, 821 sizeof(*config)) ? -EFAULT : 0; 822 } 823 824 /** 825 * stmmac_init_tstamp_counter - init hardware timestamping counter 826 * @priv: driver private structure 827 * @systime_flags: timestamping flags 828 * Description: 829 * Initialize hardware counter for packet timestamping. 830 * This is valid as long as the interface is open and not suspended. 831 * Will be rerun after resuming from suspend, case in which the timestamping 832 * flags updated by stmmac_hwtstamp_set() also need to be restored. 833 */ 834 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 835 { 836 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 837 struct timespec64 now; 838 u32 sec_inc = 0; 839 u64 temp = 0; 840 841 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 842 return -EOPNOTSUPP; 843 844 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 845 priv->systime_flags = systime_flags; 846 847 /* program Sub Second Increment reg */ 848 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 849 priv->plat->clk_ptp_rate, 850 xmac, &sec_inc); 851 temp = div_u64(1000000000ULL, sec_inc); 852 853 /* Store sub second increment for later use */ 854 priv->sub_second_inc = sec_inc; 855 856 /* calculate default added value: 857 * formula is : 858 * addend = (2^32)/freq_div_ratio; 859 * where, freq_div_ratio = 1e9ns/sec_inc 860 */ 861 temp = (u64)(temp << 32); 862 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 863 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 864 865 /* initialize system time */ 866 ktime_get_real_ts64(&now); 867 868 /* lower 32 bits of tv_sec are safe until y2106 */ 869 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 870 871 return 0; 872 } 873 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 874 875 /** 876 * stmmac_init_ptp - init PTP 877 * @priv: driver private structure 878 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 879 * This is done by looking at the HW cap. register. 880 * This function also registers the ptp driver. 881 */ 882 static int stmmac_init_ptp(struct stmmac_priv *priv) 883 { 884 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 885 int ret; 886 887 if (priv->plat->ptp_clk_freq_config) 888 priv->plat->ptp_clk_freq_config(priv); 889 890 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 891 if (ret) 892 return ret; 893 894 priv->adv_ts = 0; 895 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 896 if (xmac && priv->dma_cap.atime_stamp) 897 priv->adv_ts = 1; 898 /* Dwmac 3.x core with extend_desc can support adv_ts */ 899 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 900 priv->adv_ts = 1; 901 902 if (priv->dma_cap.time_stamp) 903 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 904 905 if (priv->adv_ts) 906 netdev_info(priv->dev, 907 "IEEE 1588-2008 Advanced Timestamp supported\n"); 908 909 priv->hwts_tx_en = 0; 910 priv->hwts_rx_en = 0; 911 912 return 0; 913 } 914 915 static void stmmac_release_ptp(struct stmmac_priv *priv) 916 { 917 clk_disable_unprepare(priv->plat->clk_ptp_ref); 918 stmmac_ptp_unregister(priv); 919 } 920 921 /** 922 * stmmac_mac_flow_ctrl - Configure flow control in all queues 923 * @priv: driver private structure 924 * @duplex: duplex passed to the next function 925 * Description: It is used for configuring the flow control in all queues 926 */ 927 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 928 { 929 u32 tx_cnt = priv->plat->tx_queues_to_use; 930 931 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 932 priv->pause, tx_cnt); 933 } 934 935 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 936 phy_interface_t interface) 937 { 938 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 939 940 if (!priv->hw->xpcs) 941 return NULL; 942 943 return &priv->hw->xpcs->pcs; 944 } 945 946 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 947 const struct phylink_link_state *state) 948 { 949 /* Nothing to do, xpcs_config() handles everything */ 950 } 951 952 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 953 { 954 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 955 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 956 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 957 bool *hs_enable = &fpe_cfg->hs_enable; 958 959 if (is_up && *hs_enable) { 960 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 961 } else { 962 *lo_state = FPE_STATE_OFF; 963 *lp_state = FPE_STATE_OFF; 964 } 965 } 966 967 static void stmmac_mac_link_down(struct phylink_config *config, 968 unsigned int mode, phy_interface_t interface) 969 { 970 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 971 972 stmmac_mac_set(priv, priv->ioaddr, false); 973 priv->eee_active = false; 974 priv->tx_lpi_enabled = false; 975 priv->eee_enabled = stmmac_eee_init(priv); 976 stmmac_set_eee_pls(priv, priv->hw, false); 977 978 if (priv->dma_cap.fpesel) 979 stmmac_fpe_link_state_handle(priv, false); 980 } 981 982 static void stmmac_mac_link_up(struct phylink_config *config, 983 struct phy_device *phy, 984 unsigned int mode, phy_interface_t interface, 985 int speed, int duplex, 986 bool tx_pause, bool rx_pause) 987 { 988 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 989 u32 old_ctrl, ctrl; 990 991 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 992 ctrl = old_ctrl & ~priv->hw->link.speed_mask; 993 994 if (interface == PHY_INTERFACE_MODE_USXGMII) { 995 switch (speed) { 996 case SPEED_10000: 997 ctrl |= priv->hw->link.xgmii.speed10000; 998 break; 999 case SPEED_5000: 1000 ctrl |= priv->hw->link.xgmii.speed5000; 1001 break; 1002 case SPEED_2500: 1003 ctrl |= priv->hw->link.xgmii.speed2500; 1004 break; 1005 default: 1006 return; 1007 } 1008 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1009 switch (speed) { 1010 case SPEED_100000: 1011 ctrl |= priv->hw->link.xlgmii.speed100000; 1012 break; 1013 case SPEED_50000: 1014 ctrl |= priv->hw->link.xlgmii.speed50000; 1015 break; 1016 case SPEED_40000: 1017 ctrl |= priv->hw->link.xlgmii.speed40000; 1018 break; 1019 case SPEED_25000: 1020 ctrl |= priv->hw->link.xlgmii.speed25000; 1021 break; 1022 case SPEED_10000: 1023 ctrl |= priv->hw->link.xgmii.speed10000; 1024 break; 1025 case SPEED_2500: 1026 ctrl |= priv->hw->link.speed2500; 1027 break; 1028 case SPEED_1000: 1029 ctrl |= priv->hw->link.speed1000; 1030 break; 1031 default: 1032 return; 1033 } 1034 } else { 1035 switch (speed) { 1036 case SPEED_2500: 1037 ctrl |= priv->hw->link.speed2500; 1038 break; 1039 case SPEED_1000: 1040 ctrl |= priv->hw->link.speed1000; 1041 break; 1042 case SPEED_100: 1043 ctrl |= priv->hw->link.speed100; 1044 break; 1045 case SPEED_10: 1046 ctrl |= priv->hw->link.speed10; 1047 break; 1048 default: 1049 return; 1050 } 1051 } 1052 1053 priv->speed = speed; 1054 1055 if (priv->plat->fix_mac_speed) 1056 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1057 1058 if (!duplex) 1059 ctrl &= ~priv->hw->link.duplex; 1060 else 1061 ctrl |= priv->hw->link.duplex; 1062 1063 /* Flow Control operation */ 1064 if (tx_pause && rx_pause) 1065 stmmac_mac_flow_ctrl(priv, duplex); 1066 1067 if (ctrl != old_ctrl) 1068 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1069 1070 stmmac_mac_set(priv, priv->ioaddr, true); 1071 if (phy && priv->dma_cap.eee) { 1072 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1073 priv->eee_enabled = stmmac_eee_init(priv); 1074 priv->tx_lpi_enabled = priv->eee_enabled; 1075 stmmac_set_eee_pls(priv, priv->hw, true); 1076 } 1077 1078 if (priv->dma_cap.fpesel) 1079 stmmac_fpe_link_state_handle(priv, true); 1080 } 1081 1082 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1083 .validate = phylink_generic_validate, 1084 .mac_select_pcs = stmmac_mac_select_pcs, 1085 .mac_config = stmmac_mac_config, 1086 .mac_link_down = stmmac_mac_link_down, 1087 .mac_link_up = stmmac_mac_link_up, 1088 }; 1089 1090 /** 1091 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1092 * @priv: driver private structure 1093 * Description: this is to verify if the HW supports the PCS. 1094 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1095 * configured for the TBI, RTBI, or SGMII PHY interface. 1096 */ 1097 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1098 { 1099 int interface = priv->plat->interface; 1100 1101 if (priv->dma_cap.pcs) { 1102 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1103 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1104 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1105 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1106 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1107 priv->hw->pcs = STMMAC_PCS_RGMII; 1108 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1109 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1110 priv->hw->pcs = STMMAC_PCS_SGMII; 1111 } 1112 } 1113 } 1114 1115 /** 1116 * stmmac_init_phy - PHY initialization 1117 * @dev: net device structure 1118 * Description: it initializes the driver's PHY state, and attaches the PHY 1119 * to the mac driver. 1120 * Return value: 1121 * 0 on success 1122 */ 1123 static int stmmac_init_phy(struct net_device *dev) 1124 { 1125 struct stmmac_priv *priv = netdev_priv(dev); 1126 struct fwnode_handle *fwnode; 1127 int ret; 1128 1129 fwnode = of_fwnode_handle(priv->plat->phylink_node); 1130 if (!fwnode) 1131 fwnode = dev_fwnode(priv->device); 1132 1133 if (fwnode) 1134 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0); 1135 1136 /* Some DT bindings do not set-up the PHY handle. Let's try to 1137 * manually parse it 1138 */ 1139 if (!fwnode || ret) { 1140 int addr = priv->plat->phy_addr; 1141 struct phy_device *phydev; 1142 1143 phydev = mdiobus_get_phy(priv->mii, addr); 1144 if (!phydev) { 1145 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1146 return -ENODEV; 1147 } 1148 1149 ret = phylink_connect_phy(priv->phylink, phydev); 1150 } 1151 1152 if (!priv->plat->pmt) { 1153 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1154 1155 phylink_ethtool_get_wol(priv->phylink, &wol); 1156 device_set_wakeup_capable(priv->device, !!wol.supported); 1157 } 1158 1159 return ret; 1160 } 1161 1162 static int stmmac_phy_setup(struct stmmac_priv *priv) 1163 { 1164 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1165 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1166 int max_speed = priv->plat->max_speed; 1167 int mode = priv->plat->phy_interface; 1168 struct phylink *phylink; 1169 1170 priv->phylink_config.dev = &priv->dev->dev; 1171 priv->phylink_config.type = PHYLINK_NETDEV; 1172 if (priv->plat->mdio_bus_data) 1173 priv->phylink_config.ovr_an_inband = 1174 mdio_bus_data->xpcs_an_inband; 1175 1176 if (!fwnode) 1177 fwnode = dev_fwnode(priv->device); 1178 1179 /* Set the platform/firmware specified interface mode */ 1180 __set_bit(mode, priv->phylink_config.supported_interfaces); 1181 1182 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1183 if (priv->hw->xpcs) 1184 xpcs_get_interfaces(priv->hw->xpcs, 1185 priv->phylink_config.supported_interfaces); 1186 1187 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1188 MAC_10 | MAC_100; 1189 1190 if (!max_speed || max_speed >= 1000) 1191 priv->phylink_config.mac_capabilities |= MAC_1000; 1192 1193 if (priv->plat->has_gmac4) { 1194 if (!max_speed || max_speed >= 2500) 1195 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1196 } else if (priv->plat->has_xgmac) { 1197 if (!max_speed || max_speed >= 2500) 1198 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1199 if (!max_speed || max_speed >= 5000) 1200 priv->phylink_config.mac_capabilities |= MAC_5000FD; 1201 if (!max_speed || max_speed >= 10000) 1202 priv->phylink_config.mac_capabilities |= MAC_10000FD; 1203 if (!max_speed || max_speed >= 25000) 1204 priv->phylink_config.mac_capabilities |= MAC_25000FD; 1205 if (!max_speed || max_speed >= 40000) 1206 priv->phylink_config.mac_capabilities |= MAC_40000FD; 1207 if (!max_speed || max_speed >= 50000) 1208 priv->phylink_config.mac_capabilities |= MAC_50000FD; 1209 if (!max_speed || max_speed >= 100000) 1210 priv->phylink_config.mac_capabilities |= MAC_100000FD; 1211 } 1212 1213 /* Half-Duplex can only work with single queue */ 1214 if (priv->plat->tx_queues_to_use > 1) 1215 priv->phylink_config.mac_capabilities &= 1216 ~(MAC_10HD | MAC_100HD | MAC_1000HD); 1217 1218 phylink = phylink_create(&priv->phylink_config, fwnode, 1219 mode, &stmmac_phylink_mac_ops); 1220 if (IS_ERR(phylink)) 1221 return PTR_ERR(phylink); 1222 1223 priv->phylink = phylink; 1224 return 0; 1225 } 1226 1227 static void stmmac_display_rx_rings(struct stmmac_priv *priv, 1228 struct stmmac_dma_conf *dma_conf) 1229 { 1230 u32 rx_cnt = priv->plat->rx_queues_to_use; 1231 unsigned int desc_size; 1232 void *head_rx; 1233 u32 queue; 1234 1235 /* Display RX rings */ 1236 for (queue = 0; queue < rx_cnt; queue++) { 1237 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1238 1239 pr_info("\tRX Queue %u rings\n", queue); 1240 1241 if (priv->extend_desc) { 1242 head_rx = (void *)rx_q->dma_erx; 1243 desc_size = sizeof(struct dma_extended_desc); 1244 } else { 1245 head_rx = (void *)rx_q->dma_rx; 1246 desc_size = sizeof(struct dma_desc); 1247 } 1248 1249 /* Display RX ring */ 1250 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true, 1251 rx_q->dma_rx_phy, desc_size); 1252 } 1253 } 1254 1255 static void stmmac_display_tx_rings(struct stmmac_priv *priv, 1256 struct stmmac_dma_conf *dma_conf) 1257 { 1258 u32 tx_cnt = priv->plat->tx_queues_to_use; 1259 unsigned int desc_size; 1260 void *head_tx; 1261 u32 queue; 1262 1263 /* Display TX rings */ 1264 for (queue = 0; queue < tx_cnt; queue++) { 1265 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1266 1267 pr_info("\tTX Queue %d rings\n", queue); 1268 1269 if (priv->extend_desc) { 1270 head_tx = (void *)tx_q->dma_etx; 1271 desc_size = sizeof(struct dma_extended_desc); 1272 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1273 head_tx = (void *)tx_q->dma_entx; 1274 desc_size = sizeof(struct dma_edesc); 1275 } else { 1276 head_tx = (void *)tx_q->dma_tx; 1277 desc_size = sizeof(struct dma_desc); 1278 } 1279 1280 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false, 1281 tx_q->dma_tx_phy, desc_size); 1282 } 1283 } 1284 1285 static void stmmac_display_rings(struct stmmac_priv *priv, 1286 struct stmmac_dma_conf *dma_conf) 1287 { 1288 /* Display RX ring */ 1289 stmmac_display_rx_rings(priv, dma_conf); 1290 1291 /* Display TX ring */ 1292 stmmac_display_tx_rings(priv, dma_conf); 1293 } 1294 1295 static int stmmac_set_bfsize(int mtu, int bufsize) 1296 { 1297 int ret = bufsize; 1298 1299 if (mtu >= BUF_SIZE_8KiB) 1300 ret = BUF_SIZE_16KiB; 1301 else if (mtu >= BUF_SIZE_4KiB) 1302 ret = BUF_SIZE_8KiB; 1303 else if (mtu >= BUF_SIZE_2KiB) 1304 ret = BUF_SIZE_4KiB; 1305 else if (mtu > DEFAULT_BUFSIZE) 1306 ret = BUF_SIZE_2KiB; 1307 else 1308 ret = DEFAULT_BUFSIZE; 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * stmmac_clear_rx_descriptors - clear RX descriptors 1315 * @priv: driver private structure 1316 * @dma_conf: structure to take the dma data 1317 * @queue: RX queue index 1318 * Description: this function is called to clear the RX descriptors 1319 * in case of both basic and extended descriptors are used. 1320 */ 1321 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, 1322 struct stmmac_dma_conf *dma_conf, 1323 u32 queue) 1324 { 1325 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1326 int i; 1327 1328 /* Clear the RX descriptors */ 1329 for (i = 0; i < dma_conf->dma_rx_size; i++) 1330 if (priv->extend_desc) 1331 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1332 priv->use_riwt, priv->mode, 1333 (i == dma_conf->dma_rx_size - 1), 1334 dma_conf->dma_buf_sz); 1335 else 1336 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1337 priv->use_riwt, priv->mode, 1338 (i == dma_conf->dma_rx_size - 1), 1339 dma_conf->dma_buf_sz); 1340 } 1341 1342 /** 1343 * stmmac_clear_tx_descriptors - clear tx descriptors 1344 * @priv: driver private structure 1345 * @dma_conf: structure to take the dma data 1346 * @queue: TX queue index. 1347 * Description: this function is called to clear the TX descriptors 1348 * in case of both basic and extended descriptors are used. 1349 */ 1350 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, 1351 struct stmmac_dma_conf *dma_conf, 1352 u32 queue) 1353 { 1354 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1355 int i; 1356 1357 /* Clear the TX descriptors */ 1358 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1359 int last = (i == (dma_conf->dma_tx_size - 1)); 1360 struct dma_desc *p; 1361 1362 if (priv->extend_desc) 1363 p = &tx_q->dma_etx[i].basic; 1364 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1365 p = &tx_q->dma_entx[i].basic; 1366 else 1367 p = &tx_q->dma_tx[i]; 1368 1369 stmmac_init_tx_desc(priv, p, priv->mode, last); 1370 } 1371 } 1372 1373 /** 1374 * stmmac_clear_descriptors - clear descriptors 1375 * @priv: driver private structure 1376 * @dma_conf: structure to take the dma data 1377 * Description: this function is called to clear the TX and RX descriptors 1378 * in case of both basic and extended descriptors are used. 1379 */ 1380 static void stmmac_clear_descriptors(struct stmmac_priv *priv, 1381 struct stmmac_dma_conf *dma_conf) 1382 { 1383 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1384 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1385 u32 queue; 1386 1387 /* Clear the RX descriptors */ 1388 for (queue = 0; queue < rx_queue_cnt; queue++) 1389 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1390 1391 /* Clear the TX descriptors */ 1392 for (queue = 0; queue < tx_queue_cnt; queue++) 1393 stmmac_clear_tx_descriptors(priv, dma_conf, queue); 1394 } 1395 1396 /** 1397 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1398 * @priv: driver private structure 1399 * @dma_conf: structure to take the dma data 1400 * @p: descriptor pointer 1401 * @i: descriptor index 1402 * @flags: gfp flag 1403 * @queue: RX queue index 1404 * Description: this function is called to allocate a receive buffer, perform 1405 * the DMA mapping and init the descriptor. 1406 */ 1407 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, 1408 struct stmmac_dma_conf *dma_conf, 1409 struct dma_desc *p, 1410 int i, gfp_t flags, u32 queue) 1411 { 1412 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1413 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1414 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1415 1416 if (priv->dma_cap.addr64 <= 32) 1417 gfp |= GFP_DMA32; 1418 1419 if (!buf->page) { 1420 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1421 if (!buf->page) 1422 return -ENOMEM; 1423 buf->page_offset = stmmac_rx_offset(priv); 1424 } 1425 1426 if (priv->sph && !buf->sec_page) { 1427 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1428 if (!buf->sec_page) 1429 return -ENOMEM; 1430 1431 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1432 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1433 } else { 1434 buf->sec_page = NULL; 1435 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1436 } 1437 1438 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1439 1440 stmmac_set_desc_addr(priv, p, buf->addr); 1441 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB) 1442 stmmac_init_desc3(priv, p); 1443 1444 return 0; 1445 } 1446 1447 /** 1448 * stmmac_free_rx_buffer - free RX dma buffers 1449 * @priv: private structure 1450 * @rx_q: RX queue 1451 * @i: buffer index. 1452 */ 1453 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, 1454 struct stmmac_rx_queue *rx_q, 1455 int i) 1456 { 1457 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1458 1459 if (buf->page) 1460 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1461 buf->page = NULL; 1462 1463 if (buf->sec_page) 1464 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1465 buf->sec_page = NULL; 1466 } 1467 1468 /** 1469 * stmmac_free_tx_buffer - free RX dma buffers 1470 * @priv: private structure 1471 * @dma_conf: structure to take the dma data 1472 * @queue: RX queue index 1473 * @i: buffer index. 1474 */ 1475 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, 1476 struct stmmac_dma_conf *dma_conf, 1477 u32 queue, int i) 1478 { 1479 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1480 1481 if (tx_q->tx_skbuff_dma[i].buf && 1482 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1483 if (tx_q->tx_skbuff_dma[i].map_as_page) 1484 dma_unmap_page(priv->device, 1485 tx_q->tx_skbuff_dma[i].buf, 1486 tx_q->tx_skbuff_dma[i].len, 1487 DMA_TO_DEVICE); 1488 else 1489 dma_unmap_single(priv->device, 1490 tx_q->tx_skbuff_dma[i].buf, 1491 tx_q->tx_skbuff_dma[i].len, 1492 DMA_TO_DEVICE); 1493 } 1494 1495 if (tx_q->xdpf[i] && 1496 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1497 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1498 xdp_return_frame(tx_q->xdpf[i]); 1499 tx_q->xdpf[i] = NULL; 1500 } 1501 1502 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1503 tx_q->xsk_frames_done++; 1504 1505 if (tx_q->tx_skbuff[i] && 1506 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1507 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1508 tx_q->tx_skbuff[i] = NULL; 1509 } 1510 1511 tx_q->tx_skbuff_dma[i].buf = 0; 1512 tx_q->tx_skbuff_dma[i].map_as_page = false; 1513 } 1514 1515 /** 1516 * dma_free_rx_skbufs - free RX dma buffers 1517 * @priv: private structure 1518 * @dma_conf: structure to take the dma data 1519 * @queue: RX queue index 1520 */ 1521 static void dma_free_rx_skbufs(struct stmmac_priv *priv, 1522 struct stmmac_dma_conf *dma_conf, 1523 u32 queue) 1524 { 1525 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1526 int i; 1527 1528 for (i = 0; i < dma_conf->dma_rx_size; i++) 1529 stmmac_free_rx_buffer(priv, rx_q, i); 1530 } 1531 1532 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, 1533 struct stmmac_dma_conf *dma_conf, 1534 u32 queue, gfp_t flags) 1535 { 1536 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1537 int i; 1538 1539 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1540 struct dma_desc *p; 1541 int ret; 1542 1543 if (priv->extend_desc) 1544 p = &((rx_q->dma_erx + i)->basic); 1545 else 1546 p = rx_q->dma_rx + i; 1547 1548 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags, 1549 queue); 1550 if (ret) 1551 return ret; 1552 1553 rx_q->buf_alloc_num++; 1554 } 1555 1556 return 0; 1557 } 1558 1559 /** 1560 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1561 * @priv: private structure 1562 * @dma_conf: structure to take the dma data 1563 * @queue: RX queue index 1564 */ 1565 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, 1566 struct stmmac_dma_conf *dma_conf, 1567 u32 queue) 1568 { 1569 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1570 int i; 1571 1572 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1573 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1574 1575 if (!buf->xdp) 1576 continue; 1577 1578 xsk_buff_free(buf->xdp); 1579 buf->xdp = NULL; 1580 } 1581 } 1582 1583 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, 1584 struct stmmac_dma_conf *dma_conf, 1585 u32 queue) 1586 { 1587 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1588 int i; 1589 1590 for (i = 0; i < dma_conf->dma_rx_size; i++) { 1591 struct stmmac_rx_buffer *buf; 1592 dma_addr_t dma_addr; 1593 struct dma_desc *p; 1594 1595 if (priv->extend_desc) 1596 p = (struct dma_desc *)(rx_q->dma_erx + i); 1597 else 1598 p = rx_q->dma_rx + i; 1599 1600 buf = &rx_q->buf_pool[i]; 1601 1602 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1603 if (!buf->xdp) 1604 return -ENOMEM; 1605 1606 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1607 stmmac_set_desc_addr(priv, p, dma_addr); 1608 rx_q->buf_alloc_num++; 1609 } 1610 1611 return 0; 1612 } 1613 1614 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1615 { 1616 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1617 return NULL; 1618 1619 return xsk_get_pool_from_qid(priv->dev, queue); 1620 } 1621 1622 /** 1623 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1624 * @priv: driver private structure 1625 * @dma_conf: structure to take the dma data 1626 * @queue: RX queue index 1627 * @flags: gfp flag. 1628 * Description: this function initializes the DMA RX descriptors 1629 * and allocates the socket buffers. It supports the chained and ring 1630 * modes. 