1 // SPDX-License-Identifier: GPL-2.0-only 2 /******************************************************************************* 3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers. 4 ST Ethernet IPs are built around a Synopsys IP Core. 5 6 Copyright(C) 2007-2011 STMicroelectronics Ltd 7 8 9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com> 10 11 Documentation available at: 12 http://www.stlinux.com 13 Support available at: 14 https://bugzilla.stlinux.com/ 15 *******************************************************************************/ 16 17 #include <linux/clk.h> 18 #include <linux/kernel.h> 19 #include <linux/interrupt.h> 20 #include <linux/ip.h> 21 #include <linux/tcp.h> 22 #include <linux/skbuff.h> 23 #include <linux/ethtool.h> 24 #include <linux/if_ether.h> 25 #include <linux/crc32.h> 26 #include <linux/mii.h> 27 #include <linux/if.h> 28 #include <linux/if_vlan.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/slab.h> 31 #include <linux/pm_runtime.h> 32 #include <linux/prefetch.h> 33 #include <linux/pinctrl/consumer.h> 34 #ifdef CONFIG_DEBUG_FS 35 #include <linux/debugfs.h> 36 #include <linux/seq_file.h> 37 #endif /* CONFIG_DEBUG_FS */ 38 #include <linux/net_tstamp.h> 39 #include <linux/phylink.h> 40 #include <linux/udp.h> 41 #include <linux/bpf_trace.h> 42 #include <net/pkt_cls.h> 43 #include <net/xdp_sock_drv.h> 44 #include "stmmac_ptp.h" 45 #include "stmmac.h" 46 #include "stmmac_xdp.h" 47 #include <linux/reset.h> 48 #include <linux/of_mdio.h> 49 #include "dwmac1000.h" 50 #include "dwxgmac2.h" 51 #include "hwif.h" 52 53 /* As long as the interface is active, we keep the timestamping counter enabled 54 * with fine resolution and binary rollover. This avoid non-monotonic behavior 55 * (clock jumps) when changing timestamping settings at runtime. 56 */ 57 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \ 58 PTP_TCR_TSCTRLSSR) 59 60 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16) 61 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1) 62 63 /* Module parameters */ 64 #define TX_TIMEO 5000 65 static int watchdog = TX_TIMEO; 66 module_param(watchdog, int, 0644); 67 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)"); 68 69 static int debug = -1; 70 module_param(debug, int, 0644); 71 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)"); 72 73 static int phyaddr = -1; 74 module_param(phyaddr, int, 0444); 75 MODULE_PARM_DESC(phyaddr, "Physical device address"); 76 77 #define STMMAC_TX_THRESH(x) ((x)->dma_tx_size / 4) 78 #define STMMAC_RX_THRESH(x) ((x)->dma_rx_size / 4) 79 80 /* Limit to make sure XDP TX and slow path can coexist */ 81 #define STMMAC_XSK_TX_BUDGET_MAX 256 82 #define STMMAC_TX_XSK_AVAIL 16 83 #define STMMAC_RX_FILL_BATCH 16 84 85 #define STMMAC_XDP_PASS 0 86 #define STMMAC_XDP_CONSUMED BIT(0) 87 #define STMMAC_XDP_TX BIT(1) 88 #define STMMAC_XDP_REDIRECT BIT(2) 89 90 static int flow_ctrl = FLOW_AUTO; 91 module_param(flow_ctrl, int, 0644); 92 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]"); 93 94 static int pause = PAUSE_TIME; 95 module_param(pause, int, 0644); 96 MODULE_PARM_DESC(pause, "Flow Control Pause Time"); 97 98 #define TC_DEFAULT 64 99 static int tc = TC_DEFAULT; 100 module_param(tc, int, 0644); 101 MODULE_PARM_DESC(tc, "DMA threshold control value"); 102 103 #define DEFAULT_BUFSIZE 1536 104 static int buf_sz = DEFAULT_BUFSIZE; 105 module_param(buf_sz, int, 0644); 106 MODULE_PARM_DESC(buf_sz, "DMA buffer size"); 107 108 #define STMMAC_RX_COPYBREAK 256 109 110 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 111 NETIF_MSG_LINK | NETIF_MSG_IFUP | 112 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER); 113 114 #define STMMAC_DEFAULT_LPI_TIMER 1000 115 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER; 116 module_param(eee_timer, int, 0644); 117 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec"); 118 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x)) 119 120 /* By default the driver will use the ring mode to manage tx and rx descriptors, 121 * but allow user to force to use the chain instead of the ring 122 */ 123 static unsigned int chain_mode; 124 module_param(chain_mode, int, 0444); 125 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode"); 126 127 static irqreturn_t stmmac_interrupt(int irq, void *dev_id); 128 /* For MSI interrupts handling */ 129 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id); 130 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id); 131 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data); 132 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data); 133 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue); 134 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue); 135 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 136 u32 rxmode, u32 chan); 137 138 #ifdef CONFIG_DEBUG_FS 139 static const struct net_device_ops stmmac_netdev_ops; 140 static void stmmac_init_fs(struct net_device *dev); 141 static void stmmac_exit_fs(struct net_device *dev); 142 #endif 143 144 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC)) 145 146 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled) 147 { 148 int ret = 0; 149 150 if (enabled) { 151 ret = clk_prepare_enable(priv->plat->stmmac_clk); 152 if (ret) 153 return ret; 154 ret = clk_prepare_enable(priv->plat->pclk); 155 if (ret) { 156 clk_disable_unprepare(priv->plat->stmmac_clk); 157 return ret; 158 } 159 if (priv->plat->clks_config) { 160 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled); 161 if (ret) { 162 clk_disable_unprepare(priv->plat->stmmac_clk); 163 clk_disable_unprepare(priv->plat->pclk); 164 return ret; 165 } 166 } 167 } else { 168 clk_disable_unprepare(priv->plat->stmmac_clk); 169 clk_disable_unprepare(priv->plat->pclk); 170 if (priv->plat->clks_config) 171 priv->plat->clks_config(priv->plat->bsp_priv, enabled); 172 } 173 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config); 177 178 /** 179 * stmmac_verify_args - verify the driver parameters. 180 * Description: it checks the driver parameters and set a default in case of 181 * errors. 182 */ 183 static void stmmac_verify_args(void) 184 { 185 if (unlikely(watchdog < 0)) 186 watchdog = TX_TIMEO; 187 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB))) 188 buf_sz = DEFAULT_BUFSIZE; 189 if (unlikely(flow_ctrl > 1)) 190 flow_ctrl = FLOW_AUTO; 191 else if (likely(flow_ctrl < 0)) 192 flow_ctrl = FLOW_OFF; 193 if (unlikely((pause < 0) || (pause > 0xffff))) 194 pause = PAUSE_TIME; 195 if (eee_timer < 0) 196 eee_timer = STMMAC_DEFAULT_LPI_TIMER; 197 } 198 199 static void __stmmac_disable_all_queues(struct stmmac_priv *priv) 200 { 201 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 202 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 203 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 204 u32 queue; 205 206 for (queue = 0; queue < maxq; queue++) { 207 struct stmmac_channel *ch = &priv->channel[queue]; 208 209 if (stmmac_xdp_is_enabled(priv) && 210 test_bit(queue, priv->af_xdp_zc_qps)) { 211 napi_disable(&ch->rxtx_napi); 212 continue; 213 } 214 215 if (queue < rx_queues_cnt) 216 napi_disable(&ch->rx_napi); 217 if (queue < tx_queues_cnt) 218 napi_disable(&ch->tx_napi); 219 } 220 } 221 222 /** 223 * stmmac_disable_all_queues - Disable all queues 224 * @priv: driver private structure 225 */ 226 static void stmmac_disable_all_queues(struct stmmac_priv *priv) 227 { 228 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 229 struct stmmac_rx_queue *rx_q; 230 u32 queue; 231 232 /* synchronize_rcu() needed for pending XDP buffers to drain */ 233 for (queue = 0; queue < rx_queues_cnt; queue++) { 234 rx_q = &priv->rx_queue[queue]; 235 if (rx_q->xsk_pool) { 236 synchronize_rcu(); 237 break; 238 } 239 } 240 241 __stmmac_disable_all_queues(priv); 242 } 243 244 /** 245 * stmmac_enable_all_queues - Enable all queues 246 * @priv: driver private structure 247 */ 248 static void stmmac_enable_all_queues(struct stmmac_priv *priv) 249 { 250 u32 rx_queues_cnt = priv->plat->rx_queues_to_use; 251 u32 tx_queues_cnt = priv->plat->tx_queues_to_use; 252 u32 maxq = max(rx_queues_cnt, tx_queues_cnt); 253 u32 queue; 254 255 for (queue = 0; queue < maxq; queue++) { 256 struct stmmac_channel *ch = &priv->channel[queue]; 257 258 if (stmmac_xdp_is_enabled(priv) && 259 test_bit(queue, priv->af_xdp_zc_qps)) { 260 napi_enable(&ch->rxtx_napi); 261 continue; 262 } 263 264 if (queue < rx_queues_cnt) 265 napi_enable(&ch->rx_napi); 266 if (queue < tx_queues_cnt) 267 napi_enable(&ch->tx_napi); 268 } 269 } 270 271 static void stmmac_service_event_schedule(struct stmmac_priv *priv) 272 { 273 if (!test_bit(STMMAC_DOWN, &priv->state) && 274 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state)) 275 queue_work(priv->wq, &priv->service_task); 276 } 277 278 static void stmmac_global_err(struct stmmac_priv *priv) 279 { 280 netif_carrier_off(priv->dev); 281 set_bit(STMMAC_RESET_REQUESTED, &priv->state); 282 stmmac_service_event_schedule(priv); 283 } 284 285 /** 286 * stmmac_clk_csr_set - dynamically set the MDC clock 287 * @priv: driver private structure 288 * Description: this is to dynamically set the MDC clock according to the csr 289 * clock input. 290 * Note: 291 * If a specific clk_csr value is passed from the platform 292 * this means that the CSR Clock Range selection cannot be 293 * changed at run-time and it is fixed (as reported in the driver 294 * documentation). Viceversa the driver will try to set the MDC 295 * clock dynamically according to the actual clock input. 296 */ 297 static void stmmac_clk_csr_set(struct stmmac_priv *priv) 298 { 299 u32 clk_rate; 300 301 clk_rate = clk_get_rate(priv->plat->stmmac_clk); 302 303 /* Platform provided default clk_csr would be assumed valid 304 * for all other cases except for the below mentioned ones. 305 * For values higher than the IEEE 802.3 specified frequency 306 * we can not estimate the proper divider as it is not known 307 * the frequency of clk_csr_i. So we do not change the default 308 * divider. 309 */ 310 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) { 311 if (clk_rate < CSR_F_35M) 312 priv->clk_csr = STMMAC_CSR_20_35M; 313 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M)) 314 priv->clk_csr = STMMAC_CSR_35_60M; 315 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M)) 316 priv->clk_csr = STMMAC_CSR_60_100M; 317 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M)) 318 priv->clk_csr = STMMAC_CSR_100_150M; 319 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M)) 320 priv->clk_csr = STMMAC_CSR_150_250M; 321 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M)) 322 priv->clk_csr = STMMAC_CSR_250_300M; 323 } 324 325 if (priv->plat->has_sun8i) { 326 if (clk_rate > 160000000) 327 priv->clk_csr = 0x03; 328 else if (clk_rate > 80000000) 329 priv->clk_csr = 0x02; 330 else if (clk_rate > 40000000) 331 priv->clk_csr = 0x01; 332 else 333 priv->clk_csr = 0; 334 } 335 336 if (priv->plat->has_xgmac) { 337 if (clk_rate > 400000000) 338 priv->clk_csr = 0x5; 339 else if (clk_rate > 350000000) 340 priv->clk_csr = 0x4; 341 else if (clk_rate > 300000000) 342 priv->clk_csr = 0x3; 343 else if (clk_rate > 250000000) 344 priv->clk_csr = 0x2; 345 else if (clk_rate > 150000000) 346 priv->clk_csr = 0x1; 347 else 348 priv->clk_csr = 0x0; 349 } 350 } 351 352 static void print_pkt(unsigned char *buf, int len) 353 { 354 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf); 355 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); 356 } 357 358 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue) 359 { 360 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 361 u32 avail; 362 363 if (tx_q->dirty_tx > tx_q->cur_tx) 364 avail = tx_q->dirty_tx - tx_q->cur_tx - 1; 365 else 366 avail = priv->dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1; 367 368 return avail; 369 } 370 371 /** 372 * stmmac_rx_dirty - Get RX queue dirty 373 * @priv: driver private structure 374 * @queue: RX queue index 375 */ 376 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue) 377 { 378 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 379 u32 dirty; 380 381 if (rx_q->dirty_rx <= rx_q->cur_rx) 382 dirty = rx_q->cur_rx - rx_q->dirty_rx; 383 else 384 dirty = priv->dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx; 385 386 return dirty; 387 } 388 389 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en) 390 { 391 int tx_lpi_timer; 392 393 /* Clear/set the SW EEE timer flag based on LPI ET enablement */ 394 priv->eee_sw_timer_en = en ? 0 : 1; 395 tx_lpi_timer = en ? priv->tx_lpi_timer : 0; 396 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer); 397 } 398 399 /** 400 * stmmac_enable_eee_mode - check and enter in LPI mode 401 * @priv: driver private structure 402 * Description: this function is to verify and enter in LPI mode in case of 403 * EEE. 404 */ 405 static int stmmac_enable_eee_mode(struct stmmac_priv *priv) 406 { 407 u32 tx_cnt = priv->plat->tx_queues_to_use; 408 u32 queue; 409 410 /* check if all TX queues have the work finished */ 411 for (queue = 0; queue < tx_cnt; queue++) { 412 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 413 414 if (tx_q->dirty_tx != tx_q->cur_tx) 415 return -EBUSY; /* still unfinished work */ 416 } 417 418 /* Check and enter in LPI mode */ 419 if (!priv->tx_path_in_lpi_mode) 420 stmmac_set_eee_mode(priv, priv->hw, 421 priv->plat->en_tx_lpi_clockgating); 422 return 0; 423 } 424 425 /** 426 * stmmac_disable_eee_mode - disable and exit from LPI mode 427 * @priv: driver private structure 428 * Description: this function is to exit and disable EEE in case of 429 * LPI state is true. This is called by the xmit. 430 */ 431 void stmmac_disable_eee_mode(struct stmmac_priv *priv) 432 { 433 if (!priv->eee_sw_timer_en) { 434 stmmac_lpi_entry_timer_config(priv, 0); 435 return; 436 } 437 438 stmmac_reset_eee_mode(priv, priv->hw); 439 del_timer_sync(&priv->eee_ctrl_timer); 440 priv->tx_path_in_lpi_mode = false; 441 } 442 443 /** 444 * stmmac_eee_ctrl_timer - EEE TX SW timer. 445 * @t: timer_list struct containing private info 446 * Description: 447 * if there is no data transfer and if we are not in LPI state, 448 * then MAC Transmitter can be moved to LPI state. 449 */ 450 static void stmmac_eee_ctrl_timer(struct timer_list *t) 451 { 452 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer); 453 454 if (stmmac_enable_eee_mode(priv)) 455 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 456 } 457 458 /** 459 * stmmac_eee_init - init EEE 460 * @priv: driver private structure 461 * Description: 462 * if the GMAC supports the EEE (from the HW cap reg) and the phy device 463 * can also manage EEE, this function enable the LPI state and start related 464 * timer. 465 */ 466 bool stmmac_eee_init(struct stmmac_priv *priv) 467 { 468 int eee_tw_timer = priv->eee_tw_timer; 469 470 /* Using PCS we cannot dial with the phy registers at this stage 471 * so we do not support extra feature like EEE. 472 */ 473 if (priv->hw->pcs == STMMAC_PCS_TBI || 474 priv->hw->pcs == STMMAC_PCS_RTBI) 475 return false; 476 477 /* Check if MAC core supports the EEE feature. */ 478 if (!priv->dma_cap.eee) 479 return false; 480 481 mutex_lock(&priv->lock); 482 483 /* Check if it needs to be deactivated */ 484 if (!priv->eee_active) { 485 if (priv->eee_enabled) { 486 netdev_dbg(priv->dev, "disable EEE\n"); 487 stmmac_lpi_entry_timer_config(priv, 0); 488 del_timer_sync(&priv->eee_ctrl_timer); 489 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer); 490 if (priv->hw->xpcs) 491 xpcs_config_eee(priv->hw->xpcs, 492 priv->plat->mult_fact_100ns, 493 false); 494 } 495 mutex_unlock(&priv->lock); 496 return false; 497 } 498 499 if (priv->eee_active && !priv->eee_enabled) { 500 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0); 501 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS, 502 eee_tw_timer); 503 if (priv->hw->xpcs) 504 xpcs_config_eee(priv->hw->xpcs, 505 priv->plat->mult_fact_100ns, 506 true); 507 } 508 509 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) { 510 del_timer_sync(&priv->eee_ctrl_timer); 511 priv->tx_path_in_lpi_mode = false; 512 stmmac_lpi_entry_timer_config(priv, 1); 513 } else { 514 stmmac_lpi_entry_timer_config(priv, 0); 515 mod_timer(&priv->eee_ctrl_timer, 516 STMMAC_LPI_T(priv->tx_lpi_timer)); 517 } 518 519 mutex_unlock(&priv->lock); 520 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n"); 521 return true; 522 } 523 524 /* stmmac_get_tx_hwtstamp - get HW TX timestamps 525 * @priv: driver private structure 526 * @p : descriptor pointer 527 * @skb : the socket buffer 528 * Description : 529 * This function will read timestamp from the descriptor & pass it to stack. 530 * and also perform some sanity checks. 531 */ 532 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv, 533 struct dma_desc *p, struct sk_buff *skb) 534 { 535 struct skb_shared_hwtstamps shhwtstamp; 536 bool found = false; 537 u64 ns = 0; 538 539 if (!priv->hwts_tx_en) 540 return; 541 542 /* exit if skb doesn't support hw tstamp */ 543 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))) 544 return; 545 546 /* check tx tstamp status */ 547 if (stmmac_get_tx_timestamp_status(priv, p)) { 548 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns); 549 found = true; 550 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) { 551 found = true; 552 } 553 554 if (found) { 555 ns -= priv->plat->cdc_error_adj; 556 557 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 558 shhwtstamp.hwtstamp = ns_to_ktime(ns); 559 560 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns); 561 /* pass tstamp to stack */ 562 skb_tstamp_tx(skb, &shhwtstamp); 563 } 564 } 565 566 /* stmmac_get_rx_hwtstamp - get HW RX timestamps 567 * @priv: driver private structure 568 * @p : descriptor pointer 569 * @np : next descriptor pointer 570 * @skb : the socket buffer 571 * Description : 572 * This function will read received packet's timestamp from the descriptor 573 * and pass it to stack. It also perform some sanity checks. 574 */ 575 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p, 576 struct dma_desc *np, struct sk_buff *skb) 577 { 578 struct skb_shared_hwtstamps *shhwtstamp = NULL; 579 struct dma_desc *desc = p; 580 u64 ns = 0; 581 582 if (!priv->hwts_rx_en) 583 return; 584 /* For GMAC4, the valid timestamp is from CTX next desc. */ 585 if (priv->plat->has_gmac4 || priv->plat->has_xgmac) 586 desc = np; 587 588 /* Check if timestamp is available */ 589 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) { 590 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns); 591 592 ns -= priv->plat->cdc_error_adj; 593 594 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns); 595 shhwtstamp = skb_hwtstamps(skb); 596 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps)); 597 shhwtstamp->hwtstamp = ns_to_ktime(ns); 598 } else { 599 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n"); 600 } 601 } 602 603 /** 604 * stmmac_hwtstamp_set - control hardware timestamping. 605 * @dev: device pointer. 606 * @ifr: An IOCTL specific structure, that can contain a pointer to 607 * a proprietary structure used to pass information to the driver. 608 * Description: 609 * This function configures the MAC to enable/disable both outgoing(TX) 610 * and incoming(RX) packets time stamping based on user input. 611 * Return Value: 612 * 0 on success and an appropriate -ve integer on failure. 613 */ 614 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 615 { 616 struct stmmac_priv *priv = netdev_priv(dev); 617 struct hwtstamp_config config; 618 u32 ptp_v2 = 0; 619 u32 tstamp_all = 0; 620 u32 ptp_over_ipv4_udp = 0; 621 u32 ptp_over_ipv6_udp = 0; 622 u32 ptp_over_ethernet = 0; 623 u32 snap_type_sel = 0; 624 u32 ts_master_en = 0; 625 u32 ts_event_en = 0; 626 627 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) { 628 netdev_alert(priv->dev, "No support for HW time stamping\n"); 629 priv->hwts_tx_en = 0; 630 priv->hwts_rx_en = 0; 631 632 return -EOPNOTSUPP; 633 } 634 635 if (copy_from_user(&config, ifr->ifr_data, 636 sizeof(config))) 637 return -EFAULT; 638 639 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n", 640 __func__, config.flags, config.tx_type, config.rx_filter); 641 642 if (config.tx_type != HWTSTAMP_TX_OFF && 643 config.tx_type != HWTSTAMP_TX_ON) 644 return -ERANGE; 645 646 if (priv->adv_ts) { 647 switch (config.rx_filter) { 648 case HWTSTAMP_FILTER_NONE: 649 /* time stamp no incoming packet at all */ 650 config.rx_filter = HWTSTAMP_FILTER_NONE; 651 break; 652 653 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 654 /* PTP v1, UDP, any kind of event packet */ 655 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 656 /* 'xmac' hardware can support Sync, Pdelay_Req and 657 * Pdelay_resp by setting bit14 and bits17/16 to 01 658 * This leaves Delay_Req timestamps out. 659 * Enable all events *and* general purpose message 660 * timestamping 661 */ 662 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 663 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 664 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 665 break; 666 667 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 668 /* PTP v1, UDP, Sync packet */ 669 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC; 670 /* take time stamp for SYNC messages only */ 671 ts_event_en = PTP_TCR_TSEVNTENA; 672 673 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 674 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 675 break; 676 677 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 678 /* PTP v1, UDP, Delay_req packet */ 679 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ; 680 /* take time stamp for Delay_Req messages only */ 681 ts_master_en = PTP_TCR_TSMSTRENA; 682 ts_event_en = PTP_TCR_TSEVNTENA; 683 684 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 685 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 686 break; 687 688 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 689 /* PTP v2, UDP, any kind of event packet */ 690 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT; 691 ptp_v2 = PTP_TCR_TSVER2ENA; 692 /* take time stamp for all event messages */ 693 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 694 695 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 696 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 697 break; 698 699 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 700 /* PTP v2, UDP, Sync packet */ 701 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC; 702 ptp_v2 = PTP_TCR_TSVER2ENA; 703 /* take time stamp for SYNC messages only */ 704 ts_event_en = PTP_TCR_TSEVNTENA; 705 706 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 707 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 708 break; 709 710 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 711 /* PTP v2, UDP, Delay_req packet */ 712 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ; 713 ptp_v2 = PTP_TCR_TSVER2ENA; 714 /* take time stamp for Delay_Req messages only */ 715 ts_master_en = PTP_TCR_TSMSTRENA; 716 ts_event_en = PTP_TCR_TSEVNTENA; 717 718 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 719 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 720 break; 721 722 case HWTSTAMP_FILTER_PTP_V2_EVENT: 723 /* PTP v2/802.AS1 any layer, any kind of event packet */ 724 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 725 ptp_v2 = PTP_TCR_TSVER2ENA; 726 snap_type_sel = PTP_TCR_SNAPTYPSEL_1; 727 if (priv->synopsys_id < DWMAC_CORE_4_10) 728 ts_event_en = PTP_TCR_TSEVNTENA; 729 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 730 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 731 ptp_over_ethernet = PTP_TCR_TSIPENA; 732 break; 733 734 case HWTSTAMP_FILTER_PTP_V2_SYNC: 735 /* PTP v2/802.AS1, any layer, Sync packet */ 736 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC; 737 ptp_v2 = PTP_TCR_TSVER2ENA; 738 /* take time stamp for SYNC messages only */ 739 ts_event_en = PTP_TCR_TSEVNTENA; 740 741 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 742 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 743 ptp_over_ethernet = PTP_TCR_TSIPENA; 744 break; 745 746 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 747 /* PTP v2/802.AS1, any layer, Delay_req packet */ 748 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ; 749 ptp_v2 = PTP_TCR_TSVER2ENA; 750 /* take time stamp for Delay_Req messages only */ 751 ts_master_en = PTP_TCR_TSMSTRENA; 752 ts_event_en = PTP_TCR_TSEVNTENA; 753 754 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA; 755 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA; 756 ptp_over_ethernet = PTP_TCR_TSIPENA; 757 break; 758 759 case HWTSTAMP_FILTER_NTP_ALL: 760 case HWTSTAMP_FILTER_ALL: 761 /* time stamp any incoming packet */ 762 config.rx_filter = HWTSTAMP_FILTER_ALL; 763 tstamp_all = PTP_TCR_TSENALL; 764 break; 765 766 default: 767 return -ERANGE; 768 } 769 } else { 770 switch (config.rx_filter) { 771 case HWTSTAMP_FILTER_NONE: 772 config.rx_filter = HWTSTAMP_FILTER_NONE; 773 break; 774 default: 775 /* PTP v1, UDP, any kind of event packet */ 776 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT; 777 break; 778 } 779 } 780 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1); 781 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON; 782 783 priv->systime_flags = STMMAC_HWTS_ACTIVE; 784 785 if (priv->hwts_tx_en || priv->hwts_rx_en) { 786 priv->systime_flags |= tstamp_all | ptp_v2 | 787 ptp_over_ethernet | ptp_over_ipv6_udp | 788 ptp_over_ipv4_udp | ts_event_en | 789 ts_master_en | snap_type_sel; 790 } 791 792 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags); 793 794 memcpy(&priv->tstamp_config, &config, sizeof(config)); 795 796 return copy_to_user(ifr->ifr_data, &config, 797 sizeof(config)) ? -EFAULT : 0; 798 } 799 800 /** 801 * stmmac_hwtstamp_get - read hardware timestamping. 802 * @dev: device pointer. 803 * @ifr: An IOCTL specific structure, that can contain a pointer to 804 * a proprietary structure used to pass information to the driver. 805 * Description: 806 * This function obtain the current hardware timestamping settings 807 * as requested. 808 */ 809 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 810 { 811 struct stmmac_priv *priv = netdev_priv(dev); 812 struct hwtstamp_config *config = &priv->tstamp_config; 813 814 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 815 return -EOPNOTSUPP; 816 817 return copy_to_user(ifr->ifr_data, config, 818 sizeof(*config)) ? -EFAULT : 0; 819 } 820 821 /** 822 * stmmac_init_tstamp_counter - init hardware timestamping counter 823 * @priv: driver private structure 824 * @systime_flags: timestamping flags 825 * Description: 826 * Initialize hardware counter for packet timestamping. 827 * This is valid as long as the interface is open and not suspended. 828 * Will be rerun after resuming from suspend, case in which the timestamping 829 * flags updated by stmmac_hwtstamp_set() also need to be restored. 830 */ 831 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags) 832 { 833 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 834 struct timespec64 now; 835 u32 sec_inc = 0; 836 u64 temp = 0; 837 int ret; 838 839 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp)) 840 return -EOPNOTSUPP; 841 842 ret = clk_prepare_enable(priv->plat->clk_ptp_ref); 843 if (ret < 0) { 844 netdev_warn(priv->dev, 845 "failed to enable PTP reference clock: %pe\n", 846 ERR_PTR(ret)); 847 return ret; 848 } 849 850 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags); 851 priv->systime_flags = systime_flags; 852 853 /* program Sub Second Increment reg */ 854 stmmac_config_sub_second_increment(priv, priv->ptpaddr, 855 priv->plat->clk_ptp_rate, 856 xmac, &sec_inc); 857 temp = div_u64(1000000000ULL, sec_inc); 858 859 /* Store sub second increment for later use */ 860 priv->sub_second_inc = sec_inc; 861 862 /* calculate default added value: 863 * formula is : 864 * addend = (2^32)/freq_div_ratio; 865 * where, freq_div_ratio = 1e9ns/sec_inc 866 */ 867 temp = (u64)(temp << 32); 868 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate); 869 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend); 870 871 /* initialize system time */ 872 ktime_get_real_ts64(&now); 873 874 /* lower 32 bits of tv_sec are safe until y2106 */ 875 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec); 876 877 return 0; 878 } 879 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter); 880 881 /** 882 * stmmac_init_ptp - init PTP 883 * @priv: driver private structure 884 * Description: this is to verify if the HW supports the PTPv1 or PTPv2. 