1631 */ 1632 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, 1633 struct stmmac_dma_conf *dma_conf, 1634 u32 queue, gfp_t flags) 1635 { 1636 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1637 int ret; 1638 1639 netif_dbg(priv, probe, priv->dev, 1640 "(%s) dma_rx_phy=0x%08x\n", __func__, 1641 (u32)rx_q->dma_rx_phy); 1642 1643 stmmac_clear_rx_descriptors(priv, dma_conf, queue); 1644 1645 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1646 1647 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1648 1649 if (rx_q->xsk_pool) { 1650 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1651 MEM_TYPE_XSK_BUFF_POOL, 1652 NULL)); 1653 netdev_info(priv->dev, 1654 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1655 rx_q->queue_index); 1656 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1657 } else { 1658 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1659 MEM_TYPE_PAGE_POOL, 1660 rx_q->page_pool)); 1661 netdev_info(priv->dev, 1662 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1663 rx_q->queue_index); 1664 } 1665 1666 if (rx_q->xsk_pool) { 1667 /* RX XDP ZC buffer pool may not be populated, e.g. 1668 * xdpsock TX-only. 1669 */ 1670 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue); 1671 } else { 1672 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags); 1673 if (ret < 0) 1674 return -ENOMEM; 1675 } 1676 1677 /* Setup the chained descriptor addresses */ 1678 if (priv->mode == STMMAC_CHAIN_MODE) { 1679 if (priv->extend_desc) 1680 stmmac_mode_init(priv, rx_q->dma_erx, 1681 rx_q->dma_rx_phy, 1682 dma_conf->dma_rx_size, 1); 1683 else 1684 stmmac_mode_init(priv, rx_q->dma_rx, 1685 rx_q->dma_rx_phy, 1686 dma_conf->dma_rx_size, 0); 1687 } 1688 1689 return 0; 1690 } 1691 1692 static int init_dma_rx_desc_rings(struct net_device *dev, 1693 struct stmmac_dma_conf *dma_conf, 1694 gfp_t flags) 1695 { 1696 struct stmmac_priv *priv = netdev_priv(dev); 1697 u32 rx_count = priv->plat->rx_queues_to_use; 1698 int queue; 1699 int ret; 1700 1701 /* RX INITIALIZATION */ 1702 netif_dbg(priv, probe, priv->dev, 1703 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1704 1705 for (queue = 0; queue < rx_count; queue++) { 1706 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags); 1707 if (ret) 1708 goto err_init_rx_buffers; 1709 } 1710 1711 return 0; 1712 1713 err_init_rx_buffers: 1714 while (queue >= 0) { 1715 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1716 1717 if (rx_q->xsk_pool) 1718 dma_free_rx_xskbufs(priv, dma_conf, queue); 1719 else 1720 dma_free_rx_skbufs(priv, dma_conf, queue); 1721 1722 rx_q->buf_alloc_num = 0; 1723 rx_q->xsk_pool = NULL; 1724 1725 queue--; 1726 } 1727 1728 return ret; 1729 } 1730 1731 /** 1732 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1733 * @priv: driver private structure 1734 * @dma_conf: structure to take the dma data 1735 * @queue: TX queue index 1736 * Description: this function initializes the DMA TX descriptors 1737 * and allocates the socket buffers. It supports the chained and ring 1738 * modes. 1739 */ 1740 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, 1741 struct stmmac_dma_conf *dma_conf, 1742 u32 queue) 1743 { 1744 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1745 int i; 1746 1747 netif_dbg(priv, probe, priv->dev, 1748 "(%s) dma_tx_phy=0x%08x\n", __func__, 1749 (u32)tx_q->dma_tx_phy); 1750 1751 /* Setup the chained descriptor addresses */ 1752 if (priv->mode == STMMAC_CHAIN_MODE) { 1753 if (priv->extend_desc) 1754 stmmac_mode_init(priv, tx_q->dma_etx, 1755 tx_q->dma_tx_phy, 1756 dma_conf->dma_tx_size, 1); 1757 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1758 stmmac_mode_init(priv, tx_q->dma_tx, 1759 tx_q->dma_tx_phy, 1760 dma_conf->dma_tx_size, 0); 1761 } 1762 1763 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1764 1765 for (i = 0; i < dma_conf->dma_tx_size; i++) { 1766 struct dma_desc *p; 1767 1768 if (priv->extend_desc) 1769 p = &((tx_q->dma_etx + i)->basic); 1770 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1771 p = &((tx_q->dma_entx + i)->basic); 1772 else 1773 p = tx_q->dma_tx + i; 1774 1775 stmmac_clear_desc(priv, p); 1776 1777 tx_q->tx_skbuff_dma[i].buf = 0; 1778 tx_q->tx_skbuff_dma[i].map_as_page = false; 1779 tx_q->tx_skbuff_dma[i].len = 0; 1780 tx_q->tx_skbuff_dma[i].last_segment = false; 1781 tx_q->tx_skbuff[i] = NULL; 1782 } 1783 1784 return 0; 1785 } 1786 1787 static int init_dma_tx_desc_rings(struct net_device *dev, 1788 struct stmmac_dma_conf *dma_conf) 1789 { 1790 struct stmmac_priv *priv = netdev_priv(dev); 1791 u32 tx_queue_cnt; 1792 u32 queue; 1793 1794 tx_queue_cnt = priv->plat->tx_queues_to_use; 1795 1796 for (queue = 0; queue < tx_queue_cnt; queue++) 1797 __init_dma_tx_desc_rings(priv, dma_conf, queue); 1798 1799 return 0; 1800 } 1801 1802 /** 1803 * init_dma_desc_rings - init the RX/TX descriptor rings 1804 * @dev: net device structure 1805 * @dma_conf: structure to take the dma data 1806 * @flags: gfp flag. 1807 * Description: this function initializes the DMA RX/TX descriptors 1808 * and allocates the socket buffers. It supports the chained and ring 1809 * modes. 1810 */ 1811 static int init_dma_desc_rings(struct net_device *dev, 1812 struct stmmac_dma_conf *dma_conf, 1813 gfp_t flags) 1814 { 1815 struct stmmac_priv *priv = netdev_priv(dev); 1816 int ret; 1817 1818 ret = init_dma_rx_desc_rings(dev, dma_conf, flags); 1819 if (ret) 1820 return ret; 1821 1822 ret = init_dma_tx_desc_rings(dev, dma_conf); 1823 1824 stmmac_clear_descriptors(priv, dma_conf); 1825 1826 if (netif_msg_hw(priv)) 1827 stmmac_display_rings(priv, dma_conf); 1828 1829 return ret; 1830 } 1831 1832 /** 1833 * dma_free_tx_skbufs - free TX dma buffers 1834 * @priv: private structure 1835 * @dma_conf: structure to take the dma data 1836 * @queue: TX queue index 1837 */ 1838 static void dma_free_tx_skbufs(struct stmmac_priv *priv, 1839 struct stmmac_dma_conf *dma_conf, 1840 u32 queue) 1841 { 1842 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1843 int i; 1844 1845 tx_q->xsk_frames_done = 0; 1846 1847 for (i = 0; i < dma_conf->dma_tx_size; i++) 1848 stmmac_free_tx_buffer(priv, dma_conf, queue, i); 1849 1850 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1851 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1852 tx_q->xsk_frames_done = 0; 1853 tx_q->xsk_pool = NULL; 1854 } 1855 } 1856 1857 /** 1858 * stmmac_free_tx_skbufs - free TX skb buffers 1859 * @priv: private structure 1860 */ 1861 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1862 { 1863 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1864 u32 queue; 1865 1866 for (queue = 0; queue < tx_queue_cnt; queue++) 1867 dma_free_tx_skbufs(priv, &priv->dma_conf, queue); 1868 } 1869 1870 /** 1871 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1872 * @priv: private structure 1873 * @dma_conf: structure to take the dma data 1874 * @queue: RX queue index 1875 */ 1876 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, 1877 struct stmmac_dma_conf *dma_conf, 1878 u32 queue) 1879 { 1880 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1881 1882 /* Release the DMA RX socket buffers */ 1883 if (rx_q->xsk_pool) 1884 dma_free_rx_xskbufs(priv, dma_conf, queue); 1885 else 1886 dma_free_rx_skbufs(priv, dma_conf, queue); 1887 1888 rx_q->buf_alloc_num = 0; 1889 rx_q->xsk_pool = NULL; 1890 1891 /* Free DMA regions of consistent memory previously allocated */ 1892 if (!priv->extend_desc) 1893 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1894 sizeof(struct dma_desc), 1895 rx_q->dma_rx, rx_q->dma_rx_phy); 1896 else 1897 dma_free_coherent(priv->device, dma_conf->dma_rx_size * 1898 sizeof(struct dma_extended_desc), 1899 rx_q->dma_erx, rx_q->dma_rx_phy); 1900 1901 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1902 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1903 1904 kfree(rx_q->buf_pool); 1905 if (rx_q->page_pool) 1906 page_pool_destroy(rx_q->page_pool); 1907 } 1908 1909 static void free_dma_rx_desc_resources(struct stmmac_priv *priv, 1910 struct stmmac_dma_conf *dma_conf) 1911 { 1912 u32 rx_count = priv->plat->rx_queues_to_use; 1913 u32 queue; 1914 1915 /* Free RX queue resources */ 1916 for (queue = 0; queue < rx_count; queue++) 1917 __free_dma_rx_desc_resources(priv, dma_conf, queue); 1918 } 1919 1920 /** 1921 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1922 * @priv: private structure 1923 * @dma_conf: structure to take the dma data 1924 * @queue: TX queue index 1925 */ 1926 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, 1927 struct stmmac_dma_conf *dma_conf, 1928 u32 queue) 1929 { 1930 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 1931 size_t size; 1932 void *addr; 1933 1934 /* Release the DMA TX socket buffers */ 1935 dma_free_tx_skbufs(priv, dma_conf, queue); 1936 1937 if (priv->extend_desc) { 1938 size = sizeof(struct dma_extended_desc); 1939 addr = tx_q->dma_etx; 1940 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1941 size = sizeof(struct dma_edesc); 1942 addr = tx_q->dma_entx; 1943 } else { 1944 size = sizeof(struct dma_desc); 1945 addr = tx_q->dma_tx; 1946 } 1947 1948 size *= dma_conf->dma_tx_size; 1949 1950 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1951 1952 kfree(tx_q->tx_skbuff_dma); 1953 kfree(tx_q->tx_skbuff); 1954 } 1955 1956 static void free_dma_tx_desc_resources(struct stmmac_priv *priv, 1957 struct stmmac_dma_conf *dma_conf) 1958 { 1959 u32 tx_count = priv->plat->tx_queues_to_use; 1960 u32 queue; 1961 1962 /* Free TX queue resources */ 1963 for (queue = 0; queue < tx_count; queue++) 1964 __free_dma_tx_desc_resources(priv, dma_conf, queue); 1965 } 1966 1967 /** 1968 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1969 * @priv: private structure 1970 * @dma_conf: structure to take the dma data 1971 * @queue: RX queue index 1972 * Description: according to which descriptor can be used (extend or basic) 1973 * this function allocates the resources for TX and RX paths. In case of 1974 * reception, for example, it pre-allocated the RX socket buffer in order to 1975 * allow zero-copy mechanism. 1976 */ 1977 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 1978 struct stmmac_dma_conf *dma_conf, 1979 u32 queue) 1980 { 1981 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue]; 1982 struct stmmac_channel *ch = &priv->channel[queue]; 1983 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1984 struct page_pool_params pp_params = { 0 }; 1985 unsigned int num_pages; 1986 unsigned int napi_id; 1987 int ret; 1988 1989 rx_q->queue_index = queue; 1990 rx_q->priv_data = priv; 1991 1992 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1993 pp_params.pool_size = dma_conf->dma_rx_size; 1994 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE); 1995 pp_params.order = ilog2(num_pages); 1996 pp_params.nid = dev_to_node(priv->device); 1997 pp_params.dev = priv->device; 1998 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1999 pp_params.offset = stmmac_rx_offset(priv); 2000 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 2001 2002 rx_q->page_pool = page_pool_create(&pp_params); 2003 if (IS_ERR(rx_q->page_pool)) { 2004 ret = PTR_ERR(rx_q->page_pool); 2005 rx_q->page_pool = NULL; 2006 return ret; 2007 } 2008 2009 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size, 2010 sizeof(*rx_q->buf_pool), 2011 GFP_KERNEL); 2012 if (!rx_q->buf_pool) 2013 return -ENOMEM; 2014 2015 if (priv->extend_desc) { 2016 rx_q->dma_erx = dma_alloc_coherent(priv->device, 2017 dma_conf->dma_rx_size * 2018 sizeof(struct dma_extended_desc), 2019 &rx_q->dma_rx_phy, 2020 GFP_KERNEL); 2021 if (!rx_q->dma_erx) 2022 return -ENOMEM; 2023 2024 } else { 2025 rx_q->dma_rx = dma_alloc_coherent(priv->device, 2026 dma_conf->dma_rx_size * 2027 sizeof(struct dma_desc), 2028 &rx_q->dma_rx_phy, 2029 GFP_KERNEL); 2030 if (!rx_q->dma_rx) 2031 return -ENOMEM; 2032 } 2033 2034 if (stmmac_xdp_is_enabled(priv) && 2035 test_bit(queue, priv->af_xdp_zc_qps)) 2036 napi_id = ch->rxtx_napi.napi_id; 2037 else 2038 napi_id = ch->rx_napi.napi_id; 2039 2040 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 2041 rx_q->queue_index, 2042 napi_id); 2043 if (ret) { 2044 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2045 return -EINVAL; 2046 } 2047 2048 return 0; 2049 } 2050 2051 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv, 2052 struct stmmac_dma_conf *dma_conf) 2053 { 2054 u32 rx_count = priv->plat->rx_queues_to_use; 2055 u32 queue; 2056 int ret; 2057 2058 /* RX queues buffers and DMA */ 2059 for (queue = 0; queue < rx_count; queue++) { 2060 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue); 2061 if (ret) 2062 goto err_dma; 2063 } 2064 2065 return 0; 2066 2067 err_dma: 2068 free_dma_rx_desc_resources(priv, dma_conf); 2069 2070 return ret; 2071 } 2072 2073 /** 2074 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2075 * @priv: private structure 2076 * @dma_conf: structure to take the dma data 2077 * @queue: TX queue index 2078 * Description: according to which descriptor can be used (extend or basic) 2079 * this function allocates the resources for TX and RX paths. In case of 2080 * reception, for example, it pre-allocated the RX socket buffer in order to 2081 * allow zero-copy mechanism. 2082 */ 2083 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2084 struct stmmac_dma_conf *dma_conf, 2085 u32 queue) 2086 { 2087 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue]; 2088 size_t size; 2089 void *addr; 2090 2091 tx_q->queue_index = queue; 2092 tx_q->priv_data = priv; 2093 2094 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size, 2095 sizeof(*tx_q->tx_skbuff_dma), 2096 GFP_KERNEL); 2097 if (!tx_q->tx_skbuff_dma) 2098 return -ENOMEM; 2099 2100 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size, 2101 sizeof(struct sk_buff *), 2102 GFP_KERNEL); 2103 if (!tx_q->tx_skbuff) 2104 return -ENOMEM; 2105 2106 if (priv->extend_desc) 2107 size = sizeof(struct dma_extended_desc); 2108 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2109 size = sizeof(struct dma_edesc); 2110 else 2111 size = sizeof(struct dma_desc); 2112 2113 size *= dma_conf->dma_tx_size; 2114 2115 addr = dma_alloc_coherent(priv->device, size, 2116 &tx_q->dma_tx_phy, GFP_KERNEL); 2117 if (!addr) 2118 return -ENOMEM; 2119 2120 if (priv->extend_desc) 2121 tx_q->dma_etx = addr; 2122 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2123 tx_q->dma_entx = addr; 2124 else 2125 tx_q->dma_tx = addr; 2126 2127 return 0; 2128 } 2129 2130 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv, 2131 struct stmmac_dma_conf *dma_conf) 2132 { 2133 u32 tx_count = priv->plat->tx_queues_to_use; 2134 u32 queue; 2135 int ret; 2136 2137 /* TX queues buffers and DMA */ 2138 for (queue = 0; queue < tx_count; queue++) { 2139 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue); 2140 if (ret) 2141 goto err_dma; 2142 } 2143 2144 return 0; 2145 2146 err_dma: 2147 free_dma_tx_desc_resources(priv, dma_conf); 2148 return ret; 2149 } 2150 2151 /** 2152 * alloc_dma_desc_resources - alloc TX/RX resources. 2153 * @priv: private structure 2154 * @dma_conf: structure to take the dma data 2155 * Description: according to which descriptor can be used (extend or basic) 2156 * this function allocates the resources for TX and RX paths. In case of 2157 * reception, for example, it pre-allocated the RX socket buffer in order to 2158 * allow zero-copy mechanism. 2159 */ 2160 static int alloc_dma_desc_resources(struct stmmac_priv *priv, 2161 struct stmmac_dma_conf *dma_conf) 2162 { 2163 /* RX Allocation */ 2164 int ret = alloc_dma_rx_desc_resources(priv, dma_conf); 2165 2166 if (ret) 2167 return ret; 2168 2169 ret = alloc_dma_tx_desc_resources(priv, dma_conf); 2170 2171 return ret; 2172 } 2173 2174 /** 2175 * free_dma_desc_resources - free dma desc resources 2176 * @priv: private structure 2177 * @dma_conf: structure to take the dma data 2178 */ 2179 static void free_dma_desc_resources(struct stmmac_priv *priv, 2180 struct stmmac_dma_conf *dma_conf) 2181 { 2182 /* Release the DMA TX socket buffers */ 2183 free_dma_tx_desc_resources(priv, dma_conf); 2184 2185 /* Release the DMA RX socket buffers later 2186 * to ensure all pending XDP_TX buffers are returned. 2187 */ 2188 free_dma_rx_desc_resources(priv, dma_conf); 2189 } 2190 2191 /** 2192 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2193 * @priv: driver private structure 2194 * Description: It is used for enabling the rx queues in the MAC 2195 */ 2196 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2197 { 2198 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2199 int queue; 2200 u8 mode; 2201 2202 for (queue = 0; queue < rx_queues_count; queue++) { 2203 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2204 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2205 } 2206 } 2207 2208 /** 2209 * stmmac_start_rx_dma - start RX DMA channel 2210 * @priv: driver private structure 2211 * @chan: RX channel index 2212 * Description: 2213 * This starts a RX DMA channel 2214 */ 2215 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2216 { 2217 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2218 stmmac_start_rx(priv, priv->ioaddr, chan); 2219 } 2220 2221 /** 2222 * stmmac_start_tx_dma - start TX DMA channel 2223 * @priv: driver private structure 2224 * @chan: TX channel index 2225 * Description: 2226 * This starts a TX DMA channel 2227 */ 2228 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2229 { 2230 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2231 stmmac_start_tx(priv, priv->ioaddr, chan); 2232 } 2233 2234 /** 2235 * stmmac_stop_rx_dma - stop RX DMA channel 2236 * @priv: driver private structure 2237 * @chan: RX channel index 2238 * Description: 2239 * This stops a RX DMA channel 2240 */ 2241 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2242 { 2243 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2244 stmmac_stop_rx(priv, priv->ioaddr, chan); 2245 } 2246 2247 /** 2248 * stmmac_stop_tx_dma - stop TX DMA channel 2249 * @priv: driver private structure 2250 * @chan: TX channel index 2251 * Description: 2252 * This stops a TX DMA channel 2253 */ 2254 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2255 { 2256 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2257 stmmac_stop_tx(priv, priv->ioaddr, chan); 2258 } 2259 2260 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2261 { 2262 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2263 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2264 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2265 u32 chan; 2266 2267 for (chan = 0; chan < dma_csr_ch; chan++) { 2268 struct stmmac_channel *ch = &priv->channel[chan]; 2269 unsigned long flags; 2270 2271 spin_lock_irqsave(&ch->lock, flags); 2272 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2273 spin_unlock_irqrestore(&ch->lock, flags); 2274 } 2275 } 2276 2277 /** 2278 * stmmac_start_all_dma - start all RX and TX DMA channels 2279 * @priv: driver private structure 2280 * Description: 2281 * This starts all the RX and TX DMA channels 2282 */ 2283 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2284 { 2285 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2286 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2287 u32 chan = 0; 2288 2289 for (chan = 0; chan < rx_channels_count; chan++) 2290 stmmac_start_rx_dma(priv, chan); 2291 2292 for (chan = 0; chan < tx_channels_count; chan++) 2293 stmmac_start_tx_dma(priv, chan); 2294 } 2295 2296 /** 2297 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2298 * @priv: driver private structure 2299 * Description: 2300 * This stops the RX and TX DMA channels 2301 */ 2302 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2303 { 2304 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2305 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2306 u32 chan = 0; 2307 2308 for (chan = 0; chan < rx_channels_count; chan++) 2309 stmmac_stop_rx_dma(priv, chan); 2310 2311 for (chan = 0; chan < tx_channels_count; chan++) 2312 stmmac_stop_tx_dma(priv, chan); 2313 } 2314 2315 /** 2316 * stmmac_dma_operation_mode - HW DMA operation mode 2317 * @priv: driver private structure 2318 * Description: it is used for configuring the DMA operation mode register in 2319 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2320 */ 2321 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2322 { 2323 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2324 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2325 int rxfifosz = priv->plat->rx_fifo_size; 2326 int txfifosz = priv->plat->tx_fifo_size; 2327 u32 txmode = 0; 2328 u32 rxmode = 0; 2329 u32 chan = 0; 2330 u8 qmode = 0; 2331 2332 if (rxfifosz == 0) 2333 rxfifosz = priv->dma_cap.rx_fifo_size; 2334 if (txfifosz == 0) 2335 txfifosz = priv->dma_cap.tx_fifo_size; 2336 2337 /* Adjust for real per queue fifo size */ 2338 rxfifosz /= rx_channels_count; 2339 txfifosz /= tx_channels_count; 2340 2341 if (priv->plat->force_thresh_dma_mode) { 2342 txmode = tc; 2343 rxmode = tc; 2344 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2345 /* 2346 * In case of GMAC, SF mode can be enabled 2347 * to perform the TX COE in HW. This depends on: 2348 * 1) TX COE if actually supported 2349 * 2) There is no bugged Jumbo frame support 2350 * that needs to not insert csum in the TDES. 2351 */ 2352 txmode = SF_DMA_MODE; 2353 rxmode = SF_DMA_MODE; 2354 priv->xstats.threshold = SF_DMA_MODE; 2355 } else { 2356 txmode = tc; 2357 rxmode = SF_DMA_MODE; 2358 } 2359 2360 /* configure all channels */ 2361 for (chan = 0; chan < rx_channels_count; chan++) { 2362 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2363 u32 buf_size; 2364 2365 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2366 2367 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2368 rxfifosz, qmode); 2369 2370 if (rx_q->xsk_pool) { 2371 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2372 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2373 buf_size, 2374 chan); 2375 } else { 2376 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2377 priv->dma_conf.dma_buf_sz, 2378 chan); 2379 } 2380 } 2381 2382 for (chan = 0; chan < tx_channels_count; chan++) { 2383 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2384 2385 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2386 txfifosz, qmode); 2387 } 2388 } 2389 2390 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2391 { 2392 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2393 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2394 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2395 unsigned int entry = tx_q->cur_tx; 2396 struct dma_desc *tx_desc = NULL; 2397 struct xdp_desc xdp_desc; 2398 bool work_done = true; 2399 2400 /* Avoids TX time-out as we are sharing with slow path */ 2401 txq_trans_cond_update(nq); 2402 2403 budget = min(budget, stmmac_tx_avail(priv, queue)); 2404 2405 while (budget-- > 0) { 2406 dma_addr_t dma_addr; 2407 bool set_ic; 2408 2409 /* We are sharing with slow path and stop XSK TX desc submission when 2410 * available TX ring is less than threshold. 2411 */ 2412 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2413 !netif_carrier_ok(priv->dev)) { 2414 work_done = false; 2415 break; 2416 } 2417 2418 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2419 break; 2420 2421 if (likely(priv->extend_desc)) 2422 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2423 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2424 tx_desc = &tx_q->dma_entx[entry].basic; 2425 else 2426 tx_desc = tx_q->dma_tx + entry; 2427 2428 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2429 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2430 2431 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2432 2433 /* To return XDP buffer to XSK pool, we simple call 2434 * xsk_tx_completed(), so we don't need to fill up 2435 * 'buf' and 'xdpf'. 2436 */ 2437 tx_q->tx_skbuff_dma[entry].buf = 0; 2438 tx_q->xdpf[entry] = NULL; 2439 2440 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2441 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2442 tx_q->tx_skbuff_dma[entry].last_segment = true; 2443 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2444 2445 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2446 2447 tx_q->tx_count_frames++; 2448 2449 if (!priv->tx_coal_frames[queue]) 2450 set_ic = false; 2451 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2452 set_ic = true; 2453 else 2454 set_ic = false; 2455 2456 if (set_ic) { 2457 tx_q->tx_count_frames = 0; 2458 stmmac_set_tx_ic(priv, tx_desc); 2459 priv->xstats.tx_set_ic_bit++; 2460 } 2461 2462 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2463 true, priv->mode, true, true, 2464 xdp_desc.len); 2465 2466 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2467 2468 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 2469 entry = tx_q->cur_tx; 2470 } 2471 2472 if (tx_desc) { 2473 stmmac_flush_tx_descriptors(priv, queue); 2474 xsk_tx_release(pool); 2475 } 2476 2477 /* Return true if all of the 3 conditions are met 2478 * a) TX Budget is still available 2479 * b) work_done = true when XSK TX desc peek is empty (no more 2480 * pending XSK TX for transmission) 2481 */ 2482 return !!budget && work_done; 2483 } 2484 2485 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2486 { 2487 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2488 tc += 64; 2489 2490 if (priv->plat->force_thresh_dma_mode) 2491 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2492 else 2493 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2494 chan); 2495 2496 priv->xstats.threshold = tc; 2497 } 2498 } 2499 2500 /** 2501 * stmmac_tx_clean - to manage the transmission completion 2502 * @priv: driver private structure 2503 * @budget: napi budget limiting this functions packet handling 2504 * @queue: TX queue index 2505 * Description: it reclaims the transmit resources after transmission completes. 2506 */ 2507 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2508 { 2509 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2510 unsigned int bytes_compl = 0, pkts_compl = 0; 2511 unsigned int entry, xmits = 0, count = 0; 2512 2513 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2514 2515 priv->xstats.tx_clean++; 2516 2517 tx_q->xsk_frames_done = 0; 2518 2519 entry = tx_q->dirty_tx; 2520 2521 /* Try to clean all TX complete frame in 1 shot */ 2522 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) { 2523 struct xdp_frame *xdpf; 2524 struct sk_buff *skb; 2525 struct dma_desc *p; 2526 int status; 2527 2528 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2529 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2530 xdpf = tx_q->xdpf[entry]; 2531 skb = NULL; 2532 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2533 xdpf = NULL; 2534 skb = tx_q->tx_skbuff[entry]; 2535 } else { 2536 xdpf = NULL; 2537 skb = NULL; 2538 } 2539 2540 if (priv->extend_desc) 2541 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2542 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2543 p = &tx_q->dma_entx[entry].basic; 2544 else 2545 p = tx_q->dma_tx + entry; 2546 2547 status = stmmac_tx_status(priv, &priv->dev->stats, 2548 &priv->xstats, p, priv->ioaddr); 2549 /* Check if the descriptor is owned by the DMA */ 2550 if (unlikely(status & tx_dma_own)) 2551 break; 2552 2553 count++; 2554 2555 /* Make sure descriptor fields are read after reading 2556 * the own bit. 2557 */ 2558 dma_rmb(); 2559 2560 /* Just consider the last segment and ...