885 * This is done by looking at the HW cap. register. 886 * This function also registers the ptp driver. 887 */ 888 static int stmmac_init_ptp(struct stmmac_priv *priv) 889 { 890 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 891 int ret; 892 893 if (priv->plat->ptp_clk_freq_config) 894 priv->plat->ptp_clk_freq_config(priv); 895 896 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE); 897 if (ret) 898 return ret; 899 900 priv->adv_ts = 0; 901 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */ 902 if (xmac && priv->dma_cap.atime_stamp) 903 priv->adv_ts = 1; 904 /* Dwmac 3.x core with extend_desc can support adv_ts */ 905 else if (priv->extend_desc && priv->dma_cap.atime_stamp) 906 priv->adv_ts = 1; 907 908 if (priv->dma_cap.time_stamp) 909 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n"); 910 911 if (priv->adv_ts) 912 netdev_info(priv->dev, 913 "IEEE 1588-2008 Advanced Timestamp supported\n"); 914 915 priv->hwts_tx_en = 0; 916 priv->hwts_rx_en = 0; 917 918 return 0; 919 } 920 921 static void stmmac_release_ptp(struct stmmac_priv *priv) 922 { 923 clk_disable_unprepare(priv->plat->clk_ptp_ref); 924 stmmac_ptp_unregister(priv); 925 } 926 927 /** 928 * stmmac_mac_flow_ctrl - Configure flow control in all queues 929 * @priv: driver private structure 930 * @duplex: duplex passed to the next function 931 * Description: It is used for configuring the flow control in all queues 932 */ 933 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex) 934 { 935 u32 tx_cnt = priv->plat->tx_queues_to_use; 936 937 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl, 938 priv->pause, tx_cnt); 939 } 940 941 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config, 942 phy_interface_t interface) 943 { 944 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 945 946 if (!priv->hw->xpcs) 947 return NULL; 948 949 return &priv->hw->xpcs->pcs; 950 } 951 952 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode, 953 const struct phylink_link_state *state) 954 { 955 /* Nothing to do, xpcs_config() handles everything */ 956 } 957 958 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up) 959 { 960 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 961 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 962 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 963 bool *hs_enable = &fpe_cfg->hs_enable; 964 965 if (is_up && *hs_enable) { 966 stmmac_fpe_send_mpacket(priv, priv->ioaddr, MPACKET_VERIFY); 967 } else { 968 *lo_state = FPE_STATE_OFF; 969 *lp_state = FPE_STATE_OFF; 970 } 971 } 972 973 static void stmmac_mac_link_down(struct phylink_config *config, 974 unsigned int mode, phy_interface_t interface) 975 { 976 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 977 978 stmmac_mac_set(priv, priv->ioaddr, false); 979 priv->eee_active = false; 980 priv->tx_lpi_enabled = false; 981 priv->eee_enabled = stmmac_eee_init(priv); 982 stmmac_set_eee_pls(priv, priv->hw, false); 983 984 if (priv->dma_cap.fpesel) 985 stmmac_fpe_link_state_handle(priv, false); 986 } 987 988 static void stmmac_mac_link_up(struct phylink_config *config, 989 struct phy_device *phy, 990 unsigned int mode, phy_interface_t interface, 991 int speed, int duplex, 992 bool tx_pause, bool rx_pause) 993 { 994 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev)); 995 u32 ctrl; 996 997 ctrl = readl(priv->ioaddr + MAC_CTRL_REG); 998 ctrl &= ~priv->hw->link.speed_mask; 999 1000 if (interface == PHY_INTERFACE_MODE_USXGMII) { 1001 switch (speed) { 1002 case SPEED_10000: 1003 ctrl |= priv->hw->link.xgmii.speed10000; 1004 break; 1005 case SPEED_5000: 1006 ctrl |= priv->hw->link.xgmii.speed5000; 1007 break; 1008 case SPEED_2500: 1009 ctrl |= priv->hw->link.xgmii.speed2500; 1010 break; 1011 default: 1012 return; 1013 } 1014 } else if (interface == PHY_INTERFACE_MODE_XLGMII) { 1015 switch (speed) { 1016 case SPEED_100000: 1017 ctrl |= priv->hw->link.xlgmii.speed100000; 1018 break; 1019 case SPEED_50000: 1020 ctrl |= priv->hw->link.xlgmii.speed50000; 1021 break; 1022 case SPEED_40000: 1023 ctrl |= priv->hw->link.xlgmii.speed40000; 1024 break; 1025 case SPEED_25000: 1026 ctrl |= priv->hw->link.xlgmii.speed25000; 1027 break; 1028 case SPEED_10000: 1029 ctrl |= priv->hw->link.xgmii.speed10000; 1030 break; 1031 case SPEED_2500: 1032 ctrl |= priv->hw->link.speed2500; 1033 break; 1034 case SPEED_1000: 1035 ctrl |= priv->hw->link.speed1000; 1036 break; 1037 default: 1038 return; 1039 } 1040 } else { 1041 switch (speed) { 1042 case SPEED_2500: 1043 ctrl |= priv->hw->link.speed2500; 1044 break; 1045 case SPEED_1000: 1046 ctrl |= priv->hw->link.speed1000; 1047 break; 1048 case SPEED_100: 1049 ctrl |= priv->hw->link.speed100; 1050 break; 1051 case SPEED_10: 1052 ctrl |= priv->hw->link.speed10; 1053 break; 1054 default: 1055 return; 1056 } 1057 } 1058 1059 priv->speed = speed; 1060 1061 if (priv->plat->fix_mac_speed) 1062 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed); 1063 1064 if (!duplex) 1065 ctrl &= ~priv->hw->link.duplex; 1066 else 1067 ctrl |= priv->hw->link.duplex; 1068 1069 /* Flow Control operation */ 1070 if (tx_pause && rx_pause) 1071 stmmac_mac_flow_ctrl(priv, duplex); 1072 1073 writel(ctrl, priv->ioaddr + MAC_CTRL_REG); 1074 1075 stmmac_mac_set(priv, priv->ioaddr, true); 1076 if (phy && priv->dma_cap.eee) { 1077 priv->eee_active = phy_init_eee(phy, 1) >= 0; 1078 priv->eee_enabled = stmmac_eee_init(priv); 1079 priv->tx_lpi_enabled = priv->eee_enabled; 1080 stmmac_set_eee_pls(priv, priv->hw, true); 1081 } 1082 1083 if (priv->dma_cap.fpesel) 1084 stmmac_fpe_link_state_handle(priv, true); 1085 } 1086 1087 static const struct phylink_mac_ops stmmac_phylink_mac_ops = { 1088 .validate = phylink_generic_validate, 1089 .mac_select_pcs = stmmac_mac_select_pcs, 1090 .mac_config = stmmac_mac_config, 1091 .mac_link_down = stmmac_mac_link_down, 1092 .mac_link_up = stmmac_mac_link_up, 1093 }; 1094 1095 /** 1096 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported 1097 * @priv: driver private structure 1098 * Description: this is to verify if the HW supports the PCS. 1099 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is 1100 * configured for the TBI, RTBI, or SGMII PHY interface. 1101 */ 1102 static void stmmac_check_pcs_mode(struct stmmac_priv *priv) 1103 { 1104 int interface = priv->plat->interface; 1105 1106 if (priv->dma_cap.pcs) { 1107 if ((interface == PHY_INTERFACE_MODE_RGMII) || 1108 (interface == PHY_INTERFACE_MODE_RGMII_ID) || 1109 (interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1110 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) { 1111 netdev_dbg(priv->dev, "PCS RGMII support enabled\n"); 1112 priv->hw->pcs = STMMAC_PCS_RGMII; 1113 } else if (interface == PHY_INTERFACE_MODE_SGMII) { 1114 netdev_dbg(priv->dev, "PCS SGMII support enabled\n"); 1115 priv->hw->pcs = STMMAC_PCS_SGMII; 1116 } 1117 } 1118 } 1119 1120 /** 1121 * stmmac_init_phy - PHY initialization 1122 * @dev: net device structure 1123 * Description: it initializes the driver's PHY state, and attaches the PHY 1124 * to the mac driver. 1125 * Return value: 1126 * 0 on success 1127 */ 1128 static int stmmac_init_phy(struct net_device *dev) 1129 { 1130 struct stmmac_priv *priv = netdev_priv(dev); 1131 struct device_node *node; 1132 int ret; 1133 1134 node = priv->plat->phylink_node; 1135 1136 if (node) 1137 ret = phylink_of_phy_connect(priv->phylink, node, 0); 1138 1139 /* Some DT bindings do not set-up the PHY handle. Let's try to 1140 * manually parse it 1141 */ 1142 if (!node || ret) { 1143 int addr = priv->plat->phy_addr; 1144 struct phy_device *phydev; 1145 1146 phydev = mdiobus_get_phy(priv->mii, addr); 1147 if (!phydev) { 1148 netdev_err(priv->dev, "no phy at addr %d\n", addr); 1149 return -ENODEV; 1150 } 1151 1152 ret = phylink_connect_phy(priv->phylink, phydev); 1153 } 1154 1155 if (!priv->plat->pmt) { 1156 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL }; 1157 1158 phylink_ethtool_get_wol(priv->phylink, &wol); 1159 device_set_wakeup_capable(priv->device, !!wol.supported); 1160 } 1161 1162 return ret; 1163 } 1164 1165 static int stmmac_phy_setup(struct stmmac_priv *priv) 1166 { 1167 struct stmmac_mdio_bus_data *mdio_bus_data = priv->plat->mdio_bus_data; 1168 struct fwnode_handle *fwnode = of_fwnode_handle(priv->plat->phylink_node); 1169 int max_speed = priv->plat->max_speed; 1170 int mode = priv->plat->phy_interface; 1171 struct phylink *phylink; 1172 1173 priv->phylink_config.dev = &priv->dev->dev; 1174 priv->phylink_config.type = PHYLINK_NETDEV; 1175 if (priv->plat->mdio_bus_data) 1176 priv->phylink_config.ovr_an_inband = 1177 mdio_bus_data->xpcs_an_inband; 1178 1179 if (!fwnode) 1180 fwnode = dev_fwnode(priv->device); 1181 1182 /* Set the platform/firmware specified interface mode */ 1183 __set_bit(mode, priv->phylink_config.supported_interfaces); 1184 1185 /* If we have an xpcs, it defines which PHY interfaces are supported. */ 1186 if (priv->hw->xpcs) 1187 xpcs_get_interfaces(priv->hw->xpcs, 1188 priv->phylink_config.supported_interfaces); 1189 1190 priv->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | 1191 MAC_10 | MAC_100; 1192 1193 if (!max_speed || max_speed >= 1000) 1194 priv->phylink_config.mac_capabilities |= MAC_1000; 1195 1196 if (priv->plat->has_gmac4) { 1197 if (!max_speed || max_speed >= 2500) 1198 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1199 } else if (priv->plat->has_xgmac) { 1200 if (!max_speed || max_speed >= 2500) 1201 priv->phylink_config.mac_capabilities |= MAC_2500FD; 1202 if (!max_speed || max_speed >= 5000) 1203 priv->phylink_config.mac_capabilities |= MAC_5000FD; 1204 if (!max_speed || max_speed >= 10000) 1205 priv->phylink_config.mac_capabilities |= MAC_10000FD; 1206 if (!max_speed || max_speed >= 25000) 1207 priv->phylink_config.mac_capabilities |= MAC_25000FD; 1208 if (!max_speed || max_speed >= 40000) 1209 priv->phylink_config.mac_capabilities |= MAC_40000FD; 1210 if (!max_speed || max_speed >= 50000) 1211 priv->phylink_config.mac_capabilities |= MAC_50000FD; 1212 if (!max_speed || max_speed >= 100000) 1213 priv->phylink_config.mac_capabilities |= MAC_100000FD; 1214 } 1215 1216 /* Half-Duplex can only work with single queue */ 1217 if (priv->plat->tx_queues_to_use > 1) 1218 priv->phylink_config.mac_capabilities &= 1219 ~(MAC_10HD | MAC_100HD | MAC_1000HD); 1220 1221 phylink = phylink_create(&priv->phylink_config, fwnode, 1222 mode, &stmmac_phylink_mac_ops); 1223 if (IS_ERR(phylink)) 1224 return PTR_ERR(phylink); 1225 1226 priv->phylink = phylink; 1227 return 0; 1228 } 1229 1230 static void stmmac_display_rx_rings(struct stmmac_priv *priv) 1231 { 1232 u32 rx_cnt = priv->plat->rx_queues_to_use; 1233 unsigned int desc_size; 1234 void *head_rx; 1235 u32 queue; 1236 1237 /* Display RX rings */ 1238 for (queue = 0; queue < rx_cnt; queue++) { 1239 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1240 1241 pr_info("\tRX Queue %u rings\n", queue); 1242 1243 if (priv->extend_desc) { 1244 head_rx = (void *)rx_q->dma_erx; 1245 desc_size = sizeof(struct dma_extended_desc); 1246 } else { 1247 head_rx = (void *)rx_q->dma_rx; 1248 desc_size = sizeof(struct dma_desc); 1249 } 1250 1251 /* Display RX ring */ 1252 stmmac_display_ring(priv, head_rx, priv->dma_rx_size, true, 1253 rx_q->dma_rx_phy, desc_size); 1254 } 1255 } 1256 1257 static void stmmac_display_tx_rings(struct stmmac_priv *priv) 1258 { 1259 u32 tx_cnt = priv->plat->tx_queues_to_use; 1260 unsigned int desc_size; 1261 void *head_tx; 1262 u32 queue; 1263 1264 /* Display TX rings */ 1265 for (queue = 0; queue < tx_cnt; queue++) { 1266 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1267 1268 pr_info("\tTX Queue %d rings\n", queue); 1269 1270 if (priv->extend_desc) { 1271 head_tx = (void *)tx_q->dma_etx; 1272 desc_size = sizeof(struct dma_extended_desc); 1273 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1274 head_tx = (void *)tx_q->dma_entx; 1275 desc_size = sizeof(struct dma_edesc); 1276 } else { 1277 head_tx = (void *)tx_q->dma_tx; 1278 desc_size = sizeof(struct dma_desc); 1279 } 1280 1281 stmmac_display_ring(priv, head_tx, priv->dma_tx_size, false, 1282 tx_q->dma_tx_phy, desc_size); 1283 } 1284 } 1285 1286 static void stmmac_display_rings(struct stmmac_priv *priv) 1287 { 1288 /* Display RX ring */ 1289 stmmac_display_rx_rings(priv); 1290 1291 /* Display TX ring */ 1292 stmmac_display_tx_rings(priv); 1293 } 1294 1295 static int stmmac_set_bfsize(int mtu, int bufsize) 1296 { 1297 int ret = bufsize; 1298 1299 if (mtu >= BUF_SIZE_8KiB) 1300 ret = BUF_SIZE_16KiB; 1301 else if (mtu >= BUF_SIZE_4KiB) 1302 ret = BUF_SIZE_8KiB; 1303 else if (mtu >= BUF_SIZE_2KiB) 1304 ret = BUF_SIZE_4KiB; 1305 else if (mtu > DEFAULT_BUFSIZE) 1306 ret = BUF_SIZE_2KiB; 1307 else 1308 ret = DEFAULT_BUFSIZE; 1309 1310 return ret; 1311 } 1312 1313 /** 1314 * stmmac_clear_rx_descriptors - clear RX descriptors 1315 * @priv: driver private structure 1316 * @queue: RX queue index 1317 * Description: this function is called to clear the RX descriptors 1318 * in case of both basic and extended descriptors are used. 1319 */ 1320 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue) 1321 { 1322 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1323 int i; 1324 1325 /* Clear the RX descriptors */ 1326 for (i = 0; i < priv->dma_rx_size; i++) 1327 if (priv->extend_desc) 1328 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic, 1329 priv->use_riwt, priv->mode, 1330 (i == priv->dma_rx_size - 1), 1331 priv->dma_buf_sz); 1332 else 1333 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i], 1334 priv->use_riwt, priv->mode, 1335 (i == priv->dma_rx_size - 1), 1336 priv->dma_buf_sz); 1337 } 1338 1339 /** 1340 * stmmac_clear_tx_descriptors - clear tx descriptors 1341 * @priv: driver private structure 1342 * @queue: TX queue index. 1343 * Description: this function is called to clear the TX descriptors 1344 * in case of both basic and extended descriptors are used. 1345 */ 1346 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue) 1347 { 1348 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1349 int i; 1350 1351 /* Clear the TX descriptors */ 1352 for (i = 0; i < priv->dma_tx_size; i++) { 1353 int last = (i == (priv->dma_tx_size - 1)); 1354 struct dma_desc *p; 1355 1356 if (priv->extend_desc) 1357 p = &tx_q->dma_etx[i].basic; 1358 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1359 p = &tx_q->dma_entx[i].basic; 1360 else 1361 p = &tx_q->dma_tx[i]; 1362 1363 stmmac_init_tx_desc(priv, p, priv->mode, last); 1364 } 1365 } 1366 1367 /** 1368 * stmmac_clear_descriptors - clear descriptors 1369 * @priv: driver private structure 1370 * Description: this function is called to clear the TX and RX descriptors 1371 * in case of both basic and extended descriptors are used. 1372 */ 1373 static void stmmac_clear_descriptors(struct stmmac_priv *priv) 1374 { 1375 u32 rx_queue_cnt = priv->plat->rx_queues_to_use; 1376 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1377 u32 queue; 1378 1379 /* Clear the RX descriptors */ 1380 for (queue = 0; queue < rx_queue_cnt; queue++) 1381 stmmac_clear_rx_descriptors(priv, queue); 1382 1383 /* Clear the TX descriptors */ 1384 for (queue = 0; queue < tx_queue_cnt; queue++) 1385 stmmac_clear_tx_descriptors(priv, queue); 1386 } 1387 1388 /** 1389 * stmmac_init_rx_buffers - init the RX descriptor buffer. 1390 * @priv: driver private structure 1391 * @p: descriptor pointer 1392 * @i: descriptor index 1393 * @flags: gfp flag 1394 * @queue: RX queue index 1395 * Description: this function is called to allocate a receive buffer, perform 1396 * the DMA mapping and init the descriptor. 1397 */ 1398 static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, 1399 int i, gfp_t flags, u32 queue) 1400 { 1401 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1402 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1403 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 1404 1405 if (priv->dma_cap.addr64 <= 32) 1406 gfp |= GFP_DMA32; 1407 1408 if (!buf->page) { 1409 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1410 if (!buf->page) 1411 return -ENOMEM; 1412 buf->page_offset = stmmac_rx_offset(priv); 1413 } 1414 1415 if (priv->sph && !buf->sec_page) { 1416 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 1417 if (!buf->sec_page) 1418 return -ENOMEM; 1419 1420 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 1421 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 1422 } else { 1423 buf->sec_page = NULL; 1424 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 1425 } 1426 1427 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 1428 1429 stmmac_set_desc_addr(priv, p, buf->addr); 1430 if (priv->dma_buf_sz == BUF_SIZE_16KiB) 1431 stmmac_init_desc3(priv, p); 1432 1433 return 0; 1434 } 1435 1436 /** 1437 * stmmac_free_rx_buffer - free RX dma buffers 1438 * @priv: private structure 1439 * @queue: RX queue index 1440 * @i: buffer index. 1441 */ 1442 static void stmmac_free_rx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1443 { 1444 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1445 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1446 1447 if (buf->page) 1448 page_pool_put_full_page(rx_q->page_pool, buf->page, false); 1449 buf->page = NULL; 1450 1451 if (buf->sec_page) 1452 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false); 1453 buf->sec_page = NULL; 1454 } 1455 1456 /** 1457 * stmmac_free_tx_buffer - free RX dma buffers 1458 * @priv: private structure 1459 * @queue: RX queue index 1460 * @i: buffer index. 1461 */ 1462 static void stmmac_free_tx_buffer(struct stmmac_priv *priv, u32 queue, int i) 1463 { 1464 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1465 1466 if (tx_q->tx_skbuff_dma[i].buf && 1467 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) { 1468 if (tx_q->tx_skbuff_dma[i].map_as_page) 1469 dma_unmap_page(priv->device, 1470 tx_q->tx_skbuff_dma[i].buf, 1471 tx_q->tx_skbuff_dma[i].len, 1472 DMA_TO_DEVICE); 1473 else 1474 dma_unmap_single(priv->device, 1475 tx_q->tx_skbuff_dma[i].buf, 1476 tx_q->tx_skbuff_dma[i].len, 1477 DMA_TO_DEVICE); 1478 } 1479 1480 if (tx_q->xdpf[i] && 1481 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX || 1482 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) { 1483 xdp_return_frame(tx_q->xdpf[i]); 1484 tx_q->xdpf[i] = NULL; 1485 } 1486 1487 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX) 1488 tx_q->xsk_frames_done++; 1489 1490 if (tx_q->tx_skbuff[i] && 1491 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) { 1492 dev_kfree_skb_any(tx_q->tx_skbuff[i]); 1493 tx_q->tx_skbuff[i] = NULL; 1494 } 1495 1496 tx_q->tx_skbuff_dma[i].buf = 0; 1497 tx_q->tx_skbuff_dma[i].map_as_page = false; 1498 } 1499 1500 /** 1501 * dma_free_rx_skbufs - free RX dma buffers 1502 * @priv: private structure 1503 * @queue: RX queue index 1504 */ 1505 static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue) 1506 { 1507 int i; 1508 1509 for (i = 0; i < priv->dma_rx_size; i++) 1510 stmmac_free_rx_buffer(priv, queue, i); 1511 } 1512 1513 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv, u32 queue, 1514 gfp_t flags) 1515 { 1516 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1517 int i; 1518 1519 for (i = 0; i < priv->dma_rx_size; i++) { 1520 struct dma_desc *p; 1521 int ret; 1522 1523 if (priv->extend_desc) 1524 p = &((rx_q->dma_erx + i)->basic); 1525 else 1526 p = rx_q->dma_rx + i; 1527 1528 ret = stmmac_init_rx_buffers(priv, p, i, flags, 1529 queue); 1530 if (ret) 1531 return ret; 1532 1533 rx_q->buf_alloc_num++; 1534 } 1535 1536 return 0; 1537 } 1538 1539 /** 1540 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool 1541 * @priv: private structure 1542 * @queue: RX queue index 1543 */ 1544 static void dma_free_rx_xskbufs(struct stmmac_priv *priv, u32 queue) 1545 { 1546 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1547 int i; 1548 1549 for (i = 0; i < priv->dma_rx_size; i++) { 1550 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i]; 1551 1552 if (!buf->xdp) 1553 continue; 1554 1555 xsk_buff_free(buf->xdp); 1556 buf->xdp = NULL; 1557 } 1558 } 1559 1560 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv, u32 queue) 1561 { 1562 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1563 int i; 1564 1565 for (i = 0; i < priv->dma_rx_size; i++) { 1566 struct stmmac_rx_buffer *buf; 1567 dma_addr_t dma_addr; 1568 struct dma_desc *p; 1569 1570 if (priv->extend_desc) 1571 p = (struct dma_desc *)(rx_q->dma_erx + i); 1572 else 1573 p = rx_q->dma_rx + i; 1574 1575 buf = &rx_q->buf_pool[i]; 1576 1577 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 1578 if (!buf->xdp) 1579 return -ENOMEM; 1580 1581 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 1582 stmmac_set_desc_addr(priv, p, dma_addr); 1583 rx_q->buf_alloc_num++; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue) 1590 { 1591 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps)) 1592 return NULL; 1593 1594 return xsk_get_pool_from_qid(priv->dev, queue); 1595 } 1596 1597 /** 1598 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue) 1599 * @priv: driver private structure 1600 * @queue: RX queue index 1601 * @flags: gfp flag. 1602 * Description: this function initializes the DMA RX descriptors 1603 * and allocates the socket buffers. It supports the chained and ring 1604 * modes. 1605 */ 1606 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv, u32 queue, gfp_t flags) 1607 { 1608 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1609 int ret; 1610 1611 netif_dbg(priv, probe, priv->dev, 1612 "(%s) dma_rx_phy=0x%08x\n", __func__, 1613 (u32)rx_q->dma_rx_phy); 1614 1615 stmmac_clear_rx_descriptors(priv, queue); 1616 1617 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq); 1618 1619 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1620 1621 if (rx_q->xsk_pool) { 1622 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1623 MEM_TYPE_XSK_BUFF_POOL, 1624 NULL)); 1625 netdev_info(priv->dev, 1626 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n", 1627 rx_q->queue_index); 1628 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq); 1629 } else { 1630 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq, 1631 MEM_TYPE_PAGE_POOL, 1632 rx_q->page_pool)); 1633 netdev_info(priv->dev, 1634 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n", 1635 rx_q->queue_index); 1636 } 1637 1638 if (rx_q->xsk_pool) { 1639 /* RX XDP ZC buffer pool may not be populated, e.g. 1640 * xdpsock TX-only. 1641 */ 1642 stmmac_alloc_rx_buffers_zc(priv, queue); 1643 } else { 1644 ret = stmmac_alloc_rx_buffers(priv, queue, flags); 1645 if (ret < 0) 1646 return -ENOMEM; 1647 } 1648 1649 rx_q->cur_rx = 0; 1650 rx_q->dirty_rx = 0; 1651 1652 /* Setup the chained descriptor addresses */ 1653 if (priv->mode == STMMAC_CHAIN_MODE) { 1654 if (priv->extend_desc) 1655 stmmac_mode_init(priv, rx_q->dma_erx, 1656 rx_q->dma_rx_phy, 1657 priv->dma_rx_size, 1); 1658 else 1659 stmmac_mode_init(priv, rx_q->dma_rx, 1660 rx_q->dma_rx_phy, 1661 priv->dma_rx_size, 0); 1662 } 1663 1664 return 0; 1665 } 1666 1667 static int init_dma_rx_desc_rings(struct net_device *dev, gfp_t flags) 1668 { 1669 struct stmmac_priv *priv = netdev_priv(dev); 1670 u32 rx_count = priv->plat->rx_queues_to_use; 1671 int queue; 1672 int ret; 1673 1674 /* RX INITIALIZATION */ 1675 netif_dbg(priv, probe, priv->dev, 1676 "SKB addresses:\nskb\t\tskb data\tdma data\n"); 1677 1678 for (queue = 0; queue < rx_count; queue++) { 1679 ret = __init_dma_rx_desc_rings(priv, queue, flags); 1680 if (ret) 1681 goto err_init_rx_buffers; 1682 } 1683 1684 return 0; 1685 1686 err_init_rx_buffers: 1687 while (queue >= 0) { 1688 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1689 1690 if (rx_q->xsk_pool) 1691 dma_free_rx_xskbufs(priv, queue); 1692 else 1693 dma_free_rx_skbufs(priv, queue); 1694 1695 rx_q->buf_alloc_num = 0; 1696 rx_q->xsk_pool = NULL; 1697 1698 queue--; 1699 } 1700 1701 return ret; 1702 } 1703 1704 /** 1705 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue) 1706 * @priv: driver private structure 1707 * @queue : TX queue index 1708 * Description: this function initializes the DMA TX descriptors 1709 * and allocates the socket buffers. It supports the chained and ring 1710 * modes. 1711 */ 1712 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv, u32 queue) 1713 { 1714 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1715 int i; 1716 1717 netif_dbg(priv, probe, priv->dev, 1718 "(%s) dma_tx_phy=0x%08x\n", __func__, 1719 (u32)tx_q->dma_tx_phy); 1720 1721 /* Setup the chained descriptor addresses */ 1722 if (priv->mode == STMMAC_CHAIN_MODE) { 1723 if (priv->extend_desc) 1724 stmmac_mode_init(priv, tx_q->dma_etx, 1725 tx_q->dma_tx_phy, 1726 priv->dma_tx_size, 1); 1727 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) 1728 stmmac_mode_init(priv, tx_q->dma_tx, 1729 tx_q->dma_tx_phy, 1730 priv->dma_tx_size, 0); 1731 } 1732 1733 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue); 1734 1735 for (i = 0; i < priv->dma_tx_size; i++) { 1736 struct dma_desc *p; 1737 1738 if (priv->extend_desc) 1739 p = &((tx_q->dma_etx + i)->basic); 1740 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 1741 p = &((tx_q->dma_entx + i)->basic); 1742 else 1743 p = tx_q->dma_tx + i; 1744 1745 stmmac_clear_desc(priv, p); 1746 1747 tx_q->tx_skbuff_dma[i].buf = 0; 1748 tx_q->tx_skbuff_dma[i].map_as_page = false; 1749 tx_q->tx_skbuff_dma[i].len = 0; 1750 tx_q->tx_skbuff_dma[i].last_segment = false; 1751 tx_q->tx_skbuff[i] = NULL; 1752 } 1753 1754 tx_q->dirty_tx = 0; 1755 tx_q->cur_tx = 0; 1756 tx_q->mss = 0; 1757 1758 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 1759 1760 return 0; 1761 } 1762 1763 static int init_dma_tx_desc_rings(struct net_device *dev) 1764 { 1765 struct stmmac_priv *priv = netdev_priv(dev); 1766 u32 tx_queue_cnt; 1767 u32 queue; 1768 1769 tx_queue_cnt = priv->plat->tx_queues_to_use; 1770 1771 for (queue = 0; queue < tx_queue_cnt; queue++) 1772 __init_dma_tx_desc_rings(priv, queue); 1773 1774 return 0; 1775 } 1776 1777 /** 1778 * init_dma_desc_rings - init the RX/TX descriptor rings 1779 * @dev: net device structure 1780 * @flags: gfp flag. 1781 * Description: this function initializes the DMA RX/TX descriptors 1782 * and allocates the socket buffers. It supports the chained and ring 1783 * modes. 