*/ 2561 if (likely(!(status & tx_not_ls))) { 2562 /* ... verify the status error condition */ 2563 if (unlikely(status & tx_err)) { 2564 priv->dev->stats.tx_errors++; 2565 if (unlikely(status & tx_err_bump_tc)) 2566 stmmac_bump_dma_threshold(priv, queue); 2567 } else { 2568 priv->dev->stats.tx_packets++; 2569 priv->xstats.tx_pkt_n++; 2570 priv->xstats.txq_stats[queue].tx_pkt_n++; 2571 } 2572 if (skb) 2573 stmmac_get_tx_hwtstamp(priv, p, skb); 2574 } 2575 2576 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2577 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2578 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2579 dma_unmap_page(priv->device, 2580 tx_q->tx_skbuff_dma[entry].buf, 2581 tx_q->tx_skbuff_dma[entry].len, 2582 DMA_TO_DEVICE); 2583 else 2584 dma_unmap_single(priv->device, 2585 tx_q->tx_skbuff_dma[entry].buf, 2586 tx_q->tx_skbuff_dma[entry].len, 2587 DMA_TO_DEVICE); 2588 tx_q->tx_skbuff_dma[entry].buf = 0; 2589 tx_q->tx_skbuff_dma[entry].len = 0; 2590 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2591 } 2592 2593 stmmac_clean_desc3(priv, tx_q, p); 2594 2595 tx_q->tx_skbuff_dma[entry].last_segment = false; 2596 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2597 2598 if (xdpf && 2599 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2600 xdp_return_frame_rx_napi(xdpf); 2601 tx_q->xdpf[entry] = NULL; 2602 } 2603 2604 if (xdpf && 2605 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2606 xdp_return_frame(xdpf); 2607 tx_q->xdpf[entry] = NULL; 2608 } 2609 2610 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2611 tx_q->xsk_frames_done++; 2612 2613 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2614 if (likely(skb)) { 2615 pkts_compl++; 2616 bytes_compl += skb->len; 2617 dev_consume_skb_any(skb); 2618 tx_q->tx_skbuff[entry] = NULL; 2619 } 2620 } 2621 2622 stmmac_release_tx_desc(priv, p, priv->mode); 2623 2624 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 2625 } 2626 tx_q->dirty_tx = entry; 2627 2628 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2629 pkts_compl, bytes_compl); 2630 2631 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2632 queue))) && 2633 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2634 2635 netif_dbg(priv, tx_done, priv->dev, 2636 "%s: restart transmit\n", __func__); 2637 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2638 } 2639 2640 if (tx_q->xsk_pool) { 2641 bool work_done; 2642 2643 if (tx_q->xsk_frames_done) 2644 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2645 2646 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2647 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2648 2649 /* For XSK TX, we try to send as many as possible. 2650 * If XSK work done (XSK TX desc empty and budget still 2651 * available), return "budget - 1" to reenable TX IRQ. 2652 * Else, return "budget" to make NAPI continue polling. 2653 */ 2654 work_done = stmmac_xdp_xmit_zc(priv, queue, 2655 STMMAC_XSK_TX_BUDGET_MAX); 2656 if (work_done) 2657 xmits = budget - 1; 2658 else 2659 xmits = budget; 2660 } 2661 2662 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2663 priv->eee_sw_timer_en) { 2664 if (stmmac_enable_eee_mode(priv)) 2665 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2666 } 2667 2668 /* We still have pending packets, let's call for a new scheduling */ 2669 if (tx_q->dirty_tx != tx_q->cur_tx) 2670 hrtimer_start(&tx_q->txtimer, 2671 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2672 HRTIMER_MODE_REL); 2673 2674 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2675 2676 /* Combine decisions from TX clean and XSK TX */ 2677 return max(count, xmits); 2678 } 2679 2680 /** 2681 * stmmac_tx_err - to manage the tx error 2682 * @priv: driver private structure 2683 * @chan: channel index 2684 * Description: it cleans the descriptors and restarts the transmission 2685 * in case of transmission errors. 2686 */ 2687 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2688 { 2689 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2690 2691 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2692 2693 stmmac_stop_tx_dma(priv, chan); 2694 dma_free_tx_skbufs(priv, &priv->dma_conf, chan); 2695 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan); 2696 stmmac_reset_tx_queue(priv, chan); 2697 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2698 tx_q->dma_tx_phy, chan); 2699 stmmac_start_tx_dma(priv, chan); 2700 2701 priv->dev->stats.tx_errors++; 2702 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2703 } 2704 2705 /** 2706 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2707 * @priv: driver private structure 2708 * @txmode: TX operating mode 2709 * @rxmode: RX operating mode 2710 * @chan: channel index 2711 * Description: it is used for configuring of the DMA operation mode in 2712 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2713 * mode. 2714 */ 2715 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2716 u32 rxmode, u32 chan) 2717 { 2718 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2719 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2720 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2721 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2722 int rxfifosz = priv->plat->rx_fifo_size; 2723 int txfifosz = priv->plat->tx_fifo_size; 2724 2725 if (rxfifosz == 0) 2726 rxfifosz = priv->dma_cap.rx_fifo_size; 2727 if (txfifosz == 0) 2728 txfifosz = priv->dma_cap.tx_fifo_size; 2729 2730 /* Adjust for real per queue fifo size */ 2731 rxfifosz /= rx_channels_count; 2732 txfifosz /= tx_channels_count; 2733 2734 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2735 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2736 } 2737 2738 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2739 { 2740 int ret; 2741 2742 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2743 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2744 if (ret && (ret != -EINVAL)) { 2745 stmmac_global_err(priv); 2746 return true; 2747 } 2748 2749 return false; 2750 } 2751 2752 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2753 { 2754 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2755 &priv->xstats, chan, dir); 2756 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan]; 2757 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 2758 struct stmmac_channel *ch = &priv->channel[chan]; 2759 struct napi_struct *rx_napi; 2760 struct napi_struct *tx_napi; 2761 unsigned long flags; 2762 2763 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2764 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2765 2766 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2767 if (napi_schedule_prep(rx_napi)) { 2768 spin_lock_irqsave(&ch->lock, flags); 2769 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2770 spin_unlock_irqrestore(&ch->lock, flags); 2771 __napi_schedule(rx_napi); 2772 } 2773 } 2774 2775 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2776 if (napi_schedule_prep(tx_napi)) { 2777 spin_lock_irqsave(&ch->lock, flags); 2778 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2779 spin_unlock_irqrestore(&ch->lock, flags); 2780 __napi_schedule(tx_napi); 2781 } 2782 } 2783 2784 return status; 2785 } 2786 2787 /** 2788 * stmmac_dma_interrupt - DMA ISR 2789 * @priv: driver private structure 2790 * Description: this is the DMA ISR. It is called by the main ISR. 2791 * It calls the dwmac dma routine and schedule poll method in case of some 2792 * work can be done. 2793 */ 2794 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2795 { 2796 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2797 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2798 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2799 tx_channel_count : rx_channel_count; 2800 u32 chan; 2801 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2802 2803 /* Make sure we never check beyond our status buffer. */ 2804 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2805 channels_to_check = ARRAY_SIZE(status); 2806 2807 for (chan = 0; chan < channels_to_check; chan++) 2808 status[chan] = stmmac_napi_check(priv, chan, 2809 DMA_DIR_RXTX); 2810 2811 for (chan = 0; chan < tx_channel_count; chan++) { 2812 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2813 /* Try to bump up the dma threshold on this failure */ 2814 stmmac_bump_dma_threshold(priv, chan); 2815 } else if (unlikely(status[chan] == tx_hard_error)) { 2816 stmmac_tx_err(priv, chan); 2817 } 2818 } 2819 } 2820 2821 /** 2822 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2823 * @priv: driver private structure 2824 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2825 */ 2826 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2827 { 2828 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2829 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2830 2831 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2832 2833 if (priv->dma_cap.rmon) { 2834 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2835 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2836 } else 2837 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2838 } 2839 2840 /** 2841 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2842 * @priv: driver private structure 2843 * Description: 2844 * new GMAC chip generations have a new register to indicate the 2845 * presence of the optional feature/functions. 2846 * This can be also used to override the value passed through the 2847 * platform and necessary for old MAC10/100 and GMAC chips. 2848 */ 2849 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2850 { 2851 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2852 } 2853 2854 /** 2855 * stmmac_check_ether_addr - check if the MAC addr is valid 2856 * @priv: driver private structure 2857 * Description: 2858 * it is to verify if the MAC address is valid, in case of failures it 2859 * generates a random MAC address 2860 */ 2861 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2862 { 2863 u8 addr[ETH_ALEN]; 2864 2865 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2866 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2867 if (is_valid_ether_addr(addr)) 2868 eth_hw_addr_set(priv->dev, addr); 2869 else 2870 eth_hw_addr_random(priv->dev); 2871 dev_info(priv->device, "device MAC address %pM\n", 2872 priv->dev->dev_addr); 2873 } 2874 } 2875 2876 /** 2877 * stmmac_init_dma_engine - DMA init. 2878 * @priv: driver private structure 2879 * Description: 2880 * It inits the DMA invoking the specific MAC/GMAC callback. 2881 * Some DMA parameters can be passed from the platform; 2882 * in case of these are not passed a default is kept for the MAC or GMAC. 2883 */ 2884 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2885 { 2886 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2887 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2888 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2889 struct stmmac_rx_queue *rx_q; 2890 struct stmmac_tx_queue *tx_q; 2891 u32 chan = 0; 2892 int atds = 0; 2893 int ret = 0; 2894 2895 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2896 dev_err(priv->device, "Invalid DMA configuration\n"); 2897 return -EINVAL; 2898 } 2899 2900 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2901 atds = 1; 2902 2903 ret = stmmac_reset(priv, priv->ioaddr); 2904 if (ret) { 2905 dev_err(priv->device, "Failed to reset the dma\n"); 2906 return ret; 2907 } 2908 2909 /* DMA Configuration */ 2910 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2911 2912 if (priv->plat->axi) 2913 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2914 2915 /* DMA CSR Channel configuration */ 2916 for (chan = 0; chan < dma_csr_ch; chan++) { 2917 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2918 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2919 } 2920 2921 /* DMA RX Channel Configuration */ 2922 for (chan = 0; chan < rx_channels_count; chan++) { 2923 rx_q = &priv->dma_conf.rx_queue[chan]; 2924 2925 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2926 rx_q->dma_rx_phy, chan); 2927 2928 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2929 (rx_q->buf_alloc_num * 2930 sizeof(struct dma_desc)); 2931 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2932 rx_q->rx_tail_addr, chan); 2933 } 2934 2935 /* DMA TX Channel Configuration */ 2936 for (chan = 0; chan < tx_channels_count; chan++) { 2937 tx_q = &priv->dma_conf.tx_queue[chan]; 2938 2939 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2940 tx_q->dma_tx_phy, chan); 2941 2942 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2943 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2944 tx_q->tx_tail_addr, chan); 2945 } 2946 2947 return ret; 2948 } 2949 2950 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2951 { 2952 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 2953 2954 hrtimer_start(&tx_q->txtimer, 2955 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2956 HRTIMER_MODE_REL); 2957 } 2958 2959 /** 2960 * stmmac_tx_timer - mitigation sw timer for tx. 2961 * @t: data pointer 2962 * Description: 2963 * This is the timer handler to directly invoke the stmmac_tx_clean. 2964 */ 2965 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2966 { 2967 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2968 struct stmmac_priv *priv = tx_q->priv_data; 2969 struct stmmac_channel *ch; 2970 struct napi_struct *napi; 2971 2972 ch = &priv->channel[tx_q->queue_index]; 2973 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2974 2975 if (likely(napi_schedule_prep(napi))) { 2976 unsigned long flags; 2977 2978 spin_lock_irqsave(&ch->lock, flags); 2979 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2980 spin_unlock_irqrestore(&ch->lock, flags); 2981 __napi_schedule(napi); 2982 } 2983 2984 return HRTIMER_NORESTART; 2985 } 2986 2987 /** 2988 * stmmac_init_coalesce - init mitigation options. 2989 * @priv: driver private structure 2990 * Description: 2991 * This inits the coalesce parameters: i.e. timer rate, 2992 * timer handler and default threshold used for enabling the 2993 * interrupt on completion bit. 2994 */ 2995 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2996 { 2997 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2998 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2999 u32 chan; 3000 3001 for (chan = 0; chan < tx_channel_count; chan++) { 3002 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3003 3004 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 3005 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 3006 3007 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 3008 tx_q->txtimer.function = stmmac_tx_timer; 3009 } 3010 3011 for (chan = 0; chan < rx_channel_count; chan++) 3012 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 3013 } 3014 3015 static void stmmac_set_rings_length(struct stmmac_priv *priv) 3016 { 3017 u32 rx_channels_count = priv->plat->rx_queues_to_use; 3018 u32 tx_channels_count = priv->plat->tx_queues_to_use; 3019 u32 chan; 3020 3021 /* set TX ring length */ 3022 for (chan = 0; chan < tx_channels_count; chan++) 3023 stmmac_set_tx_ring_len(priv, priv->ioaddr, 3024 (priv->dma_conf.dma_tx_size - 1), chan); 3025 3026 /* set RX ring length */ 3027 for (chan = 0; chan < rx_channels_count; chan++) 3028 stmmac_set_rx_ring_len(priv, priv->ioaddr, 3029 (priv->dma_conf.dma_rx_size - 1), chan); 3030 } 3031 3032 /** 3033 * stmmac_set_tx_queue_weight - Set TX queue weight 3034 * @priv: driver private structure 3035 * Description: It is used for setting TX queues weight 3036 */ 3037 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 3038 { 3039 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3040 u32 weight; 3041 u32 queue; 3042 3043 for (queue = 0; queue < tx_queues_count; queue++) { 3044 weight = priv->plat->tx_queues_cfg[queue].weight; 3045 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 3046 } 3047 } 3048 3049 /** 3050 * stmmac_configure_cbs - Configure CBS in TX queue 3051 * @priv: driver private structure 3052 * Description: It is used for configuring CBS in AVB TX queues 3053 */ 3054 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3055 { 3056 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3057 u32 mode_to_use; 3058 u32 queue; 3059 3060 /* queue 0 is reserved for legacy traffic */ 3061 for (queue = 1; queue < tx_queues_count; queue++) { 3062 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3063 if (mode_to_use == MTL_QUEUE_DCB) 3064 continue; 3065 3066 stmmac_config_cbs(priv, priv->hw, 3067 priv->plat->tx_queues_cfg[queue].send_slope, 3068 priv->plat->tx_queues_cfg[queue].idle_slope, 3069 priv->plat->tx_queues_cfg[queue].high_credit, 3070 priv->plat->tx_queues_cfg[queue].low_credit, 3071 queue); 3072 } 3073 } 3074 3075 /** 3076 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3077 * @priv: driver private structure 3078 * Description: It is used for mapping RX queues to RX dma channels 3079 */ 3080 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3081 { 3082 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3083 u32 queue; 3084 u32 chan; 3085 3086 for (queue = 0; queue < rx_queues_count; queue++) { 3087 chan = priv->plat->rx_queues_cfg[queue].chan; 3088 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3089 } 3090 } 3091 3092 /** 3093 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3094 * @priv: driver private structure 3095 * Description: It is used for configuring the RX Queue Priority 3096 */ 3097 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3098 { 3099 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3100 u32 queue; 3101 u32 prio; 3102 3103 for (queue = 0; queue < rx_queues_count; queue++) { 3104 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3105 continue; 3106 3107 prio = priv->plat->rx_queues_cfg[queue].prio; 3108 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3109 } 3110 } 3111 3112 /** 3113 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3114 * @priv: driver private structure 3115 * Description: It is used for configuring the TX Queue Priority 3116 */ 3117 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3118 { 3119 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3120 u32 queue; 3121 u32 prio; 3122 3123 for (queue = 0; queue < tx_queues_count; queue++) { 3124 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3125 continue; 3126 3127 prio = priv->plat->tx_queues_cfg[queue].prio; 3128 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3129 } 3130 } 3131 3132 /** 3133 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3134 * @priv: driver private structure 3135 * Description: It is used for configuring the RX queue routing 3136 */ 3137 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3138 { 3139 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3140 u32 queue; 3141 u8 packet; 3142 3143 for (queue = 0; queue < rx_queues_count; queue++) { 3144 /* no specific packet type routing specified for the queue */ 3145 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3146 continue; 3147 3148 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3149 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3150 } 3151 } 3152 3153 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3154 { 3155 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3156 priv->rss.enable = false; 3157 return; 3158 } 3159 3160 if (priv->dev->features & NETIF_F_RXHASH) 3161 priv->rss.enable = true; 3162 else 3163 priv->rss.enable = false; 3164 3165 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3166 priv->plat->rx_queues_to_use); 3167 } 3168 3169 /** 3170 * stmmac_mtl_configuration - Configure MTL 3171 * @priv: driver private structure 3172 * Description: It is used for configurring MTL 3173 */ 3174 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3175 { 3176 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3177 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3178 3179 if (tx_queues_count > 1) 3180 stmmac_set_tx_queue_weight(priv); 3181 3182 /* Configure MTL RX algorithms */ 3183 if (rx_queues_count > 1) 3184 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3185 priv->plat->rx_sched_algorithm); 3186 3187 /* Configure MTL TX algorithms */ 3188 if (tx_queues_count > 1) 3189 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3190 priv->plat->tx_sched_algorithm); 3191 3192 /* Configure CBS in AVB TX queues */ 3193 if (tx_queues_count > 1) 3194 stmmac_configure_cbs(priv); 3195 3196 /* Map RX MTL to DMA channels */ 3197 stmmac_rx_queue_dma_chan_map(priv); 3198 3199 /* Enable MAC RX Queues */ 3200 stmmac_mac_enable_rx_queues(priv); 3201 3202 /* Set RX priorities */ 3203 if (rx_queues_count > 1) 3204 stmmac_mac_config_rx_queues_prio(priv); 3205 3206 /* Set TX priorities */ 3207 if (tx_queues_count > 1) 3208 stmmac_mac_config_tx_queues_prio(priv); 3209 3210 /* Set RX routing */ 3211 if (rx_queues_count > 1) 3212 stmmac_mac_config_rx_queues_routing(priv); 3213 3214 /* Receive Side Scaling */ 3215 if (rx_queues_count > 1) 3216 stmmac_mac_config_rss(priv); 3217 } 3218 3219 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3220 { 3221 if (priv->dma_cap.asp) { 3222 netdev_info(priv->dev, "Enabling Safety Features\n"); 3223 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3224 priv->plat->safety_feat_cfg); 3225 } else { 3226 netdev_info(priv->dev, "No Safety Features support found\n"); 3227 } 3228 } 3229 3230 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3231 { 3232 char *name; 3233 3234 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3235 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3236 3237 name = priv->wq_name; 3238 sprintf(name, "%s-fpe", priv->dev->name); 3239 3240 priv->fpe_wq = create_singlethread_workqueue(name); 3241 if (!priv->fpe_wq) { 3242 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3243 3244 return -ENOMEM; 3245 } 3246 netdev_info(priv->dev, "FPE workqueue start"); 3247 3248 return 0; 3249 } 3250 3251 /** 3252 * stmmac_hw_setup - setup mac in a usable state. 3253 * @dev : pointer to the device structure. 3254 * @ptp_register: register PTP if set 3255 * Description: 3256 * this is the main function to setup the HW in a usable state because the 3257 * dma engine is reset, the core registers are configured (e.g. AXI, 3258 * Checksum features, timers). The DMA is ready to start receiving and 3259 * transmitting. 3260 * Return value: 3261 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3262 * file on failure. 