1784 */ 1785 static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) 1786 { 1787 struct stmmac_priv *priv = netdev_priv(dev); 1788 int ret; 1789 1790 ret = init_dma_rx_desc_rings(dev, flags); 1791 if (ret) 1792 return ret; 1793 1794 ret = init_dma_tx_desc_rings(dev); 1795 1796 stmmac_clear_descriptors(priv); 1797 1798 if (netif_msg_hw(priv)) 1799 stmmac_display_rings(priv); 1800 1801 return ret; 1802 } 1803 1804 /** 1805 * dma_free_tx_skbufs - free TX dma buffers 1806 * @priv: private structure 1807 * @queue: TX queue index 1808 */ 1809 static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue) 1810 { 1811 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1812 int i; 1813 1814 tx_q->xsk_frames_done = 0; 1815 1816 for (i = 0; i < priv->dma_tx_size; i++) 1817 stmmac_free_tx_buffer(priv, queue, i); 1818 1819 if (tx_q->xsk_pool && tx_q->xsk_frames_done) { 1820 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 1821 tx_q->xsk_frames_done = 0; 1822 tx_q->xsk_pool = NULL; 1823 } 1824 } 1825 1826 /** 1827 * stmmac_free_tx_skbufs - free TX skb buffers 1828 * @priv: private structure 1829 */ 1830 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv) 1831 { 1832 u32 tx_queue_cnt = priv->plat->tx_queues_to_use; 1833 u32 queue; 1834 1835 for (queue = 0; queue < tx_queue_cnt; queue++) 1836 dma_free_tx_skbufs(priv, queue); 1837 } 1838 1839 /** 1840 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue) 1841 * @priv: private structure 1842 * @queue: RX queue index 1843 */ 1844 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1845 { 1846 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1847 1848 /* Release the DMA RX socket buffers */ 1849 if (rx_q->xsk_pool) 1850 dma_free_rx_xskbufs(priv, queue); 1851 else 1852 dma_free_rx_skbufs(priv, queue); 1853 1854 rx_q->buf_alloc_num = 0; 1855 rx_q->xsk_pool = NULL; 1856 1857 /* Free DMA regions of consistent memory previously allocated */ 1858 if (!priv->extend_desc) 1859 dma_free_coherent(priv->device, priv->dma_rx_size * 1860 sizeof(struct dma_desc), 1861 rx_q->dma_rx, rx_q->dma_rx_phy); 1862 else 1863 dma_free_coherent(priv->device, priv->dma_rx_size * 1864 sizeof(struct dma_extended_desc), 1865 rx_q->dma_erx, rx_q->dma_rx_phy); 1866 1867 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq)) 1868 xdp_rxq_info_unreg(&rx_q->xdp_rxq); 1869 1870 kfree(rx_q->buf_pool); 1871 if (rx_q->page_pool) 1872 page_pool_destroy(rx_q->page_pool); 1873 } 1874 1875 static void free_dma_rx_desc_resources(struct stmmac_priv *priv) 1876 { 1877 u32 rx_count = priv->plat->rx_queues_to_use; 1878 u32 queue; 1879 1880 /* Free RX queue resources */ 1881 for (queue = 0; queue < rx_count; queue++) 1882 __free_dma_rx_desc_resources(priv, queue); 1883 } 1884 1885 /** 1886 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue) 1887 * @priv: private structure 1888 * @queue: TX queue index 1889 */ 1890 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 1891 { 1892 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 1893 size_t size; 1894 void *addr; 1895 1896 /* Release the DMA TX socket buffers */ 1897 dma_free_tx_skbufs(priv, queue); 1898 1899 if (priv->extend_desc) { 1900 size = sizeof(struct dma_extended_desc); 1901 addr = tx_q->dma_etx; 1902 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) { 1903 size = sizeof(struct dma_edesc); 1904 addr = tx_q->dma_entx; 1905 } else { 1906 size = sizeof(struct dma_desc); 1907 addr = tx_q->dma_tx; 1908 } 1909 1910 size *= priv->dma_tx_size; 1911 1912 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy); 1913 1914 kfree(tx_q->tx_skbuff_dma); 1915 kfree(tx_q->tx_skbuff); 1916 } 1917 1918 static void free_dma_tx_desc_resources(struct stmmac_priv *priv) 1919 { 1920 u32 tx_count = priv->plat->tx_queues_to_use; 1921 u32 queue; 1922 1923 /* Free TX queue resources */ 1924 for (queue = 0; queue < tx_count; queue++) 1925 __free_dma_tx_desc_resources(priv, queue); 1926 } 1927 1928 /** 1929 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue). 1930 * @priv: private structure 1931 * @queue: RX queue index 1932 * Description: according to which descriptor can be used (extend or basic) 1933 * this function allocates the resources for TX and RX paths. In case of 1934 * reception, for example, it pre-allocated the RX socket buffer in order to 1935 * allow zero-copy mechanism. 1936 */ 1937 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv, u32 queue) 1938 { 1939 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 1940 struct stmmac_channel *ch = &priv->channel[queue]; 1941 bool xdp_prog = stmmac_xdp_is_enabled(priv); 1942 struct page_pool_params pp_params = { 0 }; 1943 unsigned int num_pages; 1944 unsigned int napi_id; 1945 int ret; 1946 1947 rx_q->queue_index = queue; 1948 rx_q->priv_data = priv; 1949 1950 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV; 1951 pp_params.pool_size = priv->dma_rx_size; 1952 num_pages = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE); 1953 pp_params.order = ilog2(num_pages); 1954 pp_params.nid = dev_to_node(priv->device); 1955 pp_params.dev = priv->device; 1956 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; 1957 pp_params.offset = stmmac_rx_offset(priv); 1958 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages); 1959 1960 rx_q->page_pool = page_pool_create(&pp_params); 1961 if (IS_ERR(rx_q->page_pool)) { 1962 ret = PTR_ERR(rx_q->page_pool); 1963 rx_q->page_pool = NULL; 1964 return ret; 1965 } 1966 1967 rx_q->buf_pool = kcalloc(priv->dma_rx_size, 1968 sizeof(*rx_q->buf_pool), 1969 GFP_KERNEL); 1970 if (!rx_q->buf_pool) 1971 return -ENOMEM; 1972 1973 if (priv->extend_desc) { 1974 rx_q->dma_erx = dma_alloc_coherent(priv->device, 1975 priv->dma_rx_size * 1976 sizeof(struct dma_extended_desc), 1977 &rx_q->dma_rx_phy, 1978 GFP_KERNEL); 1979 if (!rx_q->dma_erx) 1980 return -ENOMEM; 1981 1982 } else { 1983 rx_q->dma_rx = dma_alloc_coherent(priv->device, 1984 priv->dma_rx_size * 1985 sizeof(struct dma_desc), 1986 &rx_q->dma_rx_phy, 1987 GFP_KERNEL); 1988 if (!rx_q->dma_rx) 1989 return -ENOMEM; 1990 } 1991 1992 if (stmmac_xdp_is_enabled(priv) && 1993 test_bit(queue, priv->af_xdp_zc_qps)) 1994 napi_id = ch->rxtx_napi.napi_id; 1995 else 1996 napi_id = ch->rx_napi.napi_id; 1997 1998 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev, 1999 rx_q->queue_index, 2000 napi_id); 2001 if (ret) { 2002 netdev_err(priv->dev, "Failed to register xdp rxq info\n"); 2003 return -EINVAL; 2004 } 2005 2006 return 0; 2007 } 2008 2009 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv) 2010 { 2011 u32 rx_count = priv->plat->rx_queues_to_use; 2012 u32 queue; 2013 int ret; 2014 2015 /* RX queues buffers and DMA */ 2016 for (queue = 0; queue < rx_count; queue++) { 2017 ret = __alloc_dma_rx_desc_resources(priv, queue); 2018 if (ret) 2019 goto err_dma; 2020 } 2021 2022 return 0; 2023 2024 err_dma: 2025 free_dma_rx_desc_resources(priv); 2026 2027 return ret; 2028 } 2029 2030 /** 2031 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue). 2032 * @priv: private structure 2033 * @queue: TX queue index 2034 * Description: according to which descriptor can be used (extend or basic) 2035 * this function allocates the resources for TX and RX paths. In case of 2036 * reception, for example, it pre-allocated the RX socket buffer in order to 2037 * allow zero-copy mechanism. 2038 */ 2039 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv, u32 queue) 2040 { 2041 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2042 size_t size; 2043 void *addr; 2044 2045 tx_q->queue_index = queue; 2046 tx_q->priv_data = priv; 2047 2048 tx_q->tx_skbuff_dma = kcalloc(priv->dma_tx_size, 2049 sizeof(*tx_q->tx_skbuff_dma), 2050 GFP_KERNEL); 2051 if (!tx_q->tx_skbuff_dma) 2052 return -ENOMEM; 2053 2054 tx_q->tx_skbuff = kcalloc(priv->dma_tx_size, 2055 sizeof(struct sk_buff *), 2056 GFP_KERNEL); 2057 if (!tx_q->tx_skbuff) 2058 return -ENOMEM; 2059 2060 if (priv->extend_desc) 2061 size = sizeof(struct dma_extended_desc); 2062 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2063 size = sizeof(struct dma_edesc); 2064 else 2065 size = sizeof(struct dma_desc); 2066 2067 size *= priv->dma_tx_size; 2068 2069 addr = dma_alloc_coherent(priv->device, size, 2070 &tx_q->dma_tx_phy, GFP_KERNEL); 2071 if (!addr) 2072 return -ENOMEM; 2073 2074 if (priv->extend_desc) 2075 tx_q->dma_etx = addr; 2076 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2077 tx_q->dma_entx = addr; 2078 else 2079 tx_q->dma_tx = addr; 2080 2081 return 0; 2082 } 2083 2084 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv) 2085 { 2086 u32 tx_count = priv->plat->tx_queues_to_use; 2087 u32 queue; 2088 int ret; 2089 2090 /* TX queues buffers and DMA */ 2091 for (queue = 0; queue < tx_count; queue++) { 2092 ret = __alloc_dma_tx_desc_resources(priv, queue); 2093 if (ret) 2094 goto err_dma; 2095 } 2096 2097 return 0; 2098 2099 err_dma: 2100 free_dma_tx_desc_resources(priv); 2101 return ret; 2102 } 2103 2104 /** 2105 * alloc_dma_desc_resources - alloc TX/RX resources. 2106 * @priv: private structure 2107 * Description: according to which descriptor can be used (extend or basic) 2108 * this function allocates the resources for TX and RX paths. In case of 2109 * reception, for example, it pre-allocated the RX socket buffer in order to 2110 * allow zero-copy mechanism. 2111 */ 2112 static int alloc_dma_desc_resources(struct stmmac_priv *priv) 2113 { 2114 /* RX Allocation */ 2115 int ret = alloc_dma_rx_desc_resources(priv); 2116 2117 if (ret) 2118 return ret; 2119 2120 ret = alloc_dma_tx_desc_resources(priv); 2121 2122 return ret; 2123 } 2124 2125 /** 2126 * free_dma_desc_resources - free dma desc resources 2127 * @priv: private structure 2128 */ 2129 static void free_dma_desc_resources(struct stmmac_priv *priv) 2130 { 2131 /* Release the DMA TX socket buffers */ 2132 free_dma_tx_desc_resources(priv); 2133 2134 /* Release the DMA RX socket buffers later 2135 * to ensure all pending XDP_TX buffers are returned. 2136 */ 2137 free_dma_rx_desc_resources(priv); 2138 } 2139 2140 /** 2141 * stmmac_mac_enable_rx_queues - Enable MAC rx queues 2142 * @priv: driver private structure 2143 * Description: It is used for enabling the rx queues in the MAC 2144 */ 2145 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv) 2146 { 2147 u32 rx_queues_count = priv->plat->rx_queues_to_use; 2148 int queue; 2149 u8 mode; 2150 2151 for (queue = 0; queue < rx_queues_count; queue++) { 2152 mode = priv->plat->rx_queues_cfg[queue].mode_to_use; 2153 stmmac_rx_queue_enable(priv, priv->hw, mode, queue); 2154 } 2155 } 2156 2157 /** 2158 * stmmac_start_rx_dma - start RX DMA channel 2159 * @priv: driver private structure 2160 * @chan: RX channel index 2161 * Description: 2162 * This starts a RX DMA channel 2163 */ 2164 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan) 2165 { 2166 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan); 2167 stmmac_start_rx(priv, priv->ioaddr, chan); 2168 } 2169 2170 /** 2171 * stmmac_start_tx_dma - start TX DMA channel 2172 * @priv: driver private structure 2173 * @chan: TX channel index 2174 * Description: 2175 * This starts a TX DMA channel 2176 */ 2177 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan) 2178 { 2179 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan); 2180 stmmac_start_tx(priv, priv->ioaddr, chan); 2181 } 2182 2183 /** 2184 * stmmac_stop_rx_dma - stop RX DMA channel 2185 * @priv: driver private structure 2186 * @chan: RX channel index 2187 * Description: 2188 * This stops a RX DMA channel 2189 */ 2190 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan) 2191 { 2192 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan); 2193 stmmac_stop_rx(priv, priv->ioaddr, chan); 2194 } 2195 2196 /** 2197 * stmmac_stop_tx_dma - stop TX DMA channel 2198 * @priv: driver private structure 2199 * @chan: TX channel index 2200 * Description: 2201 * This stops a TX DMA channel 2202 */ 2203 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan) 2204 { 2205 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan); 2206 stmmac_stop_tx(priv, priv->ioaddr, chan); 2207 } 2208 2209 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv) 2210 { 2211 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2212 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2213 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2214 u32 chan; 2215 2216 for (chan = 0; chan < dma_csr_ch; chan++) { 2217 struct stmmac_channel *ch = &priv->channel[chan]; 2218 unsigned long flags; 2219 2220 spin_lock_irqsave(&ch->lock, flags); 2221 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2222 spin_unlock_irqrestore(&ch->lock, flags); 2223 } 2224 } 2225 2226 /** 2227 * stmmac_start_all_dma - start all RX and TX DMA channels 2228 * @priv: driver private structure 2229 * Description: 2230 * This starts all the RX and TX DMA channels 2231 */ 2232 static void stmmac_start_all_dma(struct stmmac_priv *priv) 2233 { 2234 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2235 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2236 u32 chan = 0; 2237 2238 for (chan = 0; chan < rx_channels_count; chan++) 2239 stmmac_start_rx_dma(priv, chan); 2240 2241 for (chan = 0; chan < tx_channels_count; chan++) 2242 stmmac_start_tx_dma(priv, chan); 2243 } 2244 2245 /** 2246 * stmmac_stop_all_dma - stop all RX and TX DMA channels 2247 * @priv: driver private structure 2248 * Description: 2249 * This stops the RX and TX DMA channels 2250 */ 2251 static void stmmac_stop_all_dma(struct stmmac_priv *priv) 2252 { 2253 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2254 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2255 u32 chan = 0; 2256 2257 for (chan = 0; chan < rx_channels_count; chan++) 2258 stmmac_stop_rx_dma(priv, chan); 2259 2260 for (chan = 0; chan < tx_channels_count; chan++) 2261 stmmac_stop_tx_dma(priv, chan); 2262 } 2263 2264 /** 2265 * stmmac_dma_operation_mode - HW DMA operation mode 2266 * @priv: driver private structure 2267 * Description: it is used for configuring the DMA operation mode register in 2268 * order to program the tx/rx DMA thresholds or Store-And-Forward mode. 2269 */ 2270 static void stmmac_dma_operation_mode(struct stmmac_priv *priv) 2271 { 2272 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2273 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2274 int rxfifosz = priv->plat->rx_fifo_size; 2275 int txfifosz = priv->plat->tx_fifo_size; 2276 u32 txmode = 0; 2277 u32 rxmode = 0; 2278 u32 chan = 0; 2279 u8 qmode = 0; 2280 2281 if (rxfifosz == 0) 2282 rxfifosz = priv->dma_cap.rx_fifo_size; 2283 if (txfifosz == 0) 2284 txfifosz = priv->dma_cap.tx_fifo_size; 2285 2286 /* Adjust for real per queue fifo size */ 2287 rxfifosz /= rx_channels_count; 2288 txfifosz /= tx_channels_count; 2289 2290 if (priv->plat->force_thresh_dma_mode) { 2291 txmode = tc; 2292 rxmode = tc; 2293 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) { 2294 /* 2295 * In case of GMAC, SF mode can be enabled 2296 * to perform the TX COE in HW. This depends on: 2297 * 1) TX COE if actually supported 2298 * 2) There is no bugged Jumbo frame support 2299 * that needs to not insert csum in the TDES. 2300 */ 2301 txmode = SF_DMA_MODE; 2302 rxmode = SF_DMA_MODE; 2303 priv->xstats.threshold = SF_DMA_MODE; 2304 } else { 2305 txmode = tc; 2306 rxmode = SF_DMA_MODE; 2307 } 2308 2309 /* configure all channels */ 2310 for (chan = 0; chan < rx_channels_count; chan++) { 2311 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2312 u32 buf_size; 2313 2314 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2315 2316 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, 2317 rxfifosz, qmode); 2318 2319 if (rx_q->xsk_pool) { 2320 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 2321 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2322 buf_size, 2323 chan); 2324 } else { 2325 stmmac_set_dma_bfsize(priv, priv->ioaddr, 2326 priv->dma_buf_sz, 2327 chan); 2328 } 2329 } 2330 2331 for (chan = 0; chan < tx_channels_count; chan++) { 2332 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2333 2334 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, 2335 txfifosz, qmode); 2336 } 2337 } 2338 2339 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 2340 { 2341 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue); 2342 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2343 struct xsk_buff_pool *pool = tx_q->xsk_pool; 2344 unsigned int entry = tx_q->cur_tx; 2345 struct dma_desc *tx_desc = NULL; 2346 struct xdp_desc xdp_desc; 2347 bool work_done = true; 2348 2349 /* Avoids TX time-out as we are sharing with slow path */ 2350 txq_trans_cond_update(nq); 2351 2352 budget = min(budget, stmmac_tx_avail(priv, queue)); 2353 2354 while (budget-- > 0) { 2355 dma_addr_t dma_addr; 2356 bool set_ic; 2357 2358 /* We are sharing with slow path and stop XSK TX desc submission when 2359 * available TX ring is less than threshold. 2360 */ 2361 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) || 2362 !netif_carrier_ok(priv->dev)) { 2363 work_done = false; 2364 break; 2365 } 2366 2367 if (!xsk_tx_peek_desc(pool, &xdp_desc)) 2368 break; 2369 2370 if (likely(priv->extend_desc)) 2371 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 2372 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2373 tx_desc = &tx_q->dma_entx[entry].basic; 2374 else 2375 tx_desc = tx_q->dma_tx + entry; 2376 2377 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr); 2378 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len); 2379 2380 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX; 2381 2382 /* To return XDP buffer to XSK pool, we simple call 2383 * xsk_tx_completed(), so we don't need to fill up 2384 * 'buf' and 'xdpf'. 2385 */ 2386 tx_q->tx_skbuff_dma[entry].buf = 0; 2387 tx_q->xdpf[entry] = NULL; 2388 2389 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2390 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len; 2391 tx_q->tx_skbuff_dma[entry].last_segment = true; 2392 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2393 2394 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 2395 2396 tx_q->tx_count_frames++; 2397 2398 if (!priv->tx_coal_frames[queue]) 2399 set_ic = false; 2400 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 2401 set_ic = true; 2402 else 2403 set_ic = false; 2404 2405 if (set_ic) { 2406 tx_q->tx_count_frames = 0; 2407 stmmac_set_tx_ic(priv, tx_desc); 2408 priv->xstats.tx_set_ic_bit++; 2409 } 2410 2411 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len, 2412 true, priv->mode, true, true, 2413 xdp_desc.len); 2414 2415 stmmac_enable_dma_transmission(priv, priv->ioaddr); 2416 2417 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 2418 entry = tx_q->cur_tx; 2419 } 2420 2421 if (tx_desc) { 2422 stmmac_flush_tx_descriptors(priv, queue); 2423 xsk_tx_release(pool); 2424 } 2425 2426 /* Return true if all of the 3 conditions are met 2427 * a) TX Budget is still available 2428 * b) work_done = true when XSK TX desc peek is empty (no more 2429 * pending XSK TX for transmission) 2430 */ 2431 return !!budget && work_done; 2432 } 2433 2434 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan) 2435 { 2436 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) { 2437 tc += 64; 2438 2439 if (priv->plat->force_thresh_dma_mode) 2440 stmmac_set_dma_operation_mode(priv, tc, tc, chan); 2441 else 2442 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE, 2443 chan); 2444 2445 priv->xstats.threshold = tc; 2446 } 2447 } 2448 2449 /** 2450 * stmmac_tx_clean - to manage the transmission completion 2451 * @priv: driver private structure 2452 * @budget: napi budget limiting this functions packet handling 2453 * @queue: TX queue index 2454 * Description: it reclaims the transmit resources after transmission completes. 2455 */ 2456 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue) 2457 { 2458 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2459 unsigned int bytes_compl = 0, pkts_compl = 0; 2460 unsigned int entry, xmits = 0, count = 0; 2461 2462 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue)); 2463 2464 priv->xstats.tx_clean++; 2465 2466 tx_q->xsk_frames_done = 0; 2467 2468 entry = tx_q->dirty_tx; 2469 2470 /* Try to clean all TX complete frame in 1 shot */ 2471 while ((entry != tx_q->cur_tx) && count < priv->dma_tx_size) { 2472 struct xdp_frame *xdpf; 2473 struct sk_buff *skb; 2474 struct dma_desc *p; 2475 int status; 2476 2477 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX || 2478 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2479 xdpf = tx_q->xdpf[entry]; 2480 skb = NULL; 2481 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2482 xdpf = NULL; 2483 skb = tx_q->tx_skbuff[entry]; 2484 } else { 2485 xdpf = NULL; 2486 skb = NULL; 2487 } 2488 2489 if (priv->extend_desc) 2490 p = (struct dma_desc *)(tx_q->dma_etx + entry); 2491 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 2492 p = &tx_q->dma_entx[entry].basic; 2493 else 2494 p = tx_q->dma_tx + entry; 2495 2496 status = stmmac_tx_status(priv, &priv->dev->stats, 2497 &priv->xstats, p, priv->ioaddr); 2498 /* Check if the descriptor is owned by the DMA */ 2499 if (unlikely(status & tx_dma_own)) 2500 break; 2501 2502 count++; 2503 2504 /* Make sure descriptor fields are read after reading 2505 * the own bit. 2506 */ 2507 dma_rmb(); 2508 2509 /* Just consider the last segment and ...*/ 2510 if (likely(!(status & tx_not_ls))) { 2511 /* ... verify the status error condition */ 2512 if (unlikely(status & tx_err)) { 2513 priv->dev->stats.tx_errors++; 2514 if (unlikely(status & tx_err_bump_tc)) 2515 stmmac_bump_dma_threshold(priv, queue); 2516 } else { 2517 priv->dev->stats.tx_packets++; 2518 priv->xstats.tx_pkt_n++; 2519 priv->xstats.txq_stats[queue].tx_pkt_n++; 2520 } 2521 if (skb) 2522 stmmac_get_tx_hwtstamp(priv, p, skb); 2523 } 2524 2525 if (likely(tx_q->tx_skbuff_dma[entry].buf && 2526 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) { 2527 if (tx_q->tx_skbuff_dma[entry].map_as_page) 2528 dma_unmap_page(priv->device, 2529 tx_q->tx_skbuff_dma[entry].buf, 2530 tx_q->tx_skbuff_dma[entry].len, 2531 DMA_TO_DEVICE); 2532 else 2533 dma_unmap_single(priv->device, 2534 tx_q->tx_skbuff_dma[entry].buf, 2535 tx_q->tx_skbuff_dma[entry].len, 2536 DMA_TO_DEVICE); 2537 tx_q->tx_skbuff_dma[entry].buf = 0; 2538 tx_q->tx_skbuff_dma[entry].len = 0; 2539 tx_q->tx_skbuff_dma[entry].map_as_page = false; 2540 } 2541 2542 stmmac_clean_desc3(priv, tx_q, p); 2543 2544 tx_q->tx_skbuff_dma[entry].last_segment = false; 2545 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 2546 2547 if (xdpf && 2548 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) { 2549 xdp_return_frame_rx_napi(xdpf); 2550 tx_q->xdpf[entry] = NULL; 2551 } 2552 2553 if (xdpf && 2554 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) { 2555 xdp_return_frame(xdpf); 2556 tx_q->xdpf[entry] = NULL; 2557 } 2558 2559 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX) 2560 tx_q->xsk_frames_done++; 2561 2562 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) { 2563 if (likely(skb)) { 2564 pkts_compl++; 2565 bytes_compl += skb->len; 2566 dev_consume_skb_any(skb); 2567 tx_q->tx_skbuff[entry] = NULL; 2568 } 2569 } 2570 2571 stmmac_release_tx_desc(priv, p, priv->mode); 2572 2573 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 2574 } 2575 tx_q->dirty_tx = entry; 2576 2577 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue), 2578 pkts_compl, bytes_compl); 2579 2580 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev, 2581 queue))) && 2582 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) { 2583 2584 netif_dbg(priv, tx_done, priv->dev, 2585 "%s: restart transmit\n", __func__); 2586 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue)); 2587 } 2588 2589 if (tx_q->xsk_pool) { 2590 bool work_done; 2591 2592 if (tx_q->xsk_frames_done) 2593 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done); 2594 2595 if (xsk_uses_need_wakeup(tx_q->xsk_pool)) 2596 xsk_set_tx_need_wakeup(tx_q->xsk_pool); 2597 2598 /* For XSK TX, we try to send as many as possible. 2599 * If XSK work done (XSK TX desc empty and budget still 2600 * available), return "budget - 1" to reenable TX IRQ. 2601 * Else, return "budget" to make NAPI continue polling. 2602 */ 2603 work_done = stmmac_xdp_xmit_zc(priv, queue, 2604 STMMAC_XSK_TX_BUDGET_MAX); 2605 if (work_done) 2606 xmits = budget - 1; 2607 else 2608 xmits = budget; 2609 } 2610 2611 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode && 2612 priv->eee_sw_timer_en) { 2613 if (stmmac_enable_eee_mode(priv)) 2614 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer)); 2615 } 2616 2617 /* We still have pending packets, let's call for a new scheduling */ 2618 if (tx_q->dirty_tx != tx_q->cur_tx) 2619 hrtimer_start(&tx_q->txtimer, 2620 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2621 HRTIMER_MODE_REL); 2622 2623 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue)); 2624 2625 /* Combine decisions from TX clean and XSK TX */ 2626 return max(count, xmits); 2627 } 2628 2629 /** 2630 * stmmac_tx_err - to manage the tx error 2631 * @priv: driver private structure 2632 * @chan: channel index 2633 * Description: it cleans the descriptors and restarts the transmission 2634 * in case of transmission errors. 2635 */ 2636 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) 2637 { 2638 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2639 2640 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan)); 2641 2642 stmmac_stop_tx_dma(priv, chan); 2643 dma_free_tx_skbufs(priv, chan); 2644 stmmac_clear_tx_descriptors(priv, chan); 2645 tx_q->dirty_tx = 0; 2646 tx_q->cur_tx = 0; 2647 tx_q->mss = 0; 2648 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, chan)); 2649 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2650 tx_q->dma_tx_phy, chan); 2651 stmmac_start_tx_dma(priv, chan); 2652 2653 priv->dev->stats.tx_errors++; 2654 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan)); 2655 } 2656 2657 /** 2658 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel 2659 * @priv: driver private structure 2660 * @txmode: TX operating mode 2661 * @rxmode: RX operating mode 2662 * @chan: channel index 2663 * Description: it is used for configuring of the DMA operation mode in 2664 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward 2665 * mode. 2666 */ 2667 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode, 2668 u32 rxmode, u32 chan) 2669 { 2670 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use; 2671 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use; 2672 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2673 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2674 int rxfifosz = priv->plat->rx_fifo_size; 2675 int txfifosz = priv->plat->tx_fifo_size; 2676 2677 if (rxfifosz == 0) 2678 rxfifosz = priv->dma_cap.rx_fifo_size; 2679 if (txfifosz == 0) 2680 txfifosz = priv->dma_cap.tx_fifo_size; 2681 2682 /* Adjust for real per queue fifo size */ 2683 rxfifosz /= rx_channels_count; 2684 txfifosz /= tx_channels_count; 2685 2686 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode); 2687 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode); 2688 } 2689 2690 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv) 2691 { 2692 int ret; 2693 2694 ret = stmmac_safety_feat_irq_status(priv, priv->dev, 2695 priv->ioaddr, priv->dma_cap.asp, &priv->sstats); 2696 if (ret && (ret != -EINVAL)) { 2697 stmmac_global_err(priv); 2698 return true; 2699 } 2700 2701 return false; 2702 } 2703 2704 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir) 2705 { 2706 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr, 2707 &priv->xstats, chan, dir); 2708 struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan]; 2709 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2710 struct stmmac_channel *ch = &priv->channel[chan]; 2711 struct napi_struct *rx_napi; 2712 struct napi_struct *tx_napi; 2713 unsigned long flags; 2714 2715 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi; 2716 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2717 2718 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) { 2719 if (napi_schedule_prep(rx_napi)) { 2720 spin_lock_irqsave(&ch->lock, flags); 2721 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 2722 spin_unlock_irqrestore(&ch->lock, flags); 2723 __napi_schedule(rx_napi); 2724 } 2725 } 2726 2727 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) { 2728 if (napi_schedule_prep(tx_napi)) { 2729 spin_lock_irqsave(&ch->lock, flags); 2730 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 2731 spin_unlock_irqrestore(&ch->lock, flags); 2732 __napi_schedule(tx_napi); 2733 } 2734 } 2735 2736 return status; 2737 } 2738 2739 /** 2740 * stmmac_dma_interrupt - DMA ISR 2741 * @priv: driver private structure 2742 * Description: this is the DMA ISR. It is called by the main ISR. 2743 * It calls the dwmac dma routine and schedule poll method in case of some 2744 * work can be done. 2745 */ 2746 static void stmmac_dma_interrupt(struct stmmac_priv *priv) 2747 { 2748 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2749 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2750 u32 channels_to_check = tx_channel_count > rx_channel_count ? 2751 tx_channel_count : rx_channel_count; 2752 u32 chan; 2753 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)]; 2754 2755 /* Make sure we never check beyond our status buffer. */ 2756 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status))) 2757 channels_to_check = ARRAY_SIZE(status); 2758 2759 for (chan = 0; chan < channels_to_check; chan++) 2760 status[chan] = stmmac_napi_check(priv, chan, 2761 DMA_DIR_RXTX); 2762 2763 for (chan = 0; chan < tx_channel_count; chan++) { 2764 if (unlikely(status[chan] & tx_hard_error_bump_tc)) { 2765 /* Try to bump up the dma threshold on this failure */ 2766 stmmac_bump_dma_threshold(priv, chan); 2767 } else if (unlikely(status[chan] == tx_hard_error)) { 2768 stmmac_tx_err(priv, chan); 2769 } 2770 } 2771 } 2772 2773 /** 2774 * stmmac_mmc_setup: setup the Mac Management Counters (MMC) 2775 * @priv: driver private structure 2776 * Description: this masks the MMC irq, in fact, the counters are managed in SW. 2777 */ 2778 static void stmmac_mmc_setup(struct stmmac_priv *priv) 2779 { 2780 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET | 2781 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET; 2782 2783 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr); 2784 2785 if (priv->dma_cap.rmon) { 2786 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode); 2787 memset(&priv->mmc, 0, sizeof(struct stmmac_counters)); 2788 } else 2789 netdev_info(priv->dev, "No MAC Management Counters available\n"); 2790 } 2791 2792 /** 2793 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register. 2794 * @priv: driver private structure 2795 * Description: 2796 * new GMAC chip generations have a new register to indicate the 2797 * presence of the optional feature/functions. 2798 * This can be also used to override the value passed through the 2799 * platform and necessary for old MAC10/100 and GMAC chips. 2800 */ 2801 static int stmmac_get_hw_features(struct stmmac_priv *priv) 2802 { 2803 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0; 2804 } 2805 2806 /** 2807 * stmmac_check_ether_addr - check if the MAC addr is valid 2808 * @priv: driver private structure 2809 * Description: 2810 * it is to verify if the MAC address is valid, in case of failures it 2811 * generates a random MAC address 2812 */ 2813 static void stmmac_check_ether_addr(struct stmmac_priv *priv) 2814 { 2815 u8 addr[ETH_ALEN]; 2816 2817 if (!is_valid_ether_addr(priv->dev->dev_addr)) { 2818 stmmac_get_umac_addr(priv, priv->hw, addr, 0); 2819 if (is_valid_ether_addr(addr)) 2820 eth_hw_addr_set(priv->dev, addr); 2821 else 2822 eth_hw_addr_random(priv->dev); 2823 dev_info(priv->device, "device MAC address %pM\n", 2824 priv->dev->dev_addr); 2825 } 2826 } 2827 2828 /** 2829 * stmmac_init_dma_engine - DMA init. 2830 * @priv: driver private structure 2831 * Description: 2832 * It inits the DMA invoking the specific MAC/GMAC callback. 2833 * Some DMA parameters can be passed from the platform; 2834 * in case of these are not passed a default is kept for the MAC or GMAC. 2835 */ 2836 static int stmmac_init_dma_engine(struct stmmac_priv *priv) 2837 { 2838 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2839 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2840 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count); 2841 struct stmmac_rx_queue *rx_q; 2842 struct stmmac_tx_queue *tx_q; 2843 u32 chan = 0; 2844 int atds = 0; 2845 int ret = 0; 2846 2847 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) { 2848 dev_err(priv->device, "Invalid DMA configuration\n"); 2849 return -EINVAL; 2850 } 2851 2852 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE)) 2853 atds = 1; 2854 2855 ret = stmmac_reset(priv, priv->ioaddr); 2856 if (ret) { 2857 dev_err(priv->device, "Failed to reset the dma\n"); 2858 return ret; 2859 } 2860 2861 /* DMA Configuration */ 2862 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds); 2863 2864 if (priv->plat->axi) 2865 stmmac_axi(priv, priv->ioaddr, priv->plat->axi); 2866 2867 /* DMA CSR Channel configuration */ 2868 for (chan = 0; chan < dma_csr_ch; chan++) { 2869 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 2870 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 2871 } 2872 2873 /* DMA RX Channel Configuration */ 2874 for (chan = 0; chan < rx_channels_count; chan++) { 2875 rx_q = &priv->rx_queue[chan]; 2876 2877 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2878 rx_q->dma_rx_phy, chan); 2879 2880 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 2881 (rx_q->buf_alloc_num * 2882 sizeof(struct dma_desc)); 2883 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 2884 rx_q->rx_tail_addr, chan); 2885 } 2886 2887 /* DMA TX Channel Configuration */ 2888 for (chan = 0; chan < tx_channels_count; chan++) { 2889 tx_q = &priv->tx_queue[chan]; 2890 2891 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 2892 tx_q->dma_tx_phy, chan); 2893 2894 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 2895 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 2896 tx_q->tx_tail_addr, chan); 2897 } 2898 2899 return ret; 2900 } 2901 2902 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue) 2903 { 2904 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 2905 2906 hrtimer_start(&tx_q->txtimer, 2907 STMMAC_COAL_TIMER(priv->tx_coal_timer[queue]), 2908 HRTIMER_MODE_REL); 2909 } 2910 2911 /** 2912 * stmmac_tx_timer - mitigation sw timer for tx. 2913 * @t: data pointer 2914 * Description: 2915 * This is the timer handler to directly invoke the stmmac_tx_clean. 2916 */ 2917 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t) 2918 { 2919 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer); 2920 struct stmmac_priv *priv = tx_q->priv_data; 2921 struct stmmac_channel *ch; 2922 struct napi_struct *napi; 2923 2924 ch = &priv->channel[tx_q->queue_index]; 2925 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi; 2926 2927 if (likely(napi_schedule_prep(napi))) { 2928 unsigned long flags; 2929 2930 spin_lock_irqsave(&ch->lock, flags); 2931 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1); 2932 spin_unlock_irqrestore(&ch->lock, flags); 2933 __napi_schedule(napi); 2934 } 2935 2936 return HRTIMER_NORESTART; 2937 } 2938 2939 /** 2940 * stmmac_init_coalesce - init mitigation options. 2941 * @priv: driver private structure 2942 * Description: 2943 * This inits the coalesce parameters: i.e. timer rate, 2944 * timer handler and default threshold used for enabling the 2945 * interrupt on completion bit. 2946 */ 2947 static void stmmac_init_coalesce(struct stmmac_priv *priv) 2948 { 2949 u32 tx_channel_count = priv->plat->tx_queues_to_use; 2950 u32 rx_channel_count = priv->plat->rx_queues_to_use; 2951 u32 chan; 2952 2953 for (chan = 0; chan < tx_channel_count; chan++) { 2954 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 2955 2956 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES; 2957 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER; 2958 2959 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 2960 tx_q->txtimer.function = stmmac_tx_timer; 2961 } 2962 2963 for (chan = 0; chan < rx_channel_count; chan++) 2964 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES; 2965 } 2966 2967 static void stmmac_set_rings_length(struct stmmac_priv *priv) 2968 { 2969 u32 rx_channels_count = priv->plat->rx_queues_to_use; 2970 u32 tx_channels_count = priv->plat->tx_queues_to_use; 2971 u32 chan; 2972 2973 /* set TX ring length */ 2974 for (chan = 0; chan < tx_channels_count; chan++) 2975 stmmac_set_tx_ring_len(priv, priv->ioaddr, 2976 (priv->dma_tx_size - 1), chan); 2977 2978 /* set RX ring length */ 2979 for (chan = 0; chan < rx_channels_count; chan++) 2980 stmmac_set_rx_ring_len(priv, priv->ioaddr, 2981 (priv->dma_rx_size - 1), chan); 2982 } 2983 2984 /** 2985 * stmmac_set_tx_queue_weight - Set TX queue weight 2986 * @priv: driver private structure 2987 * Description: It is used for setting TX queues weight 2988 */ 2989 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv) 2990 { 2991 u32 tx_queues_count = priv->plat->tx_queues_to_use; 2992 u32 weight; 2993 u32 queue; 2994 2995 for (queue = 0; queue < tx_queues_count; queue++) { 2996 weight = priv->plat->tx_queues_cfg[queue].weight; 2997 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue); 2998 } 2999 } 3000 3001 /** 3002 * stmmac_configure_cbs - Configure CBS in TX queue 3003 * @priv: driver private structure 3004 * Description: It is used for configuring CBS in AVB TX queues 3005 */ 3006 static void stmmac_configure_cbs(struct stmmac_priv *priv) 3007 { 3008 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3009 u32 mode_to_use; 3010 u32 queue; 3011 3012 /* queue 0 is reserved for legacy traffic */ 3013 for (queue = 1; queue < tx_queues_count; queue++) { 3014 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use; 3015 if (mode_to_use == MTL_QUEUE_DCB) 3016 continue; 3017 3018 stmmac_config_cbs(priv, priv->hw, 3019 priv->plat->tx_queues_cfg[queue].send_slope, 3020 priv->plat->tx_queues_cfg[queue].idle_slope, 3021 priv->plat->tx_queues_cfg[queue].high_credit, 3022 priv->plat->tx_queues_cfg[queue].low_credit, 3023 queue); 3024 } 3025 } 3026 3027 /** 3028 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel 3029 * @priv: driver private structure 3030 * Description: It is used for mapping RX queues to RX dma channels 3031 */ 3032 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv) 3033 { 3034 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3035 u32 queue; 3036 u32 chan; 3037 3038 for (queue = 0; queue < rx_queues_count; queue++) { 3039 chan = priv->plat->rx_queues_cfg[queue].chan; 3040 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan); 3041 } 3042 } 3043 3044 /** 3045 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority 3046 * @priv: driver private structure 3047 * Description: It is used for configuring the RX Queue Priority 3048 */ 3049 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv) 3050 { 3051 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3052 u32 queue; 3053 u32 prio; 3054 3055 for (queue = 0; queue < rx_queues_count; queue++) { 3056 if (!priv->plat->rx_queues_cfg[queue].use_prio) 3057 continue; 3058 3059 prio = priv->plat->rx_queues_cfg[queue].prio; 3060 stmmac_rx_queue_prio(priv, priv->hw, prio, queue); 3061 } 3062 } 3063 3064 /** 3065 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority 3066 * @priv: driver private structure 3067 * Description: It is used for configuring the TX Queue Priority 3068 */ 3069 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv) 3070 { 3071 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3072 u32 queue; 3073 u32 prio; 3074 3075 for (queue = 0; queue < tx_queues_count; queue++) { 3076 if (!priv->plat->tx_queues_cfg[queue].use_prio) 3077 continue; 3078 3079 prio = priv->plat->tx_queues_cfg[queue].prio; 3080 stmmac_tx_queue_prio(priv, priv->hw, prio, queue); 3081 } 3082 } 3083 3084 /** 3085 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing 3086 * @priv: driver private structure 3087 * Description: It is used for configuring the RX queue routing 3088 */ 3089 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv) 3090 { 3091 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3092 u32 queue; 3093 u8 packet; 3094 3095 for (queue = 0; queue < rx_queues_count; queue++) { 3096 /* no specific packet type routing specified for the queue */ 3097 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0) 3098 continue; 3099 3100 packet = priv->plat->rx_queues_cfg[queue].pkt_route; 3101 stmmac_rx_queue_routing(priv, priv->hw, packet, queue); 3102 } 3103 } 3104 3105 static void stmmac_mac_config_rss(struct stmmac_priv *priv) 3106 { 3107 if (!priv->dma_cap.rssen || !priv->plat->rss_en) { 3108 priv->rss.enable = false; 3109 return; 3110 } 3111 3112 if (priv->dev->features & NETIF_F_RXHASH) 3113 priv->rss.enable = true; 3114 else 3115 priv->rss.enable = false; 3116 3117 stmmac_rss_configure(priv, priv->hw, &priv->rss, 3118 priv->plat->rx_queues_to_use); 3119 } 3120 3121 /** 3122 * stmmac_mtl_configuration - Configure MTL 3123 * @priv: driver private structure 3124 * Description: It is used for configurring MTL 3125 */ 3126 static void stmmac_mtl_configuration(struct stmmac_priv *priv) 3127 { 3128 u32 rx_queues_count = priv->plat->rx_queues_to_use; 3129 u32 tx_queues_count = priv->plat->tx_queues_to_use; 3130 3131 if (tx_queues_count > 1) 3132 stmmac_set_tx_queue_weight(priv); 3133 3134 /* Configure MTL RX algorithms */ 3135 if (rx_queues_count > 1) 3136 stmmac_prog_mtl_rx_algorithms(priv, priv->hw, 3137 priv->plat->rx_sched_algorithm); 3138 3139 /* Configure MTL TX algorithms */ 3140 if (tx_queues_count > 1) 3141 stmmac_prog_mtl_tx_algorithms(priv, priv->hw, 3142 priv->plat->tx_sched_algorithm); 3143 3144 /* Configure CBS in AVB TX queues */ 3145 if (tx_queues_count > 1) 3146 stmmac_configure_cbs(priv); 3147 3148 /* Map RX MTL to DMA channels */ 3149 stmmac_rx_queue_dma_chan_map(priv); 3150 3151 /* Enable MAC RX Queues */ 3152 stmmac_mac_enable_rx_queues(priv); 3153 3154 /* Set RX priorities */ 3155 if (rx_queues_count > 1) 3156 stmmac_mac_config_rx_queues_prio(priv); 3157 3158 /* Set TX priorities */ 3159 if (tx_queues_count > 1) 3160 stmmac_mac_config_tx_queues_prio(priv); 3161 3162 /* Set RX routing */ 3163 if (rx_queues_count > 1) 3164 stmmac_mac_config_rx_queues_routing(priv); 3165 3166 /* Receive Side Scaling */ 3167 if (rx_queues_count > 1) 3168 stmmac_mac_config_rss(priv); 3169 } 3170 3171 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv) 3172 { 3173 if (priv->dma_cap.asp) { 3174 netdev_info(priv->dev, "Enabling Safety Features\n"); 3175 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp, 3176 priv->plat->safety_feat_cfg); 3177 } else { 3178 netdev_info(priv->dev, "No Safety Features support found\n"); 3179 } 3180 } 3181 3182 static int stmmac_fpe_start_wq(struct stmmac_priv *priv) 3183 { 3184 char *name; 3185 3186 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 3187 clear_bit(__FPE_REMOVING, &priv->fpe_task_state); 3188 3189 name = priv->wq_name; 3190 sprintf(name, "%s-fpe", priv->dev->name); 3191 3192 priv->fpe_wq = create_singlethread_workqueue(name); 3193 if (!priv->fpe_wq) { 3194 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name); 3195 3196 return -ENOMEM; 3197 } 3198 netdev_info(priv->dev, "FPE workqueue start"); 3199 3200 return 0; 3201 } 3202 3203 /** 3204 * stmmac_hw_setup - setup mac in a usable state. 3205 * @dev : pointer to the device structure. 3206 * @ptp_register: register PTP if set 3207 * Description: 3208 * this is the main function to setup the HW in a usable state because the 3209 * dma engine is reset, the core registers are configured (e.g. AXI, 3210 * Checksum features, timers). The DMA is ready to start receiving and 3211 * transmitting. 3212 * Return value: 3213 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3214 * file on failure. 3215 */ 3216 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register) 3217 { 3218 struct stmmac_priv *priv = netdev_priv(dev); 3219 u32 rx_cnt = priv->plat->rx_queues_to_use; 3220 u32 tx_cnt = priv->plat->tx_queues_to_use; 3221 bool sph_en; 3222 u32 chan; 3223 int ret; 3224 3225 /* DMA initialization and SW reset */ 3226 ret = stmmac_init_dma_engine(priv); 3227 if (ret < 0) { 3228 netdev_err(priv->dev, "%s: DMA engine initialization failed\n", 3229 __func__); 3230 return ret; 3231 } 3232 3233 /* Copy the MAC addr into the HW */ 3234 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0); 3235 3236 /* PS and related bits will be programmed according to the speed */ 3237 if (priv->hw->pcs) { 3238 int speed = priv->plat->mac_port_sel_speed; 3239 3240 if ((speed == SPEED_10) || (speed == SPEED_100) || 3241 (speed == SPEED_1000)) { 3242 priv->hw->ps = speed; 3243 } else { 3244 dev_warn(priv->device, "invalid port speed\n"); 3245 priv->hw->ps = 0; 3246 } 3247 } 3248 3249 /* Initialize the MAC Core */ 3250 stmmac_core_init(priv, priv->hw, dev); 3251 3252 /* Initialize MTL*/ 3253 stmmac_mtl_configuration(priv); 3254 3255 /* Initialize Safety Features */ 3256 stmmac_safety_feat_configuration(priv); 3257 3258 ret = stmmac_rx_ipc(priv, priv->hw); 3259 if (!ret) { 3260 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n"); 3261 priv->plat->rx_coe = STMMAC_RX_COE_NONE; 3262 priv->hw->rx_csum = 0; 3263 } 3264 3265 /* Enable the MAC Rx/Tx */ 3266 stmmac_mac_set(priv, priv->ioaddr, true); 3267 3268 /* Set the HW DMA mode and the COE */ 3269 stmmac_dma_operation_mode(priv); 3270 3271 stmmac_mmc_setup(priv); 3272 3273 ret = stmmac_init_ptp(priv); 3274 if (ret == -EOPNOTSUPP) 3275 netdev_info(priv->dev, "PTP not supported by HW\n"); 3276 else if (ret) 3277 netdev_warn(priv->dev, "PTP init failed\n"); 3278 else if (ptp_register) 3279 stmmac_ptp_register(priv); 3280 3281 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS; 3282 3283 /* Convert the timer from msec to usec */ 3284 if (!priv->tx_lpi_timer) 3285 priv->tx_lpi_timer = eee_timer * 1000; 3286 3287 if (priv->use_riwt) { 3288 u32 queue; 3289 3290 for (queue = 0; queue < rx_cnt; queue++) { 3291 if (!priv->rx_riwt[queue]) 3292 priv->rx_riwt[queue] = DEF_DMA_RIWT; 3293 3294 stmmac_rx_watchdog(priv, priv->ioaddr, 3295 priv->rx_riwt[queue], queue); 3296 } 3297 } 3298 3299 if (priv->hw->pcs) 3300 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0); 3301 3302 /* set TX and RX rings length */ 3303 stmmac_set_rings_length(priv); 3304 3305 /* Enable TSO */ 3306 if (priv->tso) { 3307 for (chan = 0; chan < tx_cnt; chan++) { 3308 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3309 3310 /* TSO and TBS cannot co-exist */ 3311 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3312 continue; 3313 3314 stmmac_enable_tso(priv, priv->ioaddr, 1, chan); 3315 } 3316 } 3317 3318 /* Enable Split Header */ 3319 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 3320 for (chan = 0; chan < rx_cnt; chan++) 3321 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 3322 3323 3324 /* VLAN Tag Insertion */ 3325 if (priv->dma_cap.vlins) 3326 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT); 3327 3328 /* TBS */ 3329 for (chan = 0; chan < tx_cnt; chan++) { 3330 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3331 int enable = tx_q->tbs & STMMAC_TBS_AVAIL; 3332 3333 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan); 3334 } 3335 3336 /* Configure real RX and TX queues */ 3337 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use); 3338 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use); 3339 3340 /* Start the ball rolling... */ 3341 stmmac_start_all_dma(priv); 3342 3343 if (priv->dma_cap.fpesel) { 3344 stmmac_fpe_start_wq(priv); 3345 3346 if (priv->plat->fpe_cfg->enable) 3347 stmmac_fpe_handshake(priv, true); 3348 } 3349 3350 return 0; 3351 } 3352 3353 static void stmmac_hw_teardown(struct net_device *dev) 3354 { 3355 struct stmmac_priv *priv = netdev_priv(dev); 3356 3357 clk_disable_unprepare(priv->plat->clk_ptp_ref); 3358 } 3359 3360 static void stmmac_free_irq(struct net_device *dev, 3361 enum request_irq_err irq_err, int irq_idx) 3362 { 3363 struct stmmac_priv *priv = netdev_priv(dev); 3364 int j; 3365 3366 switch (irq_err) { 3367 case REQ_IRQ_ERR_ALL: 3368 irq_idx = priv->plat->tx_queues_to_use; 3369 fallthrough; 3370 case REQ_IRQ_ERR_TX: 3371 for (j = irq_idx - 1; j >= 0; j--) { 3372 if (priv->tx_irq[j] > 0) { 3373 irq_set_affinity_hint(priv->tx_irq[j], NULL); 3374 free_irq(priv->tx_irq[j], &priv->tx_queue[j]); 3375 } 3376 } 3377 irq_idx = priv->plat->rx_queues_to_use; 3378 fallthrough; 3379 case REQ_IRQ_ERR_RX: 3380 for (j = irq_idx - 1; j >= 0; j--) { 3381 if (priv->rx_irq[j] > 0) { 3382 irq_set_affinity_hint(priv->rx_irq[j], NULL); 3383 free_irq(priv->rx_irq[j], &priv->rx_queue[j]); 3384 } 3385 } 3386 3387 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) 3388 free_irq(priv->sfty_ue_irq, dev); 3389 fallthrough; 3390 case REQ_IRQ_ERR_SFTY_UE: 3391 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) 3392 free_irq(priv->sfty_ce_irq, dev); 3393 fallthrough; 3394 case REQ_IRQ_ERR_SFTY_CE: 3395 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) 3396 free_irq(priv->lpi_irq, dev); 3397 fallthrough; 3398 case REQ_IRQ_ERR_LPI: 3399 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) 3400 free_irq(priv->wol_irq, dev); 3401 fallthrough; 3402 case REQ_IRQ_ERR_WOL: 3403 free_irq(dev->irq, dev); 3404 fallthrough; 3405 case REQ_IRQ_ERR_MAC: 3406 case REQ_IRQ_ERR_NO: 3407 /* If MAC IRQ request error, no more IRQ to free */ 3408 break; 3409 } 3410 } 3411 3412 static int stmmac_request_irq_multi_msi(struct net_device *dev) 3413 { 3414 struct stmmac_priv *priv = netdev_priv(dev); 3415 enum request_irq_err irq_err; 3416 cpumask_t cpu_mask; 3417 int irq_idx = 0; 3418 char *int_name; 3419 int ret; 3420 int i; 3421 3422 /* For common interrupt */ 3423 int_name = priv->int_name_mac; 3424 sprintf(int_name, "%s:%s", dev->name, "mac"); 3425 ret = request_irq(dev->irq, stmmac_mac_interrupt, 3426 0, int_name, dev); 3427 if (unlikely(ret < 0)) { 3428 netdev_err(priv->dev, 3429 "%s: alloc mac MSI %d (error: %d)\n", 3430 __func__, dev->irq, ret); 3431 irq_err = REQ_IRQ_ERR_MAC; 3432 goto irq_error; 3433 } 3434 3435 /* Request the Wake IRQ in case of another line 3436 * is used for WoL 3437 */ 3438 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3439 int_name = priv->int_name_wol; 3440 sprintf(int_name, "%s:%s", dev->name, "wol"); 3441 ret = request_irq(priv->wol_irq, 3442 stmmac_mac_interrupt, 3443 0, int_name, dev); 3444 if (unlikely(ret < 0)) { 3445 netdev_err(priv->dev, 3446 "%s: alloc wol MSI %d (error: %d)\n", 3447 __func__, priv->wol_irq, ret); 3448 irq_err = REQ_IRQ_ERR_WOL; 3449 goto irq_error; 3450 } 3451 } 3452 3453 /* Request the LPI IRQ in case of another line 3454 * is used for LPI 3455 */ 3456 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3457 int_name = priv->int_name_lpi; 3458 sprintf(int_name, "%s:%s", dev->name, "lpi"); 3459 ret = request_irq(priv->lpi_irq, 3460 stmmac_mac_interrupt, 3461 0, int_name, dev); 3462 if (unlikely(ret < 0)) { 3463 netdev_err(priv->dev, 3464 "%s: alloc lpi MSI %d (error: %d)\n", 3465 __func__, priv->lpi_irq, ret); 3466 irq_err = REQ_IRQ_ERR_LPI; 3467 goto irq_error; 3468 } 3469 } 3470 3471 /* Request the Safety Feature Correctible Error line in 3472 * case of another line is used 3473 */ 3474 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) { 3475 int_name = priv->int_name_sfty_ce; 3476 sprintf(int_name, "%s:%s", dev->name, "safety-ce"); 3477 ret = request_irq(priv->sfty_ce_irq, 3478 stmmac_safety_interrupt, 3479 0, int_name, dev); 3480 if (unlikely(ret < 0)) { 3481 netdev_err(priv->dev, 3482 "%s: alloc sfty ce MSI %d (error: %d)\n", 3483 __func__, priv->sfty_ce_irq, ret); 3484 irq_err = REQ_IRQ_ERR_SFTY_CE; 3485 goto irq_error; 3486 } 3487 } 3488 3489 /* Request the Safety Feature Uncorrectible Error line in 3490 * case of another line is used 3491 */ 3492 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) { 3493 int_name = priv->int_name_sfty_ue; 3494 sprintf(int_name, "%s:%s", dev->name, "safety-ue"); 3495 ret = request_irq(priv->sfty_ue_irq, 3496 stmmac_safety_interrupt, 3497 0, int_name, dev); 3498 if (unlikely(ret < 0)) { 3499 netdev_err(priv->dev, 3500 "%s: alloc sfty ue MSI %d (error: %d)\n", 3501 __func__, priv->sfty_ue_irq, ret); 3502 irq_err = REQ_IRQ_ERR_SFTY_UE; 3503 goto irq_error; 3504 } 3505 } 3506 3507 /* Request Rx MSI irq */ 3508 for (i = 0; i < priv->plat->rx_queues_to_use; i++) { 3509 if (i >= MTL_MAX_RX_QUEUES) 3510 break; 3511 if (priv->rx_irq[i] == 0) 3512 continue; 3513 3514 int_name = priv->int_name_rx_irq[i]; 3515 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i); 3516 ret = request_irq(priv->rx_irq[i], 3517 stmmac_msi_intr_rx, 3518 0, int_name, &priv->rx_queue[i]); 3519 if (unlikely(ret < 0)) { 3520 netdev_err(priv->dev, 3521 "%s: alloc rx-%d MSI %d (error: %d)\n", 3522 __func__, i, priv->rx_irq[i], ret); 3523 irq_err = REQ_IRQ_ERR_RX; 3524 irq_idx = i; 3525 goto irq_error; 3526 } 3527 cpumask_clear(&cpu_mask); 3528 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3529 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask); 3530 } 3531 3532 /* Request Tx MSI irq */ 3533 for (i = 0; i < priv->plat->tx_queues_to_use; i++) { 3534 if (i >= MTL_MAX_TX_QUEUES) 3535 break; 3536 if (priv->tx_irq[i] == 0) 3537 continue; 3538 3539 int_name = priv->int_name_tx_irq[i]; 3540 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i); 3541 ret = request_irq(priv->tx_irq[i], 3542 stmmac_msi_intr_tx, 3543 0, int_name, &priv->tx_queue[i]); 3544 if (unlikely(ret < 0)) { 3545 netdev_err(priv->dev, 3546 "%s: alloc tx-%d MSI %d (error: %d)\n", 3547 __func__, i, priv->tx_irq[i], ret); 3548 irq_err = REQ_IRQ_ERR_TX; 3549 irq_idx = i; 3550 goto irq_error; 3551 } 3552 cpumask_clear(&cpu_mask); 3553 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask); 3554 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask); 3555 } 3556 3557 return 0; 3558 3559 irq_error: 3560 stmmac_free_irq(dev, irq_err, irq_idx); 3561 return ret; 3562 } 3563 3564 static int stmmac_request_irq_single(struct net_device *dev) 3565 { 3566 struct stmmac_priv *priv = netdev_priv(dev); 3567 enum request_irq_err irq_err; 3568 int ret; 3569 3570 ret = request_irq(dev->irq, stmmac_interrupt, 3571 IRQF_SHARED, dev->name, dev); 3572 if (unlikely(ret < 0)) { 3573 netdev_err(priv->dev, 3574 "%s: ERROR: allocating the IRQ %d (error: %d)\n", 3575 __func__, dev->irq, ret); 3576 irq_err = REQ_IRQ_ERR_MAC; 3577 goto irq_error; 3578 } 3579 3580 /* Request the Wake IRQ in case of another line 3581 * is used for WoL 3582 */ 3583 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) { 3584 ret = request_irq(priv->wol_irq, stmmac_interrupt, 3585 IRQF_SHARED, dev->name, dev); 3586 if (unlikely(ret < 0)) { 3587 netdev_err(priv->dev, 3588 "%s: ERROR: allocating the WoL IRQ %d (%d)\n", 3589 __func__, priv->wol_irq, ret); 3590 irq_err = REQ_IRQ_ERR_WOL; 3591 goto irq_error; 3592 } 3593 } 3594 3595 /* Request the IRQ lines */ 3596 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) { 3597 ret = request_irq(priv->lpi_irq, stmmac_interrupt, 3598 IRQF_SHARED, dev->name, dev); 3599 if (unlikely(ret < 0)) { 3600 netdev_err(priv->dev, 3601 "%s: ERROR: allocating the LPI IRQ %d (%d)\n", 3602 __func__, priv->lpi_irq, ret); 3603 irq_err = REQ_IRQ_ERR_LPI; 3604 goto irq_error; 3605 } 3606 } 3607 3608 return 0; 3609 3610 irq_error: 3611 stmmac_free_irq(dev, irq_err, 0); 3612 return ret; 3613 } 3614 3615 static int stmmac_request_irq(struct net_device *dev) 3616 { 3617 struct stmmac_priv *priv = netdev_priv(dev); 3618 int ret; 3619 3620 /* Request the IRQ lines */ 3621 if (priv->plat->multi_msi_en) 3622 ret = stmmac_request_irq_multi_msi(dev); 3623 else 3624 ret = stmmac_request_irq_single(dev); 3625 3626 return ret; 3627 } 3628 3629 /** 3630 * stmmac_open - open entry point of the driver 3631 * @dev : pointer to the device structure. 3632 * Description: 3633 * This function is the open entry point of the driver. 3634 * Return value: 3635 * 0 on success and an appropriate (-)ve integer as defined in errno.h 3636 * file on failure. 3637 */ 3638 static int stmmac_open(struct net_device *dev) 3639 { 3640 struct stmmac_priv *priv = netdev_priv(dev); 3641 int mode = priv->plat->phy_interface; 3642 int bfsize = 0; 3643 u32 chan; 3644 int ret; 3645 3646 ret = pm_runtime_get_sync(priv->device); 3647 if (ret < 0) { 3648 pm_runtime_put_noidle(priv->device); 3649 return ret; 3650 } 3651 3652 if (priv->hw->pcs != STMMAC_PCS_TBI && 3653 priv->hw->pcs != STMMAC_PCS_RTBI && 3654 (!priv->hw->xpcs || 3655 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) { 3656 ret = stmmac_init_phy(dev); 3657 if (ret) { 3658 netdev_err(priv->dev, 3659 "%s: Cannot attach to PHY (error: %d)\n", 3660 __func__, ret); 3661 goto init_phy_error; 3662 } 3663 } 3664 3665 /* Extra statistics */ 3666 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); 3667 priv->xstats.threshold = tc; 3668 3669 bfsize = stmmac_set_16kib_bfsize(priv, dev->mtu); 3670 if (bfsize < 0) 3671 bfsize = 0; 3672 3673 if (bfsize < BUF_SIZE_16KiB) 3674 bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz); 3675 3676 priv->dma_buf_sz = bfsize; 3677 buf_sz = bfsize; 3678 3679 priv->rx_copybreak = STMMAC_RX_COPYBREAK; 3680 3681 if (!priv->dma_tx_size) 3682 priv->dma_tx_size = DMA_DEFAULT_TX_SIZE; 3683 if (!priv->dma_rx_size) 3684 priv->dma_rx_size = DMA_DEFAULT_RX_SIZE; 3685 3686 /* Earlier check for TBS */ 3687 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) { 3688 struct stmmac_tx_queue *tx_q = &priv->tx_queue[chan]; 3689 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en; 3690 3691 /* Setup per-TXQ tbs flag before TX descriptor alloc */ 3692 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0; 3693 } 3694 3695 ret = alloc_dma_desc_resources(priv); 3696 if (ret < 0) { 3697 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n", 3698 __func__); 3699 goto dma_desc_error; 3700 } 3701 3702 ret = init_dma_desc_rings(dev, GFP_KERNEL); 3703 if (ret < 0) { 3704 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n", 3705 __func__); 3706 goto init_error; 3707 } 3708 3709 ret = stmmac_hw_setup(dev, true); 3710 if (ret < 0) { 3711 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); 3712 goto init_error; 3713 } 3714 3715 stmmac_init_coalesce(priv); 3716 3717 phylink_start(priv->phylink); 3718 /* We may have called phylink_speed_down before */ 3719 phylink_speed_up(priv->phylink); 3720 3721 ret = stmmac_request_irq(dev); 3722 if (ret) 3723 goto irq_error; 3724 3725 stmmac_enable_all_queues(priv); 3726 netif_tx_start_all_queues(priv->dev); 3727 stmmac_enable_all_dma_irq(priv); 3728 3729 return 0; 3730 3731 irq_error: 3732 phylink_stop(priv->phylink); 3733 3734 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3735 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3736 3737 stmmac_hw_teardown(dev); 3738 init_error: 3739 free_dma_desc_resources(priv); 3740 dma_desc_error: 3741 phylink_disconnect_phy(priv->phylink); 3742 init_phy_error: 3743 pm_runtime_put(priv->device); 3744 return ret; 3745 } 3746 3747 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv) 3748 { 3749 set_bit(__FPE_REMOVING, &priv->fpe_task_state); 3750 3751 if (priv->fpe_wq) 3752 destroy_workqueue(priv->fpe_wq); 3753 3754 netdev_info(priv->dev, "FPE workqueue stop"); 3755 } 3756 3757 /** 3758 * stmmac_release - close entry point of the driver 3759 * @dev : device pointer. 