3263 */ 3264 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3265 { 3266 struct stmmac_priv *priv = netdev_priv(dev); 3267 u32 rx_cnt = priv->plat->rx_queues_to_use; 3268 u32 tx_cnt = priv->plat->tx_queues_to_use; 3269 bool sph_en; 3270 u32 chan; 3271 int ret; 3272 3273 /* DMA initialization and SW reset */ 3274 ret = stmmac_init_dma_engine(priv); 3275 if (ret < 0) { 3276 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3277 __func__); 3278 return ret; 3279 } 3280 3281 /* Copy the MAC addr into the HW */ 3282 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3283 3284 /* PS and related bits will be programmed according to the speed */ 3285 if (priv->hw->pcs) { 3286 int speed = priv->plat->mac_port_sel_speed; 3287 3288 if ((speed == SPEED_10) || (speed == SPEED_100) || 3289 (speed == SPEED_1000)) { 3290 priv->hw->ps = speed; 3291 } else { 3292 dev_warn(priv->device, "invalid port speed\n"); 3293 priv->hw->ps = 0; 3294 } 3295 } 3296 3297 /* Initialize the MAC Core */ 3298 stmmac_core_init(priv, priv->hw, dev); 3299 3300 /* Initialize MTL*/ 3301 stmmac_mtl_configuration(priv); 3302 3303 /* Initialize Safety Features */ 3304 stmmac_safety_feat_configuration(priv); 3305 3306 ret = stmmac_rx_ipc(priv, priv->hw); 3307 if (!ret) { 3308 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3309 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3310 priv->hw->rx_csum = 0; 3311 } 3312 3313 /* Enable the MAC Rx/Tx */ 3314 stmmac_mac_set(priv, priv->ioaddr, true); 3315 3316 /* Set the HW DMA mode and the COE */ 3317 stmmac_dma_operation_mode(priv); 3318 3319 stmmac_mmc_setup(priv); 3320 3321 if (ptp_register) { 3322 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 3323 if (ret < 0) 3324 netdev_warn(priv->dev, 3325 "failed to enable PTP reference clock: %pe\n", 3326 ERR_PTR(ret)); 3327 } 3328 3329 ret = stmmac_init_ptp(priv); 3330 if (ret == -EOPNOTSUPP) 3331 netdev_info(priv->dev, "PTP not supported by HW\n"); 3332 else if (ret) 3333 netdev_warn(priv->dev, "PTP init failed\n"); 3334 else if (ptp_register) 3335 stmmac_ptp_register(priv); 3336 3337 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3338 3339 /* Convert the timer from msec to usec */ 3340 if (!priv->tx_lpi_timer) 3341 priv->tx_lpi_timer = eee_timer * 1000; 3342 3343 if (priv->use_riwt) { 3344 u32 queue; 3345 3346 for (queue = 0; queue < rx_cnt; queue++) { 3347 if (!priv->rx_riwt[queue]) 3348 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3349 3350 stmmac_rx_watchdog(priv, priv->ioaddr, 3351 priv->rx_riwt[queue], queue); 3352 } 3353 } 3354 3355 if (priv->hw->pcs) 3356 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3357 3358 /* set TX and RX rings length */ 3359 stmmac_set_rings_length(priv); 3360 3361 /* Enable TSO */ 3362 if (priv->tso) { 3363 for (chan = 0; chan < tx_cnt; chan++) { 3364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3365 3366 /* TSO and TBS cannot co-exist */ 3367 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3368 continue; 3369 3370 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3371 } 3372 } 3373 3374 /* Enable Split Header */ 3375 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3376 for (chan = 0; chan < rx_cnt; chan++) 3377 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3378 3379 3380 /* VLAN Tag Insertion */ 3381 if (priv->dma_cap.vlins) 3382 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3383 3384 /* TBS */ 3385 for (chan = 0; chan < tx_cnt; chan++) { 3386 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan]; 3387 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3388 3389 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3390 } 3391 3392 /* Configure real RX and TX queues */ 3393 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3394 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3395 3396 /* Start the ball rolling... */ 3397 stmmac_start_all_dma(priv); 3398 3399 if (priv->dma_cap.fpesel) { 3400 stmmac_fpe_start_wq(priv); 3401 3402 if (priv->plat->fpe_cfg->enable) 3403 stmmac_fpe_handshake(priv, true); 3404 } 3405 3406 return 0; 3407 } 3408 3409 static void stmmac_hw_teardown(struct net_device *dev) 3410 { 3411 struct stmmac_priv *priv = netdev_priv(dev); 3412 3413 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3414 } 3415 3416 static void stmmac_free_irq(struct net_device *dev, 3417 enum request_irq_err irq_err, int irq_idx) 3418 { 3419 struct stmmac_priv *priv = netdev_priv(dev); 3420 int j; 3421 3422 switch (irq_err) { 3423 case REQ_IRQ_ERR_ALL: 3424 irq_idx = priv->plat->tx_queues_to_use; 3425 fallthrough; 3426 case REQ_IRQ_ERR_TX: 3427 for (j = irq_idx - 1; j >= 0; j--) { 3428 if (priv->tx_irq[j] > 0) { 3429 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3430 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]); 3431 } 3432 } 3433 irq_idx = priv->plat->rx_queues_to_use; 3434 fallthrough; 3435 case REQ_IRQ_ERR_RX: 3436 for (j = irq_idx - 1; j >= 0; j--) { 3437 if (priv->rx_irq[j] > 0) { 3438 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3439 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]); 3440 } 3441 } 3442 3443 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3444 free_irq(priv->sfty_ue_irq, dev); 3445 fallthrough; 3446 case REQ_IRQ_ERR_SFTY_UE: 3447 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3448 free_irq(priv->sfty_ce_irq, dev); 3449 fallthrough; 3450 case REQ_IRQ_ERR_SFTY_CE: 3451 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3452 free_irq(priv->lpi_irq, dev); 3453 fallthrough; 3454 case REQ_IRQ_ERR_LPI: 3455 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3456 free_irq(priv->wol_irq, dev); 3457 fallthrough; 3458 case REQ_IRQ_ERR_WOL: 3459 free_irq(dev->irq, dev); 3460 fallthrough; 3461 case REQ_IRQ_ERR_MAC: 3462 case REQ_IRQ_ERR_NO: 3463 /* If MAC IRQ request error, no more IRQ to free */ 3464 break; 3465 } 3466 } 3467 3468 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3469 { 3470 struct stmmac_priv *priv = netdev_priv(dev); 3471 enum request_irq_err irq_err; 3472 cpumask_t cpu_mask; 3473 int irq_idx = 0; 3474 char *int_name; 3475 int ret; 3476 int i; 3477 3478 /* For common interrupt */ 3479 int_name = priv->int_name_mac; 3480 sprintf(int_name, "%s:%s", dev->name, "mac"); 3481 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3482 0, int_name, dev); 3483 if (unlikely(ret < 0)) { 3484 netdev_err(priv->dev, 3485 "%s: alloc mac MSI %d (error: %d)\n", 3486 __func__, dev->irq, ret); 3487 irq_err = REQ_IRQ_ERR_MAC; 3488 goto irq_error; 3489 } 3490 3491 /* Request the Wake IRQ in case of another line 3492 * is used for WoL 3493 */ 3494 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3495 int_name = priv->int_name_wol; 3496 sprintf(int_name, "%s:%s", dev->name, "wol"); 3497 ret = request_irq(priv->wol_irq, 3498 stmmac_mac_interrupt, 3499 0, int_name, dev); 3500 if (unlikely(ret < 0)) { 3501 netdev_err(priv->dev, 3502 "%s: alloc wol MSI %d (error: %d)\n", 3503 __func__, priv->wol_irq, ret); 3504 irq_err = REQ_IRQ_ERR_WOL; 3505 goto irq_error; 3506 } 3507 } 3508 3509 /* Request the LPI IRQ in case of another line 3510 * is used for LPI 3511 */ 3512 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3513 int_name = priv->int_name_lpi; 3514 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3515 ret = request_irq(priv->lpi_irq, 3516 stmmac_mac_interrupt, 3517 0, int_name, dev); 3518 if (unlikely(ret < 0)) { 3519 netdev_err(priv->dev, 3520 "%s: alloc lpi MSI %d (error: %d)\n", 3521 __func__, priv->lpi_irq, ret); 3522 irq_err = REQ_IRQ_ERR_LPI; 3523 goto irq_error; 3524 } 3525 } 3526 3527 /* Request the Safety Feature Correctible Error line in 3528 * case of another line is used 3529 */ 3530 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3531 int_name = priv->int_name_sfty_ce; 3532 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3533 ret = request_irq(priv->sfty_ce_irq, 3534 stmmac_safety_interrupt, 3535 0, int_name, dev); 3536 if (unlikely(ret < 0)) { 3537 netdev_err(priv->dev, 3538 "%s: alloc sfty ce MSI %d (error: %d)\n", 3539 __func__, priv->sfty_ce_irq, ret); 3540 irq_err = REQ_IRQ_ERR_SFTY_CE; 3541 goto irq_error; 3542 } 3543 } 3544 3545 /* Request the Safety Feature Uncorrectible Error line in 3546 * case of another line is used 3547 */ 3548 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3549 int_name = priv->int_name_sfty_ue; 3550 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3551 ret = request_irq(priv->sfty_ue_irq, 3552 stmmac_safety_interrupt, 3553 0, int_name, dev); 3554 if (unlikely(ret < 0)) { 3555 netdev_err(priv->dev, 3556 "%s: alloc sfty ue MSI %d (error: %d)\n", 3557 __func__, priv->sfty_ue_irq, ret); 3558 irq_err = REQ_IRQ_ERR_SFTY_UE; 3559 goto irq_error; 3560 } 3561 } 3562 3563 /* Request Rx MSI irq */ 3564 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3565 if (i >= MTL_MAX_RX_QUEUES) 3566 break; 3567 if (priv->rx_irq[i] == 0) 3568 continue; 3569 3570 int_name = priv->int_name_rx_irq[i]; 3571 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3572 ret = request_irq(priv->rx_irq[i], 3573 stmmac_msi_intr_rx, 3574 0, int_name, &priv->dma_conf.rx_queue[i]); 3575 if (unlikely(ret < 0)) { 3576 netdev_err(priv->dev, 3577 "%s: alloc rx-%d MSI %d (error: %d)\n", 3578 __func__, i, priv->rx_irq[i], ret); 3579 irq_err = REQ_IRQ_ERR_RX; 3580 irq_idx = i; 3581 goto irq_error; 3582 } 3583 cpumask_clear(&cpu_mask); 3584 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3585 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3586 } 3587 3588 /* Request Tx MSI irq */ 3589 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3590 if (i >= MTL_MAX_TX_QUEUES) 3591 break; 3592 if (priv->tx_irq[i] == 0) 3593 continue; 3594 3595 int_name = priv->int_name_tx_irq[i]; 3596 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3597 ret = request_irq(priv->tx_irq[i], 3598 stmmac_msi_intr_tx, 3599 0, int_name, &priv->dma_conf.tx_queue[i]); 3600 if (unlikely(ret < 0)) { 3601 netdev_err(priv->dev, 3602 "%s: alloc tx-%d MSI %d (error: %d)\n", 3603 __func__, i, priv->tx_irq[i], ret); 3604 irq_err = REQ_IRQ_ERR_TX; 3605 irq_idx = i; 3606 goto irq_error; 3607 } 3608 cpumask_clear(&cpu_mask); 3609 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3610 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3611 } 3612 3613 return 0; 3614 3615 irq_error: 3616 stmmac_free_irq(dev, irq_err, irq_idx); 3617 return ret; 3618 } 3619 3620 static int stmmac_request_irq_single(struct net_device *dev) 3621 { 3622 struct stmmac_priv *priv = netdev_priv(dev); 3623 enum request_irq_err irq_err; 3624 int ret; 3625 3626 ret = request_irq(dev->irq, stmmac_interrupt, 3627 IRQF_SHARED, dev->name, dev); 3628 if (unlikely(ret < 0)) { 3629 netdev_err(priv->dev, 3630 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3631 __func__, dev->irq, ret); 3632 irq_err = REQ_IRQ_ERR_MAC; 3633 goto irq_error; 3634 } 3635 3636 /* Request the Wake IRQ in case of another line 3637 * is used for WoL 3638 */ 3639 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3640 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3641 IRQF_SHARED, dev->name, dev); 3642 if (unlikely(ret < 0)) { 3643 netdev_err(priv->dev, 3644 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3645 __func__, priv->wol_irq, ret); 3646 irq_err = REQ_IRQ_ERR_WOL; 3647 goto irq_error; 3648 } 3649 } 3650 3651 /* Request the IRQ lines */ 3652 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3653 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3654 IRQF_SHARED, dev->name, dev); 3655 if (unlikely(ret < 0)) { 3656 netdev_err(priv->dev, 3657 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3658 __func__, priv->lpi_irq, ret); 3659 irq_err = REQ_IRQ_ERR_LPI; 3660 goto irq_error; 3661 } 3662 } 3663 3664 return 0; 3665 3666 irq_error: 3667 stmmac_free_irq(dev, irq_err, 0); 3668 return ret; 3669 } 3670 3671 static int stmmac_request_irq(struct net_device *dev) 3672 { 3673 struct stmmac_priv *priv = netdev_priv(dev); 3674 int ret; 3675 3676 /* Request the IRQ lines */ 3677 if (priv->plat->multi_msi_en) 3678 ret = stmmac_request_irq_multi_msi(dev); 3679 else 3680 ret = stmmac_request_irq_single(dev); 3681 3682 return ret; 3683 } 3684 3685 /** 3686 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue 3687 * @priv: driver private structure 3688 * @mtu: MTU to setup the dma queue and buf with 3689 * Description: Allocate and generate a dma_conf based on the provided MTU. 3690 * Allocate the Tx/Rx DMA queue and init them. 3691 * Return value: 3692 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure. 3693 */ 3694 static struct stmmac_dma_conf * 3695 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu) 3696 { 3697 struct stmmac_dma_conf *dma_conf; 3698 int chan, bfsize, ret; 3699 3700 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL); 3701 if (!dma_conf) { 3702 netdev_err(priv->dev, "%s: DMA conf allocation failed\n", 3703 __func__); 3704 return ERR_PTR(-ENOMEM); 3705 } 3706 3707 bfsize = stmmac_set_16kib_bfsize(priv, mtu); 3708 if (bfsize < 0) 3709 bfsize = 0; 3710 3711 if (bfsize < BUF_SIZE_16KiB) 3712 bfsize = stmmac_set_bfsize(mtu, 0); 3713 3714 dma_conf->dma_buf_sz = bfsize; 3715 /* Chose the tx/rx size from the already defined one in the 3716 * priv struct. (if defined) 3717 */ 3718 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size; 3719 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size; 3720 3721 if (!dma_conf->dma_tx_size) 3722 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3723 if (!dma_conf->dma_rx_size) 3724 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3725 3726 /* Earlier check for TBS */ 3727 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3728 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan]; 3729 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3730 3731 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3732 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3733 } 3734 3735 ret = alloc_dma_desc_resources(priv, dma_conf); 3736 if (ret < 0) { 3737 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3738 __func__); 3739 goto alloc_error; 3740 } 3741 3742 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL); 3743 if (ret < 0) { 3744 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3745 __func__); 3746 goto init_error; 3747 } 3748 3749 return dma_conf; 3750 3751 init_error: 3752 free_dma_desc_resources(priv, dma_conf); 3753 alloc_error: 3754 kfree(dma_conf); 3755 return ERR_PTR(ret); 3756 } 3757 3758 /** 3759 * __stmmac_open - open entry point of the driver 3760 * @dev : pointer to the device structure. 3761 * @dma_conf : structure to take the dma data 3762 * Description: 3763 * This function is the open entry point of the driver. 3764 * Return value: 3765 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3766 * file on failure. 3767 */ 3768 static int __stmmac_open(struct net_device *dev, 3769 struct stmmac_dma_conf *dma_conf) 3770 { 3771 struct stmmac_priv *priv = netdev_priv(dev); 3772 int mode = priv->plat->phy_interface; 3773 u32 chan; 3774 int ret; 3775 3776 ret = pm_runtime_resume_and_get(priv->device); 3777 if (ret < 0) 3778 return ret; 3779 3780 if (priv->hw->pcs != STMMAC_PCS_TBI && 3781 priv->hw->pcs != STMMAC_PCS_RTBI && 3782 (!priv->hw->xpcs || 3783 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3784 ret = stmmac_init_phy(dev); 3785 if (ret) { 3786 netdev_err(priv->dev, 3787 "%s: Cannot attach to PHY (error: %d)\n", 3788 __func__, ret); 3789 goto init_phy_error; 3790 } 3791 } 3792 3793 /* Extra statistics */ 3794 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3795 priv->xstats.threshold = tc; 3796 3797 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3798 3799 buf_sz = dma_conf->dma_buf_sz; 3800 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf)); 3801 3802 stmmac_reset_queues_param(priv); 3803 3804 ret = stmmac_hw_setup(dev, true); 3805 if (ret < 0) { 3806 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3807 goto init_error; 3808 } 3809 3810 stmmac_init_coalesce(priv); 3811 3812 phylink_start(priv->phylink); 3813 /* We may have called phylink_speed_down before */ 3814 phylink_speed_up(priv->phylink); 3815 3816 ret = stmmac_request_irq(dev); 3817 if (ret) 3818 goto irq_error; 3819 3820 stmmac_enable_all_queues(priv); 3821 netif_tx_start_all_queues(priv->dev); 3822 stmmac_enable_all_dma_irq(priv); 3823 3824 return 0; 3825 3826 irq_error: 3827 phylink_stop(priv->phylink); 3828 3829 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3830 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3831 3832 stmmac_hw_teardown(dev); 3833 init_error: 3834 free_dma_desc_resources(priv, &priv->dma_conf); 3835 phylink_disconnect_phy(priv->phylink); 3836 init_phy_error: 3837 pm_runtime_put(priv->device); 3838 return ret; 3839 } 3840 3841 static int stmmac_open(struct net_device *dev) 3842 { 3843 struct stmmac_priv *priv = netdev_priv(dev); 3844 struct stmmac_dma_conf *dma_conf; 3845 int ret; 3846 3847 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu); 3848 if (IS_ERR(dma_conf)) 3849 return PTR_ERR(dma_conf); 3850 3851 ret = __stmmac_open(dev, dma_conf); 3852 kfree(dma_conf); 3853 return ret; 3854 } 3855 3856 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3857 { 3858 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3859 3860 if (priv->fpe_wq) 3861 destroy_workqueue(priv->fpe_wq); 3862 3863 netdev_info(priv->dev, "FPE workqueue stop"); 3864 } 3865 3866 /** 3867 * stmmac_release - close entry point of the driver 3868 * @dev : device pointer. 3869 * Description: 3870 * This is the stop entry point of the driver. 3871 */ 3872 static int stmmac_release(struct net_device *dev) 3873 { 3874 struct stmmac_priv *priv = netdev_priv(dev); 3875 u32 chan; 3876 3877 if (device_may_wakeup(priv->device)) 3878 phylink_speed_down(priv->phylink, false); 3879 /* Stop and disconnect the PHY */ 3880 phylink_stop(priv->phylink); 3881 phylink_disconnect_phy(priv->phylink); 3882 3883 stmmac_disable_all_queues(priv); 3884 3885 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3886 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 3887 3888 netif_tx_disable(dev); 3889 3890 /* Free the IRQ lines */ 3891 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3892 3893 if (priv->eee_enabled) { 3894 priv->tx_path_in_lpi_mode = false; 3895 del_timer_sync(&priv->eee_ctrl_timer); 3896 } 3897 3898 /* Stop TX/RX DMA and clear the descriptors */ 3899 stmmac_stop_all_dma(priv); 3900 3901 /* Release and free the Rx/Tx resources */ 3902 free_dma_desc_resources(priv, &priv->dma_conf); 3903 3904 /* Disable the MAC Rx/Tx */ 3905 stmmac_mac_set(priv, priv->ioaddr, false); 3906 3907 netif_carrier_off(dev); 3908 3909 stmmac_release_ptp(priv); 3910 3911 pm_runtime_put(priv->device); 3912 3913 if (priv->dma_cap.fpesel) 3914 stmmac_fpe_stop_wq(priv); 3915 3916 return 0; 3917 } 3918 3919 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3920 struct stmmac_tx_queue *tx_q) 3921 { 3922 u16 tag = 0x0, inner_tag = 0x0; 3923 u32 inner_type = 0x0; 3924 struct dma_desc *p; 3925 3926 if (!priv->dma_cap.vlins) 3927 return false; 3928 if (!skb_vlan_tag_present(skb)) 3929 return false; 3930 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3931 inner_tag = skb_vlan_tag_get(skb); 3932 inner_type = STMMAC_VLAN_INSERT; 3933 } 3934 3935 tag = skb_vlan_tag_get(skb); 3936 3937 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3938 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3939 else 3940 p = &tx_q->dma_tx[tx_q->cur_tx]; 3941 3942 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3943 return false; 3944 3945 stmmac_set_tx_owner(priv, p); 3946 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 3947 return true; 3948 } 3949 3950 /** 3951 * stmmac_tso_allocator - close entry point of the driver 3952 * @priv: driver private structure 3953 * @des: buffer start address 3954 * @total_len: total length to fill in descriptors 3955 * @last_segment: condition for the last descriptor 3956 * @queue: TX queue index 3957 * Description: 3958 * This function fills descriptor and request new descriptors according to 3959 * buffer length to fill 3960 */ 3961 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3962 int total_len, bool last_segment, u32 queue) 3963 { 3964 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 3965 struct dma_desc *desc; 3966 u32 buff_size; 3967 int tmp_len; 3968 3969 tmp_len = total_len; 3970 3971 while (tmp_len > 0) { 3972 dma_addr_t curr_addr; 3973 3974 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3975 priv->dma_conf.dma_tx_size); 3976 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3977 3978 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3979 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3980 else 3981 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3982 3983 curr_addr = des + (total_len - tmp_len); 3984 if (priv->dma_cap.addr64 <= 32) 3985 desc->des0 = cpu_to_le32(curr_addr); 3986 else 3987 stmmac_set_desc_addr(priv, desc, curr_addr); 3988 3989 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3990 TSO_MAX_BUFF_SIZE : tmp_len; 3991 3992 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3993 0, 1, 3994 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3995 0, 0); 3996 3997 tmp_len -= TSO_MAX_BUFF_SIZE; 3998 } 3999 } 4000 4001 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 4002 { 4003 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4004 int desc_size; 4005 4006 if (likely(priv->extend_desc)) 4007 desc_size = sizeof(struct dma_extended_desc); 4008 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4009 desc_size = sizeof(struct dma_edesc); 4010 else 4011 desc_size = sizeof(struct dma_desc); 4012 4013 /* The own bit must be the latest setting done when prepare the 4014 * descriptor and then barrier is needed to make sure that 4015 * all is coherent before granting the DMA engine. 4016 */ 4017 wmb(); 4018 4019 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 4020 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 4021 } 4022 4023 /** 4024 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 4025 * @skb : the socket buffer 4026 * @dev : device pointer 4027 * Description: this is the transmit function that is called on TSO frames 4028 * (support available on GMAC4 and newer chips). 4029 * Diagram below show the ring programming in case of TSO frames: 4030 * 4031 * First Descriptor 4032 * -------- 4033 * | DES0 |---> buffer1 = L2/L3/L4 header 4034 * | DES1 |---> TCP Payload (can continue on next descr...) 4035 * | DES2 |---> buffer 1 and 2 len 4036 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 4037 * -------- 4038 * | 4039 * ... 4040 * | 4041 * -------- 4042 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 4043 * | DES1 | --| 4044 * | DES2 | --> buffer 1 and 2 len 4045 * | DES3 | 4046 * -------- 4047 * 4048 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 4049 */ 4050 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 4051 { 4052 struct dma_desc *desc, *first, *mss_desc = NULL; 4053 struct stmmac_priv *priv = netdev_priv(dev); 4054 int nfrags = skb_shinfo(skb)->nr_frags; 4055 u32 queue = skb_get_queue_mapping(skb); 4056 unsigned int first_entry, tx_packets; 4057 int tmp_pay_len = 0, first_tx; 4058 struct stmmac_tx_queue *tx_q; 4059 bool has_vlan, set_ic; 4060 u8 proto_hdr_len, hdr; 4061 u32 pay_len, mss; 4062 dma_addr_t des; 4063 int i; 4064 4065 tx_q = &priv->dma_conf.tx_queue[queue]; 4066 first_tx = tx_q->cur_tx; 4067 4068 /* Compute header lengths */ 4069 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 4070 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 4071 hdr = sizeof(struct udphdr); 4072 } else { 4073 proto_hdr_len = skb_tcp_all_headers(skb); 4074 hdr = tcp_hdrlen(skb); 4075 } 4076 4077 /* Desc availability based on threshold should be enough safe */ 4078 if (unlikely(stmmac_tx_avail(priv, queue) < 4079 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 4080 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4081 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4082 queue)); 4083 /* This is a hard error, log it. */ 4084 netdev_err(priv->dev, 4085 "%s: Tx Ring full when queue awake\n", 4086 __func__); 4087 } 4088 return NETDEV_TX_BUSY; 4089 } 4090 4091 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 4092 4093 mss = skb_shinfo(skb)->gso_size; 4094 4095 /* set new MSS value if needed */ 4096 if (mss != tx_q->mss) { 4097 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4098 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4099 else 4100 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 4101 4102 stmmac_set_mss(priv, mss_desc, mss); 4103 tx_q->mss = mss; 4104 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 4105 priv->dma_conf.dma_tx_size); 4106 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 4107 } 4108 4109 if (netif_msg_tx_queued(priv)) { 4110 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4111 __func__, hdr, proto_hdr_len, pay_len, mss); 4112 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4113 skb->data_len); 4114 } 4115 4116 /* Check if VLAN can be inserted by HW */ 4117 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4118 4119 first_entry = tx_q->cur_tx; 4120 WARN_ON(tx_q->tx_skbuff[first_entry]); 4121 4122 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4123 desc = &tx_q->dma_entx[first_entry].basic; 4124 else 4125 desc = &tx_q->dma_tx[first_entry]; 4126 first = desc; 4127 4128 if (has_vlan) 4129 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4130 4131 /* first descriptor: fill Headers on Buf1 */ 4132 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4133 DMA_TO_DEVICE); 4134 if (dma_mapping_error(priv->device, des)) 4135 goto dma_map_err; 4136 4137 tx_q->tx_skbuff_dma[first_entry].buf = des; 4138 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4139 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4140 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4141 4142 if (priv->dma_cap.addr64 <= 32) { 4143 first->des0 = cpu_to_le32(des); 4144 4145 /* Fill start of payload in buff2 of first descriptor */ 4146 if (pay_len) 4147 first->des1 = cpu_to_le32(des + proto_hdr_len); 4148 4149 /* If needed take extra descriptors to fill the remaining payload */ 4150 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4151 } else { 4152 stmmac_set_desc_addr(priv, first, des); 4153 tmp_pay_len = pay_len; 4154 des += proto_hdr_len; 4155 pay_len = 0; 4156 } 4157 4158 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4159 4160 /* Prepare fragments */ 4161 for (i = 0; i < nfrags; i++) { 4162 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4163 4164 des = skb_frag_dma_map(priv->device, frag, 0, 4165 skb_frag_size(frag), 4166 DMA_TO_DEVICE); 4167 if (dma_mapping_error(priv->device, des)) 4168 goto dma_map_err; 4169 4170 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4171 (i == nfrags - 1), queue); 4172 4173 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4174 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4175 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4176 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4177 } 4178 4179 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4180 4181 /* Only the last descriptor gets to point to the skb. */ 4182 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4183 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4184 4185 /* Manage tx mitigation */ 4186 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4187 tx_q->tx_count_frames += tx_packets; 4188 4189 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4190 set_ic = true; 4191 else if (!priv->tx_coal_frames[queue]) 4192 set_ic = false; 4193 else if (tx_packets > priv->tx_coal_frames[queue]) 4194 set_ic = true; 4195 else if ((tx_q->tx_count_frames % 4196 priv->tx_coal_frames[queue]) < tx_packets) 4197 set_ic = true; 4198 else 4199 set_ic = false; 4200 4201 if (set_ic) { 4202 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4203 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4204 else 4205 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4206 4207 tx_q->tx_count_frames = 0; 4208 stmmac_set_tx_ic(priv, desc); 4209 priv->xstats.tx_set_ic_bit++; 4210 } 4211 4212 /* We've used all descriptors we need for this skb, however, 4213 * advance cur_tx so that it references a fresh descriptor. 