3760 * Description: 3761 * This is the stop entry point of the driver. 3762 */ 3763 static int stmmac_release(struct net_device *dev) 3764 { 3765 struct stmmac_priv *priv = netdev_priv(dev); 3766 u32 chan; 3767 3768 netif_tx_disable(dev); 3769 3770 if (device_may_wakeup(priv->device)) 3771 phylink_speed_down(priv->phylink, false); 3772 /* Stop and disconnect the PHY */ 3773 phylink_stop(priv->phylink); 3774 phylink_disconnect_phy(priv->phylink); 3775 3776 stmmac_disable_all_queues(priv); 3777 3778 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 3779 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 3780 3781 /* Free the IRQ lines */ 3782 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 3783 3784 if (priv->eee_enabled) { 3785 priv->tx_path_in_lpi_mode = false; 3786 del_timer_sync(&priv->eee_ctrl_timer); 3787 } 3788 3789 /* Stop TX/RX DMA and clear the descriptors */ 3790 stmmac_stop_all_dma(priv); 3791 3792 /* Release and free the Rx/Tx resources */ 3793 free_dma_desc_resources(priv); 3794 3795 /* Disable the MAC Rx/Tx */ 3796 stmmac_mac_set(priv, priv->ioaddr, false); 3797 3798 netif_carrier_off(dev); 3799 3800 stmmac_release_ptp(priv); 3801 3802 pm_runtime_put(priv->device); 3803 3804 if (priv->dma_cap.fpesel) 3805 stmmac_fpe_stop_wq(priv); 3806 3807 return 0; 3808 } 3809 3810 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb, 3811 struct stmmac_tx_queue *tx_q) 3812 { 3813 u16 tag = 0x0, inner_tag = 0x0; 3814 u32 inner_type = 0x0; 3815 struct dma_desc *p; 3816 3817 if (!priv->dma_cap.vlins) 3818 return false; 3819 if (!skb_vlan_tag_present(skb)) 3820 return false; 3821 if (skb->vlan_proto == htons(ETH_P_8021AD)) { 3822 inner_tag = skb_vlan_tag_get(skb); 3823 inner_type = STMMAC_VLAN_INSERT; 3824 } 3825 3826 tag = skb_vlan_tag_get(skb); 3827 3828 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3829 p = &tx_q->dma_entx[tx_q->cur_tx].basic; 3830 else 3831 p = &tx_q->dma_tx[tx_q->cur_tx]; 3832 3833 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type)) 3834 return false; 3835 3836 stmmac_set_tx_owner(priv, p); 3837 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 3838 return true; 3839 } 3840 3841 /** 3842 * stmmac_tso_allocator - close entry point of the driver 3843 * @priv: driver private structure 3844 * @des: buffer start address 3845 * @total_len: total length to fill in descriptors 3846 * @last_segment: condition for the last descriptor 3847 * @queue: TX queue index 3848 * Description: 3849 * This function fills descriptor and request new descriptors according to 3850 * buffer length to fill 3851 */ 3852 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des, 3853 int total_len, bool last_segment, u32 queue) 3854 { 3855 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3856 struct dma_desc *desc; 3857 u32 buff_size; 3858 int tmp_len; 3859 3860 tmp_len = total_len; 3861 3862 while (tmp_len > 0) { 3863 dma_addr_t curr_addr; 3864 3865 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3866 priv->dma_tx_size); 3867 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3868 3869 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3870 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3871 else 3872 desc = &tx_q->dma_tx[tx_q->cur_tx]; 3873 3874 curr_addr = des + (total_len - tmp_len); 3875 if (priv->dma_cap.addr64 <= 32) 3876 desc->des0 = cpu_to_le32(curr_addr); 3877 else 3878 stmmac_set_desc_addr(priv, desc, curr_addr); 3879 3880 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? 3881 TSO_MAX_BUFF_SIZE : tmp_len; 3882 3883 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size, 3884 0, 1, 3885 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE), 3886 0, 0); 3887 3888 tmp_len -= TSO_MAX_BUFF_SIZE; 3889 } 3890 } 3891 3892 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue) 3893 { 3894 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 3895 int desc_size; 3896 3897 if (likely(priv->extend_desc)) 3898 desc_size = sizeof(struct dma_extended_desc); 3899 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 3900 desc_size = sizeof(struct dma_edesc); 3901 else 3902 desc_size = sizeof(struct dma_desc); 3903 3904 /* The own bit must be the latest setting done when prepare the 3905 * descriptor and then barrier is needed to make sure that 3906 * all is coherent before granting the DMA engine. 3907 */ 3908 wmb(); 3909 3910 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size); 3911 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue); 3912 } 3913 3914 /** 3915 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO) 3916 * @skb : the socket buffer 3917 * @dev : device pointer 3918 * Description: this is the transmit function that is called on TSO frames 3919 * (support available on GMAC4 and newer chips). 3920 * Diagram below show the ring programming in case of TSO frames: 3921 * 3922 * First Descriptor 3923 * -------- 3924 * | DES0 |---> buffer1 = L2/L3/L4 header 3925 * | DES1 |---> TCP Payload (can continue on next descr...) 3926 * | DES2 |---> buffer 1 and 2 len 3927 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0] 3928 * -------- 3929 * | 3930 * ... 3931 * | 3932 * -------- 3933 * | DES0 | --| Split TCP Payload on Buffers 1 and 2 3934 * | DES1 | --| 3935 * | DES2 | --> buffer 1 and 2 len 3936 * | DES3 | 3937 * -------- 3938 * 3939 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field. 3940 */ 3941 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) 3942 { 3943 struct dma_desc *desc, *first, *mss_desc = NULL; 3944 struct stmmac_priv *priv = netdev_priv(dev); 3945 int nfrags = skb_shinfo(skb)->nr_frags; 3946 u32 queue = skb_get_queue_mapping(skb); 3947 unsigned int first_entry, tx_packets; 3948 int tmp_pay_len = 0, first_tx; 3949 struct stmmac_tx_queue *tx_q; 3950 bool has_vlan, set_ic; 3951 u8 proto_hdr_len, hdr; 3952 u32 pay_len, mss; 3953 dma_addr_t des; 3954 int i; 3955 3956 tx_q = &priv->tx_queue[queue]; 3957 first_tx = tx_q->cur_tx; 3958 3959 /* Compute header lengths */ 3960 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 3961 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr); 3962 hdr = sizeof(struct udphdr); 3963 } else { 3964 proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 3965 hdr = tcp_hdrlen(skb); 3966 } 3967 3968 /* Desc availability based on threshold should be enough safe */ 3969 if (unlikely(stmmac_tx_avail(priv, queue) < 3970 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { 3971 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 3972 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 3973 queue)); 3974 /* This is a hard error, log it. */ 3975 netdev_err(priv->dev, 3976 "%s: Tx Ring full when queue awake\n", 3977 __func__); 3978 } 3979 return NETDEV_TX_BUSY; 3980 } 3981 3982 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */ 3983 3984 mss = skb_shinfo(skb)->gso_size; 3985 3986 /* set new MSS value if needed */ 3987 if (mss != tx_q->mss) { 3988 if (tx_q->tbs & STMMAC_TBS_AVAIL) 3989 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 3990 else 3991 mss_desc = &tx_q->dma_tx[tx_q->cur_tx]; 3992 3993 stmmac_set_mss(priv, mss_desc, mss); 3994 tx_q->mss = mss; 3995 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, 3996 priv->dma_tx_size); 3997 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]); 3998 } 3999 4000 if (netif_msg_tx_queued(priv)) { 4001 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n", 4002 __func__, hdr, proto_hdr_len, pay_len, mss); 4003 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len, 4004 skb->data_len); 4005 } 4006 4007 /* Check if VLAN can be inserted by HW */ 4008 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4009 4010 first_entry = tx_q->cur_tx; 4011 WARN_ON(tx_q->tx_skbuff[first_entry]); 4012 4013 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4014 desc = &tx_q->dma_entx[first_entry].basic; 4015 else 4016 desc = &tx_q->dma_tx[first_entry]; 4017 first = desc; 4018 4019 if (has_vlan) 4020 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4021 4022 /* first descriptor: fill Headers on Buf1 */ 4023 des = dma_map_single(priv->device, skb->data, skb_headlen(skb), 4024 DMA_TO_DEVICE); 4025 if (dma_mapping_error(priv->device, des)) 4026 goto dma_map_err; 4027 4028 tx_q->tx_skbuff_dma[first_entry].buf = des; 4029 tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb); 4030 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4031 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4032 4033 if (priv->dma_cap.addr64 <= 32) { 4034 first->des0 = cpu_to_le32(des); 4035 4036 /* Fill start of payload in buff2 of first descriptor */ 4037 if (pay_len) 4038 first->des1 = cpu_to_le32(des + proto_hdr_len); 4039 4040 /* If needed take extra descriptors to fill the remaining payload */ 4041 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; 4042 } else { 4043 stmmac_set_desc_addr(priv, first, des); 4044 tmp_pay_len = pay_len; 4045 des += proto_hdr_len; 4046 pay_len = 0; 4047 } 4048 4049 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue); 4050 4051 /* Prepare fragments */ 4052 for (i = 0; i < nfrags; i++) { 4053 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4054 4055 des = skb_frag_dma_map(priv->device, frag, 0, 4056 skb_frag_size(frag), 4057 DMA_TO_DEVICE); 4058 if (dma_mapping_error(priv->device, des)) 4059 goto dma_map_err; 4060 4061 stmmac_tso_allocator(priv, des, skb_frag_size(frag), 4062 (i == nfrags - 1), queue); 4063 4064 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des; 4065 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag); 4066 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true; 4067 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4068 } 4069 4070 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true; 4071 4072 /* Only the last descriptor gets to point to the skb. */ 4073 tx_q->tx_skbuff[tx_q->cur_tx] = skb; 4074 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB; 4075 4076 /* Manage tx mitigation */ 4077 tx_packets = (tx_q->cur_tx + 1) - first_tx; 4078 tx_q->tx_count_frames += tx_packets; 4079 4080 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4081 set_ic = true; 4082 else if (!priv->tx_coal_frames[queue]) 4083 set_ic = false; 4084 else if (tx_packets > priv->tx_coal_frames[queue]) 4085 set_ic = true; 4086 else if ((tx_q->tx_count_frames % 4087 priv->tx_coal_frames[queue]) < tx_packets) 4088 set_ic = true; 4089 else 4090 set_ic = false; 4091 4092 if (set_ic) { 4093 if (tx_q->tbs & STMMAC_TBS_AVAIL) 4094 desc = &tx_q->dma_entx[tx_q->cur_tx].basic; 4095 else 4096 desc = &tx_q->dma_tx[tx_q->cur_tx]; 4097 4098 tx_q->tx_count_frames = 0; 4099 stmmac_set_tx_ic(priv, desc); 4100 priv->xstats.tx_set_ic_bit++; 4101 } 4102 4103 /* We've used all descriptors we need for this skb, however, 4104 * advance cur_tx so that it references a fresh descriptor. 4105 * ndo_start_xmit will fill this descriptor the next time it's 4106 * called and stmmac_tx_clean may clean up to this descriptor. 4107 */ 4108 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_tx_size); 4109 4110 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4111 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4112 __func__); 4113 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4114 } 4115 4116 dev->stats.tx_bytes += skb->len; 4117 priv->xstats.tx_tso_frames++; 4118 priv->xstats.tx_tso_nfrags += nfrags; 4119 4120 if (priv->sarc_type) 4121 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4122 4123 skb_tx_timestamp(skb); 4124 4125 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4126 priv->hwts_tx_en)) { 4127 /* declare that device is doing timestamping */ 4128 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4129 stmmac_enable_tx_timestamp(priv, first); 4130 } 4131 4132 /* Complete the first descriptor before granting the DMA */ 4133 stmmac_prepare_tso_tx_desc(priv, first, 1, 4134 proto_hdr_len, 4135 pay_len, 4136 1, tx_q->tx_skbuff_dma[first_entry].last_segment, 4137 hdr / 4, (skb->len - proto_hdr_len)); 4138 4139 /* If context desc is used to change MSS */ 4140 if (mss_desc) { 4141 /* Make sure that first descriptor has been completely 4142 * written, including its own bit. This is because MSS is 4143 * actually before first descriptor, so we need to make 4144 * sure that MSS's own bit is the last thing written. 4145 */ 4146 dma_wmb(); 4147 stmmac_set_tx_owner(priv, mss_desc); 4148 } 4149 4150 if (netif_msg_pktdata(priv)) { 4151 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", 4152 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4153 tx_q->cur_tx, first, nfrags); 4154 pr_info(">>> frame to be transmitted: "); 4155 print_pkt(skb->data, skb_headlen(skb)); 4156 } 4157 4158 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4159 4160 stmmac_flush_tx_descriptors(priv, queue); 4161 stmmac_tx_timer_arm(priv, queue); 4162 4163 return NETDEV_TX_OK; 4164 4165 dma_map_err: 4166 dev_err(priv->device, "Tx dma map failed\n"); 4167 dev_kfree_skb(skb); 4168 priv->dev->stats.tx_dropped++; 4169 return NETDEV_TX_OK; 4170 } 4171 4172 /** 4173 * stmmac_xmit - Tx entry point of the driver 4174 * @skb : the socket buffer 4175 * @dev : device pointer 4176 * Description : this is the tx entry point of the driver. 4177 * It programs the chain or the ring and supports oversized frames 4178 * and SG feature. 4179 */ 4180 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) 4181 { 4182 unsigned int first_entry, tx_packets, enh_desc; 4183 struct stmmac_priv *priv = netdev_priv(dev); 4184 unsigned int nopaged_len = skb_headlen(skb); 4185 int i, csum_insertion = 0, is_jumbo = 0; 4186 u32 queue = skb_get_queue_mapping(skb); 4187 int nfrags = skb_shinfo(skb)->nr_frags; 4188 int gso = skb_shinfo(skb)->gso_type; 4189 struct dma_edesc *tbs_desc = NULL; 4190 struct dma_desc *desc, *first; 4191 struct stmmac_tx_queue *tx_q; 4192 bool has_vlan, set_ic; 4193 int entry, first_tx; 4194 dma_addr_t des; 4195 4196 tx_q = &priv->tx_queue[queue]; 4197 first_tx = tx_q->cur_tx; 4198 4199 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en) 4200 stmmac_disable_eee_mode(priv); 4201 4202 /* Manage oversized TCP frames for GMAC4 device */ 4203 if (skb_is_gso(skb) && priv->tso) { 4204 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) 4205 return stmmac_tso_xmit(skb, dev); 4206 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4)) 4207 return stmmac_tso_xmit(skb, dev); 4208 } 4209 4210 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) { 4211 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) { 4212 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, 4213 queue)); 4214 /* This is a hard error, log it. */ 4215 netdev_err(priv->dev, 4216 "%s: Tx Ring full when queue awake\n", 4217 __func__); 4218 } 4219 return NETDEV_TX_BUSY; 4220 } 4221 4222 /* Check if VLAN can be inserted by HW */ 4223 has_vlan = stmmac_vlan_insert(priv, skb, tx_q); 4224 4225 entry = tx_q->cur_tx; 4226 first_entry = entry; 4227 WARN_ON(tx_q->tx_skbuff[first_entry]); 4228 4229 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); 4230 4231 if (likely(priv->extend_desc)) 4232 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4233 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4234 desc = &tx_q->dma_entx[entry].basic; 4235 else 4236 desc = tx_q->dma_tx + entry; 4237 4238 first = desc; 4239 4240 if (has_vlan) 4241 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT); 4242 4243 enh_desc = priv->plat->enh_desc; 4244 /* To program the descriptors according to the size of the frame */ 4245 if (enh_desc) 4246 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc); 4247 4248 if (unlikely(is_jumbo)) { 4249 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion); 4250 if (unlikely(entry < 0) && (entry != -EINVAL)) 4251 goto dma_map_err; 4252 } 4253 4254 for (i = 0; i < nfrags; i++) { 4255 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 4256 int len = skb_frag_size(frag); 4257 bool last_segment = (i == (nfrags - 1)); 4258 4259 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4260 WARN_ON(tx_q->tx_skbuff[entry]); 4261 4262 if (likely(priv->extend_desc)) 4263 desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4264 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4265 desc = &tx_q->dma_entx[entry].basic; 4266 else 4267 desc = tx_q->dma_tx + entry; 4268 4269 des = skb_frag_dma_map(priv->device, frag, 0, len, 4270 DMA_TO_DEVICE); 4271 if (dma_mapping_error(priv->device, des)) 4272 goto dma_map_err; /* should reuse desc w/o issues */ 4273 4274 tx_q->tx_skbuff_dma[entry].buf = des; 4275 4276 stmmac_set_desc_addr(priv, desc, des); 4277 4278 tx_q->tx_skbuff_dma[entry].map_as_page = true; 4279 tx_q->tx_skbuff_dma[entry].len = len; 4280 tx_q->tx_skbuff_dma[entry].last_segment = last_segment; 4281 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4282 4283 /* Prepare the descriptor and set the own bit too */ 4284 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion, 4285 priv->mode, 1, last_segment, skb->len); 4286 } 4287 4288 /* Only the last descriptor gets to point to the skb. */ 4289 tx_q->tx_skbuff[entry] = skb; 4290 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB; 4291 4292 /* According to the coalesce parameter the IC bit for the latest 4293 * segment is reset and the timer re-started to clean the tx status. 4294 * This approach takes care about the fragments: desc is the first 4295 * element in case of no SG. 4296 */ 4297 tx_packets = (entry + 1) - first_tx; 4298 tx_q->tx_count_frames += tx_packets; 4299 4300 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en) 4301 set_ic = true; 4302 else if (!priv->tx_coal_frames[queue]) 4303 set_ic = false; 4304 else if (tx_packets > priv->tx_coal_frames[queue]) 4305 set_ic = true; 4306 else if ((tx_q->tx_count_frames % 4307 priv->tx_coal_frames[queue]) < tx_packets) 4308 set_ic = true; 4309 else 4310 set_ic = false; 4311 4312 if (set_ic) { 4313 if (likely(priv->extend_desc)) 4314 desc = &tx_q->dma_etx[entry].basic; 4315 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4316 desc = &tx_q->dma_entx[entry].basic; 4317 else 4318 desc = &tx_q->dma_tx[entry]; 4319 4320 tx_q->tx_count_frames = 0; 4321 stmmac_set_tx_ic(priv, desc); 4322 priv->xstats.tx_set_ic_bit++; 4323 } 4324 4325 /* We've used all descriptors we need for this skb, however, 4326 * advance cur_tx so that it references a fresh descriptor. 4327 * ndo_start_xmit will fill this descriptor the next time it's 4328 * called and stmmac_tx_clean may clean up to this descriptor. 4329 */ 4330 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4331 tx_q->cur_tx = entry; 4332 4333 if (netif_msg_pktdata(priv)) { 4334 netdev_dbg(priv->dev, 4335 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", 4336 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry, 4337 entry, first, nfrags); 4338 4339 netdev_dbg(priv->dev, ">>> frame to be transmitted: "); 4340 print_pkt(skb->data, skb->len); 4341 } 4342 4343 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) { 4344 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", 4345 __func__); 4346 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue)); 4347 } 4348 4349 dev->stats.tx_bytes += skb->len; 4350 4351 if (priv->sarc_type) 4352 stmmac_set_desc_sarc(priv, first, priv->sarc_type); 4353 4354 skb_tx_timestamp(skb); 4355 4356 /* Ready to fill the first descriptor and set the OWN bit w/o any 4357 * problems because all the descriptors are actually ready to be 4358 * passed to the DMA engine. 4359 */ 4360 if (likely(!is_jumbo)) { 4361 bool last_segment = (nfrags == 0); 4362 4363 des = dma_map_single(priv->device, skb->data, 4364 nopaged_len, DMA_TO_DEVICE); 4365 if (dma_mapping_error(priv->device, des)) 4366 goto dma_map_err; 4367 4368 tx_q->tx_skbuff_dma[first_entry].buf = des; 4369 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB; 4370 tx_q->tx_skbuff_dma[first_entry].map_as_page = false; 4371 4372 stmmac_set_desc_addr(priv, first, des); 4373 4374 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len; 4375 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment; 4376 4377 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 4378 priv->hwts_tx_en)) { 4379 /* declare that device is doing timestamping */ 4380 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 4381 stmmac_enable_tx_timestamp(priv, first); 4382 } 4383 4384 /* Prepare the first descriptor setting the OWN bit too */ 4385 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len, 4386 csum_insertion, priv->mode, 0, last_segment, 4387 skb->len); 4388 } 4389 4390 if (tx_q->tbs & STMMAC_TBS_EN) { 4391 struct timespec64 ts = ns_to_timespec64(skb->tstamp); 4392 4393 tbs_desc = &tx_q->dma_entx[first_entry]; 4394 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec); 4395 } 4396 4397 stmmac_set_tx_owner(priv, first); 4398 4399 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len); 4400 4401 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4402 4403 stmmac_flush_tx_descriptors(priv, queue); 4404 stmmac_tx_timer_arm(priv, queue); 4405 4406 return NETDEV_TX_OK; 4407 4408 dma_map_err: 4409 netdev_err(priv->dev, "Tx DMA map failed\n"); 4410 dev_kfree_skb(skb); 4411 priv->dev->stats.tx_dropped++; 4412 return NETDEV_TX_OK; 4413 } 4414 4415 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) 4416 { 4417 struct vlan_ethhdr *veth; 4418 __be16 vlan_proto; 4419 u16 vlanid; 4420 4421 veth = (struct vlan_ethhdr *)skb->data; 4422 vlan_proto = veth->h_vlan_proto; 4423 4424 if ((vlan_proto == htons(ETH_P_8021Q) && 4425 dev->features & NETIF_F_HW_VLAN_CTAG_RX) || 4426 (vlan_proto == htons(ETH_P_8021AD) && 4427 dev->features & NETIF_F_HW_VLAN_STAG_RX)) { 4428 /* pop the vlan tag */ 4429 vlanid = ntohs(veth->h_vlan_TCI); 4430 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2); 4431 skb_pull(skb, VLAN_HLEN); 4432 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid); 4433 } 4434 } 4435 4436 /** 4437 * stmmac_rx_refill - refill used skb preallocated buffers 4438 * @priv: driver private structure 4439 * @queue: RX queue index 4440 * Description : this is to reallocate the skb for the reception process 4441 * that is based on zero-copy. 4442 */ 4443 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue) 4444 { 4445 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4446 int dirty = stmmac_rx_dirty(priv, queue); 4447 unsigned int entry = rx_q->dirty_rx; 4448 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN); 4449 4450 if (priv->dma_cap.addr64 <= 32) 4451 gfp |= GFP_DMA32; 4452 4453 while (dirty-- > 0) { 4454 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4455 struct dma_desc *p; 4456 bool use_rx_wd; 4457 4458 if (priv->extend_desc) 4459 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4460 else 4461 p = rx_q->dma_rx + entry; 4462 4463 if (!buf->page) { 4464 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4465 if (!buf->page) 4466 break; 4467 } 4468 4469 if (priv->sph && !buf->sec_page) { 4470 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp); 4471 if (!buf->sec_page) 4472 break; 4473 4474 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page); 4475 } 4476 4477 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset; 4478 4479 stmmac_set_desc_addr(priv, p, buf->addr); 4480 if (priv->sph) 4481 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true); 4482 else 4483 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false); 4484 stmmac_refill_desc3(priv, rx_q, p); 4485 4486 rx_q->rx_count_frames++; 4487 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4488 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4489 rx_q->rx_count_frames = 0; 4490 4491 use_rx_wd = !priv->rx_coal_frames[queue]; 4492 use_rx_wd |= rx_q->rx_count_frames > 0; 4493 if (!priv->use_riwt) 4494 use_rx_wd = false; 4495 4496 dma_wmb(); 4497 stmmac_set_rx_owner(priv, p, use_rx_wd); 4498 4499 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4500 } 4501 rx_q->dirty_rx = entry; 4502 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4503 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4504 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4505 } 4506 4507 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv, 4508 struct dma_desc *p, 4509 int status, unsigned int len) 4510 { 4511 unsigned int plen = 0, hlen = 0; 4512 int coe = priv->hw->rx_csum; 4513 4514 /* Not first descriptor, buffer is always zero */ 4515 if (priv->sph && len) 4516 return 0; 4517 4518 /* First descriptor, get split header length */ 4519 stmmac_get_rx_header_len(priv, p, &hlen); 4520 if (priv->sph && hlen) { 4521 priv->xstats.rx_split_hdr_pkt_n++; 4522 return hlen; 4523 } 4524 4525 /* First descriptor, not last descriptor and not split header */ 4526 if (status & rx_not_ls) 4527 return priv->dma_buf_sz; 4528 4529 plen = stmmac_get_rx_frame_len(priv, p, coe); 4530 4531 /* First descriptor and last descriptor and not split header */ 4532 return min_t(unsigned int, priv->dma_buf_sz, plen); 4533 } 4534 4535 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv, 4536 struct dma_desc *p, 4537 int status, unsigned int len) 4538 { 4539 int coe = priv->hw->rx_csum; 4540 unsigned int plen = 0; 4541 4542 /* Not split header, buffer is not available */ 4543 if (!priv->sph) 4544 return 0; 4545 4546 /* Not last descriptor */ 4547 if (status & rx_not_ls) 4548 return priv->dma_buf_sz; 4549 4550 plen = stmmac_get_rx_frame_len(priv, p, coe); 4551 4552 /* Last descriptor */ 4553 return plen - len; 4554 } 4555 4556 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue, 4557 struct xdp_frame *xdpf, bool dma_map) 4558 { 4559 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 4560 unsigned int entry = tx_q->cur_tx; 4561 struct dma_desc *tx_desc; 4562 dma_addr_t dma_addr; 4563 bool set_ic; 4564 4565 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv)) 4566 return STMMAC_XDP_CONSUMED; 4567 4568 if (likely(priv->extend_desc)) 4569 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry); 4570 else if (tx_q->tbs & STMMAC_TBS_AVAIL) 4571 tx_desc = &tx_q->dma_entx[entry].basic; 4572 else 4573 tx_desc = tx_q->dma_tx + entry; 4574 4575 if (dma_map) { 4576 dma_addr = dma_map_single(priv->device, xdpf->data, 4577 xdpf->len, DMA_TO_DEVICE); 4578 if (dma_mapping_error(priv->device, dma_addr)) 4579 return STMMAC_XDP_CONSUMED; 4580 4581 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO; 4582 } else { 4583 struct page *page = virt_to_page(xdpf->data); 4584 4585 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + 4586 xdpf->headroom; 4587 dma_sync_single_for_device(priv->device, dma_addr, 4588 xdpf->len, DMA_BIDIRECTIONAL); 4589 4590 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX; 4591 } 4592 4593 tx_q->tx_skbuff_dma[entry].buf = dma_addr; 4594 tx_q->tx_skbuff_dma[entry].map_as_page = false; 4595 tx_q->tx_skbuff_dma[entry].len = xdpf->len; 4596 tx_q->tx_skbuff_dma[entry].last_segment = true; 4597 tx_q->tx_skbuff_dma[entry].is_jumbo = false; 4598 4599 tx_q->xdpf[entry] = xdpf; 4600 4601 stmmac_set_desc_addr(priv, tx_desc, dma_addr); 4602 4603 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len, 4604 true, priv->mode, true, true, 4605 xdpf->len); 4606 4607 tx_q->tx_count_frames++; 4608 4609 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0) 4610 set_ic = true; 4611 else 4612 set_ic = false; 4613 4614 if (set_ic) { 4615 tx_q->tx_count_frames = 0; 4616 stmmac_set_tx_ic(priv, tx_desc); 4617 