4214 * ndo_start_xmit will fill this descriptor the next time it's 4215 * called and stmmac_tx_clean may clean up to this descriptor. 4216 */ 4217 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size); 4218 4219 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4220 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4221 __func__); 4222 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4223 } 4224 4225 dev->stats.tx_bytes += skb->len; 4226 priv->xstats.tx_tso_frames++; 4227 priv->xstats.tx_tso_nfrags += nfrags; 4228 4229 if (priv->sarc_type) 4230 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4231 4232 skb_tx_timestamp(skb); 4233 4234 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4235 priv->hwts_tx_en)) { 4236 /* declare that device is doing timestamping */ 4237 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4238 stmmac_enable_tx_timestamp(priv, first); 4239 } 4240 4241 /* Complete the first descriptor before granting the DMA */ 4242 stmmac_prepare_tso_tx_desc(priv, first, 1, 4243 proto_hdr_len, 4244 pay_len, 4245 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4246 hdr / 4, (skb->len - proto_hdr_len)); 4247 4248 /* If context desc is used to change MSS */ 4249 if (mss_desc) { 4250 /* Make sure that first descriptor has been completely 4251 * written, including its own bit. This is because MSS is 4252 * actually before first descriptor, so we need to make 4253 * sure that MSS's own bit is the last thing written. 4254 */ 4255 dma_wmb(); 4256 stmmac_set_tx_owner(priv, mss_desc); 4257 } 4258 4259 if (netif_msg_pktdata(priv)) { 4260 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4261 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4262 tx_q->cur_tx, first, nfrags); 4263 pr_info(">>> frame to be transmitted: "); 4264 print_pkt(skb->data, skb_headlen(skb)); 4265 } 4266 4267 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4268 4269 stmmac_flush_tx_descriptors(priv, queue); 4270 stmmac_tx_timer_arm(priv, queue); 4271 4272 return NETDEV_TX_OK; 4273 4274 dma_map_err: 4275 dev_err(priv->device, "Tx dma map failed\n"); 4276 dev_kfree_skb(skb); 4277 priv->dev->stats.tx_dropped++; 4278 return NETDEV_TX_OK; 4279 } 4280 4281 /** 4282 * stmmac_xmit - Tx entry point of the driver 4283 * @skb : the socket buffer 4284 * @dev : device pointer 4285 * Description : this is the tx entry point of the driver. 4286 * It programs the chain or the ring and supports oversized frames 4287 * and SG feature. 4288 */ 4289 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4290 { 4291 unsigned int first_entry, tx_packets, enh_desc; 4292 struct stmmac_priv *priv = netdev_priv(dev); 4293 unsigned int nopaged_len = skb_headlen(skb); 4294 int i, csum_insertion = 0, is_jumbo = 0; 4295 u32 queue = skb_get_queue_mapping(skb); 4296 int nfrags = skb_shinfo(skb)->nr_frags; 4297 int gso = skb_shinfo(skb)->gso_type; 4298 struct dma_edesc *tbs_desc = NULL; 4299 struct dma_desc *desc, *first; 4300 struct stmmac_tx_queue *tx_q; 4301 bool has_vlan, set_ic; 4302 int entry, first_tx; 4303 dma_addr_t des; 4304 4305 tx_q = &priv->dma_conf.tx_queue[queue]; 4306 first_tx = tx_q->cur_tx; 4307 4308 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4309 stmmac_disable_eee_mode(priv); 4310 4311 /* Manage oversized TCP frames for GMAC4 device */ 4312 if (skb_is_gso(skb) && priv->tso) { 4313 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4314 return stmmac_tso_xmit(skb, dev); 4315 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4316 return stmmac_tso_xmit(skb, dev); 4317 } 4318 4319 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4320 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4321 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4322 queue)); 4323 /* This is a hard error, log it. */ 4324 netdev_err(priv->dev, 4325 "%s: Tx Ring full when queue awake\n", 4326 __func__); 4327 } 4328 return NETDEV_TX_BUSY; 4329 } 4330 4331 /* Check if VLAN can be inserted by HW */ 4332 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4333 4334 entry = tx_q->cur_tx; 4335 first_entry = entry; 4336 WARN_ON(tx_q->tx_skbuff[first_entry]); 4337 4338 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4339 4340 if (likely(priv->extend_desc)) 4341 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4342 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4343 desc = &tx_q->dma_entx[entry].basic; 4344 else 4345 desc = tx_q->dma_tx + entry; 4346 4347 first = desc; 4348 4349 if (has_vlan) 4350 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4351 4352 enh_desc = priv->plat->enh_desc; 4353 /* To program the descriptors according to the size of the frame */ 4354 if (enh_desc) 4355 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4356 4357 if (unlikely(is_jumbo)) { 4358 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4359 if (unlikely(entry < 0) && (entry != -EINVAL)) 4360 goto dma_map_err; 4361 } 4362 4363 for (i = 0; i < nfrags; i++) { 4364 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4365 int len = skb_frag_size(frag); 4366 bool last_segment = (i == (nfrags - 1)); 4367 4368 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4369 WARN_ON(tx_q->tx_skbuff[entry]); 4370 4371 if (likely(priv->extend_desc)) 4372 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4373 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4374 desc = &tx_q->dma_entx[entry].basic; 4375 else 4376 desc = tx_q->dma_tx + entry; 4377 4378 des = skb_frag_dma_map(priv->device, frag, 0, len, 4379 DMA_TO_DEVICE); 4380 if (dma_mapping_error(priv->device, des)) 4381 goto dma_map_err; /* should reuse desc w/o issues */ 4382 4383 tx_q->tx_skbuff_dma[entry].buf = des; 4384 4385 stmmac_set_desc_addr(priv, desc, des); 4386 4387 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4388 tx_q->tx_skbuff_dma[entry].len = len; 4389 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4390 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4391 4392 /* Prepare the descriptor and set the own bit too */ 4393 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4394 priv->mode, 1, last_segment, skb->len); 4395 } 4396 4397 /* Only the last descriptor gets to point to the skb. */ 4398 tx_q->tx_skbuff[entry] = skb; 4399 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4400 4401 /* According to the coalesce parameter the IC bit for the latest 4402 * segment is reset and the timer re-started to clean the tx status. 4403 * This approach takes care about the fragments: desc is the first 4404 * element in case of no SG. 4405 */ 4406 tx_packets = (entry + 1) - first_tx; 4407 tx_q->tx_count_frames += tx_packets; 4408 4409 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4410 set_ic = true; 4411 else if (!priv->tx_coal_frames[queue]) 4412 set_ic = false; 4413 else if (tx_packets > priv->tx_coal_frames[queue]) 4414 set_ic = true; 4415 else if ((tx_q->tx_count_frames % 4416 priv->tx_coal_frames[queue]) < tx_packets) 4417 set_ic = true; 4418 else 4419 set_ic = false; 4420 4421 if (set_ic) { 4422 if (likely(priv->extend_desc)) 4423 desc = &tx_q->dma_etx[entry].basic; 4424 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4425 desc = &tx_q->dma_entx[entry].basic; 4426 else 4427 desc = &tx_q->dma_tx[entry]; 4428 4429 tx_q->tx_count_frames = 0; 4430 stmmac_set_tx_ic(priv, desc); 4431 priv->xstats.tx_set_ic_bit++; 4432 } 4433 4434 /* We've used all descriptors we need for this skb, however, 4435 * advance cur_tx so that it references a fresh descriptor. 4436 * ndo_start_xmit will fill this descriptor the next time it's 4437 * called and stmmac_tx_clean may clean up to this descriptor. 4438 */ 4439 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4440 tx_q->cur_tx = entry; 4441 4442 if (netif_msg_pktdata(priv)) { 4443 netdev_dbg(priv->dev, 4444 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4445 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4446 entry, first, nfrags); 4447 4448 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4449 print_pkt(skb->data, skb->len); 4450 } 4451 4452 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4453 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4454 __func__); 4455 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4456 } 4457 4458 dev->stats.tx_bytes += skb->len; 4459 4460 if (priv->sarc_type) 4461 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4462 4463 skb_tx_timestamp(skb); 4464 4465 /* Ready to fill the first descriptor and set the OWN bit w/o any 4466 * problems because all the descriptors are actually ready to be 4467 * passed to the DMA engine. 4468 */ 4469 if (likely(!is_jumbo)) { 4470 bool last_segment = (nfrags == 0); 4471 4472 des = dma_map_single(priv->device, skb->data, 4473 nopaged_len, DMA_TO_DEVICE); 4474 if (dma_mapping_error(priv->device, des)) 4475 goto dma_map_err; 4476 4477 tx_q->tx_skbuff_dma[first_entry].buf = des; 4478 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4479 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4480 4481 stmmac_set_desc_addr(priv, first, des); 4482 4483 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4484 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4485 4486 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4487 priv->hwts_tx_en)) { 4488 /* declare that device is doing timestamping */ 4489 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4490 stmmac_enable_tx_timestamp(priv, first); 4491 } 4492 4493 /* Prepare the first descriptor setting the OWN bit too */ 4494 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4495 csum_insertion, priv->mode, 0, last_segment, 4496 skb->len); 4497 } 4498 4499 if (tx_q->tbs & STMMAC_TBS_EN) { 4500 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4501 4502 tbs_desc = &tx_q->dma_entx[first_entry]; 4503 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4504 } 4505 4506 stmmac_set_tx_owner(priv, first); 4507 4508 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4509 4510 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4511 4512 stmmac_flush_tx_descriptors(priv, queue); 4513 stmmac_tx_timer_arm(priv, queue); 4514 4515 return NETDEV_TX_OK; 4516 4517 dma_map_err: 4518 netdev_err(priv->dev, "Tx DMA map failed\n"); 4519 dev_kfree_skb(skb); 4520 priv->dev->stats.tx_dropped++; 4521 return NETDEV_TX_OK; 4522 } 4523 4524 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4525 { 4526 struct vlan_ethhdr *veth; 4527 __be16 vlan_proto; 4528 u16 vlanid; 4529 4530 veth = (struct vlan_ethhdr *)skb->data; 4531 vlan_proto = veth->h_vlan_proto; 4532 4533 if ((vlan_proto == htons(ETH_P_8021Q) && 4534 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4535 (vlan_proto == htons(ETH_P_8021AD) && 4536 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4537 /* pop the vlan tag */ 4538 vlanid = ntohs(veth->h_vlan_TCI); 4539 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4540 skb_pull(skb, VLAN_HLEN); 4541 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4542 } 4543 } 4544 4545 /** 4546 * stmmac_rx_refill - refill used skb preallocated buffers 4547 * @priv: driver private structure 4548 * @queue: RX queue index 4549 * Description : this is to reallocate the skb for the reception process 4550 * that is based on zero-copy. 4551 */ 4552 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4553 { 4554 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4555 int dirty = stmmac_rx_dirty(priv, queue); 4556 unsigned int entry = rx_q->dirty_rx; 4557 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4558 4559 if (priv->dma_cap.addr64 <= 32) 4560 gfp |= GFP_DMA32; 4561 4562 while (dirty-- > 0) { 4563 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4564 struct dma_desc *p; 4565 bool use_rx_wd; 4566 4567 if (priv->extend_desc) 4568 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4569 else 4570 p = rx_q->dma_rx + entry; 4571 4572 if (!buf->page) { 4573 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4574 if (!buf->page) 4575 break; 4576 } 4577 4578 if (priv->sph && !buf->sec_page) { 4579 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4580 if (!buf->sec_page) 4581 break; 4582 4583 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4584 } 4585 4586 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4587 4588 stmmac_set_desc_addr(priv, p, buf->addr); 4589 if (priv->sph) 4590 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4591 else 4592 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4593 stmmac_refill_desc3(priv, rx_q, p); 4594 4595 rx_q->rx_count_frames++; 4596 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4597 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4598 rx_q->rx_count_frames = 0; 4599 4600 use_rx_wd = !priv->rx_coal_frames[queue]; 4601 use_rx_wd |= rx_q->rx_count_frames > 0; 4602 if (!priv->use_riwt) 4603 use_rx_wd = false; 4604 4605 dma_wmb(); 4606 stmmac_set_rx_owner(priv, p, use_rx_wd); 4607 4608 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4609 } 4610 rx_q->dirty_rx = entry; 4611 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4612 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4613 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4614 } 4615 4616 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4617 struct dma_desc *p, 4618 int status, unsigned int len) 4619 { 4620 unsigned int plen = 0, hlen = 0; 4621 int coe = priv->hw->rx_csum; 4622 4623 /* Not first descriptor, buffer is always zero */ 4624 if (priv->sph && len) 4625 return 0; 4626 4627 /* First descriptor, get split header length */ 4628 stmmac_get_rx_header_len(priv, p, &hlen); 4629 if (priv->sph && hlen) { 4630 priv->xstats.rx_split_hdr_pkt_n++; 4631 return hlen; 4632 } 4633 4634 /* First descriptor, not last descriptor and not split header */ 4635 if (status & rx_not_ls) 4636 return priv->dma_conf.dma_buf_sz; 4637 4638 plen = stmmac_get_rx_frame_len(priv, p, coe); 4639 4640 /* First descriptor and last descriptor and not split header */ 4641 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen); 4642 } 4643 4644 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4645 struct dma_desc *p, 4646 int status, unsigned int len) 4647 { 4648 int coe = priv->hw->rx_csum; 4649 unsigned int plen = 0; 4650 4651 /* Not split header, buffer is not available */ 4652 if (!priv->sph) 4653 return 0; 4654 4655 /* Not last descriptor */ 4656 if (status & rx_not_ls) 4657 return priv->dma_conf.dma_buf_sz; 4658 4659 plen = stmmac_get_rx_frame_len(priv, p, coe); 4660 4661 /* Last descriptor */ 4662 return plen - len; 4663 } 4664 4665 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4666 struct xdp_frame *xdpf, bool dma_map) 4667 { 4668 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 4669 unsigned int entry = tx_q->cur_tx; 4670 struct dma_desc *tx_desc; 4671 dma_addr_t dma_addr; 4672 bool set_ic; 4673 4674 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4675 return STMMAC_XDP_CONSUMED; 4676 4677 if (likely(priv->extend_desc)) 4678 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4679 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4680 tx_desc = &tx_q->dma_entx[entry].basic; 4681 else 4682 tx_desc = tx_q->dma_tx + entry; 4683 4684 if (dma_map) { 4685 dma_addr = dma_map_single(priv->device, xdpf->data, 4686 xdpf->len, DMA_TO_DEVICE); 4687 if (dma_mapping_error(priv->device, dma_addr)) 4688 return STMMAC_XDP_CONSUMED; 4689 4690 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4691 } else { 4692 struct page *page = virt_to_page(xdpf->data); 4693 4694 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4695 xdpf->headroom; 4696 dma_sync_single_for_device(priv->device, dma_addr, 4697 xdpf->len, DMA_BIDIRECTIONAL); 4698 4699 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4700 } 4701 4702 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4703 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4704 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4705 tx_q->tx_skbuff_dma[entry].last_segment = true; 4706 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4707 4708 tx_q->xdpf[entry] = xdpf; 4709 4710 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4711 4712 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4713 true, priv->mode, true, true, 4714 xdpf->len); 4715 4716 tx_q->tx_count_frames++; 4717 4718 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4719 set_ic = true; 4720 else 4721 set_ic = false; 4722 4723 if (set_ic) { 4724 tx_q->tx_count_frames = 0; 4725 stmmac_set_tx_ic(priv, tx_desc); 4726 priv->xstats.tx_set_ic_bit++; 4727 } 4728 4729 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4730 4731 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size); 4732 tx_q->cur_tx = entry; 4733 4734 return STMMAC_XDP_TX; 4735 } 4736 4737 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4738 int cpu) 4739 { 4740 int index = cpu; 4741 4742 if (unlikely(index < 0)) 4743 index = 0; 4744 4745 while (index >= priv->plat->tx_queues_to_use) 4746 index -= priv->plat->tx_queues_to_use; 4747 4748 return index; 4749 } 4750 4751 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4752 struct xdp_buff *xdp) 4753 { 4754 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4755 int cpu = smp_processor_id(); 4756 struct netdev_queue *nq; 4757 int queue; 4758 int res; 4759 4760 if (unlikely(!xdpf)) 4761 return STMMAC_XDP_CONSUMED; 4762 4763 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4764 nq = netdev_get_tx_queue(priv->dev, queue); 4765 4766 __netif_tx_lock(nq, cpu); 4767 /* Avoids TX time-out as we are sharing with slow path */ 4768 txq_trans_cond_update(nq); 4769 4770 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4771 if (res == STMMAC_XDP_TX) 4772 stmmac_flush_tx_descriptors(priv, queue); 4773 4774 __netif_tx_unlock(nq); 4775 4776 return res; 4777 } 4778 4779 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4780 struct bpf_prog *prog, 4781 struct xdp_buff *xdp) 4782 { 4783 u32 act; 4784 int res; 4785 4786 act = bpf_prog_run_xdp(prog, xdp); 4787 switch (act) { 4788 case XDP_PASS: 4789 res = STMMAC_XDP_PASS; 4790 break; 4791 case XDP_TX: 4792 res = stmmac_xdp_xmit_back(priv, xdp); 4793 break; 4794 case XDP_REDIRECT: 4795 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4796 res = STMMAC_XDP_CONSUMED; 4797 else 4798 res = STMMAC_XDP_REDIRECT; 4799 break; 4800 default: 4801 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4802 fallthrough; 4803 case XDP_ABORTED: 4804 trace_xdp_exception(priv->dev, prog, act); 4805 fallthrough; 4806 case XDP_DROP: 4807 res = STMMAC_XDP_CONSUMED; 4808 break; 4809 } 4810 4811 return res; 4812 } 4813 4814 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4815 struct xdp_buff *xdp) 4816 { 4817 struct bpf_prog *prog; 4818 int res; 4819 4820 prog = READ_ONCE(priv->xdp_prog); 4821 if (!prog) { 4822 res = STMMAC_XDP_PASS; 4823 goto out; 4824 } 4825 4826 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4827 out: 4828 return ERR_PTR(-res); 4829 } 4830 4831 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4832 int xdp_status) 4833 { 4834 int cpu = smp_processor_id(); 4835 int queue; 4836 4837 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4838 4839 if (xdp_status & STMMAC_XDP_TX) 4840 stmmac_tx_timer_arm(priv, queue); 4841 4842 if (xdp_status & STMMAC_XDP_REDIRECT) 4843 xdp_do_flush(); 4844 } 4845 4846 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4847 struct xdp_buff *xdp) 4848 { 4849 unsigned int metasize = xdp->data - xdp->data_meta; 4850 unsigned int datasize = xdp->data_end - xdp->data; 4851 struct sk_buff *skb; 4852 4853 skb = __napi_alloc_skb(&ch->rxtx_napi, 4854 xdp->data_end - xdp->data_hard_start, 4855 GFP_ATOMIC | __GFP_NOWARN); 4856 if (unlikely(!skb)) 4857 return NULL; 4858 4859 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4860 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4861 if (metasize) 4862 skb_metadata_set(skb, metasize); 4863 4864 return skb; 4865 } 4866 4867 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4868 struct dma_desc *p, struct dma_desc *np, 4869 struct xdp_buff *xdp) 4870 { 4871 struct stmmac_channel *ch = &priv->channel[queue]; 4872 unsigned int len = xdp->data_end - xdp->data; 4873 enum pkt_hash_types hash_type; 4874 int coe = priv->hw->rx_csum; 4875 struct sk_buff *skb; 4876 u32 hash; 4877 4878 skb = stmmac_construct_skb_zc(ch, xdp); 4879 if (!skb) { 4880 priv->dev->stats.rx_dropped++; 4881 return; 4882 } 4883 4884 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4885 stmmac_rx_vlan(priv->dev, skb); 4886 skb->protocol = eth_type_trans(skb, priv->dev); 4887 4888 if (unlikely(!coe)) 4889 skb_checksum_none_assert(skb); 4890 else 4891 skb->ip_summed = CHECKSUM_UNNECESSARY; 4892 4893 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4894 skb_set_hash(skb, hash, hash_type); 4895 4896 skb_record_rx_queue(skb, queue); 4897 napi_gro_receive(&ch->rxtx_napi, skb); 4898 4899 priv->dev->stats.rx_packets++; 4900 priv->dev->stats.rx_bytes += len; 4901 } 4902 4903 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4904 { 4905 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4906 unsigned int entry = rx_q->dirty_rx; 4907 struct dma_desc *rx_desc = NULL; 4908 bool ret = true; 4909 4910 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4911 4912 while (budget-- > 0 && entry != rx_q->cur_rx) { 4913 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4914 dma_addr_t dma_addr; 4915 bool use_rx_wd; 4916 4917 if (!buf->xdp) { 4918 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4919 if (!buf->xdp) { 4920 ret = false; 4921 break; 4922 } 4923 } 4924 4925 if (priv->extend_desc) 4926 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4927 else 4928 rx_desc = rx_q->dma_rx + entry; 4929 4930 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4931 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4932 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4933 stmmac_refill_desc3(priv, rx_q, rx_desc); 4934 4935 rx_q->rx_count_frames++; 4936 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4937 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4938 rx_q->rx_count_frames = 0; 4939 4940 use_rx_wd = !priv->rx_coal_frames[queue]; 4941 use_rx_wd |= rx_q->rx_count_frames > 0; 4942 if (!priv->use_riwt) 4943 use_rx_wd = false; 4944 4945 dma_wmb(); 4946 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4947 4948 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size); 4949 } 4950 4951 if (rx_desc) { 4952 rx_q->dirty_rx = entry; 4953 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4954 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4955 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4956 } 4957 4958 return ret; 4959 } 4960 4961 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4962 { 4963 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 4964 unsigned int count = 0, error = 0, len = 0; 4965 int dirty = stmmac_rx_dirty(priv, queue); 4966 unsigned int next_entry = rx_q->cur_rx; 4967 unsigned int desc_size; 4968 struct bpf_prog *prog; 4969 bool failure = false; 4970 int xdp_status = 0; 4971 int status = 0; 4972 4973 if (netif_msg_rx_status(priv)) { 4974 void *rx_head; 4975 4976 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4977 if (priv->extend_desc) { 4978 rx_head = (void *)rx_q->dma_erx; 4979 desc_size = sizeof(struct dma_extended_desc); 4980 } else { 4981 rx_head = (void *)rx_q->dma_rx; 4982 desc_size = sizeof(struct dma_desc); 4983 } 4984 4985 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 4986 rx_q->dma_rx_phy, desc_size); 4987 } 4988 while (count < limit) { 4989 struct stmmac_rx_buffer *buf; 4990 unsigned int buf1_len = 0; 4991 struct dma_desc *np, *p; 4992 int entry; 4993 int res; 4994 4995 if (!count && rx_q->state_saved) { 4996 error = rx_q->state.error; 4997 len = rx_q->state.len; 4998 } else { 4999 rx_q->state_saved = false; 5000 error = 0; 5001 len = 0; 5002 } 5003 5004 if (count >= limit) 5005 break; 5006 5007 read_again: 5008 buf1_len = 0; 5009 entry = next_entry; 5010 buf = &rx_q->buf_pool[entry]; 5011 5012 if (dirty >= STMMAC_RX_FILL_BATCH) { 5013 failure = failure || 5014 !stmmac_rx_refill_zc(priv, queue, dirty); 5015 dirty = 0; 5016 } 5017 5018 if (priv->extend_desc) 5019 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5020 else 5021 p = rx_q->dma_rx + entry; 5022 5023 /* read the status of the incoming frame */ 5024 status = stmmac_rx_status(priv, &priv->dev->stats, 5025 &priv->xstats, p); 5026 /* check if managed by the DMA otherwise go ahead */ 5027 if (unlikely(status & dma_own)) 5028 break; 5029 5030 /* Prefetch the next RX descriptor */ 5031 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5032 priv->dma_conf.dma_rx_size); 5033 next_entry = rx_q->cur_rx; 5034 5035 if (priv->extend_desc) 5036 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5037 else 5038 np = rx_q->dma_rx + next_entry; 5039 5040 prefetch(np); 5041 5042 /* Ensure a valid XSK buffer before proceed */ 5043 if (!buf->xdp) 5044 break; 5045 5046 if (priv->extend_desc) 5047 stmmac_rx_extended_status(priv, &priv->dev->stats, 5048 &priv->xstats, 5049 rx_q->dma_erx + entry); 5050 if (unlikely(status == discard_frame)) { 5051 xsk_buff_free(buf->xdp); 5052 buf->xdp = NULL; 5053 dirty++; 5054 error = 1; 5055 if (!priv->hwts_rx_en) 5056 priv->dev->stats.rx_errors++; 5057 } 5058 5059 if (unlikely(error && (status & rx_not_ls))) 5060 goto read_again; 5061 if (unlikely(error)) { 5062 count++; 5063 continue; 5064 } 5065 5066 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 5067 if (likely(status & rx_not_ls)) { 5068 xsk_buff_free(buf->xdp); 5069 buf->xdp = NULL; 5070 dirty++; 5071 count++; 5072 goto read_again; 5073 } 5074 5075 /* XDP ZC Frame only support primary buffers for now */ 5076 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5077 len += buf1_len; 5078 5079 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5080 * Type frames (LLC/LLC-SNAP) 5081 * 5082 * llc_snap is never checked in GMAC >= 4, so this ACS 5083 * feature is always disabled and packets need to be 5084 * stripped manually. 5085 */ 5086 if (likely(!(status & rx_not_ls)) && 5087 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5088 unlikely(status != llc_snap))) { 5089 buf1_len -= ETH_FCS_LEN; 5090 len -= ETH_FCS_LEN; 5091 } 5092 5093 /* RX buffer is good and fit into a XSK pool buffer */ 5094 buf->xdp->data_end = buf->xdp->data + buf1_len; 5095 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 5096 5097 prog = READ_ONCE(priv->xdp_prog); 5098 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 5099 5100 switch (res) { 5101 case STMMAC_XDP_PASS: 5102 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 5103 xsk_buff_free(buf->xdp); 5104 break; 5105 case STMMAC_XDP_CONSUMED: 5106 xsk_buff_free(buf->xdp); 5107 priv->dev->stats.rx_dropped++; 5108 break; 5109 case STMMAC_XDP_TX: 5110 case STMMAC_XDP_REDIRECT: 5111 xdp_status |= res; 5112 break; 5113 } 5114 5115 buf->xdp = NULL; 5116 dirty++; 5117 count++; 5118 } 5119 5120 if (status & rx_not_ls) { 5121 rx_q->state_saved = true; 5122 rx_q->state.error = error; 5123 rx_q->state.len = len; 5124 } 5125 5126 stmmac_finalize_xdp_rx(priv, xdp_status); 5127 5128 priv->xstats.rx_pkt_n += count; 5129 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5130 5131 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5132 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5133 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5134 else 5135 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5136 5137 return (int)count; 5138 } 5139 5140 return failure ? limit : (int)count; 5141 } 5142 5143 /** 5144 * stmmac_rx - manage the receive process 5145 * @priv: driver private structure 5146 * @limit: napi bugget 5147 * @queue: RX queue index. 5148 * Description : this the function called by the napi poll method. 5149 * It gets all the frames inside the ring. 5150 */ 5151 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5152 { 5153 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 5154 struct stmmac_channel *ch = &priv->channel[queue]; 5155 unsigned int count = 0, error = 0, len = 0; 5156 int status = 0, coe = priv->hw->rx_csum; 5157 unsigned int next_entry = rx_q->cur_rx; 5158 enum dma_data_direction dma_dir; 5159 unsigned int desc_size; 5160 struct sk_buff *skb = NULL; 5161 struct xdp_buff xdp; 5162 int xdp_status = 0; 5163 int buf_sz; 5164 5165 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5166 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5167 5168 if (netif_msg_rx_status(priv)) { 5169 void *rx_head; 5170 5171 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5172 if (priv->extend_desc) { 5173 rx_head = (void *)rx_q->dma_erx; 5174 desc_size = sizeof(struct dma_extended_desc); 5175 } else { 5176 rx_head = (void *)rx_q->dma_rx; 5177 desc_size = sizeof(struct dma_desc); 5178 } 5179 5180 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true, 5181 rx_q->dma_rx_phy, desc_size); 5182 } 5183 while (count < limit) { 5184 unsigned int buf1_len = 0, buf2_len = 0; 5185 enum pkt_hash_types hash_type; 5186 struct stmmac_rx_buffer *buf; 5187 struct dma_desc *np, *p; 5188 int entry; 5189 u32 hash; 5190 5191 if (!count && rx_q->state_saved) { 5192 skb = rx_q->state.skb; 5193 error = rx_q->state.error; 5194 len = rx_q->state.len; 5195 } else { 5196 rx_q->state_saved = false; 5197 skb = NULL; 5198 error = 0; 5199 len = 0; 5200 } 5201 5202 if (count >= limit) 5203 break; 5204 5205 read_again: 5206 buf1_len = 0; 5207 buf2_len = 0; 5208 entry = next_entry; 5209 buf = &rx_q->buf_pool[entry]; 5210 5211 if (priv->extend_desc) 5212 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5213 else 5214 p = rx_q->dma_rx + entry; 5215 5216 /* read the status of the incoming frame */ 5217 status = stmmac_rx_status(priv, &priv->dev->stats, 5218 &priv->xstats, p); 5219 /* check if managed by the DMA otherwise go ahead */ 5220 if (unlikely(status & dma_own)) 5221 break; 5222 5223 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5224 priv->dma_conf.dma_rx_size); 5225 next_entry = rx_q->cur_rx; 5226 5227 if (priv->extend_desc) 5228 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5229 else 5230 np = rx_q->dma_rx + next_entry; 5231 5232 prefetch(np); 5233 5234 if (priv->extend_desc) 5235 stmmac_rx_extended_status(priv, &priv->dev->stats, 5236 &priv->xstats, rx_q->dma_erx + entry); 5237 if (unlikely(status == discard_frame)) { 5238 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5239 buf->page = NULL; 5240 error = 1; 5241 if (!priv->hwts_rx_en) 5242 priv->dev->stats.rx_errors++; 5243 } 5244 5245 if (unlikely(error && (status & rx_not_ls))) 5246 goto read_again; 5247 if (unlikely(error)) { 5248 dev_kfree_skb(skb); 5249 skb = NULL; 5250 count++; 5251 continue; 5252 } 5253 5254 /* Buffer is good. Go on. */ 5255 5256 prefetch(page_address(buf->page) + buf->page_offset); 5257 if (buf->sec_page) 5258 prefetch(page_address(buf->sec_page)); 5259 5260 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5261 len += buf1_len; 5262 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5263 len += buf2_len; 5264 5265 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5266 * Type frames (LLC/LLC-SNAP) 5267 * 5268 * llc_snap is never checked in GMAC >= 4, so this ACS 5269 * feature is always disabled and packets need to be 5270 * stripped manually. 5271 */ 5272 if (likely(!(status & rx_not_ls)) && 5273 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5274 unlikely(status != llc_snap))) { 5275 if (buf2_len) { 5276 buf2_len -= ETH_FCS_LEN; 5277 len -= ETH_FCS_LEN; 5278 } else if (buf1_len) { 5279 buf1_len -= ETH_FCS_LEN; 5280 len -= ETH_FCS_LEN; 5281 } 5282 } 5283 5284 if (!skb) { 5285 unsigned int pre_len, sync_len; 5286 5287 dma_sync_single_for_cpu(priv->device, buf->addr, 5288 buf1_len, dma_dir); 5289 5290 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5291 xdp_prepare_buff(&xdp, page_address(buf->page), 5292 buf->page_offset, buf1_len, false); 5293 5294 pre_len = xdp.data_end - xdp.data_hard_start - 5295 buf->page_offset; 5296 skb = stmmac_xdp_run_prog(priv, &xdp); 5297 /* Due xdp_adjust_tail: DMA sync for_device 5298 * cover max len CPU touch 5299 */ 5300 sync_len = xdp.data_end - xdp.data_hard_start - 5301 buf->page_offset; 5302 sync_len = max(sync_len, pre_len); 5303 5304 /* For Not XDP_PASS verdict */ 5305 if (IS_ERR(skb)) { 5306 unsigned int xdp_res = -PTR_ERR(skb); 5307 5308 if (xdp_res & STMMAC_XDP_CONSUMED) { 5309 page_pool_put_page(rx_q->page_pool, 5310 virt_to_head_page(xdp.data), 5311 sync_len, true); 5312 buf->page = NULL; 5313 priv->dev->stats.rx_dropped++; 5314 5315 /* Clear skb as it was set as 5316 * status by XDP program. 5317 */ 5318 skb = NULL; 5319 5320 if (unlikely((status & rx_not_ls))) 5321 goto read_again; 5322 5323 count++; 5324 continue; 5325 } else if (xdp_res & (STMMAC_XDP_TX | 5326 STMMAC_XDP_REDIRECT)) { 5327 xdp_status |= xdp_res; 5328 buf->page = NULL; 5329 skb = NULL; 5330 count++; 5331 continue; 5332 } 5333 } 5334 } 5335 5336 if (!skb) { 5337 /* XDP program may expand or reduce tail */ 5338 buf1_len = xdp.data_end - xdp.data; 5339 5340 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5341 if (!skb) { 5342 priv->dev->stats.rx_dropped++; 5343 count++; 5344 goto drain_data; 5345 } 5346 5347 /* XDP program may adjust header */ 5348 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5349 skb_put(skb, buf1_len); 5350 5351 /* Data payload copied into SKB, page ready for recycle */ 5352 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5353 buf->page = NULL; 5354 } else if (buf1_len) { 5355 dma_sync_single_for_cpu(priv->device, buf->addr, 5356 buf1_len, dma_dir); 5357 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5358 buf->page, buf->page_offset, buf1_len, 5359 priv->dma_conf.dma_buf_sz); 5360 5361 /* Data payload appended into SKB */ 5362 page_pool_release_page(rx_q->page_pool, buf->page); 5363 buf->page = NULL; 5364 } 5365 5366 if (buf2_len) { 5367 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5368 buf2_len, dma_dir); 5369 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5370 buf->sec_page, 0, buf2_len, 5371 priv->dma_conf.dma_buf_sz); 5372 5373 /* Data payload appended into SKB */ 5374 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5375 buf->sec_page = NULL; 5376 } 5377 5378 drain_data: 5379 if (likely(status & rx_not_ls)) 5380 goto read_again; 5381 if (!skb) 5382 continue; 5383 5384 /* Got entire packet into SKB. Finish it. */ 5385 5386 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5387 stmmac_rx_vlan(priv->dev, skb); 5388 skb->protocol = eth_type_trans(skb, priv->dev); 5389 5390 if (unlikely(!coe)) 5391 skb_checksum_none_assert(skb); 5392 else 5393 skb->ip_summed = CHECKSUM_UNNECESSARY; 5394 5395 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5396 skb_set_hash(skb, hash, hash_type); 5397 5398 skb_record_rx_queue(skb, queue); 5399 napi_gro_receive(&ch->rx_napi, skb); 5400 skb = NULL; 5401 5402 priv->dev->stats.rx_packets++; 5403 priv->dev->stats.rx_bytes += len; 5404 count++; 5405 } 5406 5407 if (status & rx_not_ls || skb) { 5408 rx_q->state_saved = true; 5409 rx_q->state.skb = skb; 5410 rx_q->state.error = error; 5411 rx_q->state.len = len; 5412 } 5413 5414 stmmac_finalize_xdp_rx(priv, xdp_status); 5415 5416 stmmac_rx_refill(priv, queue); 5417 5418 priv->xstats.rx_pkt_n += count; 5419 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5420 5421 return count; 5422 } 5423 5424 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5425 { 5426 struct stmmac_channel *ch = 5427 container_of(napi, struct stmmac_channel, rx_napi); 5428 struct stmmac_priv *priv = ch->priv_data; 5429 u32 chan = ch->index; 5430 int work_done; 5431 5432 priv->xstats.napi_poll++; 5433 5434 work_done = stmmac_rx(priv, budget, chan); 5435 if (work_done < budget && napi_complete_done(napi, work_done)) { 5436 unsigned long flags; 5437 5438 spin_lock_irqsave(&ch->lock, flags); 5439 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5440 spin_unlock_irqrestore(&ch->lock, flags); 5441 } 5442 5443 return work_done; 5444 } 5445 5446 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5447 { 5448 struct stmmac_channel *ch = 5449 container_of(napi, struct stmmac_channel, tx_napi); 5450 struct stmmac_priv *priv = ch->priv_data; 5451 u32 chan = ch->index; 5452 int work_done; 5453 5454 priv->xstats.napi_poll++; 5455 5456 work_done = stmmac_tx_clean(priv, budget, chan); 5457 work_done = min(work_done, budget); 5458 5459 if (work_done < budget && napi_complete_done(napi, work_done)) { 5460 unsigned long flags; 5461 5462 spin_lock_irqsave(&ch->lock, flags); 5463 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5464 spin_unlock_irqrestore(&ch->lock, flags); 5465 } 5466 5467 return work_done; 5468 } 5469 5470 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5471 { 5472 struct stmmac_channel *ch = 5473 container_of(napi, struct stmmac_channel, rxtx_napi); 5474 struct stmmac_priv *priv = ch->priv_data; 5475 int rx_done, tx_done, rxtx_done; 5476 u32 chan = ch->index; 5477 5478 priv->xstats.napi_poll++; 5479 5480 tx_done = stmmac_tx_clean(priv, budget, chan); 5481 tx_done = min(tx_done, budget); 5482 5483 rx_done = stmmac_rx_zc(priv, budget, chan); 5484 5485 rxtx_done = max(tx_done, rx_done); 5486 5487 /* If either TX or RX work is not complete, return budget 5488 * and keep pooling 5489 */ 5490 if (rxtx_done >= budget) 5491 return budget; 5492 5493 /* all work done, exit the polling mode */ 5494 if (napi_complete_done(napi, rxtx_done)) { 5495 unsigned long flags; 5496 5497 spin_lock_irqsave(&ch->lock, flags); 5498 /* Both RX and TX work done are compelte, 5499 * so enable both RX & TX IRQs. 5500 */ 5501 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5502 spin_unlock_irqrestore(&ch->lock, flags); 5503 } 5504 5505 return min(rxtx_done, budget - 1); 5506 } 5507 5508 /** 5509 * stmmac_tx_timeout 5510 * @dev : Pointer to net device structure 5511 * @txqueue: the index of the hanging transmit queue 5512 * Description: this function is called when a packet transmission fails to 5513 * complete within a reasonable time. The driver will mark the error in the 5514 * netdev structure and arrange for the device to be reset to a sane state 5515 * in order to transmit a new packet. 5516 */ 5517 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5518 { 5519 struct stmmac_priv *priv = netdev_priv(dev); 5520 5521 stmmac_global_err(priv); 5522 } 5523 5524 /** 5525 * stmmac_set_rx_mode - entry point for multicast addressing 5526 * @dev : pointer to the device structure 5527 * Description: 5528 * This function is a driver entry point which gets called by the kernel 5529 * whenever multicast addresses must be enabled/disabled. 5530 * Return value: 5531 * void. 5532 */ 5533 static void stmmac_set_rx_mode(struct net_device *dev) 5534 { 5535 struct stmmac_priv *priv = netdev_priv(dev); 5536 5537 stmmac_set_filter(priv, priv->hw, dev); 5538 } 5539 5540 /** 5541 * stmmac_change_mtu - entry point to change MTU size for the device. 5542 * @dev : device pointer. 5543 * @new_mtu : the new MTU size for the device. 5544 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5545 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5546 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5547 * Return value: 5548 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5549 * file on failure. 5550 */ 5551 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5552 { 5553 struct stmmac_priv *priv = netdev_priv(dev); 5554 int txfifosz = priv->plat->tx_fifo_size; 5555 struct stmmac_dma_conf *dma_conf; 5556 const int mtu = new_mtu; 5557 int ret; 5558 5559 if (txfifosz == 0) 5560 txfifosz = priv->dma_cap.tx_fifo_size; 5561 5562 txfifosz /= priv->plat->tx_queues_to_use; 5563 5564 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5565 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5566 return -EINVAL; 5567 } 5568 5569 new_mtu = STMMAC_ALIGN(new_mtu); 5570 5571 /* If condition true, FIFO is too small or MTU too large */ 5572 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5573 return -EINVAL; 5574 5575 if (netif_running(dev)) { 5576 netdev_dbg(priv->dev, "restarting interface to change its MTU\n"); 5577 /* Try to allocate the new DMA conf with the new mtu */ 5578 dma_conf = stmmac_setup_dma_desc(priv, mtu); 5579 if (IS_ERR(dma_conf)) { 5580 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n", 5581 mtu); 5582 return PTR_ERR(dma_conf); 5583 } 5584 5585 stmmac_release(dev); 5586 5587 ret = __stmmac_open(dev, dma_conf); 5588 kfree(dma_conf); 5589 if (ret) { 5590 netdev_err(priv->dev, "failed reopening the interface after MTU change\n"); 5591 return ret; 5592 } 5593 5594 stmmac_set_rx_mode(dev); 5595 } 5596 5597 dev->mtu = mtu; 5598 netdev_update_features(dev); 5599 5600 return 0; 5601 } 5602 5603 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5604 netdev_features_t features) 5605 { 5606 struct stmmac_priv *priv = netdev_priv(dev); 5607 5608 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5609 features &= ~NETIF_F_RXCSUM; 5610 5611 if (!priv->plat->tx_coe) 5612 features &= ~NETIF_F_CSUM_MASK; 5613 5614 /* Some GMAC devices have a bugged Jumbo frame support that 5615 * needs to have the Tx COE disabled for oversized frames 5616 * (due to limited buffer sizes). In this case we disable 5617 * the TX csum insertion in the TDES and not use SF. 5618 */ 5619 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5620 features &= ~NETIF_F_CSUM_MASK; 5621 5622 /* Disable tso if asked by ethtool */ 5623 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5624 if (features & NETIF_F_TSO) 5625 priv->tso = true; 5626 else 5627 priv->tso = false; 5628 } 5629 5630 return features; 5631 } 5632 5633 static int stmmac_set_features(struct net_device *netdev, 5634 netdev_features_t features) 5635 { 5636 struct stmmac_priv *priv = netdev_priv(netdev); 5637 5638 /* Keep the COE Type in case of csum is supporting */ 5639 if (features & NETIF_F_RXCSUM) 5640 priv->hw->rx_csum = priv->plat->rx_coe; 5641 else 5642 priv->hw->rx_csum = 0; 5643 /* No check needed because rx_coe has been set before and it will be 5644 * fixed in case of issue. 5645 */ 5646 stmmac_rx_ipc(priv, priv->hw); 5647 5648 if (priv->sph_cap) { 5649 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5650 u32 chan; 5651 5652 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5653 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5654 } 5655 5656 return 0; 5657 } 5658 5659 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5660 { 5661 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5662 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5663 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5664 bool *hs_enable = &fpe_cfg->hs_enable; 5665 5666 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5667 return; 5668 5669 /* If LP has sent verify mPacket, LP is FPE capable */ 5670 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5671 if (*lp_state < FPE_STATE_CAPABLE) 5672 *lp_state = FPE_STATE_CAPABLE; 5673 5674 /* If user has requested FPE enable, quickly response */ 5675 if (*hs_enable) 5676 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5677 MPACKET_RESPONSE); 5678 } 5679 5680 /* If Local has sent verify mPacket, Local is FPE capable */ 5681 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5682 if (*lo_state < FPE_STATE_CAPABLE) 5683 *lo_state = FPE_STATE_CAPABLE; 5684 } 5685 5686 /* If LP has sent response mPacket, LP is entering FPE ON */ 5687 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5688 *lp_state = FPE_STATE_ENTERING_ON; 5689 5690 /* If Local has sent response mPacket, Local is entering FPE ON */ 5691 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5692 *lo_state = FPE_STATE_ENTERING_ON; 5693 5694 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5695 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5696 priv->fpe_wq) { 5697 queue_work(priv->fpe_wq, &priv->fpe_task); 5698 } 5699 } 5700 5701 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5702 { 5703 u32 rx_cnt = priv->plat->rx_queues_to_use; 5704 u32 tx_cnt = priv->plat->tx_queues_to_use; 5705 u32 queues_count; 5706 u32 queue; 5707 bool xmac; 5708 5709 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5710 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5711 5712 if (priv->irq_wake) 5713 pm_wakeup_event(priv->device, 0); 5714 5715 if (priv->dma_cap.estsel) 5716 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5717 &priv->xstats, tx_cnt); 5718 5719 if (priv->dma_cap.fpesel) { 5720 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5721 priv->dev); 5722 5723 stmmac_fpe_event_status(priv, status); 5724 } 5725 5726 /* To handle GMAC own interrupts */ 5727 if ((priv->plat->has_gmac) || xmac) { 5728 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5729 5730 if (unlikely(status)) { 5731 /* For LPI we need to save the tx status */ 5732 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5733 priv->tx_path_in_lpi_mode = true; 5734 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5735 priv->tx_path_in_lpi_mode = false; 5736 } 5737 5738 for (queue = 0; queue < queues_count; queue++) { 5739 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5740 queue); 5741 } 5742 5743 /* PCS link status */ 5744 if (priv->hw->pcs) { 5745 if (priv->xstats.pcs_link) 5746 netif_carrier_on(priv->dev); 5747 else 5748 netif_carrier_off(priv->dev); 5749 } 5750 5751 stmmac_timestamp_interrupt(priv, priv); 5752 } 5753 } 5754 5755 /** 5756 * stmmac_interrupt - main ISR 5757 * @irq: interrupt number. 5758 * @dev_id: to pass the net device pointer. 5759 * Description: this is the main driver interrupt service routine. 5760 * It can call: 5761 * o DMA service routine (to manage incoming frame reception and transmission 5762 * status) 5763 * o Core interrupts to manage: remote wake-up, management counter, LPI 5764 * interrupts. 5765 */ 5766 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5767 { 5768 struct net_device *dev = (struct net_device *)dev_id; 5769 struct stmmac_priv *priv = netdev_priv(dev); 5770 5771 /* Check if adapter is up */ 5772 if (test_bit(STMMAC_DOWN, &priv->state)) 5773 return IRQ_HANDLED; 5774 5775 /* Check if a fatal error happened */ 5776 if (stmmac_safety_feat_interrupt(priv)) 5777 return IRQ_HANDLED; 5778 5779 /* To handle Common interrupts */ 5780 stmmac_common_interrupt(priv); 5781 5782 /* To handle DMA interrupts */ 5783 stmmac_dma_interrupt(priv); 5784 5785 return IRQ_HANDLED; 5786 } 5787 5788 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5789 { 5790 struct net_device *dev = (struct net_device *)dev_id; 5791 struct stmmac_priv *priv = netdev_priv(dev); 5792 5793 if (unlikely(!dev)) { 5794 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5795 return IRQ_NONE; 5796 } 5797 5798 /* Check if adapter is up */ 5799 if (test_bit(STMMAC_DOWN, &priv->state)) 5800 return IRQ_HANDLED; 5801 5802 /* To handle Common interrupts */ 5803 stmmac_common_interrupt(priv); 5804 5805 return IRQ_HANDLED; 5806 } 5807 5808 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5809 { 5810 struct net_device *dev = (struct net_device *)dev_id; 5811 struct stmmac_priv *priv = netdev_priv(dev); 5812 5813 if (unlikely(!dev)) { 5814 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5815 return IRQ_NONE; 5816 } 5817 5818 /* Check if adapter is up */ 5819 if (test_bit(STMMAC_DOWN, &priv->state)) 5820 return IRQ_HANDLED; 5821 5822 /* Check if a fatal error happened */ 5823 stmmac_safety_feat_interrupt(priv); 5824 5825 return IRQ_HANDLED; 5826 } 5827 5828 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5829 { 5830 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5831 struct stmmac_dma_conf *dma_conf; 5832 int chan = tx_q->queue_index; 5833 struct stmmac_priv *priv; 5834 int status; 5835 5836 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]); 5837 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5838 5839 if (unlikely(!data)) { 5840 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5841 return IRQ_NONE; 5842 } 5843 5844 /* Check if adapter is up */ 5845 if (test_bit(STMMAC_DOWN, &priv->state)) 5846 return IRQ_HANDLED; 5847 5848 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5849 5850 if (unlikely(status & tx_hard_error_bump_tc)) { 5851 /* Try to bump up the dma threshold on this failure */ 5852 stmmac_bump_dma_threshold(priv, chan); 5853 } else if (unlikely(status == tx_hard_error)) { 5854 stmmac_tx_err(priv, chan); 5855 } 5856 5857 return IRQ_HANDLED; 5858 } 5859 5860 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5861 { 5862 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5863 struct stmmac_dma_conf *dma_conf; 5864 int chan = rx_q->queue_index; 5865 struct stmmac_priv *priv; 5866 5867 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]); 5868 priv = container_of(dma_conf, struct stmmac_priv, dma_conf); 5869 5870 if (unlikely(!data)) { 5871 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5872 return IRQ_NONE; 5873 } 5874 5875 /* Check if adapter is up */ 5876 if (test_bit(STMMAC_DOWN, &priv->state)) 5877 return IRQ_HANDLED; 5878 5879 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5880 5881 return IRQ_HANDLED; 5882 } 5883 5884 #ifdef CONFIG_NET_POLL_CONTROLLER 5885 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5886 * to allow network I/O with interrupts disabled. 5887 */ 5888 static void stmmac_poll_controller(struct net_device *dev) 5889 { 5890 struct stmmac_priv *priv = netdev_priv(dev); 5891 int i; 5892 5893 /* If adapter is down, do nothing */ 5894 if (test_bit(STMMAC_DOWN, &priv->state)) 5895 return; 5896 5897 if (priv->plat->multi_msi_en) { 5898 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5899 stmmac_msi_intr_rx(0, &priv->dma_conf.rx_queue[i]); 5900 5901 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5902 stmmac_msi_intr_tx(0, &priv->dma_conf.tx_queue[i]); 5903 } else { 5904 disable_irq(dev->irq); 5905 stmmac_interrupt(dev->irq, dev); 5906 enable_irq(dev->irq); 5907 } 5908 } 5909 #endif 5910 5911 /** 5912 * stmmac_ioctl - Entry point for the Ioctl 5913 * @dev: Device pointer. 5914 * @rq: An IOCTL specefic structure, that can contain a pointer to 5915 * a proprietary structure used to pass information to the driver. 