priv->xstats.tx_set_ic_bit++; 4618 } 4619 4620 stmmac_enable_dma_transmission(priv, priv->ioaddr); 4621 4622 entry = STMMAC_GET_ENTRY(entry, priv->dma_tx_size); 4623 tx_q->cur_tx = entry; 4624 4625 return STMMAC_XDP_TX; 4626 } 4627 4628 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv, 4629 int cpu) 4630 { 4631 int index = cpu; 4632 4633 if (unlikely(index < 0)) 4634 index = 0; 4635 4636 while (index >= priv->plat->tx_queues_to_use) 4637 index -= priv->plat->tx_queues_to_use; 4638 4639 return index; 4640 } 4641 4642 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv, 4643 struct xdp_buff *xdp) 4644 { 4645 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); 4646 int cpu = smp_processor_id(); 4647 struct netdev_queue *nq; 4648 int queue; 4649 int res; 4650 4651 if (unlikely(!xdpf)) 4652 return STMMAC_XDP_CONSUMED; 4653 4654 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4655 nq = netdev_get_tx_queue(priv->dev, queue); 4656 4657 __netif_tx_lock(nq, cpu); 4658 /* Avoids TX time-out as we are sharing with slow path */ 4659 txq_trans_cond_update(nq); 4660 4661 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false); 4662 if (res == STMMAC_XDP_TX) 4663 stmmac_flush_tx_descriptors(priv, queue); 4664 4665 __netif_tx_unlock(nq); 4666 4667 return res; 4668 } 4669 4670 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv, 4671 struct bpf_prog *prog, 4672 struct xdp_buff *xdp) 4673 { 4674 u32 act; 4675 int res; 4676 4677 act = bpf_prog_run_xdp(prog, xdp); 4678 switch (act) { 4679 case XDP_PASS: 4680 res = STMMAC_XDP_PASS; 4681 break; 4682 case XDP_TX: 4683 res = stmmac_xdp_xmit_back(priv, xdp); 4684 break; 4685 case XDP_REDIRECT: 4686 if (xdp_do_redirect(priv->dev, xdp, prog) < 0) 4687 res = STMMAC_XDP_CONSUMED; 4688 else 4689 res = STMMAC_XDP_REDIRECT; 4690 break; 4691 default: 4692 bpf_warn_invalid_xdp_action(priv->dev, prog, act); 4693 fallthrough; 4694 case XDP_ABORTED: 4695 trace_xdp_exception(priv->dev, prog, act); 4696 fallthrough; 4697 case XDP_DROP: 4698 res = STMMAC_XDP_CONSUMED; 4699 break; 4700 } 4701 4702 return res; 4703 } 4704 4705 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv, 4706 struct xdp_buff *xdp) 4707 { 4708 struct bpf_prog *prog; 4709 int res; 4710 4711 prog = READ_ONCE(priv->xdp_prog); 4712 if (!prog) { 4713 res = STMMAC_XDP_PASS; 4714 goto out; 4715 } 4716 4717 res = __stmmac_xdp_run_prog(priv, prog, xdp); 4718 out: 4719 return ERR_PTR(-res); 4720 } 4721 4722 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv, 4723 int xdp_status) 4724 { 4725 int cpu = smp_processor_id(); 4726 int queue; 4727 4728 queue = stmmac_xdp_get_tx_queue(priv, cpu); 4729 4730 if (xdp_status & STMMAC_XDP_TX) 4731 stmmac_tx_timer_arm(priv, queue); 4732 4733 if (xdp_status & STMMAC_XDP_REDIRECT) 4734 xdp_do_flush(); 4735 } 4736 4737 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch, 4738 struct xdp_buff *xdp) 4739 { 4740 unsigned int metasize = xdp->data - xdp->data_meta; 4741 unsigned int datasize = xdp->data_end - xdp->data; 4742 struct sk_buff *skb; 4743 4744 skb = __napi_alloc_skb(&ch->rxtx_napi, 4745 xdp->data_end - xdp->data_hard_start, 4746 GFP_ATOMIC | __GFP_NOWARN); 4747 if (unlikely(!skb)) 4748 return NULL; 4749 4750 skb_reserve(skb, xdp->data - xdp->data_hard_start); 4751 memcpy(__skb_put(skb, datasize), xdp->data, datasize); 4752 if (metasize) 4753 skb_metadata_set(skb, metasize); 4754 4755 return skb; 4756 } 4757 4758 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue, 4759 struct dma_desc *p, struct dma_desc *np, 4760 struct xdp_buff *xdp) 4761 { 4762 struct stmmac_channel *ch = &priv->channel[queue]; 4763 unsigned int len = xdp->data_end - xdp->data; 4764 enum pkt_hash_types hash_type; 4765 int coe = priv->hw->rx_csum; 4766 struct sk_buff *skb; 4767 u32 hash; 4768 4769 skb = stmmac_construct_skb_zc(ch, xdp); 4770 if (!skb) { 4771 priv->dev->stats.rx_dropped++; 4772 return; 4773 } 4774 4775 stmmac_get_rx_hwtstamp(priv, p, np, skb); 4776 stmmac_rx_vlan(priv->dev, skb); 4777 skb->protocol = eth_type_trans(skb, priv->dev); 4778 4779 if (unlikely(!coe)) 4780 skb_checksum_none_assert(skb); 4781 else 4782 skb->ip_summed = CHECKSUM_UNNECESSARY; 4783 4784 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 4785 skb_set_hash(skb, hash, hash_type); 4786 4787 skb_record_rx_queue(skb, queue); 4788 napi_gro_receive(&ch->rxtx_napi, skb); 4789 4790 priv->dev->stats.rx_packets++; 4791 priv->dev->stats.rx_bytes += len; 4792 } 4793 4794 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget) 4795 { 4796 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4797 unsigned int entry = rx_q->dirty_rx; 4798 struct dma_desc *rx_desc = NULL; 4799 bool ret = true; 4800 4801 budget = min(budget, stmmac_rx_dirty(priv, queue)); 4802 4803 while (budget-- > 0 && entry != rx_q->cur_rx) { 4804 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry]; 4805 dma_addr_t dma_addr; 4806 bool use_rx_wd; 4807 4808 if (!buf->xdp) { 4809 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool); 4810 if (!buf->xdp) { 4811 ret = false; 4812 break; 4813 } 4814 } 4815 4816 if (priv->extend_desc) 4817 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry); 4818 else 4819 rx_desc = rx_q->dma_rx + entry; 4820 4821 dma_addr = xsk_buff_xdp_get_dma(buf->xdp); 4822 stmmac_set_desc_addr(priv, rx_desc, dma_addr); 4823 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false); 4824 stmmac_refill_desc3(priv, rx_q, rx_desc); 4825 4826 rx_q->rx_count_frames++; 4827 rx_q->rx_count_frames += priv->rx_coal_frames[queue]; 4828 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue]) 4829 rx_q->rx_count_frames = 0; 4830 4831 use_rx_wd = !priv->rx_coal_frames[queue]; 4832 use_rx_wd |= rx_q->rx_count_frames > 0; 4833 if (!priv->use_riwt) 4834 use_rx_wd = false; 4835 4836 dma_wmb(); 4837 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd); 4838 4839 entry = STMMAC_GET_ENTRY(entry, priv->dma_rx_size); 4840 } 4841 4842 if (rx_desc) { 4843 rx_q->dirty_rx = entry; 4844 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 4845 (rx_q->dirty_rx * sizeof(struct dma_desc)); 4846 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue); 4847 } 4848 4849 return ret; 4850 } 4851 4852 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue) 4853 { 4854 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 4855 unsigned int count = 0, error = 0, len = 0; 4856 int dirty = stmmac_rx_dirty(priv, queue); 4857 unsigned int next_entry = rx_q->cur_rx; 4858 unsigned int desc_size; 4859 struct bpf_prog *prog; 4860 bool failure = false; 4861 int xdp_status = 0; 4862 int status = 0; 4863 4864 if (netif_msg_rx_status(priv)) { 4865 void *rx_head; 4866 4867 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 4868 if (priv->extend_desc) { 4869 rx_head = (void *)rx_q->dma_erx; 4870 desc_size = sizeof(struct dma_extended_desc); 4871 } else { 4872 rx_head = (void *)rx_q->dma_rx; 4873 desc_size = sizeof(struct dma_desc); 4874 } 4875 4876 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 4877 rx_q->dma_rx_phy, desc_size); 4878 } 4879 while (count < limit) { 4880 struct stmmac_rx_buffer *buf; 4881 unsigned int buf1_len = 0; 4882 struct dma_desc *np, *p; 4883 int entry; 4884 int res; 4885 4886 if (!count && rx_q->state_saved) { 4887 error = rx_q->state.error; 4888 len = rx_q->state.len; 4889 } else { 4890 rx_q->state_saved = false; 4891 error = 0; 4892 len = 0; 4893 } 4894 4895 if (count >= limit) 4896 break; 4897 4898 read_again: 4899 buf1_len = 0; 4900 entry = next_entry; 4901 buf = &rx_q->buf_pool[entry]; 4902 4903 if (dirty >= STMMAC_RX_FILL_BATCH) { 4904 failure = failure || 4905 !stmmac_rx_refill_zc(priv, queue, dirty); 4906 dirty = 0; 4907 } 4908 4909 if (priv->extend_desc) 4910 p = (struct dma_desc *)(rx_q->dma_erx + entry); 4911 else 4912 p = rx_q->dma_rx + entry; 4913 4914 /* read the status of the incoming frame */ 4915 status = stmmac_rx_status(priv, &priv->dev->stats, 4916 &priv->xstats, p); 4917 /* check if managed by the DMA otherwise go ahead */ 4918 if (unlikely(status & dma_own)) 4919 break; 4920 4921 /* Prefetch the next RX descriptor */ 4922 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 4923 priv->dma_rx_size); 4924 next_entry = rx_q->cur_rx; 4925 4926 if (priv->extend_desc) 4927 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 4928 else 4929 np = rx_q->dma_rx + next_entry; 4930 4931 prefetch(np); 4932 4933 /* Ensure a valid XSK buffer before proceed */ 4934 if (!buf->xdp) 4935 break; 4936 4937 if (priv->extend_desc) 4938 stmmac_rx_extended_status(priv, &priv->dev->stats, 4939 &priv->xstats, 4940 rx_q->dma_erx + entry); 4941 if (unlikely(status == discard_frame)) { 4942 xsk_buff_free(buf->xdp); 4943 buf->xdp = NULL; 4944 dirty++; 4945 error = 1; 4946 if (!priv->hwts_rx_en) 4947 priv->dev->stats.rx_errors++; 4948 } 4949 4950 if (unlikely(error && (status & rx_not_ls))) 4951 goto read_again; 4952 if (unlikely(error)) { 4953 count++; 4954 continue; 4955 } 4956 4957 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */ 4958 if (likely(status & rx_not_ls)) { 4959 xsk_buff_free(buf->xdp); 4960 buf->xdp = NULL; 4961 dirty++; 4962 count++; 4963 goto read_again; 4964 } 4965 4966 /* XDP ZC Frame only support primary buffers for now */ 4967 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 4968 len += buf1_len; 4969 4970 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 4971 * Type frames (LLC/LLC-SNAP) 4972 * 4973 * llc_snap is never checked in GMAC >= 4, so this ACS 4974 * feature is always disabled and packets need to be 4975 * stripped manually. 4976 */ 4977 if (likely(!(status & rx_not_ls)) && 4978 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 4979 unlikely(status != llc_snap))) { 4980 buf1_len -= ETH_FCS_LEN; 4981 len -= ETH_FCS_LEN; 4982 } 4983 4984 /* RX buffer is good and fit into a XSK pool buffer */ 4985 buf->xdp->data_end = buf->xdp->data + buf1_len; 4986 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool); 4987 4988 prog = READ_ONCE(priv->xdp_prog); 4989 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp); 4990 4991 switch (res) { 4992 case STMMAC_XDP_PASS: 4993 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp); 4994 xsk_buff_free(buf->xdp); 4995 break; 4996 case STMMAC_XDP_CONSUMED: 4997 xsk_buff_free(buf->xdp); 4998 priv->dev->stats.rx_dropped++; 4999 break; 5000 case STMMAC_XDP_TX: 5001 case STMMAC_XDP_REDIRECT: 5002 xdp_status |= res; 5003 break; 5004 } 5005 5006 buf->xdp = NULL; 5007 dirty++; 5008 count++; 5009 } 5010 5011 if (status & rx_not_ls) { 5012 rx_q->state_saved = true; 5013 rx_q->state.error = error; 5014 rx_q->state.len = len; 5015 } 5016 5017 stmmac_finalize_xdp_rx(priv, xdp_status); 5018 5019 priv->xstats.rx_pkt_n += count; 5020 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5021 5022 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) { 5023 if (failure || stmmac_rx_dirty(priv, queue) > 0) 5024 xsk_set_rx_need_wakeup(rx_q->xsk_pool); 5025 else 5026 xsk_clear_rx_need_wakeup(rx_q->xsk_pool); 5027 5028 return (int)count; 5029 } 5030 5031 return failure ? limit : (int)count; 5032 } 5033 5034 /** 5035 * stmmac_rx - manage the receive process 5036 * @priv: driver private structure 5037 * @limit: napi bugget 5038 * @queue: RX queue index. 5039 * Description : this the function called by the napi poll method. 5040 * It gets all the frames inside the ring. 5041 */ 5042 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue) 5043 { 5044 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5045 struct stmmac_channel *ch = &priv->channel[queue]; 5046 unsigned int count = 0, error = 0, len = 0; 5047 int status = 0, coe = priv->hw->rx_csum; 5048 unsigned int next_entry = rx_q->cur_rx; 5049 enum dma_data_direction dma_dir; 5050 unsigned int desc_size; 5051 struct sk_buff *skb = NULL; 5052 struct xdp_buff xdp; 5053 int xdp_status = 0; 5054 int buf_sz; 5055 5056 dma_dir = page_pool_get_dma_dir(rx_q->page_pool); 5057 buf_sz = DIV_ROUND_UP(priv->dma_buf_sz, PAGE_SIZE) * PAGE_SIZE; 5058 5059 if (netif_msg_rx_status(priv)) { 5060 void *rx_head; 5061 5062 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); 5063 if (priv->extend_desc) { 5064 rx_head = (void *)rx_q->dma_erx; 5065 desc_size = sizeof(struct dma_extended_desc); 5066 } else { 5067 rx_head = (void *)rx_q->dma_rx; 5068 desc_size = sizeof(struct dma_desc); 5069 } 5070 5071 stmmac_display_ring(priv, rx_head, priv->dma_rx_size, true, 5072 rx_q->dma_rx_phy, desc_size); 5073 } 5074 while (count < limit) { 5075 unsigned int buf1_len = 0, buf2_len = 0; 5076 enum pkt_hash_types hash_type; 5077 struct stmmac_rx_buffer *buf; 5078 struct dma_desc *np, *p; 5079 int entry; 5080 u32 hash; 5081 5082 if (!count && rx_q->state_saved) { 5083 skb = rx_q->state.skb; 5084 error = rx_q->state.error; 5085 len = rx_q->state.len; 5086 } else { 5087 rx_q->state_saved = false; 5088 skb = NULL; 5089 error = 0; 5090 len = 0; 5091 } 5092 5093 if (count >= limit) 5094 break; 5095 5096 read_again: 5097 buf1_len = 0; 5098 buf2_len = 0; 5099 entry = next_entry; 5100 buf = &rx_q->buf_pool[entry]; 5101 5102 if (priv->extend_desc) 5103 p = (struct dma_desc *)(rx_q->dma_erx + entry); 5104 else 5105 p = rx_q->dma_rx + entry; 5106 5107 /* read the status of the incoming frame */ 5108 status = stmmac_rx_status(priv, &priv->dev->stats, 5109 &priv->xstats, p); 5110 /* check if managed by the DMA otherwise go ahead */ 5111 if (unlikely(status & dma_own)) 5112 break; 5113 5114 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, 5115 priv->dma_rx_size); 5116 next_entry = rx_q->cur_rx; 5117 5118 if (priv->extend_desc) 5119 np = (struct dma_desc *)(rx_q->dma_erx + next_entry); 5120 else 5121 np = rx_q->dma_rx + next_entry; 5122 5123 prefetch(np); 5124 5125 if (priv->extend_desc) 5126 stmmac_rx_extended_status(priv, &priv->dev->stats, 5127 &priv->xstats, rx_q->dma_erx + entry); 5128 if (unlikely(status == discard_frame)) { 5129 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5130 buf->page = NULL; 5131 error = 1; 5132 if (!priv->hwts_rx_en) 5133 priv->dev->stats.rx_errors++; 5134 } 5135 5136 if (unlikely(error && (status & rx_not_ls))) 5137 goto read_again; 5138 if (unlikely(error)) { 5139 dev_kfree_skb(skb); 5140 skb = NULL; 5141 count++; 5142 continue; 5143 } 5144 5145 /* Buffer is good. Go on. */ 5146 5147 prefetch(page_address(buf->page) + buf->page_offset); 5148 if (buf->sec_page) 5149 prefetch(page_address(buf->sec_page)); 5150 5151 buf1_len = stmmac_rx_buf1_len(priv, p, status, len); 5152 len += buf1_len; 5153 buf2_len = stmmac_rx_buf2_len(priv, p, status, len); 5154 len += buf2_len; 5155 5156 /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3 5157 * Type frames (LLC/LLC-SNAP) 5158 * 5159 * llc_snap is never checked in GMAC >= 4, so this ACS 5160 * feature is always disabled and packets need to be 5161 * stripped manually. 5162 */ 5163 if (likely(!(status & rx_not_ls)) && 5164 (likely(priv->synopsys_id >= DWMAC_CORE_4_00) || 5165 unlikely(status != llc_snap))) { 5166 if (buf2_len) { 5167 buf2_len -= ETH_FCS_LEN; 5168 len -= ETH_FCS_LEN; 5169 } else if (buf1_len) { 5170 buf1_len -= ETH_FCS_LEN; 5171 len -= ETH_FCS_LEN; 5172 } 5173 } 5174 5175 if (!skb) { 5176 unsigned int pre_len, sync_len; 5177 5178 dma_sync_single_for_cpu(priv->device, buf->addr, 5179 buf1_len, dma_dir); 5180 5181 xdp_init_buff(&xdp, buf_sz, &rx_q->xdp_rxq); 5182 xdp_prepare_buff(&xdp, page_address(buf->page), 5183 buf->page_offset, buf1_len, false); 5184 5185 pre_len = xdp.data_end - xdp.data_hard_start - 5186 buf->page_offset; 5187 skb = stmmac_xdp_run_prog(priv, &xdp); 5188 /* Due xdp_adjust_tail: DMA sync for_device 5189 * cover max len CPU touch 5190 */ 5191 sync_len = xdp.data_end - xdp.data_hard_start - 5192 buf->page_offset; 5193 sync_len = max(sync_len, pre_len); 5194 5195 /* For Not XDP_PASS verdict */ 5196 if (IS_ERR(skb)) { 5197 unsigned int xdp_res = -PTR_ERR(skb); 5198 5199 if (xdp_res & STMMAC_XDP_CONSUMED) { 5200 page_pool_put_page(rx_q->page_pool, 5201 virt_to_head_page(xdp.data), 5202 sync_len, true); 5203 buf->page = NULL; 5204 priv->dev->stats.rx_dropped++; 5205 5206 /* Clear skb as it was set as 5207 * status by XDP program. 5208 */ 5209 skb = NULL; 5210 5211 if (unlikely((status & rx_not_ls))) 5212 goto read_again; 5213 5214 count++; 5215 continue; 5216 } else if (xdp_res & (STMMAC_XDP_TX | 5217 STMMAC_XDP_REDIRECT)) { 5218 xdp_status |= xdp_res; 5219 buf->page = NULL; 5220 skb = NULL; 5221 count++; 5222 continue; 5223 } 5224 } 5225 } 5226 5227 if (!skb) { 5228 /* XDP program may expand or reduce tail */ 5229 buf1_len = xdp.data_end - xdp.data; 5230 5231 skb = napi_alloc_skb(&ch->rx_napi, buf1_len); 5232 if (!skb) { 5233 priv->dev->stats.rx_dropped++; 5234 count++; 5235 goto drain_data; 5236 } 5237 5238 /* XDP program may adjust header */ 5239 skb_copy_to_linear_data(skb, xdp.data, buf1_len); 5240 skb_put(skb, buf1_len); 5241 5242 /* Data payload copied into SKB, page ready for recycle */ 5243 page_pool_recycle_direct(rx_q->page_pool, buf->page); 5244 buf->page = NULL; 5245 } else if (buf1_len) { 5246 dma_sync_single_for_cpu(priv->device, buf->addr, 5247 buf1_len, dma_dir); 5248 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5249 buf->page, buf->page_offset, buf1_len, 5250 priv->dma_buf_sz); 5251 5252 /* Data payload appended into SKB */ 5253 page_pool_release_page(rx_q->page_pool, buf->page); 5254 buf->page = NULL; 5255 } 5256 5257 if (buf2_len) { 5258 dma_sync_single_for_cpu(priv->device, buf->sec_addr, 5259 buf2_len, dma_dir); 5260 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, 5261 buf->sec_page, 0, buf2_len, 5262 priv->dma_buf_sz); 5263 5264 /* Data payload appended into SKB */ 5265 page_pool_release_page(rx_q->page_pool, buf->sec_page); 5266 buf->sec_page = NULL; 5267 } 5268 5269 drain_data: 5270 if (likely(status & rx_not_ls)) 5271 goto read_again; 5272 if (!skb) 5273 continue; 5274 5275 /* Got entire packet into SKB. Finish it. */ 5276 5277 stmmac_get_rx_hwtstamp(priv, p, np, skb); 5278 stmmac_rx_vlan(priv->dev, skb); 5279 skb->protocol = eth_type_trans(skb, priv->dev); 5280 5281 if (unlikely(!coe)) 5282 skb_checksum_none_assert(skb); 5283 else 5284 skb->ip_summed = CHECKSUM_UNNECESSARY; 5285 5286 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type)) 5287 skb_set_hash(skb, hash, hash_type); 5288 5289 skb_record_rx_queue(skb, queue); 5290 napi_gro_receive(&ch->rx_napi, skb); 5291 skb = NULL; 5292 5293 priv->dev->stats.rx_packets++; 5294 priv->dev->stats.rx_bytes += len; 5295 count++; 5296 } 5297 5298 if (status & rx_not_ls || skb) { 5299 rx_q->state_saved = true; 5300 rx_q->state.skb = skb; 5301 rx_q->state.error = error; 5302 rx_q->state.len = len; 5303 } 5304 5305 stmmac_finalize_xdp_rx(priv, xdp_status); 5306 5307 stmmac_rx_refill(priv, queue); 5308 5309 priv->xstats.rx_pkt_n += count; 5310 priv->xstats.rxq_stats[queue].rx_pkt_n += count; 5311 5312 return count; 5313 } 5314 5315 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget) 5316 { 5317 struct stmmac_channel *ch = 5318 container_of(napi, struct stmmac_channel, rx_napi); 5319 struct stmmac_priv *priv = ch->priv_data; 5320 u32 chan = ch->index; 5321 int work_done; 5322 5323 priv->xstats.napi_poll++; 5324 5325 work_done = stmmac_rx(priv, budget, chan); 5326 if (work_done < budget && napi_complete_done(napi, work_done)) { 5327 unsigned long flags; 5328 5329 spin_lock_irqsave(&ch->lock, flags); 5330 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0); 5331 spin_unlock_irqrestore(&ch->lock, flags); 5332 } 5333 5334 return work_done; 5335 } 5336 5337 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget) 5338 { 5339 struct stmmac_channel *ch = 5340 container_of(napi, struct stmmac_channel, tx_napi); 5341 struct stmmac_priv *priv = ch->priv_data; 5342 u32 chan = ch->index; 5343 int work_done; 5344 5345 priv->xstats.napi_poll++; 5346 5347 work_done = stmmac_tx_clean(priv, budget, chan); 5348 work_done = min(work_done, budget); 5349 5350 if (work_done < budget && napi_complete_done(napi, work_done)) { 5351 unsigned long flags; 5352 5353 spin_lock_irqsave(&ch->lock, flags); 5354 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1); 5355 spin_unlock_irqrestore(&ch->lock, flags); 5356 } 5357 5358 return work_done; 5359 } 5360 5361 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget) 5362 { 5363 struct stmmac_channel *ch = 5364 container_of(napi, struct stmmac_channel, rxtx_napi); 5365 struct stmmac_priv *priv = ch->priv_data; 5366 int rx_done, tx_done, rxtx_done; 5367 u32 chan = ch->index; 5368 5369 priv->xstats.napi_poll++; 5370 5371 tx_done = stmmac_tx_clean(priv, budget, chan); 5372 tx_done = min(tx_done, budget); 5373 5374 rx_done = stmmac_rx_zc(priv, budget, chan); 5375 5376 rxtx_done = max(tx_done, rx_done); 5377 5378 /* If either TX or RX work is not complete, return budget 5379 * and keep pooling 5380 */ 5381 if (rxtx_done >= budget) 5382 return budget; 5383 5384 /* all work done, exit the polling mode */ 5385 if (napi_complete_done(napi, rxtx_done)) { 5386 unsigned long flags; 5387 5388 spin_lock_irqsave(&ch->lock, flags); 5389 /* Both RX and TX work done are compelte, 5390 * so enable both RX & TX IRQs. 5391 */ 5392 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 5393 spin_unlock_irqrestore(&ch->lock, flags); 5394 } 5395 5396 return min(rxtx_done, budget - 1); 5397 } 5398 5399 /** 5400 * stmmac_tx_timeout 5401 * @dev : Pointer to net device structure 5402 * @txqueue: the index of the hanging transmit queue 5403 * Description: this function is called when a packet transmission fails to 5404 * complete within a reasonable time. The driver will mark the error in the 5405 * netdev structure and arrange for the device to be reset to a sane state 5406 * in order to transmit a new packet. 5407 */ 5408 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue) 5409 { 5410 struct stmmac_priv *priv = netdev_priv(dev); 5411 5412 stmmac_global_err(priv); 5413 } 5414 5415 /** 5416 * stmmac_set_rx_mode - entry point for multicast addressing 5417 * @dev : pointer to the device structure 5418 * Description: 5419 * This function is a driver entry point which gets called by the kernel 5420 * whenever multicast addresses must be enabled/disabled. 5421 * Return value: 5422 * void. 5423 */ 5424 static void stmmac_set_rx_mode(struct net_device *dev) 5425 { 5426 struct stmmac_priv *priv = netdev_priv(dev); 5427 5428 stmmac_set_filter(priv, priv->hw, dev); 5429 } 5430 5431 /** 5432 * stmmac_change_mtu - entry point to change MTU size for the device. 5433 * @dev : device pointer. 5434 * @new_mtu : the new MTU size for the device. 5435 * Description: the Maximum Transfer Unit (MTU) is used by the network layer 5436 * to drive packet transmission. Ethernet has an MTU of 1500 octets 5437 * (ETH_DATA_LEN). This value can be changed with ifconfig. 5438 * Return value: 5439 * 0 on success and an appropriate (-)ve integer as defined in errno.h 5440 * file on failure. 5441 */ 5442 static int stmmac_change_mtu(struct net_device *dev, int new_mtu) 5443 { 5444 struct stmmac_priv *priv = netdev_priv(dev); 5445 int txfifosz = priv->plat->tx_fifo_size; 5446 const int mtu = new_mtu; 5447 5448 if (txfifosz == 0) 5449 txfifosz = priv->dma_cap.tx_fifo_size; 5450 5451 txfifosz /= priv->plat->tx_queues_to_use; 5452 5453 if (netif_running(dev)) { 5454 netdev_err(priv->dev, "must be stopped to change its MTU\n"); 5455 return -EBUSY; 5456 } 5457 5458 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) { 5459 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n"); 5460 return -EINVAL; 5461 } 5462 5463 new_mtu = STMMAC_ALIGN(new_mtu); 5464 5465 /* If condition true, FIFO is too small or MTU too large */ 5466 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB)) 5467 return -EINVAL; 5468 5469 dev->mtu = mtu; 5470 5471 netdev_update_features(dev); 5472 5473 return 0; 5474 } 5475 5476 static netdev_features_t stmmac_fix_features(struct net_device *dev, 5477 netdev_features_t features) 5478 { 5479 struct stmmac_priv *priv = netdev_priv(dev); 5480 5481 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE) 5482 features &= ~NETIF_F_RXCSUM; 5483 5484 if (!priv->plat->tx_coe) 5485 features &= ~NETIF_F_CSUM_MASK; 5486 5487 /* Some GMAC devices have a bugged Jumbo frame support that 5488 * needs to have the Tx COE disabled for oversized frames 5489 * (due to limited buffer sizes). In this case we disable 5490 * the TX csum insertion in the TDES and not use SF. 5491 */ 5492 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN)) 5493 features &= ~NETIF_F_CSUM_MASK; 5494 5495 /* Disable tso if asked by ethtool */ 5496 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 5497 if (features & NETIF_F_TSO) 5498 priv->tso = true; 5499 else 5500 priv->tso = false; 5501 } 5502 5503 return features; 5504 } 5505 5506 static int stmmac_set_features(struct net_device *netdev, 5507 netdev_features_t features) 5508 { 5509 struct stmmac_priv *priv = netdev_priv(netdev); 5510 5511 /* Keep the COE Type in case of csum is supporting */ 5512 if (features & NETIF_F_RXCSUM) 5513 priv->hw->rx_csum = priv->plat->rx_coe; 5514 else 5515 priv->hw->rx_csum = 0; 5516 /* No check needed because rx_coe has been set before and it will be 5517 * fixed in case of issue. 5518 */ 5519 stmmac_rx_ipc(priv, priv->hw); 5520 5521 if (priv->sph_cap) { 5522 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph; 5523 u32 chan; 5524 5525 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++) 5526 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 5527 } 5528 5529 return 0; 5530 } 5531 5532 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status) 5533 { 5534 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 5535 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 5536 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 5537 bool *hs_enable = &fpe_cfg->hs_enable; 5538 5539 if (status == FPE_EVENT_UNKNOWN || !*hs_enable) 5540 return; 5541 5542 /* If LP has sent verify mPacket, LP is FPE capable */ 5543 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) { 5544 if (*lp_state < FPE_STATE_CAPABLE) 5545 *lp_state = FPE_STATE_CAPABLE; 5546 5547 /* If user has requested FPE enable, quickly response */ 5548 if (*hs_enable) 5549 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 5550 MPACKET_RESPONSE); 5551 } 5552 5553 /* If Local has sent verify mPacket, Local is FPE capable */ 5554 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) { 5555 if (*lo_state < FPE_STATE_CAPABLE) 5556 *lo_state = FPE_STATE_CAPABLE; 5557 } 5558 5559 /* If LP has sent response mPacket, LP is entering FPE ON */ 5560 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP) 5561 *lp_state = FPE_STATE_ENTERING_ON; 5562 5563 /* If Local has sent response mPacket, Local is entering FPE ON */ 5564 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP) 5565 *lo_state = FPE_STATE_ENTERING_ON; 5566 5567 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) && 5568 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) && 5569 priv->fpe_wq) { 5570 queue_work(priv->fpe_wq, &priv->fpe_task); 5571 } 5572 } 5573 5574 static void stmmac_common_interrupt(struct stmmac_priv *priv) 5575 { 5576 u32 rx_cnt = priv->plat->rx_queues_to_use; 5577 u32 tx_cnt = priv->plat->tx_queues_to_use; 5578 u32 queues_count; 5579 u32 queue; 5580 bool xmac; 5581 5582 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac; 5583 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt; 5584 5585 if (priv->irq_wake) 5586 pm_wakeup_event(priv->device, 0); 5587 5588 if (priv->dma_cap.estsel) 5589 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev, 5590 &priv->xstats, tx_cnt); 5591 5592 if (priv->dma_cap.fpesel) { 5593 int status = stmmac_fpe_irq_status(priv, priv->ioaddr, 5594 priv->dev); 5595 5596 stmmac_fpe_event_status(priv, status); 5597 } 5598 5599 /* To handle GMAC own interrupts */ 5600 if ((priv->plat->has_gmac) || xmac) { 5601 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats); 5602 5603 if (unlikely(status)) { 5604 /* For LPI we need to save the tx status */ 5605 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE) 5606 priv->tx_path_in_lpi_mode = true; 5607 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE) 5608 priv->tx_path_in_lpi_mode = false; 5609 } 5610 5611 for (queue = 0; queue < queues_count; queue++) { 5612 status = stmmac_host_mtl_irq_status(priv, priv->hw, 5613 queue); 5614 } 5615 5616 /* PCS link status */ 5617 if (priv->hw->pcs) { 5618 if (priv->xstats.pcs_link) 5619 netif_carrier_on(priv->dev); 5620 else 5621 netif_carrier_off(priv->dev); 5622 } 5623 5624 stmmac_timestamp_interrupt(priv, priv); 5625 } 5626 } 5627 5628 /** 5629 * stmmac_interrupt - main ISR 5630 * @irq: interrupt number. 