5916 * @cmd: IOCTL command 5917 * Description: 5918 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5919 */ 5920 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5921 { 5922 struct stmmac_priv *priv = netdev_priv (dev); 5923 int ret = -EOPNOTSUPP; 5924 5925 if (!netif_running(dev)) 5926 return -EINVAL; 5927 5928 switch (cmd) { 5929 case SIOCGMIIPHY: 5930 case SIOCGMIIREG: 5931 case SIOCSMIIREG: 5932 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5933 break; 5934 case SIOCSHWTSTAMP: 5935 ret = stmmac_hwtstamp_set(dev, rq); 5936 break; 5937 case SIOCGHWTSTAMP: 5938 ret = stmmac_hwtstamp_get(dev, rq); 5939 break; 5940 default: 5941 break; 5942 } 5943 5944 return ret; 5945 } 5946 5947 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5948 void *cb_priv) 5949 { 5950 struct stmmac_priv *priv = cb_priv; 5951 int ret = -EOPNOTSUPP; 5952 5953 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5954 return ret; 5955 5956 __stmmac_disable_all_queues(priv); 5957 5958 switch (type) { 5959 case TC_SETUP_CLSU32: 5960 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5961 break; 5962 case TC_SETUP_CLSFLOWER: 5963 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5964 break; 5965 default: 5966 break; 5967 } 5968 5969 stmmac_enable_all_queues(priv); 5970 return ret; 5971 } 5972 5973 static LIST_HEAD(stmmac_block_cb_list); 5974 5975 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5976 void *type_data) 5977 { 5978 struct stmmac_priv *priv = netdev_priv(ndev); 5979 5980 switch (type) { 5981 case TC_SETUP_BLOCK: 5982 return flow_block_cb_setup_simple(type_data, 5983 &stmmac_block_cb_list, 5984 stmmac_setup_tc_block_cb, 5985 priv, priv, true); 5986 case TC_SETUP_QDISC_CBS: 5987 return stmmac_tc_setup_cbs(priv, priv, type_data); 5988 case TC_SETUP_QDISC_TAPRIO: 5989 return stmmac_tc_setup_taprio(priv, priv, type_data); 5990 case TC_SETUP_QDISC_ETF: 5991 return stmmac_tc_setup_etf(priv, priv, type_data); 5992 default: 5993 return -EOPNOTSUPP; 5994 } 5995 } 5996 5997 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5998 struct net_device *sb_dev) 5999 { 6000 int gso = skb_shinfo(skb)->gso_type; 6001 6002 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 6003 /* 6004 * There is no way to determine the number of TSO/USO 6005 * capable Queues. Let's use always the Queue 0 6006 * because if TSO/USO is supported then at least this 6007 * one will be capable. 6008 */ 6009 return 0; 6010 } 6011 6012 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 6013 } 6014 6015 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 6016 { 6017 struct stmmac_priv *priv = netdev_priv(ndev); 6018 int ret = 0; 6019 6020 ret = pm_runtime_resume_and_get(priv->device); 6021 if (ret < 0) 6022 return ret; 6023 6024 ret = eth_mac_addr(ndev, addr); 6025 if (ret) 6026 goto set_mac_error; 6027 6028 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 6029 6030 set_mac_error: 6031 pm_runtime_put(priv->device); 6032 6033 return ret; 6034 } 6035 6036 #ifdef CONFIG_DEBUG_FS 6037 static struct dentry *stmmac_fs_dir; 6038 6039 static void sysfs_display_ring(void *head, int size, int extend_desc, 6040 struct seq_file *seq, dma_addr_t dma_phy_addr) 6041 { 6042 int i; 6043 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 6044 struct dma_desc *p = (struct dma_desc *)head; 6045 dma_addr_t dma_addr; 6046 6047 for (i = 0; i < size; i++) { 6048 if (extend_desc) { 6049 dma_addr = dma_phy_addr + i * sizeof(*ep); 6050 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6051 i, &dma_addr, 6052 le32_to_cpu(ep->basic.des0), 6053 le32_to_cpu(ep->basic.des1), 6054 le32_to_cpu(ep->basic.des2), 6055 le32_to_cpu(ep->basic.des3)); 6056 ep++; 6057 } else { 6058 dma_addr = dma_phy_addr + i * sizeof(*p); 6059 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 6060 i, &dma_addr, 6061 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 6062 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 6063 p++; 6064 } 6065 seq_printf(seq, "\n"); 6066 } 6067 } 6068 6069 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 6070 { 6071 struct net_device *dev = seq->private; 6072 struct stmmac_priv *priv = netdev_priv(dev); 6073 u32 rx_count = priv->plat->rx_queues_to_use; 6074 u32 tx_count = priv->plat->tx_queues_to_use; 6075 u32 queue; 6076 6077 if ((dev->flags & IFF_UP) == 0) 6078 return 0; 6079 6080 for (queue = 0; queue < rx_count; queue++) { 6081 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6082 6083 seq_printf(seq, "RX Queue %d:\n", queue); 6084 6085 if (priv->extend_desc) { 6086 seq_printf(seq, "Extended descriptor ring:\n"); 6087 sysfs_display_ring((void *)rx_q->dma_erx, 6088 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy); 6089 } else { 6090 seq_printf(seq, "Descriptor ring:\n"); 6091 sysfs_display_ring((void *)rx_q->dma_rx, 6092 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy); 6093 } 6094 } 6095 6096 for (queue = 0; queue < tx_count; queue++) { 6097 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6098 6099 seq_printf(seq, "TX Queue %d:\n", queue); 6100 6101 if (priv->extend_desc) { 6102 seq_printf(seq, "Extended descriptor ring:\n"); 6103 sysfs_display_ring((void *)tx_q->dma_etx, 6104 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy); 6105 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 6106 seq_printf(seq, "Descriptor ring:\n"); 6107 sysfs_display_ring((void *)tx_q->dma_tx, 6108 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy); 6109 } 6110 } 6111 6112 return 0; 6113 } 6114 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 6115 6116 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 6117 { 6118 struct net_device *dev = seq->private; 6119 struct stmmac_priv *priv = netdev_priv(dev); 6120 6121 if (!priv->hw_cap_support) { 6122 seq_printf(seq, "DMA HW features not supported\n"); 6123 return 0; 6124 } 6125 6126 seq_printf(seq, "==============================\n"); 6127 seq_printf(seq, "\tDMA HW features\n"); 6128 seq_printf(seq, "==============================\n"); 6129 6130 seq_printf(seq, "\t10/100 Mbps: %s\n", 6131 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6132 seq_printf(seq, "\t1000 Mbps: %s\n", 6133 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6134 seq_printf(seq, "\tHalf duplex: %s\n", 6135 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6136 seq_printf(seq, "\tHash Filter: %s\n", 6137 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6138 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6139 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6140 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6141 (priv->dma_cap.pcs) ? "Y" : "N"); 6142 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6143 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6144 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6145 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6146 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6147 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6148 seq_printf(seq, "\tRMON module: %s\n", 6149 (priv->dma_cap.rmon) ? "Y" : "N"); 6150 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6151 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6152 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6153 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6154 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6155 (priv->dma_cap.eee) ? "Y" : "N"); 6156 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6157 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6158 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6159 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6160 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6161 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6162 } else { 6163 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6164 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6165 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6166 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6167 } 6168 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6169 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6170 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6171 priv->dma_cap.number_rx_channel); 6172 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6173 priv->dma_cap.number_tx_channel); 6174 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6175 priv->dma_cap.number_rx_queues); 6176 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6177 priv->dma_cap.number_tx_queues); 6178 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6179 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6180 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6181 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6182 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6183 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6184 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6185 priv->dma_cap.pps_out_num); 6186 seq_printf(seq, "\tSafety Features: %s\n", 6187 priv->dma_cap.asp ? "Y" : "N"); 6188 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6189 priv->dma_cap.frpsel ? "Y" : "N"); 6190 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6191 priv->dma_cap.addr64); 6192 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6193 priv->dma_cap.rssen ? "Y" : "N"); 6194 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6195 priv->dma_cap.vlhash ? "Y" : "N"); 6196 seq_printf(seq, "\tSplit Header: %s\n", 6197 priv->dma_cap.sphen ? "Y" : "N"); 6198 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6199 priv->dma_cap.vlins ? "Y" : "N"); 6200 seq_printf(seq, "\tDouble VLAN: %s\n", 6201 priv->dma_cap.dvlan ? "Y" : "N"); 6202 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6203 priv->dma_cap.l3l4fnum); 6204 seq_printf(seq, "\tARP Offloading: %s\n", 6205 priv->dma_cap.arpoffsel ? "Y" : "N"); 6206 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6207 priv->dma_cap.estsel ? "Y" : "N"); 6208 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6209 priv->dma_cap.fpesel ? "Y" : "N"); 6210 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6211 priv->dma_cap.tbssel ? "Y" : "N"); 6212 return 0; 6213 } 6214 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6215 6216 /* Use network device events to rename debugfs file entries. 6217 */ 6218 static int stmmac_device_event(struct notifier_block *unused, 6219 unsigned long event, void *ptr) 6220 { 6221 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6222 struct stmmac_priv *priv = netdev_priv(dev); 6223 6224 if (dev->netdev_ops != &stmmac_netdev_ops) 6225 goto done; 6226 6227 switch (event) { 6228 case NETDEV_CHANGENAME: 6229 if (priv->dbgfs_dir) 6230 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6231 priv->dbgfs_dir, 6232 stmmac_fs_dir, 6233 dev->name); 6234 break; 6235 } 6236 done: 6237 return NOTIFY_DONE; 6238 } 6239 6240 static struct notifier_block stmmac_notifier = { 6241 .notifier_call = stmmac_device_event, 6242 }; 6243 6244 static void stmmac_init_fs(struct net_device *dev) 6245 { 6246 struct stmmac_priv *priv = netdev_priv(dev); 6247 6248 rtnl_lock(); 6249 6250 /* Create per netdev entries */ 6251 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6252 6253 /* Entry to report DMA RX/TX rings */ 6254 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6255 &stmmac_rings_status_fops); 6256 6257 /* Entry to report the DMA HW features */ 6258 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6259 &stmmac_dma_cap_fops); 6260 6261 rtnl_unlock(); 6262 } 6263 6264 static void stmmac_exit_fs(struct net_device *dev) 6265 { 6266 struct stmmac_priv *priv = netdev_priv(dev); 6267 6268 debugfs_remove_recursive(priv->dbgfs_dir); 6269 } 6270 #endif /* CONFIG_DEBUG_FS */ 6271 6272 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6273 { 6274 unsigned char *data = (unsigned char *)&vid_le; 6275 unsigned char data_byte = 0; 6276 u32 crc = ~0x0; 6277 u32 temp = 0; 6278 int i, bits; 6279 6280 bits = get_bitmask_order(VLAN_VID_MASK); 6281 for (i = 0; i < bits; i++) { 6282 if ((i % 8) == 0) 6283 data_byte = data[i / 8]; 6284 6285 temp = ((crc & 1) ^ data_byte) & 1; 6286 crc >>= 1; 6287 data_byte >>= 1; 6288 6289 if (temp) 6290 crc ^= 0xedb88320; 6291 } 6292 6293 return crc; 6294 } 6295 6296 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6297 { 6298 u32 crc, hash = 0; 6299 __le16 pmatch = 0; 6300 int count = 0; 6301 u16 vid = 0; 6302 6303 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6304 __le16 vid_le = cpu_to_le16(vid); 6305 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6306 hash |= (1 << crc); 6307 count++; 6308 } 6309 6310 if (!priv->dma_cap.vlhash) { 6311 if (count > 2) /* VID = 0 always passes filter */ 6312 return -EOPNOTSUPP; 6313 6314 pmatch = cpu_to_le16(vid); 6315 hash = 0; 6316 } 6317 6318 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6319 } 6320 6321 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6322 { 6323 struct stmmac_priv *priv = netdev_priv(ndev); 6324 bool is_double = false; 6325 int ret; 6326 6327 if (be16_to_cpu(proto) == ETH_P_8021AD) 6328 is_double = true; 6329 6330 set_bit(vid, priv->active_vlans); 6331 ret = stmmac_vlan_update(priv, is_double); 6332 if (ret) { 6333 clear_bit(vid, priv->active_vlans); 6334 return ret; 6335 } 6336 6337 if (priv->hw->num_vlan) { 6338 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6339 if (ret) 6340 return ret; 6341 } 6342 6343 return 0; 6344 } 6345 6346 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6347 { 6348 struct stmmac_priv *priv = netdev_priv(ndev); 6349 bool is_double = false; 6350 int ret; 6351 6352 ret = pm_runtime_resume_and_get(priv->device); 6353 if (ret < 0) 6354 return ret; 6355 6356 if (be16_to_cpu(proto) == ETH_P_8021AD) 6357 is_double = true; 6358 6359 clear_bit(vid, priv->active_vlans); 6360 6361 if (priv->hw->num_vlan) { 6362 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6363 if (ret) 6364 goto del_vlan_error; 6365 } 6366 6367 ret = stmmac_vlan_update(priv, is_double); 6368 6369 del_vlan_error: 6370 pm_runtime_put(priv->device); 6371 6372 return ret; 6373 } 6374 6375 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6376 { 6377 struct stmmac_priv *priv = netdev_priv(dev); 6378 6379 switch (bpf->command) { 6380 case XDP_SETUP_PROG: 6381 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6382 case XDP_SETUP_XSK_POOL: 6383 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6384 bpf->xsk.queue_id); 6385 default: 6386 return -EOPNOTSUPP; 6387 } 6388 } 6389 6390 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6391 struct xdp_frame **frames, u32 flags) 6392 { 6393 struct stmmac_priv *priv = netdev_priv(dev); 6394 int cpu = smp_processor_id(); 6395 struct netdev_queue *nq; 6396 int i, nxmit = 0; 6397 int queue; 6398 6399 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6400 return -ENETDOWN; 6401 6402 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6403 return -EINVAL; 6404 6405 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6406 nq = netdev_get_tx_queue(priv->dev, queue); 6407 6408 __netif_tx_lock(nq, cpu); 6409 /* Avoids TX time-out as we are sharing with slow path */ 6410 txq_trans_cond_update(nq); 6411 6412 for (i = 0; i < num_frames; i++) { 6413 int res; 6414 6415 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6416 if (res == STMMAC_XDP_CONSUMED) 6417 break; 6418 6419 nxmit++; 6420 } 6421 6422 if (flags & XDP_XMIT_FLUSH) { 6423 stmmac_flush_tx_descriptors(priv, queue); 6424 stmmac_tx_timer_arm(priv, queue); 6425 } 6426 6427 __netif_tx_unlock(nq); 6428 6429 return nxmit; 6430 } 6431 6432 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6433 { 6434 struct stmmac_channel *ch = &priv->channel[queue]; 6435 unsigned long flags; 6436 6437 spin_lock_irqsave(&ch->lock, flags); 6438 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6439 spin_unlock_irqrestore(&ch->lock, flags); 6440 6441 stmmac_stop_rx_dma(priv, queue); 6442 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6443 } 6444 6445 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6446 { 6447 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 6448 struct stmmac_channel *ch = &priv->channel[queue]; 6449 unsigned long flags; 6450 u32 buf_size; 6451 int ret; 6452 6453 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6454 if (ret) { 6455 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6456 return; 6457 } 6458 6459 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL); 6460 if (ret) { 6461 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue); 6462 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6463 return; 6464 } 6465 6466 stmmac_reset_rx_queue(priv, queue); 6467 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue); 6468 6469 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6470 rx_q->dma_rx_phy, rx_q->queue_index); 6471 6472 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6473 sizeof(struct dma_desc)); 6474 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6475 rx_q->rx_tail_addr, rx_q->queue_index); 6476 6477 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6478 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6479 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6480 buf_size, 6481 rx_q->queue_index); 6482 } else { 6483 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6484 priv->dma_conf.dma_buf_sz, 6485 rx_q->queue_index); 6486 } 6487 6488 stmmac_start_rx_dma(priv, queue); 6489 6490 spin_lock_irqsave(&ch->lock, flags); 6491 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6492 spin_unlock_irqrestore(&ch->lock, flags); 6493 } 6494 6495 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6496 { 6497 struct stmmac_channel *ch = &priv->channel[queue]; 6498 unsigned long flags; 6499 6500 spin_lock_irqsave(&ch->lock, flags); 6501 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6502 spin_unlock_irqrestore(&ch->lock, flags); 6503 6504 stmmac_stop_tx_dma(priv, queue); 6505 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6506 } 6507 6508 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6509 { 6510 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 6511 struct stmmac_channel *ch = &priv->channel[queue]; 6512 unsigned long flags; 6513 int ret; 6514 6515 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6516 if (ret) { 6517 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6518 return; 6519 } 6520 6521 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue); 6522 if (ret) { 6523 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue); 6524 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6525 return; 6526 } 6527 6528 stmmac_reset_tx_queue(priv, queue); 6529 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue); 6530 6531 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6532 tx_q->dma_tx_phy, tx_q->queue_index); 6533 6534 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6535 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6536 6537 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6538 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6539 tx_q->tx_tail_addr, tx_q->queue_index); 6540 6541 stmmac_start_tx_dma(priv, queue); 6542 6543 spin_lock_irqsave(&ch->lock, flags); 6544 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6545 spin_unlock_irqrestore(&ch->lock, flags); 6546 } 6547 6548 void stmmac_xdp_release(struct net_device *dev) 6549 { 6550 struct stmmac_priv *priv = netdev_priv(dev); 6551 u32 chan; 6552 6553 /* Disable NAPI process */ 6554 stmmac_disable_all_queues(priv); 6555 6556 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6557 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6558 6559 /* Free the IRQ lines */ 6560 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6561 6562 /* Stop TX/RX DMA channels */ 6563 stmmac_stop_all_dma(priv); 6564 6565 /* Release and free the Rx/Tx resources */ 6566 free_dma_desc_resources(priv, &priv->dma_conf); 6567 6568 /* Disable the MAC Rx/Tx */ 6569 stmmac_mac_set(priv, priv->ioaddr, false); 6570 6571 /* set trans_start so we don't get spurious 6572 * watchdogs during reset 6573 */ 6574 netif_trans_update(dev); 6575 netif_carrier_off(dev); 6576 } 6577 6578 int stmmac_xdp_open(struct net_device *dev) 6579 { 6580 struct stmmac_priv *priv = netdev_priv(dev); 6581 u32 rx_cnt = priv->plat->rx_queues_to_use; 6582 u32 tx_cnt = priv->plat->tx_queues_to_use; 6583 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6584 struct stmmac_rx_queue *rx_q; 6585 struct stmmac_tx_queue *tx_q; 6586 u32 buf_size; 6587 bool sph_en; 6588 u32 chan; 6589 int ret; 6590 6591 ret = alloc_dma_desc_resources(priv, &priv->dma_conf); 6592 if (ret < 0) { 6593 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6594 __func__); 6595 goto dma_desc_error; 6596 } 6597 6598 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL); 6599 if (ret < 0) { 6600 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6601 __func__); 6602 goto init_error; 6603 } 6604 6605 /* DMA CSR Channel configuration */ 6606 for (chan = 0; chan < dma_csr_ch; chan++) { 6607 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6608 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6609 } 6610 6611 /* Adjust Split header */ 6612 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6613 6614 /* DMA RX Channel Configuration */ 6615 for (chan = 0; chan < rx_cnt; chan++) { 6616 rx_q = &priv->dma_conf.rx_queue[chan]; 6617 6618 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6619 rx_q->dma_rx_phy, chan); 6620 6621 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6622 (rx_q->buf_alloc_num * 6623 sizeof(struct dma_desc)); 6624 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6625 rx_q->rx_tail_addr, chan); 6626 6627 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6628 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6629 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6630 buf_size, 6631 rx_q->queue_index); 6632 } else { 6633 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6634 priv->dma_conf.dma_buf_sz, 6635 rx_q->queue_index); 6636 } 6637 6638 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6639 } 6640 6641 /* DMA TX Channel Configuration */ 6642 for (chan = 0; chan < tx_cnt; chan++) { 6643 tx_q = &priv->dma_conf.tx_queue[chan]; 6644 6645 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6646 tx_q->dma_tx_phy, chan); 6647 6648 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6649 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6650 tx_q->tx_tail_addr, chan); 6651 6652 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6653 tx_q->txtimer.function = stmmac_tx_timer; 6654 } 6655 6656 /* Enable the MAC Rx/Tx */ 6657 stmmac_mac_set(priv, priv->ioaddr, true); 6658 6659 /* Start Rx & Tx DMA Channels */ 6660 stmmac_start_all_dma(priv); 6661 6662 ret = stmmac_request_irq(dev); 6663 if (ret) 6664 goto irq_error; 6665 6666 /* Enable NAPI process*/ 6667 stmmac_enable_all_queues(priv); 6668 netif_carrier_on(dev); 6669 netif_tx_start_all_queues(dev); 6670 stmmac_enable_all_dma_irq(priv); 6671 6672 return 0; 6673 6674 irq_error: 6675 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6676 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 6677 6678 stmmac_hw_teardown(dev); 6679 init_error: 6680 free_dma_desc_resources(priv, &priv->dma_conf); 6681 dma_desc_error: 6682 return ret; 6683 } 6684 6685 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6686 { 6687 struct stmmac_priv *priv = netdev_priv(dev); 6688 struct stmmac_rx_queue *rx_q; 6689 struct stmmac_tx_queue *tx_q; 6690 struct stmmac_channel *ch; 6691 6692 if (test_bit(STMMAC_DOWN, &priv->state) || 6693 !netif_carrier_ok(priv->dev)) 6694 return -ENETDOWN; 6695 6696 if (!stmmac_xdp_is_enabled(priv)) 6697 return -EINVAL; 6698 6699 if (queue >= priv->plat->rx_queues_to_use || 6700 queue >= priv->plat->tx_queues_to_use) 6701 return -EINVAL; 6702 6703 rx_q = &priv->dma_conf.rx_queue[queue]; 6704 tx_q = &priv->dma_conf.tx_queue[queue]; 6705 ch = &priv->channel[queue]; 6706 6707 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6708 return -EINVAL; 6709 6710 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6711 /* EQoS does not have per-DMA channel SW interrupt, 6712 * so we schedule RX Napi straight-away. 6713 */ 6714 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6715 __napi_schedule(&ch->rxtx_napi); 6716 } 6717 6718 return 0; 6719 } 6720 6721 static const struct net_device_ops stmmac_netdev_ops = { 6722 .ndo_open = stmmac_open, 6723 .ndo_start_xmit = stmmac_xmit, 6724 .ndo_stop = stmmac_release, 6725 .ndo_change_mtu = stmmac_change_mtu, 6726 .ndo_fix_features = stmmac_fix_features, 6727 .ndo_set_features = stmmac_set_features, 6728 .ndo_set_rx_mode = stmmac_set_rx_mode, 6729 .ndo_tx_timeout = stmmac_tx_timeout, 6730 .ndo_eth_ioctl = stmmac_ioctl, 6731 .ndo_setup_tc = stmmac_setup_tc, 6732 .ndo_select_queue = stmmac_select_queue, 6733 #ifdef CONFIG_NET_POLL_CONTROLLER 6734 .ndo_poll_controller = stmmac_poll_controller, 6735 #endif 6736 .ndo_set_mac_address = stmmac_set_mac_address, 6737 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6738 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6739 .ndo_bpf = stmmac_bpf, 6740 .ndo_xdp_xmit = stmmac_xdp_xmit, 6741 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6742 }; 6743 6744 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6745 { 6746 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6747 return; 6748 if (test_bit(STMMAC_DOWN, &priv->state)) 6749 return; 6750 6751 netdev_err(priv->dev, "Reset adapter.\n"); 6752 6753 rtnl_lock(); 6754 netif_trans_update(priv->dev); 6755 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6756 usleep_range(1000, 2000); 6757 6758 set_bit(STMMAC_DOWN, &priv->state); 6759 dev_close(priv->dev); 6760 dev_open(priv->dev, NULL); 6761 clear_bit(STMMAC_DOWN, &priv->state); 6762 clear_bit(STMMAC_RESETING, &priv->state); 6763 rtnl_unlock(); 6764 } 6765 6766 static void stmmac_service_task(struct work_struct *work) 6767 { 6768 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6769 service_task); 6770 6771 stmmac_reset_subtask(priv); 6772 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6773 } 6774 6775 /** 6776 * stmmac_hw_init - Init the MAC device 6777 * @priv: driver private structure 6778 * Description: this function is to configure the MAC device according to 6779 * some platform parameters or the HW capability register. It prepares the 6780 * driver to use either ring or chain modes and to setup either enhanced or 6781 * normal descriptors. 