5631 * @dev_id: to pass the net device pointer. 5632 * Description: this is the main driver interrupt service routine. 5633 * It can call: 5634 * o DMA service routine (to manage incoming frame reception and transmission 5635 * status) 5636 * o Core interrupts to manage: remote wake-up, management counter, LPI 5637 * interrupts. 5638 */ 5639 static irqreturn_t stmmac_interrupt(int irq, void *dev_id) 5640 { 5641 struct net_device *dev = (struct net_device *)dev_id; 5642 struct stmmac_priv *priv = netdev_priv(dev); 5643 5644 /* Check if adapter is up */ 5645 if (test_bit(STMMAC_DOWN, &priv->state)) 5646 return IRQ_HANDLED; 5647 5648 /* Check if a fatal error happened */ 5649 if (stmmac_safety_feat_interrupt(priv)) 5650 return IRQ_HANDLED; 5651 5652 /* To handle Common interrupts */ 5653 stmmac_common_interrupt(priv); 5654 5655 /* To handle DMA interrupts */ 5656 stmmac_dma_interrupt(priv); 5657 5658 return IRQ_HANDLED; 5659 } 5660 5661 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id) 5662 { 5663 struct net_device *dev = (struct net_device *)dev_id; 5664 struct stmmac_priv *priv = netdev_priv(dev); 5665 5666 if (unlikely(!dev)) { 5667 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5668 return IRQ_NONE; 5669 } 5670 5671 /* Check if adapter is up */ 5672 if (test_bit(STMMAC_DOWN, &priv->state)) 5673 return IRQ_HANDLED; 5674 5675 /* To handle Common interrupts */ 5676 stmmac_common_interrupt(priv); 5677 5678 return IRQ_HANDLED; 5679 } 5680 5681 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id) 5682 { 5683 struct net_device *dev = (struct net_device *)dev_id; 5684 struct stmmac_priv *priv = netdev_priv(dev); 5685 5686 if (unlikely(!dev)) { 5687 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5688 return IRQ_NONE; 5689 } 5690 5691 /* Check if adapter is up */ 5692 if (test_bit(STMMAC_DOWN, &priv->state)) 5693 return IRQ_HANDLED; 5694 5695 /* Check if a fatal error happened */ 5696 stmmac_safety_feat_interrupt(priv); 5697 5698 return IRQ_HANDLED; 5699 } 5700 5701 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data) 5702 { 5703 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data; 5704 int chan = tx_q->queue_index; 5705 struct stmmac_priv *priv; 5706 int status; 5707 5708 priv = container_of(tx_q, struct stmmac_priv, tx_queue[chan]); 5709 5710 if (unlikely(!data)) { 5711 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5712 return IRQ_NONE; 5713 } 5714 5715 /* Check if adapter is up */ 5716 if (test_bit(STMMAC_DOWN, &priv->state)) 5717 return IRQ_HANDLED; 5718 5719 status = stmmac_napi_check(priv, chan, DMA_DIR_TX); 5720 5721 if (unlikely(status & tx_hard_error_bump_tc)) { 5722 /* Try to bump up the dma threshold on this failure */ 5723 stmmac_bump_dma_threshold(priv, chan); 5724 } else if (unlikely(status == tx_hard_error)) { 5725 stmmac_tx_err(priv, chan); 5726 } 5727 5728 return IRQ_HANDLED; 5729 } 5730 5731 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data) 5732 { 5733 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data; 5734 int chan = rx_q->queue_index; 5735 struct stmmac_priv *priv; 5736 5737 priv = container_of(rx_q, struct stmmac_priv, rx_queue[chan]); 5738 5739 if (unlikely(!data)) { 5740 netdev_err(priv->dev, "%s: invalid dev pointer\n", __func__); 5741 return IRQ_NONE; 5742 } 5743 5744 /* Check if adapter is up */ 5745 if (test_bit(STMMAC_DOWN, &priv->state)) 5746 return IRQ_HANDLED; 5747 5748 stmmac_napi_check(priv, chan, DMA_DIR_RX); 5749 5750 return IRQ_HANDLED; 5751 } 5752 5753 #ifdef CONFIG_NET_POLL_CONTROLLER 5754 /* Polling receive - used by NETCONSOLE and other diagnostic tools 5755 * to allow network I/O with interrupts disabled. 5756 */ 5757 static void stmmac_poll_controller(struct net_device *dev) 5758 { 5759 struct stmmac_priv *priv = netdev_priv(dev); 5760 int i; 5761 5762 /* If adapter is down, do nothing */ 5763 if (test_bit(STMMAC_DOWN, &priv->state)) 5764 return; 5765 5766 if (priv->plat->multi_msi_en) { 5767 for (i = 0; i < priv->plat->rx_queues_to_use; i++) 5768 stmmac_msi_intr_rx(0, &priv->rx_queue[i]); 5769 5770 for (i = 0; i < priv->plat->tx_queues_to_use; i++) 5771 stmmac_msi_intr_tx(0, &priv->tx_queue[i]); 5772 } else { 5773 disable_irq(dev->irq); 5774 stmmac_interrupt(dev->irq, dev); 5775 enable_irq(dev->irq); 5776 } 5777 } 5778 #endif 5779 5780 /** 5781 * stmmac_ioctl - Entry point for the Ioctl 5782 * @dev: Device pointer. 5783 * @rq: An IOCTL specefic structure, that can contain a pointer to 5784 * a proprietary structure used to pass information to the driver. 5785 * @cmd: IOCTL command 5786 * Description: 5787 * Currently it supports the phy_mii_ioctl(...) and HW time stamping. 5788 */ 5789 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 5790 { 5791 struct stmmac_priv *priv = netdev_priv (dev); 5792 int ret = -EOPNOTSUPP; 5793 5794 if (!netif_running(dev)) 5795 return -EINVAL; 5796 5797 switch (cmd) { 5798 case SIOCGMIIPHY: 5799 case SIOCGMIIREG: 5800 case SIOCSMIIREG: 5801 ret = phylink_mii_ioctl(priv->phylink, rq, cmd); 5802 break; 5803 case SIOCSHWTSTAMP: 5804 ret = stmmac_hwtstamp_set(dev, rq); 5805 break; 5806 case SIOCGHWTSTAMP: 5807 ret = stmmac_hwtstamp_get(dev, rq); 5808 break; 5809 default: 5810 break; 5811 } 5812 5813 return ret; 5814 } 5815 5816 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 5817 void *cb_priv) 5818 { 5819 struct stmmac_priv *priv = cb_priv; 5820 int ret = -EOPNOTSUPP; 5821 5822 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data)) 5823 return ret; 5824 5825 __stmmac_disable_all_queues(priv); 5826 5827 switch (type) { 5828 case TC_SETUP_CLSU32: 5829 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data); 5830 break; 5831 case TC_SETUP_CLSFLOWER: 5832 ret = stmmac_tc_setup_cls(priv, priv, type_data); 5833 break; 5834 default: 5835 break; 5836 } 5837 5838 stmmac_enable_all_queues(priv); 5839 return ret; 5840 } 5841 5842 static LIST_HEAD(stmmac_block_cb_list); 5843 5844 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type, 5845 void *type_data) 5846 { 5847 struct stmmac_priv *priv = netdev_priv(ndev); 5848 5849 switch (type) { 5850 case TC_SETUP_BLOCK: 5851 return flow_block_cb_setup_simple(type_data, 5852 &stmmac_block_cb_list, 5853 stmmac_setup_tc_block_cb, 5854 priv, priv, true); 5855 case TC_SETUP_QDISC_CBS: 5856 return stmmac_tc_setup_cbs(priv, priv, type_data); 5857 case TC_SETUP_QDISC_TAPRIO: 5858 return stmmac_tc_setup_taprio(priv, priv, type_data); 5859 case TC_SETUP_QDISC_ETF: 5860 return stmmac_tc_setup_etf(priv, priv, type_data); 5861 default: 5862 return -EOPNOTSUPP; 5863 } 5864 } 5865 5866 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb, 5867 struct net_device *sb_dev) 5868 { 5869 int gso = skb_shinfo(skb)->gso_type; 5870 5871 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) { 5872 /* 5873 * There is no way to determine the number of TSO/USO 5874 * capable Queues. Let's use always the Queue 0 5875 * because if TSO/USO is supported then at least this 5876 * one will be capable. 5877 */ 5878 return 0; 5879 } 5880 5881 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues; 5882 } 5883 5884 static int stmmac_set_mac_address(struct net_device *ndev, void *addr) 5885 { 5886 struct stmmac_priv *priv = netdev_priv(ndev); 5887 int ret = 0; 5888 5889 ret = pm_runtime_get_sync(priv->device); 5890 if (ret < 0) { 5891 pm_runtime_put_noidle(priv->device); 5892 return ret; 5893 } 5894 5895 ret = eth_mac_addr(ndev, addr); 5896 if (ret) 5897 goto set_mac_error; 5898 5899 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0); 5900 5901 set_mac_error: 5902 pm_runtime_put(priv->device); 5903 5904 return ret; 5905 } 5906 5907 #ifdef CONFIG_DEBUG_FS 5908 static struct dentry *stmmac_fs_dir; 5909 5910 static void sysfs_display_ring(void *head, int size, int extend_desc, 5911 struct seq_file *seq, dma_addr_t dma_phy_addr) 5912 { 5913 int i; 5914 struct dma_extended_desc *ep = (struct dma_extended_desc *)head; 5915 struct dma_desc *p = (struct dma_desc *)head; 5916 dma_addr_t dma_addr; 5917 5918 for (i = 0; i < size; i++) { 5919 if (extend_desc) { 5920 dma_addr = dma_phy_addr + i * sizeof(*ep); 5921 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5922 i, &dma_addr, 5923 le32_to_cpu(ep->basic.des0), 5924 le32_to_cpu(ep->basic.des1), 5925 le32_to_cpu(ep->basic.des2), 5926 le32_to_cpu(ep->basic.des3)); 5927 ep++; 5928 } else { 5929 dma_addr = dma_phy_addr + i * sizeof(*p); 5930 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n", 5931 i, &dma_addr, 5932 le32_to_cpu(p->des0), le32_to_cpu(p->des1), 5933 le32_to_cpu(p->des2), le32_to_cpu(p->des3)); 5934 p++; 5935 } 5936 seq_printf(seq, "\n"); 5937 } 5938 } 5939 5940 static int stmmac_rings_status_show(struct seq_file *seq, void *v) 5941 { 5942 struct net_device *dev = seq->private; 5943 struct stmmac_priv *priv = netdev_priv(dev); 5944 u32 rx_count = priv->plat->rx_queues_to_use; 5945 u32 tx_count = priv->plat->tx_queues_to_use; 5946 u32 queue; 5947 5948 if ((dev->flags & IFF_UP) == 0) 5949 return 0; 5950 5951 for (queue = 0; queue < rx_count; queue++) { 5952 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 5953 5954 seq_printf(seq, "RX Queue %d:\n", queue); 5955 5956 if (priv->extend_desc) { 5957 seq_printf(seq, "Extended descriptor ring:\n"); 5958 sysfs_display_ring((void *)rx_q->dma_erx, 5959 priv->dma_rx_size, 1, seq, rx_q->dma_rx_phy); 5960 } else { 5961 seq_printf(seq, "Descriptor ring:\n"); 5962 sysfs_display_ring((void *)rx_q->dma_rx, 5963 priv->dma_rx_size, 0, seq, rx_q->dma_rx_phy); 5964 } 5965 } 5966 5967 for (queue = 0; queue < tx_count; queue++) { 5968 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 5969 5970 seq_printf(seq, "TX Queue %d:\n", queue); 5971 5972 if (priv->extend_desc) { 5973 seq_printf(seq, "Extended descriptor ring:\n"); 5974 sysfs_display_ring((void *)tx_q->dma_etx, 5975 priv->dma_tx_size, 1, seq, tx_q->dma_tx_phy); 5976 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) { 5977 seq_printf(seq, "Descriptor ring:\n"); 5978 sysfs_display_ring((void *)tx_q->dma_tx, 5979 priv->dma_tx_size, 0, seq, tx_q->dma_tx_phy); 5980 } 5981 } 5982 5983 return 0; 5984 } 5985 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status); 5986 5987 static int stmmac_dma_cap_show(struct seq_file *seq, void *v) 5988 { 5989 struct net_device *dev = seq->private; 5990 struct stmmac_priv *priv = netdev_priv(dev); 5991 5992 if (!priv->hw_cap_support) { 5993 seq_printf(seq, "DMA HW features not supported\n"); 5994 return 0; 5995 } 5996 5997 seq_printf(seq, "==============================\n"); 5998 seq_printf(seq, "\tDMA HW features\n"); 5999 seq_printf(seq, "==============================\n"); 6000 6001 seq_printf(seq, "\t10/100 Mbps: %s\n", 6002 (priv->dma_cap.mbps_10_100) ? "Y" : "N"); 6003 seq_printf(seq, "\t1000 Mbps: %s\n", 6004 (priv->dma_cap.mbps_1000) ? "Y" : "N"); 6005 seq_printf(seq, "\tHalf duplex: %s\n", 6006 (priv->dma_cap.half_duplex) ? "Y" : "N"); 6007 seq_printf(seq, "\tHash Filter: %s\n", 6008 (priv->dma_cap.hash_filter) ? "Y" : "N"); 6009 seq_printf(seq, "\tMultiple MAC address registers: %s\n", 6010 (priv->dma_cap.multi_addr) ? "Y" : "N"); 6011 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n", 6012 (priv->dma_cap.pcs) ? "Y" : "N"); 6013 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n", 6014 (priv->dma_cap.sma_mdio) ? "Y" : "N"); 6015 seq_printf(seq, "\tPMT Remote wake up: %s\n", 6016 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N"); 6017 seq_printf(seq, "\tPMT Magic Frame: %s\n", 6018 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N"); 6019 seq_printf(seq, "\tRMON module: %s\n", 6020 (priv->dma_cap.rmon) ? "Y" : "N"); 6021 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n", 6022 (priv->dma_cap.time_stamp) ? "Y" : "N"); 6023 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n", 6024 (priv->dma_cap.atime_stamp) ? "Y" : "N"); 6025 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n", 6026 (priv->dma_cap.eee) ? "Y" : "N"); 6027 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N"); 6028 seq_printf(seq, "\tChecksum Offload in TX: %s\n", 6029 (priv->dma_cap.tx_coe) ? "Y" : "N"); 6030 if (priv->synopsys_id >= DWMAC_CORE_4_00) { 6031 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n", 6032 (priv->dma_cap.rx_coe) ? "Y" : "N"); 6033 } else { 6034 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n", 6035 (priv->dma_cap.rx_coe_type1) ? "Y" : "N"); 6036 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n", 6037 (priv->dma_cap.rx_coe_type2) ? "Y" : "N"); 6038 } 6039 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n", 6040 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N"); 6041 seq_printf(seq, "\tNumber of Additional RX channel: %d\n", 6042 priv->dma_cap.number_rx_channel); 6043 seq_printf(seq, "\tNumber of Additional TX channel: %d\n", 6044 priv->dma_cap.number_tx_channel); 6045 seq_printf(seq, "\tNumber of Additional RX queues: %d\n", 6046 priv->dma_cap.number_rx_queues); 6047 seq_printf(seq, "\tNumber of Additional TX queues: %d\n", 6048 priv->dma_cap.number_tx_queues); 6049 seq_printf(seq, "\tEnhanced descriptors: %s\n", 6050 (priv->dma_cap.enh_desc) ? "Y" : "N"); 6051 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size); 6052 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size); 6053 seq_printf(seq, "\tHash Table Size: %d\n", priv->dma_cap.hash_tb_sz); 6054 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N"); 6055 seq_printf(seq, "\tNumber of PPS Outputs: %d\n", 6056 priv->dma_cap.pps_out_num); 6057 seq_printf(seq, "\tSafety Features: %s\n", 6058 priv->dma_cap.asp ? "Y" : "N"); 6059 seq_printf(seq, "\tFlexible RX Parser: %s\n", 6060 priv->dma_cap.frpsel ? "Y" : "N"); 6061 seq_printf(seq, "\tEnhanced Addressing: %d\n", 6062 priv->dma_cap.addr64); 6063 seq_printf(seq, "\tReceive Side Scaling: %s\n", 6064 priv->dma_cap.rssen ? "Y" : "N"); 6065 seq_printf(seq, "\tVLAN Hash Filtering: %s\n", 6066 priv->dma_cap.vlhash ? "Y" : "N"); 6067 seq_printf(seq, "\tSplit Header: %s\n", 6068 priv->dma_cap.sphen ? "Y" : "N"); 6069 seq_printf(seq, "\tVLAN TX Insertion: %s\n", 6070 priv->dma_cap.vlins ? "Y" : "N"); 6071 seq_printf(seq, "\tDouble VLAN: %s\n", 6072 priv->dma_cap.dvlan ? "Y" : "N"); 6073 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n", 6074 priv->dma_cap.l3l4fnum); 6075 seq_printf(seq, "\tARP Offloading: %s\n", 6076 priv->dma_cap.arpoffsel ? "Y" : "N"); 6077 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n", 6078 priv->dma_cap.estsel ? "Y" : "N"); 6079 seq_printf(seq, "\tFrame Preemption (FPE): %s\n", 6080 priv->dma_cap.fpesel ? "Y" : "N"); 6081 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n", 6082 priv->dma_cap.tbssel ? "Y" : "N"); 6083 return 0; 6084 } 6085 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap); 6086 6087 /* Use network device events to rename debugfs file entries. 6088 */ 6089 static int stmmac_device_event(struct notifier_block *unused, 6090 unsigned long event, void *ptr) 6091 { 6092 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 6093 struct stmmac_priv *priv = netdev_priv(dev); 6094 6095 if (dev->netdev_ops != &stmmac_netdev_ops) 6096 goto done; 6097 6098 switch (event) { 6099 case NETDEV_CHANGENAME: 6100 if (priv->dbgfs_dir) 6101 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir, 6102 priv->dbgfs_dir, 6103 stmmac_fs_dir, 6104 dev->name); 6105 break; 6106 } 6107 done: 6108 return NOTIFY_DONE; 6109 } 6110 6111 static struct notifier_block stmmac_notifier = { 6112 .notifier_call = stmmac_device_event, 6113 }; 6114 6115 static void stmmac_init_fs(struct net_device *dev) 6116 { 6117 struct stmmac_priv *priv = netdev_priv(dev); 6118 6119 rtnl_lock(); 6120 6121 /* Create per netdev entries */ 6122 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir); 6123 6124 /* Entry to report DMA RX/TX rings */ 6125 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev, 6126 &stmmac_rings_status_fops); 6127 6128 /* Entry to report the DMA HW features */ 6129 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev, 6130 &stmmac_dma_cap_fops); 6131 6132 rtnl_unlock(); 6133 } 6134 6135 static void stmmac_exit_fs(struct net_device *dev) 6136 { 6137 struct stmmac_priv *priv = netdev_priv(dev); 6138 6139 debugfs_remove_recursive(priv->dbgfs_dir); 6140 } 6141 #endif /* CONFIG_DEBUG_FS */ 6142 6143 static u32 stmmac_vid_crc32_le(__le16 vid_le) 6144 { 6145 unsigned char *data = (unsigned char *)&vid_le; 6146 unsigned char data_byte = 0; 6147 u32 crc = ~0x0; 6148 u32 temp = 0; 6149 int i, bits; 6150 6151 bits = get_bitmask_order(VLAN_VID_MASK); 6152 for (i = 0; i < bits; i++) { 6153 if ((i % 8) == 0) 6154 data_byte = data[i / 8]; 6155 6156 temp = ((crc & 1) ^ data_byte) & 1; 6157 crc >>= 1; 6158 data_byte >>= 1; 6159 6160 if (temp) 6161 crc ^= 0xedb88320; 6162 } 6163 6164 return crc; 6165 } 6166 6167 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double) 6168 { 6169 u32 crc, hash = 0; 6170 __le16 pmatch = 0; 6171 int count = 0; 6172 u16 vid = 0; 6173 6174 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) { 6175 __le16 vid_le = cpu_to_le16(vid); 6176 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28; 6177 hash |= (1 << crc); 6178 count++; 6179 } 6180 6181 if (!priv->dma_cap.vlhash) { 6182 if (count > 2) /* VID = 0 always passes filter */ 6183 return -EOPNOTSUPP; 6184 6185 pmatch = cpu_to_le16(vid); 6186 hash = 0; 6187 } 6188 6189 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double); 6190 } 6191 6192 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid) 6193 { 6194 struct stmmac_priv *priv = netdev_priv(ndev); 6195 bool is_double = false; 6196 int ret; 6197 6198 if (be16_to_cpu(proto) == ETH_P_8021AD) 6199 is_double = true; 6200 6201 set_bit(vid, priv->active_vlans); 6202 ret = stmmac_vlan_update(priv, is_double); 6203 if (ret) { 6204 clear_bit(vid, priv->active_vlans); 6205 return ret; 6206 } 6207 6208 if (priv->hw->num_vlan) { 6209 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6210 if (ret) 6211 return ret; 6212 } 6213 6214 return 0; 6215 } 6216 6217 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid) 6218 { 6219 struct stmmac_priv *priv = netdev_priv(ndev); 6220 bool is_double = false; 6221 int ret; 6222 6223 ret = pm_runtime_get_sync(priv->device); 6224 if (ret < 0) { 6225 pm_runtime_put_noidle(priv->device); 6226 return ret; 6227 } 6228 6229 if (be16_to_cpu(proto) == ETH_P_8021AD) 6230 is_double = true; 6231 6232 clear_bit(vid, priv->active_vlans); 6233 6234 if (priv->hw->num_vlan) { 6235 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid); 6236 if (ret) 6237 goto del_vlan_error; 6238 } 6239 6240 ret = stmmac_vlan_update(priv, is_double); 6241 6242 del_vlan_error: 6243 pm_runtime_put(priv->device); 6244 6245 return ret; 6246 } 6247 6248 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf) 6249 { 6250 struct stmmac_priv *priv = netdev_priv(dev); 6251 6252 switch (bpf->command) { 6253 case XDP_SETUP_PROG: 6254 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack); 6255 case XDP_SETUP_XSK_POOL: 6256 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool, 6257 bpf->xsk.queue_id); 6258 default: 6259 return -EOPNOTSUPP; 6260 } 6261 } 6262 6263 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames, 6264 struct xdp_frame **frames, u32 flags) 6265 { 6266 struct stmmac_priv *priv = netdev_priv(dev); 6267 int cpu = smp_processor_id(); 6268 struct netdev_queue *nq; 6269 int i, nxmit = 0; 6270 int queue; 6271 6272 if (unlikely(test_bit(STMMAC_DOWN, &priv->state))) 6273 return -ENETDOWN; 6274 6275 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 6276 return -EINVAL; 6277 6278 queue = stmmac_xdp_get_tx_queue(priv, cpu); 6279 nq = netdev_get_tx_queue(priv->dev, queue); 6280 6281 __netif_tx_lock(nq, cpu); 6282 /* Avoids TX time-out as we are sharing with slow path */ 6283 txq_trans_cond_update(nq); 6284 6285 for (i = 0; i < num_frames; i++) { 6286 int res; 6287 6288 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true); 6289 if (res == STMMAC_XDP_CONSUMED) 6290 break; 6291 6292 nxmit++; 6293 } 6294 6295 if (flags & XDP_XMIT_FLUSH) { 6296 stmmac_flush_tx_descriptors(priv, queue); 6297 stmmac_tx_timer_arm(priv, queue); 6298 } 6299 6300 __netif_tx_unlock(nq); 6301 6302 return nxmit; 6303 } 6304 6305 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue) 6306 { 6307 struct stmmac_channel *ch = &priv->channel[queue]; 6308 unsigned long flags; 6309 6310 spin_lock_irqsave(&ch->lock, flags); 6311 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6312 spin_unlock_irqrestore(&ch->lock, flags); 6313 6314 stmmac_stop_rx_dma(priv, queue); 6315 __free_dma_rx_desc_resources(priv, queue); 6316 } 6317 6318 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue) 6319 { 6320 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 6321 struct stmmac_channel *ch = &priv->channel[queue]; 6322 unsigned long flags; 6323 u32 buf_size; 6324 int ret; 6325 6326 ret = __alloc_dma_rx_desc_resources(priv, queue); 6327 if (ret) { 6328 netdev_err(priv->dev, "Failed to alloc RX desc.\n"); 6329 return; 6330 } 6331 6332 ret = __init_dma_rx_desc_rings(priv, queue, GFP_KERNEL); 6333 if (ret) { 6334 __free_dma_rx_desc_resources(priv, queue); 6335 netdev_err(priv->dev, "Failed to init RX desc.\n"); 6336 return; 6337 } 6338 6339 stmmac_clear_rx_descriptors(priv, queue); 6340 6341 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6342 rx_q->dma_rx_phy, rx_q->queue_index); 6343 6344 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num * 6345 sizeof(struct dma_desc)); 6346 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6347 rx_q->rx_tail_addr, rx_q->queue_index); 6348 6349 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6350 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6351 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6352 buf_size, 6353 rx_q->queue_index); 6354 } else { 6355 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6356 priv->dma_buf_sz, 6357 rx_q->queue_index); 6358 } 6359 6360 stmmac_start_rx_dma(priv, queue); 6361 6362 spin_lock_irqsave(&ch->lock, flags); 6363 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0); 6364 spin_unlock_irqrestore(&ch->lock, flags); 6365 } 6366 6367 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue) 6368 { 6369 struct stmmac_channel *ch = &priv->channel[queue]; 6370 unsigned long flags; 6371 6372 spin_lock_irqsave(&ch->lock, flags); 6373 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6374 spin_unlock_irqrestore(&ch->lock, flags); 6375 6376 stmmac_stop_tx_dma(priv, queue); 6377 __free_dma_tx_desc_resources(priv, queue); 6378 } 6379 6380 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue) 6381 { 6382 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 6383 struct stmmac_channel *ch = &priv->channel[queue]; 6384 unsigned long flags; 6385 int ret; 6386 6387 ret = __alloc_dma_tx_desc_resources(priv, queue); 6388 if (ret) { 6389 netdev_err(priv->dev, "Failed to alloc TX desc.\n"); 6390 return; 6391 } 6392 6393 ret = __init_dma_tx_desc_rings(priv, queue); 6394 if (ret) { 6395 __free_dma_tx_desc_resources(priv, queue); 6396 netdev_err(priv->dev, "Failed to init TX desc.\n"); 6397 return; 6398 } 6399 6400 stmmac_clear_tx_descriptors(priv, queue); 6401 6402 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6403 tx_q->dma_tx_phy, tx_q->queue_index); 6404 6405 if (tx_q->tbs & STMMAC_TBS_AVAIL) 6406 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index); 6407 6408 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6409 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6410 tx_q->tx_tail_addr, tx_q->queue_index); 6411 6412 stmmac_start_tx_dma(priv, queue); 6413 6414 spin_lock_irqsave(&ch->lock, flags); 6415 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1); 6416 spin_unlock_irqrestore(&ch->lock, flags); 6417 } 6418 6419 void stmmac_xdp_release(struct net_device *dev) 6420 { 6421 struct stmmac_priv *priv = netdev_priv(dev); 6422 u32 chan; 6423 6424 /* Disable NAPI process */ 6425 stmmac_disable_all_queues(priv); 6426 6427 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6428 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6429 6430 /* Free the IRQ lines */ 6431 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0); 6432 6433 /* Stop TX/RX DMA channels */ 6434 stmmac_stop_all_dma(priv); 6435 6436 /* Release and free the Rx/Tx resources */ 6437 free_dma_desc_resources(priv); 6438 6439 /* Disable the MAC Rx/Tx */ 6440 stmmac_mac_set(priv, priv->ioaddr, false); 6441 6442 /* set trans_start so we don't get spurious 6443 * watchdogs during reset 6444 */ 6445 netif_trans_update(dev); 6446 netif_carrier_off(dev); 6447 } 6448 6449 int stmmac_xdp_open(struct net_device *dev) 6450 { 6451 struct stmmac_priv *priv = netdev_priv(dev); 6452 u32 rx_cnt = priv->plat->rx_queues_to_use; 6453 u32 tx_cnt = priv->plat->tx_queues_to_use; 6454 u32 dma_csr_ch = max(rx_cnt, tx_cnt); 6455 struct stmmac_rx_queue *rx_q; 6456 struct stmmac_tx_queue *tx_q; 6457 u32 buf_size; 6458 bool sph_en; 6459 u32 chan; 6460 int ret; 6461 6462 ret = alloc_dma_desc_resources(priv); 6463 if (ret < 0) { 6464 netdev_err(dev, "%s: DMA descriptors allocation failed\n", 6465 __func__); 6466 goto dma_desc_error; 6467 } 6468 6469 ret = init_dma_desc_rings(dev, GFP_KERNEL); 6470 if (ret < 0) { 6471 netdev_err(dev, "%s: DMA descriptors initialization failed\n", 6472 __func__); 6473 goto init_error; 6474 } 6475 6476 /* DMA CSR Channel configuration */ 6477 for (chan = 0; chan < dma_csr_ch; chan++) { 6478 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan); 6479 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1); 6480 } 6481 6482 /* Adjust Split header */ 6483 sph_en = (priv->hw->rx_csum > 0) && priv->sph; 6484 6485 /* DMA RX Channel Configuration */ 6486 for (chan = 0; chan < rx_cnt; chan++) { 6487 rx_q = &priv->rx_queue[chan]; 6488 6489 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6490 rx_q->dma_rx_phy, chan); 6491 6492 rx_q->rx_tail_addr = rx_q->dma_rx_phy + 6493 (rx_q->buf_alloc_num * 6494 sizeof(struct dma_desc)); 6495 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, 6496 rx_q->rx_tail_addr, chan); 6497 6498 if (rx_q->xsk_pool && rx_q->buf_alloc_num) { 6499 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool); 6500 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6501 buf_size, 6502 rx_q->queue_index); 6503 } else { 6504 stmmac_set_dma_bfsize(priv, priv->ioaddr, 6505 priv->dma_buf_sz, 6506 rx_q->queue_index); 6507 } 6508 6509 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan); 6510 } 6511 6512 /* DMA TX Channel Configuration */ 6513 for (chan = 0; chan < tx_cnt; chan++) { 6514 tx_q = &priv->tx_queue[chan]; 6515 6516 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg, 6517 tx_q->dma_tx_phy, chan); 6518 6519 tx_q->tx_tail_addr = tx_q->dma_tx_phy; 6520 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, 6521 tx_q->tx_tail_addr, chan); 6522 6523 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 6524 tx_q->txtimer.function = stmmac_tx_timer; 6525 } 6526 6527 /* Enable the MAC Rx/Tx */ 6528 stmmac_mac_set(priv, priv->ioaddr, true); 6529 6530 /* Start Rx & Tx DMA Channels */ 6531 stmmac_start_all_dma(priv); 6532 6533 ret = stmmac_request_irq(dev); 6534 if (ret) 6535 goto irq_error; 6536 6537 /* Enable NAPI process*/ 6538 stmmac_enable_all_queues(priv); 6539 netif_carrier_on(dev); 6540 netif_tx_start_all_queues(dev); 6541 stmmac_enable_all_dma_irq(priv); 6542 6543 return 0; 6544 6545 irq_error: 6546 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 6547 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 6548 6549 stmmac_hw_teardown(dev); 6550 init_error: 6551 free_dma_desc_resources(priv); 6552 dma_desc_error: 6553 return ret; 6554 } 6555 6556 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags) 6557 { 6558 struct stmmac_priv *priv = netdev_priv(dev); 6559 struct stmmac_rx_queue *rx_q; 6560 struct stmmac_tx_queue *tx_q; 6561 struct stmmac_channel *ch; 6562 6563 if (test_bit(STMMAC_DOWN, &priv->state) || 6564 !netif_carrier_ok(priv->dev)) 6565 return -ENETDOWN; 6566 6567 if (!stmmac_xdp_is_enabled(priv)) 6568 return -ENXIO; 6569 6570 if (queue >= priv->plat->rx_queues_to_use || 6571 queue >= priv->plat->tx_queues_to_use) 6572 return -EINVAL; 6573 6574 rx_q = &priv->rx_queue[queue]; 6575 tx_q = &priv->tx_queue[queue]; 6576 ch = &priv->channel[queue]; 6577 6578 if (!rx_q->xsk_pool && !tx_q->xsk_pool) 6579 return -ENXIO; 6580 6581 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) { 6582 /* EQoS does not have per-DMA channel SW interrupt, 6583 * so we schedule RX Napi straight-away. 6584 */ 6585 if (likely(napi_schedule_prep(&ch->rxtx_napi))) 6586 __napi_schedule(&ch->rxtx_napi); 6587 } 6588 6589 return 0; 6590 } 6591 6592 static const struct net_device_ops stmmac_netdev_ops = { 6593 .ndo_open = stmmac_open, 6594 .ndo_start_xmit = stmmac_xmit, 6595 .ndo_stop = stmmac_release, 6596 .ndo_change_mtu = stmmac_change_mtu, 6597 .ndo_fix_features = stmmac_fix_features, 6598 .ndo_set_features = stmmac_set_features, 6599 .ndo_set_rx_mode = stmmac_set_rx_mode, 6600 .ndo_tx_timeout = stmmac_tx_timeout, 6601 .ndo_eth_ioctl = stmmac_ioctl, 6602 .ndo_setup_tc = stmmac_setup_tc, 6603 .ndo_select_queue = stmmac_select_queue, 6604 #ifdef CONFIG_NET_POLL_CONTROLLER 6605 .ndo_poll_controller = stmmac_poll_controller, 6606 #endif 6607 .ndo_set_mac_address = stmmac_set_mac_address, 6608 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid, 6609 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid, 6610 .ndo_bpf = stmmac_bpf, 6611 .ndo_xdp_xmit = stmmac_xdp_xmit, 6612 .ndo_xsk_wakeup = stmmac_xsk_wakeup, 6613 }; 6614 6615 static void stmmac_reset_subtask(struct stmmac_priv *priv) 6616 { 6617 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state)) 6618 return; 6619 if (test_bit(STMMAC_DOWN, &priv->state)) 6620 return; 6621 6622 netdev_err(priv->dev, "Reset adapter.