6782 */ 6783 static int stmmac_hw_init(struct stmmac_priv *priv) 6784 { 6785 int ret; 6786 6787 /* dwmac-sun8i only work in chain mode */ 6788 if (priv->plat->has_sun8i) 6789 chain_mode = 1; 6790 priv->chain_mode = chain_mode; 6791 6792 /* Initialize HW Interface */ 6793 ret = stmmac_hwif_init(priv); 6794 if (ret) 6795 return ret; 6796 6797 /* Get the HW capability (new GMAC newer than 3.50a) */ 6798 priv->hw_cap_support = stmmac_get_hw_features(priv); 6799 if (priv->hw_cap_support) { 6800 dev_info(priv->device, "DMA HW capability register supported\n"); 6801 6802 /* We can override some gmac/dma configuration fields: e.g. 6803 * enh_desc, tx_coe (e.g. that are passed through the 6804 * platform) with the values from the HW capability 6805 * register (if supported). 6806 */ 6807 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6808 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6809 !priv->plat->use_phy_wol; 6810 priv->hw->pmt = priv->plat->pmt; 6811 if (priv->dma_cap.hash_tb_sz) { 6812 priv->hw->multicast_filter_bins = 6813 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6814 priv->hw->mcast_bits_log2 = 6815 ilog2(priv->hw->multicast_filter_bins); 6816 } 6817 6818 /* TXCOE doesn't work in thresh DMA mode */ 6819 if (priv->plat->force_thresh_dma_mode) 6820 priv->plat->tx_coe = 0; 6821 else 6822 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6823 6824 /* In case of GMAC4 rx_coe is from HW cap register. */ 6825 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6826 6827 if (priv->dma_cap.rx_coe_type2) 6828 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6829 else if (priv->dma_cap.rx_coe_type1) 6830 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6831 6832 } else { 6833 dev_info(priv->device, "No HW DMA feature register supported\n"); 6834 } 6835 6836 if (priv->plat->rx_coe) { 6837 priv->hw->rx_csum = priv->plat->rx_coe; 6838 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6839 if (priv->synopsys_id < DWMAC_CORE_4_00) 6840 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6841 } 6842 if (priv->plat->tx_coe) 6843 dev_info(priv->device, "TX Checksum insertion supported\n"); 6844 6845 if (priv->plat->pmt) { 6846 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6847 device_set_wakeup_capable(priv->device, 1); 6848 } 6849 6850 if (priv->dma_cap.tsoen) 6851 dev_info(priv->device, "TSO supported\n"); 6852 6853 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6854 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6855 6856 /* Run HW quirks, if any */ 6857 if (priv->hwif_quirks) { 6858 ret = priv->hwif_quirks(priv); 6859 if (ret) 6860 return ret; 6861 } 6862 6863 /* Rx Watchdog is available in the COREs newer than the 3.40. 6864 * In some case, for example on bugged HW this feature 6865 * has to be disable and this can be done by passing the 6866 * riwt_off field from the platform. 6867 */ 6868 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6869 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6870 priv->use_riwt = 1; 6871 dev_info(priv->device, 6872 "Enable RX Mitigation via HW Watchdog Timer\n"); 6873 } 6874 6875 return 0; 6876 } 6877 6878 static void stmmac_napi_add(struct net_device *dev) 6879 { 6880 struct stmmac_priv *priv = netdev_priv(dev); 6881 u32 queue, maxq; 6882 6883 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6884 6885 for (queue = 0; queue < maxq; queue++) { 6886 struct stmmac_channel *ch = &priv->channel[queue]; 6887 6888 ch->priv_data = priv; 6889 ch->index = queue; 6890 spin_lock_init(&ch->lock); 6891 6892 if (queue < priv->plat->rx_queues_to_use) { 6893 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6894 NAPI_POLL_WEIGHT); 6895 } 6896 if (queue < priv->plat->tx_queues_to_use) { 6897 netif_napi_add_tx(dev, &ch->tx_napi, 6898 stmmac_napi_poll_tx); 6899 } 6900 if (queue < priv->plat->rx_queues_to_use && 6901 queue < priv->plat->tx_queues_to_use) { 6902 netif_napi_add(dev, &ch->rxtx_napi, 6903 stmmac_napi_poll_rxtx, 6904 NAPI_POLL_WEIGHT); 6905 } 6906 } 6907 } 6908 6909 static void stmmac_napi_del(struct net_device *dev) 6910 { 6911 struct stmmac_priv *priv = netdev_priv(dev); 6912 u32 queue, maxq; 6913 6914 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6915 6916 for (queue = 0; queue < maxq; queue++) { 6917 struct stmmac_channel *ch = &priv->channel[queue]; 6918 6919 if (queue < priv->plat->rx_queues_to_use) 6920 netif_napi_del(&ch->rx_napi); 6921 if (queue < priv->plat->tx_queues_to_use) 6922 netif_napi_del(&ch->tx_napi); 6923 if (queue < priv->plat->rx_queues_to_use && 6924 queue < priv->plat->tx_queues_to_use) { 6925 netif_napi_del(&ch->rxtx_napi); 6926 } 6927 } 6928 } 6929 6930 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6931 { 6932 struct stmmac_priv *priv = netdev_priv(dev); 6933 int ret = 0; 6934 6935 if (netif_running(dev)) 6936 stmmac_release(dev); 6937 6938 stmmac_napi_del(dev); 6939 6940 priv->plat->rx_queues_to_use = rx_cnt; 6941 priv->plat->tx_queues_to_use = tx_cnt; 6942 6943 stmmac_napi_add(dev); 6944 6945 if (netif_running(dev)) 6946 ret = stmmac_open(dev); 6947 6948 return ret; 6949 } 6950 6951 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6952 { 6953 struct stmmac_priv *priv = netdev_priv(dev); 6954 int ret = 0; 6955 6956 if (netif_running(dev)) 6957 stmmac_release(dev); 6958 6959 priv->dma_conf.dma_rx_size = rx_size; 6960 priv->dma_conf.dma_tx_size = tx_size; 6961 6962 if (netif_running(dev)) 6963 ret = stmmac_open(dev); 6964 6965 return ret; 6966 } 6967 6968 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6969 static void stmmac_fpe_lp_task(struct work_struct *work) 6970 { 6971 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6972 fpe_task); 6973 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6974 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6975 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6976 bool *hs_enable = &fpe_cfg->hs_enable; 6977 bool *enable = &fpe_cfg->enable; 6978 int retries = 20; 6979 6980 while (retries-- > 0) { 6981 /* Bail out immediately if FPE handshake is OFF */ 6982 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6983 break; 6984 6985 if (*lo_state == FPE_STATE_ENTERING_ON && 6986 *lp_state == FPE_STATE_ENTERING_ON) { 6987 stmmac_fpe_configure(priv, priv->ioaddr, 6988 priv->plat->tx_queues_to_use, 6989 priv->plat->rx_queues_to_use, 6990 *enable); 6991 6992 netdev_info(priv->dev, "configured FPE\n"); 6993 6994 *lo_state = FPE_STATE_ON; 6995 *lp_state = FPE_STATE_ON; 6996 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6997 break; 6998 } 6999 7000 if ((*lo_state == FPE_STATE_CAPABLE || 7001 *lo_state == FPE_STATE_ENTERING_ON) && 7002 *lp_state != FPE_STATE_ON) { 7003 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 7004 *lo_state, *lp_state); 7005 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7006 MPACKET_VERIFY); 7007 } 7008 /* Sleep then retry */ 7009 msleep(500); 7010 } 7011 7012 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 7013 } 7014 7015 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 7016 { 7017 if (priv->plat->fpe_cfg->hs_enable != enable) { 7018 if (enable) { 7019 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 7020 MPACKET_VERIFY); 7021 } else { 7022 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 7023 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 7024 } 7025 7026 priv->plat->fpe_cfg->hs_enable = enable; 7027 } 7028 } 7029 7030 /** 7031 * stmmac_dvr_probe 7032 * @device: device pointer 7033 * @plat_dat: platform data pointer 7034 * @res: stmmac resource pointer 7035 * Description: this is the main probe function used to 7036 * call the alloc_etherdev, allocate the priv structure. 7037 * Return: 7038 * returns 0 on success, otherwise errno. 7039 */ 7040 int stmmac_dvr_probe(struct device *device, 7041 struct plat_stmmacenet_data *plat_dat, 7042 struct stmmac_resources *res) 7043 { 7044 struct net_device *ndev = NULL; 7045 struct stmmac_priv *priv; 7046 u32 rxq; 7047 int i, ret = 0; 7048 7049 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 7050 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 7051 if (!ndev) 7052 return -ENOMEM; 7053 7054 SET_NETDEV_DEV(ndev, device); 7055 7056 priv = netdev_priv(ndev); 7057 priv->device = device; 7058 priv->dev = ndev; 7059 7060 stmmac_set_ethtool_ops(ndev); 7061 priv->pause = pause; 7062 priv->plat = plat_dat; 7063 priv->ioaddr = res->addr; 7064 priv->dev->base_addr = (unsigned long)res->addr; 7065 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 7066 7067 priv->dev->irq = res->irq; 7068 priv->wol_irq = res->wol_irq; 7069 priv->lpi_irq = res->lpi_irq; 7070 priv->sfty_ce_irq = res->sfty_ce_irq; 7071 priv->sfty_ue_irq = res->sfty_ue_irq; 7072 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 7073 priv->rx_irq[i] = res->rx_irq[i]; 7074 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 7075 priv->tx_irq[i] = res->tx_irq[i]; 7076 7077 if (!is_zero_ether_addr(res->mac)) 7078 eth_hw_addr_set(priv->dev, res->mac); 7079 7080 dev_set_drvdata(device, priv->dev); 7081 7082 /* Verify driver arguments */ 7083 stmmac_verify_args(); 7084 7085 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 7086 if (!priv->af_xdp_zc_qps) 7087 return -ENOMEM; 7088 7089 /* Allocate workqueue */ 7090 priv->wq = create_singlethread_workqueue("stmmac_wq"); 7091 if (!priv->wq) { 7092 dev_err(priv->device, "failed to create workqueue\n"); 7093 return -ENOMEM; 7094 } 7095 7096 INIT_WORK(&priv->service_task, stmmac_service_task); 7097 7098 /* Initialize Link Partner FPE workqueue */ 7099 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 7100 7101 /* Override with kernel parameters if supplied XXX CRS XXX 7102 * this needs to have multiple instances 7103 */ 7104 if ((phyaddr >= 0) && (phyaddr <= 31)) 7105 priv->plat->phy_addr = phyaddr; 7106 7107 if (priv->plat->stmmac_rst) { 7108 ret = reset_control_assert(priv->plat->stmmac_rst); 7109 reset_control_deassert(priv->plat->stmmac_rst); 7110 /* Some reset controllers have only reset callback instead of 7111 * assert + deassert callbacks pair. 7112 */ 7113 if (ret == -ENOTSUPP) 7114 reset_control_reset(priv->plat->stmmac_rst); 7115 } 7116 7117 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 7118 if (ret == -ENOTSUPP) 7119 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 7120 ERR_PTR(ret)); 7121 7122 /* Init MAC and get the capabilities */ 7123 ret = stmmac_hw_init(priv); 7124 if (ret) 7125 goto error_hw_init; 7126 7127 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7128 */ 7129 if (priv->synopsys_id < DWMAC_CORE_5_20) 7130 priv->plat->dma_cfg->dche = false; 7131 7132 stmmac_check_ether_addr(priv); 7133 7134 ndev->netdev_ops = &stmmac_netdev_ops; 7135 7136 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7137 NETIF_F_RXCSUM; 7138 7139 ret = stmmac_tc_init(priv, priv); 7140 if (!ret) { 7141 ndev->hw_features |= NETIF_F_HW_TC; 7142 } 7143 7144 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7145 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7146 if (priv->plat->has_gmac4) 7147 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7148 priv->tso = true; 7149 dev_info(priv->device, "TSO feature enabled\n"); 7150 } 7151 7152 if (priv->dma_cap.sphen && !priv->plat->sph_disable) { 7153 ndev->hw_features |= NETIF_F_GRO; 7154 priv->sph_cap = true; 7155 priv->sph = priv->sph_cap; 7156 dev_info(priv->device, "SPH feature enabled\n"); 7157 } 7158 7159 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7160 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7161 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7162 * So overwrite dma_cap.addr64 according to HW real design. 7163 */ 7164 if (priv->plat->addr64) 7165 priv->dma_cap.addr64 = priv->plat->addr64; 7166 7167 if (priv->dma_cap.addr64) { 7168 ret = dma_set_mask_and_coherent(device, 7169 DMA_BIT_MASK(priv->dma_cap.addr64)); 7170 if (!ret) { 7171 dev_info(priv->device, "Using %d bits DMA width\n", 7172 priv->dma_cap.addr64); 7173 7174 /* 7175 * If more than 32 bits can be addressed, make sure to 7176 * enable enhanced addressing mode. 7177 */ 7178 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7179 priv->plat->dma_cfg->eame = true; 7180 } else { 7181 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7182 if (ret) { 7183 dev_err(priv->device, "Failed to set DMA Mask\n"); 7184 goto error_hw_init; 7185 } 7186 7187 priv->dma_cap.addr64 = 32; 7188 } 7189 } 7190 7191 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7192 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7193 #ifdef STMMAC_VLAN_TAG_USED 7194 /* Both mac100 and gmac support receive VLAN tag detection */ 7195 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7196 if (priv->dma_cap.vlhash) { 7197 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7198 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7199 } 7200 if (priv->dma_cap.vlins) { 7201 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7202 if (priv->dma_cap.dvlan) 7203 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7204 } 7205 #endif 7206 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7207 7208 /* Initialize RSS */ 7209 rxq = priv->plat->rx_queues_to_use; 7210 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7211 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7212 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7213 7214 if (priv->dma_cap.rssen && priv->plat->rss_en) 7215 ndev->features |= NETIF_F_RXHASH; 7216 7217 /* MTU range: 46 - hw-specific max */ 7218 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7219 if (priv->plat->has_xgmac) 7220 ndev->max_mtu = XGMAC_JUMBO_LEN; 7221 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7222 ndev->max_mtu = JUMBO_LEN; 7223 else 7224 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7225 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7226 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7227 */ 7228 if ((priv->plat->maxmtu < ndev->max_mtu) && 7229 (priv->plat->maxmtu >= ndev->min_mtu)) 7230 ndev->max_mtu = priv->plat->maxmtu; 7231 else if (priv->plat->maxmtu < ndev->min_mtu) 7232 dev_warn(priv->device, 7233 "%s: warning: maxmtu having invalid value (%d)\n", 7234 __func__, priv->plat->maxmtu); 7235 7236 if (flow_ctrl) 7237 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7238 7239 /* Setup channels NAPI */ 7240 stmmac_napi_add(ndev); 7241 7242 mutex_init(&priv->lock); 7243 7244 /* If a specific clk_csr value is passed from the platform 7245 * this means that the CSR Clock Range selection cannot be 7246 * changed at run-time and it is fixed. Viceversa the driver'll try to 7247 * set the MDC clock dynamically according to the csr actual 7248 * clock input. 7249 */ 7250 if (priv->plat->clk_csr >= 0) 7251 priv->clk_csr = priv->plat->clk_csr; 7252 else 7253 stmmac_clk_csr_set(priv); 7254 7255 stmmac_check_pcs_mode(priv); 7256 7257 pm_runtime_get_noresume(device); 7258 pm_runtime_set_active(device); 7259 if (!pm_runtime_enabled(device)) 7260 pm_runtime_enable(device); 7261 7262 if (priv->hw->pcs != STMMAC_PCS_TBI && 7263 priv->hw->pcs != STMMAC_PCS_RTBI) { 7264 /* MDIO bus Registration */ 7265 ret = stmmac_mdio_register(ndev); 7266 if (ret < 0) { 7267 dev_err_probe(priv->device, ret, 7268 "%s: MDIO bus (id: %d) registration failed\n", 7269 __func__, priv->plat->bus_id); 7270 goto error_mdio_register; 7271 } 7272 } 7273 7274 if (priv->plat->speed_mode_2500) 7275 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7276 7277 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7278 ret = stmmac_xpcs_setup(priv->mii); 7279 if (ret) 7280 goto error_xpcs_setup; 7281 } 7282 7283 ret = stmmac_phy_setup(priv); 7284 if (ret) { 7285 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7286 goto error_phy_setup; 7287 } 7288 7289 ret = register_netdev(ndev); 7290 if (ret) { 7291 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7292 __func__, ret); 7293 goto error_netdev_register; 7294 } 7295 7296 if (priv->plat->serdes_powerup) { 7297 ret = priv->plat->serdes_powerup(ndev, 7298 priv->plat->bsp_priv); 7299 7300 if (ret < 0) 7301 goto error_serdes_powerup; 7302 } 7303 7304 #ifdef CONFIG_DEBUG_FS 7305 stmmac_init_fs(ndev); 7306 #endif 7307 7308 if (priv->plat->dump_debug_regs) 7309 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7310 7311 /* Let pm_runtime_put() disable the clocks. 7312 * If CONFIG_PM is not enabled, the clocks will stay powered. 7313 */ 7314 pm_runtime_put(device); 7315 7316 return ret; 7317 7318 error_serdes_powerup: 7319 unregister_netdev(ndev); 7320 error_netdev_register: 7321 phylink_destroy(priv->phylink); 7322 error_xpcs_setup: 7323 error_phy_setup: 7324 if (priv->hw->pcs != STMMAC_PCS_TBI && 7325 priv->hw->pcs != STMMAC_PCS_RTBI) 7326 stmmac_mdio_unregister(ndev); 7327 error_mdio_register: 7328 stmmac_napi_del(ndev); 7329 error_hw_init: 7330 destroy_workqueue(priv->wq); 7331 bitmap_free(priv->af_xdp_zc_qps); 7332 7333 return ret; 7334 } 7335 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7336 7337 /** 7338 * stmmac_dvr_remove 7339 * @dev: device pointer 7340 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7341 * changes the link status, releases the DMA descriptor rings. 7342 */ 7343 int stmmac_dvr_remove(struct device *dev) 7344 { 7345 struct net_device *ndev = dev_get_drvdata(dev); 7346 struct stmmac_priv *priv = netdev_priv(ndev); 7347 7348 netdev_info(priv->dev, "%s: removing driver", __func__); 7349 7350 pm_runtime_get_sync(dev); 7351 7352 stmmac_stop_all_dma(priv); 7353 stmmac_mac_set(priv, priv->ioaddr, false); 7354 netif_carrier_off(ndev); 7355 unregister_netdev(ndev); 7356 7357 /* Serdes power down needs to happen after VLAN filter 7358 * is deleted that is triggered by unregister_netdev(). 7359 */ 7360 if (priv->plat->serdes_powerdown) 7361 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7362 7363 #ifdef CONFIG_DEBUG_FS 7364 stmmac_exit_fs(ndev); 7365 #endif 7366 phylink_destroy(priv->phylink); 7367 if (priv->plat->stmmac_rst) 7368 reset_control_assert(priv->plat->stmmac_rst); 7369 reset_control_assert(priv->plat->stmmac_ahb_rst); 7370 if (priv->hw->pcs != STMMAC_PCS_TBI && 7371 priv->hw->pcs != STMMAC_PCS_RTBI) 7372 stmmac_mdio_unregister(ndev); 7373 destroy_workqueue(priv->wq); 7374 mutex_destroy(&priv->lock); 7375 bitmap_free(priv->af_xdp_zc_qps); 7376 7377 pm_runtime_disable(dev); 7378 pm_runtime_put_noidle(dev); 7379 7380 return 0; 7381 } 7382 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7383 7384 /** 7385 * stmmac_suspend - suspend callback 7386 * @dev: device pointer 7387 * Description: this is the function to suspend the device and it is called 7388 * by the platform driver to stop the network queue, release the resources, 7389 * program the PMT register (for WoL), clean and release driver resources. 7390 */ 7391 int stmmac_suspend(struct device *dev) 7392 { 7393 struct net_device *ndev = dev_get_drvdata(dev); 7394 struct stmmac_priv *priv = netdev_priv(ndev); 7395 u32 chan; 7396 7397 if (!ndev || !netif_running(ndev)) 7398 return 0; 7399 7400 mutex_lock(&priv->lock); 7401 7402 netif_device_detach(ndev); 7403 7404 stmmac_disable_all_queues(priv); 7405 7406 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7407 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer); 7408 7409 if (priv->eee_enabled) { 7410 priv->tx_path_in_lpi_mode = false; 7411 del_timer_sync(&priv->eee_ctrl_timer); 7412 } 7413 7414 /* Stop TX/RX DMA */ 7415 stmmac_stop_all_dma(priv); 7416 7417 if (priv->plat->serdes_powerdown) 7418 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7419 7420 /* Enable Power down mode by programming the PMT regs */ 7421 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7422 stmmac_pmt(priv, priv->hw, priv->wolopts); 7423 priv->irq_wake = 1; 7424 } else { 7425 stmmac_mac_set(priv, priv->ioaddr, false); 7426 pinctrl_pm_select_sleep_state(priv->device); 7427 } 7428 7429 mutex_unlock(&priv->lock); 7430 7431 rtnl_lock(); 7432 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7433 phylink_suspend(priv->phylink, true); 7434 } else { 7435 if (device_may_wakeup(priv->device)) 7436 phylink_speed_down(priv->phylink, false); 7437 phylink_suspend(priv->phylink, false); 7438 } 7439 rtnl_unlock(); 7440 7441 if (priv->dma_cap.fpesel) { 7442 /* Disable FPE */ 7443 stmmac_fpe_configure(priv, priv->ioaddr, 7444 priv->plat->tx_queues_to_use, 7445 priv->plat->rx_queues_to_use, false); 7446 7447 stmmac_fpe_handshake(priv, false); 7448 stmmac_fpe_stop_wq(priv); 7449 } 7450 7451 priv->speed = SPEED_UNKNOWN; 7452 return 0; 7453 } 7454 EXPORT_SYMBOL_GPL(stmmac_suspend); 7455 7456 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue) 7457 { 7458 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue]; 7459 7460 rx_q->cur_rx = 0; 7461 rx_q->dirty_rx = 0; 7462 } 7463 7464 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue) 7465 { 7466 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue]; 7467 7468 tx_q->cur_tx = 0; 7469 tx_q->dirty_tx = 0; 7470 tx_q->mss = 0; 7471 7472 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7473 } 7474 7475 /** 7476 * stmmac_reset_queues_param - reset queue parameters 7477 * @priv: device pointer 7478 */ 7479 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7480 { 7481 u32 rx_cnt = priv->plat->rx_queues_to_use; 7482 u32 tx_cnt = priv->plat->tx_queues_to_use; 7483 u32 queue; 7484 7485 for (queue = 0; queue < rx_cnt; queue++) 7486 stmmac_reset_rx_queue(priv, queue); 7487 7488 for (queue = 0; queue < tx_cnt; queue++) 7489 stmmac_reset_tx_queue(priv, queue); 7490 } 7491 7492 /** 7493 * stmmac_resume - resume callback 7494 * @dev: device pointer 7495 * Description: when resume this function is invoked to setup the DMA and CORE 7496 * in a usable state. 7497 */ 7498 int stmmac_resume(struct device *dev) 7499 { 7500 struct net_device *ndev = dev_get_drvdata(dev); 7501 struct stmmac_priv *priv = netdev_priv(ndev); 7502 int ret; 7503 7504 if (!netif_running(ndev)) 7505 return 0; 7506 7507 /* Power Down bit, into the PM register, is cleared 7508 * automatically as soon as a magic packet or a Wake-up frame 7509 * is received. Anyway, it's better to manually clear 7510 * this bit because it can generate problems while resuming 7511 * from another devices (e.g. serial console). 7512 */ 7513 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7514 mutex_lock(&priv->lock); 7515 stmmac_pmt(priv, priv->hw, 0); 7516 mutex_unlock(&priv->lock); 7517 priv->irq_wake = 0; 7518 } else { 7519 pinctrl_pm_select_default_state(priv->device); 7520 /* reset the phy so that it's ready */ 7521 if (priv->mii) 7522 stmmac_mdio_reset(priv->mii); 7523 } 7524 7525 if (priv->plat->serdes_powerup) { 7526 ret = priv->plat->serdes_powerup(ndev, 7527 priv->plat->bsp_priv); 7528 7529 if (ret < 0) 7530 return ret; 7531 } 7532 7533 rtnl_lock(); 7534 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7535 phylink_resume(priv->phylink); 7536 } else { 7537 phylink_resume(priv->phylink); 7538 if (device_may_wakeup(priv->device)) 7539 phylink_speed_up(priv->phylink); 7540 } 7541 rtnl_unlock(); 7542 7543 rtnl_lock(); 7544 mutex_lock(&priv->lock); 7545 7546 stmmac_reset_queues_param(priv); 7547 7548 stmmac_free_tx_skbufs(priv); 7549 stmmac_clear_descriptors(priv, &priv->dma_conf); 7550 7551 stmmac_hw_setup(ndev, false); 7552 stmmac_init_coalesce(priv); 7553 stmmac_set_rx_mode(ndev); 7554 7555 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7556 7557 stmmac_enable_all_queues(priv); 7558 stmmac_enable_all_dma_irq(priv); 7559 7560 mutex_unlock(&priv->lock); 7561 rtnl_unlock(); 7562 7563 netif_device_attach(ndev); 7564 7565 return 0; 7566 } 7567 EXPORT_SYMBOL_GPL(stmmac_resume); 7568 7569 #ifndef MODULE 7570 static int __init stmmac_cmdline_opt(char *str) 7571 { 7572 char *opt; 7573 7574 if (!str || !*str) 7575 return 1; 7576 while ((opt = strsep(&str, ",")) != NULL) { 7577 if (!strncmp(opt, "debug:", 6)) { 7578 if (kstrtoint(opt + 6, 0, &debug)) 7579 goto err; 7580 } else if (!strncmp(opt, "phyaddr:", 8)) { 7581 if (kstrtoint(opt + 8, 0, &phyaddr)) 7582 goto err; 7583 } else if (!strncmp(opt, "buf_sz:", 7)) { 7584 if (kstrtoint(opt + 7, 0, &buf_sz)) 7585 goto err; 7586 } else if (!strncmp(opt, "tc:", 3)) { 7587 if (kstrtoint(opt + 3, 0, &tc)) 7588 goto err; 7589 } else if (!strncmp(opt, "watchdog:", 9)) { 7590 if (kstrtoint(opt + 9, 0, &watchdog)) 7591 goto err; 7592 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7593 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7594 goto err; 7595 } else if (!strncmp(opt, "pause:", 6)) { 7596 if (kstrtoint(opt + 6, 0, &pause)) 7597 goto err; 7598 } else if (!strncmp(opt, "eee_timer:", 10)) { 7599 if (kstrtoint(opt + 10, 0, &eee_timer)) 7600 goto err; 7601 } else if (!strncmp(opt, "chain_mode:", 11)) { 7602 if (kstrtoint(opt + 11, 0, &chain_mode)) 7603 goto err; 7604 } 7605 } 7606 return 1; 7607 7608 err: 7609 pr_err("%s: ERROR broken module parameter conversion", __func__); 7610 return 1; 7611 } 7612 7613 __setup("stmmaceth=", stmmac_cmdline_opt); 7614 #endif /* MODULE */ 7615 7616 static int __init stmmac_init(void) 7617 { 7618 #ifdef CONFIG_DEBUG_FS 7619 /* Create debugfs main directory if it doesn't exist yet */ 7620 if (!stmmac_fs_dir) 7621 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7622 register_netdevice_notifier(&stmmac_notifier); 7623 #endif 7624 7625 return 0; 7626 } 7627 7628 static void __exit stmmac_exit(void) 7629 { 7630 #ifdef CONFIG_DEBUG_FS 7631 unregister_netdevice_notifier(&stmmac_notifier); 7632 debugfs_remove_recursive(stmmac_fs_dir); 7633 #endif 7634 } 7635 7636 module_init(stmmac_init) 7637 module_exit(stmmac_exit) 7638 7639 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7640 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7641 MODULE_LICENSE("GPL"); 7642