\n"); 6623 6624 rtnl_lock(); 6625 netif_trans_update(priv->dev); 6626 while (test_and_set_bit(STMMAC_RESETING, &priv->state)) 6627 usleep_range(1000, 2000); 6628 6629 set_bit(STMMAC_DOWN, &priv->state); 6630 dev_close(priv->dev); 6631 dev_open(priv->dev, NULL); 6632 clear_bit(STMMAC_DOWN, &priv->state); 6633 clear_bit(STMMAC_RESETING, &priv->state); 6634 rtnl_unlock(); 6635 } 6636 6637 static void stmmac_service_task(struct work_struct *work) 6638 { 6639 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6640 service_task); 6641 6642 stmmac_reset_subtask(priv); 6643 clear_bit(STMMAC_SERVICE_SCHED, &priv->state); 6644 } 6645 6646 /** 6647 * stmmac_hw_init - Init the MAC device 6648 * @priv: driver private structure 6649 * Description: this function is to configure the MAC device according to 6650 * some platform parameters or the HW capability register. It prepares the 6651 * driver to use either ring or chain modes and to setup either enhanced or 6652 * normal descriptors. 6653 */ 6654 static int stmmac_hw_init(struct stmmac_priv *priv) 6655 { 6656 int ret; 6657 6658 /* dwmac-sun8i only work in chain mode */ 6659 if (priv->plat->has_sun8i) 6660 chain_mode = 1; 6661 priv->chain_mode = chain_mode; 6662 6663 /* Initialize HW Interface */ 6664 ret = stmmac_hwif_init(priv); 6665 if (ret) 6666 return ret; 6667 6668 /* Get the HW capability (new GMAC newer than 3.50a) */ 6669 priv->hw_cap_support = stmmac_get_hw_features(priv); 6670 if (priv->hw_cap_support) { 6671 dev_info(priv->device, "DMA HW capability register supported\n"); 6672 6673 /* We can override some gmac/dma configuration fields: e.g. 6674 * enh_desc, tx_coe (e.g. that are passed through the 6675 * platform) with the values from the HW capability 6676 * register (if supported). 6677 */ 6678 priv->plat->enh_desc = priv->dma_cap.enh_desc; 6679 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up && 6680 !priv->plat->use_phy_wol; 6681 priv->hw->pmt = priv->plat->pmt; 6682 if (priv->dma_cap.hash_tb_sz) { 6683 priv->hw->multicast_filter_bins = 6684 (BIT(priv->dma_cap.hash_tb_sz) << 5); 6685 priv->hw->mcast_bits_log2 = 6686 ilog2(priv->hw->multicast_filter_bins); 6687 } 6688 6689 /* TXCOE doesn't work in thresh DMA mode */ 6690 if (priv->plat->force_thresh_dma_mode) 6691 priv->plat->tx_coe = 0; 6692 else 6693 priv->plat->tx_coe = priv->dma_cap.tx_coe; 6694 6695 /* In case of GMAC4 rx_coe is from HW cap register. */ 6696 priv->plat->rx_coe = priv->dma_cap.rx_coe; 6697 6698 if (priv->dma_cap.rx_coe_type2) 6699 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2; 6700 else if (priv->dma_cap.rx_coe_type1) 6701 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1; 6702 6703 } else { 6704 dev_info(priv->device, "No HW DMA feature register supported\n"); 6705 } 6706 6707 if (priv->plat->rx_coe) { 6708 priv->hw->rx_csum = priv->plat->rx_coe; 6709 dev_info(priv->device, "RX Checksum Offload Engine supported\n"); 6710 if (priv->synopsys_id < DWMAC_CORE_4_00) 6711 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum); 6712 } 6713 if (priv->plat->tx_coe) 6714 dev_info(priv->device, "TX Checksum insertion supported\n"); 6715 6716 if (priv->plat->pmt) { 6717 dev_info(priv->device, "Wake-Up On Lan supported\n"); 6718 device_set_wakeup_capable(priv->device, 1); 6719 } 6720 6721 if (priv->dma_cap.tsoen) 6722 dev_info(priv->device, "TSO supported\n"); 6723 6724 priv->hw->vlan_fail_q_en = priv->plat->vlan_fail_q_en; 6725 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q; 6726 6727 /* Run HW quirks, if any */ 6728 if (priv->hwif_quirks) { 6729 ret = priv->hwif_quirks(priv); 6730 if (ret) 6731 return ret; 6732 } 6733 6734 /* Rx Watchdog is available in the COREs newer than the 3.40. 6735 * In some case, for example on bugged HW this feature 6736 * has to be disable and this can be done by passing the 6737 * riwt_off field from the platform. 6738 */ 6739 if (((priv->synopsys_id >= DWMAC_CORE_3_50) || 6740 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) { 6741 priv->use_riwt = 1; 6742 dev_info(priv->device, 6743 "Enable RX Mitigation via HW Watchdog Timer\n"); 6744 } 6745 6746 return 0; 6747 } 6748 6749 static void stmmac_napi_add(struct net_device *dev) 6750 { 6751 struct stmmac_priv *priv = netdev_priv(dev); 6752 u32 queue, maxq; 6753 6754 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6755 6756 for (queue = 0; queue < maxq; queue++) { 6757 struct stmmac_channel *ch = &priv->channel[queue]; 6758 6759 ch->priv_data = priv; 6760 ch->index = queue; 6761 spin_lock_init(&ch->lock); 6762 6763 if (queue < priv->plat->rx_queues_to_use) { 6764 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx, 6765 NAPI_POLL_WEIGHT); 6766 } 6767 if (queue < priv->plat->tx_queues_to_use) { 6768 netif_tx_napi_add(dev, &ch->tx_napi, 6769 stmmac_napi_poll_tx, 6770 NAPI_POLL_WEIGHT); 6771 } 6772 if (queue < priv->plat->rx_queues_to_use && 6773 queue < priv->plat->tx_queues_to_use) { 6774 netif_napi_add(dev, &ch->rxtx_napi, 6775 stmmac_napi_poll_rxtx, 6776 NAPI_POLL_WEIGHT); 6777 } 6778 } 6779 } 6780 6781 static void stmmac_napi_del(struct net_device *dev) 6782 { 6783 struct stmmac_priv *priv = netdev_priv(dev); 6784 u32 queue, maxq; 6785 6786 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use); 6787 6788 for (queue = 0; queue < maxq; queue++) { 6789 struct stmmac_channel *ch = &priv->channel[queue]; 6790 6791 if (queue < priv->plat->rx_queues_to_use) 6792 netif_napi_del(&ch->rx_napi); 6793 if (queue < priv->plat->tx_queues_to_use) 6794 netif_napi_del(&ch->tx_napi); 6795 if (queue < priv->plat->rx_queues_to_use && 6796 queue < priv->plat->tx_queues_to_use) { 6797 netif_napi_del(&ch->rxtx_napi); 6798 } 6799 } 6800 } 6801 6802 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt) 6803 { 6804 struct stmmac_priv *priv = netdev_priv(dev); 6805 int ret = 0; 6806 6807 if (netif_running(dev)) 6808 stmmac_release(dev); 6809 6810 stmmac_napi_del(dev); 6811 6812 priv->plat->rx_queues_to_use = rx_cnt; 6813 priv->plat->tx_queues_to_use = tx_cnt; 6814 6815 stmmac_napi_add(dev); 6816 6817 if (netif_running(dev)) 6818 ret = stmmac_open(dev); 6819 6820 return ret; 6821 } 6822 6823 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size) 6824 { 6825 struct stmmac_priv *priv = netdev_priv(dev); 6826 int ret = 0; 6827 6828 if (netif_running(dev)) 6829 stmmac_release(dev); 6830 6831 priv->dma_rx_size = rx_size; 6832 priv->dma_tx_size = tx_size; 6833 6834 if (netif_running(dev)) 6835 ret = stmmac_open(dev); 6836 6837 return ret; 6838 } 6839 6840 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n" 6841 static void stmmac_fpe_lp_task(struct work_struct *work) 6842 { 6843 struct stmmac_priv *priv = container_of(work, struct stmmac_priv, 6844 fpe_task); 6845 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg; 6846 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state; 6847 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state; 6848 bool *hs_enable = &fpe_cfg->hs_enable; 6849 bool *enable = &fpe_cfg->enable; 6850 int retries = 20; 6851 6852 while (retries-- > 0) { 6853 /* Bail out immediately if FPE handshake is OFF */ 6854 if (*lo_state == FPE_STATE_OFF || !*hs_enable) 6855 break; 6856 6857 if (*lo_state == FPE_STATE_ENTERING_ON && 6858 *lp_state == FPE_STATE_ENTERING_ON) { 6859 stmmac_fpe_configure(priv, priv->ioaddr, 6860 priv->plat->tx_queues_to_use, 6861 priv->plat->rx_queues_to_use, 6862 *enable); 6863 6864 netdev_info(priv->dev, "configured FPE\n"); 6865 6866 *lo_state = FPE_STATE_ON; 6867 *lp_state = FPE_STATE_ON; 6868 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n"); 6869 break; 6870 } 6871 6872 if ((*lo_state == FPE_STATE_CAPABLE || 6873 *lo_state == FPE_STATE_ENTERING_ON) && 6874 *lp_state != FPE_STATE_ON) { 6875 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT, 6876 *lo_state, *lp_state); 6877 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6878 MPACKET_VERIFY); 6879 } 6880 /* Sleep then retry */ 6881 msleep(500); 6882 } 6883 6884 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state); 6885 } 6886 6887 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable) 6888 { 6889 if (priv->plat->fpe_cfg->hs_enable != enable) { 6890 if (enable) { 6891 stmmac_fpe_send_mpacket(priv, priv->ioaddr, 6892 MPACKET_VERIFY); 6893 } else { 6894 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF; 6895 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF; 6896 } 6897 6898 priv->plat->fpe_cfg->hs_enable = enable; 6899 } 6900 } 6901 6902 /** 6903 * stmmac_dvr_probe 6904 * @device: device pointer 6905 * @plat_dat: platform data pointer 6906 * @res: stmmac resource pointer 6907 * Description: this is the main probe function used to 6908 * call the alloc_etherdev, allocate the priv structure. 6909 * Return: 6910 * returns 0 on success, otherwise errno. 6911 */ 6912 int stmmac_dvr_probe(struct device *device, 6913 struct plat_stmmacenet_data *plat_dat, 6914 struct stmmac_resources *res) 6915 { 6916 struct net_device *ndev = NULL; 6917 struct stmmac_priv *priv; 6918 u32 rxq; 6919 int i, ret = 0; 6920 6921 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv), 6922 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES); 6923 if (!ndev) 6924 return -ENOMEM; 6925 6926 SET_NETDEV_DEV(ndev, device); 6927 6928 priv = netdev_priv(ndev); 6929 priv->device = device; 6930 priv->dev = ndev; 6931 6932 stmmac_set_ethtool_ops(ndev); 6933 priv->pause = pause; 6934 priv->plat = plat_dat; 6935 priv->ioaddr = res->addr; 6936 priv->dev->base_addr = (unsigned long)res->addr; 6937 priv->plat->dma_cfg->multi_msi_en = priv->plat->multi_msi_en; 6938 6939 priv->dev->irq = res->irq; 6940 priv->wol_irq = res->wol_irq; 6941 priv->lpi_irq = res->lpi_irq; 6942 priv->sfty_ce_irq = res->sfty_ce_irq; 6943 priv->sfty_ue_irq = res->sfty_ue_irq; 6944 for (i = 0; i < MTL_MAX_RX_QUEUES; i++) 6945 priv->rx_irq[i] = res->rx_irq[i]; 6946 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) 6947 priv->tx_irq[i] = res->tx_irq[i]; 6948 6949 if (!is_zero_ether_addr(res->mac)) 6950 eth_hw_addr_set(priv->dev, res->mac); 6951 6952 dev_set_drvdata(device, priv->dev); 6953 6954 /* Verify driver arguments */ 6955 stmmac_verify_args(); 6956 6957 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL); 6958 if (!priv->af_xdp_zc_qps) 6959 return -ENOMEM; 6960 6961 /* Allocate workqueue */ 6962 priv->wq = create_singlethread_workqueue("stmmac_wq"); 6963 if (!priv->wq) { 6964 dev_err(priv->device, "failed to create workqueue\n"); 6965 return -ENOMEM; 6966 } 6967 6968 INIT_WORK(&priv->service_task, stmmac_service_task); 6969 6970 /* Initialize Link Partner FPE workqueue */ 6971 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task); 6972 6973 /* Override with kernel parameters if supplied XXX CRS XXX 6974 * this needs to have multiple instances 6975 */ 6976 if ((phyaddr >= 0) && (phyaddr <= 31)) 6977 priv->plat->phy_addr = phyaddr; 6978 6979 if (priv->plat->stmmac_rst) { 6980 ret = reset_control_assert(priv->plat->stmmac_rst); 6981 reset_control_deassert(priv->plat->stmmac_rst); 6982 /* Some reset controllers have only reset callback instead of 6983 * assert + deassert callbacks pair. 6984 */ 6985 if (ret == -ENOTSUPP) 6986 reset_control_reset(priv->plat->stmmac_rst); 6987 } 6988 6989 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst); 6990 if (ret == -ENOTSUPP) 6991 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n", 6992 ERR_PTR(ret)); 6993 6994 /* Init MAC and get the capabilities */ 6995 ret = stmmac_hw_init(priv); 6996 if (ret) 6997 goto error_hw_init; 6998 6999 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch. 7000 */ 7001 if (priv->synopsys_id < DWMAC_CORE_5_20) 7002 priv->plat->dma_cfg->dche = false; 7003 7004 stmmac_check_ether_addr(priv); 7005 7006 ndev->netdev_ops = &stmmac_netdev_ops; 7007 7008 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 7009 NETIF_F_RXCSUM; 7010 7011 ret = stmmac_tc_init(priv, priv); 7012 if (!ret) { 7013 ndev->hw_features |= NETIF_F_HW_TC; 7014 } 7015 7016 if ((priv->plat->tso_en) && (priv->dma_cap.tsoen)) { 7017 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; 7018 if (priv->plat->has_gmac4) 7019 ndev->hw_features |= NETIF_F_GSO_UDP_L4; 7020 priv->tso = true; 7021 dev_info(priv->device, "TSO feature enabled\n"); 7022 } 7023 7024 if (priv->dma_cap.sphen) { 7025 ndev->hw_features |= NETIF_F_GRO; 7026 priv->sph_cap = true; 7027 priv->sph = priv->sph_cap; 7028 dev_info(priv->device, "SPH feature enabled\n"); 7029 } 7030 7031 /* The current IP register MAC_HW_Feature1[ADDR64] only define 7032 * 32/40/64 bit width, but some SOC support others like i.MX8MP 7033 * support 34 bits but it map to 40 bits width in MAC_HW_Feature1[ADDR64]. 7034 * So overwrite dma_cap.addr64 according to HW real design. 7035 */ 7036 if (priv->plat->addr64) 7037 priv->dma_cap.addr64 = priv->plat->addr64; 7038 7039 if (priv->dma_cap.addr64) { 7040 ret = dma_set_mask_and_coherent(device, 7041 DMA_BIT_MASK(priv->dma_cap.addr64)); 7042 if (!ret) { 7043 dev_info(priv->device, "Using %d bits DMA width\n", 7044 priv->dma_cap.addr64); 7045 7046 /* 7047 * If more than 32 bits can be addressed, make sure to 7048 * enable enhanced addressing mode. 7049 */ 7050 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT)) 7051 priv->plat->dma_cfg->eame = true; 7052 } else { 7053 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32)); 7054 if (ret) { 7055 dev_err(priv->device, "Failed to set DMA Mask\n"); 7056 goto error_hw_init; 7057 } 7058 7059 priv->dma_cap.addr64 = 32; 7060 } 7061 } 7062 7063 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA; 7064 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 7065 #ifdef STMMAC_VLAN_TAG_USED 7066 /* Both mac100 and gmac support receive VLAN tag detection */ 7067 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX; 7068 if (priv->dma_cap.vlhash) { 7069 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7070 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER; 7071 } 7072 if (priv->dma_cap.vlins) { 7073 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX; 7074 if (priv->dma_cap.dvlan) 7075 ndev->features |= NETIF_F_HW_VLAN_STAG_TX; 7076 } 7077 #endif 7078 priv->msg_enable = netif_msg_init(debug, default_msg_level); 7079 7080 /* Initialize RSS */ 7081 rxq = priv->plat->rx_queues_to_use; 7082 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key)); 7083 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++) 7084 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq); 7085 7086 if (priv->dma_cap.rssen && priv->plat->rss_en) 7087 ndev->features |= NETIF_F_RXHASH; 7088 7089 /* MTU range: 46 - hw-specific max */ 7090 ndev->min_mtu = ETH_ZLEN - ETH_HLEN; 7091 if (priv->plat->has_xgmac) 7092 ndev->max_mtu = XGMAC_JUMBO_LEN; 7093 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00)) 7094 ndev->max_mtu = JUMBO_LEN; 7095 else 7096 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN); 7097 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu 7098 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range. 7099 */ 7100 if ((priv->plat->maxmtu < ndev->max_mtu) && 7101 (priv->plat->maxmtu >= ndev->min_mtu)) 7102 ndev->max_mtu = priv->plat->maxmtu; 7103 else if (priv->plat->maxmtu < ndev->min_mtu) 7104 dev_warn(priv->device, 7105 "%s: warning: maxmtu having invalid value (%d)\n", 7106 __func__, priv->plat->maxmtu); 7107 7108 if (flow_ctrl) 7109 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */ 7110 7111 /* Setup channels NAPI */ 7112 stmmac_napi_add(ndev); 7113 7114 mutex_init(&priv->lock); 7115 7116 /* If a specific clk_csr value is passed from the platform 7117 * this means that the CSR Clock Range selection cannot be 7118 * changed at run-time and it is fixed. Viceversa the driver'll try to 7119 * set the MDC clock dynamically according to the csr actual 7120 * clock input. 7121 */ 7122 if (priv->plat->clk_csr >= 0) 7123 priv->clk_csr = priv->plat->clk_csr; 7124 else 7125 stmmac_clk_csr_set(priv); 7126 7127 stmmac_check_pcs_mode(priv); 7128 7129 pm_runtime_get_noresume(device); 7130 pm_runtime_set_active(device); 7131 if (!pm_runtime_enabled(device)) 7132 pm_runtime_enable(device); 7133 7134 if (priv->hw->pcs != STMMAC_PCS_TBI && 7135 priv->hw->pcs != STMMAC_PCS_RTBI) { 7136 /* MDIO bus Registration */ 7137 ret = stmmac_mdio_register(ndev); 7138 if (ret < 0) { 7139 dev_err(priv->device, 7140 "%s: MDIO bus (id: %d) registration failed", 7141 __func__, priv->plat->bus_id); 7142 goto error_mdio_register; 7143 } 7144 } 7145 7146 if (priv->plat->speed_mode_2500) 7147 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv); 7148 7149 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) { 7150 ret = stmmac_xpcs_setup(priv->mii); 7151 if (ret) 7152 goto error_xpcs_setup; 7153 } 7154 7155 ret = stmmac_phy_setup(priv); 7156 if (ret) { 7157 netdev_err(ndev, "failed to setup phy (%d)\n", ret); 7158 goto error_phy_setup; 7159 } 7160 7161 ret = register_netdev(ndev); 7162 if (ret) { 7163 dev_err(priv->device, "%s: ERROR %i registering the device\n", 7164 __func__, ret); 7165 goto error_netdev_register; 7166 } 7167 7168 if (priv->plat->serdes_powerup) { 7169 ret = priv->plat->serdes_powerup(ndev, 7170 priv->plat->bsp_priv); 7171 7172 if (ret < 0) 7173 goto error_serdes_powerup; 7174 } 7175 7176 #ifdef CONFIG_DEBUG_FS 7177 stmmac_init_fs(ndev); 7178 #endif 7179 7180 if (priv->plat->dump_debug_regs) 7181 priv->plat->dump_debug_regs(priv->plat->bsp_priv); 7182 7183 /* Let pm_runtime_put() disable the clocks. 7184 * If CONFIG_PM is not enabled, the clocks will stay powered. 7185 */ 7186 pm_runtime_put(device); 7187 7188 return ret; 7189 7190 error_serdes_powerup: 7191 unregister_netdev(ndev); 7192 error_netdev_register: 7193 phylink_destroy(priv->phylink); 7194 error_xpcs_setup: 7195 error_phy_setup: 7196 if (priv->hw->pcs != STMMAC_PCS_TBI && 7197 priv->hw->pcs != STMMAC_PCS_RTBI) 7198 stmmac_mdio_unregister(ndev); 7199 error_mdio_register: 7200 stmmac_napi_del(ndev); 7201 error_hw_init: 7202 destroy_workqueue(priv->wq); 7203 bitmap_free(priv->af_xdp_zc_qps); 7204 7205 return ret; 7206 } 7207 EXPORT_SYMBOL_GPL(stmmac_dvr_probe); 7208 7209 /** 7210 * stmmac_dvr_remove 7211 * @dev: device pointer 7212 * Description: this function resets the TX/RX processes, disables the MAC RX/TX 7213 * changes the link status, releases the DMA descriptor rings. 7214 */ 7215 int stmmac_dvr_remove(struct device *dev) 7216 { 7217 struct net_device *ndev = dev_get_drvdata(dev); 7218 struct stmmac_priv *priv = netdev_priv(ndev); 7219 7220 netdev_info(priv->dev, "%s: removing driver", __func__); 7221 7222 pm_runtime_get_sync(dev); 7223 pm_runtime_disable(dev); 7224 pm_runtime_put_noidle(dev); 7225 7226 stmmac_stop_all_dma(priv); 7227 stmmac_mac_set(priv, priv->ioaddr, false); 7228 netif_carrier_off(ndev); 7229 unregister_netdev(ndev); 7230 7231 /* Serdes power down needs to happen after VLAN filter 7232 * is deleted that is triggered by unregister_netdev(). 7233 */ 7234 if (priv->plat->serdes_powerdown) 7235 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7236 7237 #ifdef CONFIG_DEBUG_FS 7238 stmmac_exit_fs(ndev); 7239 #endif 7240 phylink_destroy(priv->phylink); 7241 if (priv->plat->stmmac_rst) 7242 reset_control_assert(priv->plat->stmmac_rst); 7243 reset_control_assert(priv->plat->stmmac_ahb_rst); 7244 if (priv->hw->pcs != STMMAC_PCS_TBI && 7245 priv->hw->pcs != STMMAC_PCS_RTBI) 7246 stmmac_mdio_unregister(ndev); 7247 destroy_workqueue(priv->wq); 7248 mutex_destroy(&priv->lock); 7249 bitmap_free(priv->af_xdp_zc_qps); 7250 7251 return 0; 7252 } 7253 EXPORT_SYMBOL_GPL(stmmac_dvr_remove); 7254 7255 /** 7256 * stmmac_suspend - suspend callback 7257 * @dev: device pointer 7258 * Description: this is the function to suspend the device and it is called 7259 * by the platform driver to stop the network queue, release the resources, 7260 * program the PMT register (for WoL), clean and release driver resources. 7261 */ 7262 int stmmac_suspend(struct device *dev) 7263 { 7264 struct net_device *ndev = dev_get_drvdata(dev); 7265 struct stmmac_priv *priv = netdev_priv(ndev); 7266 u32 chan; 7267 7268 if (!ndev || !netif_running(ndev)) 7269 return 0; 7270 7271 mutex_lock(&priv->lock); 7272 7273 netif_device_detach(ndev); 7274 7275 stmmac_disable_all_queues(priv); 7276 7277 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) 7278 hrtimer_cancel(&priv->tx_queue[chan].txtimer); 7279 7280 if (priv->eee_enabled) { 7281 priv->tx_path_in_lpi_mode = false; 7282 del_timer_sync(&priv->eee_ctrl_timer); 7283 } 7284 7285 /* Stop TX/RX DMA */ 7286 stmmac_stop_all_dma(priv); 7287 7288 if (priv->plat->serdes_powerdown) 7289 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv); 7290 7291 /* Enable Power down mode by programming the PMT regs */ 7292 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7293 stmmac_pmt(priv, priv->hw, priv->wolopts); 7294 priv->irq_wake = 1; 7295 } else { 7296 stmmac_mac_set(priv, priv->ioaddr, false); 7297 pinctrl_pm_select_sleep_state(priv->device); 7298 } 7299 7300 mutex_unlock(&priv->lock); 7301 7302 rtnl_lock(); 7303 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7304 phylink_suspend(priv->phylink, true); 7305 } else { 7306 if (device_may_wakeup(priv->device)) 7307 phylink_speed_down(priv->phylink, false); 7308 phylink_suspend(priv->phylink, false); 7309 } 7310 rtnl_unlock(); 7311 7312 if (priv->dma_cap.fpesel) { 7313 /* Disable FPE */ 7314 stmmac_fpe_configure(priv, priv->ioaddr, 7315 priv->plat->tx_queues_to_use, 7316 priv->plat->rx_queues_to_use, false); 7317 7318 stmmac_fpe_handshake(priv, false); 7319 stmmac_fpe_stop_wq(priv); 7320 } 7321 7322 priv->speed = SPEED_UNKNOWN; 7323 return 0; 7324 } 7325 EXPORT_SYMBOL_GPL(stmmac_suspend); 7326 7327 /** 7328 * stmmac_reset_queues_param - reset queue parameters 7329 * @priv: device pointer 7330 */ 7331 static void stmmac_reset_queues_param(struct stmmac_priv *priv) 7332 { 7333 u32 rx_cnt = priv->plat->rx_queues_to_use; 7334 u32 tx_cnt = priv->plat->tx_queues_to_use; 7335 u32 queue; 7336 7337 for (queue = 0; queue < rx_cnt; queue++) { 7338 struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue]; 7339 7340 rx_q->cur_rx = 0; 7341 rx_q->dirty_rx = 0; 7342 } 7343 7344 for (queue = 0; queue < tx_cnt; queue++) { 7345 struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue]; 7346 7347 tx_q->cur_tx = 0; 7348 tx_q->dirty_tx = 0; 7349 tx_q->mss = 0; 7350 7351 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue)); 7352 } 7353 } 7354 7355 /** 7356 * stmmac_resume - resume callback 7357 * @dev: device pointer 7358 * Description: when resume this function is invoked to setup the DMA and CORE 7359 * in a usable state. 7360 */ 7361 int stmmac_resume(struct device *dev) 7362 { 7363 struct net_device *ndev = dev_get_drvdata(dev); 7364 struct stmmac_priv *priv = netdev_priv(ndev); 7365 int ret; 7366 7367 if (!netif_running(ndev)) 7368 return 0; 7369 7370 /* Power Down bit, into the PM register, is cleared 7371 * automatically as soon as a magic packet or a Wake-up frame 7372 * is received. Anyway, it's better to manually clear 7373 * this bit because it can generate problems while resuming 7374 * from another devices (e.g. serial console). 7375 */ 7376 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7377 mutex_lock(&priv->lock); 7378 stmmac_pmt(priv, priv->hw, 0); 7379 mutex_unlock(&priv->lock); 7380 priv->irq_wake = 0; 7381 } else { 7382 pinctrl_pm_select_default_state(priv->device); 7383 /* reset the phy so that it's ready */ 7384 if (priv->mii) 7385 stmmac_mdio_reset(priv->mii); 7386 } 7387 7388 if (priv->plat->serdes_powerup) { 7389 ret = priv->plat->serdes_powerup(ndev, 7390 priv->plat->bsp_priv); 7391 7392 if (ret < 0) 7393 return ret; 7394 } 7395 7396 rtnl_lock(); 7397 if (device_may_wakeup(priv->device) && priv->plat->pmt) { 7398 phylink_resume(priv->phylink); 7399 } else { 7400 phylink_resume(priv->phylink); 7401 if (device_may_wakeup(priv->device)) 7402 phylink_speed_up(priv->phylink); 7403 } 7404 rtnl_unlock(); 7405 7406 rtnl_lock(); 7407 mutex_lock(&priv->lock); 7408 7409 stmmac_reset_queues_param(priv); 7410 7411 stmmac_free_tx_skbufs(priv); 7412 stmmac_clear_descriptors(priv); 7413 7414 stmmac_hw_setup(ndev, false); 7415 stmmac_init_coalesce(priv); 7416 stmmac_set_rx_mode(ndev); 7417 7418 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw); 7419 7420 stmmac_enable_all_queues(priv); 7421 stmmac_enable_all_dma_irq(priv); 7422 7423 mutex_unlock(&priv->lock); 7424 rtnl_unlock(); 7425 7426 netif_device_attach(ndev); 7427 7428 return 0; 7429 } 7430 EXPORT_SYMBOL_GPL(stmmac_resume); 7431 7432 #ifndef MODULE 7433 static int __init stmmac_cmdline_opt(char *str) 7434 { 7435 char *opt; 7436 7437 if (!str || !*str) 7438 return 1; 7439 while ((opt = strsep(&str, ",")) != NULL) { 7440 if (!strncmp(opt, "debug:", 6)) { 7441 if (kstrtoint(opt + 6, 0, &debug)) 7442 goto err; 7443 } else if (!strncmp(opt, "phyaddr:", 8)) { 7444 if (kstrtoint(opt + 8, 0, &phyaddr)) 7445 goto err; 7446 } else if (!strncmp(opt, "buf_sz:", 7)) { 7447 if (kstrtoint(opt + 7, 0, &buf_sz)) 7448 goto err; 7449 } else if (!strncmp(opt, "tc:", 3)) { 7450 if (kstrtoint(opt + 3, 0, &tc)) 7451 goto err; 7452 } else if (!strncmp(opt, "watchdog:", 9)) { 7453 if (kstrtoint(opt + 9, 0, &watchdog)) 7454 goto err; 7455 } else if (!strncmp(opt, "flow_ctrl:", 10)) { 7456 if (kstrtoint(opt + 10, 0, &flow_ctrl)) 7457 goto err; 7458 } else if (!strncmp(opt, "pause:", 6)) { 7459 if (kstrtoint(opt + 6, 0, &pause)) 7460 goto err; 7461 } else if (!strncmp(opt, "eee_timer:", 10)) { 7462 if (kstrtoint(opt + 10, 0, &eee_timer)) 7463 goto err; 7464 } else if (!strncmp(opt, "chain_mode:", 11)) { 7465 if (kstrtoint(opt + 11, 0, &chain_mode)) 7466 goto err; 7467 } 7468 } 7469 return 1; 7470 7471 err: 7472 pr_err("%s: ERROR broken module parameter conversion", __func__); 7473 return 1; 7474 } 7475 7476 __setup("stmmaceth=", stmmac_cmdline_opt); 7477 #endif /* MODULE */ 7478 7479 static int __init stmmac_init(void) 7480 { 7481 #ifdef CONFIG_DEBUG_FS 7482 /* Create debugfs main directory if it doesn't exist yet */ 7483 if (!stmmac_fs_dir) 7484 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL); 7485 register_netdevice_notifier(&stmmac_notifier); 7486 #endif 7487 7488 return 0; 7489 } 7490 7491 static void __exit stmmac_exit(void) 7492 { 7493 #ifdef CONFIG_DEBUG_FS 7494 unregister_netdevice_notifier(&stmmac_notifier); 7495 debugfs_remove_recursive(stmmac_fs_dir); 7496 #endif 7497 } 7498 7499 module_init(stmmac_init) 7500 module_exit(stmmac_exit) 7501 7502 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver"); 7503 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>"); 7504 MODULE_LICENSE("GPL"); 7505